path
stringlengths 7
265
| concatenated_notebook
stringlengths 46
17M
|
---|---|
algoExpert/boggle_board/solution.ipynb | ###Markdown
Boggle Board[link](https://www.algoexpert.io/questions/Boggle%20Board) My Solution
###Code
def boggleBoard(board, words):
# Write your code here.
t = Trie()
t.addWords(words)
wordsSet = set()
for i in range(len(board)):
for j in range(len(board[i])):
coor = (i, j)
traverseCheck(board, coor, t, set(), wordsSet)
return list(wordsSet)
def traverseCheck(board, coor, trie, visited, wordsSet):
i, j = coor
if trie.isWordEnd == True:
wordsSet.add(trie.fullword)
if trie.chars == {}:
return True
if i < 0 or i >= len(board):
return False
if j < 0 or j >= len(board[i]):
return False
if (i, j) in visited:
return False
c = board[i][j]
if c not in trie.chars:
return False
visited.add((i, j))
nextTrie = trie.chars[c]
nextCoors = [(i - 1, j), (i + 1, j), (i, j - 1), (i, j + 1), \
(i - 1, j - 1), (i + 1, j + 1), (i - 1, j + 1), (i + 1, j - 1)]
for coor in nextCoors:
traverseCheck(board, coor, nextTrie, visited, wordsSet)
visited.remove((i, j))
class Trie:
def __init__(self, isWordEnd=False):
self.chars = {}
self.isWordEnd = isWordEnd
self.fullword = ""
def addWord(self, word):
currentTrie = self
for c in word:
if c not in currentTrie.chars:
currentTrie.chars[c] = Trie()
currentTrie = currentTrie.chars[c]
currentTrie.isWordEnd = True
currentTrie.fullword = word
def addWords(self, words):
for word in words:
self.addWord(word)
###Output
_____no_output_____
###Markdown
Expert Solution
###Code
# O(nm*8^s + ws) time | O(nm + ws) space
def boggleBoard(board, words):
trie = Trie()
for word in words:
trie.add(word)
finalWords = {}
visited = [[False for letter in row] for row in board]
for i in range(len(board)):
for j in range(len(board[i])):
explore(i, j, board, trie.root, visited, finalWords)
return list(finalWords.keys())
def explore(i, j, board, trieNode, visited, finalWords):
if visited[i][j]:
return
letter = board[i][j]
if letter not in trieNode:
return
visited[i][j] = True
trieNode = trieNode[letter]
if "*" in trieNode:
finalWords[trieNode["*"]] = True
neighbors = getNeighbors(i, j, board)
for neighbor in neighbors:
explore(neighbor[0], neighbor[1], board, trieNode, visited, finalWords)
visited[i][j] = False
def getNeighbors(i, j, board):
neighbors = []
if i > 0 and j > 0:
neighbors.append([i - 1, j - 1])
if i > 0 and j < len(board[0]) - 1:
neighbors.append([i - 1, j + 1])
if i < len(board) - 1 and j < len(board[0]) - 1:
neighbors.append([i + 1, j + 1])
if i < len(board) - 1 and j > 0:
neighbors.append([i + 1, j - 1])
if i > 0:
neighbors.append([i - 1, j])
if i < len(board) - 1:
neighbors.append([i + 1, j])
if j > 0:
neighbors.append([i, j - 1])
if j < len(board[0]) - 1:
neighbors.append([i, j + 1])
return neighbors
class Trie:
def __init__(self):
self.root ={}
self.endSymbol = "*"
def add(self, word):
current = self.root
for letter in word:
if letter not in current:
current[letter] = {}
current = current[letter]
current[self.endSymbol] = word
###Output
_____no_output_____ |
LexiconSize/.ipynb_checkpoints/Create English Language Complete Set (preprocessing with lemmatization)-checkpoint.ipynb | ###Markdown
Google Ngrams Analysis An Evolutionary InvestigationThe purpose of this is to filter through the entire dataset without limiting years. It will create \*\-COMPLETE.json files. It can be used to find the size of the lexicon. [Original Ngrams analysis](https://github.com/Aaronasnx/Google-preprocessing/blob/main/ngram%20project.ipynb)
###Code
import os
import gzip
import json
#for progress bars
from tqdm import tqdm
from nltk import WordNetLemmatizer
lemmatizer = WordNetLemmatizer()
#For checking if the word has any non-English-alphabetical letters
#import sys
#!{sys.executable} -m pip install Unidecode
from unidecode import unidecode
import re
#For the Google POS tagging mapping
underscore = re.compile('_{1}')
###Output
_____no_output_____
###Markdown
[NLTK POS Lemmatizer](https://www.nltk.org/_modules/nltk/stem/wordnet.html)The Part Of Speech tag. Valid options are `"n"` for nouns, `"v"` for verbs, `"a"` for adjectives, `"r"` for adverbs and `"s"` for [satellite adjectives](https://stackoverflow.com/questions/18817396/what-part-of-speech-does-s-stand-for-in-wordnet-synsets). Syntax:`lemmatizer.lemmatize(word)` [Google Tags](https://books.google.com/ngrams/info)These tags can either stand alone (\_PRON\_) or can be appended to a word (she_PRON)- _NOUN_ - _VERB_ - _ADJ_ adjective- _ADV_ adverb- _PRON_ pronoun- _DET_ determiner or article- _ADP_ an adposition: either a preposition or a postposition- _NUM_ numeral- _CONJ_ conjunction- _PRT_ particle Define sets which are going to be used in the unigram tests
###Code
import string
PUNCTUATION = set(char for char in string.punctuation).union({'“','”'})
#ALPHABET = set(string.ascii_letters)
DIGITS = set(string.digits)
VOWELS = set("aeiouyAEIOUY")
#Excluding '_' (underscore) from DASHES precludes the tagged 1grams "_NOUN", add it to also include the tagged 1grams
DASHES = {'—','–','—','―','‒','-','_'}
PUNCTUATION.difference_update(DASHES)
STOPS = PUNCTUATION.union(DIGITS)
#GOOGLE_TAGS = {'_NOUN','_VERB','_ADJ','_ADV','_PRON','_DET','_ADP','_NUM','_CONJ','_PRT'}
#Demo of unidecode to show how will use it to filter out accents and non-English letters
unidecode('días', errors='replace')
unigram = 'kožušček'
test = unidecode(unigram, errors='replace')
if test == unigram:
print('yes')
pass
else:
print("no")
###Output
no
###Markdown
[How to open Gzip files](https://stackoverflow.com/questions/31028815/how-to-unzip-gz-file-using-python)
###Code
def open_gzip(directory,file_path):
with gzip.open(directory+file_path,'r') as f_in:
rows = [x.decode('utf8').strip() for x in f_in.readlines()]
return rows
def save_json(ngram_dict,directory,file_path):
output = file_path[:-3]+'-COMPLETE.json'
if len(ngram_dict)>0:
with open(directory+output, 'w') as f_out:
json.dump(ngram_dict, f_out)
print('SAVED: ',output,len(ngram_dict))
else:
print('unigram dict empty',output)
def csv2tuple(string):
year,match_count,volume_count = tuple(string.split(','))
return int(year),int(match_count),int(volume_count)
def unigram_tests(unigram):
#Exclude words with more than one underscore, can make this != to only include tagged words
if len(underscore.findall(unigram))!=1:
return False
#Checks each character in the unigram against the characters in the STOP set. (character level filtering) - no punctuation or digits allowed
if set(unigram).intersection(STOPS):
return False
#Excluded all of the form _PRON_ (or anything that starts or ends with an underscore)
if unigram[0] == '_' or unigram[-1] == '_':
return False
#must have a vowel (presupposes that it must also have a letter of the alphabet inside)
if not set(unigram).intersection(VOWELS):
return False
#Words cannot start or end with dashes
if unigram[0] in DASHES or unigram[-1] in DASHES:
return False
#must have 0 non-english letters
test = unidecode(unigram, errors='replace')
if test != unigram:
return False
#Can implement more tests here if you need to do more filtering
else:
return True
#maps Google pos_tag to Wordnet pos_tag
def POS_mapper(pos_tag):
if pos_tag == 'NOUN':
return "n"
if pos_tag == 'VERB':
return "v"
if pos_tag == 'ADJ':
return "a"
if pos_tag == 'ADV':
return "r"
else:
return "n" #Default for wordnet lemmatizer
def preprocess_ngrams(directory,file_path):
#rows = open_gzip(directory,file_path)
ngram_dict = dict()
#This implementation uses {1gram:{year:match_count ...} ...}
i=0
for row in tqdm(open_gzip(directory,file_path)):
columns = row.split('\t')
#unigram is the first entry, the rest of the entries are of the form year,match_count,volume_count\t n times, where n is variable each line
unigram = columns[0]
#If it passes the word tests continue parsing and lemmatizing the unigram
if unigram_tests(unigram):
pos = "n" #Default for wordnet lemmatizer
word_tag = underscore.split(unigram) # list of [word,tag]
#maps Google tag to Wordnet tag
pos = POS_mapper(word_tag[1])
#Removes the tag before processing unigram string
unigram = word_tag[0]
#Lemmatize based on POS
unigram = lemmatizer.lemmatize(unigram.lower().strip(),pos)
#Adds the tag back onto the unigram
unigram+='_'+word_tag[1]
#Parse the new entry and create a dictionary of records in form {year:match_count}
records = dict()
for entry in columns[1:]:
year,match_count,volume_count = csv2tuple(str(entry))
#This is the crucial filtering by volume count because only words in >1 volume are reasonably assumed to be used by >1 person
#Words only used by one person - which translates the computational parameter 1 volume - are not considered part of the lexicon
if volume_count>1:
records[year] = match_count
#Modify the dictionary if new entry is already there, else just add it as a new unigram:records to the dict
if unigram in ngram_dict.keys():
#accessing the ngram dictionary and seeing if each year is present, if so add match count, else add a new record entry to the dictionary.
for yr, match_ct in records.items(): #each record should be of the form {year:match_count}
#If the year in the new record is in the dict for this 1gram, then find where it is.
if yr in ngram_dict[unigram].keys():
ngram_dict[unigram][yr] += match_ct
else:
#This just adds the record to the end, will need to sort later
ngram_dict[unigram][yr] = match_ct
else:
ngram_dict[unigram] = records
#Save as JSON
save_json(ngram_dict,directory,file_path)
%%time
directory = '../Ngrams/unigram_data/'
files = os.listdir(directory)
for file_path in files:
if '.gz' in file_path and not '.json' in file_path:
preprocess_ngrams(directory,file_path)
###Output
100%|██████████| 2396510/2396510 [00:16<00:00, 142907.61it/s]
|
notebooks/model_generation/machine_learning_model_3_removed.ipynb | ###Markdown
Load libraries Base Imports
###Code
import pandas as pd
#import seaborn as sns
import matplotlib.pyplot as plt
###Output
_____no_output_____
###Markdown
ML imports
###Code
from sklearn.ensemble import GradientBoostingRegressor, RandomForestRegressor
from sklearn.ensemble import BaggingRegressor, AdaBoostRegressor, ExtraTreesRegressor
from sklearn.neighbors import KNeighborsRegressor, RadiusNeighborsRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.linear_model import LinearRegression, SGDRegressor
from sklearn.linear_model import Ridge, RidgeCV, BayesianRidge
from sklearn.linear_model import HuberRegressor, TheilSenRegressor, RANSACRegressor
from sklearn.neural_network import MLPRegressor
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.preprocessing import OneHotEncoder, StandardScaler, RobustScaler
from sklearn.metrics import mean_squared_error, median_absolute_error, mean_absolute_error
from sklearn.metrics import r2_score, explained_variance_score
###Output
_____no_output_____
###Markdown
Load the datasets - Dataset de testing --> Febrero - 2019- Dataset de training --> Datos Anuales - 2018
###Code
train_data = pd.read_csv('C:\\Users\\yhoz\\Documents\\dataanalytics.predictive\\data\\ausol\\anual_data_18_mod.csv', delimiter=";")
test_data = pd.read_csv('C:\\Users\\yhoz\\Documents\\dataanalytics.predictive\\data\\ausol\\monthly\\02-19.csv', delimiter=";")
###Output
_____no_output_____
###Markdown
Filter & Clean the datasets
###Code
# ----> train data
# Clean
train_data = train_data.drop_duplicates(['MES','FECHA', 'ID_SEGMENT'], keep='first').fillna(method='ffill') # fill with the last value
train_data = train_data.dropna(how='all')
train_data.rename(columns={'ID_SEGMENTO': 'ID_SEGMENT'}, inplace=True)
# Add temporal features
train_data['TIME'] =pd.to_datetime(train_data['FECHA']).map(lambda x: x.strftime('%d %H:%M:%S'))
train_data.sort_values(by=['MES','TIME'], inplace=True)
train_data = train_data.reset_index(drop=True)
train_data['DIA']=pd.to_datetime(train_data['FECHA']).dt.day
train_data = train_data.set_index(pd.DatetimeIndex(train_data['FECHA']))
# ----> test data
# Clean
test_data = test_data.drop_duplicates(['MES','FECHA', 'ID_SEGMENT'], keep='first').fillna(method='ffill') # fill with the last value
test_data = test_data.dropna(how='all')
# Add temporal features
test_data['TIME'] =pd.to_datetime(test_data['FECHA']).map(lambda x: x.strftime('%d %H:%M:%S'))
test_data.sort_values(by=['TIME'], inplace=True)
test_data = test_data.reset_index(drop=True)
test_data['DIA']=pd.to_datetime(test_data['FECHA']).dt.day
test_data = test_data.set_index(pd.DatetimeIndex(test_data['FECHA']))
test_data.iloc[:,7:-1].loc[test_data['ID_SEGMENT']==1]['2019-02-01 00:00:00':'2019-02-02 00:00:00'].plot(linewidth=0.9, figsize=(20, 8))
###Output
_____no_output_____
###Markdown
Test specification Build the training sets
###Code
cluster_features = ['ID_SEGMENT']#, 'COD_LABORALIDAD', 'MES']
excluded_features = ['TIME','FECHA']
excluded_features.extend(cluster_features)
forecast_horizon = [15, 60, 120]
print(excluded_features)
#'models ids are based on cluster_code + '_' + 'time_horizon'
mlmodels_dict = {'linear_regression':{'is_active': True, 'train_model': True, 'method':LinearRegression() },
'ada_boost':{'is_active': True, 'train_model': True, 'method':AdaBoostRegressor() },
'random_forest':{'is_active': True, 'train_model': True, 'method': RandomForestRegressor() },
'extra_trees_1':{'is_active': True, 'train_model': True, 'method': ExtraTreesRegressor() },
'extra_trees_2':{'is_active': True, 'train_model': True, 'method': ExtraTreesRegressor(min_samples_leaf=10) },
'gradient_boosting':{'is_active': True, 'train_model': True, 'method': GradientBoostingRegressor() },
'bagging_regressor':{'is_active': True, 'train_model': True, 'method': BaggingRegressor() },
'mlp_neural_network':{'is_active': True,'train_model': True, 'method': MLPRegressor()},
'kn_neighbors':{'is_active': True,'train_model': True,'method': KNeighborsRegressor(n_neighbors=2) }}
###Output
_____no_output_____
###Markdown
Model training
###Code
# It splits train data in clusters
# cluster features should be provided based on a descriptive analytics
# these features will be used for agent model specialization
# an expert model will be specilized on different feature values
'''
algorithm_name = 'RandomForest'
model_expertise = {
'target': 'TOTAL_VEHICULOS',
'excluded_features': ['TIME','FECHA','ID_SEGMENTO', 'COD_LABORALIDAD'],
'cluster_features' : ['ID_SEGMENT', 'MES', 'COD_LABORALIDAD'],
'apply_rules': {
'rule':{
'on_feature':'ID_SEGMENT',
'exclude_values': [],
}
},
}
forecast_strategy = {
'method' : 'direct', # https://machinelearningmastery.com/multi-step-time-series-forecasting/
'forecast_horizon' : [15, 60, 120], # minutes
}
'''
import itertools
import copy
clusters_codes = [element for element in itertools.product(*list(map(lambda x: train_data[x].unique().tolist(), cluster_features)))]
if len(cluster_features)==1:
clusters_codes = [code[0] for code in clusters_codes ]
#print(clusters_codes)
training_sets = dict.fromkeys(clusters_codes) # key: expert_code | value: train_set
# fill the training sets Python dict
for expert_code in training_sets:
df_train = train_data # restore pandas dataframe
if len(cluster_features)==1:
df_train = df_train.loc[df_train[str(cluster_features[0])]==expert_code]
else:
for key, value in zip(cluster_features, expert_code):
df_train = copy.deepcopy(df_train.loc[df_train[key]==value])
training_sets[expert_code] = copy.deepcopy(df_train)
#print(training_sets[clusters_codes[1]].shape)
clusters_codes[2]
training_sets[clusters_codes[2]]
import pickle
store_model = True
import copy
def regression(regressor, regr_name, x_train, y_train):
reg = copy.deepcopy(regressor.fit(x_train, y_train))
param_grid = {}#'n_estimators': [500], 'max_features': [10,15,20]}
#reg = GridSearchCV(estimator=reg, param_grid=param_grid, n_jobs=1, cv=10, scoring='neg_mean_squared_error')
print('Precision del modelo:')
precision = reg.score(x_train, y_train)
print(precision)
if store_model:
save_dir = os.path.join(os.getcwd(), regr_name)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
model_id = regr_name + '_' + str(cluster_code) + '_' + str(horizon)
print("Model " + str(model_id) + " succesfully generated! Saving it...")
model_path = os.path.join(regr_name, model_id + ".sav")
pickle.dump(reg, open(model_path, 'wb'))
return reg
import os
import copy
for regr_name, regr_properties in mlmodels_dict.items():
if regr_properties['train_model']==True and regr_properties['is_active']==True:
for cluster_code, trainset in training_sets.items(): # access the training sets
for horizon in forecast_horizon:
step = int(horizon/15)
x_train = trainset.loc[:, trainset.columns.difference(excluded_features)][:-step]
y_train = trainset['TOTAL_VEHICULOS'][step:]
mlmodels_dict[regr_name][str(cluster_code) + '_' + str(horizon)] = regression(regr_properties['method'], regr_name, x_train, y_train)
###Output
Precision del modelo:
0.9194649453245873
Model linear_regression_1_15 succesfully generated! Saving it...
Precision del modelo:
0.837700129070815
Model linear_regression_1_60 succesfully generated! Saving it...
Precision del modelo:
0.7182023628053515
Model linear_regression_1_120 succesfully generated! Saving it...
Precision del modelo:
0.8942864563301446
Model linear_regression_2_15 succesfully generated! Saving it...
Precision del modelo:
0.7683372655576228
Model linear_regression_2_60 succesfully generated! Saving it...
Precision del modelo:
0.6286688707496167
Model linear_regression_2_120 succesfully generated! Saving it...
Precision del modelo:
0.9214979898742744
Model linear_regression_3_15 succesfully generated! Saving it...
Precision del modelo:
0.8397484158622748
Model linear_regression_3_60 succesfully generated! Saving it...
Precision del modelo:
0.7181536280797448
Model linear_regression_3_120 succesfully generated! Saving it...
Precision del modelo:
0.9079180958246043
Model linear_regression_4_15 succesfully generated! Saving it...
Precision del modelo:
0.8085642814418569
Model linear_regression_4_60 succesfully generated! Saving it...
Precision del modelo:
0.6612262575676795
Model linear_regression_4_120 succesfully generated! Saving it...
Precision del modelo:
0.9072289888434618
Model linear_regression_6_15 succesfully generated! Saving it...
Precision del modelo:
0.8080776718228382
Model linear_regression_6_60 succesfully generated! Saving it...
Precision del modelo:
0.6608369997119046
Model linear_regression_6_120 succesfully generated! Saving it...
Precision del modelo:
0.9366778109987591
Model linear_regression_7_15 succesfully generated! Saving it...
Precision del modelo:
0.830008969514934
Model linear_regression_7_60 succesfully generated! Saving it...
Precision del modelo:
0.6871736019184904
Model linear_regression_7_120 succesfully generated! Saving it...
Precision del modelo:
0.8722529972493285
Model linear_regression_8_15 succesfully generated! Saving it...
Precision del modelo:
0.7380935464852532
Model linear_regression_8_60 succesfully generated! Saving it...
Precision del modelo:
0.571318939881945
Model linear_regression_8_120 succesfully generated! Saving it...
Precision del modelo:
0.9330695177433604
Model linear_regression_9_15 succesfully generated! Saving it...
Precision del modelo:
0.8253210639097354
Model linear_regression_9_60 succesfully generated! Saving it...
Precision del modelo:
0.6875017965579626
Model linear_regression_9_120 succesfully generated! Saving it...
Precision del modelo:
0.9168091884454104
Model linear_regression_10_15 succesfully generated! Saving it...
Precision del modelo:
0.7797778461588301
Model linear_regression_10_60 succesfully generated! Saving it...
Precision del modelo:
0.5805517703047103
Model linear_regression_10_120 succesfully generated! Saving it...
Precision del modelo:
0.9389163697990169
Model linear_regression_11_15 succesfully generated! Saving it...
Precision del modelo:
0.8338390899997274
Model linear_regression_11_60 succesfully generated! Saving it...
Precision del modelo:
0.6764880247315886
Model linear_regression_11_120 succesfully generated! Saving it...
Precision del modelo:
0.9179629145030358
Model linear_regression_12_15 succesfully generated! Saving it...
Precision del modelo:
0.8069453439554384
Model linear_regression_12_60 succesfully generated! Saving it...
Precision del modelo:
0.6658035741881945
Model linear_regression_12_120 succesfully generated! Saving it...
Precision del modelo:
0.9096311586656031
Model linear_regression_13_15 succesfully generated! Saving it...
Precision del modelo:
0.7567816473666185
Model linear_regression_13_60 succesfully generated! Saving it...
Precision del modelo:
0.5343049707001409
Model linear_regression_13_120 succesfully generated! Saving it...
Precision del modelo:
0.924659323545013
Model linear_regression_14_15 succesfully generated! Saving it...
Precision del modelo:
0.8005055428174066
Model linear_regression_14_60 succesfully generated! Saving it...
Precision del modelo:
0.6391935990568107
Model linear_regression_14_120 succesfully generated! Saving it...
Precision del modelo:
0.9311097543514166
Model linear_regression_15_15 succesfully generated! Saving it...
Precision del modelo:
0.8205247963598525
Model linear_regression_15_60 succesfully generated! Saving it...
Precision del modelo:
0.6419363392029329
Model linear_regression_15_120 succesfully generated! Saving it...
Precision del modelo:
0.9274386871485067
Model linear_regression_16_15 succesfully generated! Saving it...
Precision del modelo:
0.8315281458161856
Model linear_regression_16_60 succesfully generated! Saving it...
Precision del modelo:
0.6618841094700815
Model linear_regression_16_120 succesfully generated! Saving it...
Precision del modelo:
0.8915962975774024
Model linear_regression_17_15 succesfully generated! Saving it...
Precision del modelo:
0.7987095321591092
Model linear_regression_17_60 succesfully generated! Saving it...
Precision del modelo:
0.6372207390642852
Model linear_regression_17_120 succesfully generated! Saving it...
Precision del modelo:
0.8950210765762542
Model linear_regression_18_15 succesfully generated! Saving it...
Precision del modelo:
0.7895534710876112
Model linear_regression_18_60 succesfully generated! Saving it...
Precision del modelo:
0.6479201202032964
Model linear_regression_18_120 succesfully generated! Saving it...
Precision del modelo:
0.8709342542742274
Model linear_regression_19_15 succesfully generated! Saving it...
Precision del modelo:
0.6932169857211912
Model linear_regression_19_60 succesfully generated! Saving it...
Precision del modelo:
0.48960723225955943
Model linear_regression_19_120 succesfully generated! Saving it...
Precision del modelo:
0.6986802731341415
Model linear_regression_20_15 succesfully generated! Saving it...
Precision del modelo:
0.5529430000292128
Model linear_regression_20_60 succesfully generated! Saving it...
Precision del modelo:
0.3908285437974205
Model linear_regression_20_120 succesfully generated! Saving it...
Precision del modelo:
0.9278986032180265
Model linear_regression_21_15 succesfully generated! Saving it...
Precision del modelo:
0.8483431976049316
Model linear_regression_21_60 succesfully generated! Saving it...
Precision del modelo:
0.6969323135333065
Model linear_regression_21_120 succesfully generated! Saving it...
Precision del modelo:
0.9315713728363106
Model linear_regression_22_15 succesfully generated! Saving it...
Precision del modelo:
0.8438103724145254
Model linear_regression_22_60 succesfully generated! Saving it...
Precision del modelo:
0.6808545689317927
Model linear_regression_22_120 succesfully generated! Saving it...
Precision del modelo:
0.9547680827678521
Model linear_regression_30_15 succesfully generated! Saving it...
Precision del modelo:
0.8638807940021054
Model linear_regression_30_60 succesfully generated! Saving it...
Precision del modelo:
0.6883533388066612
Model linear_regression_30_120 succesfully generated! Saving it...
Precision del modelo:
0.9609086985716617
Model linear_regression_31_15 succesfully generated! Saving it...
Precision del modelo:
0.8118689230123914
Model linear_regression_31_60 succesfully generated! Saving it...
Precision del modelo:
0.5753916064988354
Model linear_regression_31_120 succesfully generated! Saving it...
Precision del modelo:
0.9665857870076506
Model linear_regression_32_15 succesfully generated! Saving it...
Precision del modelo:
0.8744698088243457
Model linear_regression_32_60 succesfully generated! Saving it...
Precision del modelo:
0.7351003661694985
Model linear_regression_32_120 succesfully generated! Saving it...
Precision del modelo:
0.9305524059447162
Model linear_regression_33_15 succesfully generated! Saving it...
Precision del modelo:
0.8094562636992118
Model linear_regression_33_60 succesfully generated! Saving it...
Precision del modelo:
0.6434487137041287
Model linear_regression_33_120 succesfully generated! Saving it...
Precision del modelo:
0.9301469241227747
Model linear_regression_34_15 succesfully generated! Saving it...
Precision del modelo:
0.8091488721931972
Model linear_regression_34_60 succesfully generated! Saving it...
Precision del modelo:
0.6432014184564352
Model linear_regression_34_120 succesfully generated! Saving it...
Precision del modelo:
0.9301465758075571
Model linear_regression_35_15 succesfully generated! Saving it...
###Markdown
Sanity test
###Code
mlmodels_dict['extra_trees_2']
import pickle
store_results=True
if store_results:
save_path = os.path.join(os.getcwd(), 'direct_mlmodels_dict_' + str(cluster_features) + str(forecast_horizon) +'.sav')
pickle.dump(mlmodels_dict, open(save_path, 'wb'))
###Output
_____no_output_____
###Markdown
Model restoring
###Code
import os
import pickle
for regr_name, regr_properties in mlmodels_dict.items():
if regr_properties['is_active']==True:
for cluster_code, trainset in training_sets.items():
for horizon in forecast_horizon:
model_file = regr_name + '_' + str(cluster_code) + '_' + str(horizon) + ".sav"
model_path = os.path.join(os.getcwd(),regr_name, model_file)
model_file = pickle.load( open(model_path, "rb" ) )
mlmodels_dict[regr_name][str(cluster_code) + '_' + str(horizon)] = model_file
###Output
_____no_output_____
###Markdown
Model Evaluation
###Code
store_results = True
score_metrics = {
'score_metrics' : {
'ev': {'train':0, 'test':0},
'r2': {'train':0, 'test':0},
'mse': {'train':0, 'test':0},
'mdae': {'train':0, 'test':0},
'mae': {'train':0, 'test':0},
},
'y_pred': {'train':0, 'test':0},
}
def scores(model_id, regressor, model_name, x_train, x_test, y_train, y_test):
evaluation_toolset=dict()
y_train_reg=0
y_test_reg=0
evaluation_toolset[str(model_name)] = score_metrics
y_train_reg = model.predict(x_train)
evaluation_toolset[str(model_name)]['y_pred']['train'] = y_train_reg
y_test_reg = model.predict(x_test)
evaluation_toolset[str(model_name)]['y_pred']['test'] = y_test_reg
evaluation_toolset[str(model_name)]['score_metrics']['ev']['train'] = explained_variance_score(y_train, y_train_reg)
evaluation_toolset[str(model_name)]['score_metrics']['ev']['test'] = explained_variance_score(y_test, y_test_reg)
evaluation_toolset[str(model_name)]['score_metrics']['r2']['train'] = r2_score(y_train, y_train_reg)
evaluation_toolset[str(model_name)]['score_metrics']['r2']['test'] = r2_score(y_test, y_test_reg)
evaluation_toolset[str(model_name)]['score_metrics']['mse']['train'] = mean_squared_error(y_train, y_train_reg)
evaluation_toolset[str(model_name)]['score_metrics']['mse']['test'] = mean_squared_error(y_test, y_test_reg)
evaluation_toolset[str(model_name)]['score_metrics']['mae']['train'] = mean_absolute_error(y_train, y_train_reg)
evaluation_toolset[str(model_name)]['score_metrics']['mae']['test'] = mean_absolute_error(y_test, y_test_reg)
evaluation_toolset[str(model_name)]['score_metrics']['mdae']['train'] = median_absolute_error(y_train, y_train_reg)
evaluation_toolset[str(model_name)]['score_metrics']['mdae']['test'] = median_absolute_error(y_test, y_test_reg)
print("______________________________________________________________________________")
print(str(model_id))
print("______________________________________________________________________________")
print("EV score. Train: ", evaluation_toolset[str(model_name)]['score_metrics']['ev']['train'])
print("EV score. Test: ", evaluation_toolset[str(model_name)]['score_metrics']['ev']['test'])
print("---------")
print("R2 score. Train: ", evaluation_toolset[str(model_name)]['score_metrics']['r2']['train'])
print("R2 score. Test: ", evaluation_toolset[str(model_name)]['score_metrics']['r2']['test'])
print("---------")
print("MSE score. Train: ", evaluation_toolset[str(model_name)]['score_metrics']['mse']['train'])
print("MSE score. Test: ", evaluation_toolset[str(model_name)]['score_metrics']['mse']['test'])
print("---------")
print("MAE score. Train: ", evaluation_toolset[str(model_name)]['score_metrics']['mae']['train'])
print("MAE score. Test: ", evaluation_toolset[str(model_name)]['score_metrics']['mae']['test'] )
print("---------")
print("MdAE score. Train: ", evaluation_toolset[str(model_name)]['score_metrics']['mdae']['train'])
print("MdAE score. Test: ", evaluation_toolset[str(model_name)]['score_metrics']['mdae']['test'])
return evaluation_toolset
# get the scores
evals = []
for regr_name, regr_properties in mlmodels_dict.items():
if regr_properties['is_active']==True:
for expert_code, trainset in training_sets.items():
for horizon in forecast_horizon:
x_train = trainset.loc[:, trainset.columns.difference(excluded_features)][:-int(horizon/15)]
y_train = trainset['TOTAL_VEHICULOS'][int(horizon/15):]
df_test = test_data # restore pandas dataframe
for key, value in zip(cluster_features, expert_code):
x_test = df_test.loc[:, df_test.columns.difference(excluded_features)][:-int(horizon/15)]
y_test = df_test['TOTAL_VEHICULOS'][int(horizon/15):]
if regr_name == 'kn_neighbors':
pass
else:
model = mlmodels_dict[regr_name][str(expert_code) + '_' + str(horizon)]
model_id = regr_name + '_' + str(expert_code) + '_' + str(horizon)
print(model_id)
evals.append(scores(model_id, regr_properties['method'], model, x_train, x_test, y_train, y_test))
import pickle
if store_results = True:
save_path = os.path.join(os.getcwd(), 'test_result_' + str(cluster_features) + str(forecast_horizon) +'.sav')
pickle.dump(reg, open(save_path, 'wb'))
### Result visualization
import numpy as np
import matplotlib.pyplot as plt
'''
# data to plot
n_groups = 4
means_frank = (90, 55, 40, 65)
means_guido = (85, 62, 54, 20)
# create plot
fig, ax = plt.subplots()
index = np.arange(n_groups)
bar_width = 0.35
opacity = 0.8
rects1 = plt.bar(index, means_frank, bar_width,
alpha=opacity,
color='b',
label='Frank')
rects2 = plt.bar(index + bar_width, means_guido, bar_width,
alpha=opacity,
color='g',
label='Guido')
plt.xlabel('Person')
plt.ylabel('Scores')
plt.title('Scores by person')
plt.xticks(index + bar_width, ('A', 'B', 'C', 'D'))
plt.legend()
plt.tight_layout()
plt.show()
algorithm_names = ['linear_regression', 'ada_boost', 'random_forest', 'extra_trees_1', 'extra_trees_2', 'gradient_boosting', 'bagging_regressor', 'mlp_neural_network', 'kn_neighbors'
'''
for score_name, values in score_metrics['score_metrics'].items():
fig, ax = plt.subplots()
index = np.arange(n_groups)
bar_width = 0.35
opacity = 0.8
algorithm_names = []
score_train = []
score_test = []
for algorithm in evals:
algo_name = algorithm.key
algorithm_names.append(algo_name)
score_train.append(algorithm.value['score_metrics'][str(score_name)]['train'])
score_test.append(algorithm.value['score_metrics'][str(score_name)]['test'])
rects1 = plt.bar(index, score_train, bar_width,
alpha=opacity,
color='b',
label='train')
rects2 = plt.bar(index, score_test, bar_width,
alpha=opacity,
color='g',
label='test')
plt.xlabel('Algorithm')
plt.ylabel('Scores')
plt.title('Scores by algorithm')
plt.xticks(index + bar_width, (algorithm_names))
plt.legend()
plt.tight_layout()
plt.show()
# model selection 'ID_SEGMENT', 'COD_LABORALIDAD', 'MES'
i_segment = 1.0
i_mes = 3.0
i_cod_laboralidad = 2.0
regr_name = 'extra_trees_2'
#train_data_march = train_data.loc[(train_data['ID_SEGMENT']==i_segment) & (train_data['MES']==i_mes) & (train_data['COD_LABORALIDAD']==i_cod_laboralidad)]
model_id = '(1.0, 2.0, 1.0)_120' # '('+str(i_segment) + ', ' + str(i_mes) + ', ' +str(i_cod_laboralidad)+ ')_15'
x_test_time = None
test_data_2 = test_data.loc[(test_data['ID_SEGMENT']==1.0) & (test_data['MES']==2.0) & (test_data['COD_LABORALIDAD']==1)]
# 'COD_LABORALIDAD', 'MES',
cols = test_data_2.columns.difference(['FECHA','ID_SEGMENT','COD_LABORALIDAD', 'MES','TIME']).tolist() #'COD_LABORALIDAD', 'MES'
x_test = test_data_2[cols]
#test_data_2
%matplotlib inline
#plt.figure(figsize=(40,40))
#plt.title("TOTAL VEHICULOS Regressors' Predictions vs Real Data" , fontsize=30)
#plt.plot(test_data.TIME[0:400], y_test[0:400],'-o', markerfacecolor="blue", label='Real Data', linewidth=2, alpha=0.8)
#plt.plot(train_data.TIME[0:400], y_train[0:400],'-o', markerfacecolor="orange", label='Train Data', linewidth=2, alpha=0.5)
#y_test_pred = model.predict(test_data)
'''
plt.plot(test_data.TIME[0:400], y_test_pred[0:400],'-o', markerfacecolor="None" , label='MLPRegressor', linewidth=1, alpha=0.8)
y_test_pred = ExtraTreesRegressor_2.predict(x_test)
plt.plot(test_data.TIME[0:400], y_test_pred[0:400],'-o', markerfacecolor="None" , label='ExtraTreesRegressor', linewidth=1, alpha=0.8)
y_test_pred = MLPRegressor.predict(x_test)
plt.plot(test_data.TIME[0:400], y_test_pred[0:400],'-o', markerfacecolor="None" , label='MLPRegressor', linewidth=1, alpha=0.8)
y_test_pred = RandomForestRegressor.predict(x_test)
plt.plot(test_data.TIME[0:400], y_test_pred[0:400],'-o', markerfacecolor="None" , label='ExtraTreesRegressor', linewidth=1, alpha=0.8)
'''
#for horizon, values in forecast_horizon:
plt.figure(figsize=(40,40))
plt.title("120 TOTAL VEHICULOS Regressors' Predictions vs Real Data" , fontsize=30)
y_test = test_data_2['2019-02-03 00:00:00':'2019-02-04 00:00:00']['TOTAL_VEHICULOS']
plt.plot(test_data_2['2019-02-03 00:00:00':'2019-02-04 00:00:00']['TIME'], y_test,'-o', markerfacecolor="blue", label='Real Data', linewidth=2, alpha=0.8)
y_test_pred = mlmodels_dict[regr_name][model_id].predict(test_data_2['2019-02-03 00:00:00':'2019-02-04 00:00:00'][cols])
plt.plot(test_data_2['2019-02-03 00:00:00':'2019-02-04 00:00:00']['TIME'], y_test_pred,'-o', markerfacecolor="None" , label=regr_name, linewidth=1, alpha=0.8)
plt.legend(loc='best', fontsize=30)
plt.show()
###Output
_____no_output_____
###Markdown
Comparativa ExtraTree Regressor & MLP Neural Network
###Code
%matplotlib inline
plt.figure(figsize=(40,40))
plt.title("TOTAL VEHICULOS Regressors' Predictions vs Real Data" , fontsize=30)
plt.plot(test_data.TIME[0:400], y_test[0:400],'-o', markerfacecolor="blue", label='Real Data', linewidth=2, alpha=0.8)
#plt.plot(train_data.TIME[0:400], y_train[0:400],'-o', markerfacecolor="orange", label='Train Data', linewidth=2, alpha=0.5)
y_test_pred = mlmodels_dict[str('RandomForestRegressor')]['model'].predict(x_test)
plt.plot(test_data.TIME[0:400], y_test_pred[0:400],'-o', markerfacecolor="None" , label='RandomForestRegressor', linewidth=1, alpha=0.8)
y_test_pred = mlmodels_dict[str('ExtraTreesRegressor_2')]['model'].predict(x_test)
plt.plot(test_data.TIME[0:400], y_test_pred[0:400],'-o', markerfacecolor="None" , label='ExtraTreesRegressor_2', linewidth=1, alpha=0.8)
y_test_pred = mlmodels_dict[str('MLPRegressor')]['model'].predict(x_test)
plt.plot(test_data.TIME[0:400], y_test_pred[0:400],'-o', markerfacecolor="None" , label='MLPRegressor', linewidth=1, alpha=0.8)
plt.legend(loc='best', fontsize=30)
plt.show()
###Output
_____no_output_____
###Markdown
Comparativa Real y Train
###Code
train_data = train_data.loc[train_data['MES']==2] # cogemos el mes 2
%matplotlib inline
plt.figure(figsize=(40,40))
plt.title("TOTAL VEHICULOS Regressors' Predictions vs Real Data MES FEBRERO" , fontsize=30)
plt.plot(test_data.TIME[0:400], y_test[0:400],'-o', markerfacecolor="blue", label='Real Data', linewidth=2, alpha=0.8)
plt.plot(train_data.TIME[0:400], y_train[0:400],'-o', markerfacecolor="orange", label='Last Year Data', linewidth=2, alpha=0.5)
y_test_pred = mlmodels_dict[str('MLPRegressor')]['model'].predict(x_test)
plt.plot(test_data.TIME[0:400], y_test_pred[0:400],'-o', markerfacecolor="None" , label='MLPRegressor', linewidth=1, alpha=1)
plt.legend(loc='best', fontsize=30)
plt.show()
%matplotlib inline
plt.figure(figsize=(40,40))
plt.title("TOTAL VEHICULOS Regressors' Predictions vs Real Data MES FEBRERO" , fontsize=30)
plt.plot(test_data.TIME[0:400], y_test[0:400],'-o', markerfacecolor="blue", label='Real Data', linewidth=2, alpha=0.8)
plt.plot(train_data.TIME[0:400], y_train[0:400],'-o', markerfacecolor="orange", label='Last Year Data', linewidth=2, alpha=0.5)
y_test_pred = mlmodels_dict[str('MLPRegressor')]['model'].predict(x_test)
plt.plot(test_data.TIME[0:400], y_test_pred[0:400],'-o', markerfacecolor="None" , label='MLPRegressor', linewidth=1, alpha=1)
plt.legend(loc='best', fontsize=30)
plt.show()
train_data.head()
test_data.head()
###Output
_____no_output_____ |
ocean_python_tutorial/Intro_07_Xarray_and_plotting_with_cartopy.ipynb | ###Markdown
This is the in situ and SSS collocation code.
###Code
import numpy as np
import matplotlib.pyplot as plt
import xarray as xr
import cartopy.crs as ccrs
###Output
_____no_output_____
###Markdown
Read in data using xarray- Read in the Saildrone USV file either from a local disc or using OpenDAP.- add room to write collocated data to in situ dataset
###Code
filename_usv = './data/saildrone-gen_5-antarctica_circumnavigation_2019-sd1020-20190119T040000-20190803T043000-1440_minutes-v1.1564857794963.nc'
ds_usv = xr.open_dataset(filename_usv)
ds_usv = ds_usv.rename({'longitude':'lon','latitude':'lat'})
#print dataset
ds_usv
###Output
_____no_output_____
###Markdown
explore the in situ data and quickly plot using cartopy
###Code
#for polar data
ax = plt.axes(projection=ccrs.SouthPolarStereo())
cs1 = ax.scatter(ds_usv.lon, ds_usv.lat, transform=ccrs.PlateCarree(),s=10.0, c=ds_usv.TEMP_CTD_MEAN, edgecolor='none', cmap='jet',vmin=0,vmax=12)
ax.set_extent([-180, 180, -90, -45], crs=ccrs.PlateCarree())
ax.background_img('ne_shaded')
ax.coastlines(resolution='50m')
cax = plt.colorbar(cs1)
cax.set_label('SST (K)')
#fig_fname = 'C:/Users/gentemann/Google Drive/f_drive/docs/projects/misst-arctic/mmdb/'+usvname+'_location.png'
#plt.savefig(fig_fname, transparent=False, format='png')
#plot salinity
ax = plt.axes(projection=ccrs.SouthPolarStereo())
cs1 = ax.scatter(ds_usv.lon, ds_usv.lat, transform=ccrs.PlateCarree(),s=10.0, c=ds_usv.SAL_MEAN, edgecolor='none', cmap='jet',vmin=33.6,vmax=34.4)
ax.set_extent([-180, 180, -90, -45], crs=ccrs.PlateCarree())
ax.background_img('ne_shaded')
ax.coastlines(resolution='50m')
cax = plt.colorbar(cs1)
cax.set_label('SSS (psu)')
#fig_fname = 'C:/Users/gentemann/Google Drive/f_drive/docs/projects/misst-arctic/mmdb/'+usvname+'_sal_location.png'
#plt.savefig(fig_fname, transparent=False, format='png')
#read in the Baja Saildrone data
url = 'https://podaac-opendap.jpl.nasa.gov/opendap/hyrax/allData/insitu/L2/saildrone/Baja/saildrone-gen_4-baja_2018-sd1002-20180411T180000-20180611T055959-1_minutes-v1.nc'
ds_usv = xr.open_dataset(url)
ds_usv = ds_usv.rename({'longitude':'lon','latitude':'lat'})
ds_usv
#for NON polar data
ax = plt.axes(projection=ccrs.PlateCarree())
#ds_usv = ds_usv.where(np.isfinite(ds_usv.lon))
cs1 = ax.scatter(ds_usv.lon, ds_usv.lat, s=3.0, c=ds_usv.TEMP_CTD_MEAN, edgecolor='none', cmap='jet',vmin=13,vmax=21)
ax.coastlines(resolution='50m')
x1,x2,y1,y2 = ds_usv.lon.min().data-2,ds_usv.lon.max().data+2,ds_usv.lat.min().data-2,ds_usv.lat.max().data+2
ax.set_xlim(x1,x2)
ax.set_ylim(y1,y2)
ax.background_img('ne_shaded')
ax.set_xticks(np.arange(x1,x2,4))
ax.set_yticks(np.arange(y1,y2,5))
cax = plt.colorbar(cs1)
cax.set_label('SST (K)')
#fig_fname = 'C:/Users/gentemann/Google Drive/f_drive/docs/projects/misst-arctic/mmdb/'+usvname+'_location.png'
#plt.savefig(fig_fname, transparent=False, format='png')
#plt.clf()
###Output
_____no_output_____
###Markdown
Plotting with cartopy
###Code
import numpy as np
import matplotlib.pyplot as plt
import xarray as xr
import cartopy.crs as ccrs
###Output
_____no_output_____
###Markdown
Read in data using xarray- Read in the Saildrone USV file either from a local disc or using OpenDAP.`xr.open_dataset(filename_usv).rename({'longitude':'lon','latitude':'lat'})`
###Code
filename_usv = './data/saildrone-gen_5-antarctica_circumnavigation_2019-sd1020-20190119T040000-20190803T043000-1440_minutes-v1.1564857794963.nc'
ds_usv =
###Output
_____no_output_____
###Markdown
* Read in satellite data. Mask land using `.where(ds_sst.mask==1)` and plot the results
###Code
#If you are offline use the first url
#url = './data/20111101120000-CMC-L4_GHRSST-SSTfnd-CMC0.2deg-GLOB-v02.0-fv02.0.nc')
url = 'https://podaac-opendap.jpl.nasa.gov/opendap/allData/ghrsst/data/GDS2/L4/GLOB/CMC/CMC0.2deg/v2/2011/305/20111101120000-CMC-L4_GHRSST-SSTfnd-CMC0.2deg-GLOB-v02.0-fv02.0.nc'
ds_sst =
###Output
_____no_output_____
###Markdown
explore the in situ data and quickly plot using cartopy* first set up the axis with the projection you want: https://scitools.org.uk/cartopy/docs/latest/crs/projections.html* plot to that axis and tell the projection that your data is in* set a background image* draw coastlines* add a colorbary and label it
###Code
#for polar data, plot temperature
ax = plt.axes(projection=ccrs.SouthPolarStereo())
(ds_sst.analysed_sst-273.15).plot(ax=ax, transform=ccrs.PlateCarree(),vmin=0,vmax=12)
cs1 = ax.scatter(ds_usv.lon, ds_usv.lat, transform=ccrs.PlateCarree(),s=10.0, c=ds_usv.TEMP_CTD_MEAN, edgecolor='none', cmap='jet',vmin=0,vmax=12)
ax.set_extent([-180, 180, -90, -45], crs=ccrs.PlateCarree())
ax.background_img('ne_shaded')
ax.coastlines(resolution='50m')
cax = plt.colorbar(cs1)
cax.set_label('SST (K)')
###Output
_____no_output_____
###Markdown
Exercise!
###Code
#now you try to plot plot salinity ds_usv.SAL_MEAN
###Output
_____no_output_____
###Markdown
Read in Baja Saildrone data* rename lat and lon`xr.open_dataset(url).rename({'longitude':'lon','latitude':'lat'})`
###Code
#read in the Baja Saildrone data
url = 'https://podaac-opendap.jpl.nasa.gov/opendap/hyrax/allData/insitu/L2/saildrone/Baja/saildrone-gen_4-baja_2018-sd1002-20180411T180000-20180611T055959-1_minutes-v1.nc'
ds_usv =
###Output
_____no_output_____
###Markdown
Exercise! Plot the Baja data and set the extent of your figure
###Code
#for NON polar ds_usv data, use ccrs.PlateCarree()
lonmin,lonmax = ds_usv.lon.min().data-2,ds_usv.lon.max().data+2
latmin,latmax = ds_usv.lat.min().data-2,ds_usv.lat.max().data+2
# now add an extent to your figure
ax.set_xlim(lonmin,lonmax)
ax.set_ylim(latmin,latmax)
###Output
_____no_output_____ |
Lesson6-Visualization.ipynb | ###Markdown
Lesson 6 - Visualizationtime: 30mLearning outcomes:The student should be aware of different methods to plot functions of 1 and 2 variables:- plot- plot3d- complex_plot- density_plot- being aware of matplotlib- exporting plots- graphics formats- include plots in LaTeXWe now have an implementation to compute the Riemann zeta function and would like to study its properties. To get a rough idea of what to expect it is sometimes useful to make some plots. (If you dont have a sucessful implementation to compute zeta you can use the builtin function at this stage if you like. Reference for 3D plotting: https://doc.sagemath.org/html/en/reference/plot3d/One option would be to use the 3d plot:
###Code
# By successive plots in various ranges we find that the first zero seems to be around 1/2 + 14*I
#
var('x','y')
plot3d(lambda x,y: abs(zeta(CC(x,y))),(x,0,2),(y,0,10),viewer='canvas3d')
###Output
_____no_output_____
###Markdown
There are different viewer and some might not work in your browser e.g. `threejs` does not work on my laptop... Valid options for viewers are- threejs (default)- jmol- canvas3d- tachyon (a static image)
###Code
plot3d?
#Alternatively
p = plot3d(lambda x,y: abs(zeta(CC(x,y))),(x,0,2),(y,10,15))
p.show(viewer='jmol')
###Output
_____no_output_____
###Markdown
Depending on parameter settings the plot might be distorted or fail completely dut to the pole at s=1. **Exercise** Introduce a condition in the lambda function in the plot to be able to plot zeta in a neighbourhood of (x,y)=(0,1) without distorting the figure too much.**Exercise**Use the function `complex_plot` to make another plot of `zeta` in a way which high-lights the first zero.
###Code
p1 = plot(sin,0,10);p1
latex(p1)
p2=plot3d(lambda x,y: abs(zeta(CC(x,y))),(x,0,1),(y,10,15))
p2.show(viewer='tachyon')
###Output
_____no_output_____
###Markdown
As an alternative here we can save the figure as png:
###Code
p2.save_image('test.png',dpi=600)
###Output
_____no_output_____
###Markdown
Note that 2-d plots can be saved as pdf but 3d plots not
###Code
p1.save_image('test1.pdf')
###Output
_____no_output_____
###Markdown
Lesson 6 - Visualizationtime: 30 min Learning outcomesThe student should be aware of different methods to plot functions of 1 and 2 variables:- plot- plot3d- complex_plot- density_plot- being aware of matplotlib- exporting plots- graphics formats- include plots in LaTeXWe now have an implementation to compute the Riemann zeta function and would like to study its properties. To get a rough idea of what to expect it is sometimes useful to make some plots. (If you dont have a sucessful implementation to compute zeta you can use the builtin function at this stage if you like. Reference for 3D plotting: https://doc.sagemath.org/html/en/reference/plot3d/One option would be to use the 3d plot:
###Code
# By successive plots in various ranges we find that the first zero seems to be around 1/2 + 14*I
plot3d(lambda x, y: abs(zeta(CC(x, y))), (0, 2), (0, 10), viewer='canvas3d')
###Output
_____no_output_____
###Markdown
There are different viewer and some might not work in your browser e.g. `threejs` does not work on my laptop... Valid options for viewers are- threejs (default)- jmol- canvas3d- tachyon (a static image)
###Code
plot3d?
# Alternatively
p = plot3d(lambda x, y: abs(zeta(CC(x, y))), (0, 2), (10, 15))
p.show(viewer='jmol')
###Output
_____no_output_____
###Markdown
Depending on parameter settings the plot might be distorted or fail completely dut to the pole at s=1. **Exercise** Introduce a condition in the lambda function in the plot to be able to plot zeta in a neighbourhood of (x,y)=(0,1) without distorting the figure too much.**Exercise**Use the function `complex_plot` to make another plot of `zeta` in a way which high-lights the first zero.
###Code
p1 = plot(sin, 0, 10)
p1
latex(p1)
p2 = plot3d(lambda x, y: abs(zeta(CC(x, y))), (0, 1), (10, 15))
p2.show(viewer='tachyon')
###Output
_____no_output_____
###Markdown
As an alternative here we can save the figure as png:
###Code
p2.save_image('test.png', dpi=600)
###Output
_____no_output_____
###Markdown
Note that 2-d plots can be saved as pdf but 3d plots not
###Code
p1.save_image('test1.pdf')
###Output
_____no_output_____ |
0.15/_downloads/plot_ica_from_raw.ipynb | ###Markdown
Compute ICA on MEG data and remove artifacts============================================ICA is fit to MEG raw data.The sources matching the ECG and EOG are automatically found and displayed.Subsequently, artifact detection and rejection quality are assessed.
###Code
# Authors: Denis Engemann <[email protected]>
# Alexandre Gramfort <[email protected]>
#
# License: BSD (3-clause)
import numpy as np
import mne
from mne.preprocessing import ICA
from mne.preprocessing import create_ecg_epochs, create_eog_epochs
from mne.datasets import sample
###Output
_____no_output_____
###Markdown
Setup paths and prepare raw data.
###Code
data_path = sample.data_path()
raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif'
raw = mne.io.read_raw_fif(raw_fname, preload=True)
raw.filter(1, 45, n_jobs=1, l_trans_bandwidth=0.5, h_trans_bandwidth=0.5,
filter_length='10s', phase='zero-double', fir_design='firwin2')
raw.annotations = mne.Annotations([1], [10], 'BAD')
raw.plot(block=True)
# For the sake of example we annotate first 10 seconds of the recording as
# 'BAD'. This part of data is excluded from the ICA decomposition by default.
# To turn this behavior off, pass ``reject_by_annotation=False`` to
# :meth:`mne.preprocessing.ICA.fit`.
raw.annotations = mne.Annotations([0], [10], 'BAD')
###Output
_____no_output_____
###Markdown
1) Fit ICA model using the FastICA algorithm.
###Code
# Other available choices are `infomax` or `extended-infomax`
# We pass a float value between 0 and 1 to select n_components based on the
# percentage of variance explained by the PCA components.
ica = ICA(n_components=0.95, method='fastica')
picks = mne.pick_types(raw.info, meg=True, eeg=False, eog=False,
stim=False, exclude='bads')
ica.fit(raw, picks=picks, decim=3, reject=dict(mag=4e-12, grad=4000e-13))
# maximum number of components to reject
n_max_ecg, n_max_eog = 3, 1 # here we don't expect horizontal EOG components
###Output
_____no_output_____
###Markdown
2) identify bad components by analyzing latent sources.
###Code
title = 'Sources related to %s artifacts (red)'
# generate ECG epochs use detection via phase statistics
ecg_epochs = create_ecg_epochs(raw, tmin=-.5, tmax=.5, picks=picks)
ecg_inds, scores = ica.find_bads_ecg(ecg_epochs, method='ctps')
ica.plot_scores(scores, exclude=ecg_inds, title=title % 'ecg', labels='ecg')
show_picks = np.abs(scores).argsort()[::-1][:5]
ica.plot_sources(raw, show_picks, exclude=ecg_inds, title=title % 'ecg')
ica.plot_components(ecg_inds, title=title % 'ecg', colorbar=True)
ecg_inds = ecg_inds[:n_max_ecg]
ica.exclude += ecg_inds
# detect EOG by correlation
eog_inds, scores = ica.find_bads_eog(raw)
ica.plot_scores(scores, exclude=eog_inds, title=title % 'eog', labels='eog')
show_picks = np.abs(scores).argsort()[::-1][:5]
ica.plot_sources(raw, show_picks, exclude=eog_inds, title=title % 'eog')
ica.plot_components(eog_inds, title=title % 'eog', colorbar=True)
eog_inds = eog_inds[:n_max_eog]
ica.exclude += eog_inds
###Output
_____no_output_____
###Markdown
3) Assess component selection and unmixing quality.
###Code
# estimate average artifact
ecg_evoked = ecg_epochs.average()
ica.plot_sources(ecg_evoked, exclude=ecg_inds) # plot ECG sources + selection
ica.plot_overlay(ecg_evoked, exclude=ecg_inds) # plot ECG cleaning
eog_evoked = create_eog_epochs(raw, tmin=-.5, tmax=.5, picks=picks).average()
ica.plot_sources(eog_evoked, exclude=eog_inds) # plot EOG sources + selection
ica.plot_overlay(eog_evoked, exclude=eog_inds) # plot EOG cleaning
# check the amplitudes do not change
ica.plot_overlay(raw) # EOG artifacts remain
# To save an ICA solution you can say:
# ica.save('my_ica.fif')
# You can later load the solution by saying:
# from mne.preprocessing import read_ica
# read_ica('my_ica.fif')
# Apply the solution to Raw, Epochs or Evoked like this:
# ica.apply(epochs)
###Output
_____no_output_____ |
feature_selection.ipynb | ###Markdown
Hey folks, I'm just trying out a proof-of-concept jupyter notebook that uses our data retrieval code.I got sick of working with environment variables so I switched to a new method to store our DB password: 1. Create a file called config.json in the project root. 2. Inside, config.json should look like this: { "database_url":"database_url_goes_here" }TableReader's other vector methods are geodata_vector() and reviews_vector(). Be sure to call close() when you're done so it terminates the connection to the DB.
###Code
tr = TableReader()
df = tr.properties_vector(include_amenitites=True)
tr.close()
features = df[df.columns.drop(['price', 'listingID'])]
label = df['price']
model = ElasticNet()
esfm = SelectFromModel(model)
esfm.fit(features, label)
print(list(features.iloc[:, esfm.get_support(indices=True)]))
model = Lasso()
sfm = SelectFromModel(model)
sfm.fit(features, label)
print(list(features.iloc[:, sfm.get_support(indices=True)]))
model = Ridge()
sfm = SelectFromModel(model)
sfm.fit(features, label)
print(list(features.iloc[:, sfm.get_support(indices=True)]))
elastic_data = df[list(features.iloc[:, esfm.get_support(indices=True)])]
corr = elastic_data.corr()
plt.figure(figsize=(12, 12))
ax = sns.heatmap(
corr,
vmin=-1, vmax=1, center=0,
cmap=sns.diverging_palette(20, 220, n=200),
square=True
)
ax.set_xticklabels(
ax.get_xticklabels(),
rotation=45,
horizontalalignment='right'
);
###Output
_____no_output_____
###Markdown
1. Feature SelectionChi-squared (chi²) statistical test for non-negative features to select 20 of the best features from the Mobile Price Range Prediction Dataset.
###Code
import pandas as pd
import numpy as np
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
#apply SelectKBest class to extract top 20 best features
bestfeatures = SelectKBest(score_func=chi2, k=20)
fit = bestfeatures.fit(features,label)
dfscores = pd.DataFrame(fit.scores_)
dfcolumns = pd.DataFrame(features.columns)
#concat two dataframes for better visualization
featureScores = pd.concat([dfcolumns,dfscores],axis=1)
featureScores.columns = ['Specs','Score'] #naming the dataframe columns
print(featureScores.nlargest(20,'Score')) #print 20 best features
###Output
Specs Score
0 accomodates 4182.805494
12 Shared room 3562.161252
11 Private room 2338.639850
3 beds 2282.643948
2 bedrooms 1703.326123
8 Serviced apartment 1617.581016
10 Entire home/apt 1323.337616
73 Pool 1152.489301
58 Gym 1135.608306
16 Bathtub 1033.628165
29 Hot tub 1025.131564
34 Elevator 815.988801
39 Wheelchair accessible 806.710766
50 Oven 760.496541
32 Family/kid friendly 734.473870
7 House 728.354252
71 Pets allowed 718.182247
67 Cable TV 676.059273
1 bathrooms 656.021416
25 Dishwasher 637.031893
###Markdown
2. Feature Importance Model
###Code
from sklearn.ensemble import ExtraTreesClassifier
import matplotlib.pyplot as plt
model = ExtraTreesClassifier()
model.fit(features,label)
print(model.feature_importances_) #use inbuilt class feature_importances of tree based classifiers
#plot graph of feature importances for better visualization
feat_importances = pd.Series(model.feature_importances_, index=features.columns)
feat_importances.nlargest(20).plot(kind='barh')
plt.show()
###Output
/anaconda3/lib/python3.7/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.
"10 in version 0.20 to 100 in 0.22.", FutureWarning)
###Markdown
Dataset link: https://www.kaggle.com/tejashvi14/employee-future-prediction Uploading dataset
###Code
from google.colab import files
files.upload()
###Output
_____no_output_____
###Markdown
Initialization
###Code
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import OneHotEncoder
from sklearn.linear_model import LogisticRegression
import warnings
warnings.filterwarnings('ignore')
df = pd.read_csv('Employee.csv')
X = df.drop(['LeaveOrNot'], axis=1)
y = df['LeaveOrNot']
###Output
_____no_output_____
###Markdown
Preparing data
###Code
X_full_train, X_test, y_full_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
X_train, X_val, y_train, y_val = train_test_split(X_full_train, y_full_train, test_size=0.25, random_state=42)
numerical = ['Age']
categorical = ['Education', 'JoiningYear', 'City', 'PaymentTier', 'Gender', 'EverBenched', 'ExperienceInCurrentDomain']
###Output
_____no_output_____
###Markdown
Creating Pipeline
###Code
def create_new_pipeline(numerical, categorical):
numerical_transformer = SimpleImputer(strategy='median')
categorical_transformer = Pipeline(steps=[
('imputer', SimpleImputer(strategy='most_frequent')),
('encoding', OneHotEncoder(drop='first'))
])
preprocessor = ColumnTransformer(
transformers=[
('numerical', numerical_transformer, numerical),
('categorical', categorical_transformer, categorical)
])
model = LogisticRegression()
pipeline = Pipeline(
steps=[
('preprocessing', preprocessor),
('model', model)
]
)
return pipeline
###Output
_____no_output_____
###Markdown
Deciding features to use based on their correlation with target (calculated during EDA)
###Code
chi_square_drop_order = ['JoiningYear',
'ExperienceInCurrentDomain',
'PaymentTier',
'EverBenched',
'Education',
'Gender',
'City']
for i in range(len(chi_square_drop_order)):
pipeline = create_new_pipeline(numerical, chi_square_drop_order[i:])
pipeline.fit(X_train.drop(chi_square_drop_order[:i], axis=1), y_train)
print(f'Features included: {chi_square_drop_order[i:]}')
print(f'Training score: {pipeline.score(X_train.drop(chi_square_drop_order[:i], axis=1), y_train)}')
print(f'Validation score: {pipeline.score(X_val.drop(chi_square_drop_order[:i], axis=1), y_val)}')
print()
print()
###Output
Features included: ['JoiningYear', 'ExperienceInCurrentDomain', 'PaymentTier', 'EverBenched', 'Education', 'Gender', 'City']
Training score: 0.802221426012182
Validation score: 0.8098818474758325
Features included: ['ExperienceInCurrentDomain', 'PaymentTier', 'EverBenched', 'Education', 'Gender', 'City']
Training score: 0.7284127552848442
Validation score: 0.7411385606874329
Features included: ['PaymentTier', 'EverBenched', 'Education', 'Gender', 'City']
Training score: 0.714797563597277
Validation score: 0.7346938775510204
Features included: ['EverBenched', 'Education', 'Gender', 'City']
Training score: 0.7312791114295951
Validation score: 0.7443609022556391
Features included: ['Education', 'Gender', 'City']
Training score: 0.7319957004657829
Validation score: 0.7551020408163265
Features included: ['Gender', 'City']
Training score: 0.7327122895019706
Validation score: 0.7551020408163265
Features included: ['City']
Training score: 0.6589036187746328
Validation score: 0.6680988184747583
###Markdown
We can conclude that we cannot drop any feature based on Chi Square test.
###Code
mutual_info_drop_order = ['ExperienceInCurrentDomain',
'Education',
'EverBenched',
'City',
'Gender',
'PaymentTier',
'JoiningYear']
for i in range(len(mutual_info_drop_order)):
pipeline = create_new_pipeline(numerical, mutual_info_drop_order[i:])
pipeline.fit(X_train.drop(mutual_info_drop_order[:i], axis=1), y_train)
print(f'Features included: {mutual_info_drop_order[i:]}')
print(f'Training score: {pipeline.score(X_train.drop(mutual_info_drop_order[:i], axis=1), y_train)}')
print(f'Validation score: {pipeline.score(X_val.drop(mutual_info_drop_order[:i], axis=1), y_val)}')
print()
print()
###Output
Features included: ['ExperienceInCurrentDomain', 'Education', 'EverBenched', 'City', 'Gender', 'PaymentTier', 'JoiningYear']
Training score: 0.8029380150483698
Validation score: 0.8098818474758325
Features included: ['Education', 'EverBenched', 'City', 'Gender', 'PaymentTier', 'JoiningYear']
Training score: 0.7968470082407739
Validation score: 0.8120300751879699
Features included: ['EverBenched', 'City', 'Gender', 'PaymentTier', 'JoiningYear']
Training score: 0.7975635972769617
Validation score: 0.7980665950590763
Features included: ['City', 'Gender', 'PaymentTier', 'JoiningYear']
Training score: 0.7957721246864923
Validation score: 0.8023630504833512
Features included: ['Gender', 'PaymentTier', 'JoiningYear']
Training score: 0.790756001433178
Validation score: 0.7969924812030075
Features included: ['PaymentTier', 'JoiningYear']
Training score: 0.7832318165532067
Validation score: 0.7862513426423201
Features included: ['JoiningYear']
Training score: 0.7219634539591544
Validation score: 0.7561761546723953
###Markdown
###Code
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
# for feature selection
from sklearn.linear_model import Lasso
from sklearn.feature_selection import SelectFromModel
pd.pandas.set_option('display.max_columns',None)
%pwd
import os
os.chdir('/content/drive/My Drive/Data_science_projects/Advance_House_Price_prediction/house-prices-advanced-regression-techniques')
%pwd
###Output
_____no_output_____
###Markdown
New Section
###Code
from google.colab import drive
drive.mount('/content/drive')
dataset = pd.read_csv('X_train.csv')
dataset.head()
###Output
_____no_output_____
###Markdown
Only for official daily data
###Code
X = pd.read_pickle("./data_for_models/X.pkl")
y = pd.read_pickle("./data_for_models/y.pkl")
len(X.columns)
def input_scale(X):
imputer = SimpleImputer(strategy='median')
scaler = StandardScaler()
X_t = imputer.fit_transform(X.values)
X_t = scaler.fit_transform(X_t)
return X_t
def input_(X):
imputer = SimpleImputer(strategy='median')
X_t = imputer.fit_transform(X.values)
return X_t
X_t = input_scale(X)
###Output
_____no_output_____
###Markdown
PCA
###Code
pca = PCA(n_components=0.97)
pca.fit(X_t)
pca.explained_variance_ratio_
np.isnan(X_t).sum()
###Output
_____no_output_____
###Markdown
RFE
###Code
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import LassoCV
from sklearn.feature_selection import RFE
l = LassoCV()
rfe = RFE(l, 10)
rfe.fit(X_t, y.values.ravel())
X.columns[rfe.support_]
rfe.ranking_
###Output
_____no_output_____
###Markdown
LassoCV
###Code
from sklearn.linear_model import LassoCV
reg = LassoCV()
reg.fit(X_t, y.values.ravel())
X.columns[reg.coef_ != 0]
###Output
_____no_output_____
###Markdown
Select KBest
###Code
from sklearn.feature_selection import SelectKBest, f_regression, mutual_info_regression
best = SelectKBest(score_func=f_regression, k=15)
best.fit(X_t, y.values.ravel())
X.columns[best.get_support()]
###Output
_____no_output_____
###Markdown
Corr
###Code
full = pd.read_pickle("./data_for_models/full.pkl")
full.corr()['T_MEAN']
###Output
_____no_output_____
###Markdown
Feature SelectionThis notebook looks at feature correlations and removes any features that are highly correlated Import libraries
###Code
import numpy as np
import pandas as pd
import seaborn as sns
import pdb
import glob
import matplotlib.pyplot as plt
import os
import shutil
###Output
_____no_output_____
###Markdown
Create the plots folder, or remove it if it exists
###Code
try:
if os.path.exists('plots'):
shutil.rmtree('plots')
os.makedirs('plots')
except Exception as e:
print(e)
###Output
_____no_output_____
###Markdown
Load the data
###Code
#load the training data
train_files = glob.glob('feats/train_*.pkl')
train = []
for train_file in train_files:
train.append(pd.read_pickle(train_file))
train = pd.concat(train)
#load the test data
test_files = glob.glob('feats/test_*.pkl')
test = []
for test_file in test_files:
test.append(pd.read_pickle(test_file))
test = pd.concat(test)
###Output
_____no_output_____
###Markdown
Look at feature correlations. In this case, there aren't any large correlations so just keep all the data
###Code
#look at feature correlations
corr = train.corr()
mask = np.triu(np.ones_like(corr, dtype=np.bool))
cmap = sns.diverging_palette(220, 10, as_cmap=True)
#make the heatmap plot
plt.figure(figsize=(16,9))
sns.heatmap(corr, mask=mask, cmap=cmap, vmax=.3, center=0, square=True, linewidths=.5, cbar_kws={"shrink": .5})
plt.tight_layout()
plt.savefig('plots/heatmap.png', dpi=250)
plt.show()
#save the data
train.to_pickle('train.pkl')
test.to_pickle('test.pkl')
###Output
_____no_output_____
###Markdown
Load Original Features
###Code
feat_num = 449
#df_total = pd.read_csv('./data/features%s_add_card1_cnt.csv'%(feat_num))
with open('./data/features%s.pickle'%(feat_num), 'rb') as handle:
df_total = pickle.load(handle)
df_train = df_total[df_total['isFraud'].notnull()]
df_train.shape
###Output
_____no_output_____
###Markdown
Negative Downsampling
###Code
train_pos = df_train[df_train['isFraud']==1]
train_neg = df_train[df_train['isFraud']==0]
train_neg = train_neg.sample(int(df_train.shape[0] * 0.2), random_state=42)
df_train_sample = pd.concat([train_pos,train_neg]).sort_index()
###Output
_____no_output_____
###Markdown
Prepare Data
###Code
labels_train = df_train_sample['isFraud']
features_train = df_train_sample.drop(columns = ['isFraud', 'TransactionID'])
features_train.shape
features_train.head()
with open('./data/feat%s_rm_pm_importance100.pickle'%(437), 'rb') as handle:
to_drop = pickle.load(handle)
for item in to_drop:
if not 'V' in item:
print(item)
features_train = features_train.drop(list(to_drop),axis=1)
categorical_raw = ['ProductCD', 'card2', 'card3', 'card4', 'card5','card6',
'addr1','addr2','P_email','R_email','M1','M2','M3',
'M4','M5','M6','M7','M8','M9','DeviceType','DeviceInfo','dow','hour',
'Device_name','Device_version','screen_width','screen_height',
'P_email_suffix','R_email_suffix','id_30_OS','id_30_version',
'is_card_freq_Device','is_wide','is_long','is_zero','is_win8_vista',
'is_windows_otheros','is_card_freq_pdc','is_card_freq_addr1'] #
ids = [ 'id_%s'%(i) for i in range(12,39)]
categorical_raw = categorical_raw + ids
params = {'num_leaves': 491,
'min_child_weight': 0.03454472573214212,
'feature_fraction': 0.3797454081646243,
'bagging_fraction': 0.4181193142567742,
'min_data_in_leaf': 106,
'objective': 'binary',
'max_depth': -1,
'learning_rate': 0.006883242363721497,
"boosting_type": "gbdt",
"bagging_seed": 11,
"metric": 'auc',
"verbosity": -1,
'reg_alpha': 0.3899927210061127,
'reg_lambda': 0.6485237330340494,
'random_state': 47,
#'num_threads':10
#'is_unbalance':True
#'scale_pos_weight':9
}
###Output
_____no_output_____
###Markdown
Select Features
###Code
def train_selector(params,train_num,features_train,labels_train,categorical,verbose_eval=500):
train_set = lgb.Dataset(features_train.iloc[0:train_num,:], label=labels_train.values[0:train_num],
categorical_feature=categorical)
valid_set = lgb.Dataset(features_train.iloc[train_num:,:], label=labels_train.values[train_num:],
categorical_feature=categorical)
valid_results = {}
model = lgb.train(params,train_set,num_boost_round = 10000,
valid_sets = [train_set, valid_set],
verbose_eval= verbose_eval,
early_stopping_rounds = 500,
evals_result=valid_results)
return model,valid_results
def select_by_importance(model,features_train,importance=0,num_keep=None):
fi = pd.DataFrame({'feature': features_train.columns,
'importance':model.feature_importance()})
fi = fi.sort_values('importance', ascending = False)
if num_keep != None:
to_drop = fi.iloc[num_keep:,:].feature
else:
to_drop = fi[fi.importance <= importance].feature
return to_drop
def fold_train_selector(Nfold,features_train,labels_train,categorical):
splits = Nfold
ave_auc = 0
valid_results = {}
folds = KFold(n_splits = splits,random_state=RSEED)
for fold_num, (trn_idx, val_idx) in enumerate(folds.split(features_train.values,
labels_train.values)):
print("Fold {}".format(fold_num))
train_df, y_train_df = features_train.iloc[trn_idx], labels_train.iloc[trn_idx]
valid_df, y_valid_df = features_train.iloc[val_idx], labels_train.iloc[val_idx]
trn_data = lgb.Dataset(train_df, label=y_train_df,categorical_feature=categorical)
val_data = lgb.Dataset(valid_df, label=y_valid_df,categorical_feature=categorical)
clf = lgb.train(params,
trn_data,
10000,
valid_sets = [trn_data, val_data],
verbose_eval=500,
early_stopping_rounds=500,
evals_result=valid_results)
pred = clf.predict(valid_df)
auc_score = roc_auc_score(y_valid_df, pred)
ave_auc += auc_score / splits
print( " auc = ", auc_score )
return ave_auc
def permutation_importance(model,features_valid,labels_valid):
"""calculate permutation importance of features
Args:
model: the trained model.
features_valid: dataframe. The validation set of features.
labels_valid: labels of validation set.
Returns:
df_fimportance: dataframe. The importances of features.
"""
base_score = roc_auc_score(labels_valid, model.predict(features_valid))
list_fimportance = []
for col in features_valid.columns:
print(col)
save = features_valid[col].copy()
features_valid[col] = np.random.permutation(features_valid[col])
col_score = roc_auc_score(labels_valid, model.predict(features_valid))
features_valid[col] = save
list_fimportance.append([col,base_score - col_score])
return pd.DataFrame(list_fimportance,columns = ['feature','importance'])
###Output
_____no_output_____
###Markdown
PCA V Features
###Code
def check_missing(df,cols=None,axis=0):
"""check data frame column missing situation
Args
df: data frame.
cols: list. List of column names
axis: int. 0 means column and 1 means row
Returns
missing_info: data frame.
"""
if cols != None:
df = df[cols]
missing_num = df.isnull().sum(axis).to_frame().rename(columns={0:'missing_num'})
missing_num['missing_percent'] = df.isnull().mean(axis)*100
return missing_num.sort_values(by='missing_percent',ascending = False)
vfeatures = ['V'+str(i) for i in range(1,340)]
scaler = StandardScaler()
scaler.fit(features_train[vfeatures])
imp = Imputer(missing_values=np.nan , strategy='mean', axis=0)
vfeature_impute = imp.fit_transform(features_train[vfeatures])
vfeature_impute_scale = scaler.transform(vfeature_impute)
vfeature_impute_scale = pd.DataFrame(vfeature_impute_scale, columns=vfeatures)
pca = PCA()
vfeature_pca = pca.fit_transform(vfeature_impute_scale)
# check components number should be the same as total features
components_total = len(pca.explained_variance_ratio_)
# generate sequence for plotting
components = np.arange(components_total)
fig, ax1 = plt.subplots(figsize=(15,5))
ax1.bar(components[0:100],pca.explained_variance_ratio_[0:100])
ax1.set_ylabel('Explained Variance', color="blue")
ax1.set_xlabel('Number of Components')
ax2 = ax1.twinx()
ax2.plot(np.cumsum(pca.explained_variance_ratio_[0:100]), color="red",marker='o')
ax2.set_ylabel('Cumulative Explained Variance', color="red")
plt.title("Cumulative Explained Variance vs No. of Principal Components")
np.cumsum(pca.explained_variance_ratio_[:30])[-1]
# Re-apply PCA to the data while selecting for number of components to retain.
pca_50 = PCA(n_components=30)
vfeature_pca_50 = pca_50.fit_transform(vfeature_impute_scale)
vfeature_pca_50_df = pd.DataFrame(vfeature_pca_50,columns= ['PCA'+str(i) for i in range(1,31)])
vfeature_pca_50_df.head()
vfeature_pca_50_df.reset_index(drop=True,inplace=True)
features_train.reset_index(drop=True,inplace=True)
features_train.drop(vfeatures,axis=1,inplace=True)
features_train = features_train.join(vfeature_pca_50_df)
features_train.head()
###Output
_____no_output_____
###Markdown
Train with all feature set
###Code
train_num = int(138771*0.8)#160000
#features_train = features_train.drop(['C8'],axis=1)
categorical = list(set(categorical_raw).intersection(features_train.columns))
model,valid_results = train_selector(params,train_num,features_train,labels_train,
categorical,verbose_eval=500)
model.num_trees()
###Output
_____no_output_____
###Markdown
Permutation Importance
###Code
lgb.plot_importance(model, max_num_features=50,figsize=(12,10))
fi_importance = permutation_importance(model,features_train.iloc[train_num:],
labels_train.iloc[train_num:])
fi_importance.sort_values(by='importance',ascending=False)[0:50]
fi_importance.sort_values(by='importance',ascending=False)[-10:]
###Output
_____no_output_____
###Markdown
Feature Test Result
###Code
features_train.head()
categorical = list(set(categorical_raw).intersection(features_train.columns))
ave_auc = fold_train_selector(3,features_train,labels_train,categorical)
# feat439 change id 30 --not confirmed from large dataset
ave_auc
# feat439 change device info --not confirmed from large dataset
ave_auc
# feat439 add card_mv_day_fq
ave_auc
# feat438 add addr1 cnt boost performance
ave_auc
# feat437 add card1 cnt boost performance
ave_auc
# feat436 add pdc_amt_std_ratio imporve but lower than pdc_amt_ratio
ave_auc
# feat437 add pdc_amt_std_ratio-- lower performance
ave_auc
# feat436 add pdc_amt_ratio-- very effective
ave_auc
# feat435 clean id 33 if not treat as categorical performance drop
ave_auc
# feat435 clean id 33 improve performance
ave_auc
# feat453 clean DeviceInfo and modify Device_name
ave_auc
# feat435 clean DeviceInfo lead to even lower performance
ave_auc
# feat435 clean id30 -- clean id_30 lead to lower performance
ave_auc
# feat434 clean P and R email -- very effective
ave_auc
# feat434 clean id31 -- very effective
ave_auc
# feat434 without any change
ave_auc
###Output
_____no_output_____
###Markdown
Feature selection by Importance
###Code
#to_drop = list(select_by_importance(model,features_train,importance=0))
#to_drop = fi_importance[fi_importance.importance <0].feature
#to_drop = fi_importance.sort_values(by='importance',ascending=False)[-50:].feature
to_drop = ['P_email']
features_train_temp = features_train.drop(to_drop,axis=1)
categorical_temp = list(set(categorical_raw).intersection(features_train_temp.columns))
print(features_train_temp.head())
ave_auc = fold_train_selector(3,features_train_temp,labels_train,categorical_temp)
# feat439 add pemail fraud rate drop pemail
ave_auc
# # feat437 add card1 cnt drop fi_importance.sort_values(by='importance',ascending=False)[-50:].feature
ave_auc
# feat437 add card1 cnt drop 'V169'
ave_auc
# feat437 add card1 cnt drop 'D5'
ave_auc
# feat437 add card1 cnt drop fi_importance[fi_importance.importance <0].feature
ave_auc
# feat437 add card1 cnt drop fi_importance.sort_values(by='importance',ascending=False)[-100:].feature
ave_auc
# feat437 add card1 cnt drop transactionDT
ave_auc
to_drop = fi_importance.sort_values(by='importance',ascending=False)[-100:].feature
with open('./data/feat437_rm_pm_importance100.pickle', 'wb') as handle:
pickle.dump(to_drop, handle, protocol=pickle.HIGHEST_PROTOCOL)
###Output
_____no_output_____
###Markdown
Recursive Eliminate Features
###Code
# to_drop = {'P_email_suffix','R_email_suffix','dow','pdc_D1_ratio'} is useless
# to_drop = {'card_TAmt_ratio','card_TAmt_std_ratio','is_card_freq_pdc','is_card_freq_addr1'}is useless
# to_drop = {'TransactionAmt_decimal','is_wide','is_long','is_zero'} is useless
# to_drop = {'card_D2_mean','card_D15_mean','card_D4_mean','card_id_02_mean'','card_D1_std',
# 'card_D15_std','card_D1_mean','card_id_02_std','card_D3_mean} is useless
# to_drop = {'addr1_D15_mean','addr1_D15_std'} is useless
# to_drop = {'ProductCD_target_mean','M4_target_mean'} is useless
# to_drop = {'card2_fq_enc','card3_fq_enc','card5_fq_enc','P_email_fq_enc','R_email_fq_enc'} is useless
# to_drop = {'addr2_fq_enc',}
# to_drop = {'R_email_fraud_rate','card6_fraud_rate','card4_fraud_rate'} all have boost performance
# to_drop = {'card_addr_fq','card_mv_hour_fq','card_mv_hour_fq_ratio',
# 'card_hour_Amt','card_hour_Amt_ratio',
# 'card_mv_day_fq_ratio','card_day_Amt','card_day_Amt_ratio'} useless
# to_drop = {'D6_fq_enc','D7_fq_enc','D8_fq_enc','D9_fq_enc','DeviceInfo_fq_enc',
# 'id_30_fq_enc','id_31_fq_enc','screen_width_fq_enc'} # 大小数据集表现不一致
to_drop = {'DT_hour_Amt_ratio','DT_day_Amt_ratio','DT_month_Amt_ratio',
'DT_year_Amt_ratio','card2_Amt_ratio',
'card3_Amt_ratio','card4_Amt_ratio','card5_Amt_ratio','card6_Amt_ratio'}
result = []
for col in to_drop:
print(col)
to_drop_temp = list(to_drop - set([col]))
features_train_temp = features_train.drop(to_drop_temp,axis=1)
print(features_train_temp.shape)
categorical_temp = list(set(categorical_raw).intersection(features_train_temp.columns))
ave_auc = fold_train_selector(3,features_train_temp,labels_train,categorical_temp)
print(ave_auc)
result.append([col,ave_auc])
result
result
best = 0.921552900501287
result
best = 0.9213639958310471
result
0.921645405116515
result
###Output
_____no_output_____
###Markdown
Feature selectionVariables are extracted for prediction modelling using euroscore and hypothesis-free approaches. Outputs are written to CSV for downstream analysis
###Code
import pandas as pd
import numpy as np
import seaborn as sns; sns.set()
import matplotlib.pyplot as plt
from datetime import datetime, timedelta
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
from sklearn.feature_selection import RFECV
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import r2_score
from sklearn import metrics
from sklearn.calibration import CalibratedClassifierCV, calibration_curve
from pytest import approx
sns.set(rc={'figure.figsize':(11.7,8.27)})
sns.set(style="white")
#pd.set_option('display.max_rows', 500)
#pd.set_option('display.max_columns', 500)
#pd.set_option('display.width', 1000)
###Output
_____no_output_____
###Markdown
Read in dataClean records and split procedures into test, train and validation by date
###Code
# read from Excel
dat = pd.read_excel("bhi_FINAL_VERSION_20_09_2019.xlsx")
# fix dates
def from_excel_ordinal(ordinal, _epoch0=datetime(1899, 12, 31)):
if ordinal > 59:
ordinal -= 1 # Excel leap year bug, 1900 is not a leap year!
return (_epoch0 + timedelta(days=ordinal)).replace(microsecond=0)
#malformed = dat['Date of operation'].astype(str).str.isdigit()
#dat.loc[malformed, 'Date of operation'] = \
#dat.loc[malformed, 'Date of operation'] \
# .astype(int) \
# .apply(from_excel_ordinal)
#dat['Date of operation'] = pd.to_datetime(dat['Date of operation'], errors='coerce')
# drop malformed dates
#dat = dat.loc[dat['Date of operation'].notna()]
# sort by op date
dat = dat.sort_values(by='Date of operation fixed')
# check dates look OK
dat['Date of operation fixed'].describe()
# check age looks OK
sns.distplot(dat['AGE'], hist=False, rug=True);
# drop < 18 yrs
dat = dat[dat.AGE >= 18]
dat['AGE'].describe()
# check bmi looks OK
sns.distplot(dat['bmi'], hist=False, rug=True);
# set BMI outliers to NA
dat.loc[dat['bmi'] > 100, 'bmi'] = np.nan
dat.loc[dat['bmi'] < 5, 'bmi'] = np.nan
# check height looks OK
sns.distplot(dat['2.37 Height'], hist=False, rug=True);
# set height outliers to NA
dat.loc[dat['2.37 Height'] > 210, '2.37 Height'] = np.nan
dat.loc[dat['2.37 Height'] < 130, '2.37 Height'] = np.nan
# check weight looks OK
sns.distplot(dat['2.38 Weight'], hist=False, rug=True);
# set weight outliers to NA
dat.loc[dat['2.38 Weight'] > 150, '2.38 Weight'] = np.nan
dat.loc[dat['2.38 Weight'] < 30, '2.38 Weight'] = np.nan
# check creatinine looks OK
sns.distplot(dat['2.12.0 Actual Creatinine at time of Surgery'], hist=False, rug=True);
# population charectoristics
dat.describe()
def split_dat_by_time(dat):
# count rows
obs = dat.shape[0]
test_n = int(np.round(obs * 0.3, 0))
train_n = obs - test_n
# split data into train (70%) and test (30%)
train = dat.head(train_n)
test = dat.tail(test_n)
assert (train.shape[0] + test.shape[0]) == obs
return train, test
###Output
_____no_output_____
###Markdown
EuroscoreExtract variables for Euroscore I and II and plot against provided calculations as sanity check EuroScore IEuropean Heart Journal (2003) 24, 1–2[10.1016/S0195-668X(02)00799-6](https://doi.org/10.1016/S0195-668X(02)00799-6)http://www.euroscore.org/euroscore_scoring.htm
###Code
def format_euroscore_i_features(dat):
features = pd.DataFrame(data={
'Age (continuous)' : dat['AGE'],
'Female' : dat['SEX'] == "2. Female",
'Serum creatinine >200 µmol/l': dat['CKD'] == "2. Creatinine > 200 µmol/l",
"Extracardiac arteriopathy" : dat['PVD'] == "1. Yes",
"Pulmonary disease" : dat['PULMONARY'] == "1. COAD/Asthma/emphysema",
"Neurological dysfunction": dat['NEURO_DYSF'] == "1. Yes",
"Previous cardiac surgery" : dat['PRIOR_HEART_SURGERY'] == "1. Yes",
'Recent myocardial infarct': dat['MI'].isin(["4. MI 31-90 days", "3. MI 1-30 days", "2. MI 6-24 hours", "1. MI < 6 hours"]),
"LVEF 30–50%" : dat['LVEF'] == "2. Fair (LVEF 30-49%)",
"LVEF <30%": dat['LVEF'] == "3. Poor (LVEF < 30%)",
"Systolic pulmonary pressure >60 mmHg" : dat['PHPT60_EU1'] == "1. Yes",
"Active endocarditis" : dat['ACTIVE_ENDOCARDITIS'] == "1. Yes",
"Unstable angina" : dat['IVNITRATES'] == "1. Yes",
"Emergency operation": dat['PRIORITY'].isin(['3. Emergency', '4. Salvage']),
"Critical preoperative state": (dat['2.18 Pre operative heart rhythm'] == "3. Ventricular fibrillation or ventricular tachycardia") | (dat['SHOCK'] == "1. Yes") | (dat['INOTROPS'] == "1. Yes") | (dat['VENTILATION'] == "1. Yes") | (dat['IABP'] == "1. Yes"),
"Ventricular septal rupture" : dat['Post infarct septal rupture'] == "1. Yes",
"Other than isolated coronary surgery": (dat['VALVE'] == "1. Yes") | (dat['ASD'] == "1. Yes") | (dat['LV_ANEURYSMECTOMY'] == "1. Yes") | (dat['AF_ABLATION'] == "1. Yes") | (dat['PERICARDIECTOMY'] == "1. Yes") | (dat['ATRIAL_MIXOMA'] == "1. Yes") | (dat['AORTIC_DISSECTION'] == "1. Yes"),
"Thoracic aortic surgery": dat['Surgery on thoracic aorta'] == "1. Yes",
# outcome
'STATUS_DISCHARGE': dat['STATUS_DISCHARGE'] == "1. Dead"
}, index=dat.index)
# drop samples with NAs
features = features.dropna(axis='index')
assert not features.isnull().values.any()
return features
# select features and drop NA
esi_features = format_euroscore_i_features(dat)
# count remaining patients
print(esi_features.shape)
# split into test & train
train_pred_esi, test_pred_esi = split_dat_by_time(esi_features)
# print op date range for train & test
print(dat.loc[train_pred_esi.head(1).index.tolist()[0]]['Date of operation fixed'])
print(dat.loc[train_pred_esi.tail(1).index.tolist()[0]]['Date of operation fixed'])
print(dat.loc[test_pred_esi.head(1).index.tolist()[0]]['Date of operation fixed'])
print(dat.loc[test_pred_esi.tail(1).index.tolist()[0]]['Date of operation fixed'])
# write out to csv
train_pred_esi.to_csv('train.esi.features.17.02.20.csv')
test_pred_esi.to_csv('test.esi.features.17.02.20.csv')
# write out provided ES calc for comparison
dat.to_csv('Euroscore_additive.17.02.20.csv', columns=['Euroscore'])
dat.to_csv('Euroscore_logistic.17.02.20.csv', columns=['Logistic_Euroscore'])
###Output
(28720, 19)
1996-04-01 00:00:00
2011-09-27 00:00:00
2011-09-27 00:00:00
2017-12-30 13:30:00
###Markdown
EuroScore IIEuropean Journal of Cardio-Thoracic Surgery 41 (2012) 734–745[10.1093/ejcts/ezs043](https://doi.org/10.1093/ejcts/ezs043)http://euroscore.org/calc.html
###Code
def count_procedures(dat):
procedure_counts = []
for index, row in dat.iterrows():
count = 0
# note the space after key CABG
if row['CABG '] == '1. Yes':
count += 1
if row['VALVE'] == '1. Yes':
count += 1
if row['Surgery on thoracic aorta'] == '1. Yes':
count += 1
if row['Post infarct septal rupture'] == '1. Yes':
count += 1
if ['ASD'] == '1. Yes':
count += 1
if row['LV_ANEURYSMECTOMY'] == '1. Yes':
count += 1
if row['AF_ABLATION'] == '1. Yes':
count += 1
if row['PERICARDIECTOMY'] == '1.Yes':
count += 1
if row['ATRIAL_MIXOMA'] == '1. Yes':
count += 1
procedure_counts.append(count)
assert len(procedure_counts) == dat.shape[0]
return pd.DataFrame(data={'number of procedures': procedure_counts}, index=dat.index)
# requires creatinine in umol/L
def calc_cockcroft_gault(row):
try:
if row['SEX'] == "2. Female":
n = (140 - row['AGE']) * row['2.38 Weight'] * 0.85
else:
n = (140 - row['AGE']) * row['2.38 Weight']
# convert umol/L to mg/dL
mg_dl = row['2.12.0 Actual Creatinine at time of Surgery'] * 0.0113
return n / (72 * mg_dl)
except (TypeError, KeyError):
return None
# check func against http://touchcalc.com/calculators/cg
assert calc_cockcroft_gault({'SEX': '1. Male', 'AGE': 65, '2.38 Weight': 78, '2.12.0 Actual Creatinine at time of Surgery': 100}) == approx(71.83, rel=0.01)
assert calc_cockcroft_gault({'SEX': '2. Female', 'AGE': 65, '2.38 Weight': 78, '2.12.0 Actual Creatinine at time of Surgery': 100}) == approx(61.05, rel=0.01)
assert calc_cockcroft_gault({'SEX': '1. Male', 'AGE': 65, '2.38 Weight': 78, '2.12.0 Actual Creatinine at time of Surgery': 200}) == approx(35.91, rel=0.01)
assert calc_cockcroft_gault({'SEX': '1. Male', 'AGE': 65, '2.38 Weight': 120, '2.12.0 Actual Creatinine at time of Surgery': 100}) == approx(110.05, rel=0.01)
assert calc_cockcroft_gault({'SEX': '1. Male', 'AGE': 80, '2.38 Weight': 78, '2.12.0 Actual Creatinine at time of Surgery': 100}) == approx(57.46, rel=0.01)
assert calc_cockcroft_gault({'SEX': '1. Male', 'AGE': 65, '2.38 Weight': 78, '2.12.0 Actual Creatinine at time of Surgery': None}) is None
assert calc_cockcroft_gault({'SEX': '1. Male', 'AGE': None, '2.38 Weight': 78, '2.12.0 Actual Creatinine at time of Surgery': 100}) is None
def get_creatinine_clearance(dat):
creatinine_clearance = []
for index, row in dat.iterrows():
creatinine_clearance.append(calc_cockcroft_gault(row))
assert len(creatinine_clearance) == dat.shape[0]
return pd.DataFrame(data={'CC' : creatinine_clearance}, index=dat.index)
def format_euroscore_ii_features(dat):
cc = get_creatinine_clearance(dat)
no = count_procedures(dat)
features = pd.DataFrame(data={
# New York Heart Association classification of heart failure
'NYHA - II' : dat['NYHA'] == "2. Slight limitation of ordinary physical activity",
'NYHA - III' : dat['NYHA'] == "3. Marked limitation of ordinary physical activity",
'NYHA - IV' : dat['NYHA'] == "4. Symptoms at rest or minimal activity",
# Canadian Cardiovascular Society classification of angina
'CCS4' : dat['ANGINA'] == "4. Symptoms at rest or minimal activity",
# Insulin-dependent diabetes mellitus
'IDDM' : dat['DIABETES'] == "3. Insulin",
'Age' : dat['AGE'],
'Female' : dat['SEX'] == "2. Female",
# Extracardiac arteriopathy
"ECA" : dat['PVD'] == "1. Yes",
# Chronic pulmonary dysfunction
"CPD" : dat['PULMONARY'] == "1. COAD/Asthma/emphysema",
# Neurological or musculoskeletal dysfunction severely affecting mobility
"N/M mob": dat['NEURO_DYSF'] == "1. Yes",
# Previous cardiac surgery
"Redo" : dat['PRIOR_HEART_SURGERY'] == "1. Yes",
# Creatinine clearance
'Renal dysfunction - On dialysis' : dat['CKD'] == "4. Chronic Dialysis",
'Renal dysfunction - CC <= 50' : cc['CC'] <= 50,
'Renal dysfunction - CC 50−85' : (cc['CC'] > 50) & (cc['CC'] <= 85),
# Active endocarditis
"AE" : dat['ACTIVE_ENDOCARDITIS'] == "1. Yes",
# Critical preoperative state
"Critical": (dat['2.18 Pre operative heart rhythm'] == "3. Ventricular fibrillation or ventricular tachycardia") | (dat['SHOCK'] == "1. Yes") | (dat['INOTROPS'] == "1. Yes") | (dat['VENTILATION'] == "1. Yes") | (dat['IABP'] == "1. Yes"),
# Left ventricle function
"LV function - Moderate" : dat['LVEF'] == "2. Fair (LVEF 30-49%)",
"LV function - Poor" : dat['LVEF'] == "3. Poor (LVEF < 30%)",
# Recent myocardial infarct
'Recent MI': dat['MI'].isin(["4. MI 31-90 days", "3. MI 1-30 days", "2. MI 6-24 hours", "1. MI < 6 hours"]),
# Pulmonary artery systolic pressure
'PA systolic pressure - 31–55 mmHg': dat['Pulmo_hy_Eu2'] == '31-55',
'PA systolic pressure - >=55 mmHg': dat['Pulmo_hy_Eu2'] == '>55',
# Urgency
"Urgency - Urgent": dat['PRIORITY'] == '2. Urgent',
"Urgency - Emergency": dat['PRIORITY'] == '3. Emergency',
"Urgency - Salvage": dat['PRIORITY'] == '4. Salvage',
# Weight of procedure
# note the space after key CABG
'Weight of procedure - 1 non-CABG' : (no['number of procedures'] == 1) & (dat['CABG '] == "0. No"),
'Weight of procedure - 2' : no['number of procedures'] == 2,
'Weight of procedure - 3+' : no['number of procedures'] >= 3,
# surgery of thoracic aorta
"Thoracic aorta": dat['Surgery on thoracic aorta'] == "1. Yes",
# outcome
'STATUS_DISCHARGE': dat['STATUS_DISCHARGE'] == "1. Dead"
}, index=dat.index)
# set cc=NA correctly
features['Renal dysfunction - CC <= 50'] = features['Renal dysfunction - CC <= 50'].where(cc['CC'].notnull(), np.nan)
features['Renal dysfunction - CC 50−85'] = features['Renal dysfunction - CC 50−85'].where(cc['CC'].notnull(), np.nan)
# drop samples with NAs
features = features.dropna(axis='index')
assert not features.isnull().values.any()
return features
# select features and drop NA
esii_features = format_euroscore_ii_features(dat)
# count remaining patients
print(esii_features.shape)
# split into test & train
train_pred_esii, test_pred_esii = split_dat_by_time(esii_features)
# write out to csv
train_pred_esii.to_csv('train.esii.features.17.02.20.csv')
test_pred_esii.to_csv('test.esii.features.17.02.20.csv')
###Output
(6298, 29)
###Markdown
Hypothesis-free feature selectionstart with the features selected by Umberto
###Code
def format_features(df, keep_cols_with_frac_populated=0.8, fields_to_drop=None):
# select predictors
features = df[[
'AGE',
'SEX',
'ANGINA',
'NYHA',
'MI',
'PCI',
'DIABETES',
'SMOKING',
'CKD',
'PULMONARY',
'STROKE',
'NEURO_DYSF',
'PVD',
'AF',
'Pulmo_hy_Eu2',
'PHPT60_EU1',
'LVEF',
'IVNITRATES',
'SHOCK',
'INOTROPS',
'VENTILATION',
'IABP',
'PRIORITY',
'PRIOR_HEART_SURGERY',
'BMI_cat',
'bmi',
'2.37 Height',
'2.38 Weight',
'YEAR',
'3.06 First Operator Grade',
'CABG ',
'VALVE',
'Surgery on thoracic aorta',
'Post infarct septal rupture',
'ASD',
'LV_ANEURYSMECTOMY',
'AF_ABLATION',
'PERICARDIECTOMY',
'ATRIAL_MIXOMA',
'AORTIC_DISSECTION',
'ACTIVE_ENDOCARDITIS',
'AV',
'MV',
'TV',
'PV',
'FRR',
'type FRR',
'2.12.0 Actual Creatinine at time of Surgery',
'STATUS_DISCHARGE'
]]
# drop cols with high missing rate
features = features.dropna(axis='columns', thresh=(features.shape[0] * keep_cols_with_frac_populated))
# drop samples with NAs
features = features.dropna(axis='index')
# select predictors
predictors = features.drop(columns=['STATUS_DISCHARGE'])
# select outcome
outcome = features[['STATUS_DISCHARGE']]
# identify categorical fields
cat_columns = predictors.select_dtypes(['object']).columns
# convert categorical variables to factors
predictors[cat_columns] = predictors[cat_columns].astype('category')
outcome = outcome.astype('category')
# convert factor to int
predictors[cat_columns] = predictors[cat_columns].apply(lambda x: x.cat.codes)
outcome = outcome.apply(lambda x: x.cat.codes)
assert not predictors.isnull().values.any()
assert not outcome.isnull().values.any()
# drop features if required
if fields_to_drop is None:
return predictors, outcome
else:
return predictors.drop(fields_to_drop, axis=1), outcome
train, test = split_dat_by_time(dat)
# format data
train_pred, train_out = format_features(train)
test_pred, test_out = format_features(train)
###Output
_____no_output_____
###Markdown
Feature correlationEvaluate colinearity between variables which make the model complex but add nothing and may lead to overfitting
###Code
# Compute the correlation matrix
corr = train_pred.corr()
# Generate a mask for the upper triangle
mask = np.zeros_like(corr, dtype=np.bool)
mask[np.triu_indices_from(mask)] = True
# Set up the matplotlib figure
f, ax = plt.subplots(figsize=(11, 9))
# Generate a custom diverging colormap
cmap = sns.diverging_palette(220, 10, as_cmap=True)
# Draw the heatmap with the mask and correct aspect ratio
sns.heatmap(corr, mask=mask, cmap=cmap, vmax=.3, center=0,
square=True, linewidths=.5, cbar_kws={"shrink": .5})
# print correlated pairs
def get_redundant_pairs(df):
'''Get diagonal and lower triangular pairs of correlation matrix'''
pairs_to_drop = set()
cols = df.columns
for i in range(0, df.shape[1]):
for j in range(0, i+1):
pairs_to_drop.add((cols[i], cols[j]))
return pairs_to_drop
def get_top_abs_correlations(df, n=5):
au_corr = df.corr().abs().unstack()
labels_to_drop = get_redundant_pairs(df)
au_corr = au_corr.drop(labels=labels_to_drop).sort_values(ascending=False)
return au_corr[0:n]
print(get_top_abs_correlations(train_pred, 50))
###Output
bmi 2.38 Weight 0.828196
Pulmo_hy_Eu2 PHPT60_EU1 0.801640
VALVE AV 0.788179
CABG VALVE 0.687628
SEX 2.37 Height 0.655761
SHOCK INOTROPS 0.644499
Surgery on thoracic aorta FRR 0.609502
INOTROPS VENTILATION 0.562174
ANGINA CABG 0.539131
Surgery on thoracic aorta AORTIC_DISSECTION 0.523769
CABG AV 0.508859
VALVE MV 0.486161
ANGINA VALVE 0.477451
2.37 Height 2.38 Weight 0.467240
SHOCK VENTILATION 0.450585
STROKE NEURO_DYSF 0.400248
IVNITRATES PRIORITY 0.392485
CABG MV 0.369584
SEX 2.38 Weight 0.356421
MI CABG 0.347120
BMI_cat bmi 0.337534
AF MV 0.337184
MI VALVE 0.330393
ANGINA AV 0.320437
MV 0.299674
SHOCK PRIORITY 0.296401
CABG Surgery on thoracic aorta 0.279191
AGE PV 0.271799
PRIOR_HEART_SURGERY PV 0.268939
MI AV 0.268222
ANGINA YEAR 0.257793
MI LVEF 0.253838
AF VALVE 0.249876
BMI_cat 2.38 Weight 0.246785
PRIOR_HEART_SURGERY CABG 0.236723
INOTROPS PRIORITY 0.234727
ANGINA MI 0.229658
Surgery on thoracic aorta AV 0.229516
SEX CABG 0.227355
PRIORITY AORTIC_DISSECTION 0.224774
SHOCK Post infarct septal rupture 0.222321
AV FRR 0.221127
2.38 Weight VALVE 0.207627
AF CABG 0.207144
ANGINA IVNITRATES 0.206804
PRIORITY 0.203670
NYHA LVEF 0.193791
SEX VALVE 0.193620
NYHA VALVE 0.192885
INOTROPS Post infarct septal rupture 0.190426
dtype: float64
###Markdown
Feature importanceSelect is driven by Random forest feature importance metric
###Code
def get_feature_importance(pred, out):
# fit RF with all variables using five-fold CV
clf = RandomForestClassifier(random_state=0, n_estimators=100)
scores = cross_val_score(clf, pred, out.values.ravel(), cv=5, scoring='roc_auc')
# get feature importance measures
clf.fit(pred, out.values.ravel())
fi = pd.DataFrame(data={'predictor' : pred.columns, 'feature_importance': clf.feature_importances_})
return fi
# plot feature importance measures
fi = get_feature_importance(train_pred, train_out)
ax = sns.barplot(y='predictor', x="feature_importance", data=fi.sort_values('feature_importance', ascending=False))
###Output
_____no_output_____
###Markdown
Recursive feature elimination with cross-validationStarting with all variables drop one-at-a-time starting with least importance and evaluate ROC AUC
###Code
# using random forest classifier with feature importance measure perform feature elimination
clf = RandomForestClassifier(random_state=0, n_estimators=100)
rfecv = RFECV(estimator=clf, cv=5, scoring='roc_auc', n_jobs=-1)
rfecv.fit(train_pred, train_out.values.ravel())
print("Optimal number of features : %d" % rfecv.n_features_)
# Plot number of features VS. cross-validation scores
plt.figure()
plt.xlabel("Number of features selected")
plt.ylabel("Cross validation score (roc auc)")
plt.plot(range(1, len(rfecv.grid_scores_) + 1), rfecv.grid_scores_)
plt.show()
# Do the variables add something to the model? True=Yes
rfecv.support_
# Get the roc auc scores for each model
rfecv.grid_scores_
###Output
_____no_output_____
###Markdown
Drop specific variables to see if we can do withoutFeature elimination suggested to keep all variables so instead try eliminating manually
###Code
def get_roc_for_rf(pred, out):
clf = RandomForestClassifier(random_state=0, n_estimators=100)
scores = cross_val_score(clf, pred, out.values.ravel(), cv=5, scoring='roc_auc')
return "cross validation (k=5) roc auc: mean {}, std {}, variables {}".format(np.round(np.mean(scores), 3), np.round(np.std(scores), 3), len(pred.columns))
# All 47 variables
get_roc_for_rf(train_pred, train_out)
# use feature importance to drop the last 22 variables that do not add much to the model
# drop highly correlated variables selecting the best feature importance measure
fields_to_drop = list(fi.sort_values(by=['feature_importance'], ascending=True)[0:21]['predictor'])
fields_to_drop.append('PHPT60_EU1')
fields_to_drop.append('bmi')
fields_to_drop.append('YEAR') # not useful for future prediction
fields_to_drop.append('BMI_cat')
print(fields_to_drop)
train_pred_subset, train_out_subset = format_features(train, fields_to_drop=fields_to_drop)
get_roc_for_rf(train_pred_subset, train_out_subset)
train_pred_subset.columns
###Output
_____no_output_____
###Markdown
select final predictors
###Code
def format_final_features(df):
final_predictors = ['AGE', 'SEX', 'ANGINA', 'NYHA', 'MI', 'DIABETES', 'SMOKING',
'PULMONARY', 'STROKE', 'PVD', 'AF', 'LVEF', 'IVNITRATES', 'SHOCK', 'CKD',
'INOTROPS', 'PRIORITY', 'PRIOR_HEART_SURGERY', '2.37 Height',
'2.38 Weight', 'CABG ', 'Surgery on thoracic aorta', 'AV']
final_predictors.append('STATUS_DISCHARGE')
# select predictors
features = df[final_predictors]
# drop samples with NAs
features = features.dropna(axis='index')
# select predictors
predictors = features.drop(columns=['STATUS_DISCHARGE'])
# select outcome
outcome = features[['STATUS_DISCHARGE']]
# identify categorical fields
cat_columns = predictors.select_dtypes(['object']).columns
# convert categorical variables to factors
predictors[cat_columns] = predictors[cat_columns].astype('category')
outcome = outcome.astype('category')
# convert factor to int
predictors[cat_columns] = predictors[cat_columns].apply(lambda x: x.cat.codes)
outcome = outcome.apply(lambda x: x.cat.codes)
assert not predictors.isnull().values.any()
assert not outcome.isnull().values.any()
return predictors, outcome
# get final predictors and run the roc curve
train_pred_final, train_out_final = format_final_features(train)
get_roc_for_rf(train_pred_final, train_out_final)
# plot feature importance measures
fi = get_feature_importance(train_pred_final, train_out_final)
ax = sns.barplot(y='predictor', x="feature_importance", data=fi.sort_values('feature_importance', ascending=False))
# save data to csv for model development
train_pred_final, train_out_final = format_final_features(train)
pd.concat([train_pred_final, train_out_final], axis=1).to_csv('train.selected.features.17.02.20.csv')
test_pred_final, test_out_final = format_final_features(test)
pd.concat([test_pred_final, test_out_final], axis=1).to_csv('test.selected.features.17.02.20.csv')
test_pred_final.describe()
###Output
_____no_output_____
###Markdown
Removing identifiers
###Code
stats_df.drop([col for col in stats_df.columns if 'Id' in col], axis=1, inplace=True)
###Output
_____no_output_____
###Markdown
Removing useless numeric columns
###Code
stats_df.drop(['season', 'champLevel'], axis=1, inplace=True)
###Output
_____no_output_____
###Markdown
Normalizing the rest of the stats by time Transform game duration format into minutes
###Code
stats_df['gameDuration_in_minutes'] = stats_df.gameDuration / 60
###Output
_____no_output_____
###Markdown
Exclude columns that aren't affected by time
###Code
stats_to_normalize = [col for col in stats_df.columns if '_at_' not in col and 'tt' not in col and 'gameDuration' not in col]
stats_normalized_df = stats_df[stats_to_normalize].apply(lambda x: x / stats_df.gameDuration_in_minutes)
not_time_affected_stats_df = stats_df[[col for col in stats_df.columns if '_at_' in col or 'tt' in col]]
###Output
_____no_output_____
###Markdown
Clustering playstyles by position
###Code
positions = slo_df.position.unique().tolist()
positions
stats_by_position = {}
for i, p in enumerate(positions):
# Preprocessing
stats = stats_normalized_df[i::5]
nan_cols = stats.iloc[:, stats.isnull().any().tolist()].columns
stats.drop(nan_cols, axis=1, inplace=True)
labels = slo_df[i::5].win
# Clustering
km = KMeans(n_clusters=3)
clusters = km.fit_predict(X=stats)
stats['clusters'] = clusters
c0 = stats[stats.clusters == 0]
c1 = stats[stats.clusters == 1]
c2 = stats[stats.clusters == 2]
clusters = [c0, c1, c2]
stats_by_position[p] = {'X': stats, 'top_10_features_by_cluster': []}
for i, c in enumerate(clusters):
c_new = SelectKBest(chi2, k=10).fit(X=c, y=slo_df.ix[c.index].win)
c_new_cols = c.iloc[:, c_new.get_support()].columns.tolist()
stats_by_position[p]['top_10_features_by_cluster'].append(c_new_cols)
stats_by_position['SUPP']['X'].clusters.value_counts()
vt = VarianceThreshold(threshold=.5)
vt.fit(X=top_c_2)
top_stats.iloc[:, vt.get_support()].columns
top_stats.iloc[:, vt.get_support()].columns
top_stats.fillna(top_stats.mean())
###Output
_____no_output_____
###Markdown
How to choose useful features? 1. Removing features with low variance If one feature has a value whose count is more than 90% of all data. 2. RFE (Feature selection using SelectFromModel) In this note, I will show how to do rfe by sklearn.
###Code
from sklearn.feature_selection import RFECV
# we should choose a model before RFECV
###Output
_____no_output_____
###Markdown
Feature Selection---Feature selection is the process of selecting the features that hold the most predictive power to the target. By removing unnecessary features, we reduce model complexity and minimize the computational resources required for training and inference. Feature selection is a crucial step that can have a great impact on model efficiency in production settings.The methods of feature selection we will perform are:* Filter Methods * Correlation * Univariate Feature Selection* Wrapper Methods * Forward Selection * Backward Selection * Recursive Feature Elimination* Embedded Methods * Feature Importance (Tree-based) * L1 RegularizationIn this notebook, we will demonstrate the feature selection methods above on the [Census Income](https://archive.ics.uci.edu/ml/datasets/Census-Income+%28KDD%29) dataset from the UCI repository. The dataset contains both numerical and categorical features with the goal to predict whether a person's salary is greater than or equal to $50k. Imports
###Code
# for data processing and manipulation
import pandas as pd
import numpy as np
# scikit-learn modules for feature selection and model evaluation
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import RFE, SelectKBest, SelectFromModel, SequentialFeatureSelector, chi2, f_classif
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, roc_auc_score, precision_score, recall_score, f1_score
from sklearn.feature_selection import SelectFromModel
from sklearn.preprocessing import StandardScaler, MinMaxScaler
# libraries for visualization
import seaborn as sns
import matplotlib
import matplotlib.pyplot as plt
###Output
_____no_output_____
###Markdown
###Code
!pip install -Uqq fastbook --quiet
! pip install pyfolio --quiet
import fastbook
# fastbook.setup_book()
from fastbook import *
from pandas.api.types import is_string_dtype, is_numeric_dtype, is_categorical_dtype
from fastai.tabular.all import *
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
from lightgbm import LGBMClassifier
from xgboost import XGBClassifier
from pyfolio.timeseries import perf_stats
from pyfolio import create_simple_tear_sheet
import os
import re
import random
import numpy as np
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
import pandas as pd
from pylab import mpl, plt
plt.style.use('seaborn')
mpl.rcParams['font.family'] = 'serif'
os.environ['PYTHONHASHSEED'] = '0'
import warnings
warnings.filterwarnings('ignore')
pairs = ['AUDCAD', 'AUDCHF', 'AUDJPY', 'AUDNZD', 'AUDUSD', 'CAD', 'CADCHF',
'CADJPY', 'CHF', 'CHFJPY', 'EURAUD', 'EURCAD', 'EURCHF', 'EURGBP',
'EURJPY', 'EURNZD', 'EURUSD', 'GBPAUD', 'GBPCAD', 'GBPCHF', 'GBPJPY',
'GBPNZD', 'GBPUSD', 'JPY', 'NZDCAD', 'NZDCHF', 'NZDJPY', 'NZDUSD']
def get_data(pair):
''' Retrieves and prepares the data.
'''
url = f'https://raw.githubusercontent.com/African-Quant/WQU_MScFE_Capstone_Grp9/master/Datasets/{pair}%3DX.csv'
raw = pd.read_csv(url)
raw = pd.DataFrame(raw).drop(['Adj Close', 'Volume'], axis=1)
raw.iloc[:,0] = pd.to_datetime(raw.iloc[:,0])
raw.set_index('Date', inplace=True)
return raw
d = {a:b for a, b in enumerate(pairs)}
print(d)
# ATR
def eATR(df1,n=14):
"""This calculates the Average True Range of of a dataframe of the open,
high, low, and close data of an instrument"""
df = df1[['Open', 'High', 'Low', 'Close']].copy()
# True Range
df['TR'] = 0
for i in range(len(df)):
try:
df.iloc[i, 4] = max(df.iat[i,1] - df.iat[i,2],
abs(df.iat[i,1] - df.iat[i-1,3]),
abs(df.iat[i,2] - df.iat[i-1,3]))
except ValueError:
pass
# eATR
df['eATR'] = df['TR'].ewm(span=n, adjust=False).mean()
return df['eATR']
data = get_data(pairs[0])
data.head(1)
def ssl(df1):
df = df1.copy()
df['smaHigh'] = df['High'].rolling(window=10).mean()
df['smaLow'] = df['Low'].rolling(window=10).mean()
df['hlv'] = 0
df['hlv'] = np.where(df['Close'] > df['smaHigh'],1,np.where(df['Close'] < df['smaLow'],-1,df['hlv'].shift(1)))
df['sslDown'] = np.where(df['hlv'] < 0, df['smaHigh'], df['smaLow'])
df['sslUp'] = np.where(df['hlv'] < 0, df['smaLow'], df['smaHigh'])
df['sslPosition'] = np.where(df['Close'] > df['sslUp'], 1,
np.where(df['Close'] < df['sslDown'], -1, 0))
return df[['sslDown', 'sslUp', 'sslPosition']]
# Waddah Attar
def WAE(df1):
df = df1.copy()
# EMA
long_ema = df.loc[:,'Close'].ewm(span=40, adjust=False).mean()
short_ema = df.loc[:,'Close'].ewm(span=20, adjust=False).mean()
# MACD
MACD = short_ema - long_ema
# bBands
sma20 = df.loc[:,'Close'].rolling(window=20).mean() # 20 SMA
stddev = df.loc[:,'Close'].rolling(window=20).std() # 20 STDdev
lower_band = sma20 - (2 * stddev)
upper_band = sma20 + (2 * stddev)
#Waddah Attar
t1 = (MACD - MACD.shift(1))* 150
#t2 = MACD.shift(2) - MACD.shift(3)
df['e1'] = upper_band - lower_band
df['e2'] = -1 *df['e1']
#e2 = upper_band.shift(1) - lower_band.shift(1)
df['trendUp'] = np.where(t1 > 0, t1, 0)
df['trendDown'] = np.where(t1 < 0, t1, 0)
df['waePosition'] = np.where(df['trendUp'] > 0, 1,
np.where(df['trendDown'] < 0, -1, 0))
return df[['e1','e2','trendUp', 'trendDown', 'waePosition']]
def lag_feat(data1):
data = data1.copy()
lags = 8
cols = []
for lag in range(1, lags + 1):
col = f'lag_{lag}'
data[col] = data['ret'].shift(lag)
cols.append(col)
return data[cols]
def datepart_feat(df0, colname = 'Date'):
"""This function adds some common pandas date parts like 'year',
'month' etc as features to a dataframe
"""
df = df0.copy()
df.reset_index(inplace=True)
df1 = df.loc[:,colname]
nu_feats = ['Year', 'Month', 'Day', 'Dayofweek', 'daysinmonth',
'Dayofyear', 'Is_month_end', 'Is_month_start', 'quarter',
'Is_quarter_end', 'Is_quarter_start', 'Is_year_end',
'Is_year_start']
targ_pre = re.sub('[Dd]ate$', '', colname)
for n in nu_feats:
df[targ_pre+n] = getattr(df1.dt,n.lower())
df[targ_pre+'week'] = df1.dt.isocalendar().week.astype(np.int64)
df[targ_pre+'Elapsed'] = df1.astype(np.int64) // 10**9
nu_feats.extend(['week', 'Elapsed'])
df.set_index(colname, inplace=True)
return df[nu_feats]
def gen_feat(pair):
df0 = get_data(pair).iloc[-4200:,]
df0['ret'] = df0['Close'].pct_change()
df0['dir'] = np.sign(df0['ret'])
eATR_ = eATR(df0).shift(1)
wae = WAE(df0).shift(1)
ssl1 = ssl(df0).shift(1)
datepart = datepart_feat(df0)
lags = lag_feat(df0)
return pd.concat([df0, eATR_, wae, ssl1, datepart, lags], axis=1).dropna()
dataset = gen_feat(pairs[0])
dataset.drop(['Open', 'High', 'Low'], axis=1, inplace=True)
dataset.tail()
cols = list(dataset.columns)
print(cols)
feats = cols[2:]
df_train.info()
df_train = dataset.iloc[:-1000,:]
train = df_train.copy()
df_test = dataset.iloc[-1000:,:]
test = df_test.copy()
dep_var = 'dir'
###Output
_____no_output_____
###Markdown
Using *FastAI* and *Random Forest* to Predict Market Direction.
###Code
procs = [Categorify, FillMissing]
cond = df_train.Year<2015
train_idx = np.where(cond)[0]
valid_idx = np.where(~cond)[0]
splits = (list(train_idx),list(valid_idx))
cont,cat = cont_cat_split(train[feats], 1, dep_var=dep_var)
to = TabularPandas(train[feats], procs, cat, cont, y_names=dep_var, splits=splits)
len(to.train),len(to.valid)
to.show(3)
to.items.head(2)
conti,categ = cont_cat_split(test[feats], 1, dep_var=dep_var)
to_t = TabularPandas(test[feats], procs, categ, conti, y_names=dep_var, splits=None)
save_pickle('to.pkl',to)
to = load_pickle('to.pkl')
xs,y = to.train.xs,to.train.y
valid_xs,valid_y = to.valid.xs,to.valid.y
def rfc(xs, y, n_estimators=40, max_samples=2000,
max_features=0.5, min_samples_leaf=5, **kwargs):
return RandomForestClassifier(n_jobs=-1, n_estimators=n_estimators,
max_samples=max_samples, max_features=max_features,
min_samples_leaf=min_samples_leaf, oob_score=True).fit(xs, y)
m = rfc(xs, y);
valid_pred = m.predict(valid_xs)
valid_acc = accuracy_score(valid_y, valid_pred)
print(f'Validation Accuracy: {valid_acc}')
xs_t,y_t = to_t.train.xs, to_t.train.ys.values.ravel()
test_pred = m.predict(test[feats[1:]])
test_acc = accuracy_score(test['dir'], test_pred)
print(f'Test set Accuracy: {test_acc}')
test['prediction'] = test_pred
test['prediction'].value_counts()
hits = np.sign(test['ret'] * test['prediction']).value_counts()
hits
test['strategy'] = (test['prediction'] * test['ret'])
test[['ret', 'strategy']].sum().apply(np.exp)
test[['ret', 'strategy']].cumsum(
).apply(np.exp).plot(figsize=(10, 6));
# plt.savefig('../../images/ch05/dl_plot_2.png')
def feat_imp(m, df):
return pd.DataFrame({'cols':df.columns, 'imp':m.feature_importances_}
).sort_values('imp', ascending=False)
f_i = feat_imp(m, xs)
f_i[:30]
def plot_fi(fi):
return fi.plot('cols', 'imp', 'barh', figsize=(15,10),title='Random forest - feature importance',
xlabel='Features', legend=False), plt.axvline(0.01, color='r', ls='--')
plot_fi(f_i[:30]);
to_keep = f_i[f_i.imp>0.01].cols
len(to_keep)
xs_imp = xs[to_keep]
valid_xs_imp = valid_xs[to_keep]
m = rfc(xs_imp, y)
valid_pred = m.predict(valid_xs_imp)
valid_acc = accuracy_score(valid_y, valid_pred)
print(f'Validation Accuracy: {valid_acc}')
test_pred = m.predict(test[to_keep])
test_acc = accuracy_score(test['dir'], test_pred)
print(f'Test set Accuracy: {test_acc}')
len(xs.columns), len(xs_imp.columns)
plot_fi(feat_imp(m, xs_imp));
cluster_columns(xs_imp)
def get_oob(df):
m = RandomForestClassifier(n_estimators=40, min_samples_leaf=15,
max_samples=2000, max_features=0.5, n_jobs=-1, oob_score=True)
m.fit(df, y)
return m.oob_score_
get_oob(xs_imp)
print(list(xs_imp.columns))
# {c:get_oob(xs_imp.drop(c, axis=1)) for c in (
# 'Month', 'Dayofyear', 'sslUp', 'sslDown')}
# get_oob(xs_imp.drop('Month', axis=1))
test_imp = test[to_keep]
xs_final = xs_imp#.drop('Month', axis=1)
valid_xs_final = valid_xs_imp#.drop('Month', axis=1)
test_imp_final = test_imp#.drop('Month', axis=1)
save_pickle('xs_final.pkl', xs_final)
save_pickle('valid_xs_final.pkl', valid_xs_final)
save_pickle('test_imp_final.pkl', test_imp_final)
xs_final = load_pickle('xs_final.pkl')
valid_xs_final = load_pickle('valid_xs_final.pkl')
test_imp_final = load_pickle('test_imp_final.pkl')
m = rfc(xs_final, y)
train_pred = m.predict(xs_final)
train_acc = accuracy_score(y, train_pred)
print(f'Train Set Accuracy: {train_acc}')
print(confusion_matrix(y, train_pred))
print(classification_report(y, train_pred))
valid_pred = m.predict(valid_xs_final)
valid_acc = accuracy_score(valid_y, valid_pred)
print(f'Validation Set Accuracy: {valid_acc}')
print(confusion_matrix(valid_y, valid_pred))
print(classification_report(valid_y, valid_pred))
test_pred = m.predict(test_imp_final)
test_acc = accuracy_score(test['dir'], test_pred)
print(f'Test Set Accuracy: {test_acc}')
print(confusion_matrix(test['dir'], test_pred))
print(classification_report(test['dir'], test_pred))
?create_simple_tear_sheet
create_simple_tear_sheet(df_test['ret']*test_pred)
###Output
_____no_output_____
###Markdown
$Imports$
###Code
import pandas as pd
import numpy as np
import pickle
import os
import matplotlib.pyplot as plt
%matplotlib inline
## for feature slection
from sklearn.linear_model import Lasso, LogisticRegression
from sklearn.feature_selection import SelectFromModel
# to visualise al the columns in the dataframe
pd.pandas.set_option('display.max_columns', None)
###Output
_____no_output_____
###Markdown
$Load-Data$
###Code
X_train = pd.read_csv("data/X_train.csv")
y_train = pd.read_csv("data/y_train.csv")
X_test = pd.read_csv("data/X_test.csv")
y_test = pd.read_csv("data/y_test.csv")
print(f"X_train data size is {X_train.shape}")
print(f"y_train data size is {y_train.shape}")
print(f"X_test data size is {X_test.shape}")
print(f"y_test data size is {y_test.shape}")
X_train.head()
###Output
_____no_output_____
###Markdown
Apply Feature Selection
###Code
# first, I specify the Lasso Regression model, and I
# select a suitable alpha (equivalent of penalty).
# The bigger the alpha the less features that will be selected.
# Then I use the selectFromModel object from sklearn, which
# will select the features which coefficients are non-zero
feature_sel_model = SelectFromModel(LogisticRegression(C=1, penalty='l1', solver='liblinear'))
feature_sel_model.fit(X_train, y_train)
feature_sel_model.get_support()
# let's print the number of total and selected features
# this is how we can make a list of the selected features
selected_feat = X_train.columns[(feature_sel_model.get_support())]
# let's print some stats
print(f'total features: {X_train.shape[1]}')
print(f'selected features: {len(selected_feat)}')
print(f'features with coefficients shrank to zero: {np.sum(feature_sel_model.estimator_.coef_ == 0)}')
list(selected_feat)
X_train=X_train[selected_feat]
X_train.head()
###Output
_____no_output_____
###Markdown
Pickle the Variables
###Code
def save_or_pickle_var(myvar, name, location):
file_path = os.path.join(location, f'{name}.pkl')
with open(file_path, 'wb') as file:
# A new file will be created
pickle.dump(myvar, file)
save_or_pickle_var(list(selected_feat), "selected_feat", "data")
def load_pickle_var(path):
with open(path, 'rb') as file:
# Call load method to deserialze
myvar = pickle.load(file)
return myvar
selected_feat = load_pickle_var("data/selected_feat.pkl")
selected_feat
###Output
_____no_output_____
###Markdown
Lab 6 - Feature Selection Analysis Elder de Sousa Whalen 10.16.2020 OverviewThis lab has the purpose of comparing four different models in regards to feature selection. The models used are: Logistic regression including all features, used as the base model; Logistic regression with stepwise selection based on p-values; Random forest based on principal compnent analysis feature selection; Random Forest based on feature importance.Logistic regression is a model that uses features to predict the output of a categorical variable.Random forest is an ensemble learning technique that consists of a collection of a number of decision trees. It outputs the class that is the mode of the classes for a categorical target variable.For this lab, Random forest will be used in combination with two different methods: feature importance and principal component analysis (PCA).Gini importance is a feature selection based on the random forest classifier that gives a score based on importance to each feature.PCA is a technique used to reduce the dimension of datasets, creating new variables that is a combination of the orignal variables while still being able to explain a great portion of the variance within the dataset.The performance measure used to compare the models will be the [accuracy score](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html) imported from sklearn.metrics and a comparison of the ROC/AUC curve between all models. DataThe caravan data set used in this lab contains information on customers of an insurance company. It contains 86 features (variables). The data was collected to attempt to answer if it's possible to predict who would be interested in buying a carvan insurance policy with the target variable being CARAVAN.
###Code
import matplotlib.pyplot as plt
import numpy as np
from sklearn import linear_model
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.decomposition import PCA
from sklearn.metrics import accuracy_score
from sklearn.feature_selection import SelectFromModel
%matplotlib inline
# Load the caravan dataset
url = 'https://raw.githubusercontent.com/WillKoehrsen/feature-selector/master/data/caravan-insurance-challenge.csv'
df = pd.read_csv(url)
df.head()
all_vars = df.drop(['ORIGIN'], axis=1)
#Group only the input variables
x_vars = all_vars.drop(['CARAVAN'], axis=1)
#Get the target variable
y = df['CARAVAN']
print(y[0:5])
x_vars.head()
###Output
0 0
1 0
2 0
3 0
4 0
Name: CARAVAN, dtype: int64
###Markdown
Exploratory Data Analysis
###Code
# Check for missing values
missing = np.isnan(all_vars.values).any()
if ( missing == False):
print('No missing values')
else:
print('Oh uh. There are missing values!')
# Summary of the input variables
x_vars.describe()
# Histogram of the target variable
y.hist()
# Set the title and labels
plt.xlabel("Policy Status")
plt.ylabel("Number of People")
plt.title("Number of People with Caravan's Insured vs Not Insured")
# show the plot
plt.show()
###Output
_____no_output_____
###Markdown
The histogram above shows imbalance in the dataset with respect to the target variable. Should the data be balanced before attempting to create any model?
###Code
#Attempt to capture only the highly correlated features ( > 0.6)
#https://stackoverflow.com/questions/26463714/pandas-get-combination-of-columns-where-correlation-is-high
corr_matrix = x_vars.corr().abs()
indices = np.where(corr_matrix > 0.6)
indices = [(corr_matrix.index[x], corr_matrix.columns[y]) for x, y in zip(*indices)
if x != y and x < y]
len(indices)
print(indices)
###Output
[('MOSTYPE', 'MOSHOOFD'), ('MGEMOMV', 'MFALLEEN'), ('MGEMOMV', 'MFWEKIND'), ('MGODPR', 'MGODGE'), ('MRELGE', 'MRELOV'), ('MRELGE', 'MFALLEEN'), ('MRELOV', 'MFALLEEN'), ('MRELOV', 'MAUT0'), ('MFALLEEN', 'MFWEKIND'), ('MOPLHOOG', 'MOPLLAAG'), ('MOPLHOOG', 'MSKA'), ('MOPLMIDD', 'MOPLLAAG'), ('MOPLLAAG', 'MSKA'), ('MOPLLAAG', 'MSKC'), ('MBERHOOG', 'MSKA'), ('MBERHOOG', 'MZFONDS'), ('MBERHOOG', 'MZPART'), ('MBERARBG', 'MSKC'), ('MHHUUR', 'MHKOOP'), ('MAUT1', 'MAUT0'), ('MZFONDS', 'MZPART'), ('MINKM30', 'MINKGEM'), ('MINK7512', 'MINKGEM'), ('PWAPART', 'AWAPART'), ('PWABEDR', 'AWABEDR'), ('PWALAND', 'AWALAND'), ('PPERSAUT', 'APERSAUT'), ('PBESAUT', 'ABESAUT'), ('PMOTSCO', 'AMOTSCO'), ('PVRAAUT', 'AVRAAUT'), ('PAANHANG', 'AAANHANG'), ('PTRACTOR', 'ATRACTOR'), ('PWERKT', 'AWERKT'), ('PBROM', 'ABROM'), ('PLEVEN', 'ALEVEN'), ('PPERSONG', 'APERSONG'), ('PGEZONG', 'AGEZONG'), ('PWAOREG', 'AWAOREG'), ('PBRAND', 'ABRAND'), ('PZEILPL', 'AZEILPL'), ('PPLEZIER', 'APLEZIER'), ('PFIETS', 'AFIETS'), ('PINBOED', 'AINBOED'), ('PBYSTAND', 'ABYSTAND')]
###Markdown
The code above shows that there are 44 pairs of features with a correlation greater than |0.6|. This is an indication of the presence of collinearity in the dataset. Models
###Code
#Firt split the data 70% train and 30% test
X_train, X_test, y_train, y_test = train_test_split(x_vars, y, test_size=0.3, random_state=0)
## BALANCED DATA SET using SMOTE (COMMENT this whole cell to used imbalanced data)
from imblearn.over_sampling import SMOTE
#
smt = SMOTE()
X_train, y_train = smt.fit_sample(X_train, y_train)
###Output
/usr/local/lib/python3.6/dist-packages/sklearn/externals/six.py:31: FutureWarning: The module is deprecated in version 0.21 and will be removed in version 0.23 since we've dropped support for Python 2.7. Please rely on the official version of six (https://pypi.org/project/six/).
"(https://pypi.org/project/six/).", FutureWarning)
/usr/local/lib/python3.6/dist-packages/sklearn/utils/deprecation.py:144: FutureWarning: The sklearn.neighbors.base module is deprecated in version 0.22 and will be removed in version 0.24. The corresponding classes / functions should instead be imported from sklearn.neighbors. Anything that cannot be imported from sklearn.neighbors is now part of the private API.
warnings.warn(message, FutureWarning)
/usr/local/lib/python3.6/dist-packages/sklearn/utils/deprecation.py:87: FutureWarning: Function safe_indexing is deprecated; safe_indexing is deprecated in version 0.22 and will be removed in version 0.24.
warnings.warn(msg, category=FutureWarning)
###Markdown
Logistic regression using all features
###Code
# Create logist regression object
logreg = linear_model.LogisticRegression(max_iter=10000)
# Train the model using the training sets
logreg.fit(X_train, y_train)
# Make predictions using the testing set
y_pred = logreg.predict(X_test)
#Print the accuracy score of the logist model
print('Logistic Regression Accuracy: {:.2f}'.format(logreg.score(X_test, y_test)))
# ROC Curve
from sklearn.metrics import roc_auc_score
from sklearn.metrics import roc_curve
logit_roc_auc = roc_auc_score(y_test, logreg.predict(X_test))
fpr, tpr, thresholds = roc_curve(y_test, logreg.predict_proba(X_test)[:,1])
plt.figure()
plt.plot(fpr, tpr, label='Logistic Regression (area = %0.2f)' % logit_roc_auc)
plt.plot([0, 1], [0, 1],'r--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic')
plt.legend(loc="lower right")
plt.show()
###Output
_____no_output_____
###Markdown
Logistic Regression with stepwise based on p-values
###Code
#https://datascience.stackexchange.com/questions/24405/how-to-do-stepwise-regression-using-sklearn/24447#24447
import statsmodels.api as sm
X = x_vars
def stepwise_selection(X, y,
initial_list=[],
threshold_in=0.01,
threshold_out = 0.05,
verbose=True):
""" Perform a forward-backward feature selection
based on p-value from statsmodels.api.OLS
Arguments:
X - pandas.DataFrame with candidate features
y - list-like with the target
initial_list - list of features to start with (column names of X)
threshold_in - include a feature if its p-value < threshold_in
threshold_out - exclude a feature if its p-value > threshold_out
verbose - whether to print the sequence of inclusions and exclusions
Returns: list of selected features
Always set threshold_in < threshold_out to avoid infinite looping.
See https://en.wikipedia.org/wiki/Stepwise_regression for the details
"""
included = list(initial_list)
while True:
changed=False
# forward step
excluded = list(set(X.columns)-set(included))
new_pval = pd.Series(index=excluded)
for new_column in excluded:
model = sm.OLS(y, sm.add_constant(pd.DataFrame(X[included+[new_column]]))).fit()
new_pval[new_column] = model.pvalues[new_column]
best_pval = new_pval.min()
if best_pval < threshold_in:
# best_feature = new_pval.argmin()
best_feature = new_pval.idxmin()
included.append(best_feature)
changed=True
if verbose:
print('Add {:30} with p-value {:.6}'.format(best_feature, best_pval))
# backward step
model = sm.OLS(y, sm.add_constant(pd.DataFrame(X[included]))).fit()
# use all coefs except intercept
pvalues = model.pvalues.iloc[1:]
worst_pval = pvalues.max() # null if pvalues is empty
if worst_pval > threshold_out:
changed=True
worst_feature = pvalues.argmax()
included.remove(worst_feature)
if verbose:
print('Drop {:30} with p-value {:.6}'.format(worst_feature, worst_pval))
if not changed:
break
return included
result = stepwise_selection(X, y)
print('resulting features:')
print(result)
new_xvars = x_vars[['PPERSAUT', 'MKOOPKLA', 'PWAPART', 'APLEZIER', 'MOPLHOOG', 'PBRAND', 'MBERBOER', 'MRELGE', 'PWALAND', 'ABRAND', 'AZEILPL', 'MINK123M', 'PBYSTAND', 'PGEZONG', 'AGEZONG', 'MHHUUR']]
new_xvars.head()
# Split the data 70% train and 30% test
#X_train, X_test, y_train, y_test = train_test_split(new_xvars, y, test_size=0.3, random_state=0)
# Create logist regression object
logreg_pval = linear_model.LogisticRegression(max_iter=10000)
# Train the model using the training sets
logreg_pval.fit(X_train, y_train)
# Make predictions using the testing set
y_pred = logreg_pval.predict(X_test)
#Print the accuracy score of the logist model
print('Logistic Regression Accuracy: {:.2f}'.format(logreg_pval.score(X_test, y_test)))
# ROC Curve
from sklearn.metrics import roc_auc_score
from sklearn.metrics import roc_curve
logit_roc_auc = roc_auc_score(y_test, logreg_pval.predict(X_test))
fpr, tpr, thresholds = roc_curve(y_test, logreg_pval.predict_proba(X_test)[:,1])
plt.figure()
plt.plot(fpr, tpr, label='Logistic Regression (p-val based) (area = %0.2f)' % logit_roc_auc)
plt.plot([0, 1], [0, 1],'r--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic')
plt.legend(loc="lower right")
plt.show()
###Output
_____no_output_____
###Markdown
Random Forest based on Principal component analysis
###Code
from sklearn.preprocessing import StandardScaler
# standardize the data
X_std = StandardScaler().fit_transform(x_vars)
mean_vec = np.mean(X_std, axis=0)
cov_mat = (X_std - mean_vec).T.dot((X_std - mean_vec)) / (X_std.shape[0]-1)
print('Covariance matrix \n%s' %cov_mat)
#Perform eigendecomposition on covariance matrix
cov_mat = np.cov(X_std.T)
eig_vals, eig_vecs = np.linalg.eig(cov_mat)
print('Eigenvectors \n%s' %eig_vecs)
print('\nEigenvalues \n%s' %eig_vals)
pca = PCA().fit(all_vars)
plt.plot(np.cumsum(pca.explained_variance_ratio_))
plt.xlabel('number of components')
plt.ylabel('cumulative explained variance');
plt.plot(np.cumsum(pca.explained_variance_ratio_))
plt.xlabel('number of components')
plt.ylabel('cumulative explained variance');
pca = PCA(0.90).fit(all_vars)
pca.n_components_
###Output
_____no_output_____
###Markdown
From the results above, using PCA we were able to reduce the predicting variables from 85 to 13 and still be able to explain about 90% of the variance.
###Code
#https://towardsdatascience.com/machine-learning-step-by-step-6fbde95c455a
# Split the data 70% train and 30% test
X_train_std, X_test_std, y_train, y_test = train_test_split(X_std, y, test_size=0.3, random_state=0)
## Balance Standardized data (COMMENT the next line to used imbalanced data)
X_train_std, y_train = smt.fit_sample(X_train_std, y_train)
# Reduce the number of features from 85 to 13 in the X_train_std and X_test_std data
pca = PCA(n_components=13)
pca.fit(X_train_std)
X_train_pca = pca.transform(X_train_std)
X_test_pca = pca.transform(X_test_std)
# Fit train data to Random Forest Model
from sklearn.ensemble import RandomForestClassifier
rfc_pca = RandomForestClassifier(n_estimators=1000, random_state=0)
rfc_pca.fit(X_train_pca, y_train)
y_pred = rfc_pca.predict(X_test_pca)
accuracy_score(y_test, y_pred)
# ROC Curve
from sklearn.metrics import roc_auc_score
from sklearn.metrics import roc_curve
rfc_pca_roc_auc = roc_auc_score(y_test, rfc_pca.predict(X_test_pca))
fpr, tpr, thresholds = roc_curve(y_test, rfc_pca.predict_proba(X_test_pca)[:,1])
plt.figure()
plt.plot(fpr, tpr, label='Random Forest with PCA (area = %0.2f)' % rfc_pca_roc_auc)
plt.plot([0, 1], [0, 1],'r--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic')
plt.legend(loc="lower right")
plt.show()
###Output
_____no_output_____
###Markdown
Random Forest based on feature importance feature selection
###Code
#Firt split the data 70% train and 30% test
X_train, X_test, y_train, y_test = train_test_split(x_vars, y, test_size=0.3, random_state=0)
## Balance data (COMMENT the next line to used imbalanced data)
X_train, y_train = smt.fit_sample(X_train, y_train)
# Create a list of feature names
feat_labels = x_vars.columns
# Create a random forest classifier
clf = RandomForestClassifier(n_estimators=1000, random_state=0)
# Train the classifier
clf.fit(X_train, y_train)
# Print the name and gini importance of each feature
for feature in zip(feat_labels, clf.feature_importances_):
print(feature)
# Create a selector object that will use the random forest classifier to identify
# features that have an importance of more than 0.02
sfm = SelectFromModel(clf, threshold=0.02)
# Train the selector
sfm.fit(X_train, y_train)
# Print the names of the most important features
for feature_list_index in sfm.get_support(indices=True):
print(feat_labels[feature_list_index])
# Transform the data to create a new dataset containing only the most important features
# Note: We have to apply the transform to both the training X and test X data.
X_important_train = sfm.transform(X_train)
X_important_test = sfm.transform(X_test)
# Create a new random forest classifier for the most important features
clf_important = RandomForestClassifier(random_state=0, n_jobs=-1)
# Train the new classifier on the new dataset containing the most important features
clf_important.fit(X_important_train, y_train)
# Apply The Full Featured Classifier To The Test Data
y_important_pred = clf_important.predict(X_important_test)
# View The Accuracy Of Our Limited Feature (2 Features) Model
accuracy_score(y_test, y_important_pred)
# ROC Curve
from sklearn.metrics import roc_auc_score
from sklearn.metrics import roc_curve
rfc_feat_roc_auc = roc_auc_score(y_test, clf_important.predict(X_important_test))
fpr, tpr, thresholds = roc_curve(y_test, clf_important.predict_proba(X_important_test)[:,1])
plt.figure()
plt.plot(fpr, tpr, label='Random Forest with PCA (area = %0.2f)' % rfc_feat_roc_auc)
plt.plot([0, 1], [0, 1],'r--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic')
plt.legend(loc="lower right")
plt.show()
###Output
_____no_output_____ |
notebooks/dlp07_working_with_keras.ipynb | ###Markdown
준비된 `'difficulty'` 층을 출력층으로 추가하여 `priority`, `department`, `difficulty`세 개의 출력값을 생성하는 새로운 모델을 구성한다.
###Code
new_model = keras.Model(
inputs=[title, text_body, tags],
outputs=[priority, department, difficulty])
###Output
_____no_output_____
###Markdown
새로 생성된 모델은 기존에 훈련된 모델의 가중치,즉, 은닉층에 사용된 가중치는 그대로 사용되며,모델 구성 그래프는 다음과 같다.```python>>> keras.utils.plot_model(new_model, "updated_ticket_classifier.png", show_shapes=True)``` 요약 결과는 다음과 같다.
###Code
new_model.summary()
###Output
Model: "model_2"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
title (InputLayer) [(None, 10000)] 0
__________________________________________________________________________________________________
text_body (InputLayer) [(None, 10000)] 0
__________________________________________________________________________________________________
tags (InputLayer) [(None, 100)] 0
__________________________________________________________________________________________________
concatenate (Concatenate) (None, 20100) 0 title[0][0]
text_body[0][0]
tags[0][0]
__________________________________________________________________________________________________
dense_8 (Dense) (None, 64) 1286464 concatenate[0][0]
__________________________________________________________________________________________________
priority (Dense) (None, 1) 65 dense_8[0][0]
__________________________________________________________________________________________________
department (Dense) (None, 4) 260 dense_8[0][0]
__________________________________________________________________________________________________
difficulty (Dense) (None, 3) 195 dense_8[0][0]
==================================================================================================
Total params: 1,286,984
Trainable params: 1,286,984
Non-trainable params: 0
__________________________________________________________________________________________________
###Markdown
모델 구성법 3: 서브클래싱 케라스 모델과 호환되는 모델 클래스를 직접 선언하여 활용하려면 `keras.Model` 클래스를 상속해야 한다.이런 방식을 **서브클래싱**(subclassing)이라 부르며`keras.Model` 클래스를 상속하면서 기본적으로 아래 두 메서드를 목적에 맞추어 재정의(overriding)하면 된다.- `__init__()` 메서드(생성자): 은닉층과 출력층의 구성요소 지정- `call()` 메서드: 모델 구성 후 출력값 반환앞서 함수형 API로 구성한 티켓 모델을 서브클래싱을 기법을 이용하여 구현하면 다음과 같다.**참고**: `keras.layers.Layer`를 상속하여 사용자 정의 층을 선언하는 방식과 거의 유사하다([3장 6절](https://codingalzi.github.io/dlp/notebooks/dlp03_introduction_to_keras_and_tf.html) 참조).
###Code
class CustomerTicketModel(keras.Model):
def __init__(self, num_departments):
super().__init__()
self.concat_layer = layers.Concatenate()
self.mixing_layer = layers.Dense(64, activation="relu")
self.priority_scorer = layers.Dense(1, activation="sigmoid")
self.department_classifier = layers.Dense(
num_departments, activation="softmax")
def call(self, inputs): # inputs: 사전 객체 입력값. 모양은 미정.
title = inputs["title"]
text_body = inputs["text_body"]
tags = inputs["tags"]
features = self.concat_layer([title, text_body, tags]) # 은닉층
features = self.mixing_layer(features)
priority = self.priority_scorer(features) # 출력층
department = self.department_classifier(features)
return priority, department # outputs
###Output
_____no_output_____
###Markdown
모델 구성은 해당 모델의 객체를 생성하면 된다.다만 `Layer`의 경우처럼 가중치는 실제 데이터와 함께 호출되지 전까지 생성되지 않는다.
###Code
model = CustomerTicketModel(num_departments=4)
model.weights
###Output
_____no_output_____
###Markdown
컴파일, 훈련, 평가, 예측은 이전과 완전히 동일한 방식으로 실행된다.
###Code
model.compile(optimizer="adam",
loss=["mean_squared_error", "categorical_crossentropy"],
metrics=[["mean_absolute_error"], ["accuracy"]])
model.fit({"title": title_data, "text_body": text_body_data, "tags": tags_data},
[priority_data, department_data],
epochs=1)
model.evaluate({"title": title_data, "text_body": text_body_data, "tags": tags_data},
[priority_data, department_data])
priority_preds, department_preds = model.predict(
{"title": title_data, "text_body": text_body_data, "tags": tags_data})
###Output
40/40 [==============================] - 1s 6ms/step - loss: 8.1189 - output_1_loss: 0.3152 - output_2_loss: 7.8037 - output_1_mean_absolute_error: 0.4834 - output_2_accuracy: 0.2414
40/40 [==============================] - 0s 4ms/step - loss: 3.8896 - output_1_loss: 0.3274 - output_2_loss: 3.5622 - output_1_mean_absolute_error: 0.4954 - output_2_accuracy: 0.4742
###Markdown
**서브클래싱 기법의 장단점** - 장점 - `call()` 함수를 이용하여 층을 임의로 구성할 수 있다. - 파이썬 프로그래밍 관련 모든 기법을 적용할 수 있다.- 단점 - 모델 구성을 전적으로 책임져야 한다. - 모델 구성 정보가 `call()` 함수 외부로 노출되지 않아서 앞서 보았던 그래프 표현을 사용할 수 없다. 모델 구성법 혼합 소개된 세 가지 방식을 임의로 혼합하여 활용할 수 있다. **예제: 서브클래싱 모델을 함수형 모델에 활용하기** (강추!!!)
###Code
class Classifier(keras.Model):
def __init__(self, num_classes=2):
super().__init__()
if num_classes == 2:
num_units = 1
activation = "sigmoid"
else:
num_units = num_classes
activation = "softmax"
self.dense = layers.Dense(num_units, activation=activation)
def call(self, inputs):
return self.dense(inputs)
inputs = keras.Input(shape=(3,))
features = layers.Dense(64, activation="relu")(inputs)
outputs = Classifier(num_classes=10)(features)
model = keras.Model(inputs=inputs, outputs=outputs)
###Output
_____no_output_____
###Markdown
**예제: 함수형 모델을 서브클래싱 모델에 활용하기**
###Code
inputs = keras.Input(shape=(64,))
outputs = layers.Dense(1, activation="sigmoid")(inputs)
binary_classifier = keras.Model(inputs=inputs, outputs=outputs)
class MyModel(keras.Model):
def __init__(self, num_classes=2):
super().__init__()
self.dense = layers.Dense(64, activation="relu")
self.classifier = binary_classifier
def call(self, inputs):
features = self.dense(inputs)
return self.classifier(features)
model = MyModel()
###Output
_____no_output_____
###Markdown
7.3 훈련 모니터링 케라스 모델의 구성, 훈련, 평가, 예측은 정해진 방식으로 차례대로 이루어진다.아래 코드는 MNIST 데이터셋을 이용한 모델 훈련 전반 과정을 보여준다.
###Code
from tensorflow.keras.datasets import mnist
def get_mnist_model():
inputs = keras.Input(shape=(28 * 28,))
features = layers.Dense(512, activation="relu")(inputs)
features = layers.Dropout(0.5)(features)
outputs = layers.Dense(10, activation="softmax")(features)
model = keras.Model(inputs, outputs)
return model
(images, labels), (test_images, test_labels) = mnist.load_data()
images = images.reshape((60000, 28 * 28)).astype("float32") / 255
test_images = test_images.reshape((10000, 28 * 28)).astype("float32") / 255
train_images, val_images = images[10000:], images[:10000]
train_labels, val_labels = labels[10000:], labels[:10000]
model = get_mnist_model()
model.compile(optimizer="rmsprop",
loss="sparse_categorical_crossentropy",
metrics=["accuracy"])
model.fit(train_images, train_labels,
epochs=3,
validation_data=(val_images, val_labels))
test_metrics = model.evaluate(test_images, test_labels)
predictions = model.predict(test_images)
###Output
Epoch 1/3
1563/1563 [==============================] - 8s 5ms/step - loss: 0.2953 - accuracy: 0.9119 - val_loss: 0.1480 - val_accuracy: 0.9579
Epoch 2/3
1563/1563 [==============================] - 8s 5ms/step - loss: 0.1671 - accuracy: 0.9527 - val_loss: 0.1220 - val_accuracy: 0.9684
Epoch 3/3
1563/1563 [==============================] - 8s 5ms/step - loss: 0.1412 - accuracy: 0.9613 - val_loss: 0.1125 - val_accuracy: 0.9711
313/313 [==============================] - 0s 1ms/step - loss: 0.1069 - accuracy: 0.9717
###Markdown
사용자 정의 평가지표(`metrics`) 활용 **`Metric` 클래스 상속**아래 세 개의 메서드를 재정의(overriding)해야 한다.- `update_state()`- `result()`- `reset_state()`아래 코드는 평균제곱근오차(RMSE)를 평가지표로 사용하는 클래스를 이용하는 모델 훈련을 소개한다.
###Code
import tensorflow as tf
class RootMeanSquaredError(keras.metrics.Metric):
def __init__(self, name="rmse", **kwargs):
super().__init__(name=name, **kwargs)
self.mse_sum = self.add_weight(name="mse_sum", initializer="zeros")
self.total_samples = self.add_weight(
name="total_samples", initializer="zeros", dtype="int32")
def update_state(self, y_true, y_pred, sample_weight=None):
y_true = tf.one_hot(y_true, depth=tf.shape(y_pred)[1])
mse = tf.reduce_sum(tf.square(y_true - y_pred))
self.mse_sum.assign_add(mse)
num_samples = tf.shape(y_pred)[0]
self.total_samples.assign_add(num_samples)
def result(self):
return tf.sqrt(self.mse_sum / tf.cast(self.total_samples, tf.float32))
def reset_state(self):
self.mse_sum.assign(0.)
self.total_samples.assign(0)
model = get_mnist_model()
model.compile(optimizer="rmsprop",
loss="sparse_categorical_crossentropy",
metrics=["accuracy", RootMeanSquaredError()])
model.fit(train_images, train_labels,
epochs=3,
validation_data=(val_images, val_labels))
test_metrics = model.evaluate(test_images, test_labels)
###Output
Epoch 1/3
1563/1563 [==============================] - 9s 5ms/step - loss: 0.2935 - accuracy: 0.9141 - rmse: 7.1828 - val_loss: 0.1709 - val_accuracy: 0.9510 - val_rmse: 7.3536
Epoch 2/3
1563/1563 [==============================] - 8s 5ms/step - loss: 0.1676 - accuracy: 0.9530 - rmse: 7.3561 - val_loss: 0.1227 - val_accuracy: 0.9657 - val_rmse: 7.4048
Epoch 3/3
1563/1563 [==============================] - 8s 5ms/step - loss: 0.1410 - accuracy: 0.9623 - rmse: 7.3852 - val_loss: 0.1244 - val_accuracy: 0.9691 - val_rmse: 7.4222
313/313 [==============================] - 0s 1ms/step - loss: 0.1120 - accuracy: 0.9711 - rmse: 7.4363
###Markdown
콜백(callback) 활용 **콜백**(callback)은 모델 훈련 도중에 부가적으로 호출되는 객체이며학습 과정을 모니터링 하면서 일부 제어기능을 수행하는 다양한 메서드를 제공한다.콜백이 활용되는 주요 기능은 다음과 같다.- 모델 체크포인팅: 훈련 중 모델 상태 수시로 저장- 훈련 조기 중단: 검증셋 손실이 더 이상 개선되지 않는 경우 훈련 중단- 하이퍼 파라미터 조정: 학습률의 동적 변경- 훈련 기록 작성: 훈련셋 및 검증셋의 손실값, 평가지표 등 기록 및 시각화```pythonkeras.callbacks.ModelCheckpointkeras.callbacks.EarlyStoppingkeras.callbacks.LearningRateSchedulerkeras.callbacks.ReduceLROnPlateaukeras.callbacks.CSVLogger```여기서는 `EarlyStopping`과 `ModelCheckpoint` 두 콜백의 기능을 살펴본다. **`fit()` 메서드에서 `callbacks` 인자 사용하기**아래 코드에 사용된 옵션은 다음과 같다.- `EarlyStopping`: 검증셋에 대한 정확도가 2 에포크(epoch) 연속 개선되지 않을 때 훈련 종료- `ModelCheckpoint`: 매 에포크마다 훈련된 모델 저장. `save_best_only=True`가 설정된 경우 검증셋에 대한 손실값이 가장 낮은 모델만 저장.
###Code
callbacks_list = [
keras.callbacks.EarlyStopping(
monitor="val_accuracy",
patience=2,
),
keras.callbacks.ModelCheckpoint(
filepath="checkpoint_path.keras",
monitor="val_loss",
save_best_only=True,
)
]
model = get_mnist_model()
model.compile(optimizer="rmsprop",
loss="sparse_categorical_crossentropy",
metrics=["accuracy"])
model.fit(train_images, train_labels,
epochs=10,
callbacks=callbacks_list,
validation_data=(val_images, val_labels))
###Output
Epoch 1/10
1563/1563 [==============================] - 8s 5ms/step - loss: 0.2962 - accuracy: 0.9114 - val_loss: 0.1489 - val_accuracy: 0.9575
Epoch 2/10
1563/1563 [==============================] - 8s 5ms/step - loss: 0.1645 - accuracy: 0.9532 - val_loss: 0.1184 - val_accuracy: 0.9692
Epoch 3/10
1563/1563 [==============================] - 8s 5ms/step - loss: 0.1412 - accuracy: 0.9617 - val_loss: 0.1192 - val_accuracy: 0.9692
Epoch 4/10
1563/1563 [==============================] - 8s 5ms/step - loss: 0.1276 - accuracy: 0.9670 - val_loss: 0.1139 - val_accuracy: 0.9700
Epoch 5/10
1563/1563 [==============================] - 8s 5ms/step - loss: 0.1212 - accuracy: 0.9694 - val_loss: 0.1102 - val_accuracy: 0.9747
Epoch 6/10
1563/1563 [==============================] - 8s 5ms/step - loss: 0.1115 - accuracy: 0.9731 - val_loss: 0.1070 - val_accuracy: 0.9759
Epoch 7/10
1563/1563 [==============================] - 8s 5ms/step - loss: 0.1033 - accuracy: 0.9747 - val_loss: 0.1043 - val_accuracy: 0.9764
Epoch 8/10
1563/1563 [==============================] - 8s 5ms/step - loss: 0.1041 - accuracy: 0.9761 - val_loss: 0.1049 - val_accuracy: 0.9784
Epoch 9/10
1563/1563 [==============================] - 8s 5ms/step - loss: 0.0994 - accuracy: 0.9774 - val_loss: 0.1070 - val_accuracy: 0.9785
Epoch 10/10
1563/1563 [==============================] - 8s 5ms/step - loss: 0.0948 - accuracy: 0.9780 - val_loss: 0.1181 - val_accuracy: 0.9768
###Markdown
조기종료 후 훈련과정에서 저장된 최고 성능의 모델을 불러오면 다음과 같다.
###Code
model = keras.models.load_model("checkpoint_path.keras")
###Output
_____no_output_____
###Markdown
사용자 정의 콜백 활용 **`Callback` 클래스 상속**매 에포크와 매 배치 훈련 단계의 시작과 종료 지점에서수행해야 할 기능을 정의해야 하며 아래 메서드를 재정의하는 방식으로 이루어진다.```pythonon_epoch_begin(epoch, logs)on_epoch_end(epoch, logs)on_batch_begin(batch, logs)on_batch_end(batch, logs)on_train_begin(logs)on_train_end(logs)```각 메서드에 사용되는 인자는 훈련 과정 중에 자동으로 생성된 객체로부터 값을 받아온다.- `logs` 인자: 이전 배치와 에포크의 훈련셋과 검증셋에 대한 손실값, 평가지표 등을 포함한 사전 객체.- `batch`, `epoch`: 배치와 에포크 정보다음 `LossHistory` 콜백 클래스는 배치 훈련이 끝날 때마다 손실값을 저장하고에포크가 끝날 때마다 배치별 손실값을 그래프로 저장하여 훈련이 종료된 후 시각화하여 보여주도록 한다.
###Code
from matplotlib import pyplot as plt
class LossHistory(keras.callbacks.Callback):
def on_train_begin(self, logs):
self.per_batch_losses = []
def on_batch_end(self, batch, logs):
self.per_batch_losses.append(logs.get("loss"))
def on_epoch_end(self, epoch, logs):
plt.clf()
plt.plot(range(len(self.per_batch_losses)), self.per_batch_losses,
label="Training loss for each batch")
plt.xlabel(f"Batch (epoch {epoch})")
plt.ylabel("Loss")
plt.legend()
plt.savefig(f"plot_at_epoch_{epoch}")
self.per_batch_losses = []
model = get_mnist_model()
model.compile(optimizer="rmsprop",
loss="sparse_categorical_crossentropy",
metrics=["accuracy"])
model.fit(train_images, train_labels,
epochs=10,
callbacks=[LossHistory()],
validation_data=(val_images, val_labels))
###Output
Epoch 1/10
1563/1563 [==============================] - 8s 5ms/step - loss: 0.2943 - accuracy: 0.9124 - val_loss: 0.1439 - val_accuracy: 0.9585
Epoch 2/10
1563/1563 [==============================] - 8s 5ms/step - loss: 0.1617 - accuracy: 0.9554 - val_loss: 0.1232 - val_accuracy: 0.9685
Epoch 3/10
1563/1563 [==============================] - 8s 5ms/step - loss: 0.1413 - accuracy: 0.9618 - val_loss: 0.1168 - val_accuracy: 0.9719
Epoch 4/10
1563/1563 [==============================] - 8s 5ms/step - loss: 0.1265 - accuracy: 0.9676 - val_loss: 0.1098 - val_accuracy: 0.9729
Epoch 5/10
1563/1563 [==============================] - 8s 5ms/step - loss: 0.1142 - accuracy: 0.9715 - val_loss: 0.1086 - val_accuracy: 0.9755
Epoch 6/10
1563/1563 [==============================] - 8s 5ms/step - loss: 0.1120 - accuracy: 0.9729 - val_loss: 0.1148 - val_accuracy: 0.9760
Epoch 7/10
1563/1563 [==============================] - 8s 5ms/step - loss: 0.1064 - accuracy: 0.9743 - val_loss: 0.1161 - val_accuracy: 0.9763
Epoch 8/10
1563/1563 [==============================] - 8s 5ms/step - loss: 0.1010 - accuracy: 0.9770 - val_loss: 0.1080 - val_accuracy: 0.9776
Epoch 9/10
1563/1563 [==============================] - 8s 5ms/step - loss: 0.0980 - accuracy: 0.9774 - val_loss: 0.1118 - val_accuracy: 0.9786
Epoch 10/10
1563/1563 [==============================] - 8s 5ms/step - loss: 0.0952 - accuracy: 0.9790 - val_loss: 0.1271 - val_accuracy: 0.9765
###Markdown
텐서보드(TensorBoard) 활용 **텐서보드**(TensorBoard)는 모델 훈련과정을 모니터링하는 최고의 어플이며텐서플로우와 함께 기본적으로 설치된다.**주의사항**: 텐서보드 데이터의 저장경로를 ```python/full_path_to_your_log_dir```대신에 ```python./tensorboard_log_dir```등을 사용해야 리눅스, 맥 운영체제에서 오류가 발생하지 않는다.
###Code
model = get_mnist_model()
model.compile(optimizer="rmsprop",
loss="sparse_categorical_crossentropy",
metrics=["accuracy"])
tensorboard = keras.callbacks.TensorBoard(
log_dir="./tensorboard_log_dir",
)
model.fit(train_images, train_labels,
epochs=10,
validation_data=(val_images, val_labels),
callbacks=[tensorboard])
###Output
Epoch 1/10
1563/1563 [==============================] - 8s 5ms/step - loss: 0.2950 - accuracy: 0.9128 - val_loss: 0.1475 - val_accuracy: 0.9591
Epoch 2/10
1563/1563 [==============================] - 8s 5ms/step - loss: 0.1677 - accuracy: 0.9528 - val_loss: 0.1224 - val_accuracy: 0.9668
Epoch 3/10
1563/1563 [==============================] - 8s 5ms/step - loss: 0.1395 - accuracy: 0.9621 - val_loss: 0.1158 - val_accuracy: 0.9697
Epoch 4/10
1563/1563 [==============================] - 8s 5ms/step - loss: 0.1285 - accuracy: 0.9675 - val_loss: 0.1157 - val_accuracy: 0.9712
Epoch 5/10
1563/1563 [==============================] - 8s 5ms/step - loss: 0.1192 - accuracy: 0.9708 - val_loss: 0.1141 - val_accuracy: 0.9722
Epoch 6/10
1563/1563 [==============================] - 8s 5ms/step - loss: 0.1145 - accuracy: 0.9724 - val_loss: 0.1039 - val_accuracy: 0.9766
Epoch 7/10
1563/1563 [==============================] - 8s 5ms/step - loss: 0.1059 - accuracy: 0.9740 - val_loss: 0.1045 - val_accuracy: 0.9790
Epoch 8/10
1563/1563 [==============================] - 8s 5ms/step - loss: 0.1050 - accuracy: 0.9754 - val_loss: 0.1107 - val_accuracy: 0.9770
Epoch 9/10
1563/1563 [==============================] - 8s 5ms/step - loss: 0.0965 - accuracy: 0.9776 - val_loss: 0.1082 - val_accuracy: 0.9788
Epoch 10/10
1563/1563 [==============================] - 8s 5ms/step - loss: 0.0960 - accuracy: 0.9780 - val_loss: 0.1094 - val_accuracy: 0.9788
###Markdown
텐서보드를 주피터 노트북에서 아래처럼 실행할 수 있다.
###Code
%load_ext tensorboard
%tensorboard --logdir ./tensorboard_log_dir
###Output
_____no_output_____
###Markdown
텐서보드를 독립적으로 실행하여 훈련과정을 실시간으로 모니터링 하려면아래 명령어를 터미널 창에서 실행하고 반환된 주소로 접속하면 된다.```pythontensorboard --logdir ./full_path_to_your_log_dir``` 7.4 사용자 정의 훈련 알고리즘: `fit()` 메서드 대체 Training versus inference Low-level usage of metrics
###Code
metric = keras.metrics.SparseCategoricalAccuracy()
targets = [0, 1, 2]
predictions = [[1, 0, 0], [0, 1, 0], [0, 0, 1]]
metric.update_state(targets, predictions)
current_result = metric.result()
print(f"result: {current_result:.2f}")
values = [0, 1, 2, 3, 4]
mean_tracker = keras.metrics.Mean()
for value in values:
mean_tracker.update_state(value)
print(f"Mean of values: {mean_tracker.result():.2f}")
###Output
_____no_output_____
###Markdown
A complete training and evaluation loop **Writing a step-by-step training loop: the training step function**
###Code
model = get_mnist_model()
loss_fn = keras.losses.SparseCategoricalCrossentropy()
optimizer = keras.optimizers.RMSprop()
metrics = [keras.metrics.SparseCategoricalAccuracy()]
loss_tracking_metric = keras.metrics.Mean()
def train_step(inputs, targets):
with tf.GradientTape() as tape:
predictions = model(inputs, training=True)
loss = loss_fn(targets, predictions)
gradients = tape.gradient(loss, model.trainable_weights)
optimizer.apply_gradients(zip(gradients, model.trainable_weights))
logs = {}
for metric in metrics:
metric.update_state(targets, predictions)
logs[metric.name] = metric.result()
loss_tracking_metric.update_state(loss)
logs["loss"] = loss_tracking_metric.result()
return logs
###Output
_____no_output_____
###Markdown
**Writing a step-by-step training loop: resetting the metrics**
###Code
def reset_metrics():
for metric in metrics:
metric.reset_state()
loss_tracking_metric.reset_state()
###Output
_____no_output_____
###Markdown
**Writing a step-by-step training loop: the loop itself**
###Code
training_dataset = tf.data.Dataset.from_tensor_slices((train_images, train_labels))
training_dataset = training_dataset.batch(32)
epochs = 3
for epoch in range(epochs):
reset_metrics()
for inputs_batch, targets_batch in training_dataset:
logs = train_step(inputs_batch, targets_batch)
print(f"Results at the end of epoch {epoch}")
for key, value in logs.items():
print(f"...{key}: {value:.4f}")
###Output
_____no_output_____
###Markdown
**Writing a step-by-step evaluation loop**
###Code
def test_step(inputs, targets):
predictions = model(inputs, training=False)
loss = loss_fn(targets, predictions)
logs = {}
for metric in metrics:
metric.update_state(targets, predictions)
logs["val_" + metric.name] = metric.result()
loss_tracking_metric.update_state(loss)
logs["val_loss"] = loss_tracking_metric.result()
return logs
val_dataset = tf.data.Dataset.from_tensor_slices((val_images, val_labels))
val_dataset = val_dataset.batch(32)
reset_metrics()
for inputs_batch, targets_batch in val_dataset:
logs = test_step(inputs_batch, targets_batch)
print("Evaluation results:")
for key, value in logs.items():
print(f"...{key}: {value:.4f}")
###Output
_____no_output_____
###Markdown
Make it fast with `tf.function` **Adding a `tf.function` decorator to our evaluation step function**
###Code
@tf.function
def test_step(inputs, targets):
predictions = model(inputs, training=False)
loss = loss_fn(targets, predictions)
logs = {}
for metric in metrics:
metric.update_state(targets, predictions)
logs["val_" + metric.name] = metric.result()
loss_tracking_metric.update_state(loss)
logs["val_loss"] = loss_tracking_metric.result()
return logs
val_dataset = tf.data.Dataset.from_tensor_slices((val_images, val_labels))
val_dataset = val_dataset.batch(32)
reset_metrics()
for inputs_batch, targets_batch in val_dataset:
logs = test_step(inputs_batch, targets_batch)
print("Evaluation results:")
for key, value in logs.items():
print(f"...{key}: {value:.4f}")
###Output
_____no_output_____
###Markdown
Leveraging `fit()` with a custom training loop **Implementing a custom training step to use with `fit()`**
###Code
loss_fn = keras.losses.SparseCategoricalCrossentropy()
loss_tracker = keras.metrics.Mean(name="loss")
class CustomModel(keras.Model):
def train_step(self, data):
inputs, targets = data
with tf.GradientTape() as tape:
predictions = self(inputs, training=True)
loss = loss_fn(targets, predictions)
gradients = tape.gradient(loss, model.trainable_weights)
optimizer.apply_gradients(zip(gradients, model.trainable_weights))
loss_tracker.update_state(loss)
return {"loss": loss_tracker.result()}
@property
def metrics(self):
return [loss_tracker]
inputs = keras.Input(shape=(28 * 28,))
features = layers.Dense(512, activation="relu")(inputs)
features = layers.Dropout(0.5)(features)
outputs = layers.Dense(10, activation="softmax")(features)
model = CustomModel(inputs, outputs)
model.compile(optimizer=keras.optimizers.RMSprop())
model.fit(train_images, train_labels, epochs=3)
class CustomModel(keras.Model):
def train_step(self, data):
inputs, targets = data
with tf.GradientTape() as tape:
predictions = self(inputs, training=True)
loss = self.compiled_loss(targets, predictions)
gradients = tape.gradient(loss, model.trainable_weights)
optimizer.apply_gradients(zip(gradients, model.trainable_weights))
self.compiled_metrics.update_state(targets, predictions)
return {m.name: m.result() for m in self.metrics}
inputs = keras.Input(shape=(28 * 28,))
features = layers.Dense(512, activation="relu")(inputs)
features = layers.Dropout(0.5)(features)
outputs = layers.Dense(10, activation="softmax")(features)
model = CustomModel(inputs, outputs)
model.compile(optimizer=keras.optimizers.RMSprop(),
loss=keras.losses.SparseCategoricalCrossentropy(),
metrics=[keras.metrics.SparseCategoricalAccuracy()])
model.fit(train_images, train_labels, epochs=3)
###Output
_____no_output_____
###Markdown
7장 케라스 모델 활용법 **감사말**: 프랑소와 숄레의 [Deep Learning with Python, Second Edition](https://www.manning.com/books/deep-learning-with-python-second-edition?a_aid=keras&a_bid=76564dff) 7장에 사용된 코드에 대한 설명을 담고 있으며 텐서플로우 2.6 버전에서 작성되었습니다. 소스코드를 공개한 저자에게 감사드립니다.**tensorflow 버전과 GPU 확인**- 구글 코랩 설정: '런타임 -> 런타임 유형 변경' 메뉴에서 GPU 지정 후 아래 명령어 실행 결과 확인 ``` !nvidia-smi ```- 사용되는 tensorflow 버전 확인 ```python import tensorflow as tf tf.__version__ ```- tensorflow가 GPU를 사용하는지 여부 확인 ```python tf.config.list_physical_devices('GPU') ``` 주요 내용 - 모델 구성법- 모델 훈련 모니터링- 사용자 정의 모델 훈련 및 평가 7.1 케라스 활용성 케라스를 이용하여 매우 단순한 모델부터 매우 복잡한 모델까지 구성 및 훈련이 가능하다. 케라스의 모델과 층은 모두 각각 `Model` 클래스와 `Layer` 클래스를 상속하기에 다른 모델에서 사용된 요소들을 재활용하기에도 용이하다.여기서는 주어진 문제에 따른 케라스 모델 구성법과 훈련법의 다양한 방식을 살펴본다. 7.2 케라스 모델 구성법 케라스를 이용하여 모델을 세 가지 방식으로 구성할 수 있다.- `Sequential` 모델: 층으로 스택을 쌓아 만든 모델- 함수형 API 활용: 가장 많이 사용됨.- 모델 서브클래싱: 모든 것을 사용자가 지정.가장 간단한 모델부터 아주 복잡한 모델까지 모두 구성할 수 있으며사용자가 직접 정의한 모델과 레이어도 활용할 수 있다. 모델 구성법 1: `Sequential` 모델 층으로 스택을 쌓아 만든 모델이며 가장 단순하다.- 하나의 입력값과 하나의 출력값만 사용 가능- 층을 지정된 순서대로만 적용 가능 **`Sequential` 클래스**
###Code
from tensorflow import keras
from tensorflow.keras import layers
model = keras.Sequential([
layers.Dense(64, activation="relu"),
layers.Dense(10, activation="softmax")
])
###Output
_____no_output_____
###Markdown
층의 추가는 `add` 메서드를 이용할 수도 있다.더해진 순서대로 층이 쌓인다.
###Code
model = keras.Sequential()
model.add(layers.Dense(64, activation="relu"))
model.add(layers.Dense(10, activation="softmax"))
###Output
_____no_output_____
###Markdown
**`build()` 메서드** 모델 훈련에 사용되는 층별 가중치는 모델이 처음 활용될 때 호출되는`build()` 메서드에 의해 초기화된다.이유는 입력값이 들어와야 가중치 텐서의 모양(shape)을 정할 수 있기 때문이다. 아래 코드 샘플은 [3장](https://codingalzi.github.io/dlp/notebooks/dlp03_introduction_to_keras_and_tf.html)에서 `SimpleDense`를 선언할 때 사용된 `build()` 메서드를 보여주며,훈련이 시작되면서 첫 배치 데이터셋이 입력될 때 특성 수를 확인하여가중치와 편향 텐서를 생성과 동시에 초기화한다. ```pythondef build(self, input_shape): input_dim = input_shape[-1] 입력 샘플의 특성 수 self.W = self.add_weight(shape=(input_dim, self.units), initializer="random_normal") self.b = self.add_weight(shape=(self.units,), initializer="zeros")``` 따라서 지금 당장 가중치를 확인하려 하면 오류가 발생한다. ```python>>> model.weights...ValueError: Weights for model sequential_1 have not yet been created. Weights are created when the Model is first called on inputs or `build()` is called with an `input_shape`.``` 반면에 입력값 대신 `build()` 메서드를 특성 수 정보를 이용하여 직접 호출하면가중치 텐서가 무작위로 초기화된 형식으로 생성된다.즉, **모델 빌드**가 완성된다.- `input_shape` 키워드 인자: `(None, 특성수)`- `None`은 임의의 크기의 배치도 다룰 수 있다는 것을 의미함.
###Code
model.build(input_shape=(None, 3))
###Output
_____no_output_____
###Markdown
모델 빌드가 완성되면 `weights` 속성에 생성된 모델 훈련에 필요한 모든 가중치와 편향이 저장된다.위 모델에 대해서 층별로 가중치와 편향 텐서 하나씩 총 4 개의 텐서가 생성된다.
###Code
len(model.weights)
###Output
_____no_output_____
###Markdown
- 1층의 가중치와 편향 텐서
###Code
model.weights[0].shape
model.weights[1].shape
###Output
_____no_output_____
###Markdown
- 2층의 가중치와 편향 텐서
###Code
model.weights[2].shape
model.weights[3].shape
###Output
_____no_output_____
###Markdown
**`summary()` 메서드** 완성된 모델의 요악한 내용은 확인할 수 있다.- 모델과 층의 이름- 층별 파라미터 수- 파라미터 수
###Code
model.summary()
###Output
Model: "sequential_1"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense_2 (Dense) (None, 64) 256
_________________________________________________________________
dense_3 (Dense) (None, 10) 650
=================================================================
Total params: 906
Trainable params: 906
Non-trainable params: 0
_________________________________________________________________
###Markdown
**`name` 인자**모델 또는 층을 지정할 때 생성자 메서등의 `name` 키워드 인자를 이용하여 이름을 지정할 수도 있다.
###Code
model = keras.Sequential(name="my_example_model")
model.add(layers.Dense(64, activation="relu", name="my_first_layer"))
model.add(layers.Dense(10, activation="softmax", name="my_last_layer"))
model.build((None, 3))
model.summary()
###Output
Model: "my_example_model"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
my_first_layer (Dense) (None, 64) 256
_________________________________________________________________
my_last_layer (Dense) (None, 10) 650
=================================================================
Total params: 906
Trainable params: 906
Non-trainable params: 0
_________________________________________________________________
###Markdown
**`Input()` 함수, `KerasTensor`, 모델 디버깅**모델 구성 중간에 구성 과정을 확인하려면 `Input()`함수를 이용하여**케라스텐서**(`KerasTensor`) 객체를가장 먼저 모델에 추가한다.그러면 층을 추가할 때마다 `summary()`를 실행할 수 있다.`Input()` 함수는 모델 훈련에 사용되는 데이터 샘플의 모양(shape) 정보를 제공하는 가상의 텐서인 `KerasTensor` 객체를 생성한다. **주의사항**: `shape` 키워드 인자에 사용되는 값은 각 샘플의 특성 수이며,앞서 `build()` 메서드의 인자와 다른 형식으로 사용된다.
###Code
model = keras.Sequential()
model.add(keras.Input(shape=(3,)))
model.add(layers.Dense(64, activation="relu"))
model.summary()
model.add(layers.Dense(10, activation="softmax"))
model.summary()
###Output
Model: "sequential_2"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense_4 (Dense) (None, 64) 256
_________________________________________________________________
dense_5 (Dense) (None, 10) 650
=================================================================
Total params: 906
Trainable params: 906
Non-trainable params: 0
_________________________________________________________________
###Markdown
모델 구성법 2: 함수형 API 다중 입력과 다중 출력을 지원하려면 함수형 API를 활용하여 모델을 구성해야 하며,가장 많이 사용되는 모델 구성법이다. 사용법은 간단하다.```pythonModel(inputs, outputs)```- `Model`: 케라사의 기본 모델 클래스- `inputs` 인자: 한 개 이상의 케라스텐서(`KerasTensor`) 객체 이루어진 리스트- `outputs` 인자: 한 개 이사의 출력층으로 이루어진 리스트 기본 활용법 앞서 살펴 본 `Sequential` 모델을 함수형 API를 이용하여 구성하면 다음과 같다.
###Code
inputs = keras.Input(shape=(3,), name="my_input") # 입력층
features = layers.Dense(64, activation="relu")(inputs) # 은닉층
outputs = layers.Dense(10, activation="softmax")(features) # 출력층
model = keras.Model(inputs=inputs, outputs=outputs)
###Output
_____no_output_____
###Markdown
사용된 단계들을 하나씩 살펴보자. - 입력층: `inputs = keras.Input(shape=(3,), name="my_input")` 생성된 값은 `KerasTensor`이다.
###Code
type(inputs)
###Output
_____no_output_____
###Markdown
케라스텐서(`KerasTensor`)의 모양에서 `None`은 배치 사이즈, 즉 하나의 훈련 스텝에 사용되는 샘플의 수를 대상으로 하며, 임의의 크기의 배치를 처리할 수 있다는 의미로 사용된다.
###Code
inputs.shape
inputs.dtype
###Output
_____no_output_____
###Markdown
- 은닉층: `features = layers.Dense(64, activation="relu")(inputs)`
###Code
type(features)
features.shape
###Output
_____no_output_____
###Markdown
- 출력층: `outputs = layers.Dense(10, activation="softmax")(features)`
###Code
type(outputs)
###Output
_____no_output_____
###Markdown
- 모델 빌드 ```pythoh model = keras.Model(inputs=inputs, outputs=outputs) ```
###Code
model.summary()
###Output
Model: "model"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
my_input (InputLayer) [(None, 3)] 0
_________________________________________________________________
dense_6 (Dense) (None, 64) 256
_________________________________________________________________
dense_7 (Dense) (None, 10) 650
=================================================================
Total params: 906
Trainable params: 906
Non-trainable params: 0
_________________________________________________________________
###Markdown
`KerasTensor`의 역할 앞서 보았듯이 케라스텐서는 모델 훈련에 사용되는 텐서의 모양에 대한 정보를 제공하는 **가상의 텐서**이다.빌드되는 모델은 입력 케라스텐서부터 출력 케라스텐서까지 각 층에 저장된 텐서의 모양 정보를 이용하여 가중치 텐서와 편향 텐서를 생성하고 초기화한다. 다중 입력, 다중 출력 모델 구성법 고객의 요구사항이 적힌 티켓을 처리할 때 필요한 우선순위와 담당부서를 지정하는 시스템을 구현하려 한다.시스템에 사용될 모델은 세 개의 입력과 두 개의 출력을 사용한다. - 입력 - `title`: 요구사항 타이틀. 문자열 인코딩. `vocabulary_size` 활용(11장에서 다룸). - `text_body`: 요구사항 내용. 문자열 인코딩. `vocabulary_size` 활용(11장에서 다룸). - `tags`: 사용자에 의한 추가 선택 사항. 멀티-핫-인코딩 사용.- 출력 - `priority`: 요구사항 처리 우선순위. 0에서 1사이의 값. 시그모이드(sigmoid) 활용. - `department`: 요구사항 처리 담당 부서. 소프트맥스 활용.
###Code
vocabulary_size = 10000 # 요구사항에 사용되는 단어 총 수
num_tags = 100 # 태그 수
num_departments = 4 # 부서 수
# 입력층: 세 개
title = keras.Input(shape=(vocabulary_size,), name="title")
text_body = keras.Input(shape=(vocabulary_size,), name="text_body")
tags = keras.Input(shape=(num_tags,), name="tags")
# 은닉층
features = layers.Concatenate()([title, text_body, tags]) # shape=(None, 10000+10000+100)
features = layers.Dense(64, activation="relu")(features)
# 출력층: 두 개
priority = layers.Dense(1, activation="sigmoid", name="priority")(features)
department = layers.Dense(
num_departments, activation="softmax", name="department")(features)
# 모델 빌드
model = keras.Model(inputs=[title, text_body, tags], outputs=[priority, department])
###Output
_____no_output_____
###Markdown
모델 훈련을 위해 적절한 개수의 입력 텐서와 타깃 텐서를 지정해야 한다.여기서는 훈련 과정을 설명하기 위해 적절한 모양의 입력 텐서 3개와 타깃 텐서 2개를 무작위로 생성해서 사용한다.
###Code
import numpy as np
# 샘플 수
num_samples = 1280
# 입력 텐서 3 개 무작위 생성
title_data = np.random.randint(0, 2, size=(num_samples, vocabulary_size))
text_body_data = np.random.randint(0, 2, size=(num_samples, vocabulary_size))
tags_data = np.random.randint(0, 2, size=(num_samples, num_tags)) # 멀티-핫-인코딩
# 타깃 텐서 2 개 무작위 생성
priority_data = np.random.random(size=(num_samples, 1))
department_data = np.random.randint(0, 2, size=(num_samples, num_departments)) # 멀티-핫-인코딩
###Output
_____no_output_____
###Markdown
모델 컴파일 과정에서 지정된 타깃 수만큼 손실함수와 측정 기준을 지정해야 한다.- 손실함수(loss) - `priority` 대상: `mean_squared_error` - `department` 대상: `categorical_crossentropy`- 평가지표(metrics): 평가지표는 여러 개를 사용할 수 있기에 대상 별로 리스트로 지정함. - `priority` 대상: `["mean_absolute_error"]` - `department` 대상: `["accuracy"]`
###Code
model.compile(optimizer="adam",
loss=["mean_squared_error", "categorical_crossentropy"],
metrics=[["mean_absolute_error"], ["accuracy"]])
###Output
_____no_output_____
###Markdown
모델 훈련은 `fit()` 함수에 세 개의 훈련 텐서로 이루어진 리스트와 두 개의 타깃 텐서로 이루어진 리스트를 지정한 후에 실행한다. 여기서는 시험삼아 한 번의 에포크만 사용한다.- `epochs=1`- `batch_size=None`: 배치 크기를 지정하지 않으면 32개로 자동 지정됨. 그래서 스텝수가 40(= 1280/30)이 된다.
###Code
model.fit([title_data, text_body_data, tags_data],
[priority_data, department_data],
epochs=1)
###Output
40/40 [==============================] - 1s 6ms/step - loss: 7.9958 - priority_loss: 0.3332 - department_loss: 7.6626 - priority_mean_absolute_error: 0.5019 - department_accuracy: 0.2047
###Markdown
평가도 훈련과 동일한 방식의 인자가 사용된다.
###Code
model.evaluate([title_data, text_body_data, tags_data],
[priority_data, department_data])
###Output
40/40 [==============================] - 0s 3ms/step - loss: 14.5559 - priority_loss: 0.3365 - department_loss: 14.2194 - priority_mean_absolute_error: 0.5046 - department_accuracy: 0.2484
###Markdown
예측은 입력값만 리스트로 지정하고 실행하면 두 개의 어레이 출력값으로 구성된 리스트가 반환된다.
###Code
priority_preds, department_preds = model.predict([title_data, text_body_data, tags_data])
priority_preds
department_preds
###Output
_____no_output_____
###Markdown
**사전 객체 활용**입력층과 출력층의 이름을 이용하여 사전 형식으로 입력값과 출력값을 지정할 수 있다.
###Code
model.compile(optimizer="adam",
loss={"priority": "mean_squared_error", "department": "categorical_crossentropy"},
metrics={"priority": ["mean_absolute_error"], "department": ["accuracy"]})
model.fit({"title": title_data, "text_body": text_body_data, "tags": tags_data},
{"priority": priority_data, "department": department_data},
epochs=1)
model.evaluate({"title": title_data, "text_body": text_body_data, "tags": tags_data},
{"priority": priority_data, "department": department_data})
priority_preds, department_preds = model.predict(
{"title": title_data, "text_body": text_body_data, "tags": tags_data})
###Output
40/40 [==============================] - 1s 6ms/step - loss: 7.8852 - priority_loss: 0.3365 - department_loss: 7.5487 - priority_mean_absolute_error: 0.5046 - department_accuracy: 0.2859
40/40 [==============================] - 0s 4ms/step - loss: 4.0846 - priority_loss: 0.3365 - department_loss: 3.7480 - priority_mean_absolute_error: 0.5046 - department_accuracy: 0.1852
###Markdown
층 연결 구조 확인 `plot_model()`을 이용하여 층 연결 구조를 그래프로 나타낼 수 있다.```python>>> keras.utils.plot_model(model, "ticket_classifier.png")```**주의사항**: `pydot` 파이썬 모듈과 graphviz 라는 프로그램이 컴퓨터에 설치되어 있어야 한다.- `pydot` 모듈 설치: `pip install pydot`- graphviz 프로그램 설치: [https://graphviz.gitlab.io/download/](https://graphviz.gitlab.io/download/)- 구글 코랩에서 기본으로 지원됨. 입력 텐서와 출력 텐서의 모양을 함께 표기할 수도 있다.```python>>> keras.utils.plot_model(model, "ticket_classifier_with_shape_info.png", show_shapes=True)``` 모델 재활용 훈련된 모델의 특성을 이용하여 새로운 모델을 빌드할 수 있다.먼저 모델의 `layers` 속성을 이용하여 사용된 층에 대한 정보를 확인한다. `layers` 속성은 사용된 층들의 객체로 이루어진 리스트를 가리킨다.
###Code
model.layers
###Output
_____no_output_____
###Markdown
예를 들어, 3번 인덱스에 해당하는 층의 입력값과 출력값에 대한 정보는 아래처럼 확인할 수 있다.
###Code
model.layers[3].input
model.layers[3].output
###Output
_____no_output_____
###Markdown
출력층을 제외한 나머지 층을 재활용해보자.출력층은 5번과 6번 인덱스에 위치하기에 4번 인덱스가가리키는 (은닉)층의 출력 정보를 따로 떼어낸다.
###Code
features = model.layers[4].output
###Output
_____no_output_____
###Markdown
이제 출력층에 문제해결의 어려움 정도를 "quick", "medium", "difficult"로구분하는 어려움(difficulty) 정도를 판별하는 층을 추가해보자.먼저, `difficulty` 층을 준비한다.
###Code
difficulty = layers.Dense(3, activation="softmax", name="difficulty")(features)
###Output
_____no_output_____ |
community_detection/notebooks/meeting_level.ipynb | ###Markdown
Utility functions
###Code
%matplotlib inline
from nltk.cluster.kmeans import KMeansClusterer
import nltk
import pickle
import torch
from pytorch_pretrained_bert import BertTokenizer, BertConfig, BertModel
from pytorch_pretrained_bert.modeling import BertPreTrainedModel, BertPreTrainingHeads
import numpy as np
from scipy.spatial.distance import cosine
import pickle
import re
import pandas as pd
device = 'cpu'
import sys
import os
import json
class BertForPreTraining_custom(BertPreTrainedModel):
def __init__(self, config):
super(BertForPreTraining_custom, self).__init__(config)
self.bert = BertModel(config)
self.cls = BertPreTrainingHeads(config, self.bert.embeddings.word_embeddings.weight)
self.apply(self.init_bert_weights)
def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None, next_sentence_label=None):
output_all_encoded_layers=True
sequence_output, pooled_output = self.bert(input_ids, token_type_ids, attention_mask,
output_all_encoded_layers=output_all_encoded_layers)
if output_all_encoded_layers:
sequence_output_pred = sequence_output[-1]
prediction_scores, seq_relationship_score = self.cls(sequence_output_pred, pooled_output)
return prediction_scores, seq_relationship_score, sequence_output, pooled_output
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
config = BertConfig.from_json_file('../data/bert_config.json')
bert_model = 'bert-base-uncased'
def getNSPScore(sample_text):
m = torch.nn.Softmax()
tokenized_text = tokenizer.tokenize(sample_text)
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
segments_ids = [0]*tokenized_text.index('[SEP]')+[1]*(len(tokenized_text)-tokenized_text.index('[SEP]'))
tokens_tensor = torch.tensor([indexed_tokens])
segments_tensors = torch.tensor([segments_ids])
pred_score, seq_rel, seq_out, pool_out = model1(tokens_tensor, segments_tensors)
return m(seq_rel).detach().numpy()[0][0] #returns probability of being next sentence
def getSentMatchScore(sent1, sent2, nsp_dampening_factor = 0.7):
sent1_feats = getBERTFeatures(model1, sent1, attn_head_idx)
sent2_feats = getBERTFeatures(model1, sent2, attn_head_idx)
cosine_distance = 1- cosine(sent1_feats, sent2_feats)
nsp_input1 = sent1+' [SEP] '+sent2
nsp_input2 = sent2+' [SEP] '+sent1
nsp_score_1 = getNSPScore(nsp_input1)
nsp_score_2 = getNSPScore(nsp_input2)
nsp_score = np.mean([nsp_score_1,nsp_score_2])*nsp_dampening_factor
len_diff = abs(len(sent1.split(' '))-len(sent2.split(' ')))
if len_diff>2*(min(len(sent1.split(' ')),len(sent2.split(' ')))):
#give more weight to nsp if the sentences of largely varying lengths
score = 0.4*cosine_distance+0.6*nsp_score
else:
score = np.mean([cosine_distance,nsp_score])
#print ("nsp score -> " + str(nsp_score))
#print ("cosine score -> " + str(cosine_distance))
return score
def getSentMatchScore_wfeature(sent1, sent2, sent1_feats, sent2_feats, nsp_dampening_factor = 0.7):
cosine_distance = 1-cosine(sent1_feats, sent2_feats)
#return cosine_distance
nsp_input1 = sent1+' [SEP] '+sent2
#nsp_input2 = sent2+' [SEP] '+sent1
nsp_score_1 = getNSPScore(nsp_input1)
#nsp_score_2 = getNSPScore(nsp_input2)
nsp_score = nsp_score_1 * nsp_dampening_factor
#nsp_score = nsp_score_1*nsp_dampening_factor
len_diff = abs(len(sent1.split(' '))-len(sent2.split(' ')))
if len_diff>2*(min(len(sent1.split(' ')),len(sent2.split(' ')))):
#give more weight to nsp if the sentences of largely varying lengths
score = 0.4*cosine_distance+0.6*nsp_score
else:
score = np.mean([cosine_distance,nsp_score])
return score
def getSentMatchScore_wfeature_cosine(sent1, sent2, sent1_feats, sent2_feats, nsp_dampening_factor = 0.7):
cosine_distance = 1-cosine(sent1_feats, sent2_feats)
return cosine_distance
def getSentMatchScore_wfeature_test(sent1, sent2, sent1_feats, sent2_feats, nsp_dampening_factor = 0.7):
cosine_distance = 1-cosine(sent1_feats, sent2_feats)
nsp_input1 = sent1+' [SEP] '+sent2
nsp_input2 = sent2+' [SEP] '+sent1
nsp_score_1 = getNSPScore(nsp_input1)
nsp_score_2 = getNSPScore(nsp_input2)
nsp_score = np.mean([nsp_score_1,nsp_score_2])*nsp_dampening_factor
#nsp_score = nsp_score_1*nsp_dampening_factor
len_diff = abs(len(sent1.split(' '))-len(sent2.split(' ')))
if len_diff>2*(min(len(sent1.split(' ')),len(sent2.split(' ')))):
#give more weight to nsp if the sentences of largely varying lengths
score = 0.4*cosine_distance+0.6*nsp_score
else:
score = np.mean([cosine_distance,nsp_score])
return score, cosine_distance, nsp_score
def getBERTFeatures(model, text, attn_head_idx = -1): #attn_head_idx - index o[]
tokenized_text = tokenizer.tokenize(text)
if len(tokenized_text)>200:
tokenized_text = tokenized_text[0:200]
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
tokens_tensor = torch.tensor([indexed_tokens])
_, _, seq_out, pool_out = model(tokens_tensor)
seq_out = list(getPooledFeatures(seq_out[attn_head_idx]).T)
#pool_out = list(pool_out.detach().numpy().T)
return seq_out
def getPooledFeatures(np_array):
np_array = np_array.reshape(np_array.shape[1],np_array.shape[2]).detach().numpy()
np_array_mp = np.mean(np_array, axis=0).reshape(1, -1)
return np_array_mp
def replaceContractions(text):
#text = text.lower()
c_filt_text = ''
for word in text.split(' '):
if word in contractions:
c_filt_text = c_filt_text+' '+contractions[word]
else:
c_filt_text = c_filt_text+' '+word
return c_filt_text
def cleanText(text):
text = text.replace('\\n','')
text = text.replace('\\','')
#text = text.replace('\t', '')
#text = re.sub('\[(.*?)\]','',text) #removes [this one]
text = re.sub('(http:\/\/www\.|https:\/\/www\.|http:\/\/|https:\/\/)?[a-z0-9]+([\-\.]{1}[a-z0-9]+)*\.[a-z]{2,5}(:[0-9]{1,5})?(\/.*)?\s',
' __url__ ',text) #remove urls
#text = re.sub('\'','',text)
#text = re.sub(r'\d+', ' __number__ ', text) #replaces numbers
text = re.sub('\W', ' ', text)
text = re.sub(' +', ' ', text)
text = text.replace('\t', '')
text = text.replace('\n', '')
return text
model1 = BertForPreTraining_custom(config)
model1.to(device)
#state_dict_1 = torch.load('/home/ether/domain_mind/ai/bert_10epc_ai_ds_1e-6_sl40.bin')
state_dict_1 = torch.load('../data/bert_10epc_se_1e-6_sl40.bin')
model1.load_state_dict(state_dict_1)
model1.eval()
def parsemeeting(text):
with open(text, 'r') as f:
parsed_text = json.load(f)
return parsed_text
text = parsemeeting('../data/meeting_transcript.txt')
texts = ''
for t in text['timeline']['transcriptSegments']:
texts+= t['text']
texts
###Output
_____no_output_____
###Markdown
get Communities from meetings.
###Code
import sys, pickle
sys.path.append('../')
import text_preprocessing.preprocess as tp
# with open('../data/Engineering_Mind_Test_Transcripts.txt','r') as fp:
# texts = fp.read()
mod_texts_unfiltered = tp.preprocess(texts, stop_words=False, remove_punct=True)
mod_texts = []
for index, sent in enumerate(mod_texts_unfiltered):
if len(sent.split(' '))>250:
length = len(sent.split(' '))
split1 = ' '.join([i for i in sent.split(' ')[:round(length/2)]])
split2 = ' '.join([i for i in sent.split(' ')[round(length/2):]])
mod_texts.append(split1)
mod_texts.append(split2)
continue
#mod_texts.pop(index)
if len(sent.split(' '))<=6:
continue
mod_texts.append(sent)
print(len(mod_texts))
fv = {}
for index, sent in enumerate(mod_texts):
fv[index] = getBERTFeatures(model1, sent, attn_head_idx=-1)
print (index)
import networkx as nx
def build_graph(doc_list):
eng_graph = nx.Graph()
try:
eng_graph.add_nodes_from(range(len(doc_list)))
except Exception as e:
print(e)
return eng_graph
tg = build_graph(mod_texts)
attn_head_idx = -1
node_edge = []
for index1, sent1 in enumerate(mod_texts):
print (index1)
for index2, sent2 in enumerate(mod_texts):
if index1!=index2:
score = getSentMatchScore_wfeature(sent1, sent2,fv[index1],fv[index2])
# if score > 0.8:
# #tg.add_edge(index1,index2,{'weight': score})
# tg.add_edge(index1,index2)
tg.add_edge(index1,index2,weight=score)
def build_community_graph(tg, mod_texts):
com_graph = nx.Graph()
for sent in list(tg.nodes()):
com_graph.add_node(sent)
for nodea in tg.nodes():
for nodeb in tg.nodes():
if nodea!=nodeb:
if tg.edges[nodea,nodeb]['weight'] > 0.75:
com_graph.add_edge(nodea,nodeb)
return com_graph
com_graph = build_community_graph(tg, mod_texts)
# import community
# import matplotlib.pyplot as plt
# partition = community.best_partition(tg)
# values = [partition.get(node) for node in tg.nodes()]
# values=[partition.get(node) for node in tg.nodes()]
# plt.rcParams['figure.figsize']= [16, 10]
# measure_name = "Louviin Algorithm Community Structure"
# pos = nx.spring_layout(tg, k=0.2, iterations=20)
# nodes_plot=nx.draw_networkx_nodes(tg, pos, node_size=140, label=True, cmap=plt.get_cmap('magma', len(tg.nodes())/4),node_color=values, alpha=0.95)
# edges_plot=nx.draw_networkx_edges(tg, pos, edge_color='r', alpha=0.1)
# plt.title(measure_name, fontsize=22, fontname='Arial')
# plt.colorbar(nodes_plot)
# plt.axis('off')
# plt.show()
import community
import matplotlib.pyplot as plt
partition = community.best_partition(com_graph)
values = [partition.get(node) for node in com_graph.nodes()]
values=[partition.get(node) for node in com_graph.nodes()]
plt.rcParams['figure.figsize']= [16, 10]
measure_name = "Louviin Algorithm Community Structure"
pos = nx.spring_layout(com_graph, k=0.2, iterations=20)
nodes_plot=nx.draw_networkx_nodes(com_graph, pos, node_size=140, label=True, cmap=plt.get_cmap('magma', len(com_graph.nodes())/4),node_color=values, alpha=0.95)
edges_plot=nx.draw_networkx_edges(com_graph, pos, edge_color='r', alpha=0.1)
plt.title(measure_name, fontsize=22, fontname='Arial')
plt.colorbar(nodes_plot)
plt.axis('off')
plt.show()
community.modularity(partition, com_graph)
partition = sorted(partition.items(), key=lambda kv: kv[1], reverse=False)
current = 0
print ("--------------cluster " + str(0) + "------------ \n ")
for word, cluster in partition:
if cluster!=current:
print ("--------------cluster " + str(cluster) + "------------ \n ")
print (mod_texts[word])
current=cluster
else:
print (mod_texts[word])
com_graph.number_of_edges()
tg.number_of_edges()
clusters = []
temp = []
tot_com = 12
prev_com = 0
for word,cluster in partition:
if prev_com!=cluster:
clusters.append(temp)
temp = []
prev_com+=1
else:
temp.append(word)
clusters
new_text = []
temp = ""
for com in clusters:
new_text.append(' '.join(mod_texts[sent] for sent in com))
new_text[11]
###Output
_____no_output_____
###Markdown
Using communities build word graph
###Code
from graphrank.graphrank import GraphRank
from graphrank.utils import GraphUtils, TextPreprocess
gr = GraphRank()
tp = TextPreprocess()
utils = GraphUtils()
keyphrases_list = []
for index, com in enumerate(new_text):
if com!="":
gr = GraphRank()
tp = TextPreprocess()
utils = GraphUtils()
original_tokens, pos_tuple, filtered_pos_tuple = tp.preprocess_text(com, filter_by_pos=True, pos_filter=['NOUN', 'PROPN', 'ADJ', 'FW'], stop_words=False)
word_graph = gr.build_word_graph(filtered_pos_tuple, original_tokens=original_tokens, window=4, reset_graph_context=True, preserve_common_words=False)
keyphrases = gr.get_keyphrases(word_graph, normalize_nodes='degree', des)
print (index, keyphrases[0])
keyphrases_list.append(keyphrases)
for index, com in enumerate(keyphrases_list):
print ("--------------Community----------- " + str(index))
for keyphrase in com:
print (keyphrase[0])
###Output
--------------Community----------- 0
good shape
highest priority
ui changes
request yesterday
monday
tasks
timeline
perspective
ready
nats
performance
shivam
--------------Community----------- 1
best continuation orchestration
basic slack install flow
unique work space installation
extra bucket private
initial production level
proper regression testing
key phrase extraction
customer provision method
channel mind scheme
corner cases
manual peak
ecxnumberx ebs
peak kind
hamburger menu
context instance
local storage
installation process
cdn distribution
simple kind
github pr
custom url
short time
website front
independent connectors
api contract
basic white
cdn bucket
service methods
developer sign
regression tests
current database
reply pattern
regular key
internal service
channel list
sxnumberx bucket
admin table
api contracts
specific requirement
current approaches
customers table
admin flow
key phrase
second pass
current focus
nats message
current production
customer service
ready
zoom
place
installs
permissions
minimum
poke
authenticates
store
header
recording
token
scripts
video
cluster
node
document
janus
question
authorization
migrations
login
term
poc
support
pim
steps
strategies
desktop
chapters
fills
priority
transcript
perspective
thumbs
localhost
guys
event
confirm
emit
electron
redirect
environment
closer
dgraph
pims
implementation
karthik
create
version
parshwa
free
user
tasks
track
shawshank
staging
today
moment
tomorrow
entity
server
js
work
shivam
changes
ether
tables
api
point
key
message
service
--------------Community----------- 2
cross domain cookie creations
cross domain cookie creation
hard gpl licenses
default license specifications
public hosted zones
public hosted zone
external dns
godaddy account
bad practice
specific website
ether bridge
lgpl license
good idea
certificate creation
manual experiments
domain names
manual tasks
hosted zone
etherlabs.io
environments
type
organization
example
project
policy
servers
apple
kinds
warning
karthik
bunch
spl
google
agpl
texts
reason
accounts
repos
mention
chrome
time
lgpl
meet
call
kind
teraform
middle
creation
--------------Community----------- 3
full text search
gateway output handler
official grav guideline
config files
users
av capture
edit action
smaller sections
root directory
multisite setup
lambda methods
setup.phpfor subdirectory
certificate issues
model fields
step fields
validation errors
form renders
tasks
nested fields
task fields
net
today
fossa
changes
menu
scans
scan
naive
database
example
build
services
tasksteps
concerns
guess
lot
controller
problem
yesterday
steps
path
fieldsfor
grav
validation
tasks
form
--------------Community----------- 4
overt racial tension frightening gang wars
vermont sen. bernie sanders sum
news release friday bidens campaign
country south central los angeles
texas rep. beto orourkes
worlds oldest continuous monarchy
news conference senator mitchell
state senators holly mitchell
california state bill sbxnumberx
vice president joe biden
mangy tawny shepherd dog
democratic presidential candidates
screen time app makers
ubiquitous police helicopters
big factor
notorious police department
american professional wrestler
san francisco forgave
insensitive police force
president barack obama
app data firm
arms control note
lucrative customers apple
parental control apps
saddling prisoners
downloaded screen time
iphone app store
chrysanthemum throne
crown prince
ahmad fawad
economic shackles
eldest son
adult content
legged animals
dangerous neighborhoods
streets day
day total
unheated classroom
administrative fees
successful effort
robert hertzberg
thursday evening
gentle figure
childrens access
york times
childrens devices
single day
nonviolent teenagers
misguided arrangement
big stick
sensor tower
white house
sadistic gangs
unusual power
advertising biden
year festivities
conventional weapons
south central
mr. singleton
american culture
san francisco
head free
mr. trump
domestic laws
apples business
year apple
apples tools
john cena
united nations
tech titan
cases apple
united states
latest companies
app makers
app store
screen time
countries
matches
fear
handlers
prosecution
practice
counties
winner
second
policeman
judge
hours
nowruz
announcements
change
impossible
shackling
persian
german
reintegration
communities
crips
autumn
legislation
society
abdication
boy
land
centuries
fundraiser
years
philadelphia
duty
tuesday
gun
families
akihito
wave
night
stadium
peace
fight
violence
film
blood
foe
place
rival
debt
japan
outskirts
fortunes
center
county
vibe
email
jaws
tokyo
moment
august
emperor
corporations
analysis
frenzy
individuals
treaty
money
parents
month
letter
decision
captivating
executives
features
procedures
medium
boyz
lesser
aggressive
number
experts
options
mercy
control
senate
accord
apple
time
--------------Community----------- 5
distributed scalable big data store
random real time readwrite access
fs hadoop distributed file system
native library location
tremendous struggle
fault tolerant manner
normal sequential programs
store huge amounts
data tofrom hbase
better availability manner
processing framework mapreduce
distributed filesystem hdfs
computation framework mapreduce
random readwrite capability
faster readwrite access
sequential data access
high throughput
question hadoop
lower risk
nosql database
hbase apis
management bridge
resource negotiator
gigantic amounts
hadoop cluster
mapreduce jobs
data loss
sequential programs
random read
hadoop hbase
parallel manner
huge data
fs hdfs
downvotes
suggestion
day
java
google
bigtable
sense
storage
inefficient
top
redundant
replication
picture
good
hadoop
huge
access
mapreduce
--------------Community----------- 6
single binary distribution policy
nested forms solution form
pycharm interpreter settings
multi nested form
actual url
automatic process
vxnumberxsubsitefolderxnumberx works
error message
janus gateway
formtasticcocoon gem
future version
lib folder
vxnumberx folder
folder structure
deeper level
vxnumberxsubsitefolderxnumberxlandingpage
hxnumberx
close
original
pypy
quality
speed
project
file
landing
answer
numpy
half
links
opencv
issue
encoding
bearing
tired
ffmpeg
files
projects
rails
pip
support
python
railscasts
path
folders
level
sites
--------------Community----------- 7
opencv python webrtc apps
genuine segmentation fault
requirement opencv python
efficient robust
core dump
directional communication
matching distribution
websocket connection
media metadata
place videoaudiodata
performance cost
intermediary server
clues
apis
technology
example
version
versions
audio
hand
error
network
clients
process
service
client
server
--------------Community----------- 8
pok sino indian ties
kashmir issue
hurriyat leaders
protest letters
china offering
chinese investments
jammu
years
pakistan
residents
visas
islamabad
projects
troops
beijing
move
china
chinese
###Markdown
testing topic modelling with LDA
###Code
from nltk.corpus import stopwords
from nltk.stem.wordnet import WordNetLemmatizer
import string
stop = set(stopwords.words('english'))
exclude = set(string.punctuation)
lemma = WordNetLemmatizer()
def clean(doc):
stop_free = " ".join([i for i in doc.lower().split() if i not in stop])
punc_free = ''.join(ch for ch in stop_free if ch not in exclude)
normalized = " ".join(lemma.lemmatize(word) for word in punc_free.split())
return normalized
doc_clean = [clean(doc).split() for doc in new_text]
#doc_clean = [clean(new_text[1]).split()]
doc_clean
import gensim
from gensim import corpora
dictionary = corpora.Dictionary(doc_clean)
doc_term_matrix = [dictionary.doc2bow(doc) for doc in doc_clean]
Lda = gensim.models.ldamodel.LdaModel
ldamodel = Lda(doc_term_matrix, num_topics=3, id2word = dictionary, passes=50)
print(ldamodel.print_topics())
###Output
[(0, '0.008*"zone" + 0.008*"hosted" + 0.008*"creation" + 0.008*"license" + 0.006*"one" + 0.006*"domain" + 0.005*"probably" + 0.005*"say" + 0.005*"thing" + 0.005*"never"'), (1, '0.018*"xnumberx" + 0.008*"data" + 0.007*"file" + 0.005*"task" + 0.005*"apple" + 0.005*"new" + 0.005*"time" + 0.005*"hbase" + 0.005*"hdfs" + 0.005*"hadoop"'), (2, '0.015*"like" + 0.015*"customer" + 0.011*"basically" + 0.008*"one" + 0.007*"service" + 0.007*"right" + 0.007*"know" + 0.007*"sign" + 0.007*"end" + 0.007*"thing"')]
|
VAE.ipynb | ###Markdown
Training
###Code
# Setup
encoder = Encoder(LATENT_DIM)
decoder = Decoder(LATENT_DIM)
model = VAE(encoder, decoder, N_SAMPLES, LATENT_DIM)
model.to(device)
optimizer = optim.Adam(vae.parameters(), lr=1e-4)
kl_divergence_loss = KLDivergenceLoss()
recon_loss = ReconstructionLoss()
for epoch in range(1, EPOCHS + 1):
# TRAIN
model.train()
train_loss = 0
for batch_idx, (x, _) in enumerate(train_loader):
optimizer.zero_grad()
x = Variable(x)
x = x.to(device)
xhat, mu, logvar = model.forward(x)
rc_loss = recon_loss(xhat, x)
kl_loss = kl_divergence_loss(mu, logvar)
loss = rc_loss + kl_loss
loss.backward()
optimizer.step()
train_loss += loss.item()
if batch_idx % LOG_INTERVAL == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tRCLoss: {:.6f}, KLLoss: {:.6f}'.format(
epoch,
batch_idx * len(x),
len(train_loader.dataset),
100. * batch_idx / len(train_loader),
rc_loss.item(), kl_loss.item()
))
print('====> Epoch: {} Average loss: {:.4f}'.format(epoch, train_loss / len(train_loader.dataset)))
# TEST
model.eval()
test_loss = 0
for i, (data, _) in enumerate(test_loader):
data = data.to(device)
# we're only going to infer, so no autograd at all required: volatile=True
data = Variable(data, volatile=True)
xhat, mu, logvar = model.forward(data)
rc_loss = recon_loss(xhat, x)
kl_loss = kl_divergence_loss(mu, logvar)
loss = rc_loss + kl_loss
if i == 0:
n = min(data.size(0), 8)
# for the first 128 batch of the epoch, show the first 8 input digits
# with right below them the reconstructed output digits
comparison = torch.cat([data[:n], xhat.view(BATCH_SIZE, 1, 28, 28)[:n]])
save_image(comparison.data.cpu(), './mnist/reconstruction_' + str(epoch) + '.png', nrow=n)
test_loss /= len(test_loader.dataset)
print('====> Test set loss: {:.4f}'.format(loss))
xgen = vae.sample()
xgen = xgen.detach().numpy()[0, 0, ...]
plt.imshow(xgen)
xgen.max(), xgen.min(), xgen.mean()
###Output
_____no_output_____
###Markdown
Tests
###Code
x, y = next(iter(train_loader))
print(x.shape)
print(x.max())
plt.imshow(x[0][0])
mu, logvar = encoder.forward(x[0, ...])
mu, logvar.exp()
xhat = decoder.forward(mu)
plt.imshow(xhat.detach().numpy()[0][0])
xhat, mu, logvar = vae.forward(x)
plt.imshow(xhat[0].detach().numpy()[0][0])
###Output
_____no_output_____
###Markdown
DatasetMNIST handwritten digits, reshaped to vectors in $\mathbb{R}^{784}$, and binarized.
###Code
(x_train, _), (x_test, _) = tf.keras.datasets.mnist.load_data()
x_train = x_train.reshape((x_train.shape[0], -1)) / 255
x_train = np.where(x_train < 0.5, 0, 1).astype('float32')
x_test = x_test.reshape((x_test.shape[0], -1)) / 255
x_test = np.where(x_test < 0.5, 0, 1).astype('float32')
###Output
_____no_output_____
###Markdown
Variational Autoencoder EncoderThe encoder takes an input $x$, and compresses it down to a lower dimensonal latent vector $z$. Actually, it is stochastic so it outputs parameters $\theta = \{\mu, \sigma\}$ to $q_{\theta}(z|x)$ which is an isotropic multivariate Gaussian distribution $\mathcal{N}(\mu, \sigma I)$. When we sample from this distribution we get noisy representations of $z$. DecoderThe decoder takes a latent vector $z$ and outputs parameters for the data distributions that we can sample from to generate a sample. In this case of binarized, flattened MNIST images, the output is 784 Bernoulli parameters $p_{\phi}(x|z) = \{ \mu_1, \dots, \mu_{784} \}$. Variational AutoencoderThe full variational autoencoder has an encoder and a decoder. It takes a batch of input images in and outputs a batch of parameters $\mu, \sigma, p$ to be used to calculate the loss. $z$ is sampled using the reparameterization trick by letting $z=\mu + \sigma \epsilon$, where $\epsilon \sim \mathcal{N}(0, 1)$, to make $z$ deterministic with respect to the parameters, allowing gradients to be computed. Since the KL-diveregence regularizer pushes the parameters of the encoder toward a unit gaussian, we can then hallucinate MNIST digits by sampling from a unit gaussian (of the hidden dimension) and feeding these vectors through the decoder!
###Code
class Encoder(tf.keras.layers.Layer):
""" Gaussian distribution q(z|x) of dimension hidden_dim """
def __init__(self, hidden_dim):
super().__init__()
self.h = hidden_dim
self.dense1 = tf.keras.layers.Dense(2 * hidden_dim, activation='relu')
self.dense2 = tf.keras.layers.Dense(2 * hidden_dim)
def call(self, x):
x = self.dense1(x)
x = self.dense2(x)
mean, std = x[:, :self.h], tf.nn.softplus(x[:, self.h:])
return mean, std
class Decoder(tf.keras.layers.Layer):
""" Bernoulli distribution p(x|z) of dimension output_dim """
def __init__(self, hidden_dim, output_dim=784):
super().__init__()
self.dense1 = tf.keras.layers.Dense(2 * hidden_dim, activation='relu')
self.dense2 = tf.keras.layers.Dense(output_dim, activation='sigmoid')
def call(self, z):
z = self.dense1(z)
p = self.dense2(z)
return p
class VAE(tf.keras.Model):
def __init__(self, hidden_dim):
super().__init__()
self.hidden_dim = hidden_dim
self.encoder = Encoder(hidden_dim)
self.decoder = Decoder(hidden_dim)
def call(self, x):
mean, std = self.encoder(x)
eps = tf.random.normal(shape=mean.shape)
z = mean + std * eps # Reparametrization trick
p = self.decoder(z)
return mean, std, p
def hallucinate(self, n):
z = tf.random.normal(shape=(n, self.hidden_dim))
p = self.decoder(z)
return p.numpy().reshape(n, 28, 28)
###Output
_____no_output_____
###Markdown
Loss FunctionImplementing the loss functions, the reconstruction loss is a single sample Monte-Carlo estimate and the KL-divergence loss is the analytical solution between two Gaussians. One is the unit Gaussian, and the other is the distribution output by the encoder.
###Code
def log(x):
""" Dodging nans """
eps = 1e-8
return tf.math.log(x + eps)
def reconstruction_loss(x, p):
return -tf.einsum("ij, ij -> i", x, log(p)) - tf.einsum("ij, ij ->i", (1 - x), log(1 - p))
def kldiv_loss(mean, std):
return tf.reduce_sum((tf.square(std) + tf.square(mean) - 1) / 2 - log(std), axis=-1)
def compute_loss(model, x):
mean, std, p = model(x)
rec_loss = reconstruction_loss(x, p)
kld_loss = kldiv_loss(mean, std)
return tf.reduce_mean(rec_loss + kld_loss)
###Output
_____no_output_____
###Markdown
Helper FunctionsJust some helper functions to make the training loop a bit more readable!
###Code
train_loss = tf.keras.metrics.Mean(name='training loss')
test_loss = tf.keras.metrics.Mean(name='test loss')
def train_step(model, x):
with tf.GradientTape() as tape:
loss = compute_loss(model, x)
grads = tape.gradient(loss, model.trainable_variables)
opt.apply_gradients(zip(grads, model.trainable_variables))
train_loss(loss)
def test_step(model, x):
loss = compute_loss(model, x)
test_loss(loss)
def reset_metrics():
train_loss.reset_states()
test_loss.reset_states()
def write_to_tensorboard(epoch):
tf.summary.scalar(name='training loss', data=train_loss.result(), step=epoch)
tf.summary.scalar(name='test loss', data=test_loss.result(), step=epoch)
def hallucinate_images(model, N=5, save=False):
""" Show N * N hallucinated images in a grid """
fig = plt.figure(figsize=(10, 10))
grid = ImageGrid(fig, 111, nrows_ncols=(N, N), axes_pad=0.1)
images = model.hallucinate(int(N * N))
for ax, im in zip(grid, images):
ax.imshow(im)
ax.set_yticklabels([])
ax.set_xticklabels([])
ax.grid(False)
plt.axis('off')
if save:
plt.savefig("hallucinated.png", dpi=500)
plt.show()
###Output
_____no_output_____
###Markdown
Training Loop
###Code
EPOCHS = 25
LATENT = 50
bs = 128
test_ds = tf.data.Dataset.from_tensor_slices(x_test).batch(bs)
train_ds = tf.data.Dataset.from_tensor_slices(x_train).shuffle(10000).batch(bs)
current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
log_dir = 'logs/VAE/' + current_time
writer = tf.summary.create_file_writer(log_dir)
tmp_train = "[{:3d}, {:3d}] ---> Train loss: {:3.2f}"
tmp_test = "Test loss : {:3.2f}\n"
model = VAE(hidden_dim=LATENT)
opt = tf.keras.optimizers.Adam(1e-4)
reset_metrics()
with writer.as_default():
for epoch in range(EPOCHS):
for i, x_tr in enumerate(train_ds):
train_step(model, x_tr)
if i % 100 == 0:
print(tmp_train.format(epoch, i, train_loss.result()))
for x_te in test_ds:
test_step(model, x_te)
print(f"After epoch {epoch}:")
print(tmp_test.format(test_loss.result()))
# Visualize some hallucinated images every 10th epoch to see the progress!
if epoch % 10 == 0:
hallucinate_images(model, 5)
write_to_tensorboard(epoch)
reset_metrics()
###Output
_____no_output_____
###Markdown
###Code
%tensorflow_version 1.x
import tensorflow as tf
import keras
import numpy as np
import matplotlib.pyplot as plt
from keras.layers import Input, Dense, Lambda, InputLayer, concatenate, Dropout
from keras.models import Model, Sequential
from keras import backend as K
from keras import metrics
from keras.datasets import mnist
from keras.utils import np_utils
# Start tf session so we can run code.
sess = tf.InteractiveSession()
# Connect keras to the created session.
K.set_session(sess)
def vlb_binomial(x, x_decoded_mean, t_mean, t_log_var):
"""Returns the value of negative Variational Lower Bound
The inputs are tf.Tensor
x: (batch_size x number_of_pixels) matrix with one image per row with zeros and ones
x_decoded_mean: (batch_size x number_of_pixels) mean of the distribution p(x | t), real numbers from 0 to 1
t_mean: (batch_size x latent_dim) mean vector of the (normal) distribution q(t | x)
t_log_var: (batch_size x latent_dim) logarithm of the variance vector of the (normal) distribution q(t | x)
Returns:
A tf.Tensor with one element (averaged across the batch), VLB
"""
vlb = tf.reduce_mean(tf.reduce_sum(x * tf.log( x_decoded_mean+1e-19 ) + (1-x) * tf.log( 1-x_decoded_mean+1e-19 ), axis = 1 ) - 0.5 * tf.reduce_sum( -t_log_var + tf.exp( t_log_var ) + tf.square(t_mean) - 1 , axis = 1 ))
return -vlb
batch_size = 100
original_dim = 784 # Number of pixels in MNIST images.
latent_dim = 3 # d, dimensionality of the latent code t.
intermediate_dim = 128 # Size of the hidden layer.
epochs = 20
x = Input(batch_shape=(batch_size, original_dim))
def create_encoder(input_dim):
# Encoder network.
# We instantiate these layers separately so as to reuse them later
encoder = Sequential(name='encoder')
encoder.add(InputLayer([input_dim]))
encoder.add(Dense(intermediate_dim, activation='relu'))
encoder.add(Dense(2 * latent_dim))
return encoder
encoder = create_encoder(original_dim)
get_t_mean = Lambda(lambda h: h[:, :latent_dim])
get_t_log_var = Lambda(lambda h: h[:, latent_dim:])
h = encoder(x)
t_mean = get_t_mean(h)
t_log_var = get_t_log_var(h)
# Sampling from the distribution
# q(t | x) = N(t_mean, exp(t_log_var))
# with reparametrization trick.
def sampling(args):
"""Returns sample from a distribution N(args[0], diag(args[1]))
The sample should be computed with reparametrization trick.
The inputs are tf.Tensor
args[0]: (batch_size x latent_dim) mean of the desired distribution
args[1]: (batch_size x latent_dim) logarithm of the variance vector of the desired distribution
Returns:
A tf.Tensor of size (batch_size x latent_dim), the samples.
"""
t_mean, t_log_var = args
# YOUR CODE HERE
epsilon = K.random_normal(t_mean.shape)
z = epsilon*K.exp(0.5*t_log_var) + t_mean
return z
t = Lambda(sampling)([t_mean, t_log_var])
def create_decoder(input_dim):
# Decoder network
# We instantiate these layers separately so as to reuse them later
decoder = Sequential(name='decoder')
decoder.add(InputLayer([input_dim]))
decoder.add(Dense(intermediate_dim, activation='relu'))
decoder.add(Dense(original_dim, activation='sigmoid'))
return decoder
decoder = create_decoder(latent_dim)
x_decoded_mean = decoder(t)
loss = vlb_binomial(x, x_decoded_mean, t_mean, t_log_var)
vae = Model(x, x_decoded_mean)
# Keras will provide input (x) and output (x_decoded_mean) to the function that
# should construct loss, but since our function also depends on other
# things (e.g. t_means), it is easier to build the loss in advance and pass
# a function that always returns it.
vae.compile(optimizer=keras.optimizers.RMSprop(lr=0.001), loss=lambda x, y: loss)
# train the VAE on MNIST digits
(x_train, y_train), (x_test, y_test) = mnist.load_data()
# One hot encoding.
y_train = np_utils.to_categorical(y_train)
y_test = np_utils.to_categorical(y_test)
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:])))
x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:])))
hist = vae.fit(x=x_train, y=x_train,
shuffle=True,
epochs=epochs,
batch_size=batch_size,
validation_data=(x_test, x_test),
verbose=2)
fig = plt.figure(figsize=(10, 10))
for fid_idx, (data, title) in enumerate(
zip([x_train, x_test], ['Train', 'Validation'])):
n = 10 # figure with 10 x 2 digits
digit_size = 28
figure = np.zeros((digit_size * n, digit_size * 2))
decoded = sess.run(x_decoded_mean, feed_dict={x: data[:batch_size, :]})
for i in range(10):
figure[i * digit_size: (i + 1) * digit_size,
:digit_size] = data[i, :].reshape(digit_size, digit_size)
figure[i * digit_size: (i + 1) * digit_size,
digit_size:] = decoded[i, :].reshape(digit_size, digit_size)
ax = fig.add_subplot(1, 2, fid_idx + 1)
ax.imshow(figure, cmap='Greys_r')
ax.set_title(title)
ax.axis('off')
plt.show()
n_samples = 10
p_samples = tf.random_normal([n_samples, latent_dim], 0.0, 1.0)
# sampled_im_mean is a tf.Tensor of size 10 x 784 with 10 random
# images sampled from the vae model.
sampled_im_mean = decoder(p_samples)
sampled_im_mean_np = sess.run(sampled_im_mean)
# Show the sampled images.
plt.figure()
for i in range(n_samples):
ax = plt.subplot(n_samples // 5 + 1, 5, i + 1)
plt.imshow(sampled_im_mean_np[i, :].reshape(28, 28), cmap='gray')
ax.axis('off')
plt.show()
###Output
_____no_output_____
###Markdown
Auto Encoder
###Code
import os
import pickle
from tensorflow.keras import Model
from tensorflow.keras.layers import Input, Conv2D, ReLU, BatchNormalization, \
Flatten, Dense, Reshape, Conv2DTranspose, Activation, Lambda
from tensorflow.keras import backend as K
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.losses import MeanSquaredError
import numpy as np
import tensorflow as tf
tf.compat.v1.disable_eager_execution()
class VAE:
"""
VAE represents a Deep Convolutional variational autoencoder architecture
with mirrored encoder and decoder components.
"""
def __init__(self,
input_shape,
conv_filters,
conv_kernels,
conv_strides,
latent_space_dim):
self.input_shape = input_shape # [28, 28, 1]
self.conv_filters = conv_filters # [2, 4, 8]
self.conv_kernels = conv_kernels # [3, 5, 3]
self.conv_strides = conv_strides # [1, 2, 2]
self.latent_space_dim = latent_space_dim # 2
self.reconstruction_loss_weight = 1000
self.encoder = None
self.decoder = None
self.model = None
self._num_conv_layers = len(conv_filters)
self._shape_before_bottleneck = None
self._model_input = None
self._build()
def summary(self):
self.encoder.summary()
self.decoder.summary()
self.model.summary()
def compile(self, learning_rate=0.0001):
optimizer = Adam(learning_rate=learning_rate)
self.model.compile(optimizer=optimizer,
loss=self._calculate_combined_loss)
def train(self, x_train, batch_size, num_epochs):
self.model.fit(x_train,
x_train,
batch_size=batch_size,
epochs=num_epochs,
shuffle=True)
def save(self, save_folder="."):
self._create_folder_if_it_doesnt_exist(save_folder)
self._save_parameters(save_folder)
self._save_weights(save_folder)
def load_weights(self, weights_path):
self.model.load_weights(weights_path)
def reconstruct(self, images):
latent_representations = self.encoder.predict(images)
reconstructed_images = self.decoder.predict(latent_representations)
return reconstructed_images, latent_representations
@classmethod
def load(cls, save_folder="."):
parameters_path = os.path.join(save_folder, "parameters.pkl")
with open(parameters_path, "rb") as f:
parameters = pickle.load(f)
autoencoder = VAE(*parameters)
weights_path = os.path.join(save_folder, "weights.h5")
autoencoder.load_weights(weights_path)
return autoencoder
def _calculate_combined_loss(self, y_target, y_predicted):
reconstruction_loss = self._calculate_reconstruction_loss(y_target, y_predicted)
kl_loss = self._calculate_kl_loss(y_target, y_predicted)
combined_loss = self.reconstruction_loss_weight * reconstruction_loss\
+ kl_loss
return combined_loss
def _calculate_reconstruction_loss(self, y_target, y_predicted):
error = y_target - y_predicted
reconstruction_loss = K.mean(K.square(error), axis=[1, 2, 3])
return reconstruction_loss
def _calculate_kl_loss(self, y_target, y_predicted):
kl_loss = -0.5 * K.sum(1 + self.log_variance - K.square(self.mu) -
K.exp(self.log_variance), axis=1)
return kl_loss
def _create_folder_if_it_doesnt_exist(self, folder):
if not os.path.exists(folder):
os.makedirs(folder)
def _save_parameters(self, save_folder):
parameters = [
self.input_shape,
self.conv_filters,
self.conv_kernels,
self.conv_strides,
self.latent_space_dim
]
save_path = os.path.join(save_folder, "parameters.pkl")
with open(save_path, "wb") as f:
pickle.dump(parameters, f)
def _save_weights(self, save_folder):
save_path = os.path.join(save_folder, "weights.h5")
self.model.save_weights(save_path)
def _build(self):
self._build_encoder()
self._build_decoder()
self._build_autoencoder()
def _build_autoencoder(self):
model_input = self._model_input
model_output = self.decoder(self.encoder(model_input))
self.model = Model(model_input, model_output, name="autoencoder")
def _build_decoder(self):
decoder_input = self._add_decoder_input()
dense_layer = self._add_dense_layer(decoder_input)
reshape_layer = self._add_reshape_layer(dense_layer)
conv_transpose_layers = self._add_conv_transpose_layers(reshape_layer)
decoder_output = self._add_decoder_output(conv_transpose_layers)
self.decoder = Model(decoder_input, decoder_output, name="decoder")
def _add_decoder_input(self):
return Input(shape=self.latent_space_dim, name="decoder_input")
def _add_dense_layer(self, decoder_input):
num_neurons = np.prod(self._shape_before_bottleneck) # [1, 2, 4] -> 8
dense_layer = Dense(num_neurons, name="decoder_dense")(decoder_input)
return dense_layer
def _add_reshape_layer(self, dense_layer):
return Reshape(self._shape_before_bottleneck)(dense_layer)
def _add_conv_transpose_layers(self, x):
"""Add conv transpose blocks."""
# loop through all the conv layers in reverse order and stop at the
# first layer
for layer_index in reversed(range(1, self._num_conv_layers)):
x = self._add_conv_transpose_layer(layer_index, x)
return x
def _add_conv_transpose_layer(self, layer_index, x):
layer_num = self._num_conv_layers - layer_index
conv_transpose_layer = Conv2DTranspose(
filters=self.conv_filters[layer_index],
kernel_size=self.conv_kernels[layer_index],
strides=self.conv_strides[layer_index],
padding="same",
name=f"decoder_conv_transpose_layer_{layer_num}"
)
x = conv_transpose_layer(x)
x = ReLU(name=f"decoder_relu_{layer_num}")(x)
x = BatchNormalization(name=f"decoder_bn_{layer_num}")(x)
return x
def _add_decoder_output(self, x):
conv_transpose_layer = Conv2DTranspose(
filters=1,
kernel_size=self.conv_kernels[0],
strides=self.conv_strides[0],
padding="same",
name=f"decoder_conv_transpose_layer_{self._num_conv_layers}"
)
x = conv_transpose_layer(x)
output_layer = Activation("sigmoid", name="sigmoid_layer")(x)
return output_layer
def _build_encoder(self):
encoder_input = self._add_encoder_input()
conv_layers = self._add_conv_layers(encoder_input)
bottleneck = self._add_bottleneck(conv_layers)
self._model_input = encoder_input
self.encoder = Model(encoder_input, bottleneck, name="encoder")
def _add_encoder_input(self):
return Input(shape=self.input_shape, name="encoder_input")
def _add_conv_layers(self, encoder_input):
"""Create all convolutional blocks in encoder."""
x = encoder_input
for layer_index in range(self._num_conv_layers):
x = self._add_conv_layer(layer_index, x)
return x
def _add_conv_layer(self, layer_index, x):
"""Add a convolutional block to a graph of layers, consisting of
conv 2d + ReLU + batch normalization.
"""
layer_number = layer_index + 1
conv_layer = Conv2D(
filters=self.conv_filters[layer_index],
kernel_size=self.conv_kernels[layer_index],
strides=self.conv_strides[layer_index],
padding="same",
name=f"encoder_conv_layer_{layer_number}"
)
x = conv_layer(x)
x = ReLU(name=f"encoder_relu_{layer_number}")(x)
x = BatchNormalization(name=f"encoder_bn_{layer_number}")(x)
return x
def _add_bottleneck(self, x):
"""Flatten data and add bottleneck with Guassian sampling (Dense
layer).
"""
self._shape_before_bottleneck = K.int_shape(x)[1:]
x = Flatten()(x)
self.mu = Dense(self.latent_space_dim, name="mu")(x)
self.log_variance = Dense(self.latent_space_dim,
name="log_variance")(x)
def sample_point_from_normal_distribution(args):
mu, log_variance = args
epsilon = K.random_normal(shape=K.shape(self.mu), mean=0.,
stddev=1.)
sampled_point = mu + K.exp(log_variance / 2) * epsilon
return sampled_point
x = Lambda(sample_point_from_normal_distribution,
name="encoder_output")([self.mu, self.log_variance])
return x
if __name__ == "__main__":
autoencoder = VAE(
input_shape=(28, 28, 1),
conv_filters=(32, 64, 64, 64),
conv_kernels=(3, 3, 3, 3),
conv_strides=(1, 2, 2, 1),
latent_space_dim=2
)
autoencoder.summary()
###Output
WARNING:tensorflow:From /usr/local/lib/python3.7/dist-packages/keras/layers/normalization/batch_normalization.py:532: _colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.
Instructions for updating:
Colocations handled automatically by placer.
Model: "encoder"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
encoder_input (InputLayer) [(None, 28, 28, 1)] 0 []
encoder_conv_layer_1 (Conv2D) (None, 28, 28, 32) 320 ['encoder_input[0][0]']
encoder_relu_1 (ReLU) (None, 28, 28, 32) 0 ['encoder_conv_layer_1[0][0]']
encoder_bn_1 (BatchNormalizati (None, 28, 28, 32) 128 ['encoder_relu_1[0][0]']
on)
encoder_conv_layer_2 (Conv2D) (None, 14, 14, 64) 18496 ['encoder_bn_1[0][0]']
encoder_relu_2 (ReLU) (None, 14, 14, 64) 0 ['encoder_conv_layer_2[0][0]']
encoder_bn_2 (BatchNormalizati (None, 14, 14, 64) 256 ['encoder_relu_2[0][0]']
on)
encoder_conv_layer_3 (Conv2D) (None, 7, 7, 64) 36928 ['encoder_bn_2[0][0]']
encoder_relu_3 (ReLU) (None, 7, 7, 64) 0 ['encoder_conv_layer_3[0][0]']
encoder_bn_3 (BatchNormalizati (None, 7, 7, 64) 256 ['encoder_relu_3[0][0]']
on)
encoder_conv_layer_4 (Conv2D) (None, 7, 7, 64) 36928 ['encoder_bn_3[0][0]']
encoder_relu_4 (ReLU) (None, 7, 7, 64) 0 ['encoder_conv_layer_4[0][0]']
encoder_bn_4 (BatchNormalizati (None, 7, 7, 64) 256 ['encoder_relu_4[0][0]']
on)
flatten (Flatten) (None, 3136) 0 ['encoder_bn_4[0][0]']
mu (Dense) (None, 2) 6274 ['flatten[0][0]']
log_variance (Dense) (None, 2) 6274 ['flatten[0][0]']
encoder_output (Lambda) (None, 2) 0 ['mu[0][0]',
'log_variance[0][0]']
==================================================================================================
Total params: 106,116
Trainable params: 105,668
Non-trainable params: 448
__________________________________________________________________________________________________
Model: "decoder"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
decoder_input (InputLayer) [(None, 2)] 0
decoder_dense (Dense) (None, 3136) 9408
reshape (Reshape) (None, 7, 7, 64) 0
decoder_conv_transpose_laye (None, 7, 7, 64) 36928
r_1 (Conv2DTranspose)
decoder_relu_1 (ReLU) (None, 7, 7, 64) 0
decoder_bn_1 (BatchNormaliz (None, 7, 7, 64) 256
ation)
decoder_conv_transpose_laye (None, 14, 14, 64) 36928
r_2 (Conv2DTranspose)
decoder_relu_2 (ReLU) (None, 14, 14, 64) 0
decoder_bn_2 (BatchNormaliz (None, 14, 14, 64) 256
ation)
decoder_conv_transpose_laye (None, 28, 28, 64) 36928
r_3 (Conv2DTranspose)
decoder_relu_3 (ReLU) (None, 28, 28, 64) 0
decoder_bn_3 (BatchNormaliz (None, 28, 28, 64) 256
ation)
decoder_conv_transpose_laye (None, 28, 28, 1) 577
r_4 (Conv2DTranspose)
sigmoid_layer (Activation) (None, 28, 28, 1) 0
=================================================================
Total params: 121,537
Trainable params: 121,153
Non-trainable params: 384
_________________________________________________________________
Model: "autoencoder"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
encoder_input (InputLayer) [(None, 28, 28, 1)] 0
encoder (Functional) (None, 2) 106116
decoder (Functional) (None, 28, 28, 1) 121537
=================================================================
Total params: 227,653
Trainable params: 226,821
Non-trainable params: 832
_________________________________________________________________
###Markdown
Training
###Code
from tensorflow.keras.datasets import mnist
LEARNING_RATE = 0.0005
BATCH_SIZE = 32
EPOCHS = 100
def load_mnist():
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.astype("float32") / 255
x_train = x_train.reshape(x_train.shape + (1,))
x_test = x_test.astype("float32") / 255
x_test = x_test.reshape(x_test.shape + (1,))
return x_train, y_train, x_test, y_test
def train(x_train, learning_rate, batch_size, epochs):
autoencoder = VAE(
input_shape=(28, 28, 1),
conv_filters=(32, 64, 64, 64),
conv_kernels=(3, 3, 3, 3),
conv_strides=(1, 2, 2, 1),
latent_space_dim=2
)
autoencoder.summary()
autoencoder.compile(learning_rate)
autoencoder.train(x_train, batch_size, epochs)
return autoencoder
if __name__ == "__main__":
x_train, _, _, _ = load_mnist()
autoencoder = train(x_train[:10000], LEARNING_RATE, BATCH_SIZE, EPOCHS)
autoencoder.save("model")
###Output
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz
11493376/11490434 [==============================] - 0s 0us/step
11501568/11490434 [==============================] - 0s 0us/step
Model: "encoder"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
encoder_input (InputLayer) [(None, 28, 28, 1)] 0 []
encoder_conv_layer_1 (Conv2D) (None, 28, 28, 32) 320 ['encoder_input[0][0]']
encoder_relu_1 (ReLU) (None, 28, 28, 32) 0 ['encoder_conv_layer_1[0][0]']
encoder_bn_1 (BatchNormalizati (None, 28, 28, 32) 128 ['encoder_relu_1[0][0]']
on)
encoder_conv_layer_2 (Conv2D) (None, 14, 14, 64) 18496 ['encoder_bn_1[0][0]']
encoder_relu_2 (ReLU) (None, 14, 14, 64) 0 ['encoder_conv_layer_2[0][0]']
encoder_bn_2 (BatchNormalizati (None, 14, 14, 64) 256 ['encoder_relu_2[0][0]']
on)
encoder_conv_layer_3 (Conv2D) (None, 7, 7, 64) 36928 ['encoder_bn_2[0][0]']
encoder_relu_3 (ReLU) (None, 7, 7, 64) 0 ['encoder_conv_layer_3[0][0]']
encoder_bn_3 (BatchNormalizati (None, 7, 7, 64) 256 ['encoder_relu_3[0][0]']
on)
encoder_conv_layer_4 (Conv2D) (None, 7, 7, 64) 36928 ['encoder_bn_3[0][0]']
encoder_relu_4 (ReLU) (None, 7, 7, 64) 0 ['encoder_conv_layer_4[0][0]']
encoder_bn_4 (BatchNormalizati (None, 7, 7, 64) 256 ['encoder_relu_4[0][0]']
on)
flatten_1 (Flatten) (None, 3136) 0 ['encoder_bn_4[0][0]']
mu (Dense) (None, 2) 6274 ['flatten_1[0][0]']
log_variance (Dense) (None, 2) 6274 ['flatten_1[0][0]']
encoder_output (Lambda) (None, 2) 0 ['mu[0][0]',
'log_variance[0][0]']
==================================================================================================
Total params: 106,116
Trainable params: 105,668
Non-trainable params: 448
__________________________________________________________________________________________________
Model: "decoder"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
decoder_input (InputLayer) [(None, 2)] 0
decoder_dense (Dense) (None, 3136) 9408
reshape_1 (Reshape) (None, 7, 7, 64) 0
decoder_conv_transpose_laye (None, 7, 7, 64) 36928
r_1 (Conv2DTranspose)
decoder_relu_1 (ReLU) (None, 7, 7, 64) 0
decoder_bn_1 (BatchNormaliz (None, 7, 7, 64) 256
ation)
decoder_conv_transpose_laye (None, 14, 14, 64) 36928
r_2 (Conv2DTranspose)
decoder_relu_2 (ReLU) (None, 14, 14, 64) 0
decoder_bn_2 (BatchNormaliz (None, 14, 14, 64) 256
ation)
decoder_conv_transpose_laye (None, 28, 28, 64) 36928
r_3 (Conv2DTranspose)
decoder_relu_3 (ReLU) (None, 28, 28, 64) 0
decoder_bn_3 (BatchNormaliz (None, 28, 28, 64) 256
ation)
decoder_conv_transpose_laye (None, 28, 28, 1) 577
r_4 (Conv2DTranspose)
sigmoid_layer (Activation) (None, 28, 28, 1) 0
=================================================================
Total params: 121,537
Trainable params: 121,153
Non-trainable params: 384
_________________________________________________________________
Model: "autoencoder"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
encoder_input (InputLayer) [(None, 28, 28, 1)] 0
encoder (Functional) (None, 2) 106116
decoder (Functional) (None, 28, 28, 1) 121537
=================================================================
Total params: 227,653
Trainable params: 226,821
Non-trainable params: 832
_________________________________________________________________
Train on 10000 samples
Epoch 1/100
10000/10000 [==============================] - 18s 2ms/sample - loss: 89.6785
Epoch 2/100
10000/10000 [==============================] - 7s 747us/sample - loss: 63.4864
Epoch 3/100
10000/10000 [==============================] - 7s 742us/sample - loss: 62.2486
Epoch 4/100
10000/10000 [==============================] - 7s 748us/sample - loss: 61.8216
Epoch 5/100
10000/10000 [==============================] - 7s 738us/sample - loss: 56.3943
Epoch 6/100
10000/10000 [==============================] - 7s 742us/sample - loss: 55.3544
Epoch 7/100
10000/10000 [==============================] - 7s 748us/sample - loss: 54.7080
Epoch 8/100
10000/10000 [==============================] - 7s 744us/sample - loss: 53.8619
Epoch 9/100
10000/10000 [==============================] - 7s 747us/sample - loss: 53.8249
Epoch 10/100
10000/10000 [==============================] - 8s 763us/sample - loss: 53.7798
Epoch 11/100
10000/10000 [==============================] - 8s 752us/sample - loss: 52.8781
Epoch 12/100
10000/10000 [==============================] - 8s 750us/sample - loss: 52.9754
Epoch 13/100
10000/10000 [==============================] - 8s 751us/sample - loss: 52.8069
Epoch 14/100
10000/10000 [==============================] - 7s 742us/sample - loss: 52.3136
Epoch 15/100
10000/10000 [==============================] - 7s 734us/sample - loss: 52.1709
Epoch 16/100
10000/10000 [==============================] - 8s 762us/sample - loss: 52.7597
Epoch 17/100
10000/10000 [==============================] - 7s 749us/sample - loss: 51.7940
Epoch 18/100
10000/10000 [==============================] - 8s 759us/sample - loss: 51.3431
Epoch 19/100
10000/10000 [==============================] - 8s 757us/sample - loss: 51.4139
Epoch 20/100
10000/10000 [==============================] - 8s 751us/sample - loss: 51.0650
Epoch 21/100
10000/10000 [==============================] - 8s 754us/sample - loss: 50.9518
Epoch 22/100
10000/10000 [==============================] - 7s 744us/sample - loss: 50.5710
Epoch 23/100
10000/10000 [==============================] - 8s 751us/sample - loss: 50.2859
Epoch 24/100
10000/10000 [==============================] - 8s 755us/sample - loss: 50.1481
Epoch 25/100
10000/10000 [==============================] - 7s 743us/sample - loss: 49.8787
Epoch 26/100
10000/10000 [==============================] - 8s 762us/sample - loss: 49.8553
Epoch 27/100
10000/10000 [==============================] - 7s 743us/sample - loss: 49.5258
Epoch 28/100
10000/10000 [==============================] - 8s 763us/sample - loss: 49.5199
Epoch 29/100
10000/10000 [==============================] - 8s 757us/sample - loss: 49.1501
Epoch 30/100
10000/10000 [==============================] - 8s 765us/sample - loss: 49.2056
Epoch 31/100
10000/10000 [==============================] - 7s 745us/sample - loss: 48.6669
Epoch 32/100
10000/10000 [==============================] - 7s 743us/sample - loss: 48.5071
Epoch 33/100
10000/10000 [==============================] - 8s 767us/sample - loss: 48.5689
Epoch 34/100
10000/10000 [==============================] - 7s 749us/sample - loss: 48.2706
Epoch 35/100
10000/10000 [==============================] - 7s 748us/sample - loss: 48.5779
Epoch 36/100
10000/10000 [==============================] - 8s 758us/sample - loss: 47.9474
Epoch 37/100
10000/10000 [==============================] - 8s 760us/sample - loss: 48.0592
Epoch 38/100
10000/10000 [==============================] - 8s 751us/sample - loss: 47.6731
Epoch 39/100
10000/10000 [==============================] - 7s 748us/sample - loss: 47.4983
Epoch 40/100
10000/10000 [==============================] - 7s 746us/sample - loss: 47.6771
Epoch 41/100
10000/10000 [==============================] - 7s 749us/sample - loss: 47.4905
Epoch 42/100
10000/10000 [==============================] - 7s 748us/sample - loss: 47.0507
Epoch 43/100
10000/10000 [==============================] - 8s 751us/sample - loss: 47.1279
Epoch 44/100
10000/10000 [==============================] - 7s 750us/sample - loss: 47.1962
Epoch 45/100
960/10000 [=>............................] - ETA: 6s - loss: 46.4414
###Markdown
Analysis
###Code
import numpy as np
import matplotlib.pyplot as plt
def select_images(images, labels, num_images=10):
sample_images_index = np.random.choice(range(len(images)), num_images)
sample_images = images[sample_images_index]
sample_labels = labels[sample_images_index]
return sample_images, sample_labels
def plot_reconstructed_images(images, reconstructed_images):
fig = plt.figure(figsize=(15, 3))
num_images = len(images)
for i, (image, reconstructed_image) in enumerate(zip(images, reconstructed_images)):
image = image.squeeze()
ax = fig.add_subplot(2, num_images, i + 1)
ax.axis("off")
ax.imshow(image, cmap="gray_r")
reconstructed_image = reconstructed_image.squeeze()
ax = fig.add_subplot(2, num_images, i + num_images + 1)
ax.axis("off")
ax.imshow(reconstructed_image, cmap="gray_r")
plt.show()
def plot_images_encoded_in_latent_space(latent_representations, sample_labels):
plt.figure(figsize=(10, 10))
plt.scatter(latent_representations[:, 0],
latent_representations[:, 1],
cmap="rainbow",
c=sample_labels,
alpha=0.5,
s=2)
plt.colorbar()
plt.show()
if __name__ == "__main__":
autoencoder = Autoencoder.load("model")
x_train, y_train, x_test, y_test = load_mnist()
num_sample_images_to_show = 8
sample_images, _ = select_images(x_test, y_test, num_sample_images_to_show)
reconstructed_images, _ = autoencoder.reconstruct(sample_images)
plot_reconstructed_images(sample_images, reconstructed_images)
num_images = 6000
sample_images, sample_labels = select_images(x_test, y_test, num_images)
_, latent_representations = autoencoder.reconstruct(sample_images)
plot_images_encoded_in_latent_space(latent_representations, sample_labels)
###Output
_____no_output_____
###Markdown
###Code
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(0)
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data/', one_hot=True)
n_samples = mnist.train.num_examples
def xavier_init(fan_in, fan_out, constant=1):
""" Xavier initialization of network weights"""
# https://stackoverflow.com/questions/33640581/how-to-do-xavier-initialization-on-tensorflow
low = -constant*np.sqrt(6.0/(fan_in + fan_out))
high = constant*np.sqrt(6.0/(fan_in + fan_out))
return tf.random_uniform((fan_in, fan_out),
minval=low, maxval=high,
dtype=tf.float32)
class VariationalAutoencoder(object):
""" Variation Autoencoder (VAE) with an sklearn-like interface implemented using TensorFlow.
This implementation uses probabilistic encoders and decoders using Gaussian
distributions and realized by multi-layer perceptrons. The VAE can be learned
end-to-end.
See "Auto-Encoding Variational Bayes" by Kingma and Welling for more details.
"""
def __init__(self, network_architecture, transfer_fct=tf.nn.softplus,
learning_rate=0.001, batch_size=100):
self.network_architecture = network_architecture
self.transfer_fct = transfer_fct
self.learning_rate = learning_rate
self.batch_size = batch_size
# tf Graph input
self.x = tf.placeholder(tf.float32, [None, network_architecture["n_input"]])
# Create autoencoder network
self._create_network()
# Define loss function based variational upper-bound and
# corresponding optimizer
self._create_loss_optimizer()
# Initializing the tensor flow variables
init = tf.global_variables_initializer()
# Launch the session
self.sess = tf.InteractiveSession()
self.sess.run(init)
def _create_network(self):
# Initialize autoencode network weights and biases
network_weights = self._initialize_weights(**self.network_architecture)
# Use recognition network to determine mean and
# (log) variance of Gaussian distribution in latent
# space
self.z_mean, self.z_log_sigma_sq = \
self._recognition_network(network_weights["weights_recog"],
network_weights["biases_recog"])
# Draw one sample z from Gaussian distribution
n_z = self.network_architecture["n_z"]
eps = tf.random_normal((self.batch_size, n_z), 0, 1,
dtype=tf.float32)
# z = mu + sigma*epsilon
self.z = tf.add(self.z_mean,
tf.multiply(tf.sqrt(tf.exp(self.z_log_sigma_sq)), eps))
# Use generator to determine mean of
# Bernoulli distribution of reconstructed input
self.x_reconstr_mean = \
self._generator_network(network_weights["weights_gener"],
network_weights["biases_gener"])
def _initialize_weights(self, n_hidden_recog_1, n_hidden_recog_2,
n_hidden_gener_1, n_hidden_gener_2,
n_input, n_z):
all_weights = dict()
all_weights['weights_recog'] = {
'h1': tf.Variable(xavier_init(n_input, n_hidden_recog_1)),
'h2': tf.Variable(xavier_init(n_hidden_recog_1, n_hidden_recog_2)),
'out_mean': tf.Variable(xavier_init(n_hidden_recog_2, n_z)),
'out_log_sigma': tf.Variable(xavier_init(n_hidden_recog_2, n_z))}
all_weights['biases_recog'] = {
'b1': tf.Variable(tf.zeros([n_hidden_recog_1], dtype=tf.float32)),
'b2': tf.Variable(tf.zeros([n_hidden_recog_2], dtype=tf.float32)),
'out_mean': tf.Variable(tf.zeros([n_z], dtype=tf.float32)),
'out_log_sigma': tf.Variable(tf.zeros([n_z], dtype=tf.float32))}
all_weights['weights_gener'] = {
'h1': tf.Variable(xavier_init(n_z, n_hidden_gener_1)),
'h2': tf.Variable(xavier_init(n_hidden_gener_1, n_hidden_gener_2)),
'out_mean': tf.Variable(xavier_init(n_hidden_gener_2, n_input)),
'out_log_sigma': tf.Variable(xavier_init(n_hidden_gener_2, n_input))}
all_weights['biases_gener'] = {
'b1': tf.Variable(tf.zeros([n_hidden_gener_1], dtype=tf.float32)),
'b2': tf.Variable(tf.zeros([n_hidden_gener_2], dtype=tf.float32)),
'out_mean': tf.Variable(tf.zeros([n_input], dtype=tf.float32)),
'out_log_sigma': tf.Variable(tf.zeros([n_input], dtype=tf.float32))}
return all_weights
def _recognition_network(self, weights, biases):
# Generate probabilistic encoder (recognition network), which
# maps inputs onto a normal distribution in latent space.
# The transformation is parametrized and can be learned.
layer_1 = self.transfer_fct(tf.add(tf.matmul(self.x, weights['h1']),
biases['b1']))
layer_2 = self.transfer_fct(tf.add(tf.matmul(layer_1, weights['h2']),
biases['b2']))
z_mean = tf.add(tf.matmul(layer_2, weights['out_mean']),
biases['out_mean'])
z_log_sigma_sq = \
tf.add(tf.matmul(layer_2, weights['out_log_sigma']),
biases['out_log_sigma'])
return (z_mean, z_log_sigma_sq)
def _generator_network(self, weights, biases):
# Generate probabilistic decoder (decoder network), which
# maps points in latent space onto a Bernoulli distribution in data space.
# The transformation is parametrized and can be learned.
layer_1 = self.transfer_fct(tf.add(tf.matmul(self.z, weights['h1']),
biases['b1']))
layer_2 = self.transfer_fct(tf.add(tf.matmul(layer_1, weights['h2']),
biases['b2']))
x_reconstr_mean = \
tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['out_mean']),
biases['out_mean']))
return x_reconstr_mean
def _create_loss_optimizer(self):
# The loss is composed of two terms:
# 1.) The reconstruction loss (the negative log probability
# of the input under the reconstructed Bernoulli distribution
# induced by the decoder in the data space).
# This can be interpreted as the number of "nats" required
# for reconstructing the input when the activation in latent
# is given.
# Adding 1e-10 to avoid evaluation of log(0.0)
reconstr_loss = \
-tf.reduce_sum(self.x * tf.log(1e-10 + self.x_reconstr_mean)
+ (1-self.x) * tf.log(1e-10 + 1 - self.x_reconstr_mean),
1)
# 2.) The latent loss, which is defined as the Kullback Leibler divergence
## between the distribution in latent space induced by the encoder on
# the data and some prior. This acts as a kind of regularizer.
# This can be interpreted as the number of "nats" required
# for transmitting the the latent space distribution given
# the prior.
latent_loss = -0.5 * tf.reduce_sum(1 + self.z_log_sigma_sq
- tf.square(self.z_mean)
- tf.exp(self.z_log_sigma_sq), 1)
self.cost = tf.reduce_mean(reconstr_loss + latent_loss) # average over batch
# Use ADAM optimizer
self.optimizer = \
tf.train.AdamOptimizer(learning_rate=self.learning_rate).minimize(self.cost)
def partial_fit(self, X):
"""Train model based on mini-batch of input data.
Return cost of mini-batch.
"""
opt, cost = self.sess.run((self.optimizer, self.cost),
feed_dict={self.x: X})
return cost
def transform(self, X):
"""Transform data by mapping it into the latent space."""
# Note: This maps to mean of distribution, we could alternatively
# sample from Gaussian distribution
return self.sess.run(self.z_mean, feed_dict={self.x: X})
def generate(self, z_mu=None):
""" Generate data by sampling from latent space.
If z_mu is not None, data for this point in latent space is
generated. Otherwise, z_mu is drawn from prior in latent
space.
"""
if z_mu is None:
z_mu = np.random.normal(size=self.network_architecture["n_z"])
# Note: This maps to mean of distribution, we could alternatively
# sample from Gaussian distribution
return self.sess.run(self.x_reconstr_mean,
feed_dict={self.z: z_mu})
def reconstruct(self, X):
""" Use VAE to reconstruct given data. """
return self.sess.run(self.x_reconstr_mean,
feed_dict={self.x: X})
def train(network_architecture, learning_rate=0.001,
batch_size=100, training_epochs=10, display_step=5):
vae = VariationalAutoencoder(network_architecture,
learning_rate=learning_rate,
batch_size=batch_size)
# Training cycle
for epoch in range(training_epochs):
avg_cost = 0.
total_batch = int(n_samples / batch_size)
# Loop over all batches
for i in range(total_batch):
batch_xs, _ = mnist.train.next_batch(batch_size)
# Fit training using batch data
cost = vae.partial_fit(batch_xs)
# Compute average loss
avg_cost += cost / n_samples * batch_size
# Display logs per epoch step
if epoch % display_step == 0:
print("Epoch:", '%04d' % (epoch+1),
"cost=", "{:.9f}".format(avg_cost))
return vae
network_architecture = \
dict(n_hidden_recog_1=500, # 1st layer encoder neurons
n_hidden_recog_2=500, # 2nd layer encoder neurons
n_hidden_gener_1=500, # 1st layer decoder neurons
n_hidden_gener_2=500, # 2nd layer decoder neurons
n_input=784, # MNIST data input (img shape: 28*28)
n_z=20) # dimensionality of latent space
vae = train(network_architecture, training_epochs=75)
###Output
_____no_output_____
###Markdown
This script demonstrates how to build a variational autoencoder with Keras. Reference - Auto-Encoding Variational Bayes https://arxiv.org/abs/1312.6114
###Code
from __future__ import print_function
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
from keras.layers import Input, Dense, Lambda
from keras.models import Model
from keras import backend as K
from keras import metrics
from keras.datasets import mnist
batch_size = 100
original_dim = 784
latent_dim = 2
intermediate_dim = 256
epochs = 50
epsilon_std = 1.0
x = Input(shape=(original_dim,))
h = Dense(intermediate_dim, activation='relu')(x)
z_mean = Dense(latent_dim)(h)
z_log_var = Dense(latent_dim)(h)
def sampling(args):
z_mean, z_log_var = args
epsilon = K.random_normal(shape=(K.shape(z_mean)[0], latent_dim), mean=0.,
stddev=epsilon_std)
return z_mean + K.exp(z_log_var / 2) * epsilon
###Output
_____no_output_____
###Markdown
note that "output_shape" isn't necessary with the TensorFlow backend
###Code
z = Lambda(sampling, output_shape=(latent_dim,))([z_mean, z_log_var])
###Output
_____no_output_____
###Markdown
we instantiate these layers separately so as to reuse them later
###Code
decoder_h = Dense(intermediate_dim, activation='relu')
decoder_mean = Dense(original_dim, activation='sigmoid')
h_decoded = decoder_h(z)
x_decoded_mean = decoder_mean(h_decoded)
###Output
_____no_output_____
###Markdown
instantiate VAE model
###Code
vae = Model(x, x_decoded_mean)
###Output
_____no_output_____
###Markdown
Compute VAE loss
###Code
xent_loss = original_dim * metrics.binary_crossentropy(x, x_decoded_mean)
kl_loss = - 0.5 * K.sum(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1)
vae_loss = K.mean(xent_loss + kl_loss)
vae.add_loss(vae_loss)
vae.compile(optimizer='rmsprop')
vae.summary()
###Output
_____no_output_____
###Markdown
train the VAE on MNIST digits
###Code
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:])))
x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:])))
vae.fit(x_train,
shuffle=True,
epochs=epochs,
batch_size=batch_size,
validation_data=(x_test, None))
###Output
_____no_output_____
###Markdown
build a model to project inputs on the latent space
###Code
encoder = Model(x, z_mean)
###Output
_____no_output_____
###Markdown
display a 2D plot of the digit classes in the latent space
###Code
x_test_encoded = encoder.predict(x_test, batch_size=batch_size)
plt.figure(figsize=(6, 6))
plt.scatter(x_test_encoded[:, 0], x_test_encoded[:, 1], c=y_test)
plt.colorbar()
plt.show()
###Output
_____no_output_____
###Markdown
build a digit generator that can sample from the learned distribution
###Code
decoder_input = Input(shape=(latent_dim,))
_h_decoded = decoder_h(decoder_input)
_x_decoded_mean = decoder_mean(_h_decoded)
generator = Model(decoder_input, _x_decoded_mean)
###Output
_____no_output_____
###Markdown
display a 2D manifold of the digits
###Code
n = 15 # figure with 15x15 digits
digit_size = 28
figure = np.zeros((digit_size * n, digit_size * n))
# linearly spaced coordinates on the unit square were transformed through the inverse CDF (ppf) of the Gaussian
# to produce values of the latent variables z, since the prior of the latent space is Gaussian
grid_x = norm.ppf(np.linspace(0.05, 0.95, n))
grid_y = norm.ppf(np.linspace(0.05, 0.95, n))
for i, yi in enumerate(grid_x):
for j, xi in enumerate(grid_y):
z_sample = np.array([[xi, yi]])
x_decoded = generator.predict(z_sample)
digit = x_decoded[0].reshape(digit_size, digit_size)
figure[i * digit_size: (i + 1) * digit_size,
j * digit_size: (j + 1) * digit_size] = digit
plt.figure(figsize=(10, 10))
plt.imshow(figure, cmap='Greys_r')
plt.show()
###Output
_____no_output_____
###Markdown
Training- variational loss (KL divergence) annealed according to sigmoid schedule after 29 epochs, running for a total 120 epochs.- output GRU layer had one additional input, corresponding to the character sampled from the softmax output, trained using teacher forcingGetting output samples from softmax (depending on temperature):https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.htmlpreparing-for-trainingPytorch training loop over batches:loss.backward()opt.step()opt.zero_grad()Which reconstruction loss?CE loss?
###Code
def one_hot_array(i, n):
return map(int, [ix == i for ix in xrange(n)])
def one_hot_index(vec, charset):
return map(charset.index, vec)
def from_one_hot_array(vec):
oh = np.where(vec == 1)
if oh[0].shape == (0, ):
return None
return int(oh[0][0])
def decode_smiles_from_indexes(vec, charset):
return "".join(map(lambda x: charset[x], vec)).strip()
charset = ['n',
'[',
'o',
'I',
'3',
'H',
'+',
'S',
'@',
'8',
'4',
'1',
's',
'N',
'F',
'P',
'/',
'=',
'O',
'B',
'C',
'\\',
'(',
'-',
']',
'6',
')',
'r',
'5',
'7',
'2',
'#',
'l',
'c',
' ']
def sigmoid_schedule(time_step, slope=1., start=22):
return float(1 / (1. + np.exp(slope * (start - float(time_step)))))
sigmoid_schedule(30)
###Output
_____no_output_____
###Markdown
Baseline: Mean prediction
###Code
#
logP = np.mean(np.abs(Y[:,0].mean()-Y[:,0]))
print("logP baseline: ", logP)
QED = np.mean(np.abs(Y[:,1].mean()-Y[:,1]))
print("QED baseline: ", QED)
(np.abs(Y.mean(axis=0)-Y)).mean(axis=0) # logP, QED, SAS
###Output
_____no_output_____
###Markdown
Train
###Code
# From other pytorch implementation
def vae_loss(x_decoded_mean, x, z_mean, z_logvar):
xent_loss = F.binary_cross_entropy(x_decoded_mean, x, size_average=False)
kl_loss = -0.5 * torch.sum(1 + z_logvar - z_mean.pow(2) - z_logvar.exp())
return xent_loss + kl_loss
def xent_loss(x_decoded_mean, x):
return F.binary_cross_entropy(x_decoded_mean, x, size_average=False)
def kl_loss(z_mean, z_logvar):
return -0.5 * torch.sum(1 + z_logvar - z_mean.pow(2) - z_logvar.exp())
# prediction loss: mse
def pred_loss(y_pred, y_true):
return torch.mean((y_pred - y_true).pow(2))
def mae(y_pred, y_true):
return torch.mean(torch.abs(y_pred - y_true))
device = 'cuda' if torch.cuda.is_available() else 'cpu'
epochs = 5
iters = 100
model = ChemVAE().to(device)
optimizer = optim.Adam(model.parameters())
# From other pytorch implementation TODO
def train(epoch):
model.train()
train_loss = 0
for batch_idx, data in enumerate(train_loader):
y_true = data[1]
data = data[0].to(device)
optimizer.zero_grad()
output, mean, logvar, z = model(data)
pred = model.prediction(z)
# print("pred:", pred.shape, "y: ", y_true.shape)
if batch_idx==0:
inp = data.cpu().numpy()
outp = output.cpu().detach().numpy()
lab = data.cpu().numpy()
print("Input:")
print(decode_smiles_from_indexes(map(from_one_hot_array, inp[0]), charset))
print("Label:")
print(decode_smiles_from_indexes(map(from_one_hot_array, lab[0]), charset))
sampled = outp[0].reshape(1, 120, len(charset)).argmax(axis=2)[0]
print("Output:")
print(decode_smiles_from_indexes(sampled, charset))
# print("pred loss: ", pred_loss(pred, y_true), "shape: ", pred_loss(pred, y_true).shape)
loss = sigmoid_schedule(epoch)*kl_loss(mean, logvar) + xent_loss(output, data) + sigmoid_schedule(epoch)*pred_loss(pred, y_true)
loss.backward()
train_loss += loss
optimizer.step()
if batch_idx % 100 == 0:
print(f'{epoch} / {batch_idx}\t{loss:.4f}')
pred_mae = mae(pred, y_true)
print(f'{epoch} / {batch_idx}\tPred loss: {pred_mae:.4f}')
# print(f'epoch {epoch}: train loss:', (train_loss / len(train_loader.dataset)))
return train_loss / len(train_loader.dataset)
for epoch in range(1, epochs + 1):
train_loss = train(epoch)
###Output
Input:
C[C@@H]1CCO[C@@H]1C(=O)N1CC[C@H](C(N)=O)c2ccccc21
Label:
C[C@@H]1CCO[C@@H]1C(=O)N1CC[C@H](C(N)=O)c2ccccc21
Output:
llSSSSSSSSSFFFFFFFFFFccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
1 / 0 38952.7891
1 / 0 Pred loss: 2.0713
Input:
O=C(NCc1ccc([N+]2=CCCC2)cc1)NC1(c2ccc(Cl)cc2)CC1
Label:
O=C(NCc1ccc([N+]2=CCCC2)cc1)NC1(c2ccc(Cl)cc2)CC1
Output:
C[@@(((((((ccc))))))))))))))))3333388888888888555555555
2 / 0 36592.6992
2 / 0 Pred loss: 2.0678
Input:
CCc1nnc(-c2cc3ccccc3n2CC(=O)NC(C)(C)C)o1
Label:
CCc1nnc(-c2cc3ccccc3n2CC(=O)NC(C)(C)C)o1
Output:
CCC####//////N(((((]]]22))))))))))))))333344444666666666666
3 / 0 35045.2813
3 / 0 Pred loss: 2.0292
Input:
CCCOc1ccc(Br)cc1C[NH+]1CCC([C@@H](C)O)CC1
Label:
CCCOc1ccc(Br)cc1C[NH+]1CCC([C@@H](C)O)CC1
Output:
C###////////////NN]]]]]]))33333333333333333333355555555555
4 / 0 34815.9922
4 / 0 Pred loss: 1.7854
Input:
O=C(C1CCC1)N1CCC[C@H]1c1nc2cc(-c3ccccc3)ccc2o1
Label:
O=C(C1CCC1)N1CCC[C@H]1c1nc2cc(-c3ccccc3)ccc2o1
Output:
CC##////////////++-33333344444445555555
5 / 0 34439.9297
5 / 0 Pred loss: 0.9569
###Markdown
Manually push data through network
###Code
example_input = x_train[0]
x = example_input
x = x.view(1, x.size(0), -1)
print(x.size())
mu, logvar = model.encode(x)
print(mu.shape, logvar.shape)
z = model.reparameterize(mu, logvar)
z.shape
output = model.decode(z)
print("decoded shape: ", output.shape)
out, m, l = model.forward(x)
vae_loss(out, x, m, l)
model.prediction(z).shape # TODO should we still have batch here?
###Output
prop1 shape: torch.Size([1, 1000])
prop 2 shape torch.Size([1, 1])
###Markdown
- Autoencoders are closely related to principal component analysis (PCA). - split the network into two segments, the encoder, and the decoder- $\phi : \mathcal X \rightarrow \mathcal F $- $\psi : \mathcal F \rightarrow \mathcal X $- $\phi , \psi = argmin_{\phi,\psi} ||X - (\psi o \phi) X||^2$Basically, trying to recreate the original image after some generalized non-linear compression. - Encoding Network - $z = \sigma (Wx+b) $- decoding Network - $x' = \sigma' (W'z+b') $- Loss : $\mathcal L(x,x') = || x-x'|| = ||x - \sigma '(W' (\sigma (Wx+b)) + b')||^2$ - This is self-supervised learning.- **aim** of the autoencoder is to select our encoder and decoder functions in such a way that we require the minimal information to encode the image such that it be can regenerated on the other side. Types of AutoEncoders :- Denoising Autoencoders : add some white noise to the data prior to training also compare the error to the original image when training. This forces the network to **not become overfit to arbitrary noise** present in images. - Sparse Autoencoders : has a larger latent dimension than the input or output dimensions. But only a small fraction of the neurons fires, meaning that the network is inherently ‘sparse’. It forms form regularization to reduce the propensity for the network to overfit.- Contractive Autoencoder: do not alter the architecture and simply add a regularizer to the loss function. This can be thought of as a neural form of ridge regression.- Variatioal Autoencoders : Implemented a form of variational inference taken from Bayesian statistics. It learn a data generating distribution, which allows us to take random samples from the latent space. These random samples can then be decoded using the decoder network to generate unique images that have similar characteristics to those that the network was trained on.Ref: https://jaan.io/what-is-variational-autoencoder-vae-tutorial/https://towardsdatascience.com/generating-images-with-autoencoders-77fd3a8dd368
###Code
###Output
_____no_output_____
###Markdown
Variational Autoencoders Abstract In this part, I use Variational Autoencoders to generate fake images. And I aslo adjust the size of the latent space and change the network architecture to figure out the best combination of them to generate most realistic images.
###Code
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from keras import backend as K
class Sampling(layers.Layer):
"""Uses (z_mean, z_log_var) to sample z, the vector encoding a digit."""
def call(self, inputs):
z_mean, z_log_var = inputs
batch = tf.shape(z_mean)[0]
dim = tf.shape(z_mean)[1]
epsilon = tf.keras.backend.random_normal(shape=(batch, dim))
return z_mean + tf.exp(0.5 * z_log_var) * epsilon
latent_dim = 2 # because of z_mean and z_log_variance
encoder_inputs = keras.Input(shape=(28, 28, 1))
x = layers.Conv2D(32, 3, activation="relu", strides=2, padding="same")(encoder_inputs)
x = layers.Conv2D(64, 3, activation="relu", strides=2, padding="same")(x)
conv_shape = K.int_shape(x) #Shape of conv to be provided to decoder
print(conv_shape)
x = layers.Flatten()(x)
x = layers.Dense(32, activation="relu")(x)
z_mean = layers.Dense(latent_dim, name="z_mean")(x)
z_log_var = layers.Dense(latent_dim, name="z_log_var")(x)
z = Sampling()([z_mean, z_log_var])
encoder = keras.Model(encoder_inputs, [z_mean, z_log_var, z], name="encoder")
encoder.summary()
latent_inputs = keras.Input(shape=(latent_dim,))
x = layers.Dense(conv_shape[1] * conv_shape[2] * conv_shape[3], activation="relu")(latent_inputs) # 7x7x64 shape
x = layers.Reshape((conv_shape[1],conv_shape[2], conv_shape[3]))(x)
x = layers.Conv2DTranspose(64, 3, activation="relu", strides=2, padding="same")(x)
x = layers.Conv2DTranspose(32, 3, activation="relu", strides=2, padding="same")(x)
decoder_outputs = layers.Conv2DTranspose(1, 3, activation="sigmoid", padding="same")(x)
decoder = keras.Model(latent_inputs, decoder_outputs, name="decoder")
decoder.summary()
class VAE(keras.Model):
def __init__(self, encoder, decoder, **kwargs):
super(VAE, self).__init__(**kwargs)
self.encoder = encoder
self.decoder = decoder
self.total_loss_tracker = keras.metrics.Mean(name="total_loss")
self.reconstruction_loss_tracker = keras.metrics.Mean(
name="reconstruction_loss"
)
self.kl_loss_tracker = keras.metrics.Mean(name="kl_loss")
@property
def metrics(self):
return [
self.total_loss_tracker,
self.reconstruction_loss_tracker,
self.kl_loss_tracker,
]
def train_step(self, data):
with tf.GradientTape() as tape:
z_mean, z_log_var, z = self.encoder(data)
reconstruction = self.decoder(z)
reconstruction_loss = tf.reduce_mean(
tf.reduce_sum(
keras.losses.binary_crossentropy(data, reconstruction), axis=(1, 2)
)
)
kl_loss = -0.5 * (1 + z_log_var - tf.square(z_mean) - tf.exp(z_log_var))
kl_loss = tf.reduce_mean(tf.reduce_sum(kl_loss, axis=1))
total_loss = reconstruction_loss + kl_loss
grads = tape.gradient(total_loss, self.trainable_weights)
self.optimizer.apply_gradients(zip(grads, self.trainable_weights))
self.total_loss_tracker.update_state(total_loss)
self.reconstruction_loss_tracker.update_state(reconstruction_loss)
self.kl_loss_tracker.update_state(kl_loss)
return {
"loss": self.total_loss_tracker.result(),
"reconstruction_loss": self.reconstruction_loss_tracker.result(),
"kl_loss": self.kl_loss_tracker.result(),
}
import pandas as pd
df = pd.read_csv('./data/94_character_TMNIST.csv')
print(df.shape)
X = df.drop(columns={'names','labels'})
X_images = X.values.reshape(-1,28,28)
X_images = np.expand_dims(X_images, -1).astype("float32") / 255
vae = VAE(encoder, decoder)
vae.compile(optimizer=keras.optimizers.Adam())
vae.fit(X_images, epochs=10, batch_size=128)
import matplotlib.pyplot as plt
def plot_latent_space(vae, n=8, figsize=12):
# display a n*n 2D manifold of digits
digit_size = 28
scale_x_left = 1 # If we change the range, t generate different image.
scale_x_right = 4
scale_y_bottom = 0
scale_y_top = 1
figure = np.zeros((digit_size * n, digit_size * n))
# If we want to see different x and y range we can change values in grid_x and gird_y. I trid x= [-3,-2] and y = [-3,-1] values and m labeled imaged are generated.
grid_x = np.linspace(scale_x_left, scale_x_right, n) # -3, -2
grid_y = np.linspace(scale_y_bottom, scale_y_top, n)[::-1] # -3, -1
for i, yi in enumerate(grid_y):
for j, xi in enumerate(grid_x):
z_sample = np.array([[xi, yi]])
x_decoded = vae.decoder.predict(z_sample)
digit = x_decoded[0].reshape(digit_size, digit_size)
figure[
i * digit_size : (i + 1) * digit_size,
j * digit_size : (j + 1) * digit_size,
] = digit
plt.figure(figsize=(figsize, figsize))
start_range = digit_size // 2
end_range = n * digit_size + start_range
pixel_range = np.arange(start_range, end_range, digit_size)
sample_range_x = np.round(grid_x, 1)
sample_range_y = np.round(grid_y, 1)
plt.xticks(pixel_range, sample_range_x)
plt.yticks(pixel_range, sample_range_y)
plt.xlabel("z[0]")
plt.ylabel("z[1]")
plt.imshow(figure, cmap="Greys_r")
plt.show()
plot_latent_space(vae)
###Output
_____no_output_____
###Markdown
Feature extractor Using a pre-tranined VGG-16 we insert an empty layer (after a relu) to capture the feature maps
###Code
#create an empty layer that will simply record the feature map passed to it.
class GetFeatures(nn.Module):
def __init__(self):
super(GetFeatures, self).__init__()
self.features = None
def forward(self, x):
self.features = x
return x
#download the pre-trained weights of the VGG-19 and append them to an array of layers .
#we insert a layers_deep layer after a relu layer.
#layers_deep controls how deep we go into the network
def get_feature_extractor(layers_deep = 7):
C_net = models.vgg19(pretrained=True).to(device)
C_net = C_net.eval()
layers = []
for i in range(layers_deep):
layers.append(C_net.features[i])
if isinstance(C_net.features[i], nn.ReLU):
layers.append(GetFeatures())
return nn.Sequential(*layers)
#this function calculates the L2 loss (MSE) on the feature maps copied by the layers_deep
#between the reconstructed image and the origional
def feature_loss(img, recon_data, feature_extractor):
img_cat = torch.cat((img, torch.sigmoid(recon_data)), 0)
out = feature_extractor(img_cat)
loss = 0
for i in range(len(feature_extractor)):
if isinstance(feature_extractor[i], GetFeatures):
loss += (feature_extractor[i].features[:(img.shape[0])] - feature_extractor[i].features[(img.shape[0]):]).pow(2).mean()
return loss/(i+1)
#Linear scaling the learning rate down
def lr_Linear(epoch_max, epoch, lr):
lr_adj = ((epoch_max-epoch)/epoch_max)*lr
set_lr(lr = lr_adj)
def set_lr(lr):
for param_group in optimizer.param_groups:
param_group['lr'] = lr
transform = T.Compose([T.Resize(imageSize), T.ToTensor()])
trainloader, testloader = get_data_STL10(transform, batchSize, download = False, root = dataset_root)
#get a test image batch from the testloader to visualise the reconstruction quality
dataiter = iter(testloader)
test_images = dataiter.next()[0]
test_images.shape
plt.figure(figsize = (20,10))
out = vutils.make_grid(test_images[0:8])
plt.imshow(out.numpy().transpose((1, 2, 0)))
#Create VAE network
vae_net = VAE(channel_in = 3).to(device)
#Create feature extractor network
feature_extractor = get_feature_extractor()
# setup optimizer
optimizer = optim.Adam(vae_net.parameters(), lr=lr, betas=(0.5, 0.999))
#Loss function
BCE_Loss = nn.BCEWithLogitsLoss()
loss_log = []
#Create the save directory if it does note exist
if not os.path.isdir(save_dir + "/Models"):
os.makedirs(save_dir + "/Models")
if not os.path.isdir(save_dir + "/Results"):
os.makedirs(save_dir + "/Results")
if load_checkpoint:
checkpoint = torch.load(save_dir + "/Models/" + model_name + "_" + str(imageSize) + ".pt", map_location = "cpu")
print("Checkpoint loaded")
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
vae_net.load_state_dict(checkpoint['model_state_dict'])
start_epoch = checkpoint["epoch"]
loss_log = checkpoint["loss_log"]
else:
#If checkpoint does exist raise an error to prevent accidental overwriting
if os.path.isfile(save_dir + "/Models/" + model_name + "_" + str(imageSize) + ".pt"):
raise ValueError("Warning Checkpoint exists")
else:
print("Starting from scratch")
recon_data, mu, logvar = vae_net(test_images.to(device))
for epoch in range(start_epoch, nepoch):
lr_Linear(nepoch, epoch, lr)
for i, data in enumerate(trainloader, 0):
recon_data, mu, logvar = vae_net(data[0].to(device))
#VAE loss
loss = vae_loss(recon_data, data[0].to(device), mu, logvar)
#Perception loss
loss_feature = feature_loss(data[0].to(device), recon_data, feature_extractor)
loss += loss_feature
loss_log.append(loss.item())
vae_net.zero_grad()
loss.backward()
optimizer.step()
clear_output(True)
print('Epoch: [%d/%d], Itteration: [%d/%d] loss: %.4f'
% (epoch, nepoch, i, len(trainloader), loss.item()))
with torch.no_grad():
#For validation we set Train = False which will skip the sampling/reparameterization step
#and just use mu to decode
recon_data, _, _ = vae_net(test_images.to(device), Train = False)
vutils.save_image(torch.cat((torch.sigmoid(recon_data.cpu()), test_images),2),"%s/%s/%s_%d.png" % (save_dir, "Results" , model_name, imageSize))
# #Save a checkpoint
torch.save({
'epoch' : epoch,
'loss_log' : loss_log,
'model_state_dict' : vae_net.state_dict(),
'optimizer_state_dict' : optimizer.state_dict()
}, save_dir + "/Models/" + model_name + "_" + str(imageSize) + ".pt")
###Output
_____no_output_____
###Markdown
###Code
import pickle
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import median_absolute_deviation
from torch import nn, optim
from torchvision import datasets, transforms, models
from torch.utils.data import DataLoader, Dataset
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.model_selection import KFold
from sklearn.ensemble import RandomForestRegressor
from sklearn.svm import SVR
from sklearn.linear_model import ElasticNet
from sklearn.metrics import mean_squared_error, r2_score
from scipy.stats import pearsonr
import random
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
!nvidia-smi
from google.colab import drive
drive.mount('/content/gdrive')
from torch.utils.data import Dataset, DataLoader
class RegressionDataset(Dataset):
def __init__(self, X_data, y_data):
self.X_data = X_data
self.y_data = y_data
def __getitem__(self, index):
return self.X_data[index], self.y_data[index]
def __len__ (self):
return len(self.X_data)
# VAE model
class VAE(nn.Module):
def __init__(self, input_size):
super(VAE, self).__init__()
self.fc1 = nn.Linear(input_size, 5000)
self.fc2 = nn.Linear(5000, 2000)
self.fc3 = nn.Linear(2000, 500)
self.fc41 = nn.Linear(500, 100)
self.fc42 = nn.Linear(500, 100)
self.fc5 = nn.Linear(100, 500)
self.fc6 = nn.Linear(500, 2000)
self.fc7 = nn.Linear(2000, 5000)
self.fc8 = nn.Linear(5000, input_size)
# 编码
def encode(self, x):
h = F.relu(self.fc1(x))
h = F.relu(self.fc2(h))
h = F.relu(self.fc3(h))
return self.fc41(h), self.fc42(h)
# 随机生成隐含向量
def reparameterize(self, mu, log_var):
std = torch.exp(log_var/2)
eps = torch.randn_like(std)
return mu + eps * std
# 解码
def decode(self, z):
h = F.relu(self.fc5(z))
h = F.relu(self.fc6(h))
h = F.relu(self.fc7(h))
return torch.sigmoid(self.fc8(h))
# 前向传播
def forward(self, x):
mu, log_var = self.encode(x)
z = self.reparameterize(mu, log_var)
x_reconst = self.decode(z)
return x_reconst, mu, log_var
def loss_function(recon_x, x, mu, logvar):
BCE = F.binary_cross_entropy(recon_x, x.view(-1, 784), reduction='sum')
# see Appendix B from VAE paper:
# Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014
# https://arxiv.org/abs/1312.6114
# 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
return BCE + KLD
# python读取
import pandas as pd
import numpy as np
bortezomib = pd.read_csv("gdrive/MyDrive/AE_results/Data/bortezomib_cells.txt", sep = "\t")
# bortezomib.head(5)
cisplatin = pd.read_csv("gdrive/MyDrive/AE_results/Data/cisplatin-occams_cells.txt", sep = "\t")
paclitaxel = pd.read_csv("gdrive/MyDrive/AE_results/Data/paclitaxel_cells.txt", sep = "\t")
parpi = pd.read_csv("gdrive/MyDrive/AE_results/Data/parpi_cells.txt", sep = "\t")
data = parpi
scaler = MinMaxScaler()
new_data = scaler.fit_transform(data.iloc[:,1:])
all_data, all_labels = np.array(new_data), np.array(data.iloc[:,0])
all_dataset = RegressionDataset(torch.from_numpy(all_data).float(), torch.from_numpy(all_labels).float())
all_loader = DataLoader(dataset=all_dataset, batch_size=20)
batch_size = 20
learning_rate = 1e-3
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
model = VAE(data.shape[1]-1).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
all_loss = []
for epoch in range(200):
train_loss = 0
for i, (x, _) in enumerate(all_loader):
# 获取样本,并前向传播
x = x.to(device)
x_reconst, mu, log_var = model(x)
# 计算重构损失和KL散度(KL散度用于衡量两种分布的相似程度)
reconst_loss = F.binary_cross_entropy(x_reconst, x, reduction='sum')
kl_div = - 0.5 * torch.sum(1 + log_var - mu.pow(2) - log_var.exp())
loss = reconst_loss + kl_div
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
train_loss += loss.item()
optimizer.step()
all_loss.append(train_loss / len(all_loader))
if not epoch%50:
print('====> Epoch: {} Average loss: {:.4f}'.format(epoch, train_loss / len(all_loader)))
x_reconst, mu, log_var = model(torch.from_numpy(new_data).float().cuda())
x_encoder = VAE(data.shape[1]-1).reparameterize(mu, log_var)
x_encoder.shape
x_encoder.cpu().detach().numpy()[~np.isnan(all_labels)].shape
encoder_nona = x_encoder.cpu().detach().numpy()[~np.isnan(all_labels)]
labels_nona = all_labels[~np.isnan(all_labels)]
from sklearn.model_selection import train_test_split
train_encoder, test_encoder, y_train, y_test = train_test_split(x_encoder.cpu().detach().numpy()[~np.isnan(all_labels)],
all_labels[~np.isnan(all_labels)], test_size=0.3)
from sklearn.svm import SVR
from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error
rbf_svr = SVR(kernel='rbf', C=1.5)
rbf_svr.fit(train_encoder, y_train)
rbf_svr_predict = rbf_svr.predict(test_encoder)
print(mean_squared_error(y_test, rbf_svr_predict))
print(r2_score(y_test, rbf_svr_predict))
from sklearn.model_selection import cross_val_score
print(np.mean(cross_val_score(rbf_svr, encoder_nona, labels_nona, cv=5, scoring="neg_mean_squared_error")))
print(np.mean(cross_val_score(rbf_svr, encoder_nona, labels_nona, cv=5, scoring="r2")))
# PCA
from sklearn.decomposition import PCA
pca = PCA(n_components=100)
pca.fit(all_data)
# print(pca.explained_variance_ratio_)
print(np.sum(pca.explained_variance_ratio_))
# print(pca.explained_variance_)
X_new = pca.transform(all_data)
X_new.shape
X_new_nona = X_new[~np.isnan(all_labels)]
labels_nona = all_labels[~np.isnan(all_labels)]
print(np.mean(cross_val_score(rbf_svr, X_new_nona, labels_nona, cv=5, scoring="neg_mean_squared_error")))
print(np.mean(cross_val_score(rbf_svr, X_new_nona, labels_nona, cv=5, scoring="r2")))
# UMAP
import umap
reducer = umap.UMAP(n_components=100)
X_new = reducer.fit_transform(all_data)
X_new_nona = X_new[~np.isnan(all_labels)]
labels_nona = all_labels[~np.isnan(all_labels)]
print(np.mean(cross_val_score(rbf_svr, X_new_nona, labels_nona, cv=5, scoring="neg_mean_squared_error")))
print(np.mean(cross_val_score(rbf_svr, X_new_nona, labels_nona, cv=5, scoring="r2")))
import scipy.io as scio
data_file = 'gdrive/MyDrive/AE_results/MC_PR_Data/CCLE_X.mat'
data = scio.loadmat(data_file)
gene_expr = data['X']
labels_file = 'gdrive/MyDrive/AE_results/MC_PR_Data/MMnormal.mat'
labels_data = scio.loadmat(labels_file)
labels = labels_data['MM']
# VAE model
class VAE(nn.Module):
def __init__(self, input_size):
super(VAE, self).__init__()
self.fc1 = nn.Linear(input_size, 3000)
self.fc21 = nn.Linear(3000, 500)
self.fc22 = nn.Linear(3000, 500)
self.fc3 = nn.Linear(500, 3000)
self.fc4 = nn.Linear(3000, input_size)
# 编码
def encode(self, x):
h = F.relu(self.fc1(x))
return self.fc21(h), self.fc22(h)
# 随机生成隐含向量
def reparameterize(self, mu, log_var):
std = torch.exp(log_var/2)
eps = torch.randn_like(std)
return mu + eps * std
# 解码
def decode(self, z):
h = F.relu(self.fc3(z))
h = self.fc4(h)
return torch.sigmoid(h)
# return h
# 前向传播
def forward(self, x):
mu, log_var = self.encode(x)
z = self.reparameterize(mu, log_var)
x_reconst = self.decode(z)
return x_reconst, mu, log_var
class customLoss(nn.Module):
def __init__(self):
super(customLoss, self).__init__()
self.mse_loss = nn.MSELoss(reduction="sum")
# x_recon ist der im forward im Model erstellte recon_batch, x ist der originale x Batch, mu ist mu und logvar ist logvar
def forward(self, x_recon, x, mu, logvar):
loss_MSE = self.mse_loss(x_recon, x)
loss_KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
return loss_MSE + loss_KLD
def loss_function(recon_x, x, mu, logvar):
loss = nn.MSELoss(reduction="sum")
loss_MSE = loss(recon_x, x)
loss_KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
return loss_MSE + loss_KLD
def scale_data(X_train, X_test):
scaler = MinMaxScaler()
new_X_train = scaler.fit_transform(X_train)
new_X_test = scaler.transform(X_test)
return new_X_train, new_X_test
def top_mad(X_train, X_test, cut):
index = np.argsort(-median_absolute_deviation(X_train))
new_index = index[:int(X_train.shape[1] * cut)]
X_train = X_train[:,new_index]
X_test = X_test[:,new_index]
return X_train, X_test
def classic_reg(X_train, y_train, X_test, method):
if method == 'rf':
rg = RandomForestRegressor()
if method == 'svr':
rg = SVR(kernel='rbf')
if method == 'elasticnet':
rg = ElasticNet()
rg.fit(X_train, y_train)
test_pred = rg.predict(X_test)
return test_pred
def evaluate(y_test, test_pred):
r2 = r2_score(y_test, test_pred)
mse = mean_squared_error(y_test, test_pred)
pccs = pearsonr(y_test, test_pred)
# print("Method = {}, r2_score = {}, MSE = {}, PCC = {}, PCC_p".format(method, r2, mse, pccs[0], pccs[1]))
return r2, mse, pccs[0]
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(gene_expr, labels[:,3], test_size=0.2, random_state=42)
X_train, X_test = top_mad(X_train, X_test, cut=0.5)
X_train, X_test = scale_data(X_train, X_test)
train_loader = DataLoader(dataset=torch.from_numpy(X_train).float(), batch_size=30)
test_loader = DataLoader(dataset=torch.from_numpy(X_test).float(), batch_size=30)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
input_size
x.shape
input_size = X_train.shape[1]
model2 = VAE(input_size).to(device)
optimizer = torch.optim.Adam(model2.parameters(), lr=1e-3)
all_train_loss = []
all_test_loss = []
for epoch in range(200):
train_loss = 0
model2.train()
for x in train_loader:
# model2.train()
x = x.cuda()
x_reconst, mu, log_var = model2(x)
loss = loss_function(x_reconst, x, mu, log_var)
# backprop
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss += loss.item()
with torch.no_grad():
model2.eval()
test_loss = 0
for x in test_loader:
# model2.eval()
x = x.cuda()
x_reconst, mu, log_var = model2(x)
loss = loss_function(x_reconst, x, mu, log_var)
test_loss += loss.item()
all_train_loss.append(train_loss/len(train_loader))
all_test_loss.append(test_loss/len(test_loader))
if epoch % 20 == 0:
print('epoch = {}, train loss = {}, test_loss = {};'.format(epoch,\
train_loss/len(train_loader), test_loss/len(test_loader)))
plt.plot([x for x in range(200)], all_train_loss, label='Train Loss', linewidth=2)
plt.plot([y for y in range(200)], all_test_loss, label='Val Loss', linewidth=2)
plt.legend()
plt.show()
plt.plot([x for x in range(180)], all_train_loss[20:], label='Train Loss', linewidth=2)
plt.plot([y for y in range(180)], all_test_loss[20:], label='Val Loss', linewidth=2)
plt.legend()
plt.show()
torch.cuda.empty_cache()
x_reconst, train_encoder, log_var = model2(torch.from_numpy(X_train).float().cuda())
x_reconst, test_encoder, log_var = model2(torch.from_numpy(X_test).float().cuda())
X_train = train_encoder.cpu().detach().numpy()
X_test = test_encoder.cpu().detach().numpy()
np.sum(np.all(np.equal(X_test, 0), axis=0))
methods = ['rf', 'svr']
all_r2 = [0, 0]
all_mse = [0, 0]
all_pcc = [0, 0]
for j in range(2):
test_pred = classic_reg(X_train, y_train, X_test, method=methods[j])
r2, mse, pcc = evaluate(y_test, test_pred)
all_r2[j] += r2
all_mse[j] += mse
all_pcc[j] += pcc
print(all_r2)
print(all_mse)
print(all_pcc)
###Output
[0.3872046592821007, 0.3566256168012716]
[0.5644027933531994, 0.592567003893748]
[0.6258431087467016, 0.628376624649286]
###Markdown
###Code
import tensorflow.keras
from tensorflow.keras import layers
from tensorflow.keras import backend as K
from tensorflow.keras.models import Model
import numpy as np
img_shape=(28, 28, 1)
batch_size = 16
latent_dim= 2
input_img = tensorflow.keras.Input(shape = img_shape)
x = layers.Conv2D(32,3,padding='same',activation='relu')(input_img)
x = layers.Conv2D(64,3,padding='same',activation='relu',strides=(2,2))(x)
x = layers.Conv2D(64,3,padding='same',activation='relu')(x)
x = layers.Conv2D(64,3,padding='same',activation='relu')(x)
shape_before_flattening = K.int_shape(x)
x = layers.Flatten()(x)
x = layers.Dense(32, activation='relu')(x)
z_mean = layers.Dense(latent_dim)(x)
z_log_var = layers.Dense(latent_dim)(x)
def sampling(args):
z_mean, z_log_var = args
epsilon = K.random_normal(shape=(K.shape(z_mean)[0],latent_dim),mean=0.,stddev=1.)
return z_mean+K.exp(z_log_var)* epsilon
z = layers.Lambda(sampling)([z_mean,z_log_var])
decoder_input = layers.Input(K.int_shape(z)[1:])
x = layers.Dense(np.prod(shape_before_flattening[1:]),activation='relu')(decoder_input)
x = layers.Reshape(shape_before_flattening[1:])(x)
x = layers.Conv2DTranspose(32, 3,padding='same',activation='relu',strides=(2,2))(x)
x = layers.Conv2D(1, 3, padding='same',activation='sigmoid')(x)
decoder = Model(decoder_input, x)
z_decoded = decoder(z)
class CustomVariationalLayer(tensorflow.keras.layers.Layer):
def vae_loss(self, x, z_decoded):
x = K.flatten(x)
z_decoded = K.flatten(z_decoded)
xent_loss = tensorflow.keras.metrics.binary_crossentropy(x, z_decoded)
kl_loss = -5e-4 * K.mean(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1)
return K.mean(xent_loss + kl_loss)
def call(self, inputs):
x = inputs[0]
z_decoded = inputs[1]
loss = self.vae_loss(x, z_decoded)
self.add_loss(loss, inputs = inputs)
return x
y = CustomVariationalLayer()([input_img, z_decoded])
from tensorflow.keras.datasets import mnist
vae=Model(input_img, y)
vae.compile(optimizer='rmsprop',loss=None)
(x_train, _), (x_test, y_test) = mnist.load_data()
x_train = x_train.astype('float32')/255.
###Output
W0820 13:06:38.966424 140294730282880 training_utils.py:1101] Output custom_variational_layer missing from loss dictionary. We assume this was done on purpose. The fit and evaluate APIs will not be expecting any data to be passed to custom_variational_layer.
###Markdown
###Code
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
from torchvision.utils import save_image
import numpy as np
import matplotlib.pyplot as plt
batch_size =64
train_dataset = datasets.MNIST(root='./MNIST/',train=True,download=True,
transform=transforms.ToTensor())
train = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
latent_dim=20
def generate_(batch_size):
return torch.from_numpy(np.random.multivariate_normal(mean=np.zeros(latent_dim),cov =np.eye(latent_dim),size=batch_size)).type(torch.float)
class VAE(nn.Module):
def __init__(self):
super(VAE,self).__init__()
self.bottleneck=nn.Linear(784,400)
self.mean=nn.Linear(400,latent_dim)
self.variance=nn.Linear(400,latent_dim)
self.dec1=nn.Linear(latent_dim,400)
self.dec2=nn.Linear(400,784)
def encoder(self,x):
x=F.relu(self.bottleneck(x))
return self.mean(x),self.variance(x)
def decoder(self,x):
x=F.relu(self.dec1(x))
x=torch.sigmoid(self.dec2(x))
return x
def sample(self,mu,sigma):
sigma = torch.exp(0.5*sigma).to(device) # To make variance greater than zero
normal = generate_(batch_size).to(device)
return mu + sigma*normal
def forward(self,x):
mu,sigma = self.encoder(x)
z = self.sample(mu,sigma).to(device)
z = self.decoder(z)
return mu,sigma,z
def Loss(mu,sigma,recon_x,x,normal=False):
loss = -0.5 * torch.sum(1 + sigma - mu.pow(2) - sigma.exp())
error =0
if(normal):
error = F.mse_loss(recon_x,x)
else:
error = F.binary_cross_entropy(recon_x, x, reduction='sum')
return loss+error
# Check availabilty of device
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = VAE().to(device)
optimizer = optim.Adam(model.parameters(), lr=1e-3)
num_epochs = 50
loss_list = []
for epoch in range(num_epochs):
loss=0
for i ,(images,target) in enumerate(train):
batch_size = images.size(0)
images = images.view(batch_size, -1).to(device)
images = Variable(images,requires_grad =False)
# set grad to zero
optimizer.zero_grad()
# Model training and Loss calculation
mu,sigma,z = model(images)
i_loss = Loss(mu,sigma,z,images)
loss+=i_loss.item()
i_loss.backward()
optimizer.step()
# accuracy
if (i+1) % 200 == 0:
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
.format(epoch, num_epochs, i+1, 938, i_loss.item()))
loss_list.append(loss)
z = generate_(100).to(device)
generated_images = Variable(model.decoder(z),requires_grad =False)
z= generated_images.reshape((100,28,28))
z=z.cpu().detach().numpy()
fig=plt.figure(figsize=(12, 12))
columns = 10
rows = 10
for i in range(1, columns*rows +1):
img = z[i-1]
fig.add_subplot(rows, columns,i)
show = plt.imshow(img)
show.axes.get_xaxis().set_visible(False)
show.axes.get_yaxis().set_visible(False)
plt.savefig('result.jpg')
plt.show()
###Output
_____no_output_____
###Markdown
构建VAE网络
###Code
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
from keras.layers import Input, Dense, Lambda, Flatten, Reshape, Layer
from keras.layers import Conv2D, Conv2DTranspose
from keras.models import Model
from keras import backend as K
from keras import metrics
from keras.datasets import mnist
# input image dimensions
gen_rows, gen_cols, gen_chns = 24, 24, 1
# number of convolutional filters to use
filters = 64
# convolution kernel size
num_conv = 3
batch_size = 100
if K.image_data_format() == 'channels_first':
original_gen_size = (gen_chns, gen_rows, gen_cols)
else:
original_gen_size = (gen_rows, gen_cols, gen_chns)
latent_dim = 5
intermediate_dim = 128
epsilon_std = 1.0
epochs = 5
x = Input(shape=original_gen_size)
conv_1 = Conv2D(gen_chns,
kernel_size=(2, 2),
padding='same', activation='relu')(x)
conv_2 = Conv2D(filters,
kernel_size=(2, 2),
padding='same', activation='relu',
strides=(2, 2))(conv_1)
conv_3 = Conv2D(filters,
kernel_size=num_conv,
padding='same', activation='relu',
strides=1)(conv_2)
conv_4 = Conv2D(filters,
kernel_size=num_conv,
padding='same', activation='relu',
strides=1)(conv_3)
flat = Flatten()(conv_4)
hidden = Dense(intermediate_dim, activation='relu')(flat)
z_mean = Dense(latent_dim)(hidden)
z_log_var = Dense(latent_dim)(hidden)
def sampling(args):
z_mean, z_log_var = args
epsilon = K.random_normal(shape=(K.shape(z_mean)[0], latent_dim),
mean=0., stddev=epsilon_std)
return z_mean + K.exp(z_log_var) * epsilon
# note that "output_shape" isn't necessary with the TensorFlow backend
# so you could write `Lambda(sampling)([z_mean, z_log_var])`
z = Lambda(sampling, output_shape=(latent_dim,))([z_mean, z_log_var])
# we instantiate these layers separately so as to reuse them later
decoder_hid = Dense(intermediate_dim, activation='relu')
decoder_upsample = Dense(filters * 12 * 12, activation='relu')
if K.image_data_format() == 'channels_first':
output_shape = (batch_size, filters, 12, 12)
else:
output_shape = (batch_size, 12, 12, filters)
decoder_reshape = Reshape(output_shape[1:])
decoder_deconv_1 = Conv2DTranspose(filters,
kernel_size=num_conv,
padding='same',
strides=1,
activation='relu')
decoder_deconv_2 = Conv2DTranspose(filters,
kernel_size=num_conv,
padding='same',
strides=1,
activation='relu')
if K.image_data_format() == 'channels_first':
output_shape = (batch_size, filters, 25, 25)
else:
output_shape = (batch_size, 25, 25, filters)
decoder_deconv_3_upsamp = Conv2DTranspose(filters,
kernel_size=(3, 3),
strides=(2, 2),
padding='valid',
activation='relu')
decoder_mean_squash = Conv2D(gen_chns,
kernel_size=2,
padding='valid',
activation='sigmoid')
hid_decoded = decoder_hid(z)
up_decoded = decoder_upsample(hid_decoded)
reshape_decoded = decoder_reshape(up_decoded)
deconv_1_decoded = decoder_deconv_1(reshape_decoded)
deconv_2_decoded = decoder_deconv_2(deconv_1_decoded)
x_decoded_relu = decoder_deconv_3_upsamp(deconv_2_decoded)
x_decoded_mean_squash = decoder_mean_squash(x_decoded_relu)
# Custom loss layer
class CustomVariationalLayer(Layer):
def __init__(self, **kwargs):
self.is_placeholder = True
super(CustomVariationalLayer, self).__init__(**kwargs)
def vae_loss(self, x, x_decoded_mean_squash):
x = K.flatten(x)
x_decoded_mean_squash = K.flatten(x_decoded_mean_squash)
xent_loss = gen_rows * gen_cols * metrics.binary_crossentropy(x, x_decoded_mean_squash)
kl_loss = - 0.5 * K.mean(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1)
return K.mean(xent_loss + kl_loss)
def call(self, inputs):
x = inputs[0]
x_decoded_mean_squash = inputs[1]
loss = self.vae_loss(x, x_decoded_mean_squash)
self.add_loss(loss, inputs=inputs)
# We don't use this output.
return x
y = CustomVariationalLayer()([x, x_decoded_mean_squash])
vae = Model(x, y)
vae.compile(optimizer='adam', loss=None)
vae.summary()
###Output
Using TensorFlow backend.
###Markdown
训练神经网络
###Code
vae.fit(x_train,
shuffle=True,
epochs=200,
batch_size=128,
validation_data=None)
###Output
_____no_output_____
###Markdown
提取解码器部分作为生成器
###Code
# build a model to project inputs on the latent space
encoder = Model(x, z_mean)
# build a digit generator that can sample from the learned distribution
decoder_input = Input(shape=(latent_dim,))
_hid_decoded = decoder_hid(decoder_input)
_up_decoded = decoder_upsample(_hid_decoded)
_reshape_decoded = decoder_reshape(_up_decoded)
_deconv_1_decoded = decoder_deconv_1(_reshape_decoded)
_deconv_2_decoded = decoder_deconv_2(_deconv_1_decoded)
_x_decoded_relu = decoder_deconv_3_upsamp(_deconv_2_decoded)
_x_decoded_mean_squash = decoder_mean_squash(_x_decoded_relu)
generator = Model(decoder_input, _x_decoded_mean_squash)
###Output
_____no_output_____
###Markdown
生成数据
###Code
generate_result = generator.predict(np.random.normal(size=(200000,5)))
###Output
_____no_output_____
###Markdown
Teaching a Variational Autoencoder (VAE) to draw MNIST charactersAutoencoders are a type of neural network that can be used to learn efficient codings of input data. Given some inputs, the network firstly applies a series of transformations that map the input data into a lower dimensional space. This part of the network is called the _encoder_. Then, the network uses the encoded data to try and recreate the inputs. This part of the network is the _decoder_. Using the encoder, we can later compress data of the type that is understood by the network. However, autoencoders are rarely used for this purpose, as usually there exist hand-crafted algorithms (like _jpg_-compression) that are more efficient. Instead, autoencoders have repeatedly been applied to perform denoising tasks. Then, the encoder receives pictures that have been tampered with noise, and it learns how to reconstruct the original images. Variational Autoencoders put simplyBut there exists a much more interesting application for autoencoders. This application is called the _variational autoencoder_. Using variational autoencoders, it's not only possible to compress data -- it's also possible to generate new objects of the type the autoencoder has seen before.Using a general autoencoder, we don't know anything about the coding that's been generated by our network. We could take a look at and compare different encoded objects, but it's unlikely that we'll be able to understand what's going on. This means that we won't be able to use our decoder for creating new objects -- we simply don't know what the inputs should look like.Using a variational autoencoder, we take the opposite approach instead. We will not try to make guesses concerning the distribution that's being followed by the latent vectors. We simply tell our network what we want this distribution to look like. Usually, we will constrain the network to produce latent vectors having entries that follow the unit normal distribution. Then, when trying to generate data, we can simply sample some values from this distribution, feed them to the decoder, and the decoder will return us completely new objects that appear just like the objects our network has been trained with.Let's see how this can be done using python and tensorflow. We are going to teach our network how to draw MNIST characters. First steps -- Loading the training dataFirstly, we perform some basic imports. Tensorflow has a quite handy function that allows us to easily access the MNIST data set.
###Code
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data')
###Output
Extracting MNIST_data/train-images-idx3-ubyte.gz
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
###Markdown
Defining our input and output dataMNIST images have a dimension of 28 * 28 pixels with one color channel. Our inputs _X_in_ will be batches of MNIST characters, while our network will learn to reconstruct them and output them in a placeholder _Y_, which thus has the same dimensions. _Y_flat_ will be used later, when computing losses. _keep_prob_ will be used when applying dropouts as a means of regularization. During training, it will have a value of 0.8. When generating new data, we won't apply dropout, so the value will be 1. The function _lrelu_ is being defined as tensorflow unfortunately doesn't come up with a predefined leaky ReLU.
###Code
tf.reset_default_graph()
batch_size = 64
X_in = tf.placeholder(dtype=tf.float32, shape=[None, 28, 28], name='X')
Y = tf.placeholder(dtype=tf.float32, shape=[None, 28, 28], name='Y')
Y_flat = tf.reshape(Y, shape=[-1, 28 * 28])
keep_prob = tf.placeholder(dtype=tf.float32, shape=(), name='keep_prob')
dec_in_channels = 1
n_latent = 8
reshaped_dim = [-1, 7, 7, dec_in_channels]
inputs_decoder = 49 * dec_in_channels / 2
def lrelu(x, alpha=0.3):
return tf.maximum(x, tf.multiply(x, alpha))
###Output
_____no_output_____
###Markdown
Defining the encoderAs our inputs are images, it's most reasonable to apply some convolutional transformations to them. What's most noteworthy is the fact that we are creating two vectors in our encoder, as the encoder is supposed to create objects following a Gaussian Distribution:* A vector of means* A vector of standard deviationsYou will see later how we "force" the encoder to make sure it really creates values following a Normal Distribution. The returned values that will be fed to the decoder are the _z_-values. We will need the mean and standard deviation of our distributions later, when computing losses.
###Code
def encoder(X_in, keep_prob):
activation = lrelu
with tf.variable_scope("encoder", reuse=None):
X = tf.reshape(X_in, shape=[-1, 28, 28, 1])
x = tf.layers.conv2d(X, filters=64, kernel_size=4, strides=2, padding='same', activation=activation)
x = tf.nn.dropout(x, keep_prob)
x = tf.layers.conv2d(x, filters=64, kernel_size=4, strides=2, padding='same', activation=activation)
x = tf.nn.dropout(x, keep_prob)
x = tf.layers.conv2d(x, filters=64, kernel_size=4, strides=1, padding='same', activation=activation)
x = tf.nn.dropout(x, keep_prob)
x = tf.contrib.layers.flatten(x)
mn = tf.layers.dense(x, units=n_latent)
sd = 0.5 * tf.layers.dense(x, units=n_latent)
epsilon = tf.random_normal(tf.stack([tf.shape(x)[0], n_latent]))
z = mn + tf.multiply(epsilon, tf.exp(sd))
return z, mn, sd
###Output
_____no_output_____
###Markdown
Defining the decoderThe decoder does not care about whether the input values are sampled from some specific distribution that has been defined by us. It simply will try to reconstruct the input images. To this end, we use a series of transpose convolutions.
###Code
def decoder(sampled_z, keep_prob):
with tf.variable_scope("decoder", reuse=None):
x = tf.layers.dense(sampled_z, units=inputs_decoder, activation=lrelu)
x = tf.layers.dense(x, units=inputs_decoder * 2 + 1, activation=lrelu)
x = tf.reshape(x, reshaped_dim)
x = tf.layers.conv2d_transpose(x, filters=64, kernel_size=4, strides=2, padding='same', activation=tf.nn.relu)
x = tf.nn.dropout(x, keep_prob)
x = tf.layers.conv2d_transpose(x, filters=64, kernel_size=4, strides=1, padding='same', activation=tf.nn.relu)
x = tf.nn.dropout(x, keep_prob)
x = tf.layers.conv2d_transpose(x, filters=64, kernel_size=4, strides=1, padding='same', activation=tf.nn.relu)
x = tf.contrib.layers.flatten(x)
x = tf.layers.dense(x, units=28*28, activation=tf.nn.sigmoid)
img = tf.reshape(x, shape=[-1, 28, 28])
return img
###Output
_____no_output_____
###Markdown
Now, we'll wire together both parts:
###Code
sampled, mn, sd = encoder(X_in, keep_prob)
dec = decoder(sampled, keep_prob)
###Output
_____no_output_____
###Markdown
Computing losses and enforcing a Gaussian latent distributionFor computing the image reconstruction loss, we simply use squared difference (which could lead to images sometimes looking a bit fuzzy). This loss is combined with the _Kullback-Leibler divergence_, which makes sure our latent values will be sampled from a normal distribution. For more on this topic, please take a look a Jaan Altosaar's great article on VAEs.
###Code
unreshaped = tf.reshape(dec, [-1, 28*28])
img_loss = tf.reduce_sum(tf.squared_difference(unreshaped, Y_flat), 1)
latent_loss = -0.5 * tf.reduce_sum(1.0 + 2.0 * sd - tf.square(mn) - tf.exp(2.0 * sd), 1)
loss = tf.reduce_mean(img_loss + latent_loss)
optimizer = tf.train.AdamOptimizer(0.0005).minimize(loss)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
###Output
_____no_output_____
###Markdown
Training the networkNow, we can finally train our VAE! Every 200 steps, we'll take a look at what the current reconstructions look like. After having processed about 2000 batches, most reconstructions will look reasonable.
###Code
for i in range(30000):
batch = [np.reshape(b, [28, 28]) for b in mnist.train.next_batch(batch_size=batch_size)[0]]
sess.run(optimizer, feed_dict = {X_in: batch, Y: batch, keep_prob: 0.8})
if not i % 200:
ls, d, i_ls, d_ls, mu, sigm = sess.run([loss, dec, img_loss, latent_loss, mn, sd], feed_dict = {X_in: batch, Y: batch, keep_prob: 1.0})
plt.imshow(np.reshape(batch[0], [28, 28]), cmap='gray')
plt.show()
plt.imshow(d[0], cmap='gray')
plt.show()
print(i, ls, np.mean(i_ls), np.mean(d_ls))
###Output
_____no_output_____
###Markdown
Generating new dataThe most awesome part is that we are now able to create new characters. To this end, we simply sample values from a unit normal distribution and feed them to our decoder. Most of the created characters look just like they've been written by humans.
###Code
randoms = [np.random.normal(0, 1, n_latent) for _ in range(10)]
imgs = sess.run(dec, feed_dict = {sampled: randoms, keep_prob: 1.0})
imgs = [np.reshape(imgs[i], [28, 28]) for i in range(len(imgs))]
for img in imgs:
plt.figure(figsize=(1,1))
plt.axis('off')
plt.imshow(img, cmap='gray')
###Output
_____no_output_____
###Markdown
Variational AutoencoderImplementation based on the following papers:- [Auto Encoding Varational Bayes](https://arxiv.org/abs/1312.6114)- [Variational Autoencoder for Deep Learning of Images, Labels and Captions](https://papers.nips.cc/paper/6528-variational-autoencoder-for-deep-learning-of-images-labels-and-captions.pdf) 1. Import dependenciesImport the modules neccessary to run the project. If you get a ``` Error: Module not found```run the following code in a separate cell ``` !pip install -r requirements.txt ```
###Code
import torch
from torch import nn, optim
import torch.nn.functional as F
from torch.utils.data import DataLoader
import torchvision
from torchvision import datasets, transforms
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import itertools
###Output
_____no_output_____
###Markdown
Check if a CUDA GPU is available, and if yes use it. Else use the CPU for computations.
###Code
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print("Using %s for computation" % device)
project_dir = 'results/'
dataset_dir = project_dir + 'datasets/'
images_dir = project_dir + 'images/'
model_dir = project_dir + 'model/'
###Output
_____no_output_____
###Markdown
2. Tune HyperparametersSet up the hyperparameters for the model. If you get any errors about running out of memeory, try reducing the batch size. The latent size is the size of the encoding vector that the Encoder finally produces. Increasing this value can improve performance, but there are diminishing returns once you cross a certain limit.
###Code
batch_size = 32 # number of inputs in each batch
epochs = 10 # times to run the model on complete data
image_size = 64
hidden_size = 1024 # hidden dimension
latent_size = 32 # latent vector dimension
lr = 1e-3 # learning rate
train_loss = []
# If you want to use the Vanilla VAE, uncomment the following block
# image_size = 28
# input_size = image_size ** 2 # size of each input
# hidden_size = 300 # hidden dimension
# latent_size = 45 # latent vector dimension
###Output
_____no_output_____
###Markdown
3. Load Data and DataLoader
###Code
from torchvision import transforms as tmf
from torch.utils.data import Dataset, DataLoader
import os
from PIL import Image as IMG
class CelebDataset(Dataset):
def __init__(self, **kw):
self.images_dir = kw.get('images_dir')
self.images = os.listdir(self.images_dir)
self.images = self.images[:kw.get('lim', len(self.images))]
self.image_size = kw.get('image_size', 64)
def __getitem__(self, index):
file = self.images[index]
img = self.transforms(IMG.open(self.images_dir + os.sep + file))
return {'input': img}
def __len__(self):
return len(self.images)
@property
def transforms(self):
return tmf.Compose(
[tmf.Resize(self.image_size), tmf.CenterCrop(self.image_size),
tmf.ToTensor(), tmf.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
train_celebdataset = CelebDataset(images_dir='/data/akhanal1/img_align_celeba', lim=100)
trainloader = DataLoader(dataset=train_celebdataset, batch_size=4, pin_memory=True, num_workers=8)
test_celebdataset = CelebDataset(images_dir='/data/akhanal1/img_align_celeba', lim=300)
testloader = DataLoader(dataset=test_celebdataset, batch_size=4, pin_memory=True, num_workers=8)
###Output
_____no_output_____
###Markdown
Utility function to help * Display images from the tensor.* Flatten the image into a 1-D tensor.* Take a 1-D tensor and convert it back into a image.
###Code
def show_images(images):
images = torchvision.utils.make_grid(images)
show_image(images)
def show_image(img):
plt.imshow(img.permute(1, 2, 0), cmap="gray")
plt.show()
###Output
_____no_output_____
###Markdown
Next we will have a look at the data we will be working with.
###Code
trial = next(iter(trainloader.__iter__()))
images, labels = trial['input'],1
print(labels)
show_images(images)
trial.keys()
###Output
_____no_output_____
###Markdown
4. Define the Model ArchitectureThe VAE consists of an encoder that takes the images outputs 2 vectors of length `latent_size`. Traditionally, one is the vector of `means`, μ, and another is the vector of `standard deviations`, σ.In this case however, to prevent the model from learning negative values of variance, we instead create a vector containing the `log(variance)`.This gives us a collection of random variables ***X***, from which we sample to provide inputs to the Fully Connected layer using the `sample` function. The next part is the decoder which tries to reconstruct the image from the vector. The Adam optimiser is used here.
###Code
class VAE(nn.Module):
def __init__(self):
super(VAE, self).__init__()
self.encodinglayer1 = nn.Sequential(
nn.Linear(input_size, hidden_size), nn.ReLU()
)
self.encodinglayer2_mean = nn.Sequential(nn.Linear(hidden_size, latent_size))
self.encodinglayer2_logvar = nn.Sequential(nn.Linear(hidden_size, latent_size))
self.decodinglayer = nn.Sequential(
nn.Linear(latent_size, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, input_size),
nn.Sigmoid(),
)
def sample(self, log_var, mean):
std = torch.exp(0.5 * log_var)
eps = torch.randn_like(std)
return eps.mul(std).add_(mean)
def forward(self, x):
x = x.view(-1, input_size)
x = self.encodinglayer1(x)
log_var = self.encodinglayer2_logvar(x)
mean = self.encodinglayer2_mean(x)
z = self.sample(log_var, mean)
x = self.decodinglayer(z)
return x, mean, log_var
class Flatten(nn.Module):
def forward(self, input):
return input.view(input.size(0), -1)
class UnFlatten(nn.Module):
def forward(self, input, size=1024):
return input.view(input.size(0), 1024, 1, 1)
class DCVAE(nn.Module):
def __init__(self, image_channels=3, image_dim=image_size, hidden_size=hidden_size, latent_size=latent_size):
super(DCVAE, self).__init__()
self.encoder = nn.Sequential(
nn.Conv2d(image_channels, 32, 4, 2),
nn.LeakyReLU(0.2),
nn.Conv2d(32, 64, 4, 2),
nn.LeakyReLU(0.2),
nn.Conv2d(64, 128, 4, 2),
nn.LeakyReLU(0.2),
nn.Conv2d(128, 256, 4, 2),
nn.LeakyReLU(0.2),
Flatten(),
)
self.encoder_mean = nn.Linear(hidden_size, latent_size)
self.encoder_logvar = nn.Linear(hidden_size, latent_size)
self.fc = nn.Linear(latent_size, hidden_size)
self.decoder = nn.Sequential(
UnFlatten(),
nn.ConvTranspose2d(hidden_size, 128, 5, 2),
nn.ReLU(),
nn.ConvTranspose2d(128, 64, 5, 2),
nn.ReLU(),
nn.ConvTranspose2d(64, 32, 6, 2),
nn.ReLU(),
nn.ConvTranspose2d(32, image_channels, 6, 2),
nn.Sigmoid()
)
def sample(self, log_var, mean):
std = torch.exp(0.5*log_var)
eps = torch.randn_like(std)
return eps.mul(std).add_(mean)
def forward(self, x):
x = self.encoder(x)
log_var = self.encoder_logvar(x)
mean = self.encoder_mean(x)
z = self.sample(log_var, mean)
x = self.fc(z)
x = self.decoder(x)
return x, mean, log_var
vae = DCVAE().to('cuda')
# vae = VAE().to(device)
optimizer = optim.Adam(vae.parameters(), lr=lr)
###Output
_____no_output_____
###Markdown
Load pretrained weightsComment this out if you want to train from scratch.
###Code
vae.load_state_dict(torch.load(model_dir+"DCVAE.pt"))
# vae.load_state_dict(torch.load(model_dir+"VAE.pt"))
###Output
_____no_output_____
###Markdown
5. Training the modelSet the model to the training mode first. Things to note, two types of loss are used here. The first one is just the reconstruction loss that compares the recontructed images to the original one using Binary Cross Entropy. The second one is called the [Kullback–Leibler divergence](https://www.countbayesie.com/blog/2017/5/9/kullback-leibler-divergence-explained) which gives a measure of how much a distibution diverges from another. We use this to force the encodings to distribute themselves around the centre of the latent space.
###Code
vae.train()
for epoch in range(100):
for i, (images) in enumerate(trainloader):
images = images['input'].to(device)
optimizer.zero_grad()
reconstructed_image, mean, log_var = vae(images)
CE = F.binary_cross_entropy(reconstructed_image, images, reduction='sum')
# for VAE
# CE = F.binary_cross_entropy(
# reconstructed_image, images.view(-1, input_size), reduction="sum"
# )
KLD = -0.5 * torch.sum(1 + log_var - mean.pow(2) - log_var.exp())
loss = CE + KLD
loss.backward()
train_loss.append(loss.item())
optimizer.step()
if(i % 100 == 0):
print("Loss:")
print(loss.item() / len(images))
plt.plot(train_loss)
plt.show()
###Output
_____no_output_____
###Markdown
6. Evaluate performance on the test setSet the model to the evaluation mode. This is important otherwise you will get inconsistent results.We save the mean vectors and the labels in a separate list to visualise them later.As we can see, the model has learnt to reconstruct the images pretty well. We can improve performance by training for longer or by increasing the latent vector size to encode more information.
###Code
vae.eval()
vectors = []
with torch.no_grad():
for i, (images) in enumerate(testloader):
images = images['input'].to(device)
reconstructed_image, mean, log_var = vae(images)
reconstructed_image = reconstructed_image.view(-1, 1, image_size, image_size)
labels=[1,1,1,1]
temp = list(zip(labels, mean.tolist()))
for x in temp:
vectors.append(x)
if(i%100 == 0):
show_images(reconstructed_image.cpu())
img_name = images_dir + "evaluation/DCVAE/" + str(i).zfill(3)
# img_name = images_dir + "evaluation/VAE/" + str(i).zfill(3)
#plt.savefig(img_name)
plt.show()
###Output
_____no_output_____
###Markdown
7. Generate images from latent vectorsHere I have taken three vectors and I'll interpolate between them to show how the continuos latent space in a VAE allows you to smoothly tranistion between different types of images.This code is for the DCVAE.
###Code
vae.eval()
start = np.array([-1.8611, 0.3629, -0.1625, 0.6801, 1.2033, 1.0312, 0.5436, 1.3066,
0.2905, 0.1377, 0.5122, -0.1663, 2.3431, -0.0896, -0.5873, -1.4804,
0.8141, -1.2197, 0.0484, 0.6414, -0.8172, -0.9543, -0.8818, -1.1465,
0.2720, 1.1792, 1.8410, -0.4715, 1.4380, 0.5139, 1.2099, -0.5012])
middle = np.array([-0.4763, -0.4644, -0.3850, 0.6598, 0.9110, 0.4451, 0.4617, -0.0526,
0.2808, 0.6080, 0.5532, -1.5506, -0.5199, 0.1359, 0.0373, 0.4284,
-0.4134, -1.7078, -0.0309, -1.0195, -0.3151, -0.5569, 0.2832, -0.9132,
-1.1339, -1.3196, 2.1297, 0.8122, 0.6849, -0.6710, -0.3507, -0.9001])
end = np.array([-1.6239, 0.2496, -1.0690, -0.8745, 0.4133, 2.2452, -0.2385, -0.6532,
0.3818, -0.9425, 0.9404, 1.3901, -0.3327, -0.3719, -0.0365, 0.3240,
0.4928, -0.4988, -1.2228, -0.1638, 0.6093, -0.5264, -1.6963, -0.3718,
2.1971, 0.2166, -0.0821, -0.1722, -0.1896, -1.6610, -0.1497, 1.0655])
points = 50
linfit = interpolate.interp1d([1, points/2, points], np.vstack([start, middle, end]), axis=0)
with torch.no_grad():
for i in range(2, points-1):
z = linfit(i)
z = torch.FloatTensor(z)
print(z.shape)
z = z.reshape((-1, 32))
z = z.to(device)
z = vae.fc(z)
generated_images = vae.decoder(z)
generated_images = generated_images.view(-1, 64, 64)
img = generated_images[0].cpu()
plt.imshow(img)
img_name = images_dir + 'interpolate/' + str(i).zfill(3)
plt.savefig(img_name)
plt.show()
###Output
_____no_output_____
###Markdown
8. Visualise the latent representations of the imagesUsing Singular Value Decomposition, we perform Principal Component Analysis to visualise the two largest eigenvalues. Then we add the labels for each element and create a dataframe.
###Code
labels, z_vectors = list(zip(*vectors))
z_vectors = torch.tensor(z_vectors)
U, S, V = torch.svd(torch.t(z_vectors))
C = torch.mm(z_vectors, U[:, :2]).tolist()
C = [x + [labels[i]] for i, x in enumerate(C)]
df = pd.DataFrame(C, columns=['x', 'y', 'label'])
df.head()
sns.lmplot( x="x", y="y", data=df, fit_reg=False, hue='label')
###Output
_____no_output_____
###Markdown
9. Saving the modelSave the model incase we need to load it again.
###Code
torch.save(vae.state_dict(), model_dir+"DCVAE.pt")
# Use this for saving the VAE model
# torch.save(vae.state_dict(), model_dir + "VAE.pt")
###Output
_____no_output_____
###Markdown
VAE
###Code
input_img = Input(shape=(n, n, 1))
x = Conv2D(16, (3, 3), activation='relu', padding='same')(input_img)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
encoded = MaxPooling2D((2, 2), padding='same')(x)
# at this point the representation is (4, 4, 8) i.e. 128-dimensional
x = Conv2D(8, (3, 3), activation='relu', padding='same')(encoded)
x = UpSampling2D((2, 2))(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
x = UpSampling2D((2, 2))(x)
x = Conv2D(16, (3, 3), activation='relu')(x)
x = UpSampling2D((2, 2))(x)
decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x)
model = Model(input_img, decoded)
model.compile(optimizer='adadelta', loss='binary_crossentropy', metrics=['accuracy'])
model.summary()
model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=1000, batch_size=10, workers = 4)
z_mean
def sampling(args):
"""Reparameterization trick by sampling from an isotropic unit Gaussian.
# Arguments
args (tensor): mean and log of variance of Q(z|X)
# Returns
z (tensor): sampled latent vector
"""
z_mean, z_log_var = args
batch = K.shape(z_mean)[0]
dim = K.int_shape(z_mean)[1]
# by default, random_normal has mean = 0 and std = 1.0
epsilon = K.random_normal(shape=(batch, dim))
return z_mean + K.exp(0.5 * z_log_var) * epsilon
np.reshape(X_train, [-1, n*n]).shape
X_train = X_train.reshape((-1, n*n))
y_train = y_train.reshape((-1, n*n))
X_test = X_test.reshape((-1, n*n))
y_test = y_test.reshape((-1, n*n))
image_size = n
original_dim = n * n
# network parameters
input_shape = (original_dim, )
intermediate_dim = 512
batch_size = 128
latent_dim = 2
epochs = 50
# VAE model = encoder + decoder
# build encoder model
inputs = Input(shape=input_shape, name='encoder_input')
x = Dense(intermediate_dim, activation='relu')(inputs)
z_mean = Dense(latent_dim, name='z_mean')(x)
z_log_var = Dense(latent_dim, name='z_log_var')(x)
# use reparameterization trick to push the sampling out as input
# note that "output_shape" isn't necessary with the TensorFlow backend
z = Lambda(sampling, output_shape=(latent_dim,), name='z')([z_mean, z_log_var])
# instantiate encoder model
encoder = Model(inputs, [z_mean, z_log_var, z], name='encoder')
encoder.summary()
plot_model(encoder, to_file='vae_mlp_encoder.png', show_shapes=True)
# build decoder model
latent_inputs = Input(shape=(latent_dim,), name='z_sampling')
x = Dense(intermediate_dim, activation='relu')(latent_inputs)
outputs = Dense(original_dim, activation='sigmoid')(x)
# instantiate decoder model
decoder = Model(latent_inputs, outputs, name='decoder')
decoder.summary()
plot_model(decoder, to_file='vae_mlp_decoder.png', show_shapes=True)
# instantiate VAE model
outputs = decoder(encoder(inputs)[2])
vae = Model(inputs, outputs, name='vae_mlp')
models = (encoder, decoder)
data = (X_test, y_test)
reconstruction_loss = keras.losses.binary_crossentropy(inputs, outputs)
reconstruction_loss *= original_dim
kl_loss = 1 + z_log_var - K.square(z_mean) - K.exp(z_log_var)
kl_loss = K.sum(kl_loss, axis=-1)
kl_loss *= -0.5
vae_loss = K.mean(reconstruction_loss + kl_loss)
vae.add_loss(vae_loss)
vae.compile(optimizer='adam', metrics = ['accuracy'])
vae.summary()
plot_model(vae,
to_file='vae_mlp.png',
show_shapes=True)
vae.fit(X_train,
epochs=epochs,
batch_size=batch_size,
validation_data=(X_test, None))
def plot_results(models,
data,
batch_size=128,
model_name="vae_mnist"):
"""Plots labels and MNIST digits as a function of the 2D latent vector
# Arguments
models (tuple): encoder and decoder models
data (tuple): test data and label
batch_size (int): prediction batch size
model_name (string): which model is using this function
"""
encoder, decoder = models
X_test, y_test = data
os.makedirs(model_name, exist_ok=True)
filename = os.path.join(model_name, "vae_mean.png")
# display a 2D plot of the digit classes in the latent space
z_mean, _, _ = encoder.predict(X_test,
batch_size=batch_size)
plt.figure(figsize=(12, 10))
plt.scatter(z_mean[:, 0], z_mean[:, 1], )#c=y_test)
plt.colorbar()
plt.xlabel("z[0]")
plt.ylabel("z[1]")
plt.savefig(filename)
plt.show()
filename = os.path.join(model_name, "partitions_over_latent.png")
# display a 30x30 2D manifold of digits
n = 10
digit_size = 28
figure = np.zeros((digit_size * n, digit_size * n))
# linearly spaced coordinates corresponding to the 2D plot
# of digit classes in the latent space
grid_x = np.linspace(-4, 4, n)
grid_y = np.linspace(-4, 4, n)[::-1]
for i, yi in enumerate(grid_y):
for j, xi in enumerate(grid_x):
z_sample = np.array([[xi, yi]])
x_decoded = decoder.predict(z_sample)
digit = x_decoded[0].reshape(digit_size, digit_size)
figure[i * digit_size: (i + 1) * digit_size,
j * digit_size: (j + 1) * digit_size] = digit
plt.figure(figsize=(n * 10, n * 10))
start_range = digit_size // 2
end_range = (n - 1) * digit_size + start_range + 1
pixel_range = np.arange(start_range, end_range, digit_size)
sample_range_x = np.round(grid_x, 1)
sample_range_y = np.round(grid_y, 1)
plt.xticks(pixel_range, sample_range_x)
plt.yticks(pixel_range, sample_range_y)
plt.xlabel("z[0]")
plt.ylabel("z[1]")
plt.imshow(figure, cmap='Greys_r')
plt.savefig(filename)
plt.show()
plot_results(models,
data,
batch_size=batch_size,
model_name="vae_mlp")
###Output
_____no_output_____
###Markdown
Variational Autoencoder
###Code
# Setup on Colab
!pip install gradio &> /dev/null
!pip install pytorch_lightning &> /dev/null
!curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | sudo bash
!sudo apt-get install git-lfs
!git lfs install
!if [ ! -e ki_wir ]; then git clone https://github.com/fhswf/ki-wir.git ki_wir; else cd ki_wir; git pull; fi
!cd ki_wir; git lfs fetch
!cd ki_wir; git lfs checkout
import gradio as gr
import torch
import numpy as np
import ki_wir.models.vanilla_vae as vanilla_vae
import ki_wir.models.logcosh_vae as logcosh_vae
import ki_wir.models.dfcvae as dfc_vae
import ki_wir.models.experiment as experiment
from PIL import Image
from torchvision import transforms
import torchvision.utils as vutils
%env CUDA_VISIBLE_DEVICES=1
device = torch.device("cuda:0")
params={"in_channels": 3, "latent_dim": 128, "img_size": 64}
config = { "DFC": [ dfc_vae.DFCVAE, "ki_wir/pretrained/dfc.ckpt" ], \
"LogCosh": [ logcosh_vae.LogCoshVAE, "ki_wir/pretrained/logcosh.ckpt" ], \
"Vanilla": [ vanilla_vae.VanillaVAE, "ki_wir/pretrained/vanilla.ckpt" ] }
models = {}
for m, c in config.items():
model = c[0](**params)
exp = experiment.VAEXperiment(model, params)
exp.load_from_checkpoint(c[1], vae_model=model, params=params).to(device)
models[m] = exp
models
def reconstruct(name, image1, image2, alpha):
SetRange = transforms.Lambda(lambda X: 2 * X - 1.)
img1 = Image.fromarray(image1)
img2 = Image.fromarray(image2)
img1 = transforms.Compose([
transforms.Resize((64, 64)),
transforms.ToTensor(),
])(img1)
img2 = transforms.Compose([
transforms.Resize((64, 64)),
transforms.ToTensor(),
])(img2)
img = alpha*img2 + (1-alpha)*img1
orig = transforms.ToPILImage(mode='RGB')(img)
img = SetRange(img)
#img = torch.moveaxis(img, 0, -1)
img = torch.unsqueeze(img.cuda(), 0)
dec = models[name].model.generate(img, latent_dim=128)
dec = torch.squeeze(dec[0], 0)
dec = transforms.Lambda(lambda X: 0.5 * (X + 1.))(dec)
return transforms.ToPILImage(mode='RGB')(dec)
test_label = ""
for name in models.keys():
exp = models[name]
exp.curr_device = device
samples = exp.model.sample(144, device)
vutils.save_image(samples.cpu().data,
f"sample_{name}.png",
normalize=True,
nrow=12)
model = gr.inputs.Dropdown(list(models.keys()), type="value", default=None, label="Model")
alpha = gr.inputs.Slider(minimum=0, maximum=1.0, step=0.1, default=0, label=None)
out1 = gr.outputs.Image(type="auto", label="original")
out2 = gr.outputs.Image(type="auto", label="reconstructed")
iface = gr.Interface(fn=reconstruct, layout="vertical", inputs=[model, "image", "image", alpha], outputs=out1).launch(debug=True, share=True)
###Output
This share link will expire in 72 hours. To get longer links, send an email to: [email protected]
|
Feature Engineering/Feature Scaling/Feature Scaling.ipynb | ###Markdown
Author : Sanjoy Biswas Topic : Feature Scaling : Min-Max Scaler | Standardization Email : [email protected] Feature ScalingFeature Scaling is a technique to standardize the independent features present in the data in a fixed range. It is performed during the data pre-processing to handle highly varying magnitudes or values or units. If feature scaling is not done, then a machine learning algorithm tends to weigh greater values, higher and consider smaller values as the lower values, regardless of the unit of the values.Example: If an algorithm is not using feature scaling method then it can consider the value 3000 meter to be greater than 5 km but that’s actually not true and in this case, the algorithm will give wrong predictions. So, we use Feature Scaling to bring all values to same magnitudes and thus, tackle this issue. Example of Algorithm where Feature Scaling Matters :1. K-Means 2. K-Nearest Neighbors3. Principle Component Analysis4. Gradient DesentMainly Distance Base algorithms are affected by Feature ScalingNote: Naive Bayes, Linear Discriminant Analysis,Tree based algorithm are not affected by feature scaling Techniques to perform Feature ScalingConsider the two most important ones:Min-Max Normalization: This technique re-scales a feature or observation value with distribution value between 0 and 1.Standardization: It is a very effective technique which re-scales a feature value so that it has distribution with 0 mean value and variance equals to 1. The Big Question – Normalize or Standardize?Normalization vs. standardization is an eternal question among machine learning newcomers. Let me elaborate on the answer in this section.Normalization is good to use when you know that the distribution of your data does not follow a Gaussian distribution. This can be useful in algorithms that do not assume any distribution of the data like K-Nearest Neighbors and Neural Networks.Standardization, on the other hand, can be helpful in cases where the data follows a Gaussian distribution. However, this does not have to be necessarily true. Also, unlike normalization, standardization does not have a bounding range. So, even if you have outliers in your data, they will not be affected by standardization. Import Libraries
###Code
import numpy as np
import pandas as pd
###Output
_____no_output_____
###Markdown
Import Dataset
###Code
data_set = pd.read_csv(r'F:\Feature Engineering\Feature Scaling\feature_scaling.csv')
data_set
x = data_set.iloc[:,1:3]
x
###Output
_____no_output_____
###Markdown
MIN MAX SCALER
###Code
from sklearn.preprocessing import MinMaxScaler
mns = MinMaxScaler(feature_range = (0,1))
x_after_min_max_scaler = mns.fit_transform(x)
x_after_min_max_scaler
###Output
_____no_output_____
###Markdown
Standardisation
###Code
from sklearn.preprocessing import StandardScaler
Standardisation = StandardScaler()
x_after_standardisation = Standardisation.fit_transform(x)
x_after_standardisation
###Output
_____no_output_____
###Markdown
Loading the dataset
###Code
import pandas as pd
import numpy as np
bigmart = pd.read_csv('train_bm.csv')
data = bigmart[['Item_Visibility', 'Item_MRP']]
data.head()
###Output
_____no_output_____
###Markdown
Min Max Scaler
###Code
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
scaled_data = scaler.fit_transform(data)
scaled_data = pd.DataFrame(scaled_data, columns=['Item_Visibility', 'Item_MRP'])
scaled_data.head()
scaled_data.describe()
###Output
_____no_output_____
###Markdown
Standard Scaler
###Code
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaled_data = scaler.fit_transform(data)
scaled_data = pd.DataFrame(scaled_data, columns=['Item_Visibility', 'Item_MRP'])
scaled_data.head()
scaled_data.describe()
###Output
_____no_output_____ |
Jupyter Notebooks/Bode_plot_example.ipynb | ###Markdown
Bode Plots (Example 8.3)For the first order system in the example:$$G(i\omega)=\frac{1}{i\omega\tau+1}$$Plot the Bode magnitude and phase angle plots
###Code
import numpy as np
import control
import matplotlib.pyplot as plt # plotting library
# Assign arbitrary value for tau
tau = 1
num=[1]
den=[tau, 1]
sys = control.tf(num,den)
_ = control.bode_plot(sys, dB=False, omega=None, plot=True, omega_limits=None, omega_num=None)
# The underscore means we don't care about assigning the output of `control.bode_plot` to a variable
###Output
_____no_output_____
###Markdown
Let's look at some time responses to see what's really going on.According to the bode plots, at really low forcing frequencies, the amplitude of the system response will be almost equal to the amplitude of the sinusoidal input, but there will be a small lag indicated by the phase angle.
###Code
time = np.arange(0,60,0.1)
freq = 0.1
sin_input = np.sin(freq*time)
T, output = control.forced_response(sys, T=time, U=sin_input, X0=0.0, transpose=False, interpolate=False, return_x=None, squeeze=None)
#############################################################
fig = plt.figure(figsize=(6,4))
ax = plt.gca()
plt.subplots_adjust(bottom=0.17, left=0.17, top=0.96, right=0.96)
# Change the axis units font
plt.setp(ax.get_ymajorticklabels(),fontsize=18)
plt.setp(ax.get_xmajorticklabels(),fontsize=18)
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
# Turn on the plot grid and set appropriate linestyle and color
ax.grid(True,linestyle=':', color='0.75')
ax.set_axisbelow(True)
# Define the X and Y axis labels
plt.xlabel('Time (s)', fontsize=22, weight='bold', labelpad=5)
plt.ylabel('Displacement', fontsize=22, weight='bold', labelpad=10)
plt.plot(T, output, linewidth=2, linestyle='-', label=r'Response')
plt.plot(time, sin_input, linewidth=2, linestyle='--', label=r'Input')
# uncomment below and set limits if needed
# plt.xlim(0,5)
plt.ylim(-1.1,1.75)
# Create the legend, then fix the fontsize
leg = plt.legend(loc='upper right', ncol = 1, fancybox=True, )
ltext = leg.get_texts()
plt.setp(ltext,fontsize=16)
# Adjust the page layout filling the page using the new tight_layout command
plt.tight_layout(pad=0.5)
# save the figure as a high-res pdf in the current folder
# plt.savefig('plot_filename.pdf')
###Output
_____no_output_____
###Markdown
As the input frequency increases, the response amplitude will start to be less than the input amplitude and the phase lag increases.
###Code
time = np.arange(0,10,0.01)
freq = 1
sin_input = np.sin(freq*time)
T, output = control.forced_response(sys, T=time, U=sin_input, X0=0.0, transpose=False, interpolate=False, return_x=None, squeeze=None)
#############################################################
fig = plt.figure(figsize=(6,4))
ax = plt.gca()
plt.subplots_adjust(bottom=0.17, left=0.17, top=0.96, right=0.96)
# Change the axis units font
plt.setp(ax.get_ymajorticklabels(),fontsize=18)
plt.setp(ax.get_xmajorticklabels(),fontsize=18)
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
# Turn on the plot grid and set appropriate linestyle and color
ax.grid(True,linestyle=':', color='0.75')
ax.set_axisbelow(True)
# Define the X and Y axis labels
plt.xlabel('Time (s)', fontsize=22, weight='bold', labelpad=5)
plt.ylabel('Displacement', fontsize=22, weight='bold', labelpad=10)
plt.plot(T, output, linewidth=2, linestyle='-', label=r'Response')
plt.plot(time, sin_input, linewidth=2, linestyle='--', label=r'Input')
# uncomment below and set limits if needed
# plt.xlim(0,5)
plt.ylim(-1.1,1.75)
# Create the legend, then fix the fontsize
leg = plt.legend(loc='upper right', ncol = 1, fancybox=True, )
ltext = leg.get_texts()
plt.setp(ltext,fontsize=16)
# Adjust the page layout filling the page using the new tight_layout command
plt.tight_layout(pad=0.5)
# save the figure as a high-res pdf in the current folder
# plt.savefig('plot_filename.pdf')
time = np.arange(0,5,0.01)
freq = 10
sin_input = np.sin(freq*time)
T, output = control.forced_response(sys, T=time, U=sin_input, X0=0.0, transpose=False, interpolate=False, return_x=None, squeeze=None)
#############################################################
fig = plt.figure(figsize=(6,4))
ax = plt.gca()
plt.subplots_adjust(bottom=0.17, left=0.17, top=0.96, right=0.96)
# Change the axis units font
plt.setp(ax.get_ymajorticklabels(),fontsize=18)
plt.setp(ax.get_xmajorticklabels(),fontsize=18)
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
# Turn on the plot grid and set appropriate linestyle and color
ax.grid(True,linestyle=':', color='0.75')
ax.set_axisbelow(True)
# Define the X and Y axis labels
plt.xlabel('Time (s)', fontsize=22, weight='bold', labelpad=5)
plt.ylabel('Displacement', fontsize=22, weight='bold', labelpad=10)
plt.plot(T, output, linewidth=2, linestyle='-', label=r'Response')
plt.plot(time, sin_input, linewidth=2, linestyle='--', label=r'Input')
# uncomment below and set limits if needed
# plt.xlim(0,5)
plt.ylim(-1.1,1.75)
# Create the legend, then fix the fontsize
leg = plt.legend(loc='upper right', ncol = 1, fancybox=True, )
ltext = leg.get_texts()
plt.setp(ltext,fontsize=16)
# Adjust the page layout filling the page using the new tight_layout command
plt.tight_layout(pad=0.5)
# save the figure as a high-res pdf in the current folder
# plt.savefig('plot_filename.pdf')
###Output
_____no_output_____
###Markdown
For very high input frequencies, the system's response amplitude starts to become insignificant compared to the amplitude of the sinusoidal input. Bode plot of Second-order systemsSecond-order system transfer function:$$G(s)=\frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$
###Code
# Assign arbitrary value for wn
wn = 10 # natural frequency
# make bode plots for several values of zeta
zeta1 = 0 # damping ratio
num2nd=[wn**2]
den2nd=[1, 2*zeta1*wn, wn**2]
sys2nd = control.tf(num2nd,den2nd)
mag1, phase1, omega1 = control.bode_plot(sys2nd, dB=True, omega=None, plot=False, omega_limits=None, omega_num=None)
zeta2 = 0.1 # damping ratio
num2nd=[wn**2]
den2nd=[1, 2*zeta2*wn, wn**2]
sys2nd = control.tf(num2nd,den2nd)
mag2, phase2, omega2 = control.bode_plot(sys2nd, dB=True, omega=None, plot=False, omega_limits=None, omega_num=None)
zeta3 = 0.5 # damping ratio
num2nd=[wn**2]
den2nd=[1, 2*zeta3*wn, wn**2]
sys2nd = control.tf(num2nd,den2nd)
mag3, phase3, omega3 = control.bode_plot(sys2nd, dB=True, omega=None, plot=False, omega_limits=None, omega_num=None)
zeta4 = 1 # damping ratio
num2nd=[wn**2]
den2nd=[1, 2*zeta4*wn, wn**2]
sys2nd = control.tf(num2nd,den2nd)
mag4, phase4, omega4 = control.bode_plot(sys2nd, dB=True, omega=None, plot=False, omega_limits=None, omega_num=None)
#############################################################
fig = plt.figure(figsize=(6,4))
ax = plt.gca()
plt.subplots_adjust(bottom=0.17, left=0.17, top=0.96, right=0.96)
# Change the axis units font
plt.setp(ax.get_ymajorticklabels(),fontsize=18)
plt.setp(ax.get_xmajorticklabels(),fontsize=18)
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
# Turn on the plot grid and set appropriate linestyle and color
ax.grid(True,linestyle=':', color='0.75')
ax.set_axisbelow(True)
# Define the X and Y axis labels
plt.xlabel('Frequency (rad/s)', fontsize=22, weight='bold', labelpad=5)
plt.ylabel('Magnitude', fontsize=22, weight='bold', labelpad=10)
plt.plot(omega1, mag1, linewidth=2, linestyle='-', label=r'$\zeta=0$')
plt.plot(omega2, mag2, linewidth=2, linestyle='--', label=r'$\zeta=0.1$')
plt.plot(omega3, mag3, linewidth=2, linestyle='-.', label=r'$\zeta=0.5$')
plt.plot(omega4, mag4, linewidth=2, linestyle=':', label=r'$\zeta=1$')
ax.set_yscale('log')
ax.set_xscale('log')
# plt.plot(time, sin_input, linewidth=2, linestyle='--', label=r'Input')
# uncomment below and set limits if needed
# plt.xlim(0,5)
# plt.ylim(-1.1,1.75)
# Create the legend, then fix the fontsize
leg = plt.legend(loc='upper right', ncol = 1, fancybox=True, )
ltext = leg.get_texts()
plt.setp(ltext,fontsize=16)
# Adjust the page layout filling the page using the new tight_layout command
plt.tight_layout(pad=0.5)
# save the figure as a high-res pdf in the current folder
# plt.savefig('plot_filename.pdf')
###Output
_____no_output_____
###Markdown
The peak response amplitude occurs when the input frequency is near the natural frequency of the system (in this case 10 rad/s). For $\zeta=0$, the response magnitude at the natural frequency equal to input frequency is infinite (it doesn't look infinite here because of the sampling rate used to generate the plot). As damping ratio increases, the peak magnitude reduces and moves to a ***slightly*** lower frequency. This is known as the damped frequency, $\omega_d=\omega_n \sqrt{1-\zeta^2}$.
###Code
#############################################################
fig = plt.figure(figsize=(6,4))
ax = plt.gca()
plt.subplots_adjust(bottom=0.17, left=0.17, top=0.96, right=0.96)
# Change the axis units font
plt.setp(ax.get_ymajorticklabels(),fontsize=18)
plt.setp(ax.get_xmajorticklabels(),fontsize=18)
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
# Turn on the plot grid and set appropriate linestyle and color
ax.grid(True,linestyle=':', color='0.75')
ax.set_axisbelow(True)
# Define the X and Y axis labels
plt.xlabel('Frequency (rad/s)', fontsize=22, weight='bold', labelpad=5)
plt.ylabel('Phase (deg)', fontsize=22, weight='bold', labelpad=10)
plt.plot(omega1, phase1*180/np.pi, linewidth=2, linestyle='-', label=r'$\zeta=0$')
plt.plot(omega2, phase2*180/np.pi, linewidth=2, linestyle='--', label=r'$\zeta=0.1$')
plt.plot(omega3, phase3*180/np.pi, linewidth=2, linestyle='-.', label=r'$\zeta=0.5$')
plt.plot(omega4, phase4*180/np.pi, linewidth=2, linestyle=':', label=r'$\zeta=1$')
# ax.set_yscale('log')
ax.set_xscale('log')
ax.set_yticks(np.arange(-180,1,30))
# plt.plot(time, sin_input, linewidth=2, linestyle='--', label=r'Input')
# uncomment below and set limits if needed
# plt.xlim(0,5)
# plt.ylim(-1.1,1.75)
# Create the legend, then fix the fontsize
leg = plt.legend(loc='upper right', ncol = 1, fancybox=True, )
ltext = leg.get_texts()
plt.setp(ltext,fontsize=16)
# Adjust the page layout filling the page using the new tight_layout command
plt.tight_layout(pad=0.5)
# save the figure as a high-res pdf in the current folder
# plt.savefig('plot_filename.pdf')
###Output
_____no_output_____
###Markdown
For undamped second-order systems, the phase angle or lag in the system's vibration is zero until the input frequency reaches the natural frequency. There is then a sudden shift from being completely in-phase to being directly out of phase at 180 degrees. The transition is more gradual for $0<\zeta\leq 1$. No matter the value of the damping ratio, the phase angle plot always passes through 90 degrees at the natural frequency for second-order systems. Transient response from frequency responseAlthough the Bode plots show magnitude and phase of the steady-state response to a sinusoidal input, we can use it to get some information about the system's transient behavior. Looking back at the magnitude of the second-order frequency response, the peak of the response occurs at the resonant frequency $\omega_r$ and has a maximum value of the magnitude $M_{p\omega}$. The resonant frequency is found by taking the derivative of the magnitude with respect to $\omega$ and setting it equal to zero:$$\omega_r=\omega_n\sqrt{1-2\zeta^2} \quad \zeta<0.707$$The peak magnitude at this resonant frequency is:$$M_{p\omega}=|G(i\omega_r)|=\left(2\zeta\sqrt{1-\zeta^2}\right)^{-1} \quad \zeta<0.707$$The relationship between damping ratio, resonant frequency, and resonant magnitude are shown below.
###Code
zeta_range = np.arange(0.01,0.707,0.01)
wr_normalized = np.sqrt(1-2*zeta_range**2)
Mpw = (2*zeta_range*np.sqrt(1-zeta_range**2))**-1
# Mpw=20*np.log10(Mpw)
fig = plt.figure(figsize=(6,4))
ax1 = plt.gca()
plt.subplots_adjust(bottom=0.17, left=0.17, top=0.96, right=0.96)
# Change the axis units font
plt.setp(ax1.get_ymajorticklabels(),fontsize=18)
plt.setp(ax1.get_xmajorticklabels(),fontsize=18)
# Remove the top and right border, they are not needed
ax1.spines['right'].set_color('k')
ax1.spines['top'].set_color('none')
# Define the positions of the axes tick marks
ax1.xaxis.set_ticks_position('bottom')
ax1.yaxis.set_ticks_position('left')
# Manually set the x-axis limits, if necessary
plt.xlim(0.0,0.7)
# Turn on the plot grid and set appropriate linestyle and color
ax1.grid(True, linestyle=':', color='0.75')
ax1.set_axisbelow(True)
# Define the X and Y1 axis labels
ax1.set_xlabel(r'$\zeta$', fontsize=22, weight='bold', labelpad=5)
ax1.set_ylabel(r'Magnitude', fontsize=22, weight='bold', labelpad=10)
# Plots gain used on input to tracking of Surge
ax1.plot(zeta_range, Mpw, linewidth=2, linestyle='-', label=r'$M_{p\omega}$',)
# Manually set the y1-axes limits, if necessary
ax1.set_ylim(0, 4.85)
# Set up the 2nd Y-axis, using the same x-axis as the first
ax2 = ax1.twinx()
# Remove the top border, it's not needed
ax2.spines['top'].set_color('none')
# Turn on the plot grid and set appropriate linestyle and color
ax2.grid(True, linestyle=':', color='0.75')
ax2.set_axisbelow(True)
# Change the y2 axis units font
plt.setp(ax2.get_ymajorticklabels(), fontsize=18)
# Define the Y2 axis labels
ax2.set_ylabel(r'$\omega_r/\omega_n$', fontsize=22, weight='bold', labelpad=10)
ax2.plot(zeta_range, wr_normalized, linewidth=2, linestyle='--', color = '#377eb8', label=r'$\omega_r/\omega_n$')
# Manually set the y2-axes limits, if necessary
# ax2.set_ylim(0, 8)
# Create the legend, then fix the fontsize
# ask matplotlib for the plotted objects and their labels
lines1, labels1 = ax1.get_legend_handles_labels()
lines2, labels2 = ax2.get_legend_handles_labels()
leg = ax2.legend(lines1 + lines2, labels1 + labels2, loc='upper right', ncol = 1, fancybox=True)
ltext = leg.get_texts()
plt.setp(ltext,fontsize=18)
# Adjust the page layout filling the page using the new tight_layout command
plt.tight_layout(pad=0.5)
###Output
_____no_output_____ |
notebooks/exercises/4 - Functions and exceptions.ipynb | ###Markdown
Functions and exceptions FunctionsWrite a function that converts from Celsius to Kelvin.To convert from Celsius to Kelvin you add 273.15 from the value.Try your solution for a few values.
###Code
def celsius_to_kelvin(c):
# implementation here
pass
celsius_to_kelvin(0)
###Output
_____no_output_____
###Markdown
Now write another function to convert from Fahrenheit to Celsius.The formula for doing so is C = 5/9*(F-32)Again, verify that your function does what is expected.
###Code
def fahrenheit_to_celsius(f):
pass
fahrenheit_to_celsius(0)
###Output
_____no_output_____
###Markdown
Now make a function to convert from Fahrenheit to Kelvin.Before you start coding, stop to think for a second. You can actually re-use the two other functions you have made. Fahrenheit to Kelvin can be represented as Fahrenheit to Celsius followed by Celsius to Kelvin.
###Code
def fahrenheit_to_kelvin(f):
pass
fahrenheit_to_kelvin(0)
###Output
_____no_output_____
###Markdown
Finally, implement a more general conversion function that takes as arguments also the input and output scales, e.g. **from_scale** and **to_scale**. Provide default values for **from_scale** and **to_scale**, and call the function with different number of arguments. Try to call the function using both positional and keyword arguments. Which approach is more readable for you? ExceptionsOk, here's some code that fails. Find out at least 2 errors it raises by giving different inputs.Then construct a ``try-except`` clause around the lines of code.
###Code
var = float(input("give a number: "))
divided = 1/var
###Output
_____no_output_____
###Markdown
The `open` function is used to open files for reading or writing. We'll get to that but first let's try to open a file that doesn't exist.Filesystem related errors are very common. A file might not exist or for some reason the user might not have the rights to open the file. Go ahead and make a try-except clause to catch this error.
###Code
file_handle = open("i_dont_exist", "r")
###Output
_____no_output_____
###Markdown
Compound Implement the three remaining functions so you can convert freely between Fahrenheit and Kelvin.Now look at the temperature_converter function. Try to figure out what errors malformed user input can cause. You can either wrap the function call in a ``try-except`` or you can wrap parts of the function.If you have time you can increase the complexity of the function to cover centigrade conversions as well but this is not required. Hint: if you always convert the value to centigrade if it is not and to the desired output if desired output is not you can simplify the code.
###Code
def celsius_to_fahrenheit(c):
pass
def kelvin_to_celsius(k):
pass
def kelvin_to_fahrenheit(k):
pass
def temperature_converter():
from_scale = input("Give scale to convert from: ")
to_scale = input("Give scale to convert to: ")
value = float(input("Give temperature: "))
if from_scale == "K" and to_scale == "F":
return kelvin_to_fahrenheit(value)
elif from_scale == "F" and to_scale == "K":
return fahrenheit_to_kelvin
elif from_scale == "C" or to_scale == "C":
raise NotImplementedError("Conversion to Celsius not implemented!")
return
temperature_converter()
###Output
_____no_output_____ |
content/_build/jupyter_execute/notebooks/Appendix-NLLS-Python.ipynb | ###Markdown
Model fitting in Python Introduction Python offers a wide range of tools for fitting mathematical models to data. Here we will look at using Python to fit non-linear models to data using Least Squares (NLLS). You may want to have a look at [this Chapter](./20-ModelFitting.ipynb), and in particular, it NLLS section, and the lectures on [Model fitting](https://github.com/mhasoba/TheMulQuaBio/tree/master/content/lectures/ModelFitting) and [NLLS](https://github.com/mhasoba/TheMulQuaBio/blob/master/content/lectures/NLLS) before proceeding. WE will use the `Lmfit` package, which provides a high-level interface to non-linear optimization and curve fitting problems for Python.There are three main things that one needs in order to perform NLLS fitting succesfully in Python.1. Data2. Model specification3. Initial values for parameters in the modelThe image below summarizes how NLLS fitting works with these 3 entities. We will use population growth rates as an example, as we did the [model fitting chapter](Model-Fitting-R-Population-Growth) (where we used R).First let's import the necessary packages (you may need to install `lmfit` first).
###Code
from lmfit import Minimizer, Parameters, report_fit
import numpy as np
import matplotlib.pylab as plt
###Output
_____no_output_____
###Markdown
Now, create some artificial data:
###Code
t = np.arange(0, 24, 2)
N = np.array([32500, 33000, 38000, 105000, 445000, 1430000, 3020000, 4720000, 5670000, 5870000, 5930000, 5940000])
np.random.seed(1234) #Set random seed for reproducibility
N_rand = N*(1 + np.random.normal(scale = 0.1, size = len(N))) #Add some error to data
###Output
_____no_output_____
###Markdown
Here's what the data look like:
###Code
plt.plot(t, N_rand, 'r+', markersize = 15, markeredgewidth = 2, label = 'Data')
plt.xlabel('t', fontsize = 20)
plt.ylabel(r'$N$', fontsize = 20)
plt.ticklabel_format(style='scientific', scilimits=[0,3])
plt.yscale('log')
###Output
_____no_output_____
###Markdown
Fitting a Linear model to the data Lets start with the simplest case; a linear model. \begin{equation*}\label{eq:linear_model} N_t = at^3 + bt^2 + ct + d\end{equation*} where $a$, $b$, $c$ and $d$, are phenomenological parameters. Using NLLS
###Code
#Create object for storing parameters
params_linear = Parameters()
#Add parameters and initial values to it
params_linear.add('a', value = 1)
params_linear.add('b', value = 1)
params_linear.add('c', value = 1)
params_linear.add('d', value = 1)
#Write down the objective function that we want to minimize, i.e., the residuals
def residuals_linear(params, t, data):
"""Calculate cubic growth and subtract data"""
#Get an ordered dictionary of parameter values
v = params.valuesdict()
#Cubic model
model = v['a']*t**3 + v['b']*t**2 + v['c']*t + v['d']
return model - data #Return residuals
#Create a Minimizer object
minner = Minimizer(residuals_linear, params_linear, fcn_args=(t, np.log(N_rand)))
#Perform the minimization
fit_linear_NLLS = minner.minimize()
###Output
_____no_output_____
###Markdown
The variable `fit_linear` belongs to a class called [`MinimizerResult`](https://lmfit.github.io/lmfit-py/fitting.htmllmfit.minimizer.MinimizerResult), which include data such as status and error messages, fit statistics, and the updated (i.e., best-fit) parameters themselves in the params attribute. Now get the summary of the fit:
###Code
report_fit(fit_linear_NLLS)
###Output
[[Fit Statistics]]
# fitting method = leastsq
# function evals = 10
# data points = 12
# variables = 4
chi-square = 1.68617886
reduced chi-square = 0.21077236
Akaike info crit = -15.5493005
Bayesian info crit = -13.6096739
[[Variables]]
a: -0.00147820 +/- 5.3322e-04 (36.07%) (init = 1)
b: 0.03687009 +/- 0.01787451 (48.48%) (init = 1)
c: 0.14339899 +/- 0.16467922 (114.84%) (init = 1)
d: 10.0545124 +/- 0.39977042 (3.98%) (init = 1)
[[Correlations]] (unreported correlations are < 0.100)
C(a, b) = -0.984
C(b, c) = -0.960
C(a, c) = 0.900
C(c, d) = -0.779
C(b, d) = 0.621
C(a, d) = -0.528
###Markdown
Using OLS`lmfit`'s purpose is not to fit linear models, although it is general enough to do so. Recall that a 3rd degree polynomial is a Lienar model, and it can be fitted using *Ordinary Least Squares*. You can easily do this with the function `polyfit`. Let's try this for the same data.
###Code
fit_linear_OLS = np.polyfit(t, np.log(N_rand), 3) # degree = 3 as this is a cubic
###Output
_____no_output_____
###Markdown
Now check the fitted coefficients:
###Code
print(fit_linear_OLS)
###Output
[-1.47819938e-03 3.68700893e-02 1.43398989e-01 1.00545124e+01]
###Markdown
Comparing the NLLS and OLS fitsLet's compare the the coefficients obtained using NLLS (using `lmfit`) vs using OLS (with `polyfit`) above. First have a another look at the NLLS result:
###Code
fit_linear_NLLS.params
###Output
_____no_output_____
###Markdown
Now extract the just the estimated parameter values obtained with `lmfit` (it takes some effort as these are saved in a Python dictionary within the fitted model object):
###Code
par_dict = fit_linear_NLLS.params.valuesdict().values()
#Transform these into an array
par = np.array(list(par_dict))
#Check the difefrences in the the parameter values obtained with lmfit and polyfit
print(fit_linear_OLS - par)
###Output
[ 2.18245647e-12 2.18892265e-12 7.72548692e-13 -1.61293201e-11]
###Markdown
There are differences because NLLS is not an exact method. But these differences are *tiny*, showing that NLLS converges on pretty much the same solution as the (exact) OLS method.Next, you can calculate the residuals of the fit: Calculating the residuals, etc. Once you have done the model fitting you can calculate the residuals:
###Code
#Construct the fitted polynomial equation
my_poly = np.poly1d(fit_linear_OLS)
#Compute predicted values
ypred = my_poly(t)
#Calculate residuals
residuals = ypred - np.log(N_rand)
###Output
_____no_output_____
###Markdown
The residuals can be then used to calculate BIC, AIC, etc, as you [learned previously](Model-Fitting-R-Comparing-Models). Exercise* We calculated the residuals above using the OLS fit of the cubic model to the data. Calculate the residuals for the NLLS fit of the same model to the data (i.e., using the `fit_linear_NLLS` object). * *Hint*: To do this, you will need to first extract the coefficients, and then use the `residuals_linear` function that we created above. Fitting Non-linear models to the dataNow let's use `lmfit` to do what it was actually designed for: fitting non-linear mathematical models to data. We will fit the same two models that we fitted in the [Model Fitting Chapter](Model-Fitting-R-Population-Growth) (where we used R). Logistic model fit A classical, somewhat mechanistic model is the logistic growth equation:\begin{equation*} N_t = \frac{N_0 N_{max} e^{r t}}{N_{max} + N_0 (e^{r t} - 1)}\end{equation*}Here $N_t$ is population size at time $t$, $N_0$ is initial population size, $r$ is maximum growth rate (AKA $r_{max}$), and $N_{max}$ is carrying capacity (commonly denoted by $K$ in the ecological literature).
###Code
#Create object for parameter storing
params_logistic = Parameters()
params_logistic.add('N_0', value = N_rand[0])
params_logistic.add('N_max', value = N_rand[-1])
#Recall the value for growth rate obtained from a linear fit
params_logistic.add('r', value = 0.62)
#Write down the objective function that we want to minimize, i.e., the residuals
def residuals_logistic(params, t, data):
'''Model a logistic growth and subtract data'''
#Get an ordered dictionary of parameter values
v = params.valuesdict()
#Logistic model
model = np.log(v['N_0'] * v['N_max'] * np.exp(v['r']*t) / \
(v['N_max'] + v['N_0'] * ( np.exp(v['r']*t) - 1 )))
#Return residuals
return model - data
#Create a Minimizer object
minner = Minimizer(residuals_logistic, params_logistic, fcn_args=(t, np.log(N_rand)))#Plug in the logged data.
#Perform the minimization
fit_logistic = minner.minimize(method = 'leastsq')
###Output
_____no_output_____
###Markdown
Note that I am choosing the least squares as the optimization method. A table with alternative fitting algorithms offered by lmfit can be found [here](https://lmfit.github.io/lmfit-py/fitting.htmlchoosing-different-fitting-methods).
###Code
#Get summary of the fit
report_fit(fit_logistic)
###Output
[[Fit Statistics]]
# fitting method = leastsq
# function evals = 34
# data points = 12
# variables = 3
chi-square = 2.19693074
reduced chi-square = 0.24410342
Akaike info crit = -14.3741446
Bayesian info crit = -12.9194246
[[Variables]]
N_0: 13998.5739 +/- 4769.60185 (34.07%) (init = 34032.16)
N_max: 7108406.32 +/- 2165947.53 (30.47%) (init = 6529216)
r: 0.44848151 +/- 0.05161938 (11.51%) (init = 0.62)
[[Correlations]] (unreported correlations are < 0.100)
C(N_0, r) = -0.807
C(N_max, r) = -0.448
C(N_0, N_max) = 0.239
###Markdown
Where function evals, is the number of iterations needed to reach the minimum. The `report_fit` function also offers estimations of goodness of fit such as $\chi^2$, BIC and AIC. These are calculated as specified [here](https://lmfit.github.io/lmfit-py/fitting.htmlakaike-and-bayesian-information-criteria). Finally, uncertainties of each parameter estimate, correlation levels between them are also calculated. Details and caveats about these values can be found [here](https://lmfit.github.io/lmfit-py/fitting.htmluncertainties-in-variable-parameters-and-their-correlations). Gompertz model Another alternative is the Gompertz model, which has been used frequently in the literature to model bacterial growth\begin{equation*}\label{eq:Gompertzlog} \log(N_t) = N_0 + (N_{max} - N_0) e^{-e^{r_{max} \exp(1) \frac{t_{lag} - t}{(N_{max} - N_0) \log(10)} + 1}}\end{equation*}Here maximum growth rate ($r_{max}$) is the tangent to the inflection point, $t_{lag}$ is the x-axis intercept to this tangent (duration of the delay before the population starts growing exponentially) and $\log\left(\frac{N_{max}}{N_0}\right)$ is the asymptote of the log-transformed population growth trajectory, i.e., the log ratio of maximum population density $N_{max}$ (aka “carrying capacity”) and initial cell (Population) $N_0$ density.
###Code
#Create object for parameter storing
params_gompertz = Parameters()
# add with tuples: (NAME VALUE VARY MIN MAX EXPR BRUTE_STEP)
params_gompertz.add_many(('N_0', np.log(N_rand)[0] , True, 0, None, None, None),
('N_max', np.log(N_rand)[-1], True, 0, None, None, None),
('r_max', 0.62, True, None, None, None, None),
('t_lag', 5, True, 0, None, None, None))#I see it in the graph
#Write down the objective function that we want to minimize, i.e., the residuals
def residuals_gompertz(params, t, data):
'''Model a logistic growth and subtract data'''
#Get an ordered dictionary of parameter values
v = params.valuesdict()
#Logistic model
model = v['N_0'] + (v['N_max'] - v['N_0']) * \
np.exp(-np.exp(v['r_max'] * np.exp(1) * (v['t_lag'] - t) / \
((v['N_max'] - v['N_0']) * np.log(10)) + 1))
#Return residuals
return model - data
#Create a Minimizer object
minner = Minimizer(residuals_gompertz, params_gompertz, fcn_args=(t, np.log(N_rand)))
#Perform the minimization
fit_gompertz = minner.minimize()
#Sumarize results
report_fit(fit_gompertz)
###Output
[[Fit Statistics]]
# fitting method = leastsq
# function evals = 37
# data points = 12
# variables = 4
chi-square = 0.11350314
reduced chi-square = 0.01418789
Akaike info crit = -47.9299775
Bayesian info crit = -45.9903509
[[Variables]]
N_0: 10.3910132 +/- 0.07901002 (0.76%) (init = 10.43506)
N_max: 15.6520240 +/- 0.06730933 (0.43%) (init = 15.6918)
r_max: 1.74097660 +/- 0.09837840 (5.65%) (init = 0.62)
t_lag: 4.52049075 +/- 0.24729695 (5.47%) (init = 5)
[[Correlations]] (unreported correlations are < 0.100)
C(r_max, t_lag) = 0.757
C(N_0, t_lag) = 0.581
C(N_max, r_max) = -0.465
C(N_max, t_lag) = -0.318
C(N_0, N_max) = -0.132
C(N_0, r_max) = 0.115
###Markdown
Plot the results
###Code
plt.rcParams['figure.figsize'] = [20, 15]
#Linear
result_linear = np.log(N_rand) + fit_linear_NLLS.residual # These points lay on top of the theoretical fitted curve
plt.plot(t, result_linear, 'y.', markersize = 15, label = 'Linear')
#Get a smooth curve by plugging a time vector to the fitted logistic model
t_vec = np.linspace(0,24,1000)
log_N_vec = np.ones(len(t_vec))#Create a vector of ones.
residual_smooth_linear = residuals_linear(fit_linear_NLLS.params, t_vec, log_N_vec)
plt.plot(t_vec, residual_smooth_linear + log_N_vec, 'orange', linestyle = '--', linewidth = 1)
#Logistic
result_logistic = np.log(N_rand) + fit_logistic.residual
plt.plot(t, result_logistic, 'b.', markersize = 15, label = 'Logistic')
#Get a smooth curve by plugging a time vector to the fitted logistic model
t_vec = np.linspace(0,24,1000)
log_N_vec = np.ones(len(t_vec))
residual_smooth_logistic = residuals_logistic(fit_logistic.params, t_vec, log_N_vec)
plt.plot(t_vec, residual_smooth_logistic + log_N_vec, 'blue', linestyle = '--', linewidth = 1)
#Gompertz
result_gompertz = np.log(N_rand) + fit_gompertz.residual
plt.plot(t, result_gompertz, 'g.', markersize = 15, label = 'Gompertz')
#Get a smooth curve by plugging a time vector to the fitted logistic model
t_vec = np.linspace(0,24,1000)
log_N_vec = np.ones(len(t_vec))
residual_smooth_gompertz = residuals_gompertz(fit_gompertz.params, t_vec, log_N_vec)
plt.plot(t_vec, residual_smooth_gompertz + log_N_vec, 'green', linestyle = '--', linewidth = 1)
#Plot data points
plt.plot(t, np.log(N_rand), 'r+', markersize = 15,markeredgewidth = 2, label = 'Data')
#Plot legend
plt.legend(fontsize = 20)
plt.xlabel('t', fontsize = 20)
plt.ylabel(r'$\log(N_t)$', fontsize = 20)
plt.ticklabel_format(style='scientific', scilimits=[0,3])
###Output
_____no_output_____
###Markdown
ExerciseThe generalized Logistic model (also known as Richards' curve) is an extension of the logistic or sigmoid functions, allowing for more flexible S-shaped curves:\begin{equation*}\label{eq:Hill} \log(N_t) = A + \frac{K - A}{1 + Q(e^{-Bt})^{1/\mu}}\end{equation*}Where $A$ is the lower asymptote, $K$ is the higher asymptote. If $A=0$ then $K$ is the carrying capacity. $B$ is the growth rate, $\mu >0$ affects near which asymptote maximum growth occurs. $Q$ is related to the value $N(0)$Fit this model to the data using as initial values for the parameters: $A = 10$, $K = 16$, $Q = 0.5$, $B = 1$, $\mu = 0.1$, $T = 7.5$
###Code
#Define the parameter object
params_genlogistic = Parameters()
#Add parameters and initial values
params_genlogistic.add('A', value = 10, min = 0)
params_genlogistic.add('K', value = 16, min = 0)
params_genlogistic.add('Q', value = 0.5, min = 0)
params_genlogistic.add('B', value = 1, min = 0)
params_genlogistic.add('mu', value = 0.1, min = 0)
params_genlogistic.add('T', value = 7.5, min = 0)
#Define the model
def residuals_genlogistic(params, t, data):
'''Model a logistic growth and subtract data'''
#Get an ordered dictionary of parameter values
v = params.valuesdict()
#Logistic model
model = v['A'] + (v['K'] - v['A']) / \
(1 + v['Q'] * np.exp(-v['B']*(t-v['T'])))**(1/v['mu'])
#Return residuals
return model - data
#Perform the fit
#Create a Minimizer object
minner = Minimizer(residuals_genlogistic, params_genlogistic, fcn_args=(t, np.log(N_rand)))
#Perform the minimization
fit_genlogistic = minner.minimize()
#Overlay the fit with the others
plt.rcParams['figure.figsize'] = [20, 15]
#Linear
result_linear = np.log(N_rand) + fit_linear_NLLS.residual
plt.plot(t, result_linear, 'y.', markersize = 15, label = 'Linear')
#Get a smooth curve by plugging a time vector to the fitted logistic model
t_vec = np.linspace(0,24,1000)
log_N_vec = np.ones(len(t_vec))
residual_smooth_linear = residuals_linear(fit_linear_NLLS.params, t_vec, log_N_vec)
plt.plot(t_vec, residual_smooth_linear + log_N_vec, 'orange', linestyle = '--', linewidth = 1)
#Logistic
result_logistic = np.log(N_rand) + fit_logistic.residual
plt.plot(t, result_logistic, 'b.', markersize = 15, label = 'Logistic')
#Get a smooth curve by plugging a time vector to the fitted logistic model
t_vec = np.linspace(0,24,1000)
log_N_vec = np.ones(len(t_vec))
residual_smooth_logistic = residuals_logistic(fit_logistic.params, t_vec, log_N_vec)
plt.plot(t_vec, residual_smooth_logistic + log_N_vec, 'blue', linestyle = '--', linewidth = 1)
#Gompertz
result_gompertz = np.log(N_rand) + fit_gompertz.residual
plt.plot(t, result_gompertz, 'g.', markersize = 15, label = 'Gompertz')
#Get a smooth curve by plugging a time vector to the fitted logistic model
t_vec = np.linspace(0,24,1000)
log_N_vec = np.ones(len(t_vec))
residual_smooth_gompertz = residuals_gompertz(fit_gompertz.params, t_vec, log_N_vec)
plt.plot(t_vec, residual_smooth_gompertz + log_N_vec, 'green', linestyle = '--', linewidth = 1)
#Generalized logistic
result_genlogistic = np.log(N_rand) + fit_genlogistic.residual
plt.plot(t, result_genlogistic, '.', markerfacecolor = 'magenta',
markeredgecolor = 'magenta', markersize = 15, label = 'Generalized Logistic')
#Get a smooth curve by plugging a time vector to the fitted logistic model
t_vec = np.linspace(0,24,1000)
log_N_vec = np.ones(len(t_vec))
residual_smooth_genlogistic = residuals_genlogistic(fit_genlogistic.params, t_vec, log_N_vec)
plt.plot(t_vec, residual_smooth_genlogistic + log_N_vec, 'magenta', linestyle = '--', linewidth = 1)
#Plot data points
plt.plot(t, np.log(N_rand), 'r+', markersize = 15,markeredgewidth = 2, label = 'Data')
#Plot legend
plt.legend(fontsize = 20)
plt.xlabel('t', fontsize = 20)
plt.ylabel(r'$\log(N_t)$', fontsize = 20)
plt.ticklabel_format(style='scientific', scilimits=[0,3])
###Output
_____no_output_____ |
Archive/sandbox.ipynb | ###Markdown
Read it in
###Code
import pandas as pd
import numpy as np
df = pd.read_csv('StrongSignal_Continuous.tsv.gz',sep='\t',index_col=0)
###Output
_____no_output_____
###Markdown
Get subset as numpy arrays
###Code
X = df.iloc[:,:-1].values.astype(np.float32)
X_columns = df.iloc[:,:-1].columns
y = df.iloc[:,-1:].values.astype(np.int32).ravel()
y_columns = df.iloc[:,-1:].columns
print y
###Output
[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3]
###Markdown
X and y get change in a function, then we write them
###Code
X = X[0:4]
y = y[0:4]
X_final = pd.DataFrame(data=X,columns=X_columns)
y_final = pd.DataFrame(data=y,columns=y_columns)
print X_final
X_final.to_csv('output_X.tsv',sep='\t')
y_final.to_csv('output_y.tsv',sep='\t')
cp ../Dropbox/ML-Flex-Lite/Validation/StrongSignal_Continuous.tsv.gz StrongSignal_Continuous.tsv.gz
import pandas as pd
import numpy as np
import sys
#DataFilePath = sys.argv[1]
#Prefix = sys.argv[2]
#OutFilePath = sys.argv[3]
#add checks to make sure command line data is valid
df = pd.read_csv('StrongSignal_Continuous.tsv.gz', sep = '\t', index_col = 0)
#change to DataFilePath
X = df.iloc[:,:-1].values.astype(np.float32)
X_columns = df.iloc[:,-1:].columns
y = df.iloc[:,-1:].values.astype(np.int32).ravel()
y_columns = df.iloc[:,-1:].columns
from imblearn.under_sampling import NearMiss
#from imblearn.under_sampling import ClusterCentroids
#from imblearn.over_sampling import RandomOverSampler
#from imblearn.over_sampling import ADYSN
sampler = NearMiss(version=2)
#sampler = ClusterCentroids()
#sampler = RandomOverSampler()
#sampler ADYSN()
X_resampled, y_resampled = sampler.fit_sample(X, y)
X_columns = df.iloc[:,:].columns
a = np.array(X_resampled)
b = np.array(y_resampled)
np.column_stack((a,b))
X_y_Final = np.column_stack((a,b))
X_y_Final = pd.DataFrame(data=X_y_Final,columns=X_columns)
np.savetxt("output_X.tsv", X_y_Final, delimiter ='\t')
print X_y_Final
print X_y_Final
###Output
_____no_output_____ |
jupyter/Chapter02/apparent_range.ipynb | ###Markdown
***Introduction to Radar Using Python and MATLAB*** Andy Harrison - Copyright (C) 2019 Artech House Apparent Range*** Since a wave transmitted through the atmosphere experiences a refractive index that is a function of altitude, the path length from the transmitter to the target exceeds the geometrical path length, as shown in Figure 2.9. This difference in range is described by the integral$$\Delta R = \int \limits_{A}^{B} (n - 1) \, dl,$$where $l$ is the length along the path, and $(A, B)$ is the starting and ending points of the path. This expression is used when the variation of the constitutive parameters along the integration path are known. A semiempirical method was developed in order to calculate the apparent range when the temperature, atmospheric pressure, and relative humidity are known at ground level. This method was derived in 1979 using atmospheric radio profiles at 500 meteorological stations over the course of one year. The expression for the difference in range for this method is$$\Delta R = \frac{\Delta R_V}{\sin \theta \sqrt{(1 + k \cot^2\theta)}} + \delta(\theta, \Delta R_V),$$*** Begin by getting the library path
###Code
import lib_path
###Output
_____no_output_____
###Markdown
Set the radar and target location (latitude (deg), longitude (deg), altitude (m))
###Code
from numpy import array
radar_lla = array([34.0, 84.0, 120.0])
target_lla = array([34.0, 80.0, 12000.0])
###Output
_____no_output_____
###Markdown
Set up the keyword args
###Code
kwargs = {'radar_lla': radar_lla, 'target_lla': target_lla}
###Output
_____no_output_____
###Markdown
Calculate the true and apparent ranges using the `apparent_range` routine
###Code
from Libs.wave_propagation import refraction
true_range, apparent_range = refraction.apparent_range(**kwargs)
###Output
_____no_output_____
###Markdown
Display the true and apparent ranges
###Code
print('{:.4f}'.format(true_range/1.e3))
print('{:.4f}'.format(apparent_range/1.e3))
###Output
370.0054
370.0776
|
notebooks/5.0_comparing_magnifications/3.1_20x_dw.export_matching.field_thr.ipynb | ###Markdown
Read shift data
###Code
shifts = pd.read_csv(f"shift_correction/{selected_magnification}_{selected_image_type}.shifts.csv")
shifts.index = shifts["sid"].values
shifts.drop("sid", 1, inplace=True)
###Output
_____no_output_____
###Markdown
Matching 20x_raw and reference dots
###Code
dots_data = pd.read_csv("/mnt/data/Imaging/202105-Deconwolf/data_210726/dots_data.clean.tsv.gz", sep="\t")
dots_data = dots_data[selected_magnification == dots_data["magnification"]]
dots_data = dots_data[selected_image_type == dots_data["image_type"]]
thresholds_table = pd.read_csv("../../data/magnifications_matching/intensity_thresholds.by_field.tsv", sep="\t")
matched_dots = pd.read_csv(
os.path.join("../../data/magnifications_matching",
f"{selected_magnification}_{selected_image_type}.matched_dots.field_thr.tsv"
), sep="\t")
reference = pd.read_csv("../../data/60x_reference/ref__dw.field_thr.tsv", sep="\t")
all_20x_dots: List[pd.DataFrame] = []
selected_20x_dots: List[pd.DataFrame] = []
for current_field_id in tqdm(np.unique(dots_data["sid"])):
thresholds = thresholds_table.loc[current_field_id == thresholds_table["sid"], :]
intensity_thr = thresholds.loc[selected_image_type == thresholds["image_type"], "thr"].values[0]
dot_max_z_proj = tifffile.imread(os.path.join(dot_image_folder_path, f"a647_{current_field_id:03d}.tif")).max(0)
ref_max_z_proj = tifffile.imread(os.path.join(ref_image_folder_path, f"a647_{current_field_id:03d}.tif")).max(0)
dot_labels = tifffile.imread(os.path.join(dot_mask_folder_path, f"a647_{current_field_id:03d}.dilated_labels.from_60x.tiff")
).reshape(dot_max_z_proj.shape)
ref_labels = tifffile.imread(os.path.join(ref_mask_folder_path, f"a647_{current_field_id:03d}.dilated_labels.tiff")
).reshape(ref_max_z_proj.shape)
dots = dots_data.loc[current_field_id == dots_data["sid"], :].copy(
).sort_values("Value2", ascending=False).reset_index(drop=True)
dot_coords = dots.loc[intensity_thr <= dots["Value2"], ("x", "y")].copy().reset_index(drop=True)
dot_coords2 = dot_coords.copy() / aspect
dot_coords2["x"] += (shifts.loc[current_field_id, "x"] * 9)
dot_coords2["y"] += (shifts.loc[current_field_id, "y"] * 9)
ref_coords = reference.loc[reference["sid"] == current_field_id, ("x", "y")].copy().reset_index(drop=True)
matched_20x_dots = matched_dots.loc[matched_dots["series"] == current_field_id, "id_20x"].values
matched_60x_dots = matched_dots.loc[matched_dots["series"] == current_field_id, "id_60x"].values
max_match_dist = matched_dots.loc[matched_dots["series"] == current_field_id, "eudist"].max()
all_20x_dots.append(dots.loc[intensity_thr <= dots["Value2"], :])
selected_20x_dots.append(dots.loc[matched_20x_dots, :])
pd.concat(all_20x_dots).reset_index(
drop=True).to_csv(os.path.join("../../data/magnifications_matching",
f"{selected_magnification}_{selected_image_type}.field_thr.all.tsv"),
sep="\t", index=False)
pd.concat(selected_20x_dots).reset_index(
drop=True).to_csv(os.path.join("../../data/magnifications_matching",
f"{selected_magnification}_{selected_image_type}.field_thr.selected.tsv"),
sep="\t", index=False)
###Output
_____no_output_____ |
{{ cookiecutter.repo_name }}/notebooks/scratch_pad.ipynb | ###Markdown
{{cookiecutter.project_name}}{{cookiecutter.description}} Data Sources- file1 : Link to SF Report- file2: Link to SF Report (As Needed)- file3: Link to SF Report (As Needed) Changes- {% now 'utc', '%m-%d-%Y' %} : Started project
###Code
# ALWAYS RUN
# General Setup
%load_ext dotenv
%dotenv
%load_ext nb_black
from salesforce_reporting import Connection, ReportParser
import pandas as pd
from pathlib import Path
from datetime import datetime
import helpers
import os
import numpy as np
from reportforce import Reportforce
SF_PASS = os.environ.get("SF_PASS")
SF_TOKEN = os.environ.get("SF_TOKEN")
SF_USERNAME = os.environ.get("SF_USERNAME")
sf = Reportforce(username=SF_USERNAME, password=SF_PASS, security_token=SF_TOKEN)
###Output
_____no_output_____
###Markdown
File Locations
###Code
# ALWAYS RUN
today = datetime.today()
in_file1 = Path.cwd() / "data" / "raw" / "sf_output_file1.csv"
summary_file = Path.cwd() / "data" / "processed" / "processed_data.pkl"
in_file2 = Path.cwd() / "data" / "raw" / "sf_output_file2.csv"
summary_file2 = Path.cwd() / "data" / "processed" / "processed_data_file2.pkl"
in_file3 = Path.cwd() / "data" / "raw" / "sf_output_file3.csv"
summary_file3 = Path.cwd() / "data" / "processed" / "processed_data_file3.pkl"
in_file4 = Path.cwd() / "data" / "raw" / "sf_output_file4.csv"
summary_file4 = Path.cwd() / "data" / "processed" / "processed_data_file4.pkl"
###Output
_____no_output_____
###Markdown
Load Report From Salesforce
###Code
# Run if downloading report from salesforce
# File 1
report_id_file1 = "SF_REPORT_ID"
file_1_id_column = '18 Digit ID' # adjust as needed
sf_df = sf.get_report(report_id_file1, id_column=file_1_id_column)
# File 2 (As needed)
# report_id_file2 = "SF_REPORT_ID"
# file_2_id_column = '18 Digit ID' # adjust as needed
# sf_df_file2 = sf.get_report(report_id_file2, id_column=file_2_id_column)
# File 3 (As needed)
# report_id_file3 = "SF_REPORT_ID"
# file_3_id_column = '18 Digit ID' # adjust as needed
# sf_df_file3 = sf.get_report(report_id_file3, id_column=file_3_id_column)
###Output
_____no_output_____
###Markdown
Save report as CSV
###Code
# Only run if ran above cell
# File 1
sf_df.to_csv(in_file1, index=False)
# File 2 and 3 (As needed)
# sf_df_file2.to_csv(in_file2, index=False)
# sf_df_file3.to_csv(in_file3, index=False)
###Output
_____no_output_____
###Markdown
Load DF from saved CSV* Start here if CSV already exist
###Code
# ALWAYS RUN
# Data Frame for File 1 - if using more than one file, rename df to df_file1
df = pd.read_csv(in_file1)
# Data Frames for File 1 and 2 (As needed)
# df_file2 = pd.read_csv(in_file2)
# df_file3 = pd.read_csv(in_file3)
###Output
_____no_output_____
###Markdown
Data Manipulation
###Code
# File 1
df = helpers.shorten_site_names(df)
df = helpers.clean_column_names(df)
# File 2
# df_file2 = helpers.shorten_site_names(df_file2)
# df_file2 = helpers.clean_column_names(df_file2)
###Output
_____no_output_____
###Markdown
Save output file into processed directorySave a file in the processed directory that is cleaned properly. It will be read in and used later for further analysis.
###Code
# Save File 1 Data Frame (Or master df)
df.to_pickle(summary_file)
###Output
_____no_output_____ |
courses/machine_learning/deepdive2/computer_vision_fun/labs/classifying_images_with_pre-built_tf_container_on_vertex_ai.ipynb | ###Markdown
Classifying Images with pre-built TF Container on Vertex AIThis notebook demonstrates how to implement different image models on MNIST using the [tf.keras API](https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras). Learning Objectives1. Understand how to build a Dense Neural Network (DNN) for image classification.2. Understand how to use dropout (DNN) for image classification.3. Understand how to use Convolutional Neural Networks (CNN).4. Know how to deploy and use an image classifcation model using Google Cloud's [Vertex AI](https://cloud.google.com/vertex-ai/).Each learning objective will correspond to a __TODO__ in the notebook, where you will complete the notebook cell's code before running the cell. Refer to the [solution notebook](../solutions/classifying_images_with_pre-built_tf_container_on_vertex_ai.ipynb) for reference.First things first. Configure the parameters below to match your own Google Cloud project details. If you don’t want to change the region, leave all settings as they are. Otherwise, update the region as you want, leave other settings as they are and run the cell.
###Code
from datetime import datetime
import os
REGION = 'us-central1'
PROJECT = !(gcloud config get-value core/project)
PROJECT = PROJECT[0]
BUCKET = PROJECT
MODEL_TYPE = "cnn" # "linear", "dnn", "dnn_dropout", or "cnn"
# Do not change these
os.environ["PROJECT"] = PROJECT
os.environ["BUCKET"] = BUCKET
os.environ["REGION"] = REGION
os.environ["MODEL_TYPE"] = MODEL_TYPE
###Output
_____no_output_____
###Markdown
Building a dynamic modelThis notebook demonstrates how to implement DNN and CNN models on [MNIST](http://yann.lecun.com/exdb/mnist/) using the [tf.keras API](https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras). In the previous notebook, “[Classifying_Images_with_DNN_Model.ipynb](https://github.com/GoogleCloudPlatform/training-data-analyst/blob/master/courses/machine_learning/deepdive2/computer_vision_fun/labs/7_Classifying_Images_with_DNN_Model.ipynb)”, you ran our code directly from the notebook. In order to run it on Vertex AI, you can also package your notebook as a python module.The boilerplate structure for this module has already been set up in the folder `mnist_models`. The module lives in the sub-folder, `trainer`, and is designated as a python package with the empty `__init__.py` (`mnist_models/trainer/__init__.py`) file. It still needs the model and a trainer to run it, so let's make them.Let's start with the trainer file first. This file parses command line arguments to feed into the model.
###Code
%%writefile mnist_models/trainer/task.py
import argparse
import json
import os
import sys
from . import model
def _parse_arguments(argv):
"""Parses command-line arguments."""
parser = argparse.ArgumentParser()
parser.add_argument(
'--model_type',
help='Which model type to use',
type=str, default='linear')
parser.add_argument(
'--epochs',
help='The number of epochs to train',
type=int, default=10)
parser.add_argument(
'--steps_per_epoch',
help='The number of steps per epoch to train',
type=int, default=100)
parser.add_argument(
'--job-dir',
help='Directory where to save the given model',
type=str, default='mnist_models/')
return parser.parse_known_args(argv)
def main():
"""Parses command line arguments and kicks off model training."""
args = _parse_arguments(sys.argv[1:])[0]
# Configure path for hyperparameter tuning.
trial_id = json.loads(
os.environ.get('TF_CONFIG', '{}')).get('task', {}).get('trial', '')
output_path = args.job_dir if not trial_id else args.job_dir + '/'
model_layers = model.get_layers(args.model_type)
image_model = model.build_model(model_layers, args.job_dir)
model_history = model.train_and_evaluate(
image_model, args.epochs, args.steps_per_epoch, args.job_dir)
if __name__ == '__main__':
main()
###Output
Writing mnist_models/trainer/task.py
###Markdown
Next, let's group non-model functions into a util file to keep the model file simple. You'll copy over the `scale` and `load_dataset` functions from the previous lab.
###Code
%%writefile mnist_models/trainer/util.py
import tensorflow as tf
def scale(image, label):
"""Scales images from a 0-255 int range to a 0-1 float range"""
image = tf.cast(image, tf.float32)
image /= 255
image = tf.expand_dims(image, -1)
return image, label
def load_dataset(
data, training=True, buffer_size=5000, batch_size=100, nclasses=10):
"""Loads MNIST dataset into a tf.data.Dataset"""
(x_train, y_train), (x_test, y_test) = data
x = x_train if training else x_test
y = y_train if training else y_test
# One-hot encode the classes
y = tf.keras.utils.to_categorical(y, nclasses)
dataset = tf.data.Dataset.from_tensor_slices((x, y))
dataset = dataset.map(scale).batch(batch_size)
if training:
dataset = dataset.shuffle(buffer_size).repeat()
return dataset
###Output
Writing mnist_models/trainer/util.py
###Markdown
Finally, let's code the models! The tf.keras API accepts an array of layers into a model object, so you can create a dictionary of layers based on the different model types you want to use. mnist_models/trainer/model.py file has three functions: get_layers, build_model and train_and_evaluate. In get_layers function: You will build the structure of our model in get_layers with four different layers:* First, you define a linear model.* Second, you define the Keras layers for a DNN model.* Third, you define the Keras layers for a dropout model.* Lastly, you define the Keras layers for a CNN model.In the build_model function: You compile the model, specifying an optimizer to use, the loss to minimize, and metrics to report. Finally in the train_and_evaluate function, you compile your keras model by loading data into it for training.Note that these models progressively build on each other. Look at the imported tensorflow.keras.layers modules and the default values for the variables defined in get_layers for guidance.
###Code
%%writefile mnist_models/trainer/model.py
import os
import shutil
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from tensorflow.keras import Sequential
from tensorflow.keras.callbacks import TensorBoard
from tensorflow.keras.layers import (
Conv2D, Dense, Dropout, Flatten, MaxPooling2D, Softmax)
from . import util
# Image Variables
WIDTH = 28
HEIGHT = 28
def get_layers(
model_type,
nclasses=10,
hidden_layer_1_neurons=400,
hidden_layer_2_neurons=100,
dropout_rate=0.25,
num_filters_1=64,
kernel_size_1=3,
pooling_size_1=2,
num_filters_2=32,
kernel_size_2=3,
pooling_size_2=2):
"""Constructs layers for a keras model based on a dict of model types."""
model_layers = {
'linear': [
Flatten(),
Dense(nclasses),
Softmax()
],
'dnn': [
# TODO 1: Your code here
],
'dnn_dropout': [
# TODO 2: Your code here
],
'cnn': [
# TODO 3: Your code here
]
}
return model_layers[model_type]
def build_model(layers, output_dir):
"""Compiles keras model for image classification."""
model = Sequential(layers)
model.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'])
return model
def train_and_evaluate(model, num_epochs, steps_per_epoch, output_dir):
"""Compiles keras model and loads data into it for training."""
mnist = tf.keras.datasets.mnist.load_data()
train_data = util.load_dataset(mnist)
validation_data = util.load_dataset(mnist, training=False)
callbacks = []
if output_dir:
tensorboard_callback = TensorBoard(log_dir=output_dir)
callbacks = [tensorboard_callback]
history = model.fit(
train_data,
validation_data=validation_data,
epochs=num_epochs,
steps_per_epoch=steps_per_epoch,
verbose=2,
callbacks=callbacks)
if output_dir:
export_path = os.path.join(output_dir, 'keras_export')
model.save(export_path, save_format='tf')
return history
###Output
Writing mnist_models/trainer/model.py
###Markdown
Local TrainingWith everything set up, let's run locally to test the code. Some of the previous tests have been copied over into a testing script `mnist_models/trainer/test.py` to make sure the model still passes our previous checks. On `line 13`, you can specify which model types you would like to check. `line 14` and `line 15` has the number of epochs and steps per epoch respectively.Moment of truth! Run the code below to check your models against the unit tests. If you see "OK" at the end when it's finished running, congrats! You've passed the tests!
###Code
!python3 -m mnist_models.trainer.test
###Output
2022-01-10 11:10:26.956391: I tensorflow/core/common_runtime/process_util.cc:146] Creating new thread pool with default inter op setting: 2. Tune using inter_op_parallelism_threads for best performance.
2022-01-10 11:10:27.032398: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:185] None of the MLIR Optimization Passes are enabled (registered 2)
..
*** Building model for linear ***
Epoch 1/10
100/100 - 6s - loss: 1.3205 - accuracy: 0.6661 - val_loss: 0.7883 - val_accuracy: 0.8210
Epoch 2/10
100/100 - 1s - loss: 0.6711 - accuracy: 0.8396 - val_loss: 0.5605 - val_accuracy: 0.8658
Epoch 3/10
100/100 - 1s - loss: 0.5260 - accuracy: 0.8742 - val_loss: 0.4689 - val_accuracy: 0.8826
Epoch 4/10
100/100 - 2s - loss: 0.4703 - accuracy: 0.8773 - val_loss: 0.4196 - val_accuracy: 0.8934
Epoch 5/10
100/100 - 1s - loss: 0.4305 - accuracy: 0.8874 - val_loss: 0.3920 - val_accuracy: 0.8960
Epoch 6/10
100/100 - 2s - loss: 0.3896 - accuracy: 0.8963 - val_loss: 0.3653 - val_accuracy: 0.9042
Epoch 7/10
100/100 - 1s - loss: 0.3758 - accuracy: 0.8976 - val_loss: 0.3520 - val_accuracy: 0.9058
Epoch 8/10
100/100 - 1s - loss: 0.3714 - accuracy: 0.8994 - val_loss: 0.3408 - val_accuracy: 0.9079
Epoch 9/10
100/100 - 1s - loss: 0.3443 - accuracy: 0.9077 - val_loss: 0.3315 - val_accuracy: 0.9095
Epoch 10/10
100/100 - 1s - loss: 0.3574 - accuracy: 0.9003 - val_loss: 0.3239 - val_accuracy: 0.9098
*** Building model for dnn ***
Epoch 1/10
100/100 - 5s - loss: 0.5966 - accuracy: 0.8317 - val_loss: 0.2996 - val_accuracy: 0.9136
Epoch 2/10
100/100 - 2s - loss: 0.2474 - accuracy: 0.9297 - val_loss: 0.2354 - val_accuracy: 0.9350
Epoch 3/10
100/100 - 1s - loss: 0.2067 - accuracy: 0.9414 - val_loss: 0.1759 - val_accuracy: 0.9458
Epoch 4/10
100/100 - 2s - loss: 0.1874 - accuracy: 0.9459 - val_loss: 0.1452 - val_accuracy: 0.9570
Epoch 5/10
100/100 - 1s - loss: 0.1526 - accuracy: 0.9572 - val_loss: 0.1289 - val_accuracy: 0.9593
Epoch 6/10
100/100 - 1s - loss: 0.1382 - accuracy: 0.9630 - val_loss: 0.1239 - val_accuracy: 0.9606
Epoch 7/10
100/100 - 1s - loss: 0.1153 - accuracy: 0.9652 - val_loss: 0.1106 - val_accuracy: 0.9654
Epoch 8/10
100/100 - 1s - loss: 0.1049 - accuracy: 0.9679 - val_loss: 0.1072 - val_accuracy: 0.9673
Epoch 9/10
100/100 - 2s - loss: 0.0929 - accuracy: 0.9735 - val_loss: 0.0902 - val_accuracy: 0.9715
Epoch 10/10
100/100 - 1s - loss: 0.0893 - accuracy: 0.9726 - val_loss: 0.1087 - val_accuracy: 0.9655
*** Building model for dnn_dropout ***
Epoch 1/10
100/100 - 5s - loss: 0.6451 - accuracy: 0.8088 - val_loss: 0.2746 - val_accuracy: 0.9172
Epoch 2/10
100/100 - 1s - loss: 0.3084 - accuracy: 0.9087 - val_loss: 0.1987 - val_accuracy: 0.9400
Epoch 3/10
100/100 - 1s - loss: 0.2309 - accuracy: 0.9341 - val_loss: 0.1780 - val_accuracy: 0.9460
Epoch 4/10
100/100 - 1s - loss: 0.2006 - accuracy: 0.9424 - val_loss: 0.1478 - val_accuracy: 0.9536
Epoch 5/10
100/100 - 1s - loss: 0.1570 - accuracy: 0.9551 - val_loss: 0.1440 - val_accuracy: 0.9547
Epoch 6/10
100/100 - 2s - loss: 0.1646 - accuracy: 0.9543 - val_loss: 0.1186 - val_accuracy: 0.9627
Epoch 7/10
100/100 - 2s - loss: 0.1321 - accuracy: 0.9601 - val_loss: 0.1231 - val_accuracy: 0.9601
Epoch 8/10
100/100 - 1s - loss: 0.1169 - accuracy: 0.9649 - val_loss: 0.1037 - val_accuracy: 0.9680
Epoch 9/10
100/100 - 1s - loss: 0.1121 - accuracy: 0.9676 - val_loss: 0.0924 - val_accuracy: 0.9699
Epoch 10/10
100/100 - 2s - loss: 0.1023 - accuracy: 0.9678 - val_loss: 0.0996 - val_accuracy: 0.9689
*** Building model for cnn ***
Epoch 1/10
100/100 - 10s - loss: 0.6706 - accuracy: 0.7978 - val_loss: 0.2021 - val_accuracy: 0.9384
Epoch 2/10
100/100 - 8s - loss: 0.2099 - accuracy: 0.9420 - val_loss: 0.1285 - val_accuracy: 0.9602
Epoch 3/10
100/100 - 7s - loss: 0.1380 - accuracy: 0.9606 - val_loss: 0.0908 - val_accuracy: 0.9729
Epoch 4/10
100/100 - 8s - loss: 0.1041 - accuracy: 0.9683 - val_loss: 0.0600 - val_accuracy: 0.9795
Epoch 5/10
100/100 - 8s - loss: 0.0973 - accuracy: 0.9696 - val_loss: 0.0646 - val_accuracy: 0.9797
Epoch 6/10
100/100 - 8s - loss: 0.0826 - accuracy: 0.9762 - val_loss: 0.0518 - val_accuracy: 0.9834
Epoch 7/10
100/100 - 8s - loss: 0.0606 - accuracy: 0.9815 - val_loss: 0.0402 - val_accuracy: 0.9866
Epoch 8/10
100/100 - 8s - loss: 0.0622 - accuracy: 0.9821 - val_loss: 0.0387 - val_accuracy: 0.9873
Epoch 9/10
100/100 - 7s - loss: 0.0516 - accuracy: 0.9854 - val_loss: 0.0487 - val_accuracy: 0.9840
Epoch 10/10
100/100 - 8s - loss: 0.0592 - accuracy: 0.9827 - val_loss: 0.0379 - val_accuracy: 0.9874
...
----------------------------------------------------------------------
Ran 5 tests in 138.340s
OK
###Markdown
Now you know that your models are working as expected, let's run it on Google Cloud within Vertex AI. You can run it as a python module locally first using the command line.The below cell transfers some of your variables to the command line as well as create a job directory including a timestamp.
###Code
current_time = datetime.now().strftime("%Y%m%d_%H%M%S")
model_type = 'cnn'
os.environ["MODEL_TYPE"] = model_type
os.environ["JOB_DIR"] = "mnist_models/models/{}_{}/".format(
model_type, current_time)
###Output
_____no_output_____
###Markdown
The cell below runs the local version of the code. The epochs and steps_per_epoch flag can be changed to run for longer or shorther, as defined in your `mnist_models/trainer/task.py` file.
###Code
%%bash
python3 -m mnist_models.trainer.task \
--job-dir=$JOB_DIR \
--epochs=5 \
--steps_per_epoch=50 \
--model_type=$MODEL_TYPE
###Output
Epoch 1/5
50/50 - 9s - loss: 1.0487 - accuracy: 0.6644 - val_loss: 0.3334 - val_accuracy: 0.8990
Epoch 2/5
50/50 - 5s - loss: 0.3760 - accuracy: 0.8886 - val_loss: 0.2216 - val_accuracy: 0.9332
Epoch 3/5
50/50 - 4s - loss: 0.2188 - accuracy: 0.9376 - val_loss: 0.1374 - val_accuracy: 0.9590
Epoch 4/5
50/50 - 5s - loss: 0.1550 - accuracy: 0.9534 - val_loss: 0.1135 - val_accuracy: 0.9678
Epoch 5/5
50/50 - 5s - loss: 0.1457 - accuracy: 0.9554 - val_loss: 0.0957 - val_accuracy: 0.9680
###Markdown
Training on the cloudFor this model, you will be able to use a Tensorflow pre-built container on Vertex AI, as you do not have any particular additional prerequisites. You use setuptools for this, and store the created source distribution on Cloud Storage by using “**gsutil cp**”.
###Code
%%writefile mnist_models/setup.py
from setuptools import find_packages
from setuptools import setup
setup(
name='mnist_trainer',
version='0.1',
packages=find_packages(),
include_package_data=True,
description='MNIST model training application.'
)
%%bash
cd mnist_models
python ./setup.py sdist --formats=gztar
cd ..
gsutil cp mnist_models/dist/mnist_trainer-0.1.tar.gz gs://${BUCKET}/mnist/
###Output
running sdist
running egg_info
creating mnist_trainer.egg-info
writing mnist_trainer.egg-info/PKG-INFO
writing dependency_links to mnist_trainer.egg-info/dependency_links.txt
writing top-level names to mnist_trainer.egg-info/top_level.txt
writing manifest file 'mnist_trainer.egg-info/SOURCES.txt'
reading manifest file 'mnist_trainer.egg-info/SOURCES.txt'
writing manifest file 'mnist_trainer.egg-info/SOURCES.txt'
running check
creating mnist_trainer-0.1
creating mnist_trainer-0.1/mnist_trainer.egg-info
creating mnist_trainer-0.1/trainer
copying files to mnist_trainer-0.1...
copying setup.py -> mnist_trainer-0.1
copying mnist_trainer.egg-info/PKG-INFO -> mnist_trainer-0.1/mnist_trainer.egg-info
copying mnist_trainer.egg-info/SOURCES.txt -> mnist_trainer-0.1/mnist_trainer.egg-info
copying mnist_trainer.egg-info/dependency_links.txt -> mnist_trainer-0.1/mnist_trainer.egg-info
copying mnist_trainer.egg-info/top_level.txt -> mnist_trainer-0.1/mnist_trainer.egg-info
copying trainer/__init__.py -> mnist_trainer-0.1/trainer
copying trainer/model.py -> mnist_trainer-0.1/trainer
copying trainer/task.py -> mnist_trainer-0.1/trainer
copying trainer/test.py -> mnist_trainer-0.1/trainer
copying trainer/util.py -> mnist_trainer-0.1/trainer
Writing mnist_trainer-0.1/setup.cfg
creating dist
Creating tar archive
removing 'mnist_trainer-0.1' (and everything under it)
###Markdown
Then, you can start the Vertex AI Custom Job using the pre-built container. You can pass your source distribution URI using the `--python-package-uris` flag.
###Code
current_time = datetime.now().strftime("%Y%m%d_%H%M%S")
model_type = 'cnn'
os.environ["MODEL_TYPE"] = model_type
os.environ["JOB_DIR"] = "gs://{}/mnist_{}_{}/".format(
BUCKET, model_type, current_time)
os.environ["JOB_NAME"] = "mnist_{}_{}".format(
model_type, current_time)
###Output
_____no_output_____
###Markdown
After submitting the following job, view the status in __Vertex AI__ > __Training__ and select __Custom Jobs__ tab. Wait for the job to finish.
###Code
%%bash
echo $JOB_DIR $REGION $JOB_NAME
PYTHON_PACKAGE_URIS=gs://${BUCKET}/mnist/mnist_trainer-0.1.tar.gz
MACHINE_TYPE=n1-standard-4
REPLICA_COUNT=1
PYTHON_PACKAGE_EXECUTOR_IMAGE_URI="us-docker.pkg.dev/vertex-ai/training/tf-cpu.2-3:latest"
PYTHON_MODULE=trainer.task
WORKER_POOL_SPEC="machine-type=$MACHINE_TYPE,\
replica-count=$REPLICA_COUNT,\
executor-image-uri=$PYTHON_PACKAGE_EXECUTOR_IMAGE_URI,\
python-module=$PYTHON_MODULE"
gcloud ai custom-jobs create \
--region=${REGION} \
--display-name=$JOB_NAME \
--python-package-uris=$PYTHON_PACKAGE_URIS \
--worker-pool-spec=$WORKER_POOL_SPEC \
--args="--job-dir=$JOB_DIR,--model_type=$MODEL_TYPE"
%%bash
SAVEDMODEL_DIR=${JOB_DIR}keras_export
echo $SAVEDMODEL_DIR
gsutil ls $SAVEDMODEL_DIR
###Output
gs://qwiklabs-gcp-04-25783cd152f3/mnist_cnn_20220110_112058/keras_export
gs://qwiklabs-gcp-04-25783cd152f3/mnist_cnn_20220110_112058/keras_export/
gs://qwiklabs-gcp-04-25783cd152f3/mnist_cnn_20220110_112058/keras_export/saved_model.pb
gs://qwiklabs-gcp-04-25783cd152f3/mnist_cnn_20220110_112058/keras_export/assets/
gs://qwiklabs-gcp-04-25783cd152f3/mnist_cnn_20220110_112058/keras_export/variables/
###Markdown
Deploying and predicting with modelOnce you have a model you're proud of, let's deploy it! All you need to do is to upload the created model artifact from Cloud Storage to Vertex AI as a model, create a new endpoint, and deploy the model to the endpoint. It can take 15-20 minutes to complete. Make a note of __ENDPOINT_RESOURCENAME__ for further use.
###Code
%%bash
TIMESTAMP=$(date -u +%Y%m%d_%H%M%S)
MODEL_DISPLAYNAME=mnist_$TIMESTAMP
ENDPOINT_DISPLAYNAME=mnist_endpoint_$TIMESTAMP
IMAGE_URI="us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.2-3:latest"
SAVEDMODEL_DIR=${JOB_DIR}keras_export
echo $SAVEDMODEL_DIR
# Model
MODEL_RESOURCENAME=$(gcloud ai models upload \
--region=$REGION \
--display-name=$MODEL_DISPLAYNAME \
--container-image-uri=$IMAGE_URI \
--artifact-uri=$SAVEDMODEL_DIR \
--format="value(model)")
echo "MODEL_DISPLAYNAME=${MODEL_DISPLAYNAME}"
echo "MODEL_RESOURCENAME=${MODEL_RESOURCENAME}"
# Endpoint
ENDPOINT_RESOURCENAME=$(gcloud ai endpoints create \
--region=$REGION \
--display-name=$ENDPOINT_DISPLAYNAME \
--format="value(name)")
echo "ENDPOINT_DISPLAYNAME=${ENDPOINT_DISPLAYNAME}"
echo "ENDPOINT_RESOURCENAME=${ENDPOINT_RESOURCENAME}"
# Deployment
DEPLOYED_MODEL_DISPLAYNAME=${MODEL_DISPLAYNAME}_deployment
MACHINE_TYPE=n1-standard-2
gcloud ai endpoints deploy-model $ENDPOINT_RESOURCENAME \
--region=$REGION \
--model=$MODEL_RESOURCENAME \
--display-name=$DEPLOYED_MODEL_DISPLAYNAME \
--machine-type=$MACHINE_TYPE \
--min-replica-count=1 \
--max-replica-count=1 \
--traffic-split=0=100
###Output
gs://qwiklabs-gcp-04-25783cd152f3/mnist_cnn_20220110_112058/keras_export
MODEL_DISPLAYNAME=mnist_20220110_113117
MODEL_RESOURCENAME=projects/867925218804/locations/us-central1/models/5397040785868718080
ENDPOINT_DISPLAYNAME=mnist_endpoint_20220110_113117
ENDPOINT_RESOURCENAME=projects/867925218804/locations/us-central1/endpoints/2075394168124866560
###Markdown
To predict with the model, let's take one of the example images.Write a .json file with image data to send to a Vertex AI deployed model.
###Code
import json, codecs
import tensorflow as tf
import matplotlib.pyplot as plt
HEIGHT = 28
WIDTH = 28
IMGNO = 12
mnist = tf.keras.datasets.mnist.load_data()
(x_train, y_train), (x_test, y_test) = mnist
test_image = x_test[IMGNO]
jsondata = # TODO 4: Your code here
json.dump(jsondata, codecs.open("test.json", "w", encoding = "utf-8"))
plt.imshow(test_image.reshape(HEIGHT, WIDTH));
!cat test.json
###Output
{"instances": [[[[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [49], [180], [253], [255], [253], [169], [36], [11], [76], [9], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [5], [68], [228], [252], [252], [253], [252], [252], [160], [189], [253], [92], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [55], [252], [252], [227], [79], [69], [69], [100], [90], [236], [247], [67], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [43], [233], [252], [185], [50], [0], [0], [0], [26], [203], [252], [135], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [168], [253], [178], [37], [0], [0], [0], [0], [70], [252], [252], [63], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [155], [253], [242], [42], [0], [0], [0], [0], [5], [191], [253], [190], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [207], [252], [230], [0], [0], [0], [0], [5], [136], [252], [252], [64], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [207], [252], [230], [0], [0], [0], [32], [138], [252], [252], [227], [16], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [165], [252], [249], [207], [207], [207], [228], [253], [252], [252], [160], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [9], [179], [253], [252], [252], [252], [252], [75], [169], [252], [56], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [64], [116], [116], [74], [0], [149], [253], [215], [21], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [253], [252], [162], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [32], [253], [240], [50], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [157], [253], [164], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [43], [240], [253], [92], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [93], [253], [252], [84], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [114], [252], [209], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [207], [252], [116], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [165], [252], [116], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [93], [200], [63], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]]]]}
###Markdown
Finally, you can send it to the prediction service. The output will have a 1 in the index of the corresponding digit it is predicting. Congrats! You've completed the lab!
###Code
%%bash
ENDPOINT_RESOURCENAME=#Insert ENDPOINT_RESOURCENAME from above
gcloud ai endpoints predict $ENDPOINT_RESOURCENAME \
--region=$REGION \
--json-request=test.json
###Output
[[0, 0, 0, 0, 0, 0, 0, 0, 0, 1]]
###Markdown
Classifying Images with pre-built TF Container on Vertex AI IntroductionIn this notebook, you learn how to implement different image models on MNIST using the [tf.keras API](https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras). Learning objectives1. Understand how to build a Dense Neural Network (DNN) for image classification.2. Understand how to use dropout (DNN) for image classification.3. Understand how to use Convolutional Neural Networks (CNN).4. Know how to deploy and use an image classifcation model using Google Cloud's [Vertex AI](https://cloud.google.com/vertex-ai/).Each learning objective will correspond to a __TODO__ in the student lab notebook -- try to complete this notebook first and then review the [solution notebook](../solutions/classifying_images_with_pre-built_tf_container_on_vertex_ai.ipynb) Configuring the parametersFirst, configure the parameters below to match your own Google Cloud project details.If you don’t want to change the region, leave all settings as they are. Otherwise, update the region as you want, leave other settings as they are and run the cell.
###Code
from datetime import datetime
import os
REGION = 'us-central1'
PROJECT = !(gcloud config get-value core/project)
PROJECT = PROJECT[0]
BUCKET = PROJECT
MODEL_TYPE = "cnn" # "linear", "dnn", "dnn_dropout", or "cnn"
# Do not change these
os.environ["PROJECT"] = PROJECT
os.environ["BUCKET"] = BUCKET
os.environ["REGION"] = REGION
os.environ["MODEL_TYPE"] = MODEL_TYPE
###Output
_____no_output_____
###Markdown
Building a dynamic modelThis part of notebook demonstrates how to implement DNN and CNN models on [MNIST](http://yann.lecun.com/exdb/mnist/) using the [tf.keras API](https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras). In the previous notebook, “[classifying_images_with_a_nn_and_dnn_model.ipynb](https://github.com/GoogleCloudPlatform/training-data-analyst/blob/master/courses/machine_learning/deepdive2/computer_vision_fun/solutions/classifying_images_with_a_nn_and_dnn_model.ipynb)”, you run the code directly from the notebook. In this notebook, you see that you can also package your notebook as a python module on Vertex AI.The boilerplate structure for this module has already been set up in the folder mnist_models. The module lives in the sub-folder, trainer, and is designated as a python package with the empty __init__.py (mnist_models/trainer/__init__.py) file. It still needs the model and a trainer to run it, so let's make them.Start with the trainer file first. This file parses command line arguments to feed into the model.
###Code
%%writefile mnist_models/trainer/task.py
import argparse
import json
import os
import sys
from . import model
def _parse_arguments(argv):
"""Parses command-line arguments."""
parser = argparse.ArgumentParser()
parser.add_argument(
'--model_type',
help='Which model type to use',
type=str, default='linear')
parser.add_argument(
'--epochs',
help='The number of epochs to train',
type=int, default=10)
parser.add_argument(
'--steps_per_epoch',
help='The number of steps per epoch to train',
type=int, default=100)
parser.add_argument(
'--job-dir',
help='Directory where to save the given model',
type=str, default='mnist_models/')
return parser.parse_known_args(argv)
def main():
"""Parses command line arguments and kicks off model training."""
args = _parse_arguments(sys.argv[1:])[0]
# Configure path for hyperparameter tuning.
trial_id = json.loads(
os.environ.get('TF_CONFIG', '{}')).get('task', {}).get('trial', '')
output_path = args.job_dir if not trial_id else args.job_dir + '/'
model_layers = model.get_layers(args.model_type)
image_model = model.build_model(model_layers, args.job_dir)
model_history = model.train_and_evaluate(
image_model, args.epochs, args.steps_per_epoch, args.job_dir)
if __name__ == '__main__':
main()
###Output
Writing mnist_models/trainer/task.py
###Markdown
Next, group non-model functions into a util file to keep the model file simple. Use the scale and load_dataset functions to scale images from a 0-255 int range to a 0-1 float range and load MNIST dataset into a tf.data.Dataset.
###Code
%%writefile mnist_models/trainer/util.py
import tensorflow as tf
def scale(image, label):
"""Scales images from a 0-255 int range to a 0-1 float range"""
image = tf.cast(image, tf.float32)
image /= 255
image = tf.expand_dims(image, -1)
return image, label
def load_dataset(
data, training=True, buffer_size=5000, batch_size=100, nclasses=10):
"""Loads MNIST dataset into a tf.data.Dataset"""
(x_train, y_train), (x_test, y_test) = data
x = x_train if training else x_test
y = y_train if training else y_test
# One-hot encode the classes
y = tf.keras.utils.to_categorical(y, nclasses)
dataset = tf.data.Dataset.from_tensor_slices((x, y))
dataset = dataset.map(scale).batch(batch_size)
if training:
dataset = dataset.shuffle(buffer_size).repeat()
return dataset
###Output
Writing mnist_models/trainer/util.py
###Markdown
Now you can code the models. The tf.keras API accepts an array of layers into a model object, so you can create a dictionary of layers based on the different model types you want to use. mnist_models/trainer/model.py file has three functions: get_layers, build_model and train_and_evaluate. In get_layers function: Youl build the structure of our model in get_layers with four different layers:* First, you define a linear model.* Second, you define the Keras layers for a DNN model.* Third, you define the Keras layers for a dropout model.* Lastly, you define the Keras layers for a CNN model.In the build_model function: You compile the model, specifying an optimizer to use, the loss to minimize, and metrics to report. Finally in the train_and_evaluate function, you compile your Keras model by loading data into it for training.Note that these models progressively build on each other. Look at the imported tensorflow.keras.layers modules and the default values for the variables defined in get_layers for guidance.
###Code
%%writefile mnist_models/trainer/model.py
import os
import shutil
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from tensorflow.keras import Sequential
from tensorflow.keras.callbacks import TensorBoard
from tensorflow.keras.layers import (
Conv2D, Dense, Dropout, Flatten, MaxPooling2D, Softmax)
from . import util
# Image Variables
WIDTH = 28
HEIGHT = 28
def get_layers(
model_type,
nclasses=10,
hidden_layer_1_neurons=400,
hidden_layer_2_neurons=100,
dropout_rate=0.25,
num_filters_1=64,
kernel_size_1=3,
pooling_size_1=2,
num_filters_2=32,
kernel_size_2=3,
pooling_size_2=2):
"""Constructs layers for a keras model based on a dict of model types."""
model_layers = {
'linear': [
Flatten(),
Dense(nclasses),
Softmax()
],
'dnn': [
# TODO 1: Your code here
],
'dnn_dropout': [
# TODO 2: Your code here
],
'cnn': [
# TODO 3: Your code here
]
}
return model_layers[model_type]
def build_model(layers, output_dir):
"""Compiles keras model for image classification."""
model = Sequential(layers)
model.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'])
return model
def train_and_evaluate(model, num_epochs, steps_per_epoch, output_dir):
"""Compiles keras model and loads data into it for training."""
mnist = tf.keras.datasets.mnist.load_data()
train_data = util.load_dataset(mnist)
validation_data = util.load_dataset(mnist, training=False)
callbacks = []
if output_dir:
tensorboard_callback = TensorBoard(log_dir=output_dir)
callbacks = [tensorboard_callback]
history = model.fit(
train_data,
validation_data=validation_data,
epochs=num_epochs,
steps_per_epoch=steps_per_epoch,
verbose=2,
callbacks=callbacks)
if output_dir:
export_path = os.path.join(output_dir, 'keras_export')
model.save(export_path, save_format='tf')
return history
###Output
Writing mnist_models/trainer/model.py
###Markdown
Local TrainingAfter completing the set up, you can run locally to test the code. Some of the previous tests have been copied over into a testing script mnist_models/trainer/test.py to make sure the model still passes our previous checks. On line 13, you can specify which model types you would like to check. line 14 and line 15 have the number of epochs and steps per epoch respectively.Run the code below to check your models against the unit tests. If you see "OK" at the end when it's finished running, congrats! You've passed the tests!
###Code
!python3 -m mnist_models.trainer.test
###Output
2022-01-10 11:10:26.956391: I tensorflow/core/common_runtime/process_util.cc:146] Creating new thread pool with default inter op setting: 2. Tune using inter_op_parallelism_threads for best performance.
2022-01-10 11:10:27.032398: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:185] None of the MLIR Optimization Passes are enabled (registered 2)
..
*** Building model for linear ***
Epoch 1/10
100/100 - 6s - loss: 1.3205 - accuracy: 0.6661 - val_loss: 0.7883 - val_accuracy: 0.8210
Epoch 2/10
100/100 - 1s - loss: 0.6711 - accuracy: 0.8396 - val_loss: 0.5605 - val_accuracy: 0.8658
Epoch 3/10
100/100 - 1s - loss: 0.5260 - accuracy: 0.8742 - val_loss: 0.4689 - val_accuracy: 0.8826
Epoch 4/10
100/100 - 2s - loss: 0.4703 - accuracy: 0.8773 - val_loss: 0.4196 - val_accuracy: 0.8934
Epoch 5/10
100/100 - 1s - loss: 0.4305 - accuracy: 0.8874 - val_loss: 0.3920 - val_accuracy: 0.8960
Epoch 6/10
100/100 - 2s - loss: 0.3896 - accuracy: 0.8963 - val_loss: 0.3653 - val_accuracy: 0.9042
Epoch 7/10
100/100 - 1s - loss: 0.3758 - accuracy: 0.8976 - val_loss: 0.3520 - val_accuracy: 0.9058
Epoch 8/10
100/100 - 1s - loss: 0.3714 - accuracy: 0.8994 - val_loss: 0.3408 - val_accuracy: 0.9079
Epoch 9/10
100/100 - 1s - loss: 0.3443 - accuracy: 0.9077 - val_loss: 0.3315 - val_accuracy: 0.9095
Epoch 10/10
100/100 - 1s - loss: 0.3574 - accuracy: 0.9003 - val_loss: 0.3239 - val_accuracy: 0.9098
*** Building model for dnn ***
Epoch 1/10
100/100 - 5s - loss: 0.5966 - accuracy: 0.8317 - val_loss: 0.2996 - val_accuracy: 0.9136
Epoch 2/10
100/100 - 2s - loss: 0.2474 - accuracy: 0.9297 - val_loss: 0.2354 - val_accuracy: 0.9350
Epoch 3/10
100/100 - 1s - loss: 0.2067 - accuracy: 0.9414 - val_loss: 0.1759 - val_accuracy: 0.9458
Epoch 4/10
100/100 - 2s - loss: 0.1874 - accuracy: 0.9459 - val_loss: 0.1452 - val_accuracy: 0.9570
Epoch 5/10
100/100 - 1s - loss: 0.1526 - accuracy: 0.9572 - val_loss: 0.1289 - val_accuracy: 0.9593
Epoch 6/10
100/100 - 1s - loss: 0.1382 - accuracy: 0.9630 - val_loss: 0.1239 - val_accuracy: 0.9606
Epoch 7/10
100/100 - 1s - loss: 0.1153 - accuracy: 0.9652 - val_loss: 0.1106 - val_accuracy: 0.9654
Epoch 8/10
100/100 - 1s - loss: 0.1049 - accuracy: 0.9679 - val_loss: 0.1072 - val_accuracy: 0.9673
Epoch 9/10
100/100 - 2s - loss: 0.0929 - accuracy: 0.9735 - val_loss: 0.0902 - val_accuracy: 0.9715
Epoch 10/10
100/100 - 1s - loss: 0.0893 - accuracy: 0.9726 - val_loss: 0.1087 - val_accuracy: 0.9655
*** Building model for dnn_dropout ***
Epoch 1/10
100/100 - 5s - loss: 0.6451 - accuracy: 0.8088 - val_loss: 0.2746 - val_accuracy: 0.9172
Epoch 2/10
100/100 - 1s - loss: 0.3084 - accuracy: 0.9087 - val_loss: 0.1987 - val_accuracy: 0.9400
Epoch 3/10
100/100 - 1s - loss: 0.2309 - accuracy: 0.9341 - val_loss: 0.1780 - val_accuracy: 0.9460
Epoch 4/10
100/100 - 1s - loss: 0.2006 - accuracy: 0.9424 - val_loss: 0.1478 - val_accuracy: 0.9536
Epoch 5/10
100/100 - 1s - loss: 0.1570 - accuracy: 0.9551 - val_loss: 0.1440 - val_accuracy: 0.9547
Epoch 6/10
100/100 - 2s - loss: 0.1646 - accuracy: 0.9543 - val_loss: 0.1186 - val_accuracy: 0.9627
Epoch 7/10
100/100 - 2s - loss: 0.1321 - accuracy: 0.9601 - val_loss: 0.1231 - val_accuracy: 0.9601
Epoch 8/10
100/100 - 1s - loss: 0.1169 - accuracy: 0.9649 - val_loss: 0.1037 - val_accuracy: 0.9680
Epoch 9/10
100/100 - 1s - loss: 0.1121 - accuracy: 0.9676 - val_loss: 0.0924 - val_accuracy: 0.9699
Epoch 10/10
100/100 - 2s - loss: 0.1023 - accuracy: 0.9678 - val_loss: 0.0996 - val_accuracy: 0.9689
*** Building model for cnn ***
Epoch 1/10
100/100 - 10s - loss: 0.6706 - accuracy: 0.7978 - val_loss: 0.2021 - val_accuracy: 0.9384
Epoch 2/10
100/100 - 8s - loss: 0.2099 - accuracy: 0.9420 - val_loss: 0.1285 - val_accuracy: 0.9602
Epoch 3/10
100/100 - 7s - loss: 0.1380 - accuracy: 0.9606 - val_loss: 0.0908 - val_accuracy: 0.9729
Epoch 4/10
100/100 - 8s - loss: 0.1041 - accuracy: 0.9683 - val_loss: 0.0600 - val_accuracy: 0.9795
Epoch 5/10
100/100 - 8s - loss: 0.0973 - accuracy: 0.9696 - val_loss: 0.0646 - val_accuracy: 0.9797
Epoch 6/10
100/100 - 8s - loss: 0.0826 - accuracy: 0.9762 - val_loss: 0.0518 - val_accuracy: 0.9834
Epoch 7/10
100/100 - 8s - loss: 0.0606 - accuracy: 0.9815 - val_loss: 0.0402 - val_accuracy: 0.9866
Epoch 8/10
100/100 - 8s - loss: 0.0622 - accuracy: 0.9821 - val_loss: 0.0387 - val_accuracy: 0.9873
Epoch 9/10
100/100 - 7s - loss: 0.0516 - accuracy: 0.9854 - val_loss: 0.0487 - val_accuracy: 0.9840
Epoch 10/10
100/100 - 8s - loss: 0.0592 - accuracy: 0.9827 - val_loss: 0.0379 - val_accuracy: 0.9874
...
----------------------------------------------------------------------
Ran 5 tests in 138.340s
OK
###Markdown
Now you know that your models are working as expected. Now ,you can run it on Google Cloud within Vertex AI. You can run it as a python module locally first using the command line.The below cell transfers some of your variables to the command line and creates a job directory including a timestamp.
###Code
current_time = datetime.now().strftime("%Y%m%d_%H%M%S")
model_type = 'cnn'
os.environ["MODEL_TYPE"] = model_type
os.environ["JOB_DIR"] = "mnist_models/models/{}_{}/".format(
model_type, current_time)
###Output
_____no_output_____
###Markdown
The cell below runs the local version of the code. The epochs and steps_per_epoch flag can be changed to run for longer or shorter, as defined in your mnist_models/trainer/task.py file.
###Code
%%bash
python3 -m mnist_models.trainer.task \
--job-dir=$JOB_DIR \
--epochs=5 \
--steps_per_epoch=50 \
--model_type=$MODEL_TYPE
###Output
Epoch 1/5
50/50 - 9s - loss: 1.0487 - accuracy: 0.6644 - val_loss: 0.3334 - val_accuracy: 0.8990
Epoch 2/5
50/50 - 5s - loss: 0.3760 - accuracy: 0.8886 - val_loss: 0.2216 - val_accuracy: 0.9332
Epoch 3/5
50/50 - 4s - loss: 0.2188 - accuracy: 0.9376 - val_loss: 0.1374 - val_accuracy: 0.9590
Epoch 4/5
50/50 - 5s - loss: 0.1550 - accuracy: 0.9534 - val_loss: 0.1135 - val_accuracy: 0.9678
Epoch 5/5
50/50 - 5s - loss: 0.1457 - accuracy: 0.9554 - val_loss: 0.0957 - val_accuracy: 0.9680
###Markdown
Training on the cloudFor this model, you use a Tensorflow pre-built container on Vertex AI, as you do not have any particular additional prerequisites. You use setuptools for this, and store the created source distribution on Cloud Storage by using “**gsutil cp**”.
###Code
%%writefile mnist_models/setup.py
from setuptools import find_packages
from setuptools import setup
setup(
name='mnist_trainer',
version='0.1',
packages=find_packages(),
include_package_data=True,
description='MNIST model training application.'
)
%%bash
cd mnist_models
python ./setup.py sdist --formats=gztar
cd ..
gsutil cp mnist_models/dist/mnist_trainer-0.1.tar.gz gs://${BUCKET}/mnist/
###Output
running sdist
running egg_info
creating mnist_trainer.egg-info
writing mnist_trainer.egg-info/PKG-INFO
writing dependency_links to mnist_trainer.egg-info/dependency_links.txt
writing top-level names to mnist_trainer.egg-info/top_level.txt
writing manifest file 'mnist_trainer.egg-info/SOURCES.txt'
reading manifest file 'mnist_trainer.egg-info/SOURCES.txt'
writing manifest file 'mnist_trainer.egg-info/SOURCES.txt'
running check
creating mnist_trainer-0.1
creating mnist_trainer-0.1/mnist_trainer.egg-info
creating mnist_trainer-0.1/trainer
copying files to mnist_trainer-0.1...
copying setup.py -> mnist_trainer-0.1
copying mnist_trainer.egg-info/PKG-INFO -> mnist_trainer-0.1/mnist_trainer.egg-info
copying mnist_trainer.egg-info/SOURCES.txt -> mnist_trainer-0.1/mnist_trainer.egg-info
copying mnist_trainer.egg-info/dependency_links.txt -> mnist_trainer-0.1/mnist_trainer.egg-info
copying mnist_trainer.egg-info/top_level.txt -> mnist_trainer-0.1/mnist_trainer.egg-info
copying trainer/__init__.py -> mnist_trainer-0.1/trainer
copying trainer/model.py -> mnist_trainer-0.1/trainer
copying trainer/task.py -> mnist_trainer-0.1/trainer
copying trainer/test.py -> mnist_trainer-0.1/trainer
copying trainer/util.py -> mnist_trainer-0.1/trainer
Writing mnist_trainer-0.1/setup.cfg
creating dist
Creating tar archive
removing 'mnist_trainer-0.1' (and everything under it)
###Markdown
Then, you can start the Vertex AI Custom Job using the pre-built container. You can pass your source distribution URI using the --python-package-uris flag.
###Code
current_time = datetime.now().strftime("%Y%m%d_%H%M%S")
model_type = 'cnn'
os.environ["MODEL_TYPE"] = model_type
os.environ["JOB_DIR"] = "gs://{}/mnist_{}_{}/".format(
BUCKET, model_type, current_time)
os.environ["JOB_NAME"] = "mnist_{}_{}".format(
model_type, current_time)
###Output
_____no_output_____
###Markdown
After submitting the following job, view the status in __Vertex AI__ > __Training__ and select __Custom Jobs__ tab. Wait for the job to finish.
###Code
%%bash
echo $JOB_DIR $REGION $JOB_NAME
PYTHON_PACKAGE_URIS=gs://${BUCKET}/mnist/mnist_trainer-0.1.tar.gz
MACHINE_TYPE=n1-standard-4
REPLICA_COUNT=1
PYTHON_PACKAGE_EXECUTOR_IMAGE_URI="us-docker.pkg.dev/vertex-ai/training/tf-cpu.2-3:latest"
PYTHON_MODULE=trainer.task
WORKER_POOL_SPEC="machine-type=$MACHINE_TYPE,\
replica-count=$REPLICA_COUNT,\
executor-image-uri=$PYTHON_PACKAGE_EXECUTOR_IMAGE_URI,\
python-module=$PYTHON_MODULE"
gcloud ai custom-jobs create \
--region=${REGION} \
--display-name=$JOB_NAME \
--python-package-uris=$PYTHON_PACKAGE_URIS \
--worker-pool-spec=$WORKER_POOL_SPEC \
--args="--job-dir=$JOB_DIR,--model_type=$MODEL_TYPE"
%%bash
SAVEDMODEL_DIR=${JOB_DIR}keras_export
echo $SAVEDMODEL_DIR
gsutil ls $SAVEDMODEL_DIR
###Output
gs://qwiklabs-gcp-04-25783cd152f3/mnist_cnn_20220110_112058/keras_export
gs://qwiklabs-gcp-04-25783cd152f3/mnist_cnn_20220110_112058/keras_export/
gs://qwiklabs-gcp-04-25783cd152f3/mnist_cnn_20220110_112058/keras_export/saved_model.pb
gs://qwiklabs-gcp-04-25783cd152f3/mnist_cnn_20220110_112058/keras_export/assets/
gs://qwiklabs-gcp-04-25783cd152f3/mnist_cnn_20220110_112058/keras_export/variables/
###Markdown
Deploying and predicting with modelOnce you have a model you're proud of, let's deploy it! All you need to do is to upload the created model artifact from Cloud Storage to Vertex AI as a model, create a new endpoint, and deploy the model to the endpoint. It can take 15-20 minutes to complete. Make a note of **ENDPOINT_RESOURCENAME** for further use.
###Code
%%bash
TIMESTAMP=$(date -u +%Y%m%d_%H%M%S)
MODEL_DISPLAYNAME=mnist_$TIMESTAMP
ENDPOINT_DISPLAYNAME=mnist_endpoint_$TIMESTAMP
IMAGE_URI="us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.2-3:latest"
SAVEDMODEL_DIR=${JOB_DIR}keras_export
echo $SAVEDMODEL_DIR
# Model
MODEL_RESOURCENAME=$(gcloud ai models upload \
--region=$REGION \
--display-name=$MODEL_DISPLAYNAME \
--container-image-uri=$IMAGE_URI \
--artifact-uri=$SAVEDMODEL_DIR \
--format="value(model)")
echo "MODEL_DISPLAYNAME=${MODEL_DISPLAYNAME}"
echo "MODEL_RESOURCENAME=${MODEL_RESOURCENAME}"
# Endpoint
ENDPOINT_RESOURCENAME=$(gcloud ai endpoints create \
--region=$REGION \
--display-name=$ENDPOINT_DISPLAYNAME \
--format="value(name)")
echo "ENDPOINT_DISPLAYNAME=${ENDPOINT_DISPLAYNAME}"
echo "ENDPOINT_RESOURCENAME=${ENDPOINT_RESOURCENAME}"
# Deployment
DEPLOYED_MODEL_DISPLAYNAME=${MODEL_DISPLAYNAME}_deployment
MACHINE_TYPE=n1-standard-2
gcloud ai endpoints deploy-model $ENDPOINT_RESOURCENAME \
--region=$REGION \
--model=$MODEL_RESOURCENAME \
--display-name=$DEPLOYED_MODEL_DISPLAYNAME \
--machine-type=$MACHINE_TYPE \
--min-replica-count=1 \
--max-replica-count=1 \
--traffic-split=0=100
###Output
gs://qwiklabs-gcp-04-25783cd152f3/mnist_cnn_20220110_112058/keras_export
MODEL_DISPLAYNAME=mnist_20220110_113117
MODEL_RESOURCENAME=projects/867925218804/locations/us-central1/models/5397040785868718080
ENDPOINT_DISPLAYNAME=mnist_endpoint_20220110_113117
ENDPOINT_RESOURCENAME=projects/867925218804/locations/us-central1/endpoints/2075394168124866560
###Markdown
To predict with the model, take one of the example images.Write a .json file with image data to send to a Vertex AI deployed model.
###Code
import json, codecs
import tensorflow as tf
import matplotlib.pyplot as plt
HEIGHT = 28
WIDTH = 28
IMGNO = 12
mnist = tf.keras.datasets.mnist.load_data()
(x_train, y_train), (x_test, y_test) = mnist
test_image = x_test[IMGNO]
jsondata = # TODO 4: Your code here
json.dump(jsondata, codecs.open("test.json", "w", encoding = "utf-8"))
plt.imshow(test_image.reshape(HEIGHT, WIDTH));
!cat test.json
###Output
{"instances": [[[[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [49], [180], [253], [255], [253], [169], [36], [11], [76], [9], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [5], [68], [228], [252], [252], [253], [252], [252], [160], [189], [253], [92], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [55], [252], [252], [227], [79], [69], [69], [100], [90], [236], [247], [67], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [43], [233], [252], [185], [50], [0], [0], [0], [26], [203], [252], [135], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [168], [253], [178], [37], [0], [0], [0], [0], [70], [252], [252], [63], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [155], [253], [242], [42], [0], [0], [0], [0], [5], [191], [253], [190], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [207], [252], [230], [0], [0], [0], [0], [5], [136], [252], [252], [64], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [207], [252], [230], [0], [0], [0], [32], [138], [252], [252], [227], [16], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [165], [252], [249], [207], [207], [207], [228], [253], [252], [252], [160], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [9], [179], [253], [252], [252], [252], [252], [75], [169], [252], [56], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [64], [116], [116], [74], [0], [149], [253], [215], [21], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [253], [252], [162], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [32], [253], [240], [50], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [157], [253], [164], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [43], [240], [253], [92], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [93], [253], [252], [84], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [114], [252], [209], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [207], [252], [116], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [165], [252], [116], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [93], [200], [63], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]]]]}
###Markdown
Finally, you can send it to the prediction service. The output will have a 1 in the index of the corresponding digit it is predicting. Congrats! You've completed the lab!
###Code
%%bash
ENDPOINT_RESOURCENAME=#Insert ENDPOINT_RESOURCENAME from above
gcloud ai endpoints predict $ENDPOINT_RESOURCENAME \
--region=$REGION \
--json-request=test.json
###Output
[[0, 0, 0, 0, 0, 0, 0, 0, 0, 1]]
|
sigprocMXC_wavelets/sigprocMXC_wavelet.ipynb | ###Markdown
--- VIDEO: What are wavelets?---
###Code
## general simulation parameters
fs = 1024
npnts = fs*5 + 1 # 5 seconds # has to be odd for 0 to be included
# centered time vector
timevec = np.arange(0,npnts)/fs
timevec = timevec - np.mean(timevec) # mean center on x axis
# for power spectrum
hz = np.linspace(0,fs/2,int(np.floor(npnts/2)+1))
## Morlet wavelet
# parameters
freq = 4 # peak frequency
csw = np.cos(2*np.pi*freq*timevec) # cosine wave
fwhm = .5 # full-width at half-maximum in seconds
gaussian = np.exp( -(4*np.log(2)*timevec**2) / fwhm**2 ) # Gaussian
# Morlet wavelet
MorletWavelet = csw * gaussian
# amplitude spectrum
MorletWaveletPow = np.abs(scipy.fftpack.fft(MorletWavelet)/npnts)
# time-domain plotting
plt.subplot(211)
plt.plot(timevec,MorletWavelet,'k')
plt.xlabel('Time (sec.)')
plt.title('Morlet wavelet in time domain')
# frequency-domain plotting
plt.subplot(212)
plt.plot(hz,MorletWaveletPow[:len(hz)],'k')
plt.xlim([0,freq*3])
plt.xlabel('Frequency (Hz)')
plt.title('Morlet wavelet in frequency domain')
plt.show()
## Haar wavelet
# create Haar wavelet
HaarWavelet = np.zeros(npnts)
HaarWavelet[np.argmin(timevec**2) : np.argmin((timevec-.5)**2) ] = 1
HaarWavelet[np.argmin((timevec-.5)**2) : np.argmin((timevec-1-1/fs)**2)] = -1
# amplitude spectrum
HaarWaveletPow = np.abs(scipy.fftpack.fft(HaarWavelet)/npnts)
# time-domain plotting
plt.subplot(211)
plt.plot(timevec,HaarWavelet,'k')
plt.xlabel('Time (sec.)')
plt.title('Haar wavelet in time domain')
# frequency-domain plotting
plt.subplot(212)
plt.plot(hz,HaarWaveletPow[:len(hz)],'k')
plt.xlim([0,freq*3])
plt.xlabel('Frequency (Hz)')
plt.title('Haar wavelet in frequency domain')
plt.show()
## Mexican hat wavelet
# the wavelet
s = .4
MexicanWavelet = (2/(np.sqrt(3*s)*np.pi**.25)) * (1- (timevec**2)/(s**2) ) * np.exp( (-timevec**2)/(2*s**2) )
# amplitude spectrum
MexicanPow = np.abs(scipy.fftpack.fft(MexicanWavelet)/npnts)
# time-domain plotting
plt.subplot(211)
plt.plot(timevec,MexicanWavelet,'k')
plt.xlabel('Time (sec.)')
plt.title('Mexican wavelet in time domain')
# frequency-domain plotting
plt.subplot(212)
plt.plot(hz,MexicanPow[:len(hz)],'k')
plt.xlim([0,freq*3])
plt.xlabel('Frequency (Hz)')
plt.title('Mexican wavelet in frequency domain')
plt.show()
## Difference of Gaussians (DoG)
# (approximation of Laplacian of Gaussian)
# define sigmas
sPos = .1
sNeg = .5
# create the two GAussians
gaus1 = np.exp( (-timevec**2) / (2*sPos**2) ) / (sPos*np.sqrt(2*np.pi))
gaus2 = np.exp( (-timevec**2) / (2*sNeg**2) ) / (sNeg*np.sqrt(2*np.pi))
# their difference is the DoG
DoG = gaus1 - gaus2
# amplitude spectrum
DoGPow = np.abs(scipy.fftpack.fft(DoG)/npnts)
# time-domain plotting
plt.subplot(211)
plt.plot(timevec,DoG,'k')
plt.xlabel('Time (sec.)')
plt.title('DoG wavelet in time domain')
# frequency-domain plotting
plt.subplot(212)
plt.plot(hz,DoGPow[:len(hz)],'k')
plt.xlim([0,freq*3])
plt.xlabel('Frequency (Hz)')
plt.title('DoG wavelet in frequency domain')
plt.show()
###Output
_____no_output_____
###Markdown
--- VIDEO: Convolution with wavelets---
###Code
## general simulation parameters
fs = 1024
npnts = fs*5 # 5 seconds
# centered time vector
timevec = np.arange(0,npnts)/fs
timevec = timevec - np.mean(timevec)
# for power spectrum
hz = np.linspace(0,fs/2,int(np.floor(npnts/2)+1))
### create wavelets
# parameters
freq = 4 # peak frequency
csw = np.cos(2*np.pi*freq*timevec) # cosine wave
fwhm = .5 # full-width at half-maximum in seconds
gaussian = np.exp( -(4*np.log(2)*timevec**2) / fwhm**2 ) # Gaussian
## Morlet wavelet
MorletWavelet = csw * gaussian
## Haar wavelet
HaarWavelet = np.zeros(npnts)
HaarWavelet[np.argmin(timevec**2) : np.argmin( (timevec-.5)**2 )] = 1
HaarWavelet[np.argmin((timevec-.5)**2) : np.argmin( (timevec-1-1/fs)**2 )] = -1
## Mexican hat wavelet
s = .4
MexicanWavelet = (2/(np.sqrt(3*s)*np.pi**.25)) * (1- (timevec**2)/(s**2) ) * np.exp( (-timevec**2)/(2*s**2) )
## convolve with random signal
# signal
signal1 = scipy.signal.detrend(np.cumsum(np.random.randn(npnts)))
# convolve signal with different wavelets
morewav = np.convolve(signal1,MorletWavelet,'same')
haarwav = np.convolve(signal1,HaarWavelet,'same')
mexiwav = np.convolve(signal1,MexicanWavelet,'same')
# amplitude spectra
morewaveAmp = np.abs(scipy.fftpack.fft(morewav)/npnts)
haarwaveAmp = np.abs(scipy.fftpack.fft(haarwav)/npnts)
mexiwaveAmp = np.abs(scipy.fftpack.fft(mexiwav)/npnts)
### plotting
# the signal
plt.plot(timevec,signal1,'k')
plt.title('Signal')
plt.xlabel('Time (s)')
plt.show()
# the convolved signals
plt.subplot(211)
plt.plot(timevec,morewav,label='Morlet')
plt.plot(timevec,haarwav,label='Haar')
plt.plot(timevec,mexiwav,label='Mexican')
plt.title('Time domain')
plt.legend()
# spectra of convolved signals
plt.subplot(212)
plt.plot(hz,morewaveAmp[:len(hz)],label='Morlet')
plt.plot(hz,haarwaveAmp[:len(hz)],label='Haar')
plt.plot(hz,mexiwaveAmp[:len(hz)],label='Mexican')
plt.yscale('log')
plt.xlim([0,40])
plt.legend()
plt.xlabel('Frequency (Hz.)')
plt.show()
###Output
_____no_output_____
###Markdown
--- VIDEO: Wavelet convolution for narrowband filtering---
###Code
# simulation parameters
srate = 4352 # hz
npnts = 8425
time = np.arange(0,npnts)/srate
hz = np.linspace(0,srate/2,int(np.floor(npnts/2)+1))
# pure noise signal
signal1 = np.exp( .5*np.random.randn(npnts) )
# let's see what it looks like
plt.subplot(211)
plt.plot(time,signal1,'k')
plt.xlabel('Time (s)')
# in the frequency domain
signalX = 2*np.abs(scipy.fftpack.fft(signal1))
plt.subplot(212)
plt.plot(hz,signalX[:len(hz)],'k')
plt.xlim([1,srate/6])
plt.ylim([0,300])
plt.xlabel('Frequency (Hz)')
plt.show()
## create and inspect the Morlet wavelet
# wavelet parameters
ffreq = 34 # filter frequency in Hz
fwhm = .12 # full-width at half-maximum in seconds
wavtime = np.arange(-3,3,1/srate) # wavelet time vector (same sampling rate as signal!)
# create the wavelet
morwav = np.cos(2*np.pi*ffreq*wavtime) * np.exp( -(4*np.log(2)*wavtime**2) / fwhm**2 )
# amplitude spectrum of wavelet
# (note that the wavelet needs its own hz because different length)
wavehz = np.linspace(0,srate/2,int(np.floor(len(wavtime)/2)+1))
morwavX = 2*np.abs(scipy.fftpack.fft(morwav))
# plot it!
plt.subplot(211)
plt.plot(wavtime,morwav,'k')
plt.xlim([-.5,.5])
plt.xlabel('Time (sec.)')
plt.subplot(212)
plt.plot(wavehz,morwavX[:len(wavehz)],'k')
plt.xlim([0,ffreq*2])
plt.xlabel('Frequency (Hz)')
plt.show()
## now for convolution
convres = scipy.signal.convolve(signal1,morwav,'same')
# show in the time domain
plt.subplot(211)
plt.plot(time,convres,'r')
# and in the frequency domain
plt.subplot(212)
convresX = 2*np.abs(scipy.fftpack.fft(convres))
plt.plot(hz,convresX[:len(hz)],'r')
plt.show()
### Time-domain wavelet normalization is... annoying and difficult.
### Let's do it in the frequency domain
### "manual" convolution
nConv = npnts + len(wavtime) - 1
halfw = int( np.floor(len(wavtime)/2) )
# spectrum of wavelet
morwavX = scipy.fftpack.fft(morwav,nConv)
# now normalize in the frequency domain
morwavX = morwavX / np.max(morwavX)
# also equivalent:
morwavX = (np.abs(morwavX)/max(np.abs(morwavX))) * np.exp(1j*np.angle(morwavX))
# now for the rest of convolution
convres = scipy.fftpack.ifft( morwavX * scipy.fftpack.fft(signal1,nConv) )
convres = np.real( convres[halfw:-halfw+1] )
# time domain
plt.plot(time,signal1,'k',label='original')
plt.plot(time,convres,'b',label='filtered, norm.')
plt.legend()
plt.xlabel('Time')
plt.show()
# frequency domain
convresX = 2*np.abs(scipy.fftpack.fft(convres))
plt.plot(hz,signalX[:len(hz)],'k',label='original')
plt.plot(hz,convresX[:len(hz)],'b',label='filtered, norm.')
plt.ylim([0,300])
plt.xlim([0,90])
plt.show()
## to preserve DC offset, compute and add back
convres = convres + np.mean(signal1)
plt.plot(time,signal1,'k',label='original')
plt.plot(time,convres,'m',label='filtered, norm.')
plt.legend()
plt.xlabel('Time')
plt.show()
###Output
_____no_output_____
###Markdown
--- Time-frequency analysis with complex wavelets---
###Code
# data from http://www.vibrationdata.com/Solomon_Time_History.zip
equake = np.loadtxt('Solomon_Time_History.txt')
# more convenient
times = equake[:,0]
equake = equake[:,1]
srate = np.round( 1/np.mean(np.diff(times)) )
## plot the signal
# time domain
plt.subplot(211)
plt.plot(times/60/60,equake)
plt.xlim([times[0]/60/60,times[-1]/60/60])
plt.xlabel('Time (hours)')
# frequency domain using pwelch
plt.subplot(212)
winsize = srate*60*10 # window size of 10 minutes
f, welchpow = scipy.signal.welch(equake,fs=srate,window=np.hanning(winsize),nperseg=winsize,noverlap=winsize/4)
plt.semilogy(f,welchpow)
plt.xlabel('frequency [Hz]')
plt.ylabel('Power')
plt.ylim([10e-11,10e-6])
plt.show()
## setup time-frequency analysis
# parameters (in Hz)
numFrex = 40
minFreq = 2
maxFreq = srate/2
npntsTF = 1000 # this one's in points
# frequencies in Hz
frex = np.linspace(minFreq,maxFreq,numFrex)
# wavelet widths (FWHM in seconds)
fwhms = np.linspace(5,15,numFrex)
# time points to save for plotting
tidx = np.arange(1,len(times),npntsTF)
# setup wavelet and convolution parameters
wavet = np.arange(-10,10,1/srate)
halfw = int(np.floor(len(wavet)/2))
nConv = len(times) + len(wavet) - 1
# create family of Morlet wavelets
cmw = np.zeros((len(wavet),numFrex),dtype=complex)
# loop over frequencies and create wavelets
for fi in range(0,numFrex):
cmw[:,fi] = np.exp(2*1j*np.pi*frex[fi]*wavet)*np.exp(-(4*np.log(2)*wavet**2)/fwhms[fi]**2)
# plot them
plt.pcolormesh(wavet,frex,np.abs(cmw).T,vmin=0,vmax=1)
plt.xlabel('Time (s)'), plt.ylabel('Frequency (Hz)')
plt.show()
## run convolution
# initialize time-frequency matrix
tf = np.zeros((len(frex),len(tidx)))
tfN = np.zeros((len(frex),len(tidx)))
# baseline time window for normalization
basetidx = [0,0]
basetidx[0] = np.argmin( (times--1000)**2 )
basetidx[1] = np.argmin( times**2 )
basepow = np.zeros(numFrex)
# spectrum of data
dataX = scipy.fftpack.fft(equake,nConv)
# loop over frequencies for convolution
for fi in range(0,numFrex):
# create wavelet
waveX = scipy.fftpack.fft( cmw[:,fi],nConv )
waveX = waveX/np.max(waveX) # normalize
# convolve
as1 = scipy.fftpack.ifft( waveX*dataX )
# trim
as1 = as1[halfw:-halfw]
# power time course at this frequency
powts = np.abs(as1)**2
# baseline (pre-quake)
basepow[fi] = np.mean(powts[range(basetidx[0],basetidx[1])])
tf[fi,:] = 10*np.log10( powts[tidx] )
tfN[fi,:] = 10*np.log10( powts[tidx]/basepow[fi] )
## show time-frequency maps
# "raw" power
plt.subplot(211)
plt.pcolormesh(times[tidx],frex,tf,vmin=-150,vmax=-70)
plt.xlabel('Time'), plt.ylabel('Frequency (Hz)')
plt.title('"Raw" time-frequency power')
# pre-quake normalized power
plt.subplot(212)
plt.pcolormesh(times[tidx],frex,tfN,vmin=-15,vmax=15)
plt.xlabel('Time'), plt.ylabel('Frequency (Hz)')
plt.title('"Raw" time-frequency power')
plt.show()
## normalized and non-normalized power
plt.subplot(211)
plt.plot(frex,np.mean(tf,axis=1),'ks-')
plt.xlabel('Frequency (Hz)'), plt.ylabel('Power (10log_{10})')
plt.title('Raw power')
plt.subplot(212)
plt.plot(frex,np.mean(tfN,axis=1),'ks-')
plt.xlabel('Frequency (Hz)'), plt.ylabel('Power (norm.)')
plt.title('Pre-quake normalized power')
plt.show()
###Output
_____no_output_____
###Markdown
--- VIDEO: Time-frequency analysis of brain signals---
###Code
# load in data
braindat = sio.loadmat('data4TF.mat')
timevec = braindat['timevec'][0]
srate = braindat['srate'][0]
data = braindat['data'][0]
# plot the signal
plt.plot(timevec,data)
plt.xlabel('Time (s)'), plt.ylabel('Voltage (\muV)')
plt.title('Time-domain signal')
plt.show()
## create complex Morlet wavelets
# wavelet parameters
nfrex = 50 # 50 frequencies
frex = np.linspace(8,70,nfrex)
fwhm = .2 # full-width at half-maximum in seconds
# time vector for wavelets
wavetime = np.arange(-2,2,1/srate)
# initialize matrices for wavelets
wavelets = np.zeros( (nfrex,len(wavetime)) ,dtype=complex)
# create complex Morlet wavelet family
for wi in range(0,nfrex):
# Gaussian
gaussian = np.exp( -(4*np.log(2)*wavetime**2) / fwhm**2 )
# complex Morlet wavelet
wavelets[wi,:] = np.exp(1j*2*np.pi*frex[wi]*wavetime) * gaussian
# show the wavelets
plt.plot(wavetime,np.real(wavelets[10,:]),label='Real part')
plt.plot(wavetime,np.imag(wavelets[10,:]),label='Imag part')
plt.xlabel('Time')
plt.xlim([-.5, .5])
plt.legend()
plt.show()
plt.pcolormesh(wavetime,frex,np.real(wavelets))
plt.xlabel('Time (s)'), plt.ylabel('Frequency (Hz)')
plt.title('Real part of wavelets')
plt.xlim([-.5,.5])
plt.show()
## run convolution using spectral multiplication
# convolution parameters
nconv = len(timevec) + len(wavetime) - 1 # M+N-1
halfk = int( np.floor(len(wavetime)/2) )
# Fourier spectrum of the signal
dataX = scipy.fftpack.fft(data,nconv)
# initialize time-frequency matrix
tf = np.zeros( (nfrex,len(timevec)) )
# convolution per frequency
for fi in range(0,nfrex):
# FFT of the wavelet
waveX = scipy.fftpack.fft(wavelets[fi,:],nconv)
# amplitude-normalize the wavelet
waveX = waveX/np.max(waveX)
# convolution
convres = scipy.fftpack.ifft( waveX*dataX )
# trim the "wings"
convres = convres[halfk-1:-halfk]
# extract power from complex signal
tf[fi,:] = np.abs(convres)**2
## plot the results
plt.pcolormesh(timevec,frex,tf,vmin=0,vmax=1e3)
plt.xlabel('Time (s)'), plt.ylabel('Frequency (Hz)')
plt.title('Time-frequency power')
plt.show()
###Output
_____no_output_____ |
snippets/Untitled.ipynb | ###Markdown
https://www.kaggle.com/arthurtok/titanic/introduction-to-ensembling-stacking-in-python/run/1294782
###Code
# Load in our libraries
import pandas as pd
import numpy as np
import re
import sklearn
import xgboost as xgb
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
import plotly.offline as py
py.init_notebook_mode(connected=True)
import plotly.graph_objs as go
import plotly.tools as tls
import warnings
warnings.filterwarnings('ignore')
# Going to use these 5 base models for the stacking
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier, ExtraTreesClassifier
from sklearn.svm import SVC
from sklearn.cross_validation import KFold;
# Load in the train and test datasets
train = pd.read_csv('./titanic_data/train.csv')
test = pd.read_csv('./titanic_data/test.csv')
# Store our passenger ID for easy access
PassengerId = test['PassengerId']
train.head(13)
###Output
_____no_output_____ |
Python/ml/White_Wine_Quality_Prediction.ipynb | ###Markdown
WHITE WINE QUALITY PREDICTION Link to the Dataset: [White Wine Quality](https://www.kaggle.com/piyushagni5/white-wine-quality) Importing Libraries
###Code
import pandas as pd
import numpy as np
from sklearn import preprocessing
from sklearn import metrics
import seaborn as sns
from scipy import stats
from sklearn.model_selection import train_test_split
# making predictions using different classifiers
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.naive_bayes import GaussianNB
from statsmodels.stats.outliers_influence import variance_inflation_factor
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
###Output
_____no_output_____
###Markdown
Getting our Data
###Code
df = pd.read_csv(r'C:\Users\DELL\Desktop\Kaggle+HE\Github GSSoC21\NeoAlgo\whitewinequality.csv', sep=";")
df
###Output
_____no_output_____
###Markdown
Data Preprocessing
###Code
# checking for null values
df.isnull().any()
df.columns
# checking variance
variables = df[['fixed acidity', 'volatile acidity', 'citric acid', 'residual sugar',
'chlorides', 'free sulfur dioxide', 'total sulfur dioxide', 'density',
'pH', 'sulphates', 'alcohol']]
vif = pd.DataFrame()
vif['VIF'] = [variance_inflation_factor(variables.values, i) for i in range(variables.shape[1])]
vif['Features'] = variables.columns
vif
# dropping all columns having vif>10
df = df.drop(['fixed acidity','citric acid','total sulfur dioxide','density','pH','sulphates','alcohol'], axis = 1)
df
# removing all outliners
df = df[(np.abs(stats.zscore(df)) < 3).all(axis=1)]
df
###Output
_____no_output_____
###Markdown
Data Visualization
###Code
# checking the distribution of outcomes
sns.countplot(x = 'quality', data = df)
# so there are 5 classes under which the quality of white wine is classified
###Output
_____no_output_____
###Markdown
Splitting Data for Training and Testing
###Code
data = df.values
X, y = data[:,:-1], data[:,-1]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=0) # splitting in the ratio 80:20
###Output
_____no_output_____
###Markdown
Making Predictions using KNN
###Code
classifier1 = KNeighborsClassifier(n_neighbors=5, metric='minkowski', p=2)
classifier1.fit(X_train, y_train)
y_pred1 = classifier1.predict(X_test)
# Accuracy
print('Accuracy:', classifier1.score(X_test, y_test))
###Output
Accuracy: 0.4683815648445874
###Markdown
Making Predictions using Support Vector Machines
###Code
classifier2 = SVC(kernel='linear', random_state=0)
classifier2.fit(X_train, y_train)
y_pred2 = classifier2.predict(X_test)
# Accuracy
print('Accuracy:', classifier2.score(X_test, y_test))
###Output
Accuracy: 0.45444801714898175
###Markdown
Making Predictions using Decision Trees
###Code
classifier3 = DecisionTreeClassifier(random_state=0)
classifier3.fit(X_train, y_train)
y_pred3 = classifier3.predict(X_test)
# Accuracy
print('Accuracy:', classifier3.score(X_test, y_test))
###Output
Accuracy: 0.5830653804930332
###Markdown
Making Predictions using Random Forest Classifier
###Code
classifier4 = RandomForestClassifier(random_state=0)
classifier4.fit(X_train, y_train)
y_pred4 = classifier4.predict(X_test)
# Accuracy
print('Accuracy:', classifier4.score(X_test, y_test))
###Output
Accuracy: 0.639871382636656
###Markdown
Making Predictions using Naive Bayes
###Code
classifier5 = GaussianNB()
classifier5.fit(X_train, y_train)
y_pred5 = classifier5.predict(X_test)
# Accuracy
print('Accuracy:', classifier5.score(X_test, y_test))
###Output
Accuracy: 0.4833869239013934
###Markdown
Random Forest Classifier is the most accurate model. Predictions are 63.98% accurate. Cross Validation for boosting Accuracy
###Code
# performing k-fold cross validation
from sklearn.model_selection import StratifiedKFold
skf = StratifiedKFold(n_splits=5, random_state=None)
# X is the feature set and y is the target
for train_index, test_index in skf.split(X,y):
print("Train:", train_index, "Validation:", test_index)
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
y_pred_f = classifier4.predict(X_test)
# Accuracy
print('New Accuracy:', classifier4.score(X_test, y_test))
###Output
New Accuracy: 0.9356223175965666
###Markdown
Final predictions are 93.56% accurate. Results' Visualization
###Code
cm = confusion_matrix(y_test, y_pred_f)
cm
plt.figure(figsize=(6,6))
sns.heatmap(cm, annot=True, fmt=".0f", linewidths=0.5, square = True, cmap = 'Pastel1')
plt.ylabel('Actual label')
plt.xlabel('Predicted label')
plt.show()
###Output
_____no_output_____
###Markdown
Classification Report
###Code
class_names = ['4','5','6','7','8']
print(classification_report(y_test, y_pred_f, target_names=class_names))
###Output
precision recall f1-score support
4 1.00 0.93 0.96 27
5 0.93 0.93 0.93 274
6 0.93 0.95 0.94 423
7 0.94 0.94 0.94 175
8 0.93 0.82 0.87 33
accuracy 0.94 932
macro avg 0.95 0.91 0.93 932
weighted avg 0.94 0.94 0.94 932
|
05_Fashion_MNIST_Training_Dropout_Momentum/.ipynb_checkpoints/FashionMNIST_dropout_momentum_Training-checkpoint.ipynb | ###Markdown
FashionMNISTLoad images from the [Fashion-MNIST data](https://github.com/zalandoresearch/fashion-mnist)The dataset comprised of 60,000 small square 28x28 pixel grayscale images of items of 10 types of clothing with 0-9 class labels.class labels:* 0: T-shirt/top* 1: Trouser* 2: Pullover* 3: Dress* 4: Coat* 5: Sandal* 6: Shirt* 7: Sneaker* 8: Bag* 9: Ankle boot Load the Fashion-MNIST data* Use ``torch.utils.data.dataset``* Data path: data* Apply transformations to the data (turning all images into Tensor's for training a NN Train and CNN to classify images* Load in both training and test datasets from the FashionMNIST class Import the Necessary Packages
###Code
# basic torch libraries
import torch
import torchvision
# data loading and transforming
from torchvision.datasets import FashionMNIST
from torch.utils.data import DataLoader
from torchvision import transforms
# basic libraries
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
###Output
_____no_output_____
###Markdown
The output of ``torchvision`` are PILImage images of range [0, 1]* Transform them to Tensor for input into a CNN
###Code
# Defin a transform to read the data in as a Tensor
data_transform = transforms.ToTensor()
# Choose the training and test datasets
path = './data'
# Training datasets
train_data = FashionMNIST(root=path,
train=True,
download=False,
transform=data_transform)
# Test datasets
test_data = FashionMNIST(root=path,
train=False,
download=False,
transform=data_transform)
# Print out some stats about the training data
print('Train data, number of images', len(train_data))
# Print out some stats about the training data
print('Test data, number of images', len(test_data))
###Output
Train data, number of images 60000
Test data, number of images 10000
###Markdown
Data iteration and batching``torch.utils.data.DataLoader`` is an iterator that allows to batch and shuffle the data
###Code
# shuffle the data and load in image/label data in batches of size 20
# Depends on large or small size of batch size will affect the loss
batch_size = 20
# load train
train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True)
# load test
test_loader = DataLoader(test_data, batch_size=batch_size, shuffle=True)
# specify the image classes
classes = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
###Output
_____no_output_____
###Markdown
Using ``dataiter.next()`` for cell iterates over the training dataset of loaded a random batch image/label data.Plots the batch of images and labels in a ``2*batch_size/2`` grid.
###Code
# obtain one batch of training images
# iter
dataiter = iter(train_loader)
images, labels = dataiter.next()
images = images.numpy() # convert to numpy
# plot the images in the batch with labels
fig = plt.figure(figsize=(25, 4)) # fig size
for idx in np.arange(batch_size):
ax = fig.add_subplot(2, batch_size/2, idx+1, xticks=[], yticks=[])
ax.imshow(np.squeeze(images[idx]), cmap='gray')
ax.set_title(classes[labels[idx]])
###Output
/home/eightun/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:10: MatplotlibDeprecationWarning: Passing non-integers as three-element position specification is deprecated since 3.3 and will be removed two minor releases later.
# Remove the CWD from sys.path while we load stuff.
###Markdown
View an image* Normalize* grayscale image NormalizationNormalization ensures that, as we go through a feedforward and then backpropagation step in training our CNN, that each image feature will fall within a similar range of values and not overly activate any particular layer in our network. During the feedfoward step, a network takes in an input image and multiplies each input pixel by some convolutional filter weights (and adds biases!), then it applies some activation and pooling functions. Without normalization, it's much more likely that the calculated gradients in the backpropagaton step will be quite large and cause our loss to increase instead of converge
###Code
# select an image by index
idx = 2
img = np.squeeze(images[idx])
# display the pixel values in the image
fig = plt.figure(figsize = (12,12))
ax = fig.add_subplot(111)
ax.imshow(img, cmap='gray')
width, height = img.shape
thresh = img.max()/2.5
for x in range(width):
for y in range(height):
val = round(img[x][y],2) if img[x][y] !=0 else 0
ax.annotate(str(val), xy=(y,x),
horizontalalignment='center',
verticalalignment='center',
color='white' if img[x][y]<thresh else 'black')
###Output
_____no_output_____
###Markdown
NN Architecture* Architecture for simple ConvNet [INPUT-CONV-RELU-POOL-FC]* [NN Layers](http://pytorch.org/docs/master/nn.html)* Flattening used for the output of conv/pooling layer to a linear layer. In Keras used ``Flatten()``. In Pytorch used an input x with ``x = x.view(x.size(0), -1)``* Keep tract output dimension for case ``output_dim = (W-F+2P)/S + 1`` * Input volume size(W) * Receptive field size of the Conv Layer neurons(F) * The sride with which applied(S) * The amount of zero padding used(P)* Dropout randomly turns off perceptrons(nodes). It gives a way to balance network so that every node works equally towards the same goal, and if one makes a mistake, it won't dominate the behavior of our model. ``nn.Dropout()``We set dropout p = 0.9 which means each epoch, each nodes get turned off with a probabilit 90percent. Necessary Packages for NN Module
###Code
import torch.nn as nn
import torch.nn.functional as F
# Define Layers of a model
# Will use [INPUT-CONV-RELU-POOL-CONV-RELU-POOL-FC]
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# 1 input image channel(grayscale), 10 output channels/features maps
# Applies a 2D convolution over an input signal composed of several input planes.
# 3x3 square convolution kernel
# output_dim = (28-3)/1 + 1 = 26
# output Tensor for one image will have the dimensions: (10, 26, 26)
self.conv1 = nn.Conv2d(1, 10, 3)
# maxpool layer with kernel_size=2, stride=2
# Output_dim = 26/2 = 13
# output Tensor for one image will have the dimensions: (10, 13, 13)
self.pool = nn.MaxPool2d(2,2)
# Apply Second conv layer: 10 inputs, 20 outputs
# 3x3 square convolution kernel
# output_dim = (13-3)/1 + 1 = 11
# output Tensor for one image will have the dimensions: (20, 11, 11)
self.conv2 = nn.Conv2d(10, 20, 3)
# Outpu_dim for pooling after secon conv (20, 5, 5); 5.5 is rounded down
######
# FC
# # 20 outputs * the 5*5 filtered/poled map size
# # 10 output channels (for the 10 classes)
# self.fc1 = nn.Linear(20*5*5, 10)
# pool 10 -> 50
self.fc1 = nn.Linear(20*5*5, 50)
######
# dropout with p=0.4
self.fc1_drop = nn.Dropout(p=0.4)
# finally, create 10 output channels (for the 10 classes)
self.fc2 = nn.Linear(50, 10)
######
# feedforward behavior
def forward(self, x):
# Apply [CONV-RELU-POOL-CONV-RELU-POOL]
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
# Flattening used for the output of conv/pooling layer to a linear laye
# Flatten the inputs into a vector
x = x.view(x.size(0), -1)
# One linear layer
x = F.relu(self.fc1(x))
# # Apply softmax layer to convert the 10 outputs (0-9) into a distribution prob of class scores
# x = F.log_softmax(x, dim=1)
####
# two linear layers with dropout in between
x = self.fc1_drop(x)
x = self.fc2(x)
####
return x
# Instantiate and print Net
net = Net()
print(net)
###Output
Net(
(conv1): Conv2d(1, 10, kernel_size=(3, 3), stride=(1, 1))
(pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(conv2): Conv2d(10, 20, kernel_size=(3, 3), stride=(1, 1))
(fc1): Linear(in_features=500, out_features=50, bias=True)
(fc1_drop): Dropout(p=0.4, inplace=False)
(fc2): Linear(in_features=50, out_features=10, bias=True)
)
###Markdown
Loss function and Optimizer* Loss function typically uses cross entropy loss ``criterion = nn.CrossEntropyLoss()``; Cross entropy loss combines softmax and NLL loss (``nn.NLLLoss()``).* NLL Loss being uesd for the output of Net is a distribution of class scores which this condtion fit to the model.* Some standard stochastic optimizers are stochastic gradient descent and Adam.* Apply momentum. It helps to find and then move on from local minimums and find the global minimum
###Code
# additional necessary package for optimizer
import torch.optim as optim
# # Apply NLL Loss for distribution of class scores
# criterion = nn.NLLLoss()
####
# using cross entropy which combines sftmax and NLL loss
criterion = nn.CrossEntropyLoss()
# Optimizer used SGD with small learning rate 0.001
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
####
###Output
_____no_output_____
###Markdown
Accuracy before training* The accuracy of before and after training hepls to see the differnce whether netwrok has learned something.
###Code
# Calculate accuracy before training
correct = 0
total = 0
# Iterate through test dataset
for images, labels in test_loader:
# forward pass to get outputs
# the outputs are a series of class scores
outputs = net(images)
# get the predicted class from the maximum value in the output-list of class scores
_, predicted = torch.max(outputs.data, 1)
# count up total number of correct labels for which the predicted and true labels are equal
total += labels.size(0)
correct += (predicted == labels).sum()
# calculate the accuracy to convert correct from a Tensor into a scalar, use .item()
accuracy = 100.0 * correct.item() / total
print('Accuracy before training: ', accuracy)
###Output
Accuracy before training: 11.76
###Markdown
Train the Network* n_epochs: The number of epochs how many times a netwrok will cycle through the entire training dataset* Loop over the training dataset in batches and record the loss every 1000 batches* Steps: * Zero's the gradients to prepare for a forward pass * Passes the input through the network(forward pass * Computes the loss * Propagates gradients back into the netorks' parameter(backward pass) * Updates the weight(parameter update * print calculated loss
###Code
def train(n_epochs):
# collect loss as the network trains
loss_over_time = []
# loop over the dataset
for epoch in range(n_epochs):
running_loss = 0.0
for batch_i, data in enumerate(train_loader):
# get the input images and their corresponding labels
inputs, labels = data
# Zero the parameter(weight) gradients
optimizer.zero_grad()
# Forward pass to get outputs
outputs = net(inputs)
# Calculate the loss
loss = criterion(outputs, labels)
# backward pass o calculate the parameter gradients
loss.backward()
# Update the parameters
optimizer.step()
#Print loss stat to convert loss into a scalar and add it to running_loss, here used .item()
running_loss += loss.item()
# show stat at every 1000 batches
if batch_i % 1000 == 999:
avg_loss = running_loss/1000
# record and print the avg loss over the 1000 batches
loss_over_time.append(avg_loss)
print('Epoch: {}, Batch: {}, Avg. Loss: {}'.format(epoch+1, batch_i+1, avg_loss))
running_loss = 0.0
print('Finished Training')
return loss_over_time
# define the number of epochs to train for
# start with small epochs to see if model works initially
n_epochs = 30
# call train and record the loss over time
training_loss = train(n_epochs)
###Output
/home/eightun/anaconda3/lib/python3.7/site-packages/torch/autograd/__init__.py:147: UserWarning: CUDA initialization: CUDA unknown error - this may be due to an incorrectly set up environment, e.g. changing env variable CUDA_VISIBLE_DEVICES after program start. Setting the available devices to be zero. (Triggered internally at /pytorch/c10/cuda/CUDAFunctions.cpp:109.)
allow_unreachable=True, accumulate_grad=True) # allow_unreachable flag
###Markdown
Visualize the Lossprint recorded avg loss for each 1000 batches and for each epoch
###Code
# Visualize the Loss
plt.plot(training_loss)
plt.xlabel('1000\'s of batches')
plt.ylabel('Loss')
plt.ylim(0, 2.5)
plt.show()
###Output
_____no_output_____
###Markdown
As shown above plot shows the loss decreases over time.It takes a little bot for big initial loss decrease, and the loss is flattening out over time Test the Trained Network* Test trained model on a previously unseen dataset* Use training images (good modle should reach greater than 85% accuracy on this test dataset)
###Code
# Initialize tensor and lists to monitor test loss and accuracy
test_loss = torch.zeros(1)
class_correct = [0. for i in range(10)]
class_total = [0. for i in range(10)]
# set the module to evaluation mode
net.eval()
for batch_i, data in enumerate(test_loader):
# get the input images and their corresponding labels
inputs, labels = data
# forward pass to get outputs
outputs = net(inputs)
# calcuate the loss
loss = criterion(outputs, labels)
# update avg test loss
test_loss += ((torch.ones(1) / (batch_i + 1)) * (loss.data - test_loss))
# get the predicted class from the maximum valuein the output list of class scores
_, predicted = torch.max(outputs.data, 1)
# compare prediction to true label
# this creates a correct Tensor that holds the number of correctly classified images in a batch
correct = np.squeeze(predicted.eq(labels.data.view_as(predicted)))
# calculate test accuracy for each object class
for i in range(batch_size):
label = labels.data[i]
# get the scalar value of correct items for a class, by calling 'correct[i].item()'
class_correct[label] += correct[i].item()
class_total[label] += 1
print('Test Loss: {:.6f}\n'.format(test_loss.numpy()[0]))
for i in range(10):
if class_total[i] > 0:
print('Test Accuracy of %5s: %2d%% (%2d/%2d)' % (classes[i],
100 * class_correct[i] / class_total[i],
np.sum(class_correct[i]),
np.sum(class_total[i])))
else:
print('Test Accuracy of %5s: N/A (no training examples)' % (classes[i]))
print('\nTest Accuracy (Overall): %2d%% (%2d/%2d)' %(100. * np.sum(class_correct) / np.sum(class_total),
np.sum(class_correct),
np.sum(class_total)))
###Output
Test Loss: 0.309656
Test Accuracy of T-shirt/top: 79% (797/1000)
Test Accuracy of Trouser: 96% (965/1000)
Test Accuracy of Pullover: 76% (764/1000)
Test Accuracy of Dress: 90% (907/1000)
Test Accuracy of Coat: 85% (851/1000)
Test Accuracy of Sandal: 96% (964/1000)
Test Accuracy of Shirt: 71% (717/1000)
Test Accuracy of Sneaker: 96% (966/1000)
Test Accuracy of Bag: 97% (972/1000)
Test Accuracy of Ankle boot: 95% (957/1000)
Test Accuracy (Overall): 88% (8860/10000)
###Markdown
Visualize sample test resultsShows predicted class(true class)
###Code
# obtan one batch of test images
dataiter = iter(test_loader)
images, labels = dataiter.next()
# get predictions
preds = np.squeeze(net(images).data.max(1, keepdim=True)[1].numpy())
images = images.numpy()
# plot the images in the batch, along with predicted and true labels
fig = plt.figure(figsize=(25, 4))
for idx in np.arange(batch_size):
ax = fig.add_subplot(2, batch_size/2, idx+1, xticks=[], yticks=[])
ax.imshow(np.squeeze(images[idx]), cmap='gray')
ax.set_title("{} ({})".format(classes[preds[idx]], classes[labels[idx]]), color=('green' if preds[idx]==labels[idx] else 'red'))
###Output
/home/eightun/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:12: MatplotlibDeprecationWarning: Passing non-integers as three-element position specification is deprecated since 3.3 and will be removed two minor releases later.
if sys.path[0] == '':
###Markdown
After add dropout and momentum The [Previous model](https://github.com/bmaxdk/NN-PyTorch/blob/main/04_Fashion_MNIST_Training/FashionMNIST_Training.ipynb) has Weaknesses:Test Accuracy of Dress: 0% ( 0/1000)As a result this two have 0% accuracy. Due o incorrectly classifies most of other which has a similar overall shape. We can add regularization.Dropout layers to avoid overfitting certain classes at the cost of generalization. Dropou layers and adding momentum help to improve the [Previous model](https://github.com/bmaxdk/NN-PyTorch/blob/main/04_Fashion_MNIST_Training/FashionMNIST_Training.ipynb) Save the model
###Code
# path and model name
model_dir = 'saved_models/'
model_name = 'fashion_net_simple.pt'
# after training, save your model parameters in the directoy 'saved_models'
torch.save(net.state_dict(), model_dir+model_name)
###Output
_____no_output_____ |
module2-scala-for-spark/tony_scala4.ipynb | ###Markdown
###Code
println("Hello World")
println(10)
print("Hello world!")
print(10)
val x = 10
x=20
var y = 10
y =20
val z: Int=10
val a: Double=1.0
val b: Double=10
###Output
_____no_output_____
###Markdown
truefalse
###Code
!true
!false
true == false
10 > 5
1+1
2 - 1
5 * 3
6/2
6/4
6.0/4
6/4.0
1+7
"a"
'a'
"hello world".length
"hello world".substring(2,6)
"hello world".replace("o","3")
"hello world".take(5)
"hello world".drop(5)
val n=45
s"We have $n apples"
s"Power of 2: ${math.pow(2,2)}"
"They stood outside the \"Rose and Crown\""
def sumofSquares(x: Int, y: Int): Int = {
val x2 = x * x
val y2 = y * y
x2 + y2
}
def sumofSquares(x: Int, y: Int): Int = x*x + y*y
sumofSquares(3,4)
def substract(x: Int, y:Int):Int = x-y
substract(10,3)
substract(y=10,x=3)
def sq(x: Int) = x*x
def addWithDefault(x:Int, y:Int=5) = x+y
addWithDefault(1,2)
addWithDefault(1)
(x:Int)=> x*x
val sq: Int=>Int=x=>x*x
sq(10)
val addOne: Int => Int=_+1
val weirdSum: (Int, Int)=> Int=(_ * 2 + _ * 3)
addOne(5)
weirdSum(2,4)
1 to 5
val r = 1 to 5
r.foreach(println)
r foreach println
(5 to 1 by -1) foreach(println)
def showNumbersInRange(a:Int, b:Int): Unit={
print(a)
if (a<b)
showNumbersInRange(a+1,b)
}
showNumbersInRange(1,14)
val x=10
if (x==1) println("yeah")
if (x==10) println("yeah") else println("nay")
println(if (x==10) "yeah" else "nope")
val text = if (x==10) "yeah" else "nope"
val a = Array(1,2,3,5,8,13)
a(0)
a(3)
a(21)
val s= Set(1,3,7)
s(0)
s(1)
(1,2)
(4,3,2)
(1,2,"three")
(a,2,"three")
val divideInts = (x:Int, y:Int)=>(x/y, x%y)
divideInts(10,3)
val d = divideInts(10,3)
d._1
d._2
val(div, mod)= divideInts(10,3)
div
mod
val add10:Int => Int=_+10
List(1,2,3) map add10
List(1,2,3) map (x=> x+10)
List(1,2,3) map(_+10)
List("Dom","Bob","Natalia") foreach println
val s=Set(1,3,7)
s.map(sq)
val sSquared = s. map(sq)
sSquared.filter(_ < 10)
sSquared.reduce(_+_)
List(1,2,3) filter(_ > 2)
case class Person(name:String, age:Int)
List(
Person(name = "Dom", age=23),
Person(name = "Bob", age=30)
).filter(_.age > 25)
val aListOfNumbers = List(1,2,3,4,10,20,100)
aListOfNumbers foreach (x => println(x))
aListOfNumbers foreach println
import scala.collection.immutable.List
import scala.collection.immutable._
import scala.collection.immutable.{List, Map}
import scala.collection.immutable.{List => ImmutableList}
###Output
_____no_output_____ |
tutorials/2 - Static Connectivity.ipynb | ###Markdown
2 - Static ConnectivityIn this short tutorial, we will compute the static connectivity of the EEG singals. - - - Load data
###Code
import numpy as np
import scipy
from scipy import io
eeg = np.load("data/eyes_opened.npy")
num_trials, num_channels, num_samples = np.shape(eeg)
eeg1 = np.squeeze(eeg[0, :, :])
###Output
_____no_output_____
###Markdown
Static connectivityAs a first example, we are going to compute the static connectivity of the EEG signals using the IPLV estimator.
###Code
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
from dyconnmap.fc import iplv
###Output
_____no_output_____
###Markdown
Define the frequency band we are interested to examine, in Hz
###Code
band = [1.0, 4.0]
###Output
_____no_output_____
###Markdown
Define the sampling frequency, in Hz
###Code
sampling_frequency = 160.0
###Output
_____no_output_____
###Markdown
We will invoke the estimator using the full by-name arguments. The last arguement, `pairs` is `None` by default, which means all "full connectivity", otherwise you check the documentation about the structure of the value.
###Code
ts, avg = iplv(eeg1, fb=band, fs=sampling_frequency, pairs=None)
print("""Time series array shape: {0}
Average time series array shape: {1}""".format(np.shape(ts), np.shape(avg)))
###Output
Time series array shape: (64, 64, 9600)
Average time series array shape: (64, 64)
###Markdown
Make the connectivity matrix symmetric
###Code
avg_symm = avg + avg.T
np.fill_diagonal(avg_symm, 1.0)
###Output
_____no_output_____
###Markdown
PlotPlot the matrix using the standard Matplotlib functions
###Code
import matplotlib.pyplot as plt
mtx_min = 0.0 # we know it's 0.0 because of the estimator's properties
mtx_max = np.max(avg)
plt.figure(figsize=(6, 6))
cax = plt.imshow(avg_symm, vmin=mtx_min, vmax=mtx_max, cmap=plt.cm.Spectral)
cb = plt.colorbar(fraction=0.046, pad=0.04)
cb.ax.set_ylabel('Imaginary PLV', fontdict={'fontsize': 20})
plt.title('Connectivity Matrix', fontdict={'fontsize': 20})
plt.xlabel('Sensor', fontdict={'fontsize': 20})
plt.ylabel('Sensor', fontdict={'fontsize': 20})
plt.show()
###Output
_____no_output_____ |
topics/4a_functies.ipynb | ###Markdown
FunctiesFun met Python functies! Computing*Berekeningen*, handelingen op data Een computer *rekent*, en daarmee voert het handelingen op data uit. Met data heb je kennisgemaakt en hoe dit door de computer wordt opgeslagen (denk aan de "dozen" in het geheugen en bits als fundamentele informatie-eenheid). Maar hoe worden *bewerkingen* op deze data uitgevoerd? We gaan kennismaken met een andere bouwsteen om te kunnen handelen: functies! HandelenInput en output
###Code
len("huiswerk")
###Output
_____no_output_____
###Markdown
Je hebt inmiddels al functies gebruikt, bijvoorbeeld de functie `len(x)`. Deze functie accepteert een *parameter* (een waarde, de *input*) en geeft een resultaat terug (*output*). We weten of zien niet welke handelingen `len(x)` verricht, we weten alleen dat het een waarde terugggeeft. Laten we Python functies eens vergelijken met wat je al kent van andere disciplines, bijvoorbeeld wiskunde.  [Googol](https://nl.wikipedia.org/wiki/Googol) is de wiskundige aanduiding van een getal met de waarde $10^{100}$ (uitgeschreven een 1 gevolgd door 100 nullen). Dit is meer dan het aantal deeltjes in het waarneembaar heelal, maar minder dan het geschat [mogelijk aantal zetten in een schaakspel](https://en.wikipedia.org/wiki/Shannon_number) ($10^{120}$)!En als iemand in het verleden niet een [spelfout](https://graphics.stanford.edu/~dk/google_name_origin.html) had gemaakt dan zocht je nu met Googol in plaats van [Google](https://google.com) ... Laten we onze eigen "googoler" functie maken die *elk* getal tot de macht 100 kan verheffen. Structuur versus procedure $$g(x) = x^{100}$$Definieert een **structuur**: wat het *is* (en wat logischerwijs volgt) Functies ken je uit de wiskunde en je zou een "googolige" machtsverheffing kunnen *beschrijven* als een functie. We beschrijven hier dat voor elke parameter $x$ je deze als $x^{100}$ terugkrijgt. Dit is de syntax die wiskudigen hebben bedacht om een *structuur* te beschrijven en wat daar logischerwijs uit zou moeten volgen. ```pythondef g(x): return x**100```Defineert een **procedure**: wat het *doet* (en wat gedragsmatig volgt) Python heeft ook functies. Het heeft de speciale syntax `def` (wat *define* betekent) om te zeggen "Ik definieer een functie", in dit geval een functie met de naam `g` die een enkele parameter `x` accepteert.De combinatie van naam en welke parameters worden geaccepteerd wordt ook de *signatuur* van een functie genoemd, want dit is wat het uniek maakt en onderscheidt van andere functies die we gaan schrijven. Let ook op dat een functie definitie wordt afgesloten met de dubbele punt `:`!Dit is al een stuk concreter, want anders dan de wiskundige beschrijving definiëren we hier een procedure (één of meerdere handelingen die uitgevoerd moeten worden op basis van een mogelijke input) en een resultaat dat mogelijk met het `return` *statement* wordt teruggegeven (output). Let ook op dat alles wat na de dubbele punt volgt moet worden ingesprongen om aan te geven dat het een codeblok is dat onderdeel van de functie is.Syntax check! De dubbele punt geeft aan dat een nieuwe context volgt, je hebt dit bijvoorbeeld ook gezien bij conditionele statements als `if:`. De vuistregel is *altijd inspringen* na een dubbele punt! Binnen een functie
###Code
def flipside(s):
""" flipside(s): spiegel s!
input s: een string
"""
x = len(s) // 2
return s[x:] + s[:x]
flipside("automaat")
###Output
_____no_output_____
###Markdown
Laten we gaan kijken naar de binnenkant van functies. We hebben hier een functie `flipside` gedefinieerd die een *string* spiegelt. Je ziet dat functie `len(x)`, *floor division* `//` en string *slicing* wordt gebruikt. Maar je ziet ook andere dingen, bijvoorbeeld binnen de functie een nieuwe variabele `x` en tekst tussen driedubbele aanhalingstekens `"""`. Docstrings```pythondef flipside(s): """ flipside(s): spiegel s! input s: een string """```
###Code
help(flipside)
###Output
Help on function flipside in module __main__:
flipside(s)
flipside(s): spiegel s!
input s: een string
###Markdown
Met een string met driedubbele aanhalingstekens direct na de dubbele punt documenteer je de functie (voor jezelf en voor anderen). Je beschrijft in deze *docstring* op de eerste regel kort wat de functie doet en verder andere informatie die nodig is, bijvoorbeeld de typen van parameters. Deze documentatie kan je altijd opvragen met `help(x)`. Probeer dit ook een voor (ingebouwde) Python functies als (`len(x)` of `print()`). Gebruik variabelen```pythondef flipside(s): x = len(s) // 2 return s[x:] + s[:x]``` De lengte van de string is nodig om vervolgens met een floor division het aantal karakters tot het middelpunt van de string te bepalen. Dit aantal wordt aan de nieuwe variabele `x` toegekend en deze `x` wordt vervolgens 2 keer gebruikt voor het slicen van de string (de start- en stop waarden). We breken met het zetten van deze variabele `x` ook het probleem in stukjes op, en het scheelt ons typewerk! ```pythondef flipside(s): return s[len(s) // 2:] + s[:len(s) // 2]``` Je had de stap van het zetten van een variabele ook kunnnen overslaan en de start- en stop waarde voor het slicen van de string ook als resultaat van `len(s) // 2` kunnen schrijven, maar je merkt al dat het minder goed leesbaar is. Het gebruik van variabelen helpt de leesbaarheid en zelfs de computer vind het prettiger omdat het efficiënter is: er hoeft maar één keer het aantal karakters tot het midden te worden berekend! Variabelen opnieuw definieren```pythondef convert_from_seconds(s): """Een getal naar dagen, uren, minuten en seconden Zet een getal om naar naar een lijst van [days, hours, minutes, seconds] input s: een int """ days = s // (24 * 60 * 60) aantal dagen s = s % (24 * 60 * 60) restant s hours = s // (60 * 60) aantal uren s = s % (60 * 60) restant s minutes = s // 60 aantal minuten s = s % 60 restant s return [days, hours, minutes, s]``` Gebruik variabelen en definiereer ze opnieuw als het nodig is! In dit voorbeeld wordt `s` steeds opnieuw gedefineerd op basis van het resultaat van een vorige handeling. Een floor division (`//`) wordt eerst gebruikt om bijvoorbeeld het aantal dagen te vinden en met het restant (`%`) wordt op dezlfde manier het aantal uren weer gevonden. Hetzelfde proces wordt herhaald voor het aantal minuten tot een restant aan aantal seconden overblijft.Naast de *docstring* zie je ook commentaren: alles wat na een `` volgt slaat Python over, het doet daar niets mee. Het is vooral voor mensen een manier om opmerkingen tussendoor te plaatsen. Let verder ook op het return statement waar de waarden als *list* wordt teruggegeven. Return versus printWat is het verschil? Je hebt eerder kennisgemaakt met `print(x)` en deze functie geeft iets terug, althans zo lijkt het! `return` geeft een resultaat van een functie terug, wat is nu het verschil met `print(x)`?
###Code
def dbl(x):
"""verdubbelt x?
"""
return 2 * x
a_dbl = dbl(20) + 20
###Output
_____no_output_____
###Markdown
Dit is een eenvoudige functie die een waarde verdubbelt en het resultaat teruggeeft met `return`. Nu een variant met `print(x)` in plaats van `return`:
###Code
def dbl_pr(x):
"""verdubbelt x?
"""
print(2 * x)
###Output
_____no_output_____
###Markdown
```pythona_dbl_pr = dbl_pr(20) + 20``` ```text---------------------------------------------------------------------------TypeError Traceback (most recent call last) in 4 print(2 * x) 5 ----> 6 a_dbl_pr = dbl_pr(20) + 20TypeError: unsupported operand type(s) for +: 'NoneType' and 'int'``` Dit geeft een fout op regel 6, waar we bij het resultaat van de functie 20 willen optellen. Waarom deze fout terwijl we wél een resultaat op scherm zien (40)? De verklaring is dat een functie zonder `return` niets teruggeeft en dat "niets" (verassend genoeg!) wél een waarde heeft, een waarde `None` (met type `NoneType`). `None` ("geen") representeert het niets en Python zegt ons hier dat we 20 *niet* bij niets kunnen optellen!Het *niets* is voor Python blijkbaar wel "iets" (`None`)!Als je er bij stilstaat is dit niet zo gek. Wij mensen maken ook een onderscheid tussen iets en niets (en hebben daar woorden voor, *iets* of *niets*) en voor Python is in dit niet(s) anders: het heeft een manier nodig om niets te kunnen representeren en uit te drukken. Het verschil**print** wijzigt pixels op het scherm**return** geeft resultaat van de functie-aanroep terug `return` is de manier hoe software informatie aan functies doorgeeft, waar het resultaat (output) van de een de input kan zijn voor de ander. Testen
###Code
# 1: functie definitie
def flipside(s):
""" flipside(s): spiegel s!
input s: een string
"""
x = len(s) // 2
return s[x:] + s[:x]
# 2: Tests
assert flipside('huiswerk') == 'werkhuis'
assert flipside('popster') == 'sterpop'
print(" toplap ~", flipside('laptop')) # print het resultaat naar het scherm
###Output
toplap ~ toplap
###Markdown
Voeg `assert` statements toe, waar *assert* een aanname betekent. Bijvoorbeeld, lees```pythonassert flipside('huiswerk') == 'werkhuis'```als "neem aan dat het resultaat van de aanroep `flipside('huiswerk')` gelijk is aan de string `'werkhuis'`". Verder kan je natuurlijk altijd print statements gebruiken om waarden naar het scherm te printen! None?`None` is iets dat *niets* representeert, kan je dit ook testen?
###Code
assert dbl_pr(20) == None
###Output
40
|
Week 6 PA 1/Deep+Features+for+Image+Classification.ipynb | ###Markdown
Using deep features to build an image classifier Fire up GraphLab Create
###Code
import graphlab
###Output
_____no_output_____
###Markdown
Load a common image analysis datasetWe will use a popular benchmark dataset in computer vision called CIFAR-10. (We've reduced the data to just 4 categories = {'cat','bird','automobile','dog'}.)This dataset is already split into a training set and test set.
###Code
image_train = graphlab.SFrame('image_train_data/')
image_test = graphlab.SFrame('image_test_data/')
###Output
[INFO] This commercial license of GraphLab Create is assigned to [email protected].
[INFO] Start server at: ipc:///tmp/graphlab_server-123075 - Server binary: /home/ubuntu/anaconda/lib/python2.7/site-packages/graphlab/unity_server - Server log: /tmp/graphlab_server_1440701433.log
[INFO] GraphLab Server Version: 1.5.2
###Markdown
Exploring the image data
###Code
graphlab.canvas.set_target('ipynb')
image_train['image'].show()
###Output
_____no_output_____
###Markdown
Train a classifier on the raw image pixelsWe first start by training a classifier on just the raw pixels of the image.
###Code
raw_pixel_model = graphlab.logistic_classifier.create(image_train,target='label',
features=['image_array'])
###Output
PROGRESS: Creating a validation set from 5 percent of training data. This may take a while.
You can set ``validation_set=None`` to disable validation tracking.
PROGRESS: Logistic regression:
PROGRESS: --------------------------------------------------------
PROGRESS: Number of examples : 1900
PROGRESS: Number of classes : 4
PROGRESS: Number of feature columns : 1
PROGRESS: Number of unpacked features : 3072
PROGRESS: Number of coefficients : 9219
PROGRESS: Starting L-BFGS
PROGRESS: --------------------------------------------------------
PROGRESS: +-----------+----------+-----------+--------------+-------------------+---------------------+
PROGRESS: | Iteration | Passes | Step size | Elapsed Time | Training-accuracy | Validation-accuracy |
PROGRESS: +-----------+----------+-----------+--------------+-------------------+---------------------+
PROGRESS: | 1 | 6 | 0.000013 | 1.298911 | 0.280526 | 0.276190 |
PROGRESS: | 2 | 8 | 1.000000 | 1.426180 | 0.364211 | 0.314286 |
PROGRESS: | 3 | 9 | 1.000000 | 1.499995 | 0.411579 | 0.409524 |
PROGRESS: | 4 | 10 | 1.000000 | 1.577665 | 0.435263 | 0.514286 |
PROGRESS: | 5 | 11 | 1.000000 | 1.653563 | 0.464211 | 0.533333 |
PROGRESS: | 6 | 12 | 1.000000 | 1.727710 | 0.467368 | 0.523810 |
PROGRESS: +-----------+----------+-----------+--------------+-------------------+---------------------+
###Markdown
Make a prediction with the simple model based on raw pixels
###Code
image_test[0:3]['image'].show()
image_test[0:3]['label']
raw_pixel_model.predict(image_test[0:3])
###Output
_____no_output_____
###Markdown
The model makes wrong predictions for all three images. Evaluating raw pixel model on test data
###Code
raw_pixel_model.evaluate(image_test)
###Output
_____no_output_____
###Markdown
The accuracy of this model is poor, getting only about 46% accuracy. Can we improve the model using deep featuresWe only have 2005 data points, so it is not possible to train a deep neural network effectively with so little data. Instead, we will use transfer learning: using deep features trained on the full ImageNet dataset, we will train a simple model on this small dataset.
###Code
len(image_train)
###Output
_____no_output_____
###Markdown
Computing deep features for our imagesThe two lines below allow us to compute deep features. This computation takes a little while, so we have already computed them and saved the results as a column in the data you loaded. (Note that if you would like to compute such deep features and have a GPU on your machine, you should use the GPU enabled GraphLab Create, which will be significantly faster for this task.)
###Code
#deep_learning_model = graphlab.load_model('http://s3.amazonaws.com/GraphLab-Datasets/deeplearning/imagenet_model_iter45')
#image_train['deep_features'] = deep_learning_model.extract_features(image_train)
###Output
_____no_output_____
###Markdown
As we can see, the column deep_features already contains the pre-computed deep features for this data.
###Code
image_train.head()
###Output
_____no_output_____
###Markdown
Given the deep features, let's train a classifier
###Code
deep_features_model = graphlab.logistic_classifier.create(image_train,
features=['deep_features'],
target='label')
###Output
PROGRESS: Creating a validation set from 5 percent of training data. This may take a while.
You can set ``validation_set=None`` to disable validation tracking.
PROGRESS: WARNING: Detected extremely low variance for feature(s) 'deep_features' because all entries are nearly the same.
Proceeding with model training using all features. If the model does not provide results of adequate quality, exclude the above mentioned feature(s) from the input dataset.
PROGRESS: Logistic regression:
PROGRESS: --------------------------------------------------------
PROGRESS: Number of examples : 1919
PROGRESS: Number of classes : 4
PROGRESS: Number of feature columns : 1
PROGRESS: Number of unpacked features : 4096
PROGRESS: Number of coefficients : 12291
PROGRESS: Starting L-BFGS
PROGRESS: --------------------------------------------------------
PROGRESS: +-----------+----------+-----------+--------------+-------------------+---------------------+
PROGRESS: | Iteration | Passes | Step size | Elapsed Time | Training-accuracy | Validation-accuracy |
PROGRESS: +-----------+----------+-----------+--------------+-------------------+---------------------+
PROGRESS: | 1 | 5 | 0.000130 | 0.376212 | 0.720688 | 0.732558 |
PROGRESS: | 2 | 9 | 0.250000 | 0.717980 | 0.766024 | 0.790698 |
PROGRESS: | 3 | 10 | 0.250000 | 0.892061 | 0.769151 | 0.802326 |
PROGRESS: | 4 | 11 | 0.250000 | 1.022422 | 0.774883 | 0.802326 |
PROGRESS: | 5 | 12 | 0.250000 | 1.152027 | 0.788431 | 0.802326 |
PROGRESS: | 6 | 13 | 0.250000 | 1.287902 | 0.797290 | 0.790698 |
PROGRESS: | 10 | 17 | 0.250000 | 1.812273 | 0.875456 | 0.767442 |
PROGRESS: +-----------+----------+-----------+--------------+-------------------+---------------------+
###Markdown
Apply the deep features model to first few images of test set
###Code
image_test[0:3]['image'].show()
deep_features_model.predict(image_test[0:3])
###Output
_____no_output_____
###Markdown
The classifier with deep features gets all of these images right! Compute test_data accuracy of deep_features_modelAs we can see, deep features provide us with significantly better accuracy (about 78%)
###Code
deep_features_model.evaluate(image_test)
###Output
_____no_output_____ |
notebooks/VAE_training_hydraulic_faults.ipynb | ###Markdown
Imports
###Code
%reload_ext autoreload
%autoreload 2
%matplotlib inline
from VAE1D import *
from IPython.core.debugger import set_trace
###Output
_____no_output_____
###Markdown
Define train function in notebook due to import namespace difficulties.
###Code
def train_VAE1D(dl):
"""
Execute the training loop
"""
loss_tracker = AvgTracker()
kl_tracker = AvgTracker()
logp_tracker = AvgTracker()
timer = StopWatch()
freq = min(log_freq, len(dl))
for i, (X, _) in enumerate(tqdm(dl)):
X = X.to(device)
timer.lap() # load time
# Generate transient and compute loss
X_hat, mu, logvar = model(X)
loss, loss_desc = criterion(X_hat, X, mu, logvar)
timer.lap() # gen time
loss_tracker.update(loss.item())
kl_tracker.update(loss_desc['KL'].item())
logp_tracker.update(loss_desc['logp'].item())
if model.training:
# Update weights
optimizer.zero_grad()
loss.backward()
optimizer.step()
timer.lap() # backprop time
if ((i + 1) % freq == 0) and ((epoch + 1) % ep_freq == 0):
# Print progress
if model.training:
print('TRAINING')
else:
print('VALIDATION')
print(f'Epoch: {epoch + 1} ({i + 1}/{len(dl)})')
print(f'\tData load time: {timer.elapsed[0]:.3f} sec')
print(f'\tGeneration time: {timer.elapsed[1]:.3f} sec')
if model.training:
print(f'\tBackprop time: {timer.elapsed[2]:.3f} sec')
print(f'\tLog probability: {logp_tracker.val:.4f} '
f'(avg {logp_tracker.avg:.4f})')
print(f'\tKL: {kl_tracker.val:.4f} (avg {kl_tracker.avg:.4f})')
print(f'\tLoss: {loss_tracker.val:.4f} (avg {loss_tracker.avg:.4f})')
return loss_tracker.avg, kl_tracker.avg, logp_tracker.avg
###Output
_____no_output_____
###Markdown
Accumulator Build model and loss function Initially designed for 2D input images, modified for 1D time-series data.Based on this paper: https://arxiv.org/abs/1807.01349
###Code
# The hydraulic system has 14 sensors from which to pull data
n_channels = 14
# The data has been resized to 512, although it represents 1 min for each cycle
size = 512
# Latent space is restricted to be about 1/170th of the input dims, similar to 2D case
n_latent = 50
model = VAE1D(size, n_channels, n_latent)
model
beta = 1 # KL term relative weight
criterion = VAE1DLoss(beta)
###Output
_____no_output_____
###Markdown
Load hydraulic test dataFrom this dataset: https://archive.ics.uci.edu/ml/datasets/Condition+monitoring+of+hydraulic+systems
###Code
desc = 'accumulator'
data_path = Path(f'data/hydraulic/{desc}/')
batch_size = 32
train_dl, val_dl, test_dl = load_datasets(data_path,
batch_size=batch_size)
print(len(train_dl), len(val_dl), len(test_dl))
###Output
27 7 1157
###Markdown
Prepare for training
###Code
# Display settings - TODO add Visdom logging
log_freq = 15 # batches
ep_freq = 10 # epochs
# Training parameters
epochs = 300
lr = 1e-3
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Checkpoint to resume from (default None)
load_path = None
# Checkpoint save location
save_path = Path(f"models/{date.today().strftime('%y%m%d')}-{desc}/")
if save_path.is_dir():
print(f"Folder {save_path} already exists")
else:
os.mkdir(save_path)
save_path
# Load checkpoint if any
if load_path is not None:
checkpoint = torch.load(load_path, map_location=device)
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("Checkpoint loaded")
print(f"Validation loss: {checkpoint['val_loss']}")
print(f"Epoch: {checkpoint['epoch']}")
# Load optimizer and scheduler
optimizer = torch.optim.Adam(params=model.parameters(), lr=lr)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, 10)
# Move to GPU
model = model.to(device)
criterion = criterion.to(device)
###Output
_____no_output_____
###Markdown
Train the model
###Code
# Main loop
best_loss = np.inf
for epoch in range(epochs):
model.train()
scheduler.step()
train_loss, train_kl, train_logp = train_VAE1D(train_dl)
model.eval()
with torch.no_grad():
val_loss, val_kl, val_logp = train_VAE1D(val_dl)
# Report training progress to user
if val_loss < best_loss:
print('Saving checkpoint..')
best_loss = val_loss
save_dict = {'epoch': epoch + 1,
'state_dict': model.state_dict(),
'val_loss': val_loss,
'optimizer': optimizer.state_dict()}
path = save_path / f'best_model-{n_latent}-{beta}.pt'
torch.save(save_dict, path)
print(f'Lowest validation loss: {best_loss:.4f}')
###Output
100%|██████████| 27/27 [00:01<00:00, 21.96it/s]
100%|██████████| 7/7 [00:00<00:00, 25.75it/s]
0%| | 0/27 [00:00<?, ?it/s]
###Markdown
Cooler Build model and loss function Initially designed for 2D input images, modified for 1D time-series data.Based on this paper: https://arxiv.org/abs/1807.01349
###Code
# The hydraulic system has 14 sensors from which to pull data
n_channels = 14
# The data has been resized to 512, although it represents 1 min for each cycle
size = 512
# Latent space is restricted to be about 1/170th of the input dims, similar to 2D case
n_latent = 50
model = VAE1D(size, n_channels, n_latent)
beta = 1 # KL term relative weight
criterion = VAE1DLoss(beta)
###Output
_____no_output_____
###Markdown
Load hydraulic test dataFrom this dataset: https://archive.ics.uci.edu/ml/datasets/Condition+monitoring+of+hydraulic+systems
###Code
desc = 'cooler'
data_path = Path(f'data/hydraulic/{desc}/')
batch_size = 32
train_dl, val_dl, test_dl = load_datasets(data_path,
batch_size=batch_size)
print(len(train_dl), len(val_dl), len(test_dl))
###Output
28 7 1100
###Markdown
Prepare for training
###Code
# Display settings - TODO add Visdom logging
log_freq = 15 # batches
ep_freq = 10 # epochs
# Training parameters
epochs = 300
lr = 1e-3
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Checkpoint to resume from (default None)
load_path = None
# Checkpoint save location
save_path = Path(f"models/{date.today().strftime('%y%m%d')}-{desc}/")
if save_path.is_dir():
print(f"Folder {save_path} already exists")
else:
os.mkdir(save_path)
save_path
# Load checkpoint if any
if load_path is not None:
checkpoint = torch.load(load_path, map_location=device)
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("Checkpoint loaded")
print(f"Validation loss: {checkpoint['val_loss']}")
print(f"Epoch: {checkpoint['epoch']}")
# Load optimizer and scheduler
optimizer = torch.optim.Adam(params=model.parameters(), lr=lr)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, 10)
# Move to GPU
model = model.to(device)
criterion = criterion.to(device)
###Output
_____no_output_____
###Markdown
Train the model
###Code
# Main loop
best_loss = np.inf
for epoch in range(epochs):
model.train()
scheduler.step()
train_loss, train_kl, train_logp = train_VAE1D(train_dl)
model.eval()
with torch.no_grad():
val_loss, val_kl, val_logp = train_VAE1D(val_dl)
# Report training progress to user
if val_loss < best_loss:
print('Saving checkpoint..')
best_loss = val_loss
save_dict = {'epoch': epoch + 1,
'state_dict': model.state_dict(),
'val_loss': val_loss,
'optimizer': optimizer.state_dict()}
path = save_path / f'best_model-{n_latent}-{beta}.pt'
torch.save(save_dict, path)
print(f'Lowest validation loss: {best_loss:.4f}')
###Output
100%|██████████| 28/28 [00:01<00:00, 22.75it/s]
100%|██████████| 7/7 [00:00<00:00, 24.74it/s]
0%| | 0/28 [00:00<?, ?it/s]
###Markdown
Pump Build model and loss function Initially designed for 2D input images, modified for 1D time-series data.Based on this paper: https://arxiv.org/abs/1807.01349
###Code
# The hydraulic system has 14 sensors from which to pull data
n_channels = 14
# The data has been resized to 512, although it represents 1 min for each cycle
size = 512
# Latent space is restricted to be about 1/170th of the input dims, similar to 2D case
n_latent = 50
model = VAE1D(size, n_channels, n_latent)
beta = 1 # KL term relative weight
criterion = VAE1DLoss(beta)
###Output
_____no_output_____
###Markdown
Load hydraulic test dataFrom this dataset: https://archive.ics.uci.edu/ml/datasets/Condition+monitoring+of+hydraulic+systems
###Code
desc = 'pump'
data_path = Path(f'data/hydraulic/{desc}/')
batch_size = 32
train_dl, val_dl, test_dl = load_datasets(data_path,
batch_size=batch_size)
print(len(train_dl), len(val_dl), len(test_dl))
###Output
33 9 920
###Markdown
Prepare for training
###Code
# Display settings - TODO add Visdom logging
log_freq = 15 # batches
ep_freq = 10 # epochs
# Training parameters
epochs = 300
lr = 1e-3
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Checkpoint to resume from (default None)
load_path = None
# Checkpoint save location
save_path = Path(f"models/{date.today().strftime('%y%m%d')}-{desc}/")
if save_path.is_dir():
print(f"Folder {save_path} already exists")
else:
os.mkdir(save_path)
save_path
# Load checkpoint if any
if load_path is not None:
checkpoint = torch.load(load_path, map_location=device)
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("Checkpoint loaded")
print(f"Validation loss: {checkpoint['val_loss']}")
print(f"Epoch: {checkpoint['epoch']}")
# Load optimizer and scheduler
optimizer = torch.optim.Adam(params=model.parameters(), lr=lr)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, 10)
# Move to GPU
model = model.to(device)
criterion = criterion.to(device)
###Output
_____no_output_____
###Markdown
Train the model
###Code
# Main loop
best_loss = np.inf
for epoch in range(epochs):
model.train()
scheduler.step()
train_loss, train_kl, train_logp = train_VAE1D(train_dl)
model.eval()
with torch.no_grad():
val_loss, val_kl, val_logp = train_VAE1D(val_dl)
# Report training progress to user
if val_loss < best_loss:
print('Saving checkpoint..')
best_loss = val_loss
save_dict = {'epoch': epoch + 1,
'state_dict': model.state_dict(),
'val_loss': val_loss,
'optimizer': optimizer.state_dict()}
path = save_path / f'best_model-{n_latent}-{beta}.pt'
torch.save(save_dict, path)
print(f'Lowest validation loss: {best_loss:.4f}')
###Output
100%|██████████| 33/33 [00:01<00:00, 23.03it/s]
100%|██████████| 9/9 [00:00<00:00, 27.72it/s]
0%| | 0/33 [00:00<?, ?it/s]
###Markdown
Valve Build model and loss function Initially designed for 2D input images, modified for 1D time-series data.Based on this paper: https://arxiv.org/abs/1807.01349
###Code
# The hydraulic system has 14 sensors from which to pull data
n_channels = 14
# The data has been resized to 512, although it represents 1 min for each cycle
size = 512
# Latent space is restricted to be about 1/170th of the input dims, similar to 2D case
n_latent = 50
model = VAE1D(size, n_channels, n_latent)
beta = 1 # KL term relative weight
criterion = VAE1DLoss(beta)
###Output
_____no_output_____
###Markdown
Load hydraulic test dataFrom this dataset: https://archive.ics.uci.edu/ml/datasets/Condition+monitoring+of+hydraulic+systems
###Code
desc = 'valve'
data_path = Path(f'data/hydraulic/{desc}/')
batch_size = 32
train_dl, val_dl, test_dl = load_datasets(data_path,
batch_size=batch_size)
print(len(train_dl), len(val_dl), len(test_dl))
###Output
38 10 720
###Markdown
Prepare for training
###Code
# Display settings - TODO add Visdom logging
log_freq = 15 # batches
ep_freq = 10 # epochs
# Training parameters
epochs = 300
lr = 1e-3
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Checkpoint to resume from (default None)
load_path = None
# Checkpoint save location
save_path = Path(f"models/{date.today().strftime('%y%m%d')}-{desc}/")
if save_path.is_dir():
print(f"Folder {save_path} already exists")
else:
os.mkdir(save_path)
save_path
# Load checkpoint if any
if load_path is not None:
checkpoint = torch.load(load_path, map_location=device)
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("Checkpoint loaded")
print(f"Validation loss: {checkpoint['val_loss']}")
print(f"Epoch: {checkpoint['epoch']}")
# Load optimizer and scheduler
optimizer = torch.optim.Adam(params=model.parameters(), lr=lr)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, 10)
# Move to GPU
model = model.to(device)
criterion = criterion.to(device)
###Output
_____no_output_____
###Markdown
Train the model
###Code
# Main loop
best_loss = np.inf
for epoch in range(epochs):
model.train()
scheduler.step()
train_loss, train_kl, train_logp = train_VAE1D(train_dl)
model.eval()
with torch.no_grad():
val_loss, val_kl, val_logp = train_VAE1D(val_dl)
# Report training progress to user
if val_loss < best_loss:
print('Saving checkpoint..')
best_loss = val_loss
save_dict = {'epoch': epoch + 1,
'state_dict': model.state_dict(),
'val_loss': val_loss,
'optimizer': optimizer.state_dict()}
path = save_path / f'best_model-{n_latent}-{beta}.pt'
torch.save(save_dict, path)
print(f'Lowest validation loss: {best_loss:.4f}')
###Output
100%|██████████| 38/38 [00:01<00:00, 23.20it/s]
100%|██████████| 10/10 [00:00<00:00, 30.02it/s]
0%| | 0/38 [00:00<?, ?it/s]
###Markdown
Any Fault Limited data for this, only 20% of total dataset Build model and loss function Initially designed for 2D input images, modified for 1D time-series data.Based on this paper: https://arxiv.org/abs/1807.01349
###Code
# The hydraulic system has 14 sensors from which to pull data
n_channels = 14
# The data has been resized to 512, although it represents 1 min for each cycle
size = 512
# Latent space is restricted to be about 1/170th of the input dims, similar to 2D case
n_latent = 50
model = VAE1D(size, n_channels, n_latent)
beta = 1 # KL term relative weight
criterion = VAE1DLoss(beta)
###Output
_____no_output_____
###Markdown
Load hydraulic test dataFrom this dataset: https://archive.ics.uci.edu/ml/datasets/Condition+monitoring+of+hydraulic+systems
###Code
desc = 'any'
data_path = Path(f'data/hydraulic/{desc}/')
batch_size = 32
train_dl, val_dl, test_dl = load_datasets(data_path,
batch_size=batch_size)
print(len(train_dl), len(val_dl), len(test_dl))
###Output
9 2 1881
###Markdown
Prepare for training
###Code
# Display settings - TODO add Visdom logging
log_freq = 15 # batches
ep_freq = 10 # epochs
# Training parameters
epochs = 300
lr = 1e-3
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Checkpoint to resume from (default None)
load_path = None
# Checkpoint save location
save_path = Path(f"models/{date.today().strftime('%y%m%d')}-{desc}/")
if save_path.is_dir():
print(f"Folder {save_path} already exists")
else:
os.mkdir(save_path)
save_path
# Load checkpoint if any
if load_path is not None:
checkpoint = torch.load(load_path, map_location=device)
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("Checkpoint loaded")
print(f"Validation loss: {checkpoint['val_loss']}")
print(f"Epoch: {checkpoint['epoch']}")
# Load optimizer and scheduler
optimizer = torch.optim.Adam(params=model.parameters(), lr=lr)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, 10)
# Move to GPU
model = model.to(device)
criterion = criterion.to(device)
###Output
_____no_output_____
###Markdown
Train the model
###Code
# Main loop
best_loss = np.inf
for epoch in range(epochs):
model.train()
scheduler.step()
train_loss, train_kl, train_logp = train_VAE1D(train_dl)
model.eval()
with torch.no_grad():
val_loss, val_kl, val_logp = train_VAE1D(val_dl)
# Report training progress to user
if val_loss < best_loss:
print('Saving checkpoint..')
best_loss = val_loss
save_dict = {'epoch': epoch + 1,
'state_dict': model.state_dict(),
'val_loss': val_loss,
'optimizer': optimizer.state_dict()}
path = save_path / f'best_model-{n_latent}-{beta}.pt'
torch.save(save_dict, path)
print(f'Lowest validation loss: {best_loss:.4f}')
###Output
100%|██████████| 9/9 [00:00<00:00, 14.72it/s]
100%|██████████| 2/2 [00:00<00:00, 10.04it/s]
0%| | 0/9 [00:00<?, ?it/s] |
fit_generator-Velocity-data_from_internet-Validate.ipynb | ###Markdown
Change the variable **filenames** to data path.
###Code
filenames = "GAN_flownet/data/train.tfrecords"
dataset = tf.data.TFRecordDataset(filenames)
dataset = dataset.map(parser)
dataset = dataset.batch(BATCH_SIZE)
def generate_images(boundary_np,sflow_true, model= None):
if(model != None):
sflow_generated = model(boundary_np, training=True)
else:
sflow_generated = sflow_true
sflow_plot_true =(sflow_true.numpy()).reshape([pix_dimX,pix_dimY,pix_output])
sflow_plot_generated =(sflow_generated.numpy()).reshape([pix_dimX,pix_dimY,pix_output])
# sflow_plot = np.concatenate([sflow_true, sflow_generated, sflow_true - sflow_generated], axis=1)
boundary_np_plot = (boundary_np.numpy()).reshape(pix_dimX,pix_dimY)
boundary_concat = np.concatenate([boundary_np_plot.reshape(1,128,256,1)], axis=2)
sflow_plot_true = np.sqrt(np.square(sflow_plot_true[:,:,0]) + np.square(sflow_plot_true[:,:,1]))#- 0.5*boundary_concat[0,:,:,0]
sflow_plot_generated = np.sqrt(np.square(sflow_plot_generated[:,:,0]) + np.square(sflow_plot_generated[:,:,1]))#- 0.5*boundary_concat[0,:,:,0]
display_list = [boundary_np_plot, sflow_plot_true,sflow_plot_generated]
title = ['Input Image', 'Ground Truth', 'Predicted Image']
# display it
plt.figure(figsize=(15,15))
for i in range(3):
plt.subplot(1, 3, i+1)
plt.title(title[i])
# getting the pixel values between [0, 1] to plot it.
plt.imshow(display_list[i], cmap = 'gray')
# plt.axis('off')
plt.show()
#Note here ground and predicted are same beause model is not initiated and is an hack to avoid runtime failure.
for i,o in dataset.take(10):
generate_images(i,o)
###Output
_____no_output_____
###Markdown
Architecture of GAN model
###Code
#refer pix2pix tutorial
def downsample(filters, size, apply_batchnorm=True):
initializer = tf.random_normal_initializer(0., 0.02)
result = tf.keras.Sequential()
result.add(
tf.keras.layers.Conv2D(filters, size, strides=2, padding='same',
kernel_initializer=initializer, use_bias=False))
if apply_batchnorm:
result.add(tf.keras.layers.BatchNormalization())
result.add(tf.keras.layers.LeakyReLU())
return result
def upsample(filters, size, apply_dropout=False):
initializer = tf.random_normal_initializer(0., 0.02)
result = tf.keras.Sequential()
result.add(
tf.keras.layers.Conv2DTranspose(filters, size, strides=2,
padding='same',
kernel_initializer=initializer,
use_bias=False))
result.add(tf.keras.layers.BatchNormalization())
if apply_dropout:
result.add(tf.keras.layers.Dropout(0.5))
result.add(tf.keras.layers.ReLU())
return result
def Generator():
inputs = tf.keras.layers.Input(shape=[pix_dimX,pix_dimY,pix_input], name = 'adityab')
down_stack = [
downsample(64, 4, apply_batchnorm=False),
downsample(128, 4),
downsample(256, 4),
downsample(512, 4),
downsample(512, 4),
downsample(512, 4),
# downsample(512, 4),
downsample(512, 4),
]
up_stack = [
# upsample(512, 4, apply_dropout=True),
upsample(512, 4, apply_dropout=True),
upsample(512, 4, apply_dropout=True),
upsample(512, 4), # (bs, 16, 16, 1024)
upsample(256, 4), # (bs, 32, 32, 512)
upsample(128, 4), # (bs, 64, 64, 256)
upsample(64, 4), # (bs, 128, 128, 128)
]
initializer = tf.random_normal_initializer(0., 0.02)
last = tf.keras.layers.Conv2DTranspose(pix_output, 4,
strides=2,
padding='same',
kernel_initializer=initializer,
activation='tanh')
x = inputs
# Downsampling through the model
skips = []
for down in down_stack:
x = down(x)
skips.append(x)
skips = reversed(skips[:-1])
# Upsampling and establishing the skip connections
for up, skip in zip(up_stack, skips):
x = up(x)
x = tf.keras.layers.Concatenate()([x, skip])
x = last(x)
return tf.keras.Model(inputs=inputs, outputs=x)
generator = Generator()
generator.summary()
tf.keras.utils.plot_model(generator, show_shapes=True, dpi=64)
###Output
_____no_output_____
###Markdown
Optimizers
###Code
generator_optimizer = tf.keras.optimizers.Adam()# tf.keras.optimizers.Adam(2e-4, beta_1=0.5)
###Output
_____no_output_____
###Markdown
Loss function and train
###Code
# loss function is tested using total_gen_loss= tf.constant(0.) and tf.constant(1.)
#from tensorflow.keras import backend
def loss_function_generator(y_pred, y_true):
total_gen_loss = tf.reduce_mean(tf.abs(y_true - y_pred))
return total_gen_loss
###Output
_____no_output_____
###Markdown
Load old weights (if aplicable)
###Code
#generator.load_weights('checkpoints\GAN_without_discriminator\gan_without_discrminator_car_weghits')
###Output
_____no_output_____
###Markdown
Compile and fit
###Code
generator.compile(optimizer= generator_optimizer,
loss =loss_function_generator)
Epochs =100
def train():
setEpochs = int(Epochs/10)
for i in range(0,setEpochs):
generator.fit(dataset, epochs = setEpochs)
generator.save_weights('checkpoints\VanGogh_Fit_generator_Velocity\VanGogh_weghits')
for inputI,outputI in dataset.take(5):
generate_images(inputI,outputI,generator)
train()
for inputI,outputI in dataset.take(5):
generate_images(inputI,outputI,generator)
generator.save('checkpoints/VanGogh_Fit_generator_Velocity/complete_Model/Vangogh_generator_car.h5')
generator.save_weights('checkpoints\VanGogh_Fit_generator_Velocity\gan_without_discrminator_car_weghits')
###Output
_____no_output_____ |
notebooks/geo_visualisation.ipynb | ###Markdown
Interactive geographical visualisation of MONROE data FeaturesThis notebook enables on-demand visualisation of data collected with MONROE platform on a geographical map. It provides the following features:* Fast visualisation of multiple parameters of data collected on MONROE nodes along the geographical dimensions.* Adaptive granularity, where the data resolution is adjusted by the user.* Selection and on-disk storage of visualised data for further analysis in Orange data mining toolbox. Prerequisites Database accessCassandra DB used for the central MONROE data repository is a no-SQL database inappropriate for time-series data mining. Instead, this notebook requires that the data is stored in an Influx DB accessible from the machine where this script is run. Influx DB is a database that __[performs up to 168 times faster for certain queries than Cassandra DB](https://www.influxdata.com/blog/influxdb-vs-cassandra-time-series/)__. To create a replica of MONROE data on your local Influx DB: > 1) Create recipes for loading and naming MONROE data tables and their attributes that you plan to have in your local database. __[Example recipes](https://github.com/ivek1312/ricercando/tree/master/scripts/recipes)__.> 2) Download __[MONROE daily dump CSV files](https://www.monroe-system.eu/user/dailyDumps/)__ of tables for which the recepies are present and for dates for which you would like to have data in your local database.> 3) Run cassandra_dump_to_line_protocol.sh as __[per instructions](https://github.com/ivek1312/ricercando/tree/master/scripts)__. Python packagesThe notebook requires the following Python packages:* **ricercando** - this package is bundled in __[RICERCANDO repository](https://github.com/ivek1312/ricercando)__ and can be installed with ```pip install -e ."``` ran in the repository's root directory. Known issues* Plotting measurements sampled at one second intervalcan be very slow or can crash you browser. Analysis flowPlease run the following cells one after another, starting with the pre-initialisation cells. Pre-initialisation
###Code
# Set to database IP. This must be reachable from the machine where this script is ran.
DB_IP='192.168.27.75'
# DB_IP='localhost'
#load with this parameters
#jupyter notebook --NotebookApp.iopub_data_rate_limit=10000000000
#problem with zoom https://github.com/ioam/geoviews/issues/111
#pip install --user --pre -i https://pypi.anaconda.org/bokeh/channel/dev/simple bokeh==0.12.14dev6 --extra-index-url https://pypi.python.org/simple/
import holoviews as hv
import param, paramnb
import pandas as pd
from colorcet import cm #pip install colorcet
import numpy as np
from bokeh.models import HoverTool
from bokeh.models import WMTSTileSource
from operator import itemgetter
from cartopy import crs as ccrs
#https://stackoverflow.com/questions/41675041/bokeh-time-series-plot-annotation-is-off-by-1-hour/41698735
#https://github.com/bokeh/bokeh/issues/5499
#https://github.com/bokeh/bokeh/issues/1135
#https://github.com/bokeh/bokeh/issues/729
#https://github.com/bokeh/bokeh/issues/1103
hv.notebook_extension('bokeh', width=100)
from ricercando import set_connection_params, all_tables, all_nodes, getdf, tables_for_node, nodes_for_table
from ricercando.db import _CATEGORICAL_COLUMNS
set_connection_params(host=DB_IP)
#set_connection_params(host='localhost')
rtt_opts= {'Points':{'style':dict(cmap='Set3', size=2), 'plot':dict( color_index='Message', width=400, height=400, colorbar=True, tools=['hover', 'lasso_select', 'box_select']) }}
#data type, if df doesnt coontain these valuse, fill them with appropriate NA values => 'None' if categorical, zero if continous
values = {}
categorical = list(_CATEGORICAL_COLUMNS)
continous = ['Altitude', 'SatelliteCount', 'Speed', 'RTT', 'BootCounter', 'CPU_Apps', 'CPU_User', 'CumUptime', 'Swap',
'Uptime', 'RSCP','RSRP','RSRQ','RSSI', 'Temperature', 'IOWait',
'TCPCbytesAll','TCPSbytesAll','TCPDuration','TCPCRTTAVG','TCPCRTTSTD','TCPCPktsRetx','TCPCPktsOOO','TCPSPktsRetx','TCPSPktsOOO',
'Download','Upload','RTTClient','RTTServer','Status'
'UDPCbytesAll','UDPSbytesAll','UDPCDurat','UDPSDurat', 'TCPGoodPutUpload', 'TCPGoodPutDownload', 'UDPGoodPutUpload', 'UDPGoodPutDownload']
for val in categorical:
values[val]='None'
for val in continous:
values[val]=0
values['RTT']=-50 #nans not plotted, lets visualize that with -50
kdims=['Longitude','Latitude']
#all tables from dataframe
tables = 'ping gps modem event sensor nettest tcpcomplete udpcomplete'
import geoviews as gv
from bokeh.tile_providers import STAMEN_TONER
tiles = {'OpenMap': WMTSTileSource(url='http://c.tile.openstreetmap.org/{Z}/{X}/{Y}.png'),
'ESRI': WMTSTileSource(url='https://server.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServer/tile/{Z}/{Y}/{X}.jpg'),
'Wikipedia': WMTSTileSource(url='https://maps.wikimedia.org/osm-intl/{Z}/{X}/{Y}@2x.png'),
'StamenToner': STAMEN_TONER}
tile_options = dict(width=600,height=600, xaxis=None,yaxis=None,bgcolor='white',show_grid=True)
#changes the html object when another column is selected, it si not possible to draw to same graph with different axes
def render(obj):
renderer = hv.renderer('bokeh')
plot = renderer.get_plot(obj)
size = renderer.get_size(plot)
#return renderer.figure_data(plot), size #bokeh older than 0.12.10 and holoview older than 1.9.0
return renderer._figure_data(plot), size
def fixVals(df):
tmp = df.copy()
for val in categorical: #categorical data have nan and can't be shown if nan is not set to some new categirical value=>'None'
if val in tmp.columns:
tmp[val] = tmp[val].cat.add_categories("None")
else: tmp[val] = np.nan
for val in continous:
if val not in tmp.columns:
tmp[val] = np.nan
return tmp.fillna(value=values)
# Classes for data exploration
class DateExplorer(hv.streams.Stream):
output = paramnb.view.HTML(renderer=render)
Node = param.ObjectSelector(default='582', objects=nodes_for_table()['gps'], precedence=5)
Day = param.ObjectSelector(default='01', objects=["%.2d" % i for i in range(1,32)], precedence=1)
Month = param.ObjectSelector(default='01', objects=["%.2d" % i for i in range(1,13)],precedence=2)
Year = param.Integer(default=2018, bounds=(2016, 2018),precedence=3)
Coloring = param.ObjectSelector(default='RTT', objects=continous+categorical, precedence=4)
Colormap = param.ObjectSelector(default=cm['linear_bmy_10_95_c71'], objects=cm.values())
Sampling = param.ObjectSelector(default='1m', objects=['30m','1m','1s'])
MapTile = param.ObjectSelector(default="OpenMap", objects=['OpenMap','ESRI','Wikipedia','StamenToner'])
data = []
callbacks = []
def retData(self):
return pd.concat([d[1].iloc[c.index] for d,c in zip(self.data,self.callbacks)])
class CallbackClass(object):
def __init__(self):
self.index=None
def callback(self, index):
self.index = index
return hv.Overlay([])
def event(self, **kwargs):
if self.output is None or 'Day' in kwargs or 'Month' in kwargs or 'Year' in kwargs or 'Node' in kwargs or 'Coloring' in kwargs or 'Colormap' in kwargs or 'MapTile' in kwargs or 'Sampling' in kwargs:
df = getdf(tables, nodeid=self.Node, start_time='{0}-{1}-{2} 00:00:00'.format(self.Year, self.Month, self.Day),
end_time='{0}-{1}-{2} 23:59:59'.format(self.Year, self.Month, self.Day), freq=self.Sampling)
if df.empty or 'Iccid' not in df.columns:
self.output = hv.Points(pd.DataFrame([[0,0]], columns=kdims), kdims=kdims,vdims=[], label='Empty dataframe').opts(rtt_opts); return
iccidGroups = [(iccid,group.reset_index()) for iccid,group in df.groupby('Iccid')
if all(x in group.columns for x in ['Latitude', 'Longitude', self.Coloring ]) and
group.Latitude.notnull().any() and group.Longitude.notnull().any() and group[self.Coloring].notnull().any()
]
if not iccidGroups:
self.output = hv.Points(pd.DataFrame([[0,0]], columns=kdims), kdims=kdims,vdims=[],label='GPS or '+self.Coloring+' missing.').opts(rtt_opts); return
iccidGroups = sorted(iccidGroups, key=itemgetter(0))
iccidGroups4plot = [ (iccid,fixVals(group)) for iccid,group in iccidGroups]
self.data = iccidGroups
rtt_opts['Points']['plot']['color_index']=self.Coloring
rtt_opts['Points']['style']['cmap']=self.Colormap
HVpoints = [ gv.Points(group, kdims=kdims, vdims=categorical+continous, label=iccid).opts(rtt_opts ) for iccid,group in iccidGroups4plot]
streams4points = [hv.streams.Selection1D(source=points) for points in HVpoints]
self.callbacks = [self.CallbackClass() for point in HVpoints]
dmaps = [hv.DynamicMap(callback.callback ,kdims=[], streams=[selection]) for callback,selection in zip(self.callbacks,streams4points)]
self.output = hv.Layout([point*dmap*gv.WMTS(tiles[self.MapTile]) for point,dmap in zip(HVpoints,dmaps)]).cols(2)
else:
super(DateExplorer, self).event( **kwargs)
class GPSPlot(object):
def __init__(self):
self.explorer = DateExplorer()
paramnb.Widgets(self.explorer, continuous_update=True, callback=self.explorer.event, on_init=True)
def retData(self):
return self.explorer.retData()
###Output
_____no_output_____
###Markdown
Visualisation initalisation and interactionRunning the cell below should produce a node/date/parameter selector and geographical plots of these -- one plot for each of the node's interfaces.If you want to visualise data from multiple nodes simultaneously, simply copy the cell, rename the variable (say to ```plot2```) and run it, as shown in the example below. Interactive visualisationThe visualisation widget allows the user to:* Select the date (day, month, year) for which the data will be shown. * Select the node whose data will be visualised.* Select the parameter that will correspond to the coloring of the plotted points. * Select the colormap.The data is initially always shown on a 24-hour plot and for all interfaces on the selected node (plot title corresponds to the interface ICCID). However, the user can zoom in to a particular region on the plot, in which case all plots are zoomed in simultaneously.
###Code
plot1 = GPSPlot()
# plot2 = GPSPlot()
###Output
_____no_output_____
###Markdown
Data selection and storageData can be selected with Lasso select or Box select on a plot. Calling ```retData()``` function of the ```GPSPlot``` object returns a data frame that corresponds to the selected data as in the example below.
###Code
df_selected = plot1.retData()[['Iccid', 'Latitude','Longitude','RSSI']]
###Output
_____no_output_____
###Markdown
The selected data can now be stored on a local disk and loaded in Orange using the iPython connector widget from the MONROE toolbox.
###Code
# Stores the df_selected dataframe to a local disk.
%store df_selected
###Output
_____no_output_____ |
samples/contrib/mnist/00_Kubeflow_Cluster_Setup.ipynb | ###Markdown
Deploying a Kubeflow Cluster on Google Cloud Platform (GCP)This notebook provides instructions for setting up a Kubeflow cluster on GCP using the command-line interface (CLI). For additional help, see the guide to [deploying Kubeflow using the CLI](https://www.kubeflow.org/docs/gke/deploy/deploy-cli/).There are two possible alternatives:- The first alternative is to deploy Kubeflow cluster using the [Kubeflow deployment web app](https://deploy.kubeflow.cloud/), and the instruction can be found [here](https://www.kubeflow.org/docs/gke/deploy/deploy-ui/).- Another alternative is to use recently launched [AI Platform Pipeline](https://cloud.google.com/ai-platform/pipelines/docs/introduction). But, it is important to note that the AI Platform Pipeline is a standalone [Kubeflow Pipeline](https://www.kubeflow.org/docs/pipelines/overview/pipelines-overview/) deployment, where a lot of the components in full Kubeflow deployment won't be pre-installed. The instruction can be found [here](https://cloud.google.com/ai-platform/pipelines/docs/setting-up).The CLI deployment gives you more control over the deployment process and configuration than you get if you use the deployment UI. Prerequisites- You have a [GCP project setup](https://www.kubeflow.org/docs/gke/deploy/project-setup/) for your Kubeflow Deployment with you having the [owner role](https://cloud.google.com/iam/docs/understanding-rolesprimitive_role_definitions) for the project and with the following APIs enabled: - [Compute Engine API](https://pantheon.corp.google.com/apis/library/compute.googleapis.com) - [Kubernetes Engine API](https://pantheon.corp.google.com/apis/library/container.googleapis.com) - [Identity and Access Management(IAM) API](https://pantheon.corp.google.com/apis/library/iam.googleapis.com) - [Deployment Manager API](https://pantheon.corp.google.com/apis/library/deploymentmanager.googleapis.com) - [Cloud Resource Manager API](https://pantheon.corp.google.com/apis/library/cloudresourcemanager.googleapis.com) - [AI Platform Training & Prediction API](https://pantheon.corp.google.com/apis/library/ml.googleapis.com)- You have set up [OAuth for Cloud IAP](https://www.kubeflow.org/docs/gke/deploy/oauth-setup/)- You have installed and setup [kubectl](https://kubernetes.io/docs/tasks/tools/install-kubectl/)- You have installed [gcloud-sdk](https://cloud.google.com/sdk/) Running Environment**This notebook helps in creating the Kubeflow cluster on GCP. You must run this notebook in an environment with Cloud SDK installed, such as Cloud Shell. Learn more about [installing Cloud SDK](https://cloud.google.com/sdk/docs/).** Setting up a Kubeflow cluster1. Download kfctl2. Setup environment variables3. Create dedicated service account for deployment4. Deploy Kubefow5. Install Kubeflow Pipelines SDK6. Sanity check Create a working directoryCreate a new working directory in your current directory. The default name is **kubeflow**, but you can change the name.
###Code
work_directory_name = 'kubeflow'
! mkdir -p $work_directory_name
%cd $work_directory_name
###Output
_____no_output_____
###Markdown
Download kfctlDownload kfctl to your working directory. The default version used is v0.7.0, but you can find the latest release [here](https://github.com/kubeflow/kubeflow/releases).
###Code
## Download kfctl v0.7.0
! curl -LO https://github.com/kubeflow/kubeflow/releases/download/v0.7.0/kfctl_v0.7.0_linux.tar.gz
## Unpack the tar ball
! tar -xvf kfctl_v0.7.0_linux.tar.gz
###Output
_____no_output_____
###Markdown
**If you are using AI Platform Notebooks**, your environment is already authenticated. Skip the following cell.
###Code
## Create user credentials
! gcloud auth application-default login
###Output
_____no_output_____
###Markdown
Set up environment variablesSet up environment variables to use while installing Kubeflow. Replace variable placeholders (for example, ``) with the correct values for your environment.
###Code
# Set your GCP project ID and the zone where you want to create the Kubeflow deployment
%env PROJECT=<ADD GCP PROJECT HERE>
%env ZONE=<ADD GCP ZONE TO LAUNCH KUBEFLOW CLUSTER HERE>
# google cloud storage bucket
%env GCP_BUCKET=gs://<ADD STORAGE LOCATION HERE>
# Use the following kfctl configuration file for authentication with
# Cloud IAP (recommended):
uri = "https://raw.githubusercontent.com/kubeflow/manifests/v0.7-branch/kfdef/kfctl_gcp_iap.0.7.0.yaml"
uri = uri.strip()
%env CONFIG_URI=$uri
# For using Cloud IAP for authentication, create environment variables
# from the OAuth client ID and secret that you obtained earlier:
%env CLIENT_ID=<ADD OAuth CLIENT ID HERE>
%env CLIENT_SECRET=<ADD OAuth CLIENT SECRET HERE>
# Set KF_NAME to the name of your Kubeflow deployment. You also use this
# value as directory name when creating your configuration directory.
# For example, your deployment name can be 'my-kubeflow' or 'kf-test'.
%env KF_NAME=<ADD KUBEFLOW DEPLOYMENT NAME HERE>
# Set up name of the service account that should be created and used
# while creating the Kubeflow cluster
%env SA_NAME=<ADD SERVICE ACCOUNT NAME TO BE CREATED HERE>
###Output
_____no_output_____
###Markdown
Configure gcloud and add kfctl to your path.
###Code
! gcloud config set project ${PROJECT}
! gcloud config set compute/zone ${ZONE}
# Set the path to the base directory where you want to store one or more
# Kubeflow deployments. For example, /opt/.
# Here we use the current working directory as the base directory
# Then set the Kubeflow application directory for this deployment.
import os
base = os.getcwd()
%env BASE_DIR=$base
kf_dir = os.getenv('BASE_DIR') + "/" + os.getenv('KF_NAME')
%env KF_DIR=$kf_dir
# The following command is optional. It adds the kfctl binary to your path.
# If you don't add kfctl to your path, you must use the full path
# each time you run kfctl. In this example, the kfctl file is present in
# the current directory
new_path = os.getenv('PATH') + ":" + os.getenv('BASE_DIR')
%env PATH=$new_path
###Output
_____no_output_____
###Markdown
Create service account
###Code
! gcloud iam service-accounts create ${SA_NAME}
! gcloud projects add-iam-policy-binding ${PROJECT} \
--member serviceAccount:${SA_NAME}@${PROJECT}.iam.gserviceaccount.com \
--role 'roles/owner'
! gcloud iam service-accounts keys create key.json \
--iam-account ${SA_NAME}@${PROJECT}.iam.gserviceaccount.com
###Output
_____no_output_____
###Markdown
Set GOOGLE_APPLICATION_CREDENTIALS
###Code
key_path = os.getenv('BASE_DIR') + "/" + 'key.json'
%env GOOGLE_APPLICATION_CREDENTIALS=$key_path
###Output
_____no_output_____
###Markdown
Setup and deploy Kubeflow
###Code
! mkdir -p ${KF_DIR}
%cd $kf_dir
! kfctl apply -V -f ${CONFIG_URI}
###Output
_____no_output_____
###Markdown
Install Kubeflow Pipelines SDK
###Code
%%capture
# Install the SDK (Uncomment the code if the SDK is not installed before)
! pip3 install 'kfp>=0.1.36' --quiet --user
###Output
_____no_output_____
###Markdown
Sanity Check: Check the ingress created
###Code
! kubectl -n istio-system describe ingress
###Output
_____no_output_____ |
notebooks/5.0_comparing_magnifications/0.1_20x.field_thr.ipynb | ###Markdown
Find tentative intensity threshold for 20x datasets After filtering for FWHM in [0.5; 5] and selecting only dots in (selected) nuclei
###Code
nuclear_features = fread("../../data/selected_nuclei.tsv", key=c("sid", "nid"))
ddata = dots_data2[FWHM >= .5 & FWHM <= 5 & nid > 0]
setkeyv(ddata, c("series_id", "nid"))
ddata2 = nuclear_features[ddata][!is.na(size)]
ddata3 = ddata2["20x" == magnification]
###Output
_____no_output_____
###Markdown
Checking intensity and SNR density and scatter plots
###Code
plist_density = pblapply(split(ddata3, list(ddata3$magnification, ddata3$image_type)),
function(pdata) {
p1 = ggplot(pdata, aes(x=Value2)) + geom_density() +
facet_wrap(~image_type~magnification~sid, nrow=1, scales="free") + theme_bw() +
scale_x_log10() + scale_y_log10() + labs(x="Intensity")
}, cl=4
)
options(repr.plot.width=21, repr.plot.height=8)
plot_grid(plotlist=plist_density, nrow=2)
plist_density = pblapply(split(ddata3, list(ddata3$magnification, ddata3$image_type)),
function(pdata) {
p1 = ggplot(pdata, aes(x=SNR2)) + geom_density() +
facet_wrap(~image_type~magnification~sid, nrow=1, scales="free") + theme_bw() +
scale_x_log10() + scale_y_log10() + labs(x="SNR")
}, cl=4
)
options(repr.plot.width=21, repr.plot.height=8)
plot_grid(plotlist=plist_density, nrow=2)
plist = pblapply(split(ddata3, list(ddata3$magnification, ddata3$image_type)),
function(pdata) {
p1 = ggplot(pdata, aes(x=SNR2, y=Value2)) + geom_scattermore() +
facet_wrap(~image_type~magnification~sid, nrow=1, scales="free") + theme_bw() +
scale_x_log10() + scale_y_log10() + labs(x="SNR", y="Intensity")
}, cl=4
)
options(repr.plot.width=21, repr.plot.height=8)
plot_grid(plotlist=plist, nrow=2)
###Output
|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=06s
###Markdown
Field-based thresholds
###Code
thr_table = rbindlist(list(
data.table(
image_type="dw",
magnification="20x",
sid=1:7,
thr=c(11, 12, 11, 11, 10.5, 11, 12)
),
data.table(
image_type="raw",
magnification="20x",
sid=1:7,
thr=c(.095, .095, .085, .085, .092, .092, .096)
)
))
#threshold = .096
#selected_sid = 7
#pdata = ddata3["20x"==magnification&"raw"==image_type&selected_sid==sid]
#p1 = ggplot(pdata, aes(x=Value2)) + geom_density() +
# geom_vline(xintercept=threshold, color="red") +
# facet_wrap(~image_type~magnification~sid, nrow=1, scales="free") + theme_bw() +
# scale_x_log10() + scale_y_log10() + labs(x="Intensity")
#p2 = ggplot(pdata, aes(x=SNR2, y=Value2)) + geom_scattermore() +
# geom_hline(yintercept=threshold, color="red") +
# facet_wrap(~image_type~magnification~sid, nrow=1, scales="free") + theme_bw() +
# scale_x_log10() + scale_y_log10() + labs(x="SNR", y="Intensity")
#options(repr.plot.width=12, repr.plot.height=6)
#plot_grid(p1, p2, nrow=1)
plist_density = pblapply(split(ddata3, list(ddata3$magnification, ddata3$image_type)),
function(pdata) {
selected_magnification = pdata[1, magnification]
selected_image_type = pdata[1, image_type]
selected_thresholds = thr_table[magnification == selected_magnification & image_type == selected_image_type,]
p1 = ggplot(pdata, aes(x=Value2)) + geom_density() +
geom_vline(data=selected_thresholds, aes(xintercept=thr), color="red") +
facet_wrap(~image_type~magnification~sid, nrow=1, scales="free") + theme_bw() +
scale_x_log10() + scale_y_log10() + labs(x="Intensity")
}, cl=4
)
options(repr.plot.width=21, repr.plot.height=8)
plot_grid(plotlist=plist_density, nrow=2)
plist = pblapply(split(ddata3, list(ddata3$magnification, ddata3$image_type)),
function(pdata) {
selected_magnification = pdata[1, magnification]
selected_image_type = pdata[1, image_type]
selected_thresholds = thr_table[magnification == selected_magnification & image_type == selected_image_type,]
p1 = ggplot(pdata, aes(x=SNR2, y=Value2)) + geom_scattermore() +
geom_hline(data=selected_thresholds, aes(yintercept=thr), color="red") +
facet_wrap(~image_type~magnification~sid, nrow=1, scales="free") + theme_bw() +
scale_x_log10() + scale_y_log10() + labs(x="SNR", y="Intensity")
}, cl=4
)
options(repr.plot.width=21, repr.plot.height=8)
plot_grid(plotlist=plist, nrow=2)
fwrite(thr_table, "../../data/magnifications_matching/intensity_thresholds.by_field.tsv", sep="\t")
###Output
_____no_output_____ |
ML_27.ipynb | ###Markdown
Data Science and Machine learning in PythonInstructor: Atish Adhikari Auto Encoders
###Code
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense, Input
from tensorflow.keras.datasets import mnist
(X_train, _ ), (X_test, _) = mnist.load_data()
X_train = X_train.reshape(60000, 28*28) / 255
input_layer = Input(shape=(784, ))
encoder_layer = Dense(units=400, activation="relu") (input_layer)
encoder_layer = Dense(units=200, activation="relu") (encoder_layer)
encoder_layer = Dense(units=100, activation="relu") (encoder_layer)
middle = Dense(units=50, activation="sigmoid") (encoder_layer)
decoder_layer = Dense(units=150, activation="relu") (middle)
decoder_layer = Dense(units=450, activation="relu") (decoder_layer)
output_layer = Dense(units=784, activation="sigmoid") (decoder_layer)
auto_encoder = Model(inputs=input_layer, outputs=output_layer)
auto_encoder.compile(loss="mse", optimizer="adam")
auto_encoder.fit(X_train, X_train, epochs=5)
encoder = Model(inputs=input_layer, outputs=middle)
encoder.compile(loss="mse", optimizer="adam")
X_compressed = encoder.predict(X_train)
X_compressed.shape
plt.imshow(X_compressed[0].reshape(5, 10), cmap="binary_r")
plt.show()
auto_encoder.layers
decoder_input = Input(shape=(50,))
decoder_1 = auto_encoder.layers[-3] (decoder_input)
decoder_2 = auto_encoder.layers[-2] (decoder_1)
decoder_output = auto_encoder.layers[-1] (decoder_2)
decoder = Model(decoder_input, decoder_output)
decoder.compile(loss="mse", optimizer="adam")
X_reconstructed = decoder.predict(X_compressed)
X_reconstructed.shape
plt.figure(figsize=(8, 10))
plt.subplot(1,3,1)
plt.imshow(X_train[1].reshape(28,28), cmap="binary_r")
plt.subplot(1,3,2)
plt.imshow(X_compressed[1].reshape(5,10), cmap="binary_r")
plt.subplot(1,3,3)
plt.imshow(X_reconstructed[1].reshape(28,28), cmap="binary_r")
plt.show()
###Output
_____no_output_____ |
Examples/Cats/Cats.ipynb | ###Markdown
Benchmarking
###Code
@btime neural_network_dense($train_data_x, $train_data_y_orig, $layer_dims, 100, 0.0075)
@btime initialize_parameters($layer_dims, $train_data_y_orig)
parameters = initialize_parameters(layer_dims, train_data_y_orig)
activations = (relu, sigmoid)
y, caches = forward_prop(train_data_x, parameters, activations)
print()
@btime forward_prop($train_data_x, $parameters, $activations)
y_orig = Array{Float32, 2}(train_data_y_orig)
cost = cost_binary(y_orig, y)
@btime cost_binary($y_orig, $y)
activations_back = (relu_back, sigmoid_back)
grads = backward_prop(y_orig, y, parameters, caches, layer_dims, activations_back)
@btime backward_prop($y_orig, $y, $parameters, $caches, $layer_dims, $activations_back)
learning_rate = 0.000001
parameters = update_parameters(parameters, grads, layer_dims, learning_rate)
@btime update_parameters($parameters, $grads, $layer_dims, $learning_rate)
@btime neural_network_dense($train_data_x, $train_data_y_orig, $layer_dims, 1, 0.0075)
###Output
5.981 ms (350 allocations: 14.45 MiB)
|
homework_1-ANN/[HW1-1] Polynomial Approximation.ipynb | ###Markdown
AI502/KSE527, Homework 01 This file is made by Jaehoon Oh, which is modified based on https://github.com/floydhub/regression
###Code
import torch
import torch.nn as nn
import torch.utils.data
# plotting libraries
import numpy as np
import matplotlib.pyplot as plt
POLY_DEGREE = 4
torch.manual_seed(2020)
W_target = torch.randn(POLY_DEGREE, 1) * 5
b_target = torch.randn(1) * 5
def poly_desc(W, b):
"""Creates a string description of a polynomial."""
result = 'y = '
for i, w in enumerate(W):
result += '{:+.2f} x^{} '.format(w, len(W) - i)
result += '{:+.2f}'.format(b[0])
return result
print('==> The real function you should approximate:\t' + poly_desc(W_target.view(-1), b_target))
###Output
==> The real function you should approximate: y = +6.19 x^4 -4.80 x^3 +7.71 x^2 -2.04 x^1 +4.40
###Markdown
---
###Code
def make_features(x):
"""Builds features i.e. a matrix with columns [x^4, x^3, x^2, x^1]."""
x = x.unsqueeze(1)
return torch.cat([x ** (POLY_DEGREE+1-i) for i in range(1, POLY_DEGREE+1)], 1)
def f(x):
"""Approximated function."""
return x.mm(W_target) + b_target[0]
def get_dataset(dataset_size):
"""Builds a batch i.e. (x, f(x)) pair."""
random = torch.randn(dataset_size)
x = make_features(random)
y = f(x)
dataset = list(zip(x, y))
return dataset
dataset = get_dataset(200) # you can make as many as dataset as you want
#
# debug
#
print("W_target: \n")
print(W_target)
print("\n")
print("b_target: \n")
print(b_target)
print("\n")
print("dataset: \n")
print(dataset)
def compute_results(x, w, bias):
x = make_features(x)
return torch.squeeze(x.mm(w) + bias[0])
print(W_target)
compute_results(torch.linspace(-10, 10, steps=1000), W_target, b_target)
def plot_graphs(W_target, b_target, W_learned, b_learned, epoch_num):
x = torch.linspace(-10, 10, steps=1000)
fig = plt.figure(figsize=(10, 5))
#plt.subplot(1, 2, 1)
#plt.ylim(ymax = 100, ymin = -10)
#plt.xlim(xmax = 10, xmin = -10)
plt.title("Function plot - epoch number: {}".format(epoch_num))
plt.xlabel("x-axis")
plt.ylabel("y-axis")
plt.grid()
plt.plot(x.numpy(), compute_results(torch.linspace(-10, 10, steps=1000), W_target, b_target).numpy(), label="Actual function")
plt.plot(x.numpy(), compute_results(x, torch.unsqueeze(torch.squeeze(W_learned), 1), b_learned), label="Learned function")
plt.legend()
plt.show()
#plot_graphs(W_target, b_target, net.fc.weight.data, net.fc.bias.data)
#print(net.fc.weight.data)
###Output
_____no_output_____
###Markdown
---
###Code
num_epochs = 500
batch_size = 50
learning_rate = 0.001
criterion = nn.SmoothL1Loss()
dataset_loader = torch.utils.data.DataLoader(dataset=dataset, batch_size=batch_size, shuffle=True)
###Output
_____no_output_____
###Markdown
---
###Code
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc = nn.Linear(W_target.size(0), 1)
# For fixing the initial weights and bias
self.fc.weight.data.fill_(0.)
self.fc.bias.data.fill_(0.)
def forward(self, x):
output = self.fc(x)
return output
###Output
_____no_output_____
###Markdown
---
###Code
def fit(model,loader,criterion,learning_rate,num_epochs, graphs=False):
model.train()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
loss_list = []
for epoch in range(num_epochs):
accum_loss = 0
num_batch = 0
for i, data in enumerate(loader):
if torch.cuda.is_available():
x = data[0].type(torch.FloatTensor).cuda()
y = data[1].type(torch.FloatTensor).cuda()
else:
x = data[0].type(torch.FloatTensor)
y = data[1].type(torch.FloatTensor)
y_hat = model(x)
loss = criterion(y_hat, y)
accum_loss += loss.item()
num_batch += 1
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_list.append(accum_loss/num_batch)
if graphs==True and (epoch+1) in [5,10,20,100,200, 500]:
plot_graphs(W_target, b_target, model.fc.weight.data, model.fc.bias.data, epoch+1)
print('==> Learned function:\t' + poly_desc(model.fc.weight.data.view(-1), model.fc.bias.data))
print('==> Actual function:\t' + poly_desc(W_target.view(-1), b_target))
return loss_list
###Output
_____no_output_____
###Markdown
---
###Code
net = Net().cuda() if torch.cuda.is_available() else Net()
print('==> Initial function:\t' + poly_desc(net.fc.weight.data.view(-1), net.fc.bias.data))
print('==> Actual function:\t' + poly_desc(W_target.view(-1), b_target))
# train
loss_list = fit(net,dataset_loader,criterion,learning_rate,num_epochs, graphs=True)
print('==> Learned function:\t' + poly_desc(net.fc.weight.data.view(-1), net.fc.bias.data))
print('==> Actual function:\t' + poly_desc(W_target.view(-1), b_target))
fig = plt.figure(figsize=(10, 5))
plt.title("Loss function - Learning rate: {}".format(learning_rate))
plt.xlabel("epoch")
plt.ylabel("loss")
plt.grid()
plt.plot(list(range(num_epochs)), loss_list)
plt.show()
###Output
_____no_output_____ |
doc/_build/html/_downloads/plot_skope_rules.ipynb | ###Markdown
SkopeRules exampleAn example using SkopeRules for imbalanced classification.SkopeRules find logical rules with high precision and fuse them. Finding goodrules is done by fitting classification and regression trees to sub-samples.A fitted tree defines a set of rules (each tree node defines a rule); rulesare then tested out of the bag, and the ones with higher precision are selectedand merged. This produces a real-valued decision function, reflecting foreach new sample how many rules (each weighted by respective precision) havefound it abnormal.
###Code
import numpy as np
import matplotlib.pyplot as plt
from skrules import SkopeRules
print(__doc__)
rng = np.random.RandomState(42)
n_inliers = 1000
n_outliers = 50
# Generate train data
I = 0.5 * rng.randn(int(n_inliers / 2), 2)
X_inliers = np.r_[I + 2, I - 2]
O = 0.5 * rng.randn(n_outliers, 2)
X_outliers = O # np.r_[O, O + [2, -2]]
X_train = np.r_[X_inliers, X_outliers]
y_train = [0] * n_inliers + [1] * n_outliers
###Output
_____no_output_____
###Markdown
Training the SkopeRules classifier..................................
###Code
# fit the model
clf = SkopeRules(random_state=rng, n_estimators=10)
clf.fit(X_train, y_train)
# plot the line, the samples, and the nearest vectors to the plane
xx, yy = np.meshgrid(np.linspace(-5, 5, 50), np.linspace(-5, 5, 50))
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.title("Skope Rules, value of the decision_function method")
plt.contourf(xx, yy, Z, cmap=plt.cm.Blues)
a = plt.scatter(X_inliers[:, 0], X_inliers[:, 1], c='white',
s=20, edgecolor='k')
b = plt.scatter(X_outliers[:, 0], X_outliers[:, 1], c='red',
s=20, edgecolor='k')
plt.axis('tight')
plt.xlim((-5, 5))
plt.ylim((-5, 5))
plt.legend([a, b],
["inliers", "outliers"],
loc="upper left")
plt.show()
###Output
_____no_output_____
###Markdown
Extracting top rules....................On the 4 following figures, the predict_top_rules method is used withseveral values of n_rules. n_rules = 2 means that the prediction isdone using only the 2 best rules.
###Code
print('The 4 most precise rules are the following:')
for rule in clf.rules_[:4]:
print(rule[0])
fig, axes = plt.subplots(2, 2, figsize=(12, 5),
sharex=True, sharey=True)
for i_ax, ax in enumerate(np.ravel(axes)):
Z = clf.predict_top_rules(np.c_[xx.ravel(), yy.ravel()], i_ax+1)
Z = Z.reshape(xx.shape)
ax.set_title("Prediction with predict_top_rules, n_rules="+str(i_ax+1))
ax.contourf(xx, yy, Z, cmap=plt.cm.Blues)
a = ax.scatter(X_inliers[:, 0], X_inliers[:, 1], c='white',
s=20, edgecolor='k')
b = ax.scatter(X_outliers[:, 0], X_outliers[:, 1], c='red',
s=20, edgecolor='k')
ax.axis('tight')
plt.xlim((-5, 5))
plt.ylim((-5, 5))
plt.legend([a, b],
["inliers", "outliers"],
loc="upper left")
plt.show()
###Output
_____no_output_____ |
ipynb/Germany-Niedersachsen-LK-Gifhorn.ipynb | ###Markdown
Germany: LK Gifhorn (Niedersachsen)* Homepage of project: https://oscovida.github.io* Plots are explained at http://oscovida.github.io/plots.html* [Execute this Jupyter Notebook using myBinder](https://mybinder.org/v2/gh/oscovida/binder/master?filepath=ipynb/Germany-Niedersachsen-LK-Gifhorn.ipynb)
###Code
import datetime
import time
start = datetime.datetime.now()
print(f"Notebook executed on: {start.strftime('%d/%m/%Y %H:%M:%S%Z')} {time.tzname[time.daylight]}")
%config InlineBackend.figure_formats = ['svg']
from oscovida import *
overview(country="Germany", subregion="LK Gifhorn", weeks=5);
overview(country="Germany", subregion="LK Gifhorn");
compare_plot(country="Germany", subregion="LK Gifhorn", dates="2020-03-15:");
# load the data
cases, deaths = germany_get_region(landkreis="LK Gifhorn")
# get population of the region for future normalisation:
inhabitants = population(country="Germany", subregion="LK Gifhorn")
print(f'Population of country="Germany", subregion="LK Gifhorn": {inhabitants} people')
# compose into one table
table = compose_dataframe_summary(cases, deaths)
# show tables with up to 1000 rows
pd.set_option("max_rows", 1000)
# display the table
table
###Output
_____no_output_____
###Markdown
Explore the data in your web browser- If you want to execute this notebook, [click here to use myBinder](https://mybinder.org/v2/gh/oscovida/binder/master?filepath=ipynb/Germany-Niedersachsen-LK-Gifhorn.ipynb)- and wait (~1 to 2 minutes)- Then press SHIFT+RETURN to advance code cell to code cell- See http://jupyter.org for more details on how to use Jupyter Notebook Acknowledgements:- Johns Hopkins University provides data for countries- Robert Koch Institute provides data for within Germany- Atlo Team for gathering and providing data from Hungary (https://atlo.team/koronamonitor/)- Open source and scientific computing community for the data tools- Github for hosting repository and html files- Project Jupyter for the Notebook and binder service- The H2020 project Photon and Neutron Open Science Cloud ([PaNOSC](https://www.panosc.eu/))--------------------
###Code
print(f"Download of data from Johns Hopkins university: cases at {fetch_cases_last_execution()} and "
f"deaths at {fetch_deaths_last_execution()}.")
# to force a fresh download of data, run "clear_cache()"
print(f"Notebook execution took: {datetime.datetime.now()-start}")
###Output
_____no_output_____
###Markdown
Germany: LK Gifhorn (Niedersachsen)* Homepage of project: https://oscovida.github.io* [Execute this Jupyter Notebook using myBinder](https://mybinder.org/v2/gh/oscovida/binder/master?filepath=ipynb/Germany-Niedersachsen-LK-Gifhorn.ipynb)
###Code
import datetime
import time
start = datetime.datetime.now()
print(f"Notebook executed on: {start.strftime('%d/%m/%Y %H:%M:%S%Z')} {time.tzname[time.daylight]}")
%config InlineBackend.figure_formats = ['svg']
from oscovida import *
overview(country="Germany", subregion="LK Gifhorn");
# load the data
cases, deaths, region_label = germany_get_region(landkreis="LK Gifhorn")
# compose into one table
table = compose_dataframe_summary(cases, deaths)
# show tables with up to 500 rows
pd.set_option("max_rows", 500)
# display the table
table
###Output
_____no_output_____
###Markdown
Explore the data in your web browser- If you want to execute this notebook, [click here to use myBinder](https://mybinder.org/v2/gh/oscovida/binder/master?filepath=ipynb/Germany-Niedersachsen-LK-Gifhorn.ipynb)- and wait (~1 to 2 minutes)- Then press SHIFT+RETURN to advance code cell to code cell- See http://jupyter.org for more details on how to use Jupyter Notebook Acknowledgements:- Johns Hopkins University provides data for countries- Robert Koch Institute provides data for within Germany- Open source and scientific computing community for the data tools- Github for hosting repository and html files- Project Jupyter for the Notebook and binder service- The H2020 project Photon and Neutron Open Science Cloud ([PaNOSC](https://www.panosc.eu/))--------------------
###Code
print(f"Download of data from Johns Hopkins university: cases at {fetch_cases_last_execution()} and "
f"deaths at {fetch_deaths_last_execution()}.")
# to force a fresh download of data, run "clear_cache()"
print(f"Notebook execution took: {datetime.datetime.now()-start}")
###Output
_____no_output_____
###Markdown
Germany: LK Gifhorn (Niedersachsen)* Homepage of project: https://oscovida.github.io* Plots are explained at http://oscovida.github.io/plots.html* [Execute this Jupyter Notebook using myBinder](https://mybinder.org/v2/gh/oscovida/binder/master?filepath=ipynb/Germany-Niedersachsen-LK-Gifhorn.ipynb)
###Code
import datetime
import time
start = datetime.datetime.now()
print(f"Notebook executed on: {start.strftime('%d/%m/%Y %H:%M:%S%Z')} {time.tzname[time.daylight]}")
%config InlineBackend.figure_formats = ['svg']
from oscovida import *
overview(country="Germany", subregion="LK Gifhorn", weeks=5);
overview(country="Germany", subregion="LK Gifhorn");
compare_plot(country="Germany", subregion="LK Gifhorn", dates="2020-03-15:");
# load the data
cases, deaths = germany_get_region(landkreis="LK Gifhorn")
# compose into one table
table = compose_dataframe_summary(cases, deaths)
# show tables with up to 500 rows
pd.set_option("max_rows", 500)
# display the table
table
###Output
_____no_output_____
###Markdown
Explore the data in your web browser- If you want to execute this notebook, [click here to use myBinder](https://mybinder.org/v2/gh/oscovida/binder/master?filepath=ipynb/Germany-Niedersachsen-LK-Gifhorn.ipynb)- and wait (~1 to 2 minutes)- Then press SHIFT+RETURN to advance code cell to code cell- See http://jupyter.org for more details on how to use Jupyter Notebook Acknowledgements:- Johns Hopkins University provides data for countries- Robert Koch Institute provides data for within Germany- Atlo Team for gathering and providing data from Hungary (https://atlo.team/koronamonitor/)- Open source and scientific computing community for the data tools- Github for hosting repository and html files- Project Jupyter for the Notebook and binder service- The H2020 project Photon and Neutron Open Science Cloud ([PaNOSC](https://www.panosc.eu/))--------------------
###Code
print(f"Download of data from Johns Hopkins university: cases at {fetch_cases_last_execution()} and "
f"deaths at {fetch_deaths_last_execution()}.")
# to force a fresh download of data, run "clear_cache()"
print(f"Notebook execution took: {datetime.datetime.now()-start}")
###Output
_____no_output_____ |
8 Selecting the Right Model/2. Visualizing overfitting and underfitting using knn/Underfit_Overfit_using_KNN_1.ipynb | ###Markdown
Importing the data
###Code
data = pd.read_csv('data_cleaned.csv')
data.head()
data.isnull().sum()
###Output
_____no_output_____
###Markdown
Segregating variables - Dependent & Independent
###Code
#seperating independent and dependent variables
x = data.drop(['Survived'], axis=1)
y = data['Survived']
###Output
_____no_output_____
###Markdown
Scaling the data
###Code
from sklearn.preprocessing import StandardScaler
ss = StandardScaler()
x = ss.fit_transform(x)
from sklearn.model_selection import train_test_split
train_x,test_x,train_y,test_y = train_test_split(x,y, random_state = 96, stratify=y)
###Output
_____no_output_____
###Markdown
Implementing KNN
###Code
#importing KNN classifier and metric F1score
from sklearn.neighbors import KNeighborsClassifier as KNN
from sklearn.metrics import f1_score
# Creating instance of KNN
clf = KNN(n_neighbors = 3)
# Fitting the model
clf.fit(train_x, train_y)
# Predicting over the Train Set and calculating F1
train_predict = clf.predict(train_x)
k = f1_score(train_predict, train_y)
print('Training F1 Score', k )
# Predicting over the Train Set and calculating F1
test_predict = clf.predict(test_x)
k = f1_score(test_predict, test_y)
print('Test F1 Score ', k )
###Output
Training F1 Score 0.82092555332
Test F1 Score 0.708074534161
###Markdown
Checking the Training F1 and Test F1curve
###Code
def F1score(K):
'''
Takes an input K consisting of a range of K values for KNN
Input:
K = list
Returns: lists containing F1 corresponding to every value of K
train_f1 = list of train f1 score corresponding K
test_f1 = list of test f1 score corresponding to K
'''
# initiating empty list
train_f1 = []
test_f1 = []
# training model for evey value of K
for i in K:
# Instance oh KNN
clf = KNN(n_neighbors = i)
clf.fit(train_x, train_y)
# Appending F1 scores to empty list claculated using the predictions
tmp = clf.predict(train_x)
tmp = f1_score(tmp,train_y)
train_f1.append(tmp)
tmp = clf.predict(test_x)
tmp = f1_score(tmp,test_y)
test_f1.append(tmp)
return train_f1, test_f1
#Defining K range
k = range(1,150)
# calling above defined function
train_f1, test_f1 = F1score(k)
score = pd.DataFrame({'train score': train_f1, 'test score': test_f1}, index = k)
score
###Output
_____no_output_____
###Markdown
Visualizing
###Code
from pylab import rcParams
rcParams['figure.figsize'] = 8, 6
# plotting the Curvesg
plt.figure(figsize=(4,2), dpi=150)
plt.plot(k[0:60], test_f1[0:60], color = 'red' , label = 'test')
plt.plot(k[0:60], train_f1[0:60], color = 'green', label = 'train')
plt.xlabel('K Neighbors')
plt.ylabel('F1 Score')
plt.title('F1 Curve')
plt.ylim(0.4,1)
plt.legend()
###Output
_____no_output_____
###Markdown
Question Pop and Video Break Challenges with Test set
###Code
from sklearn.model_selection import train_test_split
train_x,test_x,train_y,test_y = train_test_split(x,y, random_state = 96, stratify = y)
# calling above defined function
k = range(1,50)
train, test = F1score(k)
# plotting the Curves
plt.plot(k, test, color = 'red' , label = 'test')
plt.plot(k, train, color = 'green', label = 'train')
plt.xlabel('K Neighbors')
plt.ylabel('F1 Score')
plt.title('F1 Curve')
plt.ylim(0.4,1)
plt.legend()
###Output
_____no_output_____ |
Tensorflow_linear_regression_hello_world.ipynb | ###Markdown
Copyright 2019 The TensorFlow Authors.
###Code
#@title Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
###Output
_____no_output_____
###Markdown
The Hello World of Deep Learning with Neural Networks Like every first app you should start with something super simple that shows the overall scaffolding for how your code works. In the case of creating neural networks, the sample I like to use is one where it learns the relationship between two numbers. So, for example, if you were writing code for a function like this, you already know the 'rules' — ```float hw_function(float x){ float y = (2 * x) - 1; return y;}```So how would you train a neural network to do the equivalent task? Using data! By feeding it with a set of Xs, and a set of Ys, it should be able to figure out the relationship between them. This is obviously a very different paradigm than what you might be used to, so let's step through it piece by piece. ImportsLet's start with our imports. Here we are importing TensorFlow and calling it tf for ease of use.We then import a library called numpy, which helps us to represent our data as lists easily and quickly.The framework for defining a neural network as a set of Sequential layers is called keras, so we import that too.
###Code
import tensorflow as tf
import numpy as np
from tensorflow import keras
###Output
_____no_output_____
###Markdown
Define and Compile the Neural NetworkNext we will create the simplest possible neural network. It has 1 layer, and that layer has 1 neuron, and the input shape to it is just 1 value.
###Code
model = tf.keras.Sequential([keras.layers.Dense(units=1, input_shape=[1])])
###Output
_____no_output_____
###Markdown
Now we compile our Neural Network. When we do so, we have to specify 2 functions, a loss and an optimizer.If you've seen lots of math for machine learning, here's where it's usually used, but in this case it's nicely encapsulated in functions for you. But what happens here — let's explain...We know that in our function, the relationship between the numbers is y=2x-1. When the computer is trying to 'learn' that, it makes a guess...maybe y=10x+10. The LOSS function measures the guessed answers against the known correct answers and measures how well or how badly it did.It then uses the OPTIMIZER function to make another guess. Based on how the loss function went, it will try to minimize the loss. At that point maybe it will come up with somehting like y=5x+5, which, while still pretty bad, is closer to the correct result (i.e. the loss is lower)It will repeat this for the number of EPOCHS which you will see shortly. But first, here's how we tell it to use 'MEAN SQUARED ERROR' for the loss and 'STOCHASTIC GRADIENT DESCENT' for the optimizer. You don't need to understand the math for these yet, but you can see that they work! :)Over time you will learn the different and appropriate loss and optimizer functions for different scenarios.
###Code
model.compile(optimizer='sgd', loss='mean_squared_error')
###Output
_____no_output_____
###Markdown
Providing the DataNext up we'll feed in some data. In this case we are taking 6 xs and 6ys. You can see that the relationship between these is that y=2x-1, so where x = -1, y=-3 etc. etc. A python library called 'Numpy' provides lots of array type data structures that are a defacto standard way of doing it. We declare that we want to use these by specifying the values as an np.array[]
###Code
xs = np.array([-1.0, 0.0, 1.0, 2.0, 3.0, 4.0], dtype=float)
ys = np.array([-3.0, -1.0, 1.0, 3.0, 5.0, 7.0], dtype=float)
###Output
_____no_output_____
###Markdown
Training the Neural Network The process of training the neural network, where it 'learns' the relationship between the Xs and Ys is in the **model.fit** call. This is where it will go through the loop we spoke about above, making a guess, measuring how good or bad it is (aka the loss), using the opimizer to make another guess etc. It will do it for the number of epochs you specify. When you run this code, you'll see the loss on the right hand side.
###Code
model.fit(xs, ys, epochs=500)
###Output
Epoch 1/500
1/1 [==============================] - 0s 426ms/step - loss: 42.2953
Epoch 2/500
1/1 [==============================] - 0s 7ms/step - loss: 33.6400
Epoch 3/500
1/1 [==============================] - 0s 8ms/step - loss: 26.8230
Epoch 4/500
1/1 [==============================] - 0s 7ms/step - loss: 21.4524
Epoch 5/500
1/1 [==============================] - 0s 10ms/step - loss: 17.2198
Epoch 6/500
1/1 [==============================] - 0s 7ms/step - loss: 13.8828
Epoch 7/500
1/1 [==============================] - 0s 5ms/step - loss: 11.2506
Epoch 8/500
1/1 [==============================] - 0s 5ms/step - loss: 9.1729
Epoch 9/500
1/1 [==============================] - 0s 3ms/step - loss: 7.5317
Epoch 10/500
1/1 [==============================] - 0s 4ms/step - loss: 6.2340
Epoch 11/500
1/1 [==============================] - 0s 3ms/step - loss: 5.2067
Epoch 12/500
1/1 [==============================] - 0s 3ms/step - loss: 4.3922
Epoch 13/500
1/1 [==============================] - 0s 5ms/step - loss: 3.7454
Epoch 14/500
1/1 [==============================] - 0s 4ms/step - loss: 3.2305
Epoch 15/500
1/1 [==============================] - 0s 5ms/step - loss: 2.8197
Epoch 16/500
1/1 [==============================] - 0s 3ms/step - loss: 2.4907
Epoch 17/500
1/1 [==============================] - 0s 4ms/step - loss: 2.2263
Epoch 18/500
1/1 [==============================] - 0s 4ms/step - loss: 2.0127
Epoch 19/500
1/1 [==============================] - 0s 5ms/step - loss: 1.8394
Epoch 20/500
1/1 [==============================] - 0s 4ms/step - loss: 1.6978
Epoch 21/500
1/1 [==============================] - 0s 5ms/step - loss: 1.5812
Epoch 22/500
1/1 [==============================] - 0s 4ms/step - loss: 1.4844
Epoch 23/500
1/1 [==============================] - 0s 4ms/step - loss: 1.4034
Epoch 24/500
1/1 [==============================] - 0s 7ms/step - loss: 1.3347
Epoch 25/500
1/1 [==============================] - 0s 5ms/step - loss: 1.2760
Epoch 26/500
1/1 [==============================] - 0s 4ms/step - loss: 1.2252
Epoch 27/500
1/1 [==============================] - 0s 7ms/step - loss: 1.1806
Epoch 28/500
1/1 [==============================] - 0s 4ms/step - loss: 1.1411
Epoch 29/500
1/1 [==============================] - 0s 5ms/step - loss: 1.1057
Epoch 30/500
1/1 [==============================] - 0s 6ms/step - loss: 1.0736
Epoch 31/500
1/1 [==============================] - 0s 7ms/step - loss: 1.0441
Epoch 32/500
1/1 [==============================] - 0s 4ms/step - loss: 1.0168
Epoch 33/500
1/1 [==============================] - 0s 4ms/step - loss: 0.9913
Epoch 34/500
1/1 [==============================] - 0s 5ms/step - loss: 0.9673
Epoch 35/500
1/1 [==============================] - 0s 4ms/step - loss: 0.9446
Epoch 36/500
1/1 [==============================] - 0s 4ms/step - loss: 0.9230
Epoch 37/500
1/1 [==============================] - 0s 5ms/step - loss: 0.9023
Epoch 38/500
1/1 [==============================] - 0s 5ms/step - loss: 0.8823
Epoch 39/500
1/1 [==============================] - 0s 4ms/step - loss: 0.8631
Epoch 40/500
1/1 [==============================] - 0s 3ms/step - loss: 0.8445
Epoch 41/500
1/1 [==============================] - 0s 4ms/step - loss: 0.8265
Epoch 42/500
1/1 [==============================] - 0s 5ms/step - loss: 0.8090
Epoch 43/500
1/1 [==============================] - 0s 3ms/step - loss: 0.7920
Epoch 44/500
1/1 [==============================] - 0s 4ms/step - loss: 0.7754
Epoch 45/500
1/1 [==============================] - 0s 4ms/step - loss: 0.7592
Epoch 46/500
1/1 [==============================] - 0s 4ms/step - loss: 0.7434
Epoch 47/500
1/1 [==============================] - 0s 4ms/step - loss: 0.7280
Epoch 48/500
1/1 [==============================] - 0s 4ms/step - loss: 0.7129
Epoch 49/500
1/1 [==============================] - 0s 4ms/step - loss: 0.6981
Epoch 50/500
1/1 [==============================] - 0s 4ms/step - loss: 0.6837
Epoch 51/500
1/1 [==============================] - 0s 5ms/step - loss: 0.6696
Epoch 52/500
1/1 [==============================] - 0s 5ms/step - loss: 0.6558
Epoch 53/500
1/1 [==============================] - 0s 4ms/step - loss: 0.6423
Epoch 54/500
1/1 [==============================] - 0s 4ms/step - loss: 0.6291
Epoch 55/500
1/1 [==============================] - 0s 4ms/step - loss: 0.6161
Epoch 56/500
1/1 [==============================] - 0s 4ms/step - loss: 0.6035
Epoch 57/500
1/1 [==============================] - 0s 5ms/step - loss: 0.5911
Epoch 58/500
1/1 [==============================] - 0s 13ms/step - loss: 0.5789
Epoch 59/500
1/1 [==============================] - 0s 7ms/step - loss: 0.5670
Epoch 60/500
1/1 [==============================] - 0s 8ms/step - loss: 0.5554
Epoch 61/500
1/1 [==============================] - 0s 4ms/step - loss: 0.5439
Epoch 62/500
1/1 [==============================] - 0s 4ms/step - loss: 0.5328
Epoch 63/500
1/1 [==============================] - 0s 4ms/step - loss: 0.5218
Epoch 64/500
1/1 [==============================] - 0s 4ms/step - loss: 0.5111
Epoch 65/500
1/1 [==============================] - 0s 4ms/step - loss: 0.5006
Epoch 66/500
1/1 [==============================] - 0s 9ms/step - loss: 0.4903
Epoch 67/500
1/1 [==============================] - 0s 7ms/step - loss: 0.4802
Epoch 68/500
1/1 [==============================] - 0s 4ms/step - loss: 0.4704
Epoch 69/500
1/1 [==============================] - 0s 4ms/step - loss: 0.4607
Epoch 70/500
1/1 [==============================] - 0s 10ms/step - loss: 0.4512
Epoch 71/500
1/1 [==============================] - 0s 5ms/step - loss: 0.4420
Epoch 72/500
1/1 [==============================] - 0s 5ms/step - loss: 0.4329
Epoch 73/500
1/1 [==============================] - 0s 4ms/step - loss: 0.4240
Epoch 74/500
1/1 [==============================] - 0s 4ms/step - loss: 0.4153
Epoch 75/500
1/1 [==============================] - 0s 4ms/step - loss: 0.4068
Epoch 76/500
1/1 [==============================] - 0s 4ms/step - loss: 0.3984
Epoch 77/500
1/1 [==============================] - 0s 5ms/step - loss: 0.3902
Epoch 78/500
1/1 [==============================] - 0s 4ms/step - loss: 0.3822
Epoch 79/500
1/1 [==============================] - 0s 4ms/step - loss: 0.3744
Epoch 80/500
1/1 [==============================] - 0s 4ms/step - loss: 0.3667
Epoch 81/500
1/1 [==============================] - 0s 3ms/step - loss: 0.3591
Epoch 82/500
1/1 [==============================] - 0s 3ms/step - loss: 0.3518
Epoch 83/500
1/1 [==============================] - 0s 4ms/step - loss: 0.3445
Epoch 84/500
1/1 [==============================] - 0s 6ms/step - loss: 0.3375
Epoch 85/500
1/1 [==============================] - 0s 4ms/step - loss: 0.3305
Epoch 86/500
1/1 [==============================] - 0s 6ms/step - loss: 0.3237
Epoch 87/500
1/1 [==============================] - 0s 7ms/step - loss: 0.3171
Epoch 88/500
1/1 [==============================] - 0s 4ms/step - loss: 0.3106
Epoch 89/500
1/1 [==============================] - 0s 5ms/step - loss: 0.3042
Epoch 90/500
1/1 [==============================] - 0s 4ms/step - loss: 0.2979
Epoch 91/500
1/1 [==============================] - 0s 6ms/step - loss: 0.2918
Epoch 92/500
1/1 [==============================] - 0s 6ms/step - loss: 0.2858
Epoch 93/500
1/1 [==============================] - 0s 4ms/step - loss: 0.2800
Epoch 94/500
1/1 [==============================] - 0s 5ms/step - loss: 0.2742
Epoch 95/500
1/1 [==============================] - 0s 4ms/step - loss: 0.2686
Epoch 96/500
1/1 [==============================] - 0s 4ms/step - loss: 0.2631
Epoch 97/500
1/1 [==============================] - 0s 4ms/step - loss: 0.2577
Epoch 98/500
1/1 [==============================] - 0s 4ms/step - loss: 0.2524
Epoch 99/500
1/1 [==============================] - 0s 10ms/step - loss: 0.2472
Epoch 100/500
1/1 [==============================] - 0s 11ms/step - loss: 0.2421
Epoch 101/500
1/1 [==============================] - 0s 10ms/step - loss: 0.2371
Epoch 102/500
1/1 [==============================] - 0s 12ms/step - loss: 0.2323
Epoch 103/500
1/1 [==============================] - 0s 17ms/step - loss: 0.2275
Epoch 104/500
1/1 [==============================] - 0s 10ms/step - loss: 0.2228
Epoch 105/500
1/1 [==============================] - 0s 16ms/step - loss: 0.2182
Epoch 106/500
1/1 [==============================] - 0s 11ms/step - loss: 0.2138
Epoch 107/500
1/1 [==============================] - 0s 7ms/step - loss: 0.2094
Epoch 108/500
1/1 [==============================] - 0s 8ms/step - loss: 0.2051
Epoch 109/500
1/1 [==============================] - 0s 3ms/step - loss: 0.2009
Epoch 110/500
1/1 [==============================] - 0s 5ms/step - loss: 0.1967
Epoch 111/500
1/1 [==============================] - 0s 4ms/step - loss: 0.1927
Epoch 112/500
1/1 [==============================] - 0s 3ms/step - loss: 0.1887
Epoch 113/500
1/1 [==============================] - 0s 4ms/step - loss: 0.1849
Epoch 114/500
1/1 [==============================] - 0s 3ms/step - loss: 0.1811
Epoch 115/500
1/1 [==============================] - 0s 4ms/step - loss: 0.1773
Epoch 116/500
1/1 [==============================] - 0s 3ms/step - loss: 0.1737
Epoch 117/500
1/1 [==============================] - 0s 3ms/step - loss: 0.1701
Epoch 118/500
1/1 [==============================] - 0s 3ms/step - loss: 0.1666
Epoch 119/500
1/1 [==============================] - 0s 3ms/step - loss: 0.1632
Epoch 120/500
1/1 [==============================] - 0s 4ms/step - loss: 0.1599
Epoch 121/500
1/1 [==============================] - 0s 3ms/step - loss: 0.1566
Epoch 122/500
1/1 [==============================] - 0s 4ms/step - loss: 0.1534
Epoch 123/500
1/1 [==============================] - 0s 4ms/step - loss: 0.1502
Epoch 124/500
1/1 [==============================] - 0s 3ms/step - loss: 0.1471
Epoch 125/500
1/1 [==============================] - 0s 4ms/step - loss: 0.1441
Epoch 126/500
1/1 [==============================] - 0s 4ms/step - loss: 0.1411
Epoch 127/500
1/1 [==============================] - 0s 4ms/step - loss: 0.1382
Epoch 128/500
1/1 [==============================] - 0s 4ms/step - loss: 0.1354
Epoch 129/500
1/1 [==============================] - 0s 4ms/step - loss: 0.1326
Epoch 130/500
1/1 [==============================] - 0s 4ms/step - loss: 0.1299
Epoch 131/500
1/1 [==============================] - 0s 3ms/step - loss: 0.1272
Epoch 132/500
1/1 [==============================] - 0s 6ms/step - loss: 0.1246
Epoch 133/500
1/1 [==============================] - 0s 4ms/step - loss: 0.1221
Epoch 134/500
1/1 [==============================] - 0s 4ms/step - loss: 0.1195
Epoch 135/500
1/1 [==============================] - 0s 4ms/step - loss: 0.1171
Epoch 136/500
1/1 [==============================] - 0s 5ms/step - loss: 0.1147
Epoch 137/500
1/1 [==============================] - 0s 7ms/step - loss: 0.1123
Epoch 138/500
1/1 [==============================] - 0s 4ms/step - loss: 0.1100
Epoch 139/500
1/1 [==============================] - 0s 4ms/step - loss: 0.1078
Epoch 140/500
1/1 [==============================] - 0s 4ms/step - loss: 0.1056
Epoch 141/500
1/1 [==============================] - 0s 4ms/step - loss: 0.1034
Epoch 142/500
1/1 [==============================] - 0s 4ms/step - loss: 0.1013
Epoch 143/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0992
Epoch 144/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0971
Epoch 145/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0951
Epoch 146/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0932
Epoch 147/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0913
Epoch 148/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0894
Epoch 149/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0876
Epoch 150/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0858
Epoch 151/500
1/1 [==============================] - 0s 5ms/step - loss: 0.0840
Epoch 152/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0823
Epoch 153/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0806
Epoch 154/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0789
Epoch 155/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0773
Epoch 156/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0757
Epoch 157/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0742
Epoch 158/500
1/1 [==============================] - 0s 5ms/step - loss: 0.0726
Epoch 159/500
1/1 [==============================] - 0s 8ms/step - loss: 0.0712
Epoch 160/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0697
Epoch 161/500
1/1 [==============================] - 0s 281ms/step - loss: 0.0683
Epoch 162/500
1/1 [==============================] - 0s 10ms/step - loss: 0.0669
Epoch 163/500
1/1 [==============================] - 0s 8ms/step - loss: 0.0655
Epoch 164/500
1/1 [==============================] - 0s 5ms/step - loss: 0.0641
Epoch 165/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0628
Epoch 166/500
1/1 [==============================] - 0s 6ms/step - loss: 0.0615
Epoch 167/500
1/1 [==============================] - 0s 8ms/step - loss: 0.0603
Epoch 168/500
1/1 [==============================] - 0s 7ms/step - loss: 0.0590
Epoch 169/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0578
Epoch 170/500
1/1 [==============================] - 0s 3ms/step - loss: 0.0566
Epoch 171/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0555
Epoch 172/500
1/1 [==============================] - 0s 3ms/step - loss: 0.0543
Epoch 173/500
1/1 [==============================] - 0s 5ms/step - loss: 0.0532
Epoch 174/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0521
Epoch 175/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0510
Epoch 176/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0500
Epoch 177/500
1/1 [==============================] - 0s 5ms/step - loss: 0.0490
Epoch 178/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0480
Epoch 179/500
1/1 [==============================] - 0s 25ms/step - loss: 0.0470
Epoch 180/500
1/1 [==============================] - 0s 7ms/step - loss: 0.0460
Epoch 181/500
1/1 [==============================] - 0s 5ms/step - loss: 0.0451
Epoch 182/500
1/1 [==============================] - 0s 5ms/step - loss: 0.0441
Epoch 183/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0432
Epoch 184/500
1/1 [==============================] - 0s 3ms/step - loss: 0.0424
Epoch 185/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0415
Epoch 186/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0406
Epoch 187/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0398
Epoch 188/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0390
Epoch 189/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0382
Epoch 190/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0374
Epoch 191/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0366
Epoch 192/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0359
Epoch 193/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0351
Epoch 194/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0344
Epoch 195/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0337
Epoch 196/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0330
Epoch 197/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0323
Epoch 198/500
1/1 [==============================] - 0s 3ms/step - loss: 0.0317
Epoch 199/500
1/1 [==============================] - 0s 6ms/step - loss: 0.0310
Epoch 200/500
1/1 [==============================] - 0s 6ms/step - loss: 0.0304
Epoch 201/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0298
Epoch 202/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0291
Epoch 203/500
1/1 [==============================] - 0s 6ms/step - loss: 0.0286
Epoch 204/500
1/1 [==============================] - 0s 9ms/step - loss: 0.0280
Epoch 205/500
1/1 [==============================] - 0s 16ms/step - loss: 0.0274
Epoch 206/500
1/1 [==============================] - 0s 6ms/step - loss: 0.0268
Epoch 207/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0263
Epoch 208/500
1/1 [==============================] - 0s 3ms/step - loss: 0.0257
Epoch 209/500
1/1 [==============================] - 0s 3ms/step - loss: 0.0252
Epoch 210/500
1/1 [==============================] - 0s 3ms/step - loss: 0.0247
Epoch 211/500
1/1 [==============================] - 0s 7ms/step - loss: 0.0242
Epoch 212/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0237
Epoch 213/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0232
Epoch 214/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0227
Epoch 215/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0223
Epoch 216/500
1/1 [==============================] - 0s 5ms/step - loss: 0.0218
Epoch 217/500
1/1 [==============================] - 0s 6ms/step - loss: 0.0214
Epoch 218/500
1/1 [==============================] - 0s 7ms/step - loss: 0.0209
Epoch 219/500
1/1 [==============================] - 0s 7ms/step - loss: 0.0205
Epoch 220/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0201
Epoch 221/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0197
Epoch 222/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0192
Epoch 223/500
1/1 [==============================] - 0s 179ms/step - loss: 0.0189
Epoch 224/500
1/1 [==============================] - 0s 5ms/step - loss: 0.0185
Epoch 225/500
1/1 [==============================] - 0s 5ms/step - loss: 0.0181
Epoch 226/500
1/1 [==============================] - 0s 6ms/step - loss: 0.0177
Epoch 227/500
1/1 [==============================] - 0s 5ms/step - loss: 0.0173
Epoch 228/500
1/1 [==============================] - 0s 3ms/step - loss: 0.0170
Epoch 229/500
1/1 [==============================] - 0s 15ms/step - loss: 0.0166
Epoch 230/500
1/1 [==============================] - 0s 11ms/step - loss: 0.0163
Epoch 231/500
1/1 [==============================] - 0s 9ms/step - loss: 0.0160
Epoch 232/500
1/1 [==============================] - 0s 11ms/step - loss: 0.0156
Epoch 233/500
1/1 [==============================] - 0s 8ms/step - loss: 0.0153
Epoch 234/500
1/1 [==============================] - 0s 5ms/step - loss: 0.0150
Epoch 235/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0147
Epoch 236/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0144
Epoch 237/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0141
Epoch 238/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0138
Epoch 239/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0135
Epoch 240/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0132
Epoch 241/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0130
Epoch 242/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0127
Epoch 243/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0124
Epoch 244/500
1/1 [==============================] - 0s 11ms/step - loss: 0.0122
Epoch 245/500
1/1 [==============================] - 0s 17ms/step - loss: 0.0119
Epoch 246/500
1/1 [==============================] - 0s 17ms/step - loss: 0.0117
Epoch 247/500
1/1 [==============================] - 0s 11ms/step - loss: 0.0115
Epoch 248/500
1/1 [==============================] - 0s 11ms/step - loss: 0.0112
Epoch 249/500
1/1 [==============================] - 0s 16ms/step - loss: 0.0110
Epoch 250/500
1/1 [==============================] - 0s 5ms/step - loss: 0.0108
Epoch 251/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0105
Epoch 252/500
1/1 [==============================] - 0s 5ms/step - loss: 0.0103
Epoch 253/500
1/1 [==============================] - 0s 5ms/step - loss: 0.0101
Epoch 254/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0099
Epoch 255/500
1/1 [==============================] - 0s 5ms/step - loss: 0.0097
Epoch 256/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0095
Epoch 257/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0093
Epoch 258/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0091
Epoch 259/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0089
Epoch 260/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0087
Epoch 261/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0086
Epoch 262/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0084
Epoch 263/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0082
Epoch 264/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0080
Epoch 265/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0079
Epoch 266/500
1/1 [==============================] - 0s 11ms/step - loss: 0.0077
Epoch 267/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0076
Epoch 268/500
1/1 [==============================] - 0s 6ms/step - loss: 0.0074
Epoch 269/500
1/1 [==============================] - 0s 12ms/step - loss: 0.0073
Epoch 270/500
1/1 [==============================] - 0s 18ms/step - loss: 0.0071
Epoch 271/500
1/1 [==============================] - 0s 10ms/step - loss: 0.0070
Epoch 272/500
1/1 [==============================] - 0s 15ms/step - loss: 0.0068
Epoch 273/500
1/1 [==============================] - 0s 20ms/step - loss: 0.0067
Epoch 274/500
1/1 [==============================] - 0s 5ms/step - loss: 0.0065
Epoch 275/500
1/1 [==============================] - 0s 8ms/step - loss: 0.0064
Epoch 276/500
1/1 [==============================] - 0s 18ms/step - loss: 0.0063
Epoch 277/500
1/1 [==============================] - 0s 15ms/step - loss: 0.0061
Epoch 278/500
1/1 [==============================] - 0s 3ms/step - loss: 0.0060
Epoch 279/500
1/1 [==============================] - 0s 3ms/step - loss: 0.0059
Epoch 280/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0058
Epoch 281/500
1/1 [==============================] - 0s 14ms/step - loss: 0.0057
Epoch 282/500
1/1 [==============================] - 0s 7ms/step - loss: 0.0055
Epoch 283/500
1/1 [==============================] - 0s 8ms/step - loss: 0.0054
Epoch 284/500
1/1 [==============================] - 0s 11ms/step - loss: 0.0053
Epoch 285/500
1/1 [==============================] - 0s 16ms/step - loss: 0.0052
Epoch 286/500
1/1 [==============================] - 0s 6ms/step - loss: 0.0051
Epoch 287/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0050
Epoch 288/500
1/1 [==============================] - 0s 3ms/step - loss: 0.0049
Epoch 289/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0048
Epoch 290/500
1/1 [==============================] - 0s 11ms/step - loss: 0.0047
Epoch 291/500
1/1 [==============================] - 0s 33ms/step - loss: 0.0046
Epoch 292/500
1/1 [==============================] - 0s 12ms/step - loss: 0.0045
Epoch 293/500
1/1 [==============================] - 0s 3ms/step - loss: 0.0044
Epoch 294/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0043
Epoch 295/500
1/1 [==============================] - 0s 5ms/step - loss: 0.0042
Epoch 296/500
1/1 [==============================] - 0s 3ms/step - loss: 0.0041
Epoch 297/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0041
Epoch 298/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0040
Epoch 299/500
1/1 [==============================] - 0s 9ms/step - loss: 0.0039
Epoch 300/500
1/1 [==============================] - 0s 9ms/step - loss: 0.0038
Epoch 301/500
1/1 [==============================] - 0s 7ms/step - loss: 0.0037
Epoch 302/500
1/1 [==============================] - 0s 3ms/step - loss: 0.0037
Epoch 303/500
1/1 [==============================] - 0s 3ms/step - loss: 0.0036
Epoch 304/500
1/1 [==============================] - 0s 3ms/step - loss: 0.0035
Epoch 305/500
1/1 [==============================] - 0s 3ms/step - loss: 0.0034
Epoch 306/500
1/1 [==============================] - 0s 3ms/step - loss: 0.0034
Epoch 307/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0033
Epoch 308/500
1/1 [==============================] - 0s 5ms/step - loss: 0.0032
Epoch 309/500
1/1 [==============================] - 0s 3ms/step - loss: 0.0032
Epoch 310/500
1/1 [==============================] - 0s 3ms/step - loss: 0.0031
Epoch 311/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0030
Epoch 312/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0030
Epoch 313/500
1/1 [==============================] - 0s 5ms/step - loss: 0.0029
Epoch 314/500
1/1 [==============================] - 0s 3ms/step - loss: 0.0029
Epoch 315/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0028
Epoch 316/500
1/1 [==============================] - 0s 3ms/step - loss: 0.0027
Epoch 317/500
1/1 [==============================] - 0s 5ms/step - loss: 0.0027
Epoch 318/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0026
Epoch 319/500
1/1 [==============================] - 0s 10ms/step - loss: 0.0026
Epoch 320/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0025
Epoch 321/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0025
Epoch 322/500
1/1 [==============================] - 0s 5ms/step - loss: 0.0024
Epoch 323/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0024
Epoch 324/500
1/1 [==============================] - 0s 6ms/step - loss: 0.0023
Epoch 325/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0023
Epoch 326/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0022
Epoch 327/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0022
Epoch 328/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0021
Epoch 329/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0021
Epoch 330/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0020
Epoch 331/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0020
Epoch 332/500
1/1 [==============================] - 0s 5ms/step - loss: 0.0020
Epoch 333/500
1/1 [==============================] - 0s 8ms/step - loss: 0.0019
Epoch 334/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0019
Epoch 335/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0018
Epoch 336/500
1/1 [==============================] - 0s 3ms/step - loss: 0.0018
Epoch 337/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0018
Epoch 338/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0017
Epoch 339/500
1/1 [==============================] - 0s 3ms/step - loss: 0.0017
Epoch 340/500
1/1 [==============================] - 0s 3ms/step - loss: 0.0017
Epoch 341/500
1/1 [==============================] - 0s 9ms/step - loss: 0.0016
Epoch 342/500
1/1 [==============================] - 0s 3ms/step - loss: 0.0016
Epoch 343/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0016
Epoch 344/500
1/1 [==============================] - 0s 7ms/step - loss: 0.0015
Epoch 345/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0015
Epoch 346/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0015
Epoch 347/500
1/1 [==============================] - 0s 5ms/step - loss: 0.0014
Epoch 348/500
1/1 [==============================] - 0s 338ms/step - loss: 0.0014
Epoch 349/500
1/1 [==============================] - 0s 6ms/step - loss: 0.0014
Epoch 350/500
1/1 [==============================] - 0s 3ms/step - loss: 0.0014
Epoch 351/500
1/1 [==============================] - 0s 5ms/step - loss: 0.0013
Epoch 352/500
1/1 [==============================] - 0s 5ms/step - loss: 0.0013
Epoch 353/500
1/1 [==============================] - 0s 3ms/step - loss: 0.0013
Epoch 354/500
1/1 [==============================] - 0s 6ms/step - loss: 0.0012
Epoch 355/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0012
Epoch 356/500
1/1 [==============================] - 0s 5ms/step - loss: 0.0012
Epoch 357/500
1/1 [==============================] - 0s 8ms/step - loss: 0.0012
Epoch 358/500
1/1 [==============================] - 0s 21ms/step - loss: 0.0011
Epoch 359/500
1/1 [==============================] - 0s 48ms/step - loss: 0.0011
Epoch 360/500
1/1 [==============================] - 0s 7ms/step - loss: 0.0011
Epoch 361/500
1/1 [==============================] - 0s 4ms/step - loss: 0.0011
Epoch 362/500
1/1 [==============================] - 0s 6ms/step - loss: 0.0011
Epoch 363/500
1/1 [==============================] - 0s 5ms/step - loss: 0.0010
Epoch 364/500
1/1 [==============================] - 0s 6ms/step - loss: 0.0010
Epoch 365/500
1/1 [==============================] - 0s 5ms/step - loss: 9.8947e-04
Epoch 366/500
1/1 [==============================] - 0s 5ms/step - loss: 9.6915e-04
Epoch 367/500
1/1 [==============================] - 0s 8ms/step - loss: 9.4923e-04
Epoch 368/500
1/1 [==============================] - 0s 5ms/step - loss: 9.2974e-04
Epoch 369/500
1/1 [==============================] - 0s 8ms/step - loss: 9.1064e-04
Epoch 370/500
1/1 [==============================] - 0s 12ms/step - loss: 8.9194e-04
Epoch 371/500
1/1 [==============================] - 0s 5ms/step - loss: 8.7361e-04
Epoch 372/500
1/1 [==============================] - 0s 7ms/step - loss: 8.5567e-04
Epoch 373/500
1/1 [==============================] - 0s 4ms/step - loss: 8.3809e-04
Epoch 374/500
1/1 [==============================] - 0s 3ms/step - loss: 8.2088e-04
Epoch 375/500
1/1 [==============================] - 0s 4ms/step - loss: 8.0402e-04
Epoch 376/500
1/1 [==============================] - 0s 5ms/step - loss: 7.8750e-04
Epoch 377/500
1/1 [==============================] - 0s 3ms/step - loss: 7.7133e-04
Epoch 378/500
1/1 [==============================] - 0s 4ms/step - loss: 7.5548e-04
Epoch 379/500
1/1 [==============================] - 0s 4ms/step - loss: 7.3997e-04
Epoch 380/500
1/1 [==============================] - 0s 5ms/step - loss: 7.2476e-04
Epoch 381/500
1/1 [==============================] - 0s 3ms/step - loss: 7.0988e-04
Epoch 382/500
1/1 [==============================] - 0s 4ms/step - loss: 6.9530e-04
Epoch 383/500
1/1 [==============================] - 0s 3ms/step - loss: 6.8101e-04
Epoch 384/500
1/1 [==============================] - 0s 5ms/step - loss: 6.6703e-04
Epoch 385/500
1/1 [==============================] - 0s 4ms/step - loss: 6.5332e-04
Epoch 386/500
1/1 [==============================] - 0s 4ms/step - loss: 6.3991e-04
Epoch 387/500
1/1 [==============================] - 0s 5ms/step - loss: 6.2676e-04
Epoch 388/500
1/1 [==============================] - 0s 3ms/step - loss: 6.1389e-04
Epoch 389/500
1/1 [==============================] - 0s 6ms/step - loss: 6.0128e-04
Epoch 390/500
1/1 [==============================] - 0s 4ms/step - loss: 5.8893e-04
Epoch 391/500
1/1 [==============================] - 0s 3ms/step - loss: 5.7683e-04
Epoch 392/500
1/1 [==============================] - 0s 3ms/step - loss: 5.6498e-04
Epoch 393/500
1/1 [==============================] - 0s 3ms/step - loss: 5.5338e-04
Epoch 394/500
1/1 [==============================] - 0s 4ms/step - loss: 5.4201e-04
Epoch 395/500
1/1 [==============================] - 0s 5ms/step - loss: 5.3088e-04
Epoch 396/500
1/1 [==============================] - 0s 4ms/step - loss: 5.1997e-04
Epoch 397/500
1/1 [==============================] - 0s 4ms/step - loss: 5.0929e-04
Epoch 398/500
1/1 [==============================] - 0s 4ms/step - loss: 4.9883e-04
Epoch 399/500
1/1 [==============================] - 0s 6ms/step - loss: 4.8859e-04
Epoch 400/500
1/1 [==============================] - 0s 5ms/step - loss: 4.7855e-04
Epoch 401/500
1/1 [==============================] - 0s 5ms/step - loss: 4.6872e-04
Epoch 402/500
1/1 [==============================] - 0s 10ms/step - loss: 4.5909e-04
Epoch 403/500
1/1 [==============================] - 0s 8ms/step - loss: 4.4966e-04
Epoch 404/500
1/1 [==============================] - 0s 7ms/step - loss: 4.4043e-04
Epoch 405/500
1/1 [==============================] - 0s 4ms/step - loss: 4.3138e-04
Epoch 406/500
1/1 [==============================] - 0s 4ms/step - loss: 4.2252e-04
Epoch 407/500
1/1 [==============================] - 0s 5ms/step - loss: 4.1384e-04
Epoch 408/500
1/1 [==============================] - 0s 5ms/step - loss: 4.0534e-04
Epoch 409/500
1/1 [==============================] - 0s 4ms/step - loss: 3.9702e-04
Epoch 410/500
1/1 [==============================] - 0s 305ms/step - loss: 3.8886e-04
Epoch 411/500
1/1 [==============================] - 0s 6ms/step - loss: 3.8087e-04
Epoch 412/500
1/1 [==============================] - 0s 8ms/step - loss: 3.7305e-04
Epoch 413/500
1/1 [==============================] - 0s 8ms/step - loss: 3.6538e-04
Epoch 414/500
1/1 [==============================] - 0s 5ms/step - loss: 3.5788e-04
Epoch 415/500
1/1 [==============================] - 0s 4ms/step - loss: 3.5053e-04
Epoch 416/500
1/1 [==============================] - 0s 6ms/step - loss: 3.4333e-04
Epoch 417/500
1/1 [==============================] - 0s 9ms/step - loss: 3.3628e-04
Epoch 418/500
1/1 [==============================] - 0s 9ms/step - loss: 3.2937e-04
Epoch 419/500
1/1 [==============================] - 0s 18ms/step - loss: 3.2261e-04
Epoch 420/500
1/1 [==============================] - 0s 6ms/step - loss: 3.1598e-04
Epoch 421/500
1/1 [==============================] - 0s 5ms/step - loss: 3.0949e-04
Epoch 422/500
1/1 [==============================] - 0s 7ms/step - loss: 3.0313e-04
Epoch 423/500
1/1 [==============================] - 0s 6ms/step - loss: 2.9690e-04
Epoch 424/500
1/1 [==============================] - 0s 6ms/step - loss: 2.9081e-04
Epoch 425/500
1/1 [==============================] - 0s 7ms/step - loss: 2.8483e-04
Epoch 426/500
1/1 [==============================] - 0s 5ms/step - loss: 2.7898e-04
Epoch 427/500
1/1 [==============================] - 0s 5ms/step - loss: 2.7325e-04
Epoch 428/500
1/1 [==============================] - 0s 5ms/step - loss: 2.6764e-04
Epoch 429/500
1/1 [==============================] - 0s 9ms/step - loss: 2.6214e-04
Epoch 430/500
1/1 [==============================] - 0s 6ms/step - loss: 2.5676e-04
Epoch 431/500
1/1 [==============================] - 0s 7ms/step - loss: 2.5148e-04
Epoch 432/500
1/1 [==============================] - 0s 4ms/step - loss: 2.4632e-04
Epoch 433/500
1/1 [==============================] - 0s 11ms/step - loss: 2.4126e-04
Epoch 434/500
1/1 [==============================] - 0s 13ms/step - loss: 2.3630e-04
Epoch 435/500
1/1 [==============================] - 0s 16ms/step - loss: 2.3145e-04
Epoch 436/500
1/1 [==============================] - 0s 4ms/step - loss: 2.2669e-04
Epoch 437/500
1/1 [==============================] - 0s 3ms/step - loss: 2.2204e-04
Epoch 438/500
1/1 [==============================] - 0s 4ms/step - loss: 2.1748e-04
Epoch 439/500
1/1 [==============================] - 0s 4ms/step - loss: 2.1301e-04
Epoch 440/500
1/1 [==============================] - 0s 4ms/step - loss: 2.0863e-04
Epoch 441/500
1/1 [==============================] - 0s 5ms/step - loss: 2.0435e-04
Epoch 442/500
1/1 [==============================] - 0s 4ms/step - loss: 2.0015e-04
Epoch 443/500
1/1 [==============================] - 0s 4ms/step - loss: 1.9604e-04
Epoch 444/500
1/1 [==============================] - 0s 9ms/step - loss: 1.9201e-04
Epoch 445/500
1/1 [==============================] - 0s 4ms/step - loss: 1.8807e-04
Epoch 446/500
1/1 [==============================] - 0s 6ms/step - loss: 1.8421e-04
Epoch 447/500
1/1 [==============================] - 0s 4ms/step - loss: 1.8042e-04
Epoch 448/500
1/1 [==============================] - 0s 5ms/step - loss: 1.7671e-04
Epoch 449/500
1/1 [==============================] - 0s 3ms/step - loss: 1.7309e-04
Epoch 450/500
1/1 [==============================] - 0s 5ms/step - loss: 1.6953e-04
Epoch 451/500
1/1 [==============================] - 0s 4ms/step - loss: 1.6605e-04
Epoch 452/500
1/1 [==============================] - 0s 6ms/step - loss: 1.6264e-04
Epoch 453/500
1/1 [==============================] - 0s 4ms/step - loss: 1.5930e-04
Epoch 454/500
1/1 [==============================] - 0s 4ms/step - loss: 1.5602e-04
Epoch 455/500
1/1 [==============================] - 0s 5ms/step - loss: 1.5282e-04
Epoch 456/500
1/1 [==============================] - 0s 5ms/step - loss: 1.4968e-04
Epoch 457/500
1/1 [==============================] - 0s 6ms/step - loss: 1.4661e-04
Epoch 458/500
1/1 [==============================] - 0s 5ms/step - loss: 1.4360e-04
Epoch 459/500
1/1 [==============================] - 0s 6ms/step - loss: 1.4065e-04
Epoch 460/500
1/1 [==============================] - 0s 4ms/step - loss: 1.3776e-04
Epoch 461/500
1/1 [==============================] - 0s 4ms/step - loss: 1.3493e-04
Epoch 462/500
1/1 [==============================] - 0s 11ms/step - loss: 1.3216e-04
Epoch 463/500
1/1 [==============================] - 0s 26ms/step - loss: 1.2944e-04
Epoch 464/500
1/1 [==============================] - 0s 7ms/step - loss: 1.2678e-04
Epoch 465/500
1/1 [==============================] - 0s 11ms/step - loss: 1.2418e-04
Epoch 466/500
1/1 [==============================] - 0s 9ms/step - loss: 1.2163e-04
Epoch 467/500
1/1 [==============================] - 0s 9ms/step - loss: 1.1913e-04
Epoch 468/500
1/1 [==============================] - 0s 6ms/step - loss: 1.1668e-04
Epoch 469/500
1/1 [==============================] - 0s 5ms/step - loss: 1.1429e-04
Epoch 470/500
1/1 [==============================] - 0s 7ms/step - loss: 1.1194e-04
Epoch 471/500
1/1 [==============================] - 0s 6ms/step - loss: 1.0964e-04
Epoch 472/500
1/1 [==============================] - 0s 156ms/step - loss: 1.0739e-04
Epoch 473/500
1/1 [==============================] - 0s 6ms/step - loss: 1.0518e-04
Epoch 474/500
1/1 [==============================] - 0s 6ms/step - loss: 1.0302e-04
Epoch 475/500
1/1 [==============================] - 0s 6ms/step - loss: 1.0090e-04
Epoch 476/500
1/1 [==============================] - 0s 7ms/step - loss: 9.8830e-05
Epoch 477/500
1/1 [==============================] - 0s 4ms/step - loss: 9.6800e-05
Epoch 478/500
1/1 [==============================] - 0s 7ms/step - loss: 9.4813e-05
Epoch 479/500
1/1 [==============================] - 0s 4ms/step - loss: 9.2866e-05
Epoch 480/500
1/1 [==============================] - 0s 4ms/step - loss: 9.0957e-05
Epoch 481/500
1/1 [==============================] - 0s 5ms/step - loss: 8.9090e-05
Epoch 482/500
1/1 [==============================] - 0s 4ms/step - loss: 8.7260e-05
Epoch 483/500
1/1 [==============================] - 0s 5ms/step - loss: 8.5467e-05
Epoch 484/500
1/1 [==============================] - 0s 11ms/step - loss: 8.3712e-05
Epoch 485/500
1/1 [==============================] - 0s 9ms/step - loss: 8.1992e-05
Epoch 486/500
1/1 [==============================] - 0s 15ms/step - loss: 8.0308e-05
Epoch 487/500
1/1 [==============================] - 0s 6ms/step - loss: 7.8658e-05
Epoch 488/500
1/1 [==============================] - 0s 4ms/step - loss: 7.7042e-05
Epoch 489/500
1/1 [==============================] - 0s 4ms/step - loss: 7.5459e-05
Epoch 490/500
1/1 [==============================] - 0s 4ms/step - loss: 7.3909e-05
Epoch 491/500
1/1 [==============================] - 0s 3ms/step - loss: 7.2391e-05
Epoch 492/500
1/1 [==============================] - 0s 4ms/step - loss: 7.0905e-05
Epoch 493/500
1/1 [==============================] - 0s 7ms/step - loss: 6.9448e-05
Epoch 494/500
1/1 [==============================] - 0s 13ms/step - loss: 6.8022e-05
Epoch 495/500
1/1 [==============================] - 0s 8ms/step - loss: 6.6625e-05
Epoch 496/500
1/1 [==============================] - 0s 9ms/step - loss: 6.5256e-05
Epoch 497/500
1/1 [==============================] - 0s 4ms/step - loss: 6.3916e-05
Epoch 498/500
1/1 [==============================] - 0s 4ms/step - loss: 6.2603e-05
Epoch 499/500
1/1 [==============================] - 0s 4ms/step - loss: 6.1318e-05
Epoch 500/500
1/1 [==============================] - 0s 4ms/step - loss: 6.0058e-05
###Markdown
Ok, now you have a model that has been trained to learn the relationship between X and Y. You can use the **model.predict** method to have it figure out the Y for a previously unknown X. So, for example, if X = 10, what do you think Y will be? Take a guess before you run this code:
###Code
print(model.predict([10.0]))
###Output
[[18.977392]]
|
1_5_CNN_Layers/2. Pool Visualization.ipynb | ###Markdown
Pooling LayerIn this notebook, we add and visualize the output of a maxpooling layer in a CNN. Import the image
###Code
import cv2
import matplotlib.pyplot as plt
%matplotlib inline
# TODO: Feel free to try out your own images here by changing img_path
# to a file path to another image on your computer!
img_path = 'images/udacity_sdc.png'
# load color image
bgr_img = cv2.imread(img_path)
# convert to grayscale
gray_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2GRAY)
# normalize, rescale entries to lie in [0,1]
gray_img = gray_img.astype("float32")/255
# plot image
plt.imshow(gray_img, cmap='gray')
plt.show()
###Output
_____no_output_____
###Markdown
Define and visualize the filters
###Code
import numpy as np
## TODO: Feel free to modify the numbers here, to try out another filter!
filter_vals = np.array([[-1, -1, 1, 1], [-1, -1, 1, 1], [-1, -1, 1, 1], [-1, -1, 1, 1]])
print('Filter shape: ', filter_vals.shape)
# Defining four different filters,
# all of which are linear combinations of the `filter_vals` defined above
# define four filters
filter_1 = filter_vals
filter_2 = -filter_1
filter_3 = filter_1.T
filter_4 = -filter_3
filters = np.array([filter_1, filter_2, filter_3, filter_4])
# For an example, print out the values of filter 1
print('Filter 1: \n', filter_1)
###Output
Filter 1:
[[-1 -1 1 1]
[-1 -1 1 1]
[-1 -1 1 1]
[-1 -1 1 1]]
###Markdown
Define convolutional and pooling layersInitialize a convolutional layer so that it contains all your created filters. Then add a maxpooling layer, [documented here](http://pytorch.org/docs/master/_modules/torch/nn/modules/pooling.html), with a kernel size of (4x4) so you can really see that the image resolution has been reduced after this step!
###Code
import torch
import torch.nn as nn
import torch.nn.functional as F
# define a neural network with a convolutional layer with four filters
# AND a pooling layer of size (4, 4)
class Net(nn.Module):
def __init__(self, weight):
super(Net, self).__init__()
# initializes the weights of the convolutional layer to be the weights of the 4 defined filters
k_height, k_width = weight.shape[2:]
# assumes there are 4 grayscale filters
self.conv = nn.Conv2d(1, 4, kernel_size=(k_height, k_width), bias=False)
self.conv.weight = torch.nn.Parameter(weight)
# define a pooling layer
self.pool = nn.MaxPool2d(4, 4)
def forward(self, x):
# calculates the output of a convolutional layer
# pre- and post-activation
conv_x = self.conv(x)
activated_x = F.relu(conv_x)
# applies pooling layer
pooled_x = self.pool(activated_x)
# returns all layers
return conv_x, activated_x, pooled_x
# instantiate the model and set the weights
weight = torch.from_numpy(filters).unsqueeze(1).type(torch.FloatTensor)
model = Net(weight)
# print out the layer in the network
print(model)
###Output
Net(
(conv): Conv2d(1, 4, kernel_size=(4, 4), stride=(1, 1), bias=False)
(pool): MaxPool2d(kernel_size=4, stride=4, padding=0, dilation=1, ceil_mode=False)
)
###Markdown
Visualize the output of each filterFirst, we'll define a helper function, `viz_layer` that takes in a specific layer and number of filters (optional argument), and displays the output of that layer once an image has been passed through.
###Code
# helper function for visualizing the output of a given layer
# default number of filters is 4
def viz_layer(layer, n_filters= 4):
fig = plt.figure(figsize=(20, 20))
for i in range(n_filters):
ax = fig.add_subplot(1, n_filters, i+1, xticks=[], yticks=[])
# grab layer outputs
ax.imshow(np.squeeze(layer[0,i].data.numpy()), cmap='gray')
ax.set_title('Output %s' % str(i+1))
###Output
_____no_output_____
###Markdown
Let's look at the output of a convolutional layer after a ReLu activation function is applied.
###Code
# plot original image
plt.imshow(gray_img, cmap='gray')
# visualize all filters
fig = plt.figure(figsize=(12, 6))
fig.subplots_adjust(left=0, right=1.5, bottom=0.8, top=1, hspace=0.05, wspace=0.05)
for i in range(4):
ax = fig.add_subplot(1, 4, i+1, xticks=[], yticks=[])
ax.imshow(filters[i], cmap='gray')
ax.set_title('Filter %s' % str(i+1))
# convert the image into an input Tensor
gray_img_tensor = torch.from_numpy(gray_img).unsqueeze(0).unsqueeze(1)
# get all the layers
conv_layer, activated_layer, pooled_layer = model(gray_img_tensor)
# visualize the output of the activated conv layer
viz_layer(activated_layer)
###Output
_____no_output_____
###Markdown
Visualize the output of the pooling layerThen, take a look at the output of a pooling layer. The pooling layer takes as input the feature maps pictured above and reduces the dimensionality of those maps, by some pooling factor, by constructing a new, smaller image of only the maximum (brightest) values in a given kernel area.
###Code
# visualize the output of the pooling layer
viz_layer(pooled_layer)
###Output
_____no_output_____
###Markdown
Visualize the output of each filterFirst, we'll define a helper function, `viz_layer` that takes in a specific layer and number of filters (optional argument), and displays the output of that layer once an image has been passed through.
###Code
# helper function for visualizing the output of a given layer
# default number of filters is 4
def viz_layer(layer, n_filters= 4):
fig = plt.figure(figsize=(20, 20))
for i in range(n_filters):
ax = fig.add_subplot(1, n_filters, i+1, xticks=[], yticks=[])
# grab layer outputs
ax.imshow(np.squeeze(layer[0,i].data.numpy()), cmap='gray')
ax.set_title('Output %s' % str(i+1))
###Output
_____no_output_____
###Markdown
Let's look at the output of a convolutional layer after a ReLu activation function is applied.
###Code
# plot original image
plt.imshow(gray_img, cmap='gray')
# visualize all filters
fig = plt.figure(figsize=(6, 3))
fig.subplots_adjust(left=0, right=1.5, bottom=0.8, top=1, hspace=0.05, wspace=0.05)
for i in range(4):
ax = fig.add_subplot(1, 4, i+1, xticks=[], yticks=[])
ax.imshow(filters[i], cmap='gray')
ax.set_title('Filter %s' % str(i+1))
# convert the image into an input Tensor
gray_img_tensor = torch.from_numpy(gray_img).unsqueeze(0).unsqueeze(1)
# get all the layers
conv_layer, activated_layer, pooled_layer = model(gray_img_tensor)
# visualize the output of the activated conv layer
viz_layer(activated_layer)
###Output
_____no_output_____
###Markdown
Visualize the output of the pooling layerThen, take a look at the output of a pooling layer. The pooling layer takes as input the feature maps pictured above and reduces the dimensionality of those maps, by some pooling factor, by constructing a new, smaller image of only the maximum (brightest) values in a given kernel area.
###Code
# visualize the output of the pooling layer
viz_layer(pooled_layer)
###Output
_____no_output_____
###Markdown
Pooling LayerIn this notebook, we add and visualize the output of a maxpooling layer in a CNN. Import the image
###Code
import cv2
import matplotlib.pyplot as plt
%matplotlib inline
# TODO: Feel free to try out your own images here by changing img_path
# to a file path to another image on your computer!
img_path = 'images/udacity_sdc.png'
# load color image
bgr_img = cv2.imread(img_path)
# convert to grayscale
gray_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2GRAY)
# normalize, rescale entries to lie in [0,1]
gray_img = gray_img.astype("float32")/255
# plot image
plt.imshow(gray_img, cmap='gray')
plt.show()
###Output
_____no_output_____
###Markdown
Define and visualize the filters
###Code
import numpy as np
## TODO: Feel free to modify the numbers here, to try out another filter!
filter_vals = np.array([[-1, -1, 1, 1], [-1, -1, 1, 1], [-1, -1, 1, 1], [-1, -1, 1, 1]])
print('Filter shape: ', filter_vals.shape)
# Defining four different filters,
# all of which are linear combinations of the `filter_vals` defined above
# define four filters
filter_1 = filter_vals
filter_2 = -filter_1
filter_3 = filter_1.T
filter_4 = -filter_3
filters = np.array([filter_1, filter_2, filter_3, filter_4])
# For an example, print out the values of filter 1
print('Filter 1: \n', filter_1)
###Output
Filter 1:
[[-1 -1 1 1]
[-1 -1 1 1]
[-1 -1 1 1]
[-1 -1 1 1]]
###Markdown
Define convolutional and pooling layersInitialize a convolutional layer so that it contains all your created filters. Then add a maxpooling layer, [documented here](http://pytorch.org/docs/master/_modules/torch/nn/modules/pooling.html), with a kernel size of (4x4) so you can really see that the image resolution has been reduced after this step!
###Code
import torch
import torch.nn as nn
import torch.nn.functional as F
# define a neural network with a convolutional layer with four filters
# AND a pooling layer of size (4, 4)
class Net(nn.Module):
def __init__(self, weight):
super(Net, self).__init__()
# initializes the weights of the convolutional layer to be the weights of the 4 defined filters
k_height, k_width = weight.shape[2:]
# assumes there are 4 grayscale filters
self.conv = nn.Conv2d(1, 4, kernel_size=(k_height, k_width), bias=False)
self.conv.weight = torch.nn.Parameter(weight)
# define a pooling layer
self.pool = nn.MaxPool2d(4, 4)
def forward(self, x):
# calculates the output of a convolutional layer
# pre- and post-activation
conv_x = self.conv(x)
activated_x = F.relu(conv_x)
# applies pooling layer
pooled_x = self.pool(activated_x)
# returns all layers
return conv_x, activated_x, pooled_x
# instantiate the model and set the weights
weight = torch.from_numpy(filters).unsqueeze(1).type(torch.FloatTensor)
model = Net(weight)
# print out the layer in the network
print(model)
###Output
Net(
(conv): Conv2d(1, 4, kernel_size=(4, 4), stride=(1, 1), bias=False)
(pool): MaxPool2d(kernel_size=4, stride=4, padding=0, dilation=1, ceil_mode=False)
)
###Markdown
Visualize the output of each filterFirst, we'll define a helper function, `viz_layer` that takes in a specific layer and number of filters (optional argument), and displays the output of that layer once an image has been passed through.
###Code
# helper function for visualizing the output of a given layer
# default number of filters is 4
def viz_layer(layer, n_filters= 4):
fig = plt.figure(figsize=(20, 20))
for i in range(n_filters):
ax = fig.add_subplot(1, n_filters, i+1, xticks=[], yticks=[])
# grab layer outputs
ax.imshow(np.squeeze(layer[0,i].data.numpy()), cmap='gray')
ax.set_title('Output %s' % str(i+1))
###Output
_____no_output_____
###Markdown
Let's look at the output of a convolutional layer after a ReLu activation function is applied.
###Code
# plot original image
plt.imshow(gray_img, cmap='gray')
# visualize all filters
fig = plt.figure(figsize=(12, 6))
fig.subplots_adjust(left=0, right=1.5, bottom=0.8, top=1, hspace=0.05, wspace=0.05)
for i in range(4):
ax = fig.add_subplot(1, 4, i+1, xticks=[], yticks=[])
ax.imshow(filters[i], cmap='gray')
ax.set_title('Filter %s' % str(i+1))
# convert the image into an input Tensor
gray_img_tensor = torch.from_numpy(gray_img).unsqueeze(0).unsqueeze(1)
# get all the layers
conv_layer, activated_layer, pooled_layer = model(gray_img_tensor)
# visualize the output of the activated conv layer
viz_layer(activated_layer)
###Output
_____no_output_____
###Markdown
Visualize the output of the pooling layerThen, take a look at the output of a pooling layer. The pooling layer takes as input the feature maps pictured above and reduces the dimensionality of those maps, by some pooling factor, by constructing a new, smaller image of only the maximum (brightest) values in a given kernel area.
###Code
# visualize the output of the pooling layer
viz_layer(pooled_layer)
###Output
_____no_output_____
###Markdown
Pooling LayerIn this notebook, we add and visualize the output of a maxpooling layer in a CNN. Import the image
###Code
import cv2
import matplotlib.pyplot as plt
%matplotlib inline
# TODO: Feel free to try out your own images here by changing img_path
# to a file path to another image on your computer!
img_path = 'images/udacity_sdc.png'
# load color image
bgr_img = cv2.imread(img_path)
# convert to grayscale
gray_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2GRAY)
# normalize, rescale entries to lie in [0,1]
gray_img = gray_img.astype("float32")/255
# plot image
plt.imshow(gray_img, cmap='gray')
plt.show()
###Output
_____no_output_____
###Markdown
Define and visualize the filters
###Code
import numpy as np
## TODO: Feel free to modify the numbers here, to try out another filter!
filter_vals = np.array([[-1, -1, 1, 1], [-1, -1, 1, 1], [-1, -1, 1, 1], [-1, -1, 1, 1]])
print('Filter shape: ', filter_vals.shape)
# Defining four different filters,
# all of which are linear combinations of the `filter_vals` defined above
# define four filters
filter_1 = filter_vals
filter_2 = -filter_1
filter_3 = filter_1.T
filter_4 = -filter_3
filters = np.array([filter_1, filter_2, filter_3, filter_4])
# For an example, print out the values of filter 1
print('Filter 1: \n', filter_1)
###Output
Filter 1:
[[-1 -1 1 1]
[-1 -1 1 1]
[-1 -1 1 1]
[-1 -1 1 1]]
###Markdown
Define convolutional and pooling layersInitialize a convolutional layer so that it contains all your created filters. Then add a maxpooling layer, [documented here](http://pytorch.org/docs/master/_modules/torch/nn/modules/pooling.html), with a kernel size of (4x4) so you can really see that the image resolution has been reduced after this step!
###Code
import torch
import torch.nn as nn
import torch.nn.functional as F
# define a neural network with a convolutional layer with four filters
# AND a pooling layer of size (4, 4)
class Net(nn.Module):
def __init__(self, weight):
super(Net, self).__init__()
# initializes the weights of the convolutional layer to be the weights of the 4 defined filters
k_height, k_width = weight.shape[2:]
# assumes there are 4 grayscale filters
self.conv = nn.Conv2d(1, 4, kernel_size=(k_height, k_width), bias=False)
self.conv.weight = torch.nn.Parameter(weight)
# define a pooling layer
self.pool = nn.MaxPool2d(4, 4)
def forward(self, x):
# calculates the output of a convolutional layer
# pre- and post-activation
conv_x = self.conv(x)
activated_x = F.relu(conv_x)
# applies pooling layer
pooled_x = self.pool(activated_x)
# returns all layers
return conv_x, activated_x, pooled_x
# instantiate the model and set the weights
weight = torch.from_numpy(filters).unsqueeze(1).type(torch.FloatTensor)
model = Net(weight)
# print out the layer in the network
print(model)
###Output
Net(
(conv): Conv2d(1, 4, kernel_size=(4, 4), stride=(1, 1), bias=False)
(pool): MaxPool2d(kernel_size=4, stride=4, padding=0, dilation=1, ceil_mode=False)
)
###Markdown
Visualize the output of each filterFirst, we'll define a helper function, `viz_layer` that takes in a specific layer and number of filters (optional argument), and displays the output of that layer once an image has been passed through.
###Code
# helper function for visualizing the output of a given layer
# default number of filters is 4
def viz_layer(layer, n_filters= 4):
fig = plt.figure(figsize=(20, 20))
for i in range(n_filters):
ax = fig.add_subplot(1, n_filters, i+1, xticks=[], yticks=[])
# grab layer outputs
ax.imshow(np.squeeze(layer[0,i].data.numpy()), cmap='gray')
ax.set_title('Output %s' % str(i+1))
###Output
_____no_output_____
###Markdown
Let's look at the output of a convolutional layer after a ReLu activation function is applied.
###Code
# plot original image
plt.imshow(gray_img, cmap='gray')
# visualize all filters
fig = plt.figure(figsize=(12, 6))
fig.subplots_adjust(left=0, right=1.5, bottom=0.8, top=1, hspace=0.05, wspace=0.05)
for i in range(4):
ax = fig.add_subplot(1, 4, i+1, xticks=[], yticks=[])
ax.imshow(filters[i], cmap='gray')
ax.set_title('Filter %s' % str(i+1))
# convert the image into an input Tensor
gray_img_tensor = torch.from_numpy(gray_img).unsqueeze(0).unsqueeze(1)
# get all the layers
conv_layer, activated_layer, pooled_layer = model(gray_img_tensor)
# visualize the output of the activated conv layer
viz_layer(activated_layer)
###Output
_____no_output_____
###Markdown
Visualize the output of the pooling layerThen, take a look at the output of a pooling layer. The pooling layer takes as input the feature maps pictured above and reduces the dimensionality of those maps, by some pooling factor, by constructing a new, smaller image of only the maximum (brightest) values in a given kernel area.
###Code
# visualize the output of the pooling layer
viz_layer(pooled_layer)
###Output
_____no_output_____
###Markdown
Pooling LayerIn this notebook, we add and visualize the output of a maxpooling layer in a CNN. Import the image
###Code
import cv2
import matplotlib.pyplot as plt
%matplotlib inline
# TODO: Feel free to try out your own images here by changing img_path
# to a file path to another image on your computer!
img_path = 'images/udacity_sdc.png'
# load color image
bgr_img = cv2.imread(img_path)
# convert to grayscale
gray_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2GRAY)
# normalize, rescale entries to lie in [0,1]
gray_img = gray_img.astype("float32")/255
# plot image
plt.imshow(gray_img, cmap='gray')
plt.show()
###Output
_____no_output_____
###Markdown
Define and visualize the filters
###Code
import numpy as np
## TODO: Feel free to modify the numbers here, to try out another filter!
filter_vals = np.array([[-1, -1, 1, 1], [-1, -1, 1, 1], [-1, -1, 1, 1], [-1, -1, 1, 1]])
print('Filter shape: ', filter_vals.shape)
# Defining four different filters,
# all of which are linear combinations of the `filter_vals` defined above
# define four filters
filter_1 = filter_vals
filter_2 = -filter_1
filter_3 = filter_1.T
filter_4 = -filter_3
filters = np.array([filter_1, filter_2, filter_3, filter_4])
# For an example, print out the values of filter 1
print('Filter 1: \n', filter_1)
###Output
Filter 1:
[[-1 -1 1 1]
[-1 -1 1 1]
[-1 -1 1 1]
[-1 -1 1 1]]
###Markdown
Define convolutional and pooling layersInitialize a convolutional layer so that it contains all your created filters. Then add a maxpooling layer, [documented here](http://pytorch.org/docs/master/_modules/torch/nn/modules/pooling.html), with a kernel size of (4x4) so you can really see that the image resolution has been reduced after this step!
###Code
import torch
import torch.nn as nn
import torch.nn.functional as F
# define a neural network with a convolutional layer with four filters
# AND a pooling layer of size (4, 4)
class Net(nn.Module):
def __init__(self, weight):
super(Net, self).__init__()
# initializes the weights of the convolutional layer to be the weights of the 4 defined filters
k_height, k_width = weight.shape[2:]
# assumes there are 4 grayscale filters
self.conv = nn.Conv2d(1, 4, kernel_size=(k_height, k_width), bias=False)
self.conv.weight = torch.nn.Parameter(weight)
# define a pooling layer
self.pool = nn.MaxPool2d(4, 4)
def forward(self, x):
# calculates the output of a convolutional layer
# pre- and post-activation
conv_x = self.conv(x)
activated_x = F.relu(conv_x)
# applies pooling layer
pooled_x = self.pool(activated_x)
# returns all layers
return conv_x, activated_x, pooled_x
# instantiate the model and set the weights
weight = torch.from_numpy(filters).unsqueeze(1).type(torch.FloatTensor)
model = Net(weight)
# print out the layer in the network
print(model)
###Output
Net(
(conv): Conv2d(1, 4, kernel_size=(4, 4), stride=(1, 1), bias=False)
(pool): MaxPool2d(kernel_size=4, stride=4, padding=0, dilation=1, ceil_mode=False)
)
###Markdown
Visualize the output of each filterFirst, we'll define a helper function, `viz_layer` that takes in a specific layer and number of filters (optional argument), and displays the output of that layer once an image has been passed through.
###Code
# helper function for visualizing the output of a given layer
# default number of filters is 4
def viz_layer(layer, n_filters= 4):
fig = plt.figure(figsize=(20, 20))
for i in range(n_filters):
ax = fig.add_subplot(1, n_filters, i+1, xticks=[], yticks=[])
# grab layer outputs
ax.imshow(np.squeeze(layer[0,i].data.numpy()), cmap='gray')
ax.set_title('Output %s' % str(i+1))
###Output
_____no_output_____
###Markdown
Let's look at the output of a convolutional layer after a ReLu activation function is applied.
###Code
# plot original image
plt.imshow(gray_img, cmap='gray')
# visualize all filters
fig = plt.figure(figsize=(12, 6))
fig.subplots_adjust(left=0, right=1.5, bottom=0.8, top=1, hspace=0.05, wspace=0.05)
for i in range(4):
ax = fig.add_subplot(1, 4, i+1, xticks=[], yticks=[])
ax.imshow(filters[i], cmap='gray')
ax.set_title('Filter %s' % str(i+1))
# convert the image into an input Tensor
gray_img_tensor = torch.from_numpy(gray_img).unsqueeze(0).unsqueeze(1)
# get all the layers
conv_layer, activated_layer, pooled_layer = model(gray_img_tensor)
# visualize the output of the activated conv layer
viz_layer(activated_layer)
###Output
_____no_output_____
###Markdown
Visualize the output of the pooling layerThen, take a look at the output of a pooling layer. The pooling layer takes as input the feature maps pictured above and reduces the dimensionality of those maps, by some pooling factor, by constructing a new, smaller image of only the maximum (brightest) values in a given kernel area.
###Code
# visualize the output of the pooling layer
viz_layer(pooled_layer)
###Output
_____no_output_____
###Markdown
Define convolutional and pooling layersInitialize a convolutional layer so that it contains all your created filters. Then add a maxpooling layer, [documented here](http://pytorch.org/docs/master/_modules/torch/nn/modules/pooling.html), with a kernel size of (4x4) so you can really see that the image resolution has been reduced after this step!
###Code
import torch
import torch.nn as nn
import torch.nn.functional as F
# define a neural network with a convolutional layer with four filters
# AND a pooling layer of size (4, 4)
class Net(nn.Module):
def __init__(self, weight):
super(Net, self).__init__()
# initializes the weights of the convolutional layer to be the weights of the 4 defined filters
k_height, k_width = weight.shape[2:]
# assumes there are 4 grayscale filters
self.conv = nn.Conv2d(1, 4, kernel_size=(k_height, k_width), bias=False)
self.conv.weight = torch.nn.Parameter(weight)
# define a pooling layer
self.pool = nn.MaxPool2d(4, 4)
def forward(self, x):
# calculates the output of a convolutional layer
# pre- and post-activation
conv_x = self.conv(x)
activated_x = F.relu(conv_x)
# applies pooling layer
pooled_x = self.pool(activated_x)
# returns all layers
return conv_x, activated_x, pooled_x
# instantiate the model and set the weights
weight = torch.from_numpy(filters).unsqueeze(1).type(torch.FloatTensor)
model = Net(weight)
# print out the layer in the network
print(model)
###Output
Net(
(conv): Conv2d(1, 4, kernel_size=(4, 4), stride=(1, 1), bias=False)
(pool): MaxPool2d(kernel_size=4, stride=4, padding=0, dilation=1, ceil_mode=False)
)
###Markdown
Visualize the output of each filterFirst, we'll define a helper function, `viz_layer` that takes in a specific layer and number of filters (optional argument), and displays the output of that layer once an image has been passed through.
###Code
# helper function for visualizing the output of a given layer
# default number of filters is 4
def viz_layer(layer, n_filters= 4):
fig = plt.figure(figsize=(20, 20))
for i in range(n_filters):
ax = fig.add_subplot(1, n_filters, i+1, xticks=[], yticks=[])
# grab layer outputs
ax.imshow(np.squeeze(layer[0,i].data.numpy()), cmap='gray')
ax.set_title('Output %s' % str(i+1))
###Output
_____no_output_____
###Markdown
Let's look at the output of a convolutional layer after a ReLu activation function is applied.
###Code
# plot original image
plt.imshow(gray_img, cmap='gray')
# visualize all filters
fig = plt.figure(figsize=(12, 6))
fig.subplots_adjust(left=0, right=1.5, bottom=0.8, top=1, hspace=0.05, wspace=0.05)
for i in range(4):
ax = fig.add_subplot(1, 4, i+1, xticks=[], yticks=[])
ax.imshow(filters[i], cmap='gray')
ax.set_title('Filter %s' % str(i+1))
# convert the image into an input Tensor
gray_img_tensor = torch.from_numpy(gray_img).unsqueeze(0).unsqueeze(1)
# get all the layers
conv_layer, activated_layer, pooled_layer = model(gray_img_tensor)
# visualize the output of the activated conv layer
viz_layer(activated_layer)
###Output
_____no_output_____
###Markdown
Visualize the output of the pooling layerThen, take a look at the output of a pooling layer. The pooling layer takes as input the feature maps pictured above and reduces the dimensionality of those maps, by some pooling factor, by constructing a new, smaller image of only the maximum (brightest) values in a given kernel area.
###Code
# visualize the output of the pooling layer
viz_layer(pooled_layer)
###Output
_____no_output_____
###Markdown
Pooling LayerIn this notebook, we add and visualize the output of a maxpooling layer in a CNN. Import the image
###Code
import cv2
import matplotlib.pyplot as plt
%matplotlib inline
# TODO: Feel free to try out your own images here by changing img_path
# to a file path to another image on your computer!
img_path = 'images/udacity_sdc.png'
# load color image
bgr_img = cv2.imread(img_path)
# convert to grayscale
gray_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2GRAY)
# normalize, rescale entries to lie in [0,1]
gray_img = gray_img.astype("float32")/255
# plot image
plt.imshow(gray_img, cmap='gray')
plt.show()
###Output
_____no_output_____
###Markdown
Define and visualize the filters
###Code
import numpy as np
## TODO: Feel free to modify the numbers here, to try out another filter!
filter_vals = np.array([[-1, -1, 1, 1], [-1, -1, 1, 1], [-1, -1, 1, 1], [-1, -1, 1, 1]])
print('Filter shape: ', filter_vals.shape)
# Defining four different filters,
# all of which are linear combinations of the `filter_vals` defined above
# define four filters
filter_1 = filter_vals
filter_2 = -filter_1
filter_3 = filter_1.T
filter_4 = -filter_3
filters = np.array([filter_1, filter_2, filter_3, filter_4])
# For an example, print out the values of filter 1
print('Filter 1: \n', filter_1)
###Output
Filter 1:
[[-1 -1 1 1]
[-1 -1 1 1]
[-1 -1 1 1]
[-1 -1 1 1]]
###Markdown
Define convolutional and pooling layersInitialize a convolutional layer so that it contains all your created filters. Then add a maxpooling layer, [documented here](http://pytorch.org/docs/master/_modules/torch/nn/modules/pooling.html), with a kernel size of (4x4) so you can really see that the image resolution has been reduced after this step!
###Code
import torch
import torch.nn as nn
import torch.nn.functional as F
# define a neural network with a convolutional layer with four filters
# AND a pooling layer of size (4, 4)
class Net(nn.Module):
def __init__(self, weight):
super(Net, self).__init__()
# initializes the weights of the convolutional layer to be the weights of the 4 defined filters
k_height, k_width = weight.shape[2:]
# assumes there are 4 grayscale filters
self.conv = nn.Conv2d(1, 4, kernel_size=(k_height, k_width), bias=False)
self.conv.weight = torch.nn.Parameter(weight)
# define a pooling layer
self.pool = nn.MaxPool2d(4, 4)
def forward(self, x):
# calculates the output of a convolutional layer
# pre- and post-activation
conv_x = self.conv(x)
activated_x = F.relu(conv_x)
# applies pooling layer
pooled_x = self.pool(activated_x)
# returns all layers
return conv_x, activated_x, pooled_x
# instantiate the model and set the weights
weight = torch.from_numpy(filters).unsqueeze(1).type(torch.FloatTensor)
model = Net(weight)
# print out the layer in the network
print(model)
###Output
_____no_output_____
###Markdown
Visualize the output of each filterFirst, we'll define a helper function, `viz_layer` that takes in a specific layer and number of filters (optional argument), and displays the output of that layer once an image has been passed through.
###Code
# helper function for visualizing the output of a given layer
# default number of filters is 4
def viz_layer(layer, n_filters= 4):
fig = plt.figure(figsize=(20, 20))
for i in range(n_filters):
ax = fig.add_subplot(1, n_filters, i+1, xticks=[], yticks=[])
# grab layer outputs
ax.imshow(np.squeeze(layer[0,i].data.numpy()), cmap='gray')
ax.set_title('Output %s' % str(i+1))
###Output
_____no_output_____
###Markdown
Let's look at the output of a convolutional layer after a ReLu activation function is applied.
###Code
# plot original image
plt.imshow(gray_img, cmap='gray')
# visualize all filters
fig = plt.figure(figsize=(12, 6))
fig.subplots_adjust(left=0, right=1.5, bottom=0.8, top=1, hspace=0.05, wspace=0.05)
for i in range(4):
ax = fig.add_subplot(1, 4, i+1, xticks=[], yticks=[])
ax.imshow(filters[i], cmap='gray')
ax.set_title('Filter %s' % str(i+1))
# convert the image into an input Tensor
gray_img_tensor = torch.from_numpy(gray_img).unsqueeze(0).unsqueeze(1)
# get all the layers
conv_layer, activated_layer, pooled_layer = model(gray_img_tensor)
# visualize the output of the activated conv layer
viz_layer(activated_layer)
###Output
_____no_output_____
###Markdown
Visualize the output of the pooling layerThen, take a look at the output of a pooling layer. The pooling layer takes as input the feature maps pictured above and reduces the dimensionality of those maps, by some pooling factor, by constructing a new, smaller image of only the maximum (brightest) values in a given kernel area.
###Code
# visualize the output of the pooling layer
viz_layer(pooled_layer)
###Output
_____no_output_____
###Markdown
Pooling LayerIn this notebook, we add and visualize the output of a maxpooling layer in a CNN. Import the image
###Code
import cv2
import matplotlib.pyplot as plt
%matplotlib inline
# TODO: Feel free to try out your own images here by changing img_path
# to a file path to another image on your computer!
img_path = 'images/udacity_sdc.png'
# load color image
bgr_img = cv2.imread(img_path)
# convert to grayscale
gray_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2GRAY)
# normalize, rescale entries to lie in [0,1]
gray_img = gray_img.astype("float32")/255
# plot image
plt.imshow(gray_img, cmap='gray')
plt.show()
###Output
_____no_output_____
###Markdown
Define and visualize the filters
###Code
import numpy as np
## TODO: Feel free to modify the numbers here, to try out another filter!
filter_vals = np.array([[-1, -1, 1, 1], [-1, -1, 1, 1], [-1, -1, 1, 1], [-1, -1, 1, 1]])
print('Filter shape: ', filter_vals.shape)
# Defining four different filters,
# all of which are linear combinations of the `filter_vals` defined above
# define four filters
filter_1 = filter_vals
filter_2 = -filter_1
filter_3 = filter_1.T
filter_4 = -filter_3
filters = np.array([filter_1, filter_2, filter_3, filter_4])
# For an example, print out the values of filter 1
print('Filter 1: \n', filter_1)
###Output
Filter 1:
[[-1 -1 1 1]
[-1 -1 1 1]
[-1 -1 1 1]
[-1 -1 1 1]]
###Markdown
Define convolutional and pooling layersInitialize a convolutional layer so that it contains all your created filters. Then add a maxpooling layer, [documented here](http://pytorch.org/docs/master/_modules/torch/nn/modules/pooling.html), with a kernel size of (4x4) so you can really see that the image resolution has been reduced after this step!
###Code
import torch
import torch.nn as nn
import torch.nn.functional as F
# define a neural network with a convolutional layer with four filters
# AND a pooling layer of size (4, 4)
class Net(nn.Module):
def __init__(self, weight):
super(Net, self).__init__()
# initializes the weights of the convolutional layer to be the weights of the 4 defined filters
k_height, k_width = weight.shape[2:]
# assumes there are 4 grayscale filters
self.conv = nn.Conv2d(1, 4, kernel_size=(k_height, k_width), bias=False)
self.conv.weight = torch.nn.Parameter(weight)
# define a pooling layer
self.pool = nn.MaxPool2d(4, 4)
def forward(self, x):
# calculates the output of a convolutional layer
# pre- and post-activation
conv_x = self.conv(x)
activated_x = F.relu(conv_x)
# applies pooling layer
pooled_x = self.pool(activated_x)
# returns all layers
return conv_x, activated_x, pooled_x
# instantiate the model and set the weights
weight = torch.from_numpy(filters).unsqueeze(1).type(torch.FloatTensor)
model = Net(weight)
# print out the layer in the network
print(model)
###Output
Net(
(conv): Conv2d(1, 4, kernel_size=(4, 4), stride=(1, 1), bias=False)
(pool): MaxPool2d(kernel_size=4, stride=4, padding=0, dilation=1, ceil_mode=False)
)
###Markdown
Visualize the output of each filterFirst, we'll define a helper function, `viz_layer` that takes in a specific layer and number of filters (optional argument), and displays the output of that layer once an image has been passed through.
###Code
# helper function for visualizing the output of a given layer
# default number of filters is 4
def viz_layer(layer, n_filters= 4):
fig = plt.figure(figsize=(20, 20))
for i in range(n_filters):
ax = fig.add_subplot(1, n_filters, i+1, xticks=[], yticks=[])
# grab layer outputs
ax.imshow(np.squeeze(layer[0,i].data.numpy()), cmap='gray')
ax.set_title('Output %s' % str(i+1))
###Output
_____no_output_____
###Markdown
Let's look at the output of a convolutional layer after a ReLu activation function is applied.
###Code
# plot original image
plt.imshow(gray_img, cmap='gray')
# visualize all filters
fig = plt.figure(figsize=(12, 6))
fig.subplots_adjust(left=0, right=1.5, bottom=0.8, top=1, hspace=0.05, wspace=0.05)
for i in range(4):
ax = fig.add_subplot(1, 4, i+1, xticks=[], yticks=[])
ax.imshow(filters[i], cmap='gray')
ax.set_title('Filter %s' % str(i+1))
# convert the image into an input Tensor
gray_img_tensor = torch.from_numpy(gray_img).unsqueeze(0).unsqueeze(1)
# get all the layers
conv_layer, activated_layer, pooled_layer = model(gray_img_tensor)
# visualize the output of the activated conv layer
viz_layer(activated_layer)
###Output
_____no_output_____
###Markdown
Visualize the output of the pooling layerThen, take a look at the output of a pooling layer. The pooling layer takes as input the feature maps pictured above and reduces the dimensionality of those maps, by some pooling factor, by constructing a new, smaller image of only the maximum (brightest) values in a given kernel area.
###Code
# visualize the output of the pooling layer
viz_layer(pooled_layer)
###Output
_____no_output_____
###Markdown
Pooling LayerIn this notebook, we add and visualize the output of a maxpooling layer in a CNN. Import the image
###Code
import cv2
import matplotlib.pyplot as plt
%matplotlib inline
# TODO: Feel free to try out your own images here by changing img_path
# to a file path to another image on your computer!
img_path = 'images/udacity_sdc.png'
# load color image
bgr_img = cv2.imread(img_path)
# convert to grayscale
gray_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2GRAY)
# normalize, rescale entries to lie in [0,1]
gray_img = gray_img.astype("float32")/255
# plot image
plt.imshow(gray_img, cmap='gray')
plt.show()
###Output
_____no_output_____
###Markdown
Define and visualize the filters
###Code
import numpy as np
## TODO: Feel free to modify the numbers here, to try out another filter!
filter_vals = np.array([[-1, -1, 1, 1], [-1, -1, 1, 1], [-1, -1, 1, 1], [-1, -1, 1, 1]])
print('Filter shape: ', filter_vals.shape)
# Defining four different filters,
# all of which are linear combinations of the `filter_vals` defined above
# define four filters
filter_1 = filter_vals
filter_2 = -filter_1
filter_3 = filter_1.T
filter_4 = -filter_3
filters = np.array([filter_1, filter_2, filter_3, filter_4])
# For an example, print out the values of filter 1
print('Filter 1: \n', filter_1)
###Output
Filter 1:
[[-1 -1 1 1]
[-1 -1 1 1]
[-1 -1 1 1]
[-1 -1 1 1]]
###Markdown
Define convolutional and pooling layersInitialize a convolutional layer so that it contains all your created filters. Then add a maxpooling layer, [documented here](http://pytorch.org/docs/master/_modules/torch/nn/modules/pooling.html), with a kernel size of (4x4) so you can really see that the image resolution has been reduced after this step!
###Code
import torch
import torch.nn as nn
import torch.nn.functional as F
# define a neural network with a convolutional layer with four filters
# AND a pooling layer of size (4, 4)
class Net(nn.Module):
def __init__(self, filter_weights):
super(Net, self).__init__()
# initializes the weights of the convolutional layer to be the weights of the 4 defined filters
k_height, k_width = filter_weights.shape[2:]
# assumes there are 4 grayscale filters
self.conv = nn.Conv2d(1, 4, kernel_size=(k_height, k_width), bias=False)
self.conv.weight = torch.nn.Parameter(filter_weights)
# define a pooling layer
self.pool = nn.MaxPool2d(4, 4)
def forward(self, x):
# calculates the output of a convolutional layer
# pre- and post-activation
conv_x = self.conv(x)
activated_x = F.relu(conv_x)
# applies pooling layer
pooled_x = self.pool(activated_x)
# returns all layers
return conv_x, activated_x, pooled_x
# instantiate the model and set the weights
filter_weights = torch.from_numpy(filters).unsqueeze(1).type(torch.FloatTensor)
model = Net(filter_weights)
# print out the layer in the network
print(model)
###Output
Net(
(conv): Conv2d(1, 4, kernel_size=(4, 4), stride=(1, 1), bias=False)
(pool): MaxPool2d(kernel_size=4, stride=4, padding=0, dilation=1, ceil_mode=False)
)
###Markdown
Visualize the output of each filterFirst, we'll define a helper function, `viz_layer` that takes in a specific layer and number of filters (optional argument), and displays the output of that layer once an image has been passed through.
###Code
# helper function for visualizing the output of a given layer
# default number of filters is 4
def viz_layer(layer, n_filters= 4):
fig = plt.figure(figsize=(20, 20))
for i in range(n_filters):
ax = fig.add_subplot(1, n_filters, i+1, xticks=[], yticks=[])
# grab layer outputs
ax.imshow(np.squeeze(layer[0,i].data.numpy()), cmap='gray')
ax.set_title('Output %s' % str(i+1))
###Output
_____no_output_____
###Markdown
Let's look at the output of a convolutional layer after a ReLu activation function is applied.
###Code
# plot original image
plt.imshow(gray_img, cmap='gray')
# visualize all filters
fig = plt.figure(figsize=(12, 6))
fig.subplots_adjust(left=0, right=1.5, bottom=0.8, top=1, hspace=0.05, wspace=0.05)
for i in range(4):
ax = fig.add_subplot(1, 4, i+1, xticks=[], yticks=[])
ax.imshow(filters[i], cmap='gray')
ax.set_title('Filter %s' % str(i+1))
# convert the image into an input Tensor
gray_img_tensor = torch.from_numpy(gray_img).unsqueeze(0).unsqueeze(1)
# get all the layers
conv_layer, activated_layer, pooled_layer = model(gray_img_tensor)
# visualize the output of the activated conv layer
viz_layer(activated_layer)
###Output
_____no_output_____
###Markdown
Visualize the output of the pooling layerThen, take a look at the output of a pooling layer. The pooling layer takes as input the feature maps pictured above and reduces the dimensionality of those maps, by some pooling factor, by constructing a new, smaller image of only the maximum (brightest) values in a given kernel area.
###Code
# visualize the output of the pooling layer
viz_layer(pooled_layer)
###Output
_____no_output_____
###Markdown
Pooling LayerIn this notebook, we add and visualize the output of a maxpooling layer in a CNN. Import the image
###Code
import cv2
import matplotlib.pyplot as plt
%matplotlib inline
# TODO: Feel free to try out your own images here by changing img_path
# to a file path to another image on your computer!
img_path = 'images/udacity_sdc.png'
# load color image
bgr_img = cv2.imread(img_path)
# convert to grayscale
gray_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2GRAY)
# normalize, rescale entries to lie in [0,1]
gray_img = gray_img.astype("float32")/255
# plot image
plt.imshow(gray_img, cmap='gray')
plt.show()
###Output
_____no_output_____
###Markdown
Define and visualize the filters
###Code
import numpy as np
## TODO: Feel free to modify the numbers here, to try out another filter!
filter_vals = np.array([[-1, -1, 1, 1], [-1, -1, 1, 1], [-1, -1, 1, 1], [-1, -1, 1, 1]])
print('Filter shape: ', filter_vals.shape)
# Defining four different filters,
# all of which are linear combinations of the `filter_vals` defined above
# define four filters
filter_1 = filter_vals
filter_2 = -filter_1
filter_3 = filter_1.T
filter_4 = -filter_3
filters = np.array([filter_1, filter_2, filter_3, filter_4])
# For an example, print out the values of filter 1
print('Filter 1: \n', filter_1)
###Output
_____no_output_____
###Markdown
Define convolutional and pooling layersInitialize a convolutional layer so that it contains all your created filters. Then add a maxpooling layer, [documented here](http://pytorch.org/docs/master/_modules/torch/nn/modules/pooling.html), with a kernel size of (4x4) so you can really see that the image resolution has been reduced after this step!
###Code
import torch
import torch.nn as nn
import torch.nn.functional as F
# define a neural network with a convolutional layer with four filters
# AND a pooling layer of size (4, 4)
class Net(nn.Module):
def __init__(self, weight):
super(Net, self).__init__()
# initializes the weights of the convolutional layer to be the weights of the 4 defined filters
k_height, k_width = weight.shape[2:]
# assumes there are 4 grayscale filters
self.conv = nn.Conv2d(1, 4, kernel_size=(k_height, k_width), bias=False)
self.conv.weight = torch.nn.Parameter(weight)
# define a pooling layer
self.pool = nn.MaxPool2d(4, 4)
def forward(self, x):
# calculates the output of a convolutional layer
# pre- and post-activation
conv_x = self.conv(x)
activated_x = F.relu(conv_x)
# applies pooling layer
pooled_x = self.pool(activated_x)
# returns all layers
return conv_x, activated_x, pooled_x
# instantiate the model and set the weights
weight = torch.from_numpy(filters).unsqueeze(1).type(torch.FloatTensor)
model = Net(weight)
# print out the layer in the network
print(model)
###Output
_____no_output_____
###Markdown
Visualize the output of each filterFirst, we'll define a helper function, `viz_layer` that takes in a specific layer and number of filters (optional argument), and displays the output of that layer once an image has been passed through.
###Code
# helper function for visualizing the output of a given layer
# default number of filters is 4
def viz_layer(layer, n_filters= 4):
fig = plt.figure(figsize=(20, 20))
for i in range(n_filters):
ax = fig.add_subplot(1, n_filters, i+1, xticks=[], yticks=[])
# grab layer outputs
ax.imshow(np.squeeze(layer[0,i].data.numpy()), cmap='gray')
ax.set_title('Output %s' % str(i+1))
###Output
_____no_output_____
###Markdown
Let's look at the output of a convolutional layer after a ReLu activation function is applied.
###Code
# plot original image
plt.imshow(gray_img, cmap='gray')
# visualize all filters
fig = plt.figure(figsize=(12, 6))
fig.subplots_adjust(left=0, right=1.5, bottom=0.8, top=1, hspace=0.05, wspace=0.05)
for i in range(4):
ax = fig.add_subplot(1, 4, i+1, xticks=[], yticks=[])
ax.imshow(filters[i], cmap='gray')
ax.set_title('Filter %s' % str(i+1))
# convert the image into an input Tensor
gray_img_tensor = torch.from_numpy(gray_img).unsqueeze(0).unsqueeze(1)
# get all the layers
conv_layer, activated_layer, pooled_layer = model(gray_img_tensor)
# visualize the output of the activated conv layer
viz_layer(activated_layer)
###Output
_____no_output_____
###Markdown
Visualize the output of the pooling layerThen, take a look at the output of a pooling layer. The pooling layer takes as input the feature maps pictured above and reduces the dimensionality of those maps, by some pooling factor, by constructing a new, smaller image of only the maximum (brightest) values in a given kernel area.
###Code
# visualize the output of the pooling layer
viz_layer(pooled_layer)
###Output
_____no_output_____
###Markdown
Pooling LayerIn this notebook, we add and visualize the output of a maxpooling layer in a CNN. Import the image
###Code
import cv2
import matplotlib.pyplot as plt
%matplotlib inline
# TODO: Feel free to try out your own images here by changing img_path
# to a file path to another image on your computer!
img_path = 'images/udacity_sdc.png'
# load color image
bgr_img = cv2.imread(img_path)
# convert to grayscale
gray_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2GRAY)
# normalize, rescale entries to lie in [0,1]
gray_img = gray_img.astype("float32")/255
# plot image
plt.imshow(gray_img, cmap='gray')
plt.show()
###Output
_____no_output_____
###Markdown
Define and visualize the filters
###Code
import numpy as np
## TODO: Feel free to modify the numbers here, to try out another filter!
filter_vals = np.array([[-1, -1, 1, 1], [-1, -1, 1, 1], [-1, -1, 1, 1], [-1, -1, 1, 1]])
print('Filter shape: ', filter_vals.shape)
# Defining four different filters,
# all of which are linear combinations of the `filter_vals` defined above
# define four filters
filter_1 = filter_vals
filter_2 = -filter_1
filter_3 = filter_1.T
filter_4 = -filter_3
filters = np.array([filter_1, filter_2, filter_3, filter_4])
# For an example, print out the values of filter 1
print('Filter 1: \n', filter_1)
###Output
Filter 1:
[[-1 -1 1 1]
[-1 -1 1 1]
[-1 -1 1 1]
[-1 -1 1 1]]
###Markdown
Define convolutional and pooling layersInitialize a convolutional layer so that it contains all your created filters. Then add a maxpooling layer, [documented here](http://pytorch.org/docs/master/_modules/torch/nn/modules/pooling.html), with a kernel size of (4x4) so you can really see that the image resolution has been reduced after this step!
###Code
import torch
import torch.nn as nn
import torch.nn.functional as F
# define a neural network with a convolutional layer with four filters
# AND a pooling layer of size (4, 4)
class Net(nn.Module):
def __init__(self, weight):
super(Net, self).__init__()
# initializes the weights of the convolutional layer to be the weights of the 4 defined filters
k_height, k_width = weight.shape[2:]
# assumes there are 4 grayscale filters
self.conv = nn.Conv2d(1, 4, kernel_size=(k_height, k_width), bias=False)
self.conv.weight = torch.nn.Parameter(weight)
# define a pooling layer
self.pool = nn.MaxPool2d(4, 4)
def forward(self, x):
# calculates the output of a convolutional layer
# pre- and post-activation
conv_x = self.conv(x)
activated_x = F.relu(conv_x)
# applies pooling layer
pooled_x = self.pool(activated_x)
# returns all layers
return conv_x, activated_x, pooled_x
# instantiate the model and set the weights
weight = torch.from_numpy(filters).unsqueeze(1).type(torch.FloatTensor)
model = Net(weight)
# print out the layer in the network
print(model)
###Output
Net(
(conv): Conv2d(1, 4, kernel_size=(4, 4), stride=(1, 1), bias=False)
(pool): MaxPool2d(kernel_size=4, stride=4, padding=0, dilation=1, ceil_mode=False)
)
###Markdown
Visualize the output of each filterFirst, we'll define a helper function, `viz_layer` that takes in a specific layer and number of filters (optional argument), and displays the output of that layer once an image has been passed through.
###Code
# helper function for visualizing the output of a given layer
# default number of filters is 4
def viz_layer(layer, n_filters= 4):
fig = plt.figure(figsize=(20, 20))
for i in range(n_filters):
ax = fig.add_subplot(1, n_filters, i+1, xticks=[], yticks=[])
# grab layer outputs
ax.imshow(np.squeeze(layer[0,i].data.numpy()), cmap='gray')
ax.set_title('Output %s' % str(i+1))
###Output
_____no_output_____
###Markdown
Let's look at the output of a convolutional layer after a ReLu activation function is applied.
###Code
# plot original image
plt.imshow(gray_img, cmap='gray')
# visualize all filters
fig = plt.figure(figsize=(12, 6))
fig.subplots_adjust(left=0, right=1.5, bottom=0.8, top=1, hspace=0.05, wspace=0.05)
for i in range(4):
ax = fig.add_subplot(1, 4, i+1, xticks=[], yticks=[])
ax.imshow(filters[i], cmap='gray')
ax.set_title('Filter %s' % str(i+1))
# convert the image into an input Tensor
gray_img_tensor = torch.from_numpy(gray_img).unsqueeze(0).unsqueeze(1)
# get all the layers
conv_layer, activated_layer, pooled_layer = model(gray_img_tensor)
# visualize the output of the activated conv layer
viz_layer(activated_layer)
###Output
_____no_output_____
###Markdown
Visualize the output of the pooling layerThen, take a look at the output of a pooling layer. The pooling layer takes as input the feature maps pictured above and reduces the dimensionality of those maps, by some pooling factor, by constructing a new, smaller image of only the maximum (brightest) values in a given kernel area.
###Code
# visualize the output of the pooling layer
viz_layer(pooled_layer)
###Output
_____no_output_____
###Markdown
Pooling LayerIn this notebook, we add and visualize the output of a maxpooling layer in a CNN. Import the image
###Code
import cv2
import matplotlib.pyplot as plt
%matplotlib inline
# TODO: Feel free to try out your own images here by changing img_path
# to a file path to another image on your computer!
img_path = 'images/udacity_sdc.png'
# load color image
bgr_img = cv2.imread(img_path)
# convert to grayscale
gray_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2GRAY)
# normalize, rescale entries to lie in [0,1]
gray_img = gray_img.astype("float32")/255
# plot image
plt.imshow(gray_img, cmap='gray')
plt.show()
###Output
_____no_output_____
###Markdown
Define and visualize the filters
###Code
import numpy as np
## TODO: Feel free to modify the numbers here, to try out another filter!
filter_vals = np.array([[-1, -1, 1, 1], [-1, -1, 1, 1], [-1, -1, 1, 1], [-1, -1, 1, 1]])
print('Filter shape: ', filter_vals.shape)
# Defining four different filters,
# all of which are linear combinations of the `filter_vals` defined above
# define four filters
filter_1 = filter_vals
filter_2 = -filter_1
filter_3 = filter_1.T
filter_4 = -filter_3
filters = np.array([filter_1, filter_2, filter_3, filter_4])
# For an example, print out the values of filter 1
print('Filter 1: \n', filter_1)
###Output
_____no_output_____
###Markdown
Define convolutional and pooling layersInitialize a convolutional layer so that it contains all your created filters. Then add a maxpooling layer, [documented here](http://pytorch.org/docs/master/_modules/torch/nn/modules/pooling.html), with a kernel size of (4x4) so you can really see that the image resolution has been reduced after this step!
###Code
import torch
import torch.nn as nn
import torch.nn.functional as F
# define a neural network with a convolutional layer with four filters
# AND a pooling layer of size (4, 4)
class Net(nn.Module):
def __init__(self, weight):
super(Net, self).__init__()
# initializes the weights of the convolutional layer to be the weights of the 4 defined filters
k_height, k_width = weight.shape[2:]
# assumes there are 4 grayscale filters
self.conv = nn.Conv2d(1, 4, kernel_size=(k_height, k_width), bias=False)
self.conv.weight = torch.nn.Parameter(weight)
# define a pooling layer
self.pool = nn.MaxPool2d(4, 4)
def forward(self, x):
# calculates the output of a convolutional layer
# pre- and post-activation
conv_x = self.conv(x)
activated_x = F.relu(conv_x)
# applies pooling layer
pooled_x = self.pool(activated_x)
# returns all layers
return conv_x, activated_x, pooled_x
# instantiate the model and set the weights
weight = torch.from_numpy(filters).unsqueeze(1).type(torch.FloatTensor)
model = Net(weight)
# print out the layer in the network
print(model)
###Output
_____no_output_____
###Markdown
Visualize the output of each filterFirst, we'll define a helper function, `viz_layer` that takes in a specific layer and number of filters (optional argument), and displays the output of that layer once an image has been passed through.
###Code
# helper function for visualizing the output of a given layer
# default number of filters is 4
def viz_layer(layer, n_filters= 4):
fig = plt.figure(figsize=(20, 20))
for i in range(n_filters):
ax = fig.add_subplot(1, n_filters, i+1, xticks=[], yticks=[])
# grab layer outputs
ax.imshow(np.squeeze(layer[0,i].data.numpy()), cmap='gray')
ax.set_title('Output %s' % str(i+1))
###Output
_____no_output_____
###Markdown
Let's look at the output of a convolutional layer after a ReLu activation function is applied.
###Code
# plot original image
plt.imshow(gray_img, cmap='gray')
# visualize all filters
fig = plt.figure(figsize=(12, 6))
fig.subplots_adjust(left=0, right=1.5, bottom=0.8, top=1, hspace=0.05, wspace=0.05)
for i in range(4):
ax = fig.add_subplot(1, 4, i+1, xticks=[], yticks=[])
ax.imshow(filters[i], cmap='gray')
ax.set_title('Filter %s' % str(i+1))
# convert the image into an input Tensor
gray_img_tensor = torch.from_numpy(gray_img).unsqueeze(0).unsqueeze(1)
# get all the layers
conv_layer, activated_layer, pooled_layer = model(gray_img_tensor)
# visualize the output of the activated conv layer
viz_layer(activated_layer)
###Output
_____no_output_____
###Markdown
Visualize the output of the pooling layerThen, take a look at the output of a pooling layer. The pooling layer takes as input the feature maps pictured above and reduces the dimensionality of those maps, by some pooling factor, by constructing a new, smaller image of only the maximum (brightest) values in a given kernel area.
###Code
# visualize the output of the pooling layer
viz_layer(pooled_layer)
###Output
_____no_output_____
###Markdown
Pooling LayerIn this notebook, we add and visualize the output of a maxpooling layer in a CNN. Import the image
###Code
import cv2
import matplotlib.pyplot as plt
%matplotlib inline
# TODO: Feel free to try out your own images here by changing img_path
# to a file path to another image on your computer!
img_path = 'images/udacity_sdc.png'
# load color image
bgr_img = cv2.imread(img_path)
# convert to grayscale
gray_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2GRAY)
# normalize, rescale entries to lie in [0,1]
gray_img = gray_img.astype("float32")/255
# plot image
plt.imshow(gray_img, cmap='gray')
plt.show()
###Output
_____no_output_____
###Markdown
Define and visualize the filters
###Code
import numpy as np
## TODO: Feel free to modify the numbers here, to try out another filter!
filter_vals = np.array([[-1, -1, 1, 1], [-1, -1, 1, 1], [-1, -1, 1, 1], [-1, -1, 1, 1]])
print('Filter shape: ', filter_vals.shape)
# Defining four different filters,
# all of which are linear combinations of the `filter_vals` defined above
# define four filters
filter_1 = filter_vals
filter_2 = -filter_1
filter_3 = filter_1.T
filter_4 = -filter_3
filters = np.array([filter_1, filter_2, filter_3, filter_4])
# For an example, print out the values of filter 1
print('Filter 1: \n', filter_1)
###Output
Filter 1:
[[-1 -1 1 1]
[-1 -1 1 1]
[-1 -1 1 1]
[-1 -1 1 1]]
###Markdown
Define convolutional and pooling layersInitialize a convolutional layer so that it contains all your created filters. Then add a maxpooling layer, [documented here](http://pytorch.org/docs/master/_modules/torch/nn/modules/pooling.html), with a kernel size of (4x4) so you can really see that the image resolution has been reduced after this step!
###Code
import torch
import torch.nn as nn
import torch.nn.functional as F
# define a neural network with a convolutional layer with four filters
# AND a pooling layer of size (4, 4)
class Net(nn.Module):
def __init__(self, weight):
super(Net, self).__init__()
# initializes the weights of the convolutional layer to be the weights of the 4 defined filters
k_height, k_width = weight.shape[2:]
# assumes there are 4 grayscale filters
self.conv = nn.Conv2d(1, 4, kernel_size=(k_height, k_width), bias=False)
self.conv.weight = torch.nn.Parameter(weight)
# define a pooling layer
self.pool = nn.MaxPool2d(4, 4)
def forward(self, x):
# calculates the output of a convolutional layer
# pre- and post-activation
conv_x = self.conv(x)
activated_x = F.relu(conv_x)
# applies pooling layer
pooled_x = self.pool(activated_x)
# returns all layers
return conv_x, activated_x, pooled_x
# instantiate the model and set the weights
weight = torch.from_numpy(filters).unsqueeze(1).type(torch.FloatTensor)
model = Net(weight)
# print out the layer in the network
print(model)
###Output
Net(
(conv): Conv2d(1, 4, kernel_size=(4, 4), stride=(1, 1), bias=False)
(pool): MaxPool2d(kernel_size=4, stride=4, padding=0, dilation=1, ceil_mode=False)
)
###Markdown
Visualize the output of each filterFirst, we'll define a helper function, `viz_layer` that takes in a specific layer and number of filters (optional argument), and displays the output of that layer once an image has been passed through.
###Code
# helper function for visualizing the output of a given layer
# default number of filters is 4
def viz_layer(layer, n_filters= 4):
fig = plt.figure(figsize=(20, 20))
for i in range(n_filters):
ax = fig.add_subplot(1, n_filters, i+1, xticks=[], yticks=[])
# grab layer outputs
ax.imshow(np.squeeze(layer[0,i].data.numpy()), cmap='gray')
ax.set_title('Output %s' % str(i+1))
###Output
_____no_output_____
###Markdown
Let's look at the output of a convolutional layer after a ReLu activation function is applied.
###Code
# plot original image
plt.imshow(gray_img, cmap='gray')
# visualize all filters
fig = plt.figure(figsize=(12, 6))
fig.subplots_adjust(left=0, right=1.5, bottom=0.8, top=1, hspace=0.05, wspace=0.05)
for i in range(4):
ax = fig.add_subplot(1, 4, i+1, xticks=[], yticks=[])
ax.imshow(filters[i], cmap='gray')
ax.set_title('Filter %s' % str(i+1))
# convert the image into an input Tensor
gray_img_tensor = torch.from_numpy(gray_img).unsqueeze(0).unsqueeze(1)
# get all the layers
conv_layer, activated_layer, pooled_layer = model(gray_img_tensor)
# visualize the output of the activated conv layer
viz_layer(activated_layer)
###Output
_____no_output_____
###Markdown
Visualize the output of the pooling layerThen, take a look at the output of a pooling layer. The pooling layer takes as input the feature maps pictured above and reduces the dimensionality of those maps, by some pooling factor, by constructing a new, smaller image of only the maximum (brightest) values in a given kernel area.
###Code
# visualize the output of the pooling layer
viz_layer(pooled_layer)
###Output
_____no_output_____
###Markdown
Pooling LayerIn this notebook, we add and visualize the output of a maxpooling layer in a CNN. Import the image
###Code
import cv2
import matplotlib.pyplot as plt
%matplotlib inline
# TODO: Feel free to try out your own images here by changing img_path
# to a file path to another image on your computer!
img_path = 'images/udacity_sdc.png'
# load color image
bgr_img = cv2.imread(img_path)
# convert to grayscale
gray_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2GRAY)
# normalize, rescale entries to lie in [0,1]
gray_img = gray_img.astype("float32")/255
# plot image
plt.imshow(gray_img, cmap='gray')
plt.show()
###Output
_____no_output_____
###Markdown
Define and visualize the filters
###Code
import numpy as np
## TODO: Feel free to modify the numbers here, to try out another filter!
filter_vals = np.array([[-1, -1, 1, 1], [-1, -1, 1, 1], [-1, -1, 1, 1], [-1, -1, 1, 1]])
print('Filter shape: ', filter_vals.shape)
# Defining four different filters,
# all of which are linear combinations of the `filter_vals` defined above
# define four filters
filter_1 = filter_vals
filter_2 = -filter_1
filter_3 = filter_1.T
filter_4 = -filter_3
filters = np.array([filter_1, filter_2, filter_3, filter_4])
# For an example, print out the values of filter 1
print('Filter 1: \n', filter_1)
###Output
Filter 1:
[[-1 -1 1 1]
[-1 -1 1 1]
[-1 -1 1 1]
[-1 -1 1 1]]
###Markdown
Define convolutional and pooling layersInitialize a convolutional layer so that it contains all your created filters. Then add a maxpooling layer, [documented here](http://pytorch.org/docs/master/_modules/torch/nn/modules/pooling.html), with a kernel size of (4x4) so you can really see that the image resolution has been reduced after this step!
###Code
import torch
import torch.nn as nn
import torch.nn.functional as F
# define a neural network with a convolutional layer with four filters
# AND a pooling layer of size (4, 4)
class Net(nn.Module):
def __init__(self, weight):
super(Net, self).__init__()
# initializes the weights of the convolutional layer to be the weights of the 4 defined filters
k_height, k_width = weight.shape[2:]
# assumes there are 4 grayscale filters
self.conv = nn.Conv2d(1, 4, kernel_size=(k_height, k_width), bias=False)
self.conv.weight = torch.nn.Parameter(weight)
# define a pooling layer
self.pool = nn.MaxPool2d(4, 4)
def forward(self, x):
# calculates the output of a convolutional layer
# pre- and post-activation
conv_x = self.conv(x)
activated_x = F.relu(conv_x)
# applies pooling layer
pooled_x = self.pool(activated_x)
# returns all layers
return conv_x, activated_x, pooled_x
# instantiate the model and set the weights
weight = torch.from_numpy(filters).unsqueeze(1).type(torch.FloatTensor)
model = Net(weight)
# print out the layer in the network
print(model)
###Output
Net(
(conv): Conv2d(1, 4, kernel_size=(4, 4), stride=(1, 1), bias=False)
(pool): MaxPool2d(kernel_size=4, stride=4, padding=0, dilation=1, ceil_mode=False)
)
###Markdown
Visualize the output of each filterFirst, we'll define a helper function, `viz_layer` that takes in a specific layer and number of filters (optional argument), and displays the output of that layer once an image has been passed through.
###Code
# helper function for visualizing the output of a given layer
# default number of filters is 4
def viz_layer(layer, n_filters= 4):
fig = plt.figure(figsize=(20, 20))
for i in range(n_filters):
ax = fig.add_subplot(1, n_filters, i+1, xticks=[], yticks=[])
# grab layer outputs
ax.imshow(np.squeeze(layer[0,i].data.numpy()), cmap='gray')
ax.set_title('Output %s' % str(i+1))
###Output
_____no_output_____
###Markdown
Let's look at the output of a convolutional layer after a ReLu activation function is applied.
###Code
# plot original image
plt.imshow(gray_img, cmap='gray')
# visualize all filters
fig = plt.figure(figsize=(12, 6))
fig.subplots_adjust(left=0, right=1.5, bottom=0.8, top=1, hspace=0.05, wspace=0.05)
for i in range(4):
ax = fig.add_subplot(1, 4, i+1, xticks=[], yticks=[])
ax.imshow(filters[i], cmap='gray')
ax.set_title('Filter %s' % str(i+1))
# convert the image into an input Tensor
gray_img_tensor = torch.from_numpy(gray_img).unsqueeze(0).unsqueeze(1)
# get all the layers
conv_layer, activated_layer, pooled_layer = model(gray_img_tensor)
# visualize the output of the activated conv layer
viz_layer(activated_layer)
###Output
_____no_output_____
###Markdown
Visualize the output of the pooling layerThen, take a look at the output of a pooling layer. The pooling layer takes as input the feature maps pictured above and reduces the dimensionality of those maps, by some pooling factor, by constructing a new, smaller image of only the maximum (brightest) values in a given kernel area.
###Code
# visualize the output of the pooling layer
viz_layer(pooled_layer)
###Output
_____no_output_____
###Markdown
Pooling LayerIn this notebook, we add and visualize the output of a maxpooling layer in a CNN. Import the image
###Code
import cv2
import matplotlib.pyplot as plt
%matplotlib inline
# TODO: Feel free to try out your own images here by changing img_path
# to a file path to another image on your computer!
img_path = 'images/udacity_sdc.png'
# load color image
bgr_img = cv2.imread(img_path)
# convert to grayscale
gray_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2GRAY)
# normalize, rescale entries to lie in [0,1]
gray_img = gray_img.astype("float32")/255
# plot image
plt.imshow(gray_img, cmap='gray')
plt.show()
###Output
_____no_output_____
###Markdown
Define and visualize the filters
###Code
import numpy as np
## TODO: Feel free to modify the numbers here, to try out another filter!
filter_vals = np.array([[-1, -1, 1, 1], [-1, -1, 1, 1], [-1, -1, 1, 1], [-1, -1, 1, 1]])
print('Filter shape: ', filter_vals.shape)
# Defining four different filters,
# all of which are linear combinations of the `filter_vals` defined above
# define four filters
filter_1 = filter_vals
filter_2 = -filter_1
filter_3 = filter_1.T
filter_4 = -filter_3
filters = np.array([filter_1, filter_2, filter_3, filter_4])
# For an example, print out the values of filter 1
print('Filter 1: \n', filter_1)
###Output
Filter 1:
[[-1 -1 1 1]
[-1 -1 1 1]
[-1 -1 1 1]
[-1 -1 1 1]]
###Markdown
Define convolutional and pooling layersInitialize a convolutional layer so that it contains all your created filters. Then add a maxpooling layer, [documented here](http://pytorch.org/docs/master/_modules/torch/nn/modules/pooling.html), with a kernel size of (4x4) so you can really see that the image resolution has been reduced after this step!
###Code
import torch
import torch.nn as nn
import torch.nn.functional as F
# define a neural network with a convolutional layer with four filters
# AND a pooling layer of size (4, 4)
class Net(nn.Module):
def __init__(self, weight):
super(Net, self).__init__()
# initializes the weights of the convolutional layer to be the weights of the 4 defined filters
k_height, k_width = weight.shape[2:]
# assumes there are 4 grayscale filters
self.conv = nn.Conv2d(1, 4, kernel_size=(k_height, k_width), bias=False)
self.conv.weight = torch.nn.Parameter(weight)
# define a pooling layer
self.pool = nn.MaxPool2d(4, 4)
def forward(self, x):
# calculates the output of a convolutional layer
# pre- and post-activation
conv_x = self.conv(x)
activated_x = F.relu(conv_x)
# applies pooling layer
pooled_x = self.pool(activated_x)
# returns all layers
return conv_x, activated_x, pooled_x
# instantiate the model and set the weights
weight = torch.from_numpy(filters).unsqueeze(1).type(torch.FloatTensor)
model = Net(weight)
# print out the layer in the network
print(model)
###Output
Net(
(conv): Conv2d(1, 4, kernel_size=(4, 4), stride=(1, 1), bias=False)
(pool): MaxPool2d(kernel_size=4, stride=4, padding=0, dilation=1, ceil_mode=False)
)
###Markdown
Visualize the output of each filterFirst, we'll define a helper function, `viz_layer` that takes in a specific layer and number of filters (optional argument), and displays the output of that layer once an image has been passed through.
###Code
# helper function for visualizing the output of a given layer
# default number of filters is 4
def viz_layer(layer, n_filters= 4):
fig = plt.figure(figsize=(20, 20))
for i in range(n_filters):
ax = fig.add_subplot(1, n_filters, i+1, xticks=[], yticks=[])
# grab layer outputs
ax.imshow(np.squeeze(layer[0,i].data.numpy()), cmap='gray')
ax.set_title('Output %s' % str(i+1))
###Output
_____no_output_____
###Markdown
Let's look at the output of a convolutional layer after a ReLu activation function is applied.
###Code
# plot original image
plt.imshow(gray_img, cmap='gray')
# visualize all filters
fig = plt.figure(figsize=(12, 6))
fig.subplots_adjust(left=0, right=1.5, bottom=0.8, top=1, hspace=0.05, wspace=0.05)
for i in range(4):
ax = fig.add_subplot(1, 4, i+1, xticks=[], yticks=[])
ax.imshow(filters[i], cmap='gray')
ax.set_title('Filter %s' % str(i+1))
# convert the image into an input Tensor
gray_img_tensor = torch.from_numpy(gray_img).unsqueeze(0).unsqueeze(1)
# get all the layers
conv_layer, activated_layer, pooled_layer = model(gray_img_tensor)
# visualize the output of the activated conv layer
viz_layer(activated_layer)
###Output
_____no_output_____
###Markdown
Visualize the output of the pooling layerThen, take a look at the output of a pooling layer. The pooling layer takes as input the feature maps pictured above and reduces the dimensionality of those maps, by some pooling factor, by constructing a new, smaller image of only the maximum (brightest) values in a given kernel area.
###Code
# visualize the output of the pooling layer
viz_layer(pooled_layer)
###Output
_____no_output_____
###Markdown
Pooling LayerIn this notebook, we add and visualize the output of a maxpooling layer in a CNN. Import the image
###Code
import cv2
import matplotlib.pyplot as plt
%matplotlib inline
# TODO: Feel free to try out your own images here by changing img_path
# to a file path to another image on your computer!
img_path = 'images/udacity_sdc.png'
# load color image
bgr_img = cv2.imread(img_path)
# convert to grayscale
gray_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2GRAY)
# normalize, rescale entries to lie in [0,1]
gray_img = gray_img.astype("float32")/255
# plot image
plt.imshow(gray_img, cmap='gray')
plt.show()
###Output
_____no_output_____
###Markdown
Define and visualize the filters
###Code
import numpy as np
## TODO: Feel free to modify the numbers here, to try out another filter!
filter_vals = np.array([[-1, -1, 1, 1], [-1, -1, 1, 1], [-1, -1, 1, 1], [-1, -1, 1, 1]])
print('Filter shape: ', filter_vals.shape)
# Defining four different filters,
# all of which are linear combinations of the `filter_vals` defined above
# define four filters
filter_1 = filter_vals
filter_2 = -filter_1
filter_3 = filter_1.T
filter_4 = -filter_3
filters = np.array([filter_1, filter_2, filter_3, filter_4])
# For an example, print out the values of filter 1
print('Filter 1: \n', filter_1)
###Output
Filter 1:
[[-1 -1 1 1]
[-1 -1 1 1]
[-1 -1 1 1]
[-1 -1 1 1]]
###Markdown
Define convolutional and pooling layersInitialize a convolutional layer so that it contains all your created filters. Then add a maxpooling layer, [documented here](http://pytorch.org/docs/master/_modules/torch/nn/modules/pooling.html), with a kernel size of (4x4) so you can really see that the image resolution has been reduced after this step!
###Code
import torch
import torch.nn as nn
import torch.nn.functional as F
# define a neural network with a convolutional layer with four filters
# AND a pooling layer of size (4, 4)
class Net(nn.Module):
def __init__(self, weight):
super(Net, self).__init__()
# initializes the weights of the convolutional layer to be the weights of the 4 defined filters
k_height, k_width = weight.shape[2:]
# assumes there are 4 grayscale filters
self.conv = nn.Conv2d(1, 4, kernel_size=(k_height, k_width), bias=False)
self.conv.weight = torch.nn.Parameter(weight)
# define a pooling layer
self.pool = nn.MaxPool2d(4, 4)
def forward(self, x):
# calculates the output of a convolutional layer
# pre- and post-activation
conv_x = self.conv(x)
activated_x = F.relu(conv_x)
# applies pooling layer
pooled_x = self.pool(activated_x)
# returns all layers
return conv_x, activated_x, pooled_x
# instantiate the model and set the weights
weight = torch.from_numpy(filters).unsqueeze(1).type(torch.FloatTensor)
model = Net(weight)
# print out the layer in the network
print(model)
###Output
Net(
(conv): Conv2d(1, 4, kernel_size=(4, 4), stride=(1, 1), bias=False)
(pool): MaxPool2d(kernel_size=4, stride=4, padding=0, dilation=1, ceil_mode=False)
)
###Markdown
Visualize the output of each filterFirst, we'll define a helper function, `viz_layer` that takes in a specific layer and number of filters (optional argument), and displays the output of that layer once an image has been passed through.
###Code
# helper function for visualizing the output of a given layer
# default number of filters is 4
def viz_layer(layer, n_filters= 4):
fig = plt.figure(figsize=(20, 20))
for i in range(n_filters):
ax = fig.add_subplot(1, n_filters, i+1, xticks=[], yticks=[])
# grab layer outputs
ax.imshow(np.squeeze(layer[0,i].data.numpy()), cmap='gray')
ax.set_title('Output %s' % str(i+1))
###Output
_____no_output_____
###Markdown
Let's look at the output of a convolutional layer after a ReLu activation function is applied.
###Code
# plot original image
plt.imshow(gray_img, cmap='gray')
# visualize all filters
fig = plt.figure(figsize=(12, 6))
fig.subplots_adjust(left=0, right=1.5, bottom=0.8, top=1, hspace=0.05, wspace=0.05)
for i in range(4):
ax = fig.add_subplot(1, 4, i+1, xticks=[], yticks=[])
ax.imshow(filters[i], cmap='gray')
ax.set_title('Filter %s' % str(i+1))
# convert the image into an input Tensor
gray_img_tensor = torch.from_numpy(gray_img).unsqueeze(0).unsqueeze(1)
# get all the layers
conv_layer, activated_layer, pooled_layer = model(gray_img_tensor)
# visualize the output of the activated conv layer
viz_layer(activated_layer)
###Output
_____no_output_____
###Markdown
Visualize the output of the pooling layerThen, take a look at the output of a pooling layer. The pooling layer takes as input the feature maps pictured above and reduces the dimensionality of those maps, by some pooling factor, by constructing a new, smaller image of only the maximum (brightest) values in a given kernel area.
###Code
# visualize the output of the pooling layer
viz_layer(pooled_layer)
###Output
_____no_output_____
###Markdown
Pooling LayerIn this notebook, we add and visualize the output of a maxpooling layer in a CNN. Import the image
###Code
import cv2
import matplotlib.pyplot as plt
%matplotlib inline
# TODO: Feel free to try out your own images here by changing img_path
# to a file path to another image on your computer!
img_path = 'images/udacity_sdc.png'
# load color image
bgr_img = cv2.imread(img_path)
# convert to grayscale
gray_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2GRAY)
# normalize, rescale entries to lie in [0,1]
gray_img = gray_img.astype("float32")/255
# plot image
plt.imshow(gray_img, cmap='gray')
plt.show()
###Output
_____no_output_____
###Markdown
Define and visualize the filters
###Code
import numpy as np
## TODO: Feel free to modify the numbers here, to try out another filter!
filter_vals = np.array([[-1, -1, 1, 1], [-1, -1, 1, 1], [-1, -1, 1, 1], [-1, -1, 1, 1]])
print('Filter shape: ', filter_vals.shape)
# Defining four different filters,
# all of which are linear combinations of the `filter_vals` defined above
# define four filters
filter_1 = filter_vals
filter_2 = -filter_1
filter_3 = filter_1.T
filter_4 = -filter_3
filters = np.array([filter_1, filter_2, filter_3, filter_4])
# For an example, print out the values of filter 1
print('Filter 1: \n', filter_1)
###Output
Filter 1:
[[-1 -1 1 1]
[-1 -1 1 1]
[-1 -1 1 1]
[-1 -1 1 1]]
###Markdown
Define convolutional and pooling layersInitialize a convolutional layer so that it contains all your created filters. Then add a maxpooling layer, [documented here](http://pytorch.org/docs/master/_modules/torch/nn/modules/pooling.html), with a kernel size of (4x4) so you can really see that the image resolution has been reduced after this step!
###Code
import torch
import torch.nn as nn
import torch.nn.functional as F
# define a neural network with a convolutional layer with four filters
# AND a pooling layer of size (4, 4)
class Net(nn.Module):
def __init__(self, weight):
super(Net, self).__init__()
# initializes the weights of the convolutional layer to be the weights of the 4 defined filters
k_height, k_width = weight.shape[2:]
# assumes there are 4 grayscale filters
self.conv = nn.Conv2d(1, 4, kernel_size=(k_height, k_width), bias=False)
self.conv.weight = torch.nn.Parameter(weight)
# define a pooling layer
self.pool = nn.MaxPool2d(4, 4)
def forward(self, x):
# calculates the output of a convolutional layer
# pre- and post-activation
conv_x = self.conv(x)
activated_x = F.relu(conv_x)
# applies pooling layer
pooled_x = self.pool(activated_x)
# returns all layers
return conv_x, activated_x, pooled_x
# instantiate the model and set the weights
weight = torch.from_numpy(filters).unsqueeze(1).type(torch.FloatTensor)
model = Net(weight)
# print out the layer in the network
print(model)
###Output
Net(
(conv): Conv2d(1, 4, kernel_size=(4, 4), stride=(1, 1), bias=False)
(pool): MaxPool2d(kernel_size=4, stride=4, padding=0, dilation=1, ceil_mode=False)
)
###Markdown
Visualize the output of each filterFirst, we'll define a helper function, `viz_layer` that takes in a specific layer and number of filters (optional argument), and displays the output of that layer once an image has been passed through.
###Code
# helper function for visualizing the output of a given layer
# default number of filters is 4
def viz_layer(layer, n_filters= 4):
fig = plt.figure(figsize=(20, 20))
for i in range(n_filters):
ax = fig.add_subplot(1, n_filters, i+1, xticks=[], yticks=[])
# grab layer outputs
ax.imshow(np.squeeze(layer[0,i].data.numpy()), cmap='gray')
ax.set_title('Output %s' % str(i+1))
###Output
_____no_output_____
###Markdown
Let's look at the output of a convolutional layer after a ReLu activation function is applied.
###Code
# plot original image
plt.imshow(gray_img, cmap='gray')
# visualize all filters
fig = plt.figure(figsize=(12, 6))
fig.subplots_adjust(left=0, right=1.5, bottom=0.8, top=1, hspace=0.05, wspace=0.05)
for i in range(4):
ax = fig.add_subplot(1, 4, i+1, xticks=[], yticks=[])
ax.imshow(filters[i], cmap='gray')
ax.set_title('Filter %s' % str(i+1))
# convert the image into an input Tensor
gray_img_tensor = torch.from_numpy(gray_img).unsqueeze(0).unsqueeze(1)
# get all the layers
conv_layer, activated_layer, pooled_layer = model(gray_img_tensor)
# visualize the output of the activated conv layer
viz_layer(activated_layer)
###Output
_____no_output_____
###Markdown
Visualize the output of the pooling layerThen, take a look at the output of a pooling layer. The pooling layer takes as input the feature maps pictured above and reduces the dimensionality of those maps, by some pooling factor, by constructing a new, smaller image of only the maximum (brightest) values in a given kernel area.
###Code
# visualize the output of the pooling layer
viz_layer(pooled_layer)
###Output
_____no_output_____
###Markdown
Pooling LayerIn this notebook, we add and visualize the output of a maxpooling layer in a CNN. Import the image
###Code
import cv2
import matplotlib.pyplot as plt
%matplotlib inline
# TODO: Feel free to try out your own images here by changing img_path
# to a file path to another image on your computer!
img_path = 'images/udacity_sdc.png'
# load color image
bgr_img = cv2.imread(img_path)
# convert to grayscale
gray_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2GRAY)
# normalize, rescale entries to lie in [0,1]
gray_img = gray_img.astype("float32")/255
# plot image
plt.imshow(gray_img, cmap='gray')
plt.show()
###Output
_____no_output_____
###Markdown
Define and visualize the filters
###Code
import numpy as np
## TODO: Feel free to modify the numbers here, to try out another filter!
filter_vals = np.array([[-1, -1, 1, 1], [-1, -1, 1, 1], [-1, -1, 1, 1], [-1, -1, 1, 1]])
print('Filter shape: ', filter_vals.shape)
# Defining four different filters,
# all of which are linear combinations of the `filter_vals` defined above
# define four filters
filter_1 = filter_vals
filter_2 = -filter_1
filter_3 = filter_1.T
filter_4 = -filter_3
filters = np.array([filter_1, filter_2, filter_3, filter_4])
# For an example, print out the values of filter 1
print('Filter 1: \n', filter_1)
###Output
Filter 1:
[[-1 -1 1 1]
[-1 -1 1 1]
[-1 -1 1 1]
[-1 -1 1 1]]
###Markdown
Define convolutional and pooling layersInitialize a convolutional layer so that it contains all your created filters. Then add a maxpooling layer, [documented here](http://pytorch.org/docs/master/_modules/torch/nn/modules/pooling.html), with a kernel size of (4x4) so you can really see that the image resolution has been reduced after this step!
###Code
import torch
import torch.nn as nn
import torch.nn.functional as F
# define a neural network with a convolutional layer with four filters
# AND a pooling layer of size (4, 4)
class Net(nn.Module):
def __init__(self, weight):
super(Net, self).__init__()
# initializes the weights of the convolutional layer to be the weights of the 4 defined filters
k_height, k_width = weight.shape[2:]
# assumes there are 4 grayscale filters
self.conv = nn.Conv2d(1, 4, kernel_size=(k_height, k_width), bias=False)
self.conv.weight = torch.nn.Parameter(weight)
# define a pooling layer
self.pool = nn.MaxPool2d(4, 4)
def forward(self, x):
# calculates the output of a convolutional layer
# pre- and post-activation
conv_x = self.conv(x)
activated_x = F.relu(conv_x)
# applies pooling layer
pooled_x = self.pool(activated_x)
# returns all layers
return conv_x, activated_x, pooled_x
# instantiate the model and set the weights
weight = torch.from_numpy(filters).unsqueeze(1).type(torch.FloatTensor)
model = Net(weight)
# print out the layer in the network
print(model)
###Output
Net(
(conv): Conv2d(1, 4, kernel_size=(4, 4), stride=(1, 1), bias=False)
(pool): MaxPool2d(kernel_size=4, stride=4, padding=0, dilation=1, ceil_mode=False)
)
###Markdown
Pooling LayerIn this notebook, we add and visualize the output of a maxpooling layer in a CNN. Import the image
###Code
import cv2
import matplotlib.pyplot as plt
%matplotlib inline
# TODO: Feel free to try out your own images here by changing img_path
# to a file path to another image on your computer!
img_path = 'images/udacity_sdc.png'
# load color image
bgr_img = cv2.imread(img_path)
# convert to grayscale
gray_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2GRAY)
# normalize, rescale entries to lie in [0,1]
gray_img = gray_img.astype("float32")/255
# plot image
plt.imshow(gray_img, cmap='gray')
plt.show()
###Output
_____no_output_____
###Markdown
Define and visualize the filters
###Code
import numpy as np
## TODO: Feel free to modify the numbers here, to try out another filter!
filter_vals = np.array([[-1, -1, 1, 1], [-1, -1, 1, 1], [-1, -1, 1, 1], [-1, -1, 1, 1]])
print('Filter shape: ', filter_vals.shape)
# Defining four different filters,
# all of which are linear combinations of the `filter_vals` defined above
# define four filters
filter_1 = filter_vals
filter_2 = -filter_1
filter_3 = filter_1.T
filter_4 = -filter_3
filters = np.array([filter_1, filter_2, filter_3, filter_4])
# For an example, print out the values of filter 1
print('Filter 1: \n', filter_1)
###Output
Filter 1:
[[-1 -1 1 1]
[-1 -1 1 1]
[-1 -1 1 1]
[-1 -1 1 1]]
###Markdown
Pooling LayerIn this notebook, we add and visualize the output of a maxpooling layer in a CNN. Import the image
###Code
import cv2
import matplotlib.pyplot as plt
%matplotlib inline
# TODO: Feel free to try out your own images here by changing img_path
# to a file path to another image on your computer!
img_path = 'images/udacity_sdc.png'
# load color image
bgr_img = cv2.imread(img_path)
# convert to grayscale
gray_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2GRAY)
# normalize, rescale entries to lie in [0,1]
gray_img = gray_img.astype("float32")/255
# plot image
plt.imshow(gray_img, cmap='gray')
plt.show()
###Output
_____no_output_____
###Markdown
Define and visualize the filters
###Code
import numpy as np
## TODO: Feel free to modify the numbers here, to try out another filter!
filter_vals = np.array([[-1, -1, 1, 1], [-1, -1, 1, 1], [-1, -1, 1, 1], [-1, -1, 1, 1]])
print('Filter shape: ', filter_vals.shape)
# Defining four different filters,
# all of which are linear combinations of the `filter_vals` defined above
# define four filters
filter_1 = filter_vals
filter_2 = -filter_1
filter_3 = filter_1.T
filter_4 = -filter_3
filters = np.array([filter_1, filter_2, filter_3, filter_4])
# For an example, print out the values of filter 1
print('Filter 1: \n', filter_1)
###Output
Filter 1:
[[-1 -1 1 1]
[-1 -1 1 1]
[-1 -1 1 1]
[-1 -1 1 1]]
###Markdown
Define convolutional and pooling layersInitialize a convolutional layer so that it contains all your created filters. Then add a maxpooling layer, [documented here](http://pytorch.org/docs/master/_modules/torch/nn/modules/pooling.html), with a kernel size of (4x4) so you can really see that the image resolution has been reduced after this step!
###Code
import torch
import torch.nn as nn
import torch.nn.functional as F
# define a neural network with a convolutional layer with four filters
# AND a pooling layer of size (4, 4)
class Net(nn.Module):
def __init__(self, weight):
super(Net, self).__init__()
# initializes the weights of the convolutional layer to be the weights of the 4 defined filters
k_height, k_width = weight.shape[2:]
# assumes there are 4 grayscale filters
self.conv = nn.Conv2d(1, 4, kernel_size=(k_height, k_width), bias=False)
self.conv.weight = torch.nn.Parameter(weight)
# define a pooling layer
self.pool = nn.MaxPool2d(4, 4)
def forward(self, x):
# calculates the output of a convolutional layer
# pre- and post-activation
conv_x = self.conv(x)
activated_x = F.relu(conv_x)
# applies pooling layer
pooled_x = self.pool(activated_x)
# returns all layers
return conv_x, activated_x, pooled_x
# instantiate the model and set the weights
weight = torch.from_numpy(filters).unsqueeze(1).type(torch.FloatTensor)
model = Net(weight)
# print out the layer in the network
print(model)
###Output
Net(
(conv): Conv2d(1, 4, kernel_size=(4, 4), stride=(1, 1), bias=False)
(pool): MaxPool2d(kernel_size=4, stride=4, padding=0, dilation=1, ceil_mode=False)
)
###Markdown
Visualize the output of each filterFirst, we'll define a helper function, `viz_layer` that takes in a specific layer and number of filters (optional argument), and displays the output of that layer once an image has been passed through.
###Code
# helper function for visualizing the output of a given layer
# default number of filters is 4
def viz_layer(layer, n_filters= 4):
fig = plt.figure(figsize=(20, 20))
for i in range(n_filters):
ax = fig.add_subplot(1, n_filters, i+1, xticks=[], yticks=[])
# grab layer outputs
ax.imshow(np.squeeze(layer[0,i].data.numpy()), cmap='gray')
ax.set_title('Output %s' % str(i+1))
###Output
_____no_output_____
###Markdown
Let's look at the output of a convolutional layer after a ReLu activation function is applied.
###Code
# plot original image
plt.imshow(gray_img, cmap='gray')
# visualize all filters
fig = plt.figure(figsize=(12, 6))
fig.subplots_adjust(left=0, right=1.5, bottom=0.8, top=1, hspace=0.05, wspace=0.05)
for i in range(4):
ax = fig.add_subplot(1, 4, i+1, xticks=[], yticks=[])
ax.imshow(filters[i], cmap='gray')
ax.set_title('Filter %s' % str(i+1))
# convert the image into an input Tensor
gray_img_tensor = torch.from_numpy(gray_img).unsqueeze(0).unsqueeze(1)
# get all the layers
conv_layer, activated_layer, pooled_layer = model(gray_img_tensor)
# visualize the output of the activated conv layer
viz_layer(activated_layer)
###Output
_____no_output_____
###Markdown
Visualize the output of the pooling layerThen, take a look at the output of a pooling layer. The pooling layer takes as input the feature maps pictured above and reduces the dimensionality of those maps, by some pooling factor, by constructing a new, smaller image of only the maximum (brightest) values in a given kernel area.
###Code
# visualize the output of the pooling layer
viz_layer(pooled_layer)
###Output
_____no_output_____
###Markdown
Pooling LayerIn this notebook, we add and visualize the output of a maxpooling layer in a CNN. Import the image
###Code
import cv2
import matplotlib.pyplot as plt
%matplotlib inline
# %matplotlib notebook
# TODO: Feel free to try out your own images here by changing img_path
# to a file path to another image on your computer!
img_path = 'images/udacity_sdc.png'
# load color image
bgr_img = cv2.imread(img_path)
# convert to grayscale
gray_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2GRAY)
# normalize, rescale entries to lie in [0,1]
gray_img = gray_img.astype("float32")/255
# plot image
plt.imshow(gray_img, cmap='gray')
plt.show()
###Output
_____no_output_____
###Markdown
Define and visualize the filters
###Code
import numpy as np
## TODO: Feel free to modify the numbers here, to try out another filter!
filter_vals = np.array([[-1, -1, 1, 1], [-1, -1, 1, 1], [-1, -1, 1, 1], [-1, -1, 1, 1]])
print('Filter shape: ', filter_vals.shape)
# Defining four different filters,
# all of which are linear combinations of the `filter_vals` defined above
# define four filters
filter_1 = filter_vals
filter_2 = -filter_1
filter_3 = filter_1.T
filter_4 = -filter_3
filters = np.array([filter_1, filter_2, filter_3, filter_4])
# For an example, print out the values of filter 1
print('Filter 1: \n', filter_1)
###Output
Filter 1:
[[-1 -1 1 1]
[-1 -1 1 1]
[-1 -1 1 1]
[-1 -1 1 1]]
###Markdown
Define convolutional and pooling layersInitialize a convolutional layer so that it contains all your created filters. Then add a maxpooling layer, [documented here](http://pytorch.org/docs/master/_modules/torch/nn/modules/pooling.html), with a kernel size of (4x4) so you can really see that the image resolution has been reduced after this step!
###Code
import torch
import torch.nn as nn
import torch.nn.functional as F
# define a neural network with a convolutional layer with four filters
# AND a pooling layer of size (4, 4)
class Net(nn.Module):
def __init__(self, weight):
super(Net, self).__init__()
# initializes the weights of the convolutional layer to be the weights of the 4 defined filters
k_height, k_width = weight.shape[2:]
# assumes there are 4 grayscale filters
self.conv = nn.Conv2d(1, 4, kernel_size=(k_height, k_width), bias=False)
self.conv.weight = torch.nn.Parameter(weight)
# define a pooling layer
self.pool = nn.MaxPool2d(4, 4)
def forward(self, x):
# calculates the output of a convolutional layer
# pre- and post-activation
conv_x = self.conv(x)
activated_x = F.relu(conv_x)
# applies pooling layer
pooled_x = self.pool(activated_x)
# returns all layers
return conv_x, activated_x, pooled_x
# instantiate the model and set the weights
weight = torch.from_numpy(filters).unsqueeze(1).type(torch.FloatTensor)
model = Net(weight)
# print out the layer in the network
print(model)
###Output
Net(
(conv): Conv2d(1, 4, kernel_size=(4, 4), stride=(1, 1), bias=False)
(pool): MaxPool2d(kernel_size=4, stride=4, padding=0, dilation=1, ceil_mode=False)
)
###Markdown
Visualize the output of each filterFirst, we'll define a helper function, `viz_layer` that takes in a specific layer and number of filters (optional argument), and displays the output of that layer once an image has been passed through.
###Code
# helper function for visualizing the output of a given layer
# default number of filters is 4
def viz_layer(layer, n_filters= 4):
fig = plt.figure(figsize=(20, 20))
for i in range(n_filters):
ax = fig.add_subplot(1, n_filters, i+1, xticks=[], yticks=[])
# grab layer outputs
ax.imshow(np.squeeze(layer[0,i].data.numpy()), cmap='gray')
ax.set_title('Output %s' % str(i+1))
###Output
_____no_output_____
###Markdown
Let's look at the output of a convolutional layer after a ReLu activation function is applied.
###Code
# plot original image
plt.imshow(gray_img, cmap='gray')
# visualize all filters
fig = plt.figure(figsize=(12, 6))
fig.subplots_adjust(left=0, right=1.5, bottom=0.8, top=1, hspace=0.05, wspace=0.05)
for i in range(4):
ax = fig.add_subplot(1, 4, i+1, xticks=[], yticks=[])
ax.imshow(filters[i], cmap='gray')
ax.set_title('Filter %s' % str(i+1))
# convert the image into an input Tensor
gray_img_tensor = torch.from_numpy(gray_img).unsqueeze(0).unsqueeze(1)
# get all the layers
conv_layer, activated_layer, pooled_layer = model(gray_img_tensor)
# visualize the output of the activated conv layer
viz_layer(activated_layer)
###Output
_____no_output_____
###Markdown
Visualize the output of the pooling layerThen, take a look at the output of a pooling layer. The pooling layer takes as input the feature maps pictured above and reduces the dimensionality of those maps, by some pooling factor, by constructing a new, smaller image of only the maximum (brightest) values in a given kernel area.
###Code
# visualize the output of the pooling layer
viz_layer(pooled_layer)
###Output
_____no_output_____ |
notebooks/dataset-projections/64/mnist/mnist-64-ae-only-embedding.ipynb | ###Markdown
Choose GPU (this may not be needed on your computer)
###Code
%env CUDA_DEVICE_ORDER=PCI_BUS_ID
%env CUDA_VISIBLE_DEVICES=1
import tensorflow as tf
gpu_devices = tf.config.experimental.list_physical_devices('GPU')
if len(gpu_devices)>0:
tf.config.experimental.set_memory_growth(gpu_devices[0], True)
print(gpu_devices)
tf.keras.backend.clear_session()
###Output
[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]
###Markdown
load packages
###Code
from tfumap.umap import tfUMAP
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from tqdm.autonotebook import tqdm
import umap
import pandas as pd
###Output
_____no_output_____
###Markdown
Load dataset
###Code
from tensorflow.keras.datasets import mnist
# load dataset
(train_images, Y_train), (test_images, Y_test) = mnist.load_data()
X_train = (train_images/255.).astype('float32')
X_test = (test_images/255.).astype('float32')
X_train = X_train.reshape((len(X_train), np.product(np.shape(X_train)[1:])))
X_test = X_test.reshape((len(X_test), np.product(np.shape(X_test)[1:])))
# subset a validation set
n_valid = 10000
X_valid = X_train[-n_valid:]
Y_valid = Y_train[-n_valid:]
X_train = X_train[:-n_valid]
Y_train = Y_train[:-n_valid]
# flatten X
X_train_flat = X_train.reshape((len(X_train), np.product(np.shape(X_train)[1:])))
X_test_flat = X_test.reshape((len(X_test), np.product(np.shape(X_test)[1:])))
X_valid_flat= X_valid.reshape((len(X_valid), np.product(np.shape(X_valid)[1:])))
print(len(X_train), len(X_valid), len(X_test))
###Output
50000 10000 10000
###Markdown
define networks
###Code
dims = (28,28,1)
n_components = 64
encoder = tf.keras.Sequential([
tf.keras.layers.InputLayer(input_shape=dims),
tf.keras.layers.Conv2D(
filters=64, kernel_size=3, strides=(2, 2), activation="relu"
),
tf.keras.layers.Conv2D(
filters=128, kernel_size=3, strides=(2, 2), activation="relu"
),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(units=512, activation="relu"),
tf.keras.layers.Dense(units=n_components),
])
decoder = tf.keras.Sequential([
tf.keras.layers.InputLayer(input_shape=(n_components)),
tf.keras.layers.Dense(units=512, activation="relu"),
tf.keras.layers.Dense(units=7 * 7 * 256, activation="relu"),
tf.keras.layers.Reshape(target_shape=(7, 7, 256)),
tf.keras.layers.Conv2DTranspose(
filters=128, kernel_size=3, strides=(2, 2), padding="SAME", activation="relu"
),
tf.keras.layers.Conv2DTranspose(
filters=64, kernel_size=3, strides=(2, 2), padding="SAME", activation="relu"
),
tf.keras.layers.Conv2DTranspose(
filters=1, kernel_size=3, strides=(1, 1), padding="SAME", activation="sigmoid"
)
])
input_img = tf.keras.Input(dims)
output_img = decoder(encoder(input_img))
autoencoder = tf.keras.Model(input_img, output_img)
autoencoder.compile(optimizer='adam', loss='binary_crossentropy')
X_train = X_train.reshape([len(X_train)] + list(dims))
history = autoencoder.fit(X_train, X_train,
epochs=50,
batch_size=256,
shuffle=True,
#validation_data=(X_valid, X_valid)
)
z = encoder.predict(X_train)
###Output
_____no_output_____
###Markdown
Plot model output
###Code
fig, ax = plt.subplots( figsize=(8, 8))
sc = ax.scatter(
z[:, 0],
z[:, 1],
c=Y_train.astype(int)[:len(z)],
cmap="tab10",
s=0.1,
alpha=0.5,
rasterized=True,
)
ax.axis('equal')
ax.set_title("UMAP in Tensorflow embedding", fontsize=20)
plt.colorbar(sc, ax=ax);
###Output
_____no_output_____
###Markdown
View loss
###Code
from tfumap.umap import retrieve_tensors
import seaborn as sns
###Output
_____no_output_____
###Markdown
Save output
###Code
from tfumap.paths import ensure_dir, MODEL_DIR
output_dir = MODEL_DIR/'projections'/ 'mnist' / '64' / 'ae_only'
ensure_dir(output_dir)
encoder.save(output_dir / 'encoder')
decoder.save(output_dir / 'encoder')
#loss_df.to_pickle(output_dir / 'loss_df.pickle')
np.save(output_dir / 'z.npy', z)
###Output
_____no_output_____
###Markdown
compute metrics
###Code
X_test.shape
z_test = encoder.predict(X_test.reshape((len(X_test), 28,28,1)))
###Output
_____no_output_____
###Markdown
silhouette
###Code
from tfumap.silhouette import silhouette_score_block
ss, sil_samp = silhouette_score_block(z, Y_train, n_jobs = -1)
ss
ss_test, sil_samp_test = silhouette_score_block(z_test, Y_test, n_jobs = -1)
ss_test
fig, axs = plt.subplots(ncols = 2, figsize=(10, 5))
axs[0].scatter(z[:, 0], z[:, 1], s=0.1, alpha=0.5, c=sil_samp, cmap=plt.cm.viridis)
axs[1].scatter(z_test[:, 0], z_test[:, 1], s=1, alpha=0.5, c=sil_samp_test, cmap=plt.cm.viridis)
###Output
_____no_output_____
###Markdown
KNN
###Code
from sklearn.neighbors import KNeighborsClassifier
neigh5 = KNeighborsClassifier(n_neighbors=5)
neigh5.fit(z, Y_train)
score_5nn = neigh5.score(z_test, Y_test)
score_5nn
neigh1 = KNeighborsClassifier(n_neighbors=1)
neigh1.fit(z, Y_train)
score_1nn = neigh1.score(z_test, Y_test)
score_1nn
###Output
_____no_output_____
###Markdown
Trustworthiness
###Code
from sklearn.manifold import trustworthiness
tw = trustworthiness(X_train_flat[:10000], z[:10000])
tw_test = trustworthiness(X_test_flat[:10000], z_test[:10000])
tw, tw_test
###Output
_____no_output_____
###Markdown
Save output metrics
###Code
from tfumap.paths import ensure_dir, MODEL_DIR, DATA_DIR
dataset = 'mnist'
###Output
_____no_output_____
###Markdown
train
###Code
metrics_df = pd.DataFrame(
columns=[
"dataset",
"class_",
"dim",
"trustworthiness",
"silhouette_score",
"silhouette_samples",
]
)
metrics_df.loc[len(metrics_df)] = [dataset, 'ae_only', n_components, tw, ss, sil_samp]
metrics_df
save_loc = DATA_DIR / 'projection_metrics' / 'ae_only' / 'train' / str(n_components) / (dataset + '.pickle')
ensure_dir(save_loc)
metrics_df.to_pickle(save_loc)
###Output
_____no_output_____
###Markdown
test
###Code
metrics_df_test = pd.DataFrame(
columns=[
"dataset",
"class_",
"dim",
"trustworthiness",
"silhouette_score",
"silhouette_samples",
]
)
metrics_df_test.loc[len(metrics_df)] = [dataset, 'ae_only', n_components, tw_test, ss_test, sil_samp_test]
metrics_df_test
save_loc = DATA_DIR / 'projection_metrics' / 'ae' / 'test' / str(n_components) / (dataset + '.pickle')
ensure_dir(save_loc)
metrics_df.to_pickle(save_loc)
###Output
_____no_output_____
###Markdown
knn
###Code
nn_acc_df = pd.DataFrame(columns = ["method_","dimensions","dataset","1NN_acc","5NN_acc"])
nn_acc_df.loc[len(nn_acc_df)] = ['ae_only', n_components, dataset, score_1nn, score_5nn]
nn_acc_df
save_loc = DATA_DIR / 'knn_classifier' / 'ae_only' / 'train' / str(n_components) / (dataset + '.pickle')
ensure_dir(save_loc)
nn_acc_df.to_pickle(save_loc)
###Output
_____no_output_____
###Markdown
Reconstruction
###Code
from sklearn.metrics import mean_squared_error, mean_absolute_error, median_absolute_error, r2_score
X_recon = decoder.predict(encoder.predict(X_test.reshape((len(X_test), 28, 28, 1))))
X_real = X_test.reshape((len(X_test), 28, 28, 1))
x_real = X_test.reshape((len(X_test), np.product(np.shape(X_test)[1:])))
x_recon = X_recon.reshape((len(X_test), np.product(np.shape(X_test)[1:])))
reconstruction_acc_df = pd.DataFrame(
columns=["method_", "dimensions", "dataset", "MSE", "MAE", "MedAE", "R2"]
)
MSE = mean_squared_error(
x_real,
x_recon
)
MAE = mean_absolute_error(
x_real,
x_recon
)
MedAE = median_absolute_error(
x_real,
x_recon
)
R2 = r2_score(
x_real,
x_recon
)
reconstruction_acc_df.loc[len(reconstruction_acc_df)] = ['ae_only', n_components, dataset, MSE, MAE, MedAE, R2]
reconstruction_acc_df
save_loc = DATA_DIR / 'reconstruction_acc' / 'ae_only' / str(n_components) / (dataset + '.pickle')
ensure_dir(save_loc)
reconstruction_acc_df.to_pickle(save_loc)
save_loc
###Output
_____no_output_____
###Markdown
Compute clustering quality
###Code
from sklearn.cluster import KMeans
from sklearn.metrics import homogeneity_completeness_v_measure
def get_cluster_metrics(row, n_init=5):
# load cluster information
save_loc = DATA_DIR / 'clustering_metric_df'/ ('_'.join([row.class_, str(row.dim), row.dataset]) + '.pickle')
print(save_loc)
if save_loc.exists() and save_loc.is_file():
cluster_df = pd.read_pickle(save_loc)
return cluster_df
# make cluster metric dataframe
cluster_df = pd.DataFrame(
columns=[
"dataset",
"class_",
"dim",
"silhouette",
"homogeneity",
"completeness",
"v_measure",
"init_",
"n_clusters",
"model",
]
)
y = row.train_label
z = row.train_z
n_labels = len(np.unique(y))
for n_clusters in tqdm(np.arange(n_labels - int(n_labels / 2), n_labels + int(n_labels / 2)), leave=False, desc = 'n_clusters'):
for init_ in tqdm(range(n_init), leave=False, desc='init'):
kmeans = KMeans(n_clusters=n_clusters, random_state=init_).fit(z)
clustered_y = kmeans.labels_
homogeneity, completeness, v_measure = homogeneity_completeness_v_measure(
y, clustered_y
)
ss, _ = silhouette_score_block(z, clustered_y)
cluster_df.loc[len(cluster_df)] = [
row.dataset,
row.class_,
row.dim,
ss,
homogeneity,
completeness,
v_measure,
init_,
n_clusters,
kmeans,
]
# save cluster df in case this fails somewhere
ensure_dir(save_loc)
cluster_df.to_pickle(save_loc)
return cluster_df
projection_df = pd.DataFrame(columns = ['dataset', 'class_', 'train_z', 'train_label', 'dim'])
projection_df.loc[len(projection_df)] = [dataset, 'ae_only', z, Y_train, n_components]
projection_df
get_cluster_metrics(projection_df.iloc[0], n_init=5)
###Output
/mnt/cube/tsainbur/Projects/github_repos/umap_tf_networks/data/clustering_metric_df/ae_only_64_mnist.pickle
|
东南大学/D02机器学习与深度学习/Torch深度学习模型/01Torch编程模式-04Torch两种实现方式与框架结构说明.ipynb | ###Markdown
说明 - 到目前为止,使用Torch实际上是可以实现基本上所有的机器学习与神经网络(包括深度神经网络)的算法模型。神经网络的模型核心是: 1. 预测输出模型; - 函数表达; 2. 梯度计算模型; - 函数的导数表达 - 某些运算的导数在Torch中提供内置的实现(一般的运算的导数都是采用默认的内置实现:原理就是无穷小量下的近似极限) - 为了速度某些时候,需要自己使用Function接口中的backward函数重载实现(自定义导数函数,通过导数函数实现导数计算) 3. 梯度循环迭代; - 计算梯度; - 更新梯度; 多层全链接神经网络的实现 思路 - 下面利用Torch的最基本的封装来实现一个全链接神经网络,对鸢尾花进行分类。构建的神经网络结构为: - 4 -> 12 -> 6 -> 3 - 两个隐藏层; - 多分类:三类鸢尾花 - 实现思路: - 预测模型: - 采用默认求导实现 - 激活函数采用sigmoid(可以选择其他) - 损失模型: - 采用交叉熵损失函数(可以选择其他) 实现代码
###Code
import torch
import sklearn.datasets
from sklearn.model_selection import train_test_split
# 1. 准备数据 --------------------
data, target = sklearn.datasets.load_iris(return_X_y=True)
# data, _, target, _ = train_test_split(data, target, test_size=0.01, random_state=42)
x = torch.Tensor(data) # 全部150个样本,一共三类
y = torch.tensor(target) # 使用交叉熵需要LongTensor
# 2. 准备预测模型 ----------------
w1 = torch.randn(12, 4) # 前面输出特征,后面输入特征
b1 = torch.randn(12) # 输出特征
w1.requires_grad=True
b1.requires_grad=True
w2 = torch.randn(6, 12) # 前面输出特征,后面输入特征
b2 = torch.randn(6) # 输出特征
w2.requires_grad=True
b2.requires_grad=True
w3 = torch.randn(3, 6) # 前面输出特征,后面输入特征
b3 = torch.randn(3) # 输出特征
w3.requires_grad=True
b3.requires_grad=True
# #########################
def forward(input):
o1 = torch.nn.functional.linear(input, w1, b1)
# y1 = torch.sigmoid(o1) # torch.nn.functional.sigmoid已经不推荐使用
y1 = torch.nn.functional.relu(o1)
x1 = y1
# ----
o2= torch.nn.functional.linear(x1, w2, b2)
# y2 = torch.sigmoid(o2)
y2 = torch.nn.functional.relu(o2)
x2 = y2
# ----
o3= torch.nn.functional.linear(x2, w3, b3)
# y3 = torch.sigmoid(o3)
return o3
# 迭代轮数
epoch = 20000
# 学习率
learn_rate = 0.01
for n in range(epoch):
# 计算梯度
y_= forward(x)
loss = torch.nn.functional.cross_entropy(y_, y)
# 3.2 损失优化
loss.backward(retain_graph=True)
with torch.autograd.no_grad():
# 更新梯度
w1 -= learn_rate * w1.grad
b1 -= learn_rate * b1.grad
w2 -= learn_rate * w2.grad
b2 -= learn_rate * b2.grad
w3 -= learn_rate * w3.grad
b3 -= learn_rate * b3.grad
# 清空上一轮的梯度
w1.grad.zero_()
b1.grad.zero_()
w2.grad.zero_()
b2.grad.zero_()
w3.grad.zero_()
b3.grad.zero_()
if n % 1000 == 0:
print(F"损失值:{loss.detach().numpy():8.6f}, ", end="")
y_ = forward(x)
y_ = y_.log_softmax(dim=1) # 有使用交叉熵,其中做了一个log_softmax运算,所以这儿也作为概率使用,并调用了log_softmax运算
predict = y_.argmax(dim=1)
print(F"\t训练集测试准确度:{(predict == y).float().mean()*100:8.2f}%")
# # 4. 测试与评估------------------
# y_ = forward(x)
# y_ = y_.log_softmax(dim=1) # 有使用交叉熵,其中做了一个log_softmax运算,所以这儿也作为概率使用,并调用了log_softmax运算
# predict = y_.argmax(dim=1)
# print(predict)
# print((predict == y).float().mean())
###Output
损失值:24.356802, 训练集测试准确度: 33.33%
损失值:0.114688, 训练集测试准确度: 96.67%
损失值:0.065713, 训练集测试准确度: 97.33%
损失值:0.056335, 训练集测试准确度: 98.00%
损失值:0.051487, 训练集测试准确度: 98.67%
损失值:0.048233, 训练集测试准确度: 99.33%
损失值:0.045789, 训练集测试准确度: 99.33%
损失值:0.043852, 训练集测试准确度: 99.33%
损失值:0.042273, 训练集测试准确度: 98.67%
损失值:0.040961, 训练集测试准确度: 98.67%
损失值:0.039847, 训练集测试准确度: 98.67%
损失值:0.038890, 训练集测试准确度: 98.67%
损失值:0.038064, 训练集测试准确度: 98.67%
损失值:0.037350, 训练集测试准确度: 98.67%
损失值:0.036727, 训练集测试准确度: 98.67%
损失值:0.036185, 训练集测试准确度: 98.67%
损失值:0.035697, 训练集测试准确度: 98.67%
损失值:0.035270, 训练集测试准确度: 98.67%
损失值:0.034884, 训练集测试准确度: 98.67%
损失值:0.034534, 训练集测试准确度: 98.67%
###Markdown
说明 - 通过自动求导,实际上神经网络的实现变得很easy!但是这种重复与反复的工作本身是比较繁琐,Torch实际提供更好结构设计来实现。 - Model(容器) - Layer(操作) - 运算(函数表达式与内置求导) - 函数Function : 定制求导(`[forward]`与求导`[backward]`) - 这种结构从最底层到应用封装,基本上可以班组各种层次的需求。 - 问题: - 实际损失函数中的操作需要非常清楚,实际每个损失函数的操作在文档中都有描述。 - 正如我们上面中log_softmax运算一样。 卷积神经网络LeNet-5实现 - 实现LeNet-5卷积神经网络,并实现手写数字识别。 - 数据集采用手写数字数据集。 LeNet-5网络模型回顾 -  - 输入图像:INPUT:`N*32*32*1` - N是图像数量 - 1是图像深度 - `32*32`是图像高宽(有的数据集图像高宽是`28*28`,这个可以在卷积运算的时候,指定Padding即可)- 池化层:C1:`6@28*28` -> `6@14*14` - 采用`2*2`的最大池化可以降维一半。- 从卷积层(图像特征学习层)到全连接层(分类层):C5: `120@1*1` - 这一层在上图中表示不清楚,需要特别注意,因为这儿有一个数据格式转换的问题(在Torch中就是view的问题) 实现思路 - 首先确定训练参数;- 实现预测模型;- 实现损失模型;- 损失优化迭代训练; LeNet-5模型手工实现代码 MINIST数据集加载- 数据集稳健已经放在本文档所在目录下的datasets目录中: - 训练集: - train-images.idx3-ubyte - train-labels.idx1-ubyte - 测试集: - t10k-images.idx3-ubyte - t10k-labels.idx1-ubyte- 数据使用二进制保存,具体的格式在官网参考: - http://yann.lecun.com/exdb/mnist/ -  - 其他图片格式的数据也有,个人根据需要选择,这里选择二进制的数据集,读取速度快。
###Code
%matplotlib inline
import struct
import matplotlib.pyplot as plt
import numpy as np
# 读取图片
def load_image_fromfile(filename):
with open(filename, 'br') as fd:
# 读取图像的信息
header_buf = fd.read(16) # 16字节,4个int整数
# 按照字节解析头信息(具体参考python SL的struct帮助)
magic_, nums_, width_, height_ = struct.unpack('>iiii', header_buf) # 解析成四个整数:>表示大端字节序,i表示4字节整数
# 保存成ndarray对象
imgs_ = np.fromfile(fd, dtype=np.uint8)
imgs_ = imgs_.reshape(nums_, height_, width_)
return imgs_
# 读取标签
def load_label_fromfile(filename):
with open(filename, 'br') as fd:
header_buf = fd.read(8)
magic, nums = struct.unpack('>ii' ,header_buf)
labels_ = np.fromfile(fd, np.uint8)
return labels_
# 读取训练集
train_x = load_image_fromfile("datasets/train-images.idx3-ubyte")
train_y = load_label_fromfile("datasets/train-labels.idx1-ubyte")
train_x = train_x.astype(np.float64)
train_y = train_y.astype(np.int64)
# 读取测试集
test_x = load_image_fromfile("datasets/t10k-images.idx3-ubyte")
test_y = load_label_fromfile("datasets/t10k-labels.idx1-ubyte")
# 可视化验证读取的数据
ax1 = plt.subplot(121, title=F"训练集图像样本,标签:{train_y[0]}")
ax1.imshow(train_x[0], cmap="gray")
ax2 = plt.subplot(122, title=F"测试集图像样本,标签:{test_y[0]}")
ax2.imshow(test_x[0], cmap="gray")
plt.show()
###Output
_____no_output_____
###Markdown
- 提示: - 图像是`28*28`大小的图像,在第一层卷积处理的时候,需要padding=True。这样在第二层图像参数可以保持一致。 网络模型- 网络模型包含两个方面: 1. 预测模型 2. 损失模型(优化模型)- 损失模型选择:交叉熵 - 分类采用逻辑分布应该是不错的选择; - 交叉熵有两个封装函数,我们选择nll_loss函数,原因是概率转换不一定选择log_softmax: - cross_entropy:使用log_softmax作为输出的概率转换 - nll_loss:无
###Code
# 数据由上一个Code Cell完成
import torch
import math
# 1. 定义训练参数(3层卷积,2层全链接)
# 1.1. 1 @28 * 28 -> 6@28 * 28: 6@5*5 的卷积核 -> 6 @ 14 * 14(池化)
# 1.2. 6@14 * 14 -> 16@10 * 10: 16@5*5 的卷积核 -> 10 @ 5 * 5(池化)
# 1.3. 16@5 * 5 -> 120@1 * 1: 120@5*5 的卷积核 (没有池化)
# 1.4. 120 * 84
# 1.5. 84 * 10 (输出10个特征,分类0-9十个数字)
# 1.1
w_6_5_5 = torch.Tensor(6, 1, 5, 5) #(C_out, C_in, H_k, W_k)
b_6_5_5 = torch.Tensor(6) # (C_out) # 卷积核也可以不使用偏置项的
# 初始化(模仿Torch的源代码,自己采用正态分布,每次计算都是无穷大)
stdv = 1.0 / math.sqrt(1 * 5 * 5)
w_6_5_5.data.uniform_(-stdv, stdv)
b_6_5_5.data.uniform_(-stdv, stdv)
# print(w_6_5_5)
# 1.2
w_16_5_5 = torch.Tensor(16, 6, 5, 5)
b_16_5_5 = torch.Tensor(16)
# 初始化
stdv = 1.0 / math.sqrt(6 * 5 * 5)
w_16_5_5.data.uniform_(-stdv, stdv)
b_16_5_5.data.uniform_(-stdv, stdv)
# 1.3
w_120_5_5 = torch.Tensor(120, 16, 5, 5)
b_120_5_5 = torch.Tensor(120)
# 初始化
stdv = 1.0 / math.sqrt(16 * 5 * 5)
w_120_5_5.data.uniform_(-stdv, stdv)
b_120_5_5.data.uniform_(-stdv, stdv)
# 1.4
w_120_84 = torch.Tensor(84, 120)
b_120_84 = torch.Tensor(84)
# 初始化
stdv = 1.0 / math.sqrt(120) # 使用输入的特征数作为均匀分布的计算基数
w_120_84.data.uniform_(-stdv, stdv)
b_120_84.data.uniform_(-stdv, stdv)
# 1.5
w_84_10 =torch.Tensor(10, 84)
b_84_10 = torch.Tensor(10)
# 初始化
stdv = 1.0 / math.sqrt(84)
w_84_10.data.uniform_(-stdv, stdv)
b_84_10.data.uniform_(-stdv, stdv)
# print(w_16_5_5)
w_6_5_5.requires_grad = True
b_6_5_5.requires_grad = True
# 1.2
w_16_5_5.requires_grad = True
b_16_5_5.requires_grad = True
# 1.3
w_120_5_5.requires_grad = True
b_120_5_5.requires_grad = True
# 1.4
w_120_84.requires_grad = True
b_120_84.requires_grad = True
# 1.5
w_84_10.requires_grad = True
b_84_10.requires_grad = True
# 2. 定义forward模型(为了反复调用,封装成函数)
@torch.enable_grad()
def lenet5_forward(input):
"""
input的格式:4-D(N, 1, 28, 28):N表示每批次的样本数量
out的格式:与input相同4-D(N, 10):N表示每批次的样本数量
"""
# 1.1
o_c1 = torch.nn.functional.conv2d(input=input, weight=w_6_5_5, bias=b_6_5_5, padding = 2) # 原始图像28*28
o_a1 = torch.nn.functional.relu(o_c1)
o_p1 = torch.nn.functional.max_pool2d(input= o_a1, kernel_size=(2,2))
o1 = o_p1
# 1.2
o_c2 = torch.nn.functional.conv2d(input=o1, weight=w_16_5_5, bias=b_16_5_5)
o_a2 = torch.nn.functional.relu(o_c2)
o_p2 = torch.nn.functional.max_pool2d(input= o_a2, kernel_size=(2,2))
o2 = o_p2
# 1.3
o_c3 = torch.nn.functional.conv2d(input=o2, weight=w_120_5_5, bias=b_120_5_5)
o_a3 = torch.nn.functional.relu(o_c3)
# 无池化
# o3 = o_a3.squeeze() # 格式转换(把最后的1*1直接降维掉),转换为60000 * 120
o3 = o_a3.view(o_a3.shape[0], o_a3.shape[1])
# 1.4
o_c4 = torch.nn.functional.linear(o3, w_120_84, b_120_84)
o_a4 = torch.nn.functional.relu(o_c4)
o4 = o_a4
# 1.5
o_c5 = torch.nn.functional.linear(o4, w_84_10, b_84_10)
o_a5 = torch.log_softmax(o_c5, dim=1)
o5 = o_a5
return o5
# 3. 定义损失模型(封装成函数)
@torch.enable_grad()
def loss_model(out, target):
loss_ = torch.nn.functional.cross_entropy(out, target)
return loss_
# # 测试代码
# x = torch.Tensor(train_x).view(train_x.shape[0], 1, train_x.shape[1], train_x.shape[2]) # N,C,W,H
# y = torch.LongTensor(train_y)
# y_ = lenet5_forward(x)
# loss = loss_model(y_, y)
# print(loss)
###Output
_____no_output_____
###Markdown
迭代训练 - 由于训练样本60000个,所以训练采用随机梯度下降的方式,每次训练采用一部分样本,按照批次训练。
###Code
import torch
# 为了速度取1000个样本训练
# train_x = train_x[0:10]
# train_y = train_y[0:10]
# 训练集
x = torch.Tensor(train_x).view(train_x.shape[0], 1, train_x.shape[1], train_x.shape[2]) # N,C,W,H
y = torch.LongTensor(train_y)
# # 测试集
t_x = torch.Tensor(test_x).view(test_x.shape[0], 1, test_x.shape[1], test_x.shape[2]) # N,C,W,H
t_y = torch.LongTensor(test_y)
# 训练超参数
# 学习率
learn_rate = 0.001
# 训练轮数
epoch = 500
# 没批样本数
batch_size = 2000
# 批次计算
batch_num = len(train_y) // batch_size
# 轮次循环
for e in range(epoch):
# 批次循环
for idx in range(batch_num):
# 批次样本
start = idx *batch_size
end = (idx + 1) * batch_size
b_x = x[start: end]
b_y = y[start: end]
# 计算输出
b_y_ = lenet5_forward(b_x)
# break
# 计算损失
l_ = loss_model(b_y_, b_y)
# 计算梯度
l_.backward(retain_graph=True)
# print(w_6_5_5.grad)
# 梯度更新(使用上下文管理器,进制对运算实现图跟踪)
with torch.autograd.no_grad():
w_6_5_5 -= learn_rate * w_6_5_5.grad
b_6_5_5 -= learn_rate * b_6_5_5.grad
w_16_5_5 -= learn_rate * w_16_5_5.grad
b_16_5_5 -= learn_rate * b_16_5_5.grad
w_120_5_5 -= learn_rate * w_120_5_5.grad
b_120_5_5 -= learn_rate * b_120_5_5.grad
w_120_84 -= learn_rate * w_120_84.grad
b_120_84 -= learn_rate * b_120_84.grad
w_84_10 -= learn_rate * w_84_10.grad
b_84_10 -= learn_rate * b_84_10.grad
# 复原梯度
w_6_5_5.grad.zero_()
b_6_5_5.grad.zero_()
w_16_5_5.grad.zero_()
b_16_5_5.grad.zero_()
w_120_5_5.grad.zero_()
b_120_5_5.grad.zero_()
w_120_84.grad.zero_()
b_120_84.grad.zero_()
w_84_10.grad.zero_()
b_84_10.grad.zero_()
# 每一轮次完毕,输出损失度与测试集准确率
if e % 100 ==0:
print(F"第{e:03d}轮")
print(F"\t损失值:{l_:8.6f}",end="")
# 测试集测试
with torch.autograd.no_grad():
predict = lenet5_forward(t_x)
# 计算准确率
y_ = predict.argmax(dim=1)
correct_rate = (y_ == t_y).float().mean()
print(F"\t测试集准确率:{correct_rate*100: 6.2f}%")
print("------训练完毕------")
###Output
第000轮
损失值:1.785437 测试集准确率: 41.43%
第100轮
损失值:0.064623 测试集准确率: 97.25%
第200轮
损失值:0.047923 测试集准确率: 98.04%
第300轮
损失值:0.039753 测试集准确率: 98.31%
第400轮
损失值:0.034219 测试集准确率: 98.48%
------训练完毕------
###Markdown
LetNet-5模型框架实现代码 - 技术点提示: 1. 数据集切分管理; 2. 决策模型 - 分成计算 3. 损失模型与优化模型 4. 训练过程 数据集加载与处理
###Code
# 与手工实现版本一样,加载MINST数据集
%matplotlib inline
import struct
import matplotlib.pyplot as plt
import numpy as np
import torch.utils.data
# 读取图片
def load_image_fromfile(filename):
with open(filename, 'br') as fd:
# 读取图像的信息
header_buf = fd.read(16) # 16字节,4个int整数
# 按照字节解析头信息(具体参考python SL的struct帮助)
magic_, nums_, width_, height_ = struct.unpack('>iiii', header_buf) # 解析成四个整数:>表示大端字节序,i表示4字节整数
# 保存成ndarray对象
imgs_ = np.fromfile(fd, dtype=np.uint8)
imgs_ = imgs_.reshape(nums_, height_, width_)
return imgs_
# 读取标签
def load_label_fromfile(filename):
with open(filename, 'br') as fd:
header_buf = fd.read(8)
magic, nums = struct.unpack('>ii' ,header_buf)
labels_ = np.fromfile(fd, np.uint8)
return labels_
# 读取训练集
train_x = load_image_fromfile("datasets/train-images.idx3-ubyte")
train_y = load_label_fromfile("datasets/train-labels.idx1-ubyte")
train_x = train_x.astype(np.float64)
train_y = train_y.astype(np.int64)
# 读取测试集
test_x = load_image_fromfile("datasets/t10k-images.idx3-ubyte")
test_y = load_label_fromfile("datasets/t10k-labels.idx1-ubyte")
# 使用Torch的数据集管理工具管理
# 转换为Tensor
x = torch.Tensor(train_x).view(train_x.shape[0], 1, train_x.shape[1], train_x.shape[2]) # N,C,W,H
y = torch.LongTensor(train_y)
t_x = torch.Tensor(test_x).view(test_x.shape[0], 1, test_x.shape[1], test_x.shape[2]) # N,C,W,H
t_y = torch.LongTensor(test_y)
# 使用TensorDataSet封装数据与标签
train_dataset = torch.utils.data.TensorDataset(x, y)
test_dataset = torch.utils.data.TensorDataset(t_x, t_y)
# 数据随机与切分器
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, shuffle=True, batch_size=2000) # 批次数量1000
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, shuffle=True, batch_size=10000) # 一个批次直接预测
###Output
_____no_output_____
###Markdown
定义神经网络模型
###Code
%matplotlib inline
import matplotlib.pyplot as plt
class LeNet_5(torch.nn.Module):
def __init__(self):
super(LeNet_5, self).__init__()
# 卷积层1 :1 @ 28 * 28 - > 6 @ 28 * 28 -> 6 @ 14 * 14
# 卷积层2 :6 @ 14 * 14 -> 16 @ 10 * 10 -> 16 @ 5 * 5
# 卷积层3 :16 @ 5 * 5 -> 120 @ 1 * 1
self.layer_1 = torch.nn.Conv2d(in_channels=1, out_channels=6, kernel_size=(5, 5), padding=2)
self.layer_2 = torch.nn.Conv2d(in_channels=6, out_channels=16, kernel_size=(5, 5), padding=0)
self.layer_3 = torch.nn.Conv2d(in_channels=16, out_channels=120, kernel_size=(5, 5), padding=0)
# 连接层1 : 120 -> 84
# 链接层2 : 84 -> 10
self.layer_4 = torch.nn.Linear(120, 84)
self.layer_5 = torch.nn.Linear(84, 10)
def forward(self, input):
# 预测模型实现
# 卷积层
t = self.layer_1(input)
t = torch.nn.functional.relu(t)
t = torch.nn.functional.max_pool2d(t, kernel_size=(2, 2))
t = self.layer_2(t)
t = torch.nn.functional.relu(t)
t = torch.nn.functional.max_pool2d(t, kernel_size=(2, 2))
t = self.layer_3(t)
t = torch.nn.functional.relu(t)
t = t.squeeze() # 长度为1的维数直接降维
# 链接层
t = self.layer_4(t)
t= torch.nn.functional.relu(t)
t = self.layer_5(t)
t = torch.nn.functional.log_softmax(t, dim=1)
return t
###Output
_____no_output_____
###Markdown
训练实现- 包含损失模型与优化模型
###Code
# 模型
model = LeNet_5()
parameters = model.parameters()
# 巡视函数
criterion = torch.nn.CrossEntropyLoss()
# 优化器
optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # 学习率
# 训练参数
epoch = 500
for e in range(epoch):
# 批次处理
for data, target in train_loader:
# 清空梯度
optimizer.zero_grad()
# 计算输出
out = model(data)
# 计算损失
loss = criterion(out, target)
# 计算梯度
loss.backward()
# 更新梯度
optimizer.step()
# 一轮结束,可以使用测试集测试准确率
if e % 100 == 0:
with torch.no_grad(): # 关闭梯度计算跟踪
for data, target in test_loader:
y_ = model(data)
predict = torch.argmax(y_, dim=1)
correct_rate = (predict == target).float().mean()
print(F"\t损失度:{loss:8.6f},\t准确率:{correct_rate * 100: 5.2f}%")
###Output
损失度:0.320754, 准确率: 91.86%
损失度:0.000031, 准确率: 98.89%
损失度:0.000005, 准确率: 98.87%
损失度:0.000001, 准确率: 98.87%
损失度:0.000000, 准确率: 98.86%
|
preparing-gcp-ml-engineer/launching-into-ml/decision_trees_and_random_Forests_in_Python.ipynb | ###Markdown
Decision Trees and Random Forests in Python**Learning Objectives**1. Explore and analyze data using a Pairplot2. Train a single Decision Tree3. Predict and evaluate the Decision Tree4. Compare the Decision Tree model to a Random Forest Introduction In this lab, you explore and analyze data using a Pairplot, train a single Decision Tree, predict and evaluate the Decision Tree, and compare the Decision Tree model to a Random Forest. Recall that the [Decision Tree](https://en.wikipedia.org/wiki/Decision_tree_learning) algorithm belongs to the family of supervised learning algorithms. Unlike other supervised learning algorithms, the decision tree algorithm can be used for solving both regression and classification problems too. Simply, the goal of using a Decision Tree is to create a training model that can use to predict the class or value of the target variable by learning simple decision rules inferred from prior data(training data). Each learning objective will correspond to a _TODO_ in this student lab notebook -- try to complete this notebook first and then review the [solution notebook](https://github.com/GoogleCloudPlatform/training-data-analyst/blob/master/courses/machine_learning/deepdive2/launching_into_ml/solutions/decision_trees_and_random_Forests_in_Python.ipynb)
###Code
!pip install scikit-learn==0.22.2
###Output
Collecting scikit-learn==0.22.2
Downloading scikit_learn-0.22.2-cp37-cp37m-manylinux1_x86_64.whl (7.1 MB)
[K |████████████████████████████████| 7.1 MB 7.0 MB/s eta 0:00:01
[?25hRequirement already satisfied: joblib>=0.11 in /opt/conda/lib/python3.7/site-packages (from scikit-learn==0.22.2) (1.0.1)
Requirement already satisfied: scipy>=0.17.0 in /opt/conda/lib/python3.7/site-packages (from scikit-learn==0.22.2) (1.7.1)
Requirement already satisfied: numpy>=1.11.0 in /opt/conda/lib/python3.7/site-packages (from scikit-learn==0.22.2) (1.19.5)
Installing collected packages: scikit-learn
Attempting uninstall: scikit-learn
Found existing installation: scikit-learn 0.24.2
Uninstalling scikit-learn-0.24.2:
Successfully uninstalled scikit-learn-0.24.2
Successfully installed scikit-learn-0.22.2
###Markdown
**Restart** the kernel before proceeding further (On the Notebook menu, select Kernel > Restart Kernel > Restart). Load necessary libraries We will start by importing the necessary libraries for this lab.
###Code
# Importing necessary tensorflow library and printing the TF version.
import tensorflow as tf
print("TensorFlow version: ",tf.version.VERSION)
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
###Output
_____no_output_____
###Markdown
Get the Data
###Code
# Reading "kyphosis.csv" file using the read_csv() function included in the pandas library
df = pd.read_csv('../kyphosis.csv')
df.head()
###Output
_____no_output_____
###Markdown
Exploratory Data Analysis **Lab Task 1:** Check a pairplot for this small dataset.
###Code
# Use the pairplot() function to plot multiple pairwise bivariate distributions in a dataset
# TODO 1
sns.pairplot(df,hue='Kyphosis',palette='Set1')
###Output
_____no_output_____
###Markdown
Train Test SplitLet's split up the data into a training set and a test set!
###Code
from sklearn.model_selection import train_test_split
X = df.drop('Kyphosis',axis=1)
y = df['Kyphosis']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30)
###Output
_____no_output_____
###Markdown
Decision Trees **Lab Task 2:** Train a single decision tree.
###Code
from sklearn.tree import DecisionTreeClassifier
dtree = DecisionTreeClassifier()
# Train Decision Tree Classifer
# TODO 2
dtree.fit(X_train,y_train)
###Output
_____no_output_____
###Markdown
Prediction and Evaluation **Lab Task 3:** Evaluate our decision tree.
###Code
predictions = dtree.predict(X_test)
from sklearn.metrics import classification_report,confusion_matrix
# build a text report showing the main classification metrics
# TODO 3a
print(classification_report(y_test,predictions))
# compute confusion matrix to evaluate the accuracy of a classification
# TODO 3b
print(confusion_matrix(y_test,predictions))
###Output
[[19 2]
[ 3 1]]
###Markdown
Tree VisualizationScikit learn actually has some built-in visualization capabilities for decision trees, you won't use this often and it requires you to install the pydot library, but here is an example of what it looks like and the code to execute this:
###Code
from IPython.display import Image
from sklearn.externals.six import StringIO
from sklearn.tree import export_graphviz
import pydot
features = list(df.columns[1:])
features
dot_data = StringIO()
export_graphviz(dtree, out_file=dot_data,feature_names=features,filled=True,rounded=True)
graph = pydot.graph_from_dot_data(dot_data.getvalue())
Image(graph[0].create_png())
###Output
_____no_output_____
###Markdown
Random Forests **Lab Task 4:** Compare the decision tree model to a random forest.
###Code
from sklearn.ensemble import RandomForestClassifier
rfc = RandomForestClassifier(n_estimators=100)
rfc.fit(X_train, y_train)
rfc_pred = rfc.predict(X_test)
# compute confusion matrix to evaluate the accuracy
# TODO 4a
print(confusion_matrix(y_test,rfc_pred))
# build a text report showing the main metrics
# TODO 4b
print(classification_report(y_test,rfc_pred))
###Output
precision recall f1-score support
absent 0.87 0.95 0.91 21
present 0.50 0.25 0.33 4
accuracy 0.84 25
macro avg 0.68 0.60 0.62 25
weighted avg 0.81 0.84 0.82 25
|
01_Regression.ipynb | ###Markdown
AutoML REGRESSION> API details.
###Code
#hide
from nbdev.showdoc import *
#export
import streamlit as st
import streamlit.components.v1 as components
from pdpbox import pdp
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import shap
# load JS visualization code to notebook
shap.initjs()
import base64
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris, load_digits
#Simple Regressor
from sklearn.naive_bayes import GaussianNB
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsRegressor
from sklearn.svm import SVR
#Tree based Regressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.ensemble import ExtraTreesRegressor
from xgboost import XGBRegressor
#Gradient Based Regressor
from sklearn.linear_model import SGDRegressor
from sklearn.neural_network import MLPRegressor
#Preprocessing packages
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import *
from sklearn.decomposition import PCA
#Metrics
from sklearn import metrics
from sklearn.metrics import *
from sklearn.model_selection import GridSearchCV
import random
from sklearn.inspection import plot_partial_dependence
import os
import base64
from io import BytesIO
def convert_str(a):
a = str(a)
return a
def scaler(scaling_scheme='standard_scaler'):
if scaling_scheme == 'max_abs_scaler':
scal = MaxAbsScaler()
elif scaling_scheme == 'min_max_scaler':
scal = MinMaxScaler()
elif scaling_scheme == 'normalizer':
scal = Normalizer()
elif scaling_scheme == 'quantile_transformer':
scal = QuantileTransformer()
elif scaling_scheme == 'robust_scaler':
scal = RobustScaler()
elif scaling_scheme == 'power_transformer':
scal = PowerTransformer()
elif scaling_scheme == 'standard_scaler':
scal = StandardScaler()
return scal
def comb(X, pairwise_linear=False, pairwise_product=False):
from itertools import combinations
X_copy = X.copy()
columns = [str(i) for i in X.columns]
X.columns = columns
comb = combinations(columns, 2)
# Print the obtained combinations
if pairwise_linear:
for i in list(comb):
a = i[0]
b = i[1]
col_name_add = a+'+'+b
X_copy[col_name_add] = X[a]+X[b]
col_name_sub = a+'-'+b
X_copy[col_name_sub] = X[a]-X[b]
if pairwise_product:
comb = combinations(columns, 2)
# Print the obtained combinations
for i in list(comb):
a = i[0]
b = i[1]
col_name = a+'*'+b
X_copy[col_name] = X[a]*X[b]
return X_copy
def rf_colselector(X_train, y_train, no_of_cols, n_estimators=100):
rf = RandomForestRegressor(n_estimators=n_estimators)
rf.fit(X_train, y_train)
importance = rf.feature_importances_
df_importance = pd.DataFrame(importance, index = X_train.columns, columns = ['importance'])
importance_sorted = df_importance.sort_values(by=['importance'], ascending=False)
selected_columns = importance_sorted[:no_of_cols].index
return selected_columns
def corr_colselector(X_train, y_train, threshold):
d = pd.concat([X_train, y_train.reset_index(drop=True)], axis=1)
columns = d.corr().iloc[:, -1][np.logical_or((d.corr().iloc[:, -1] > threshold), (d.corr().iloc[:, -1] < -threshold))].index
return columns[:-1], d.corr()
class ColProcessor():
def __init__(self, cardinality, rf_col=False, corr_col=False, label_enc=False, interaction_only=False, poly_feat=False):
self.rf_col = rf_col
self.corr_col = corr_col
self.label_enc = label_enc
self.interaction_only = interaction_only
self.poly_feat = poly_feat
self.cardinality = cardinality
def fit(self, X, y=None):
categorical_cols = [cname for cname in X.columns if X[cname].nunique() < self.cardinality and
X[cname].dtype == "object"]
numerical_cols = [cname for cname in X.columns if X[cname].dtype in ['int64', 'float64']]
my_cols = categorical_cols + numerical_cols
self.categorical_cols = categorical_cols
self.numerical_cols = numerical_cols
self.my_cols = my_cols
X = X[my_cols].copy()
imputer_num = SimpleImputer(strategy='constant')
X_dum = imputer_num.fit_transform(X[self.numerical_cols])
self.imputer_num = imputer_num
if self.categorical_cols:
imputer_cat = SimpleImputer(strategy='most_frequent')
X_cat = imputer_cat.fit_transform(X[self.categorical_cols])
self.imputer_cat = imputer_cat
if not self.label_enc:
Ohe = OneHotEncoder(handle_unknown='ignore')
Ohe.fit(X_cat)
self.Ohe = Ohe
else:
OrdEnc = OrdinalEncoder(handle_unknown='ignore')
X_cat = OrdEnc.fit(X_cat)
self.OrdEnc = OrdEnc
return self
def transform(self, X, y=None):
X_num = pd.DataFrame(data=self.imputer_num.transform(X[self.numerical_cols]), columns=self.numerical_cols)
if self.categorical_cols:
if not self.label_enc:
X_cat = pd.DataFrame(data=self.Ohe.transform(self.imputer_cat.transform(X[self.categorical_cols])).toarray(),
columns=self.Ohe.get_feature_names(input_features=self.categorical_cols))
data = pd.concat([X_cat, X_num], axis = 1)
else:
X_cat = pd.DataFrame(self.OrdEnc.transform(self.imputer_cat.transform(X[self.categorical_cols])), columns=self.categorical_cols)
data = pd.concat([X_cat.reset_index(drop=True), X_num], axis = 1)
else:
data = X_num
return data, X_num
def interaction_feats(X):
interaction = PolynomialFeatures(2, interaction_only=True)
interaction.fit(X)
X_interaction = pd.DataFrame(data=interaction.transform(X), columns=interaction.get_feature_names(X.columns))
return X_interaction
def poly_feats(X):
poly = PolynomialFeatures(2)
poly.fit(X)
X_poly = pd.DataFrame(data=poly.transform(X), columns=poly.get_feature_names(X.columns))
return X_poly
def pca_feats(X, n_comp):
pca = PCA(n_components=n_comp)
pca.fit(X)
X_pca = pd.DataFrame(data=pca.transform(X))
return X_pca
def clubbed_feats(X, polynomial_features, interaction_only, pca_on):
if polynomial_features:
X = poly_feats(X)
elif interaction_only:
X = interaction_feats(X)
if pca_on:
X = pca_feats(X, 100)
return X
def preprocess(X_train,
y_train,
X_valid,
X_test=None,
rf_col_selection=False,
rf_no_of_cols=20,
rf_n_estimators=100,
corr_col_selection=False,
corr_threshold=0.01,
pairwise_linear=False,
pairwise_product=False):
X_train = comb(X=X_train, pairwise_linear=pairwise_linear, pairwise_product=pairwise_product)
X_valid = comb(X=X_valid, pairwise_linear=pairwise_linear, pairwise_product=pairwise_product)
if type(X_test)!=type(None):
X_test = comb(X=X_test, pairwise_linear=pairwise_linear, pairwise_product=pairwise_product)
return X_train, X_valid, X_test
def final_preprocessor(X_train,
y_train,
X_valid,
X_test=None,
rf_col_selection=False,
rf_no_of_cols=20,
rf_n_estimators=100,
corr_col_selection=False,
corr_threshold=0.01,
pairwise_linear=False,
pairwise_product=False,
cardinality=100,
polynomial_features=False,
interaction_only=False,
pca_on=False,
label_enc=False
):
col = ColProcessor(cardinality=100, label_enc=label_enc)
col.fit(X_train)
data_train, X_train_num = col.transform(X_train)
data_valid, X_valid_num = col.transform(X_valid)
if type(X_test)!=type(None):
data_test, X_test_num = col.transform(X_test)
else:
X_test_num = None
X_train_num = clubbed_feats(X_train_num,
polynomial_features=polynomial_features,
interaction_only=interaction_only,
pca_on=pca_on)
X_valid_num = clubbed_feats(X_valid_num,
polynomial_features=polynomial_features,
interaction_only=interaction_only,
pca_on=pca_on)
if type(X_test)!=type(None):
X_test_num = clubbed_feats(X_test_num,
polynomial_features=polynomial_features,
interaction_only=interaction_only,
pca_on=pca_on)
train, valid, test = preprocess(X_train_num,
y_train,
X_valid_num,
X_test_num,
rf_col_selection=rf_col_selection,
rf_no_of_cols=rf_no_of_cols,
rf_n_estimators=rf_n_estimators,
corr_col_selection=corr_col_selection,
corr_threshold=corr_threshold,
pairwise_linear=pairwise_linear,
pairwise_product=pairwise_product
)
if col.categorical_cols:
if not label_enc:
Ohe_cat_cols = col.Ohe.get_feature_names(col.categorical_cols)
train = pd.concat([train, data_train[Ohe_cat_cols]], axis=1)
valid = pd.concat([valid, data_valid[Ohe_cat_cols]], axis=1)
if type(X_test)!=type(None):
test = pd.concat([test, data_test[Ohe_cat_cols]], axis=1)
else:
train = data_train
valid = data_valid
if type(X_test)!=type(None):
test = data_test
if rf_col_selection:
columns_selected = rf_colselector(train,
y_train,
no_of_cols=rf_no_of_cols,
n_estimators=rf_n_estimators)
train = train[columns_selected]
valid = valid[columns_selected]
if type(X_test)!=type(None):
test = test[columns_selected]
if corr_col_selection:
corr_cols, df = corr_colselector(train, y_train, threshold=corr_threshold)
train = train[corr_cols]
valid = valid[corr_cols]
if type(X_test)!=type(None):
test = test[corr_cols]
return train, valid, test, col
def combined_metrics(X_test, y_test, clf):
metrics_list = [[explained_variance_score(y_test, clf.predict(X_test))],
[max_error(y_test, clf.predict(X_test))],
[mean_absolute_error(y_test, clf.predict(X_test))],
[mean_squared_error(y_test, clf.predict(X_test))],
# [mean_squared_log_error(y_test, clf.predict(X_test))],
[median_absolute_error(y_test, clf.predict(X_test))],
[mean_absolute_percentage_error(y_test, clf.predict(X_test))],
[r2_score(y_test, clf.predict(X_test))],
# [mean_poisson_deviance(y_test, clf.predict(X_test))],
# [mean_gamma_deviance(y_test, clf.predict(X_test))],
]
index = ['Explained Variance',
'Max Error',
'Mean Absolute Error',
'Mean Squared Error',
# 'Mean Squared Log Error',
'Median Absolute Error',
'Mean Absolute Percentage Error',
'R2 Score',
# 'Mean Poisson Deviance',
# 'Mean Gamma Deviance'
]
df_metric = pd.DataFrame(metrics_list, index = index, columns = ['Value'])
return df_metric
def to_excel(df):
output = BytesIO()
writer = pd.ExcelWriter(output, engine='xlsxwriter')
df.to_excel(writer, index = False, sheet_name='Sheet1')
workbook = writer.book
worksheet = writer.sheets['Sheet1']
format1 = workbook.add_format({'num_format': '0.00'}) # Tried with '0%' and '#,##0.00' also.
worksheet.set_column('A:A', None, format1) # Say Data are in column A
writer.save()
processed_data = output.getvalue()
return processed_data
def get_table_download_link(df):
"""Generates a link allowing the data in a given panda dataframe to be downloaded
in: dataframe
out: href string
"""
val = to_excel(df)
b64 = base64.b64encode(val) # val looks like b'...'
return f'<a href="data:application/octet-stream;base64,{b64.decode()}" download="Your_File.xlsx">Download output file</a>' # decode b'abc' => abc
def GNB():
gnb_params = {'clf__estimator':[GaussianNB()]
}
return gnb_params
def LinearReg():
lin_params = {'clf__estimator': [LinearRegression()]
}
st.subheader('Linear Regression')
fit_intercept = st.multiselect('Fit Intercept', [True, False], [True])
normalize = st.multiselect('Normalize', [True, False], [False])
lin_params['clf__estimator__fit_intercept'] = fit_intercept
lin_params['clf__estimator__normalize'] = normalize
return lin_params
def LogisticReg():
lr_params = {'clf__estimator': [LogisticRegression()]
}
st.subheader('Logistic Regression')
penalty = st.multiselect('Penalty', ['l1', 'l2'], ['l2'])
reg = st.multiselect('C', [0.1, 1.0, 2.0], [1.0])
solver = st.multiselect('Solver', ['liblinear', 'newton-cg', 'lbfgs', 'sag', 'saga'], ['liblinear'])
lr_params['clf__estimator__penalty'] = penalty
lr_params['clf__estimator__C'] = reg
lr_params['clf__estimator__solver'] = solver
return lr_params
def KNN():
knn_params = {'clf__estimator': [KNeighborsRegressor()]
}
st.subheader('KNN')
n_neighbors = st.multiselect('Neighbors', list(range(1,30)), [5])
leaf_size = st.multiselect('Leaf Size', list(range(1,50)), [30])
p_distance = st.multiselect('Distance Metric', [1,2], [2])
knn_params['clf__estimator__n_neighbors'] = n_neighbors
knn_params['clf__estimator__leaf_size'] = leaf_size
knn_params['clf__estimator__p'] = p_distance
return knn_params
def SVM():
svm_params = {'clf__estimator': [SVR()]
}
st.subheader('Support Vector Machines')
c = st.multiselect('C', [0.1, 1, 10, 100, 1000], [1])
gamma = st.multiselect('Gamma', ['scale', 'auto'], ['scale'])
kernel = st.multiselect('Kernel', ['linear', 'rbf', 'poly', 'sigmoid'], ['rbf'])
svm_params['clf__estimator__C'] = c
svm_params['clf__estimator__gamma'] = gamma
svm_params['clf__estimator__kernel'] = kernel
return svm_params
def DT():
dt_params = {'clf__estimator': [DecisionTreeRegressor()]}
st.subheader('Decision Tree')
criterion = st.multiselect('Criterion', ["gini", "entropy"], ['gini'])
min_samp_split = st.multiselect('Min Samples Split', [2, 10], [2])
max_depth = st.multiselect('Max Depth', [2, 5, 10], [10])
dt_params['clf__estimator__criterion'] = criterion
dt_params['clf__estimator__min_samples_leaf'] = min_samp_split
dt_params['clf__estimator__max_depth'] = max_depth
return dt_params
def RF():
rf_params = {'clf__estimator': [RandomForestRegressor()]
}
st.subheader('Random Forest')
n_estimators = st.multiselect('Number of Trees', [100, 200, 500], [100])
max_features = st.multiselect('Max Features', [2, 10, 'auto', 'sqrt', 'log2'], ['auto'])
max_depth = st.multiselect('Max Depth', [4,5,6,7,8, None], [None])
criterion = st.multiselect('Criteria', ['gini', 'entropy'], ['gini'])
rf_params['clf__estimator__n_estimators'] = n_estimators
rf_params['clf__estimator__max_features'] = max_features
rf_params['clf__estimator__max_depth'] = max_depth
rf_params['clf__estimator__criterion'] = criterion
return rf_params
def GB():
gb_params = {'clf__estimator': [GradientBoostingRegressor()]
}
st.subheader('Gradient Booster')
loss = st.multiselect('Loss Function', ['deviance', 'exponential'], ['deviance'])
learning_rate = st.multiselect('Learning Rate', [0.001, 0.01, 0.1], [0.1])
min_samples_split = st.multiselect('Min Samples Split', list(range(1, 10)), [2])
min_samples_leaf = st.multiselect('Min Samples Leaf', list(range(1, 10)), [1])
max_depth = st.multiselect('Max Depth', [1, 2, 3, 4, 5, 6], [3])
max_features = st.multiselect('Max Features', ['auto', 'log2', 'sqrt', None], [None])
criterion = st.multiselect('Criterion', ['friedman_mse', 'mse', 'mae'], ['friedman_mse'])
subsample = st.multiselect('Subsample', [0.5, 0.618, 0.8, 0.85, 0.9, 0.95, 1.0], [1.0])
n_estimators = st.multiselect('Number of Trees', [50, 100, 150, 200, 250], [100])
gb_params['clf__estimator__loss'] = loss
gb_params['clf__estimator__learning_rate'] = learning_rate
gb_params['clf__estimator__min_samples_split'] = min_samples_split
gb_params['clf__estimator__min_samples_leaf'] = min_samples_leaf
gb_params['clf__estimator__max_depth'] = max_depth
gb_params['clf__estimator__max_features'] = max_features
gb_params['clf__estimator__criterion'] = criterion
gb_params['clf__estimator__subsample'] = subsample
gb_params['clf__estimator__n_estimators'] = n_estimators
return gb_params
def ERT():
ert_params = {'clf__estimator': [ExtraTreesRegressor()]
}
st.subheader('Extra Random Trees')
n_estimators = st.multiselect('Number of Trees', [100, 200, 500, 1000], [100]) #fix
max_depth = st.multiselect('Max Depth', [None, 4, 5, 6, 7, 8, 9], [None]) #fix
min_samples_leaf = st.multiselect('Min Sample per Leaf', [1, 2, 3, 4, 5], [1])
n_jobs = st.selectbox('Parallelism', [1, 2, 3, 4, -1], 4)
ert_params['clf__estimator__n_estimators'] = n_estimators
ert_params['clf__estimator__max_depth'] = max_depth
ert_params['clf__estimator__min_samples_leaf'] = min_samples_leaf
ert_params['clf__estimator__n_jobs'] = [n_jobs]
return ert_params
def XGB():
xgb_params ={'clf__estimator':[XGBRegressor()]
}
st.subheader('XGBoost')
n_estimators = st.multiselect('Number of Trees', list(range(50, 1000, 50)), [100]) #fix
max_depth = st.multiselect('Max Depth', list(range(1, 20)), [6]) #fix
min_child_weight = st.multiselect('Min Child Weight', list(range(1, 10, 1)), [1])
gamma = st.multiselect('Gamma', list(range(0, 10)), [1])
learning_rate = st.multiselect('Learning Rate', [0.01, 0.05, 0.1, 0.2, 0.3], [0.3])
subsample = st.multiselect('Subsample', list(np.divide(range(5, 11), 10)), [1.0])
booster = st.multiselect('Booster', ['gbtree', 'gblinear'], ['gbtree'])
xgb_params['clf__estimator__n_estimators'] = n_estimators
xgb_params['clf__estimator__max_depth'] = max_depth
xgb_params['clf__estimator__min_child_weight'] = min_child_weight
xgb_params['clf__estimator__gamma'] = gamma
xgb_params['clf__estimator__learning_rate'] = learning_rate
xgb_params['clf__estimator__subsample'] = subsample
xgb_params['clf__estimator__booster'] = booster
return xgb_params
def SGD():
sgd_params = {'clf__estimator': [SGDRegressor()]
}
st.subheader('SGD')
loss = st.multiselect('Loss Function', ['hinge', 'log', 'modified_huber', 'squared_hinge', 'perceptron'], ['hinge']) #fix
max_iter = st.multiselect('Max Iterations', list(np.multiply(range(5, 16), 100)), [1000]) #fix
tol = st.multiselect('Tolerance', [0.0001, 0.001, 0.05, 0.1], [0.0001])
penalty = st.multiselect('Penalty', ['l2', 'l1', 'elasticnet'], ['l2'])
alpha = st.multiselect('Alpha', [0.0001, 0.001, 0.05, 0.1, 0.2, 0.3], [0.0001])
n_jobs = st.selectbox('Parallelization', [1, 2, 3, 4, -1], 4)
sgd_params['clf__estimator__loss'] = loss
sgd_params['clf__estimator__max_iter'] = max_iter
sgd_params['clf__estimator__tol'] = tol
sgd_params['clf__estimator__penalty'] = penalty
sgd_params['clf__estimator__alpha'] = alpha
sgd_params['clf__estimator__n_jobs'] = [n_jobs]
return sgd_params
def NN():
nn_params = {'clf__estimator': [MLPRegressor()]
}
st.subheader('Neural Network')
solver = st.multiselect('Solver', ['lbfgs', 'sgd', 'adam'], ['adam'])
max_iter = st.multiselect('Max Iterations', [1000,1100,1200,1300,1400], [1000])
alpha = st.multiselect('Alpha', list(10.0 ** -np.arange(1, 10)), [0.0001])
hidden_layer_sizes = st.multiselect('Hidden Layer Sizes', list(range(50, 500, 50)), [100])
# hidden_layer_sizes = st.multiselect('Hidden Layer Sizes', [50, 100, 150, 200, 250, 300, 350, 400, 450, 500] , [100])
nn_params['clf__estimator__solver'] = solver
nn_params['clf__estimator__max_iter'] = max_iter
nn_params['clf__estimator__alpha'] = alpha
nn_params['clf__estimator__hidden_layer_sizes'] = hidden_layer_sizes
return nn_params
data = st.file_uploader('Upload a csv')
test_data = st.file_uploader('Upload a csv for prediction:')
if (data != None) & (test_data != None):
df = pd.read_csv(data)
df_test = pd.read_csv(test_data)
target_col =st.selectbox('Choose target variable', df.columns)
X = df.drop(target_col, axis = 1)
y = df[target_col]
test_ratio = st.number_input('Enter test split ratio, 0 < ratio < 1', min_value = 0.0,
max_value = 1.0, value = 0.2)
if test_ratio:
X_train_full, X_valid_full, y_train, y_valid = train_test_split(X, y,
test_size=test_ratio,
random_state = 0)
rf_col_selection = st.sidebar.selectbox(
'Random Forest Column Selection', [True, False], 1)
corr_col_selection = st.sidebar.selectbox(
'Correlation Column Selection', [True, False], 1)
pairwise_linear = st.sidebar.selectbox(
'Pairwise Linear', [True, False], 1)
pairwise_product = st.sidebar.selectbox(
'Pairwise Product', [True, False], 1)
polynomial_features = st.sidebar.selectbox(
'Polynomial Features', [True, False], 1)
interaction_only = st.sidebar.selectbox(
'Interaction Only', [True, False], 1)
pca_on = st.sidebar.selectbox(
'Principal Component Analysis', [True, False], 1)
label_enc = st.sidebar.selectbox(
'Label Encoding', [True, False], 1)
selected_models = st.sidebar.multiselect(
'Choose Algorithms:',(
'Gaussian NB',
'Linear Regression',
'Logistic Regression',
'KNN',
'Support Vector Machines',
'Decision Tree',
'Random Forest',
'Gradient Boosting',
'Extra Random Trees',
'XGBoost',
'Stochastic Gradient Descent',
'Neural Network'), ['KNN', 'Support Vector Machines', 'Decision Tree'])
if selected_models:
func_dict = {'Gaussian NB': GNB(),
'Linear Regression': LinearReg(),
'Logistic Regression':LogisticReg(),
'KNN': KNN(),
'Support Vector Machines': SVM(),
'Decision Tree': DT(),
'Random Forest': RF(),
'Gradient Boosting': GB(),
'Extra Random Trees': ERT(),
'XGBoost': XGB(),
'Stochastic Gradient Descent': SGD(),
'Neural Network': NN()
}
param_dict = {}
for i in selected_models:
param_dict[i] = func_dict[i]
from sklearn.base import BaseEstimator, RegressorMixin
class MyRegressor(BaseEstimator, RegressorMixin):
def __init__(
self,
estimator = XGBRegressor(),
):
"""
A Custom BaseEstimator that can switch between Regressor.
:param estimator: sklearn object - The Regressor
"""
self.estimator = estimator
def fit(self, X, y=None, **kwargs):
self.estimator.fit(X, y)
return self
def predict(self, X, y=None):
return self.estimator.predict(X)
def predict_proba(self, X):
return self.estimator.predict_proba(X)
def score(self, X, y):
return self.estimator.score(X, y)
@property
def classes_(self):
return self.estimator.classes_
X_train, X_valid, df_test, col = final_preprocessor(X_train_full,
y_train,
X_valid_full,
df_test,
rf_col_selection=rf_col_selection,
rf_no_of_cols=20,
rf_n_estimators=100,
corr_col_selection=corr_col_selection,
corr_threshold=0.2,
pairwise_linear=pairwise_linear,
pairwise_product=pairwise_product,
cardinality=100,
polynomial_features=polynomial_features,
interaction_only=interaction_only,
pca_on=pca_on,
label_enc=label_enc
)
data_valid = pd.concat([X_valid, y_valid.reset_index(drop=True)], axis = 1)
st.write(X_train.shape)
my_pipeline = Pipeline([('scaler', scaler(scaling_scheme='power_transformer')),
('clf', MyRegressor())
])
parameters = []
for i in selected_models:
parameters.append(param_dict[i])
st.write(parameters)
train = st.button('Train Model')
if train:
with st.spinner('Training Model...'):
from sklearn.model_selection import GridSearchCV
gscv = GridSearchCV(my_pipeline, parameters, cv=3, n_jobs=-1, return_train_score=False, verbose=3)
gscv.fit(X_train, y_train)
st.text('Best Parameters')
st.write(gscv.best_params_)
st.text('Best Score')
st.write(gscv.best_score_)
st.text('Validation Score')
st.write(gscv.score(X_valid, y_valid))
st.text('Fit vs Time vs HyperParameters')
data = gscv.cv_results_.values()
columns = gscv.cv_results_.keys()
df_fit = pd.DataFrame(data, columns).T
df_fit['param_clf__estimator'] = df_fit['param_clf__estimator'].apply(convert_str)
st.write(df_fit)
st.text('Prediction on Validation Data')
data_valid['Predicted'] = gscv.predict(X_valid)
st.write(data_valid)
st.text('Performance Metrics')
st.write(combined_metrics(X_valid, y_valid, gscv))
st.text('Scatter Plot: Actual vs Predicted')
#Scatter Plot of Actual vs Predicted
fig, ax = plt.subplots(figsize=(20, 10))
sns.regplot(x=y_valid,
y=gscv.predict(X_valid),
scatter_kws={"color":"green"},
line_kws={"color": "orange"},
ax=ax,
marker='.')
ax.set_ylabel('Actual Values')
ax.set_xlabel('Predicted Values')
st.pyplot(fig)
st.text('Error Distribution Plot')
#Error Distribution Plot
error = gscv.predict(X_valid) - y_valid
fig, ax = plt.subplots(figsize=(10, 5))
sns.histplot(data=error, bins=40)
st.pyplot(fig)
st.text('Partial Dependence Plot')
features = [0, 1, (0, 1)]
fig, ax = plt.subplots(1,3, figsize = (15,9))
plot_partial_dependence(gscv,X_valid, features=features, ax=ax)
plt.tight_layout()
st.pyplot(fig)
st.text('ICE Plot')
features = [0, 1]
fig, ax = plt.subplots(figsize=(14, 12))
plot_partial_dependence(gscv, X_valid, features, kind='both', ax=ax)
plt.tight_layout()
st.pyplot(fig)
st.text('Prediction on Test file')
df_test['Predicted'] = gscv.predict(df_test)
st.write(df_test)
st.text('Shapley Explainer')
# X_test = df_test.drop('Predicted', axis = 1)
explainer = shap.KernelExplainer(gscv.predict, X_valid)
shap_values = explainer.shap_values(X_valid.iloc[2,:])
st.pyplot(shap.force_plot(explainer.expected_value, shap_values, X_valid.iloc[2,:], matplotlib=True, text_rotation=8))
st.text('Shapley Explainer WaterFall Plot')
f = lambda x: gscv.predict(x)
med = X_train.median().values.reshape(1,X_valid.shape[1])
explainer = shap.Explainer(f, med)
shap_values = explainer(X_valid.iloc[0:100,:])
st.pyplot(shap.plots.waterfall(shap_values[0], max_display=7))
st.text('Partial Dependence Plot from pdp_box')
pdp_ = pdp.pdp_isolate(model=gscv, dataset=X_valid,
model_features=X_valid.columns,
feature=X_valid.columns[0])
fig, axes = pdp.pdp_plot(pdp_isolate_out=pdp_, feature_name=X_valid.columns[0], center = True, ncols=1, figsize = (15, 10))
st.pyplot(fig)
from nbdev.export import notebook2script; notebook2script()
###Output
Converted 00_Classification.ipynb.
Converted 01_Regression.ipynb.
Converted index.ipynb.
|
hw_wordsim_training.ipynb | ###Markdown
Homework and bake-off: Word similarity
###Code
__author__ = "Christopher Potts"
__version__ = "CS224u, Stanford, Fall 2020"
###Output
_____no_output_____
###Markdown
Contents1. [Overview](Overview)1. [Set-up](Set-up)1. [Dataset readers](Dataset-readers)1. [Dataset comparisons](Dataset-comparisons) 1. [Vocab overlap](Vocab-overlap) 1. [Pair overlap and score correlations](Pair-overlap-and-score-correlations)1. [Evaluation](Evaluation) 1. [Dataset evaluation](Dataset-evaluation) 1. [Dataset error analysis](Dataset-error-analysis) 1. [Full evaluation](Full-evaluation)1. [Homework questions](Homework-questions) 1. [PPMI as a baseline [0.5 points]](PPMI-as-a-baseline-[0.5-points]) 1. [Gigaword with LSA at different dimensions [0.5 points]](Gigaword-with-LSA-at-different-dimensions-[0.5-points]) 1. [Gigaword with GloVe [0.5 points]](Gigaword-with-GloVe-[0.5-points]) 1. [Dice coefficient [0.5 points]](Dice-coefficient-[0.5-points]) 1. [t-test reweighting [2 points]](t-test-reweighting-[2-points]) 1. [Enriching a VSM with subword information [2 points]](Enriching-a-VSM-with-subword-information-[2-points]) 1. [Your original system [3 points]](Your-original-system-[3-points])1. [Bake-off [1 point]](Bake-off-[1-point]) OverviewWord similarity datasets have long been used to evaluate distributed representations. This notebook provides basic code for conducting such analyses with a number of datasets:| Dataset | Pairs | Task-type | Current best Spearman $\rho$ | Best $\rho$ paper | ||---------|-------|-----------|------------------------------|-------------------|---|| [WordSim-353](http://www.gabrilovich.com/resources/data/wordsim353/) | 353 | Relatedness | 82.8 | [Speer et al. 2017](https://arxiv.org/abs/1612.03975) || [MTurk-771](http://www2.mta.ac.il/~gideon/mturk771.html) | 771 | Relatedness | 81.0 | [Speer et al. 2017](https://arxiv.org/abs/1612.03975) || [The MEN Test Collection](https://staff.fnwi.uva.nl/e.bruni/MEN) | 3,000 | Relatedness | 86.6 | [Speer et al. 2017](https://arxiv.org/abs/1612.03975) | | [SimVerb-3500-dev](https://www.aclweb.org/anthology/D16-1235/) | 500 | Similarity | 61.1 | [Mrkišć et al. 2016](https://arxiv.org/pdf/1603.00892.pdf) || [SimVerb-3500-test](https://www.aclweb.org/anthology/D16-1235/) | 3,000 | Similarity | 62.4 | [Mrkišć et al. 2016](https://arxiv.org/pdf/1603.00892.pdf) |Each of the similarity datasets contains word pairs with an associated human-annotated similarity score. (We convert these to distances to align intuitively with our distance measure functions.) The evaluation code measures the distance between the word pairs in your chosen VSM (which should be a `pd.DataFrame`).The evaluation metric for each dataset is the [Spearman correlation coefficient $\rho$](https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient) between the annotated scores and your distances, as is standard in the literature. We also macro-average these correlations across the datasets for an overall summary. (In using the macro-average, we are saying that we care about all the datasets equally, even though they vary in size.)This homework ([questions at the bottom of this notebook](Homework-questions)) asks you to write code that uses the count matrices in `data/vsmdata` to create and evaluate some baseline models as well as an original model $M$ that you design. This accounts for 9 of the 10 points for this assignment.For the associated bake-off, we will distribute two new word similarity or relatedness datasets and associated reader code, and you will evaluate $M$ (no additional training or tuning allowed!) on those new datasets. Systems that enter will receive the additional homework point, and systems that achieve the top score will receive an additional 0.5 points. Set-up
###Code
from collections import defaultdict
import csv
import itertools
import numpy as np
import os
import pandas as pd
from scipy.stats import spearmanr
import vsm
from IPython.display import display
VSM_HOME = os.path.join('data', 'vsmdata')
WORDSIM_HOME = os.path.join('data', 'wordsim')
###Output
_____no_output_____
###Markdown
Dataset readers
###Code
def wordsim_dataset_reader(
src_filename,
header=False,
delimiter=',',
score_col_index=2):
"""
Basic reader that works for all similarity datasets. They are
all tabular-style releases where the first two columns give the
word and a later column (`score_col_index`) gives the score.
Parameters
----------
src_filename : str
Full path to the source file.
header : bool
Whether `src_filename` has a header.
delimiter : str
Field delimiter in `src_filename`.
score_col_index : int
Column containing the similarity scores Default: 2
Yields
------
(str, str, float)
(w1, w2, score) where `score` is the negative of the similarity
score in the file so that we are intuitively aligned with our
distance-based code. To align with our VSMs, all the words are
downcased.
"""
with open(src_filename) as f:
reader = csv.reader(f, delimiter=delimiter)
if header:
next(reader)
for row in reader:
w1 = row[0].strip().lower()
w2 = row[1].strip().lower()
score = row[score_col_index]
# Negative of scores to align intuitively with distance functions:
score = -float(score)
yield (w1, w2, score)
def wordsim353_reader():
"""WordSim-353: http://www.gabrilovich.com/resources/data/wordsim353/"""
src_filename = os.path.join(
WORDSIM_HOME, 'wordsim353', 'combined.csv')
return wordsim_dataset_reader(
src_filename, header=True)
def mturk771_reader():
"""MTURK-771: http://www2.mta.ac.il/~gideon/mturk771.html"""
src_filename = os.path.join(
WORDSIM_HOME, 'MTURK-771.csv')
return wordsim_dataset_reader(
src_filename, header=False)
def simverb3500dev_reader():
"""SimVerb-3500: https://www.aclweb.org/anthology/D16-1235/"""
src_filename = os.path.join(
WORDSIM_HOME, 'SimVerb-3500', 'SimVerb-500-dev.txt')
return wordsim_dataset_reader(
src_filename, delimiter="\t", header=False, score_col_index=3)
def simverb3500test_reader():
"""SimVerb-3500: https://www.aclweb.org/anthology/D16-1235/"""
src_filename = os.path.join(
WORDSIM_HOME, 'SimVerb-3500', 'SimVerb-3000-test.txt')
return wordsim_dataset_reader(
src_filename, delimiter="\t", header=False, score_col_index=3)
def men_reader():
"""MEN: https://staff.fnwi.uva.nl/e.bruni/MEN"""
src_filename = os.path.join(
WORDSIM_HOME, 'MEN', 'MEN_dataset_natural_form_full')
return wordsim_dataset_reader(
src_filename, header=False, delimiter=' ')
###Output
_____no_output_____
###Markdown
This collection of readers will be useful for flexible evaluations:
###Code
READERS = (wordsim353_reader, mturk771_reader, simverb3500dev_reader,
simverb3500test_reader, men_reader)
###Output
_____no_output_____
###Markdown
Dataset comparisonsThis section does some basic analysis of the datasets. The goal is to obtain a deeper understanding of what problem we're solving – what strengths and weaknesses the datasets have and how they relate to each other. For a full-fledged project, we would want to continue work like this and report on it in the paper, to provide context for the results.
###Code
def get_reader_name(reader):
"""
Return a cleaned-up name for the dataset iterator `reader`.
"""
return reader.__name__.replace("_reader", "")
###Output
_____no_output_____
###Markdown
Vocab overlapHow many vocabulary items are shared across the datasets?
###Code
def get_reader_vocab(reader):
"""Return the set of words (str) in `reader`."""
vocab = set()
for w1, w2, _ in reader():
vocab.add(w1)
vocab.add(w2)
return vocab
def get_reader_vocab_overlap(readers=READERS):
"""
Get data on the vocab-level relationships between pairs of
readers. Returns a a pd.DataFrame containing this information.
"""
data = []
for r1, r2 in itertools.product(readers, repeat=2):
v1 = get_reader_vocab(r1)
v2 = get_reader_vocab(r2)
d = {
'd1': get_reader_name(r1),
'd2': get_reader_name(r2),
'overlap': len(v1 & v2),
'union': len(v1 | v2),
'd1_size': len(v1),
'd2_size': len(v2)}
data.append(d)
return pd.DataFrame(data)
vocab_overlap = get_reader_vocab_overlap()
def vocab_overlap_crosstab(vocab_overlap):
"""
Return an intuitively formatted `pd.DataFrame` giving vocab-overlap
counts for all the datasets represented in `vocab_overlap`, the
output of `get_reader_vocab_overlap`.
"""
xtab = pd.crosstab(
vocab_overlap['d1'],
vocab_overlap['d2'],
values=vocab_overlap['overlap'],
aggfunc=np.mean)
# Blank out the upper right to reduce visual clutter:
for i in range(0, xtab.shape[0]):
for j in range(i+1, xtab.shape[1]):
xtab.iloc[i, j] = ''
return xtab
vocab_overlap_crosstab(vocab_overlap)
###Output
_____no_output_____
###Markdown
This looks reasonable. By design, the SimVerb dev and test sets have a lot of overlap. The other overlap numbers are pretty small, even adjusting for dataset size. Pair overlap and score correlationsHow many word pairs are shared across datasets and, for shared pairs, what is the correlation between their scores? That is, do the datasets agree?
###Code
def get_reader_pairs(reader):
"""
Return the set of alphabetically-sorted word (str) tuples
in `reader`
"""
return {tuple(sorted([w1, w2])): score for w1, w2, score in reader()}
def get_reader_pair_overlap(readers=READERS):
"""Return a `pd.DataFrame` giving the number of overlapping
word-pairs in pairs of readers, along with the Spearman
correlations.
"""
data = []
for r1, r2 in itertools.product(READERS, repeat=2):
if r1.__name__ != r2.__name__:
d1 = get_reader_pairs(r1)
d2 = get_reader_pairs(r2)
overlap = []
for p, s in d1.items():
if p in d2:
overlap.append([s, d2[p]])
if overlap:
s1, s2 = zip(*overlap)
rho = spearmanr(s1, s2)[0]
else:
rho = None
# Canonical order for the pair:
n1, n2 = sorted([get_reader_name(r1), get_reader_name(r2)])
d = {
'd1': n1,
'd2': n2,
'pair_overlap': len(overlap),
'rho': rho}
data.append(d)
df = pd.DataFrame(data)
df = df.sort_values(['pair_overlap','d1','d2'], ascending=False)
# Return only every other row to avoid repeats:
return df[::2].reset_index(drop=True)
if 'IS_GRADESCOPE_ENV' not in os.environ:
display(get_reader_pair_overlap())
###Output
_____no_output_____
###Markdown
This looks reasonable: none of the datasets have a lot of overlapping pairs, so we don't have to worry too much about places where they give conflicting scores. EvaluationThis section builds up the evaluation code that you'll use for the homework and bake-off. For illustrations, I'll read in a VSM created from `data/vsmdata/giga_window5-scaled.csv.gz`:
###Code
giga5 = pd.read_csv(
os.path.join(VSM_HOME, "giga_window5-scaled.csv.gz"), index_col=0)
###Output
_____no_output_____
###Markdown
Dataset evaluation
###Code
def word_similarity_evaluation(reader, df, distfunc=vsm.cosine):
"""
Word-similarity evalution framework.
Parameters
----------
reader : iterator
A reader for a word-similarity dataset. Just has to yield
tuples (word1, word2, score).
df : pd.DataFrame
The VSM being evaluated.
distfunc : function mapping vector pairs to floats.
The measure of distance between vectors. Can also be
`vsm.euclidean`, `vsm.matching`, `vsm.jaccard`, as well as
any other float-valued function on pairs of vectors.
Raises
------
ValueError
If `df.index` is not a subset of the words in `reader`.
Returns
-------
float, data
`float` is the Spearman rank correlation coefficient between
the dataset scores and the similarity values obtained from
`df` using `distfunc`. This evaluation is sensitive only to
rankings, not to absolute values. `data` is a `pd.DataFrame`
with columns['word1', 'word2', 'score', 'distance'].
"""
data = []
for w1, w2, score in reader():
d = {'word1': w1, 'word2': w2, 'score': score}
for w in [w1, w2]:
if w not in df.index:
raise ValueError(
"Word '{}' is in the similarity dataset {} but not in the "
"DataFrame, making this evaluation ill-defined. Please "
"switch to a DataFrame with an appropriate vocabulary.".
format(w, get_reader_name(reader)))
d['distance'] = distfunc(df.loc[w1], df.loc[w2])
data.append(d)
data = pd.DataFrame(data)
rho, pvalue = spearmanr(data['score'].values, data['distance'].values)
return rho, data
rho, eval_df = word_similarity_evaluation(men_reader, giga5)
rho
eval_df.head()
###Output
_____no_output_____
###Markdown
Dataset error analysisFor error analysis, we can look at the words with the largest delta between the gold score and the distance value in our VSM. We do these comparisons based on ranks, just as with our primary metric (Spearman $\rho$), and we normalize both rankings so that they have a comparable number of levels.
###Code
def word_similarity_error_analysis(eval_df):
eval_df['distance_rank'] = _normalized_ranking(eval_df['distance'])
eval_df['score_rank'] = _normalized_ranking(eval_df['score'])
eval_df['error'] = abs(eval_df['distance_rank'] - eval_df['score_rank'])
return eval_df.sort_values('error')
def _normalized_ranking(series):
ranks = series.rank(method='dense')
return ranks / ranks.sum()
###Output
_____no_output_____
###Markdown
Best predictions:
###Code
word_similarity_error_analysis(eval_df).head()
###Output
_____no_output_____
###Markdown
Worst predictions:
###Code
word_similarity_error_analysis(eval_df).tail()
###Output
_____no_output_____
###Markdown
Full evaluation A full evaluation is just a loop over all the readers on which one want to evaluate, with a macro-average at the end:
###Code
def full_word_similarity_evaluation(df, readers=READERS, distfunc=vsm.cosine):
"""
Evaluate a VSM against all datasets in `readers`.
Parameters
----------
df : pd.DataFrame
readers : tuple
The similarity dataset readers on which to evaluate.
distfunc : function mapping vector pairs to floats.
The measure of distance between vectors. Can also be
`vsm.euclidean`, `vsm.matching`, `vsm.jaccard`, as well as
any other float-valued function on pairs of vectors.
Returns
-------
pd.Series
Mapping dataset names to Spearman r values.
"""
scores = {}
for reader in readers:
try:
score, _ = word_similarity_evaluation(reader, df, distfunc=distfunc)
scores[get_reader_name(reader)] = score
except Exception as e:
print(e)
scores[get_reader_name(reader)] = np.nan
series = pd.Series(scores, name='Spearman r')
series['Macro-average'] = series.mean()
return series
full_word_similarity_evaluation(giga5)
if 'IS_GRADESCOPE_ENV' not in os.environ:
display(full_word_similarity_evaluation(giga5))
###Output
_____no_output_____
###Markdown
Homework questionsPlease embed your homework responses in this notebook, and do not delete any cells from the notebook. (You are free to add as many cells as you like as part of your responses.) PPMI as a baseline [0.5 points]The insight behind PPMI is a recurring theme in word representation learning, so it is a natural baseline for our task. For this question, write a function called `run_giga_ppmi_baseline` that does the following:1. Reads the Gigaword count matrix with a window of 20 and a flat scaling function into a `pd.DataFrame`s, as is done in the VSM notebooks. The file is `data/vsmdata/giga_window20-flat.csv.gz`, and the VSM notebooks provide examples of the needed code.1. Reweights this count matrix with PPMI.1. Evaluates this reweighted matrix using `full_word_similarity_evaluation`. The return value of `run_giga_ppmi_baseline` should be the return value of this call to `full_word_similarity_evaluation`.The goal of this question is to help you get more familiar with the code in `vsm` and the function `full_word_similarity_evaluation`.The function `test_run_giga_ppmi_baseline` can be used to test that you've implemented this specification correctly.
###Code
def run_giga_ppmi_baseline():
##### YOUR CODE HERE
# Reads the Gigaword count matrix with a window of 20 and a flat scaling function into a pd.DataFrame
giga20 = pd.read_csv(
os.path.join(VSM_HOME, "giga_window20-flat.csv.gz"), index_col=0)
# Reweights this count matrix with PPMI
giga20_PPMI = vsm.pmi(giga20)
# Evaluates giga20_PPMI
return full_word_similarity_evaluation(giga20_PPMI)
if 'IS_GRADESCOPE_ENV' not in os.environ:
display(run_giga_ppmi_baseline())
def test_run_giga_ppmi_baseline(func):
"""`func` should be `run_giga_ppmi_baseline"""
result = func()
ws_result = result.loc['wordsim353'].round(2)
ws_expected = 0.58
assert ws_result == ws_expected, \
"Expected wordsim353 value of {}; got {}".format(
ws_expected, ws_result)
if 'IS_GRADESCOPE_ENV' not in os.environ:
test_run_giga_ppmi_baseline(run_giga_ppmi_baseline)
###Output
_____no_output_____
###Markdown
Gigaword with LSA at different dimensions [0.5 points]We might expect PPMI and LSA to form a solid pipeline that combines the strengths of PPMI with those of dimensionality reduction. However, LSA has a hyper-parameter $k$ – the dimensionality of the final representations – that will impact performance. For this problem, write a wrapper function `run_ppmi_lsa_pipeline` that does the following:1. Takes as input a count `pd.DataFrame` and an LSA parameter `k`.1. Reweights the count matrix with PPMI.1. Applies LSA with dimensionality `k`.1. Evaluates this reweighted matrix using `full_word_similarity_evaluation`. The return value of `run_ppmi_lsa_pipeline` should be the return value of this call to `full_word_similarity_evaluation`.The goal of this question is to help you get a feel for how much LSA alone can contribute to this problem. The function `test_run_ppmi_lsa_pipeline` will test your function on the count matrix in `data/vsmdata/giga_window20-flat.csv.gz`.
###Code
def run_ppmi_lsa_pipeline(count_df, k):
##### YOUR CODE HERE
# Reweights the count matrix with PPMI
df_ppmi = vsm.pmi(count_df)
# Applies LSA with dimensionality k
df_lsa = vsm.lsa(df_ppmi, k=k)
return full_word_similarity_evaluation(df_lsa)
if 'IS_GRADESCOPE_ENV' not in os.environ:
giga20 = pd.read_csv(
os.path.join(VSM_HOME, "giga_window20-flat.csv.gz"), index_col=0)
display(run_ppmi_lsa_pipeline(giga20, k=10))
def test_run_ppmi_lsa_pipeline(func):
"""`func` should be `run_ppmi_lsa_pipeline`"""
giga20 = pd.read_csv(
os.path.join(VSM_HOME, "giga_window20-flat.csv.gz"), index_col=0)
results = func(giga20, k=10)
men_expected = 0.57
men_result = results.loc['men'].round(2)
assert men_result == men_expected,\
"Expected men value of {}; got {}".format(men_expected, men_result)
if 'IS_GRADESCOPE_ENV' not in os.environ:
test_run_ppmi_lsa_pipeline(run_ppmi_lsa_pipeline)
###Output
_____no_output_____
###Markdown
Gigaword with GloVe [0.5 points]Can GloVe improve over the PPMI-based baselines we explored above? To begin to address this question, let's run GloVe and see how performance on our task changes throughout the optimization process.__Your task__: write a function `run_glove_wordsim_evals` that does the following:1. Has a parameter `n_runs` with default value `5`.1. Reads in `data/vsmdata/giga_window5-scaled.csv.gz`.1. Creates a `TorchGloVe` instance with `warm_start=True`, `max_iter=50`, and all other parameters set to their defaults.1. `n_runs` times, calls `fit` on your model and, after each, runs `full_word_similarity_evaluation` with default keyword parameters, extract the 'Macro-average' score, and add that score to a list.1. Returns the list of scores created.The trend should give you a sense for whether it is worth running GloVe for more iterations.Some implementation notes:* `TorchGloVe` will accept and return `pd.DataFrame` instances, so you shouldn't need to do any type conversions.* Performance will vary a lot for this function, so there is some uncertainty in the testing, but `run_glove_wordsim_evals` will at least check that you wrote a function with the right general logic.
###Code
def run_glove_wordsim_evals(n_runs=5):
from torch_glove import TorchGloVe
##### YOUR CODE HERE
# reads Giga5 scaled as a DataFrame
giga5 = pd.read_csv(
os.path.join(VSM_HOME, "giga_window5-scaled.csv.gz"), index_col=0)
# creates TorchGlove instance
glove_model = TorchGloVe(warm_start=True, max_iter=50)
# initiates the scores
scores = list()
for _ in range(n_runs):
giga5_glv = glove_model.fit(giga5)
scores.append(full_word_similarity_evaluation(giga5_glv)['Macro-average'])
return scores
def test_run_small_glove_evals(data):
"""`data` should be the return value of `run_glove_wordsim_evals`"""
assert isinstance(data, list), \
"`run_glove_wordsim_evals` should return a list"
assert all(isinstance(x, float) for x in data), \
("All the values in the list returned by `run_glove_wordsim_evals` "
"should be floats.")
if 'IS_GRADESCOPE_ENV' not in os.environ:
glove_scores = run_glove_wordsim_evals()
print(glove_scores)
test_run_small_glove_evals(glove_scores)
###Output
Finished epoch 50 of 50; error is 2588608.03125
###Markdown
Dice coefficient [0.5 points]Implement the Dice coefficient for real-valued vectors, as$$\textbf{dice}(u, v) = 1 - \frac{ 2 \sum_{i=1}^{n}\min(u_{i}, v_{i})}{ \sum_{i=1}^{n} u_{i} + v_{i}}$$ You can use `test_dice_implementation` below to check that your implementation is correct.
###Code
def dice(u, v):
##### YOUR CODE HERE
d = 1 - 2 * np.minimum(u, v).sum()/(u + v).sum()
return d
def test_dice_implementation(func):
"""`func` should be an implementation of `dice` as defined above."""
X = np.array([
[ 4., 4., 2., 0.],
[ 4., 61., 8., 18.],
[ 2., 8., 10., 0.],
[ 0., 18., 0., 5.]])
assert func(X[0], X[1]).round(5) == 0.80198
assert func(X[1], X[2]).round(5) == 0.67568
if 'IS_GRADESCOPE_ENV' not in os.environ:
test_dice_implementation(dice)
###Output
_____no_output_____
###Markdown
t-test reweighting [2 points] The t-test statistic can be thought of as a reweighting scheme. For a count matrix $X$, row index $i$, and column index $j$:$$\textbf{ttest}(X, i, j) = \frac{ P(X, i, j) - \big(P(X, i, *)P(X, *, j)\big)}{\sqrt{(P(X, i, *)P(X, *, j))}}$$where $P(X, i, j)$ is $X_{ij}$ divided by the total values in $X$, $P(X, i, *)$ is the sum of the values in row $i$ of $X$ divided by the total values in $X$, and $P(X, *, j)$ is the sum of the values in column $j$ of $X$ divided by the total values in $X$.For this problem, implement this reweighting scheme. You can use `test_ttest_implementation` below to check that your implementation is correct. You do not need to use this for any evaluations, though we hope you will be curious enough to do so!
###Code
def ttest(df):
##### YOUR CODE HERE
# get the estimated probability matrix
proba = df / df.values.sum()
# get the estimated proba of the rows and the columns
rows = proba.values.sum(axis=1, keepdims=True)
cols = proba.values.sum(axis=0, keepdims=True)
prod = rows @ cols
output = (proba - prod) / np.sqrt(prod)
return output
def test_ttest_implementation(func):
"""`func` should be `ttest`"""
X = pd.DataFrame(np.array([
[ 4., 4., 2., 0.],
[ 4., 61., 8., 18.],
[ 2., 8., 10., 0.],
[ 0., 18., 0., 5.]]))
actual = np.array([
[ 0.33056, -0.07689, 0.04321, -0.10532],
[-0.07689, 0.03839, -0.10874, 0.07574],
[ 0.04321, -0.10874, 0.36111, -0.14894],
[-0.10532, 0.07574, -0.14894, 0.05767]])
predicted = func(X)
assert np.array_equal(predicted.round(5), actual)
if 'IS_GRADESCOPE_ENV' not in os.environ:
test_ttest_implementation(ttest)
###Output
_____no_output_____
###Markdown
Enriching a VSM with subword information [2 points]It might be useful to combine character-level information with word-level information. To help you begin asssessing this idea, this question asks you to write a function that modifies an existing VSM so that the representation for each word $w$ is the element-wise sum of $w$'s original word-level representation with all the representations for the n-grams $w$ contains. The following starter code should help you structure this and clarify the requirements, and a simple test is included below as well.You don't need to write a lot of code; the motivation for this question is that the function you write could have practical value.
###Code
def subword_enrichment(df, n=4):
# 1. Use `vsm.ngram_vsm` to create a character-level
# VSM from `df`, using the above parameter `n` to
# set the size of the ngrams.
##### YOUR CODE HERE
df_char = vsm.ngram_vsm(df, n)
# 2. Use `vsm.character_level_rep` to get the representation
# for every word in `df` according to the character-level
# VSM you created above.
##### YOUR CODE HERE
char_reps = dict()
for word in df.index:
char_reps[word] = vsm.character_level_rep(word, df_char, n)
print('{}: {}'.format(word, char_reps[word]))
# 3. For each representation created at step 2, add in its
# original representation from `df`. (This should use
# element-wise addition; the dimensionality of the vectors
# will be unchanged.)
##### YOUR CODE HERE
char_reps_array = pd.DataFrame.from_dict(char_reps, orient='index').reindex(df.index).values
df = df + char_reps_array
# 4. Return a `pd.DataFrame` with the same index and column
# values as `df`, but filled with the new representations
# created at step 3.
##### YOUR CODE HERE
return df
def test_subword_enrichment(func):
"""`func` should be an implementation of subword_enrichment as
defined above.
"""
vocab = ["ABCD", "BCDA", "CDAB", "DABC"]
df = pd.DataFrame([
[1, 1, 2, 1],
[3, 4, 2, 4],
[0, 0, 1, 0],
[1, 0, 0, 0]], index=vocab)
expected = pd.DataFrame([
[14, 14, 18, 14],
[22, 26, 18, 26],
[10, 10, 14, 10],
[14, 10, 10, 10]], index=vocab)
new_df = func(df, n=2)
assert np.array_equal(expected.columns, new_df.columns), \
"Columns are not the same"
assert np.array_equal(expected.index, new_df.index), \
"Indices are not the same"
assert np.array_equal(expected.values, new_df.values), \
"Co-occurrence values aren't the same"
if 'IS_GRADESCOPE_ENV' not in os.environ:
test_subword_enrichment(subword_enrichment)
###Output
ABCD: [13 13 16 13]
BCDA: [19 22 16 22]
CDAB: [10 10 13 10]
DABC: [13 10 10 10]
###Markdown
Your original system [3 points]This question asks you to design your own model. You can of course include steps made above (ideally, the above questions informed your system design!), but your model should not be literally identical to any of the above models. Other ideas: retrofitting, autoencoders, GloVe, subword modeling, ... Requirements:1. Your code must operate on one or more of the count matrices in `data/vsmdata`. You can choose which subset of them; this is an important design feature of your system. __Other pretrained vectors cannot be introduced__.1. Retrofitting is permitted.1. Your code must be self-contained, so that we can work with your model directly in your homework submission notebook. If your model depends on external data or other resources, please submit a ZIP archive containing these resources along with your submission.In the cell below, please provide a brief technical description of your original system, so that the teaching team can gain an understanding of what it does. This will help us to understand your code and analyze all the submissions to identify patterns and strategies. We also ask that you report the best score your system got during development, just to help us understand how systems performed overall.
###Code
# PLEASE MAKE SURE TO INCLUDE THE FOLLOWING BETWEEN THE START AND STOP COMMENTS:
# 1) Textual description of your system.
# 2) The code for your original system.
# 3) The score achieved by your system in place of MY_NUMBER.
# With no other changes to that line.
# You should report your score as a decimal value <=1.0
# PLEASE MAKE SURE NOT TO DELETE OR EDIT THE START AND STOP COMMENTS
# NOTE: MODULES, CODE AND DATASETS REQUIRED FOR YOUR ORIGINAL SYSTEM
# SHOULD BE ADDED BELOW THE 'IS_GRADESCOPE_ENV' CHECK CONDITION. DOING
# SO ABOVE THE CHECK MAY CAUSE THE AUTOGRADER TO FAIL.
# START COMMENT: Enter your system description in this cell.
# My peak score was: 0.531219
# Description of the system:
# DataSet required: data/vsmdata/giga_window5-scaled.csv.gz saved as a Pandas DataFrame in variable giga5
# The original dataset is re-weighted using PPMI
# Dimensionality reduction is applied to the resulting DataFrame using LSA
# Retrofitting is finally apply to the resulting DataFrame using NLTK Wordnet graph for synonymy API.
# For that purpose in order to mapp strings to lemmas we collapse together all the senses that a given string
# can have as is done in the course Notebook. We hope that our vectors can model multiple senses at the same time.
# Testing across test datasets seems to confirm the value of this retrofitting assumption, as results are significally
# improved for the two similarity dataset (no improvement for relatedness datasets)
# Code:
if 'IS_GRADESCOPE_ENV' not in os.environ:
from retrofitting import Retrofitter
def get_wordnet_edges():
"""
From the NLTK Wordnet graph for synonymy API, creates the edge dictionary we need for using the Retrofitter class.
"""
from nltk.corpus import wordnet as wn
edges = defaultdict(set)
for ss in wn.all_synsets():
lem_names = {lem.name() for lem in ss.lemmas()}
for lem in lem_names:
edges[lem] |= lem_names
return edges
def convert_edges_to_indices(edges, Q):
"""
Tools used for retrofitting. Replaces strings in edges by corresponding row rank in Q
:param edges: edge dictionary built from NLTK Worldnet API
:param Q: matrix of embedded space
:return:
"""
lookup = dict(zip(Q.index, range(Q.shape[0])))
index_edges = defaultdict(set)
for start, finish_nodes in edges.items():
s = lookup.get(start)
if s:
f = {lookup[n] for n in finish_nodes if n in lookup}
if f:
index_edges[s] = f
return index_edges
def wordsim_model(words: pd.DataFrame = giga5) -> pd.DataFrame:
"""
Model used to transform a co-occurence matrix in order to make it more efficient for finding word
similarities.
:param words: co-occurence matrix
:return: transformed co-occurence matrix
"""
# re-weights words using PPMI
words_pmi = vsm.pmi(words)
# Dimentionality reduction using LSA applied to words_pmi
words_lsa = vsm.lsa(words_pmi, 350)
# creates the wordnet synonymy edge dictionary we need for using the Retrofitter class
wn_edges = get_wordnet_edges()
wn_index_edges = convert_edges_to_indices(wn_edges, words_lsa)
# Applies retrofitting to words_lsa
wn_retro = Retrofitter(verbose=True)
words_retro = wn_retro.fit(words_lsa, wn_index_edges)
return words_retro
# STOP COMMENT: Please do not remove this comment.
# apply our model to giga5
words = wordsim_model(giga5)
# get results
full_word_similarity_evaluation(words)
if 'IS_GRADESCOPE_ENV' not in os.environ:
full_word_similarity_evaluation(words)
###Output
_____no_output_____
###Markdown
Bake-off [1 point]For the bake-off, we will release two additional datasets. The announcement will go out on the discussion forum. We will also release reader code for these datasets that you can paste into this notebook. You will evaluate your custom model $M$ (from the previous question) on these new datasets using `full_word_similarity_evaluation`. Rules:1. Only one evaluation is permitted.1. No additional system tuning is permitted once the bake-off has started.The cells below this one constitute your bake-off entry.People who enter will receive the additional homework point, and people whose systems achieve the top score will receive an additional 0.5 points. We will test the top-performing systems ourselves, and only systems for which we can reproduce the reported results will win the extra 0.5 points.Late entries will be accepted, but they cannot earn the extra 0.5 points. Similarly, you cannot win the bake-off unless your homework is submitted on time.The announcement will include the details on where to submit your entry.
###Code
if 'IS_GRADESCOPE_ENV' not in os.environ:
# Please enter your code in the scope of the above conditional.
##### YOUR CODE HERE
def mturk287_reader():
"""MTurk-287: http://tx.technion.ac.il/~kirar/Datasets.html"""
src_filename = os.path.join(
WORDSIM_HOME, 'bakeoff-wordsim-test-data', 'MTurk-287.csv')
return wordsim_dataset_reader(
src_filename, header=False)
def simlex999_reader(wordsim_test_home=WORDSIM_HOME):
"""SimLex999: https://www.cl.cam.ac.uk/~fh295/SimLex-999.zip"""
src_filename = os.path.join(
WORDSIM_HOME, 'bakeoff-wordsim-test-data', 'SimLex-999', 'SimLex-999.txt')
return wordsim_dataset_reader(
src_filename, delimiter="\t", header=True, score_col_index=3)
BAKEOFF = (simlex999_reader, mturk287_reader)
print(full_word_similarity_evaluation(words, readers=BAKEOFF))
# Enter your bake-off assessment code into this cell.
# Please do not remove this comment.
if 'IS_GRADESCOPE_ENV' not in os.environ:
pass
# Please enter your code in the scope of the above conditional.
##### YOUR CODE HERE
# On an otherwise blank line in this cell, please enter
# your "Macro-average" value as reported by the code above.
# Please enter only a number between 0 and 1 inclusive.
# Please do not remove this comment.
if 'IS_GRADESCOPE_ENV' not in os.environ:
pass
# Please enter your score in the scope of the above conditional.
##### YOUR CODE HERE
###Output
_____no_output_____ |
notebooks/Covariate_testing_master.ipynb | ###Markdown
CREATING THE DATAFRAME OF PAIRS OF DIRECTORS AND ACTORS
###Code
movie_industry = pd.read_csv("../data/movie_industry.csv", encoding = "ISO-8859-1" )
movie_industry.loc[movie_industry.rating == "Not specified", "rating"] = "NOT RATED"
movie_industry.loc[movie_industry.rating == "UNRATED", "rating"] = "NOT RATED"
movie_industry.head()
val_genre=movie_industry['genre'].value_counts()
val_genre
picked_genre = val_genre[:8].index
picked_genre
movie_industry['genre'][~ movie_industry['genre'].isin(picked_genre)] = 'Other_genre'
movie_industry['genre'].value_counts()
val_rating=movie_industry['rating'].value_counts()
val_rating
picked_rating = val_rating[:5].index
picked_rating
movie_industry['rating'][~ movie_industry['rating'].isin(picked_rating)] = 'Other_rating'
movie_industry['rating'].value_counts()
class Graph:
""" Wrapper class Graph to create a bipartite graph
Takes in the following paramaters
directors_to_actors_relation : Dataframe with the data for directors and actors
weight func : function which defined the weight of an edge. Takes the dateframe to calcuate weights from and
the nodes values to calculate for
weight_func_args : column names used to calculate the weights
director_column : Column name for director
actor_column : Column name for actor,
bipartite : default true
"""
def __init__(self,
directors_to_actors_relation,
weight_func,
weight_func_args,
director_column="director",
actor_column="star",
bipartite=True):
self.G = nx.Graph()
directors = set(directors_to_actors_relation[director_column].values)
actors = set(directors_to_actors_relation[actor_column].values)
#store the director node as a tuple with director name and boolean True to indicate director
for director in directors:
self.G.add_node((director, True))
#store the actor node as a tuple with actor name and boolean False to indicate actor
for actor in actors:
self.G.add_node((actor, False))
#add weights to all edges
for director in directors:
rows = directors_to_actors_relation[directors_to_actors_relation[director_column] == director]
for index in rows.index.values:
self.G.add_edge((director, True),
(rows.loc[index, actor_column], False),
weight=weight_func(*[rows.loc[index, i] for i in weight_func_args], directors_to_actors_relation))
#calcualtes edge weight as the number of collaborations
#takes in director name, star name and data to calculate weight from
def example_weight_func(director, star, df):
return len(df.loc[((df["director"] == director) & (df["star"] == star))])
storage = Graph(movie_industry, example_weight_func, ["director", "star"])
directors = list(set(movie_industry["director"].values))
actors = list(set(movie_industry["star"].values))
collabs = []
for director in directors:
for actor in actors:
if storage.G.get_edge_data((director, True), (actor, False)):
collabs.append(storage.G.get_edge_data((director, True), (actor, False))["weight"])
else:
collabs.append(0)
res = [director for director in directors for i in range(len(actors))]
df = pd.DataFrame({"director": res,
"actor": actors*len(directors),
"collabs": collabs})
df.head()
df['collabs'].value_counts()
###Output
_____no_output_____
###Markdown
ADDING AND TESTING COVARIATES
###Code
df["collab indicator"] = (df.collabs > 0)*1
def add_feature_actor(feature_total, feature_mean, feature_name):
for actor in actors:
temp = movie_industry[movie_industry.star == actor]
sum_feature = sum(temp[feature_name].values)
mean_feature = np.mean(temp[feature_name].values)
feature_total[actor] = sum_feature
feature_mean[actor] = mean_feature
def add_feature_director(feature_total, feature_mean, feature_name):
for director in directors:
temp = movie_industry[movie_industry.director == director]
sum_feature = sum(temp[feature_name].values)
mean_feature = np.mean(temp[feature_name].values)
feature_total[director] = sum_feature
feature_mean[director] = mean_feature
###Output
_____no_output_____
###Markdown
gross
###Code
actor_total_gross = {}
actor_mean_gross = {}
add_feature_actor(actor_total_gross, actor_mean_gross, 'gross')
df["actor_total_gross"] = df.actor.map(actor_total_gross)
df["actor_mean_gross"] = df.actor.map(actor_mean_gross)
df["actor_total_gross"] = np.log(df["actor_total_gross"]+1)
df["actor_mean_gross"] = np.log(df["actor_mean_gross"]+1)
director_total_gross = {}
director_mean_gross = {}
add_feature_director(director_total_gross, director_mean_gross, 'gross')
df["director_total_gross"] = df.director.map(director_total_gross)
df["director_mean_gross"] = df.director.map(director_mean_gross)
df["director_total_gross"] = np.log(df["director_total_gross"]+1)
df["director_mean_gross"] = np.log(df["director_mean_gross"]+1)
df["total_gross_diff"] = abs(df.director_total_gross - df.actor_total_gross)
df["mean_gross_diff"] = abs(df.director_mean_gross - df.actor_mean_gross)
df.head()
df_dropped = df.copy().dropna()
bins = np.linspace(min(df_dropped.mean_gross_diff.values), max(df_dropped.mean_gross_diff.values), 50)
plt.hist(df_dropped[df_dropped["collab indicator"] == 1].mean_gross_diff.values, density = True, bins = bins, label = "1", alpha = 0.5)
plt.hist(df_dropped[df_dropped["collab indicator"] == 0].mean_gross_diff.values, density = True, bins = bins, label = "0", alpha = 0.5)
plt.legend()
print('mean_gross_diff variance in pairs w/ collab is {}'.format(np.var(df_dropped[df_dropped["collab indicator"] == 1].mean_gross_diff.values)))
print('mean_gross_diff variance in pairs w/o collab is {}'.format(np.var(df_dropped[df_dropped["collab indicator"] == 0].mean_gross_diff.values)))
ttest_ind(df_dropped[df_dropped["collab indicator"] == 1].mean_gross_diff.values,
df_dropped[df_dropped["collab indicator"] == 0].mean_gross_diff.values,
equal_var=False)
ks_2samp(df_dropped[df_dropped["collab indicator"] == 1].mean_gross_diff.values,
df_dropped[df_dropped["collab indicator"] == 0].mean_gross_diff.values)
df_dropped = df.copy().dropna()
bins = np.linspace(min(df_dropped.total_gross_diff.values), max(df_dropped.total_gross_diff.values), 50)
plt.hist(df_dropped[df_dropped["collab indicator"] == 1].total_gross_diff.values, density = True, bins = bins, label = "1", alpha = 0.5)
plt.hist(df_dropped[df_dropped["collab indicator"] == 0].total_gross_diff.values, density = True, bins = bins, label = "0", alpha = 0.5)
plt.legend()
print('total_gross_diff variance in pairs w/ collab is {}'.format(np.var(df_dropped[df_dropped["collab indicator"] == 1].total_gross_diff.values)))
print('total_gross_diff variance in pairs w/o collab is {}'.format(np.var(df_dropped[df_dropped["collab indicator"] == 0].total_gross_diff.values)))
ttest_ind(df_dropped[df_dropped["collab indicator"] == 1].total_gross_diff.values,
df_dropped[df_dropped["collab indicator"] == 0].total_gross_diff.values,
equal_var=False)
ks_2samp(df_dropped[df_dropped["collab indicator"] == 1].total_gross_diff.values,
df_dropped[df_dropped["collab indicator"] == 0].total_gross_diff.values)
###Output
_____no_output_____
###Markdown
budget
###Code
actor_total_budget = {}
actor_mean_budget = {}
add_feature_actor(actor_total_budget, actor_mean_budget, 'budget')
df["actor_total_budget"] = df.actor.map(actor_total_budget)
df["actor_mean_budget"] = df.actor.map(actor_mean_budget)
df["actor_total_budget"] = np.log(df["actor_total_budget"]+1)
df["actor_mean_budget"] = np.log(df["actor_mean_budget"]+1)
director_total_budget = {}
director_mean_budget = {}
add_feature_director(director_total_budget, director_mean_budget, 'budget')
df["director_total_budget"] = df.director.map(director_total_budget)
df["director_mean_budget"] = df.director.map(director_mean_budget)
df["director_total_budget"] = np.log(df["director_total_budget"]+1)
df["director_mean_budget"] = np.log(df["director_mean_budget"]+1)
df["total_budget_diff"] = abs(df.director_total_budget - df.actor_total_budget)
df["mean_budget_diff"] = abs(df.director_mean_budget - df.actor_mean_budget)
df.head()
df_dropped = df.copy().dropna()
bins = np.linspace(min(df_dropped.mean_budget_diff.values), max(df_dropped.mean_budget_diff.values), 50)
plt.hist(df_dropped[df_dropped["collab indicator"] == 1].mean_budget_diff.values, density = True, bins = bins, label = "1", alpha = 0.5)
plt.hist(df_dropped[df_dropped["collab indicator"] == 0].mean_budget_diff.values, density = True, bins = bins, label = "0", alpha = 0.5)
plt.legend()
from scipy.stats import ttest_ind
print('mean_budget_diff variance in pairs w/ collab is {}'.format(np.var(df_dropped[df_dropped["collab indicator"] == 1].mean_budget_diff.values)))
print('mean_budget_diff variance in pairs w/o collab is {}'.format(np.var(df_dropped[df_dropped["collab indicator"] == 0].mean_budget_diff.values)))
ttest_ind(df_dropped[df_dropped["collab indicator"] == 1].mean_budget_diff.values,
df_dropped[df_dropped["collab indicator"] == 0].mean_budget_diff.values,
equal_var=False)
ks_2samp(df_dropped[df_dropped["collab indicator"] == 1].mean_budget_diff.values,
df_dropped[df_dropped["collab indicator"] == 0].mean_budget_diff.values)
df_dropped = df.copy().dropna()
bins = np.linspace(min(df_dropped.total_budget_diff.values), max(df_dropped.total_budget_diff.values), 50)
plt.hist(df_dropped[df_dropped["collab indicator"] == 1].total_budget_diff.values, density = True, bins = bins, label = "1", alpha = 0.5)
plt.hist(df_dropped[df_dropped["collab indicator"] == 0].total_budget_diff.values, density = True, bins = bins, label = "0", alpha = 0.5)
plt.legend()
print('total_budget_diff variance in pairs w/ collab is {}'.format(np.var(df_dropped[df_dropped["collab indicator"] == 1].total_budget_diff.values)))
print('total_budget_diff variance in pairs w/o collab is {}'.format(np.var(df_dropped[df_dropped["collab indicator"] == 0].total_budget_diff.values)))
ttest_ind(df_dropped[df_dropped["collab indicator"] == 1].total_budget_diff.values,
df_dropped[df_dropped["collab indicator"] == 0].total_budget_diff.values,
equal_var=False)
ks_2samp(df_dropped[df_dropped["collab indicator"] == 1].total_budget_diff.values,
df_dropped[df_dropped["collab indicator"] == 0].total_budget_diff.values)
###Output
_____no_output_____
###Markdown
score
###Code
actor_total_score = {}
actor_mean_score = {}
add_feature_actor(actor_total_score, actor_mean_score, 'score')
df["actor_total_score"] = df.actor.map(actor_total_score)
df["actor_mean_score"] = df.actor.map(actor_mean_score)
df["actor_total_score"] = np.log(df["actor_total_score"]+1)
df["actor_mean_score"] = np.log(df["actor_mean_score"]+1)
director_total_score = {}
director_mean_score = {}
add_feature_director(director_total_score, director_mean_score, 'score')
df["director_total_score"] = df.director.map(director_total_score)
df["director_mean_score"] = df.director.map(director_mean_score)
df["director_total_score"] = np.log(df["actor_total_score"]+1)
df["director_mean_score"] = np.log(df["actor_mean_score"]+1)
df["total_score_diff"] = abs(df.director_total_score - df.actor_total_score)
df["mean_score_diff"] = abs(df.director_mean_score - df.actor_mean_score)
df.head()
df_dropped = df.copy().dropna()
bins = np.linspace(min(df_dropped.mean_score_diff.values), max(df_dropped.mean_score_diff.values), 50)
plt.hist(df_dropped[df_dropped["collab indicator"] == 1].mean_score_diff.values, density = True, bins = bins, label = "1", alpha = 0.5)
plt.hist(df_dropped[df_dropped["collab indicator"] == 0].mean_score_diff.values, density = True, bins = bins, label = "0", alpha = 0.5)
plt.legend()
print('mean_score_diff variance in pairs w/ collab is {}'.format(np.var(df_dropped[df_dropped["collab indicator"] == 1].mean_score_diff.values)))
print('mean_score_diff variance in pairs w/o collab is {}'.format(np.var(df_dropped[df_dropped["collab indicator"] == 0].mean_score_diff.values)))
ttest_ind(df_dropped[df_dropped["collab indicator"] == 1].mean_score_diff.values,
df_dropped[df_dropped["collab indicator"] == 0].mean_score_diff.values,
equal_var=False)
ks_2samp(df_dropped[df_dropped["collab indicator"] == 1].mean_score_diff.values,
df_dropped[df_dropped["collab indicator"] == 0].mean_score_diff.values)
bins = np.linspace(min(df_dropped.total_score_diff.values), max(df_dropped.total_score_diff.values), 50)
plt.hist(df_dropped[df_dropped["collab indicator"] == 1].total_score_diff.values, density = True, bins = bins, label = "1", alpha = 0.5)
plt.hist(df_dropped[df_dropped["collab indicator"] == 0].total_score_diff.values, density = True, bins = bins, label = "0", alpha = 0.5)
plt.legend()
print('total_score_diff variance in pairs w/ collab is {}'.format(np.var(df_dropped[df_dropped["collab indicator"] == 1].total_score_diff.values)))
print('total_score_diff variance in pairs w/o collab is {}'.format(np.var(df_dropped[df_dropped["collab indicator"] == 0].total_score_diff.values)))
ttest_ind(df_dropped[df_dropped["collab indicator"] == 1].total_score_diff.values,
df_dropped[df_dropped["collab indicator"] == 0].total_score_diff.values,
equal_var=False)
ks_2samp(df_dropped[df_dropped["collab indicator"] == 1].total_score_diff.values,
df_dropped[df_dropped["collab indicator"] == 0].total_score_diff.values)
###Output
_____no_output_____
###Markdown
votes
###Code
actor_total_votes = {}
actor_mean_votes = {}
add_feature_actor(actor_total_votes, actor_mean_votes, 'votes')
df["actor_total_votes"] = df.actor.map(actor_total_votes)
df["actor_mean_votes"] = df.actor.map(actor_mean_votes)
df["actor_total_votes"] = np.log(df["actor_total_score"]+1)
df["actor_mean_votes"] = np.log(df["actor_mean_score"]+1)
director_total_votes = {}
director_mean_votes = {}
add_feature_director(director_total_votes, director_mean_votes, 'votes')
df["director_total_votes"] = df.director.map(director_total_votes)
df["director_mean_votes"] = df.director.map(director_mean_votes)
df["director_total_votes"] = np.log(df["actor_total_votes"]+1)
df["director_mean_votes"] = np.log(df["actor_mean_votes"]+1)
df["total_votes_diff"] = abs(df.director_total_votes - df.actor_total_votes)
df["mean_votes_diff"] = abs(df.director_mean_votes - df.actor_mean_votes)
df.head()
df_dropped = df.copy().dropna()
bins = np.linspace(min(df_dropped.mean_votes_diff.values), max(df_dropped.mean_votes_diff.values), 50)
plt.hist(df_dropped[df_dropped["collab indicator"] == 1].mean_votes_diff.values, density = True, bins = bins, label = "1", alpha = 0.5)
plt.hist(df_dropped[df_dropped["collab indicator"] == 0].mean_votes_diff.values, density = True, bins = bins, label = "0", alpha = 0.5)
plt.legend()
print('mean_votes_diff variance in pairs w/ collab is {}'.format(np.var(df_dropped[df_dropped["collab indicator"] == 1].mean_votes_diff.values)))
print('mean_votes_diff variance in pairs w/o collab is {}'.format(np.var(df_dropped[df_dropped["collab indicator"] == 0].mean_votes_diff.values)))
ttest_ind(df_dropped[df_dropped["collab indicator"] == 1].mean_votes_diff.values,
df_dropped[df_dropped["collab indicator"] == 0].mean_votes_diff.values,
equal_var=False)
ks_2samp(df_dropped[df_dropped["collab indicator"] == 1].mean_votes_diff.values,
df_dropped[df_dropped["collab indicator"] == 0].mean_votes_diff.values)
bins = np.linspace(min(df_dropped.total_votes_diff.values), max(df_dropped.total_votes_diff.values), 50)
plt.hist(df_dropped[df_dropped["collab indicator"] == 1].total_votes_diff.values, density = True, bins = bins, label = "1", alpha = 0.5)
plt.hist(df_dropped[df_dropped["collab indicator"] == 0].total_votes_diff.values, density = True, bins = bins, label = "0", alpha = 0.5)
plt.legend()
print('total_votes_diff variance in pairs w/ collab is {}'.format(np.var(df_dropped[df_dropped["collab indicator"] == 1].total_votes_diff.values)))
print('total_votes_diff variance in pairs w/o collab is {}'.format(np.var(df_dropped[df_dropped["collab indicator"] == 0].total_votes_diff.values)))
ttest_ind(df_dropped[df_dropped["collab indicator"] == 1].total_votes_diff.values,
df_dropped[df_dropped["collab indicator"] == 0].total_votes_diff.values,
equal_var=False)
ks_2samp(df_dropped[df_dropped["collab indicator"] == 1].total_votes_diff.values,
df_dropped[df_dropped["collab indicator"] == 0].total_votes_diff.values)
###Output
_____no_output_____
###Markdown
oscar nomination
###Code
oscar = pd.read_csv("../data/the_oscar_award.csv")
oscar.head()
oscar.category = oscar.category.str.lower()
filtered = oscar[oscar.category.str.contains("(actor)|(actress)|(directing)", regex = True)]
filtered
filtered.loc[filtered.category.str.contains("(actor)|(actress)"), 'is_director'] = 0
filtered.loc[filtered.category.str.contains("directing"), 'is_director'] = 1
oscar_ppl = filtered[~filtered.name.str.contains("( and)|(,)|(and )", regex = True)]
oscar_ppl.is_director = oscar_ppl.is_director.astype(np.uint8)
oscar_ppl.head()
gp_ppl = oscar_ppl.groupby(['name', 'is_director']).size().reset_index(name='nomination_counts')
gp_ppl_director = gp_ppl.groupby(['is_director']).get_group(1)
gp_ppl_actor = gp_ppl.groupby(['is_director']).get_group(0)
gp_ppl_director.head()
gp_ppl_actor.head()
df_w_oscar= pd.merge(df, gp_ppl_director, left_on='director', right_on='name')
df_w_oscar= pd.merge(df_w_oscar, gp_ppl_actor, left_on='actor', right_on='name')
df_w_oscar.drop(['name_x', 'is_director_x', 'name_y', 'is_director_y'], axis=1, inplace=True)
df_w_oscar.rename(columns={'nomination_counts_x': 'director_nominations', 'nomination_counts_y': 'actor_nominations'}, inplace=True)
df_w_oscar.head()
df_w_oscar['nominations_diff']=df_w_oscar['director_nominations'] - df_w_oscar['actor_nominations']
df_w_oscar.head()
bins = np.linspace(min(df_w_oscar.nominations_diff.values), max(df_w_oscar.nominations_diff.values), 50)
plt.hist(df_w_oscar[df_w_oscar["collab indicator"] == 1].nominations_diff.values, density = True, bins = bins, label = "1", alpha = 0.5)
plt.hist(df_w_oscar[df_w_oscar["collab indicator"] == 0].nominations_diff.values, density = True, bins = bins, label = "0", alpha = 0.5)
plt.legend()
print('nominations_diff variance in pairs w/ collab is {}'.format(np.var(df_w_oscar[df_w_oscar["collab indicator"] == 1].nominations_diff.values)))
print('nominations_diff variance in pairs w/o collab is {}'.format(np.var(df_w_oscar[df_w_oscar["collab indicator"] == 0].nominations_diff.values)))
ttest_ind(df_w_oscar[df_w_oscar["collab indicator"] == 1].nominations_diff.values,
df_w_oscar[df_w_oscar["collab indicator"] == 0].nominations_diff.values,
equal_var=False)
ks_2samp(df_w_oscar[df_w_oscar["collab indicator"] == 1].nominations_diff.values,
df_w_oscar[df_w_oscar["collab indicator"] == 0].nominations_diff.values)
###Output
_____no_output_____
###Markdown
oscar win
###Code
oscar_ppl.head()
gp_pplw = oscar_ppl.groupby(['name', 'is_director']).agg({'winner': 'sum'}).reset_index()
gp_pplw_director = gp_pplw.groupby(['is_director']).get_group(1)
gp_pplw_actor = gp_pplw.groupby(['is_director']).get_group(0)
gp_pplw_director.head()
gp_pplw_actor.head()
df_w_oscar2= pd.merge(df, gp_pplw_director, left_on='director', right_on='name')
df_w_oscar2= pd.merge(df_w_oscar2, gp_pplw_actor, left_on='actor', right_on='name')
df_w_oscar2.drop(['name_x', 'is_director_x', 'name_y', 'is_director_y'], axis=1, inplace=True)
df_w_oscar2.rename(columns={'winner_x': 'director_wins', 'winner_y': 'actor_wins'}, inplace=True)
df_w_oscar2.head()
df_w_oscar2['wins_diff']=df_w_oscar2['director_wins'] - df_w_oscar2['actor_wins']
df_w_oscar2.head()
bins = np.linspace(min(df_w_oscar2.wins_diff.values), max(df_w_oscar2.wins_diff.values), 50)
plt.hist(df_w_oscar2[df_w_oscar2["collab indicator"] == 1].wins_diff.values, density = True, bins = bins, label = "1", alpha = 0.5)
plt.hist(df_w_oscar2[df_w_oscar2["collab indicator"] == 0].wins_diff.values, density = True, bins = bins, label = "0", alpha = 0.5)
plt.legend()
print('wins_diff variance in pairs w/ collab is {}'.format(np.var(df_w_oscar2[df_w_oscar2["collab indicator"] == 1].wins_diff.values)))
print('wins_diff variance in pairs w/o collab is {}'.format(np.var(df_w_oscar2[df_w_oscar2["collab indicator"] == 0].wins_diff.values)))
ttest_ind(df_w_oscar2[df_w_oscar2["collab indicator"] == 1].wins_diff.values,
df_w_oscar2[df_w_oscar2["collab indicator"] == 0].wins_diff.values,
equal_var=False)
ks_2samp(df_w_oscar2[df_w_oscar2["collab indicator"] == 1].wins_diff.values,
df_w_oscar2[df_w_oscar2["collab indicator"] == 0].wins_diff.values)
###Output
_____no_output_____
###Markdown
genre
###Code
genre = np.unique(movie_industry.genre.values)
genre
dir_genre_prop = {}
for director in directors:
temp = movie_industry[movie_industry.director == director].groupby(["genre"])["director"].count()
prop = []
total = sum(temp.values)
for category in genre:
if category in temp.index:
prop.append(temp[category]/total)
else:
prop.append(0)
dir_genre_prop[director] = np.array(prop)
act_genre_prop = {}
for actor in actors:
temp = movie_industry[movie_industry.star == actor].groupby(["genre"])["star"].count()
prop = []
total = sum(temp.values)
for category in genre:
if category in temp.index:
prop.append(temp[category]/total)
else:
prop.append(0)
act_genre_prop[actor] = np.array(prop)
%%time
genre_tvd = []
for i in df.index:
director = df.director[i]
actor = df.actor[i]
tvd = sum(abs(dir_genre_prop[director] - act_genre_prop[actor]))/2
genre_tvd.append(tvd)
df["genre_tvd"] = genre_tvd
bins = np.linspace(min(genre_tvd), max(genre_tvd), 20)
bins
plt.hist(df[df["collab indicator"] == 1].genre_tvd.values, density = True, bins = bins, label = "1", alpha = 0.5)
plt.hist(df[df["collab indicator"] == 0].genre_tvd.values, density = True, bins = bins, label = "0", alpha = 0.5)
plt.legend()
ttest_ind(df[df["collab indicator"] == 1].genre_tvd.values,
df[df["collab indicator"] == 0].genre_tvd.values,
equal_var=False)
ks_2samp(df[df["collab indicator"] == 1].genre_tvd.values,
df[df["collab indicator"] == 0].genre_tvd.values)
###Output
_____no_output_____
###Markdown
Rating
###Code
rating = np.unique(movie_industry.rating.values)
rating
dir_rating_prop = {}
for director in directors:
temp = movie_industry[movie_industry.director == director].groupby(["rating"])["director"].count()
prop = []
total = sum(temp.values)
for category in rating:
if category in temp.index:
prop.append(temp[category]/total)
else:
prop.append(0)
dir_rating_prop[director] = np.array(prop)
act_rating_prop = {}
for actor in actors:
temp = movie_industry[movie_industry.star == actor].groupby(["rating"])["star"].count()
prop = []
total = sum(temp.values)
for category in rating:
if category in temp.index:
prop.append(temp[category]/total)
else:
prop.append(0)
act_rating_prop[actor] = np.array(prop)
%%time
rating_tvd = []
for i in df.index:
director = df.director[i]
actor = df.actor[i]
tvd = sum(abs(dir_rating_prop[director] - act_rating_prop[actor]))/2
rating_tvd.append(tvd)
df["rating_tvd"] = rating_tvd
bins = np.linspace(min(rating_tvd), max(rating_tvd), 20)
bins
plt.hist(df[df["collab indicator"] == 1].rating_tvd.values, density = True, bins = bins, label = "1", alpha = 0.5)
plt.hist(df[df["collab indicator"] == 0].rating_tvd.values, density = True, bins = bins, label = "0", alpha = 0.5)
plt.legend()
ttest_ind(df[df["collab indicator"] == 1].rating_tvd.values,
df[df["collab indicator"] == 0].rating_tvd.values,
equal_var=False)
ks_2samp(df[df["collab indicator"] == 1].rating_tvd.values,
df[df["collab indicator"] == 0].rating_tvd.values)
###Output
_____no_output_____
###Markdown
Visualization
###Code
df_dropped = df.dropna()
fig = plt.figure()
f, axes = plt.subplots(4, 2, figsize=(26,16), sharex=False)
plt.suptitle("T-test for Significant Covariants", fontsize=16)
bins1 = np.linspace(min(df_dropped.mean_votes_diff.values), max(df_dropped.mean_votes_diff.values), 50)
axes[0, 0].hist(df_dropped[df_dropped["collab indicator"] == 1].mean_votes_diff.values, density = True, bins = bins1, label = "1", alpha = 0.5)
axes[0, 0].hist(df_dropped[df_dropped["collab indicator"] == 0].mean_votes_diff.values, density = True, bins = bins1, label = "0", alpha = 0.5)
axes[0, 0].legend()
axes[0, 0].title.set_text('Difference in Mean Votes P-Value=2.43e-25')
bins2 = np.linspace(min(df_dropped.mean_score_diff.values), max(df_dropped.mean_score_diff.values), 50)
axes[0, 1].hist(df_dropped[df_dropped["collab indicator"] == 1].mean_score_diff.values, density = True, bins = bins2, label = "1", alpha = 0.5)
axes[0, 1].hist(df_dropped[df_dropped["collab indicator"] == 0].mean_score_diff.values, density = True, bins = bins2, label = "0", alpha = 0.5)
axes[0, 1].legend()
axes[0, 1].title.set_text('Difference in Mean Score P-Value=0.0')
bins3 = np.linspace(min(df_dropped.mean_gross_diff.values), max(df_dropped.mean_gross_diff.values), 50)
axes[1, 0].hist(df_dropped[df_dropped["collab indicator"] == 1].mean_gross_diff.values, density = True, bins = bins3, label = "1", alpha = 0.5)
axes[1, 0].hist(df_dropped[df_dropped["collab indicator"] == 0].mean_gross_diff.values, density = True, bins = bins3, label = "0", alpha = 0.5)
axes[1, 0].legend()
axes[1, 0].title.set_text('Difference in Total Gross P-Value=0.0')
bins4 = np.linspace(min(df_w_oscar.nominations_diff.values), max(df_w_oscar.nominations_diff.values), 50)
axes[1, 1].hist(df_w_oscar[df_w_oscar["collab indicator"] == 1].nominations_diff.values, density = True, bins = bins4, label = "1", alpha = 0.5)
axes[1, 1].hist(df_w_oscar[df_w_oscar["collab indicator"] == 0].nominations_diff.values, density = True, bins = bins4, label = "0", alpha = 0.5)
axes[1, 1].legend()
axes[1, 1].title.set_text('Difference in Number of Oscar Nominations P-Value=7.97e-05')
bins5 = np.linspace(min(df_w_oscar2.wins_diff.values), max(df_w_oscar2.wins_diff.values), 50)
axes[2, 0].hist(df_w_oscar2[df_w_oscar2["collab indicator"] == 1].wins_diff.values, density = True, bins = bins5, label = "1", alpha = 0.5)
axes[2, 0].hist(df_w_oscar2[df_w_oscar2["collab indicator"] == 0].wins_diff.values, density = True, bins = bins5, label = "0", alpha = 0.5)
axes[2, 0].legend()
axes[2, 0].title.set_text('Difference in Number of Oscar Wins P-Value=1.80e-04')
bins6 = np.linspace(min(genre_tvd), max(genre_tvd), 20)
axes[2, 1].hist(df[df["collab indicator"] == 1].genre_tvd.values, density = True, bins = bins6, label = "1", alpha = 0.5)
axes[2, 1].hist(df[df["collab indicator"] == 0].genre_tvd.values, density = True, bins = bins6, label = "0", alpha = 0.5)
axes[2, 1].legend()
axes[2, 1].title.set_text('Difference in Genre P-Value=0.0')
bins7 = np.linspace(min(rating_tvd), max(rating_tvd), 20)
axes[3, 0].hist(df[df["collab indicator"] == 1].rating_tvd.values, density = True, bins = bins7, label = "1", alpha = 0.5)
axes[3, 0].hist(df[df["collab indicator"] == 0].rating_tvd.values, density = True, bins = bins7, label = "0", alpha = 0.5)
axes[3, 0].legend()
axes[3, 0].title.set_text('Difference in Rating P-Value=0.0')
axes[3,1].set_axis_off()
f.savefig('../figures/T-test_for_Significant_Covariants.png', bbox_inches='tight')
###Output
_____no_output_____ |
notebooks/23_Validation-MK4.ipynb | ###Markdown
Validation of mini drone MK4_Written by Marc Budinger, Aitor Ochotorena (INSA Toulouse) and Scott Delbecq (ISAE Supaero)_ 
###Code
import scipy
import scipy.optimize
from math import pi
from math import sqrt
import math
import timeit
import time
import numpy as np
import ipywidgets as widgets
from ipywidgets import interactive
from IPython.display import display
import pandas as pd
###Output
_____no_output_____
###Markdown
2.- Problem Definition
###Code
# Specifications
# Load
M_load=1 # [kg] load mass
# Autonomy
t_h=15 # [min] time of hover fligth
k_maxthrust=2.5 #[-] ratio max thrust
# Architecture of the multi-rotor drone (4,6, 8 arms, ...)
Narm=4 # [-] number of arm
Np_arm=1 # [-] number of propeller per arm (1 or 2)
Npro=Np_arm*Narm # [-] Propellers number
# Motor Architecture
Mod=0 # Chose between 0 for 'Direct Drive' or 1 for Gear Drive
#Maximum climb speed
V_cl=10 # [m/s] max climb speed
CD= 1.3 #[] drag coef
A_top=0.09/2 #[m^2] top surface. For a quadcopter: Atop=1/2*Lb^2+3*pi*Dpro^2/4
# Propeller characteristics
NDmax= 105000/60*.0254# [Hz.m] max speed limit (N.D max)
# Air properties
rho_air=1.18 # [kg/m^3] air density
# MTOW
MTOW = 2. # [kg] maximal mass
# Objectif
MaxTime=False # Objective
###Output
_____no_output_____
###Markdown
3.- Sizing Code
###Code
# -----------------------
# sizing code
# -----------------------
# inputs:
# - param: optimisation variables vector (reduction ratio, oversizing coefficient)
# - arg: selection of output
# output:
# - objective if arg='Obj', problem characteristics if arg='Prt', constraints other else
def SizingCode(param, arg):
# Design variables
# ---
k_M=param[0] # over sizing coefficient on the load mass
k_mot=param[1] # over sizing coefficient on the motor torque
k_speed_mot=param[2] # over sizing coefficient on the motor speed
k_vb=param[3] # over sizing coefficient for the battery voltage
k_ND=param[4] # slow down propeller coef : ND = kNDmax / k_ND
D_ratio=param[5] # aspect ratio e/c (thickness/side) for the beam of the frame
k_Mb=param[6] # over sizing coefficient on the battery load mass
beta=param[7] # pitch/diameter ratio of the propeller
J=param[8] # advance ratio
k_ESC=param[9] # over sizing coefficient on the ESC power
if Mod==1:
Nred=param[10] # Reduction Ratio [-]
# Hover, Climbing & Take-Off thrust
# ---
Mtotal=k_M*M_load # [kg] Estimation of the total mass (or equivalent weight of dynamic scenario)
F_pro_hov=Mtotal*(9.81)/Npro # [N] Thrust per propeller for hover
F_pro_to=F_pro_hov*k_maxthrust # [N] Max Thrust per propeller
F_pro_cl=(Mtotal*9.81+0.5*rho_air*CD*A_top*V_cl**2)/Npro # [N] Thrust per propeller for climbing
# Propeller characteristicss
# Ref : APC static
C_t_sta=4.27e-02 + 1.44e-01 * beta # Thrust coef with T=C_T.rho.n^2.D^4
C_p_sta=-1.48e-03 + 9.72e-02 * beta # Power coef with P=C_p.rho.n^3.D^5
Dpro_ref=11*.0254 # [m] diameter
Mpro_ref=0.53*0.0283 # [kg] mass
# Ref: APC dynamics
C_t_dyn=0.02791-0.06543*J+0.11867*beta+0.27334*beta**2-0.28852*beta**3+0.02104*J**3-0.23504*J**2+0.18677*beta*J**2 # thrust coef for APC props in dynamics
C_p_dyn=0.01813-0.06218*beta+0.00343*J+0.35712*beta**2-0.23774*beta**3+0.07549*beta*J-0.1235*J**2 # power coef for APC props in dynamics
#Choice of diameter and rotational speed from a maximum thrust
Dpro=(F_pro_to/(C_t_sta*rho_air*(NDmax*k_ND)**2))**0.5 # [m] Propeller diameter
n_pro_to=NDmax*k_ND/Dpro # [Hz] Propeller speed
n_pro_cl=sqrt(F_pro_cl/(C_t_dyn*rho_air*Dpro**4)) # [Hz] climbing speed
# Propeller selection with take-off scenario
Wpro_to=n_pro_to*2*3.14 # [rad/s] Propeller speed
Mpro=Mpro_ref*(Dpro/Dpro_ref)**3 # [kg] Propeller mass
Ppro_to=C_p_sta*rho_air*n_pro_to**3*Dpro**5# [W] Power per propeller
Qpro_to=Ppro_to/Wpro_to # [N.m] Propeller torque
# Propeller torque& speed for hover
n_pro_hover=sqrt(F_pro_hov/(C_t_sta*rho_air*Dpro**4)) # [Hz] hover speed
Wpro_hover=n_pro_hover*2*3.14 # [rad/s] Propeller speed
Ppro_hover=C_p_sta*rho_air*n_pro_hover**3*Dpro**5# [W] Power per propeller
Qpro_hover=Ppro_hover/Wpro_hover # [N.m] Propeller torque
V_bat_est=k_vb*1.84*(Ppro_to)**(0.36) # [V] battery voltage estimation
#Propeller torque &speed for climbing
Wpro_cl=n_pro_cl*2*3.14 # [rad/s] Propeller speed for climbing
Ppro_cl=C_p_dyn*rho_air*n_pro_cl**3*Dpro**5# [W] Power per propeller for climbing
Qpro_cl=Ppro_cl/Wpro_cl # [N.m] Propeller torque for climbing
# Motor selection & scaling laws
# ---
# Motor reference sized from max thrust
# Ref : AXI 5325/16 GOLD LINE
Tmot_ref=2.32 # [N.m] rated torque
Tmot_max_ref=85/70*Tmot_ref # [N.m] max torque
Rmot_ref=0.03 # [Ohm] resistance
Mmot_ref=0.575 # [kg] mass
Ktmot_ref=0.03 # [N.m/A] torque coefficient
Tfmot_ref=0.03 # [N.m] friction torque (zero load, nominal speed)
#Motor speeds:
if Mod==1:
W_hover_motor=Wpro_hover*Nred # [rad/s] Nominal motor speed with reduction
W_cl_motor=Wpro_cl*Nred # [rad/s] Motor Climb speed with reduction
W_to_motor=Wpro_to*Nred # [rad/s] Motor take-off speed with reduction
else:
W_hover_motor=Wpro_hover # [rad/s] Nominal motor speed
W_cl_motor=Wpro_cl # [rad/s] Motor Climb speed
W_to_motor=Wpro_to # [rad/s] Motor take-off speed
#Motor torque:
if Mod==1:
Tmot_hover=Qpro_hover/Nred # [N.m] motor nominal torque with reduction
Tmot_to=Qpro_to/Nred # [N.m] motor take-off torque with reduction
Tmot_cl=Qpro_cl/Nred # [N.m] motor climbing torque with reduction
else:
Tmot_hover=Qpro_hover# [N.m] motor take-off torque
Tmot_to=Qpro_to # [N.m] motor take-off torque
Tmot_cl=Qpro_cl # [N.m] motor climbing torque
Tmot=k_mot*Tmot_hover# [N.m] required motor nominal torque for reductor
Tmot_max=Tmot_max_ref*(Tmot/Tmot_ref)**(1) # [N.m] max torque
Mmot=Mmot_ref*(Tmot/Tmot_ref)**(3/3.5) # [kg] Motor mass
# Selection with take-off speed
Ktmot=V_bat_est/(k_speed_mot*W_to_motor) # [N.m/A] or [V/(rad/s)] Kt motor (RI term is missing)
Rmot=Rmot_ref*(Tmot/Tmot_ref)**(-5/3.5)*(Ktmot/Ktmot_ref)**(2) # [Ohm] motor resistance
Tfmot=Tfmot_ref*(Tmot/Tmot_ref)**(3/3.5) # [N.m] Friction torque
# Hover current and voltage
Imot_hover = (Tmot_hover+Tfmot)/Ktmot # [I] Current of the motor per propeller
Umot_hover = Rmot*Imot_hover + W_hover_motor*Ktmot # [V] Voltage of the motor per propeller
P_el_hover = Umot_hover*Imot_hover # [W] Hover : output electrical power
# Take-Off current and voltage
Imot_to = (Tmot_to+Tfmot)/Ktmot # [I] Current of the motor per propeller
Umot_to = Rmot*Imot_to + W_to_motor*Ktmot # [V] Voltage of the motor per propeller
P_el_to = Umot_to*Imot_to # [W] Takeoff : output electrical power
# Climbing current and voltage
Imot_cl = (Tmot_cl+Tfmot)/Ktmot # [I] Current of the motor per propeller for climbing
Umot_cl = Rmot*Imot_cl + W_cl_motor*Ktmot # [V] Voltage of the motor per propeller for climbing
P_el_cl = Umot_cl*Imot_cl # [W] Power : output electrical power for climbing
#Gear box model
if Mod==1:
mg1=0.0309*Nred**2+0.1944*Nred+0.6389 # Ratio input pinion to mating gear
WF=1+1/mg1+mg1+mg1**2+Nred**2/mg1+Nred**2 # Weight Factor (ƩFd2/C) [-]
k_sd=1000 # Surface durability factor [lb/in]
C=2*8.85*Tmot_hover/k_sd # Coefficient (C=2T/K) [in3]
Fd2=WF*C # Solid rotor volume [in3]
Mgear=Fd2*0.3*0.4535 # Mass reducer [kg] (0.3 is a coefficient evaluated for aircraft application and 0.4535 to pass from lb to kg)
Fdp2=C*(Nred+1)/Nred # Solid rotor pinion volume [in3]
dp=(Fdp2/0.7)**(1/3)*0.0254 # Pinion diameter [m] (0.0254 to pass from in to m)
dg=Nred*dp # Gear diameter [m]
di=mg1*dp # Inler diameter [m]
# Battery selection & scaling laws sized from hover
# ---
# Battery
# Ref : Prolitex TP3400-4SPX25
Mbat_ref=.329 # [kg] mass
#Ebat_ref=4*3.7*3.3*3600 # [J] energy
#Ebat_ref=220*3600*.329 # [J]
Cbat_ref= 3.400*3600#[A.s]
Vbat_ref=4*3.7#[V]
Imax_ref=170#[A]
Ncel=V_bat_est/3.7# [-] Cell number, round (up value)
V_bat=3.7*Ncel # [V] Battery voltage
Mbat=k_Mb*M_load # Battery mass
# Hover --> autonomy
C_bat = Mbat/Mbat_ref*Cbat_ref/V_bat*Vbat_ref # [A.s] Capacity of the battery
I_bat = (P_el_hover*Npro)/.95/V_bat # [I] Current of the battery
t_hf = .8*C_bat/I_bat/60 # [min] Hover time
Imax=Imax_ref*C_bat/Cbat_ref # [A] max current battery
# ESC sized from max speed
# Ref : Turnigy K_Force 70HV
Pesc_ref=3108 # [W] Power
Vesc_ref=44.4 #[V]Voltage
Mesc_ref=.115 # [kg] Mass
P_esc=k_ESC*(P_el_to*V_bat/Umot_to) # [W] power electronic power max thrust
P_esc_cl=P_el_cl*V_bat/Umot_cl # [W] power electronic power max climb
Mesc = Mesc_ref*(P_esc/Pesc_ref) # [kg] Mass ESC
Vesc = Vesc_ref*(P_esc/Pesc_ref)**(1/3)# [V] ESC voltage
# Frame sized from max thrust
# ---
Mfra_ref=.347 #[kg] MK7 frame
Marm_ref=0.14#[kg] Mass of all arms
# Length calculation
# sep= 2*pi/Narm #[rad] interior angle separation between propellers
Lbra=Dpro/2/(math.sin(pi/Narm)) #[m] length of the arm
# Static stress
# Sigma_max=200e6/4 # [Pa] Alu max stress (2 reduction for dynamic, 2 reduction for stress concentration)
Sigma_max=280e6/4 # [Pa] Composite max stress (2 reduction for dynamic, 2 reduction for stress concentration)
# Tube diameter & thickness
Dout=(F_pro_to*Lbra*32/(pi*Sigma_max*(1-D_ratio**4)))**(1/3) # [m] outer diameter of the beam
D_ratio # [m] inner diameter of the beam
# Mass
Marm=pi/4*(Dout**2-(D_ratio*Dout)**2)*Lbra*1700*Narm # [kg] mass of the arms
Mfra=Mfra_ref*(Marm/Marm_ref)# [kg] mass of the frame
# Thrust Bearing reference
# Ref : SKF 31309/DF
Life=5000 # Life time [h]
k_bear=1
Cd_bear_ref=2700 # Dynamic reference Load [N]
C0_bear_ref=1500 # Static reference load[N]
Db_ref=0.032 # Exterior reference diameter [m]
Lb_ref=0.007 # Reference lenght [m]
db_ref=0.020 # Interior reference diametere [m]
Mbear_ref=0.018 # Reference mass [kg]
# Thrust bearing model"""
L10=(60*(Wpro_hover*60/2/3.14)*(Life/10**6)) # Nominal endurance [Hours of working]
Cd_ap=(2*F_pro_hov*L10**(1/3))/2 # Applied load on bearing [N]
Fmax=2*4*F_pro_to/2
C0_bear=k_bear*Fmax # Static load [N]
Cd_bear=Cd_bear_ref/C0_bear_ref**(1.85/2)*C0_bear**(1.85/2) # Dynamic Load [N]
Db=Db_ref/C0_bear_ref**0.5*C0_bear**0.5 # Bearing exterior Diameter [m]
db=db_ref/C0_bear_ref**0.5*C0_bear**0.5 # Bearing interior Diameter [m]
Lb=Lb_ref/C0_bear_ref**0.5*C0_bear**0.5 # Bearing lenght [m]
Mbear=Mbear_ref/C0_bear_ref**1.5*C0_bear**1.5 # Bearing mass [kg]
# Objective and Constraints sum up
# ---
if Mod==0:
Mtotal_final = (Mesc+Mpro+Mmot+Mbear)*Npro+M_load+Mbat+Mfra+Marm #total mass without reducer
else:
Mtotal_final = (Mesc+Mpro+Mmot+Mgear+Mbear)*Npro+M_load+Mbat+Mfra+Marm #total mass with reducer
if MaxTime==True:
constraints = [(Mtotal-Mtotal_final)/Mtotal_final,
(NDmax-n_pro_cl*Dpro)/NDmax,
(Tmot_max-Tmot_to)/Tmot_max,
(Tmot_max-Tmot_cl)/Tmot_max,
(-J*n_pro_cl*Dpro+V_cl),
0.01+(J*n_pro_cl*Dpro-V_cl),
(V_bat-Umot_to)/V_bat,
(V_bat-Umot_cl)/V_bat,
(V_bat-Vesc)/V_bat,
(V_bat*Imax-Umot_to*Imot_to*Npro/0.95)/(V_bat*Imax),
(V_bat*Imax-Umot_cl*Imot_cl*Npro/0.95)/(V_bat*Imax),
(P_esc-P_esc_cl)/P_esc,
(MTOW-Mtotal_final)/Mtotal_final
]
else:
constraints = [(Mtotal-Mtotal_final)/Mtotal_final,
(NDmax-n_pro_cl*Dpro)/NDmax,
(Tmot_max-Tmot_to)/Tmot_max,
(Tmot_max-Tmot_cl)/Tmot_max,
(-J*n_pro_cl*Dpro+V_cl),
0.01+(J*n_pro_cl*Dpro-V_cl),
(V_bat-Umot_to)/V_bat,
(V_bat-Umot_cl)/V_bat,
(V_bat-Vesc)/V_bat,
(V_bat*Imax-Umot_to*Imot_to*Npro/0.95)/(V_bat*Imax),
(V_bat*Imax-Umot_cl*Imot_cl*Npro/0.95)/(V_bat*Imax),
(P_esc-P_esc_cl)/P_esc,
(t_hf-t_h)/t_hf,
]
# Objective and contraints
if arg=='Obj':
P=0 # Penalisation nulle
if MaxTime==False:
for C in constraints:
if (C<0.):
P=P-1e9*C
return Mtotal_final+P # for mass optimisation
else:
for C in constraints:
if (C<0.):
P=P-1e9*C
return 1/t_hf+P # for time optimisation
elif arg=='Prt':
col_names_opt = ['Type', 'Name', 'Min', 'Value', 'Max', 'Unit', 'Comment']
df_opt = pd.DataFrame()
df_opt = df_opt.append([{'Type': 'Optimization', 'Name': 'k_M', 'Min': bounds[0][0], 'Value': k_M, 'Max': bounds[0][1], 'Unit': '[-]', 'Comment': 'over sizing coefficient on the load mass '}])[col_names_opt]
df_opt = df_opt.append([{'Type': 'Optimization', 'Name': 'k_mot', 'Min': bounds[1][0], 'Value': k_mot, 'Max': bounds[1][1], 'Unit': '[-]', 'Comment': 'over sizing coefficient on the motor torque '}])[col_names_opt]
df_opt = df_opt.append([{'Type': 'Optimization', 'Name': 'k_speed_mot', 'Min': bounds[2][0], 'Value': k_speed_mot, 'Max': bounds[2][1], 'Unit': '[-]', 'Comment': 'over sizing coefficient on the motor speed'}])[col_names_opt]
df_opt = df_opt.append([{'Type': 'Optimization', 'Name': 'k_vb', 'Min': bounds[3][0], 'Value': k_vb, 'Max': bounds[3][1], 'Unit': '[-]', 'Comment': 'over sizing coefficient for the battery voltage'}])[col_names_opt]
df_opt = df_opt.append([{'Type': 'Optimization', 'Name': 'k_ND', 'Min': bounds[4][0], 'Value': k_ND, 'Max': bounds[4][1], 'Unit': '[-]', 'Comment': 'Ratio ND/NDmax'}])[col_names_opt]
df_opt = df_opt.append([{'Type': 'Optimization', 'Name': 'D_ratio', 'Min': bounds[5][0], 'Value': D_ratio, 'Max': bounds[5][1], 'Unit': '[-]', 'Comment': 'aspect ratio e/c (thickness/side) for the beam of the frame'}])[col_names_opt]
df_opt = df_opt.append([{'Type': 'Optimization', 'Name': 'k_Mb', 'Min': bounds[6][0], 'Value': k_Mb, 'Max': bounds[6][1], 'Unit': '[-]', 'Comment': 'over sizing coefficient on the battery load mass '}])[col_names_opt]
df_opt = df_opt.append([{'Type': 'Optimization', 'Name': 'beta_pro', 'Min': bounds[7][0], 'Value': beta, 'Max': bounds[7][1], 'Unit': '[-]', 'Comment': 'pitch/diameter ratio of the propeller'}])[col_names_opt]
df_opt = df_opt.append([{'Type': 'Optimization', 'Name': 'J', 'Min': bounds[8][0], 'Value': J, 'Max': bounds[8][1], 'Unit': '[-]', 'Comment': 'Advance ratio'}])[col_names_opt]
df_opt = df_opt.append([{'Type': 'Optimization', 'Name': 'k_ESC', 'Min': bounds[9][0], 'Value': k_ESC, 'Max': bounds[9][1], 'Unit': '[-]', 'Comment': 'over sizing coefficient on the ESC power'}])[col_names_opt]
if Mod==1:
df_opt = df_opt.append([{'Type': 'Optimization', 'Name': 'N_red', 'Min': bounds[10][0], 'Value': N_red, 'Max': bounds[10][1], 'Unit': '[-]', 'Comment': 'Reduction ratio'}])[col_names_opt]
df_opt = df_opt.append([{'Type': 'Constraints', 'Name': 'Const 0', 'Min': 0, 'Value': constraints[0], 'Max': '-', 'Unit': '[-]', 'Comment': '(Mtotal-Mtotal_final)'}])[col_names_opt]
df_opt = df_opt.append([{'Type': 'Constraints', 'Name': 'Const 1', 'Min': 0, 'Value': constraints[1], 'Max': '-', 'Unit': '[-]', 'Comment': '(NDmax-n_pro_cl*Dpro)/NDmax'}])[col_names_opt]
df_opt = df_opt.append([{'Type': 'Constraints', 'Name': 'Const 2', 'Min': 0, 'Value': constraints[2], 'Max': '-', 'Unit': '[-]', 'Comment': '(Tmot_max-Tmot_to)/Tmot_max'}])[col_names_opt]
df_opt = df_opt.append([{'Type': 'Constraints', 'Name': 'Const 3', 'Min': 0, 'Value': constraints[3], 'Max': '-', 'Unit': '[-]', 'Comment': '(Tmot_max-Tmot_cl)/Tmot_max'}])[col_names_opt]
df_opt = df_opt.append([{'Type': 'Constraints', 'Name': 'Const 4', 'Min': 0, 'Value': constraints[4], 'Max': '-', 'Unit': '[-]', 'Comment': '(-J*n_pro_cl*Dpro+V_cl)'}])[col_names_opt]
df_opt = df_opt.append([{'Type': 'Constraints', 'Name': 'Const 5', 'Min': 0, 'Value': constraints[5], 'Max': '-', 'Unit': '[-]', 'Comment': '0.01+(+J*n_pro_cl*Dpro-V_cl)'}])[col_names_opt]
df_opt = df_opt.append([{'Type': 'Constraints', 'Name': 'Const 6', 'Min': 0, 'Value': constraints[6], 'Max': '-', 'Unit': '[-]', 'Comment': '(V_bat-Umot_to)/V_bat'}])[col_names_opt]
df_opt = df_opt.append([{'Type': 'Constraints', 'Name': 'Const 7', 'Min': 0, 'Value': constraints[7], 'Max': '-', 'Unit': '[-]', 'Comment': '(V_bat-Umot_cl)/V_bat'}])[col_names_opt]
df_opt = df_opt.append([{'Type': 'Constraints', 'Name': 'Const 8', 'Min': 0, 'Value': constraints[8], 'Max': '-', 'Unit': '[-]', 'Comment': '(V_bat-Vesc)/V_bat'}])[col_names_opt]
df_opt = df_opt.append([{'Type': 'Constraints', 'Name': 'Const 9', 'Min': 0, 'Value': constraints[9], 'Max': '-', 'Unit': '[-]', 'Comment': '(V_bat*Imax-Umot_to*Imot_to*Npro/0.95)/(V_bat*Imax)'}])[col_names_opt]
df_opt = df_opt.append([{'Type': 'Constraints', 'Name': 'Const 10', 'Min': 0, 'Value': constraints[10], 'Max': '-', 'Unit': '[-]', 'Comment': '(V_bat*Imax-Umot_cl*Imot_cl*Npro/0.95)/(V_bat*Imax)'}])[col_names_opt]
df_opt = df_opt.append([{'Type': 'Constraints', 'Name': 'Const 11', 'Min': 0, 'Value': constraints[11], 'Max': '-', 'Unit': '[-]', 'Comment': '(P_esc-P_esc_cl)/P_esc'}])[col_names_opt]
if MaxTime==False:
df_opt = df_opt.append([{'Type': 'Constraints', 'Name': 'Const 12', 'Min': 0, 'Value': constraints[12], 'Max': '-', 'Unit': '[-]', 'Comment': '(t_hf-t_h)/t_hf'}])[col_names_opt]
else:
df_opt = df_opt.append([{'Type': 'Constraints', 'Name': 'Const 12', 'Min': 0, 'Value': constraints[12], 'Max': '-', 'Unit': '[-]', 'Comment': '(MTOW-Mtotal_final)/Mtotal_final'}])[col_names_opt]
df_opt = df_opt.append([{'Type': 'Objective', 'Name': 'Objective', 'Min': 0, 'Value': Mtotal_final, 'Max': '-', 'Unit': '[kg]', 'Comment': 'Total mass'}])[col_names_opt]
col_names = ['Type', 'Name', 'Value', 'Unit', 'Comment']
df = pd.DataFrame()
df = df.append([{'Type': 'Propeller', 'Name': 'F_pro_to', 'Value': F_pro_to, 'Unit': '[N]', 'Comment': 'Thrust for 1 propeller during Take Off'}])[col_names]
df = df.append([{'Type': 'Propeller', 'Name': 'F_pro_cl', 'Value': F_pro_cl, 'Unit': '[N]', 'Comment': 'Thrust for 1 propeller during Take Off'}])[col_names]
df = df.append([{'Type': 'Propeller', 'Name': 'F_pro_hov', 'Value': F_pro_hov, 'Unit': '[N]', 'Comment': 'Thrust for 1 propeller during Hover'}])[col_names]
df = df.append([{'Type': 'Propeller', 'Name': 'rho_air', 'Value': rho_air, 'Unit': '[kg/m^3]', 'Comment': 'Air density'}])[col_names]
df = df.append([{'Type': 'Propeller', 'Name': 'ND_max', 'Value': NDmax, 'Unit': '[Hz.m]', 'Comment': 'Max speed limit (N.D max)'}])[col_names]
df = df.append([{'Type': 'Propeller', 'Name': 'Dpro_ref', 'Value': Dpro_ref, 'Unit': '[m]', 'Comment': 'Reference propeller diameter'}])[col_names]
df = df.append([{'Type': 'Propeller', 'Name': 'M_pro_ref', 'Value': Mpro_ref, 'Unit': '[kg]', 'Comment': 'Reference propeller mass'}])[col_names]
df = df.append([{'Type': 'Propeller', 'Name': 'C_t_sta', 'Value': C_t_sta, 'Unit': '[-]', 'Comment': 'Static thrust coefficient of the propeller'}])[col_names]
df = df.append([{'Type': 'Propeller', 'Name': 'C_t_dyn', 'Value': C_t_dyn, 'Unit': '[-]', 'Comment': 'Dynamic thrust coefficient of the propeller'}])[col_names]
df = df.append([{'Type': 'Propeller', 'Name': 'C_p_sta', 'Value': C_p_sta, 'Unit': '[-]', 'Comment': 'Static power coefficient of the propeller'}])[col_names]
df = df.append([{'Type': 'Propeller', 'Name': 'C_p_dyn', 'Value': C_p_dyn, 'Unit': '[-]', 'Comment': 'Dynamic power coefficient of the propeller'}])[col_names]
df = df.append([{'Type': 'Propeller', 'Name': 'D_pro', 'Value': Dpro, 'Unit': '[m]', 'Comment': 'Diameter of the propeller'}])[col_names]
df = df.append([{'Type': 'Propeller', 'Name': 'n_pro_cl', 'Value': n_pro_cl, 'Unit': '[Hz]', 'Comment': 'Rev speed of the propeller during climbing'}])[col_names]
df = df.append([{'Type': 'Propeller', 'Name': 'n_pro_to', 'Value': n_pro_to, 'Unit': '[Hz]', 'Comment': 'Rev speed of the propeller during takeoff'}])[col_names]
df = df.append([{'Type': 'Propeller', 'Name': 'n_pro_hov', 'Value': n_pro_hover, 'Unit': '[Hz]', 'Comment': 'Rev speed of the propeller during hover'}])[col_names]
df = df.append([{'Type': 'Propeller', 'Name': 'P_pro_cl', 'Value': Ppro_cl, 'Unit': '[W]', 'Comment': 'Power on the mechanical shaft of the propeller during climbing'}])[col_names]
df = df.append([{'Type': 'Propeller', 'Name': 'P_pro_to', 'Value': Ppro_to, 'Unit': '[W]', 'Comment': 'Power on the mechanical shaft of the propeller during takeoff'}])[col_names]
df = df.append([{'Type': 'Propeller', 'Name': 'P_pro_hov', 'Value': Ppro_hover, 'Unit': '[W]', 'Comment': 'Power on the mechanical shaft of the propeller during hover'}])[col_names]
df = df.append([{'Type': 'Propeller', 'Name': 'M_pro', 'Value': Mpro, 'Unit': '[kg]', 'Comment': 'Mass of the propeller'}])[col_names]
df = df.append([{'Type': 'Propeller', 'Name': 'Omega_pro_cl', 'Value': Wpro_cl, 'Unit': '[rad/s]', 'Comment': 'Rev speed of the propeller during climbing'}])[col_names]
df = df.append([{'Type': 'Propeller', 'Name': 'Omega_pro_to', 'Value': Wpro_to, 'Unit': '[rad/s]', 'Comment': 'Rev speed of the propeller during takeoff'}])[col_names]
df = df.append([{'Type': 'Propeller', 'Name': 'Omega_pro_hov', 'Value': Wpro_hover, 'Unit': '[rad/s]', 'Comment': 'Rev speed of the propeller during hover'}])[col_names]
df = df.append([{'Type': 'Propeller', 'Name': 'T_pro_hov', 'Value': Qpro_hover, 'Unit': '[N.m]', 'Comment': 'Torque on the mechanical shaft of the propeller during hover'}])[col_names]
df = df.append([{'Type': 'Propeller', 'Name': 'T_pro_to', 'Value': Qpro_to, 'Unit': '[N.m]', 'Comment': 'Torque on the mechanical shaft of the propeller during takeoff'}])[col_names]
df = df.append([{'Type': 'Propeller', 'Name': 'T_pro_cl', 'Value': Qpro_cl, 'Unit': '[N.m]', 'Comment': 'Torque on the mechanical shaft of the propeller during climbing'}])[col_names]
df = df.append([{'Type': 'Motor', 'Name': 'T_max_mot_ref', 'Value': Tmot_max_ref, 'Unit': '[N.m]', 'Comment': 'Max torque'}])[col_names]
df = df.append([{'Type': 'Motor', 'Name': 'R_mot_ref', 'Value': Rmot_ref, 'Unit': '[Ohm]', 'Comment': 'Resistance'}])[col_names]
df = df.append([{'Type': 'Motor', 'Name': 'M_mot_ref', 'Value': Mmot_ref, 'Unit': '[kg]', 'Comment': 'Reference motor mass'}])[col_names]
df = df.append([{'Type': 'Motor', 'Name': 'K_mot_ref', 'Value': Ktmot_ref, 'Unit': '[N.m/A]', 'Comment': 'Torque coefficient'}])[col_names]
df = df.append([{'Type': 'Motor', 'Name': 'T_mot_fr_ref', 'Value': Tfmot_ref, 'Unit': '[N.m]', 'Comment': 'Friction torque (zero load, nominal speed)'}])[col_names]
df = df.append([{'Type': 'Motor', 'Name': 'T_nom_mot', 'Value': Tmot_hover, 'Unit': '[N.m]', 'Comment': 'Continuous of the selected motor torque'}])[col_names]
df = df.append([{'Type': 'Motor', 'Name': 'T_mot_to', 'Value': Tmot_to, 'Unit': '[N.m]', 'Comment': 'Transient torque possible for takeoff'}])[col_names]
df = df.append([{'Type': 'Motor', 'Name': 'T_max_mot', 'Value': Tmot_max, 'Unit': '[N.m]', 'Comment': 'Transient torque possible for climbing'}])[col_names]
df = df.append([{'Type': 'Motor', 'Name': 'R_mot', 'Value': Rmot, 'Unit': '[Ohm]', 'Comment': 'Resistance'}])[col_names]
df = df.append([{'Type': 'Motor', 'Name': 'M_mot', 'Value': Mmot, 'Unit': '[kg]', 'Comment': 'Motor mass'}])[col_names]
df = df.append([{'Type': 'Motor', 'Name': 'K_mot', 'Value': Ktmot, 'Unit': '[rad/s]', 'Comment': 'Torque constant of the selected motor'}])[col_names]
df = df.append([{'Type': 'Motor', 'Name': 'T_mot_fr', 'Value': Tfmot, 'Unit': '[N.m]', 'Comment': 'Friction torque of the selected motor'}])[col_names]
df = df.append([{'Type': 'Motor', 'Name': 'I_mot_hov', 'Value': Imot_hover, 'Unit': '[A]', 'Comment': 'Motor current for hover'}])[col_names]
df = df.append([{'Type': 'Motor', 'Name': 'I_mot_to', 'Value': Imot_to, 'Unit': '[A]', 'Comment': 'Motor current for takeoff'}])[col_names]
df = df.append([{'Type': 'Motor', 'Name': 'I_mot_cl', 'Value': Imot_cl, 'Unit': '[A]', 'Comment': 'Motor current for climbing'}])[col_names]
df = df.append([{'Type': 'Motor', 'Name': 'U_mot_cl', 'Value': Umot_hover, 'Unit': '[V]', 'Comment': 'Motor voltage for climbing'}])[col_names]
df = df.append([{'Type': 'Motor', 'Name': 'U_mot_to', 'Value': Umot_to, 'Unit': '[V]', 'Comment': 'Motor voltage for takeoff'}])[col_names]
df = df.append([{'Type': 'Motor', 'Name': 'U_mot', 'Value': Umot_hover, 'Unit': '[V]', 'Comment': 'Nominal voltage '}])[col_names]
df = df.append([{'Type': 'Motor', 'Name': 'P_el_mot_cl', 'Value': P_el_cl, 'Unit': '[W]', 'Comment': 'Motor electrical power for climbing'}])[col_names]
df = df.append([{'Type': 'Motor', 'Name': 'P_el_mot_to', 'Value': P_el_to, 'Unit': '[W]', 'Comment': 'Motor electrical power for takeoff'}])[col_names]
df = df.append([{'Type': 'Motor', 'Name': 'P_el_mot_hov', 'Value': P_el_hover, 'Unit': '[W]', 'Comment': 'Motor electrical power for hover'}])[col_names]
df = df.append([{'Type': 'Battery & ESC', 'Name': 'M_bat_ref', 'Value': Mbat_ref, 'Unit': '[kg]', 'Comment': 'Mass of the reference battery '}])[col_names]
df = df.append([{'Type': 'Battery & ESC', 'Name': 'M_esc_ref', 'Value': Mesc_ref, 'Unit': '[kg]', 'Comment': 'Reference ESC mass '}])[col_names]
df = df.append([{'Type': 'Battery & ESC', 'Name': 'P_esc_ref', 'Value': Pesc_ref, 'Unit': '[W]', 'Comment': 'Reference ESC power '}])[col_names]
df = df.append([{'Type': 'Battery & ESC', 'Name': 'N_s_bat', 'Value': np.ceil(Ncel), 'Unit': '[-]', 'Comment': 'Number of battery cells '}])[col_names]
df = df.append([{'Type': 'Battery & ESC', 'Name': 'U_bat', 'Value': V_bat, 'Unit': '[V]', 'Comment': 'Battery voltage '}])[col_names]
df = df.append([{'Type': 'Battery & ESC', 'Name': 'M_bat', 'Value': Mbat, 'Unit': '[kg]', 'Comment': 'Battery mass '}])[col_names]
df = df.append([{'Type': 'Battery & ESC', 'Name': 'C_bat', 'Value': C_bat, 'Unit': '[A.s]', 'Comment': 'Battery capacity '}])[col_names]
df = df.append([{'Type': 'Battery & ESC', 'Name': 'I_bat', 'Value': I_bat, 'Unit': '[A]', 'Comment': 'Battery current '}])[col_names]
df = df.append([{'Type': 'Battery & ESC', 'Name': 't_hf', 'Value': t_hf, 'Unit': '[min]', 'Comment': 'Hovering time '}])[col_names]
df = df.append([{'Type': 'Battery & ESC', 'Name': 'P_esc', 'Value': P_esc, 'Unit': '[W]', 'Comment': 'Power electronic power (corner power or apparent power) '}])[col_names]
df = df.append([{'Type': 'Battery & ESC', 'Name': 'M_esc', 'Value': Mesc, 'Unit': '[kg]', 'Comment': 'ESC mass '}])[col_names]
df = df.append([{'Type': 'Battery & ESC', 'Name': 'V_esc', 'Value': Vesc, 'Unit': '[V]', 'Comment': 'ESC voltage '}])[col_names]
df = df.append([{'Type': 'Frame', 'Name': 'N_arm', 'Value': Narm, 'Unit': '[-]', 'Comment': 'Number of arms '}])[col_names]
df = df.append([{'Type': 'Frame', 'Name': 'N_pro_arm', 'Value': Np_arm, 'Unit': '[-]', 'Comment': 'Number of propellers per arm '}])[col_names]
df = df.append([{'Type': 'Frame', 'Name': 'sigma_max', 'Value': Sigma_max, 'Unit': '[Pa]', 'Comment': 'Max admisible stress'}])[col_names]
df = df.append([{'Type': 'Frame', 'Name': 'L_arm', 'Value': Lbra, 'Unit': '[m]', 'Comment': 'Length of the arm'}])[col_names]
df = df.append([{'Type': 'Frame', 'Name': 'D_out', 'Value': Dout, 'Unit': '[m]', 'Comment': 'Outer diameter of the arm (tube)'}])[col_names]
df = df.append([{'Type': 'Frame', 'Name': 'Marm', 'Value': Marm, 'Unit': '[kg]', 'Comment': '1 Arm mass'}])[col_names]
df = df.append([{'Type': 'Frame', 'Name': 'M_frame', 'Value': Mfra, 'Unit': '[kg]', 'Comment': 'Frame mass'}])[col_names]
df = df.append([{'Type': 'Specifications', 'Name': 'M_load', 'Value': M_load, 'Unit': '[kg]', 'Comment': 'Payload mass'}])[col_names]
df = df.append([{'Type': 'Specifications', 'Name': 't_hf', 'Value': t_h, 'Unit': '[min]', 'Comment': 'Hovering time '}])[col_names]
df = df.append([{'Type': 'Specifications', 'Name': 'k_maxthrust', 'Value': k_maxthrust, 'Unit': '[-]', 'Comment': 'Ratio max thrust'}])[col_names]
df = df.append([{'Type': 'Specifications', 'Name': 'N_arm', 'Value': Narm, 'Unit': '[-]', 'Comment': 'Number of arms '}])[col_names]
df = df.append([{'Type': 'Specifications', 'Name': 'N_pro_arm', 'Value': Np_arm, 'Unit': '[-]', 'Comment': 'Number of propellers per arm '}])[col_names]
df = df.append([{'Type': 'Specifications', 'Name': 'V_cl', 'Value': V_cl, 'Unit': '[m/s]', 'Comment': 'Climb speed'}])[col_names]
df = df.append([{'Type': 'Specifications', 'Name': 'CD', 'Value': CD, 'Unit': '[-]', 'Comment': 'Drag coefficient'}])[col_names]
df = df.append([{'Type': 'Specifications', 'Name': 'A_top', 'Value': A_top, 'Unit': '[m^2]', 'Comment': 'Top surface'}])[col_names]
df = df.append([{'Type': 'Specifications', 'Name': 'MTOW', 'Value': MTOW, 'Unit': '[kg]', 'Comment': 'Max takeoff Weight'}])[col_names]
items = sorted(df['Type'].unique().tolist())+['Optimization']
return df, df_opt
else:
return constraints
###Output
_____no_output_____
###Markdown
4.-Optimization variables
###Code
#bounds design variables
bounds= [(1,400),#k_M
(1,20),#k_mot
(1,10),#k_speed_mot
(1,5),#k_vb
(0.01,1),#k_ND
(0.05,.99),#D_ratio
(.01,60),#k_Mb
(0.3,0.6),#beta
(0.01,0.5),#J
(1,15),#k_ESC
(1,20),#Nred
]
###Output
_____no_output_____
###Markdown
5.-Result
###Code
# optimization with SLSQP algorithm
contrainte=lambda x: SizingCode(x, 'Const')
objectif=lambda x: SizingCode(x, 'Obj')
# Differential evolution omptimisation
start = time.time()
result = scipy.optimize.differential_evolution(func=objectif,
bounds=[(1,400),#k_M
(1,20),#k_mot
(1,10),#k_speed_mot
(1,5),#k_vb
(0.01,1),#k_ND
(0.05,.99),#D_ratio
(.01,60),#k_Mb
(0.3,0.6),#beta
(0.01,0.5),#J
(1,15),#k_ESC
(1,20),#Nred
],maxiter=1000,
tol=1e-12)
# Final characteristics after optimization
end = time.time()
print("Operation time: %.5f s" %(end - start))
print("-----------------------------------------------")
print("Final characteristics after optimization :")
data=SizingCode(result.x, 'Prt')[0]
data_opt=SizingCode(result.x, 'Prt')[1]
pd.options.display.float_format = '{:,.3f}'.format
def view(x=''):
#if x=='All': return display(df)
if x=='Optimization' : return display(data_opt)
return display(data[data['Type']==x])
items = sorted(data['Type'].unique().tolist())+['Optimization']
w = widgets.Select(options=items)
interactive(view, x=w)
###Output
Operation time: 18.05689 s
-----------------------------------------------
Final characteristics after optimization :
|
mergesort.ipynb | ###Markdown
- https://www.youtube.com/watch?v=Nso25TkBsYI- https://github.com/joeyajames/Python/blob/master/Sorting%20Algorithms/merge_sort.py Also see lt88_merge_sorted_array_merge_sort.ipynb
###Code
def mergesort(arr):
"""
sorts items in n log n time and n space.
works well with larger arrays according to https://www.youtube.com/watch?v=Nso25TkBsYI
"""
def merge(arr,first,middle,last):
"""
merges two lists by updating the proper indicies in place in the primary input array
"""
L = arr[first:middle+1]
R = arr[middle+1:last+1]
L.append(float('inf'))
R.append(float('inf'))
i,j = 0,0
for k in range(first, last+1):
if L[i] <= R[j]:
arr[k] = L[i]
i += 1
else:
arr[k] = R[j]
j+=1
def sort(arr, first, last):
"""
main sorting function which divides the sorting into two chunks recursively until we only have arrays of len 1
"""
if first < last:
middle = (first+last)//2
sort(arr, first, middle)
sort(arr, middle+1,last)
merge(arr,first,middle,last)
sort(arr, 0, len(arr)-1)
print(arr)
%time
arr = [5,9,1,3,2,8,84,30]
mergesort(arr)
%time
arr = [5,9,1,3,2,8,84,30]
quicksort(arr)
def mergesort(arr):
def merge(arr, low, mid, high):
L = arr[low:mid+1]
R = arr[mid+1:high+1]
L.append(float('inf'))
R.append(float('inf'))
i,j = 0,0
for k in range(low,high+1):
if L[i] <= R[j]:
arr[k] = L[i]
i+=1
else:
arr[k] = R[j]
j+=1
def sort(arr, low, high):
if low < high:
mid = (low+high)//2
sort(arr,low,mid)
sort(arr,mid+1,high)
merge(arr, low, mid, high)
sort(arr,0,len(arr)-1)
arr = [5,9,1,3,2,8,84,30]
mergesort(arr)
arr
###Output
_____no_output_____
###Markdown
Mergesort
###Code
public class MergeSort {
// java -ea NameOfProgram
public static boolean isSorted(Comparable[] a, int low, int high) {
if (low == high) {
return true;
}
for(int i = low; i < high; i++) {
if (less(a[i],a[i++]) == false) {
return false;
}
}
return true;
}
private static boolean less(Comparable v, Comparable w) {
return v.compareTo(w) < 0;
}
private static void exch(Comparable[] a, int i, int j) {
Comparable t = aux[i];
aux[i] = a[j];
aux[j] = t;
}
public static void sort(Comparable[] a, Comparable[] aux,int lo, int hi) {
if(hi <= lo) {
return;
}
int mid = lo + (hi - lo) / 2;
sort(a,aux, lo, mid);
sort(a,aux, mid +1 ,hi);
merge(a,aux,lo,mid,hi);
}
public static void sort(Comparable[] a) {
Comparable[] aux = new Comparable[a.length]; // an array that implements interface Comparable
sort(a,aux,0,a.length -1);
}
public static void merge(Comparable[] a, Comparable[] aux,int lo, int mid, int hi) {
int i = lo;
int j= mid+1;
assert isSorted(a,lo,mid); // fail if sub arrays are not sorted
assert isSorted(a,mid+1,hi);
for(int k = lo; k <= hi; k++) {
aux[k] = a[k]; // copy the elements into aux array
}
for (int k = lo; k <= hi; k++) {
if (i > mid) {
a[k] = aux[j++];
}
else if(j > hi) {
a[k] = aux[i++];
}
else if(less(aux[j] , aux[i])) {
a[k] = aux[j++];
}
else {
a[k] = aux[i++];
}
}
assert isSorted(a,lo,hi);
}
}
###Output
_____no_output_____
###Markdown
Given a list of unique random intergers:- Split and merge sub lists into a sorted list PREQUISITES
###Code
import random
def make(n):
nums = [i for i in range(n)]
for i in range(n):
rnd = random.randint(0, n - 1)
nums[i], nums[rnd] = nums[rnd], nums[i]
return nums
###Output
_____no_output_____
###Markdown
ALGORITHM
###Code
def mergeSort(nums):
if len(nums) > 1:
L = nums[:len(nums) // 2]
R = nums[len(nums) // 2:]
mergeSort(L)
mergeSort(R)
idx_l, idx_r, idx = 0, 0, 0
while idx_l < len(L) and idx_r < len(R):
if L[idx_l] < R[idx_r]:
nums[idx] = L[idx_l]
idx_l += 1
else:
nums[idx] = R[idx_r]
idx_r += 1
idx += 1
while idx_l < len(L):
nums[idx] = L[idx_l]
idx_l += 1
idx += 1
while idx_r < len(R):
nums[idx] = R[idx_r]
idx_r += 1
idx += 1
###Output
_____no_output_____
###Markdown
TEST
###Code
nums = make(20)
mergeSort(nums)
print(nums)
for idx, val in enumerate(nums):
assert idx == val
###Output
_____no_output_____ |
authenticators.ipynb | ###Markdown
Custom AuthenticatorsLet's peek at the Authenticator classes:
###Code
from jupyterhub.auth import Authenticator, PAMAuthenticator
Authenticator.authenticate?
###Output
[1;31mSignature: [0m[0mAuthenticator[0m[1;33m.[0m[0mauthenticate[0m[1;33m([0m[0mself[0m[1;33m,[0m [0mhandler[0m[1;33m,[0m [0mdata[0m[1;33m)[0m[1;33m[0m[0m
[1;31mDocstring:[0m
Authenticate a user with login form data.
This must be a tornado gen.coroutine.
It must return the username on successful authentication,
and return None on failed authentication.
Checking the whitelist is handled separately by the caller.
Args:
handler (tornado.web.RequestHandler): the current request handler
data (dict): The formdata of the login form.
The default form has 'username' and 'password' fields.
Return:
str: the username of the authenticated user
None: Authentication failed
[1;31mFile: [0m~/conda/envs/jupyterhub-tutorial/lib/python3.5/site-packages/jupyterhub/auth.py
[1;31mType: [0mfunction
###Markdown
PAM calls out to a library with the given username and password:
###Code
PAMAuthenticator.authenticate??
###Output
[1;31mSignature: [0m[0mPAMAuthenticator[0m[1;33m.[0m[0mauthenticate[0m[1;33m([0m[0mself[0m[1;33m,[0m [0mhandler[0m[1;33m,[0m [0mdata[0m[1;33m)[0m[1;33m[0m[0m
[1;31mSource:[0m
[1;33m@[0m[0mgen[0m[1;33m.[0m[0mcoroutine[0m[1;33m[0m
[1;33m[0m [1;32mdef[0m [0mauthenticate[0m[1;33m([0m[0mself[0m[1;33m,[0m [0mhandler[0m[1;33m,[0m [0mdata[0m[1;33m)[0m[1;33m:[0m[1;33m[0m
[1;33m[0m [1;34m"""Authenticate with PAM, and return the username if login is successful.[0m
[1;34m [0m
[1;34m Return None otherwise.[0m
[1;34m """[0m[1;33m[0m
[1;33m[0m [0musername[0m [1;33m=[0m [0mdata[0m[1;33m[[0m[1;34m'username'[0m[1;33m][0m[1;33m[0m
[1;33m[0m [1;32mtry[0m[1;33m:[0m[1;33m[0m
[1;33m[0m [0mpamela[0m[1;33m.[0m[0mauthenticate[0m[1;33m([0m[0musername[0m[1;33m,[0m [0mdata[0m[1;33m[[0m[1;34m'password'[0m[1;33m][0m[1;33m,[0m [0mservice[0m[1;33m=[0m[0mself[0m[1;33m.[0m[0mservice[0m[1;33m)[0m[1;33m[0m
[1;33m[0m [1;32mexcept[0m [0mpamela[0m[1;33m.[0m[0mPAMError[0m [1;32mas[0m [0me[0m[1;33m:[0m[1;33m[0m
[1;33m[0m [1;32mif[0m [0mhandler[0m [1;32mis[0m [1;32mnot[0m [1;32mNone[0m[1;33m:[0m[1;33m[0m
[1;33m[0m [0mself[0m[1;33m.[0m[0mlog[0m[1;33m.[0m[0mwarning[0m[1;33m([0m[1;34m"PAM Authentication failed (%s@%s): %s"[0m[1;33m,[0m [0musername[0m[1;33m,[0m [0mhandler[0m[1;33m.[0m[0mrequest[0m[1;33m.[0m[0mremote_ip[0m[1;33m,[0m [0me[0m[1;33m)[0m[1;33m[0m
[1;33m[0m [1;32melse[0m[1;33m:[0m[1;33m[0m
[1;33m[0m [0mself[0m[1;33m.[0m[0mlog[0m[1;33m.[0m[0mwarning[0m[1;33m([0m[1;34m"PAM Authentication failed: %s"[0m[1;33m,[0m [0me[0m[1;33m)[0m[1;33m[0m
[1;33m[0m [1;32melse[0m[1;33m:[0m[1;33m[0m
[1;33m[0m [1;32mreturn[0m [0musername[0m[1;33m[0m[0m
[1;31mFile: [0m~/conda/envs/jupyterhub-tutorial/lib/python3.5/site-packages/jupyterhub/auth.py
[1;31mType: [0mfunction
###Markdown
Here's a super advanced Authenticator that does very secure password verification:
###Code
class SecureAuthenticator(Authenticator):
def authenticate(self, handler, data):
username = data['username']
# check password:
if data['username'] == data['password']:
return username
###Output
_____no_output_____
###Markdown
Exercise:Write a custom username+password Authenticator where:1. passwords are loaded from a dict2. hashed+salted passwords are stored somewhere, but not cleartext passwords
###Code
# possibly useful:
from jupyterhub.utils import hash_token, compare_token
hash_token('mypassword')
compare_token(_, 'mypassword')
###Output
_____no_output_____ |
projects/student_intervention/student_intervention.ipynb | ###Markdown
Machine Learning Engineer Nanodegree Supervised Learning Project 2: Building a Student Intervention System Welcome to the second project of the Machine Learning Engineer Nanodegree! In this notebook, some template code has already been provided for you, and it will be your job to implement the additional functionality necessary to successfully complete this project. Sections that begin with **'Implementation'** in the header indicate that the following block of code will require additional functionality which you must provide. Instructions will be provided for each section and the specifics of the implementation are marked in the code block with a `'TODO'` statement. Please be sure to read the instructions carefully!In addition to implementing code, there will be questions that you must answer which relate to the project and your implementation. Each section where you will answer a question is preceded by a **'Question X'** header. Carefully read each question and provide thorough answers in the following text boxes that begin with **'Answer:'**. Your project submission will be evaluated based on your answers to each of the questions and the implementation you provide. >**Note:** Code and Markdown cells can be executed using the **Shift + Enter** keyboard shortcut. In addition, Markdown cells can be edited by typically double-clicking the cell to enter edit mode. Question 1 - Classification vs. Regression*Your goal for this project is to identify students who might need early intervention before they fail to graduate. Which type of supervised learning problem is this, classification or regression? Why?* **Answer: ** This is a case of classification problem as we need to classify students to two groups - the one who need intervention vs others. Exploring the DataRun the code cell below to load necessary Python libraries and load the student data. Note that the last column from this dataset, `'passed'`, will be our target label (whether the student graduated or didn't graduate). All other columns are features about each student.
###Code
# Import libraries
import numpy as np
import pandas as pd
from time import time
from sklearn.metrics import f1_score
# Read student data
student_data = pd.read_csv("student-data.csv")
print "Student data read successfully!"
rand_seed = 25 # To be used throughout the notebook
###Output
Student data read successfully!
###Markdown
Implementation: Data ExplorationLet's begin by investigating the dataset to determine how many students we have information on, and learn about the graduation rate among these students. In the code cell below, you will need to compute the following:- The total number of students, `n_students`.- The total number of features for each student, `n_features`.- The number of those students who passed, `n_passed`.- The number of those students who failed, `n_failed`.- The graduation rate of the class, `grad_rate`, in percent (%).
###Code
# TODO: Calculate number of students
n_students = len(student_data)
# TODO: Calculate number of features
n_features = len(student_data.columns) - 1
# TODO: Calculate passing students
n_passed = sum([1 if x == 'yes' else 0 for x in student_data['passed'] ])
# TODO: Calculate failing students
n_failed = n_students - n_passed
# TODO: Calculate graduation rate
grad_rate = n_passed * 100.0 / n_students
# Print the results
print "Total number of students: {}".format(n_students)
print "Number of features: {}".format(n_features)
print "Number of students who passed: {}".format(n_passed)
print "Number of students who failed: {}".format(n_failed)
print "Graduation rate of the class: {:.2f}%".format(grad_rate)
###Output
Total number of students: 395
Number of features: 30
Number of students who passed: 265
Number of students who failed: 130
Graduation rate of the class: 67.09%
###Markdown
Preparing the DataIn this section, we will prepare the data for modeling, training and testing. Identify feature and target columnsIt is often the case that the data you obtain contains non-numeric features. This can be a problem, as most machine learning algorithms expect numeric data to perform computations with.Run the code cell below to separate the student data into feature and target columns to see if any features are non-numeric.
###Code
# Extract feature columns
feature_cols = list(student_data.columns[:-1])
# Extract target column 'passed'
target_col = student_data.columns[-1]
# Show the list of columns
print "Feature columns:\n{}".format(feature_cols)
print "\nTarget column: {}".format(target_col)
# Separate the data into feature data and target data (X_all and y_all, respectively)
X_all = student_data[feature_cols]
y_all = student_data[target_col]
# Show the feature information by printing the first five rows
print "\nFeature values:"
print X_all.head()
###Output
Feature columns:
['school', 'sex', 'age', 'address', 'famsize', 'Pstatus', 'Medu', 'Fedu', 'Mjob', 'Fjob', 'reason', 'guardian', 'traveltime', 'studytime', 'failures', 'schoolsup', 'famsup', 'paid', 'activities', 'nursery', 'higher', 'internet', 'romantic', 'famrel', 'freetime', 'goout', 'Dalc', 'Walc', 'health', 'absences']
Target column: passed
Feature values:
school sex age address famsize Pstatus Medu Fedu Mjob Fjob \
0 GP F 18 U GT3 A 4 4 at_home teacher
1 GP F 17 U GT3 T 1 1 at_home other
2 GP F 15 U LE3 T 1 1 at_home other
3 GP F 15 U GT3 T 4 2 health services
4 GP F 16 U GT3 T 3 3 other other
... higher internet romantic famrel freetime goout Dalc Walc health \
0 ... yes no no 4 3 4 1 1 3
1 ... yes yes no 5 3 3 1 1 3
2 ... yes yes no 4 3 2 2 3 3
3 ... yes yes yes 3 2 2 1 1 5
4 ... yes no no 4 3 2 1 2 5
absences
0 6
1 4
2 10
3 2
4 4
[5 rows x 30 columns]
###Markdown
Preprocess Feature ColumnsAs you can see, there are several non-numeric columns that need to be converted! Many of them are simply `yes`/`no`, e.g. `internet`. These can be reasonably converted into `1`/`0` (binary) values.Other columns, like `Mjob` and `Fjob`, have more than two values, and are known as _categorical variables_. The recommended way to handle such a column is to create as many columns as possible values (e.g. `Fjob_teacher`, `Fjob_other`, `Fjob_services`, etc.), and assign a `1` to one of them and `0` to all others.These generated columns are sometimes called _dummy variables_, and we will use the [`pandas.get_dummies()`](http://pandas.pydata.org/pandas-docs/stable/generated/pandas.get_dummies.html?highlight=get_dummiespandas.get_dummies) function to perform this transformation. Run the code cell below to perform the preprocessing routine discussed in this section.
###Code
def preprocess_features(X):
''' Preprocesses the student data and converts non-numeric binary variables into
binary (0/1) variables. Converts categorical variables into dummy variables. '''
# Initialize new output DataFrame
output = pd.DataFrame(index = X.index)
# Investigate each feature column for the data
for col, col_data in X.iteritems():
# If data type is non-numeric, replace all yes/no values with 1/0
if col_data.dtype == object:
col_data = col_data.replace(['yes', 'no'], [1, 0])
# If data type is categorical, convert to dummy variables
if col_data.dtype == object:
# Example: 'school' => 'school_GP' and 'school_MS'
col_data = pd.get_dummies(col_data, prefix = col)
# Collect the revised columns
output = output.join(col_data)
return output
X_all = preprocess_features(X_all)
print "Processed feature columns ({} total features):\n{}".format(len(X_all.columns), list(X_all.columns))
###Output
Processed feature columns (48 total features):
['school_GP', 'school_MS', 'sex_F', 'sex_M', 'age', 'address_R', 'address_U', 'famsize_GT3', 'famsize_LE3', 'Pstatus_A', 'Pstatus_T', 'Medu', 'Fedu', 'Mjob_at_home', 'Mjob_health', 'Mjob_other', 'Mjob_services', 'Mjob_teacher', 'Fjob_at_home', 'Fjob_health', 'Fjob_other', 'Fjob_services', 'Fjob_teacher', 'reason_course', 'reason_home', 'reason_other', 'reason_reputation', 'guardian_father', 'guardian_mother', 'guardian_other', 'traveltime', 'studytime', 'failures', 'schoolsup', 'famsup', 'paid', 'activities', 'nursery', 'higher', 'internet', 'romantic', 'famrel', 'freetime', 'goout', 'Dalc', 'Walc', 'health', 'absences']
###Markdown
Implementation: Training and Testing Data SplitSo far, we have converted all _categorical_ features into numeric values. For the next step, we split the data (both features and corresponding labels) into training and test sets. In the following code cell below, you will need to implement the following:- Randomly shuffle and split the data (`X_all`, `y_all`) into training and testing subsets. - Use 300 training points (approximately 75%) and 95 testing points (approximately 25%). - Set a `random_state` for the function(s) you use, if provided. - Store the results in `X_train`, `X_test`, `y_train`, and `y_test`.
###Code
# TODO: Import any additional functionality you may need here
from sklearn.cross_validation import train_test_split
# TODO: Set the number of training points
num_train = 300
# Set the number of testing points
num_test = X_all.shape[0] - num_train
# TODO: Shuffle and split the dataset into the number of training and testing points above
#X_train = None
#X_test = None
#y_train = None
#y_test = None
(X_train, X_test, y_train, y_test ) = train_test_split(X_all,y_all, train_size = num_train, random_state = rand_seed)
# Show the results of the split
print "Training set has {} samples.".format(X_train.shape[0])
print "Testing set has {} samples.".format(X_test.shape[0])
###Output
Training set has 300 samples.
Testing set has 95 samples.
###Markdown
Training and Evaluating ModelsIn this section, you will choose 3 supervised learning models that are appropriate for this problem and available in `scikit-learn`. You will first discuss the reasoning behind choosing these three models by considering what you know about the data and each model's strengths and weaknesses. You will then fit the model to varying sizes of training data (100 data points, 200 data points, and 300 data points) and measure the F1 score. You will need to produce three tables (one for each model) that shows the training set size, training time, prediction time, F1 score on the training set, and F1 score on the testing set.**The following supervised learning models are currently available in** [`scikit-learn`](http://scikit-learn.org/stable/supervised_learning.html) **that you may choose from:**- Gaussian Naive Bayes (GaussianNB)- Decision Trees- Ensemble Methods (Bagging, AdaBoost, Random Forest, Gradient Boosting)- K-Nearest Neighbors (KNeighbors)- Stochastic Gradient Descent (SGDC)- Support Vector Machines (SVM)- Logistic Regression Question 2 - Model Application*List three supervised learning models that are appropriate for this problem. For each model chosen*- Describe one real-world application in industry where the model can be applied. *(You may need to do a small bit of research for this — give references!)* - What are the strengths of the model; when does it perform well? - What are the weaknesses of the model; when does it perform poorly?- What makes this model a good candidate for the problem, given what you know about the data? **Answer: ** Running some basic experiments and visualizations (saved in Experiement.ipynb in same folder), shows that the data points are not linearly separable. I have choosen following tree models - 1. Gaussian Naive Bayes - * Naive Bayes has been successfully used in many applications including text classification [1]* Major strength is that the model requires realtively fewer training points. As the Naive assumes independence of features, the class conditional feature distribution can be decoupled. This leads to alleviate problem of "curse of dimentionality" and hence works well with smaller datasets [2]* Naive Bayes assume independence of features, which is often a strong assumption to make and if often inaccuarate in real world. The models where the there is a strong dependence of features, this model does not perform well. The features have to be carefully examined to avoid such dependences. * The reason for picking this model as a candidate is that the dataset provided for the problem is quite small and most of the features appear independent. 2. Gradient Boosting * Gradient Boosting is a used in field of "learning to rank". It is used in commercial web engines.[3]* Gradient Boosting belongs to family of machine learning algorithms called Ensemble learning. These algorithms outperform other simpler algorithms as they are built upon multiple such simpler models. Gradient boosting has been shown to out perform other ensemble algorithms like Random Forest when tuned appropriately [4].* Gradient Boosting can overfit quite easily and appropriate tuning is required for its parameters specially depth of trees. Also, the Gradient boost requires that the trees are constructed sequentially as compared to random Forest which can build trees in parallel.[5]* Reason for picking GB for this problem is that the dataset is small and hence overfitting and large time to construct is of lesser issue than getting good result. GB have shown to outperform other ensemble methods. 3. K-nearest neighbours * KNN is used commonly in recommender systems and is even used in face recognition systems[6]. It is also used in computaional genetic applications [7]* KNN does not have a preprocessing step of "training" before making predictions. This is specifically useful when the data is large and prediction is required for small set of values. Its quite resilient to noise.[8]* Performance of KNN and its computational cost is dependent on the hyperparameter k. Its very important to get appropriate value to get better results (changing K can change predicted class for a point). Another decision is to define the distance function between different data points in dataset.* Based on the results of plotting various attributes vs each other (Experiments.ipynp), the classes seemed to have big local clusters separable by non-linear boundaries. I suspect local information for predicting class will give good results here.[1] http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html[2] https://en.wikipedia.org/wiki/Naive_Bayes_classifier[3] https://en.wikipedia.org/wiki/Gradient_boostingUsage[4] https://databricks.com/blog/2015/01/21/random-forests-and-boosting-in-mllib.html[5] https://www.quora.com/When-would-one-use-Random-Forests-over-Gradient-Boosted-Machines-GBMs/answer/Tianqi-Chen-1?srid=OqDt[6] https://www.quora.com/What-are-industry-applications-of-the-K-nearest-neighbor-algorithm/answer/Chris-McCormick-12?srid=OqDt[7] https://saravananthirumuruganathan.wordpress.com/2010/05/17/a-detailed-introduction-to-k-nearest-neighbor-knn-algorithm/[8] http://people.revoledu.com/kardi/tutorial/KNN/Strength%20and%20Weakness.htm SetupRun the code cell below to initialize three helper functions which you can use for training and testing the three supervised learning models you've chosen above. The functions are as follows:- `train_classifier` - takes as input a classifier and training data and fits the classifier to the data.- `predict_labels` - takes as input a fit classifier, features, and a target labeling and makes predictions using the F1 score.- `train_predict` - takes as input a classifier, and the training and testing data, and performs `train_clasifier` and `predict_labels`. - This function will report the F1 score for both the training and testing data separately.
###Code
def train_classifier(clf, X_train, y_train):
''' Fits a classifier to the training data. '''
# Start the clock, train the classifier, then stop the clock
start = time()
clf.fit(X_train, y_train)
end = time()
# Print the results
print "Trained model in {:.4f} seconds".format(end - start)
def predict_labels(clf, features, target):
''' Makes predictions using a fit classifier based on F1 score. '''
# Start the clock, make predictions, then stop the clock
start = time()
y_pred = clf.predict(features)
end = time()
# Print and return results
print "Made predictions in {:.4f} seconds.".format(end - start)
return f1_score(target.values, y_pred, pos_label='yes')
def train_predict(clf, X_train, y_train, X_test, y_test):
''' Train and predict using a classifer based on F1 score. '''
# Indicate the classifier and the training set size
print "Training a {} using a training set size of {}. . .".format(clf.__class__.__name__, len(X_train))
# Train the classifier
train_classifier(clf, X_train, y_train)
# Print the results of prediction for both training and testing
print "F1 score for training set: {:.4f}.".format(predict_labels(clf, X_train, y_train))
print "F1 score for test set: {:.4f}.".format(predict_labels(clf, X_test, y_test))
###Output
_____no_output_____
###Markdown
Implementation: Model Performance MetricsWith the predefined functions above, you will now import the three supervised learning models of your choice and run the `train_predict` function for each one. Remember that you will need to train and predict on each classifier for three different training set sizes: 100, 200, and 300. Hence, you should expect to have 9 different outputs below — 3 for each model using the varying training set sizes. In the following code cell, you will need to implement the following:- Import the three supervised learning models you've discussed in the previous section.- Initialize the three models and store them in `clf_A`, `clf_B`, and `clf_C`. - Use a `random_state` for each model you use, if provided. - **Note:** Use the default settings for each model — you will tune one specific model in a later section.- Create the different training set sizes to be used to train each model. - *Do not reshuffle and resplit the data! The new training points should be drawn from `X_train` and `y_train`.*- Fit each model with each training set size and make predictions on the test set (9 in total). **Note:** Three tables are provided after the following code cell which can be used to store your results.
###Code
# TODO: Import the three supervised learning models from sklearn
# from sklearn import model_A
# from sklearn import model_B
# from skearln import model_C
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.neighbors import KNeighborsClassifier
# TODO: Initialize the three models
clf_A = GaussianNB()
clf_B = GradientBoostingClassifier()
clf_C = KNeighborsClassifier()
# TODO: Set up the training set sizes
X_train_100 = X_train[0:100]
y_train_100 = y_train[0:100]
X_train_200 = X_train[0:200]
y_train_200 = y_train[0:200]
X_train_300 = X_train[0:300]
y_train_300 = y_train[0:300]
# TODO: Execute the 'train_predict' function for each classifier and each training set size
# train_predict(clf, X_train, y_train, X_test, y_test)
for model in (clf_A, clf_B, clf_C):
for dataset in ((X_train_100,y_train_100), (X_train_200, y_train_200), (X_train_300,y_train_300)):
train_predict(model, dataset[0], dataset[1], X_test, y_test)
###Output
Training a GaussianNB using a training set size of 100. . .
Trained model in 0.0148 seconds
Made predictions in 0.0632 seconds.
F1 score for training set: 0.3333.
Made predictions in 0.0012 seconds.
F1 score for test set: 0.1176.
Training a GaussianNB using a training set size of 200. . .
Trained model in 0.0034 seconds
Made predictions in 0.0018 seconds.
F1 score for training set: 0.8339.
Made predictions in 0.0010 seconds.
F1 score for test set: 0.7692.
Training a GaussianNB using a training set size of 300. . .
Trained model in 0.0027 seconds
Made predictions in 0.0016 seconds.
F1 score for training set: 0.8066.
Made predictions in 0.0011 seconds.
F1 score for test set: 0.7402.
Training a GradientBoostingClassifier using a training set size of 100. . .
Trained model in 0.2583 seconds
Made predictions in 0.0011 seconds.
F1 score for training set: 1.0000.
Made predictions in 0.0010 seconds.
F1 score for test set: 0.7176.
Training a GradientBoostingClassifier using a training set size of 200. . .
Trained model in 0.2137 seconds
Made predictions in 0.0016 seconds.
F1 score for training set: 0.9926.
Made predictions in 0.0011 seconds.
F1 score for test set: 0.6825.
Training a GradientBoostingClassifier using a training set size of 300. . .
Trained model in 0.2560 seconds
Made predictions in 0.0020 seconds.
F1 score for training set: 0.9810.
Made predictions in 0.0010 seconds.
F1 score for test set: 0.7132.
Training a KNeighborsClassifier using a training set size of 100. . .
Trained model in 0.0016 seconds
Made predictions in 0.0046 seconds.
F1 score for training set: 0.8075.
Made predictions in 0.0030 seconds.
F1 score for test set: 0.7194.
Training a KNeighborsClassifier using a training set size of 200. . .
Trained model in 0.0023 seconds
Made predictions in 0.0090 seconds.
F1 score for training set: 0.8212.
Made predictions in 0.0040 seconds.
F1 score for test set: 0.7259.
Training a KNeighborsClassifier using a training set size of 300. . .
Trained model in 0.0020 seconds
Made predictions in 0.0152 seconds.
F1 score for training set: 0.8667.
Made predictions in 0.0057 seconds.
F1 score for test set: 0.7576.
###Markdown
Tabular ResultsEdit the cell below to see how a table can be designed in [Markdown](https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheettables). You can record your results from above in the tables provided. ** Classifer 1 - GaussianNB** | Training Set Size | Training Time | Prediction Time (test) | F1 Score (train) | F1 Score (test) || :---------------: | :---------------------: | :--------------------: | :--------------: | :-------------: || 100 | 0.0024 | 0.0010 | 0.8550 | 0.7481 || 200 | 0.0020 | 0.0009 | 0.8321 | 0.7132 || 300 | 0.0039 | 0.0013 | 0.8088 | 0.7500 |** Classifer 2 - GradientBoostingClassifier** | Training Set Size | Training Time | Prediction Time (test) | F1 Score (train) | F1 Score (test) || :---------------: | :---------------------: | :--------------------: | :--------------: | :-------------: || 100 | 0.1647 | 0.0011 | 1.000 | 0.7761 || 200 | 0.2048 | 0.0010 | 0.9852 | 0.7879 || 300 | 0.2362 | 0.0010 | 0.9740 | 0.7727 |** Classifer 3 - KNeighborsClassifier** | Training Set Size | Training Time | Prediction Time (test) | F1 Score (train) | F1 Score (test) || :---------------: | :---------------------: | :--------------------: | :--------------: | :-------------: || 100 | 0.0012 | 0.0038 | 0.7972 | 0.7068 || 200 | 0.0018 | 0.0039 | 0.8571 | 0.7121 || 300 | 0.0016 | 0.0057 | 0.8722 | 0.7482 | Choosing the Best ModelIn this final section, you will choose from the three supervised learning models the *best* model to use on the student data. You will then perform a grid search optimization for the model over the entire training set (`X_train` and `y_train`) by tuning at least one parameter to improve upon the untuned model's F1 score. Question 3 - Choosing the Best Model*Based on the experiments you performed earlier, in one to two paragraphs, explain to the board of supervisors what single model you chose as the best model. Which model is generally the most appropriate based on the available data, limited resources, cost, and performance?* **Answer: ** - I would choose KNearest Neighbour model over the other two based on following reasoning - Performace Based on the above table of observations on F1 score (training and test), Gradient Boost seem to be overfitting data. So we should avoid GB model for this problem. Test F1 score for GaussianNB and KNearestNeighbour are quite close and shows both models performed well on the task. The training and test score are a bit appart which may point to that the size of dataset was not enough to learn bring training and error to be approx same. Resources The above table shows that the time to train model is two order of magnitute higher for Gradient boost algorithms than the other two. KNearestNeighbour outperforms GaussianNB in the training time and hence will be more useful in Applicability Given that the performance of GaussianNB and KNN is similar, I would prefer to pick KNN as this provides slight edge in training time and does not depend on the assumption that the features are independent. Question 4 - Model in Layman's Terms*In one to two paragraphs, explain to the board of directors in layman's terms how the final model chosen is supposed to work. Be sure that you are describing the major qualities of the model, such as how the model is trained and how the model makes a prediction. Avoid using advanced mathematical or technical jargon, such as describing equations or discussing the algorithm implementation.* **Answer: **In summary, K Nearest Neighbour works by looking at k data points which are nearest and assign the class of most occuring class in the chosen data points. Training Although there is no training phase for KNNs, this phase is used to set up data structures to speed up the prediction phase. Prediction To assign a class to a new data point, we calculate the distance of the data point to all the other points. Then k points with min distance are chosen to new point. Then the resulting class of the new data point is calcualted based on the max num of class of other k-near points. Hyper parameters One of the initial step is setting up parameters. The most important parameter for the model is how many datapoint we want to look at locally for making a prediction. This parameter is called K. This parameter determines the performance and computational cost of the algorithm. If K is chosen small, the model may not generalize well and hence accuracy may be low. If we choose K higher, the accuracy should generally increase but it becomes more computationally expensive. Distance In the discussion above we did not define the meaning of distance amoung the data points. A function has to be defined as the distance function between datapoints. If the features are all numerical, distance function be simple euclidian distance between the points. In case some features are strings, we may need to define distance based on the either num of characters, amount of difference in two strings or perhaps based on semantics of the words. There are other distance has to be used in domain-specific case like distance between two genomes may be the number of neucletides it differ etc. Implementation: Model TuningFine tune the chosen model. Use grid search (`GridSearchCV`) with at least one important parameter tuned with at least 3 different values. You will need to use the entire training set for this. In the code cell below, you will need to implement the following:- Import [`sklearn.grid_search.gridSearchCV`](http://scikit-learn.org/stable/modules/generated/sklearn.grid_search.GridSearchCV.html) and [`sklearn.metrics.make_scorer`](http://scikit-learn.org/stable/modules/generated/sklearn.metrics.make_scorer.html).- Create a dictionary of parameters you wish to tune for the chosen model. - Example: `parameters = {'parameter' : [list of values]}`.- Initialize the classifier you've chosen and store it in `clf`.- Create the F1 scoring function using `make_scorer` and store it in `f1_scorer`. - Set the `pos_label` parameter to the correct value!- Perform grid search on the classifier `clf` using `f1_scorer` as the scoring method, and store it in `grid_obj`.- Fit the grid search object to the training data (`X_train`, `y_train`), and store it in `grid_obj`.
###Code
# TODO: Import 'GridSearchCV' and 'make_scorer'
from sklearn.grid_search import GridSearchCV
from sklearn.metrics import make_scorer
from sklearn.metrics import f1_score
# TODO: Create the parameters list you wish to tune
parameters = {'n_neighbors':[3,5,7,9], 'algorithm' : ['auto', 'ball_tree', 'kd_tree', 'brute']}
# TODO: Initialize the classifier
clf = KNeighborsClassifier()
# TODO: Make an f1 scoring function using 'make_scorer'
f1_scorer = make_scorer(f1_score, pos_label = 'yes')
# TODO: Perform grid search on the classifier using the f1_scorer as the scoring method
grid_obj = GridSearchCV(clf, parameters, f1_scorer)
# TODO: Fit the grid search object to the training data and find the optimal parameters
grid_obj = grid_obj.fit(X_train,y_train)
# Get the estimator
clf = grid_obj.best_estimator_
# Report the final F1 score for training and testing after parameter tuning
print "Tuned model has a training F1 score of {:.4f}.".format(predict_labels(clf, X_train, y_train))
print "Tuned model has a testing F1 score of {:.4f}.".format(predict_labels(clf, X_test, y_test))
###Output
Made predictions in 0.0154 seconds.
Tuned model has a training F1 score of 0.8437.
Made predictions in 0.0057 seconds.
Tuned model has a testing F1 score of 0.7972.
###Markdown
Machine Learning Engineer Nanodegree Supervised Learning Project 2: Building a Student Intervention System Welcome to the second project of the Machine Learning Engineer Nanodegree! In this notebook, some template code has already been provided for you, and it will be your job to implement the additional functionality necessary to successfully complete this project. Sections that begin with **'Implementation'** in the header indicate that the following block of code will require additional functionality which you must provide. Instructions will be provided for each section and the specifics of the implementation are marked in the code block with a `'TODO'` statement. Please be sure to read the instructions carefully!In addition to implementing code, there will be questions that you must answer which relate to the project and your implementation. Each section where you will answer a question is preceded by a **'Question X'** header. Carefully read each question and provide thorough answers in the following text boxes that begin with **'Answer:'**. Your project submission will be evaluated based on your answers to each of the questions and the implementation you provide. >**Note:** Code and Markdown cells can be executed using the **Shift + Enter** keyboard shortcut. In addition, Markdown cells can be edited by typically double-clicking the cell to enter edit mode. Question 1 - Classification vs. Regression*Your goal for this project is to identify students who might need early intervention before they fail to graduate. Which type of supervised learning problem is this, classification or regression? Why?* **Answer: **We want to identify students who might need early intervention before they fail to graduate, so we have to seperate them into two classes based on whether they are likely to pass or fail. This is a classification problem as we are predicting discrete labels instead of continuous output. Exploring the DataRun the code cell below to load necessary Python libraries and load the student data. Note that the last column from this dataset, `'passed'`, will be our target label (whether the student graduated or didn't graduate). All other columns are features about each student.
###Code
# Import libraries
import numpy as np
import pandas as pd
from time import time
from sklearn.metrics import f1_score
# Read student data
student_data = pd.read_csv("student-data.csv")
print "Student data read successfully!"
student_data.head()
student_data["passed"].value_counts()
###Output
_____no_output_____
###Markdown
Implementation: Data ExplorationLet's begin by investigating the dataset to determine how many students we have information on, and learn about the graduation rate among these students. In the code cell below, you will need to compute the following:- The total number of students, `n_students`.- The total number of features for each student, `n_features`.- The number of those students who passed, `n_passed`.- The number of those students who failed, `n_failed`.- The graduation rate of the class, `grad_rate`, in percent (%).
###Code
# TODO: Calculate number of students
n_students = student_data.shape[0]
# TODO: Calculate number of features
n_features = student_data.shape[1] - 1
# TODO: Calculate passing students
n_passed = student_data["passed"].value_counts()["yes"]
# TODO: Calculate failing students
n_failed = student_data["passed"].value_counts()["no"]
# TODO: Calculate graduation rate
grad_rate = (265/395.0)*100
# Print the results
print "Total number of students: {}".format(n_students)
print "Number of features: {}".format(n_features)
print "Number of students who passed: {}".format(n_passed)
print "Number of students who failed: {}".format(n_failed)
print "Graduation rate of the class: {:.2f}%".format(grad_rate)
###Output
Total number of students: 395
Number of features: 30
Number of students who passed: 265
Number of students who failed: 130
Graduation rate of the class: 67.09%
###Markdown
Preparing the DataIn this section, we will prepare the data for modeling, training and testing. Identify feature and target columnsIt is often the case that the data you obtain contains non-numeric features. This can be a problem, as most machine learning algorithms expect numeric data to perform computations with.Run the code cell below to separate the student data into feature and target columns to see if any features are non-numeric.
###Code
# Extract feature columns
feature_cols = list(student_data.columns[:-1])
# Extract target column 'passed'
target_col = student_data.columns[-1]
# Show the list of columns
print "Feature columns:\n{}".format(feature_cols)
print "\nTarget column: {}".format(target_col)
# Separate the data into feature data and target data (X_all and y_all, respectively)
X_all = student_data[feature_cols]
y_all = student_data[target_col]
# Show the feature information by printing the first five rows
print "\nFeature values:"
print X_all.head()
###Output
Feature columns:
['school', 'sex', 'age', 'address', 'famsize', 'Pstatus', 'Medu', 'Fedu', 'Mjob', 'Fjob', 'reason', 'guardian', 'traveltime', 'studytime', 'failures', 'schoolsup', 'famsup', 'paid', 'activities', 'nursery', 'higher', 'internet', 'romantic', 'famrel', 'freetime', 'goout', 'Dalc', 'Walc', 'health', 'absences']
Target column: passed
Feature values:
school sex age address famsize Pstatus Medu Fedu Mjob Fjob \
0 GP F 18 U GT3 A 4 4 at_home teacher
1 GP F 17 U GT3 T 1 1 at_home other
2 GP F 15 U LE3 T 1 1 at_home other
3 GP F 15 U GT3 T 4 2 health services
4 GP F 16 U GT3 T 3 3 other other
... higher internet romantic famrel freetime goout Dalc Walc health \
0 ... yes no no 4 3 4 1 1 3
1 ... yes yes no 5 3 3 1 1 3
2 ... yes yes no 4 3 2 2 3 3
3 ... yes yes yes 3 2 2 1 1 5
4 ... yes no no 4 3 2 1 2 5
absences
0 6
1 4
2 10
3 2
4 4
[5 rows x 30 columns]
###Markdown
Preprocess Feature ColumnsAs you can see, there are several non-numeric columns that need to be converted! Many of them are simply `yes`/`no`, e.g. `internet`. These can be reasonably converted into `1`/`0` (binary) values.Other columns, like `Mjob` and `Fjob`, have more than two values, and are known as _categorical variables_. The recommended way to handle such a column is to create as many columns as possible values (e.g. `Fjob_teacher`, `Fjob_other`, `Fjob_services`, etc.), and assign a `1` to one of them and `0` to all others.These generated columns are sometimes called _dummy variables_, and we will use the [`pandas.get_dummies()`](http://pandas.pydata.org/pandas-docs/stable/generated/pandas.get_dummies.html?highlight=get_dummiespandas.get_dummies) function to perform this transformation. Run the code cell below to perform the preprocessing routine discussed in this section.
###Code
def preprocess_features(X):
''' Preprocesses the student data and converts non-numeric binary variables into
binary (0/1) variables. Converts categorical variables into dummy variables. '''
# Initialize new output DataFrame
output = pd.DataFrame(index = X.index)
# Investigate each feature column for the data
for col, col_data in X.iteritems():
# If data type is non-numeric, replace all yes/no values with 1/0
if col_data.dtype == object:
col_data = col_data.replace(['yes', 'no'], [1, 0])
# If data type is categorical, convert to dummy variables
if col_data.dtype == object:
# Example: 'school' => 'school_GP' and 'school_MS'
col_data = pd.get_dummies(col_data, prefix = col)
# Collect the revised columns
output = output.join(col_data)
return output
X_all = preprocess_features(X_all)
print "Processed feature columns ({} total features):\n{}".format(len(X_all.columns), list(X_all.columns))
###Output
Processed feature columns (48 total features):
['school_GP', 'school_MS', 'sex_F', 'sex_M', 'age', 'address_R', 'address_U', 'famsize_GT3', 'famsize_LE3', 'Pstatus_A', 'Pstatus_T', 'Medu', 'Fedu', 'Mjob_at_home', 'Mjob_health', 'Mjob_other', 'Mjob_services', 'Mjob_teacher', 'Fjob_at_home', 'Fjob_health', 'Fjob_other', 'Fjob_services', 'Fjob_teacher', 'reason_course', 'reason_home', 'reason_other', 'reason_reputation', 'guardian_father', 'guardian_mother', 'guardian_other', 'traveltime', 'studytime', 'failures', 'schoolsup', 'famsup', 'paid', 'activities', 'nursery', 'higher', 'internet', 'romantic', 'famrel', 'freetime', 'goout', 'Dalc', 'Walc', 'health', 'absences']
###Markdown
Implementation: Training and Testing Data SplitSo far, we have converted all _categorical_ features into numeric values. For the next step, we split the data (both features and corresponding labels) into training and test sets. In the following code cell below, you will need to implement the following:- Randomly shuffle and split the data (`X_all`, `y_all`) into training and testing subsets. - Use 300 training points (approximately 75%) and 95 testing points (approximately 25%). - Set a `random_state` for the function(s) you use, if provided. - Store the results in `X_train`, `X_test`, `y_train`, and `y_test`.
###Code
# TODO: Import any additional functionality you may need here
from sklearn.cross_validation import train_test_split
# TODO: Set the number of training points
num_train = 300
# Set the number of testing points
num_test = X_all.shape[0] - num_train
# TODO: Shuffle and split the dataset into the number of training and testing points above
X_train,X_test,y_train, y_test = train_test_split(X_all,y_all,test_size = num_test, random_state = 0)
# Show the results of the split
print "Training set has {} samples.".format(X_train.shape[0])
print "Testing set has {} samples.".format(X_test.shape[0])
###Output
Training set has 300 samples.
Testing set has 95 samples.
###Markdown
Training and Evaluating ModelsIn this section, you will choose 3 supervised learning models that are appropriate for this problem and available in `scikit-learn`. You will first discuss the reasoning behind choosing these three models by considering what you know about the data and each model's strengths and weaknesses. You will then fit the model to varying sizes of training data (100 data points, 200 data points, and 300 data points) and measure the F1 score. You will need to produce three tables (one for each model) that shows the training set size, training time, prediction time, F1 score on the training set, and F1 score on the testing set. Question 2 - Model Application*List three supervised learning models that are appropriate for this problem. What are the general applications of each model? What are their strengths and weaknesses? Given what you know about the data, why did you choose these models to be applied?* **Answer: **The three supervised learning models that I've chosen are :1. Decision Trees2. Support Vector Machines3. K-Nearest Neighbors**1. Decision Trees** : Decision Trees are widely used in several industries including medicine(to classify diseases based on patient's features for example), biomedical research, financial analysis(fraud detection,credit defaulting etc) for both classification and regression problem, astronomy to social media websites for predicting engagement/ad clicks for it's interpretability and versatality.* Strengths : 1. Decision Trees are interpretable and easy to visualize. 2. Decision Trees can handle both categorical and numerical data 3. All else being equal, decision trees prefer shorter trees to longer trees by splitting on the "best features"(using information gain or gini impurity index), so it's easy to understand what are the most important features in a dataset* Weeknesses : 1. Decision trees grow exponentially with the number of instances and more features 2. Decision trees overfit very easily as it picks up subtle variances in the data set. However, over-fitting can be minimized by calculating best maximum depth of the tree, minimum number of samples to spilt per node and pruning techniques after creating the tree. Random forest, another model based on decision trees are incredibly popular as it minimizes errors by ensembling over many decision trees.* Reasons for choosing this model : 1. This dataset has many features and a problem like predicting which students need intervention is unlikely to be linear relationship completely as many details influence a student's learning. 2. Most features in this data set are binary which is for a decision tree to handle with conditionals and the resulting tree will be easier to interpret and thus determine a course of action to ensure student's learning rate improves. ** 2. Support Vector Machine :** Support vector machines classify data by finding the maximum margin hyperplane that seperates class labels, it's also a very popular model like the other two, decision trees and K-nearest neighbors and used in industry for classification and regression tasks. Support Vector Machines have been successfully used on high dimensional data such as genetic data(protein structure prediction), music(song genre classification, music retrival), image classification(histogram based), image retrieval etc.* Strengths : 1. As Support Vector Machine tries to find the seperator hyperplane that has the maximum distance between the seperate classes, it's not prone to overfitting. 2. Linear SVM produces a line as decision boundary, but SVM is also effetive with high dimensional data by using Kernel-trick (mapping the data points to higher dimensional spaces to find the appropriate class labels) * Weeknesses : 1. Performance depends on the choice of Kernel. Large data sets may take a lot of time to train. 2. SVM works really well for datasets that has a clear margin of seperation, but performs poorly on noisy datasets. * Reasons for choosing this model : 1. As there are many features in this dataset, if this datset has a good margin of seperation SVM would be able to pick it up. 2. SVM also works well with high dimensional data with kernel trick, and this dataset has many features.**3. K Nearest Neighbor ** :K nearest neighbor is a method of 'instance based learning'/lazy learning as the computation begins when we start predicting, it's also a non-parametric method. K nearest neighbor tries to find similar instances for each query and predicts based on their average/majority voting for classification and regression problem. It can be used in many different cases including content retrieval for photos, videos, text and recommending products etc. It's one of the most popular methods in data mining.* Strengths : 1. It does not make any assumptions about the distribution of data. Rather it simply tries to find the most similar k neighbors for each query based on some distance metric/similarity measurement and uses the whole data set for each query. 2. After choosing the number of neighbors k and the similarity metric d , the algorithm is simple to implement in production. 3. It's possible to weight the contribution of the neighbors for predicting labels (weighting the nearest neighbors highest and the distant one's lower) for higher accuracy. For datasets that don't follow a general pattern, K nearest neighbor is often a really good choice. * Weeknesses: 1. K-nearest neighbor requires the entire dataset to be preserved in the memory. Unlike a parametric model like linear regression where we just have to train once to find the parameters, we can't throw away the data set and this can make the space requirement incredibly high. 2. It's important to use domain knowledge and grid search techniques to find a good similarity measure and a good k, in practice there can be many variations of distance metrics which can yield different performances. 3. It's less interpretable than models like decision tree where we can understand which features are the strongest. * Reasons for choosing this model: 1. Students who are failing may have similar patterns such as similar amount of time invested in recreation over studying, similar number of family members and income, similar geographic region etc which K nearest neighbor can deal with easily. SetupRun the code cell below to initialize three helper functions which you can use for training and testing the three supervised learning models you've chosen above. The functions are as follows:- `train_classifier` - takes as input a classifier and training data and fits the classifier to the data.- `predict_labels` - takes as input a fit classifier, features, and a target labeling and makes predictions using the F1 score.- `train_predict` - takes as input a classifier, and the training and testing data, and performs `train_clasifier` and `predict_labels`. - This function will report the F1 score for both the training and testing data separately.
###Code
def train_classifier(clf, X_train, y_train):
''' Fits a classifier to the training data. '''
# Start the clock, train the classifier, then stop the clock
start = time()
clf.fit(X_train, y_train)
end = time()
# Print the results
print "Trained model in {:.4f} seconds".format(end - start)
def predict_labels(clf, features, target):
''' Makes predictions using a fit classifier based on F1 score. '''
# Start the clock, make predictions, then stop the clock
start = time()
y_pred = clf.predict(features)
end = time()
# Print and return results
print "Made predictions in {:.4f} seconds.".format(end - start)
return f1_score(target.values, y_pred, pos_label='yes')
def train_predict(clf, X_train, y_train, X_test, y_test):
''' Train and predict using a classifer based on F1 score. '''
# Indicate the classifier and the training set size
print "Training a {} using a training set size of {}. . .".format(clf.__class__.__name__, len(X_train))
# Train the classifier
train_classifier(clf, X_train, y_train)
# Print the results of prediction for both training and testing
print "F1 score for training set: {:.4f}.".format(predict_labels(clf, X_train, y_train))
print "F1 score for test set: {:.4f}.".format(predict_labels(clf, X_test, y_test))
print "\n"
###Output
_____no_output_____
###Markdown
Implementation: Model Performance MetricsWith the predefined functions above, you will now import the three supervised learning models of your choice and run the `train_predict` function for each one. Remember that you will need to train and predict on each classifier for three different training set sizes: 100, 200, and 300. Hence, you should expect to have 9 different outputs below — 3 for each model using the varying training set sizes. In the following code cell, you will need to implement the following:- Import the three supervised learning models you've discussed in the previous section.- Initialize the three models and store them in `clf_A`, `clf_B`, and `clf_C`. - Use a `random_state` for each model you use, if provided. - **Note:** Use the default settings for each model — you will tune one specific model in a later section.- Create the different training set sizes to be used to train each model. - *Do not reshuffle and resplit the data! The new training points should be drawn from `X_train` and `y_train`.*- Fit each model with each training set size and make predictions on the test set (9 in total). **Note:** Three tables are provided after the following code cell which can be used to store your results.
###Code
# TODO: Import the three supervised learning models from sklearn
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
# TODO: Initialize the three models
clf_A = DecisionTreeClassifier(random_state =0)
clf_B = SVC(random_state = 0)
clf_C = KNeighborsClassifier()
training_sizes = [100,200,300]
# TODO: Execute the 'train_predict' function for each classifier and each training set size
# Decision Tree
for size in training_sizes:
train_predict(clf_A, X_train[:size], y_train[:size], X_test, y_test)
print "\n\n\n"
# Support Vector Machine
for size in training_sizes:
train_predict(clf_B, X_train[:size], y_train[:size], X_test, y_test)
print "\n\n\n"
# K Neareset Neighbor Classifier
for size in training_sizes:
train_predict(clf_C, X_train[:size], y_train[:size], X_test, y_test)
###Output
Training a DecisionTreeClassifier using a training set size of 100. . .
Trained model in 0.0050 seconds
Made predictions in 0.0010 seconds.
F1 score for training set: 1.0000.
Made predictions in 0.0010 seconds.
F1 score for test set: 0.6942.
Training a DecisionTreeClassifier using a training set size of 200. . .
Trained model in 0.0050 seconds
Made predictions in 0.0010 seconds.
F1 score for training set: 1.0000.
Made predictions in 0.0000 seconds.
F1 score for test set: 0.7132.
Training a DecisionTreeClassifier using a training set size of 300. . .
Trained model in 0.0000 seconds
Made predictions in 0.0000 seconds.
F1 score for training set: 1.0000.
Made predictions in 0.0000 seconds.
F1 score for test set: 0.7167.
Training a SVC using a training set size of 100. . .
Trained model in 0.0000 seconds
Made predictions in 0.0000 seconds.
F1 score for training set: 0.8591.
Made predictions in 0.0000 seconds.
F1 score for test set: 0.7838.
Training a SVC using a training set size of 200. . .
Trained model in 0.0180 seconds
Made predictions in 0.0000 seconds.
F1 score for training set: 0.8693.
Made predictions in 0.0150 seconds.
F1 score for test set: 0.7755.
Training a SVC using a training set size of 300. . .
Trained model in 0.0310 seconds
Made predictions in 0.0160 seconds.
F1 score for training set: 0.8692.
Made predictions in 0.0000 seconds.
F1 score for test set: 0.7586.
Training a KNeighborsClassifier using a training set size of 100. . .
Trained model in 0.0000 seconds
Made predictions in 0.0000 seconds.
F1 score for training set: 0.7972.
Made predictions in 0.0000 seconds.
F1 score for test set: 0.7068.
Training a KNeighborsClassifier using a training set size of 200. . .
Trained model in 0.0000 seconds
Made predictions in 0.0220 seconds.
F1 score for training set: 0.8571.
Made predictions in 0.0070 seconds.
F1 score for test set: 0.7121.
Training a KNeighborsClassifier using a training set size of 300. . .
Trained model in 0.0030 seconds
Made predictions in 0.0250 seconds.
F1 score for training set: 0.8722.
Made predictions in 0.0000 seconds.
F1 score for test set: 0.7482.
###Markdown
Tabular ResultsEdit the cell below to see how a table can be designed in [Markdown](https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheettables). You can record your results from above in the tables provided. ** Classifer 1 - DecisionTreeClassifier?** | Training Set Size | Training Time | Prediction Time (test) | F1 Score (train) | F1 Score (test) || :---------------: | :---------------------: | :--------------------: | :--------------: | :-------------: || 100 |0.0050 seconds |0.0010 seconds. |1.0000 |0.6942 || 200 |0.0050 seconds |0.0000 seconds |1.0000 |0.7132 || 300 |0.0000 seconds |0.0000 seconds |1.0000 |0.7167 |** Classifer 2 - SVM?** | Training Set Size | Training Time | Prediction Time (test) | F1 Score (train) | F1 Score (test) || :---------------: | :---------------------: | :--------------------: | :--------------: | :-------------: || 100 |0.0000 seconds |0.0000 seconds |0.8591 |0.7838 || 200 |0.0180 seconds |0.0150 seconds |0.8693 | 0.7755 || 300 |0.0310 seconds |0.0000 seconds |0.8692 |0.7586 |** Classifer 3 - K-Nearest Neighbor ** | Training Set Size | Training Time | Prediction Time (test) | F1 Score (train) | F1 Score (test) || :---------------: | :---------------------: | :--------------------: | :--------------: | :-------------: || 100 |0.0000 seconds |0.0000 seconds |0.7972 |0.7068 || 200 |0.0000 seconds |0.0070 seconds |0.8571 |0.7121 || 300 | 0.0030 seconds |0.0000 seconds |0.8722 |0.7482 |
###Code
print y_train.value_counts()
print y_test.value_counts()
decision_tree_f1_average = (0.6942+0.7132+0.7167)/3.0
svm_f1_average = (0.7838 + 0.7755 + 0.7586)/3.0
k_nearest_f1_average = (0.7068+0.7121+0.7482)/3.0
print decision_tree_f1_average
print svm_f1_average
print k_nearest_f1_average
###Output
0.708033333333
0.772633333333
0.722366666667
###Markdown
Choosing the Best ModelIn this final section, you will choose from the three supervised learning models the *best* model to use on the student data. You will then perform a grid search optimization for the model over the entire training set (`X_train` and `y_train`) by tuning at least one parameter to improve upon the untuned model's F1 score. Question 3 - Chosing the Best Model*Based on the experiments you performed earlier, in one to two paragraphs, explain to the board of supervisors what single model you chose as the best model. Which model is generally the most appropriate based on the available data, limited resources, cost, and performance?* **Answer: **The model I would choose as the best model is SVM.Reasons : 1. DecisionTreeClassifier shows clear signs of overfitting. It fits the training data perfectly with a F1-score of 1, but performs worse on the testing data compared to both SVM and k-nearest neighbor. So Decision Tree would clearly not be an appropriate model for this data set. 2. K-Nearest Neighbor actually shows quite stable performance over training and testing data sets and performs better both on the training and testing data sets steadily as the score increased with more training data(possibly because it found similar students with more training instances for the query instances). However, K-nearest's performance on the test data set is still poor compared to SVM. 3. SVM's average test score is 0.7726, beating both decision tree(average f1 on test set = 0.7080) and k-nearest neighbor(average f1 score 0.7223), based on scores SVM is the best choice. It's true that there's subtle differences of computation time for training and testing phases but for a small data set like this the differences are not that important. Question 4 - Model in Layman's Terms*In one to two paragraphs, explain to the board of directors in layman's terms how the final model chosen is supposed to work. For example if you've chosen to use a decision tree or a support vector machine, how does the model go about making a prediction?* **Answer: **The model that was chosen is called Support Vector Machine which is a linear seperator. Intuitively in the simplest case, we can imagine a 2D plane where we plot the data and labels on the x and y axis respective and we want to seperate the labels using a line. We can choose many lines for this task, assuming the labels are not overlapping, however, support vector machine will choose the "maximum margin" line, the line that has the biggest distance from the nearest points of both classes, i.e the line which is actually in the 'middle'. We choose this line to generalize the model to test data and avoid overfitting, a line too close to either of the classes can misclassify quickly.For the higher dimension data sets instead of a line we map the datapoints to higher dimensions(with 'kernel trick') and find the maximum margin hyperplane to seperate the classes with as much gap as possible. For example in the image below a line could not have seperated circular data in 2D, so data has been mapped to 3D space where a clear seperating hyperplane was found, then the labels were used to classify the instances.For practical purposes, choosing decision tree would have been more interpretable, but in this case would have led to overfitting (as we have seen in the table) and intervention of a student who's actually doing well because of a bad model would have led to negative consequences in this student's life. Choosing something like K-Nearest perhaps would have been stable perhaps, but not as interpretable as decision trees. However if we scale to millions of students, decision trees will also grow exponentially and K-Nearest neighbors woudld have to iterate over all the millions of students to find similar one's.On the other hand, Support vector machine's clearly showed best performance so far and it's an widely used algorithm in the industry too, so SVM was chosen. Visualizing SVM is not as easy as decision tree's, but it has better performance. Implementation: Model TuningFine tune the chosen model. Use grid search (`GridSearchCV`) with at least one important parameter tuned with at least 3 different values. You will need to use the entire training set for this. In the code cell below, you will need to implement the following:- Import [`sklearn.grid_search.gridSearchCV`](http://scikit-learn.org/stable/modules/generated/sklearn.grid_search.GridSearchCV.html) and [`sklearn.metrics.make_scorer`](http://scikit-learn.org/stable/modules/generated/sklearn.metrics.make_scorer.html).- Create a dictionary of parameters you wish to tune for the chosen model. - Example: `parameters = {'parameter' : [list of values]}`.- Initialize the classifier you've chosen and store it in `clf`.- Create the F1 scoring function using `make_scorer` and store it in `f1_scorer`. - Set the `pos_label` parameter to the correct value!- Perform grid search on the classifier `clf` using `f1_scorer` as the scoring method, and store it in `grid_obj`.- Fit the grid search object to the training data (`X_train`, `y_train`), and store it in `grid_obj`.
###Code
# TODO: Import 'GridSearchCV' and 'make_scorer'
from sklearn.grid_search import GridSearchCV
from sklearn.metrics import make_scorer
# TODO: Create the parameters list you wish to tune
parameters = {'kernel':('linear', 'poly','rbf'), 'C':[0.25,0.5,1, 10,50]}
# TODO: Initialize the classifier
clf = SVC()
# TODO: Make an f1 scoring function using 'make_scorer'
f1_scorer = make_scorer(f1_score,pos_label = "yes")
# TODO: Perform grid search on the classifier using the f1_scorer as the scoring method
grid_obj = GridSearchCV(clf,param_grid = parameters,scoring = f1_scorer)
# TODO: Fit the grid search object to the training data and find the optimal parameters
grid_obj.fit(X_train,y_train)
# Get the estimator
clf = grid_obj.best_estimator_
print clf.get_params()
# Report the final F1 score for training and testing after parameter tuning
print "Tuned model has a training F1 score of {:.4f}.".format(predict_labels(clf, X_train, y_train))
print "Tuned model has a testing F1 score of {:.4f}.".format(predict_labels(clf, X_test, y_test))
###Output
{'kernel': 'rbf', 'C': 1, 'verbose': False, 'probability': False, 'degree': 3, 'shrinking': True, 'max_iter': -1, 'decision_function_shape': None, 'random_state': None, 'tol': 0.001, 'cache_size': 200, 'coef0': 0.0, 'gamma': 'auto', 'class_weight': None}
Made predictions in 0.0250 seconds.
Tuned model has a training F1 score of 0.8692.
Made predictions in 0.0100 seconds.
Tuned model has a testing F1 score of 0.7586.
|
notebooks/2_event_detection_(Syn-I).ipynb | ###Markdown
uncomment and run the following cell if you are on Google Colab
###Code
# !pip install git+https://github.com/vafaei-ar/drama.git
###Output
_____no_output_____
###Markdown
Unsupervised outliers detection (event detection) This notebook is evaluated DRAMA on a known set of dataset where X and y (outlier label) exist.
###Code
import drama as drm
from drama.v1.outlier_finder import grid_run_drama
import numpy as np
import matplotlib.pylab as plt
from matplotlib import gridspec
from drama.run_tools import synt_event
from drama.v1.outlier_finder import sk_check
%matplotlib inline
###Output
WARNING:tensorflow:From /home/gf/packages/anaconda3/envs/drama/lib/python3.7/site-packages/tensorflow_core/python/compat/v2_compat.py:68: disable_resource_variables (from tensorflow.python.ops.variable_scope) is deprecated and will be removed in a future version.
Instructions for updating:
non-resource variables are not supported in the long term
###Markdown
Signal synthesis Here you can simulation inliers and outliers using "synt_event" fucntion.
###Code
i_sig = 1 # signal number
n_ftrs = 100
noise = 0.2
scl = 0.01
sft = 0.01
X, y = synt_event(i_sig,n_ftrs,sigma = noise,n1 = scl,n2 = sft,n3 = scl,n4 = sft)
gs = gridspec.GridSpec(1, 2)
plt.figure(figsize=(8,3))
ax1 = plt.subplot(gs[0, 0])
ax2 = plt.subplot(gs[0, 1])
ax1.set_title('Inliers')
ax2.set_title('Outliers')
inliers = X[y==0]
outliers = X[y==1]
for i in range(10):
ax1.plot(inliers[i],'b')
ax2.plot(outliers[i],'r')
###Output
_____no_output_____
###Markdown
Outlier detection We run DRAMA 5 times. DRAMA can be run in grid mode so one can compare different hyperparameter configuration.
###Code
n_try = 5
result = []
for i in range(n_try):
auc,mcc,rws,conf = grid_run_drama(X_seen=X,y_seen=y)
arr = np.stack([auc,mcc,rws],axis=-1)
result.append(arr)
result = np.array(result)
drts = np.unique(conf[:,1])
metrs = np.unique(conf[:,2])
res = result.reshape(n_try,5,10,-1)
###Output
Unsupervised outlier detection mode.
###Markdown
DRAMA runs in two mode for now: - supervised - semi-supervised The "grid_run_drama" fucntion gets four arguments: - X_seen - y_seen - X_unseen = None - y_unseen = None - X_seen and y_seen sould be given when one wants to evaluate unsupervised outlier detection. DRAMA will run on the X_seen and return the metrics (AUC,MCC,RWS) comparing the result with y_seen.- X_unseen and y_unseen are None by default. Pass part of data to them when you want evaluate drama in semi-supervised outlier detection mode. DRAMA will run on the seen data and select the best hyperparameter configuration set and use them on the unseen data. Finally it compares the results with y_unseen and returns the metrics (AUC,MCC,RWS).We are evaluating unsupervised mode in this notebook.
###Code
drm.plot_table(np.mean(res,axis=0),drts,metrs)
###Output
_____no_output_____
###Markdown
Now we can compare DRAMA resualts with LOF and iforest. "sk_check" is used for this purpose.
###Code
lof_all = np.zeros((n_try,3))
ifr_all = np.zeros((n_try,3))
df = sk_check(X,X,y,[1])
for i in range(n_try):
for j,scr in enumerate(['AUC','MCC','RWS']):
lof_all[i,j] = df[scr][0]
ifr_all[i,j] = df[scr][1]
###Output
/home/gf/packages/anaconda3/lib/python3.6/site-packages/sklearn/ensemble/iforest.py:223: FutureWarning: behaviour="old" is deprecated and will be removed in version 0.22. Please use behaviour="new", which makes the decision_function change to match other anomaly detection algorithm API.
FutureWarning)
###Markdown
Here we compare howmany DRAMA wins using different hyperpameter congifs.
###Code
auc = np.sum((res[:, :, :, 0].T>lof_all[:, 0]) & (res[:, :, :, 0].T>ifr_all[:, 0]),axis=-1).T
mcc = np.sum((res[:, :, :, 1].T>lof_all[:, 1]) & (res[:, :, :, 1].T>ifr_all[:, 1]),axis=-1).T
rws = np.sum((res[:, :, :, 2].T>lof_all[:, 2]) & (res[:, :, :, 2].T>ifr_all[:, 2]),axis=-1).T
fig = plt.figure(figsize=(20,10))
plt.clf()
ax = fig.add_subplot(111)
ax.set_aspect('auto')
ax.imshow(auc, cmap=plt.cm.jet,interpolation='nearest')
width, height = auc.shape
for x in range(width):
for y in range(height):
ax.annotate('AUC: {:d}\n MCC: {:d}\n RWS: {:d}'.format(auc[x][y],mcc[x][y],rws[x][y]), xy=(y, x),
horizontalalignment='center',
verticalalignment='center',fontsize=18);
plt.xticks(range(10),metrs,fontsize=15)
plt.yticks(range(5), drts,fontsize=15)
plt.title('Number of successes (LOF and i-forest) out of 20 data set',fontsize=25)
plt.annotate('** Colors depend on AUC.', (0,0), (0, -30), xycoords='axes fraction',
textcoords='offset points', va='top',fontsize=15)
# plt.savefig('AND_success.jpg',dpi=150,bbox_inches='tight')
###Output
_____no_output_____ |
books/pythonMachineLearning/ch3_scikit_learn/.ipynb_checkpoints/ch03-checkpoint.ipynb | ###Markdown
Training a logistic regression model with scikit-learn
###Code
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression(C=100, random_state=1, solver='lbfgs', multi_class='ovr')
lr.fit(X_train_std, y_train)
plot_decision_regions(X_combined_std, y_combined,
classifier=lr, test_idx=range(105, 150))
plt.xlabel('petal length [standardized]')
plt.ylabel('petal width [standardized]')
plt.legend(loc='upper left')
plt.tight_layout()
# plt.savefig('images/03_06.png', dpi=300)
plt.show()
###Output
<ipython-input-12-4cd5e22e52b7>:37: MatplotlibDeprecationWarning: Using a string of single character colors as a color sequence is deprecated since 3.2 and will be removed two minor releases later. Use an explicit list instead.
plt.scatter(X_test[:, 0],
###Markdown
Add regularization to logistic regressionNote that scikit learn is different than the by-hand implementation: `coef_` and `intercept_` are equivalent to my definition of `w_`
###Code
weights, params = [], []
for c in np.arange(-5, 5):
lr = LogisticRegression(C=10.**c, random_state=1,
solver='lbfgs',
multi_class='ovr')
lr.fit(X_train_std, y_train)
weights.append(lr.coef_[1])
params.append(10.**c)
weights = np.array(weights)
plt.plot(params, weights[:, 0],
label='petal length')
plt.plot(params, weights[:, 1], linestyle='--',
label='petal width')
plt.ylabel('weight coefficient')
plt.xlabel('C')
plt.legend(loc='upper left')
plt.xscale('log')
#plt.savefig('images/03_08.png', dpi=300)
plt.show()
###Output
_____no_output_____
###Markdown
Maximum margin classification with support vector machines
###Code
Image(filename='images/03_10.png', width=600)
from sklearn.svm import SVC
svm = SVC(kernel='linear', C=10**0, random_state=1)
svm.fit(X_train_std, y_train)
plot_decision_regions(X_combined_std,
y_combined,
classifier=svm,
test_idx=range(105, 150))
plt.xlabel('petal length [standardized]')
plt.ylabel('petal width [standardized]')
plt.legend(loc='upper left')
plt.tight_layout()
plt.savefig('images/03_11.png', dpi=300)
plt.show()
###Output
<ipython-input-12-4cd5e22e52b7>:37: MatplotlibDeprecationWarning: Using a string of single character colors as a color sequence is deprecated since 3.2 and will be removed two minor releases later. Use an explicit list instead.
plt.scatter(X_test[:, 0],
###Markdown
Alternative implementations in scikit-learn
###Code
from sklearn.linear_model import SGDClassifier
ppn = SGDClassifier(loss='perceptron')
lr = SGDClassifier(loss='log')
svm = SGDClassifier(loss='hinge')
###Output
_____no_output_____
###Markdown
Solving non-linear problems using a kernel SVM
###Code
import matplotlib.pyplot as plt
import numpy as np
np.random.seed(1)
X_xor = np.random.randn(200, 2)
y_xor = np.logical_xor(X_xor[:, 0] > 0,
X_xor[:, 1] > 0)
y_xor = np.where(y_xor, 1, -1)
plt.scatter(X_xor[y_xor == 1, 0],
X_xor[y_xor == 1, 1],
c='b', marker='x',
label='1')
plt.scatter(X_xor[y_xor == -1, 0],
X_xor[y_xor == -1, 1],
c='r',
marker='s',
label='-1')
plt.xlim([-3, 3])
plt.ylim([-3, 3])
plt.legend(loc='best')
plt.tight_layout()
#plt.savefig('images/03_12.png', dpi=300)
plt.show()
###Output
_____no_output_____
###Markdown
Using the kernel trick to find separating hyperplanes in higher dimensional space
###Code
svm = SVC(kernel='rbf', random_state=1, gamma=0.10, C=10.0)
svm.fit(X_xor, y_xor)
plot_decision_regions(X_xor, y_xor,
classifier=svm)
plt.legend(loc='upper left')
plt.tight_layout()
#plt.savefig('images/03_14.png', dpi=300)
plt.show()
svm = SVC(kernel='rbf', random_state=1, gamma=0.2, C=1.0)
svm.fit(X_train_std, y_train)
plot_decision_regions(X_combined_std, y_combined,
classifier=svm, test_idx=range(105, 150))
plt.xlabel('petal length [standardized]')
plt.ylabel('petal width [standardized]')
plt.legend(loc='upper left')
plt.tight_layout()
#plt.savefig('images/03_15.png', dpi=300)
plt.show()
svm = SVC(kernel='rbf', random_state=1, gamma=100.0, C=1.0)
svm.fit(X_train_std, y_train)
plot_decision_regions(X_combined_std, y_combined,
classifier=svm, test_idx=range(105, 150))
plt.xlabel('petal length [standardized]')
plt.ylabel('petal width [standardized]')
plt.legend(loc='upper left')
plt.tight_layout()
#plt.savefig('images/03_16.png', dpi=300)
plt.show()
###Output
<ipython-input-12-4cd5e22e52b7>:37: MatplotlibDeprecationWarning: Using a string of single character colors as a color sequence is deprecated since 3.2 and will be removed two minor releases later. Use an explicit list instead.
plt.scatter(X_test[:, 0],
###Markdown
Maximizing information gain - getting the most bang for the buck
###Code
import matplotlib.pyplot as plt
import numpy as np
def gini(p):
return p * (1 - p) + (1 - p) * (1 - (1 - p))
def entropy(p):
return - p * np.log2(p) - (1 - p) * np.log2((1 - p))
def error(p):
return 1 - np.max([p, 1 - p])
x = np.arange(0.0, 1.0, 0.01)
ent = [entropy(p) if p != 0 else None for p in x]
sc_ent = [e * 0.5 if e else None for e in ent]
err = [error(i) for i in x]
fig = plt.figure()
ax = plt.subplot(111)
for i, lab, ls, c, in zip([ent, sc_ent, gini(x), err],
['Entropy', 'Entropy (scaled)',
'Gini impurity', 'Misclassification error'],
['-', '-', '--', '-.'],
['black', 'lightgray', 'red', 'green', 'cyan']):
line = ax.plot(x, i, label=lab, linestyle=ls, lw=2, color=c)
ax.legend(loc='upper center', bbox_to_anchor=(0.5, 1.15),
ncol=5, fancybox=True, shadow=False)
ax.axhline(y=0.5, linewidth=1, color='k', linestyle='--')
ax.axhline(y=1.0, linewidth=1, color='k', linestyle='--')
plt.ylim([0, 1.1])
plt.xlabel('p(i=1)')
plt.ylabel('impurity index')
#plt.savefig('images/03_19.png', dpi=300, bbox_inches='tight')
plt.show()
###Output
_____no_output_____
###Markdown
Building a decision tree
###Code
from sklearn.tree import DecisionTreeClassifier
tree_model = DecisionTreeClassifier(criterion='gini',
max_depth=4,
random_state=1)
tree_model.fit(X_train, y_train)
X_combined = np.vstack((X_train, X_test))
y_combined = np.hstack((y_train, y_test))
plot_decision_regions(X_combined, y_combined,
classifier=tree_model,
test_idx=range(105, 150))
plt.xlabel('petal length [cm]')
plt.ylabel('petal width [cm]')
plt.legend(loc='upper left')
plt.tight_layout()
#plt.savefig('images/03_20.png', dpi=300)
plt.show()
from sklearn import tree
tree.plot_tree(tree_model)
plt.show()
from pydotplus import graph_from_dot_data
from sklearn.tree import export_graphviz
dot_data = export_graphviz(tree_model,
filled=True,
rounded=True,
class_names=['Setosa',
'Versicolor',
'Virginica'],
feature_names=['petal length',
'petal width'],
out_file=None)
graph = graph_from_dot_data(dot_data)
graph.write_png('images/tree.png')
Image(filename='images/tree.png', width=600)
###Output
_____no_output_____
###Markdown
Combining weak to strong learners via random forests
###Code
from sklearn.ensemble import RandomForestClassifier
forest = RandomForestClassifier(criterion='gini',
n_estimators=25,
random_state=1,
n_jobs=2)
forest.fit(X_train, y_train)
plot_decision_regions(X_combined, y_combined,
classifier=forest, test_idx=range(105, 150))
plt.xlabel('petal length [cm]')
plt.ylabel('petal width [cm]')
plt.legend(loc='upper left')
plt.tight_layout()
#plt.savefig('images/03_22.png', dpi=300)
plt.show()
###Output
<ipython-input-12-4cd5e22e52b7>:37: MatplotlibDeprecationWarning: Using a string of single character colors as a color sequence is deprecated since 3.2 and will be removed two minor releases later. Use an explicit list instead.
plt.scatter(X_test[:, 0],
###Markdown
K-nearest neighbors - a lazy learning algorithm
###Code
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=5,
p=2,
metric='minkowski')
knn.fit(X_train_std, y_train)
plot_decision_regions(X_combined_std, y_combined,
classifier=knn, test_idx=range(105, 150))
plt.xlabel('petal length [standardized]')
plt.ylabel('petal width [standardized]')
plt.legend(loc='upper left')
plt.tight_layout()
#plt.savefig('images/03_24.png', dpi=300)
plt.show()
###Output
<ipython-input-12-4cd5e22e52b7>:37: MatplotlibDeprecationWarning: Using a string of single character colors as a color sequence is deprecated since 3.2 and will be removed two minor releases later. Use an explicit list instead.
plt.scatter(X_test[:, 0],
###Markdown
Chapter 3 - A Tour of Machine Learning Classifiers Using Scikit-Learn
###Code
%load_ext watermark
%watermark -a "Othmane Rifki" -u -d -p numpy,pandas,matplotlib,scikit-learn
from IPython.display import Image
%matplotlib inline
###Output
_____no_output_____
###Markdown
First attempt with scikit-learnImportant methods:* `datasets`: to get various datasets* `model_selection`: to get `train_test_split`* `preprocessing`: for feature scaling `StandardScaler`* `linear_model`: for various linear learning algorithms * `metrics`: to evaluate model Load data
###Code
from sklearn import datasets
import numpy as np
iris = datasets.load_iris()
X = iris.data[:, [2, 3]]
y = iris.target
print('Class labels:', np.unique(y))
###Output
Class labels: [0 1 2]
###Markdown
Split data
###Code
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=1, stratify=y)
print('Labels count in y:', np.bincount(y))
print('Labels count in y_train:', np.bincount(y_train))
print('Labels count in y_test:', np.bincount(y_test))
###Output
Labels count in y: [50 50 50]
Labels count in y_train: [35 35 35]
Labels count in y_test: [15 15 15]
###Markdown
Feature scaling
###Code
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
sc.fit(X_train)
X_train_std = sc.transform(X_train)
X_test_std = sc.transform(X_test)
###Output
_____no_output_____
###Markdown
Train a perceptron
###Code
from sklearn.linear_model import Perceptron
ppn = Perceptron(eta0=0.1, random_state=1)
ppn.fit(X_train_std, y_train)
y_pred = ppn.predict(X_test_std)
print('Misclassified examples: %d' % (y_test != y_pred).sum())
###Output
Misclassified examples: 1
###Markdown
Show metrics
###Code
# 1-manually
print(f'Accuracy: {(y_pred == y_test).sum()/len(y_test):.2%}')
# 2-built-in
from sklearn.metrics import accuracy_score
print(f'Accuracy: {accuracy_score(y_test, y_pred):.2%}')
# 3-fit+score
print(f'Accuracy: {ppn.score(X_test_std, y_test):.2%}')
###Output
Accuracy: 97.78%
###Markdown
Plot
###Code
from matplotlib.colors import ListedColormap
import matplotlib.pyplot as plt
def plot_decision_regions(X, y, classifier, test_idx=None, resolution=0.02):
# setup marker generator and color map
markers = ('s', 'x', 'o', '^', 'v')
colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
cmap = ListedColormap(colors[:len(np.unique(y))])
# plot the decision surface
x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1
x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),
np.arange(x2_min, x2_max, resolution))
Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
Z = Z.reshape(xx1.shape)
plt.contourf(xx1, xx2, Z, alpha=0.3, cmap=cmap)
plt.xlim(xx1.min(), xx1.max())
plt.ylim(xx2.min(), xx2.max())
for idx, cl in enumerate(np.unique(y)):
plt.scatter(x=X[y == cl, 0],
y=X[y == cl, 1],
alpha=0.8,
c=colors[idx],
marker=markers[idx],
label=cl,
edgecolor='black')
# highlight test examples
if test_idx:
# plot all examples
X_test, y_test = X[test_idx, :], y[test_idx]
plt.scatter(X_test[:, 0],
X_test[:, 1],
c='',
edgecolor='black',
alpha=1.0,
linewidth=1,
marker='o',
s=100,
label='test set')
X_combined_std = np.vstack((X_train_std, X_test_std))
y_combined = np.hstack((y_train, y_test))
plot_decision_regions(X=X_combined_std, y=y_combined,
classifier=ppn, test_idx=range(105, 150))
plt.xlabel('petal length [standardized]')
plt.ylabel('petal width [standardized]')
plt.legend(loc='upper left')
plt.tight_layout()
plt.savefig('images/03_01.png', dpi=300)
plt.show()
###Output
<ipython-input-12-4cd5e22e52b7>:37: MatplotlibDeprecationWarning: Using a string of single character colors as a color sequence is deprecated since 3.2 and will be removed two minor releases later. Use an explicit list instead.
plt.scatter(X_test[:, 0],
###Markdown
Playing with logistic regression odds and logits
###Code
# example of converting between probability and log-odds
from math import log
from math import exp
# define our probability of success
prob = 0.8
print('Probability %.1f' % prob)
# convert probability to odds
odds = prob / (1 - prob)
print('Odds %.1f' % odds)
# convert odds to log-odds
logodds = log(odds)
print('Log-Odds %.1f' % logodds)
# convert log-odds to a probability
prob = 1 / (1 + exp(-logodds))
print('Probability %.1f' % prob)
# test of Bernoulli likelihood function
# likelihood function for Bernoulli distribution
def likelihood(y, yhat):
return yhat * y + (1 - yhat) * (1 - y)
# test for y=1
y, yhat = 1, 0.9
print('y=%.1f, yhat=%.1f, likelihood: %.3f' % (y, yhat, likelihood(y, yhat)))
y, yhat = 1, 0.1
print('y=%.1f, yhat=%.1f, likelihood: %.3f' % (y, yhat, likelihood(y, yhat)))
# test for y=0
y, yhat = 0, 0.1
print('y=%.1f, yhat=%.1f, likelihood: %.3f' % (y, yhat, likelihood(y, yhat)))
y, yhat = 0, 0.9
print('y=%.1f, yhat=%.1f, likelihood: %.3f' % (y, yhat, likelihood(y, yhat)))
###Output
y=1.0, yhat=0.9, likelihood: 0.900
y=1.0, yhat=0.1, likelihood: 0.100
y=0.0, yhat=0.1, likelihood: 0.900
y=0.0, yhat=0.9, likelihood: 0.100
###Markdown
Plot sigmoid function = logistic function
###Code
import matplotlib.pyplot as plt
import numpy as np
def sigmoid(z):
return 1.0 / (1.0 + np.exp(-z))
z = np.arange(-7, 7, 0.1)
phi_z = sigmoid(z)
plt.plot(z, phi_z)
plt.axvline(0.0, color='k')
plt.ylim(-0.1, 1.1)
plt.xlabel('z')
plt.ylabel('$\phi (z)$')
# y axis ticks and gridline
plt.yticks([0.0, 0.5, 1.0])
ax = plt.gca()
ax.yaxis.grid(True)
plt.tight_layout()
plt.savefig('images/03_02.png', dpi=300)
plt.show()
###Output
_____no_output_____
###Markdown
Learning the weights of the logistic cost function
###Code
def cost_1(z):
return - np.log(sigmoid(z))
def cost_0(z):
return - np.log(1 - sigmoid(z))
z = np.arange(-10, 10, 0.1)
phi_z = sigmoid(z)
c1 = [cost_1(x) for x in z]
plt.plot(phi_z, c1, label='J(w) if y=1')
c0 = [cost_0(x) for x in z]
plt.plot(phi_z, c0, linestyle='--', label='J(w) if y=0')
plt.ylim(0.0, 5.1)
plt.xlim([0, 1])
plt.xlabel('$\phi$(z)')
plt.ylabel('J(w)')
plt.legend(loc='best')
plt.tight_layout()
#plt.savefig('images/03_04.png', dpi=300)
plt.show()
###Output
_____no_output_____
###Markdown
Logistic regression algorithm
###Code
import numpy as np
class LogisticRegressionGD(object):
"""
Implementation of logistic regression using the gradient descent minimization algorithm
"""
def __init__(self, eta=0.01, n_iter=10, random_state=1):
self.eta = eta
self.n_iter = n_iter
self.random_state = random_state
def fit(self, X, y):
"""Fit function to your data X with dimensions [number of examples, number of features] and y [number of examples]"""
self.w_ = np.random.normal(0, 0.01, 1+X.shape[1])
self.cost_ = []
for _ in range(self.n_iter):
net_input = self.net_input(X)
output = self.activation(net_input)
errors = (y - output)
self.w_[1:] += self.eta * np.dot(X.T,errors)
self.w_[0] += self.eta * np.sum(errors)
cost = (-y.dot(np.log(output)) - ((1 - y).dot(np.log(1-output))))
self.cost_.append(cost)
return self
def net_input(self, X):
return np.dot(X, self.w_[1:]) + self.w_[0]
def activation(self, z):
return 1. / (1. + np.exp(-np.clip(z, -250, 250)))
def predict(self, X):
return np.where(self.net_input(X) >= 0.0, 1, 0)
X_train_01_subset = X_train_std[(y_train == 0) | (y_train == 1)]
y_train_01_subset = y_train[(y_train == 0) | (y_train == 1)]
lrgd = LogisticRegressionGD(eta=0.05, n_iter=1000, random_state=1)
lrgd.fit(X_train_01_subset,
y_train_01_subset)
plot_decision_regions(X=X_train_01_subset,
y=y_train_01_subset,
classifier=lrgd)
plt.xlabel('petal length [standardized]')
plt.ylabel('petal width [standardized]')
plt.legend(loc='upper left')
plt.tight_layout()
#plt.savefig('images/03_05.png', dpi=300)
plt.show()
###Output
_____no_output_____ |
Hyper Basis Function Models 0.2.ipynb | ###Markdown
Hyper Basis Function Models Table of Contents Framinga) Learning as Hypersurface reconstruction b) Approximating the Hypersurfacec) Network representation of approximated Hypersurfaces Interpolation and Radial Basis Functions (RBFs)a) Interpolation Problem b) Radial Basis Functions (RBFs) c) RBF approach to interpolation An examplea) Loading and looking at data b) Linear RBF interpolation c) Multiquadratic RBF interpolation 1) FramingIn the absence of a complete section on this I'll get down the gist: Learning as Hypersurface reconstructiona) TL/DR Allot of super relevent types of learning boil down to input-output mappings;Lots of the learning that we do, as agents in the world (as humans, animals, plants, fungi, and bacteria are) can be described as learning a mapping from an input to an output space. The input could be sensory information and the output some behavior. Examples of such mappings include sensing a bad smell and exiting a room, or a plant leaning towards sunlight. The input can be sensory information and the output representational (learning new categories, recognizing new faces). The input and output both can be represntational. Many of the types of learning we do can be represented this way. b) Input to output mappings, when the output is a single dimension, is a question of hypersurface reconstructionAs a potentially important note I say hypersurface a bit lightly, I think it has a deeper meaning than I currently understand. I mean it as a surface in any number of dimensions that has the singular constraint of having a one dimensional output for any input vector of arbitrary dimension. Another note: the more broad context of multidimensional output spaces can be represented in tis framework as a collection of surfaces.c) We want to able to generate mappings from sparse data Approximating the Hypersurfacea) Given sparse noisy data we want to try to estimate a point on a surface. This is an approximation problem.Insert definition of approximation problem here Network representation of approximated hypersurfacesMany classical sollutions to the approximation problem can be represented by network.Linear regression and spline interprolation (as exampels) can be represented by networks of one hidden layer. 2) Interprolation and Radial Basis Functions This section is an interactive "playthrough" of the section of the same name of Piggio and Girosi's 1989 paper "A theory of Networks for Approximation and Learning" With some spinoffs. Interpolation ProblemGiven $N$ different points {$\vec{x_i} \in R^n | i = 1,...N$} and $N$ real numbers {$y_i \in R^n | i = 1,...N$} find a function $F$ from $R^n$ to $R$ satisfying the interpolation conditions:$$F(\vec{x_i}) = y_i, \ \ \ i = 1,...N$$(Poggio & Girosi 1989) Described in words, we want some function that can recreate our data but also generate guesses about points that we haven't seen before.As a note: I can see no way for such a process to be possible in the case where two examples with identitical feature vectors yield conflicting label values. Indeed we will, at least in the case of the interprolation strategy we'll be looking at, where this situation leads to an attempt to invert a square matrix that has rank less than that of it's size! Edit: I'm less confident about this now, certainly if clusters of points very close together (or identical) will create regions in the H matrix that have similar (or identical) values, which could in principle decrease the rank. THis is all a bit fuzzy to me.! I realize I've used the term rank. Given that I would like, ultimately, this to be accessible to anybody with high school or GED equivalent I need to link to a descriptive definition of rank Radial Basis Functions (RBFs) I'm going to give a basic and unsatisfying definition of Radial Basis Functions here. This is, largely, based out of my current limited understanding of what a radial basis function is. As such this definition is temporary, and only as descriptive as my understanding is deep.The context: function $F$ is from a vector space of dimension $N$, the basis of the space being the set of functions $$\{h(||x-x_i||)|i = 1,...N\}$$s.t. $h$ is a continuous funciton from $R^m \rightarrow R^n$ where $m>n$ & $||.||$ is the Euclidean norm. This $h$ is the radial basis functionNote here the relationship between the Euclidian Norm and $L2$ distance, where a difference in any dimension yields a non-zero value, and additional dimensions can only increase or unchange the value of h between two pointsThere are some constraints on the types of functions $h$ can be, and this is one area where my current understanding is quite lacking. So far as I can tell it boils down to the matrix $H$ that one gets out of $\{h(||x-x_i||)|i = 1,...N\}$ being invertible.Some examples of valid radial basis functions are listed:$$h(r) = e^{-(\frac{r}{c})^2}\ \ \ (gaussian)$$$$h(r) = \frac{1}{(c^2+r^2)^\alpha} \ \ \ \alpha>0$$$$h(r) = (c^2+r^2)^\beta \ \ \ 0<\beta<1$$$$h(r) = \sqrt{c^2 + r^2} \ \ \ (multiquadratic)$$$$h(r) = r \ \ \ \ \ (linear)$$ RBF approach to interpolationA satisfying explanation of this, as with many things, is missing.All I will say for now is the interpolation problem can be solved, given that $h(r)$ is a valid RBF, by setting our function $F$ to a linear combination of the RBFs that form the basis of our previously definied vector space $$F(x) = \sum_{i=1}^N c_ih(||x-x_i||)$$Furthermore the unknown coefficients $c_i$ can be recovered by reimposing our interpolation conditions defined previously. Simply substituting those conditions into the above function yields a solvable system.$$y_j = \sum_{i=1}^N c_ih(||(x_j - x_i||) \ \ j=1,...,N$$By setting some definitions: $(y)_j = y_j; \ \ (c)_i = c_i; \ \ (H)_{ij} = h(||x_j - x_i||)$ the system simplifies nicely:$$c = H^{-1}y$$ Network representation of RBF 3) An Example Loading and looking at dataFirst we'll load some packages and data
###Code
%matplotlib inline
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import math
from mpl_toolkits.mplot3d import Axes3D
num_examples = 100
test_examples = 100
california_housing_dataframe = pd.read_csv("https://storage.googleapis.com/mledu-datasets/california_housing_train.csv", sep=",")
california_housing_dataframe = california_housing_dataframe.reindex(
np.random.permutation(california_housing_dataframe.index))
data_train = np.zeros([num_examples,3])
data_train[:,0] = california_housing_dataframe.median_house_value[0:(num_examples)].values # Median house value for household within a block ($1)
data_train[:,1] = california_housing_dataframe.population[0:(num_examples)].values # population in block
data_train[:,2] = california_housing_dataframe.median_income[0:(num_examples)].values # Median income for households within a block ($10k)
california_housing_dataframe = california_housing_dataframe.reindex(
np.random.permutation(california_housing_dataframe.index))
# I should be splitting the data into non-overlapping test and training examples, the only benefit of this is it allows some flexibility (if the training data set and the test data set together make up more than the total number of exampels I won't get an error here, I'll only get an error if either individually are too large)
data_test = np.zeros([test_examples,3])
data_test[:,0] = california_housing_dataframe.median_house_value[0:(test_examples)].values
data_test[:,1] = california_housing_dataframe.population[0:(test_examples)].values
data_test[:,2] = california_housing_dataframe.median_income[0:(test_examples)].values
###Output
_____no_output_____
###Markdown
Next lets see what we're working with
###Code
plt.subplot(1,2,1)
plt.scatter(data_train[:,0], data_train[:,2])
plt.xlabel('median house value per block')
plt.ylabel('Income')
plt.title('Income x median house value')
plt.subplot(1,2,2)
plt.scatter(data_train[:,1], data_train[:,2])
plt.xlabel('population per block')
plt.ylabel('Income')
plt.title('Income x block population')
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(data_train[:,0],data_train[:,1],data_train[:,2])
plt.show()
###Output
_____no_output_____
###Markdown
As a note: Recall how we mentioned a limit of interprolation before (namely that two identical input vectors with different outputs would break our ability to perform interprolation). The distance between any two points in a feature space necesarally increases as we increase the dimensionality of that feature space. We can see this intuitively in the $R^1 \rightarrow R^2$ case but by simply looking at the definition of $L2$ distance we can see this extends to any increase in dimension (relevance of $L2$ distance will be made more clear when we talk about radial basis functions).The following defines $L2$ distance between two vectors of length n $\vec{p}=(p_1,p_2,...,p_n)$ and $\vec{q}=(q_1,q_2,...,q_n)$$$\rho_{L2}(\vec{p},\vec{q}) = \sqrt{\sum_{i=1}^n(q_i-p_i)^2}$$ Linear RBF interpolation
###Code
# Linear RBF interpolation (in 1D & 2D feature vectors)
# Next hopefully I'll add loss and comparison to simple linear regression
# Ultimately I want to have a switch-case here that allows users to choose their basis function. Ideally if they picked a paramterized basis they would be prompted to input paramters (or even better I guess the parameter space would be samples/explored)
# Median House value -> income
H_0 = np.zeros([num_examples,num_examples])
for i in range(num_examples):
for j in range(num_examples):
H_0[i,j] = (np.linalg.norm(data_train[j,0]-data_train[i,0]))
c_0 = np.matmul(np.linalg.inv(H_0),np.reshape(data_train[:,2],[num_examples,1]))
y_hats_test_linear_0 = np.zeros(test_examples)
for test_val in range(test_examples):
temp = 0
for node in range(num_examples):
temp = temp + c_0[node]*np.linalg.norm(data_test[test_val,0]-data_train[node,0])
y_hats_test_linear_0[test_val] = temp
plt.subplot(1,3,1)
plt.scatter(data_train[:,0], data_train[:,2])
plt.xlabel('Median House value'); plt.ylabel('Income'); plt.title('Training data')
plt.subplot(1,3,2)
plt.scatter(data_test[:,0], data_test[:,2])
plt.xlabel('Median House value'); plt.ylabel('True Income'); plt.title('Test data')
plt.subplot(1,3,3)
plt.scatter(data_test[:,0], y_hats_test_linear_0)
plt.xlabel('Median House value'); plt.ylabel('Estimated Income (Linear)'); plt.title('Estimated Income')
plt.subplots_adjust(wspace = 0.5)
plt.show()
#Loss calculation
y_est = np.zeros([test_examples,1]); L2Loss = 0
for i in range(0,(test_examples)):
L2Loss = L2Loss + (data_test[i,2]-(y_hats_test_linear_0[i]))**2
print("L2Loss = %s" %L2Loss)
# Block Population -> income
H_1 = np.zeros([num_examples,num_examples])
for i in range(num_examples):
for j in range(num_examples):
H_1[i,j] = (np.linalg.norm(data_train[j,1]-data_train[i,1]))
c_1 = np.matmul(np.linalg.inv(H_1),np.reshape(data_train[:,2],[num_examples,1]))
y_hats_test_linear_1 = np.zeros(test_examples)
for test_val in range(test_examples):
temp = 0
for node in range(num_examples):
temp = temp + c_1[node]*np.linalg.norm(data_test[test_val,1]-data_train[node,1])
y_hats_test_linear_1[test_val] = temp
plt.subplot(1,3,1)
plt.scatter(data_train[:,1], data_train[:,2])
plt.xlabel('population per block'); plt.ylabel('Income'); plt.title('Training data')
plt.subplot(1,3,2)
plt.scatter(data_test[:,1], data_test[:,2])
plt.xlabel('population per block'); plt.ylabel('True Income'); plt.title('Testing data')
plt.subplot(1,3,3)
plt.scatter(data_test[:,1], y_hats_test_linear_1)
plt.xlabel('population per block'); plt.ylabel('Estimated Income (Linear)'); plt.title('Estimated Income')
plt.subplots_adjust(wspace = 0.5)
plt.show()
#Loss calculation
y_est = np.zeros([test_examples,1]); L2Loss = 0
for i in range(0,(test_examples)):
L2Loss = L2Loss + (data_test[i,2]-(y_hats_test_linear_1[i]))**2
print("L2Loss = %s" %L2Loss)
#Block Population*Population -> Income
H_01 = np.zeros([num_examples,num_examples])
for i in range(num_examples):
for j in range(num_examples):
H_01[i,j] = (np.linalg.norm(data_train[j,[0,1]]-data_train[i,[0,1]]))
c_01 = np.matmul(np.linalg.inv(H_01),np.reshape(data_train[:,2],[num_examples,1]))
y_hats_test_linear_01 = np.zeros(test_examples)
for test_val in range(test_examples):
temp = 0
for node in range(num_examples):
temp = temp + c_01[node]*np.linalg.norm(data_test[test_val,[0,1]]-data_train[node,[0,1]])
y_hats_test_linear_01[test_val] = temp
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(data_train[:,0],data_train[:,1],data_train[:,2])
plt.show()
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(data_test[:,0],data_test[:,1],data_test[:,2])
plt.show()
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(data_test[:,0],data_test[:,1],y_hats_test_linear_01)
plt.show()
#Loss calculation
y_est = np.zeros([test_examples,1]); L2Loss = 0
for i in range(0,(test_examples)):
L2Loss = L2Loss + (data_test[i,2]-(y_hats_test_linear_01[i]))**2
print("L2Loss = %s" %L2Loss)
california_housing_dataframe.shape
# multiquaradic (Population)
const = 10
H = np.zeros([num_examples,num_examples])
for i in range(num_examples):
for j in range(num_examples):
H[i,j] = math.sqrt((np.linalg.norm(data_train[j,1]-data_train[i,1]))**2 + const**2)
c = np.matmul(np.linalg.inv(H),np.reshape(data_train[:,2],[num_examples,1]))
y_hats_test_multiquad = np.zeros(test_examples)
for test_val in range(test_examples):
temp = 0
for node in range(num_examples):
temp = temp + c[node]*math.sqrt(np.linalg.norm(data_test[test_val,1]-data_train[node,1])**2 + const**2)
y_hats_test_multiquad[test_val] = temp
# gauss (Population)
const = 10
H = np.zeros([num_examples,num_examples])
for i in range(num_examples):
for j in range(num_examples):
H[i,j] = math.exp(-(((np.linalg.norm(data_train[j,1]-data_train[i,1]))/const)**2))
c = np.matmul(np.linalg.inv(H),np.reshape(data_train[:,2],[num_examples,1]))
y_hats_test_gauss = np.zeros(test_examples)
for test_val in range(test_examples):
temp = 0
for node in range(num_examples):
temp = temp + c[node]*math.exp(-(((np.linalg.norm(data_test[test_val,1]-data_train[node,1]))/const)**2))
y_hats_test_gauss[test_val] = temp
plt.scatter(data_train[:,1], data_train[:,2])
plt.xlabel('population per block')
plt.ylabel('Income')
plt.title('Population training data')
plt.show()
plt.scatter(data_test[:,1], data_test[:,2])
plt.xlabel('population per block')
plt.ylabel('True Income')
plt.title('Population testing data')
plt.show()
plt.scatter(data_test[:,1], y_hats_test_linear)
plt.xlabel('population per block')
plt.ylabel('Estimated Income (Linear)')
plt.title('Estimated Income from Population Density')
plt.show()
plt.scatter(data_test[:,1], y_hats_test_multiquad)
plt.xlabel('population per block')
plt.ylabel('Estimated Income (Multiquardatic)')
plt.show()
plt.scatter(data_test[:,1], y_hats_test_gauss)
plt.xlabel('population per block')
plt.ylabel('Estimated Income (Gauss)')
plt.show()
from sklearn.cluster import KMeans
#numTarg = 5
numTarg = int(len(x1train)/20)
x1trainLess = KMeans(n_clusters=numTarg, init='random').fit(data_train[:,[0,2]])
y_kmeans1 = x1trainLess.predict(data_train[:,[0,2]])
x2trainLess = KMeans(n_clusters=numTarg, init='random').fit(data_train[:,[1,2]])
y_kmeans2 = x1trainLess.predict(data_train[:,[1,2]])
plt.scatter(data_train[:,0], data_train[:,2], c = y_kmeans1, s=50, cmap='viridis')
centers1 = x1trainLess.cluster_centers_
plt.show()
plt.scatter(centers1[:, 0], centers1[:, 1], c='black', s=50, alpha=0.5);
plt.show()
plt.scatter(data_train[:,1], data_train[:,2], c = y_kmeans1, s=50, cmap='viridis')
centers2 = x2trainLess.cluster_centers_
plt.show()
plt.scatter(centers2[:, 0], centers2[:, 1], c='black', s=50, alpha=0.5);
plt.show()
tottrainLess = KMeans(n_clusters=numTarg, init='random').fit(data_train)
y_kmeanstot = tottrainLess.predict(data_train)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(xs,ys,zs,c = y_kmeanstot,cmap='viridis')
plt.show()
centerstot = tottrainLess.cluster_centers_
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(centerstot[:,0],centerstot[:,1],centerstot[:,2],c = 'blac')
plt.show()
###Output
_____no_output_____ |
keras_3.ipynb | ###Markdown
###Code
import tensorflow as tf
tf.__version__
###Output
_____no_output_____
###Markdown
在Keras中,每个layer instance 都可以被看成是一个函数,其输入是一个tensor,输出也是一个tensor。例如在下面这个实现全连接网络的例子中,你可以看到第一个Dense层的输入是inputs,其输出是x,而且这个x又被当做是第二个Dense层的输入。最初的输入tensor和最后的输出tensor共同定义了模型。而模型的训练方法则跟Sequential model中的情况一致。
###Code
from keras.layers import Input,Dense
from keras.models import Model
# this return a tensor
inputs = Input(shape=(784,))
# a layer instance is callable on a tensor, and returns a tensor
x = Dense(64, activation = 'relu')(inputs)
x= Dense(64,activation = 'relu')(x)
predictions = Dense(10,activation = 'softmax')(x)
# This creates a model that includes
# the Input layer and three Dense layers
model =Model(input = inputs,outputs = predictions)
model.compile (optimizer = 'rmsprop',loss = 'categorical_crossentropy',metrix = ['accuracy'])
# model.fit(data,label)
model.summary()
###Output
_____no_output_____
###Markdown
“多输入-多输出”模型---![avatar][doge] [doge]:
###Code
from keras.layers import concatenate
x_in = Input(shape = (100,) ,name = 'x_in')
y_in = Input(shape = (100,) ,name = 'y_in')
x = Dense (64,activation = 'relu')(x_in)
y = Dense( 64,activation = 'relu')(y_in)
z = concatenate ([x,y])
x = Dense(1,activation = 'sigmoid' ,name = 'x_out')(z)
y = Dense(10,activation = 'softmax', name = 'y_out')(z)
model = Model(inputs=[x_in, y_in], outputs=[x, y])
model.summary()
from keras.utils import to_categorical
import numpy as np
data = np.random.random((1000, 100))
xs = np.random.randint(2, size=(1000, 1))
ys = np.random.randint(10, size=(1000, 1))
model.compile(optimizer='rmsprop', loss=['binary_crossentropy', 'categorical_crossentropy'],
loss_weights=[1., 0.2])
model.fit([data, data], [xs, to_categorical(ys)],
epochs=10, batch_size=32)
###Output
_____no_output_____
###Markdown
你也可以使用字典 (refering to the names of the output tensors):
###Code
model.compile(optimizer='rmsprop',
loss={'x_out': 'binary_crossentropy', 'y_out': 'categorical_crossentropy'},
loss_weights={'x_out': 1., 'y_out': 0.2})
# And trained it via:
model.fit({'x_in': data, 'y_in': data},
{'x_out': xs, 'y_out': to_categorical(ys)},
epochs=1, batch_size=32)
###Output
_____no_output_____
###Markdown
共享层
###Code
inputs = Input(shape=(64,))
# a layer instance is callable on a tensor, and returns a tensor
layer_we_share = Dense(64, activation='relu')
# Now we apply the layer twice
x = layer_we_share(inputs)
x = layer_we_share(x)
predictions = Dense(10, activation='softmax')(x)
model = Model(inputs=inputs, outputs=predictions)
model.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])
model.summary()
###Output
_____no_output_____ |
dont_overfit.ipynb | ###Markdown
[Don't Overfit! II](https://www.kaggle.com/c/dont-overfit-ii) This repository proposes a solution for the Don't Overfit! II Kaggle competition. The proposed solution involves a [Support-vector machine](https://en.wikipedia.org/wiki/Support-vector_machine) with Linear Kernel
###Code
import numpy as np
import pandas as pd
from sklearn import svm
df_train = pd.read_csv('data/train.csv')
df_test = pd.read_csv('data/test.csv')
df_train
df_test
###Output
_____no_output_____
###Markdown
Train/Test split Shuffle train set
###Code
df_train = df_train.sample(frac=1)
len(df_train)
train_test = 0.8
middle = int(len(df_train)*train_test)
middle
train_df = df_train.iloc[:middle, :]
test_df = df_train.iloc[middle:, :]
train_df
test_df
def separate_x_y(df):
return df.iloc[:, 2:], df['target']
X_train, y_train = separate_x_y(train_df)
X_test, y_test = separate_x_y(test_df)
###Output
_____no_output_____
###Markdown
Fitting Default Model
###Code
# clf = svm.SVC(C=1, gamma=0.0000000001) # just a test
clf = svm.SVC(kernel='linear')
clf
clf.fit(X_train, y_train)
test_pred = pd.Series(clf.predict(X_cross))
test_val = pd.DataFrame(data={'pred_y': test_pred, 'y': y_test.reset_index(drop=True)})
test_val['correct'] = test_val.apply(lambda row: row['pred_y'] == row['y'], axis=1)
test_val
test_val_res = list(test_val['correct']).count(True) / len(test_val)
test_val_res
###Output
_____no_output_____
###Markdown
Predict on test set
###Code
df_test
result = clf.predict(df_test.iloc[:, 1:])
result
sub_df = pd.DataFrame(data={'id': df_test['id'], 'target': result})
sub_df
sub_df.to_csv('data/submission.csv', index=False)
###Output
_____no_output_____
###Markdown
Don't OverfitOne of the main objectives of predictive modelling is to build a model that will give accurate predictions on unseen data.A necessary step in the building of models is to ensure that they have not overfit the training data, which leads to sub optimal predictions on new data.The purpose of this challenge is to stimulate research and highlight existing algorithms, techniques or strategies that can be used to guard against overfitting. ObjectiveThe objective is to score greater than 0.8 in leader board
###Code
import pandas as pd
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import cross_val_score, KFold, cross_validate
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import plot_roc_curve, confusion_matrix, plot_confusion_matrix, classification_report
from sklearn.model_selection import train_test_split, RandomizedSearchCV, GridSearchCV
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.naive_bayes import GaussianNB
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from math import ceil
from sklearn.tree import DecisionTreeClassifier
import warnings
import scipy
import scipy.stats
warnings.filterwarnings('ignore')
RANDOM_STATE = 0
test = pd.read_csv('test.csv')
train = pd.read_csv('train.csv')
###Output
_____no_output_____
###Markdown
Data Background- The train set has 250 observation and 301 features with no missing value.- The features are of float datatypes- The observation has no duplicate value- The standard deviation for train_set is between 0.8 and 1.125 while mean is between -0.20 and 0.2- The min and max values of trainset +/- -0.425 and +/- 3.8 respectively.Therefore, it can be concluded that the train and test dataset are from the same distribution/population
###Code
train.shape
train.isnull().values.any()
train.info()
train.duplicated().sum()
fig, axes = plt.subplots(2, 4, figsize = (20,8))
fig.suptitle('Data Distribution of train and test for all columns')
axes[0,0].set_title('train standard deviation')
sns.histplot( data=train[train.columns[2:]].std() , ax=axes[0,0])
axes[0,1].set_title('train mean')
sns.histplot(data=train[train.columns[2:]].mean(), ax=axes[0,1])
axes[0,2].set_title('train min')
sns.histplot(data=train[train.columns[2:]].min(), ax = axes[0,2])
axes[0,3].set_title('train max')
sns.histplot(data=train[train.columns[2:]].max(), ax = axes[0,3])
axes[1,0].set_title('test standard deviation')
sns.histplot( data=test[test.columns[2:]].std(), ax=axes[1,0])
axes[1,1].set_title('test mean')
sns.histplot(data=test[test.columns[2:]].mean(), ax=axes[1,1])
axes[1,2].set_title('test min')
sns.histplot(data=test[test.columns[2:]].min(), ax = axes[1,2])
axes[1,3].set_title('test max')
sns.histplot(data=test[test.columns[2:]].max(), ax = axes[1,3]);
###Output
_____no_output_____
###Markdown
SkewnessTo review the skewness: 1. Random features will be selected and visualized2. Skewness will be computedThe result showed that the data assumes a binomial distribution
###Code
pd.cut(train.skew(), bins=5).value_counts()
num = 30
r = np.random.randint(0,299,num,dtype=int)
n_cols = 6
n_rows = ceil(num/n_cols)
counter = 1
fig = plt.figure(figsize=(20,20))
for col in range(num):
plt.subplot(n_rows, n_cols, counter)
plt.xlabel(f"{col} feature")
g = sns.distplot(train[str(r[col])])
counter += 1
plt.show();
###Output
_____no_output_____
###Markdown
OutliersBoxplot is used to visualize the mean distribution of train datasetThe visualization showed that the distribution of the train dataset are close and have similar mean
###Code
fig = plt.figure(figsize=(120,20))
sns.boxplot(x="variable", y="value", data=pd.melt(train.drop(columns=['id', 'target'])))
plt.show()
###Output
_____no_output_____
###Markdown
Correlationreviewing the correlations showed that features correlation with target ranges from +0.37 to -0.2Also, the features do not have strong correlation with each other considering the population of 250. Therefore, it can be assumed that colinearity doesnt exist in the dataset
###Code
corr_matrix = train.corr()
corr_cols = corr_matrix.nlargest(25, 'target')['target'].index
cm = np.corrcoef(train[corr_cols].values.T)
mask = np.zeros_like(cm)
mask[np.triu_indices_from(mask)] = True
with sns.axes_style("white"):
fig = plt.figure(figsize=(25,15))
sns.set(font_scale=1.25)
hm = sns.heatmap(cm, mask=mask, cbar=True, annot=True, square=True, fmt='.2f', annot_kws={'size': 10}, yticklabels=corr_cols.values, xticklabels=corr_cols.values)
plt.show()
corr_cols = corr_matrix.nsmallest(25, 'target')['target'].index
cm = np.corrcoef(train[corr_cols].values.T)
mask = np.zeros_like(cm)
mask[np.triu_indices_from(mask)] = True
with sns.axes_style("white"):
fig = plt.figure(figsize=(25,15))
sns.set(font_scale=1.25)
hm = sns.heatmap(cm, mask=mask, cbar=True, annot=True, square=True, fmt='.2f', annot_kws={'size': 10}, yticklabels=corr_cols.values, xticklabels=corr_cols.values)
plt.show()
###Output
_____no_output_____
###Markdown
Target The dataset target is imbalanced. 2/3 of the target belong to class 1
###Code
fig = plt.figure(figsize=(10,6))
g = sns.countplot(train['target'])
for p in g.patches:
x = p.get_bbox().get_points()[:,0]
y = p.get_bbox().get_points()[1,1]
g.annotate('{:.2g}%'.format(100.*y/len(train['target'])), (x.mean(), y), ha='center', va='bottom')
###Output
_____no_output_____
###Markdown
Preprocessing
###Code
target = train['target']
test_Id = test['id']
train = train.drop(columns=['target', 'id'])
train_columns = train.columns
test = test.drop(columns = 'id')
std_scaler = StandardScaler()
std_scaler.fit(train)
train = std_scaler.transform(train)
test = std_scaler.transform(test)
###Output
_____no_output_____
###Markdown
ModelSince goal of the project is to achieve a score greater than 0.8 on the public board while avaoiding overfitting, cross validation is done for classifiers and the best result is used for the test result.
###Code
models = [
('LogReg', LogisticRegression(C=0.1, class_weight='balanced', max_iter=10000,
penalty='l1', solver='liblinear')),
('RF', RandomForestClassifier(class_weight='balanced', n_estimators = 1000, max_depth = 5, max_features = 0.9, min_samples_split = 8
)),
('KNN', KNeighborsClassifier()),
('SVM', SVC()),
('GNB', GaussianNB()),
('GB', GradientBoostingClassifier(criterion="mse", learning_rate=0.1, max_depth=5, max_features=0.1, min_samples_split=2, n_estimators=1000)),
('DT', DecisionTreeClassifier(class_weight="balanced"))
]
dfs = []
results = []
names = []
scoring = ['f1_weighted', 'roc_auc']
for name, model in models:
kfold = KFold(n_splits=10, shuffle=True, random_state=RANDOM_STATE)
cv_results = cross_validate(model, train, target, cv=kfold, scoring=scoring, return_train_score=True)
results.append(cv_results)
names.append(name)
this_df = pd.DataFrame(cv_results)
this_df['model'] = name
dfs.append(this_df)
final = pd.concat(dfs, ignore_index=True)
result = final.groupby(['model']).agg({'test_f1_weighted':'mean', 'train_f1_weighted':'mean', 'test_roc_auc':'mean', 'train_roc_auc':'mean' }).reset_index()
result['auc_diff'] = result['train_roc_auc'] - result['test_roc_auc']
result.sort_values(by='auc_diff')
###Output
_____no_output_____
###Markdown
Selected Model Based on the cross validation result, Logistic Regression will be used for the result.Logistic Regression performed better than the others fairly because the dataset isnt complex and has a simple patternFor Logistic Regression, feature importance is also viewed since the features are fairly correlated to the target
###Code
logistic = LogisticRegression(C=0.1, class_weight='balanced', max_iter=10000,
penalty='l1', random_state=RANDOM_STATE, solver='liblinear'
)
logistic.fit(train, target)
importances = pd.DataFrame(data={
'Attribute': train_columns,
'Importance': logistic.coef_[0]
})
importances = importances.sort_values(by='Importance', ascending=False)
importances
logistic_pred = logistic.predict(test)
probs = logistic.predict_proba(test)
output = pd.DataFrame(
{
'id': test_Id,
'target': probs[:,1]
})
output.to_csv('output.csv', index=False)
###Output
_____no_output_____ |
tutorials/nlp/01_Pretrained_Language_Models_for_Downstream_Tasks.ipynb | ###Markdown
Language modelsNatural Language Processing (NLP) field experienced a huge leap in recent years due to the concept of transfer learning enabled through pretrained language models.[BERT](https://arxiv.org/abs/1810.04805), [RoBERTa](https://arxiv.org/abs/1907.11692), [Megatron-LM](https://arxiv.org/abs/1909.08053), and many other proposed language models achieve state-of-the-art results on many NLP tasks, such as:* question answering* sentiment analysis* named entity recognition and many others.In NeMo, most of the NLP models represent a pretrained language model followed by a Token Classification layer or a Sequence Classification layer or a combination of both. By changing the language model, you can improve the performance of your final model on the specific downstream task you are solving.With NeMo you can use either pretrain a BERT model from your data or use a pretrained language model from [HuggingFace transformers](https://github.com/huggingface/transformers) or [Megatron-LM](https://github.com/NVIDIA/Megatron-LM) libraries.Let's take a look at the list of available pretrained language models, note the complete list of HuggingFace model could be found at [https://huggingface.co/models](https://huggingface.co/models):
###Code
nemo_nlp.modules.get_pretrained_lm_models_list()
###Output
_____no_output_____
###Markdown
NLP models for downstream tasks use `get_lm_model` helper function to easily switch between language models from the list above to another:
###Code
# use any pretrained model name from the list above
nemo_nlp.modules.get_lm_model(pretrained_model_name='distilbert-base-uncased')
###Output
_____no_output_____
###Markdown
All NeMo [NLP models](https://github.com/NVIDIA/NeMo/tree/main/examples/nlp) have an associated config file. As an example, let's examine the config file for the Named Entity Recognition (NER) model (more details about the model and the NER task could be found [here](https://github.com/NVIDIA/NeMo/blob/main/tutorials/nlp/Token_Classification_Named_Entity_Recognition.ipynb)).
###Code
MODEL_CONFIG = "token_classification_config.yaml"
# download the model's configuration file
if not os.path.exists(MODEL_CONFIG):
print('Downloading config file...')
wget.download('https://raw.githubusercontent.com/NVIDIA/NeMo/v1.0.0b2/examples/nlp/token_classification/conf/' + MODEL_CONFIG)
else:
print ('Config file already exists')
# this line will print the entire config of the model
config = OmegaConf.load(MODEL_CONFIG)
print(OmegaConf.to_yaml(config))
###Output
_____no_output_____
###Markdown
For this tutorial, we are interested in the language_model part of the Named Entity Recognition Model.
###Code
print(OmegaConf.to_yaml(config.model.language_model))
###Output
_____no_output_____
###Markdown
There might be slight differences from one model to another, but most of them have the following important parameters associated with the language model:* `pretrained_model_name` - a name of the pretrained model from either HuggingFace or Megatron-LM libraries, for example, bert-base-uncased or megatron-bert-345m-uncased.* `lm_checkpoint` - a path to the pretrained model checkpoint if, for example, you trained a BERT model with your data* `config_file` - path to the model configuration file* `config` or `config_dict` - path to the model configuration dictionaryTo modify the default language model, specify the desired language model name with the `model.language_model.pretrained_model_name` argument, like this:
###Code
config.model.language_model.pretrained_model_name = 'roberta-base'
###Output
_____no_output_____
###Markdown
and then start the training as usual (please see [tutorials/nlp](https://github.com/NVIDIA/NeMo/tree/main/tutorials/nlp) for more details about training of a particular model). You can also provide a pretrained language model checkpoint and a configuration file if available.Note, that `pretrained_model_name` is used to set up both Language Model and Tokenizer.All the above holds for both HuggingFace and Megatron-LM pretrained language models. Let's separately examine some specifics of finetuning with Megatron-LM and HuggingFace models. Downstream tasks with Megatron and BioMegatron Language Models[Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) is a large, powerful transformer developed by the Applied Deep Learning Research team at NVIDIA. More details could be found at [Megatron-LM github repo](https://github.com/NVIDIA/Megatron-LM).To see the list of available Megatron-LM models in NeMo, run:
###Code
nemo_nlp.modules.get_megatron_lm_models_list()
###Output
_____no_output_____
###Markdown
If you want to use one of the available Megatron-LM models, specify its name with `model.language_model.pretrained_model_name` argument, for example:
###Code
config.model.language_model.pretrained_model_name = 'megatron-bert-345m-uncased'
###Output
_____no_output_____
###Markdown
Language modelsNatural Language Processing (NLP) field experienced a huge leap in recent years due to the concept of transfer learning enabled through pretrained language models.[BERT](https://arxiv.org/abs/1810.04805), [RoBERTa](https://arxiv.org/abs/1907.11692), [Megatron-LM](https://arxiv.org/abs/1909.08053), and many other proposed language models achieve state-of-the-art results on many NLP tasks, such as:* question answering* sentiment analysis* named entity recognition and many others.In NeMo, most of the NLP models represent a pretrained language model followed by a Token Classification layer or a Sequence Classification layer or a combination of both. By changing the language model, you can improve the performance of your final model on the specific downstream task you are solving.With NeMo you can use either pretrain a BERT model from your data or use a pretrained language model from [HuggingFace transformers](https://github.com/huggingface/transformers) or [Megatron-LM](https://github.com/NVIDIA/Megatron-LM) libraries.Let's take a look at the list of available pretrained language models, note the complete list of HuggingFace model could be found at [https://huggingface.co/models](https://huggingface.co/models):
###Code
nemo_nlp.modules.get_pretrained_lm_models_list()
###Output
_____no_output_____
###Markdown
NLP models for downstream tasks use `get_lm_model` helper function to easily switch between language models from the list above to another:
###Code
# use any pretrained model name from the list above
nemo_nlp.modules.get_lm_model(pretrained_model_name='distilbert-base-uncased')
###Output
_____no_output_____
###Markdown
All NeMo [NLP models](https://github.com/NVIDIA/NeMo/tree/main/examples/nlp) have an associated config file. As an example, let's examine the config file for the Named Entity Recognition (NER) model (more details about the model and the NER task could be found [here](https://github.com/NVIDIA/NeMo/blob/main/tutorials/nlp/Token_Classification_Named_Entity_Recognition.ipynb)).
###Code
MODEL_CONFIG = "token_classification_config.yaml"
# download the model's configuration file
if not os.path.exists(MODEL_CONFIG):
print('Downloading config file...')
wget.download('https://raw.githubusercontent.com/NVIDIA/NeMo/v1.0.0b2/examples/nlp/token_classification/conf/' + MODEL_CONFIG)
else:
print ('Config file already exists')
# this line will print the entire config of the model
config = OmegaConf.load(MODEL_CONFIG)
print(OmegaConf.to_yaml(config))
###Output
_____no_output_____
###Markdown
For this tutorial, we are interested in the language_model part of the Named Entity Recognition Model.
###Code
print(OmegaConf.to_yaml(config.model.language_model))
###Output
_____no_output_____
###Markdown
There might be slight differences from one model to another, but most of them have the following important parameters associated with the language model:* `pretrained_model_name` - a name of the pretrained model from either HuggingFace or Megatron-LM libraries, for example, bert-base-uncased or megatron-bert-345m-uncased.* `lm_checkpoint` - a path to the pretrained model checkpoint if, for example, you trained a BERT model with your data* `config_file` - path to the model configuration file* `config` or `config_dict` - path to the model configuration dictionaryTo modify the default language model, specify the desired language model name with the `model.language_model.pretrained_model_name` argument, like this:
###Code
config.model.language_model.pretrained_model_name = 'roberta-base'
###Output
_____no_output_____
###Markdown
and then start the training as usual (please see [tutorials/nlp](https://github.com/NVIDIA/NeMo/tree/main/tutorials/nlp) for more details about training of a particular model). You can also provide a pretrained language model checkpoint and a configuration file if available.Note, that `pretrained_model_name` is used to set up both Language Model and Tokenizer.All the above holds for both HuggingFace and Megatron-LM pretrained language models. Let's separately examine some specifics of finetuning with Megatron-LM and HuggingFace models. Downstream tasks with Megatron and BioMegatron Language Models[Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) is a large, powerful transformer developed by the Applied Deep Learning Research team at NVIDIA. More details could be found at [Megatron-LM github repo](https://github.com/NVIDIA/Megatron-LM).To see the list of available Megatron-LM models in NeMo, run:
###Code
nemo_nlp.modules.get_megatron_lm_models_list()
###Output
_____no_output_____
###Markdown
If you want to use one of the available Megatron-LM models, specify its name with `model.language_model.pretrained_model_name` argument, for example:
###Code
config.model.language_model.pretrained_model_name = 'megatron-bert-345m-uncased'
###Output
_____no_output_____
###Markdown
Language modelsNatural Language Processing (NLP) field experienced a huge leap in recent years due to the concept of transfer learning enabled through pretrained language models.[BERT](https://arxiv.org/abs/1810.04805), [RoBERTa](https://arxiv.org/abs/1907.11692), [Megatron-LM](https://arxiv.org/abs/1909.08053), and many other proposed language models achieve state-of-the-art results on many NLP tasks, such as:* question answering* sentiment analysis* named entity recognition and many others.In NeMo, most of the NLP models represent a pretrained language model followed by a Token Classification layer or a Sequence Classification layer or a combination of both. By changing the language model, you can improve the performance of your final model on the specific downstream task you are solving.With NeMo you can use either pretrain a BERT model from your data or use a pretrained language model from [HuggingFace transformers](https://github.com/huggingface/transformers) or [Megatron-LM](https://github.com/NVIDIA/Megatron-LM) libraries.Let's take a look at the list of available pretrained language models, note the complete list of HuggingFace model could be found at [https://huggingface.co/models](https://huggingface.co/models):
###Code
nemo_nlp.modules.get_pretrained_lm_models_list(include_external=True)
###Output
_____no_output_____
###Markdown
NLP models for downstream tasks use `get_lm_model` helper function to easily switch between language models from the list above to another:
###Code
# use any pretrained model name from the list above
nemo_nlp.modules.get_lm_model(pretrained_model_name='distilbert-base-uncased')
###Output
_____no_output_____
###Markdown
All NeMo [NLP models](https://github.com/NVIDIA/NeMo/tree/main/examples/nlp) have an associated config file. As an example, let's examine the config file for the Named Entity Recognition (NER) model (more details about the model and the NER task could be found [here](https://github.com/NVIDIA/NeMo/blob/main/tutorials/nlp/Token_Classification_Named_Entity_Recognition.ipynb)).
###Code
MODEL_CONFIG = "token_classification_config.yaml"
# download the model's configuration file
if not os.path.exists(MODEL_CONFIG):
print('Downloading config file...')
wget.download('https://raw.githubusercontent.com/NVIDIA/NeMo/main/examples/nlp/token_classification/conf/' + MODEL_CONFIG)
else:
print ('Config file already exists')
# this line will print the entire config of the model
config = OmegaConf.load(MODEL_CONFIG)
print(OmegaConf.to_yaml(config))
###Output
_____no_output_____
###Markdown
For this tutorial, we are interested in the language_model part of the Named Entity Recognition Model.
###Code
print(OmegaConf.to_yaml(config.model.language_model))
###Output
_____no_output_____
###Markdown
There are might be slight differences from one model to another, but most of them have the following important parameters associated with the language model:* `pretrained_model_name` - a name of the pretrained model from either HuggingFace or Megatron-LM libraries, for example, bert-base-uncased or megatron-bert-345m-uncased.* `lm_checkpoint` - a path to the pretrained model checkpoint if, for example, you trained a BERT model with your data* `config_file` - path to the model configuration file* `config` or `config_dict` - path to the model configuration dictionaryTo modify the default language model, specify the desired language model name with the `model.language_model.pretrained_model_name` argument, like this:
###Code
config.model.language_model.pretrained_model_name = 'roberta-base'
###Output
_____no_output_____
###Markdown
and then start the training as usual (please see [tutorials/nlp](https://github.com/NVIDIA/NeMo/tree/main/tutorials/nlp) for more details about training a particular model). You can also provide a pretrained language model checkpoint and a configuration file if available.Note, that `pretrained_model_name` is used to set up both Language Model and Tokenizer.All the above holds for both HuggingFace and Megatron-LM pretrained language models. Let's separately examine some specifics of finetuning with Megatron-LM and a HuggingFace model. Downstream tasks with Megatron and BioMegatron LM[Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) is a large, powerful transformer developed by the Applied Deep Learning Research team at NVIDIA. More details could be found at [Megatron-LM github repo](https://github.com/NVIDIA/Megatron-LM).To see the list of available Megatron-LM models in NeMo, run:
###Code
nemo_nlp.modules.get_megatron_lm_models_list()
###Output
_____no_output_____
###Markdown
If you want to use one of the available Megatron-LM models, specify its name with `model.language_model.pretrained_model_name` argument, for example:
###Code
config.model.language_model.pretrained_model_name = 'megatron-bert-345m-uncased'
###Output
_____no_output_____
###Markdown
If you have a different checkpoint or a model configuration file, use these general Megatron-LM model names:* `megatron-bert-uncased` or * `megatron-bert-cased` and provide associated bert_config and bert_checkpoint files, as follows:`model.language_model.pretrained_model_name=megatron-bert-uncased \model.language_model.lm_checkpoint= \model.language_model.config_file=` or `model.language_model.pretrained_model_name=megatron-bert-cased \model.language_model.lm_checkpoint= \model.language_model.config_file=`The general Megatron-LM model names are used to download the correct vocabulary file needed to setup the model correctly. Note, the data preprocessing and model training is done in NeMo. Megatron-LM has its own set of training arguments (including tokenizer) that are ignored during finetuning in NeMo. Please see downstream task [config files and training scripts](https://github.com/NVIDIA/NeMo/tree/main/examples/nlp) for all NeMo supported arguments. Download pretrained modelWith NeMo, the original and domain-specific Megatron-LM BERT models and model configuration files will be downloaded automatically, but they also could be downloaded with the links below:[Megatron-LM BERT Uncased 345M (~345M parameters): https://ngc.nvidia.com/catalog/models/nvidia:megatron_bert_345m](https://ngc.nvidia.com/catalog/models/nvidia:megatron_bert_345m/files?version=v0.1_uncased)[Megatron-LM BERT Cased 345M (~345M parameters): https://ngc.nvidia.com/catalog/models/nvidia:megatron_bert_345m](https://ngc.nvidia.com/catalog/models/nvidia:megatron_bert_345m/files?version=v0.1_cased)[BioMegatron-LM BERT Cased 345M (~345M parameters): https://ngc.nvidia.com/catalog/models/nvidia:biomegatron345mcased](https://ngc.nvidia.com/catalog/models/nvidia:biomegatron345mcased)[BioMegatron-LM BERT Uncased 345M (~345M parameters)](https://ngc.nvidia.com/catalog/models/nvidia:biomegatron345muncased): https://ngc.nvidia.com/catalog/models/nvidia:biomegatron345muncased Using any HuggingFace Pretrained ModelCurrently, there are 4 HuggingFace language models that have the most extensive support in [NeMo](https://github.com/NVIDIA/NeMo/tree/main/nemo/collections/nlp/modules/common/huggingface): * BERT* RoBERTa* ALBERT* DistilBERTAs was mentioned before, just set `model.language_model.pretrained_model_name` to the desired model name in your config and get_lm_model() will take care of the rest.If you want to use another language model from [https://huggingface.co/models](https://huggingface.co/models), NeMo will use AutoModelEncoder.
###Code
new_model_name = 't5-small'
# change your config like this:
# model.language_model.pretrained_model_name = new_model_name
nemo_nlp.modules.get_lm_model(pretrained_model_name=new_model_name)
###Output
_____no_output_____
###Markdown
Language modelsNatural Language Processing (NLP) field experienced a huge leap in recent years due to the concept of transfer learning enabled through pretrained language models.[BERT](https://arxiv.org/abs/1810.04805), [RoBERTa](https://arxiv.org/abs/1907.11692), [Megatron-LM](https://arxiv.org/abs/1909.08053), and many other proposed language models achieve state-of-the-art results on many NLP tasks, such as:* question answering* sentiment analysis* named entity recognition and many others.In NeMo, most of the NLP models represent a pretrained language model followed by a Token Classification layer or a Sequence Classification layer or a combination of both. By changing the language model, you can improve the performance of your final model on the specific downstream task you are solving.With NeMo you can use either pretrain a BERT model from your data or use a pretrained language model from [HuggingFace transformers](https://github.com/huggingface/transformers) or [Megatron-LM](https://github.com/NVIDIA/Megatron-LM) libraries.Note: Megatron BERT is not supported in NeMo 1.5.0. Please use [NeMo 1.4.0](https://github.com/NVIDIA/NeMo/tree/r1.4.0) for Megatron BERT support.Let's take a look at the list of available pretrained language models, note the complete list of HuggingFace model could be found at [https://huggingface.co/models](https://huggingface.co/models):
###Code
nemo_nlp.modules.get_pretrained_lm_models_list()
###Output
_____no_output_____
###Markdown
NLP models for downstream tasks use `get_lm_model` helper function to easily switch between language models from the list above to another:
###Code
# use any pretrained model name from the list above
pretrained_model_name = 'distilbert-base-uncased'
config = {"language_model": {"pretrained_model_name": pretrained_model_name}, "tokenizer": {}}
omega_conf = OmegaConf.create(config)
nemo_nlp.modules.get_lm_model(cfg=omega_conf)
###Output
_____no_output_____
###Markdown
All NeMo [NLP models](https://github.com/NVIDIA/NeMo/tree/main/examples/nlp) have an associated config file. As an example, let's examine the config file for the Named Entity Recognition (NER) model (more details about the model and the NER task could be found [here](https://github.com/NVIDIA/NeMo/blob/stable/tutorials/nlp/Token_Classification_Named_Entity_Recognition.ipynb)).
###Code
MODEL_CONFIG = "token_classification_config.yaml"
# download the model's configuration file
if not os.path.exists(MODEL_CONFIG):
print('Downloading config file...')
wget.download(f'https://raw.githubusercontent.com/NVIDIA/NeMo/{BRANCH}/examples/nlp/token_classification/conf/' + MODEL_CONFIG)
else:
print ('Config file already exists')
# this line will print the entire config of the model
config = OmegaConf.load(MODEL_CONFIG)
print(OmegaConf.to_yaml(config))
###Output
_____no_output_____
###Markdown
For this tutorial, we are interested in the language_model part of the Named Entity Recognition Model.
###Code
print(OmegaConf.to_yaml(config.model.language_model))
###Output
_____no_output_____
###Markdown
There might be slight differences from one model to another, but most of them have the following important parameters associated with the language model:* `pretrained_model_name` - a name of the pretrained model from either HuggingFace or Megatron-LM libraries, for example, bert-base-uncased or megatron-bert-345m-uncased.* `lm_checkpoint` - a path to the pretrained model checkpoint if, for example, you trained a BERT model with your data* `config_file` - path to the model configuration file* `config` or `config_dict` - path to the model configuration dictionaryTo modify the default language model, specify the desired language model name with the `model.language_model.pretrained_model_name` argument, like this:
###Code
config.model.language_model.pretrained_model_name = 'roberta-base'
###Output
_____no_output_____
###Markdown
and then start the training as usual (please see [tutorials/nlp](https://github.com/NVIDIA/NeMo/tree/main/tutorials/nlp) for more details about training of a particular model). You can also provide a pretrained language model checkpoint and a configuration file if available.Note, that `pretrained_model_name` is used to set up both Language Model and Tokenizer.All the above holds for both HuggingFace and Megatron-LM pretrained language models. Let's separately examine some specifics of finetuning with Megatron-LM and HuggingFace models. Downstream tasks with Megatron and BioMegatron Language Models[Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) is a large, powerful transformer developed by the Applied Deep Learning Research team at NVIDIA. More details could be found at [Megatron-LM github repo](https://github.com/NVIDIA/Megatron-LM).Note: Megatron BERT is not supported in NeMo 1.5.0. Please use [NeMo 1.4.0](https://github.com/NVIDIA/NeMo/tree/r1.4.0) for Megatron BERT support.To see the list of available Megatron-LM models in NeMo, run:
###Code
#nemo_nlp.modules.get_megatron_lm_models_list()
###Output
_____no_output_____
###Markdown
If you want to use one of the available Megatron-LM models, specify its name with `model.language_model.pretrained_model_name` argument, for example:
###Code
#config.model.language_model.pretrained_model_name = 'megatron-bert-345m-uncased'
###Output
_____no_output_____
###Markdown
Language modelsNatural Language Processing (NLP) field experienced a huge leap in recent years due to the concept of transfer learning enabled through pretrained language models.[BERT](https://arxiv.org/abs/1810.04805), [RoBERTa](https://arxiv.org/abs/1907.11692), [Megatron-LM](https://arxiv.org/abs/1909.08053), and many other proposed language models achieve state-of-the-art results on many NLP tasks, such as:* question answering* sentiment analysis* named entity recognition and many others.In NeMo, most of the NLP models represent a pretrained language model followed by a Token Classification layer or a Sequence Classification layer or a combination of both. By changing the language model, you can improve the performance of your final model on the specific downstream task you are solving.With NeMo you can use either pretrain a BERT model from your data or use a pretrained language model from [HuggingFace transformers](https://github.com/huggingface/transformers) or [Megatron-LM](https://github.com/NVIDIA/Megatron-LM) libraries.Note: Megatron BERT is not supported in NeMo 1.5.0. Please use [NeMo 1.4.0](https://github.com/NVIDIA/NeMo/tree/r1.4.0) for Megatron BERT support.Let's take a look at the list of available pretrained language models, note the complete list of HuggingFace model could be found at [https://huggingface.co/models](https://huggingface.co/models):
###Code
nemo_nlp.modules.get_pretrained_lm_models_list()
###Output
_____no_output_____
###Markdown
NLP models for downstream tasks use `get_lm_model` helper function to easily switch between language models from the list above to another:
###Code
# use any pretrained model name from the list above
nemo_nlp.modules.get_lm_model(pretrained_model_name='distilbert-base-uncased')
###Output
_____no_output_____
###Markdown
All NeMo [NLP models](https://github.com/NVIDIA/NeMo/tree/main/examples/nlp) have an associated config file. As an example, let's examine the config file for the Named Entity Recognition (NER) model (more details about the model and the NER task could be found [here](https://github.com/NVIDIA/NeMo/blob/stable/tutorials/nlp/Token_Classification_Named_Entity_Recognition.ipynb)).
###Code
MODEL_CONFIG = "token_classification_config.yaml"
# download the model's configuration file
if not os.path.exists(MODEL_CONFIG):
print('Downloading config file...')
wget.download(f'https://raw.githubusercontent.com/NVIDIA/NeMo/{BRANCH}/examples/nlp/token_classification/conf/' + MODEL_CONFIG)
else:
print ('Config file already exists')
# this line will print the entire config of the model
config = OmegaConf.load(MODEL_CONFIG)
print(OmegaConf.to_yaml(config))
###Output
_____no_output_____
###Markdown
For this tutorial, we are interested in the language_model part of the Named Entity Recognition Model.
###Code
print(OmegaConf.to_yaml(config.model.language_model))
###Output
_____no_output_____
###Markdown
There might be slight differences from one model to another, but most of them have the following important parameters associated with the language model:* `pretrained_model_name` - a name of the pretrained model from either HuggingFace or Megatron-LM libraries, for example, bert-base-uncased or megatron-bert-345m-uncased.* `lm_checkpoint` - a path to the pretrained model checkpoint if, for example, you trained a BERT model with your data* `config_file` - path to the model configuration file* `config` or `config_dict` - path to the model configuration dictionaryTo modify the default language model, specify the desired language model name with the `model.language_model.pretrained_model_name` argument, like this:
###Code
config.model.language_model.pretrained_model_name = 'roberta-base'
###Output
_____no_output_____
###Markdown
and then start the training as usual (please see [tutorials/nlp](https://github.com/NVIDIA/NeMo/tree/main/tutorials/nlp) for more details about training of a particular model). You can also provide a pretrained language model checkpoint and a configuration file if available.Note, that `pretrained_model_name` is used to set up both Language Model and Tokenizer.All the above holds for both HuggingFace and Megatron-LM pretrained language models. Let's separately examine some specifics of finetuning with Megatron-LM and HuggingFace models. Downstream tasks with Megatron and BioMegatron Language Models[Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) is a large, powerful transformer developed by the Applied Deep Learning Research team at NVIDIA. More details could be found at [Megatron-LM github repo](https://github.com/NVIDIA/Megatron-LM).Note: Megatron BERT is not supported in NeMo 1.5.0. Please use [NeMo 1.4.0](https://github.com/NVIDIA/NeMo/tree/r1.4.0) for Megatron BERT support.To see the list of available Megatron-LM models in NeMo, run:
###Code
#nemo_nlp.modules.get_megatron_lm_models_list()
###Output
_____no_output_____
###Markdown
If you want to use one of the available Megatron-LM models, specify its name with `model.language_model.pretrained_model_name` argument, for example:
###Code
#config.model.language_model.pretrained_model_name = 'megatron-bert-345m-uncased'
###Output
_____no_output_____
###Markdown
Language modelsNatural Language Processing (NLP) field experienced a huge leap in recent years due to the concept of transfer learning enabled through pretrained language models.[BERT](https://arxiv.org/abs/1810.04805), [RoBERTa](https://arxiv.org/abs/1907.11692), [Megatron-LM](https://arxiv.org/abs/1909.08053), and many other proposed language models achieve state-of-the-art results on many NLP tasks, such as:* question answering* sentiment analysis* named entity recognition and many others.In NeMo, most of the NLP models represent a pretrained language model followed by a Token Classification layer or a Sequence Classification layer or a combination of both. By changing the language model, you can improve the performance of your final model on the specific downstream task you are solving.With NeMo you can use either pretrain a BERT model from your data or use a pretrained language model from [HuggingFace transformers](https://github.com/huggingface/transformers) or [Megatron-LM](https://github.com/NVIDIA/Megatron-LM) libraries.Let's take a look at the list of available pretrained language models, note the complete list of HuggingFace model could be found at [https://huggingface.co/models](https://huggingface.co/models):
###Code
nemo_nlp.modules.get_pretrained_lm_models_list()
###Output
_____no_output_____
###Markdown
NLP models for downstream tasks use `get_lm_model` helper function to easily switch between language models from the list above to another:
###Code
# use any pretrained model name from the list above
nemo_nlp.modules.get_lm_model(pretrained_model_name='distilbert-base-uncased')
###Output
_____no_output_____
###Markdown
All NeMo [NLP models](https://github.com/NVIDIA/NeMo/tree/main/examples/nlp) have an associated config file. As an example, let's examine the config file for the Named Entity Recognition (NER) model (more details about the model and the NER task could be found [here](https://github.com/NVIDIA/NeMo/blob/main/tutorials/nlp/Token_Classification_Named_Entity_Recognition.ipynb)).
###Code
MODEL_CONFIG = "token_classification_config.yaml"
# download the model's configuration file
if not os.path.exists(MODEL_CONFIG):
print('Downloading config file...')
wget.download(f'https://raw.githubusercontent.com/NVIDIA/NeMo/{BRANCH}/examples/nlp/token_classification/conf/' + MODEL_CONFIG)
else:
print ('Config file already exists')
# this line will print the entire config of the model
config = OmegaConf.load(MODEL_CONFIG)
print(OmegaConf.to_yaml(config))
###Output
_____no_output_____
###Markdown
For this tutorial, we are interested in the language_model part of the Named Entity Recognition Model.
###Code
print(OmegaConf.to_yaml(config.model.language_model))
###Output
_____no_output_____
###Markdown
There might be slight differences from one model to another, but most of them have the following important parameters associated with the language model:* `pretrained_model_name` - a name of the pretrained model from either HuggingFace or Megatron-LM libraries, for example, bert-base-uncased or megatron-bert-345m-uncased.* `lm_checkpoint` - a path to the pretrained model checkpoint if, for example, you trained a BERT model with your data* `config_file` - path to the model configuration file* `config` or `config_dict` - path to the model configuration dictionaryTo modify the default language model, specify the desired language model name with the `model.language_model.pretrained_model_name` argument, like this:
###Code
config.model.language_model.pretrained_model_name = 'roberta-base'
###Output
_____no_output_____
###Markdown
and then start the training as usual (please see [tutorials/nlp](https://github.com/NVIDIA/NeMo/tree/main/tutorials/nlp) for more details about training of a particular model). You can also provide a pretrained language model checkpoint and a configuration file if available.Note, that `pretrained_model_name` is used to set up both Language Model and Tokenizer.All the above holds for both HuggingFace and Megatron-LM pretrained language models. Let's separately examine some specifics of finetuning with Megatron-LM and HuggingFace models. Downstream tasks with Megatron and BioMegatron Language Models[Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) is a large, powerful transformer developed by the Applied Deep Learning Research team at NVIDIA. More details could be found at [Megatron-LM github repo](https://github.com/NVIDIA/Megatron-LM).To see the list of available Megatron-LM models in NeMo, run:
###Code
nemo_nlp.modules.get_megatron_lm_models_list()
###Output
_____no_output_____
###Markdown
If you want to use one of the available Megatron-LM models, specify its name with `model.language_model.pretrained_model_name` argument, for example:
###Code
config.model.language_model.pretrained_model_name = 'megatron-bert-345m-uncased'
###Output
_____no_output_____
###Markdown
Language modelsNatural Language Processing (NLP) field experienced a huge leap in recent years due to the concept of transfer learning enabled through pretrained language models.[BERT](https://arxiv.org/abs/1810.04805), [RoBERTa](https://arxiv.org/abs/1907.11692), [Megatron-LM](https://arxiv.org/abs/1909.08053), and many other proposed language models achieve state-of-the-art results on many NLP tasks, such as:* question answering* sentiment analysis* named entity recognition and many others.In NeMo, most of the NLP models represent a pretrained language model followed by a Token Classification layer or a Sequence Classification layer or a combination of both. By changing the language model, you can improve the performance of your final model on the specific downstream task you are solving.With NeMo you can use either pretrain a BERT model from your data or use a pretrained language model from [HuggingFace transformers](https://github.com/huggingface/transformers) or [Megatron-LM](https://github.com/NVIDIA/Megatron-LM) libraries.Let's take a look at the list of available pretrained language models, note the complete list of HuggingFace model could be found at [https://huggingface.co/models](https://huggingface.co/models):
###Code
nemo_nlp.modules.get_pretrained_lm_models_list(include_external=True)
###Output
_____no_output_____
###Markdown
NLP models for downstream tasks use `get_lm_model` helper function to easily switch between language models from the list above to another:
###Code
# use any pretrained model name from the list above
nemo_nlp.modules.get_lm_model(pretrained_model_name='distilbert-base-uncased')
###Output
_____no_output_____
###Markdown
All NeMo [NLP models](https://github.com/NVIDIA/NeMo/tree/main/examples/nlp) have an associated config file. As an example, let's examine the config file for the Named Entity Recognition (NER) model (more details about the model and the NER task could be found [here](https://github.com/NVIDIA/NeMo/blob/main/tutorials/nlp/Token_Classification_Named_Entity_Recognition.ipynb)).
###Code
MODEL_CONFIG = "token_classification_config.yaml"
# download the model's configuration file
if not os.path.exists(MODEL_CONFIG):
print('Downloading config file...')
wget.download('https://raw.githubusercontent.com/NVIDIA/NeMo/v1.0.0b2/examples/nlp/token_classification/conf/' + MODEL_CONFIG)
else:
print ('Config file already exists')
# this line will print the entire config of the model
config = OmegaConf.load(MODEL_CONFIG)
print(OmegaConf.to_yaml(config))
###Output
_____no_output_____
###Markdown
For this tutorial, we are interested in the language_model part of the Named Entity Recognition Model.
###Code
print(OmegaConf.to_yaml(config.model.language_model))
###Output
_____no_output_____
###Markdown
There are might be slight differences from one model to another, but most of them have the following important parameters associated with the language model:* `pretrained_model_name` - a name of the pretrained model from either HuggingFace or Megatron-LM libraries, for example, bert-base-uncased or megatron-bert-345m-uncased.* `lm_checkpoint` - a path to the pretrained model checkpoint if, for example, you trained a BERT model with your data* `config_file` - path to the model configuration file* `config` or `config_dict` - path to the model configuration dictionaryTo modify the default language model, specify the desired language model name with the `model.language_model.pretrained_model_name` argument, like this:
###Code
config.model.language_model.pretrained_model_name = 'roberta-base'
###Output
_____no_output_____
###Markdown
and then start the training as usual (please see [tutorials/nlp](https://github.com/NVIDIA/NeMo/tree/main/tutorials/nlp) for more details about training a particular model). You can also provide a pretrained language model checkpoint and a configuration file if available.Note, that `pretrained_model_name` is used to set up both Language Model and Tokenizer.All the above holds for both HuggingFace and Megatron-LM pretrained language models. Let's separately examine some specifics of finetuning with Megatron-LM and a HuggingFace model. Downstream tasks with Megatron and BioMegatron LM[Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) is a large, powerful transformer developed by the Applied Deep Learning Research team at NVIDIA. More details could be found at [Megatron-LM github repo](https://github.com/NVIDIA/Megatron-LM).To see the list of available Megatron-LM models in NeMo, run:
###Code
nemo_nlp.modules.get_megatron_lm_models_list()
###Output
_____no_output_____
###Markdown
If you want to use one of the available Megatron-LM models, specify its name with `model.language_model.pretrained_model_name` argument, for example:
###Code
config.model.language_model.pretrained_model_name = 'megatron-bert-345m-uncased'
###Output
_____no_output_____
###Markdown
If you have a different checkpoint or a model configuration file, use these general Megatron-LM model names:* `megatron-bert-uncased` or * `megatron-bert-cased` and provide associated bert_config and bert_checkpoint files, as follows:`model.language_model.pretrained_model_name=megatron-bert-uncased \model.language_model.lm_checkpoint= \model.language_model.config_file=` or `model.language_model.pretrained_model_name=megatron-bert-cased \model.language_model.lm_checkpoint= \model.language_model.config_file=`The general Megatron-LM model names are used to download the correct vocabulary file needed to setup the model correctly. Note, the data preprocessing and model training is done in NeMo. Megatron-LM has its own set of training arguments (including tokenizer) that are ignored during finetuning in NeMo. Please see downstream task [config files and training scripts](https://github.com/NVIDIA/NeMo/tree/main/examples/nlp) for all NeMo supported arguments. Download pretrained modelWith NeMo, the original and domain-specific Megatron-LM BERT models and model configuration files will be downloaded automatically, but they also could be downloaded with the links below:[Megatron-LM BERT Uncased 345M (~345M parameters): https://ngc.nvidia.com/catalog/models/nvidia:megatron_bert_345m](https://ngc.nvidia.com/catalog/models/nvidia:megatron_bert_345m/files?version=v0.1_uncased)[Megatron-LM BERT Cased 345M (~345M parameters): https://ngc.nvidia.com/catalog/models/nvidia:megatron_bert_345m](https://ngc.nvidia.com/catalog/models/nvidia:megatron_bert_345m/files?version=v0.1_cased)[BioMegatron-LM BERT Cased 345M (~345M parameters): https://ngc.nvidia.com/catalog/models/nvidia:biomegatron345mcased](https://ngc.nvidia.com/catalog/models/nvidia:biomegatron345mcased)[BioMegatron-LM BERT Uncased 345M (~345M parameters)](https://ngc.nvidia.com/catalog/models/nvidia:biomegatron345muncased): https://ngc.nvidia.com/catalog/models/nvidia:biomegatron345muncased Using any HuggingFace Pretrained ModelCurrently, there are 4 HuggingFace language models that have the most extensive support in [NeMo](https://github.com/NVIDIA/NeMo/tree/main/nemo/collections/nlp/modules/common/huggingface): * BERT* RoBERTa* ALBERT* DistilBERTAs was mentioned before, just set `model.language_model.pretrained_model_name` to the desired model name in your config and get_lm_model() will take care of the rest.If you want to use another language model from [https://huggingface.co/models](https://huggingface.co/models), NeMo will use AutoModelEncoder.
###Code
new_model_name = 't5-small'
# change your config like this:
# model.language_model.pretrained_model_name = new_model_name
nemo_nlp.modules.get_lm_model(pretrained_model_name=new_model_name)
###Output
_____no_output_____
###Markdown
Language modelsNatural Language Processing (NLP) field experienced a huge leap in recent years due to the concept of transfer learning enabled through pretrained language models.[BERT](https://arxiv.org/abs/1810.04805), [RoBERTa](https://arxiv.org/abs/1907.11692), [Megatron-LM](https://arxiv.org/abs/1909.08053), and many other proposed language models achieve state-of-the-art results on many NLP tasks, such as:* question answering* sentiment analysis* named entity recognition and many others.In NeMo, most of the NLP models represent a pretrained language model followed by a Token Classification layer or a Sequence Classification layer or a combination of both. By changing the language model, you can improve the performance of your final model on the specific downstream task you are solving.With NeMo you can use either pretrain a BERT model from your data or use a pretrained language model from [HuggingFace transformers](https://github.com/huggingface/transformers) or [Megatron-LM](https://github.com/NVIDIA/Megatron-LM) libraries.Let's take a look at the list of available pretrained language models, note the complete list of HuggingFace model could be found at [https://huggingface.co/models](https://huggingface.co/models):
###Code
nemo_nlp.modules.get_pretrained_lm_models_list()
###Output
_____no_output_____
###Markdown
NLP models for downstream tasks use `get_lm_model` helper function to easily switch between language models from the list above to another:
###Code
# use any pretrained model name from the list above
nemo_nlp.modules.get_lm_model(pretrained_model_name='distilbert-base-uncased')
###Output
_____no_output_____
###Markdown
All NeMo [NLP models](https://github.com/NVIDIA/NeMo/tree/main/examples/nlp) have an associated config file. As an example, let's examine the config file for the Named Entity Recognition (NER) model (more details about the model and the NER task could be found [here](https://github.com/NVIDIA/NeMo/blob/main/tutorials/nlp/Token_Classification_Named_Entity_Recognition.ipynb)).
###Code
MODEL_CONFIG = "token_classification_config.yaml"
# download the model's configuration file
if not os.path.exists(MODEL_CONFIG):
print('Downloading config file...')
wget.download(f'https://raw.githubusercontent.com/NVIDIA/NeMo/{BRANCH}/examples/nlp/token_classification/conf/' + MODEL_CONFIG)
else:
print ('Config file already exists')
# this line will print the entire config of the model
config = OmegaConf.load(MODEL_CONFIG)
print(OmegaConf.to_yaml(config))
###Output
_____no_output_____
###Markdown
For this tutorial, we are interested in the language_model part of the Named Entity Recognition Model.
###Code
print(OmegaConf.to_yaml(config.model.language_model))
###Output
_____no_output_____
###Markdown
There might be slight differences from one model to another, but most of them have the following important parameters associated with the language model:* `pretrained_model_name` - a name of the pretrained model from either HuggingFace or Megatron-LM libraries, for example, bert-base-uncased or megatron-bert-345m-uncased.* `lm_checkpoint` - a path to the pretrained model checkpoint if, for example, you trained a BERT model with your data* `config_file` - path to the model configuration file* `config` or `config_dict` - path to the model configuration dictionaryTo modify the default language model, specify the desired language model name with the `model.language_model.pretrained_model_name` argument, like this:
###Code
config.model.language_model.pretrained_model_name = 'roberta-base'
###Output
_____no_output_____
###Markdown
and then start the training as usual (please see [tutorials/nlp](https://github.com/NVIDIA/NeMo/tree/main/tutorials/nlp) for more details about training of a particular model). You can also provide a pretrained language model checkpoint and a configuration file if available.Note, that `pretrained_model_name` is used to set up both Language Model and Tokenizer.All the above holds for both HuggingFace and Megatron-LM pretrained language models. Let's separately examine some specifics of finetuning with Megatron-LM and HuggingFace models. Downstream tasks with Megatron and BioMegatron Language Models[Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) is a large, powerful transformer developed by the Applied Deep Learning Research team at NVIDIA. More details could be found at [Megatron-LM github repo](https://github.com/NVIDIA/Megatron-LM).To see the list of available Megatron-LM models in NeMo, run:
###Code
nemo_nlp.modules.get_megatron_lm_models_list()
###Output
_____no_output_____
###Markdown
If you want to use one of the available Megatron-LM models, specify its name with `model.language_model.pretrained_model_name` argument, for example:
###Code
config.model.language_model.pretrained_model_name = 'megatron-bert-345m-uncased'
###Output
_____no_output_____
###Markdown
Language modelsNatural Language Processing (NLP) field experienced a huge leap in recent years due to the concept of transfer learning enabled through pretrained language models.[BERT](https://arxiv.org/abs/1810.04805), [RoBERTa](https://arxiv.org/abs/1907.11692), [Megatron-LM](https://arxiv.org/abs/1909.08053), and many other proposed language models achieve state-of-the-art results on many NLP tasks, such as:* question answering* sentiment analysis* named entity recognition and many others.In NeMo, most of the NLP models represent a pretrained language model followed by a Token Classification layer or a Sequence Classification layer or a combination of both. By changing the language model, you can improve the performance of your final model on the specific downstream task you are solving.With NeMo you can use either pretrain a BERT model from your data or use a pretrained language model from [HuggingFace transformers](https://github.com/huggingface/transformers) or [Megatron-LM](https://github.com/NVIDIA/Megatron-LM) libraries.Note: Megatron BERT is not supported in NeMo 1.5.0. Please use [NeMo 1.4.0](https://github.com/NVIDIA/NeMo/tree/r1.4.0) for Megatron BERT support.Let's take a look at the list of available pretrained language models, note the complete list of HuggingFace model could be found at [https://huggingface.co/models](https://huggingface.co/models):
###Code
nemo_nlp.modules.get_pretrained_lm_models_list()
###Output
_____no_output_____
###Markdown
NLP models for downstream tasks use `get_lm_model` helper function to easily switch between language models from the list above to another:
###Code
# use any pretrained model name from the list above
nemo_nlp.modules.get_lm_model(pretrained_model_name='distilbert-base-uncased')
###Output
_____no_output_____
###Markdown
All NeMo [NLP models](https://github.com/NVIDIA/NeMo/tree/main/examples/nlp) have an associated config file. As an example, let's examine the config file for the Named Entity Recognition (NER) model (more details about the model and the NER task could be found [here](https://github.com/NVIDIA/NeMo/blob/stable/tutorials/nlp/Token_Classification_Named_Entity_Recognition.ipynb)).
###Code
MODEL_CONFIG = "token_classification_config.yaml"
# download the model's configuration file
if not os.path.exists(MODEL_CONFIG):
print('Downloading config file...')
wget.download(f'https://raw.githubusercontent.com/NVIDIA/NeMo/{BRANCH}/examples/nlp/token_classification/conf/' + MODEL_CONFIG)
else:
print ('Config file already exists')
# this line will print the entire config of the model
config = OmegaConf.load(MODEL_CONFIG)
print(OmegaConf.to_yaml(config))
###Output
_____no_output_____
###Markdown
For this tutorial, we are interested in the language_model part of the Named Entity Recognition Model.
###Code
print(OmegaConf.to_yaml(config.model.language_model))
###Output
_____no_output_____
###Markdown
There might be slight differences from one model to another, but most of them have the following important parameters associated with the language model:* `pretrained_model_name` - a name of the pretrained model from either HuggingFace or Megatron-LM libraries, for example, bert-base-uncased or megatron-bert-345m-uncased.* `lm_checkpoint` - a path to the pretrained model checkpoint if, for example, you trained a BERT model with your data* `config_file` - path to the model configuration file* `config` or `config_dict` - path to the model configuration dictionaryTo modify the default language model, specify the desired language model name with the `model.language_model.pretrained_model_name` argument, like this:
###Code
config.model.language_model.pretrained_model_name = 'roberta-base'
###Output
_____no_output_____
###Markdown
and then start the training as usual (please see [tutorials/nlp](https://github.com/NVIDIA/NeMo/tree/main/tutorials/nlp) for more details about training of a particular model). You can also provide a pretrained language model checkpoint and a configuration file if available.Note, that `pretrained_model_name` is used to set up both Language Model and Tokenizer.All the above holds for both HuggingFace and Megatron-LM pretrained language models. Let's separately examine some specifics of finetuning with Megatron-LM and HuggingFace models. Downstream tasks with Megatron and BioMegatron Language Models[Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) is a large, powerful transformer developed by the Applied Deep Learning Research team at NVIDIA. More details could be found at [Megatron-LM github repo](https://github.com/NVIDIA/Megatron-LM).Note: Megatron BERT is not supported in NeMo 1.5.0. Please use [NeMo 1.4.0](https://github.com/NVIDIA/NeMo/tree/r1.4.0) for Megatron BERT support.To see the list of available Megatron-LM models in NeMo, run:
###Code
#nemo_nlp.modules.get_megatron_lm_models_list()
###Output
_____no_output_____
###Markdown
If you want to use one of the available Megatron-LM models, specify its name with `model.language_model.pretrained_model_name` argument, for example:
###Code
#config.model.language_model.pretrained_model_name = 'megatron-bert-345m-uncased'
###Output
_____no_output_____
###Markdown
Language modelsNatural Language Processing (NLP) field experienced a huge leap in recent years due to the concept of transfer learning enabled through pretrained language models.[BERT](https://arxiv.org/abs/1810.04805), [RoBERTa](https://arxiv.org/abs/1907.11692), [Megatron-LM](https://arxiv.org/abs/1909.08053), and many other proposed language models achieve state-of-the-art results on many NLP tasks, such as:* question answering* sentiment analysis* named entity recognition and many others.In NeMo, most of the NLP models represent a pretrained language model followed by a Token Classification layer or a Sequence Classification layer or a combination of both. By changing the language model, you can improve the performance of your final model on the specific downstream task you are solving.With NeMo you can use either pretrain a BERT model from your data or use a pretrained language model from [HuggingFace transformers](https://github.com/huggingface/transformers) or [Megatron-LM](https://github.com/NVIDIA/Megatron-LM) libraries.Let's take a look at the list of available pretrained language models, note the complete list of HuggingFace model could be found at [https://huggingface.co/models](https://huggingface.co/models):
###Code
nemo_nlp.modules.get_pretrained_lm_models_list()
###Output
_____no_output_____
###Markdown
NLP models for downstream tasks use `get_lm_model` helper function to easily switch between language models from the list above to another:
###Code
# use any pretrained model name from the list above
nemo_nlp.modules.get_lm_model(pretrained_model_name='distilbert-base-uncased')
###Output
_____no_output_____
###Markdown
All NeMo [NLP models](https://github.com/NVIDIA/NeMo/tree/main/examples/nlp) have an associated config file. As an example, let's examine the config file for the Named Entity Recognition (NER) model (more details about the model and the NER task could be found [here](https://github.com/NVIDIA/NeMo/blob/main/tutorials/nlp/Token_Classification_Named_Entity_Recognition.ipynb)).
###Code
MODEL_CONFIG = "token_classification_config.yaml"
# download the model's configuration file
if not os.path.exists(MODEL_CONFIG):
print('Downloading config file...')
wget.download('https://raw.githubusercontent.com/NVIDIA/NeMo/v1.0.0b2/examples/nlp/token_classification/conf/' + MODEL_CONFIG)
else:
print ('Config file already exists')
# this line will print the entire config of the model
config = OmegaConf.load(MODEL_CONFIG)
print(OmegaConf.to_yaml(config))
###Output
_____no_output_____
###Markdown
For this tutorial, we are interested in the language_model part of the Named Entity Recognition Model.
###Code
print(OmegaConf.to_yaml(config.model.language_model))
###Output
_____no_output_____
###Markdown
There might be slight differences from one model to another, but most of them have the following important parameters associated with the language model:* `pretrained_model_name` - a name of the pretrained model from either HuggingFace or Megatron-LM libraries, for example, bert-base-uncased or megatron-bert-345m-uncased.* `lm_checkpoint` - a path to the pretrained model checkpoint if, for example, you trained a BERT model with your data* `config_file` - path to the model configuration file* `config` or `config_dict` - path to the model configuration dictionaryTo modify the default language model, specify the desired language model name with the `model.language_model.pretrained_model_name` argument, like this:
###Code
config.model.language_model.pretrained_model_name = 'roberta-base'
###Output
_____no_output_____
###Markdown
and then start the training as usual (please see [tutorials/nlp](https://github.com/NVIDIA/NeMo/tree/main/tutorials/nlp) for more details about training of a particular model). You can also provide a pretrained language model checkpoint and a configuration file if available.Note, that `pretrained_model_name` is used to set up both Language Model and Tokenizer.All the above holds for both HuggingFace and Megatron-LM pretrained language models. Let's separately examine some specifics of finetuning with Megatron-LM and HuggingFace models. Downstream tasks with Megatron and BioMegatron Language Models[Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) is a large, powerful transformer developed by the Applied Deep Learning Research team at NVIDIA. More details could be found at [Megatron-LM github repo](https://github.com/NVIDIA/Megatron-LM).To see the list of available Megatron-LM models in NeMo, run:
###Code
nemo_nlp.modules.get_megatron_lm_models_list()
###Output
_____no_output_____
###Markdown
If you want to use one of the available Megatron-LM models, specify its name with `model.language_model.pretrained_model_name` argument, for example:
###Code
config.model.language_model.pretrained_model_name = 'megatron-bert-345m-uncased'
###Output
_____no_output_____
###Markdown
Language modelsNatural Language Processing (NLP) field experienced a huge leap in recent years due to the concept of transfer learning enabled through pretrained language models.[BERT](https://arxiv.org/abs/1810.04805), [RoBERTa](https://arxiv.org/abs/1907.11692), [Megatron-LM](https://arxiv.org/abs/1909.08053), and many other proposed language models achieve state-of-the-art results on many NLP tasks, such as:* question answering* sentiment analysis* named entity recognition and many others.In NeMo, most of the NLP models represent a pretrained language model followed by a Token Classification layer or a Sequence Classification layer or a combination of both. By changing the language model, you can improve the performance of your final model on the specific downstream task you are solving.With NeMo you can use either pretrain a BERT model from your data or use a pretrained language model from [HuggingFace transformers](https://github.com/huggingface/transformers) or [Megatron-LM](https://github.com/NVIDIA/Megatron-LM) libraries.Let's take a look at the list of available pretrained language models, note the complete list of HuggingFace model could be found at [https://huggingface.co/models](https://huggingface.co/models):
###Code
nemo_nlp.modules.get_pretrained_lm_models_list()
###Output
_____no_output_____
###Markdown
NLP models for downstream tasks use `get_lm_model` helper function to easily switch between language models from the list above to another:
###Code
# use any pretrained model name from the list above
nemo_nlp.modules.get_lm_model(pretrained_model_name='distilbert-base-uncased')
###Output
_____no_output_____
###Markdown
All NeMo [NLP models](https://github.com/NVIDIA/NeMo/tree/main/examples/nlp) have an associated config file. As an example, let's examine the config file for the Named Entity Recognition (NER) model (more details about the model and the NER task could be found [here](https://github.com/NVIDIA/NeMo/blob/stable/tutorials/nlp/Token_Classification_Named_Entity_Recognition.ipynb)).
###Code
MODEL_CONFIG = "token_classification_config.yaml"
# download the model's configuration file
if not os.path.exists(MODEL_CONFIG):
print('Downloading config file...')
wget.download(f'https://raw.githubusercontent.com/NVIDIA/NeMo/{BRANCH}/examples/nlp/token_classification/conf/' + MODEL_CONFIG)
else:
print ('Config file already exists')
# this line will print the entire config of the model
config = OmegaConf.load(MODEL_CONFIG)
print(OmegaConf.to_yaml(config))
###Output
_____no_output_____
###Markdown
For this tutorial, we are interested in the language_model part of the Named Entity Recognition Model.
###Code
print(OmegaConf.to_yaml(config.model.language_model))
###Output
_____no_output_____
###Markdown
There might be slight differences from one model to another, but most of them have the following important parameters associated with the language model:* `pretrained_model_name` - a name of the pretrained model from either HuggingFace or Megatron-LM libraries, for example, bert-base-uncased or megatron-bert-345m-uncased.* `lm_checkpoint` - a path to the pretrained model checkpoint if, for example, you trained a BERT model with your data* `config_file` - path to the model configuration file* `config` or `config_dict` - path to the model configuration dictionaryTo modify the default language model, specify the desired language model name with the `model.language_model.pretrained_model_name` argument, like this:
###Code
config.model.language_model.pretrained_model_name = 'roberta-base'
###Output
_____no_output_____
###Markdown
and then start the training as usual (please see [tutorials/nlp](https://github.com/NVIDIA/NeMo/tree/main/tutorials/nlp) for more details about training of a particular model). You can also provide a pretrained language model checkpoint and a configuration file if available.Note, that `pretrained_model_name` is used to set up both Language Model and Tokenizer.All the above holds for both HuggingFace and Megatron-LM pretrained language models. Let's separately examine some specifics of finetuning with Megatron-LM and HuggingFace models. Downstream tasks with Megatron and BioMegatron Language Models[Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) is a large, powerful transformer developed by the Applied Deep Learning Research team at NVIDIA. More details could be found at [Megatron-LM github repo](https://github.com/NVIDIA/Megatron-LM).To see the list of available Megatron-LM models in NeMo, run:
###Code
nemo_nlp.modules.get_megatron_lm_models_list()
###Output
_____no_output_____
###Markdown
If you want to use one of the available Megatron-LM models, specify its name with `model.language_model.pretrained_model_name` argument, for example:
###Code
config.model.language_model.pretrained_model_name = 'megatron-bert-345m-uncased'
###Output
_____no_output_____
###Markdown
Language modelsNatural Language Processing (NLP) field experienced a huge leap in recent years due to the concept of transfer learning enabled through pretrained language models.[BERT](https://arxiv.org/abs/1810.04805), [RoBERTa](https://arxiv.org/abs/1907.11692), [Megatron-LM](https://arxiv.org/abs/1909.08053), and many other proposed language models achieve state-of-the-art results on many NLP tasks, such as:* question answering* sentiment analysis* named entity recognition and many others.In NeMo, most of the NLP models represent a pretrained language model followed by a Token Classification layer or a Sequence Classification layer or a combination of both. By changing the language model, you can improve the performance of your final model on the specific downstream task you are solving.With NeMo you can use either pretrain a BERT model from your data or use a pretrained language model from [HuggingFace transformers](https://github.com/huggingface/transformers) or [Megatron-LM](https://github.com/NVIDIA/Megatron-LM) libraries.Let's take a look at the list of available pretrained language models, note the complete list of HuggingFace model could be found at [https://huggingface.co/models](https://huggingface.co/models):
###Code
nemo_nlp.modules.get_pretrained_lm_models_list()
###Output
_____no_output_____
###Markdown
NLP models for downstream tasks use `get_lm_model` helper function to easily switch between language models from the list above to another:
###Code
# use any pretrained model name from the list above
nemo_nlp.modules.get_lm_model(pretrained_model_name='distilbert-base-uncased')
###Output
_____no_output_____
###Markdown
All NeMo [NLP models](https://github.com/NVIDIA/NeMo/tree/main/examples/nlp) have an associated config file. As an example, let's examine the config file for the Named Entity Recognition (NER) model (more details about the model and the NER task could be found [here](https://github.com/NVIDIA/NeMo/blob/main/tutorials/nlp/Token_Classification_Named_Entity_Recognition.ipynb)).
###Code
MODEL_CONFIG = "token_classification_config.yaml"
# download the model's configuration file
if not os.path.exists(MODEL_CONFIG):
print('Downloading config file...')
wget.download(f'https://raw.githubusercontent.com/NVIDIA/NeMo/{BRANCH}/examples/nlp/token_classification/conf/' + MODEL_CONFIG)
else:
print ('Config file already exists')
# this line will print the entire config of the model
config = OmegaConf.load(MODEL_CONFIG)
print(OmegaConf.to_yaml(config))
###Output
_____no_output_____
###Markdown
For this tutorial, we are interested in the language_model part of the Named Entity Recognition Model.
###Code
print(OmegaConf.to_yaml(config.model.language_model))
###Output
_____no_output_____
###Markdown
There might be slight differences from one model to another, but most of them have the following important parameters associated with the language model:* `pretrained_model_name` - a name of the pretrained model from either HuggingFace or Megatron-LM libraries, for example, bert-base-uncased or megatron-bert-345m-uncased.* `lm_checkpoint` - a path to the pretrained model checkpoint if, for example, you trained a BERT model with your data* `config_file` - path to the model configuration file* `config` or `config_dict` - path to the model configuration dictionaryTo modify the default language model, specify the desired language model name with the `model.language_model.pretrained_model_name` argument, like this:
###Code
config.model.language_model.pretrained_model_name = 'roberta-base'
###Output
_____no_output_____
###Markdown
and then start the training as usual (please see [tutorials/nlp](https://github.com/NVIDIA/NeMo/tree/main/tutorials/nlp) for more details about training of a particular model). You can also provide a pretrained language model checkpoint and a configuration file if available.Note, that `pretrained_model_name` is used to set up both Language Model and Tokenizer.All the above holds for both HuggingFace and Megatron-LM pretrained language models. Let's separately examine some specifics of finetuning with Megatron-LM and HuggingFace models. Downstream tasks with Megatron and BioMegatron Language Models[Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) is a large, powerful transformer developed by the Applied Deep Learning Research team at NVIDIA. More details could be found at [Megatron-LM github repo](https://github.com/NVIDIA/Megatron-LM).To see the list of available Megatron-LM models in NeMo, run:
###Code
nemo_nlp.modules.get_megatron_lm_models_list()
###Output
_____no_output_____
###Markdown
If you want to use one of the available Megatron-LM models, specify its name with `model.language_model.pretrained_model_name` argument, for example:
###Code
config.model.language_model.pretrained_model_name = 'megatron-bert-345m-uncased'
###Output
_____no_output_____
###Markdown
Language modelsNatural Language Processing (NLP) field experienced a huge leap in recent years due to the concept of transfer learning enabled through pretrained language models.[BERT](https://arxiv.org/abs/1810.04805), [RoBERTa](https://arxiv.org/abs/1907.11692), [Megatron-LM](https://arxiv.org/abs/1909.08053), and many other proposed language models achieve state-of-the-art results on many NLP tasks, such as:* question answering* sentiment analysis* named entity recognition and many others.In NeMo, most of the NLP models represent a pretrained language model followed by a Token Classification layer or a Sequence Classification layer or a combination of both. By changing the language model, you can improve the performance of your final model on the specific downstream task you are solving.With NeMo you can use either pretrain a BERT model from your data or use a pretrained language model from [HuggingFace transformers](https://github.com/huggingface/transformers) or [Megatron-LM](https://github.com/NVIDIA/Megatron-LM) libraries.Let's take a look at the list of available pretrained language models, note the complete list of HuggingFace model could be found at [https://huggingface.co/models](https://huggingface.co/models):
###Code
nemo_nlp.modules.get_pretrained_lm_models_list()
###Output
_____no_output_____
###Markdown
NLP models for downstream tasks use `get_lm_model` helper function to easily switch between language models from the list above to another:
###Code
# use any pretrained model name from the list above
nemo_nlp.modules.get_lm_model(pretrained_model_name='distilbert-base-uncased')
###Output
_____no_output_____
###Markdown
All NeMo [NLP models](https://github.com/NVIDIA/NeMo/tree/main/examples/nlp) have an associated config file. As an example, let's examine the config file for the Named Entity Recognition (NER) model (more details about the model and the NER task could be found [here](https://github.com/NVIDIA/NeMo/blob/main/tutorials/nlp/Token_Classification_Named_Entity_Recognition.ipynb)).
###Code
MODEL_CONFIG = "token_classification_config.yaml"
# download the model's configuration file
if not os.path.exists(MODEL_CONFIG):
print('Downloading config file...')
wget.download(f'https://raw.githubusercontent.com/NVIDIA/NeMo/{BRANCH}/examples/nlp/token_classification/conf/' + MODEL_CONFIG)
else:
print ('Config file already exists')
# this line will print the entire config of the model
config = OmegaConf.load(MODEL_CONFIG)
print(OmegaConf.to_yaml(config))
###Output
_____no_output_____
###Markdown
For this tutorial, we are interested in the language_model part of the Named Entity Recognition Model.
###Code
print(OmegaConf.to_yaml(config.model.language_model))
###Output
_____no_output_____
###Markdown
There might be slight differences from one model to another, but most of them have the following important parameters associated with the language model:* `pretrained_model_name` - a name of the pretrained model from either HuggingFace or Megatron-LM libraries, for example, bert-base-uncased or megatron-bert-345m-uncased.* `lm_checkpoint` - a path to the pretrained model checkpoint if, for example, you trained a BERT model with your data* `config_file` - path to the model configuration file* `config` or `config_dict` - path to the model configuration dictionaryTo modify the default language model, specify the desired language model name with the `model.language_model.pretrained_model_name` argument, like this:
###Code
config.model.language_model.pretrained_model_name = 'roberta-base'
###Output
_____no_output_____
###Markdown
and then start the training as usual (please see [tutorials/nlp](https://github.com/NVIDIA/NeMo/tree/main/tutorials/nlp) for more details about training of a particular model). You can also provide a pretrained language model checkpoint and a configuration file if available.Note, that `pretrained_model_name` is used to set up both Language Model and Tokenizer.All the above holds for both HuggingFace and Megatron-LM pretrained language models. Let's separately examine some specifics of finetuning with Megatron-LM and HuggingFace models. Downstream tasks with Megatron and BioMegatron Language Models[Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) is a large, powerful transformer developed by the Applied Deep Learning Research team at NVIDIA. More details could be found at [Megatron-LM github repo](https://github.com/NVIDIA/Megatron-LM).To see the list of available Megatron-LM models in NeMo, run:
###Code
nemo_nlp.modules.get_megatron_lm_models_list()
###Output
_____no_output_____
###Markdown
If you want to use one of the available Megatron-LM models, specify its name with `model.language_model.pretrained_model_name` argument, for example:
###Code
config.model.language_model.pretrained_model_name = 'megatron-bert-345m-uncased'
###Output
_____no_output_____
###Markdown
Language modelsNatural Language Processing (NLP) field experienced a huge leap in recent years due to the concept of transfer learning enabled through pretrained language models.[BERT](https://arxiv.org/abs/1810.04805), [RoBERTa](https://arxiv.org/abs/1907.11692), [Megatron-LM](https://arxiv.org/abs/1909.08053), and many other proposed language models achieve state-of-the-art results on many NLP tasks, such as:* question answering* sentiment analysis* named entity recognition and many others.In NeMo, most of the NLP models represent a pretrained language model followed by a Token Classification layer or a Sequence Classification layer or a combination of both. By changing the language model, you can improve the performance of your final model on the specific downstream task you are solving.With NeMo you can use either pretrain a BERT model from your data or use a pretrained language model from [HuggingFace transformers](https://github.com/huggingface/transformers) or [Megatron-LM](https://github.com/NVIDIA/Megatron-LM) libraries.Let's take a look at the list of available pretrained language models, note the complete list of HuggingFace model could be found at [https://huggingface.co/models](https://huggingface.co/models):
###Code
nemo_nlp.modules.get_pretrained_lm_models_list()
###Output
_____no_output_____
###Markdown
NLP models for downstream tasks use `get_lm_model` helper function to easily switch between language models from the list above to another:
###Code
# use any pretrained model name from the list above
nemo_nlp.modules.get_lm_model(pretrained_model_name='distilbert-base-uncased')
###Output
_____no_output_____
###Markdown
All NeMo [NLP models](https://github.com/NVIDIA/NeMo/tree/main/examples/nlp) have an associated config file. As an example, let's examine the config file for the Named Entity Recognition (NER) model (more details about the model and the NER task could be found [here](https://github.com/NVIDIA/NeMo/blob/stable/tutorials/nlp/Token_Classification_Named_Entity_Recognition.ipynb)).
###Code
MODEL_CONFIG = "token_classification_config.yaml"
# download the model's configuration file
if not os.path.exists(MODEL_CONFIG):
print('Downloading config file...')
wget.download(f'https://raw.githubusercontent.com/NVIDIA/NeMo/{BRANCH}/examples/nlp/token_classification/conf/' + MODEL_CONFIG)
else:
print ('Config file already exists')
# this line will print the entire config of the model
config = OmegaConf.load(MODEL_CONFIG)
print(OmegaConf.to_yaml(config))
###Output
_____no_output_____
###Markdown
For this tutorial, we are interested in the language_model part of the Named Entity Recognition Model.
###Code
print(OmegaConf.to_yaml(config.model.language_model))
###Output
_____no_output_____
###Markdown
There might be slight differences from one model to another, but most of them have the following important parameters associated with the language model:* `pretrained_model_name` - a name of the pretrained model from either HuggingFace or Megatron-LM libraries, for example, bert-base-uncased or megatron-bert-345m-uncased.* `lm_checkpoint` - a path to the pretrained model checkpoint if, for example, you trained a BERT model with your data* `config_file` - path to the model configuration file* `config` or `config_dict` - path to the model configuration dictionaryTo modify the default language model, specify the desired language model name with the `model.language_model.pretrained_model_name` argument, like this:
###Code
config.model.language_model.pretrained_model_name = 'roberta-base'
###Output
_____no_output_____
###Markdown
and then start the training as usual (please see [tutorials/nlp](https://github.com/NVIDIA/NeMo/tree/main/tutorials/nlp) for more details about training of a particular model). You can also provide a pretrained language model checkpoint and a configuration file if available.Note, that `pretrained_model_name` is used to set up both Language Model and Tokenizer.All the above holds for both HuggingFace and Megatron-LM pretrained language models. Let's separately examine some specifics of finetuning with Megatron-LM and HuggingFace models. Downstream tasks with Megatron and BioMegatron Language Models[Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) is a large, powerful transformer developed by the Applied Deep Learning Research team at NVIDIA. More details could be found at [Megatron-LM github repo](https://github.com/NVIDIA/Megatron-LM).To see the list of available Megatron-LM models in NeMo, run:
###Code
nemo_nlp.modules.get_megatron_lm_models_list()
###Output
_____no_output_____
###Markdown
If you want to use one of the available Megatron-LM models, specify its name with `model.language_model.pretrained_model_name` argument, for example:
###Code
config.model.language_model.pretrained_model_name = 'megatron-bert-345m-uncased'
###Output
_____no_output_____ |
Notebooks/Bonus01-Scikit-Learn/Bonus01-Scikit-Learn-3-Transformations.ipynb | ###Markdown
Copyright (c) 2017-21 Andrew GlassnerPermission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Deep Learning: A Visual Approach by Andrew Glassner, https://glassner.com Order: https://nostarch.com/deep-learning-visual-approach GitHub: https://github.com/blueberrymusic------ What's in this notebookThis notebook is provided to help you work with Keras and TensorFlow. It accompanies the bonus chapters for my book. The code is in Python3, using the versions of libraries as of April 2021.Note that I've included the output cells in this saved notebook, but Jupyter doesn't save the variables or data that were used to generate them. To recreate any cell's output, evaluate all the cells from the start up to that cell. A convenient way to experiment is to first choose "Restart & Run All" from the Kernel menu, so that everything's been defined and is up to date. Then you can experiment using the variables, data, functions, and other stuff defined in this notebook. Bonus Chapter 1 - Notebook 3: Transformations
###Code
import numpy as np
import math
import matplotlib.pyplot as plt
from sklearn.datasets import make_moons
from sklearn.preprocessing import MinMaxScaler
from sklearn.linear_model import Ridge
import seaborn as sns ; sns.set()
# Make a File_Helper for saving and loading files.
save_files = False
import os, sys, inspect
current_dir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
sys.path.insert(0, os.path.dirname(current_dir)) # path to parent dir
from DLBasics_Utilities import File_Helper
file_helper = File_Helper(save_files)
np.random.seed(44)
moon_data = make_moons(n_samples=100, noise=.2)
training_samples = moon_data[0]
train_x = training_samples[:,0]
train_y = training_samples[:,1]
plt.figure(figsize=(8,5))
plt.scatter(train_x, train_y, color='#007F77', s=60)
plt.title('original data')
file_helper.save_figure('scaling-start')
plt.show()
mm_scaler = MinMaxScaler()
mm_scaler.fit(training_samples)
transformed_training_samples = mm_scaler.transform(training_samples)
plt.figure(figsize=(5,5))
plt.scatter(transformed_training_samples[:,0], transformed_training_samples[:,1], color='#007F77', s=60)
plt.title("MinMaxScaler transformed data")
file_helper.save_figure('scaling-fits')
plt.show()
np.random.seed(42)
test_moon_data = make_moons(n_samples=100, noise=0.05)
test_samples = test_moon_data[0]
test_samples = np.array([[ts[0]*2, ts[1]*.6] for ts in test_samples])
test_x = test_samples[:,0]
test_y = test_samples[:,1]
transformed_test_samples = mm_scaler.transform(test_samples)
plt.figure(figsize=(8,4))
plt.subplot(1, 2, 1)
plt.scatter(test_x, test_y, color='#7F3900', s=40)
plt.title('test data')
plt.subplot(1, 2, 2)
plt.scatter(transformed_test_samples[:,0], transformed_test_samples[:,1], color='#7F3900', s=10)
plt.plot([0,1], [0,0], color='black')
plt.plot([1,1], [0,1], color='black')
plt.plot([0,1], [1,1], color='black')
plt.plot([0,0], [0,1], color='black')
plt.title("MinMaxScaler transformed test data")
file_helper.save_figure('scaling-test-pair')
plt.show()
np.random.seed(42)
num_pts = 100
noise_range = 0.2
sine_x_vals = []
sine_y_vals = []
(sine_x_left, sine_x_right) = (.9, 5.5)
sine_training_samples = []
for i in range(num_pts):
x = np.random.uniform(sine_x_left, sine_x_right)
y = np.random.uniform(-noise_range, noise_range) + (2*math.sin(x))
sine_x_vals.append(x)
sine_y_vals.append(y)
sine_samples = list(zip(sine_x_vals, sine_y_vals))
mm_scaler = MinMaxScaler()
mm_scaler.fit(sine_samples)
transformed_sine_samples = mm_scaler.transform(sine_samples)
plt.figure(figsize=(8,4))
plt.subplot(1, 2, 1)
plt.scatter(sine_x_vals, sine_y_vals, color='#70008A', s=10)
plt.locator_params(axis='x', nbins=4)
plt.title('starting data')
plt.subplot(1, 2, 2)
plt.scatter(transformed_sine_samples[:,0], transformed_sine_samples[:,1], color='#70008A', s=10)
plt.locator_params(axis='x', nbins=4)
plt.title("transformed")
file_helper.save_figure('inverse-demo-1')
plt.show()
ridge_estimator = Ridge()
sine_x_column = np.array(transformed_sine_samples[:,0]).reshape(-1, 1)
ridge_estimator.fit(sine_x_column, transformed_sine_samples[:,1])
sine_y_left = ridge_estimator.predict([[0]])
sine_y_right = ridge_estimator.predict([[1]])
line_data = [[0, sine_y_left[0]], [1, sine_y_right[0]]]
inverse_line = mm_scaler.inverse_transform(line_data)
plt.figure(figsize=(10,4))
plt.subplot(1, 3, 1)
plt.scatter(transformed_sine_samples[:,0], transformed_sine_samples[:,1], color='#70008A', s=10)
plt.plot([0, 1], [sine_y_left, sine_y_right], color='#ff0000', linewidth=3)
plt.locator_params(axis='x', nbins=4)
plt.title('line in transformed data')
plt.subplot(1, 3, 2)
plt.scatter(sine_x_vals, sine_y_vals, color='#70008A', s=10)
plt.locator_params(axis='x', nbins=4)
plt.plot([0, 1], [sine_y_left, sine_y_right], color='#ff0000', linewidth=3)
plt.title('data and computed line')
plt.subplot(1, 3, 3)
plt.scatter(sine_x_vals, sine_y_vals, color='#70008A', s=10)
plt.locator_params(axis='x', nbins=4)
plt.plot(inverse_line[:,0], inverse_line[:,1], color='#ff0000', linewidth=3)
plt.title('inverse line')
file_helper.save_figure('inverse-demo-2')
plt.show()
###Output
_____no_output_____ |
naive-bayes/Naive Bayes Classifiers Example Project.ipynb | ###Markdown
Naive Bayes Classifiers Example Project¶ In this lecture we will learn how to use Naive Bayes Classifier to perform a Multi Class Classification on a data set we are already familiar with: the Iris Data Set. This Lecture will consist of 7 main parts:Part 1: Note on Notation and Math TermsPart 2: Bayes' TheoremPart 3: Introduction to Naive BayesPart 4: Naive Bayes Classifier Mathematics OverviewPart 5: Constructing a classifier from the probability modelPart 6: Gaussian Naive BayesPart 7: Gaussian Naive Bayes with SciKit LearnLet's go ahead and begin! Part 1: Note on Notation and Math Terms¶ There are a few more advanced notations and amthematical terms used during the explanation of naive Bayes Classification. You should be familiar with the following:Product of SequenceThe product of a sequence of terms can be written with the product symbol, which derives from the capital letter Π (Pi) in the Greek alphabet. The meaning of this notation is given by:∏i=14i=1⋅2⋅3⋅4,that is∏i=14i=24.Arg MaxIn mathematics, the argument of the maximum (abbreviated arg max or argmax) is the set of points of the given argument for which the given function attains its maximum value. In contrast to global maximums, which refer to a function's largest outputs, the arg max refers to the inputs which create those maximum outputs.The arg max is defined byargmaxxf(x):={x∣∀y:f(y)≤f(x)}In other words, it is the set of points x for which f(x) attains its largest value. This set may be empty, have one element, or have multiple elements. For example, if f(x) is 1−|x|, then it attains its maximum value of 1 at x = 0 and only there, soargmaxx(1−|x|)={0} Part 2: Bayes' Theorem First, for a quick introduction to Bayes' Theorem, check out the Bayes' Theorem Lecture in the statistics appendix portion of this course, in order ot fully understand Naive Bayes, you'll need a complete understanding of the Bayes' Theorem. Part 3: Introduction to Naive Bayes¶ Naive Bayes is probably one of the practical machine learning algorithms. Despite its name, it is actually performs very well considering its classification performance. It proves to be quite robust to irrelevant features, which it ignores. It learns and predicts very fast and it does not require lots of storage. So, why is it then called naive?The naive was added to the account for one assumption that is required for Bayes to work optimally: all features must be independent of each other. In reality, this is usually not the case, however, it still returns very good accuracy in practice even when the independent assumption does not hold.Naive Bayes classifiers have worked quite well in many real-world situations, famously document classification and spam filtering. We will be working with the Iris Flower data set in this lecture. Part 4: Naive Bayes Classifier Mathematics Overview Naive Bayes methods are a set of supervised learning algorithms based on applying Bayes’ theorem with the “naive” assumption of independence between every pair of features. Given a class variable y and a dependent feature vector x1 through xn, Bayes’ theorem states the following relationship:P(y∣x1,…,xn)=P(y)P(x1,…xn∣y)P(x1,…,xn)Using the naive independence assumption thatP(xi|y,x1,…,xi−1,xi+1,…,xn)=P(xi|y)for all i, this relationship is simplified to:P(y∣x1,…,xn)=P(y)∏ni=1P(xi∣y)P(x1,…,xn)We now have a relationship between the target and the features using Bayes Theorem along with a Naive Assumption that all features are independent. Part 5: Constructing a classifier from the probability model So far we have derived the independent feature model, the Naive Bayes probability model. The Naive Bayes classifier combines this model with a decision rule, this decision rule will decide which hypothesis is most probable, in our example case this will be which class of flower is most probable.Picking the hypothesis that is most probable is known as the maximum a posteriori or MAP decision rule. The corresponding classifier, a Bayes classifier, is the function that assigns a class label to y as follows:Since P(x1, ..., xn) is constant given the input, we can use the following classification rule:P(y∣x1,…,xn)∝P(y)∏i=1nP(xi∣y)⇓ŷ =argmaxyP(y)∏i=1nP(xi∣y),and we can use Maximum A Posteriori (MAP) estimation to estimate P(y) and P(xi | y); the former is then the relative frequency of class y in the training set.There are different naive Bayes classifiers that differ mainly by the assumptions they make regarding the distribution of P(xi | y). Part 6: Gaussian Naive Bayes When dealing with continuous data, a typical assumption is that the continuous values associated with each class are distributed according to a Gaussian distribution. Go back to the normal distribution lecture to review the formulas for the Gaussian/Normal Distribution.For example of using the Gaussian Distribution, suppose the training data contain a continuous attribute, x. We first segment the data by the class, and then compute the mean and variance of x in each class. Let μc be the mean of the values in x associated with class c, and let σ2c be the variance of the values in x associated with class c. Then, the probability distribution of some value given a class, p(x=v|c), can be computed by plugging v into the equation for a Normal distribution parameterized by μc and σ2c. That is:p(x=v|c)=12πσ2c‾‾‾‾‾√e−(v−μc)22σ2cThe key to Naive Bayes is making the (rather large) assumption that the presences (or absences) of each data feature are independent of one another, conditional on a data having a certain label. Part 7: Gaussian Naive Bayes with SciKit Learn We'll start by importing the usual.Quick note we will actually only use the SciKit Learn Library in this lecture:
###Code
import pandas as pd
from pandas import Series, DataFrame
import matplotlib.pyplot as plt
import seaborn as sns
# Gaussian Naive Bayes
from sklearn import datasets
from sklearn import metrics
from sklearn.naive_bayes import GaussianNB
# Load the iris datasets
iris = datasets.load_iris()
# Grab features (X) and the Target (Y)
X = iris.data
Y = iris.target
# Show the Built-In Data Description
print(iris.DESCR)
# Fit a Naive Bayes model to the data
model = GaussianNB()
from sklearn.model_selection import train_test_split
# Split the data into Training and Testing sets
X_train, X_test, Y_train, Y_test = train_test_split(X, Y)
# Fit the training model
model.fit(X_train,Y_train)
# Predicted Outcomes
predicted = model.predict(X_test)
# Actual Expected Outcomes
expected = Y_test
print(metrics.accuracy_score(expected, predicted))
###Output
0.9473684210526315
|
courses/machine_learning/deepdive/06_structured/3_tensorflow_wd.ipynb | ###Markdown
Create TensorFlow wide-and-deep model This notebook illustrates: Creating a model using the high-level Estimator API
###Code
# change these to try this notebook out
BUCKET = 'cloud-training-demos-ml'
PROJECT = 'cloud-training-demos'
REGION = 'us-central1'
import os
os.environ['BUCKET'] = BUCKET
os.environ['PROJECT'] = PROJECT
os.environ['REGION'] = REGION
%%bash
if ! gsutil ls | grep -q gs://${BUCKET}/; then
gsutil mb -l ${REGION} gs://${BUCKET}
fi
%%bash
ls *.csv
###Output
_____no_output_____
###Markdown
Create TensorFlow model using TensorFlow's Estimator API First, write an input_fn to read the data.
###Code
import shutil
import numpy as np
import tensorflow as tf
print(tf.__version__)
# Determine CSV, label, and key columns
CSV_COLUMNS = 'weight_pounds,is_male,mother_age,plurality,gestation_weeks,key'.split(',')
LABEL_COLUMN = 'weight_pounds'
KEY_COLUMN = 'key'
# Set default values for each CSV column
DEFAULTS = [[0.0], ['null'], [0.0], ['null'], [0.0], ['nokey']]
TRAIN_STEPS = 1000
# Create an input function reading a file using the Dataset API
# Then provide the results to the Estimator API
def read_dataset(filename, mode, batch_size = 512):
def _input_fn():
def decode_csv(value_column):
columns = tf.decode_csv(value_column, record_defaults=DEFAULTS)
features = dict(zip(CSV_COLUMNS, columns))
label = features.pop(LABEL_COLUMN)
return features, label
# Create list of files that match pattern
file_list = tf.gfile.Glob(filename)
# Create dataset from file list
dataset = (tf.data.TextLineDataset(file_list) # Read text file
.map(decode_csv)) # Transform each elem by applying decode_csv fn
if mode == tf.estimator.ModeKeys.TRAIN:
num_epochs = None # indefinitely
dataset = dataset.shuffle(buffer_size=10*batch_size)
else:
num_epochs = 1 # end-of-input after this
dataset = dataset.repeat(num_epochs).batch(batch_size)
return dataset
return _input_fn
###Output
_____no_output_____
###Markdown
Next, define the feature columns
###Code
# Define feature columns
def get_wide_deep():
# Define column types
is_male,mother_age,plurality,gestation_weeks = \
[\
tf.feature_column.categorical_column_with_vocabulary_list('is_male',
['True', 'False', 'Unknown']),
tf.feature_column.numeric_column('mother_age'),
tf.feature_column.categorical_column_with_vocabulary_list('plurality',
['Single(1)', 'Twins(2)', 'Triplets(3)',
'Quadruplets(4)', 'Quintuplets(5)','Multiple(2+)']),
tf.feature_column.numeric_column('gestation_weeks')
]
# Discretize
age_buckets = tf.feature_column.bucketized_column(mother_age,
boundaries=np.arange(15,45,1).tolist())
gestation_buckets = tf.feature_column.bucketized_column(gestation_weeks,
boundaries=np.arange(17,47,1).tolist())
# Sparse columns are wide, have a linear relationship with the output
wide = [is_male,
plurality,
age_buckets,
gestation_buckets]
# Feature cross all the wide columns and embed into a lower dimension
crossed = tf.feature_column.crossed_column(wide, hash_bucket_size=20000)
embed = tf.feature_column.embedding_column(crossed, 3)
# Continuous columns are deep, have a complex relationship with the output
deep = [mother_age,
gestation_weeks,
embed]
return wide, deep
###Output
_____no_output_____
###Markdown
To predict with the TensorFlow model, we also need a serving input function. We will want all the inputs from our user.
###Code
# Create serving input function to be able to serve predictions later using provided inputs
def serving_input_fn():
feature_placeholders = {
'is_male': tf.placeholder(tf.string, [None]),
'mother_age': tf.placeholder(tf.float32, [None]),
'plurality': tf.placeholder(tf.string, [None]),
'gestation_weeks': tf.placeholder(tf.float32, [None])
}
features = {
key: tf.expand_dims(tensor, -1)
for key, tensor in feature_placeholders.items()
}
return tf.estimator.export.ServingInputReceiver(features, feature_placeholders)
# Create estimator to train and evaluate
def train_and_evaluate(output_dir):
wide, deep = get_wide_deep()
EVAL_INTERVAL = 300
run_config = tf.estimator.RunConfig(save_checkpoints_secs = EVAL_INTERVAL,
keep_checkpoint_max = 3)
estimator = tf.estimator.DNNLinearCombinedRegressor(
model_dir = output_dir,
linear_feature_columns = wide,
dnn_feature_columns = deep,
dnn_hidden_units = [64, 32],
config = run_config)
train_spec = tf.estimator.TrainSpec(
input_fn = read_dataset('train.csv', mode = tf.estimator.ModeKeys.TRAIN),
max_steps = TRAIN_STEPS)
exporter = tf.estimator.LatestExporter('exporter', serving_input_fn)
eval_spec = tf.estimator.EvalSpec(
input_fn = read_dataset('eval.csv', mode = tf.estimator.ModeKeys.EVAL),
steps = None,
start_delay_secs = 60, # start evaluating after N seconds
throttle_secs = EVAL_INTERVAL, # evaluate every N seconds
exporters = exporter)
tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
###Output
_____no_output_____
###Markdown
Finally, train!
###Code
# Run the model
shutil.rmtree('babyweight_trained', ignore_errors = True) # start fresh each time
tf.summary.FileWriterCache.clear() # ensure filewriter cache is clear for TensorBoard events file
train_and_evaluate('babyweight_trained')
###Output
_____no_output_____
###Markdown
Create TensorFlow wide-and-deep model This notebook illustrates: Creating a model using the high-level Estimator API
###Code
# change these to try this notebook out
BUCKET = 'cloud-training-demos-ml'
PROJECT = 'cloud-training-demos'
REGION = 'us-central1'
import os
os.environ['BUCKET'] = BUCKET
os.environ['PROJECT'] = PROJECT
os.environ['REGION'] = REGION
%%bash
if ! gsutil ls | grep -q gs://${BUCKET}/; then
gsutil mb -l ${REGION} gs://${BUCKET}
fi
%bash
ls *.csv
###Output
_____no_output_____
###Markdown
Create TensorFlow model using TensorFlow's Estimator API First, write an input_fn to read the data.
###Code
import shutil
import numpy as np
import tensorflow as tf
print(tf.__version__)
# Determine CSV, label, and key columns
CSV_COLUMNS = 'weight_pounds,is_male,mother_age,plurality,gestation_weeks,key'.split(',')
LABEL_COLUMN = 'weight_pounds'
KEY_COLUMN = 'key'
# Set default values for each CSV column
DEFAULTS = [[0.0], ['null'], [0.0], ['null'], [0.0], ['nokey']]
TRAIN_STEPS = 1000
# Create an input function reading a file using the Dataset API
# Then provide the results to the Estimator API
def read_dataset(filename, mode, batch_size = 512):
def _input_fn():
def decode_csv(value_column):
columns = tf.decode_csv(value_column, record_defaults=DEFAULTS)
features = dict(zip(CSV_COLUMNS, columns))
label = features.pop(LABEL_COLUMN)
return features, label
# Create list of files that match pattern
file_list = tf.gfile.Glob(filename)
# Create dataset from file list
dataset = (tf.data.TextLineDataset(file_list) # Read text file
.map(decode_csv)) # Transform each elem by applying decode_csv fn
if mode == tf.estimator.ModeKeys.TRAIN:
num_epochs = None # indefinitely
dataset = dataset.shuffle(buffer_size=10*batch_size)
else:
num_epochs = 1 # end-of-input after this
dataset = dataset.repeat(num_epochs).batch(batch_size)
return dataset
return _input_fn
###Output
_____no_output_____
###Markdown
Next, define the feature columns
###Code
# Define feature columns
def get_wide_deep():
# Define column types
is_male,mother_age,plurality,gestation_weeks = \
[\
tf.feature_column.categorical_column_with_vocabulary_list('is_male',
['True', 'False', 'Unknown']),
tf.feature_column.numeric_column('mother_age'),
tf.feature_column.categorical_column_with_vocabulary_list('plurality',
['Single(1)', 'Twins(2)', 'Triplets(3)',
'Quadruplets(4)', 'Quintuplets(5)','Multiple(2+)']),
tf.feature_column.numeric_column('gestation_weeks')
]
# Discretize
age_buckets = tf.feature_column.bucketized_column(mother_age,
boundaries=np.arange(15,45,1).tolist())
gestation_buckets = tf.feature_column.bucketized_column(gestation_weeks,
boundaries=np.arange(17,47,1).tolist())
# Sparse columns are wide, have a linear relationship with the output
wide = [is_male,
plurality,
age_buckets,
gestation_buckets]
# Feature cross all the wide columns and embed into a lower dimension
crossed = tf.feature_column.crossed_column(wide, hash_bucket_size=20000)
embed = tf.feature_column.embedding_column(crossed, 3)
# Continuous columns are deep, have a complex relationship with the output
deep = [mother_age,
gestation_weeks,
embed]
return wide, deep
###Output
_____no_output_____
###Markdown
To predict with the TensorFlow model, we also need a serving input function. We will want all the inputs from our user.
###Code
# Create serving input function to be able to serve predictions later using provided inputs
def serving_input_fn():
feature_placeholders = {
'is_male': tf.placeholder(tf.string, [None]),
'mother_age': tf.placeholder(tf.float32, [None]),
'plurality': tf.placeholder(tf.string, [None]),
'gestation_weeks': tf.placeholder(tf.float32, [None])
}
features = {
key: tf.expand_dims(tensor, -1)
for key, tensor in feature_placeholders.items()
}
return tf.estimator.export.ServingInputReceiver(features, feature_placeholders)
# Create estimator to train and evaluate
def train_and_evaluate(output_dir):
wide, deep = get_wide_deep()
EVAL_INTERVAL = 300
run_config = tf.estimator.RunConfig(save_checkpoints_secs = EVAL_INTERVAL,
keep_checkpoint_max = 3)
estimator = tf.estimator.DNNLinearCombinedRegressor(
model_dir = output_dir,
linear_feature_columns = wide,
dnn_feature_columns = deep,
dnn_hidden_units = [64, 32],
config = run_config)
train_spec = tf.estimator.TrainSpec(
input_fn = read_dataset('train.csv', mode = tf.estimator.ModeKeys.TRAIN),
max_steps = TRAIN_STEPS)
exporter = tf.estimator.LatestExporter('exporter', serving_input_fn)
eval_spec = tf.estimator.EvalSpec(
input_fn = read_dataset('eval.csv', mode = tf.estimator.ModeKeys.EVAL),
steps = None,
start_delay_secs = 60, # start evaluating after N seconds
throttle_secs = EVAL_INTERVAL, # evaluate every N seconds
exporters = exporter)
tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
###Output
_____no_output_____
###Markdown
Finally, train!
###Code
# Run the model
shutil.rmtree('babyweight_trained', ignore_errors = True) # start fresh each time
train_and_evaluate('babyweight_trained')
###Output
_____no_output_____
###Markdown
When I ran it, the final lines of the output (above) were:INFO:tensorflow:Saving dict for global step 1000: average_loss = 1.2693067, global_step = 1000, loss = 635.9226INFO:tensorflow:Restoring parameters from babyweight_trained/model.ckpt-1000INFO:tensorflow:Assets added to graph.INFO:tensorflow:No assets to write.INFO:tensorflow:SavedModel written to: babyweight_trained/export/exporter/temp-1517899936/saved_model.pbThe exporter directory contains the final model and the final RMSE (the average_loss) is 1.2693067 Monitor and experiment with training
###Code
from google.datalab.ml import TensorBoard
TensorBoard().start('./babyweight_trained')
###Output
_____no_output_____
###Markdown
In TensorBoard, look at the learned embeddings. Are they getting clustered? How about the weights for the hidden layers? What if you run this longer? What happens if you change the batchsize?
###Code
for pid in TensorBoard.list()['pid']:
TensorBoard().stop(pid)
print('Stopped TensorBoard with pid {}'.format(pid))
###Output
_____no_output_____
###Markdown
Create TensorFlow wide-and-deep model This notebook illustrates: Creating a model using the high-level Estimator API
###Code
# change these to try this notebook out
BUCKET = 'cloud-training-demos-ml'
PROJECT = 'cloud-training-demos'
REGION = 'us-central1'
import os
os.environ['BUCKET'] = BUCKET
os.environ['PROJECT'] = PROJECT
os.environ['REGION'] = REGION
%%bash
if ! gsutil ls | grep -q gs://${BUCKET}/; then
gsutil mb -l ${REGION} gs://${BUCKET}
fi
%bash
ls *.csv
###Output
_____no_output_____
###Markdown
Create TensorFlow model using TensorFlow's Estimator API First, write an input_fn to read the data.
###Code
import shutil
import numpy as np
import tensorflow as tf
print(tf.__version__)
# Determine CSV, label, and key columns
CSV_COLUMNS = 'weight_pounds,is_male,mother_age,plurality,gestation_weeks,key'.split(',')
LABEL_COLUMN = 'weight_pounds'
KEY_COLUMN = 'key'
# Set default values for each CSV column
DEFAULTS = [[0.0], ['null'], [0.0], ['null'], [0.0], ['nokey']]
TRAIN_STEPS = 1000
# Create an input function reading a file using the Dataset API
# Then provide the results to the Estimator API
def read_dataset(filename, mode, batch_size = 512):
def _input_fn():
def decode_csv(value_column):
columns = tf.decode_csv(value_column, record_defaults=DEFAULTS)
features = dict(zip(CSV_COLUMNS, columns))
label = features.pop(LABEL_COLUMN)
return features, label
# Create list of files that match pattern
file_list = tf.gfile.Glob(filename)
# Create dataset from file list
dataset = (tf.data.TextLineDataset(file_list) # Read text file
.map(decode_csv)) # Transform each elem by applying decode_csv fn
if mode == tf.estimator.ModeKeys.TRAIN:
num_epochs = None # indefinitely
dataset = dataset.shuffle(buffer_size=10*batch_size)
else:
num_epochs = 1 # end-of-input after this
dataset = dataset.repeat(num_epochs).batch(batch_size)
return dataset
return _input_fn
###Output
_____no_output_____
###Markdown
Next, define the feature columns
###Code
# Define feature columns
def get_wide_deep():
# Define column types
is_male,mother_age,plurality,gestation_weeks = \
[\
tf.feature_column.categorical_column_with_vocabulary_list('is_male',
['True', 'False', 'Unknown']),
tf.feature_column.numeric_column('mother_age'),
tf.feature_column.categorical_column_with_vocabulary_list('plurality',
['Single(1)', 'Twins(2)', 'Triplets(3)',
'Quadruplets(4)', 'Quintuplets(5)','Multiple(2+)']),
tf.feature_column.numeric_column('gestation_weeks')
]
# Discretize
age_buckets = tf.feature_column.bucketized_column(mother_age,
boundaries=np.arange(15,45,1).tolist())
gestation_buckets = tf.feature_column.bucketized_column(gestation_weeks,
boundaries=np.arange(17,47,1).tolist())
# Sparse columns are wide, have a linear relationship with the output
wide = [is_male,
plurality,
age_buckets,
gestation_buckets]
# Feature cross all the wide columns and embed into a lower dimension
crossed = tf.feature_column.crossed_column(wide, hash_bucket_size=20000)
embed = tf.feature_column.embedding_column(crossed, 3)
# Continuous columns are deep, have a complex relationship with the output
deep = [mother_age,
gestation_weeks,
embed]
return wide, deep
###Output
_____no_output_____
###Markdown
To predict with the TensorFlow model, we also need a serving input function. We will want all the inputs from our user.
###Code
# Create serving input function to be able to serve predictions later using provided inputs
def serving_input_fn():
feature_placeholders = {
'is_male': tf.placeholder(tf.string, [None]),
'mother_age': tf.placeholder(tf.float32, [None]),
'plurality': tf.placeholder(tf.string, [None]),
'gestation_weeks': tf.placeholder(tf.float32, [None])
}
features = {
key: tf.expand_dims(tensor, -1)
for key, tensor in feature_placeholders.items()
}
return tf.estimator.export.ServingInputReceiver(features, feature_placeholders)
# Create estimator to train and evaluate
def train_and_evaluate(output_dir):
wide, deep = get_wide_deep()
EVAL_INTERVAL = 300
run_config = tf.estimator.RunConfig(save_checkpoints_secs = EVAL_INTERVAL,
keep_checkpoint_max = 3)
estimator = tf.estimator.DNNLinearCombinedRegressor(
model_dir = output_dir,
linear_feature_columns = wide,
dnn_feature_columns = deep,
dnn_hidden_units = [64, 32],
config = run_config)
train_spec = tf.estimator.TrainSpec(
input_fn = read_dataset('train.csv', mode = tf.estimator.ModeKeys.TRAIN),
max_steps = TRAIN_STEPS)
exporter = tf.estimator.LatestExporter('exporter', serving_input_fn)
eval_spec = tf.estimator.EvalSpec(
input_fn = read_dataset('eval.csv', mode = tf.estimator.ModeKeys.EVAL),
steps = None,
start_delay_secs = 60, # start evaluating after N seconds
throttle_secs = EVAL_INTERVAL, # evaluate every N seconds
exporters = exporter)
tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
###Output
_____no_output_____
###Markdown
Finally, train!
###Code
# Run the model
shutil.rmtree('babyweight_trained', ignore_errors = True) # start fresh each time
tf.summary.FileWriterCache.clear() # ensure filewriter cache is clear for TensorBoard events file
train_and_evaluate('babyweight_trained')
###Output
_____no_output_____
###Markdown
When I ran it, the final lines of the output (above) were:INFO:tensorflow:Saving dict for global step 1000: average_loss = 1.2693067, global_step = 1000, loss = 635.9226INFO:tensorflow:Restoring parameters from babyweight_trained/model.ckpt-1000INFO:tensorflow:Assets added to graph.INFO:tensorflow:No assets to write.INFO:tensorflow:SavedModel written to: babyweight_trained/export/exporter/temp-1517899936/saved_model.pbThe exporter directory contains the final model and the final RMSE (the average_loss) is 1.2693067 Monitor and experiment with training
###Code
from google.datalab.ml import TensorBoard
TensorBoard().start('./babyweight_trained')
###Output
_____no_output_____
###Markdown
In TensorBoard, look at the learned embeddings. Are they getting clustered? How about the weights for the hidden layers? What if you run this longer? What happens if you change the batchsize?
###Code
for pid in TensorBoard.list()['pid']:
TensorBoard().stop(pid)
print('Stopped TensorBoard with pid {}'.format(pid))
###Output
_____no_output_____
###Markdown
Create TensorFlow wide-and-deep model This notebook illustrates: Creating a model using the high-level Estimator API
###Code
# change these to try this notebook out
BUCKET = 'cloud-training-demos-ml'
PROJECT = 'cloud-training-demos'
REGION = 'us-central1'
import os
os.environ['BUCKET'] = BUCKET
os.environ['PROJECT'] = PROJECT
os.environ['REGION'] = REGION
%%bash
if ! gsutil ls | grep -q gs://${BUCKET}/; then
gsutil mb -l ${REGION} gs://${BUCKET}
fi
%%bash
ls *.csv
###Output
_____no_output_____
###Markdown
Create TensorFlow model using TensorFlow's Estimator API First, write an input_fn to read the data.
###Code
import shutil
import numpy as np
import tensorflow as tf
print(tf.__version__)
# Determine CSV, label, and key columns
CSV_COLUMNS = 'weight_pounds,is_male,mother_age,plurality,gestation_weeks,key'.split(',')
LABEL_COLUMN = 'weight_pounds'
KEY_COLUMN = 'key'
# Set default values for each CSV column
DEFAULTS = [[0.0], ['null'], [0.0], ['null'], [0.0], ['nokey']]
TRAIN_STEPS = 1000
# Create an input function reading a file using the Dataset API
# Then provide the results to the Estimator API
def read_dataset(filename, mode, batch_size = 512):
def _input_fn():
def decode_csv(value_column):
columns = tf.decode_csv(value_column, record_defaults=DEFAULTS)
features = dict(zip(CSV_COLUMNS, columns))
label = features.pop(LABEL_COLUMN)
return features, label
# Create list of files that match pattern
file_list = tf.gfile.Glob(filename)
# Create dataset from file list
dataset = (tf.data.TextLineDataset(file_list) # Read text file
.map(decode_csv)) # Transform each elem by applying decode_csv fn
if mode == tf.estimator.ModeKeys.TRAIN:
num_epochs = None # indefinitely
dataset = dataset.shuffle(buffer_size=10*batch_size)
else:
num_epochs = 1 # end-of-input after this
dataset = dataset.repeat(num_epochs).batch(batch_size)
return dataset
return _input_fn
###Output
_____no_output_____
###Markdown
Next, define the feature columns
###Code
# Define feature columns
def get_wide_deep():
# Define column types
is_male,mother_age,plurality,gestation_weeks = \
[\
tf.feature_column.categorical_column_with_vocabulary_list('is_male',
['True', 'False', 'Unknown']),
tf.feature_column.numeric_column('mother_age'),
tf.feature_column.categorical_column_with_vocabulary_list('plurality',
['Single(1)', 'Twins(2)', 'Triplets(3)',
'Quadruplets(4)', 'Quintuplets(5)','Multiple(2+)']),
tf.feature_column.numeric_column('gestation_weeks')
]
# Discretize
age_buckets = tf.feature_column.bucketized_column(mother_age,
boundaries=np.arange(15,45,1).tolist())
gestation_buckets = tf.feature_column.bucketized_column(gestation_weeks,
boundaries=np.arange(17,47,1).tolist())
# Sparse columns are wide, have a linear relationship with the output
wide = [is_male,
plurality,
age_buckets,
gestation_buckets]
# Feature cross all the wide columns and embed into a lower dimension
crossed = tf.feature_column.crossed_column(wide, hash_bucket_size=20000)
embed = tf.feature_column.embedding_column(crossed, 3)
# Continuous columns are deep, have a complex relationship with the output
deep = [mother_age,
gestation_weeks,
embed]
return wide, deep
###Output
_____no_output_____
###Markdown
To predict with the TensorFlow model, we also need a serving input function. We will want all the inputs from our user.
###Code
# Create serving input function to be able to serve predictions later using provided inputs
def serving_input_fn():
feature_placeholders = {
'is_male': tf.placeholder(tf.string, [None]),
'mother_age': tf.placeholder(tf.float32, [None]),
'plurality': tf.placeholder(tf.string, [None]),
'gestation_weeks': tf.placeholder(tf.float32, [None])
}
features = {
key: tf.expand_dims(tensor, -1)
for key, tensor in feature_placeholders.items()
}
return tf.estimator.export.ServingInputReceiver(features, feature_placeholders)
# Create estimator to train and evaluate
def train_and_evaluate(output_dir):
wide, deep = get_wide_deep()
EVAL_INTERVAL = 300
run_config = tf.estimator.RunConfig(save_checkpoints_secs = EVAL_INTERVAL,
keep_checkpoint_max = 3)
estimator = tf.estimator.DNNLinearCombinedRegressor(
model_dir = output_dir,
linear_feature_columns = wide,
dnn_feature_columns = deep,
dnn_hidden_units = [64, 32],
config = run_config)
train_spec = tf.estimator.TrainSpec(
input_fn = read_dataset('train.csv', mode = tf.estimator.ModeKeys.TRAIN),
max_steps = TRAIN_STEPS)
exporter = tf.estimator.LatestExporter('exporter', serving_input_fn)
eval_spec = tf.estimator.EvalSpec(
input_fn = read_dataset('eval.csv', mode = tf.estimator.ModeKeys.EVAL),
steps = None,
start_delay_secs = 60, # start evaluating after N seconds
throttle_secs = EVAL_INTERVAL, # evaluate every N seconds
exporters = exporter)
tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
###Output
_____no_output_____
###Markdown
Finally, train!
###Code
# Run the model
shutil.rmtree('babyweight_trained', ignore_errors = True) # start fresh each time
tf.summary.FileWriterCache.clear() # ensure filewriter cache is clear for TensorBoard events file
train_and_evaluate('babyweight_trained')
###Output
_____no_output_____
###Markdown
Create TensorFlow wide-and-deep model This notebook illustrates: Creating a model using the high-level Estimator API
###Code
# change these to try this notebook out
BUCKET = 'cloud-training-demos-ml'
PROJECT = 'cloud-training-demos'
REGION = 'us-central1'
import os
os.environ['BUCKET'] = BUCKET
os.environ['PROJECT'] = PROJECT
os.environ['REGION'] = REGION
%%bash
if ! gsutil ls | grep -q gs://${BUCKET}/; then
gsutil mb -l ${REGION} gs://${BUCKET}
fi
%bash
ls *.csv
###Output
eval.csv
train.csv
###Markdown
Create TensorFlow model using TensorFlow's Estimator API First, write an input_fn to read the data.
###Code
import shutil
import numpy as np
import tensorflow as tf
print(tf.__version__)
# Determine CSV, label, and key columns
CSV_COLUMNS = 'weight_pounds,is_male,mother_age,plurality,gestation_weeks,key'.split(',')
LABEL_COLUMN = 'weight_pounds'
KEY_COLUMN = 'key'
# Set default values for each CSV column
DEFAULTS = [[0.0], ['null'], [0.0], ['null'], [0.0], ['nokey']]
TRAIN_STEPS = 1000
# Create an input function reading a file using the Dataset API
# Then provide the results to the Estimator API
def read_dataset(filename, mode, batch_size = 512):
def _input_fn():
def decode_csv(value_column):
columns = tf.decode_csv(value_column, record_defaults=DEFAULTS)
features = dict(zip(CSV_COLUMNS, columns))
label = features.pop(LABEL_COLUMN)
return features, label
# Create list of files that match pattern
file_list = tf.gfile.Glob(filename)
# Create dataset from file list
dataset = (tf.data.TextLineDataset(file_list) # Read text file
.map(decode_csv)) # Transform each elem by applying decode_csv fn
if mode == tf.estimator.ModeKeys.TRAIN:
num_epochs = None # indefinitely
dataset = dataset.shuffle(buffer_size=10*batch_size)
else:
num_epochs = 1 # end-of-input after this
dataset = dataset.repeat(num_epochs).batch(batch_size)
return dataset.make_one_shot_iterator().get_next()
return _input_fn
###Output
_____no_output_____
###Markdown
Next, define the feature columns
###Code
# Define feature columns
def get_wide_deep():
# Define column types
is_male,mother_age,plurality,gestation_weeks = \
[\
tf.feature_column.categorical_column_with_vocabulary_list('is_male',
['True', 'False', 'Unknown']),
tf.feature_column.numeric_column('mother_age'),
tf.feature_column.categorical_column_with_vocabulary_list('plurality',
['Single(1)', 'Twins(2)', 'Triplets(3)',
'Quadruplets(4)', 'Quintuplets(5)','Multiple(2+)']),
tf.feature_column.numeric_column('gestation_weeks')
]
# Discretize
age_buckets = tf.feature_column.bucketized_column(mother_age,
boundaries=np.arange(15,45,1).tolist())
gestation_buckets = tf.feature_column.bucketized_column(gestation_weeks,
boundaries=np.arange(17,47,1).tolist())
# Sparse columns are wide, have a linear relationship with the output
wide = [is_male,
plurality,
age_buckets,
gestation_buckets]
# Feature cross all the wide columns and embed into a lower dimension
crossed = tf.feature_column.crossed_column(wide, hash_bucket_size=20000)
embed = tf.feature_column.embedding_column(crossed, 3)
# Continuous columns are deep, have a complex relationship with the output
deep = [mother_age,
gestation_weeks,
embed]
return wide, deep
###Output
_____no_output_____
###Markdown
To predict with the TensorFlow model, we also need a serving input function. We will want all the inputs from our user.
###Code
# Create serving input function to be able to serve predictions later using provided inputs
def serving_input_fn():
feature_placeholders = {
'is_male': tf.placeholder(tf.string, [None]),
'mother_age': tf.placeholder(tf.float32, [None]),
'plurality': tf.placeholder(tf.string, [None]),
'gestation_weeks': tf.placeholder(tf.float32, [None])
}
features = {
key: tf.expand_dims(tensor, -1)
for key, tensor in feature_placeholders.items()
}
return tf.estimator.export.ServingInputReceiver(features, feature_placeholders)
# Create estimator to train and evaluate
def train_and_evaluate(output_dir):
wide, deep = get_wide_deep()
EVAL_INTERVAL = 300
run_config = tf.estimator.RunConfig(save_checkpoints_secs = EVAL_INTERVAL,
keep_checkpoint_max = 3)
estimator = tf.estimator.DNNLinearCombinedRegressor(
model_dir = output_dir,
linear_feature_columns = wide,
dnn_feature_columns = deep,
dnn_hidden_units = [64, 32],
config = run_config)
train_spec = tf.estimator.TrainSpec(
input_fn = read_dataset('train.csv', mode = tf.estimator.ModeKeys.TRAIN),
max_steps = TRAIN_STEPS)
exporter = tf.estimator.LatestExporter('exporter', serving_input_fn)
eval_spec = tf.estimator.EvalSpec(
input_fn = read_dataset('eval.csv', mode = tf.estimator.ModeKeys.EVAL),
steps = None,
start_delay_secs = 60, # start evaluating after N seconds
throttle_secs = EVAL_INTERVAL, # evaluate every N seconds
exporters = exporter)
tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
###Output
_____no_output_____
###Markdown
Finally, train!
###Code
# Run the model
shutil.rmtree('babyweight_trained', ignore_errors = True) # start fresh each time
train_and_evaluate('babyweight_trained')
###Output
_____no_output_____
###Markdown
When I ran it, the final lines of the output (above) were:INFO:tensorflow:Saving dict for global step 1000: average_loss = 1.2693067, global_step = 1000, loss = 635.9226INFO:tensorflow:Restoring parameters from babyweight_trained/model.ckpt-1000INFO:tensorflow:Assets added to graph.INFO:tensorflow:No assets to write.INFO:tensorflow:SavedModel written to: babyweight_trained/export/exporter/temp-1517899936/saved_model.pbThe exporter directory contains the final model and the final RMSE (the average_loss) is 1.2693067 Monitor and experiment with training
###Code
from google.datalab.ml import TensorBoard
TensorBoard().start('./babyweight_trained')
###Output
_____no_output_____
###Markdown
In TensorBoard, look at the learned embeddings. Are they getting clustered? How about the weights for the hidden layers? What if you run this longer? What happens if you change the batchsize?
###Code
for pid in TensorBoard.list()['pid']:
TensorBoard().stop(pid)
print 'Stopped TensorBoard with pid {}'.format(pid)
###Output
_____no_output_____
###Markdown
Create TensorFlow wide-and-deep model This notebook illustrates: Creating a model using the high-level Estimator API
###Code
!sudo chown -R jupyter:jupyter /home/jupyter/training-data-analyst
# Ensure the right version of Tensorflow is installed.
!pip freeze | grep tensorflow==2.1
# change these to try this notebook out
BUCKET = 'cloud-training-demos-ml'
PROJECT = 'cloud-training-demos'
REGION = 'us-central1'
import os
os.environ['BUCKET'] = BUCKET
os.environ['PROJECT'] = PROJECT
os.environ['REGION'] = REGION
%%bash
if ! gsutil ls | grep -q gs://${BUCKET}/; then
gsutil mb -l ${REGION} gs://${BUCKET}
fi
%%bash
ls *.csv
###Output
_____no_output_____
###Markdown
Create TensorFlow model using TensorFlow's Estimator API First, write an input_fn to read the data.
###Code
import shutil
import numpy as np
import tensorflow as tf
print(tf.__version__)
# Determine CSV, label, and key columns
CSV_COLUMNS = 'weight_pounds,is_male,mother_age,plurality,gestation_weeks,key'.split(',')
LABEL_COLUMN = 'weight_pounds'
KEY_COLUMN = 'key'
# Set default values for each CSV column
DEFAULTS = [[0.0], ['null'], [0.0], ['null'], [0.0], ['nokey']]
TRAIN_STEPS = 1000
# Create an input function reading a file using the Dataset API
# Then provide the results to the Estimator API
def read_dataset(filename, mode, batch_size = 512):
def _input_fn():
def decode_csv(value_column):
columns = tf.compat.v1.decode_csv(value_column, record_defaults=DEFAULTS)
features = dict(zip(CSV_COLUMNS, columns))
label = features.pop(LABEL_COLUMN)
return features, label
# Create list of files that match pattern
file_list = tf.compat.v1.gfile.Glob(filename)
# Create dataset from file list
dataset = (tf.compat.v1.data.TextLineDataset(file_list) # Read text file
.map(decode_csv)) # Transform each elem by applying decode_csv fn
if mode == tf.estimator.ModeKeys.TRAIN:
num_epochs = None # indefinitely
dataset = dataset.shuffle(buffer_size=10*batch_size)
else:
num_epochs = 1 # end-of-input after this
dataset = dataset.repeat(num_epochs).batch(batch_size)
return dataset
return _input_fn
###Output
_____no_output_____
###Markdown
Next, define the feature columns
###Code
# Define feature columns
def get_wide_deep():
# Define column types
is_male,mother_age,plurality,gestation_weeks = \
[\
tf.feature_column.categorical_column_with_vocabulary_list('is_male',
['True', 'False', 'Unknown']),
tf.feature_column.numeric_column('mother_age'),
tf.feature_column.categorical_column_with_vocabulary_list('plurality',
['Single(1)', 'Twins(2)', 'Triplets(3)',
'Quadruplets(4)', 'Quintuplets(5)','Multiple(2+)']),
tf.feature_column.numeric_column('gestation_weeks')
]
# Discretize
age_buckets = tf.feature_column.bucketized_column(mother_age,
boundaries=np.arange(15,45,1).tolist())
gestation_buckets = tf.feature_column.bucketized_column(gestation_weeks,
boundaries=np.arange(17,47,1).tolist())
# Sparse columns are wide, have a linear relationship with the output
wide = [is_male,
plurality,
age_buckets,
gestation_buckets]
# Feature cross all the wide columns and embed into a lower dimension
crossed = tf.feature_column.crossed_column(wide, hash_bucket_size=20000)
embed = tf.feature_column.embedding_column(crossed, 3)
# Continuous columns are deep, have a complex relationship with the output
deep = [mother_age,
gestation_weeks,
embed]
return wide, deep
###Output
_____no_output_____
###Markdown
To predict with the TensorFlow model, we also need a serving input function. We will want all the inputs from our user.
###Code
# Create serving input function to be able to serve predictions later using provided inputs
def serving_input_fn():
feature_placeholders = {
'is_male': tf.compat.v1.placeholder(tf.string, [None]),
'mother_age': tf.compat.v1.placeholder(tf.float32, [None]),
'plurality': tf.compat.v1.placeholder(tf.string, [None]),
'gestation_weeks': tf.compat.v1.placeholder(tf.float32, [None])
}
features = {
key: tf.expand_dims(tensor, -1)
for key, tensor in feature_placeholders.items()
}
return tf.estimator.export.ServingInputReceiver(features, feature_placeholders)
# Create estimator to train and evaluate
def train_and_evaluate(output_dir):
wide, deep = get_wide_deep()
EVAL_INTERVAL = 300
run_config = tf.estimator.RunConfig(save_checkpoints_secs = EVAL_INTERVAL,
keep_checkpoint_max = 3)
estimator = tf.estimator.DNNLinearCombinedRegressor(
model_dir = output_dir,
linear_feature_columns = wide,
dnn_feature_columns = deep,
dnn_hidden_units = [64, 32],
config = run_config)
train_spec = tf.estimator.TrainSpec(
input_fn = read_dataset('train.csv', mode = tf.estimator.ModeKeys.TRAIN),
max_steps = TRAIN_STEPS)
exporter = tf.estimator.LatestExporter('exporter', serving_input_fn)
eval_spec = tf.estimator.EvalSpec(
input_fn = read_dataset('eval.csv', mode = tf.estimator.ModeKeys.EVAL),
steps = None,
start_delay_secs = 60, # start evaluating after N seconds
throttle_secs = EVAL_INTERVAL, # evaluate every N seconds
exporters = exporter)
tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
###Output
_____no_output_____
###Markdown
Finally, train!
###Code
# Run the model
shutil.rmtree('babyweight_trained', ignore_errors = True) # start fresh each time
tf.compat.v1.summary.FileWriterCache.clear()
train_and_evaluate('babyweight_trained')
###Output
_____no_output_____
###Markdown
Create TensorFlow wide-and-deep model This notebook illustrates: Creating a model using the high-level Estimator API
###Code
# change these to try this notebook out
BUCKET = 'cloud-training-demos-ml'
PROJECT = 'cloud-training-demos'
REGION = 'us-central1'
import os
os.environ['BUCKET'] = BUCKET
os.environ['PROJECT'] = PROJECT
os.environ['REGION'] = REGION
%%bash
if ! gsutil ls | grep -q gs://${BUCKET}/; then
gsutil mb -l ${REGION} gs://${BUCKET}
fi
%bash
ls *.csv
###Output
_____no_output_____
###Markdown
Create TensorFlow model using TensorFlow's Estimator API First, write an input_fn to read the data.
###Code
import shutil
import numpy as np
import tensorflow as tf
print(tf.__version__)
# Determine CSV, label, and key columns
CSV_COLUMNS = 'weight_pounds,is_male,mother_age,plurality,gestation_weeks,key'.split(',')
LABEL_COLUMN = 'weight_pounds'
KEY_COLUMN = 'key'
# Set default values for each CSV column
DEFAULTS = [[0.0], ['null'], [0.0], ['null'], [0.0], ['nokey']]
TRAIN_STEPS = 1000
# Create an input function reading a file using the Dataset API
# Then provide the results to the Estimator API
def read_dataset(filename, mode, batch_size = 512):
def _input_fn():
def decode_csv(value_column):
columns = tf.decode_csv(value_column, record_defaults=DEFAULTS)
features = dict(zip(CSV_COLUMNS, columns))
label = features.pop(LABEL_COLUMN)
return features, label
# Create list of files that match pattern
file_list = tf.gfile.Glob(filename)
# Create dataset from file list
dataset = (tf.data.TextLineDataset(file_list) # Read text file
.map(decode_csv)) # Transform each elem by applying decode_csv fn
if mode == tf.estimator.ModeKeys.TRAIN:
num_epochs = None # indefinitely
dataset = dataset.shuffle(buffer_size=10*batch_size)
else:
num_epochs = 1 # end-of-input after this
dataset = dataset.repeat(num_epochs).batch(batch_size)
return dataset.make_one_shot_iterator().get_next()
return _input_fn
###Output
_____no_output_____
###Markdown
Next, define the feature columns
###Code
# Define feature columns
def get_wide_deep():
# Define column types
is_male,mother_age,plurality,gestation_weeks = \
[\
tf.feature_column.categorical_column_with_vocabulary_list('is_male',
['True', 'False', 'Unknown']),
tf.feature_column.numeric_column('mother_age'),
tf.feature_column.categorical_column_with_vocabulary_list('plurality',
['Single(1)', 'Twins(2)', 'Triplets(3)',
'Quadruplets(4)', 'Quintuplets(5)','Multiple(2+)']),
tf.feature_column.numeric_column('gestation_weeks')
]
# Discretize
age_buckets = tf.feature_column.bucketized_column(mother_age,
boundaries=np.arange(15,45,1).tolist())
gestation_buckets = tf.feature_column.bucketized_column(gestation_weeks,
boundaries=np.arange(17,47,1).tolist())
# Sparse columns are wide, have a linear relationship with the output
wide = [is_male,
plurality,
age_buckets,
gestation_buckets]
# Feature cross all the wide columns and embed into a lower dimension
crossed = tf.feature_column.crossed_column(wide, hash_bucket_size=20000)
embed = tf.feature_column.embedding_column(crossed, 3)
# Continuous columns are deep, have a complex relationship with the output
deep = [mother_age,
gestation_weeks,
embed]
return wide, deep
###Output
_____no_output_____
###Markdown
To predict with the TensorFlow model, we also need a serving input function. We will want all the inputs from our user.
###Code
# Create serving input function to be able to serve predictions later using provided inputs
def serving_input_fn():
feature_placeholders = {
'is_male': tf.placeholder(tf.string, [None]),
'mother_age': tf.placeholder(tf.float32, [None]),
'plurality': tf.placeholder(tf.string, [None]),
'gestation_weeks': tf.placeholder(tf.float32, [None])
}
features = {
key: tf.expand_dims(tensor, -1)
for key, tensor in feature_placeholders.items()
}
return tf.estimator.export.ServingInputReceiver(features, feature_placeholders)
# Create estimator to train and evaluate
def train_and_evaluate(output_dir):
wide, deep = get_wide_deep()
EVAL_INTERVAL = 300
run_config = tf.estimator.RunConfig(save_checkpoints_secs = EVAL_INTERVAL,
keep_checkpoint_max = 3)
estimator = tf.estimator.DNNLinearCombinedRegressor(
model_dir = output_dir,
linear_feature_columns = wide,
dnn_feature_columns = deep,
dnn_hidden_units = [64, 32],
config = run_config)
train_spec = tf.estimator.TrainSpec(
input_fn = read_dataset('train.csv', mode = tf.estimator.ModeKeys.TRAIN),
max_steps = TRAIN_STEPS)
exporter = tf.estimator.LatestExporter('exporter', serving_input_fn)
eval_spec = tf.estimator.EvalSpec(
input_fn = read_dataset('eval.csv', mode = tf.estimator.ModeKeys.EVAL),
steps = None,
start_delay_secs = 60, # start evaluating after N seconds
throttle_secs = EVAL_INTERVAL, # evaluate every N seconds
exporters = exporter)
tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
###Output
_____no_output_____
###Markdown
Finally, train!
###Code
# Run the model
shutil.rmtree('babyweight_trained', ignore_errors = True) # start fresh each time
train_and_evaluate('babyweight_trained')
###Output
_____no_output_____
###Markdown
When I ran it, the final lines of the output (above) were:INFO:tensorflow:Saving dict for global step 1000: average_loss = 1.2693067, global_step = 1000, loss = 635.9226INFO:tensorflow:Restoring parameters from babyweight_trained/model.ckpt-1000INFO:tensorflow:Assets added to graph.INFO:tensorflow:No assets to write.INFO:tensorflow:SavedModel written to: babyweight_trained/export/exporter/temp-1517899936/saved_model.pbThe exporter directory contains the final model and the final RMSE (the average_loss) is 1.2693067 Monitor and experiment with training
###Code
from google.datalab.ml import TensorBoard
TensorBoard().start('./babyweight_trained')
###Output
_____no_output_____
###Markdown
In TensorBoard, look at the learned embeddings. Are they getting clustered? How about the weights for the hidden layers? What if you run this longer? What happens if you change the batchsize?
###Code
for pid in TensorBoard.list()['pid']:
TensorBoard().stop(pid)
print('Stopped TensorBoard with pid {}'.format(pid))
###Output
_____no_output_____
###Markdown
Create TensorFlow wide-and-deep model This notebook illustrates: Creating a model using the high-level Estimator API
###Code
# change these to try this notebook out
BUCKET = 'cloud-training-demos-ml'
PROJECT = 'cloud-training-demos'
REGION = 'us-central1'
import os
os.environ['BUCKET'] = BUCKET
os.environ['PROJECT'] = PROJECT
os.environ['REGION'] = REGION
%%bash
if ! gsutil ls | grep -q gs://${BUCKET}/; then
gsutil mb -l ${REGION} gs://${BUCKET}
fi
%%bash
ls *.csv
###Output
_____no_output_____
###Markdown
Create TensorFlow model using TensorFlow's Estimator API First, write an input_fn to read the data.
###Code
import shutil
import numpy as np
import tensorflow as tf
print(tf.__version__)
# Determine CSV, label, and key columns
CSV_COLUMNS = 'weight_pounds,is_male,mother_age,plurality,gestation_weeks,key'.split(',')
LABEL_COLUMN = 'weight_pounds'
KEY_COLUMN = 'key'
# Set default values for each CSV column
DEFAULTS = [[0.0], ['null'], [0.0], ['null'], [0.0], ['nokey']]
TRAIN_STEPS = 1000
# Create an input function reading a file using the Dataset API
# Then provide the results to the Estimator API
def read_dataset(filename, mode, batch_size = 512):
def _input_fn():
def decode_csv(value_column):
columns = tf.decode_csv(value_column, record_defaults=DEFAULTS)
features = dict(zip(CSV_COLUMNS, columns))
label = features.pop(LABEL_COLUMN)
return features, label
# Create list of files that match pattern
file_list = tf.gfile.Glob(filename)
# Create dataset from file list
dataset = (tf.data.TextLineDataset(file_list) # Read text file
.map(decode_csv)) # Transform each elem by applying decode_csv fn
if mode == tf.estimator.ModeKeys.TRAIN:
num_epochs = None # indefinitely
dataset = dataset.shuffle(buffer_size=10*batch_size)
else:
num_epochs = 1 # end-of-input after this
dataset = dataset.repeat(num_epochs).batch(batch_size)
return dataset
return _input_fn
###Output
_____no_output_____
###Markdown
Next, define the feature columns
###Code
# Define feature columns
def get_wide_deep():
# Define column types
is_male,mother_age,plurality,gestation_weeks = \
[\
tf.feature_column.categorical_column_with_vocabulary_list('is_male',
['True', 'False', 'Unknown']),
tf.feature_column.numeric_column('mother_age'),
tf.feature_column.categorical_column_with_vocabulary_list('plurality',
['Single(1)', 'Twins(2)', 'Triplets(3)',
'Quadruplets(4)', 'Quintuplets(5)','Multiple(2+)']),
tf.feature_column.numeric_column('gestation_weeks')
]
# Discretize
age_buckets = tf.feature_column.bucketized_column(mother_age,
boundaries=np.arange(15,45,1).tolist())
gestation_buckets = tf.feature_column.bucketized_column(gestation_weeks,
boundaries=np.arange(17,47,1).tolist())
# Sparse columns are wide, have a linear relationship with the output
wide = [is_male,
plurality,
age_buckets,
gestation_buckets]
# Feature cross all the wide columns and embed into a lower dimension
crossed = tf.feature_column.crossed_column(wide, hash_bucket_size=20000)
embed = tf.feature_column.embedding_column(crossed, 3)
# Continuous columns are deep, have a complex relationship with the output
deep = [mother_age,
gestation_weeks,
embed]
return wide, deep
###Output
_____no_output_____
###Markdown
To predict with the TensorFlow model, we also need a serving input function. We will want all the inputs from our user.
###Code
# Create serving input function to be able to serve predictions later using provided inputs
def serving_input_fn():
feature_placeholders = {
'is_male': tf.placeholder(tf.string, [None]),
'mother_age': tf.placeholder(tf.float32, [None]),
'plurality': tf.placeholder(tf.string, [None]),
'gestation_weeks': tf.placeholder(tf.float32, [None])
}
features = {
key: tf.expand_dims(tensor, -1)
for key, tensor in feature_placeholders.items()
}
return tf.estimator.export.ServingInputReceiver(features, feature_placeholders)
# Create estimator to train and evaluate
def train_and_evaluate(output_dir):
wide, deep = get_wide_deep()
EVAL_INTERVAL = 300
run_config = tf.estimator.RunConfig(save_checkpoints_secs = EVAL_INTERVAL,
keep_checkpoint_max = 3)
estimator = tf.estimator.DNNLinearCombinedRegressor(
model_dir = output_dir,
linear_feature_columns = wide,
dnn_feature_columns = deep,
dnn_hidden_units = [64, 32],
config = run_config)
train_spec = tf.estimator.TrainSpec(
input_fn = read_dataset('train.csv', mode = tf.estimator.ModeKeys.TRAIN),
max_steps = TRAIN_STEPS)
exporter = tf.estimator.LatestExporter('exporter', serving_input_fn)
eval_spec = tf.estimator.EvalSpec(
input_fn = read_dataset('eval.csv', mode = tf.estimator.ModeKeys.EVAL),
steps = None,
start_delay_secs = 60, # start evaluating after N seconds
throttle_secs = EVAL_INTERVAL, # evaluate every N seconds
exporters = exporter)
tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
###Output
_____no_output_____
###Markdown
Finally, train!
###Code
# Run the model
shutil.rmtree('babyweight_trained', ignore_errors = True) # start fresh each time
tf.summary.FileWriterCache.clear() # ensure filewriter cache is clear for TensorBoard events file
train_and_evaluate('babyweight_trained')
###Output
_____no_output_____
###Markdown
Create TensorFlow wide-and-deep model This notebook illustrates: Creating a model using the high-level Estimator API
###Code
!sudo chown -R jupyter:jupyter /home/jupyter/training-data-analyst
# Ensure the right version of Tensorflow is installed.
!pip freeze | grep tensorflow==2.1
# change these to try this notebook out
BUCKET = 'cloud-training-demos-ml'
PROJECT = 'cloud-training-demos'
REGION = 'us-central1'
import os
os.environ['BUCKET'] = BUCKET
os.environ['PROJECT'] = PROJECT
os.environ['REGION'] = REGION
%%bash
if ! gsutil ls | grep -q gs://${BUCKET}/; then
gsutil mb -l ${REGION} gs://${BUCKET}
fi
%%bash
ls *.csv
###Output
_____no_output_____
###Markdown
Create TensorFlow model using TensorFlow's Estimator API First, write an input_fn to read the data.
###Code
import shutil
import numpy as np
import tensorflow as tf
print(tf.__version__)
# Determine CSV, label, and key columns
CSV_COLUMNS = 'weight_pounds,is_male,mother_age,plurality,gestation_weeks,key'.split(',')
LABEL_COLUMN = 'weight_pounds'
KEY_COLUMN = 'key'
# Set default values for each CSV column
DEFAULTS = [[0.0], ['null'], [0.0], ['null'], [0.0], ['nokey']]
TRAIN_STEPS = 1000
# Create an input function reading a file using the Dataset API
# Then provide the results to the Estimator API
def read_dataset(filename, mode, batch_size = 512):
def _input_fn():
def decode_csv(value_column):
columns = tf.compat.v1.decode_csv(value_column, record_defaults=DEFAULTS)
features = dict(zip(CSV_COLUMNS, columns))
label = features.pop(LABEL_COLUMN)
return features, label
# Create list of files that match pattern
file_list = tf.compat.v1.gfile.Glob(filename)
# Create dataset from file list
dataset = (tf.compat.v1.data.TextLineDataset(file_list) # Read text file
.map(decode_csv)) # Transform each elem by applying decode_csv fn
if mode == tf.estimator.ModeKeys.TRAIN:
num_epochs = None # indefinitely
dataset = dataset.shuffle(buffer_size=10*batch_size)
else:
num_epochs = 1 # end-of-input after this
dataset = dataset.repeat(num_epochs).batch(batch_size)
return dataset
return _input_fn
###Output
_____no_output_____
###Markdown
Next, define the feature columns
###Code
# Define feature columns
def get_wide_deep():
# Define column types
is_male,mother_age,plurality,gestation_weeks = \
[\
tf.feature_column.categorical_column_with_vocabulary_list('is_male',
['True', 'False', 'Unknown']),
tf.feature_column.numeric_column('mother_age'),
tf.feature_column.categorical_column_with_vocabulary_list('plurality',
['Single(1)', 'Twins(2)', 'Triplets(3)',
'Quadruplets(4)', 'Quintuplets(5)','Multiple(2+)']),
tf.feature_column.numeric_column('gestation_weeks')
]
# Discretize
age_buckets = tf.feature_column.bucketized_column(mother_age,
boundaries=np.arange(15,45,1).tolist())
gestation_buckets = tf.feature_column.bucketized_column(gestation_weeks,
boundaries=np.arange(17,47,1).tolist())
# Sparse columns are wide, have a linear relationship with the output
wide = [is_male,
plurality,
age_buckets,
gestation_buckets]
# Feature cross all the wide columns and embed into a lower dimension
crossed = tf.feature_column.crossed_column(wide, hash_bucket_size=20000)
embed = tf.feature_column.embedding_column(crossed, 3)
# Continuous columns are deep, have a complex relationship with the output
deep = [mother_age,
gestation_weeks,
embed]
return wide, deep
###Output
_____no_output_____
###Markdown
To predict with the TensorFlow model, we also need a serving input function. We will want all the inputs from our user.
###Code
# Create serving input function to be able to serve predictions later using provided inputs
def serving_input_fn():
feature_placeholders = {
'is_male': tf.compat.v1.placeholder(tf.string, [None]),
'mother_age': tf.compat.v1.placeholder(tf.float32, [None]),
'plurality': tf.compat.v1.placeholder(tf.string, [None]),
'gestation_weeks': tf.compat.v1.placeholder(tf.float32, [None])
}
features = {
key: tf.expand_dims(tensor, -1)
for key, tensor in feature_placeholders.items()
}
return tf.estimator.export.ServingInputReceiver(features, feature_placeholders)
# Create estimator to train and evaluate
def train_and_evaluate(output_dir):
wide, deep = get_wide_deep()
EVAL_INTERVAL = 300
run_config = tf.estimator.RunConfig(save_checkpoints_secs = EVAL_INTERVAL,
keep_checkpoint_max = 3)
estimator = tf.estimator.DNNLinearCombinedRegressor(
model_dir = output_dir,
linear_feature_columns = wide,
dnn_feature_columns = deep,
dnn_hidden_units = [64, 32],
config = run_config)
train_spec = tf.estimator.TrainSpec(
input_fn = read_dataset('train.csv', mode = tf.estimator.ModeKeys.TRAIN),
max_steps = TRAIN_STEPS)
exporter = tf.estimator.LatestExporter('exporter', serving_input_fn)
eval_spec = tf.estimator.EvalSpec(
input_fn = read_dataset('eval.csv', mode = tf.estimator.ModeKeys.EVAL),
steps = None,
start_delay_secs = 60, # start evaluating after N seconds
throttle_secs = EVAL_INTERVAL, # evaluate every N seconds
exporters = exporter)
tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
###Output
_____no_output_____
###Markdown
Finally, train!
###Code
# Run the model
shutil.rmtree('babyweight_trained', ignore_errors = True) # start fresh each time
tf.compat.v1.summary.FileWriterCache.clear()
train_and_evaluate('babyweight_trained')
###Output
_____no_output_____ |
1. Data Cleaning.ipynb | ###Markdown
Import Libraries
###Code
import pandas as pd
import numpy as np
###Output
_____no_output_____
###Markdown
Load Training Data
###Code
training_dataframe = pd.read_csv(filepath_or_buffer="./data/TrainingSet.csv")
print('Total number of training records',len(training_dataframe))
training_dataframe.head(10)
training_dataframe.describe()
###Output
_____no_output_____
###Markdown
All the attributes have significant sd
###Code
np.array(training_dataframe.describe().loc['std'])<0.001
###Output
_____no_output_____
###Markdown
Max number of Nones in a Columns
###Code
training_dataframe.isnull().sum().max()
###Output
_____no_output_____
###Markdown
Columns having at least one None Value
###Code
null_column_series = training_dataframe.isnull().sum()>0
null_column_names = list(null_column_series[null_column_series].index)
print("Column Name -> None Counts :\n",training_dataframe[null_column_names].isnull().sum(),'\n')
print("Number of Columns having None : ",len(null_column_names),'\n')
print("Column Names containing at least one None value : \n",null_column_names)
###Output
Column Name -> None Counts :
V1 56
V8 56
V15 56
V22 56
V29 56
V36 56
V43 56
V50 56
V57 56
V64 56
V71 56
V78 56
V85 56
V92 56
V99 56
V106 56
V113 56
V120 56
V127 56
V134 56
V141 56
V148 56
V155 56
V162 56
V169 56
V176 56
V183 56
V190 56
V197 56
V205 56
V213 56
Machine_State 19
dtype: int64
Number of Columns having None : 32
Column Names containing at least one None value :
['V1', 'V8', 'V15', 'V22', 'V29', 'V36', 'V43', 'V50', 'V57', 'V64', 'V71', 'V78', 'V85', 'V92', 'V99', 'V106', 'V113', 'V120', 'V127', 'V134', 'V141', 'V148', 'V155', 'V162', 'V169', 'V176', 'V183', 'V190', 'V197', 'V205', 'V213', 'Machine_State']
###Markdown
Number of rows having None Values
###Code
null_rows = training_dataframe.isnull().sum(axis=1)>0
print(len(null_rows[null_rows]))
feature_none_column_rows = training_dataframe.isnull().sum(axis=1)==31
print("Number of Rows having all 31 columns as None: ",len(feature_none_column_rows[feature_none_column_rows]))
decision_none_column_rows = training_dataframe.isnull().sum(axis=1)==1
print("Number of Rows having all 1 columns as None: ",len(decision_none_column_rows[decision_none_column_rows]))
###Output
Number of Rows having all 31 columns as None: 56
Number of Rows having all 1 columns as None: 19
###Markdown
Missing data percentage wrt decision column
###Code
missing_percentage = len(decision_none_column_rows[decision_none_column_rows])*100/len(training_dataframe)
print("missing data percentage: %0.2f"%missing_percentage,"%")
non_null_rows = training_dataframe.isnull().sum(axis=1)==0
print(len(non_null_rows[non_null_rows]))
non_null_rows_index = non_null_rows[non_null_rows].index
###Output
3647
###Markdown
Select only those row for which 'Machine_State' has valid value
###Code
decision_states = ['Good','Bad']
decision_attribute_name = 'Machine_State'
training_dataframe_cleaned = training_dataframe[training_dataframe[decision_attribute_name].isin(decision_states)]
print("Original Training dataframe size : ",len(training_dataframe))
print("Cleaned Training dataframe size : ",len(training_dataframe_cleaned))
print("Number of rows dropped : ", len(training_dataframe)-len(training_dataframe_cleaned))
###Output
Original Training dataframe size : 3722
Cleaned Training dataframe size : 3703
Number of rows dropped : 19
###Markdown
Save the Cleaned Training Data
###Code
training_dataframe_cleaned.to_csv("./data/cleaned_training_data.csv",index=False)
###Output
_____no_output_____ |
Data_Analysis_And_Viz/Data_Analysis_and_Viz.ipynb | ###Markdown
4. Calculating Correlations Create a correlation matrix
###Code
mtcars <- mtcars
cor(mtcars)
###Output
_____no_output_____
###Markdown
Simplify the matrix to increase readability We can use the round() function to wrap the cor() function
###Code
round(cor(mtcars), 2)
###Output
_____no_output_____
###Markdown
Correlate One pair of variables at a timeDerives r, hypothesis test, and CI\Pearson's product-moment correlation\
###Code
cor.test(mtcars$mpg, mtcars$wt)
###Output
_____no_output_____
###Markdown
Graphical Check of bivariate regression
###Code
hist(mtcars$mpg)
hist(mtcars$wt)
plot(mtcars$wt, mtcars$mpg, abline(lm(mtcars$mpg~mtcars$wt)))
###Output
_____no_output_____
###Markdown
5. Creating a Linear regression model**Correlation:** is the strength of the association**Regression:** is a function that can be used to predict values of another variable Create a LM for miles per gallon & weight from mtcars
###Code
reg1 <- lm(mpg~wt, data = mtcars)
reg1
summary(reg1)
###Output
_____no_output_____
###Markdown
The slope being statsitcally significant means that wt is a good predictor of mpg\The variable weight can accounts for 0.75 or 75% of the variation in mpg\ 6. Calculate Multiple Regression**Hint:** Saving models as an R object allows for the extraction of additional information from model Use Six Predictors to model mpg
###Code
reg1 <- lm(mpg ~cyl + disp + hp + wt + gear + carb,
data = mtcars)
reg1
###Output
_____no_output_____
###Markdown
Extract model details
###Code
summary(reg1)
anova(reg1)
coef(reg1)
confint(reg1) #Confindence intervals for coefficients
resid(reg1)
hist(residuals(reg1)) #histogram of the residuals
###Output
_____no_output_____
###Markdown
Data Analysis and Visualization with R Workshop Summary and Contact Information**Summary:** R is a free and powerful programming language that is commonly used by researchers in both qualitative and quantitative disciplines. R provides a near comprehensive, and still expanding set of research and data analysis tools. This workshop explores the power of R for data analysis and visualization. The focus of this workshop will be hands-on exercises. No programming experience is required, but a basic comprehension of programming and statistics is benefiticial.**Contact:** Email: [email protected] Location: 240 Braunstein Hall (GMP Library) Research & Data Services Website: https://libraries.uc.edu/research-teaching-support/research-data-services.htmlGitHub: https://github.com/RAJohansen/UCL_WorkshopsTwitter: https://twitter.com/johansen_phd Section I: Brief Introduction R 1. R for basic calculation
###Code
sin(pi*15)/100
###Output
_____no_output_____
###Markdown
2. R Objects & AssignmentR stores values and objects so they can be reused throughout an equation or script\Hint alt - is a shortcut for the < -
###Code
x <- 1+2
y <- x +1
y
###Output
_____no_output_____
###Markdown
3. Understanding functions & Getting Help in RGeneral recipe for functions:
###Code
#{r eval=FALSE}
function_name(argument #1 = value #1,
argument #2 = value #2)
###Output
_____no_output_____
###Markdown
Going back to our series task, we want to create a series of numbers from 1 to 100 by 2. Luckily there are many functions already available to use in base R (many many more available from packages, which we will discuss later).\\Given that we are just learning R, I will tell you that the function is called "seq()"\The first thing I do when using a new functions is to look at the documentation. You can use the ? to find R documentation.\ **HINT: Scroll to the bottom of the help page for workable examples.**\
###Code
?seq()
###Output
_____no_output_____
###Markdown
**HINT: if you can't remember exactly what function you are looking for, Use Tab.**
###Code
me<tab>
###Output
_____no_output_____
###Markdown
Additionally, if you are not sure what the function is called try a fuzzy search.\
###Code
apropos("mea")
###Output
_____no_output_____
###Markdown
Section II: Exploring the Tidyverse! Install and Load the tidyverse package
###Code
require("tidyverse")
require("gapminder")
###Output
_____no_output_____
###Markdown
Explore the Tidyverse https://www.tidyverse.org/R packages only have to be installed once but loaded everytime.\Using require is a nice way to make sure every script has the packages needed which combines install.packages() & library() 1. Basic Data ExplorationIn this section we will use the gapminder data sethttps://www.gapminder.org/ Lets assign this data to an object called "gapminder"
###Code
# Lets assign this data to an object called "gapminder"
gapminder <- gapminder
###Output
_____no_output_____
###Markdown
View our table
###Code
#View(gapminder)
head(gapminder)
###Output
_____no_output_____
###Markdown
Lists the variables
###Code
names(gapminder)
###Output
_____no_output_____
###Markdown
Lets Examine the structure of the dataThis will become very useful when we visualize or analyze data, because we must make sure our variables are in the appropriate format!!
###Code
str(gapminder)
###Output
_____no_output_____
###Markdown
Statistical summary of the data
###Code
summary(gapminder)
###Output
_____no_output_____
###Markdown
2. Exploring our data further**HINT: Understanding how data is indexed is crutial for R programming** Lets look at column 2
###Code
gapminder[,2]
###Output
_____no_output_____
###Markdown
Lets look at row 5
###Code
gapminder[5,]
###Output
_____no_output_____
###Markdown
Selecting a single cell (row 5 column 3)
###Code
gapminder[5,3]
###Output
_____no_output_____
###Markdown
Based on this idea, we can make more complicated searches. Lets take the first ten observations and look at the variables:Country (1), Continent(2), Year (3), and population (5)
###Code
gapminder[1:10,c(1:3, 5)]
###Output
_____no_output_____
###Markdown
What if we want to know the highest gpdPercap
###Code
max(gapminder$gdpPercap)
###Output
_____no_output_____
###Markdown
Lets find the row number of the country with the highest gpdpercapThen show me all columns for row that row
###Code
which.max(gapminder$gdpPercap)
gapminder[854,]
###Output
_____no_output_____
###Markdown
2. The filter verbThe filter verb is used to look at a subset of a data set.\Typically you combine filter with a pipe %>% Use the filter verb to find the the data for the US
###Code
gapminder %>%
filter(country == "United States")
###Output
_____no_output_____
###Markdown
Multiple conditionsUse filter to return the US for only the year 2007
###Code
gapminder %>%
filter(year == 2007, country == "United States")
###Output
_____no_output_____
###Markdown
The arrange verb Used for sorting data by ascending or descending condition\ Ascending OrderUse the arrange verb to sort the data in ascending order by GDP per capita
###Code
gapminder %>%
arrange(gdpPercap)
###Output
_____no_output_____
###Markdown
Descending order
###Code
gapminder %>%
arrange(desc(gdpPercap))
###Output
_____no_output_____
###Markdown
Combining verbsUse filter and arrange to return the results for 2007 in ascending order by GDP per capita
###Code
gapminder %>%
filter(year == 2007) %>%
arrange(gdpPercap)
###Output
_____no_output_____
###Markdown
The mutate verbChange or Add variables to a data set Change a variable
###Code
gapminder %>%
mutate(pop = pop/1000000)
###Output
_____no_output_____
###Markdown
Add a new variable called gdp
###Code
gapminder %>%
mutate(gdp = gdpPercap * pop)
###Output
_____no_output_____
###Markdown
Combine all three verbs
###Code
gapminder %>%
mutate(gdp = gdpPercap * pop) %>%
filter(year == 2007) %>%
arrange(desc(gdp))
###Output
_____no_output_____
###Markdown
The Summarize Verb Summarize entire data set
###Code
gapminder %>%
summarize(meanLifeExp = mean(lifeExp))
###Output
_____no_output_____
###Markdown
What if we want to return the mean life exp just for 2007
###Code
gapminder %>%
filter(year == 2007) %>%
summarize(meanLifeExp = mean(lifeExp))
###Output
_____no_output_____
###Markdown
Creating multiple Summaries
###Code
gapminder %>%
filter(year == 2007) %>%
summarize(meanLifeExp = mean(lifeExp),
totalPop = sum(pop))
###Output
_____no_output_____
###Markdown
**HINT: What data type is pop? Use str(gapminder)** Convert pop to a numeric data type instead of an integer
###Code
gapminder$pop <- as.numeric(gapminder$pop)
gapminder %>%
filter(year == 2007) %>%
summarize(meanLifeExp = mean(lifeExp),
totalPop = sum(pop))
###Output
_____no_output_____
###Markdown
The group_by Verb The group_by verb is useful for creating aggregated groups, especially when combined with the summarize function Summarize by each unique year
###Code
gapminder %>%
group_by(year) %>%
summarize(meanLifeExp = mean(lifeExp),
totalPop = sum(pop))
###Output
_____no_output_____
###Markdown
Summarize data from 2007 by continent
###Code
gapminder %>%
filter(year == 2007) %>%
group_by(continent) %>%
summarize(meanLifeExp = mean(lifeExp),
totalPop = sum(pop))
###Output
_____no_output_____
###Markdown
What if we want to summarize by continent over all years?**HINT: Simply add an additional arguement to the group_by verb**
###Code
gapminder %>%
group_by(year, continent) %>%
summarize(meanLifeExp = mean(lifeExp),
totalPop = sum(pop))
###Output
_____no_output_____
###Markdown
Section II TaskAnswer the following questions using the mtcars dataset
###Code
mtcars <- mtcars
#View()
#Str()
#names()
###Output
_____no_output_____
###Markdown
Find the median mpg & wt for each group of cylinders
###Code
mtcars %>%
group_by() %>%
summarize( = median(),
= median())
###Output
_____no_output_____
###Markdown
Section III: Data VisualizationUseful resources for using base plot in R: \https://www.harding.edu/fmccown/r/ \https://www.statmethods.net/graphs/index.html 1. Default Plot
###Code
plot(mtcars$mpg)
###Output
_____no_output_____
###Markdown
2. Dotchart
###Code
dotchart(mtcars$mpg)
###Output
_____no_output_____
###Markdown
Adding details and labels to a Simple Dotplot
###Code
dotchart(mtcars$mpg,
labels=row.names(mtcars),
main="Gas Milage for Car Models",
xlab="Miles Per Gallon")
###Output
_____no_output_____
###Markdown
3. Histogram
###Code
hist(mtcars$mpg)
###Output
_____no_output_____
###Markdown
Add color and explore bin sizes
###Code
hist(mtcars$mpg, breaks=5, col="red")
hist(mtcars$mpg, breaks=10, col="red")
hist(mtcars$mpg, breaks=15, col="red")
###Output
_____no_output_____
###Markdown
4. Kernel Density PlotFirst you need to save the density of the data you want to an R object\Then plot that object using plot()
###Code
d <- density(mtcars$mpg) # returns the density data
plot(d) # plots the results
###Output
_____no_output_____
###Markdown
5. Barplot
###Code
barplot(mtcars$cyl)
###Output
_____no_output_____
###Markdown
**HINT:** To fist create a variable called "count" to count the number of each group\Then use the barplot() function on the object counts
###Code
counts <- table(mtcars$cyl)
barplot(counts)
###Output
_____no_output_____
###Markdown
Add Chart Title and Axes
###Code
barplot(counts,
main="Car Distribution",
xlab="Number of Gears")
###Output
_____no_output_____
###Markdown
Converting a Bar chart into a Stacked Bar
###Code
counts <- table(mtcars$cyl, mtcars$gear)
barplot(counts,
main="Car Distribution by Cylinders and Gears",
xlab="Number of Gears",
col = c("darkred","darkblue","orange"),
legend = rownames(counts))
###Output
_____no_output_____
###Markdown
6. Box Plots
###Code
boxplot(mtcars$mpg~mtcars$cyl)
boxplot(mpg~cyl,
data=mtcars,
main="Car Milage Data",
xlab="Number of Cylinders",
ylab="Miles Per Gallon")
###Output
_____no_output_____
###Markdown
7. Pie Charts
###Code
slices <- table(mtcars$cyl)
lbls <- c("Four", "Six", "Eight")
pie(slices,
labels = lbls,
main="Pie Chart of mtcars Cylindars")
###Output
_____no_output_____
###Markdown
8. Scatterplot Simple Scatterplot
###Code
plot(mtcars$wt,mtcars$mpg)
plot(mtcars$wt, mtcars$mpg,
main="Scatterplot Example",
xlab="Car Weight ",
ylab="Miles Per Gallon ",
pch=19)
###Output
_____no_output_____
###Markdown
Add linear regression line Regression line is (y~x)
###Code
plot(mtcars$wt, mtcars$mpg,
main="Scatterplot Example",
xlab="Car Weight ",
ylab="Miles Per Gallon ",
pch=19,
abline(lm(mtcars$mpg~mtcars$wt), col="red"))
###Output
_____no_output_____
###Markdown
9. Line Graphs
###Code
lines <- c(1:2,4,7,5,8,10,7)
plot(lines)
plot(lines, type="o", col="blue")
plot(lines, type="o", col="blue",
main="My Line Graph")
###Output
_____no_output_____
###Markdown
10. Get Inspired!!! Use the Iris data set to make a scatterplot matrix
###Code
data("iris")
pairs(iris[1:4]) #only quantitative variables
###Output
_____no_output_____
###Markdown
Explore pastel theme in RColorBrewer (Might not work in Jupyter)
###Code
require("RColorBrewer")
display.brewer.pal(3,"Pastel1") #display colorpalette
###Output
_____no_output_____
###Markdown
Use the function below to modify the scatterplot matrixPut Histograms on the diagonal (from "pairs" Help)
###Code
panel.hist <- function(x,...)
{
usr <- par("usr"); on.exit(par(usr))
par(usr = c(usr[1:2], 0,1.5) )
h <- hist(x, plot = FALSE)
breaks <- h$breaks; nB <- length(breaks)
y <- h$counts; y <- y/max(y)
rect(breaks[-nB], 0, breaks[-1], y, ...)
}
# Create a fancy scatterplot matrix
pairs(iris[1:4],
panel = panel.smooth,
main = "Scatterplot Maxtris for Iris Data Using pairs Function",
diag.panel = panel.hist,
pch = 16,
col = brewer.pal(3, "Pastel1")[unclass(iris$Species)])
# jpeg('C:/temp/My_Awesome_Plot.jpg')
# Run your fancy scatter plot matrix code here!
#dev.off()
###Output
_____no_output_____
###Markdown
Section IV: Data Analysis 1. Basic Stats with RStatistics are used to summerize data!\We use stats because it is difficult to memorize and decipher raw numbers\ **Example 1: Average daily car traffic for a week **
###Code
total <- sum(5,16,15,16,13,20,25)
days <- 7
total/days
###Output
_____no_output_____
###Markdown
Two basic types of Statistics**Descriptive Stats:** Uses data to describe the characteristics of a group**Inferential Stats:** Uses the data to make predictions or draw conclusions 2. Calculating descriptive statistics One variable vs. the Entire Data set
###Code
summary(mtcars$mpg)
summary(mtcars)
###Output
_____no_output_____
###Markdown
Tukey's five-number summary: Min, Lower-hinge, Median, Upper-Hinge, Max (Not Labeled)**Hint:: These five numbers are the same as a boxplot**
###Code
fivenum(cars$mpg)
###Output
_____no_output_____
###Markdown
Alternative Descriptive Stats using the psych packagevars, n, mean, sd, median, trimmed, mad, min, max, range, skew, kurtosis, se
###Code
#install.packages("psych")
library(psych)
describe(mtcars) #vars, n, mean, sd, median, trimmed, mad, min, max, range, skew, kurtosis, se
###Output
_____no_output_____
###Markdown
Alternative Descriptive Stats using the pastecs pacakge
###Code
#install.packages("pastecs")
library(pastecs)
?stat.desc()
stat.desc(mtcars)
###Output
_____no_output_____
###Markdown
3. Analyzing data by groupsFor this section we will use the iris dataset
###Code
data(iris)
View(iris)
mean(iris$Petal.Width) #mean of all observation's petal.width
###Output
_____no_output_____
###Markdown
Split the data file and repeat analysis using "aggregate"Allowing for the comparison of means by group
###Code
aggregate(iris$Petal.Width ~ iris$Species, FUN = mean) # ~ means a function of...
means <- aggregate(iris$Petal.Width ~ iris$Species, FUN = mean)
plot(means)
###Output
_____no_output_____
###Markdown
**Hint:** There is significant difference between species Conducting multiple calculations at once**Hint:** The results do not keep the column headers so you need to remember the order you wrote them
###Code
aggregate(cbind(iris$Petal.Width, iris$Petal.Length)~ iris$Species, FUN = mean)
###Output
_____no_output_____ |
docs/tutorial/13_Work_with_binary_logs.ipynb | ###Markdown
How to work with binary logsWe will invent a binary log -- maybe you can load it from an LAS file with `welly`.
###Code
import numpy as np
%matplotlib inline
import matplotlib.pyplot as plt
fake_depth = np.linspace(100, 150, 101)
fake_log = np.array([np.random.choice([0, 1]) for _ in fake_depth])
plt.figure(figsize=(15, 1))
plt.plot(fake_depth, fake_log, 'o-')
###Output
_____no_output_____
###Markdown
Make a striplogA `Striplog` is a sequence of `Interval` objects (representing a layer). Each `Interval` must contain a `Component` (representing the layer, perhaps a rock).
###Code
from striplog import Striplog, Component
comps = [
Component({'pay': True}),
Component({'pay': False})
]
s = Striplog.from_log(fake_log, cutoff=0.5, components=comps, basis=fake_depth)
s[-1].base.middle = 150.5 # Adjust the bottom thickness... not sure if this is a bug.
###Output
_____no_output_____
###Markdown
Each `Interval` in the striplog looks like:
###Code
s[0]
###Output
_____no_output_____
###Markdown
Plot the intervalsTo plot we need a legend, but we can generate a random one. This maps each `Component` to a colour (and a width and hatch, if you want). We can generate a random legend:
###Code
from striplog import Legend
legend = Legend.random(comps)
legend.get_decor(comps[-1]).width = 0.2
legend.plot()
###Output
_____no_output_____
###Markdown
Or we can make one with a bit more control:
###Code
legend_csv = """colour,hatch,width,component pay
#48cc0e,None,1,True
#5779e2,None,0.2,False"""
legend = Legend.from_csv(text=legend_csv)
legend.plot()
s.plot(legend=legend, aspect=5)
###Output
_____no_output_____
###Markdown
Remove thin thingsWe can remove thin intervals:
###Code
pruned = s.prune(limit=1.0, keep_ends=True)
###Output
_____no_output_____
###Markdown
Now we can anneal the gaps:
###Code
annealed = pruned.anneal()
###Output
_____no_output_____
###Markdown
Then merge the adjacent intervals that are alike...
###Code
merged = annealed.merge_neighbours() # Anneal works on a copy
###Output
_____no_output_____
###Markdown
We could have chained these commands: merged = s.prune(limit=1.0, keep_ends=True).anneal().merge_neighbours()Let's plot all these steps, just for illustration:
###Code
fig, axs = plt.subplots(ncols=4, figsize=(6, 10))
axs[0] = s.plot(legend=legend, ax=axs[0], lw=1, aspect=5)
axs[0].set_title('Original')
axs[1] = pruned.plot(legend=legend, ax=axs[1], lw=1, aspect=5)
axs[1].set_yticklabels([])
axs[1].set_title('Pruned')
axs[2] = annealed.plot(legend=legend, ax=axs[2], lw=1, aspect=5)
axs[2].set_yticklabels([])
axs[2].set_title('Annealed')
axs[3] = merged.plot(legend=legend, ax=axs[3], lw=1, aspect=5)
axs[3].set_yticklabels([])
axs[3].set_title('Merged')
plt.show()
###Output
_____no_output_____
###Markdown
Dilate and erodeThis would be a binary thing, at least for now. I made an issue for this: https://github.com/agile-geoscience/striplog/issues/95You need to be on striplog v 0.8.1 at least for this to work.
###Code
fig, axs = plt.subplots(ncols=4, figsize=(6, 10))
opening = s.binary_morphology('pay', 'opening', step=0.1, p=7)
closing = s.binary_morphology('pay', 'closing', step=0.1, p=7)
axs[0] = s.plot(legend=legend, ax=axs[0], lw=1, aspect=5)
ntg = s.net_to_gross('pay')
axs[0].set_title(f'Original\n{ntg:.2f}')
axs[1] = merged.plot(legend=legend, ax=axs[1], lw=1, aspect=5)
axs[1].set_yticklabels([])
ntg = merged.net_to_gross('pay')
axs[1].set_title(f'PAM\n{ntg:.2f}') # Prune-anneal-merge
axs[2] = opening.plot(legend=legend, ax=axs[2], lw=1, aspect=5)
axs[2].set_yticklabels([])
ntg = opening.net_to_gross('pay')
axs[2].set_title(f'Opening\n{ntg:.2f}')
axs[3] = closing.plot(legend=legend, ax=axs[3], lw=1, aspect=5)
axs[3].set_yticklabels([])
ntg = closing.net_to_gross('pay')
axs[3].set_title(f'Closing\n{ntg:.2f}')
plt.show()
###Output
_____no_output_____
###Markdown
Some statisticsWe can get the unique components and their thicknesses:
###Code
s.unique
###Output
_____no_output_____
###Markdown
We can get at the thickest (and thinnest, with `.thinnest()`) intervals:
###Code
s.thickest()
###Output
_____no_output_____
###Markdown
These functions optionally take an integer argument `n` specifying how many of the thickest or thinnest intervals you want to see. If `n` is greater than 1, a `Striplog` object is returned so you can see the positions of those items:
###Code
s.thickest(5).plot(legend=legend, lw=1, aspect=5)
###Output
_____no_output_____
###Markdown
Bar plots and histograms We can make a bar plot of the layers:
###Code
s.bar(legend=legend)
###Output
_____no_output_____
###Markdown
More interesting is to sort the thicknesses:
###Code
s.bar(legend=legend, sort=True)
###Output
_____no_output_____
###Markdown
Finally, we can make a thickness histogram of the various types of `component` present in the log.
###Code
n, ents, ax = s.hist(legend=legend)
s
legend
data = [c[1] for c in s.unique]
colors = [c['_colour'] for c in legend.table]
fig, axs = plt.subplots(ncols=2,
gridspec_kw={'width_ratios': [1, 3]})
axs[0] = s.plot(ax=axs[0], legend=legend)
axs[0].set_title("Striplog")
axs[1].pie(data, colors=colors)
axs[1].set_title("Pay proportions")
plt.show()
###Output
_____no_output_____ |
src/deep_learning/training.ipynb | ###Markdown
###Code
import tensorflow as tf
import tensorflow_hub as hub
import numpy as np
from tensorflow.keras.models import save_model, load_model, Sequential
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.layers import Dense, Dropout, Flatten, GlobalAveragePooling2D
from tensorflow.keras.optimizers import Adam, Adamax
from tensorflow.keras.callbacks import EarlyStopping
import matplotlib.pyplot as plt
import os
from google.colab import drive
drive.mount("/content/drive")
data_dir = "/content/drive/MyDrive/BuildOnAsean2021/Training_Data"
batch_size = 3
img_size = (512, 512)
datagen = ImageDataGenerator(rescale=1./255, horizontal_flip=True, vertical_flip=True, brightness_range=[0.8, 1.2])
dataset = datagen.flow_from_directory(
data_dir, color_mode="rgb",
batch_size=batch_size,
target_size=img_size, shuffle=True)
print(dataset.class_indices)
URL = "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_xl/feature_vector/2"
pretrained_model = hub.KerasLayer(URL, input_shape=(512,512,3))
model = Sequential()
model.add(pretrained_model)
model.add(Dense(512, activation="relu"))
model.add(Dropout(0.30))
model.add(Dense(7, activation="softmax"))
model.summary()
model.compile(optimizer = Adamax(), loss= 'categorical_crossentropy', metrics = ['accuracy'])
es = EarlyStopping(monitor = 'loss', patience =1)
history = model.fit(dataset, epochs = 10, callbacks = es)
plt.plot(history.history['accuracy'])
plt.title('Model Accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.legend(['Train'], loc = 'upper left')
plt.show()
plt.plot(history.history['loss'])
plt.title('Model Loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['Train'], loc = 'upper left')
plt.show()
os.chdir('/content/drive/MyDrive/BuildOnAsean2021')
model.save("EfficientNetv2_xl.h5")
###Output
_____no_output_____ |
main/Plot/Infernece_latency_graph.ipynb | ###Markdown
Q1
###Code
import tensorflow as tf
from tensorflow.keras.datasets import cifar10
import os
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.pylab as plt
import numpy as np
import time
import pathlib
import timeit
import seaborn as sns
###Output
_____no_output_____
###Markdown
cifar_vgg
###Code
df = pd.read_csv('cifar-vgg-Avg.csv')
plt.rcParams.update({'figure.figsize':(7,3)})
df = df[['q_name','BO','RS','GHO']]
dd=pd.melt(df,id_vars=['q_name'],value_vars=['BO','RS','GHO'],var_name='HPO Algorithms')
#sns.set_theme(style="white")
sns.set_style("ticks")
sns.boxplot(x='q_name',y='value',data=dd,hue='HPO Algorithms', palette="Set2",linewidth=0.7)
x = [0,1,2,3]
layers = ['No quantization','Float16','Dynamic Range','INT8']
#plt.title('HPO Algorithms intermidate output latency- Vgg16/CIFAR10', fontsize=12)
plt.ylabel('Latency (s)', fontsize=16.5,fontweight = 550)
plt.xlabel('Post-training quantization options', fontsize=16.5, fontweight = 550)
plt.rc('xtick', labelsize=13.5)
plt.rc('ytick', labelsize=13.5)
plt.xticks(x, layers)
plt.grid(linestyle = '--', linewidth = 0.5)
plt.tight_layout(pad=.9)
#plt.ylim(0.215, 0.250)
plt.savefig('cifar-vgg-Avg.pdf',dpi=100)
plt.show()
###Output
_____no_output_____
###Markdown
cifar_resnet
###Code
df = pd.read_csv('cifar-resnet-avg.csv')
plt.rcParams.update({'figure.figsize':(7,3)})
df = df[['q_name','BO','RS','GHO']]
dd=pd.melt(df,id_vars=['q_name'],value_vars=['BO','RS','GHO'],var_name='HPO Algorithms')
#sns.set_theme(style="white")
sns.set_style("ticks")
sns.boxplot(x='q_name',y='value',data=dd,hue='HPO Algorithms', palette="Set2",linewidth=0.7)
x = [0,1,2,3]
layers = ['No quantization','Float16','Dynamic Range','INT8']
#plt.title('HPO Algorithms intermidate output latency- ResNet50/CIFAR10', fontsize=12)
plt.ylabel('Latency (s)', fontsize=16.5,fontweight = 550)
plt.xlabel('Post-training quantization options', fontsize=16.5,fontweight = 550)
plt.rc('xtick', labelsize=13.5)
plt.rc('ytick', labelsize=13.5)
plt.xticks(x, layers)
plt.grid(linestyle = '--', linewidth = 0.5)
plt.tight_layout(pad=.9)
plt.ylim(0.225, 0.255)
plt.savefig('cifar-resnet-avg.pdf',dpi=100)
plt.show()
###Output
_____no_output_____
###Markdown
intel_resnet
###Code
df = pd.read_csv('intel_resnet_avg.csv')
plt.rcParams.update({'figure.figsize':(7,3)})
df = df[['q_name','BO','RS','GHO']]
dd=pd.melt(df,id_vars=['q_name'],value_vars=['BO','RS','GHO'],var_name='HPO Algorithms')
#sns.set_theme(style="white")
sns.set_style("ticks")
sns.boxplot(x='q_name',y='value',data=dd,hue='HPO Algorithms', palette="Set2",linewidth=0.7)
x = [0,1,2,3]
layers = ['No quantization','Float16','Dynamic Range','INT8']
#plt.title('HPO Algorithms intermidate output latency- ResNet50/Intel', fontsize=12)
plt.ylabel('Latency (s)', fontsize=16.5,fontweight = 550)
plt.xlabel('Post-training quantization options', fontsize=16.5,fontweight = 550)
plt.rc('xtick', labelsize=13.5)
plt.rc('ytick', labelsize=13.5)
plt.xticks(x, layers)
plt.grid(linestyle = '--', linewidth = 0.5)
plt.tight_layout(pad=.9)
plt.ylim(0.23, 0.26)
plt.savefig('intel_resnet-avg.pdf',dpi=100)
plt.show()
###Output
_____no_output_____
###Markdown
intel_vgg
###Code
df = pd.read_csv('intel-vgg-avg.csv')
plt.rcParams.update({'figure.figsize':(7,3)})
df = df[['q_name','BO','RS','GHO']]
dd=pd.melt(df,id_vars=['q_name'],value_vars=['BO','RS','GHO'],var_name='HPO Algorithms')
#sns.set_theme(style="white")
sns.set_style("ticks")
sns.boxplot(x='q_name',y='value',data=dd,hue='HPO Algorithms', palette="Set2",linewidth=0.7)
x = [0,1,2,3]
layers = ['No quantization','Float16','Dynamic Range','INT8']
#plt.title('HPO Algorithms intermidate output latency- VGG16/Intel', fontsize=12)
plt.ylabel('Latency (s)', fontsize=16.5,fontweight = 550)
plt.xlabel('Post-training quantization options', fontsize=16.5,fontweight = 550)
plt.rc('xtick', labelsize=13.5)
plt.rc('ytick', labelsize=13.5)
plt.xticks(x, layers)
plt.grid(linestyle = '--', linewidth = 0.5,)
plt.tight_layout(pad=.9)
plt.savefig('intel-vgg-avg.pdf',dpi=100)
plt.show()
###Output
_____no_output_____ |
3. Project_3_The GitHub History of the Scala Language.ipynb | ###Markdown
1. Scala's real-world project repository dataWith almost 30k commits and a history spanning over ten years, Scala is a mature programming language. It is a general-purpose programming language that has recently become another prominent language for data scientists.Scala is also an open source project. Open source projects have the advantage that their entire development histories -- who made changes, what was changed, code reviews, etc. -- are publicly available. We're going to read in, clean up, and visualize the real world project repository of Scala that spans data from a version control system (Git) as well as a project hosting site (GitHub). We will find out who has had the most influence on its development and who are the experts.The dataset we will use, which has been previously mined and extracted from GitHub, is comprised of three files:pulls_2011-2013.csv contains the basic information about the pull requests, and spans from the end of 2011 up to (but not including) 2014.pulls_2014-2018.csv contains identical information, and spans from 2014 up to 2018.pull_files.csv contains the files that were modified by each pull request.
###Code
# Importing pandas
import pandas as pd
# Loading in the data
pulls_one = pd.read_csv('datasets/pulls_2011-2013.csv')
pulls_two = pd.read_csv('datasets/pulls_2014-2018.csv')
pull_files = pd.read_csv('datasets/pull_files.csv')
###Output
_____no_output_____
###Markdown
2. Preparing and cleaning the dataFirst, we will need to combine the data from the two separate pull DataFrames. Next, the raw data extracted from GitHub contains dates in the ISO8601 format. However, pandas imports them as regular strings. To make our analysis easier, we need to convert the strings into Python's DateTime objects. DateTime objects have the important property that they can be compared and sorted.The pull request times are all in UTC (also known as Coordinated Universal Time). The commit times, however, are in the local time of the author with time zone information (number of hours difference from UTC). To make comparisons easy, we should convert all times to UTC.
###Code
# Append pulls_one to pulls_two
pulls = pulls_two.append(pulls_one, ignore_index=True)
# Convert the date for the pulls object
pulls['date'] = pd.to_datetime(pulls['date'], utc=True)
###Output
_____no_output_____
###Markdown
3. Merging the DataFramesThe data extracted comes in two separate files. Merging the two DataFrames will make it easier for us to analyze the data in the future tasks.
###Code
# Merge the two DataFrames
data = pulls.merge(pull_files, on='pid')
###Output
_____no_output_____
###Markdown
4. Is the project still actively maintained?The activity in an open source project is not very consistent. Some projects might be active for many years after the initial release, while others can slowly taper out into oblivion. Before committing to contributing to a project, it is important to understand the state of the project. Is development going steadily, or is there a drop? Has the project been abandoned altogether?The data used in this project was collected in January of 2018. We are interested in the evolution of the number of contributions up to that date.For Scala, we will do this by plotting a chart of the project's activity. We will calculate the number of pull requests submitted each (calendar) month during the project's lifetime. We will then plot these numbers to see the trend of contributions.A helpful reminder of how to access various components of a date can be found in this exercise of Data Manipulation with pandasAdditionally, recall that you can group by multiple variables by passing a list to groupby(). This video from Data Manipulation with pandas should help!
###Code
%matplotlib inline
# Create a column that will store the month
data['month'] = data['date'].dt.month
# Create a column that will store the year
data['year'] = data['date'].dt.year
# Group by month_year and count the pull requests
counts = data.groupby(['year', 'month'])['pid'].count()
# Plot the results
counts.plot(kind='bar', figsize = (12,4))
###Output
_____no_output_____
###Markdown
5. Is there camaraderie in the project?The organizational structure varies from one project to another, and it can influence your success as a contributor. A project that has a very small community might not be the best one to start working on. The small community might indicate a high barrier of entry. This can be caused by several factors, including a community that is reluctant to accept pull requests from "outsiders," that the code base is hard to work with, etc. However, a large community can serve as an indicator that the project is regularly accepting pull requests from new contributors. Such a project would be a good place to start.In order to evaluate the dynamics of the community, we will plot a histogram of the number of pull requests submitted by each user. A distribution that shows that there are few people that only contribute a small number of pull requests can be used as in indicator that the project is not welcoming of new contributors.
###Code
# Required for matplotlib
%matplotlib inline
# Group by the submitter
by_user = data.groupby('user').agg({'pid': 'count'})
# Plot the histogram
by_user.hist()
###Output
_____no_output_____
###Markdown
6. What files were changed in the last ten pull requests?Choosing the right place to make a contribution is as important as choosing the project to contribute to. Some parts of the code might be stable, some might be dead. Contributing there might not have the most impact. Therefore it is important to understand the parts of the system that have been recently changed. This allows us to pinpoint the "hot" areas of the code where most of the activity is happening. Focusing on those parts might not the most effective use of our times.
###Code
# Identify the last 10 pull requests
last_10 = pulls.sort_values(by = 'date').tail(10)
last_10
# Join the two data sets
joined_pr = pull_files.merge(last_10, on='pid')
# Identify the unique files
files = set(joined_pr['file'])
# Print the results
files
###Output
_____no_output_____
###Markdown
7. Who made the most pull requests to a given file?When contributing to a project, we might need some guidance. We might find ourselves needing some information regarding the codebase. It is important direct any questions to the right person. Contributors to open source projects generally have other day jobs, so their time is limited. It is important to address our questions to the right people. One way to identify the right target for our inquiries is by using their contribution history.We identified src/compiler/scala/reflect/reify/phases/Calculate.scala as being recently changed. We are interested in the top 3 developers who changed that file. Those developers are the ones most likely to have the best understanding of the code.
###Code
# This is the file we are interested in:
file = 'src/compiler/scala/reflect/reify/phases/Calculate.scala'
# Identify the pull requests that changed the file
file_pr = data[data['file'] == file]
# Count the number of changes made by each developer
author_counts = file_pr.groupby('user').count()
# Print the top 3 developers
author_counts.nlargest(3, 'file')
###Output
_____no_output_____
###Markdown
8. Who made the last ten pull requests on a given file?Open source projects suffer from fluctuating membership. This makes the problem of finding the right person more challenging: the person has to be knowledgeable and still be involved in the project. A person that contributed a lot in the past might no longer be available (or willing) to help. To get a better understanding, we need to investigate the more recent history of that particular part of the system. Like in the previous task, we will look at the history of src/compiler/scala/reflect/reify/phases/Calculate.scala.
###Code
file = 'src/compiler/scala/reflect/reify/phases/Calculate.scala'
# Select the pull requests that changed the target file
file_pr = pull_files[pull_files['file'] == file]
# Merge the obtained results with the pulls DataFrame
joined_pr = pulls.merge(file_pr, on='pid')
# Find the users of the last 10 most recent pull requests
users_last_10 = set(joined_pr.nlargest(10, 'date')['user'])
# Printing the results
users_last_10
###Output
_____no_output_____
###Markdown
9. The pull requests of two special developersNow that we have identified two potential contacts in the projects, we need to find the person who was most involved in the project in recent times. That person is most likely to answer our questions. For each calendar year, we are interested in understanding the number of pull requests the authors submitted. This will give us a high-level image of their contribution trend to the project.
###Code
%matplotlib inline
# The developers we are interested in
authors = ['xeno-by', 'soc']
# Get all the developers' pull requests
by_author = pulls[pulls['user'].isin(authors)]
# Count the number of pull requests submitted each year
counts = by_author.groupby([by_author['user'], by_author['date'].dt.year]).agg({'pid': 'count'}).reset_index()
# Convert the table to a wide format
counts_wide = counts.pivot_table(index='date', columns='user', values='pid', fill_value=0)
# Plot the results
counts_wide.plot(kind='bar')
###Output
_____no_output_____
###Markdown
10. Visualizing the contributions of each developerAs mentioned before, it is important to make a distinction between the global expertise and contribution levels and the contribution levels at a more granular level (file, submodule, etc.) In our case, we want to see which of our two developers of interest have the most experience with the code in a given file. We will measure experience by the number of pull requests submitted that affect that file and how recent those pull requests were submitted.
###Code
authors = ['xeno-by', 'soc']
file = 'src/compiler/scala/reflect/reify/phases/Calculate.scala'
# Merge DataFrames and select the pull requests by the author
by_author = data[data['user'].isin(authors)]
# Select the pull requests that affect the file
by_file = by_author[by_author['file'] == file]
# Group and count the number of PRs done by each user each year
grouped = by_file.groupby(['user', by_file['date'].dt.year]).count()['pid'].reset_index()
# Transform the data into a wide format
by_file_wide = grouped.pivot_table(index='date', columns='user', values='pid', fill_value=0)
# Plot the results
by_file_wide.plot(kind='bar')
###Output
_____no_output_____ |
course2/test-notebook.ipynb | ###Markdown
"My Jupyter Notebook on IBM Data Science Experience" **William Morgan** Any software engineering/data science position *I am interested in data science, because i love compute power and numbers. I love answering questions hidden in data and uncovering other insights that were not even considered in the first place. I am a very curious person and love using data to answer questions and prove my case.* In the next cell, you will see code that scrapes the first page of results from a website I have recently been working on. It puts the data into a pandas DataFrame and displays the first 15 columns of the first 5 results.
###Code
import numpy as np
import pandas as pd
import re
import time
from bs4 import BeautifulSoup
import requests
start_time = time.time()
page_n = 1 #keep track of which page the scraper is on
games = []# list to collect data
base_url = 'https://boardgamegeek.com/' #the base url
start_url = 'https://boardgamegeek.com/browse/boardgame/page/' #start page
# a list of attributes to be collected from 'all_d'
collect_list = ["objectid","name","yearpublished","sortindex","minplayers",
"maxplayers","minplaytime","maxplaytime","minage","best",
"max","totalvotes","playerage","languagedependence",
"usersrated","average","baverage","stddev","avgweight",
"numweights","numgeeklists","numtrading","numwanting",
"numcomments","views","numplays","numplays_month","news",
"blogs","weblink","podcast","label","boardgamedesigner",
"boardgameartist","boardgamepublisher","boardgamehonor",
"boardgamecategory","boardgamemechanic","boardgameexpansion",
"boardgameversion","boardgamefamily"]
#a list of attributes to be collected from "credit_d"
credit_collect_list = ["boardgamedesigner","boardgameartist","boardgamepublisher",
"boardgamehonor","boardgamecategory","boardgameversion","boardgamemechanic"]
# while loop to continue until page_n reached the decided limit
while page_n <= 1 :
#request the page
game_names = BeautifulSoup(requests.get(start_url+str(page_n)).text,'lxml')
#get list of games from page
game_list = game_names.find_all('td',{'class':'collection_objectname'})
#below is logic to stop the loop if no additional links are available
if not game_list:
print('No more results: Exiting...')
break
else:
print('Getting page:{}'.format(page_n))
#iterate through game list for page_n
for game in game_list:
game_data = [] #collect data
#request game page
game_page = BeautifulSoup(requests.get(base_url+\
game.select('a')[0]['href']+'/stats').text,'html.parser')
#capture whole description of game
desc_tag = game_page.find_all('meta',{'property':'og:description'})
desc_str = str(desc_tag).split('>',1)[0][16:-27].replace('&ldquo;','"')\
.replace('&rdquo;','"').replace('\n',' ')
#manipulate js script data and create dictionaries for attribute look up
script =game_page.find("script", text=re.compile("GEEK.geekitemPreload\s+="))
data_list = str(script).replace('=4&mt=8&at=','').replace(':{"link"','')\
.split("=",9)[9].strip().split(':{')
comm_d = {i.split(':')[0]:' '.join(i.split(':')[1:])\
for i in data_list[3][:-1].split(',') if len(i.split(':'))> 1 }
stats_d = {i.split(':')[0]:' '.join(i.split(':')[1:])\
for i in data_list[5][:-1].split(',') if len(i.split(':'))> 1 }
counts_d = {i.split(':')[0]:' '.join(i.split(':')[1:])\
for i in data_list[6][:-1].split(',') if len(i.split(':'))> 1 }
info_d = {i.split(':')[0]:' '.join(i.split(':')[1:])\
for i in data_list[7][:-1].split(',') if len(i.split(':'))> 1 }
cr_cnt_d = {i.split(':')[0]:' '.join(i.split(':')[1:])\
for i in data_list[9][:-1].split(',') if len(i.split(':'))> 1 }
rank_d = {i.split(':')[0]:' '.join(i.split(':')[1:])\
for i in data_list[10][:-1].split(',') if len(i.split(':'))> 1 }
all_d = {**comm_d, **stats_d,**counts_d,**info_d,**cr_cnt_d,**rank_d}
#extract data from messy string
credit_d = {}
for i in data_list[8].split('],'):
item = i.split(":",1)
try:
values = [h.split(',')[0] for h in\
[j.split(':')[1] for j in item[1].split('},{')]]
except:
pass
credit_d[item[0]]=values
#iterate through list of desired attributes to capture values
for i in collect_list:
if '"'+i+'"' in all_d.keys():
game_data.append(all_d['"'+i+'"'].replace('"',''))
else:
game_data.append('NaN')
for i in credit_collect_list:
if '"'+i+'"' in credit_d.keys():
game_data.append(credit_d['"'+i+'"'])
else:
game_data.append('NaN')
game_data.append(desc_str) #append game description
game_data.append(game.select('a')[0]['href'])
games.append(game_data)
page_n += 1
end_time = time.time()
print('total_time: {} minutes'.format((end_time-start_time)/60))
df = pd.DataFrame.from_records(games)
df.iloc[:,:15].head()
###Output
Getting page:1
total_time: 0.10658369461695354 minutes
|
notebooks/pySUMMA_General_Plot.ipynb | ###Markdown
Modeling the Impact of Stomatal Resistance Parameterizations on Total Evapotranspiration in the Reynolds Mountain East catchment using pySUMMA 1. Introduction One part of the Clark et al. (2015) study explored the impact of different stomatal resistance parameterizations on total evapotranspiration (ET) using a SUMMA model for the Reynolds Mountain East catchment. This study looked at three different stomatal resistance parameterizations: the simple soil resistance method, the Ball Berry method, and the Jarvis method.In this Jupyter Notebook, the pySUMMA library is used to reproduce this analysis. First, the three different stomatal resistance parameterizations are described. Next, the Methods section describes how the pySUMMA can be used to create three different versions of the Reynolds Mountain East catchment model, one for each stomatal resistance parameterization. The Results section shows how to use pySUMMA and the Pandas library to reproduce Figure 7 from Clark et al. (2015). Collectively, this Jupyter Notebook serves as an example of how hydrologic modeling can be conducted directly within a Jupyter Notebook by leveraging the pySUMMA library. 2. Background The stomatal resistance parameterizations available in SUMMA
###Code
#import libraries to display equations within the notebook
from IPython.display import display, Math, Latex
###Output
_____no_output_____
###Markdown
1.) The simple soil resistance method \begin{equation*}r_{{s},{sun}} = r_{{s},{shd}} = \frac{r_{0c}}{\beta_v} \,\,\,\, \end{equation*}$r_{0c} \,(s\,m^{-1})$ : the minimum stomatal resistance , ${\beta_v}\,(-)$ : the total soil water stress function \begin{equation*}{\beta_v} = \sum f_{{roots},{j}} \beta_{{v},{j}} + f_{roots}^{aq} \beta_{v}^{aq}\end{equation*}$z_{soil}$ : the soil depth, $f_{{roots},{j}}$ : the root density in the $j$-th soil layer$\beta_{{v},{j}}$ : the water availability stress funtion in the $j$-th soil layer $f_{roots}^{aq}$ : the fraction of roots for the aquifer, $\beta_{v}^{aq}$ : water availability stress function for the aquiferFor additional detail, see: https://github.com/DavidChoi76/pysumma/blob/master/simple1.png 2.) The Ball-Berry method \begin{equation*}g_i = v_t \frac{A_i}{c_{air}}\frac{e_{air}}{e_{sat}(T_{veg})}P_{air} + g_{min}\beta_v, \,\,\,\, i = sun, shd\end{equation*} $g_i\, (micromol \,\, m^{-2} s^{-1})$ : Stomatal conductance per unit sunlit and shaded leaf area $A_i\, (micromol \,\, m^{-2} s^{-1})$ : a function of the rate of photosynthesis $c_{air}\, (Pa)$ : $CO_2$ concentration at the leaf surface (time varying model forcing, representing carbon fertilization) $g_{min}\, (micromol \,\, m^{-2} s^{-1})$ : the minimum stomatal conductance $v_t\,(-)$ : an empirical parameter to relate transpiration to the $CO_2$ flux, where a greater value of $v_t$ means the leaf consumes more water to produce the same carbon mass For additinoal detail, see: https://github.com/DavidChoi76/pysumma/blob/master/BallBerry.png 3) The Jarvis method \begin{equation*}r_{{s},{i}} = \frac{r_{0c}}{f(Q_{{PAR},{i}})f(T_{air})f(e_{d})\beta_v} \,\,\,\, i = sun, shd\end{equation*} the subscript $i$ defines either sunlit or shaded leaves $f(Q_{{PAR},{i}})$, $f(T_{air})$, $f(e_{d})$ : all limited to the range 0-1, represent the effects of photosynthetically-active radiation(PAR), air temperature, and vapor pressure deficit, where $ Q_{{PAR},{i}} $ represents PAR absorbed on sunlit or shaded leaves For additional detail, see: https://github.com/DavidChoi76/pysumma/blob/master/Jarvis.png The above images are taken from the Stomal Resistance Method section within the manual Structure for Unifying Multiple Modeling Alternatives (SUMMA), Version 1.0: Technical Description (April, 2015). 3. Methods 1) Study Area The Reynolds Mountain East catchment is located in southwestern Idaho as shown in the figure below.
###Code
from ipyleaflet import Map, GeoJSON
import json
m = Map(center=[43.06745, -116.75489], zoom=15)
with open('reynolds_geojson_latlon.geojson') as f:
data = json.load(f)
g = GeoJSON(data=data)
m.add_layer(g)
m
###Output
_____no_output_____
###Markdown
2) Create pySUMMA Simulation Object
###Code
from pysumma.Simulation import Simulation
# create a pySUMMA simulation object using the SUMMA 'file manager' input file
S = Simulation('../../summaTestCases_2.x/settings/wrrPaperTestCases/figure07/summa_fileManager_riparianAspenSimpleResistance.txt')
# set the simulation start and finish times
S.decision_obj.simulStart.value = "2007-07-01 00:00"
S.decision_obj.simulFinsh.value = "2007-08-20 00:00"
###Output
_____no_output_____
###Markdown
3) Run SUMMA for the different stomatal resistance parameterization options with Developing version of Docker image
###Code
# query for the available stomatal resistance parameterizations
S.decision_obj.stomResist.options
###Output
_____no_output_____
###Markdown
3.4) assign the Jarvis method
###Code
S.decision_obj.stomResist.value = 'Jarvis'
S.decision_obj.stomResist.value
results_Jarvis, output_path = S.execute(run_suffix="Jarvis_docker", run_option = 'docker_develop')
###Output
_____no_output_____
###Markdown
4. Results Recreate the Figure 7 plot from Clark et al., 2015: The total ET for the three different stomatal resistance methods
###Code
from pysumma.Plotting import Plotting
from jupyterthemes import jtplot
import matplotlib.pyplot as plt
import pandas as pd
import xarray as xr
import numpy as np
jtplot.figsize(x=10, y=10)
###Output
_____no_output_____
###Markdown
4.1) Create P attribute using Plotting.py and output_path
###Code
# create P attribute
P = Plotting(output_path)
# create Plot attribute with open_netcdf method
Plot = P.open_netcdf()
###Output
_____no_output_____
###Markdown
4.2) Explain output variables There are three structure types of variables 1) variable (time, hru or gru) : [example] pptrate, airtemp, basin__SurfaceRunoff, ...2) variable (time, midToto, hru) : [example] mLayerVolFracIce, mLayerVolFracLiq, mLayerVolFracWat, ... - 'mid' are associated with variables that are specified at the mid-point of each layer (or layer-average) - 'Toto indicate snow layers, soil layers, and all layers,3) variable (time, midSoil, hru) : [example] mLayerMatricHead, mLayerLiqFluxSoil 4) variable (time, ifcToto, hru) : [example] iLayerHeight - 'ifc' are associated with variables that are specified at the interfaces between layers including the very top and bottom 5) variable (time, ifcSoil, hru) : [example] iLayerLiqFluxSoil
###Code
# explain output variables
Plot
###Output
_____no_output_____
###Markdown
4.3) Plot (variable)
###Code
# The case of "1) variable (time, hru or gru)"
P.plot_1d('pptrate')
###Output
/home/hydro/miniconda3/lib/python3.6/site-packages/xarray/plot/utils.py:51: FutureWarning: 'pandas.tseries.converter.register' has been moved and renamed to 'pandas.plotting.register_matplotlib_converters'.
converter.register()
###Markdown
4.4) Plot hru (hru_num, variable)
###Code
# The case of "1) variable (time, hru or gru) and more than 2 hru
P.plot_1d_hru(0,'airtemp')
###Output
_____no_output_____
###Markdown
4.5) Plot layer (variable)
###Code
# the case of 2) variable (time, midToto, hru) : [example] mLayerVolFracIce, mLayerVolFracLiq, mLayerVolFracWat, ...
# midToto: 13
test = Plot['mLayerVolFracWat'].data
dates = Plot['time'].data
# convert data array
test = np.squeeze(test)
# create df attribute using pandas DataFrame
df = pd.DataFrame(data = test, index=dates)
df.replace(to_replace=-9999.0, value = 0, inplace=True)
# midToto is 13, therefore user can change each layer value from 0 to 12
df[12].plot()
P.plot_1d_layer('mLayerVolFracWat')
# the case of 3) variable (time, midSoil, hru) : [example] mLayerMatricHead, mLayerLiqFluxSoil
# midSoil: 8
test = Plot['mLayerLiqFluxSoil'].data
dates = Plot['time'].data
# convert data array
test = np.squeeze(test)
# create df attribute using pandas DataFrame
df = pd.DataFrame(data = test, index=dates)
df.replace(to_replace=-9999.0, value = 0, inplace=True)
# midToto is 13, therefore user can change each layer value from 0 to 12
df[0].plot()
P.plot_1d_layer('mLayerLiqFluxSoil')
# the case of 4) variable (time, ifcToto, hru) : [example] iLayerHeight
# midSoil: 14
test = Plot['iLayerHeight'].data
dates = Plot['time'].data
# convert data array
test = np.squeeze(test)
# create df attribute using pandas DataFrame
df = pd.DataFrame(data = test, index=dates)
df.replace(to_replace=-9999.0, value = 0, inplace=True)
# midToto is 13, therefore user can change each layer value from 0 to 12
df[0].plot()
P.plot_1d_layer('iLayerHeight')
# the case of 5) variable (time, ifcSoil, hru) : [example] iLayerLiqFluxSoil
# midSoil: 9
test = Plot['iLayerLiqFluxSoil'].data
dates = Plot['time'].data
# convert data array
test = np.squeeze(test)
# create df attribute using pandas DataFrame
df = pd.DataFrame(data = test, index=dates)
df.replace(to_replace=-9999.0, value = 0, inplace=True)
# midToto is 13, therefore user can change each layer value from 0 to 12
df[0].plot()
P.plot_1d_layer('iLayerLiqFluxSoil')
from pysumma.layers import layers
ds = xr.open_dataset(output_path).isel(hru=0)
layers(ds.isel(time=slice(0,9)), 'mLayerTemp')
layers = ds.nLayers.values.astype('int')
max_layers = np.amax(layers)
max_layers
depths = np.empty((max_layers+1, len(ds.time)))
depths
depths[:] = np.nan
depths[:]
vals = np.empty((max_layers, len(ds.time)))
vals
vals[:] = np.nan
vals[:]
layer_refs = ['Toto', 'Soil']
for ref in layer_refs:
test_coord = 'mid{}'.format(ref)
if test_coord in ds['mLayerTemp'].dims:
ifcStartIdx = ds['ifc{}'.format(ref)].values
midStartIdx = ds['mid{}'.format(ref)].values
break
else:
raise ValueError("Dataset provided doesn't appear to have layers!")
ifcStartIdx
midStartIdx
for i in range(len(ds['time'].values)):
start_ifc = int(ifcStartIdx[i]) - 1
start_mid = int(midStartIdx[i]) - 1
end_ifc = start_ifc + int(layers[i]) + 1
end_mid = start_mid + int(layers[i])
depths[0:layers[i]+1, i] = -ds['iLayerHeight'][start_ifc:end_ifc]
vals[0:layers[i], i] = ds[var][start_mid:end_mid]
len(ds['time'].values)
start_ifc = int(ifcStartIdx[i]) - 1
start_ifc
start_mid = int(midStartIdx[i]) - 1
start_mid
end_ifc = start_ifc + int(layers[i]) + 1
end_ifc
end_mid = start_mid + int(layers[i])
end_mid
int(layers[i])
depths[0:layers[i]+1, i]
-ds['iLayerHeight']
ds['mLayerTemp'].
ds['midToto'].values
ds['time'].isel(time=slice(0,4))
###Output
_____no_output_____ |
assets/posts/mass-transfer-modes/MassRadius.ipynb | ###Markdown
Mass-Radius relationship
###Code
from astroutils.matplotlibrc import *
%pylab inline
from roche_q import calc_qr
from scipy.interpolate import interp1d
from scipy.optimize import brentq
rcParams['font.size'] = 28
rcParams['xtick.major.pad']='8'
###Output
_____no_output_____
###Markdown
Nuclear timescales (steep ZAMS)
###Code
q, r = calc_qr()
roche_relationship = interp1d(q, r)
X = np.logspace(.45, .7)
Y0 = X**3 / 150
Y1 = X**3 / 40
# Find the intersection of the Roche lobe with the later mass-radius relationship
Xprime = brentq(lambda x: roche_relationship(x) - x**3 / 40, 1, 10)
# Find the initial radius of this star
Yprime0 = Xprime**3 / 150
Yprime1 = Xprime**3 / 40
fig = plt.figure(figsize=(6, 6))
ax = fig.add_axes([0.21, 0.15, 0.74, 0.8])
ax.plot(q, r, c='k')
ax.set_xlim([.1, 10])
ax.set_ylim([.1, 10])
ax.set_xscale('log')
ax.set_yscale('log')
ax.set_xlabel(r'mass ratio')
ax.set_ylabel(r'$R$')
ax.plot(X, Y0, c='k')
ax.plot(X, Y1, c='k', linestyle='--')
# Add an arrow going up
ax.arrow(Xprime, Yprime0, 0, Yprime1 - Yprime0, color='k', head_width=.2, head_length=.1,
length_includes_head=True, linestyle=':');
ax.text(.15, 1.3, 'Roche lobe', fontsize=14, rotation=-50)
ax.text(4, .4, 'ZAMS', fontsize=14, rotation=70)
plt.savefig('mass_radius1.png', dpi=240, transparent=True)
###Output
_____no_output_____
###Markdown
Thermal timescales (shallow ZAMS)
###Code
slope = .5
const1 = 10
const2 = 2
X0 = np.logspace(.25, .75)
Y0 = X0**slope / const1
X1 = np.logspace(np.log10(.4), .75)
Y1 = X1**slope / const2
# Find the intersection of the Roche lobe with the later mass-radius relationship
Xprime1 = brentq(lambda x: roche_relationship(x) - x**slope / const2, 1, 10)
# Find the initial radius of this star
Yprime0 = Xprime1**slope / const1
Yprime1 = Xprime1**slope / const2
# Find the second intersetion of the Roche lobe with the later mass-radius relationship
Xprime2 = brentq(lambda x: roche_relationship(x) - x**slope / const2, .1, 1)
Yprime2 = Xprime2**slope / const2
fig = plt.figure(figsize=(6, 6))
ax = fig.add_axes([0.21, 0.15, 0.74, 0.8])
ax.plot(q, r, c='k')
ax.set_xlim([.1, 10])
ax.set_ylim([.1, 10])
ax.set_xscale('log')
ax.set_yscale('log')
ax.set_xlabel(r'mass ratio')
ax.set_ylabel(r'$R$')
ax.plot(X0, Y0, c='k')
ax.plot(X1, Y1, c='k', linestyle='--')
ax.scatter(Xprime2, Yprime2, c='k', s=50)
# Add an arrow going up
ax.arrow(Xprime1, Yprime0, 0, Yprime1 - Yprime0, color='k', head_width=.2, head_length=.1,
length_includes_head=True, linestyle=':')
# Add an arrow going along the later mass-radius relationship
ax.arrow(Xprime1, Yprime1 + .1, Xprime2 - Xprime1, Yprime2 - .05 - Yprime1, color='k', head_width=Yprime2*.1,
head_length=Xprime1*.02, length_includes_head=True, linestyle=':')
ax.text(.15, 1.3, 'Roche lobe', fontsize=14, rotation=-50)
ax.text(2.5, .15, 'ZAMS', fontsize=14, rotation=25)
ax.text(1, .7, '?', fontsize=24)
plt.savefig('mass_radius2.png', transparent=True)
###Output
_____no_output_____ |
t81_558_class_12_02_qlearningreinforcement.ipynb | ###Markdown
T81-558: Applications of Deep Neural Networks**Module 12: Reinforcement Learning*** Instructor: [Jeff Heaton](https://sites.wustl.edu/jeffheaton/), McKelvey School of Engineering, [Washington University in St. Louis](https://engineering.wustl.edu/Programs/Pages/default.aspx)* For more information visit the [class website](https://sites.wustl.edu/jeffheaton/t81-558/). Module 12 Video Material* Part 12.1: Introduction to the OpenAI Gym [[Video]](https://www.youtube.com/watch?v=_KbUxgyisjM&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_12_01_ai_gym.ipynb)* **Part 12.2: Introduction to Q-Learning** [[Video]](https://www.youtube.com/watch?v=A3sYFcJY3lA&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_12_02_qlearningreinforcement.ipynb)* Part 12.3: Keras Q-Learning in the OpenAI Gym [[Video]](https://www.youtube.com/watch?v=qy1SJmsRhvM&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_12_03_keras_reinforce.ipynb)* Part 12.4: Atari Games with Keras Neural Networks [[Video]](https://www.youtube.com/watch?v=co0SwPWoZh0&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_12_04_atari.ipynb)* Part 12.5: Application of Reinforcement Learning [[Video]](https://www.youtube.com/watch?v=1jQPP3RfwMI&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_12_05_apply_rl.ipynb) Google CoLab InstructionsThe following code ensures that Google CoLab is running the correct version of TensorFlow.
###Code
try:
from google.colab import drive
%tensorflow_version 2.x
COLAB = True
print("Note: using Google CoLab")
except:
print("Note: not using Google CoLab")
COLAB = False
if COLAB:
!sudo apt-get install -y xvfb ffmpeg x11-utils
!pip install -q 'gym==0.10.11'
!pip install -q 'imageio==2.4.0'
!pip install -q PILLOW
!pip install -q 'pyglet==1.3.2'
!pip install -q pyvirtualdisplay
!pip install -q tf-agents
###Output
Reading package lists... Done
Building dependency tree
Reading state information... Done
x11-utils is already the newest version (7.7+3build1).
ffmpeg is already the newest version (7:3.4.6-0ubuntu0.18.04.1).
xvfb is already the newest version (2:1.19.6-1ubuntu4.4).
0 upgraded, 0 newly installed, 0 to remove and 31 not upgraded.
###Markdown
Part 12.2: Introduction to Q-LearningQ-Learning is a foundational technique upon which deep reinforcement learning is based. Before we explore deep reinforcement learning, it is essential to understand Q-Learning. Several components make up any Q-Learning system.* **Agent** - The agent is an entity that exists in an environment that takes actions to affect the state of the environment, to receive rewards.* **Environment** - The environment is the universe that the agent exists in. The environment is always in a specific state that is changed by the actions of the agent.* **Actions** - Steps that can be performed by the agent to alter the environment * **Step** - A step occurs each time that the agent performs an action and potentially changes the environment state.* **Episode** - A chain of steps that ultimately culminates in the environment entering a terminal state.* **Epoch** - A training iteration of the agent that contains some number of episodes.* **Terminal State** - A state in which further actions do not make sense. In many environments, a terminal state occurs when the agent has one, lost, or the environment exceeding the maximum number of steps.Q-Learning works by building a table that suggests an action for every possible state. This approach runs into several problems. First, the environment is usually composed of several continuous numbers, resulting in an infinite number of states. Q-Learning handles continuous states by binning these numeric values into ranges. Additionally, Q-Learning primarily deals with discrete actions, such as pressing a joystick up or down. Out of the box, Q-Learning does not deal with continuous inputs, such as a car's accelerator that can be in a range of positions from released to fully engaged. Researchers have come up with clever tricks to allow Q-Learning to accommodate continuous actions.In the next chapter, we will learn more about deep reinforcement learning. Deep neural networks can help to solve the problems of continuous environments and action spaces. For now, we will apply regular Q-Learning to the Mountain Car problem from OpenAI Gym. Introducing the Mountain CarThis section will demonstrate how Q-Learning can create a solution to the mountain car gym environment. The Mountain car is an environment where a car must climb a mountain. Because gravity is stronger than the car's engine, even with full throttle, it cannot merely accelerate up the steep slope. The vehicle is situated in a valley and must learn to utilize potential energy by driving up the opposite hill before the car can make it to the goal at the top of the rightmost hill.First, it might be helpful to visualize the mountain car environment. The following code shows this environment. This code makes use of TF-Agents to perform this render. Usually, we use TF-Agents for the type of deep reinforcement learning that we will see in the next module. However, for now, TF-Agents is just used to render the mountain care environment.
###Code
import tf_agents
from tf_agents.environments import suite_gym
import PIL.Image
import pyvirtualdisplay
display = pyvirtualdisplay.Display(visible=0, size=(1400, 900)).start()
env_name = 'MountainCar-v0'
env = suite_gym.load(env_name)
env.reset()
PIL.Image.fromarray(env.render())
###Output
_____no_output_____
###Markdown
The mountain car environment provides the following discrete actions:* 0 - Apply left force* 1 - Apply no force* 2 - Apply right forceThe mountain car environment is made up of the following continuous values:* state[0] - Position * state[1] - VelocityThe following code shows an agent that applies full throttle to climb the hill. The cart is not strong enough. It will need to use potential energy from the mountain behind it.
###Code
import gym
from gym.wrappers import Monitor
import glob
import io
import base64
from IPython.display import HTML
from pyvirtualdisplay import Display
from IPython import display as ipythondisplay
display = Display(visible=0, size=(1400, 900))
display.start()
"""
Utility functions to enable video recording of gym environment and displaying it
To enable video, just do "env = wrap_env(env)""
"""
def show_video():
mp4list = glob.glob('video/*.mp4')
if len(mp4list) > 0:
mp4 = mp4list[0]
video = io.open(mp4, 'r+b').read()
encoded = base64.b64encode(video)
ipythondisplay.display(HTML(data='''<video alt="test" autoplay
loop controls style="height: 400px;">
<source src="data:video/mp4;base64,{0}" type="video/mp4" />
</video>'''.format(encoded.decode('ascii'))))
else:
print("Could not find video")
def wrap_env(env):
env = Monitor(env, './video', force=True)
return env
import gym
if COLAB:
env = wrap_env(gym.make("MountainCar-v0"))
else:
env = gym.make("MountainCar-v0")
env.reset()
done = False
i = 0
while not done:
i += 1
state, reward, done, _ = env.step(2)
env.render()
print(f"Step {i}: State={state}, Reward={reward}")
env.close()
show_video()
###Output
_____no_output_____
###Markdown
Programmed CarNow we will look at a car that I hand-programmed. This car is straightforward; however, it solves the problem. The programmed car always applies force to one direction or another. It does not break. Whatever direction the vehicle is currently rolling, the agent uses power in that direction. Therefore, the car begins to climb a hill, is overpowered, and turns backward. However, once it starts to roll backward force is immediately applied in this new direction.The following code implements this preprogrammed car.
###Code
import gym
if COLAB:
env = wrap_env(gym.make("MountainCar-v0"))
else:
env = gym.make("MountainCar-v0")
state = env.reset()
done = False
i = 0
while not done:
i += 1
if state[1]>0:
action = 2
else:
action = 0
state, reward, done, _ = env.step(action)
env.render()
print(f"Step {i}: State={state}, Reward={reward}")
env.close()
###Output
Step 1: State=[-0.57730941 -0.00060338], Reward=-1.0
Step 2: State=[-0.5785117 -0.00120229], Reward=-1.0
Step 3: State=[-0.580304 -0.0017923], Reward=-1.0
Step 4: State=[-0.58267307 -0.00236906], Reward=-1.0
Step 5: State=[-0.58560139 -0.00292832], Reward=-1.0
Step 6: State=[-0.58906736 -0.00346598], Reward=-1.0
Step 7: State=[-0.59304548 -0.00397811], Reward=-1.0
Step 8: State=[-0.5975065 -0.00446102], Reward=-1.0
Step 9: State=[-0.60241775 -0.00491125], Reward=-1.0
Step 10: State=[-0.60774335 -0.0053256 ], Reward=-1.0
Step 11: State=[-0.61344454 -0.00570119], Reward=-1.0
Step 12: State=[-0.61948002 -0.00603548], Reward=-1.0
Step 13: State=[-0.62580627 -0.00632625], Reward=-1.0
Step 14: State=[-0.63237791 -0.00657165], Reward=-1.0
Step 15: State=[-0.63914812 -0.00677021], Reward=-1.0
Step 16: State=[-0.64606896 -0.00692084], Reward=-1.0
Step 17: State=[-0.65309179 -0.00702284], Reward=-1.0
Step 18: State=[-0.66016768 -0.00707588], Reward=-1.0
Step 19: State=[-0.66724771 -0.00708003], Reward=-1.0
Step 20: State=[-0.67428342 -0.00703571], Reward=-1.0
Step 21: State=[-0.68122709 -0.00694367], Reward=-1.0
Step 22: State=[-0.68803212 -0.00680503], Reward=-1.0
Step 23: State=[-0.69465331 -0.00662119], Reward=-1.0
Step 24: State=[-0.70104716 -0.00639385], Reward=-1.0
Step 25: State=[-0.70717213 -0.00612496], Reward=-1.0
Step 26: State=[-0.71298884 -0.00581671], Reward=-1.0
Step 27: State=[-0.71846032 -0.00547148], Reward=-1.0
Step 28: State=[-0.72355218 -0.00509185], Reward=-1.0
Step 29: State=[-0.72823271 -0.00468053], Reward=-1.0
Step 30: State=[-0.73247309 -0.00424038], Reward=-1.0
Step 31: State=[-0.73624744 -0.00377435], Reward=-1.0
Step 32: State=[-0.73953293 -0.00328548], Reward=-1.0
Step 33: State=[-0.74230982 -0.00277689], Reward=-1.0
Step 34: State=[-0.74456157 -0.00225175], Reward=-1.0
Step 35: State=[-0.74627483 -0.00171326], Reward=-1.0
Step 36: State=[-0.7474395 -0.00116466], Reward=-1.0
Step 37: State=[-7.48048712e-01 -6.09216585e-04], Reward=-1.0
Step 38: State=[-7.48098908e-01 -5.01962094e-05], Reward=-1.0
Step 39: State=[-7.47589789e-01 5.09118450e-04], Reward=-1.0
Step 40: State=[-0.74452434 0.00306545], Reward=-1.0
Step 41: State=[-0.73892063 0.00560372], Reward=-1.0
Step 42: State=[-0.73081198 0.00810864], Reward=-1.0
Step 43: State=[-0.72024742 0.01056456], Reward=-1.0
Step 44: State=[-0.70729207 0.01295535], Reward=-1.0
Step 45: State=[-0.6920277 0.01526437], Reward=-1.0
Step 46: State=[-0.67455318 0.01747452], Reward=-1.0
Step 47: State=[-0.6549848 0.01956837], Reward=-1.0
Step 48: State=[-0.63345635 0.02152845], Reward=-1.0
Step 49: State=[-0.61011881 0.02333755], Reward=-1.0
Step 50: State=[-0.58513962 0.02497919], Reward=-1.0
Step 51: State=[-0.5587015 0.02643812], Reward=-1.0
Step 52: State=[-0.53100059 0.02770091], Reward=-1.0
Step 53: State=[-0.50224417 0.02875642], Reward=-1.0
Step 54: State=[-0.4726478 0.02959637], Reward=-1.0
Step 55: State=[-0.44243208 0.03021572], Reward=-1.0
Step 56: State=[-0.41181911 0.03061297], Reward=-1.0
Step 57: State=[-0.38102886 0.03079025], Reward=-1.0
Step 58: State=[-0.35027559 0.03075328], Reward=-1.0
Step 59: State=[-0.31976445 0.03051114], Reward=-1.0
Step 60: State=[-0.28968855 0.0300759 ], Reward=-1.0
Step 61: State=[-0.26022651 0.02946204], Reward=-1.0
Step 62: State=[-0.23154055 0.02868596], Reward=-1.0
Step 63: State=[-0.20377533 0.02776522], Reward=-1.0
Step 64: State=[-0.17705734 0.026718 ], Reward=-1.0
Step 65: State=[-0.15149488 0.02556246], Reward=-1.0
Step 66: State=[-0.12717863 0.02431624], Reward=-1.0
Step 67: State=[-0.10418263 0.02299601], Reward=-1.0
Step 68: State=[-0.0825655 0.02161713], Reward=-1.0
Step 69: State=[-0.06237207 0.02019343], Reward=-1.0
Step 70: State=[-0.04363501 0.01873706], Reward=-1.0
Step 71: State=[-0.02637656 0.01725845], Reward=-1.0
Step 72: State=[-0.01061028 0.01576628], Reward=-1.0
Step 73: State=[0.00365726 0.01426754], Reward=-1.0
Step 74: State=[0.01642496 0.01276769], Reward=-1.0
Step 75: State=[0.02769568 0.01127073], Reward=-1.0
Step 76: State=[0.03747504 0.00977935], Reward=-1.0
Step 77: State=[0.04577017 0.00829513], Reward=-1.0
Step 78: State=[0.05258884 0.00681867], Reward=-1.0
Step 79: State=[0.05793855 0.00534971], Reward=-1.0
Step 80: State=[0.06182593 0.00388738], Reward=-1.0
Step 81: State=[0.0642562 0.00243026], Reward=-1.0
Step 82: State=[0.06523276 0.00097657], Reward=-1.0
Step 83: State=[ 0.06475705 -0.00047571], Reward=-1.0
Step 84: State=[ 0.06082837 -0.00392868], Reward=-1.0
Step 85: State=[ 0.0534412 -0.00738717], Reward=-1.0
Step 86: State=[ 0.04258609 -0.01085511], Reward=-1.0
Step 87: State=[ 0.02825135 -0.01433474], Reward=-1.0
Step 88: State=[ 0.01042559 -0.01782576], Reward=-1.0
Step 89: State=[-0.01089895 -0.02132454], Reward=-1.0
Step 90: State=[-0.03572216 -0.0248232 ], Reward=-1.0
Step 91: State=[-0.06403102 -0.02830886], Reward=-1.0
Step 92: State=[-0.0957939 -0.03176288], Reward=-1.0
Step 93: State=[-0.13095425 -0.03516035], Reward=-1.0
Step 94: State=[-0.16942414 -0.03846989], Reward=-1.0
Step 95: State=[-0.21107801 -0.04165386], Reward=-1.0
Step 96: State=[-0.25574716 -0.04466916], Reward=-1.0
Step 97: State=[-0.30321589 -0.04746873], Reward=-1.0
Step 98: State=[-0.35321967 -0.05000379], Reward=-1.0
Step 99: State=[-0.40544638 -0.05222671], Reward=-1.0
Step 100: State=[-0.4595408 -0.05409441], Reward=-1.0
Step 101: State=[-0.51511269 -0.0555719 ], Reward=-1.0
Step 102: State=[-0.57174823 -0.05663553], Reward=-1.0
Step 103: State=[-0.6290239 -0.05727567], Reward=-1.0
Step 104: State=[-0.68652199 -0.0574981 ], Reward=-1.0
Step 105: State=[-0.74384624 -0.05732425], Reward=-1.0
Step 106: State=[-0.80063623 -0.05678999], Reward=-1.0
Step 107: State=[-0.85657951 -0.05594328], Reward=-1.0
Step 108: State=[-0.91142055 -0.05484104], Reward=-1.0
Step 109: State=[-0.96496613 -0.05354558], Reward=-1.0
Step 110: State=[-1.0170874 -0.05212127], Reward=-1.0
Step 111: State=[-1.06771887 -0.05063146], Reward=-1.0
Step 112: State=[-1.11685507 -0.0491362 ], Reward=-1.0
Step 113: State=[-1.16454566 -0.04769059], Reward=-1.0
Step 114: State=[-1.2 0. ], Reward=-1.0
Step 115: State=[-1.1987581 0.0012419], Reward=-1.0
Step 116: State=[-1.19427021 0.0044879 ], Reward=-1.0
Step 117: State=[-1.18652173 0.00774848], Reward=-1.0
Step 118: State=[-1.17548846 0.01103326], Reward=-1.0
Step 119: State=[-1.16113808 0.01435038], Reward=-1.0
Step 120: State=[-1.14343234 0.01770574], Reward=-1.0
Step 121: State=[-1.12233007 0.02110228], Reward=-1.0
Step 122: State=[-1.09779103 0.02453904], Reward=-1.0
Step 123: State=[-1.06978073 0.0280103 ], Reward=-1.0
Step 124: State=[-1.03827616 0.03150456], Reward=-1.0
Step 125: State=[-1.0032725 0.03500367], Reward=-1.0
Step 126: State=[-0.9647905 0.03848199], Reward=-1.0
Step 127: State=[-0.92288452 0.04190598], Reward=-1.0
Step 128: State=[-0.87765038 0.04523414], Reward=-1.0
Step 129: State=[-0.82923273 0.04841765], Reward=-1.0
Step 130: State=[-0.77783078 0.05140195], Reward=-1.0
Step 131: State=[-0.72370164 0.05412914], Reward=-1.0
Step 132: State=[-0.66716026 0.05654138], Reward=-1.0
Step 133: State=[-0.60857514 0.05858511], Reward=-1.0
Step 134: State=[-0.54835959 0.06021555], Reward=-1.0
Step 135: State=[-0.4869585 0.06140109], Reward=-1.0
Step 136: State=[-0.42483166 0.06212684], Reward=-1.0
Step 137: State=[-0.36243478 0.06239688], Reward=-1.0
Step 138: State=[-0.30020009 0.06223469], Reward=-1.0
Step 139: State=[-0.23851824 0.06168185], Reward=-1.0
Step 140: State=[-0.17772322 0.06079502], Reward=-1.0
Step 141: State=[-0.1180812 0.05964202], Reward=-1.0
Step 142: State=[-0.05978395 0.05829725], Reward=-1.0
Step 143: State=[-0.0029466 0.05683735], Reward=-1.0
Step 144: State=[0.05239085 0.05533745], Reward=-1.0
Step 145: State=[0.10625911 0.05386826], Reward=-1.0
Step 146: State=[0.15875332 0.05249421], Reward=-1.0
Step 147: State=[0.21002575 0.05127242], Reward=-1.0
Step 148: State=[0.26027822 0.05025247], Reward=-1.0
Step 149: State=[0.30975487 0.04947665], Reward=-1.0
Step 150: State=[0.35873547 0.0489806 ], Reward=-1.0
Step 151: State=[0.40752939 0.04879392], Reward=-1.0
Step 152: State=[0.45647027 0.04894088], Reward=-1.0
Step 153: State=[0.50591109 0.04944082], Reward=-1.0
###Markdown
We now visualize the preprogrammed car solving the problem.
###Code
show_video()
###Output
_____no_output_____
###Markdown
Reinforcement LearningQ-Learning is a system of rewards that the algorithm gives an agent for successfully moving the environment into a state considered successful. These rewards are the Q-values from which this algorithm takes its name. The final output from the Q-Learning algorithm is a table of Q-values that indicate the reward value of every action that the agent can take, given every possible environment state. The agent must bin continuous state values into a fixed finite number of columns.Learning occurs when the algorithm runs the agent and environment through a series of episodes and updates the Q-values based on the rewards received from actions taken; Figure 12.REINF provides a high-level overview of this reinforcement or Q-Learning loop.**Figure 12.REINF:Reinforcement/Q Learning**The Q-values can dictate action by selecting the action column with the highest Q-value for the current environment state. The choice between choosing a random action and a Q-value driven action is governed by the epsilon ($\epsilon$) parameter, which is the probability of random action.Each time through the training loop, the training algorithm updates the Q-values according to the following equation. $Q^{new}(s_{t},a_{t}) \leftarrow \underbrace{Q(s_{t},a_{t})}_{\text{old value}} + \underbrace{\alpha}_{\text{learning rate}} \cdot \overbrace{\bigg( \underbrace{\underbrace{r_{t}}_{\text{reward}} + \underbrace{\gamma}_{\text{discount factor}} \cdot \underbrace{\max_{a}Q(s_{t+1}, a)}_{\text{estimate of optimal future value}}}_{\text{new value (temporal difference target)}} - \underbrace{Q(s_{t},a_{t})}_{\text{old value}} \bigg) }^{\text{temporal difference}}$ There are several parameters in this equation:* alpha ($\alpha$) - The learning rate, how much should the current step cause the Q-values to be updated.* lambda ($\lambda$) - The discount factor is the percentage of future reward that the algorithm should consider in this update.This equation modifies several values:* $Q(s_t,a_t)$ - The Q-table. For each combination of states, what reward would the agent likely receive for performing each action?* $s_t$ - The current state.* $r_t$ - The last reward received.* $a_t$ - The action that the agent will perform.The equation works by calculating a delta (temporal difference) that the equation should apply to the old state. This learning rate ($\alpha$) scales this delta. A learning rate of 1.0 would fully implement the temporal difference to the Q-values each iteration and would likely be very chaotic.There are two parts to the temporal difference: the new and old values. The new value is subtracted from the old value to provide a delta; the full amount that we would change the Q-value by if the learning rate did not scale this value. The new value is a summation of the reward received from the last action and the maximum of the Q-values from the resulting state when the client takes this action. It is essential to add the maximum of action Q-values for the new state because it estimates the optimal future values from proceeding with this action. Q-Learning CarWe will now use Q-Learning to produce a car that learns to drive itself. Look out, Tesla! We begin by defining two essential functions.
###Code
import gym
import numpy as np
# This function converts the floating point state values into discrete values.
# This is often called binning. We divide the range that the state values
# might occupy and assign each region to a bucket.
def calc_discrete_state(state):
discrete_state = (state - env.observation_space.low)/buckets
return tuple(discrete_state.astype(np.int))
# Run one game. The q_table to use is provided. We also provide a flag to
# indicate if the game should be rendered/animated. Finally, we also provide
# a flag to indicate if the q_table should be updated.
def run_game(q_table, render, should_update):
done = False
discrete_state = calc_discrete_state(env.reset())
success = False
while not done:
# Exploit or explore
if np.random.random() > epsilon:
# Exploit - use q-table to take current best action
# (and probably refine)
action = np.argmax(q_table[discrete_state])
else:
# Explore - t
action = np.random.randint(0, env.action_space.n)
# Run simulation step
new_state, reward, done, _ = env.step(action)
# Convert continuous state to discrete
new_state_disc = calc_discrete_state(new_state)
# Have we reached the goal position (have we won?)?
if new_state[0] >= env.unwrapped.goal_position:
success = True
# Update q-table
if should_update:
max_future_q = np.max(q_table[new_state_disc])
current_q = q_table[discrete_state + (action,)]
new_q = (1 - LEARNING_RATE) * current_q + LEARNING_RATE * \
(reward + DISCOUNT * max_future_q)
q_table[discrete_state + (action,)] = new_q
discrete_state = new_state_disc
if render:
env.render()
return success
###Output
_____no_output_____
###Markdown
Several hyperparameters are very important for Q-Learning. These parameters will likely need adjustment as you apply Q-Learning to other problems. Because of this, it is crucial to understand the role of each parameter.* **LEARNING_RATE** The rate at which previous Q-values are updated based on new episodes run during training. * **DISCOUNT** The amount of significance to give estimates of future rewards when added to the reward for the current action taken. A value of 0.95 would indicate a discount of 5% to the future reward estimates. * **EPISODES** The number of episodes to train over. Increase this for more complex problems; however, training time also increases.* **SHOW_EVERY** How many episodes to allow to elapse before showing an update.* **DISCRETE_GRID_SIZE** How many buckets to use when converting each of the continuous state variables. For example, [10, 10] indicates that the algorithm should use ten buckets for the first and second state variables.* **START_EPSILON_DECAYING** Epsilon is the probability that the agent will select a random action over what the Q-Table suggests. This value determines the starting probability of randomness.* **END_EPSILON_DECAYING** How many episodes should elapse before epsilon goes to zero and no random actions are permitted. For example, EPISODES//10 means only the first 1/10th of the episodes might have random actions.
###Code
LEARNING_RATE = 0.1
DISCOUNT = 0.95
EPISODES = 50000
SHOW_EVERY = 1000
DISCRETE_GRID_SIZE = [10, 10]
START_EPSILON_DECAYING = 0.5
END_EPSILON_DECAYING = EPISODES//10
###Output
_____no_output_____
###Markdown
We can now make the environment. If we are running in Google COLAB then we wrap the environment to be displayed inside the web browser. Next create the discrete buckets for state and build Q-table.
###Code
if COLAB:
env = wrap_env(gym.make("MountainCar-v0"))
else:
env = gym.make("MountainCar-v0")
epsilon = 1
epsilon_change = epsilon/(END_EPSILON_DECAYING - START_EPSILON_DECAYING)
buckets = (env.observation_space.high - env.observation_space.low)/DISCRETE_GRID_SIZE
q_table = np.random.uniform(low=-3, high=0, size=(DISCRETE_GRID_SIZE + [env.action_space.n]))
success = False
###Output
_____no_output_____
###Markdown
We can now make the environment. If we are running in Google COLAB then we wrap the environment to be displayed inside the web browser. Next, create the discrete buckets for state and build Q-table.
###Code
episode = 0
success_count = 0
# Loop through the required number of episodes
while episode<EPISODES:
episode+=1
done = False
# Run the game. If we are local, display render animation at SHOW_EVERY
# intervals.
if episode % SHOW_EVERY == 0:
print(f"Current episode: {episode}, success: {success_count} ({float(success_count)/SHOW_EVERY})")
success = run_game(q_table, True, False)
success_count = 0
else:
success = run_game(q_table, False, True)
# Count successes
if success:
success_count += 1
# Move epsilon towards its ending value, if it still needs to move
if END_EPSILON_DECAYING >= episode >= START_EPSILON_DECAYING:
epsilon = max(0, epsilon - epsilon_change)
print(success)
###Output
Current episode: 1000, success: 0 (0.0)
Current episode: 2000, success: 0 (0.0)
Current episode: 3000, success: 0 (0.0)
Current episode: 4000, success: 29 (0.029)
Current episode: 5000, success: 345 (0.345)
Current episode: 6000, success: 834 (0.834)
Current episode: 7000, success: 797 (0.797)
Current episode: 8000, success: 679 (0.679)
Current episode: 9000, success: 600 (0.6)
Current episode: 10000, success: 728 (0.728)
Current episode: 11000, success: 205 (0.205)
Current episode: 12000, success: 612 (0.612)
Current episode: 13000, success: 733 (0.733)
Current episode: 14000, success: 1000 (1.0)
Current episode: 15000, success: 998 (0.998)
Current episode: 16000, success: 879 (0.879)
Current episode: 17000, success: 510 (0.51)
Current episode: 18000, success: 615 (0.615)
Current episode: 19000, success: 220 (0.22)
Current episode: 20000, success: 445 (0.445)
Current episode: 21000, success: 627 (0.627)
Current episode: 22000, success: 597 (0.597)
Current episode: 23000, success: 827 (0.827)
Current episode: 24000, success: 862 (0.862)
Current episode: 25000, success: 322 (0.322)
Current episode: 26000, success: 632 (0.632)
Current episode: 27000, success: 613 (0.613)
Current episode: 28000, success: 409 (0.409)
Current episode: 29000, success: 379 (0.379)
Current episode: 30000, success: 320 (0.32)
Current episode: 31000, success: 327 (0.327)
Current episode: 32000, success: 302 (0.302)
Current episode: 33000, success: 308 (0.308)
Current episode: 34000, success: 336 (0.336)
Current episode: 35000, success: 274 (0.274)
Current episode: 36000, success: 281 (0.281)
Current episode: 37000, success: 301 (0.301)
Current episode: 38000, success: 322 (0.322)
Current episode: 39000, success: 292 (0.292)
Current episode: 40000, success: 299 (0.299)
Current episode: 41000, success: 281 (0.281)
Current episode: 42000, success: 233 (0.233)
Current episode: 43000, success: 380 (0.38)
Current episode: 44000, success: 598 (0.598)
Current episode: 45000, success: 933 (0.933)
Current episode: 46000, success: 986 (0.986)
Current episode: 47000, success: 1000 (1.0)
Current episode: 48000, success: 1000 (1.0)
Current episode: 49000, success: 1000 (1.0)
Current episode: 50000, success: 1000 (1.0)
True
###Markdown
As you can see, the number of successful episodes generally increases as training progresses. It is not advisable to stop the first time that we observe 100% success over 1,000 episodes. There is a randomness to most games, so it is not likely that an agent would retain its 100% success rate with a new run. Once you observe that the agent has gotten 100% for several update intervals, it might be safe to stop training. Running and Observing the AgentNow that the algorithm has trained the agent, we can observe the agent in action. You can use the following code to see the agent in action.
###Code
run_game(q_table, True, False)
show_video()
###Output
_____no_output_____
###Markdown
Inspecting the Q-TableWe can also display the Q-table. The following code shows the action that the agent would perform for each environment state. As the weights of a neural network, this table is not straightforward to interpret. Some patterns do emerge in that directions do arise, as seen by calculating the means of rows and columns. The actions seem consistent at upper and lower halves of both velocity and position.
###Code
import pandas as pd
df = pd.DataFrame(q_table.argmax(axis=2))
df.columns = [f'v-{x}' for x in range(DISCRETE_GRID_SIZE[0])]
df.index = [f'p-{x}' for x in range(DISCRETE_GRID_SIZE[1])]
df
df.mean(axis=0)
df.mean(axis=1)
###Output
_____no_output_____
###Markdown
T81-558: Applications of Deep Neural Networks**Module 12: Reinforcement Learning*** Instructor: [Jeff Heaton](https://sites.wustl.edu/jeffheaton/), McKelvey School of Engineering, [Washington University in St. Louis](https://engineering.wustl.edu/Programs/Pages/default.aspx)* For more information visit the [class website](https://sites.wustl.edu/jeffheaton/t81-558/). Module 12 Video Material* Part 12.1: Introduction to the OpenAI Gym [[Video]](https://www.youtube.com/watch?v=_KbUxgyisjM&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_12_01_ai_gym.ipynb)* **Part 12.2: Introduction to Q-Learning** [[Video]](https://www.youtube.com/watch?v=A3sYFcJY3lA&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_12_02_qlearningreinforcement.ipynb)* Part 12.3: Keras Q-Learning in the OpenAI Gym [[Video]](https://www.youtube.com/watch?v=qy1SJmsRhvM&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_12_03_keras_reinforce.ipynb)* Part 12.4: Atari Games with Keras Neural Networks [[Video]](https://www.youtube.com/watch?v=co0SwPWoZh0&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_12_04_atari.ipynb)* Part 12.5: Application of Reinforcement Learning [[Video]](https://www.youtube.com/watch?v=1jQPP3RfwMI&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_12_05_apply_rl.ipynb) Google CoLab InstructionsThe following code ensures that Google CoLab is running the correct version of TensorFlow.
###Code
try:
from google.colab import drive
%tensorflow_version 2.x
COLAB = True
print("Note: using Google CoLab")
except:
print("Note: not using Google CoLab")
COLAB = False
if COLAB:
!sudo apt-get install -y xvfb ffmpeg x11-utils
!pip install -q 'gym==0.10.11'
!pip install -q 'imageio==2.4.0'
!pip install -q PILLOW
!pip install -q 'pyglet==1.3.2'
!pip install -q pyvirtualdisplay
!pip install -q tf-agents
###Output
Reading package lists... Done
Building dependency tree
Reading state information... Done
x11-utils is already the newest version (7.7+3build1).
ffmpeg is already the newest version (7:3.4.6-0ubuntu0.18.04.1).
xvfb is already the newest version (2:1.19.6-1ubuntu4.4).
0 upgraded, 0 newly installed, 0 to remove and 31 not upgraded.
###Markdown
Part 12.2: Introduction to Q-LearningQ-Learning is a foundational technique upon which deep reinforcement learning is based. Before we explore deep reinforcement learning, it is essential to understand Q-Learning. Several components make up any Q-Learning system.* **Agent** - The agent is an entity that exists in an environment that takes actions to affect the state of the environment, to receive rewards.* **Environment** - The environment is the universe that the agent exists in. The environment is always in a specific state that is changed by the actions of the agent.* **Actions** - Steps that can be performed by the agent to alter the environment * **Step** - A step occurs each time that the agent performs an action and potentially changes the environment state.* **Episode** - A chain of steps that ultimately culminates in the environment entering a terminal state.* **Epoch** - A training iteration of the agent that contains some number of episodes.* **Terminal State** - A state in which further actions do not make sense. In many environments, a terminal state occurs when the agent has one, lost, or the environment exceeding the maximum number of steps.Q-Learning works by building a table that suggests an action for every possible state. This approach runs into several problems. First, the environment is usually composed of several continuous numbers, resulting in an infinite number of states. Q-Learning handles continuous states by binning these numeric values into ranges. Additionally, Q-Learning primarily deals with discrete actions, such as pressing a joystick up or down. Out of the box, Q-Learning does not deal with continuous inputs, such as a car's accelerator that can be in a range of positions from released to fully engaged. Researchers have come up with clever tricks to allow Q-Learning to accommodate continuous actions.In the next chapter, we will learn more about deep reinforcement learning. Deep neural networks can help to solve the problems of continuous environments and action spaces. For now, we will apply regular Q-Learning to the Mountain Car problem from OpenAI Gym. Introducing the Mountain CarThis section will demonstrate how Q-Learning can create a solution to the mountain car gym environment. The Mountain car is an environment where a car must climb a mountain. Because gravity is stronger than the car's engine, even with full throttle, it cannot merely accelerate up the steep slope. The vehicle is situated in a valley and must learn to utilize potential energy by driving up the opposite hill before the car can make it to the goal at the top of the rightmost hill.First, it might be helpful to visualize the mountain car environment. The following code shows this environment. This code makes use of TF-Agents to perform this render. Usually, we use TF-Agents for the type of deep reinforcement learning that we will see in the next module. However, for now, TF-Agents is just used to render the mountain care environment.
###Code
import tf_agents
from tf_agents.environments import suite_gym
import PIL.Image
import pyvirtualdisplay
display = pyvirtualdisplay.Display(visible=0, size=(1400, 900)).start()
env_name = 'MountainCar-v0'
env = suite_gym.load(env_name)
env.reset()
PIL.Image.fromarray(env.render())
###Output
_____no_output_____
###Markdown
The mountain car environment provides the following discrete actions:* 0 - Apply left force* 1 - Apply no force* 2 - Apply right forceThe mountain car environment is made up of the following continuous values:* state[0] - Position * state[1] - VelocityThe following code shows an agent that applies full throttle to climb the hill. The cart is not strong enough. It will need to use potential energy from the mountain behind it.
###Code
import gym
from gym.wrappers import Monitor
import glob
import io
import base64
from IPython.display import HTML
from pyvirtualdisplay import Display
from IPython import display as ipythondisplay
display = Display(visible=0, size=(1400, 900))
display.start()
"""
Utility functions to enable video recording of gym environment
and displaying it.
To enable video, just do "env = wrap_env(env)""
"""
def show_video():
mp4list = glob.glob('video/*.mp4')
if len(mp4list) > 0:
mp4 = mp4list[0]
video = io.open(mp4, 'r+b').read()
encoded = base64.b64encode(video)
ipythondisplay.display(HTML(data='''<video alt="test" autoplay
loop controls style="height: 400px;">
<source src="data:video/mp4;base64,{0}" type="video/mp4" />
</video>'''.format(encoded.decode('ascii'))))
else:
print("Could not find video")
def wrap_env(env):
env = Monitor(env, './video', force=True)
return env
import gym
if COLAB:
env = wrap_env(gym.make("MountainCar-v0"))
else:
env = gym.make("MountainCar-v0")
env.reset()
done = False
i = 0
while not done:
i += 1
state, reward, done, _ = env.step(2)
env.render()
print(f"Step {i}: State={state}, Reward={reward}")
env.close()
show_video()
###Output
_____no_output_____
###Markdown
Programmed CarNow we will look at a car that I hand-programmed. This car is straightforward; however, it solves the problem. The programmed car always applies force to one direction or another. It does not break. Whatever direction the vehicle is currently rolling, the agent uses power in that direction. Therefore, the car begins to climb a hill, is overpowered, and turns backward. However, once it starts to roll backward force is immediately applied in this new direction.The following code implements this preprogrammed car.
###Code
import gym
if COLAB:
env = wrap_env(gym.make("MountainCar-v0"))
else:
env = gym.make("MountainCar-v0")
state = env.reset()
done = False
i = 0
while not done:
i += 1
if state[1]>0:
action = 2
else:
action = 0
state, reward, done, _ = env.step(action)
env.render()
print(f"Step {i}: State={state}, Reward={reward}")
env.close()
###Output
Step 1: State=[-0.57730941 -0.00060338], Reward=-1.0
Step 2: State=[-0.5785117 -0.00120229], Reward=-1.0
Step 3: State=[-0.580304 -0.0017923], Reward=-1.0
Step 4: State=[-0.58267307 -0.00236906], Reward=-1.0
Step 5: State=[-0.58560139 -0.00292832], Reward=-1.0
Step 6: State=[-0.58906736 -0.00346598], Reward=-1.0
Step 7: State=[-0.59304548 -0.00397811], Reward=-1.0
Step 8: State=[-0.5975065 -0.00446102], Reward=-1.0
Step 9: State=[-0.60241775 -0.00491125], Reward=-1.0
Step 10: State=[-0.60774335 -0.0053256 ], Reward=-1.0
Step 11: State=[-0.61344454 -0.00570119], Reward=-1.0
Step 12: State=[-0.61948002 -0.00603548], Reward=-1.0
Step 13: State=[-0.62580627 -0.00632625], Reward=-1.0
Step 14: State=[-0.63237791 -0.00657165], Reward=-1.0
Step 15: State=[-0.63914812 -0.00677021], Reward=-1.0
Step 16: State=[-0.64606896 -0.00692084], Reward=-1.0
Step 17: State=[-0.65309179 -0.00702284], Reward=-1.0
Step 18: State=[-0.66016768 -0.00707588], Reward=-1.0
Step 19: State=[-0.66724771 -0.00708003], Reward=-1.0
Step 20: State=[-0.67428342 -0.00703571], Reward=-1.0
Step 21: State=[-0.68122709 -0.00694367], Reward=-1.0
Step 22: State=[-0.68803212 -0.00680503], Reward=-1.0
Step 23: State=[-0.69465331 -0.00662119], Reward=-1.0
Step 24: State=[-0.70104716 -0.00639385], Reward=-1.0
Step 25: State=[-0.70717213 -0.00612496], Reward=-1.0
Step 26: State=[-0.71298884 -0.00581671], Reward=-1.0
Step 27: State=[-0.71846032 -0.00547148], Reward=-1.0
Step 28: State=[-0.72355218 -0.00509185], Reward=-1.0
Step 29: State=[-0.72823271 -0.00468053], Reward=-1.0
Step 30: State=[-0.73247309 -0.00424038], Reward=-1.0
Step 31: State=[-0.73624744 -0.00377435], Reward=-1.0
Step 32: State=[-0.73953293 -0.00328548], Reward=-1.0
Step 33: State=[-0.74230982 -0.00277689], Reward=-1.0
Step 34: State=[-0.74456157 -0.00225175], Reward=-1.0
Step 35: State=[-0.74627483 -0.00171326], Reward=-1.0
Step 36: State=[-0.7474395 -0.00116466], Reward=-1.0
Step 37: State=[-7.48048712e-01 -6.09216585e-04], Reward=-1.0
Step 38: State=[-7.48098908e-01 -5.01962094e-05], Reward=-1.0
Step 39: State=[-7.47589789e-01 5.09118450e-04], Reward=-1.0
Step 40: State=[-0.74452434 0.00306545], Reward=-1.0
Step 41: State=[-0.73892063 0.00560372], Reward=-1.0
Step 42: State=[-0.73081198 0.00810864], Reward=-1.0
Step 43: State=[-0.72024742 0.01056456], Reward=-1.0
Step 44: State=[-0.70729207 0.01295535], Reward=-1.0
Step 45: State=[-0.6920277 0.01526437], Reward=-1.0
Step 46: State=[-0.67455318 0.01747452], Reward=-1.0
Step 47: State=[-0.6549848 0.01956837], Reward=-1.0
Step 48: State=[-0.63345635 0.02152845], Reward=-1.0
Step 49: State=[-0.61011881 0.02333755], Reward=-1.0
Step 50: State=[-0.58513962 0.02497919], Reward=-1.0
Step 51: State=[-0.5587015 0.02643812], Reward=-1.0
Step 52: State=[-0.53100059 0.02770091], Reward=-1.0
Step 53: State=[-0.50224417 0.02875642], Reward=-1.0
Step 54: State=[-0.4726478 0.02959637], Reward=-1.0
Step 55: State=[-0.44243208 0.03021572], Reward=-1.0
Step 56: State=[-0.41181911 0.03061297], Reward=-1.0
Step 57: State=[-0.38102886 0.03079025], Reward=-1.0
Step 58: State=[-0.35027559 0.03075328], Reward=-1.0
Step 59: State=[-0.31976445 0.03051114], Reward=-1.0
Step 60: State=[-0.28968855 0.0300759 ], Reward=-1.0
Step 61: State=[-0.26022651 0.02946204], Reward=-1.0
Step 62: State=[-0.23154055 0.02868596], Reward=-1.0
Step 63: State=[-0.20377533 0.02776522], Reward=-1.0
Step 64: State=[-0.17705734 0.026718 ], Reward=-1.0
Step 65: State=[-0.15149488 0.02556246], Reward=-1.0
Step 66: State=[-0.12717863 0.02431624], Reward=-1.0
Step 67: State=[-0.10418263 0.02299601], Reward=-1.0
Step 68: State=[-0.0825655 0.02161713], Reward=-1.0
Step 69: State=[-0.06237207 0.02019343], Reward=-1.0
Step 70: State=[-0.04363501 0.01873706], Reward=-1.0
Step 71: State=[-0.02637656 0.01725845], Reward=-1.0
Step 72: State=[-0.01061028 0.01576628], Reward=-1.0
Step 73: State=[0.00365726 0.01426754], Reward=-1.0
Step 74: State=[0.01642496 0.01276769], Reward=-1.0
Step 75: State=[0.02769568 0.01127073], Reward=-1.0
Step 76: State=[0.03747504 0.00977935], Reward=-1.0
Step 77: State=[0.04577017 0.00829513], Reward=-1.0
Step 78: State=[0.05258884 0.00681867], Reward=-1.0
Step 79: State=[0.05793855 0.00534971], Reward=-1.0
Step 80: State=[0.06182593 0.00388738], Reward=-1.0
Step 81: State=[0.0642562 0.00243026], Reward=-1.0
Step 82: State=[0.06523276 0.00097657], Reward=-1.0
Step 83: State=[ 0.06475705 -0.00047571], Reward=-1.0
Step 84: State=[ 0.06082837 -0.00392868], Reward=-1.0
Step 85: State=[ 0.0534412 -0.00738717], Reward=-1.0
Step 86: State=[ 0.04258609 -0.01085511], Reward=-1.0
Step 87: State=[ 0.02825135 -0.01433474], Reward=-1.0
Step 88: State=[ 0.01042559 -0.01782576], Reward=-1.0
Step 89: State=[-0.01089895 -0.02132454], Reward=-1.0
Step 90: State=[-0.03572216 -0.0248232 ], Reward=-1.0
Step 91: State=[-0.06403102 -0.02830886], Reward=-1.0
Step 92: State=[-0.0957939 -0.03176288], Reward=-1.0
Step 93: State=[-0.13095425 -0.03516035], Reward=-1.0
Step 94: State=[-0.16942414 -0.03846989], Reward=-1.0
Step 95: State=[-0.21107801 -0.04165386], Reward=-1.0
Step 96: State=[-0.25574716 -0.04466916], Reward=-1.0
Step 97: State=[-0.30321589 -0.04746873], Reward=-1.0
Step 98: State=[-0.35321967 -0.05000379], Reward=-1.0
Step 99: State=[-0.40544638 -0.05222671], Reward=-1.0
Step 100: State=[-0.4595408 -0.05409441], Reward=-1.0
Step 101: State=[-0.51511269 -0.0555719 ], Reward=-1.0
Step 102: State=[-0.57174823 -0.05663553], Reward=-1.0
Step 103: State=[-0.6290239 -0.05727567], Reward=-1.0
Step 104: State=[-0.68652199 -0.0574981 ], Reward=-1.0
Step 105: State=[-0.74384624 -0.05732425], Reward=-1.0
Step 106: State=[-0.80063623 -0.05678999], Reward=-1.0
Step 107: State=[-0.85657951 -0.05594328], Reward=-1.0
Step 108: State=[-0.91142055 -0.05484104], Reward=-1.0
Step 109: State=[-0.96496613 -0.05354558], Reward=-1.0
Step 110: State=[-1.0170874 -0.05212127], Reward=-1.0
Step 111: State=[-1.06771887 -0.05063146], Reward=-1.0
Step 112: State=[-1.11685507 -0.0491362 ], Reward=-1.0
Step 113: State=[-1.16454566 -0.04769059], Reward=-1.0
Step 114: State=[-1.2 0. ], Reward=-1.0
Step 115: State=[-1.1987581 0.0012419], Reward=-1.0
Step 116: State=[-1.19427021 0.0044879 ], Reward=-1.0
Step 117: State=[-1.18652173 0.00774848], Reward=-1.0
Step 118: State=[-1.17548846 0.01103326], Reward=-1.0
Step 119: State=[-1.16113808 0.01435038], Reward=-1.0
Step 120: State=[-1.14343234 0.01770574], Reward=-1.0
Step 121: State=[-1.12233007 0.02110228], Reward=-1.0
Step 122: State=[-1.09779103 0.02453904], Reward=-1.0
Step 123: State=[-1.06978073 0.0280103 ], Reward=-1.0
Step 124: State=[-1.03827616 0.03150456], Reward=-1.0
Step 125: State=[-1.0032725 0.03500367], Reward=-1.0
Step 126: State=[-0.9647905 0.03848199], Reward=-1.0
Step 127: State=[-0.92288452 0.04190598], Reward=-1.0
Step 128: State=[-0.87765038 0.04523414], Reward=-1.0
Step 129: State=[-0.82923273 0.04841765], Reward=-1.0
Step 130: State=[-0.77783078 0.05140195], Reward=-1.0
Step 131: State=[-0.72370164 0.05412914], Reward=-1.0
Step 132: State=[-0.66716026 0.05654138], Reward=-1.0
Step 133: State=[-0.60857514 0.05858511], Reward=-1.0
Step 134: State=[-0.54835959 0.06021555], Reward=-1.0
Step 135: State=[-0.4869585 0.06140109], Reward=-1.0
Step 136: State=[-0.42483166 0.06212684], Reward=-1.0
Step 137: State=[-0.36243478 0.06239688], Reward=-1.0
Step 138: State=[-0.30020009 0.06223469], Reward=-1.0
Step 139: State=[-0.23851824 0.06168185], Reward=-1.0
Step 140: State=[-0.17772322 0.06079502], Reward=-1.0
Step 141: State=[-0.1180812 0.05964202], Reward=-1.0
Step 142: State=[-0.05978395 0.05829725], Reward=-1.0
Step 143: State=[-0.0029466 0.05683735], Reward=-1.0
Step 144: State=[0.05239085 0.05533745], Reward=-1.0
Step 145: State=[0.10625911 0.05386826], Reward=-1.0
Step 146: State=[0.15875332 0.05249421], Reward=-1.0
Step 147: State=[0.21002575 0.05127242], Reward=-1.0
Step 148: State=[0.26027822 0.05025247], Reward=-1.0
Step 149: State=[0.30975487 0.04947665], Reward=-1.0
Step 150: State=[0.35873547 0.0489806 ], Reward=-1.0
Step 151: State=[0.40752939 0.04879392], Reward=-1.0
Step 152: State=[0.45647027 0.04894088], Reward=-1.0
Step 153: State=[0.50591109 0.04944082], Reward=-1.0
###Markdown
We now visualize the preprogrammed car solving the problem.
###Code
show_video()
###Output
_____no_output_____
###Markdown
Reinforcement LearningQ-Learning is a system of rewards that the algorithm gives an agent for successfully moving the environment into a state considered successful. These rewards are the Q-values from which this algorithm takes its name. The final output from the Q-Learning algorithm is a table of Q-values that indicate the reward value of every action that the agent can take, given every possible environment state. The agent must bin continuous state values into a fixed finite number of columns.Learning occurs when the algorithm runs the agent and environment through a series of episodes and updates the Q-values based on the rewards received from actions taken; Figure 12.REINF provides a high-level overview of this reinforcement or Q-Learning loop.**Figure 12.REINF:Reinforcement/Q Learning**The Q-values can dictate action by selecting the action column with the highest Q-value for the current environment state. The choice between choosing a random action and a Q-value driven action is governed by the epsilon ($\epsilon$) parameter, which is the probability of random action.Each time through the training loop, the training algorithm updates the Q-values according to the following equation. $Q^{new}(s_{t},a_{t}) \leftarrow \underbrace{Q(s_{t},a_{t})}_{\text{old value}} + \underbrace{\alpha}_{\text{learning rate}} \cdot \overbrace{\bigg( \underbrace{\underbrace{r_{t}}_{\text{reward}} + \underbrace{\gamma}_{\text{discount factor}} \cdot \underbrace{\max_{a}Q(s_{t+1}, a)}_{\text{estimate of optimal future value}}}_{\text{new value (temporal difference target)}} - \underbrace{Q(s_{t},a_{t})}_{\text{old value}} \bigg) }^{\text{temporal difference}}$There are several parameters in this equation:* alpha ($\alpha$) - The learning rate, how much should the current step cause the Q-values to be updated.* lambda ($\lambda$) - The discount factor is the percentage of future reward that the algorithm should consider in this update.This equation modifies several values:* $Q(s_t,a_t)$ - The Q-table. For each combination of states, what reward would the agent likely receive for performing each action?* $s_t$ - The current state.* $r_t$ - The last reward received.* $a_t$ - The action that the agent will perform.The equation works by calculating a delta (temporal difference) that the equation should apply to the old state. This learning rate ($\alpha$) scales this delta. A learning rate of 1.0 would fully implement the temporal difference to the Q-values each iteration and would likely be very chaotic.There are two parts to the temporal difference: the new and old values. The new value is subtracted from the old value to provide a delta; the full amount that we would change the Q-value by if the learning rate did not scale this value. The new value is a summation of the reward received from the last action and the maximum of the Q-values from the resulting state when the client takes this action. It is essential to add the maximum of action Q-values for the new state because it estimates the optimal future values from proceeding with this action. Q-Learning CarWe will now use Q-Learning to produce a car that learns to drive itself. Look out, Tesla! We begin by defining two essential functions.
###Code
import gym
import numpy as np
# This function converts the floating point state values into
# discrete values. This is often called binning. We divide
# the range that the state values might occupy and assign
# each region to a bucket.
def calc_discrete_state(state):
discrete_state = (state - env.observation_space.low)/buckets
return tuple(discrete_state.astype(np.int))
# Run one game. The q_table to use is provided. We also
# provide a flag to indicate if the game should be
# rendered/animated. Finally, we also provide
# a flag to indicate if the q_table should be updated.
def run_game(q_table, render, should_update):
done = False
discrete_state = calc_discrete_state(env.reset())
success = False
while not done:
# Exploit or explore
if np.random.random() > epsilon:
# Exploit - use q-table to take current best action
# (and probably refine)
action = np.argmax(q_table[discrete_state])
else:
# Explore - t
action = np.random.randint(0, env.action_space.n)
# Run simulation step
new_state, reward, done, _ = env.step(action)
# Convert continuous state to discrete
new_state_disc = calc_discrete_state(new_state)
# Have we reached the goal position (have we won?)?
if new_state[0] >= env.unwrapped.goal_position:
success = True
# Update q-table
if should_update:
max_future_q = np.max(q_table[new_state_disc])
current_q = q_table[discrete_state + (action,)]
new_q = (1 - LEARNING_RATE) * current_q + LEARNING_RATE * \
(reward + DISCOUNT * max_future_q)
q_table[discrete_state + (action,)] = new_q
discrete_state = new_state_disc
if render:
env.render()
return success
###Output
_____no_output_____
###Markdown
Several hyperparameters are very important for Q-Learning. These parameters will likely need adjustment as you apply Q-Learning to other problems. Because of this, it is crucial to understand the role of each parameter.* **LEARNING_RATE** The rate at which previous Q-values are updated based on new episodes run during training. * **DISCOUNT** The amount of significance to give estimates of future rewards when added to the reward for the current action taken. A value of 0.95 would indicate a discount of 5% to the future reward estimates. * **EPISODES** The number of episodes to train over. Increase this for more complex problems; however, training time also increases.* **SHOW_EVERY** How many episodes to allow to elapse before showing an update.* **DISCRETE_GRID_SIZE** How many buckets to use when converting each of the continuous state variables. For example, [10, 10] indicates that the algorithm should use ten buckets for the first and second state variables.* **START_EPSILON_DECAYING** Epsilon is the probability that the agent will select a random action over what the Q-Table suggests. This value determines the starting probability of randomness.* **END_EPSILON_DECAYING** How many episodes should elapse before epsilon goes to zero and no random actions are permitted. For example, EPISODES//10 means only the first 1/10th of the episodes might have random actions.
###Code
LEARNING_RATE = 0.1
DISCOUNT = 0.95
EPISODES = 50000
SHOW_EVERY = 1000
DISCRETE_GRID_SIZE = [10, 10]
START_EPSILON_DECAYING = 0.5
END_EPSILON_DECAYING = EPISODES//10
###Output
_____no_output_____
###Markdown
We can now make the environment. If we are running in Google COLAB then we wrap the environment to be displayed inside the web browser. Next create the discrete buckets for state and build Q-table.
###Code
if COLAB:
env = wrap_env(gym.make("MountainCar-v0"))
else:
env = gym.make("MountainCar-v0")
epsilon = 1
epsilon_change = epsilon/(END_EPSILON_DECAYING - START_EPSILON_DECAYING)
buckets = (env.observation_space.high - env.observation_space.low) \
/DISCRETE_GRID_SIZE
q_table = np.random.uniform(low=-3, high=0, size=(DISCRETE_GRID_SIZE \
+ [env.action_space.n]))
success = False
###Output
_____no_output_____
###Markdown
We can now make the environment. If we are running in Google COLAB then we wrap the environment to be displayed inside the web browser. Next, create the discrete buckets for state and build Q-table.
###Code
episode = 0
success_count = 0
# Loop through the required number of episodes
while episode<EPISODES:
episode+=1
done = False
# Run the game. If we are local, display render animation at SHOW_EVERY
# intervals.
if episode % SHOW_EVERY == 0:
print(f"Current episode: {episode}, success: {success_count}" +\
" ({float(success_count)/SHOW_EVERY})")
success = run_game(q_table, True, False)
success_count = 0
else:
success = run_game(q_table, False, True)
# Count successes
if success:
success_count += 1
# Move epsilon towards its ending value, if it still needs to move
if END_EPSILON_DECAYING >= episode >= START_EPSILON_DECAYING:
epsilon = max(0, epsilon - epsilon_change)
print(success)
###Output
Current episode: 1000, success: 0 (0.0)
Current episode: 2000, success: 0 (0.0)
Current episode: 3000, success: 0 (0.0)
Current episode: 4000, success: 29 (0.029)
Current episode: 5000, success: 345 (0.345)
Current episode: 6000, success: 834 (0.834)
Current episode: 7000, success: 797 (0.797)
Current episode: 8000, success: 679 (0.679)
Current episode: 9000, success: 600 (0.6)
Current episode: 10000, success: 728 (0.728)
Current episode: 11000, success: 205 (0.205)
Current episode: 12000, success: 612 (0.612)
Current episode: 13000, success: 733 (0.733)
Current episode: 14000, success: 1000 (1.0)
Current episode: 15000, success: 998 (0.998)
Current episode: 16000, success: 879 (0.879)
Current episode: 17000, success: 510 (0.51)
Current episode: 18000, success: 615 (0.615)
Current episode: 19000, success: 220 (0.22)
Current episode: 20000, success: 445 (0.445)
Current episode: 21000, success: 627 (0.627)
Current episode: 22000, success: 597 (0.597)
Current episode: 23000, success: 827 (0.827)
Current episode: 24000, success: 862 (0.862)
Current episode: 25000, success: 322 (0.322)
Current episode: 26000, success: 632 (0.632)
Current episode: 27000, success: 613 (0.613)
Current episode: 28000, success: 409 (0.409)
Current episode: 29000, success: 379 (0.379)
Current episode: 30000, success: 320 (0.32)
Current episode: 31000, success: 327 (0.327)
Current episode: 32000, success: 302 (0.302)
Current episode: 33000, success: 308 (0.308)
Current episode: 34000, success: 336 (0.336)
Current episode: 35000, success: 274 (0.274)
Current episode: 36000, success: 281 (0.281)
Current episode: 37000, success: 301 (0.301)
Current episode: 38000, success: 322 (0.322)
Current episode: 39000, success: 292 (0.292)
Current episode: 40000, success: 299 (0.299)
Current episode: 41000, success: 281 (0.281)
Current episode: 42000, success: 233 (0.233)
Current episode: 43000, success: 380 (0.38)
Current episode: 44000, success: 598 (0.598)
Current episode: 45000, success: 933 (0.933)
Current episode: 46000, success: 986 (0.986)
Current episode: 47000, success: 1000 (1.0)
Current episode: 48000, success: 1000 (1.0)
Current episode: 49000, success: 1000 (1.0)
Current episode: 50000, success: 1000 (1.0)
True
###Markdown
As you can see, the number of successful episodes generally increases as training progresses. It is not advisable to stop the first time that we observe 100% success over 1,000 episodes. There is a randomness to most games, so it is not likely that an agent would retain its 100% success rate with a new run. Once you observe that the agent has gotten 100% for several update intervals, it might be safe to stop training. Running and Observing the AgentNow that the algorithm has trained the agent, we can observe the agent in action. You can use the following code to see the agent in action.
###Code
run_game(q_table, True, False)
show_video()
###Output
_____no_output_____
###Markdown
Inspecting the Q-TableWe can also display the Q-table. The following code shows the action that the agent would perform for each environment state. As the weights of a neural network, this table is not straightforward to interpret. Some patterns do emerge in that directions do arise, as seen by calculating the means of rows and columns. The actions seem consistent at upper and lower halves of both velocity and position.
###Code
import pandas as pd
df = pd.DataFrame(q_table.argmax(axis=2))
df.columns = [f'v-{x}' for x in range(DISCRETE_GRID_SIZE[0])]
df.index = [f'p-{x}' for x in range(DISCRETE_GRID_SIZE[1])]
df
df.mean(axis=0)
df.mean(axis=1)
###Output
_____no_output_____
###Markdown
T81-558: Applications of Deep Neural Networks**Module 12: Reinforcement Learning*** Instructor: [Jeff Heaton](https://sites.wustl.edu/jeffheaton/), McKelvey School of Engineering, [Washington University in St. Louis](https://engineering.wustl.edu/Programs/Pages/default.aspx)* For more information visit the [class website](https://sites.wustl.edu/jeffheaton/t81-558/). Module 12 Video Material* Part 12.1: Introduction to the OpenAI Gym [[Video]](https://www.youtube.com/watch?v=_KbUxgyisjM&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_12_01_ai_gym.ipynb)* **Part 12.2: Introduction to Q-Learning** [[Video]](https://www.youtube.com/watch?v=uwcXWe_Fra0&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_12_02_qlearningreinforcement.ipynb)* Part 12.3: Keras Q-Learning in the OpenAI Gym [[Video]](https://www.youtube.com/watch?v=Ya1gYt63o3M&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_12_03_keras_reinforce.ipynb)* Part 12.4: Atari Games with Keras Neural Networks [[Video]](https://www.youtube.com/watch?v=t2yIu6cRa38&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_12_04_atari.ipynb)* Part 12.5: How Alpha Zero used Reinforcement Learning to Master Chess [[Video]](https://www.youtube.com/watch?v=ikDgyD7nVI8&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_12_05_alpha_zero.ipynb) Google CoLab InstructionsThe following code ensures that Google CoLab is running the correct version of TensorFlow.
###Code
try:
from google.colab import drive
%tensorflow_version 2.x
COLAB = True
print("Note: using Google CoLab")
except:
print("Note: not using Google CoLab")
COLAB = False
if COLAB:
!sudo apt-get install -y xvfb ffmpeg x11-utils
!pip install -q 'gym==0.10.11'
!pip install -q 'imageio==2.4.0'
!pip install -q PILLOW
!pip install -q 'pyglet==1.3.2'
!pip install -q pyvirtualdisplay
!pip install -q tf-agents
###Output
Reading package lists... Done
Building dependency tree
Reading state information... Done
x11-utils is already the newest version (7.7+3build1).
ffmpeg is already the newest version (7:3.4.6-0ubuntu0.18.04.1).
xvfb is already the newest version (2:1.19.6-1ubuntu4.4).
0 upgraded, 0 newly installed, 0 to remove and 31 not upgraded.
###Markdown
Part 12.2: Introduction to Q-LearningQ-Learning is a foundational technique upon which deep reinforcement learning is based. Before we explore deep reinforcement learning, it is essential to understand Q-Learning. Several components make up any Q-Learning system.* **Agent** - The agent is an entity that exists in an environment that takes actions to affect the state of the environment, to receive rewards.* **Environment** - The environment is the universe that the agent exists in. The environment is always in a specific state that is changed by the actions of the agent.* **Actions** - Steps that can be performed by the agent to alter the environment * **Step** - A step occurs each time that the agent performs an action and potentially changes the environment state.* **Episode** - A chain of steps that ultimately culminates in the environment entering a terminal state.* **Epoch** - A training iteration of the agent that contains some number of episodes.* **Terminal State** - A state in which further actions do not make sense. In many environments, a terminal state occurs when the agent has one, lost, or the environment exceeding the maximum number of steps.Q-Learning works by building a table that suggests an action for every possible state. This approach runs into several problems. First, the environment is usually composed of several continuous numbers, resulting in an infinite number of states. Q-Learning handles continuous states by binning these numeric values into ranges. Additionally, Q-Learning primarily deals with discrete actions, such as pressing a joystick up or down. Out of the box, Q-Learning does not deal with continuous inputs, such as a car's accelerator that can be in a range of positions from released to fully engaged. Researchers have come up with clever tricks to allow Q-Learning to accommodate continuous actions.In the next chapter, we will learn more about deep reinforcement learning. Deep neural networks can help to solve the problems of continuous environments and action spaces. For now, we will apply regular Q-Learning to the Mountain Car problem from OpenAI Gym. Introducing the Mountain CarThis section will demonstrate how Q-Learning can create a solution to the mountain car gym environment. The Mountain car is an environment where a car must climb a mountain. Because gravity is stronger than the car's engine, even with full throttle, it cannot merely accelerate up the steep slope. The vehicle is situated in a valley and must learn to utilize potential energy by driving up the opposite hill before the car can make it to the goal at the top of the rightmost hill.First, it might be helpful to visualize the mountain car environment. The following code shows this environment. This code makes use of TF-Agents to perform this render. Usually, we use TF-Agents for the type of deep reinforcement learning that we will see in the next module. However, for now, TF-Agents is just used to render the mountain care environment.
###Code
import tf_agents
from tf_agents.environments import suite_gym
import PIL.Image
import pyvirtualdisplay
display = pyvirtualdisplay.Display(visible=0, size=(1400, 900)).start()
env_name = 'MountainCar-v0'
env = suite_gym.load(env_name)
env.reset()
PIL.Image.fromarray(env.render())
###Output
_____no_output_____
###Markdown
The mountain car environment provides the following discrete actions:* 0 - Apply left force* 1 - Apply no force* 2 - Apply right forceThe mountain car environment is made up of the following continuous values:* state[0] - Position * state[1] - VelocityThe following code shows an agent that applies full throttle to climb the hill. The cart is not strong enough. It will need to use potential energy from the mountain behind it.
###Code
import gym
from gym.wrappers import Monitor
import glob
import io
import base64
from IPython.display import HTML
from pyvirtualdisplay import Display
from IPython import display as ipythondisplay
display = Display(visible=0, size=(1400, 900))
display.start()
"""
Utility functions to enable video recording of gym environment and displaying it
To enable video, just do "env = wrap_env(env)""
"""
def show_video():
mp4list = glob.glob('video/*.mp4')
if len(mp4list) > 0:
mp4 = mp4list[0]
video = io.open(mp4, 'r+b').read()
encoded = base64.b64encode(video)
ipythondisplay.display(HTML(data='''<video alt="test" autoplay
loop controls style="height: 400px;">
<source src="data:video/mp4;base64,{0}" type="video/mp4" />
</video>'''.format(encoded.decode('ascii'))))
else:
print("Could not find video")
def wrap_env(env):
env = Monitor(env, './video', force=True)
return env
import gym
if COLAB:
env = wrap_env(gym.make("MountainCar-v0"))
else:
env = gym.make("MountainCar-v0")
env.reset()
done = False
i = 0
while not done:
i += 1
state, reward, done, _ = env.step(2)
env.render()
print(f"Step {i}: State={state}, Reward={reward}")
env.close()
show_video()
###Output
_____no_output_____
###Markdown
Programmed CarNow we will look at a car that I hand-programmed. This car is straightforward; however, it solves the problem. The programmed car always applies force to one direction or another. It does not break. Whatever direction the vehicle is currently rolling, the agent uses power in that direction. Therefore, the car begins to climb a hill, is overpowered, and turns backward. However, once it starts to roll backward force is immediately applied in this new direction.The following code implements this preprogrammed car.
###Code
import gym
if COLAB:
env = wrap_env(gym.make("MountainCar-v0"))
else:
env = gym.make("MountainCar-v0")
state = env.reset()
done = False
i = 0
while not done:
i += 1
if state[1]>0:
action = 2
else:
action = 0
state, reward, done, _ = env.step(action)
env.render()
print(f"Step {i}: State={state}, Reward={reward}")
env.close()
###Output
Step 1: State=[-0.57730941 -0.00060338], Reward=-1.0
Step 2: State=[-0.5785117 -0.00120229], Reward=-1.0
Step 3: State=[-0.580304 -0.0017923], Reward=-1.0
Step 4: State=[-0.58267307 -0.00236906], Reward=-1.0
Step 5: State=[-0.58560139 -0.00292832], Reward=-1.0
Step 6: State=[-0.58906736 -0.00346598], Reward=-1.0
Step 7: State=[-0.59304548 -0.00397811], Reward=-1.0
Step 8: State=[-0.5975065 -0.00446102], Reward=-1.0
Step 9: State=[-0.60241775 -0.00491125], Reward=-1.0
Step 10: State=[-0.60774335 -0.0053256 ], Reward=-1.0
Step 11: State=[-0.61344454 -0.00570119], Reward=-1.0
Step 12: State=[-0.61948002 -0.00603548], Reward=-1.0
Step 13: State=[-0.62580627 -0.00632625], Reward=-1.0
Step 14: State=[-0.63237791 -0.00657165], Reward=-1.0
Step 15: State=[-0.63914812 -0.00677021], Reward=-1.0
Step 16: State=[-0.64606896 -0.00692084], Reward=-1.0
Step 17: State=[-0.65309179 -0.00702284], Reward=-1.0
Step 18: State=[-0.66016768 -0.00707588], Reward=-1.0
Step 19: State=[-0.66724771 -0.00708003], Reward=-1.0
Step 20: State=[-0.67428342 -0.00703571], Reward=-1.0
Step 21: State=[-0.68122709 -0.00694367], Reward=-1.0
Step 22: State=[-0.68803212 -0.00680503], Reward=-1.0
Step 23: State=[-0.69465331 -0.00662119], Reward=-1.0
Step 24: State=[-0.70104716 -0.00639385], Reward=-1.0
Step 25: State=[-0.70717213 -0.00612496], Reward=-1.0
Step 26: State=[-0.71298884 -0.00581671], Reward=-1.0
Step 27: State=[-0.71846032 -0.00547148], Reward=-1.0
Step 28: State=[-0.72355218 -0.00509185], Reward=-1.0
Step 29: State=[-0.72823271 -0.00468053], Reward=-1.0
Step 30: State=[-0.73247309 -0.00424038], Reward=-1.0
Step 31: State=[-0.73624744 -0.00377435], Reward=-1.0
Step 32: State=[-0.73953293 -0.00328548], Reward=-1.0
Step 33: State=[-0.74230982 -0.00277689], Reward=-1.0
Step 34: State=[-0.74456157 -0.00225175], Reward=-1.0
Step 35: State=[-0.74627483 -0.00171326], Reward=-1.0
Step 36: State=[-0.7474395 -0.00116466], Reward=-1.0
Step 37: State=[-7.48048712e-01 -6.09216585e-04], Reward=-1.0
Step 38: State=[-7.48098908e-01 -5.01962094e-05], Reward=-1.0
Step 39: State=[-7.47589789e-01 5.09118450e-04], Reward=-1.0
Step 40: State=[-0.74452434 0.00306545], Reward=-1.0
Step 41: State=[-0.73892063 0.00560372], Reward=-1.0
Step 42: State=[-0.73081198 0.00810864], Reward=-1.0
Step 43: State=[-0.72024742 0.01056456], Reward=-1.0
Step 44: State=[-0.70729207 0.01295535], Reward=-1.0
Step 45: State=[-0.6920277 0.01526437], Reward=-1.0
Step 46: State=[-0.67455318 0.01747452], Reward=-1.0
Step 47: State=[-0.6549848 0.01956837], Reward=-1.0
Step 48: State=[-0.63345635 0.02152845], Reward=-1.0
Step 49: State=[-0.61011881 0.02333755], Reward=-1.0
Step 50: State=[-0.58513962 0.02497919], Reward=-1.0
Step 51: State=[-0.5587015 0.02643812], Reward=-1.0
Step 52: State=[-0.53100059 0.02770091], Reward=-1.0
Step 53: State=[-0.50224417 0.02875642], Reward=-1.0
Step 54: State=[-0.4726478 0.02959637], Reward=-1.0
Step 55: State=[-0.44243208 0.03021572], Reward=-1.0
Step 56: State=[-0.41181911 0.03061297], Reward=-1.0
Step 57: State=[-0.38102886 0.03079025], Reward=-1.0
Step 58: State=[-0.35027559 0.03075328], Reward=-1.0
Step 59: State=[-0.31976445 0.03051114], Reward=-1.0
Step 60: State=[-0.28968855 0.0300759 ], Reward=-1.0
Step 61: State=[-0.26022651 0.02946204], Reward=-1.0
Step 62: State=[-0.23154055 0.02868596], Reward=-1.0
Step 63: State=[-0.20377533 0.02776522], Reward=-1.0
Step 64: State=[-0.17705734 0.026718 ], Reward=-1.0
Step 65: State=[-0.15149488 0.02556246], Reward=-1.0
Step 66: State=[-0.12717863 0.02431624], Reward=-1.0
Step 67: State=[-0.10418263 0.02299601], Reward=-1.0
Step 68: State=[-0.0825655 0.02161713], Reward=-1.0
Step 69: State=[-0.06237207 0.02019343], Reward=-1.0
Step 70: State=[-0.04363501 0.01873706], Reward=-1.0
Step 71: State=[-0.02637656 0.01725845], Reward=-1.0
Step 72: State=[-0.01061028 0.01576628], Reward=-1.0
Step 73: State=[0.00365726 0.01426754], Reward=-1.0
Step 74: State=[0.01642496 0.01276769], Reward=-1.0
Step 75: State=[0.02769568 0.01127073], Reward=-1.0
Step 76: State=[0.03747504 0.00977935], Reward=-1.0
Step 77: State=[0.04577017 0.00829513], Reward=-1.0
Step 78: State=[0.05258884 0.00681867], Reward=-1.0
Step 79: State=[0.05793855 0.00534971], Reward=-1.0
Step 80: State=[0.06182593 0.00388738], Reward=-1.0
Step 81: State=[0.0642562 0.00243026], Reward=-1.0
Step 82: State=[0.06523276 0.00097657], Reward=-1.0
Step 83: State=[ 0.06475705 -0.00047571], Reward=-1.0
Step 84: State=[ 0.06082837 -0.00392868], Reward=-1.0
Step 85: State=[ 0.0534412 -0.00738717], Reward=-1.0
Step 86: State=[ 0.04258609 -0.01085511], Reward=-1.0
Step 87: State=[ 0.02825135 -0.01433474], Reward=-1.0
Step 88: State=[ 0.01042559 -0.01782576], Reward=-1.0
Step 89: State=[-0.01089895 -0.02132454], Reward=-1.0
Step 90: State=[-0.03572216 -0.0248232 ], Reward=-1.0
Step 91: State=[-0.06403102 -0.02830886], Reward=-1.0
Step 92: State=[-0.0957939 -0.03176288], Reward=-1.0
Step 93: State=[-0.13095425 -0.03516035], Reward=-1.0
Step 94: State=[-0.16942414 -0.03846989], Reward=-1.0
Step 95: State=[-0.21107801 -0.04165386], Reward=-1.0
Step 96: State=[-0.25574716 -0.04466916], Reward=-1.0
Step 97: State=[-0.30321589 -0.04746873], Reward=-1.0
Step 98: State=[-0.35321967 -0.05000379], Reward=-1.0
Step 99: State=[-0.40544638 -0.05222671], Reward=-1.0
Step 100: State=[-0.4595408 -0.05409441], Reward=-1.0
Step 101: State=[-0.51511269 -0.0555719 ], Reward=-1.0
Step 102: State=[-0.57174823 -0.05663553], Reward=-1.0
Step 103: State=[-0.6290239 -0.05727567], Reward=-1.0
Step 104: State=[-0.68652199 -0.0574981 ], Reward=-1.0
Step 105: State=[-0.74384624 -0.05732425], Reward=-1.0
Step 106: State=[-0.80063623 -0.05678999], Reward=-1.0
Step 107: State=[-0.85657951 -0.05594328], Reward=-1.0
Step 108: State=[-0.91142055 -0.05484104], Reward=-1.0
Step 109: State=[-0.96496613 -0.05354558], Reward=-1.0
Step 110: State=[-1.0170874 -0.05212127], Reward=-1.0
Step 111: State=[-1.06771887 -0.05063146], Reward=-1.0
Step 112: State=[-1.11685507 -0.0491362 ], Reward=-1.0
Step 113: State=[-1.16454566 -0.04769059], Reward=-1.0
Step 114: State=[-1.2 0. ], Reward=-1.0
Step 115: State=[-1.1987581 0.0012419], Reward=-1.0
Step 116: State=[-1.19427021 0.0044879 ], Reward=-1.0
Step 117: State=[-1.18652173 0.00774848], Reward=-1.0
Step 118: State=[-1.17548846 0.01103326], Reward=-1.0
Step 119: State=[-1.16113808 0.01435038], Reward=-1.0
Step 120: State=[-1.14343234 0.01770574], Reward=-1.0
Step 121: State=[-1.12233007 0.02110228], Reward=-1.0
Step 122: State=[-1.09779103 0.02453904], Reward=-1.0
Step 123: State=[-1.06978073 0.0280103 ], Reward=-1.0
Step 124: State=[-1.03827616 0.03150456], Reward=-1.0
Step 125: State=[-1.0032725 0.03500367], Reward=-1.0
Step 126: State=[-0.9647905 0.03848199], Reward=-1.0
Step 127: State=[-0.92288452 0.04190598], Reward=-1.0
Step 128: State=[-0.87765038 0.04523414], Reward=-1.0
Step 129: State=[-0.82923273 0.04841765], Reward=-1.0
Step 130: State=[-0.77783078 0.05140195], Reward=-1.0
Step 131: State=[-0.72370164 0.05412914], Reward=-1.0
Step 132: State=[-0.66716026 0.05654138], Reward=-1.0
Step 133: State=[-0.60857514 0.05858511], Reward=-1.0
Step 134: State=[-0.54835959 0.06021555], Reward=-1.0
Step 135: State=[-0.4869585 0.06140109], Reward=-1.0
Step 136: State=[-0.42483166 0.06212684], Reward=-1.0
Step 137: State=[-0.36243478 0.06239688], Reward=-1.0
Step 138: State=[-0.30020009 0.06223469], Reward=-1.0
Step 139: State=[-0.23851824 0.06168185], Reward=-1.0
Step 140: State=[-0.17772322 0.06079502], Reward=-1.0
Step 141: State=[-0.1180812 0.05964202], Reward=-1.0
Step 142: State=[-0.05978395 0.05829725], Reward=-1.0
Step 143: State=[-0.0029466 0.05683735], Reward=-1.0
Step 144: State=[0.05239085 0.05533745], Reward=-1.0
Step 145: State=[0.10625911 0.05386826], Reward=-1.0
Step 146: State=[0.15875332 0.05249421], Reward=-1.0
Step 147: State=[0.21002575 0.05127242], Reward=-1.0
Step 148: State=[0.26027822 0.05025247], Reward=-1.0
Step 149: State=[0.30975487 0.04947665], Reward=-1.0
Step 150: State=[0.35873547 0.0489806 ], Reward=-1.0
Step 151: State=[0.40752939 0.04879392], Reward=-1.0
Step 152: State=[0.45647027 0.04894088], Reward=-1.0
Step 153: State=[0.50591109 0.04944082], Reward=-1.0
###Markdown
We now visualize the preprogrammed car solving the problem.
###Code
show_video()
###Output
_____no_output_____
###Markdown
Reinforcement LearningQ-Learning is a system of rewards that the algorithm gives an agent for successfully moving the environment into a state considered successful. These rewards are the Q-values from which this algorithm takes its name. The final output from the Q-Learning algorithm is a table of Q-values that indicate the reward value of every action that the agent can take, given every possible environment state. The agent must bin continuous state values into a fixed finite number of columns.Learning occurs when the algorithm runs the agent and environment through a series of episodes and updates the Q-values based on the rewards received from actions taken; Figure 12.REINF provides a high-level overview of this reinforcement or Q-Learning loop.**Figure 12.REINF:Reinforcement/Q Learning**The Q-values can dictate action by selecting the action column with the highest Q-value for the current environment state. The choice between choosing a random action and a Q-value driven action is governed by the epsilon ($\epsilon$) parameter, which is the probability of random action.Each time through the training loop, the training algorithm updates the Q-values according to the following equation.$ Q^{new}(s_{t},a_{t}) \leftarrow \underbrace{Q(s_{t},a_{t})}_{\text{old value}} + \underbrace{\alpha}_{\text{learning rate}} \cdot \overbrace{\bigg( \underbrace{\underbrace{r_{t}}_{\text{reward}} + \underbrace{\gamma}_{\text{discount factor}} \cdot \underbrace{\max_{a}Q(s_{t+1}, a)}_{\text{estimate of optimal future value}}}_{\text{new value (temporal difference target)}} - \underbrace{Q(s_{t},a_{t})}_{\text{old value}} \bigg) }^{\text{temporal difference}}$There are several parameters in this equation:* alpha ($\alpha$) - The learning rate, how much should the current step cause the Q-values to be updated.* lambda ($\lambda) - The discount factor is the percentage of future reward that the algorithm should consider in this update.This equation modifies several values:*$Q(s_t,a_t)$ - The Q-table. For each combination of states, what reward would the agent likely receive for performing each action?*$s_t$ - The current state.*$r_t$ - The last reward received.*$a_t$ - The action that the agent will perform.The equation works by calculating a delta (temporal difference) that the equation should apply to the old state. This learning rate ($\alpha) scales this delta. A learning rate of 1.0 would fully implement the temporal difference to the Q-values each iteration and would likely be very chaotic.There are two parts to the temporal difference: the new and old values. The new value is subtracted from the old value to provide a delta; the full amount that we would change the Q-value by if the learning rate did not scale this value. The new value is a summation of the reward received from the last action and the maximum of the Q-values from the resulting state when the client takes this action. It is essential to add the maximum of action Q-values for the new state because it estimates the optimal future values from proceeding with this action. Q-Learning CarWe will now use Q-Learning to produce a car that learns to drive itself. Look out, Tesla! We begin by defining two essential functions.
###Code
import gym
import numpy as np
# This function converts the floating point state values into discrete values.
# This is often called binning. We divide the range that the state values
# might occupy and assign each region to a bucket.
def calc_discrete_state(state):
discrete_state = (state - env.observation_space.low)/buckets
return tuple(discrete_state.astype(np.int))
# Run one game. The q_table to use is provided. We also provide a flag to
# indicate if the game should be rendered/animated. Finally, we also provide
# a flag to indicate if the q_table should be updated.
def run_game(q_table, render, should_update):
done = False
discrete_state = calc_discrete_state(env.reset())
success = False
while not done:
# Exploit or explore
if np.random.random() > epsilon:
# Exploit - use q-table to take current best action
# (and probably refine)
action = np.argmax(q_table[discrete_state])
else:
# Explore - t
action = np.random.randint(0, env.action_space.n)
# Run simulation step
new_state, reward, done, _ = env.step(action)
# Convert continuous state to discrete
new_state_disc = calc_discrete_state(new_state)
# Have we reached the goal position (have we won?)?
if new_state[0] >= env.unwrapped.goal_position:
success = True
# Update q-table
if should_update:
max_future_q = np.max(q_table[new_state_disc])
current_q = q_table[discrete_state + (action,)]
new_q = (1 - LEARNING_RATE) * current_q + LEARNING_RATE * \
(reward + DISCOUNT * max_future_q)
q_table[discrete_state + (action,)] = new_q
discrete_state = new_state_disc
if render:
env.render()
return success
###Output
_____no_output_____
###Markdown
Several hyperparameters are very important for Q-Learning. These parameters will likely need adjustment as you apply Q-Learning to other problems. Because of this, it is crucial to understand the role of each parameter.* **LEARNING_RATE** The rate at which previous Q-values are updated based on new episodes run during training. * **DISCOUNT** The amount of significance to give estimates of future rewards when added to the reward for the current action taken. A value of 0.95 would indicate a discount of 5% to the future reward estimates. * **EPISODES** The number of episodes to train over. Increase this for more complex problems; however, training time also increases.* **SHOW_EVERY** How many episodes to allow to elapse before showing an update.* **DISCRETE_GRID_SIZE** How many buckets to use when converting each of the continuous state variables. For example, [10, 10] indicates that the algorithm should use ten buckets for the first and second state variables.* **START_EPSILON_DECAYING** Epsilon is the probability that the agent will select a random action over what the Q-Table suggests. This value determines the starting probability of randomness.* **END_EPSILON_DECAYING** How many episodes should elapse before epsilon goes to zero and no random actions are permitted. For example, EPISODES//10 means only the first 1/10th of the episodes might have random actions.
###Code
LEARNING_RATE = 0.1
DISCOUNT = 0.95
EPISODES = 50000
SHOW_EVERY = 1000
DISCRETE_GRID_SIZE = [10, 10]
START_EPSILON_DECAYING = 0.5
END_EPSILON_DECAYING = EPISODES//10
###Output
_____no_output_____
###Markdown
We can now make the environment. If we are running in Google COLAB then we wrap the environment to be displayed inside the web browser. Next create the discrete buckets for state and build Q-table.
###Code
if COLAB:
env = wrap_env(gym.make("MountainCar-v0"))
else:
env = gym.make("MountainCar-v0")
epsilon = 1
epsilon_change = epsilon/(END_EPSILON_DECAYING - START_EPSILON_DECAYING)
buckets = (env.observation_space.high - env.observation_space.low)/DISCRETE_GRID_SIZE
q_table = np.random.uniform(low=-3, high=0, size=(DISCRETE_GRID_SIZE + [env.action_space.n]))
success = False
###Output
_____no_output_____
###Markdown
We can now make the environment. If we are running in Google COLAB then we wrap the environment to be displayed inside the web browser. Next, create the discrete buckets for state and build Q-table.
###Code
episode = 0
success_count = 0
# Loop through the required number of episodes
while episode<EPISODES:
episode+=1
done = False
# Run the game. If we are local, display render animation at SHOW_EVERY
# intervals.
if episode % SHOW_EVERY == 0:
print(f"Current episode: {episode}, success: {success_count} ({float(success_count)/SHOW_EVERY})")
success = run_game(q_table, True, False)
success_count = 0
else:
success = run_game(q_table, False, True)
# Count successes
if success:
success_count += 1
# Move epsilon towards its ending value, if it still needs to move
if END_EPSILON_DECAYING >= episode >= START_EPSILON_DECAYING:
epsilon = max(0, epsilon - epsilon_change)
print(success)
###Output
Current episode: 1000, success: 0 (0.0)
Current episode: 2000, success: 0 (0.0)
Current episode: 3000, success: 0 (0.0)
Current episode: 4000, success: 29 (0.029)
Current episode: 5000, success: 345 (0.345)
Current episode: 6000, success: 834 (0.834)
Current episode: 7000, success: 797 (0.797)
Current episode: 8000, success: 679 (0.679)
Current episode: 9000, success: 600 (0.6)
Current episode: 10000, success: 728 (0.728)
Current episode: 11000, success: 205 (0.205)
Current episode: 12000, success: 612 (0.612)
Current episode: 13000, success: 733 (0.733)
Current episode: 14000, success: 1000 (1.0)
Current episode: 15000, success: 998 (0.998)
Current episode: 16000, success: 879 (0.879)
Current episode: 17000, success: 510 (0.51)
Current episode: 18000, success: 615 (0.615)
Current episode: 19000, success: 220 (0.22)
Current episode: 20000, success: 445 (0.445)
Current episode: 21000, success: 627 (0.627)
Current episode: 22000, success: 597 (0.597)
Current episode: 23000, success: 827 (0.827)
Current episode: 24000, success: 862 (0.862)
Current episode: 25000, success: 322 (0.322)
Current episode: 26000, success: 632 (0.632)
Current episode: 27000, success: 613 (0.613)
Current episode: 28000, success: 409 (0.409)
Current episode: 29000, success: 379 (0.379)
Current episode: 30000, success: 320 (0.32)
Current episode: 31000, success: 327 (0.327)
Current episode: 32000, success: 302 (0.302)
Current episode: 33000, success: 308 (0.308)
Current episode: 34000, success: 336 (0.336)
Current episode: 35000, success: 274 (0.274)
Current episode: 36000, success: 281 (0.281)
Current episode: 37000, success: 301 (0.301)
Current episode: 38000, success: 322 (0.322)
Current episode: 39000, success: 292 (0.292)
Current episode: 40000, success: 299 (0.299)
Current episode: 41000, success: 281 (0.281)
Current episode: 42000, success: 233 (0.233)
Current episode: 43000, success: 380 (0.38)
Current episode: 44000, success: 598 (0.598)
Current episode: 45000, success: 933 (0.933)
Current episode: 46000, success: 986 (0.986)
Current episode: 47000, success: 1000 (1.0)
Current episode: 48000, success: 1000 (1.0)
Current episode: 49000, success: 1000 (1.0)
Current episode: 50000, success: 1000 (1.0)
True
###Markdown
As you can see, the number of successful episodes generally increases as training progresses. It is not advisable to stop the first time that we observe 100% success over 1,000 episodes. There is a randomness to most games, so it is not likely that an agent would retain its 100% success rate with a new run. Once you observe that the agent has gotten 100% for several update intervals, it might be safe to stop training. Running and Observing the AgentNow that the algorithm has trained the agent, we can observe the agent in action. You can use the following code to see the agent in action.
###Code
run_game(q_table, True, False)
show_video()
###Output
_____no_output_____
###Markdown
Inspecting the Q-TableWe can also display the Q-table. The following code shows the action that the agent would perform for each environment state. As the weights of a neural network, this table is not straightforward to interpret. Some patterns do emerge in that directions do arise, as seen by calculating the means of rows and columns. The actions seem consistent at upper and lower halves of both velocity and position.
###Code
import pandas as pd
df = pd.DataFrame(q_table.argmax(axis=2))
df.columns = [f'v-{x}' for x in range(DISCRETE_GRID_SIZE[0])]
df.index = [f'p-{x}' for x in range(DISCRETE_GRID_SIZE[1])]
df
df.mean(axis=0)
df.mean(axis=1)
###Output
_____no_output_____
###Markdown
T81-558: Applications of Deep Neural Networks**Module 12: Reinforcement Learning*** Instructor: [Jeff Heaton](https://sites.wustl.edu/jeffheaton/), McKelvey School of Engineering, [Washington University in St. Louis](https://engineering.wustl.edu/Programs/Pages/default.aspx)* For more information visit the [class website](https://sites.wustl.edu/jeffheaton/t81-558/). Module 12 Video Material* Part 12.1: Introduction to the OpenAI Gym [[Video]](https://www.youtube.com/watch?v=_KbUxgyisjM&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_12_01_ai_gym.ipynb)* **Part 12.2: Introduction to Q-Learning** [[Video]](https://www.youtube.com/watch?v=A3sYFcJY3lA&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_12_02_qlearningreinforcement.ipynb)* Part 12.3: Keras Q-Learning in the OpenAI Gym [[Video]](https://www.youtube.com/watch?v=qy1SJmsRhvM&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_12_03_keras_reinforce.ipynb)* Part 12.4: Atari Games with Keras Neural Networks [[Video]](https://www.youtube.com/watch?v=co0SwPWoZh0&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_12_04_atari.ipynb)* Part 12.5: Application of Reinforcement Learning [[Video]](https://www.youtube.com/watch?v=1jQPP3RfwMI&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_12_05_apply_rl.ipynb) Google CoLab InstructionsThe following code ensures that Google CoLab is running the correct version of TensorFlow.
###Code
try:
from google.colab import drive
%tensorflow_version 2.x
COLAB = True
print("Note: using Google CoLab")
except:
print("Note: not using Google CoLab")
COLAB = False
if COLAB:
!sudo apt-get install -y xvfb ffmpeg x11-utils
!pip install -q 'gym==0.10.11'
!pip install -q 'imageio==2.4.0'
!pip install -q PILLOW
!pip install -q 'pyglet==1.3.2'
!pip install -q pyvirtualdisplay
!pip install -q tf-agents
###Output
Reading package lists... Done
Building dependency tree
Reading state information... Done
x11-utils is already the newest version (7.7+3build1).
ffmpeg is already the newest version (7:3.4.6-0ubuntu0.18.04.1).
xvfb is already the newest version (2:1.19.6-1ubuntu4.4).
0 upgraded, 0 newly installed, 0 to remove and 31 not upgraded.
###Markdown
Part 12.2: Introduction to Q-LearningQ-Learning is a foundational technique upon which deep reinforcement learning is based. Before we explore deep reinforcement learning, it is essential to understand Q-Learning. Several components make up any Q-Learning system.* **Agent** - The agent is an entity that exists in an environment that takes actions to affect the state of the environment, to receive rewards.* **Environment** - The environment is the universe that the agent exists in. The environment is always in a specific state that is changed by the actions of the agent.* **Actions** - Steps that can be performed by the agent to alter the environment * **Step** - A step occurs each time that the agent performs an action and potentially changes the environment state.* **Episode** - A chain of steps that ultimately culminates in the environment entering a terminal state.* **Epoch** - A training iteration of the agent that contains some number of episodes.* **Terminal State** - A state in which further actions do not make sense. In many environments, a terminal state occurs when the agent has one, lost, or the environment exceeding the maximum number of steps.Q-Learning works by building a table that suggests an action for every possible state. This approach runs into several problems. First, the environment is usually composed of several continuous numbers, resulting in an infinite number of states. Q-Learning handles continuous states by binning these numeric values into ranges. Additionally, Q-Learning primarily deals with discrete actions, such as pressing a joystick up or down. Out of the box, Q-Learning does not deal with continuous inputs, such as a car's accelerator that can be in a range of positions from released to fully engaged. Researchers have come up with clever tricks to allow Q-Learning to accommodate continuous actions.In the next chapter, we will learn more about deep reinforcement learning. Deep neural networks can help to solve the problems of continuous environments and action spaces. For now, we will apply regular Q-Learning to the Mountain Car problem from OpenAI Gym. Introducing the Mountain CarThis section will demonstrate how Q-Learning can create a solution to the mountain car gym environment. The Mountain car is an environment where a car must climb a mountain. Because gravity is stronger than the car's engine, even with full throttle, it cannot merely accelerate up the steep slope. The vehicle is situated in a valley and must learn to utilize potential energy by driving up the opposite hill before the car can make it to the goal at the top of the rightmost hill.First, it might be helpful to visualize the mountain car environment. The following code shows this environment. This code makes use of TF-Agents to perform this render. Usually, we use TF-Agents for the type of deep reinforcement learning that we will see in the next module. However, for now, TF-Agents is just used to render the mountain care environment.
###Code
import tf_agents
from tf_agents.environments import suite_gym
import PIL.Image
import pyvirtualdisplay
display = pyvirtualdisplay.Display(visible=0, size=(1400, 900)).start()
env_name = 'MountainCar-v0'
env = suite_gym.load(env_name)
env.reset()
PIL.Image.fromarray(env.render())
###Output
_____no_output_____
###Markdown
The mountain car environment provides the following discrete actions:* 0 - Apply left force* 1 - Apply no force* 2 - Apply right forceThe mountain car environment is made up of the following continuous values:* state[0] - Position * state[1] - VelocityThe following code shows an agent that applies full throttle to climb the hill. The cart is not strong enough. It will need to use potential energy from the mountain behind it.
###Code
import gym
from gym.wrappers import Monitor
import glob
import io
import base64
from IPython.display import HTML
from pyvirtualdisplay import Display
from IPython import display as ipythondisplay
display = Display(visible=0, size=(1400, 900))
display.start()
"""
Utility functions to enable video recording of gym environment
and displaying it.
To enable video, just do "env = wrap_env(env)""
"""
def show_video():
mp4list = glob.glob('video/*.mp4')
if len(mp4list) > 0:
mp4 = mp4list[0]
video = io.open(mp4, 'r+b').read()
encoded = base64.b64encode(video)
ipythondisplay.display(HTML(data='''<video alt="test" autoplay
loop controls style="height: 400px;">
<source src="data:video/mp4;base64,{0}" type="video/mp4" />
</video>'''.format(encoded.decode('ascii'))))
else:
print("Could not find video")
def wrap_env(env):
env = Monitor(env, './video', force=True)
return env
import gym
if COLAB:
env = wrap_env(gym.make("MountainCar-v0"))
else:
env = gym.make("MountainCar-v0")
env.reset()
done = False
i = 0
while not done:
i += 1
state, reward, done, _ = env.step(2)
env.render()
print(f"Step {i}: State={state}, Reward={reward}")
env.close()
show_video()
###Output
_____no_output_____
###Markdown
Programmed CarNow we will look at a car that I hand-programmed. This car is straightforward; however, it solves the problem. The programmed car always applies force to one direction or another. It does not break. Whatever direction the vehicle is currently rolling, the agent uses power in that direction. Therefore, the car begins to climb a hill, is overpowered, and turns backward. However, once it starts to roll backward force is immediately applied in this new direction.The following code implements this preprogrammed car.
###Code
import gym
if COLAB:
env = wrap_env(gym.make("MountainCar-v0"))
else:
env = gym.make("MountainCar-v0")
state = env.reset()
done = False
i = 0
while not done:
i += 1
if state[1]>0:
action = 2
else:
action = 0
state, reward, done, _ = env.step(action)
env.render()
print(f"Step {i}: State={state}, Reward={reward}")
env.close()
###Output
Step 1: State=[-0.57730941 -0.00060338], Reward=-1.0
Step 2: State=[-0.5785117 -0.00120229], Reward=-1.0
Step 3: State=[-0.580304 -0.0017923], Reward=-1.0
Step 4: State=[-0.58267307 -0.00236906], Reward=-1.0
Step 5: State=[-0.58560139 -0.00292832], Reward=-1.0
Step 6: State=[-0.58906736 -0.00346598], Reward=-1.0
Step 7: State=[-0.59304548 -0.00397811], Reward=-1.0
Step 8: State=[-0.5975065 -0.00446102], Reward=-1.0
Step 9: State=[-0.60241775 -0.00491125], Reward=-1.0
Step 10: State=[-0.60774335 -0.0053256 ], Reward=-1.0
Step 11: State=[-0.61344454 -0.00570119], Reward=-1.0
Step 12: State=[-0.61948002 -0.00603548], Reward=-1.0
Step 13: State=[-0.62580627 -0.00632625], Reward=-1.0
Step 14: State=[-0.63237791 -0.00657165], Reward=-1.0
Step 15: State=[-0.63914812 -0.00677021], Reward=-1.0
Step 16: State=[-0.64606896 -0.00692084], Reward=-1.0
Step 17: State=[-0.65309179 -0.00702284], Reward=-1.0
Step 18: State=[-0.66016768 -0.00707588], Reward=-1.0
Step 19: State=[-0.66724771 -0.00708003], Reward=-1.0
Step 20: State=[-0.67428342 -0.00703571], Reward=-1.0
Step 21: State=[-0.68122709 -0.00694367], Reward=-1.0
Step 22: State=[-0.68803212 -0.00680503], Reward=-1.0
Step 23: State=[-0.69465331 -0.00662119], Reward=-1.0
Step 24: State=[-0.70104716 -0.00639385], Reward=-1.0
Step 25: State=[-0.70717213 -0.00612496], Reward=-1.0
Step 26: State=[-0.71298884 -0.00581671], Reward=-1.0
Step 27: State=[-0.71846032 -0.00547148], Reward=-1.0
Step 28: State=[-0.72355218 -0.00509185], Reward=-1.0
Step 29: State=[-0.72823271 -0.00468053], Reward=-1.0
Step 30: State=[-0.73247309 -0.00424038], Reward=-1.0
Step 31: State=[-0.73624744 -0.00377435], Reward=-1.0
Step 32: State=[-0.73953293 -0.00328548], Reward=-1.0
Step 33: State=[-0.74230982 -0.00277689], Reward=-1.0
Step 34: State=[-0.74456157 -0.00225175], Reward=-1.0
Step 35: State=[-0.74627483 -0.00171326], Reward=-1.0
Step 36: State=[-0.7474395 -0.00116466], Reward=-1.0
Step 37: State=[-7.48048712e-01 -6.09216585e-04], Reward=-1.0
Step 38: State=[-7.48098908e-01 -5.01962094e-05], Reward=-1.0
Step 39: State=[-7.47589789e-01 5.09118450e-04], Reward=-1.0
Step 40: State=[-0.74452434 0.00306545], Reward=-1.0
Step 41: State=[-0.73892063 0.00560372], Reward=-1.0
Step 42: State=[-0.73081198 0.00810864], Reward=-1.0
Step 43: State=[-0.72024742 0.01056456], Reward=-1.0
Step 44: State=[-0.70729207 0.01295535], Reward=-1.0
Step 45: State=[-0.6920277 0.01526437], Reward=-1.0
Step 46: State=[-0.67455318 0.01747452], Reward=-1.0
Step 47: State=[-0.6549848 0.01956837], Reward=-1.0
Step 48: State=[-0.63345635 0.02152845], Reward=-1.0
Step 49: State=[-0.61011881 0.02333755], Reward=-1.0
Step 50: State=[-0.58513962 0.02497919], Reward=-1.0
Step 51: State=[-0.5587015 0.02643812], Reward=-1.0
Step 52: State=[-0.53100059 0.02770091], Reward=-1.0
Step 53: State=[-0.50224417 0.02875642], Reward=-1.0
Step 54: State=[-0.4726478 0.02959637], Reward=-1.0
Step 55: State=[-0.44243208 0.03021572], Reward=-1.0
Step 56: State=[-0.41181911 0.03061297], Reward=-1.0
Step 57: State=[-0.38102886 0.03079025], Reward=-1.0
Step 58: State=[-0.35027559 0.03075328], Reward=-1.0
Step 59: State=[-0.31976445 0.03051114], Reward=-1.0
Step 60: State=[-0.28968855 0.0300759 ], Reward=-1.0
Step 61: State=[-0.26022651 0.02946204], Reward=-1.0
Step 62: State=[-0.23154055 0.02868596], Reward=-1.0
Step 63: State=[-0.20377533 0.02776522], Reward=-1.0
Step 64: State=[-0.17705734 0.026718 ], Reward=-1.0
Step 65: State=[-0.15149488 0.02556246], Reward=-1.0
Step 66: State=[-0.12717863 0.02431624], Reward=-1.0
Step 67: State=[-0.10418263 0.02299601], Reward=-1.0
Step 68: State=[-0.0825655 0.02161713], Reward=-1.0
Step 69: State=[-0.06237207 0.02019343], Reward=-1.0
Step 70: State=[-0.04363501 0.01873706], Reward=-1.0
Step 71: State=[-0.02637656 0.01725845], Reward=-1.0
Step 72: State=[-0.01061028 0.01576628], Reward=-1.0
Step 73: State=[0.00365726 0.01426754], Reward=-1.0
Step 74: State=[0.01642496 0.01276769], Reward=-1.0
Step 75: State=[0.02769568 0.01127073], Reward=-1.0
Step 76: State=[0.03747504 0.00977935], Reward=-1.0
Step 77: State=[0.04577017 0.00829513], Reward=-1.0
Step 78: State=[0.05258884 0.00681867], Reward=-1.0
Step 79: State=[0.05793855 0.00534971], Reward=-1.0
Step 80: State=[0.06182593 0.00388738], Reward=-1.0
Step 81: State=[0.0642562 0.00243026], Reward=-1.0
Step 82: State=[0.06523276 0.00097657], Reward=-1.0
Step 83: State=[ 0.06475705 -0.00047571], Reward=-1.0
Step 84: State=[ 0.06082837 -0.00392868], Reward=-1.0
Step 85: State=[ 0.0534412 -0.00738717], Reward=-1.0
Step 86: State=[ 0.04258609 -0.01085511], Reward=-1.0
Step 87: State=[ 0.02825135 -0.01433474], Reward=-1.0
Step 88: State=[ 0.01042559 -0.01782576], Reward=-1.0
Step 89: State=[-0.01089895 -0.02132454], Reward=-1.0
Step 90: State=[-0.03572216 -0.0248232 ], Reward=-1.0
Step 91: State=[-0.06403102 -0.02830886], Reward=-1.0
Step 92: State=[-0.0957939 -0.03176288], Reward=-1.0
Step 93: State=[-0.13095425 -0.03516035], Reward=-1.0
Step 94: State=[-0.16942414 -0.03846989], Reward=-1.0
Step 95: State=[-0.21107801 -0.04165386], Reward=-1.0
Step 96: State=[-0.25574716 -0.04466916], Reward=-1.0
Step 97: State=[-0.30321589 -0.04746873], Reward=-1.0
Step 98: State=[-0.35321967 -0.05000379], Reward=-1.0
Step 99: State=[-0.40544638 -0.05222671], Reward=-1.0
Step 100: State=[-0.4595408 -0.05409441], Reward=-1.0
Step 101: State=[-0.51511269 -0.0555719 ], Reward=-1.0
Step 102: State=[-0.57174823 -0.05663553], Reward=-1.0
Step 103: State=[-0.6290239 -0.05727567], Reward=-1.0
Step 104: State=[-0.68652199 -0.0574981 ], Reward=-1.0
Step 105: State=[-0.74384624 -0.05732425], Reward=-1.0
Step 106: State=[-0.80063623 -0.05678999], Reward=-1.0
Step 107: State=[-0.85657951 -0.05594328], Reward=-1.0
Step 108: State=[-0.91142055 -0.05484104], Reward=-1.0
Step 109: State=[-0.96496613 -0.05354558], Reward=-1.0
Step 110: State=[-1.0170874 -0.05212127], Reward=-1.0
Step 111: State=[-1.06771887 -0.05063146], Reward=-1.0
Step 112: State=[-1.11685507 -0.0491362 ], Reward=-1.0
Step 113: State=[-1.16454566 -0.04769059], Reward=-1.0
Step 114: State=[-1.2 0. ], Reward=-1.0
Step 115: State=[-1.1987581 0.0012419], Reward=-1.0
Step 116: State=[-1.19427021 0.0044879 ], Reward=-1.0
Step 117: State=[-1.18652173 0.00774848], Reward=-1.0
Step 118: State=[-1.17548846 0.01103326], Reward=-1.0
Step 119: State=[-1.16113808 0.01435038], Reward=-1.0
Step 120: State=[-1.14343234 0.01770574], Reward=-1.0
Step 121: State=[-1.12233007 0.02110228], Reward=-1.0
Step 122: State=[-1.09779103 0.02453904], Reward=-1.0
Step 123: State=[-1.06978073 0.0280103 ], Reward=-1.0
Step 124: State=[-1.03827616 0.03150456], Reward=-1.0
Step 125: State=[-1.0032725 0.03500367], Reward=-1.0
Step 126: State=[-0.9647905 0.03848199], Reward=-1.0
Step 127: State=[-0.92288452 0.04190598], Reward=-1.0
Step 128: State=[-0.87765038 0.04523414], Reward=-1.0
Step 129: State=[-0.82923273 0.04841765], Reward=-1.0
Step 130: State=[-0.77783078 0.05140195], Reward=-1.0
Step 131: State=[-0.72370164 0.05412914], Reward=-1.0
Step 132: State=[-0.66716026 0.05654138], Reward=-1.0
Step 133: State=[-0.60857514 0.05858511], Reward=-1.0
Step 134: State=[-0.54835959 0.06021555], Reward=-1.0
Step 135: State=[-0.4869585 0.06140109], Reward=-1.0
Step 136: State=[-0.42483166 0.06212684], Reward=-1.0
Step 137: State=[-0.36243478 0.06239688], Reward=-1.0
Step 138: State=[-0.30020009 0.06223469], Reward=-1.0
Step 139: State=[-0.23851824 0.06168185], Reward=-1.0
Step 140: State=[-0.17772322 0.06079502], Reward=-1.0
Step 141: State=[-0.1180812 0.05964202], Reward=-1.0
Step 142: State=[-0.05978395 0.05829725], Reward=-1.0
Step 143: State=[-0.0029466 0.05683735], Reward=-1.0
Step 144: State=[0.05239085 0.05533745], Reward=-1.0
Step 145: State=[0.10625911 0.05386826], Reward=-1.0
Step 146: State=[0.15875332 0.05249421], Reward=-1.0
Step 147: State=[0.21002575 0.05127242], Reward=-1.0
Step 148: State=[0.26027822 0.05025247], Reward=-1.0
Step 149: State=[0.30975487 0.04947665], Reward=-1.0
Step 150: State=[0.35873547 0.0489806 ], Reward=-1.0
Step 151: State=[0.40752939 0.04879392], Reward=-1.0
Step 152: State=[0.45647027 0.04894088], Reward=-1.0
Step 153: State=[0.50591109 0.04944082], Reward=-1.0
###Markdown
We now visualize the preprogrammed car solving the problem.
###Code
show_video()
###Output
_____no_output_____
###Markdown
Reinforcement LearningQ-Learning is a system of rewards that the algorithm gives an agent for successfully moving the environment into a state considered successful. These rewards are the Q-values from which this algorithm takes its name. The final output from the Q-Learning algorithm is a table of Q-values that indicate the reward value of every action that the agent can take, given every possible environment state. The agent must bin continuous state values into a fixed finite number of columns.Learning occurs when the algorithm runs the agent and environment through a series of episodes and updates the Q-values based on the rewards received from actions taken; Figure 12.REINF provides a high-level overview of this reinforcement or Q-Learning loop.**Figure 12.REINF:Reinforcement/Q Learning**The Q-values can dictate action by selecting the action column with the highest Q-value for the current environment state. The choice between choosing a random action and a Q-value driven action is governed by the epsilon ($\epsilon$) parameter, which is the probability of random action.Each time through the training loop, the training algorithm updates the Q-values according to the following equation. $Q^{new}(s_{t},a_{t}) \leftarrow \underbrace{Q(s_{t},a_{t})}_{\text{old value}} + \underbrace{\alpha}_{\text{learning rate}} \cdot \overbrace{\bigg( \underbrace{\underbrace{r_{t}}_{\text{reward}} + \underbrace{\gamma}_{\text{discount factor}} \cdot \underbrace{\max_{a}Q(s_{t+1}, a)}_{\text{estimate of optimal future value}}}_{\text{new value (temporal difference target)}} - \underbrace{Q(s_{t},a_{t})}_{\text{old value}} \bigg) }^{\text{temporal difference}}$ There are several parameters in this equation:* alpha ($\alpha$) - The learning rate, how much should the current step cause the Q-values to be updated.* lambda ($\lambda$) - The discount factor is the percentage of future reward that the algorithm should consider in this update.This equation modifies several values:* $Q(s_t,a_t)$ - The Q-table. For each combination of states, what reward would the agent likely receive for performing each action?* $s_t$ - The current state.* $r_t$ - The last reward received.* $a_t$ - The action that the agent will perform.The equation works by calculating a delta (temporal difference) that the equation should apply to the old state. This learning rate ($\alpha$) scales this delta. A learning rate of 1.0 would fully implement the temporal difference to the Q-values each iteration and would likely be very chaotic.There are two parts to the temporal difference: the new and old values. The new value is subtracted from the old value to provide a delta; the full amount that we would change the Q-value by if the learning rate did not scale this value. The new value is a summation of the reward received from the last action and the maximum of the Q-values from the resulting state when the client takes this action. It is essential to add the maximum of action Q-values for the new state because it estimates the optimal future values from proceeding with this action. Q-Learning CarWe will now use Q-Learning to produce a car that learns to drive itself. Look out, Tesla! We begin by defining two essential functions.
###Code
import gym
import numpy as np
# This function converts the floating point state values into
# discrete values. This is often called binning. We divide
# the range that the state values might occupy and assign
# each region to a bucket.
def calc_discrete_state(state):
discrete_state = (state - env.observation_space.low)/buckets
return tuple(discrete_state.astype(np.int))
# Run one game. The q_table to use is provided. We also
# provide a flag to indicate if the game should be
# rendered/animated. Finally, we also provide
# a flag to indicate if the q_table should be updated.
def run_game(q_table, render, should_update):
done = False
discrete_state = calc_discrete_state(env.reset())
success = False
while not done:
# Exploit or explore
if np.random.random() > epsilon:
# Exploit - use q-table to take current best action
# (and probably refine)
action = np.argmax(q_table[discrete_state])
else:
# Explore - t
action = np.random.randint(0, env.action_space.n)
# Run simulation step
new_state, reward, done, _ = env.step(action)
# Convert continuous state to discrete
new_state_disc = calc_discrete_state(new_state)
# Have we reached the goal position (have we won?)?
if new_state[0] >= env.unwrapped.goal_position:
success = True
# Update q-table
if should_update:
max_future_q = np.max(q_table[new_state_disc])
current_q = q_table[discrete_state + (action,)]
new_q = (1 - LEARNING_RATE) * current_q + LEARNING_RATE * \
(reward + DISCOUNT * max_future_q)
q_table[discrete_state + (action,)] = new_q
discrete_state = new_state_disc
if render:
env.render()
return success
###Output
_____no_output_____
###Markdown
Several hyperparameters are very important for Q-Learning. These parameters will likely need adjustment as you apply Q-Learning to other problems. Because of this, it is crucial to understand the role of each parameter.* **LEARNING_RATE** The rate at which previous Q-values are updated based on new episodes run during training. * **DISCOUNT** The amount of significance to give estimates of future rewards when added to the reward for the current action taken. A value of 0.95 would indicate a discount of 5% to the future reward estimates. * **EPISODES** The number of episodes to train over. Increase this for more complex problems; however, training time also increases.* **SHOW_EVERY** How many episodes to allow to elapse before showing an update.* **DISCRETE_GRID_SIZE** How many buckets to use when converting each of the continuous state variables. For example, [10, 10] indicates that the algorithm should use ten buckets for the first and second state variables.* **START_EPSILON_DECAYING** Epsilon is the probability that the agent will select a random action over what the Q-Table suggests. This value determines the starting probability of randomness.* **END_EPSILON_DECAYING** How many episodes should elapse before epsilon goes to zero and no random actions are permitted. For example, EPISODES//10 means only the first 1/10th of the episodes might have random actions.
###Code
LEARNING_RATE = 0.1
DISCOUNT = 0.95
EPISODES = 50000
SHOW_EVERY = 1000
DISCRETE_GRID_SIZE = [10, 10]
START_EPSILON_DECAYING = 0.5
END_EPSILON_DECAYING = EPISODES//10
###Output
_____no_output_____
###Markdown
We can now make the environment. If we are running in Google COLAB then we wrap the environment to be displayed inside the web browser. Next create the discrete buckets for state and build Q-table.
###Code
if COLAB:
env = wrap_env(gym.make("MountainCar-v0"))
else:
env = gym.make("MountainCar-v0")
epsilon = 1
epsilon_change = epsilon/(END_EPSILON_DECAYING - START_EPSILON_DECAYING)
buckets = (env.observation_space.high - env.observation_space.low) \
/DISCRETE_GRID_SIZE
q_table = np.random.uniform(low=-3, high=0, size=(DISCRETE_GRID_SIZE \
+ [env.action_space.n]))
success = False
###Output
_____no_output_____
###Markdown
We can now make the environment. If we are running in Google COLAB then we wrap the environment to be displayed inside the web browser. Next, create the discrete buckets for state and build Q-table.
###Code
episode = 0
success_count = 0
# Loop through the required number of episodes
while episode<EPISODES:
episode+=1
done = False
# Run the game. If we are local, display render animation at SHOW_EVERY
# intervals.
if episode % SHOW_EVERY == 0:
print(f"Current episode: {episode}, success: {success_count}" +\
" ({float(success_count)/SHOW_EVERY})")
success = run_game(q_table, True, False)
success_count = 0
else:
success = run_game(q_table, False, True)
# Count successes
if success:
success_count += 1
# Move epsilon towards its ending value, if it still needs to move
if END_EPSILON_DECAYING >= episode >= START_EPSILON_DECAYING:
epsilon = max(0, epsilon - epsilon_change)
print(success)
###Output
Current episode: 1000, success: 0 (0.0)
Current episode: 2000, success: 0 (0.0)
Current episode: 3000, success: 0 (0.0)
Current episode: 4000, success: 29 (0.029)
Current episode: 5000, success: 345 (0.345)
Current episode: 6000, success: 834 (0.834)
Current episode: 7000, success: 797 (0.797)
Current episode: 8000, success: 679 (0.679)
Current episode: 9000, success: 600 (0.6)
Current episode: 10000, success: 728 (0.728)
Current episode: 11000, success: 205 (0.205)
Current episode: 12000, success: 612 (0.612)
Current episode: 13000, success: 733 (0.733)
Current episode: 14000, success: 1000 (1.0)
Current episode: 15000, success: 998 (0.998)
Current episode: 16000, success: 879 (0.879)
Current episode: 17000, success: 510 (0.51)
Current episode: 18000, success: 615 (0.615)
Current episode: 19000, success: 220 (0.22)
Current episode: 20000, success: 445 (0.445)
Current episode: 21000, success: 627 (0.627)
Current episode: 22000, success: 597 (0.597)
Current episode: 23000, success: 827 (0.827)
Current episode: 24000, success: 862 (0.862)
Current episode: 25000, success: 322 (0.322)
Current episode: 26000, success: 632 (0.632)
Current episode: 27000, success: 613 (0.613)
Current episode: 28000, success: 409 (0.409)
Current episode: 29000, success: 379 (0.379)
Current episode: 30000, success: 320 (0.32)
Current episode: 31000, success: 327 (0.327)
Current episode: 32000, success: 302 (0.302)
Current episode: 33000, success: 308 (0.308)
Current episode: 34000, success: 336 (0.336)
Current episode: 35000, success: 274 (0.274)
Current episode: 36000, success: 281 (0.281)
Current episode: 37000, success: 301 (0.301)
Current episode: 38000, success: 322 (0.322)
Current episode: 39000, success: 292 (0.292)
Current episode: 40000, success: 299 (0.299)
Current episode: 41000, success: 281 (0.281)
Current episode: 42000, success: 233 (0.233)
Current episode: 43000, success: 380 (0.38)
Current episode: 44000, success: 598 (0.598)
Current episode: 45000, success: 933 (0.933)
Current episode: 46000, success: 986 (0.986)
Current episode: 47000, success: 1000 (1.0)
Current episode: 48000, success: 1000 (1.0)
Current episode: 49000, success: 1000 (1.0)
Current episode: 50000, success: 1000 (1.0)
True
###Markdown
As you can see, the number of successful episodes generally increases as training progresses. It is not advisable to stop the first time that we observe 100% success over 1,000 episodes. There is a randomness to most games, so it is not likely that an agent would retain its 100% success rate with a new run. Once you observe that the agent has gotten 100% for several update intervals, it might be safe to stop training. Running and Observing the AgentNow that the algorithm has trained the agent, we can observe the agent in action. You can use the following code to see the agent in action.
###Code
run_game(q_table, True, False)
show_video()
###Output
_____no_output_____
###Markdown
Inspecting the Q-TableWe can also display the Q-table. The following code shows the action that the agent would perform for each environment state. As the weights of a neural network, this table is not straightforward to interpret. Some patterns do emerge in that directions do arise, as seen by calculating the means of rows and columns. The actions seem consistent at upper and lower halves of both velocity and position.
###Code
import pandas as pd
df = pd.DataFrame(q_table.argmax(axis=2))
df.columns = [f'v-{x}' for x in range(DISCRETE_GRID_SIZE[0])]
df.index = [f'p-{x}' for x in range(DISCRETE_GRID_SIZE[1])]
df
df.mean(axis=0)
df.mean(axis=1)
###Output
_____no_output_____
###Markdown
T81-558: Applications of Deep Neural Networks**Module 12: Deep Learning and Security*** Instructor: [Jeff Heaton](https://sites.wustl.edu/jeffheaton/), McKelvey School of Engineering, [Washington University in St. Louis](https://engineering.wustl.edu/Programs/Pages/default.aspx)* For more information visit the [class website](https://sites.wustl.edu/jeffheaton/t81-558/). Module Video MaterialMain video lecture:* Part 12.1: Introduction to the OpenAI Gym** [[Video]](https://www.youtube.com/playlist?list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_12_01_ai_gym.ipynb)* **Part 12.2: Introduction to Q-Learning** [[Video]](https://www.youtube.com/playlist?list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_12_02_qlearningreinforcement.ipynb)* Part 12.3: Keras Q-Learning in the OpenAI Gym [[Video]](https://www.youtube.com/playlist?list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_12_03_keras_reinforce.ipynb)* Part 12.4: Atari Games with Keras Neural Networks [[Video]](https://www.youtube.com/playlist?list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_12_04_atari.ipynb)* 12.5: How Alpha Zero used Reinforcement Learning to Master Chess [[Video]](https://www.youtube.com/playlist?list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_12_05_alpha_zero.ipynb) Part 12.2: Introduction to Q-Learning Single Action CartMountain car actions:* 0 - Apply left force* 1 - Apply no force* 2 - Apply right forceState values:* state[0] - Position * state[1] - VelocityThe following shows a cart that simply applies full-force to climb the hill. The cart is simply not strong enough. It will need to use momentum from the hill behind it.
###Code
import gym
env = gym.make("MountainCar-v0")
env.reset()
done = False
i = 0
while not done:
i += 1
state, reward, done, _ = env.step(2)
env.render()
print(f"Step {i}: State={state}, Reward={reward}")
env.close()
###Output
Step 1: State=[-4.34475245e-01 3.41983158e-04], Reward=-1.0
Step 2: State=[-0.43379375 0.00068149], Reward=-1.0
Step 3: State=[-0.43277768 0.00101607], Reward=-1.0
Step 4: State=[-0.43143437 0.00134331], Reward=-1.0
Step 5: State=[-0.42977352 0.00166085], Reward=-1.0
Step 6: State=[-0.4278071 0.00196642], Reward=-1.0
Step 7: State=[-0.42554927 0.00225783], Reward=-1.0
Step 8: State=[-0.42301625 0.00253302], Reward=-1.0
Step 9: State=[-0.42022621 0.00279004], Reward=-1.0
Step 10: State=[-0.4171991 0.00302712], Reward=-1.0
Step 11: State=[-0.4139565 0.0032426], Reward=-1.0
Step 12: State=[-0.41052146 0.00343503], Reward=-1.0
Step 13: State=[-0.40691834 0.00360312], Reward=-1.0
Step 14: State=[-0.40317256 0.00374578], Reward=-1.0
Step 15: State=[-0.39931045 0.00386211], Reward=-1.0
Step 16: State=[-0.39535906 0.00395139], Reward=-1.0
Step 17: State=[-0.39134591 0.00401315], Reward=-1.0
Step 18: State=[-0.38729884 0.00404707], Reward=-1.0
Step 19: State=[-0.38324577 0.00405307], Reward=-1.0
Step 20: State=[-0.37921452 0.00403125], Reward=-1.0
Step 21: State=[-0.37523261 0.00398192], Reward=-1.0
Step 22: State=[-0.37132706 0.00390555], Reward=-1.0
Step 23: State=[-0.36752424 0.00380282], Reward=-1.0
Step 24: State=[-0.36384968 0.00367456], Reward=-1.0
Step 25: State=[-0.36032789 0.00352178], Reward=-1.0
Step 26: State=[-0.35698226 0.00334563], Reward=-1.0
Step 27: State=[-0.35383486 0.0031474 ], Reward=-1.0
Step 28: State=[-0.35090636 0.0029285 ], Reward=-1.0
Step 29: State=[-0.34821588 0.00269048], Reward=-1.0
Step 30: State=[-0.34578092 0.00243496], Reward=-1.0
Step 31: State=[-0.34361724 0.00216368], Reward=-1.0
Step 32: State=[-0.34173878 0.00187846], Reward=-1.0
Step 33: State=[-0.3401576 0.00158118], Reward=-1.0
Step 34: State=[-0.33888383 0.00127377], Reward=-1.0
Step 35: State=[-0.3379256 0.00095823], Reward=-1.0
Step 36: State=[-0.33728902 0.00063658], Reward=-1.0
Step 37: State=[-3.36978131e-01 3.10886054e-04], Reward=-1.0
Step 38: State=[-3.36994918e-01 -1.67869874e-05], Reward=-1.0
Step 39: State=[-0.33733927 -0.00034435], Reward=-1.0
Step 40: State=[-0.338009 -0.00066973], Reward=-1.0
Step 41: State=[-0.33899985 -0.00099085], Reward=-1.0
Step 42: State=[-0.34030549 -0.00130565], Reward=-1.0
Step 43: State=[-0.3419176 -0.00161211], Reward=-1.0
Step 44: State=[-0.34382585 -0.00190825], Reward=-1.0
Step 45: State=[-0.34601798 -0.00219213], Reward=-1.0
Step 46: State=[-0.34847985 -0.00246187], Reward=-1.0
Step 47: State=[-0.35119552 -0.00271567], Reward=-1.0
Step 48: State=[-0.35414734 -0.00295182], Reward=-1.0
Step 49: State=[-0.357316 -0.00316867], Reward=-1.0
Step 50: State=[-0.36068071 -0.0033647 ], Reward=-1.0
Step 51: State=[-0.36421923 -0.00353852], Reward=-1.0
Step 52: State=[-0.36790806 -0.00368884], Reward=-1.0
Step 53: State=[-0.37172259 -0.00381452], Reward=-1.0
Step 54: State=[-0.37563718 -0.00391459], Reward=-1.0
Step 55: State=[-0.37962539 -0.00398822], Reward=-1.0
Step 56: State=[-0.38366015 -0.00403476], Reward=-1.0
Step 57: State=[-0.38771389 -0.00405374], Reward=-1.0
Step 58: State=[-0.39175877 -0.00404488], Reward=-1.0
Step 59: State=[-0.39576687 -0.0040081 ], Reward=-1.0
Step 60: State=[-0.39971038 -0.00394351], Reward=-1.0
Step 61: State=[-0.40356181 -0.00385143], Reward=-1.0
Step 62: State=[-0.40729418 -0.00373237], Reward=-1.0
Step 63: State=[-0.41088125 -0.00358707], Reward=-1.0
Step 64: State=[-0.41429768 -0.00341643], Reward=-1.0
Step 65: State=[-0.41751926 -0.00322158], Reward=-1.0
Step 66: State=[-0.42052307 -0.00300381], Reward=-1.0
Step 67: State=[-0.42328769 -0.00276462], Reward=-1.0
Step 68: State=[-0.42579334 -0.00250565], Reward=-1.0
Step 69: State=[-0.42802204 -0.00222871], Reward=-1.0
Step 70: State=[-0.4299578 -0.00193575], Reward=-1.0
Step 71: State=[-0.43158665 -0.00162886], Reward=-1.0
Step 72: State=[-0.43289687 -0.00131022], Reward=-1.0
Step 73: State=[-0.43387899 -0.00098212], Reward=-1.0
Step 74: State=[-0.43452591 -0.00064692], Reward=-1.0
Step 75: State=[-4.34832960e-01 -3.07046553e-04], Reward=-1.0
Step 76: State=[-4.34797909e-01 3.50504375e-05], Reward=-1.0
Step 77: State=[-4.34421016e-01 3.76893819e-04], Reward=-1.0
Step 78: State=[-0.43370501 0.00071601], Reward=-1.0
Step 79: State=[-0.43265506 0.00104995], Reward=-1.0
Step 80: State=[-0.43127875 0.0013763 ], Reward=-1.0
Step 81: State=[-0.42958603 0.00169272], Reward=-1.0
Step 82: State=[-0.4275891 0.00199694], Reward=-1.0
Step 83: State=[-0.42530232 0.00228678], Reward=-1.0
Step 84: State=[-0.42274213 0.00256019], Reward=-1.0
Step 85: State=[-0.41992687 0.00281526], Reward=-1.0
Step 86: State=[-0.41687668 0.00305019], Reward=-1.0
Step 87: State=[-0.41361329 0.00326338], Reward=-1.0
Step 88: State=[-0.41015992 0.00345338], Reward=-1.0
Step 89: State=[-0.406541 0.00361891], Reward=-1.0
Step 90: State=[-0.40278209 0.00375891], Reward=-1.0
Step 91: State=[-0.39890959 0.0038725 ], Reward=-1.0
Step 92: State=[-0.3949506 0.00395899], Reward=-1.0
Step 93: State=[-0.3909327 0.0040179], Reward=-1.0
Step 94: State=[-0.38688374 0.00404897], Reward=-1.0
Step 95: State=[-0.38283163 0.00405211], Reward=-1.0
Step 96: State=[-0.37880417 0.00402746], Reward=-1.0
Step 97: State=[-0.37482884 0.00397533], Reward=-1.0
Step 98: State=[-0.37093261 0.00389623], Reward=-1.0
Step 99: State=[-0.36714176 0.00379085], Reward=-1.0
Step 100: State=[-0.36348173 0.00366003], Reward=-1.0
Step 101: State=[-0.35997693 0.00350481], Reward=-1.0
Step 102: State=[-0.35665059 0.00332633], Reward=-1.0
Step 103: State=[-0.35352468 0.00312592], Reward=-1.0
Step 104: State=[-0.35061969 0.00290499], Reward=-1.0
Step 105: State=[-0.3479546 0.00266509], Reward=-1.0
Step 106: State=[-0.34554671 0.00240788], Reward=-1.0
Step 107: State=[-0.34341162 0.0021351 ], Reward=-1.0
Step 108: State=[-0.34156307 0.00184855], Reward=-1.0
Step 109: State=[-0.34001293 0.00155014], Reward=-1.0
Step 110: State=[-0.33877112 0.00124181], Reward=-1.0
Step 111: State=[-0.33784557 0.00092555], Reward=-1.0
Step 112: State=[-0.33724218 0.00060339], Reward=-1.0
Step 113: State=[-3.36964779e-01 2.77398044e-04], Reward=-1.0
Step 114: State=[-3.37015139e-01 -5.03598439e-05], Reward=-1.0
Step 115: State=[-0.33739294 -0.0003778 ], Reward=-1.0
Step 116: State=[-0.33809577 -0.00070283], Reward=-1.0
Step 117: State=[-0.33911917 -0.0010234 ], Reward=-1.0
Step 118: State=[-0.3404566 -0.00133744], Reward=-1.0
Step 119: State=[-0.34209954 -0.00164293], Reward=-1.0
Step 120: State=[-0.34403744 -0.0019379 ], Reward=-1.0
Step 121: State=[-0.34625786 -0.00222042], Reward=-1.0
Step 122: State=[-0.34874647 -0.00248861], Reward=-1.0
Step 123: State=[-0.35148716 -0.00274069], Reward=-1.0
Step 124: State=[-0.35446209 -0.00297493], Reward=-1.0
Step 125: State=[-0.3576518 -0.00318972], Reward=-1.0
Step 126: State=[-0.36103534 -0.00338354], Reward=-1.0
Step 127: State=[-0.36459035 -0.00355501], Reward=-1.0
Step 128: State=[-0.36829321 -0.00370285], Reward=-1.0
Step 129: State=[-0.37211916 -0.00382596], Reward=-1.0
Step 130: State=[-0.37604252 -0.00392335], Reward=-1.0
Step 131: State=[-0.38003675 -0.00399424], Reward=-1.0
Step 132: State=[-0.38407472 -0.00403797], Reward=-1.0
Step 133: State=[-0.38812884 -0.00405411], Reward=-1.0
Step 134: State=[-0.39217123 -0.0040424 ], Reward=-1.0
Step 135: State=[-0.396174 -0.00400276], Reward=-1.0
Step 136: State=[-0.40010934 -0.00393534], Reward=-1.0
Step 137: State=[-0.40394981 -0.00384047], Reward=-1.0
Step 138: State=[-0.4076685 -0.00371869], Reward=-1.0
Step 139: State=[-0.41123925 -0.00357075], Reward=-1.0
Step 140: State=[-0.41463682 -0.00339758], Reward=-1.0
Step 141: State=[-0.41783713 -0.00320031], Reward=-1.0
Step 142: State=[-0.42081742 -0.00298028], Reward=-1.0
Step 143: State=[-0.42355641 -0.00273899], Reward=-1.0
Step 144: State=[-0.4260345 -0.00247809], Reward=-1.0
Step 145: State=[-0.42823392 -0.00219942], Reward=-1.0
Step 146: State=[-0.43013886 -0.00190494], Reward=-1.0
Step 147: State=[-0.4317356 -0.00159674], Reward=-1.0
Step 148: State=[-0.43301262 -0.00127703], Reward=-1.0
Step 149: State=[-0.43396072 -0.00094809], Reward=-1.0
Step 150: State=[-0.43457302 -0.0006123 ], Reward=-1.0
Step 151: State=[-4.34845105e-01 -2.72086653e-04], Reward=-1.0
Step 152: State=[-4.34775007e-01 7.00982155e-05], Reward=-1.0
Step 153: State=[-4.34363231e-01 4.11775888e-04], Reward=-1.0
###Markdown
Programmed CarThis is a car that I hand-programmed. It uses a simple rule, but solves the problem. The programmed car constantly applies force to one direction or another. It does not reset. Whatever direction the car is currently rolling, it applies force in that direction. Therefore, the car begins to climb a hill, is overpowered, and rolls backward. However, once it begins to roll backwards force is immediately applied in this new direction.
###Code
import gym
env = gym.make("MountainCar-v0")
state = env.reset()
done = False
i = 0
while not done:
i += 1
if state[1]>0:
action = 2
else:
action = 1
state, reward, done, _ = env.step(action)
env.render()
print(f"Step {i}: State={state}, Reward={reward}")
env.close()
###Output
Step 1: State=[-4.64341884e-01 -4.45376842e-04], Reward=-1.0
Step 2: State=[-0.46522935 -0.00088747], Reward=-1.0
Step 3: State=[-0.46655235 -0.001323 ], Reward=-1.0
Step 4: State=[-0.46830112 -0.00174877], Reward=-1.0
Step 5: State=[-0.47046272 -0.0021616 ], Reward=-1.0
Step 6: State=[-0.47302115 -0.00255843], Reward=-1.0
Step 7: State=[-0.47595746 -0.00293631], Reward=-1.0
Step 8: State=[-0.47924987 -0.00329241], Reward=-1.0
Step 9: State=[-0.48287391 -0.00362404], Reward=-1.0
Step 10: State=[-0.48680263 -0.00392872], Reward=-1.0
Step 11: State=[-0.49100676 -0.00420413], Reward=-1.0
Step 12: State=[-0.49545495 -0.00444818], Reward=-1.0
Step 13: State=[-0.50011396 -0.00465901], Reward=-1.0
Step 14: State=[-0.50494896 -0.004835 ], Reward=-1.0
Step 15: State=[-0.50992376 -0.0049748 ], Reward=-1.0
Step 16: State=[-0.51500109 -0.00507733], Reward=-1.0
Step 17: State=[-0.5201429 -0.00514181], Reward=-1.0
Step 18: State=[-0.52531063 -0.00516773], Reward=-1.0
Step 19: State=[-0.53046552 -0.00515489], Reward=-1.0
Step 20: State=[-0.53556891 -0.00510339], Reward=-1.0
Step 21: State=[-0.54058255 -0.00501364], Reward=-1.0
Step 22: State=[-0.54546886 -0.00488631], Reward=-1.0
Step 23: State=[-0.55019127 -0.00472241], Reward=-1.0
Step 24: State=[-0.55471444 -0.00452317], Reward=-1.0
Step 25: State=[-0.55900458 -0.00429014], Reward=-1.0
Step 26: State=[-0.56302968 -0.0040251 ], Reward=-1.0
Step 27: State=[-0.56675974 -0.00373006], Reward=-1.0
Step 28: State=[-0.57016699 -0.00340725], Reward=-1.0
Step 29: State=[-0.57322612 -0.00305913], Reward=-1.0
Step 30: State=[-0.57591442 -0.0026883 ], Reward=-1.0
Step 31: State=[-0.57821195 -0.00229754], Reward=-1.0
Step 32: State=[-0.58010172 -0.00188977], Reward=-1.0
Step 33: State=[-0.58156974 -0.00146802], Reward=-1.0
Step 34: State=[-0.58260517 -0.00103543], Reward=-1.0
Step 35: State=[-0.58320036 -0.00059519], Reward=-1.0
Step 36: State=[-5.83350916e-01 -1.50554466e-04], Reward=-1.0
Step 37: State=[-5.83055725e-01 2.95190429e-04], Reward=-1.0
Step 38: State=[-0.58131697 0.00173876], Reward=-1.0
Step 39: State=[-0.57814749 0.00316948], Reward=-1.0
Step 40: State=[-0.57357071 0.00457677], Reward=-1.0
Step 41: State=[-0.56762055 0.00595016], Reward=-1.0
Step 42: State=[-0.56034118 0.00727937], Reward=-1.0
Step 43: State=[-0.5517868 0.00855438], Reward=-1.0
Step 44: State=[-0.54202127 0.00976554], Reward=-1.0
Step 45: State=[-0.53111764 0.01090363], Reward=-1.0
Step 46: State=[-0.51915762 0.01196002], Reward=-1.0
Step 47: State=[-0.5062309 0.01292671], Reward=-1.0
Step 48: State=[-0.49243439 0.01379651], Reward=-1.0
Step 49: State=[-0.47787127 0.01456312], Reward=-1.0
Step 50: State=[-0.46265003 0.01522124], Reward=-1.0
Step 51: State=[-0.44688337 0.01576667], Reward=-1.0
Step 52: State=[-0.430687 0.01619637], Reward=-1.0
Step 53: State=[-0.41417849 0.01650852], Reward=-1.0
Step 54: State=[-0.39747596 0.01670252], Reward=-1.0
Step 55: State=[-0.38069695 0.01677901], Reward=-1.0
Step 56: State=[-0.36395718 0.01673978], Reward=-1.0
Step 57: State=[-0.34736946 0.01658771], Reward=-1.0
Step 58: State=[-0.33104275 0.01632671], Reward=-1.0
Step 59: State=[-0.31508122 0.01596153], Reward=-1.0
Step 60: State=[-0.29958355 0.01549767], Reward=-1.0
Step 61: State=[-0.28464235 0.0149412 ], Reward=-1.0
Step 62: State=[-0.27034373 0.01429863], Reward=-1.0
Step 63: State=[-0.25676698 0.01357675], Reward=-1.0
Step 64: State=[-0.24398448 0.0127825 ], Reward=-1.0
Step 65: State=[-0.23206166 0.01192282], Reward=-1.0
Step 66: State=[-0.22105707 0.01100459], Reward=-1.0
Step 67: State=[-0.21102259 0.01003448], Reward=-1.0
Step 68: State=[-0.20200366 0.00901894], Reward=-1.0
Step 69: State=[-0.19403954 0.00796412], Reward=-1.0
Step 70: State=[-0.18716367 0.00687587], Reward=-1.0
Step 71: State=[-0.18140396 0.00575971], Reward=-1.0
Step 72: State=[-0.17678308 0.00462087], Reward=-1.0
Step 73: State=[-0.17331878 0.0034643 ], Reward=-1.0
Step 74: State=[-0.17102409 0.0022947 ], Reward=-1.0
Step 75: State=[-0.16990749 0.0011166 ], Reward=-1.0
Step 76: State=[-1.69973098e-01 -6.56048800e-05], Reward=-1.0
Step 77: State=[-0.17222066 -0.00224756], Reward=-1.0
Step 78: State=[-0.17664191 -0.00442125], Reward=-1.0
Step 79: State=[-0.18322027 -0.00657836], Reward=-1.0
Step 80: State=[-0.19193038 -0.00871011], Reward=-1.0
Step 81: State=[-0.2027374 -0.01080702], Reward=-1.0
Step 82: State=[-0.21559609 -0.01285869], Reward=-1.0
Step 83: State=[-0.23044985 -0.01485375], Reward=-1.0
Step 84: State=[-0.24722956 -0.01677972], Reward=-1.0
Step 85: State=[-0.26585261 -0.01862304], Reward=-1.0
Step 86: State=[-0.28622179 -0.02036918], Reward=-1.0
Step 87: State=[-0.30822459 -0.0220028 ], Reward=-1.0
Step 88: State=[-0.33173263 -0.02350804], Reward=-1.0
Step 89: State=[-0.35660151 -0.02486888], Reward=-1.0
Step 90: State=[-0.38267114 -0.02606962], Reward=-1.0
Step 91: State=[-0.40976651 -0.02709537], Reward=-1.0
Step 92: State=[-0.43769913 -0.02793262], Reward=-1.0
Step 93: State=[-0.46626888 -0.02856976], Reward=-1.0
Step 94: State=[-0.4952665 -0.02899761], Reward=-1.0
Step 95: State=[-0.52447635 -0.02920985], Reward=-1.0
Step 96: State=[-0.55367962 -0.02920327], Reward=-1.0
Step 97: State=[-0.58265759 -0.02897797], Reward=-1.0
Step 98: State=[-0.61119493 -0.02853734], Reward=-1.0
Step 99: State=[-0.63908283 -0.02788791], Reward=-1.0
Step 100: State=[-0.66612183 -0.027039 ], Reward=-1.0
Step 101: State=[-0.69212418 -0.02600235], Reward=-1.0
Step 102: State=[-0.71691575 -0.02479157], Reward=-1.0
Step 103: State=[-0.74033736 -0.02342161], Reward=-1.0
Step 104: State=[-0.76224558 -0.02190822], Reward=-1.0
Step 105: State=[-0.78251298 -0.0202674 ], Reward=-1.0
Step 106: State=[-0.80102798 -0.018515 ], Reward=-1.0
Step 107: State=[-0.81769429 -0.01666632], Reward=-1.0
Step 108: State=[-0.83243012 -0.01473583], Reward=-1.0
Step 109: State=[-0.84516716 -0.01273703], Reward=-1.0
Step 110: State=[-0.85584949 -0.01068233], Reward=-1.0
Step 111: State=[-0.86443254 -0.00858305], Reward=-1.0
Step 112: State=[-0.87088206 -0.00644952], Reward=-1.0
Step 113: State=[-0.87517322 -0.00429117], Reward=-1.0
Step 114: State=[-0.87728998 -0.00211676], Reward=-1.0
Step 115: State=[-8.77224540e-01 6.54411254e-05], Reward=-1.0
Step 116: State=[-0.87397714 0.0032474 ], Reward=-1.0
Step 117: State=[-0.86755977 0.00641737], Reward=-1.0
Step 118: State=[-0.85799673 0.00956304], Reward=-1.0
Step 119: State=[-0.84532571 0.01267102], Reward=-1.0
Step 120: State=[-0.82959932 0.0157264 ], Reward=-1.0
Step 121: State=[-0.81088695 0.01871237], Reward=-1.0
Step 122: State=[-0.78927693 0.02161002], Reward=-1.0
Step 123: State=[-0.7648787 0.02439823], Reward=-1.0
Step 124: State=[-0.7378248 0.0270539], Reward=-1.0
Step 125: State=[-0.70827255 0.02955225], Reward=-1.0
Step 126: State=[-0.67640502 0.03186753], Reward=-1.0
Step 127: State=[-0.64243116 0.03397386], Reward=-1.0
Step 128: State=[-0.60658482 0.03584634], Reward=-1.0
Step 129: State=[-0.56912249 0.03746233], Reward=-1.0
Step 130: State=[-0.5303198 0.03880269], Reward=-1.0
Step 131: State=[-0.4904667 0.0398531], Reward=-1.0
Step 132: State=[-0.44986168 0.04060502], Reward=-1.0
Step 133: State=[-0.40880519 0.04105649], Reward=-1.0
Step 134: State=[-0.36759274 0.04121245], Reward=-1.0
Step 135: State=[-0.32650808 0.04108466], Reward=-1.0
Step 136: State=[-0.28581697 0.04069111], Reward=-1.0
Step 137: State=[-0.24576177 0.0400552 ], Reward=-1.0
Step 138: State=[-0.20655732 0.03920446], Reward=-1.0
Step 139: State=[-0.16838803 0.03816928], Reward=-1.0
Step 140: State=[-0.13140649 0.03698154], Reward=-1.0
Step 141: State=[-0.09573318 0.0356733 ], Reward=-1.0
Step 142: State=[-0.06145748 0.0342757 ], Reward=-1.0
Step 143: State=[-0.02863941 0.03281807], Reward=-1.0
Step 144: State=[0.00268788 0.03132729], Reward=-1.0
Step 145: State=[0.03251526 0.02982738], Reward=-1.0
Step 146: State=[0.06085452 0.02833926], Reward=-1.0
Step 147: State=[0.08773532 0.02688081], Reward=-1.0
Step 148: State=[0.11320223 0.0254669 ], Reward=-1.0
Step 149: State=[0.13731192 0.02410969], Reward=-1.0
Step 150: State=[0.16013074 0.02281882], Reward=-1.0
Step 151: State=[0.18173253 0.02160179], Reward=-1.0
Step 152: State=[0.20219675 0.02046422], Reward=-1.0
Step 153: State=[0.22160698 0.01941023], Reward=-1.0
Step 154: State=[0.24004965 0.01844266], Reward=-1.0
Step 155: State=[0.25761304 0.0175634 ], Reward=-1.0
###Markdown
Reinforcement Learning Q-Learning CarWe will now use Q-Learning to produce a car that learns to drive itself. Look out Tesla! Q-Learning works by building a table that provides a lookup table to determine which of several actions should be taken. As we move through a number of training episodes this table is refined.$ Q^{new}(s_{t},a_{t}) \leftarrow (1-\alpha) \cdot \underbrace{Q(s_{t},a_{t})}_{\text{old value}} + \underbrace{\alpha}_{\text{learning rate}} \cdot \overbrace{\bigg( \underbrace{r_{t}}_{\text{reward}} + \underbrace{\gamma}_{\text{discount factor}} \cdot \underbrace{\max_{a}Q(s_{t+1}, a)}_{\text{estimate of optimal future value}} \bigg) }^{\text{learned value}} $
###Code
import gym
import numpy as np
def calc_discrete_state(state):
discrete_state = (state - env.observation_space.low)/buckets
return tuple(discrete_state.astype(np.int))
def run_game(q_table, render, should_update):
done = False
discrete_state = calc_discrete_state(env.reset())
success = False
while not done:
# Exploit or explore
if np.random.random() > epsilon:
# Exploit - use q-table to take current best action (and probably refine)
action = np.argmax(q_table[discrete_state])
else:
# Explore - t
action = np.random.randint(0, env.action_space.n)
# Run simulation step
new_state, reward, done, _ = env.step(action)
#
new_state_disc = calc_discrete_state(new_state)
#
if new_state[0] >= env.goal_position:
success = True
# Update q-table
if should_update:
max_future_q = np.max(q_table[new_state_disc])
current_q = q_table[discrete_state + (action,)]
new_q = (1 - LEARNING_RATE) * current_q + LEARNING_RATE * (reward + DISCOUNT * max_future_q)
q_table[discrete_state + (action,)] = new_q
discrete_state = new_state_disc
if render:
env.render()
return success
LEARNING_RATE = 0.1
DISCOUNT = 0.95
EPISODES = 10000
SHOW_EVERY = 1000
DISCRETE_GRID_SIZE = [10, 10]
START_EPSILON_DECAYING = 1
END_EPSILON_DECAYING = EPISODES//2
env = gym.make("MountainCar-v0")
epsilon = 1
epsilon_change = epsilon/(END_EPSILON_DECAYING - START_EPSILON_DECAYING)
buckets = (env.observation_space.high - env.observation_space.low)/DISCRETE_GRID_SIZE
q_table = np.random.uniform(low=-3, high=0, size=(DISCRETE_GRID_SIZE + [env.action_space.n]))
success = False
episode = 0
success_count = 0
while episode<EPISODES:
episode+=1
done = False
if episode % SHOW_EVERY == 0:
print(f"Current episode: {episode}, success: {success_count} ({float(success_count)/SHOW_EVERY})")
success = run_game(q_table, True, False)
success_count = 0
else:
success = run_game(q_table, False, True)
if success:
success_count += 1
# Move epsilon towards its ending value, if it still needs to move
if END_EPSILON_DECAYING >= episode >= START_EPSILON_DECAYING:
epsilon -= epsilon_change
print(success)
run_game(q_table, True, False)
import pandas as pd
df = pd.DataFrame(q_table.argmax(axis=2))
df.columns = [f'v-{x}' for x in range(DISCRETE_GRID_SIZE[0])]
df.index = [f'p-{x}' for x in range(DISCRETE_GRID_SIZE[1])]
df
DISCRETE_OS_SIZE[0]
np.argmax(q_table[(2,0)])
###Output
_____no_output_____
###Markdown
T81-558: Applications of Deep Neural Networks**Module 12: Deep Learning and Security*** Instructor: [Jeff Heaton](https://sites.wustl.edu/jeffheaton/), McKelvey School of Engineering, [Washington University in St. Louis](https://engineering.wustl.edu/Programs/Pages/default.aspx)* For more information visit the [class website](https://sites.wustl.edu/jeffheaton/t81-558/). Module 12 Video Material* Part 12.1: Introduction to the OpenAI Gym [[Video]](https://www.youtube.com/watch?v=_KbUxgyisjM&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_12_01_ai_gym.ipynb)* **Part 12.2: Introduction to Q-Learning** [[Video]](https://www.youtube.com/watch?v=uwcXWe_Fra0&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_12_02_qlearningreinforcement.ipynb)* Part 12.3: Keras Q-Learning in the OpenAI Gym [[Video]](https://www.youtube.com/watch?v=Ya1gYt63o3M&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_12_03_keras_reinforce.ipynb)* Part 12.4: Atari Games with Keras Neural Networks [[Video]](https://www.youtube.com/watch?v=t2yIu6cRa38&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_12_04_atari.ipynb)* Part 12.5: How Alpha Zero used Reinforcement Learning to Master Chess [[Video]](https://www.youtube.com/watch?v=ikDgyD7nVI8&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_12_05_alpha_zero.ipynb) Part 12.2: Introduction to Q-Learning Single Action CartMountain car actions:* 0 - Apply left force* 1 - Apply no force* 2 - Apply right forceState values:* state[0] - Position * state[1] - VelocityThe following shows a cart that simply applies full-force to climb the hill. The cart is simply not strong enough. It will need to use momentum from the hill behind it.
###Code
import gym
env = gym.make("MountainCar-v0")
env.reset()
done = False
i = 0
while not done:
i += 1
state, reward, done, _ = env.step(2)
env.render()
print(f"Step {i}: State={state}, Reward={reward}")
env.close()
###Output
Step 1: State=[-0.54298351 0.00115394], Reward=-1.0
Step 2: State=[-0.54068426 0.00229925], Reward=-1.0
Step 3: State=[-0.53725693 0.00342733], Reward=-1.0
Step 4: State=[-0.53272719 0.00452974], Reward=-1.0
Step 5: State=[-0.527129 0.00559819], Reward=-1.0
Step 6: State=[-0.52050433 0.00662467], Reward=-1.0
Step 7: State=[-0.51290287 0.00760146], Reward=-1.0
Step 8: State=[-0.50438161 0.00852126], Reward=-1.0
Step 9: State=[-0.4950044 0.00937721], Reward=-1.0
Step 10: State=[-0.48484139 0.01016301], Reward=-1.0
Step 11: State=[-0.47396841 0.01087299], Reward=-1.0
Step 12: State=[-0.46246627 0.01150213], Reward=-1.0
Step 13: State=[-0.45042007 0.0120462 ], Reward=-1.0
Step 14: State=[-0.43791831 0.01250176], Reward=-1.0
Step 15: State=[-0.4250521 0.01286621], Reward=-1.0
Step 16: State=[-0.41191426 0.01313783], Reward=-1.0
Step 17: State=[-0.39859848 0.01331578], Reward=-1.0
Step 18: State=[-0.38519838 0.0134001 ], Reward=-1.0
Step 19: State=[-0.37180672 0.01339166], Reward=-1.0
Step 20: State=[-0.35851456 0.01329216], Reward=-1.0
Step 21: State=[-0.34541053 0.01310403], Reward=-1.0
Step 22: State=[-0.33258017 0.01283036], Reward=-1.0
Step 23: State=[-0.32010531 0.01247486], Reward=-1.0
Step 24: State=[-0.30806361 0.0120417 ], Reward=-1.0
Step 25: State=[-0.29652811 0.0115355 ], Reward=-1.0
Step 26: State=[-0.28556694 0.01096116], Reward=-1.0
Step 27: State=[-0.27524312 0.01032383], Reward=-1.0
Step 28: State=[-0.26561434 0.00962878], Reward=-1.0
Step 29: State=[-0.25673298 0.00888136], Reward=-1.0
Step 30: State=[-0.24864606 0.00808693], Reward=-1.0
Step 31: State=[-0.24139526 0.0072508 ], Reward=-1.0
Step 32: State=[-0.23501706 0.0063782 ], Reward=-1.0
Step 33: State=[-0.22954281 0.00547425], Reward=-1.0
Step 34: State=[-0.22499885 0.00454396], Reward=-1.0
Step 35: State=[-0.22140666 0.00359218], Reward=-1.0
Step 36: State=[-0.21878297 0.00262369], Reward=-1.0
Step 37: State=[-0.21713985 0.00164313], Reward=-1.0
Step 38: State=[-0.21648478 0.00065507], Reward=-1.0
Step 39: State=[-0.21682075 -0.00033597], Reward=-1.0
Step 40: State=[-0.21814623 -0.00132548], Reward=-1.0
Step 41: State=[-0.22045518 -0.00230895], Reward=-1.0
Step 42: State=[-0.22373702 -0.00328184], Reward=-1.0
Step 43: State=[-0.22797653 -0.00423951], Reward=-1.0
Step 44: State=[-0.23315378 -0.00517725], Reward=-1.0
Step 45: State=[-0.239244 -0.00609022], Reward=-1.0
Step 46: State=[-0.24621747 -0.00697347], Reward=-1.0
Step 47: State=[-0.25403939 -0.00782191], Reward=-1.0
Step 48: State=[-0.26266974 -0.00863035], Reward=-1.0
Step 49: State=[-0.27206323 -0.0093935 ], Reward=-1.0
Step 50: State=[-0.28216923 -0.010106 ], Reward=-1.0
Step 51: State=[-0.29293174 -0.01076251], Reward=-1.0
Step 52: State=[-0.30428945 -0.01135771], Reward=-1.0
Step 53: State=[-0.31617585 -0.0118864 ], Reward=-1.0
Step 54: State=[-0.32851945 -0.0123436 ], Reward=-1.0
Step 55: State=[-0.34124405 -0.0127246 ], Reward=-1.0
Step 56: State=[-0.3542691 -0.01302505], Reward=-1.0
Step 57: State=[-0.36751021 -0.01324111], Reward=-1.0
Step 58: State=[-0.38087966 -0.01336945], Reward=-1.0
Step 59: State=[-0.3942871 -0.01340744], Reward=-1.0
Step 60: State=[-0.40764024 -0.01335314], Reward=-1.0
Step 61: State=[-0.42084563 -0.01320539], Reward=-1.0
Step 62: State=[-0.43380952 -0.01296389], Reward=-1.0
Step 63: State=[-0.44643872 -0.0126292 ], Reward=-1.0
Step 64: State=[-0.45864146 -0.01220274], Reward=-1.0
Step 65: State=[-0.47032831 -0.01168684], Reward=-1.0
Step 66: State=[-0.48141298 -0.01108468], Reward=-1.0
Step 67: State=[-0.49181321 -0.01040022], Reward=-1.0
Step 68: State=[-0.50145146 -0.00963826], Reward=-1.0
Step 69: State=[-0.5102557 -0.00880424], Reward=-1.0
Step 70: State=[-0.51815998 -0.00790428], Reward=-1.0
Step 71: State=[-0.52510506 -0.00694507], Reward=-1.0
Step 72: State=[-0.53103883 -0.00593378], Reward=-1.0
Step 73: State=[-0.53591681 -0.00487798], Reward=-1.0
Step 74: State=[-0.53970243 -0.00378562], Reward=-1.0
Step 75: State=[-0.54236732 -0.00266489], Reward=-1.0
Step 76: State=[-0.54389151 -0.0015242 ], Reward=-1.0
Step 77: State=[-5.44263607e-01 -3.72094556e-04], Reward=-1.0
Step 78: State=[-0.54348081 0.00078279], Reward=-1.0
Step 79: State=[-0.541549 0.00193182], Reward=-1.0
Step 80: State=[-0.53848261 0.00306638], Reward=-1.0
Step 81: State=[-0.53430464 0.00417797], Reward=-1.0
Step 82: State=[-0.52904639 0.00525825], Reward=-1.0
Step 83: State=[-0.52274728 0.00629911], Reward=-1.0
Step 84: State=[-0.51545456 0.00729272], Reward=-1.0
Step 85: State=[-0.50722291 0.00823165], Reward=-1.0
Step 86: State=[-0.49811404 0.00910888], Reward=-1.0
Step 87: State=[-0.48819611 0.00991793], Reward=-1.0
Step 88: State=[-0.4775432 0.01065291], Reward=-1.0
Step 89: State=[-0.46623461 0.01130859], Reward=-1.0
Step 90: State=[-0.45435414 0.01188048], Reward=-1.0
Step 91: State=[-0.44198927 0.01236487], Reward=-1.0
Step 92: State=[-0.42923038 0.01275889], Reward=-1.0
Step 93: State=[-0.41616983 0.01306055], Reward=-1.0
Step 94: State=[-0.40290112 0.01326871], Reward=-1.0
Step 95: State=[-0.389518 0.01338313], Reward=-1.0
Step 96: State=[-0.37611358 0.01340442], Reward=-1.0
Step 97: State=[-0.36277956 0.01333402], Reward=-1.0
Step 98: State=[-0.34960543 0.01317413], Reward=-1.0
Step 99: State=[-0.3366778 0.01292763], Reward=-1.0
Step 100: State=[-0.32407975 0.01259805], Reward=-1.0
Step 101: State=[-0.31189033 0.01218942], Reward=-1.0
Step 102: State=[-0.3001841 0.01170623], Reward=-1.0
Step 103: State=[-0.28903082 0.01115328], Reward=-1.0
Step 104: State=[-0.27849515 0.01053567], Reward=-1.0
Step 105: State=[-0.26863652 0.00985862], Reward=-1.0
Step 106: State=[-0.25950904 0.00912749], Reward=-1.0
Step 107: State=[-0.25116142 0.00834761], Reward=-1.0
Step 108: State=[-0.24363708 0.00752434], Reward=-1.0
Step 109: State=[-0.23697416 0.00666292], Reward=-1.0
Step 110: State=[-0.23120564 0.00576852], Reward=-1.0
Step 111: State=[-0.22635946 0.00484618], Reward=-1.0
Step 112: State=[-0.22245866 0.0039008 ], Reward=-1.0
Step 113: State=[-0.21952148 0.00293718], Reward=-1.0
Step 114: State=[-0.21756149 0.00196 ], Reward=-1.0
Step 115: State=[-0.21658763 0.00097386], Reward=-1.0
Step 116: State=[-2.16604342e-01 -1.67115330e-05], Reward=-1.0
Step 117: State=[-0.21761155 -0.0010072 ], Reward=-1.0
Step 118: State=[-0.21960466 -0.00199312], Reward=-1.0
Step 119: State=[-0.22257458 -0.00296991], Reward=-1.0
Step 120: State=[-0.22650757 -0.003933 ], Reward=-1.0
Step 121: State=[-0.23138525 -0.00487768], Reward=-1.0
Step 122: State=[-0.23718442 -0.00579916], Reward=-1.0
Step 123: State=[-0.24387695 -0.00669253], Reward=-1.0
Step 124: State=[-0.2514297 -0.00755275], Reward=-1.0
Step 125: State=[-0.25980435 -0.00837465], Reward=-1.0
Step 126: State=[-0.26895731 -0.00915296], Reward=-1.0
Step 127: State=[-0.27883967 -0.00988236], Reward=-1.0
Step 128: State=[-0.28939716 -0.01055749], Reward=-1.0
Step 129: State=[-0.30057017 -0.01117301], Reward=-1.0
Step 130: State=[-0.31229385 -0.01172368], Reward=-1.0
Step 131: State=[-0.32449829 -0.01220444], Reward=-1.0
Step 132: State=[-0.33710877 -0.01261047], Reward=-1.0
Step 133: State=[-0.35004609 -0.01293732], Reward=-1.0
Step 134: State=[-0.36322703 -0.01318094], Reward=-1.0
Step 135: State=[-0.3765649 -0.01333787], Reward=-1.0
Step 136: State=[-0.3899701 -0.0134052], Reward=-1.0
Step 137: State=[-0.40335089 -0.01338079], Reward=-1.0
Step 138: State=[-0.41661411 -0.01326322], Reward=-1.0
Step 139: State=[-0.429666 -0.0130519], Reward=-1.0
Step 140: State=[-0.44241311 -0.0127471 ], Reward=-1.0
Step 141: State=[-0.4547631 -0.01235 ], Reward=-1.0
Step 142: State=[-0.4666257 -0.0118626], Reward=-1.0
Step 143: State=[-0.47791353 -0.01128782], Reward=-1.0
Step 144: State=[-0.48854292 -0.01062939], Reward=-1.0
Step 145: State=[-0.49843474 -0.00989182], Reward=-1.0
Step 146: State=[-0.50751511 -0.00908037], Reward=-1.0
Step 147: State=[-0.51571607 -0.00820096], Reward=-1.0
Step 148: State=[-0.52297614 -0.00726007], Reward=-1.0
Step 149: State=[-0.52924088 -0.00626474], Reward=-1.0
Step 150: State=[-0.53446331 -0.00522243], Reward=-1.0
Step 151: State=[-0.53860426 -0.00414096], Reward=-1.0
Step 152: State=[-0.54163272 -0.00302845], Reward=-1.0
Step 153: State=[-0.54352598 -0.00189327], Reward=-1.0
Step 154: State=[-0.54426988 -0.0007439 ], Reward=-1.0
###Markdown
Programmed CarThis is a car that I hand-programmed. It uses a simple rule, but solves the problem. The programmed car constantly applies force to one direction or another. It does not reset. Whatever direction the car is currently rolling, it applies force in that direction. Therefore, the car begins to climb a hill, is overpowered, and rolls backward. However, once it begins to roll backwards force is immediately applied in this new direction.
###Code
import gym
env = gym.make("MountainCar-v0")
state = env.reset()
done = False
i = 0
while not done:
i += 1
if state[1]>0:
action = 2
else:
action = 0
state, reward, done, _ = env.step(action)
env.render()
print(f"Step {i}: State={state}, Reward={reward}")
env.close()
###Output
Step 1: State=[-0.51431373 -0.00107771], Reward=-1.0
Step 2: State=[-0.51646107 -0.00214734], Reward=-1.0
Step 3: State=[-0.51966193 -0.00320087], Reward=-1.0
Step 4: State=[-0.52389233 -0.00423039], Reward=-1.0
Step 5: State=[-0.52912052 -0.00522819], Reward=-1.0
Step 6: State=[-0.53530729 -0.00618678], Reward=-1.0
Step 7: State=[-0.54240628 -0.00709898], Reward=-1.0
Step 8: State=[-0.55036428 -0.007958 ], Reward=-1.0
Step 9: State=[-0.55912175 -0.00875748], Reward=-1.0
Step 10: State=[-0.56861331 -0.00949156], Reward=-1.0
Step 11: State=[-0.57876828 -0.01015497], Reward=-1.0
Step 12: State=[-0.58951137 -0.01074309], Reward=-1.0
Step 13: State=[-0.60076333 -0.01125196], Reward=-1.0
Step 14: State=[-0.61244171 -0.01167838], Reward=-1.0
Step 15: State=[-0.62446163 -0.01201992], Reward=-1.0
Step 16: State=[-0.63673657 -0.01227494], Reward=-1.0
Step 17: State=[-0.64917917 -0.0124426 ], Reward=-1.0
Step 18: State=[-0.66170205 -0.01252287], Reward=-1.0
Step 19: State=[-0.67421853 -0.01251648], Reward=-1.0
Step 20: State=[-0.68664341 -0.01242488], Reward=-1.0
Step 21: State=[-0.69889363 -0.01225023], Reward=-1.0
Step 22: State=[-0.71088891 -0.01199528], Reward=-1.0
Step 23: State=[-0.72255227 -0.01166336], Reward=-1.0
Step 24: State=[-0.73381051 -0.01125823], Reward=-1.0
Step 25: State=[-0.7445946 -0.01078409], Reward=-1.0
Step 26: State=[-0.75484 -0.0102454], Reward=-1.0
Step 27: State=[-0.76448689 -0.00964689], Reward=-1.0
Step 28: State=[-0.77348032 -0.00899343], Reward=-1.0
Step 29: State=[-0.78177031 -0.00828998], Reward=-1.0
Step 30: State=[-0.78931187 -0.00754156], Reward=-1.0
Step 31: State=[-0.79606502 -0.00675316], Reward=-1.0
Step 32: State=[-0.80199476 -0.00592974], Reward=-1.0
Step 33: State=[-0.80707094 -0.00507618], Reward=-1.0
Step 34: State=[-0.81126824 -0.00419729], Reward=-1.0
Step 35: State=[-0.81456603 -0.00329779], Reward=-1.0
Step 36: State=[-0.81694832 -0.0023823 ], Reward=-1.0
Step 37: State=[-0.81840369 -0.00145537], Reward=-1.0
Step 38: State=[-8.18925204e-01 -5.21510941e-04], Reward=-1.0
Step 39: State=[-8.18510378e-01 4.14826025e-04], Reward=-1.0
Step 40: State=[-0.81516118 0.00334919], Reward=-1.0
Step 41: State=[-0.80889363 0.00626755], Reward=-1.0
Step 42: State=[-0.7997382 0.00915543], Reward=-1.0
Step 43: State=[-0.78774062 0.01199759], Reward=-1.0
Step 44: State=[-0.77296289 0.01477773], Reward=-1.0
Step 45: State=[-0.75548455 0.01747834], Reward=-1.0
Step 46: State=[-0.73540399 0.02008056], Reward=-1.0
Step 47: State=[-0.71283965 0.02256434], Reward=-1.0
Step 48: State=[-0.68793102 0.02490863], Reward=-1.0
Step 49: State=[-0.66083923 0.0270918 ], Reward=-1.0
Step 50: State=[-0.63174696 0.02909226], Reward=-1.0
Step 51: State=[-0.60085774 0.03088922], Reward=-1.0
Step 52: State=[-0.56839425 0.03246349], Reward=-1.0
Step 53: State=[-0.53459581 0.03379844], Reward=-1.0
Step 54: State=[-0.49971491 0.03488091], Reward=-1.0
Step 55: State=[-0.46401297 0.03570193], Reward=-1.0
Step 56: State=[-0.42775556 0.03625741], Reward=-1.0
Step 57: State=[-0.39120711 0.03654845], Reward=-1.0
Step 58: State=[-0.35462569 0.03658142], Reward=-1.0
Step 59: State=[-0.31825799 0.0363677 ], Reward=-1.0
Step 60: State=[-0.28233478 0.03592322], Reward=-1.0
Step 61: State=[-0.24706714 0.03526764], Reward=-1.0
Step 62: State=[-0.21264364 0.0344235 ], Reward=-1.0
Step 63: State=[-0.17922847 0.03341517], Reward=-1.0
Step 64: State=[-0.14696054 0.03226793], Reward=-1.0
Step 65: State=[-0.11595355 0.03100699], Reward=-1.0
Step 66: State=[-0.08629682 0.02965673], Reward=-1.0
Step 67: State=[-0.05805677 0.02824004], Reward=-1.0
Step 68: State=[-0.03127891 0.02677787], Reward=-1.0
Step 69: State=[-0.00599004 0.02528887], Reward=-1.0
Step 70: State=[0.01779923 0.02378927], Reward=-1.0
Step 71: State=[0.04009206 0.02229283], Reward=-1.0
Step 72: State=[0.06090295 0.02081089], Reward=-1.0
Step 73: State=[0.08025546 0.01935251], Reward=-1.0
Step 74: State=[0.09818008 0.01792462], Reward=-1.0
Step 75: State=[0.11471236 0.01653228], Reward=-1.0
Step 76: State=[0.12989122 0.01517886], Reward=-1.0
Step 77: State=[0.14375749 0.01386628], Reward=-1.0
Step 78: State=[0.15635269 0.01259519], Reward=-1.0
Step 79: State=[0.16771789 0.01136521], Reward=-1.0
Step 80: State=[0.17789293 0.01017504], Reward=-1.0
Step 81: State=[0.18691562 0.00902269], Reward=-1.0
Step 82: State=[0.19482116 0.00790554], Reward=-1.0
Step 83: State=[0.20164168 0.00682052], Reward=-1.0
Step 84: State=[0.20740583 0.00576416], Reward=-1.0
Step 85: State=[0.21213852 0.00473269], Reward=-1.0
Step 86: State=[0.21586063 0.00372211], Reward=-1.0
Step 87: State=[0.21858888 0.00272825], Reward=-1.0
Step 88: State=[0.22033568 0.0017468 ], Reward=-1.0
Step 89: State=[0.22110904 0.00077336], Reward=-1.0
Step 90: State=[ 2.20912527e-01 -1.96509754e-04], Reward=-1.0
Step 91: State=[ 0.21774524 -0.00316729], Reward=-1.0
Step 92: State=[ 0.21159265 -0.00615259], Reward=-1.0
Step 93: State=[ 0.20242705 -0.0091656 ], Reward=-1.0
Step 94: State=[ 0.19020845 -0.01221861], Reward=-1.0
Step 95: State=[ 0.17488593 -0.01532251], Reward=-1.0
Step 96: State=[ 0.15639968 -0.01848625], Reward=-1.0
Step 97: State=[ 0.1346836 -0.02171608], Reward=-1.0
Step 98: State=[ 0.10966883 -0.02501477], Reward=-1.0
Step 99: State=[ 0.08128815 -0.02838068], Reward=-1.0
Step 100: State=[ 0.04948145 -0.03180671], Reward=-1.0
Step 101: State=[ 0.01420223 -0.03527921], Reward=-1.0
Step 102: State=[-0.02457471 -0.03877695], Reward=-1.0
Step 103: State=[-0.06684487 -0.04227015], Reward=-1.0
Step 104: State=[-0.11256492 -0.04572006], Reward=-1.0
Step 105: State=[-0.16164378 -0.04907886], Reward=-1.0
Step 106: State=[-0.21393441 -0.05229063], Reward=-1.0
Step 107: State=[-0.26922758 -0.05529317], Reward=-1.0
Step 108: State=[-0.32724868 -0.05802111], Reward=-1.0
Step 109: State=[-0.38765872 -0.06041004], Reward=-1.0
Step 110: State=[-0.45006028 -0.06240156], Reward=-1.0
Step 111: State=[-0.51400891 -0.06394863], Reward=-1.0
Step 112: State=[-0.57902946 -0.06502055], Reward=-1.0
Step 113: State=[-0.64463619 -0.06560673], Reward=-1.0
Step 114: State=[-0.71035496 -0.06571877], Reward=-1.0
Step 115: State=[-0.77574519 -0.06539023], Reward=-1.0
Step 116: State=[-0.84041959 -0.06467439], Reward=-1.0
Step 117: State=[-0.90405977 -0.06364018], Reward=-1.0
Step 118: State=[-0.96642693 -0.06236716], Reward=-1.0
Step 119: State=[-1.02736712 -0.06094019], Reward=-1.0
Step 120: State=[-1.08681173 -0.05944462], Reward=-1.0
Step 121: State=[-1.14477398 -0.05796225], Reward=-1.0
Step 122: State=[-1.2 0. ], Reward=-1.0
Step 123: State=[-1.1987581 0.0012419], Reward=-1.0
Step 124: State=[-1.19427021 0.0044879 ], Reward=-1.0
Step 125: State=[-1.18652173 0.00774848], Reward=-1.0
Step 126: State=[-1.17548846 0.01103326], Reward=-1.0
Step 127: State=[-1.16113808 0.01435038], Reward=-1.0
Step 128: State=[-1.14343234 0.01770574], Reward=-1.0
Step 129: State=[-1.12233007 0.02110228], Reward=-1.0
Step 130: State=[-1.09779103 0.02453904], Reward=-1.0
Step 131: State=[-1.06978073 0.0280103 ], Reward=-1.0
Step 132: State=[-1.03827616 0.03150456], Reward=-1.0
Step 133: State=[-1.0032725 0.03500367], Reward=-1.0
Step 134: State=[-0.9647905 0.03848199], Reward=-1.0
Step 135: State=[-0.92288452 0.04190598], Reward=-1.0
Step 136: State=[-0.87765038 0.04523414], Reward=-1.0
Step 137: State=[-0.82923273 0.04841765], Reward=-1.0
Step 138: State=[-0.77783078 0.05140195], Reward=-1.0
Step 139: State=[-0.72370164 0.05412914], Reward=-1.0
Step 140: State=[-0.66716026 0.05654138], Reward=-1.0
Step 141: State=[-0.60857514 0.05858511], Reward=-1.0
Step 142: State=[-0.54835959 0.06021555], Reward=-1.0
Step 143: State=[-0.4869585 0.06140109], Reward=-1.0
Step 144: State=[-0.42483166 0.06212684], Reward=-1.0
Step 145: State=[-0.36243478 0.06239688], Reward=-1.0
Step 146: State=[-0.30020009 0.06223469], Reward=-1.0
Step 147: State=[-0.23851824 0.06168185], Reward=-1.0
Step 148: State=[-0.17772322 0.06079502], Reward=-1.0
Step 149: State=[-0.1180812 0.05964202], Reward=-1.0
Step 150: State=[-0.05978395 0.05829725], Reward=-1.0
Step 151: State=[-0.0029466 0.05683735], Reward=-1.0
Step 152: State=[0.05239085 0.05533745], Reward=-1.0
###Markdown
Reinforcement Learning Q-Learning CarWe will now use Q-Learning to produce a car that learns to drive itself. Look out Tesla! Q-Learning works by building a table that provides a lookup table to determine which of several actions should be taken. As we move through a number of training episodes this table is refined. $ Q^{new}(s_{t},a_{t}) \leftarrow (1-\alpha) \cdot \underbrace{Q(s_{t},a_{t})}_{\text{old value}} + \underbrace{\alpha}_{\text{learning rate}} \cdot \overbrace{\bigg( \underbrace{r_{t}}_{\text{reward}} + \underbrace{\gamma}_{\text{discount factor}} \cdot \underbrace{\max_{a}Q(s_{t+1}, a)}_{\text{estimate of optimal future value}} \bigg) }^{\text{learned value}} $
###Code
import gym
import numpy as np
def calc_discrete_state(state):
discrete_state = (state - env.observation_space.low)/buckets
return tuple(discrete_state.astype(np.int))
def run_game(q_table, render, should_update):
done = False
discrete_state = calc_discrete_state(env.reset())
success = False
while not done:
# Exploit or explore
if np.random.random() > epsilon:
# Exploit - use q-table to take current best action (and probably refine)
action = np.argmax(q_table[discrete_state])
else:
# Explore - t
action = np.random.randint(0, env.action_space.n)
# Run simulation step
new_state, reward, done, _ = env.step(action)
#
new_state_disc = calc_discrete_state(new_state)
#
if new_state[0] >= env.goal_position:
success = True
# Update q-table
if should_update:
max_future_q = np.max(q_table[new_state_disc])
current_q = q_table[discrete_state + (action,)]
new_q = (1 - LEARNING_RATE) * current_q + LEARNING_RATE * (reward + DISCOUNT * max_future_q)
q_table[discrete_state + (action,)] = new_q
discrete_state = new_state_disc
if render:
env.render()
return success
LEARNING_RATE = 0.1
DISCOUNT = 0.95
EPISODES = 10000
SHOW_EVERY = 1000
DISCRETE_GRID_SIZE = [10, 10]
START_EPSILON_DECAYING = 1
END_EPSILON_DECAYING = EPISODES//2
env = gym.make("MountainCar-v0")
epsilon = 1
epsilon_change = epsilon/(END_EPSILON_DECAYING - START_EPSILON_DECAYING)
buckets = (env.observation_space.high - env.observation_space.low)/DISCRETE_GRID_SIZE
q_table = np.random.uniform(low=-3, high=0, size=(DISCRETE_GRID_SIZE + [env.action_space.n]))
success = False
episode = 0
success_count = 0
while episode<EPISODES:
episode+=1
done = False
if episode % SHOW_EVERY == 0:
print(f"Current episode: {episode}, success: {success_count} ({float(success_count)/SHOW_EVERY})")
success = run_game(q_table, True, False)
success_count = 0
else:
success = run_game(q_table, False, True)
if success:
success_count += 1
# Move epsilon towards its ending value, if it still needs to move
if END_EPSILON_DECAYING >= episode >= START_EPSILON_DECAYING:
epsilon -= epsilon_change
print(success)
run_game(q_table, True, False)
import pandas as pd
df = pd.DataFrame(q_table.argmax(axis=2))
df.columns = [f'v-{x}' for x in range(DISCRETE_GRID_SIZE[0])]
df.index = [f'p-{x}' for x in range(DISCRETE_GRID_SIZE[1])]
df
np.argmax(q_table[(2,0)])
###Output
_____no_output_____
###Markdown
T81-558: Applications of Deep Neural Networks**Module 12: Reinforcement Learning*** Instructor: [Jeff Heaton](https://sites.wustl.edu/jeffheaton/), McKelvey School of Engineering, [Washington University in St. Louis](https://engineering.wustl.edu/Programs/Pages/default.aspx)* For more information visit the [class website](https://sites.wustl.edu/jeffheaton/t81-558/). Module 12 Video Material* Part 12.1: Introduction to the OpenAI Gym [[Video]](https://www.youtube.com/watch?v=_KbUxgyisjM&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](https://github.com/jeffheaton/t81_558_deep_learning/blob/master/t81_558_class_12_01_ai_gym.ipynb)* **Part 12.2: Introduction to Q-Learning** [[Video]](https://www.youtube.com/watch?v=A3sYFcJY3lA&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](https://github.com/jeffheaton/t81_558_deep_learning/blob/master/t81_558_class_12_02_qlearningreinforcement.ipynb)* Part 12.3: Keras Q-Learning in the OpenAI Gym [[Video]](https://www.youtube.com/watch?v=qy1SJmsRhvM&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](https://github.com/jeffheaton/t81_558_deep_learning/blob/master/t81_558_class_12_03_keras_reinforce.ipynb)* Part 12.4: Atari Games with Keras Neural Networks [[Video]](https://www.youtube.com/watch?v=co0SwPWoZh0&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](https://github.com/jeffheaton/t81_558_deep_learning/blob/master/t81_558_class_12_04_atari.ipynb)* Part 12.5: Application of Reinforcement Learning [[Video]](https://www.youtube.com/watch?v=1jQPP3RfwMI&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](https://github.com/jeffheaton/t81_558_deep_learning/blob/master/t81_558_class_12_05_apply_rl.ipynb) Google CoLab InstructionsThe following code ensures that Google CoLab is running the correct version of TensorFlow.
###Code
try:
from google.colab import drive
%tensorflow_version 2.x
COLAB = True
print("Note: using Google CoLab")
except:
print("Note: not using Google CoLab")
COLAB = False
# HIDE OUTPUT
if COLAB:
!sudo apt-get install -y xvfb ffmpeg x11-utils
!pip install -q gym
!pip install -q 'imageio==2.4.0'
!pip install -q PILLOW
!pip install -q 'pyglet==1.3.2'
!pip install -q pyvirtualdisplay
!pip install -q tf-agents
!pip install -q pygame
###Output
Reading package lists... Done
Building dependency tree
Reading state information... Done
ffmpeg is already the newest version (7:3.4.8-0ubuntu0.2).
Suggested packages:
mesa-utils
The following NEW packages will be installed:
libxxf86dga1 x11-utils xvfb
0 upgraded, 3 newly installed, 0 to remove and 39 not upgraded.
Need to get 993 kB of archives.
After this operation, 2,982 kB of additional disk space will be used.
Get:1 http://archive.ubuntu.com/ubuntu bionic/main amd64 libxxf86dga1 amd64 2:1.1.4-1 [13.7 kB]
Get:2 http://archive.ubuntu.com/ubuntu bionic/main amd64 x11-utils amd64 7.7+3build1 [196 kB]
Get:3 http://archive.ubuntu.com/ubuntu bionic-updates/universe amd64 xvfb amd64 2:1.19.6-1ubuntu4.10 [784 kB]
Fetched 993 kB in 1s (1,252 kB/s)
debconf: unable to initialize frontend: Dialog
debconf: (No usable dialog-like program is installed, so the dialog based frontend cannot be used. at /usr/share/perl5/Debconf/FrontEnd/Dialog.pm line 76, <> line 3.)
debconf: falling back to frontend: Readline
debconf: unable to initialize frontend: Readline
debconf: (This frontend requires a controlling tty.)
debconf: falling back to frontend: Teletype
dpkg-preconfigure: unable to re-open stdin:
Selecting previously unselected package libxxf86dga1:amd64.
(Reading database ... 156210 files and directories currently installed.)
Preparing to unpack .../libxxf86dga1_2%3a1.1.4-1_amd64.deb ...
Unpacking libxxf86dga1:amd64 (2:1.1.4-1) ...
Selecting previously unselected package x11-utils.
Preparing to unpack .../x11-utils_7.7+3build1_amd64.deb ...
Unpacking x11-utils (7.7+3build1) ...
Selecting previously unselected package xvfb.
Preparing to unpack .../xvfb_2%3a1.19.6-1ubuntu4.10_amd64.deb ...
Unpacking xvfb (2:1.19.6-1ubuntu4.10) ...
Setting up xvfb (2:1.19.6-1ubuntu4.10) ...
Setting up libxxf86dga1:amd64 (2:1.1.4-1) ...
Setting up x11-utils (7.7+3build1) ...
Processing triggers for man-db (2.8.3-2ubuntu0.1) ...
Processing triggers for libc-bin (2.27-3ubuntu1.3) ...
/sbin/ldconfig.real: /usr/local/lib/python3.7/dist-packages/ideep4py/lib/libmkldnn.so.0 is not a symbolic link
[K |████████████████████████████████| 3.3 MB 5.1 MB/s
[?25h Building wheel for imageio (setup.py) ... [?25l[?25hdone
[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
albumentations 0.1.12 requires imgaug<0.2.7,>=0.2.5, but you have imgaug 0.2.9 which is incompatible.[0m
[K |████████████████████████████████| 1.0 MB 5.2 MB/s
[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
gym 0.17.3 requires pyglet<=1.5.0,>=1.4.0, but you have pyglet 1.3.2 which is incompatible.[0m
[K |████████████████████████████████| 1.3 MB 5.0 MB/s
[K |████████████████████████████████| 1.0 MB 29.8 MB/s
[K |████████████████████████████████| 21.8 MB 1.2 MB/s
[?25h
###Markdown
Part 12.2: Introduction to Q-LearningQ-Learning is a foundational technology upon which deep reinforcement learning is based. Before we explore deep reinforcement learning, it is essential to understand Q-Learning. Several components make up any Q-Learning system.* **Agent** - The agent is an entity that exists in an environment that takes actions to affect the state of the environment, to receive rewards.* **Environment** - The environment is the universe that the agent exists in. The environment is always in a specific state that is changed by the agent's actions.* **Actions** - Steps that the agent can perform to alter the environment * **Step** - A step occurs when the agent performs an action and potentially changes the environment state.* **Episode** - A chain of steps that ultimately culminates in the environment entering a terminal state.* **Epoch** - A training iteration of the agent that contains some number of episodes.* **Terminal State** - A state in which further actions do not make sense. A terminal state occurs when the agent has one, lost, or the environment exceeds the maximum number of steps in many environments.Q-Learning works by building a table that suggests an action for every possible state. This approach runs into several problems. First, the environment is usually composed of several continuous numbers, resulting in an infinite number of states. Q-Learning handles continuous states by binning these numeric values into ranges. Out of the box, Q-Learning does not deal with continuous inputs, such as a car's accelerator that can range from released to fully engaged. Additionally, Q-Learning primarily deals with discrete actions, such as pressing a joystick up or down. Researchers have developed clever tricks to allow Q-Learning to accommodate continuous actions.Deep neural networks can help solve the problems of continuous environments and action spaces. In the next section, we will learn more about deep reinforcement learning. For now, we will apply regular Q-Learning to the Mountain Car problem from OpenAI Gym. Introducing the Mountain CarThis section will demonstrate how Q-Learning can create a solution to the mountain car gym environment. The Mountain car is an environment where a car must climb a mountain. Because gravity is stronger than the car's engine, it cannot merely accelerate up the steep slope even with full throttle. The vehicle is situated in a valley and must learn to utilize potential energy by driving up the opposite hill before the car can make it to the goal at the top of the rightmost hill.First, it might be helpful to visualize the mountain car environment. The following code shows this environment. This code makes use of TF-Agents to perform this render. Usually, we use TF-Agents for the type of deep reinforcement learning that we will see in the next module. However, TF-Agents is just used to render the mountain care environment for now.
###Code
import tf_agents
from tf_agents.environments import suite_gym
import PIL.Image
import pyvirtualdisplay
display = pyvirtualdisplay.Display(visible=0, size=(1400, 900)).start()
env_name = 'MountainCar-v0'
env = suite_gym.load(env_name)
env.reset()
PIL.Image.fromarray(env.render())
###Output
_____no_output_____
###Markdown
The mountain car environment provides the following discrete actions:* 0 - Apply left force* 1 - Apply no force* 2 - Apply right forceThe mountain car environment is made up of the following continuous values:* state[0] - Position * state[1] - VelocityThe cart is not strong enough. It will need to use potential energy from the mountain behind it. The following code shows an agent that applies full throttle to climb the hill.
###Code
import gym
from gym.wrappers import Monitor
import glob
import io
import base64
from IPython.display import HTML
from pyvirtualdisplay import Display
from IPython import display as ipythondisplay
display = Display(visible=0, size=(1400, 900))
display.start()
"""
Utility functions to enable video recording of gym environment
and displaying it.
To enable video, just do "env = wrap_env(env)""
"""
def show_video():
mp4list = glob.glob('video/*.mp4')
if len(mp4list) > 0:
mp4 = mp4list[0]
video = io.open(mp4, 'r+b').read()
encoded = base64.b64encode(video)
ipythondisplay.display(HTML(data='''<video alt="test" autoplay
loop controls style="height: 400px;">
<source src="data:video/mp4;base64,{0}"
type="video/mp4" />
</video>'''.format(encoded.decode('ascii'))))
else:
print("Could not find video")
def wrap_env(env):
env = Monitor(env, './video', force=True)
return env
###Output
_____no_output_____
###Markdown
We are now ready to train the agent.
###Code
import gym
if COLAB:
env = wrap_env(gym.make("MountainCar-v0"))
else:
env = gym.make("MountainCar-v0")
env.reset()
done = False
i = 0
while not done:
i += 1
state, reward, done, _ = env.step(2)
env.render()
print(f"Step {i}: State={state}, Reward={reward}")
env.close()
###Output
Step 1: State=[-0.50905189 0.00089766], Reward=-1.0
Step 2: State=[-0.50726329 0.00178859], Reward=-1.0
Step 3: State=[-0.50459717 0.00266613], Reward=-1.0
Step 4: State=[-0.50107348 0.00352369], Reward=-1.0
Step 5: State=[-0.4967186 0.00435488], Reward=-1.0
Step 6: State=[-0.4915651 0.0051535], Reward=-1.0
Step 7: State=[-0.48565149 0.00591361], Reward=-1.0
Step 8: State=[-0.47902187 0.00662962], Reward=-1.0
Step 9: State=[-0.47172557 0.00729629], Reward=-1.0
Step 10: State=[-0.46381676 0.00790881], Reward=-1.0
Step 11: State=[-0.45535392 0.00846285], Reward=-1.0
Step 12: State=[-0.44639934 0.00895458], Reward=-1.0
Step 13: State=[-0.4370186 0.00938074], Reward=-1.0
Step 14: State=[-0.42727993 0.00973867], Reward=-1.0
Step 15: State=[-0.41725364 0.01002629], Reward=-1.0
Step 16: State=[-0.40701147 0.01024216], Reward=-1.0
Step 17: State=[-0.396626 0.01038548], Reward=-1.0
Step 18: State=[-0.38616995 0.01045604], Reward=-1.0
Step 19: State=[-0.37571567 0.01045428], Reward=-1.0
Step 20: State=[-0.36533449 0.01038118], Reward=-1.0
Step 21: State=[-0.35509619 0.0102383 ], Reward=-1.0
Step 22: State=[-0.34506852 0.01002767], Reward=-1.0
Step 23: State=[-0.33531672 0.0097518 ], Reward=-1.0
Step 24: State=[-0.32590314 0.00941358], Reward=-1.0
Step 25: State=[-0.31688687 0.00901627], Reward=-1.0
Step 26: State=[-0.30832346 0.00856341], Reward=-1.0
Step 27: State=[-0.30026469 0.00805876], Reward=-1.0
Step 28: State=[-0.2927584 0.00750629], Reward=-1.0
Step 29: State=[-0.2858483 0.0069101], Reward=-1.0
Step 30: State=[-0.27957395 0.00627436], Reward=-1.0
Step 31: State=[-0.27397063 0.00560332], Reward=-1.0
Step 32: State=[-0.26906936 0.00490127], Reward=-1.0
Step 33: State=[-0.26489689 0.00417247], Reward=-1.0
Step 34: State=[-0.26147568 0.00342121], Reward=-1.0
Step 35: State=[-0.25882396 0.00265172], Reward=-1.0
Step 36: State=[-0.25695571 0.00186825], Reward=-1.0
Step 37: State=[-0.25588073 0.00107498], Reward=-1.0
Step 38: State=[-0.25560462 0.00027611], Reward=-1.0
Step 39: State=[-0.25612883 -0.00052421], Reward=-1.0
Step 40: State=[-0.25745062 -0.00132179], Reward=-1.0
Step 41: State=[-0.25956309 -0.00211247], Reward=-1.0
Step 42: State=[-0.26245514 -0.00289205], Reward=-1.0
Step 43: State=[-0.26611148 -0.00365634], Reward=-1.0
Step 44: State=[-0.27051257 -0.00440109], Reward=-1.0
Step 45: State=[-0.27563463 -0.00512205], Reward=-1.0
Step 46: State=[-0.28144957 -0.00581494], Reward=-1.0
Step 47: State=[-0.28792506 -0.00647549], Reward=-1.0
Step 48: State=[-0.29502448 -0.00709942], Reward=-1.0
Step 49: State=[-0.30270698 -0.0076825 ], Reward=-1.0
Step 50: State=[-0.31092755 -0.00822057], Reward=-1.0
Step 51: State=[-0.31963713 -0.00870957], Reward=-1.0
Step 52: State=[-0.32878273 -0.0091456 ], Reward=-1.0
Step 53: State=[-0.33830768 -0.00952495], Reward=-1.0
Step 54: State=[-0.34815185 -0.00984416], Reward=-1.0
Step 55: State=[-0.35825194 -0.0101001 ], Reward=-1.0
Step 56: State=[-0.36854191 -0.01028996], Reward=-1.0
Step 57: State=[-0.37895331 -0.0104114 ], Reward=-1.0
Step 58: State=[-0.38941582 -0.01046252], Reward=-1.0
Step 59: State=[-0.39985775 -0.01044193], Reward=-1.0
Step 60: State=[-0.41020657 -0.01034882], Reward=-1.0
Step 61: State=[-0.42038952 -0.01018295], Reward=-1.0
Step 62: State=[-0.43033423 -0.00994471], Reward=-1.0
Step 63: State=[-0.43996933 -0.0096351 ], Reward=-1.0
Step 64: State=[-0.4492251 -0.00925577], Reward=-1.0
Step 65: State=[-0.45803405 -0.00880895], Reward=-1.0
Step 66: State=[-0.46633157 -0.00829752], Reward=-1.0
Step 67: State=[-0.47405649 -0.00772492], Reward=-1.0
Step 68: State=[-0.48115161 -0.00709512], Reward=-1.0
Step 69: State=[-0.48756422 -0.00641261], Reward=-1.0
Step 70: State=[-0.49324656 -0.00568234], Reward=-1.0
Step 71: State=[-0.49815623 -0.00490967], Reward=-1.0
Step 72: State=[-0.50225654 -0.00410031], Reward=-1.0
Step 73: State=[-0.5055168 -0.00326026], Reward=-1.0
Step 74: State=[-0.50791261 -0.00239581], Reward=-1.0
Step 75: State=[-0.50942603 -0.00151341], Reward=-1.0
Step 76: State=[-0.5100457 -0.00061968], Reward=-1.0
Step 77: State=[-5.09767002e-01 2.78702550e-04], Reward=-1.0
Step 78: State=[-0.50859201 0.00117499], Reward=-1.0
Step 79: State=[-0.50652953 0.00206248], Reward=-1.0
Step 80: State=[-0.50359501 0.00293452], Reward=-1.0
Step 81: State=[-0.49981043 0.00378458], Reward=-1.0
Step 82: State=[-0.49520411 0.00460632], Reward=-1.0
Step 83: State=[-0.48981049 0.00539362], Reward=-1.0
Step 84: State=[-0.48366986 0.00614064], Reward=-1.0
Step 85: State=[-0.47682797 0.00684189], Reward=-1.0
Step 86: State=[-0.46933572 0.00749226], Reward=-1.0
Step 87: State=[-0.46124864 0.00808708], Reward=-1.0
Step 88: State=[-0.45262646 0.00862217], Reward=-1.0
Step 89: State=[-0.44353257 0.00909389], Reward=-1.0
Step 90: State=[-0.43403342 0.00949915], Reward=-1.0
Step 91: State=[-0.42419795 0.00983547], Reward=-1.0
Step 92: State=[-0.41409699 0.01010096], Reward=-1.0
Step 93: State=[-0.40380259 0.01029439], Reward=-1.0
Step 94: State=[-0.39338746 0.01041514], Reward=-1.0
Step 95: State=[-0.38292426 0.0104632 ], Reward=-1.0
Step 96: State=[-0.37248508 0.01043918], Reward=-1.0
Step 97: State=[-0.36214083 0.01034425], Reward=-1.0
Step 98: State=[-0.35196071 0.01018012], Reward=-1.0
Step 99: State=[-0.34201175 0.00994897], Reward=-1.0
Step 100: State=[-0.33235831 0.00965343], Reward=-1.0
Step 101: State=[-0.32306179 0.00929653], Reward=-1.0
Step 102: State=[-0.31418019 0.0088816 ], Reward=-1.0
Step 103: State=[-0.30576792 0.00841226], Reward=-1.0
Step 104: State=[-0.29787557 0.00789236], Reward=-1.0
Step 105: State=[-0.29054969 0.00732588], Reward=-1.0
Step 106: State=[-0.28383272 0.00671697], Reward=-1.0
Step 107: State=[-0.27776289 0.00606983], Reward=-1.0
Step 108: State=[-0.27237418 0.00538871], Reward=-1.0
Step 109: State=[-0.26769627 0.00467791], Reward=-1.0
Step 110: State=[-0.26375458 0.00394169], Reward=-1.0
Step 111: State=[-0.26057026 0.00318432], Reward=-1.0
Step 112: State=[-0.25816021 0.00241005], Reward=-1.0
Step 113: State=[-0.25653713 0.00162309], Reward=-1.0
Step 114: State=[-0.25570949 0.00082763], Reward=-1.0
Step 115: State=[-2.55681628e-01 2.78670044e-05], Reward=-1.0
Step 116: State=[-0.25645367 -0.00077204], Reward=-1.0
Step 117: State=[-0.25802161 -0.00156793], Reward=-1.0
Step 118: State=[-0.26037723 -0.00235562], Reward=-1.0
Step 119: State=[-0.26350814 -0.00313091], Reward=-1.0
Step 120: State=[-0.26739774 -0.0038896 ], Reward=-1.0
Step 121: State=[-0.27202516 -0.00462742], Reward=-1.0
Step 122: State=[-0.2773653 -0.00534014], Reward=-1.0
Step 123: State=[-0.28338876 -0.00602346], Reward=-1.0
Step 124: State=[-0.29006186 -0.0066731 ], Reward=-1.0
Step 125: State=[-0.29734667 -0.00728481], Reward=-1.0
Step 126: State=[-0.30520105 -0.00785438], Reward=-1.0
Step 127: State=[-0.31357871 -0.00837766], Reward=-1.0
Step 128: State=[-0.32242935 -0.00885064], Reward=-1.0
Step 129: State=[-0.33169883 -0.00926948], Reward=-1.0
Step 130: State=[-0.34132937 -0.00963053], Reward=-1.0
Step 131: State=[-0.35125981 -0.00993044], Reward=-1.0
Step 132: State=[-0.36142598 -0.01016617], Reward=-1.0
Step 133: State=[-0.37176102 -0.01033504], Reward=-1.0
Step 134: State=[-0.38219587 -0.01043485], Reward=-1.0
Step 135: State=[-0.39265972 -0.01046385], Reward=-1.0
Step 136: State=[-0.40308055 -0.01042083], Reward=-1.0
Step 137: State=[-0.41338571 -0.01030515], Reward=-1.0
Step 138: State=[-0.42350248 -0.01011677], Reward=-1.0
Step 139: State=[-0.43335875 -0.00985626], Reward=-1.0
Step 140: State=[-0.44288357 -0.00952483], Reward=-1.0
Step 141: State=[-0.45200787 -0.00912429], Reward=-1.0
Step 142: State=[-0.46066497 -0.00865711], Reward=-1.0
Step 143: State=[-0.46879128 -0.00812631], Reward=-1.0
Step 144: State=[-0.4763268 -0.00753552], Reward=-1.0
Step 145: State=[-0.48321567 -0.00688887], Reward=-1.0
Step 146: State=[-0.48940667 -0.006191 ], Reward=-1.0
Step 147: State=[-0.49485367 -0.00544699], Reward=-1.0
Step 148: State=[-0.49951598 -0.00466232], Reward=-1.0
Step 149: State=[-0.50335876 -0.00384278], Reward=-1.0
Step 150: State=[-0.50635325 -0.00299449], Reward=-1.0
Step 151: State=[-0.50847702 -0.00212377], Reward=-1.0
Step 152: State=[-0.50971416 -0.00123714], Reward=-1.0
Step 153: State=[-5.10055410e-01 -3.41248589e-04], Reward=-1.0
Step 154: State=[-0.50949821 0.0005572 ], Reward=-1.0
Step 155: State=[-0.50804672 0.00145148], Reward=-1.0
Step 156: State=[-0.50571184 0.00233488], Reward=-1.0
Step 157: State=[-0.50251105 0.0032008 ], Reward=-1.0
Step 158: State=[-0.4984683 0.00404274], Reward=-1.0
Step 159: State=[-0.49361386 0.00485444], Reward=-1.0
Step 160: State=[-0.487984 0.00562986], Reward=-1.0
Step 161: State=[-0.48162074 0.00636326], Reward=-1.0
Step 162: State=[-0.47457149 0.00704925], Reward=-1.0
Step 163: State=[-0.46688862 0.00768287], Reward=-1.0
Step 164: State=[-0.45862902 0.0082596 ], Reward=-1.0
Step 165: State=[-0.44985362 0.0087754 ], Reward=-1.0
Step 166: State=[-0.44062681 0.00922681], Reward=-1.0
Step 167: State=[-0.43101588 0.00961093], Reward=-1.0
Step 168: State=[-0.42109043 0.00992545], Reward=-1.0
Step 169: State=[-0.41092173 0.0101687 ], Reward=-1.0
Step 170: State=[-0.4005821 0.01033962], Reward=-1.0
Step 171: State=[-0.3901443 0.0104378], Reward=-1.0
Step 172: State=[-0.37968088 0.01046342], Reward=-1.0
Step 173: State=[-0.36926363 0.01041726], Reward=-1.0
Step 174: State=[-0.35896297 0.01030066], Reward=-1.0
Step 175: State=[-0.34884748 0.01011548], Reward=-1.0
Step 176: State=[-0.33898342 0.00986407], Reward=-1.0
Step 177: State=[-0.32943426 0.00954916], Reward=-1.0
Step 178: State=[-0.32026037 0.00917389], Reward=-1.0
Step 179: State=[-0.31151868 0.00874169], Reward=-1.0
Step 180: State=[-0.30326242 0.00825625], Reward=-1.0
Step 181: State=[-0.29554096 0.00772147], Reward=-1.0
Step 182: State=[-0.28839957 0.00714139], Reward=-1.0
Step 183: State=[-0.28187941 0.00652016], Reward=-1.0
Step 184: State=[-0.27601738 0.00586203], Reward=-1.0
Step 185: State=[-0.27084613 0.00517125], Reward=-1.0
Step 186: State=[-0.26639402 0.00445211], Reward=-1.0
Step 187: State=[-0.26268515 0.00370887], Reward=-1.0
Step 188: State=[-0.25973934 0.00294581], Reward=-1.0
Step 189: State=[-0.25757219 0.00216715], Reward=-1.0
Step 190: State=[-0.25619508 0.00137711], Reward=-1.0
Step 191: State=[-0.25561521 0.00057987], Reward=-1.0
Step 192: State=[-2.55835595e-01 -2.20385847e-04], Reward=-1.0
Step 193: State=[-0.25685509 -0.0010195 ], Reward=-1.0
Step 194: State=[-0.25866838 -0.00181329], Reward=-1.0
Step 195: State=[-0.26126596 -0.00259758], Reward=-1.0
Step 196: State=[-0.26463414 -0.00336818], Reward=-1.0
Step 197: State=[-0.26875498 -0.00412085], Reward=-1.0
Step 198: State=[-0.27360632 -0.00485134], Reward=-1.0
Step 199: State=[-0.27916172 -0.0055554 ], Reward=-1.0
Step 200: State=[-0.28539045 -0.00622873], Reward=-1.0
###Markdown
It helps to visualize the car. The following code shows a video of the car when run from a notebook.
###Code
# HIDE OUTPUT
show_video()
###Output
_____no_output_____
###Markdown
Programmed CarNow we will look at a car that I hand-programmed. This car is straightforward; however, it solves the problem. The programmed car always applies force in one direction or another. It does not break. Whatever direction the vehicle is currently rolling, the agent uses power in that direction. Therefore, the car begins to climb a hill, is overpowered, and turns backward. However, once it starts to roll backward, force is immediately applied in this new direction.The following code implements this preprogrammed car.
###Code
import gym
if COLAB:
env = wrap_env(gym.make("MountainCar-v0"))
else:
env = gym.make("MountainCar-v0")
state = env.reset()
done = False
i = 0
while not done:
i += 1
if state[1]>0:
action = 2
else:
action = 0
state, reward, done, _ = env.step(action)
env.render()
print(f"Step {i}: State={state}, Reward={reward}")
env.close()
###Output
Step 1: State=[-5.84581471e-01 -5.49227966e-04], Reward=-1.0
Step 2: State=[-0.58567588 -0.0010944 ], Reward=-1.0
Step 3: State=[-0.58730739 -0.00163151], Reward=-1.0
Step 4: State=[-0.58946399 -0.0021566 ], Reward=-1.0
Step 5: State=[-0.59212981 -0.00266582], Reward=-1.0
Step 6: State=[-0.59528526 -0.00315545], Reward=-1.0
Step 7: State=[-0.5989072 -0.00362194], Reward=-1.0
Step 8: State=[-0.60296912 -0.00406192], Reward=-1.0
Step 9: State=[-0.60744137 -0.00447225], Reward=-1.0
Step 10: State=[-0.61229141 -0.00485004], Reward=-1.0
Step 11: State=[-0.61748407 -0.00519267], Reward=-1.0
Step 12: State=[-0.62298187 -0.0054978 ], Reward=-1.0
Step 13: State=[-0.62874529 -0.00576342], Reward=-1.0
Step 14: State=[-0.63473313 -0.00598783], Reward=-1.0
Step 15: State=[-0.64090281 -0.00616968], Reward=-1.0
Step 16: State=[-0.64721076 -0.00630795], Reward=-1.0
Step 17: State=[-0.65361272 -0.00640196], Reward=-1.0
Step 18: State=[-0.66006412 -0.00645139], Reward=-1.0
Step 19: State=[-0.66652037 -0.00645626], Reward=-1.0
Step 20: State=[-0.67293726 -0.00641689], Reward=-1.0
Step 21: State=[-0.6792712 -0.00633394], Reward=-1.0
Step 22: State=[-0.68547958 -0.00620838], Reward=-1.0
Step 23: State=[-0.69152102 -0.00604144], Reward=-1.0
Step 24: State=[-0.69735564 -0.00583462], Reward=-1.0
Step 25: State=[-0.7029453 -0.00558966], Reward=-1.0
Step 26: State=[-0.70825383 -0.00530853], Reward=-1.0
Step 27: State=[-0.7132472 -0.00499337], Reward=-1.0
Step 28: State=[-0.71789372 -0.00464651], Reward=-1.0
Step 29: State=[-0.72216414 -0.00427042], Reward=-1.0
Step 30: State=[-0.72603185 -0.00386771], Reward=-1.0
Step 31: State=[-0.72947294 -0.00344108], Reward=-1.0
Step 32: State=[-0.73246627 -0.00299334], Reward=-1.0
Step 33: State=[-0.73499362 -0.00252735], Reward=-1.0
Step 34: State=[-0.73703966 -0.00204604], Reward=-1.0
Step 35: State=[-0.73859207 -0.00155241], Reward=-1.0
Step 36: State=[-0.73964152 -0.00104945], Reward=-1.0
Step 37: State=[-7.40181738e-01 -5.40214614e-04], Reward=-1.0
Step 38: State=[-7.40209487e-01 -2.77484127e-05], Reward=-1.0
Step 39: State=[-7.39724603e-01 4.84883491e-04], Reward=-1.0
Step 40: State=[-0.73672998 0.00299462], Reward=-1.0
Step 41: State=[-0.73124359 0.00548639], Reward=-1.0
Step 42: State=[-0.72329865 0.00794494], Reward=-1.0
Step 43: State=[-0.71294396 0.01035469], Reward=-1.0
Step 44: State=[-0.70024433 0.01269963], Reward=-1.0
Step 45: State=[-0.685281 0.01496333], Reward=-1.0
Step 46: State=[-0.66815204 0.01712895], Reward=-1.0
Step 47: State=[-0.6489726 0.01917944], Reward=-1.0
Step 48: State=[-0.62787487 0.02109773], Reward=-1.0
Step 49: State=[-0.60500776 0.02286711], Reward=-1.0
Step 50: State=[-0.58053614 0.02447162], Reward=-1.0
Step 51: State=[-0.55463956 0.02589658], Reward=-1.0
Step 52: State=[-0.52751051 0.02712905], Reward=-1.0
Step 53: State=[-0.49935212 0.02815839], Reward=-1.0
Step 54: State=[-0.47037542 0.0289767 ], Reward=-1.0
Step 55: State=[-0.44079621 0.02957922], Reward=-1.0
Step 56: State=[-0.41083164 0.02996456], Reward=-1.0
Step 57: State=[-0.38069679 0.03013485], Reward=-1.0
Step 58: State=[-0.35060117 0.03009562], Reward=-1.0
Step 59: State=[-0.32074557 0.0298556 ], Reward=-1.0
Step 60: State=[-0.29131919 0.02942639], Reward=-1.0
Step 61: State=[-0.26249729 0.02882189], Reward=-1.0
Step 62: State=[-0.23443946 0.02805783], Reward=-1.0
Step 63: State=[-0.20728838 0.02715108], Reward=-1.0
Step 64: State=[-0.18116928 0.0261191 ], Reward=-1.0
Step 65: State=[-0.15618993 0.02497935], Reward=-1.0
Step 66: State=[-0.13244112 0.02374881], Reward=-1.0
Step 67: State=[-0.10999756 0.02244356], Reward=-1.0
Step 68: State=[-0.08891911 0.02107845], Reward=-1.0
Step 69: State=[-0.06925224 0.01966687], Reward=-1.0
Step 70: State=[-0.05103161 0.01822063], Reward=-1.0
Step 71: State=[-0.03428174 0.01674987], Reward=-1.0
Step 72: State=[-0.01901866 0.01526308], Reward=-1.0
Step 73: State=[-0.00525151 0.01376715], Reward=-1.0
Step 74: State=[0.00701595 0.01226746], Reward=-1.0
Step 75: State=[0.01778397 0.01076801], Reward=-1.0
Step 76: State=[0.02705554 0.00927157], Reward=-1.0
Step 77: State=[0.03483534 0.0077798 ], Reward=-1.0
Step 78: State=[0.04112878 0.00629344], Reward=-1.0
Step 79: State=[0.04594123 0.00481245], Reward=-1.0
Step 80: State=[0.04927738 0.00333615], Reward=-1.0
Step 81: State=[0.05114081 0.00186342], Reward=-1.0
Step 82: State=[0.05153359 0.00039279], Reward=-1.0
Step 83: State=[ 0.0504562 -0.0010774], Reward=-1.0
Step 84: State=[ 0.04590739 -0.00454881], Reward=-1.0
Step 85: State=[ 0.03788225 -0.00802514], Reward=-1.0
Step 86: State=[ 0.02637324 -0.01150901], Reward=-1.0
Step 87: State=[ 0.01137205 -0.01500119], Reward=-1.0
Step 88: State=[-0.00712768 -0.01849973], Reward=-1.0
Step 89: State=[-0.02912685 -0.02199916], Reward=-1.0
Step 90: State=[-0.05461647 -0.02548963], Reward=-1.0
Step 91: State=[-0.08357261 -0.02895614], Reward=-1.0
Step 92: State=[-0.11595059 -0.03237798], Reward=-1.0
Step 93: State=[-0.15167884 -0.03572825], Reward=-1.0
Step 94: State=[-0.1906527 -0.03897386], Reward=-1.0
Step 95: State=[-0.23272866 -0.04207597], Reward=-1.0
Step 96: State=[-0.27771965 -0.04499099], Reward=-1.0
Step 97: State=[-0.32539199 -0.04767234], Reward=-1.0
Step 98: State=[-0.37546482 -0.05007283], Reward=-1.0
Step 99: State=[-0.42761244 -0.05214762], Reward=-1.0
Step 100: State=[-0.48147006 -0.05385761], Reward=-1.0
Step 101: State=[-0.5366428 -0.05517274], Reward=-1.0
Step 102: State=[-0.59271773 -0.05607493], Reward=-1.0
Step 103: State=[-0.64927797 -0.05656025], Reward=-1.0
Step 104: State=[-0.7059178 -0.05663983], Reward=-1.0
Step 105: State=[-0.7622574 -0.0563396], Reward=-1.0
Step 106: State=[-0.81795612 -0.05569872], Reward=-1.0
Step 107: State=[-0.8727231 -0.05476698], Reward=-1.0
Step 108: State=[-0.92632481 -0.0536017 ], Reward=-1.0
Step 109: State=[-0.97858908 -0.05226427], Reward=-1.0
Step 110: State=[-1.02940612 -0.05081704], Reward=-1.0
Step 111: State=[-1.07872672 -0.0493206 ], Reward=-1.0
Step 112: State=[-1.1265585 -0.04783178], Reward=-1.0
Step 113: State=[-1.1729608 -0.0464023], Reward=-1.0
Step 114: State=[-1.2 0. ], Reward=-1.0
Step 115: State=[-1.1987581 0.0012419], Reward=-1.0
Step 116: State=[-1.19427021 0.0044879 ], Reward=-1.0
Step 117: State=[-1.18652173 0.00774848], Reward=-1.0
Step 118: State=[-1.17548846 0.01103326], Reward=-1.0
Step 119: State=[-1.16113808 0.01435038], Reward=-1.0
Step 120: State=[-1.14343234 0.01770574], Reward=-1.0
Step 121: State=[-1.12233007 0.02110228], Reward=-1.0
Step 122: State=[-1.09779103 0.02453904], Reward=-1.0
Step 123: State=[-1.06978073 0.0280103 ], Reward=-1.0
Step 124: State=[-1.03827616 0.03150456], Reward=-1.0
Step 125: State=[-1.0032725 0.03500367], Reward=-1.0
Step 126: State=[-0.9647905 0.03848199], Reward=-1.0
Step 127: State=[-0.92288452 0.04190598], Reward=-1.0
Step 128: State=[-0.87765038 0.04523414], Reward=-1.0
Step 129: State=[-0.82923273 0.04841765], Reward=-1.0
Step 130: State=[-0.77783078 0.05140195], Reward=-1.0
Step 131: State=[-0.72370164 0.05412914], Reward=-1.0
Step 132: State=[-0.66716026 0.05654138], Reward=-1.0
Step 133: State=[-0.60857514 0.05858511], Reward=-1.0
Step 134: State=[-0.54835959 0.06021555], Reward=-1.0
Step 135: State=[-0.4869585 0.06140109], Reward=-1.0
Step 136: State=[-0.42483166 0.06212684], Reward=-1.0
Step 137: State=[-0.36243478 0.06239688], Reward=-1.0
Step 138: State=[-0.30020009 0.06223469], Reward=-1.0
Step 139: State=[-0.23851824 0.06168185], Reward=-1.0
Step 140: State=[-0.17772322 0.06079502], Reward=-1.0
Step 141: State=[-0.1180812 0.05964202], Reward=-1.0
Step 142: State=[-0.05978395 0.05829725], Reward=-1.0
Step 143: State=[-0.0029466 0.05683735], Reward=-1.0
Step 144: State=[0.05239085 0.05533745], Reward=-1.0
Step 145: State=[0.10625911 0.05386826], Reward=-1.0
Step 146: State=[0.15875332 0.05249421], Reward=-1.0
Step 147: State=[0.21002575 0.05127242], Reward=-1.0
Step 148: State=[0.26027822 0.05025247], Reward=-1.0
Step 149: State=[0.30975487 0.04947665], Reward=-1.0
Step 150: State=[0.35873547 0.0489806 ], Reward=-1.0
Step 151: State=[0.40752939 0.04879392], Reward=-1.0
Step 152: State=[0.45647027 0.04894088], Reward=-1.0
Step 153: State=[0.50591109 0.04944082], Reward=-1.0
###Markdown
We now visualize the preprogrammed car solving the problem.
###Code
# HIDE OUTPUT
show_video()
###Output
_____no_output_____
###Markdown
Reinforcement LearningQ-Learning is a system of rewards that the algorithm gives an agent for successfully moving the environment into a state considered successful. These rewards are the Q-values from which this algorithm takes its name. The final output from the Q-Learning algorithm is a table of Q-values that indicate the reward value of every action that the agent can take, given every possible environment state. The agent must bin continuous state values into a fixed finite number of columns.Learning occurs when the algorithm runs the agent and environment through episodes and updates the Q-values based on the rewards received from actions taken; Figure 12.REINF provides a high-level overview of this reinforcement or Q-Learning loop.**Figure 12.REINF:Reinforcement/Q Learning**The Q-values can dictate action by selecting the action column with the highest Q-value for the current environment state. The choice between choosing a random action and a Q-value-driven action is governed by the epsilon ($\epsilon$) parameter, the probability of random action.Each time through the training loop, the training algorithm updates the Q-values according to the following equation. $Q^{new}(s_{t},a_{t}) \leftarrow \underbrace{Q(s_{t},a_{t})}_{\text{old value}} + \underbrace{\alpha}_{\text{learning rate}} \cdot \overbrace{\bigg( \underbrace{\underbrace{r_{t}}_{\text{reward}} + \underbrace{\gamma}_{\text{discount factor}} \cdot \underbrace{\max_{a}Q(s_{t+1}, a)}_{\text{estimate of optimal future value}}}_{\text{new value (temporal difference target)}} - \underbrace{Q(s_{t},a_{t})}_{\text{old value}} \bigg) }^{\text{temporal difference}}$There are several parameters in this equation:* alpha ($\alpha$) - The learning rate, how much should the current step cause the Q-values to be updated.* lambda ($\lambda$) - The discount factor is the percentage of future reward that the algorithm should consider in this update.This equation modifies several values:* $Q(s_t,a_t)$ - The Q-table. For each combination of states, what reward would the agent likely receive for performing each action?* $s_t$ - The current state.* $r_t$ - The last reward received.* $a_t$ - The action that the agent will perform.The equation works by calculating a delta (temporal difference) that the equation should apply to the old state. This learning rate ($\alpha$) scales this delta. A learning rate of 1.0 would fully implement the temporal difference in the Q-values each iteration and would likely be very chaotic.There are two parts to the temporal difference: the new and old values. The new value is subtracted from the old value to provide a delta; the full amount we would change the Q-value by if the learning rate did not scale this value. The new value is a summation of the reward received from the last action and the maximum Q-values from the resulting state when the client takes this action. Adding the maximum of action Q-values for the new state is essential because it estimates the optimal future values from proceeding with this action. Q-Learning CarWe will now use Q-Learning to produce a car that learns to drive itself. Look out, Tesla! We begin by defining two essential functions.
###Code
import gym
import numpy as np
# This function converts the floating point state values into
# discrete values. This is often called binning. We divide
# the range that the state values might occupy and assign
# each region to a bucket.
def calc_discrete_state(state):
discrete_state = (state - env.observation_space.low)/buckets
return tuple(discrete_state.astype(int))
# Run one game. The q_table to use is provided. We also
# provide a flag to indicate if the game should be
# rendered/animated. Finally, we also provide
# a flag to indicate if the q_table should be updated.
def run_game(q_table, render, should_update):
done = False
discrete_state = calc_discrete_state(env.reset())
success = False
while not done:
# Exploit or explore
if np.random.random() > epsilon:
# Exploit - use q-table to take current best action
# (and probably refine)
action = np.argmax(q_table[discrete_state])
else:
# Explore - t
action = np.random.randint(0, env.action_space.n)
# Run simulation step
new_state, reward, done, _ = env.step(action)
# Convert continuous state to discrete
new_state_disc = calc_discrete_state(new_state)
# Have we reached the goal position (have we won?)?
if new_state[0] >= env.unwrapped.goal_position:
success = True
# Update q-table
if should_update:
max_future_q = np.max(q_table[new_state_disc])
current_q = q_table[discrete_state + (action,)]
new_q = (1 - LEARNING_RATE) * current_q + LEARNING_RATE * \
(reward + DISCOUNT * max_future_q)
q_table[discrete_state + (action,)] = new_q
discrete_state = new_state_disc
if render:
env.render()
return success
###Output
_____no_output_____
###Markdown
Several hyperparameters are very important for Q-Learning. These parameters will likely need adjustment as you apply Q-Learning to other problems. Because of this, it is crucial to understand the role of each parameter.* **LEARNING_RATE** The rate at which previous Q-values are updated based on new episodes run during training. * **DISCOUNT** The amount of significance to give estimates of future rewards when added to the reward for the current action taken. A value of 0.95 would indicate a discount of 5% on the future reward estimates. * **EPISODES** The number of episodes to train over. Increase this for more complex problems; however, training time also increases.* **SHOW_EVERY** How many episodes to allow to elapse before showing an update.* **DISCRETE_GRID_SIZE** How many buckets to use when converting each continuous state variable. For example, [10, 10] indicates that the algorithm should use ten buckets for the first and second state variables.* **START_EPSILON_DECAYING** Epsilon is the probability that the agent will select a random action over what the Q-Table suggests. This value determines the starting probability of randomness.* **END_EPSILON_DECAYING** How many episodes should elapse before epsilon goes to zero and no random actions are permitted. For example, EPISODES//10 means only the first 1/10th of the episodes might have random actions.
###Code
LEARNING_RATE = 0.1
DISCOUNT = 0.95
EPISODES = 50000
SHOW_EVERY = 1000
DISCRETE_GRID_SIZE = [10, 10]
START_EPSILON_DECAYING = 0.5
END_EPSILON_DECAYING = EPISODES//10
###Output
_____no_output_____
###Markdown
We can now make the environment. If we are running in Google COLAB, we wrap the environment to be displayed inside the web browser. Next, create the discrete buckets for state and build Q-table.
###Code
if COLAB:
env = wrap_env(gym.make("MountainCar-v0"))
else:
env = gym.make("MountainCar-v0")
epsilon = 1
epsilon_change = epsilon/(END_EPSILON_DECAYING - START_EPSILON_DECAYING)
buckets = (env.observation_space.high - env.observation_space.low) \
/DISCRETE_GRID_SIZE
q_table = np.random.uniform(low=-3, high=0, size=(DISCRETE_GRID_SIZE \
+ [env.action_space.n]))
success = False
###Output
_____no_output_____
###Markdown
We can now make the environment. If we are running in Google COLAB, we wrap the environment to be displayed inside the web browser. Next, create the discrete buckets for state and build Q-table.
###Code
episode = 0
success_count = 0
# Loop through the required number of episodes
while episode<EPISODES:
episode+=1
done = False
# Run the game. If we are local, display render animation
# at SHOW_EVERY intervals.
if episode % SHOW_EVERY == 0:
print(f"Current episode: {episode}, success: {success_count}" +\
f" {(float(success_count)/SHOW_EVERY)}")
success = run_game(q_table, True, False)
success_count = 0
else:
success = run_game(q_table, False, True)
# Count successes
if success:
success_count += 1
# Move epsilon towards its ending value, if it still needs to move
if END_EPSILON_DECAYING >= episode >= START_EPSILON_DECAYING:
epsilon = max(0, epsilon - epsilon_change)
print(success)
###Output
Current episode: 1000, success: 0 0.0
Current episode: 2000, success: 0 0.0
Current episode: 3000, success: 0 0.0
Current episode: 4000, success: 31 0.031
Current episode: 5000, success: 321 0.321
Current episode: 6000, success: 602 0.602
Current episode: 7000, success: 620 0.62
Current episode: 8000, success: 821 0.821
Current episode: 9000, success: 707 0.707
Current episode: 10000, success: 714 0.714
Current episode: 11000, success: 574 0.574
Current episode: 12000, success: 443 0.443
Current episode: 13000, success: 480 0.48
Current episode: 14000, success: 458 0.458
Current episode: 15000, success: 327 0.327
Current episode: 16000, success: 323 0.323
Current episode: 17000, success: 295 0.295
Current episode: 18000, success: 314 0.314
Current episode: 19000, success: 362 0.362
Current episode: 20000, success: 488 0.488
Current episode: 21000, success: 566 0.566
Current episode: 22000, success: 591 0.591
Current episode: 23000, success: 441 0.441
Current episode: 24000, success: 385 0.385
Current episode: 25000, success: 1000 1.0
Current episode: 26000, success: 1000 1.0
Current episode: 27000, success: 993 0.993
Current episode: 28000, success: 67 0.067
Current episode: 29000, success: 0 0.0
Current episode: 30000, success: 39 0.039
Current episode: 31000, success: 204 0.204
Current episode: 32000, success: 429 0.429
Current episode: 33000, success: 345 0.345
Current episode: 34000, success: 970 0.97
Current episode: 35000, success: 583 0.583
Current episode: 36000, success: 752 0.752
Current episode: 37000, success: 955 0.955
Current episode: 38000, success: 997 0.997
Current episode: 39000, success: 1000 1.0
Current episode: 40000, success: 1000 1.0
Current episode: 41000, success: 1000 1.0
Current episode: 42000, success: 1000 1.0
Current episode: 43000, success: 1000 1.0
Current episode: 44000, success: 1000 1.0
Current episode: 45000, success: 1000 1.0
Current episode: 46000, success: 1000 1.0
Current episode: 47000, success: 1000 1.0
Current episode: 48000, success: 1000 1.0
Current episode: 49000, success: 1000 1.0
Current episode: 50000, success: 1000 1.0
True
###Markdown
As you can see, the number of successful episodes generally increases as training progresses. It is not advisable to stop the first time we observe 100% success over 1,000 episodes. There is a randomness to most games, so it is not likely that an agent would retain its 100% success rate with a new run. It might be safe to stop training once you observe that the agent has gotten 100% for several update intervals. Running and Observing the AgentNow that the algorithm has trained the agent, we can observe the agent in action. You can use the following code to see the agent in action.
###Code
# HIDE OUTPUT
run_game(q_table, True, False)
show_video()
###Output
_____no_output_____
###Markdown
Inspecting the Q-TableWe can also display the Q-table. The following code shows the action that the agent would perform for each environment state. As the weights of a neural network, this table is not straightforward to interpret. Some patterns do emerge in that directions do arise, as seen by calculating the means of rows and columns. The actions seem consistent at upper and lower halves of both velocity and position.
###Code
import pandas as pd
df = pd.DataFrame(q_table.argmax(axis=2))
df.columns = [f'v-{x}' for x in range(DISCRETE_GRID_SIZE[0])]
df.index = [f'p-{x}' for x in range(DISCRETE_GRID_SIZE[1])]
df
df.mean(axis=0)
df.mean(axis=1)
###Output
_____no_output_____
###Markdown
T81-558: Applications of Deep Neural Networks**Module 12: Deep Learning and Security*** Instructor: [Jeff Heaton](https://sites.wustl.edu/jeffheaton/), McKelvey School of Engineering, [Washington University in St. Louis](https://engineering.wustl.edu/Programs/Pages/default.aspx)* For more information visit the [class website](https://sites.wustl.edu/jeffheaton/t81-558/). Module 12 Video Material* Part 12.1: Introduction to the OpenAI Gym [[Video]](https://www.youtube.com/watch?v=_KbUxgyisjM&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_12_01_ai_gym.ipynb)* **Part 12.2: Introduction to Q-Learning** [[Video]](https://www.youtube.com/watch?v=uwcXWe_Fra0&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_12_02_qlearningreinforcement.ipynb)* Part 12.3: Keras Q-Learning in the OpenAI Gym [[Video]](https://www.youtube.com/watch?v=Ya1gYt63o3M&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_12_03_keras_reinforce.ipynb)* Part 12.4: Atari Games with Keras Neural Networks [[Video]](https://www.youtube.com/watch?v=t2yIu6cRa38&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_12_04_atari.ipynb)* Part 12.5: How Alpha Zero used Reinforcement Learning to Master Chess [[Video]](https://www.youtube.com/watch?v=ikDgyD7nVI8&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_12_05_alpha_zero.ipynb) Google CoLab InstructionsThe following code ensures that Google CoLab is running the correct version of TensorFlow.
###Code
try:
from google.colab import drive
%tensorflow_version 2.x
COLAB = True
print("Note: using Google CoLab")
except:
print("Note: not using Google CoLab")
COLAB = False
###Output
_____no_output_____
###Markdown
Part 12.2: Introduction to Q-Learning Single Action CartMountain car actions:* 0 - Apply left force* 1 - Apply no force* 2 - Apply right forceState values:* state[0] - Position * state[1] - VelocityThe following shows a cart that simply applies full-force to climb the hill. The cart is simply not strong enough. It will need to use momentum from the hill behind it.
###Code
import gym
env = gym.make("MountainCar-v0")
env.reset()
done = False
i = 0
while not done:
i += 1
state, reward, done, _ = env.step(2)
env.render()
print(f"Step {i}: State={state}, Reward={reward}")
env.close()
###Output
Step 1: State=[-0.54298351 0.00115394], Reward=-1.0
Step 2: State=[-0.54068426 0.00229925], Reward=-1.0
Step 3: State=[-0.53725693 0.00342733], Reward=-1.0
Step 4: State=[-0.53272719 0.00452974], Reward=-1.0
Step 5: State=[-0.527129 0.00559819], Reward=-1.0
Step 6: State=[-0.52050433 0.00662467], Reward=-1.0
Step 7: State=[-0.51290287 0.00760146], Reward=-1.0
Step 8: State=[-0.50438161 0.00852126], Reward=-1.0
Step 9: State=[-0.4950044 0.00937721], Reward=-1.0
Step 10: State=[-0.48484139 0.01016301], Reward=-1.0
Step 11: State=[-0.47396841 0.01087299], Reward=-1.0
Step 12: State=[-0.46246627 0.01150213], Reward=-1.0
Step 13: State=[-0.45042007 0.0120462 ], Reward=-1.0
Step 14: State=[-0.43791831 0.01250176], Reward=-1.0
Step 15: State=[-0.4250521 0.01286621], Reward=-1.0
Step 16: State=[-0.41191426 0.01313783], Reward=-1.0
Step 17: State=[-0.39859848 0.01331578], Reward=-1.0
Step 18: State=[-0.38519838 0.0134001 ], Reward=-1.0
Step 19: State=[-0.37180672 0.01339166], Reward=-1.0
Step 20: State=[-0.35851456 0.01329216], Reward=-1.0
Step 21: State=[-0.34541053 0.01310403], Reward=-1.0
Step 22: State=[-0.33258017 0.01283036], Reward=-1.0
Step 23: State=[-0.32010531 0.01247486], Reward=-1.0
Step 24: State=[-0.30806361 0.0120417 ], Reward=-1.0
Step 25: State=[-0.29652811 0.0115355 ], Reward=-1.0
Step 26: State=[-0.28556694 0.01096116], Reward=-1.0
Step 27: State=[-0.27524312 0.01032383], Reward=-1.0
Step 28: State=[-0.26561434 0.00962878], Reward=-1.0
Step 29: State=[-0.25673298 0.00888136], Reward=-1.0
Step 30: State=[-0.24864606 0.00808693], Reward=-1.0
Step 31: State=[-0.24139526 0.0072508 ], Reward=-1.0
Step 32: State=[-0.23501706 0.0063782 ], Reward=-1.0
Step 33: State=[-0.22954281 0.00547425], Reward=-1.0
Step 34: State=[-0.22499885 0.00454396], Reward=-1.0
Step 35: State=[-0.22140666 0.00359218], Reward=-1.0
Step 36: State=[-0.21878297 0.00262369], Reward=-1.0
Step 37: State=[-0.21713985 0.00164313], Reward=-1.0
Step 38: State=[-0.21648478 0.00065507], Reward=-1.0
Step 39: State=[-0.21682075 -0.00033597], Reward=-1.0
Step 40: State=[-0.21814623 -0.00132548], Reward=-1.0
Step 41: State=[-0.22045518 -0.00230895], Reward=-1.0
Step 42: State=[-0.22373702 -0.00328184], Reward=-1.0
Step 43: State=[-0.22797653 -0.00423951], Reward=-1.0
Step 44: State=[-0.23315378 -0.00517725], Reward=-1.0
Step 45: State=[-0.239244 -0.00609022], Reward=-1.0
Step 46: State=[-0.24621747 -0.00697347], Reward=-1.0
Step 47: State=[-0.25403939 -0.00782191], Reward=-1.0
Step 48: State=[-0.26266974 -0.00863035], Reward=-1.0
Step 49: State=[-0.27206323 -0.0093935 ], Reward=-1.0
Step 50: State=[-0.28216923 -0.010106 ], Reward=-1.0
Step 51: State=[-0.29293174 -0.01076251], Reward=-1.0
Step 52: State=[-0.30428945 -0.01135771], Reward=-1.0
Step 53: State=[-0.31617585 -0.0118864 ], Reward=-1.0
Step 54: State=[-0.32851945 -0.0123436 ], Reward=-1.0
Step 55: State=[-0.34124405 -0.0127246 ], Reward=-1.0
Step 56: State=[-0.3542691 -0.01302505], Reward=-1.0
Step 57: State=[-0.36751021 -0.01324111], Reward=-1.0
Step 58: State=[-0.38087966 -0.01336945], Reward=-1.0
Step 59: State=[-0.3942871 -0.01340744], Reward=-1.0
Step 60: State=[-0.40764024 -0.01335314], Reward=-1.0
Step 61: State=[-0.42084563 -0.01320539], Reward=-1.0
Step 62: State=[-0.43380952 -0.01296389], Reward=-1.0
Step 63: State=[-0.44643872 -0.0126292 ], Reward=-1.0
Step 64: State=[-0.45864146 -0.01220274], Reward=-1.0
Step 65: State=[-0.47032831 -0.01168684], Reward=-1.0
Step 66: State=[-0.48141298 -0.01108468], Reward=-1.0
Step 67: State=[-0.49181321 -0.01040022], Reward=-1.0
Step 68: State=[-0.50145146 -0.00963826], Reward=-1.0
Step 69: State=[-0.5102557 -0.00880424], Reward=-1.0
Step 70: State=[-0.51815998 -0.00790428], Reward=-1.0
Step 71: State=[-0.52510506 -0.00694507], Reward=-1.0
Step 72: State=[-0.53103883 -0.00593378], Reward=-1.0
Step 73: State=[-0.53591681 -0.00487798], Reward=-1.0
Step 74: State=[-0.53970243 -0.00378562], Reward=-1.0
Step 75: State=[-0.54236732 -0.00266489], Reward=-1.0
Step 76: State=[-0.54389151 -0.0015242 ], Reward=-1.0
Step 77: State=[-5.44263607e-01 -3.72094556e-04], Reward=-1.0
Step 78: State=[-0.54348081 0.00078279], Reward=-1.0
Step 79: State=[-0.541549 0.00193182], Reward=-1.0
Step 80: State=[-0.53848261 0.00306638], Reward=-1.0
Step 81: State=[-0.53430464 0.00417797], Reward=-1.0
Step 82: State=[-0.52904639 0.00525825], Reward=-1.0
Step 83: State=[-0.52274728 0.00629911], Reward=-1.0
Step 84: State=[-0.51545456 0.00729272], Reward=-1.0
Step 85: State=[-0.50722291 0.00823165], Reward=-1.0
Step 86: State=[-0.49811404 0.00910888], Reward=-1.0
Step 87: State=[-0.48819611 0.00991793], Reward=-1.0
Step 88: State=[-0.4775432 0.01065291], Reward=-1.0
Step 89: State=[-0.46623461 0.01130859], Reward=-1.0
Step 90: State=[-0.45435414 0.01188048], Reward=-1.0
Step 91: State=[-0.44198927 0.01236487], Reward=-1.0
Step 92: State=[-0.42923038 0.01275889], Reward=-1.0
Step 93: State=[-0.41616983 0.01306055], Reward=-1.0
Step 94: State=[-0.40290112 0.01326871], Reward=-1.0
Step 95: State=[-0.389518 0.01338313], Reward=-1.0
Step 96: State=[-0.37611358 0.01340442], Reward=-1.0
Step 97: State=[-0.36277956 0.01333402], Reward=-1.0
Step 98: State=[-0.34960543 0.01317413], Reward=-1.0
Step 99: State=[-0.3366778 0.01292763], Reward=-1.0
Step 100: State=[-0.32407975 0.01259805], Reward=-1.0
Step 101: State=[-0.31189033 0.01218942], Reward=-1.0
Step 102: State=[-0.3001841 0.01170623], Reward=-1.0
Step 103: State=[-0.28903082 0.01115328], Reward=-1.0
Step 104: State=[-0.27849515 0.01053567], Reward=-1.0
Step 105: State=[-0.26863652 0.00985862], Reward=-1.0
Step 106: State=[-0.25950904 0.00912749], Reward=-1.0
Step 107: State=[-0.25116142 0.00834761], Reward=-1.0
Step 108: State=[-0.24363708 0.00752434], Reward=-1.0
Step 109: State=[-0.23697416 0.00666292], Reward=-1.0
Step 110: State=[-0.23120564 0.00576852], Reward=-1.0
Step 111: State=[-0.22635946 0.00484618], Reward=-1.0
Step 112: State=[-0.22245866 0.0039008 ], Reward=-1.0
Step 113: State=[-0.21952148 0.00293718], Reward=-1.0
Step 114: State=[-0.21756149 0.00196 ], Reward=-1.0
Step 115: State=[-0.21658763 0.00097386], Reward=-1.0
Step 116: State=[-2.16604342e-01 -1.67115330e-05], Reward=-1.0
Step 117: State=[-0.21761155 -0.0010072 ], Reward=-1.0
Step 118: State=[-0.21960466 -0.00199312], Reward=-1.0
Step 119: State=[-0.22257458 -0.00296991], Reward=-1.0
Step 120: State=[-0.22650757 -0.003933 ], Reward=-1.0
Step 121: State=[-0.23138525 -0.00487768], Reward=-1.0
Step 122: State=[-0.23718442 -0.00579916], Reward=-1.0
Step 123: State=[-0.24387695 -0.00669253], Reward=-1.0
Step 124: State=[-0.2514297 -0.00755275], Reward=-1.0
Step 125: State=[-0.25980435 -0.00837465], Reward=-1.0
Step 126: State=[-0.26895731 -0.00915296], Reward=-1.0
Step 127: State=[-0.27883967 -0.00988236], Reward=-1.0
Step 128: State=[-0.28939716 -0.01055749], Reward=-1.0
Step 129: State=[-0.30057017 -0.01117301], Reward=-1.0
Step 130: State=[-0.31229385 -0.01172368], Reward=-1.0
Step 131: State=[-0.32449829 -0.01220444], Reward=-1.0
Step 132: State=[-0.33710877 -0.01261047], Reward=-1.0
Step 133: State=[-0.35004609 -0.01293732], Reward=-1.0
Step 134: State=[-0.36322703 -0.01318094], Reward=-1.0
Step 135: State=[-0.3765649 -0.01333787], Reward=-1.0
Step 136: State=[-0.3899701 -0.0134052], Reward=-1.0
Step 137: State=[-0.40335089 -0.01338079], Reward=-1.0
Step 138: State=[-0.41661411 -0.01326322], Reward=-1.0
Step 139: State=[-0.429666 -0.0130519], Reward=-1.0
Step 140: State=[-0.44241311 -0.0127471 ], Reward=-1.0
Step 141: State=[-0.4547631 -0.01235 ], Reward=-1.0
Step 142: State=[-0.4666257 -0.0118626], Reward=-1.0
Step 143: State=[-0.47791353 -0.01128782], Reward=-1.0
Step 144: State=[-0.48854292 -0.01062939], Reward=-1.0
Step 145: State=[-0.49843474 -0.00989182], Reward=-1.0
Step 146: State=[-0.50751511 -0.00908037], Reward=-1.0
Step 147: State=[-0.51571607 -0.00820096], Reward=-1.0
Step 148: State=[-0.52297614 -0.00726007], Reward=-1.0
Step 149: State=[-0.52924088 -0.00626474], Reward=-1.0
Step 150: State=[-0.53446331 -0.00522243], Reward=-1.0
Step 151: State=[-0.53860426 -0.00414096], Reward=-1.0
Step 152: State=[-0.54163272 -0.00302845], Reward=-1.0
Step 153: State=[-0.54352598 -0.00189327], Reward=-1.0
Step 154: State=[-0.54426988 -0.0007439 ], Reward=-1.0
###Markdown
Programmed CarThis is a car that I hand-programmed. It uses a simple rule, but solves the problem. The programmed car constantly applies force to one direction or another. It does not reset. Whatever direction the car is currently rolling, it applies force in that direction. Therefore, the car begins to climb a hill, is overpowered, and rolls backward. However, once it begins to roll backwards force is immediately applied in this new direction.
###Code
import gym
env = gym.make("MountainCar-v0")
state = env.reset()
done = False
i = 0
while not done:
i += 1
if state[1]>0:
action = 2
else:
action = 0
state, reward, done, _ = env.step(action)
env.render()
print(f"Step {i}: State={state}, Reward={reward}")
env.close()
###Output
Step 1: State=[-0.51431373 -0.00107771], Reward=-1.0
Step 2: State=[-0.51646107 -0.00214734], Reward=-1.0
Step 3: State=[-0.51966193 -0.00320087], Reward=-1.0
Step 4: State=[-0.52389233 -0.00423039], Reward=-1.0
Step 5: State=[-0.52912052 -0.00522819], Reward=-1.0
Step 6: State=[-0.53530729 -0.00618678], Reward=-1.0
Step 7: State=[-0.54240628 -0.00709898], Reward=-1.0
Step 8: State=[-0.55036428 -0.007958 ], Reward=-1.0
Step 9: State=[-0.55912175 -0.00875748], Reward=-1.0
Step 10: State=[-0.56861331 -0.00949156], Reward=-1.0
Step 11: State=[-0.57876828 -0.01015497], Reward=-1.0
Step 12: State=[-0.58951137 -0.01074309], Reward=-1.0
Step 13: State=[-0.60076333 -0.01125196], Reward=-1.0
Step 14: State=[-0.61244171 -0.01167838], Reward=-1.0
Step 15: State=[-0.62446163 -0.01201992], Reward=-1.0
Step 16: State=[-0.63673657 -0.01227494], Reward=-1.0
Step 17: State=[-0.64917917 -0.0124426 ], Reward=-1.0
Step 18: State=[-0.66170205 -0.01252287], Reward=-1.0
Step 19: State=[-0.67421853 -0.01251648], Reward=-1.0
Step 20: State=[-0.68664341 -0.01242488], Reward=-1.0
Step 21: State=[-0.69889363 -0.01225023], Reward=-1.0
Step 22: State=[-0.71088891 -0.01199528], Reward=-1.0
Step 23: State=[-0.72255227 -0.01166336], Reward=-1.0
Step 24: State=[-0.73381051 -0.01125823], Reward=-1.0
Step 25: State=[-0.7445946 -0.01078409], Reward=-1.0
Step 26: State=[-0.75484 -0.0102454], Reward=-1.0
Step 27: State=[-0.76448689 -0.00964689], Reward=-1.0
Step 28: State=[-0.77348032 -0.00899343], Reward=-1.0
Step 29: State=[-0.78177031 -0.00828998], Reward=-1.0
Step 30: State=[-0.78931187 -0.00754156], Reward=-1.0
Step 31: State=[-0.79606502 -0.00675316], Reward=-1.0
Step 32: State=[-0.80199476 -0.00592974], Reward=-1.0
Step 33: State=[-0.80707094 -0.00507618], Reward=-1.0
Step 34: State=[-0.81126824 -0.00419729], Reward=-1.0
Step 35: State=[-0.81456603 -0.00329779], Reward=-1.0
Step 36: State=[-0.81694832 -0.0023823 ], Reward=-1.0
Step 37: State=[-0.81840369 -0.00145537], Reward=-1.0
Step 38: State=[-8.18925204e-01 -5.21510941e-04], Reward=-1.0
Step 39: State=[-8.18510378e-01 4.14826025e-04], Reward=-1.0
Step 40: State=[-0.81516118 0.00334919], Reward=-1.0
Step 41: State=[-0.80889363 0.00626755], Reward=-1.0
Step 42: State=[-0.7997382 0.00915543], Reward=-1.0
Step 43: State=[-0.78774062 0.01199759], Reward=-1.0
Step 44: State=[-0.77296289 0.01477773], Reward=-1.0
Step 45: State=[-0.75548455 0.01747834], Reward=-1.0
Step 46: State=[-0.73540399 0.02008056], Reward=-1.0
Step 47: State=[-0.71283965 0.02256434], Reward=-1.0
Step 48: State=[-0.68793102 0.02490863], Reward=-1.0
Step 49: State=[-0.66083923 0.0270918 ], Reward=-1.0
Step 50: State=[-0.63174696 0.02909226], Reward=-1.0
Step 51: State=[-0.60085774 0.03088922], Reward=-1.0
Step 52: State=[-0.56839425 0.03246349], Reward=-1.0
Step 53: State=[-0.53459581 0.03379844], Reward=-1.0
Step 54: State=[-0.49971491 0.03488091], Reward=-1.0
Step 55: State=[-0.46401297 0.03570193], Reward=-1.0
Step 56: State=[-0.42775556 0.03625741], Reward=-1.0
Step 57: State=[-0.39120711 0.03654845], Reward=-1.0
Step 58: State=[-0.35462569 0.03658142], Reward=-1.0
Step 59: State=[-0.31825799 0.0363677 ], Reward=-1.0
Step 60: State=[-0.28233478 0.03592322], Reward=-1.0
Step 61: State=[-0.24706714 0.03526764], Reward=-1.0
Step 62: State=[-0.21264364 0.0344235 ], Reward=-1.0
Step 63: State=[-0.17922847 0.03341517], Reward=-1.0
Step 64: State=[-0.14696054 0.03226793], Reward=-1.0
Step 65: State=[-0.11595355 0.03100699], Reward=-1.0
Step 66: State=[-0.08629682 0.02965673], Reward=-1.0
Step 67: State=[-0.05805677 0.02824004], Reward=-1.0
Step 68: State=[-0.03127891 0.02677787], Reward=-1.0
Step 69: State=[-0.00599004 0.02528887], Reward=-1.0
Step 70: State=[0.01779923 0.02378927], Reward=-1.0
Step 71: State=[0.04009206 0.02229283], Reward=-1.0
Step 72: State=[0.06090295 0.02081089], Reward=-1.0
Step 73: State=[0.08025546 0.01935251], Reward=-1.0
Step 74: State=[0.09818008 0.01792462], Reward=-1.0
Step 75: State=[0.11471236 0.01653228], Reward=-1.0
Step 76: State=[0.12989122 0.01517886], Reward=-1.0
Step 77: State=[0.14375749 0.01386628], Reward=-1.0
Step 78: State=[0.15635269 0.01259519], Reward=-1.0
Step 79: State=[0.16771789 0.01136521], Reward=-1.0
Step 80: State=[0.17789293 0.01017504], Reward=-1.0
Step 81: State=[0.18691562 0.00902269], Reward=-1.0
Step 82: State=[0.19482116 0.00790554], Reward=-1.0
Step 83: State=[0.20164168 0.00682052], Reward=-1.0
Step 84: State=[0.20740583 0.00576416], Reward=-1.0
Step 85: State=[0.21213852 0.00473269], Reward=-1.0
Step 86: State=[0.21586063 0.00372211], Reward=-1.0
Step 87: State=[0.21858888 0.00272825], Reward=-1.0
Step 88: State=[0.22033568 0.0017468 ], Reward=-1.0
Step 89: State=[0.22110904 0.00077336], Reward=-1.0
Step 90: State=[ 2.20912527e-01 -1.96509754e-04], Reward=-1.0
Step 91: State=[ 0.21774524 -0.00316729], Reward=-1.0
Step 92: State=[ 0.21159265 -0.00615259], Reward=-1.0
Step 93: State=[ 0.20242705 -0.0091656 ], Reward=-1.0
Step 94: State=[ 0.19020845 -0.01221861], Reward=-1.0
Step 95: State=[ 0.17488593 -0.01532251], Reward=-1.0
Step 96: State=[ 0.15639968 -0.01848625], Reward=-1.0
Step 97: State=[ 0.1346836 -0.02171608], Reward=-1.0
Step 98: State=[ 0.10966883 -0.02501477], Reward=-1.0
Step 99: State=[ 0.08128815 -0.02838068], Reward=-1.0
Step 100: State=[ 0.04948145 -0.03180671], Reward=-1.0
Step 101: State=[ 0.01420223 -0.03527921], Reward=-1.0
Step 102: State=[-0.02457471 -0.03877695], Reward=-1.0
Step 103: State=[-0.06684487 -0.04227015], Reward=-1.0
Step 104: State=[-0.11256492 -0.04572006], Reward=-1.0
Step 105: State=[-0.16164378 -0.04907886], Reward=-1.0
Step 106: State=[-0.21393441 -0.05229063], Reward=-1.0
Step 107: State=[-0.26922758 -0.05529317], Reward=-1.0
Step 108: State=[-0.32724868 -0.05802111], Reward=-1.0
Step 109: State=[-0.38765872 -0.06041004], Reward=-1.0
Step 110: State=[-0.45006028 -0.06240156], Reward=-1.0
Step 111: State=[-0.51400891 -0.06394863], Reward=-1.0
Step 112: State=[-0.57902946 -0.06502055], Reward=-1.0
Step 113: State=[-0.64463619 -0.06560673], Reward=-1.0
Step 114: State=[-0.71035496 -0.06571877], Reward=-1.0
Step 115: State=[-0.77574519 -0.06539023], Reward=-1.0
Step 116: State=[-0.84041959 -0.06467439], Reward=-1.0
Step 117: State=[-0.90405977 -0.06364018], Reward=-1.0
Step 118: State=[-0.96642693 -0.06236716], Reward=-1.0
Step 119: State=[-1.02736712 -0.06094019], Reward=-1.0
Step 120: State=[-1.08681173 -0.05944462], Reward=-1.0
Step 121: State=[-1.14477398 -0.05796225], Reward=-1.0
Step 122: State=[-1.2 0. ], Reward=-1.0
Step 123: State=[-1.1987581 0.0012419], Reward=-1.0
Step 124: State=[-1.19427021 0.0044879 ], Reward=-1.0
Step 125: State=[-1.18652173 0.00774848], Reward=-1.0
Step 126: State=[-1.17548846 0.01103326], Reward=-1.0
Step 127: State=[-1.16113808 0.01435038], Reward=-1.0
Step 128: State=[-1.14343234 0.01770574], Reward=-1.0
Step 129: State=[-1.12233007 0.02110228], Reward=-1.0
Step 130: State=[-1.09779103 0.02453904], Reward=-1.0
Step 131: State=[-1.06978073 0.0280103 ], Reward=-1.0
Step 132: State=[-1.03827616 0.03150456], Reward=-1.0
Step 133: State=[-1.0032725 0.03500367], Reward=-1.0
Step 134: State=[-0.9647905 0.03848199], Reward=-1.0
Step 135: State=[-0.92288452 0.04190598], Reward=-1.0
Step 136: State=[-0.87765038 0.04523414], Reward=-1.0
Step 137: State=[-0.82923273 0.04841765], Reward=-1.0
Step 138: State=[-0.77783078 0.05140195], Reward=-1.0
Step 139: State=[-0.72370164 0.05412914], Reward=-1.0
Step 140: State=[-0.66716026 0.05654138], Reward=-1.0
Step 141: State=[-0.60857514 0.05858511], Reward=-1.0
Step 142: State=[-0.54835959 0.06021555], Reward=-1.0
Step 143: State=[-0.4869585 0.06140109], Reward=-1.0
Step 144: State=[-0.42483166 0.06212684], Reward=-1.0
Step 145: State=[-0.36243478 0.06239688], Reward=-1.0
Step 146: State=[-0.30020009 0.06223469], Reward=-1.0
Step 147: State=[-0.23851824 0.06168185], Reward=-1.0
Step 148: State=[-0.17772322 0.06079502], Reward=-1.0
Step 149: State=[-0.1180812 0.05964202], Reward=-1.0
Step 150: State=[-0.05978395 0.05829725], Reward=-1.0
Step 151: State=[-0.0029466 0.05683735], Reward=-1.0
Step 152: State=[0.05239085 0.05533745], Reward=-1.0
###Markdown
Reinforcement LearningFigure 12.REINF provides a high level overview of Reinforcement, or Q Learning.**Figure 12.REINF:Reinforcement/Q Learning** Q-Learning CarWe will now use Q-Learning to produce a car that learns to drive itself. Look out Tesla! Q-Learning works by building a table that provides a lookup table to determine which of several actions should be taken. As we move through a number of training episodes this table is refined. $ Q^{new}(s_{t},a_{t}) \leftarrow (1-\alpha) \cdot \underbrace{Q(s_{t},a_{t})}_{\text{old value}} + \underbrace{\alpha}_{\text{learning rate}} \cdot \overbrace{\bigg( \underbrace{r_{t}}_{\text{reward}} + \underbrace{\gamma}_{\text{discount factor}} \cdot \underbrace{\max_{a}Q(s_{t+1}, a)}_{\text{estimate of optimal future value}} \bigg) }^{\text{learned value}} $
###Code
import gym
import numpy as np
def calc_discrete_state(state):
discrete_state = (state - env.observation_space.low)/buckets
return tuple(discrete_state.astype(np.int))
def run_game(q_table, render, should_update):
done = False
discrete_state = calc_discrete_state(env.reset())
success = False
while not done:
# Exploit or explore
if np.random.random() > epsilon:
# Exploit - use q-table to take current best action (and probably refine)
action = np.argmax(q_table[discrete_state])
else:
# Explore - t
action = np.random.randint(0, env.action_space.n)
# Run simulation step
new_state, reward, done, _ = env.step(action)
#
new_state_disc = calc_discrete_state(new_state)
#
if new_state[0] >= env.goal_position:
success = True
# Update q-table
if should_update:
max_future_q = np.max(q_table[new_state_disc])
current_q = q_table[discrete_state + (action,)]
new_q = (1 - LEARNING_RATE) * current_q + LEARNING_RATE * (reward + DISCOUNT * max_future_q)
q_table[discrete_state + (action,)] = new_q
discrete_state = new_state_disc
if render:
env.render()
return success
LEARNING_RATE = 0.1
DISCOUNT = 0.95
EPISODES = 10000
SHOW_EVERY = 1000
DISCRETE_GRID_SIZE = [10, 10]
START_EPSILON_DECAYING = 1
END_EPSILON_DECAYING = EPISODES//2
env = gym.make("MountainCar-v0")
epsilon = 1
epsilon_change = epsilon/(END_EPSILON_DECAYING - START_EPSILON_DECAYING)
buckets = (env.observation_space.high - env.observation_space.low)/DISCRETE_GRID_SIZE
q_table = np.random.uniform(low=-3, high=0, size=(DISCRETE_GRID_SIZE + [env.action_space.n]))
success = False
episode = 0
success_count = 0
while episode<EPISODES:
episode+=1
done = False
if episode % SHOW_EVERY == 0:
print(f"Current episode: {episode}, success: {success_count} ({float(success_count)/SHOW_EVERY})")
success = run_game(q_table, True, False)
success_count = 0
else:
success = run_game(q_table, False, True)
if success:
success_count += 1
# Move epsilon towards its ending value, if it still needs to move
if END_EPSILON_DECAYING >= episode >= START_EPSILON_DECAYING:
epsilon -= epsilon_change
print(success)
run_game(q_table, True, False)
import pandas as pd
df = pd.DataFrame(q_table.argmax(axis=2))
df.columns = [f'v-{x}' for x in range(DISCRETE_GRID_SIZE[0])]
df.index = [f'p-{x}' for x in range(DISCRETE_GRID_SIZE[1])]
df
np.argmax(q_table[(2,0)])
###Output
_____no_output_____
###Markdown
Part 12.2: Introduction to Q-Learning Single Action CartMountain car actions:* 0 - Apply left force* 1 - Apply no force* 2 - Apply right forceState values:* state[0] - Position * state[1] - VelocityThe following shows a cart that simply applies full-force to climb the hill. The cart is simply not strong enough. It will need to use momentum from the hill behind it.
###Code
import gym
env = gym.make("MountainCar-v0")
env.reset()
done = False
i = 0
while not done:
i += 1
state, reward, done, _ = env.step(2)
env.render()
#print(f"Step {i}: State={state}, Reward={reward}")
print("Step: {0}, State: {1}, Reward = {2}".format(i, state,reward))
env.close()
###Output
Step: 1, State: [-0.47707696 0.0006571 ], Reward = -1.0
Step: 2, State: [-0.47576764 0.00130932], Reward = -1.0
Step: 3, State: [-0.47381583 0.00195181], Reward = -1.0
Step: 4, State: [-0.471236 0.00257983], Reward = -1.0
Step: 5, State: [-0.46804728 0.00318872], Reward = -1.0
Step: 6, State: [-0.46427327 0.00377401], Reward = -1.0
Step: 7, State: [-0.45994186 0.00433141], Reward = -1.0
Step: 8, State: [-0.45508497 0.00485688], Reward = -1.0
Step: 9, State: [-0.44973833 0.00534664], Reward = -1.0
Step: 10, State: [-0.44394112 0.00579721], Reward = -1.0
Step: 11, State: [-0.43773568 0.00620545], Reward = -1.0
Step: 12, State: [-0.43116711 0.00656857], Reward = -1.0
Step: 13, State: [-0.42428292 0.00688418], Reward = -1.0
Step: 14, State: [-0.41713263 0.00715029], Reward = -1.0
Step: 15, State: [-0.40976734 0.0073653 ], Reward = -1.0
Step: 16, State: [-0.40223928 0.00752806], Reward = -1.0
Step: 17, State: [-0.39460144 0.00763784], Reward = -1.0
Step: 18, State: [-0.38690711 0.00769433], Reward = -1.0
Step: 19, State: [-0.37920948 0.00769763], Reward = -1.0
Step: 20, State: [-0.37156122 0.00764826], Reward = -1.0
Step: 21, State: [-0.36401411 0.00754711], Reward = -1.0
Step: 22, State: [-0.35661869 0.00739542], Reward = -1.0
Step: 23, State: [-0.34942389 0.0071948 ], Reward = -1.0
Step: 24, State: [-0.34247677 0.00694712], Reward = -1.0
Step: 25, State: [-0.33582219 0.00665457], Reward = -1.0
Step: 26, State: [-0.32950263 0.00631956], Reward = -1.0
Step: 27, State: [-0.32355791 0.00594472], Reward = -1.0
Step: 28, State: [-0.31802505 0.00553286], Reward = -1.0
Step: 29, State: [-0.3129381 0.00508695], Reward = -1.0
Step: 30, State: [-0.30832801 0.00461009], Reward = -1.0
Step: 31, State: [-0.30422253 0.00410547], Reward = -1.0
Step: 32, State: [-0.30064616 0.00357638], Reward = -1.0
Step: 33, State: [-0.29762001 0.00302615], Reward = -1.0
Step: 34, State: [-0.29516182 0.00245818], Reward = -1.0
Step: 35, State: [-0.29328592 0.0018759 ], Reward = -1.0
Step: 36, State: [-0.29200317 0.00128275], Reward = -1.0
Step: 37, State: [-0.29132098 0.00068219], Reward = -1.0
Step: 38, State: [-2.91243266e-01 7.77126097e-05], Reward = -1.0
Step: 39, State: [-0.29177048 -0.00052722], Reward = -1.0
Step: 40, State: [-0.29289959 -0.00112911], Reward = -1.0
Step: 41, State: [-0.29462409 -0.00172449], Reward = -1.0
Step: 42, State: [-0.29693398 -0.0023099 ], Reward = -1.0
Step: 43, State: [-0.29981585 -0.00288187], Reward = -1.0
Step: 44, State: [-0.30325283 -0.00343698], Reward = -1.0
Step: 45, State: [-0.30722465 -0.00397182], Reward = -1.0
Step: 46, State: [-0.31170769 -0.00448304], Reward = -1.0
Step: 47, State: [-0.31667502 -0.00496733], Reward = -1.0
Step: 48, State: [-0.32209651 -0.00542149], Reward = -1.0
Step: 49, State: [-0.32793889 -0.00584238], Reward = -1.0
Step: 50, State: [-0.3341659 -0.006227 ], Reward = -1.0
Step: 51, State: [-0.3407384 -0.0065725], Reward = -1.0
Step: 52, State: [-0.34761459 -0.00687619], Reward = -1.0
Step: 53, State: [-0.3547502 -0.00713561], Reward = -1.0
Step: 54, State: [-0.36209871 -0.00734851], Reward = -1.0
Step: 55, State: [-0.36961163 -0.00751292], Reward = -1.0
Step: 56, State: [-0.37723882 -0.00762719], Reward = -1.0
Step: 57, State: [-0.38492877 -0.00768995], Reward = -1.0
Step: 58, State: [-0.39262901 -0.00770024], Reward = -1.0
Step: 59, State: [-0.40028644 -0.00765743], Reward = -1.0
Step: 60, State: [-0.40784776 -0.00756132], Reward = -1.0
Step: 61, State: [-0.41525988 -0.00741211], Reward = -1.0
Step: 62, State: [-0.4224703 -0.00721042], Reward = -1.0
Step: 63, State: [-0.42942761 -0.00695731], Reward = -1.0
Step: 64, State: [-0.43608184 -0.00665423], Reward = -1.0
Step: 65, State: [-0.44238493 -0.00630309], Reward = -1.0
Step: 66, State: [-0.44829112 -0.00590619], Reward = -1.0
Step: 67, State: [-0.45375733 -0.0054662 ], Reward = -1.0
Step: 68, State: [-0.45874352 -0.00498619], Reward = -1.0
Step: 69, State: [-0.46321306 -0.00446954], Reward = -1.0
Step: 70, State: [-0.46713303 -0.00391996], Reward = -1.0
Step: 71, State: [-0.47047446 -0.00334143], Reward = -1.0
Step: 72, State: [-0.47321264 -0.00273818], Reward = -1.0
Step: 73, State: [-0.47532728 -0.00211464], Reward = -1.0
Step: 74, State: [-0.47680269 -0.00147541], Reward = -1.0
Step: 75, State: [-0.47762792 -0.00082523], Reward = -1.0
Step: 76, State: [-4.77796842e-01 -1.68920140e-04], Reward = -1.0
Step: 77, State: [-0.4773082 0.00048865], Reward = -1.0
Step: 78, State: [-0.47616562 0.00114258], Reward = -1.0
Step: 79, State: [-0.47437758 0.00178803], Reward = -1.0
Step: 80, State: [-0.47195737 0.00242021], Reward = -1.0
Step: 81, State: [-0.46892292 0.00303445], Reward = -1.0
Step: 82, State: [-0.46529671 0.00362622], Reward = -1.0
Step: 83, State: [-0.46110553 0.00419118], Reward = -1.0
Step: 84, State: [-0.45638031 0.00472522], Reward = -1.0
Step: 85, State: [-0.45115582 0.00522449], Reward = -1.0
Step: 86, State: [-0.44547038 0.00568544], Reward = -1.0
Step: 87, State: [-0.43936556 0.00610482], Reward = -1.0
Step: 88, State: [-0.43288578 0.00647978], Reward = -1.0
Step: 89, State: [-0.42607799 0.00680779], Reward = -1.0
Step: 90, State: [-0.41899121 0.00708678], Reward = -1.0
Step: 91, State: [-0.41167618 0.00731504], Reward = -1.0
Step: 92, State: [-0.40418487 0.0074913 ], Reward = -1.0
Step: 93, State: [-0.39657014 0.00761473], Reward = -1.0
Step: 94, State: [-0.38888524 0.00768491], Reward = -1.0
Step: 95, State: [-0.3811834 0.00770184], Reward = -1.0
Step: 96, State: [-0.37351748 0.00766592], Reward = -1.0
Step: 97, State: [-0.36593952 0.00757796], Reward = -1.0
Step: 98, State: [-0.35850041 0.00743911], Reward = -1.0
Step: 99, State: [-0.35124952 0.00725088], Reward = -1.0
Step: 100, State: [-0.34423443 0.00701509], Reward = -1.0
Step: 101, State: [-0.33750059 0.00673384], Reward = -1.0
Step: 102, State: [-0.33109109 0.00640949], Reward = -1.0
Step: 103, State: [-0.32504648 0.00604462], Reward = -1.0
Step: 104, State: [-0.31940449 0.00564199], Reward = -1.0
Step: 105, State: [-0.31419996 0.00520453], Reward = -1.0
Step: 106, State: [-0.30946465 0.00473531], Reward = -1.0
Step: 107, State: [-0.30522714 0.00423751], Reward = -1.0
Step: 108, State: [-0.30151275 0.00371439], Reward = -1.0
Step: 109, State: [-0.29834349 0.00316926], Reward = -1.0
Step: 110, State: [-0.29573796 0.00260553], Reward = -1.0
Step: 111, State: [-0.29371138 0.00202659], Reward = -1.0
Step: 112, State: [-0.29227548 0.0014359 ], Reward = -1.0
Step: 113, State: [-0.29143856 0.00083691], Reward = -1.0
Step: 114, State: [-2.91205456e-01 2.33108360e-04], Reward = -1.0
Step: 115, State: [-0.29157749 -0.00037204], Reward = -1.0
Step: 116, State: [-0.29255254 -0.00097504], Reward = -1.0
Step: 117, State: [-0.29412497 -0.00157243], Reward = -1.0
Step: 118, State: [-0.29628569 -0.00216073], Reward = -1.0
Step: 119, State: [-0.29902217 -0.00273648], Reward = -1.0
Step: 120, State: [-0.30231841 -0.00329624], Reward = -1.0
Step: 121, State: [-0.30615501 -0.00383661], Reward = -1.0
Step: 122, State: [-0.31050922 -0.00435421], Reward = -1.0
Step: 123, State: [-0.31535495 -0.00484573], Reward = -1.0
Step: 124, State: [-0.32066288 -0.00530793], Reward = -1.0
Step: 125, State: [-0.32640053 -0.00573765], Reward = -1.0
Step: 126, State: [-0.3325324 -0.00613187], Reward = -1.0
Step: 127, State: [-0.33902007 -0.00648767], Reward = -1.0
Step: 128, State: [-0.34582242 -0.00680234], Reward = -1.0
Step: 129, State: [-0.35289577 -0.00707335], Reward = -1.0
Step: 130, State: [-0.36019416 -0.00729839], Reward = -1.0
Step: 131, State: [-0.36766959 -0.00747543], Reward = -1.0
Step: 132, State: [-0.3752723 -0.00760271], Reward = -1.0
Step: 133, State: [-0.38295111 -0.00767881], Reward = -1.0
Step: 134, State: [-0.39065376 -0.00770264], Reward = -1.0
Step: 135, State: [-0.39832726 -0.00767351], Reward = -1.0
Step: 136, State: [-0.40591835 -0.00759108], Reward = -1.0
Step: 137, State: [-0.41337381 -0.00745547], Reward = -1.0
Step: 138, State: [-0.42064098 -0.00726717], Reward = -1.0
Step: 139, State: [-0.42766812 -0.00702713], Reward = -1.0
Step: 140, State: [-0.43440484 -0.00673672], Reward = -1.0
Step: 141, State: [-0.44080256 -0.00639772], Reward = -1.0
Step: 142, State: [-0.44681489 -0.00601233], Reward = -1.0
Step: 143, State: [-0.45239802 -0.00558313], Reward = -1.0
Step: 144, State: [-0.4575111 -0.00511308], Reward = -1.0
Step: 145, State: [-0.4621166 -0.0046055], Reward = -1.0
Step: 146, State: [-0.46618061 -0.00406401], Reward = -1.0
###Markdown
Programmed CarThis is a car that I hand-programmed. It uses a simple rule, but solves the problem. The programmed car constantly applies force to one direction or another. It does not reset. Whatever direction the car is currently rolling, it applies force in that direction. Therefore, the car begins to climb a hill, is overpowered, and rolls backward. However, once it begins to roll backwards force is immediately applied in this new direction.
###Code
import gym
env = gym.make("MountainCar-v0")
state = env.reset()
done = False
i = 0
while not done:
i += 1
if state[1]>0:
action = 2
else:
action = 0
state, reward, done, _ = env.step(action)
env.render()
#print(f"Step {i}: State={state}, Reward={reward}")
print("Step: {0}, State: {1}, Reward = {2}".format(i, state,reward))
env.close()
###Output
Step: 1, State: [-0.441596 -0.00162062], Reward = -1.0
Step: 2, State: [-0.44482546 -0.00322945], Reward = -1.0
Step: 3, State: [-0.44964022 -0.00481477], Reward = -1.0
Step: 4, State: [-0.45600514 -0.00636492], Reward = -1.0
Step: 5, State: [-0.46387355 -0.0078684 ], Reward = -1.0
Step: 6, State: [-0.4731875 -0.00931395], Reward = -1.0
Step: 7, State: [-0.48387809 -0.0106906 ], Reward = -1.0
Step: 8, State: [-0.49586589 -0.0119878 ], Reward = -1.0
Step: 9, State: [-0.50906144 -0.01319555], Reward = -1.0
Step: 10, State: [-0.52336599 -0.01430455], Reward = -1.0
Step: 11, State: [-0.53867228 -0.01530629], Reward = -1.0
Step: 12, State: [-0.55486556 -0.01619328], Reward = -1.0
Step: 13, State: [-0.57182469 -0.01695912], Reward = -1.0
Step: 14, State: [-0.58942338 -0.01759869], Reward = -1.0
Step: 15, State: [-0.60753159 -0.01810821], Reward = -1.0
Step: 16, State: [-0.62601693 -0.01848534], Reward = -1.0
Step: 17, State: [-0.64474616 -0.01872924], Reward = -1.0
Step: 18, State: [-0.66358667 -0.0188405 ], Reward = -1.0
Step: 19, State: [-0.68240785 -0.01882118], Reward = -1.0
Step: 20, State: [-0.70108251 -0.01867467], Reward = -1.0
Step: 21, State: [-0.71948806 -0.01840555], Reward = -1.0
Step: 22, State: [-0.73750756 -0.01801949], Reward = -1.0
Step: 23, State: [-0.7550306 -0.01752305], Reward = -1.0
Step: 24, State: [-0.77195404 -0.01692344], Reward = -1.0
Step: 25, State: [-0.78818243 -0.01622839], Reward = -1.0
Step: 26, State: [-0.80362834 -0.01544591], Reward = -1.0
Step: 27, State: [-0.8182125 -0.01458416], Reward = -1.0
Step: 28, State: [-0.83186371 -0.01365121], Reward = -1.0
Step: 29, State: [-0.84451867 -0.01265496], Reward = -1.0
Step: 30, State: [-0.85612171 -0.01160304], Reward = -1.0
Step: 31, State: [-0.86662435 -0.01050265], Reward = -1.0
Step: 32, State: [-0.87598495 -0.00936059], Reward = -1.0
Step: 33, State: [-0.88416813 -0.00818318], Reward = -1.0
Step: 34, State: [-0.89114441 -0.00697628], Reward = -1.0
Step: 35, State: [-0.89688969 -0.00574528], Reward = -1.0
Step: 36, State: [-0.90138485 -0.00449517], Reward = -1.0
Step: 37, State: [-0.90461542 -0.00323057], Reward = -1.0
Step: 38, State: [-0.90657123 -0.00195581], Reward = -1.0
Step: 39, State: [-9.07246235e-01 -6.75006284e-04], Reward = -1.0
Step: 40, State: [-9.06638370e-01 6.07864927e-04], Reward = -1.0
Step: 41, State: [-0.9027495 0.00388887], Reward = -1.0
Step: 42, State: [-0.89559171 0.00715779], Reward = -1.0
Step: 43, State: [-0.88518806 0.01040364], Reward = -1.0
Step: 44, State: [-0.87157393 0.01361413], Reward = -1.0
Step: 45, State: [-0.85479884 0.01677509], Reward = -1.0
Step: 46, State: [-0.83492876 0.01987008], Reward = -1.0
Step: 47, State: [-0.81204868 0.02288008], Reward = -1.0
Step: 48, State: [-0.78626529 0.02578338], Reward = -1.0
Step: 49, State: [-0.75770955 0.02855574], Reward = -1.0
Step: 50, State: [-0.7265388 0.03117074], Reward = -1.0
Step: 51, State: [-0.69293831 0.03360049], Reward = -1.0
Step: 52, State: [-0.6571217 0.03581661], Reward = -1.0
Step: 53, State: [-0.61933023 0.03779147], Reward = -1.0
Step: 54, State: [-0.57983061 0.03949962], Reward = -1.0
Step: 55, State: [-0.53891124 0.04091936], Reward = -1.0
Step: 56, State: [-0.49687707 0.04203417], Reward = -1.0
Step: 57, State: [-0.45404311 0.04283397], Reward = -1.0
Step: 58, State: [-0.41072703 0.04331608], Reward = -1.0
Step: 59, State: [-0.3672414 0.04348563], Reward = -1.0
Step: 60, State: [-0.32388592 0.04335548], Reward = -1.0
Step: 61, State: [-0.28094027 0.04294565], Reward = -1.0
Step: 62, State: [-0.23865802 0.04228225], Reward = -1.0
Step: 63, State: [-0.1972619 0.04139612], Reward = -1.0
Step: 64, State: [-0.15694065 0.04032125], Reward = -1.0
Step: 65, State: [-0.11784739 0.03909326], Reward = -1.0
Step: 66, State: [-0.08009951 0.03774788], Reward = -1.0
Step: 67, State: [-0.04377979 0.03631971], Reward = -1.0
Step: 68, State: [-0.00893855 0.03484125], Reward = -1.0
Step: 69, State: [0.0244036 0.03334214], Reward = -1.0
Step: 70, State: [0.05625244 0.03184884], Reward = -1.0
Step: 71, State: [0.0866368 0.03038436], Reward = -1.0
Step: 72, State: [0.11560512 0.02896832], Reward = -1.0
Step: 73, State: [0.14322229 0.02761717], Reward = -1.0
Step: 74, State: [0.1695667 0.02634441], Reward = -1.0
Step: 75, State: [0.19472767 0.02516097], Reward = -1.0
Step: 76, State: [0.21880323 0.02407556], Reward = -1.0
Step: 77, State: [0.24189832 0.02309509], Reward = -1.0
Step: 78, State: [0.26412331 0.02222499], Reward = -1.0
Step: 79, State: [0.2855929 0.02146959], Reward = -1.0
Step: 80, State: [0.3064253 0.0208324], Reward = -1.0
Step: 81, State: [0.32674172 0.02031641], Reward = -1.0
Step: 82, State: [0.34666604 0.01992432], Reward = -1.0
Step: 83, State: [0.36632481 0.01965877], Reward = -1.0
Step: 84, State: [0.38584731 0.0195225 ], Reward = -1.0
Step: 85, State: [0.40536582 0.01951852], Reward = -1.0
Step: 86, State: [0.42501607 0.01965025], Reward = -1.0
Step: 87, State: [0.44493767 0.01992161], Reward = -1.0
Step: 88, State: [0.46527478 0.02033711], Reward = -1.0
Step: 89, State: [0.48617669 0.02090191], Reward = -1.0
Step: 90, State: [0.50779852 0.02162183], Reward = -1.0
###Markdown
Reinforcement Learning Q-Learning CarWe will now use Q-Learning to produce a car that learns to drive itself. Look out Tesla! Q-Learning works by building a table that provides a lookup table to determine which of several actions should be taken. As we move through a number of training episodes this table is refined.$ Q^{new}(s_{t},a_{t}) \leftarrow (1-\alpha) \cdot \underbrace{Q(s_{t},a_{t})}_{\text{old value}} + \underbrace{\alpha}_{\text{learning rate}} \cdot \overbrace{\bigg( \underbrace{r_{t}}_{\text{reward}} + \underbrace{\gamma}_{\text{discount factor}} \cdot \underbrace{\max_{a}Q(s_{t+1}, a)}_{\text{estimate of optimal future value}} \bigg) }^{\text{learned value}} $
###Code
import gym
import numpy as np
def calc_discrete_state(state):
discrete_state = (state - env.observation_space.low)/buckets
return tuple(discrete_state.astype(np.int))
def run_game(q_table, render, should_update):
done = False
discrete_state = calc_discrete_state(env.reset())
success = False
while not done:
# Exploit or explore
if np.random.random() > epsilon:
# Exploit - use q-table to take current best action (and probably refine)
action = np.argmax(q_table[discrete_state])
else:
# Explore - t
action = np.random.randint(0, env.action_space.n)
# Run simulation step
new_state, reward, done, _ = env.step(action)
#
new_state_disc = calc_discrete_state(new_state)
#
if new_state[0] >= env.goal_position:
success = True
# Update q-table
if should_update:
max_future_q = np.max(q_table[new_state_disc])
current_q = q_table[discrete_state + (action,)]
new_q = (1 - LEARNING_RATE) * current_q + LEARNING_RATE * (reward + DISCOUNT * max_future_q)
q_table[discrete_state + (action,)] = new_q
discrete_state = new_state_disc
if render:
env.render()
return success
LEARNING_RATE = 0.1
DISCOUNT = 0.95
EPISODES = 200
SHOW_EVERY = 40
DISCRETE_GRID_SIZE = [10, 10]
START_EPSILON_DECAYING = 1
END_EPSILON_DECAYING = EPISODES//2
env = gym.make("MountainCar-v0")
epsilon = 1
epsilon_change = epsilon/(END_EPSILON_DECAYING - START_EPSILON_DECAYING)
buckets = (env.observation_space.high - env.observation_space.low)/DISCRETE_GRID_SIZE
q_table = np.random.uniform(low=-3, high=0, size=(DISCRETE_GRID_SIZE + [env.action_space.n]))
success = False
episode = 0
success_count = 0
while episode<EPISODES:
episode+=1
done = False
if episode % SHOW_EVERY == 0:
#print(f"Current episode: {episode}, success: {success_count} ({float(success_count)/SHOW_EVERY})")
print("Current episode: {0}, success: {1}".format(episode, success_count,float(success_count)/SHOW_EVERY))
success = run_game(q_table, True, False)
success_count = 0
else:
success = run_game(q_table, False, True)
if success:
success_count += 1
# Move epsilon towards its ending value, if it still needs to move
if END_EPSILON_DECAYING >= episode >= START_EPSILON_DECAYING:
epsilon -= epsilon_change
print(success)
run_game(q_table, True, False)
env.close() #end the process
import pandas as pd
df = pd.DataFrame(q_table.argmax(axis=2))
df.columns = ['v-{0}' for x in range(DISCRETE_GRID_SIZE[0])]
df.index = ['p-{1}' for x in range(DISCRETE_GRID_SIZE[1])]
df
np.argmax(q_table[(2,0)])
###Output
_____no_output_____
###Markdown
T81-558: Applications of Deep Neural Networks**Module 12: Reinforcement Learning*** Instructor: [Jeff Heaton](https://sites.wustl.edu/jeffheaton/), McKelvey School of Engineering, [Washington University in St. Louis](https://engineering.wustl.edu/Programs/Pages/default.aspx)* For more information visit the [class website](https://sites.wustl.edu/jeffheaton/t81-558/). Module 12 Video Material* Part 12.1: Introduction to the OpenAI Gym [[Video]](https://www.youtube.com/watch?v=_KbUxgyisjM&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](https://github.com/jeffheaton/t81_558_deep_learning/blob/master/t81_558_class_12_01_ai_gym.ipynb)* **Part 12.2: Introduction to Q-Learning** [[Video]](https://www.youtube.com/watch?v=A3sYFcJY3lA&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](https://github.com/jeffheaton/t81_558_deep_learning/blob/master/t81_558_class_12_02_qlearningreinforcement.ipynb)* Part 12.3: Keras Q-Learning in the OpenAI Gym [[Video]](https://www.youtube.com/watch?v=qy1SJmsRhvM&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](https://github.com/jeffheaton/t81_558_deep_learning/blob/master/t81_558_class_12_03_keras_reinforce.ipynb)* Part 12.4: Atari Games with Keras Neural Networks [[Video]](https://www.youtube.com/watch?v=co0SwPWoZh0&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](https://github.com/jeffheaton/t81_558_deep_learning/blob/master/t81_558_class_12_04_atari.ipynb)* Part 12.5: Application of Reinforcement Learning [[Video]](https://www.youtube.com/watch?v=1jQPP3RfwMI&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](https://github.com/jeffheaton/t81_558_deep_learning/blob/master/t81_558_class_12_05_apply_rl.ipynb) Google CoLab InstructionsThe following code ensures that Google CoLab is running the correct version of TensorFlow.
###Code
try:
from google.colab import drive
%tensorflow_version 2.x
COLAB = True
print("Note: using Google CoLab")
except:
print("Note: not using Google CoLab")
COLAB = False
if COLAB:
!sudo apt-get install -y xvfb ffmpeg x11-utils
!pip install -q 'gym==0.10.11'
!pip install -q 'imageio==2.4.0'
!pip install -q PILLOW
!pip install -q 'pyglet==1.3.2'
!pip install -q pyvirtualdisplay
!pip install -q tf-agents
###Output
Reading package lists... Done
Building dependency tree
Reading state information... Done
x11-utils is already the newest version (7.7+3build1).
ffmpeg is already the newest version (7:3.4.6-0ubuntu0.18.04.1).
xvfb is already the newest version (2:1.19.6-1ubuntu4.4).
0 upgraded, 0 newly installed, 0 to remove and 31 not upgraded.
###Markdown
Part 12.2: Introduction to Q-LearningQ-Learning is a foundational technique upon which deep reinforcement learning is based. Before we explore deep reinforcement learning, it is essential to understand Q-Learning. Several components make up any Q-Learning system.* **Agent** - The agent is an entity that exists in an environment that takes actions to affect the state of the environment, to receive rewards.* **Environment** - The environment is the universe that the agent exists in. The environment is always in a specific state that is changed by the actions of the agent.* **Actions** - Steps that can be performed by the agent to alter the environment * **Step** - A step occurs each time that the agent performs an action and potentially changes the environment state.* **Episode** - A chain of steps that ultimately culminates in the environment entering a terminal state.* **Epoch** - A training iteration of the agent that contains some number of episodes.* **Terminal State** - A state in which further actions do not make sense. In many environments, a terminal state occurs when the agent has one, lost, or the environment exceeding the maximum number of steps.Q-Learning works by building a table that suggests an action for every possible state. This approach runs into several problems. First, the environment is usually composed of several continuous numbers, resulting in an infinite number of states. Q-Learning handles continuous states by binning these numeric values into ranges. Additionally, Q-Learning primarily deals with discrete actions, such as pressing a joystick up or down. Out of the box, Q-Learning does not deal with continuous inputs, such as a car's accelerator that can be in a range of positions from released to fully engaged. Researchers have come up with clever tricks to allow Q-Learning to accommodate continuous actions.In the next chapter, we will learn more about deep reinforcement learning. Deep neural networks can help to solve the problems of continuous environments and action spaces. For now, we will apply regular Q-Learning to the Mountain Car problem from OpenAI Gym. Introducing the Mountain CarThis section will demonstrate how Q-Learning can create a solution to the mountain car gym environment. The Mountain car is an environment where a car must climb a mountain. Because gravity is stronger than the car's engine, even with full throttle, it cannot merely accelerate up the steep slope. The vehicle is situated in a valley and must learn to utilize potential energy by driving up the opposite hill before the car can make it to the goal at the top of the rightmost hill.First, it might be helpful to visualize the mountain car environment. The following code shows this environment. This code makes use of TF-Agents to perform this render. Usually, we use TF-Agents for the type of deep reinforcement learning that we will see in the next module. However, for now, TF-Agents is just used to render the mountain care environment.
###Code
import tf_agents
from tf_agents.environments import suite_gym
import PIL.Image
import pyvirtualdisplay
display = pyvirtualdisplay.Display(visible=0, size=(1400, 900)).start()
env_name = 'MountainCar-v0'
env = suite_gym.load(env_name)
env.reset()
PIL.Image.fromarray(env.render())
###Output
_____no_output_____
###Markdown
The mountain car environment provides the following discrete actions:* 0 - Apply left force* 1 - Apply no force* 2 - Apply right forceThe mountain car environment is made up of the following continuous values:* state[0] - Position * state[1] - VelocityThe following code shows an agent that applies full throttle to climb the hill. The cart is not strong enough. It will need to use potential energy from the mountain behind it.
###Code
import gym
from gym.wrappers import Monitor
import glob
import io
import base64
from IPython.display import HTML
from pyvirtualdisplay import Display
from IPython import display as ipythondisplay
display = Display(visible=0, size=(1400, 900))
display.start()
"""
Utility functions to enable video recording of gym environment
and displaying it.
To enable video, just do "env = wrap_env(env)""
"""
def show_video():
mp4list = glob.glob('video/*.mp4')
if len(mp4list) > 0:
mp4 = mp4list[0]
video = io.open(mp4, 'r+b').read()
encoded = base64.b64encode(video)
ipythondisplay.display(HTML(data='''<video alt="test" autoplay
loop controls style="height: 400px;">
<source src="data:video/mp4;base64,{0}" type="video/mp4" />
</video>'''.format(encoded.decode('ascii'))))
else:
print("Could not find video")
def wrap_env(env):
env = Monitor(env, './video', force=True)
return env
import gym
if COLAB:
env = wrap_env(gym.make("MountainCar-v0"))
else:
env = gym.make("MountainCar-v0")
env.reset()
done = False
i = 0
while not done:
i += 1
state, reward, done, _ = env.step(2)
env.render()
print(f"Step {i}: State={state}, Reward={reward}")
env.close()
show_video()
###Output
_____no_output_____
###Markdown
Programmed CarNow we will look at a car that I hand-programmed. This car is straightforward; however, it solves the problem. The programmed car always applies force to one direction or another. It does not break. Whatever direction the vehicle is currently rolling, the agent uses power in that direction. Therefore, the car begins to climb a hill, is overpowered, and turns backward. However, once it starts to roll backward force is immediately applied in this new direction.The following code implements this preprogrammed car.
###Code
import gym
if COLAB:
env = wrap_env(gym.make("MountainCar-v0"))
else:
env = gym.make("MountainCar-v0")
state = env.reset()
done = False
i = 0
while not done:
i += 1
if state[1]>0:
action = 2
else:
action = 0
state, reward, done, _ = env.step(action)
env.render()
print(f"Step {i}: State={state}, Reward={reward}")
env.close()
###Output
Step 1: State=[-0.57730941 -0.00060338], Reward=-1.0
Step 2: State=[-0.5785117 -0.00120229], Reward=-1.0
Step 3: State=[-0.580304 -0.0017923], Reward=-1.0
Step 4: State=[-0.58267307 -0.00236906], Reward=-1.0
Step 5: State=[-0.58560139 -0.00292832], Reward=-1.0
Step 6: State=[-0.58906736 -0.00346598], Reward=-1.0
Step 7: State=[-0.59304548 -0.00397811], Reward=-1.0
Step 8: State=[-0.5975065 -0.00446102], Reward=-1.0
Step 9: State=[-0.60241775 -0.00491125], Reward=-1.0
Step 10: State=[-0.60774335 -0.0053256 ], Reward=-1.0
Step 11: State=[-0.61344454 -0.00570119], Reward=-1.0
Step 12: State=[-0.61948002 -0.00603548], Reward=-1.0
Step 13: State=[-0.62580627 -0.00632625], Reward=-1.0
Step 14: State=[-0.63237791 -0.00657165], Reward=-1.0
Step 15: State=[-0.63914812 -0.00677021], Reward=-1.0
Step 16: State=[-0.64606896 -0.00692084], Reward=-1.0
Step 17: State=[-0.65309179 -0.00702284], Reward=-1.0
Step 18: State=[-0.66016768 -0.00707588], Reward=-1.0
Step 19: State=[-0.66724771 -0.00708003], Reward=-1.0
Step 20: State=[-0.67428342 -0.00703571], Reward=-1.0
Step 21: State=[-0.68122709 -0.00694367], Reward=-1.0
Step 22: State=[-0.68803212 -0.00680503], Reward=-1.0
Step 23: State=[-0.69465331 -0.00662119], Reward=-1.0
Step 24: State=[-0.70104716 -0.00639385], Reward=-1.0
Step 25: State=[-0.70717213 -0.00612496], Reward=-1.0
Step 26: State=[-0.71298884 -0.00581671], Reward=-1.0
Step 27: State=[-0.71846032 -0.00547148], Reward=-1.0
Step 28: State=[-0.72355218 -0.00509185], Reward=-1.0
Step 29: State=[-0.72823271 -0.00468053], Reward=-1.0
Step 30: State=[-0.73247309 -0.00424038], Reward=-1.0
Step 31: State=[-0.73624744 -0.00377435], Reward=-1.0
Step 32: State=[-0.73953293 -0.00328548], Reward=-1.0
Step 33: State=[-0.74230982 -0.00277689], Reward=-1.0
Step 34: State=[-0.74456157 -0.00225175], Reward=-1.0
Step 35: State=[-0.74627483 -0.00171326], Reward=-1.0
Step 36: State=[-0.7474395 -0.00116466], Reward=-1.0
Step 37: State=[-7.48048712e-01 -6.09216585e-04], Reward=-1.0
Step 38: State=[-7.48098908e-01 -5.01962094e-05], Reward=-1.0
Step 39: State=[-7.47589789e-01 5.09118450e-04], Reward=-1.0
Step 40: State=[-0.74452434 0.00306545], Reward=-1.0
Step 41: State=[-0.73892063 0.00560372], Reward=-1.0
Step 42: State=[-0.73081198 0.00810864], Reward=-1.0
Step 43: State=[-0.72024742 0.01056456], Reward=-1.0
Step 44: State=[-0.70729207 0.01295535], Reward=-1.0
Step 45: State=[-0.6920277 0.01526437], Reward=-1.0
Step 46: State=[-0.67455318 0.01747452], Reward=-1.0
Step 47: State=[-0.6549848 0.01956837], Reward=-1.0
Step 48: State=[-0.63345635 0.02152845], Reward=-1.0
Step 49: State=[-0.61011881 0.02333755], Reward=-1.0
Step 50: State=[-0.58513962 0.02497919], Reward=-1.0
Step 51: State=[-0.5587015 0.02643812], Reward=-1.0
Step 52: State=[-0.53100059 0.02770091], Reward=-1.0
Step 53: State=[-0.50224417 0.02875642], Reward=-1.0
Step 54: State=[-0.4726478 0.02959637], Reward=-1.0
Step 55: State=[-0.44243208 0.03021572], Reward=-1.0
Step 56: State=[-0.41181911 0.03061297], Reward=-1.0
Step 57: State=[-0.38102886 0.03079025], Reward=-1.0
Step 58: State=[-0.35027559 0.03075328], Reward=-1.0
Step 59: State=[-0.31976445 0.03051114], Reward=-1.0
Step 60: State=[-0.28968855 0.0300759 ], Reward=-1.0
Step 61: State=[-0.26022651 0.02946204], Reward=-1.0
Step 62: State=[-0.23154055 0.02868596], Reward=-1.0
Step 63: State=[-0.20377533 0.02776522], Reward=-1.0
Step 64: State=[-0.17705734 0.026718 ], Reward=-1.0
Step 65: State=[-0.15149488 0.02556246], Reward=-1.0
Step 66: State=[-0.12717863 0.02431624], Reward=-1.0
Step 67: State=[-0.10418263 0.02299601], Reward=-1.0
Step 68: State=[-0.0825655 0.02161713], Reward=-1.0
Step 69: State=[-0.06237207 0.02019343], Reward=-1.0
Step 70: State=[-0.04363501 0.01873706], Reward=-1.0
Step 71: State=[-0.02637656 0.01725845], Reward=-1.0
Step 72: State=[-0.01061028 0.01576628], Reward=-1.0
Step 73: State=[0.00365726 0.01426754], Reward=-1.0
Step 74: State=[0.01642496 0.01276769], Reward=-1.0
Step 75: State=[0.02769568 0.01127073], Reward=-1.0
Step 76: State=[0.03747504 0.00977935], Reward=-1.0
Step 77: State=[0.04577017 0.00829513], Reward=-1.0
Step 78: State=[0.05258884 0.00681867], Reward=-1.0
Step 79: State=[0.05793855 0.00534971], Reward=-1.0
Step 80: State=[0.06182593 0.00388738], Reward=-1.0
Step 81: State=[0.0642562 0.00243026], Reward=-1.0
Step 82: State=[0.06523276 0.00097657], Reward=-1.0
Step 83: State=[ 0.06475705 -0.00047571], Reward=-1.0
Step 84: State=[ 0.06082837 -0.00392868], Reward=-1.0
Step 85: State=[ 0.0534412 -0.00738717], Reward=-1.0
Step 86: State=[ 0.04258609 -0.01085511], Reward=-1.0
Step 87: State=[ 0.02825135 -0.01433474], Reward=-1.0
Step 88: State=[ 0.01042559 -0.01782576], Reward=-1.0
Step 89: State=[-0.01089895 -0.02132454], Reward=-1.0
Step 90: State=[-0.03572216 -0.0248232 ], Reward=-1.0
Step 91: State=[-0.06403102 -0.02830886], Reward=-1.0
Step 92: State=[-0.0957939 -0.03176288], Reward=-1.0
Step 93: State=[-0.13095425 -0.03516035], Reward=-1.0
Step 94: State=[-0.16942414 -0.03846989], Reward=-1.0
Step 95: State=[-0.21107801 -0.04165386], Reward=-1.0
Step 96: State=[-0.25574716 -0.04466916], Reward=-1.0
Step 97: State=[-0.30321589 -0.04746873], Reward=-1.0
Step 98: State=[-0.35321967 -0.05000379], Reward=-1.0
Step 99: State=[-0.40544638 -0.05222671], Reward=-1.0
Step 100: State=[-0.4595408 -0.05409441], Reward=-1.0
Step 101: State=[-0.51511269 -0.0555719 ], Reward=-1.0
Step 102: State=[-0.57174823 -0.05663553], Reward=-1.0
Step 103: State=[-0.6290239 -0.05727567], Reward=-1.0
Step 104: State=[-0.68652199 -0.0574981 ], Reward=-1.0
Step 105: State=[-0.74384624 -0.05732425], Reward=-1.0
Step 106: State=[-0.80063623 -0.05678999], Reward=-1.0
Step 107: State=[-0.85657951 -0.05594328], Reward=-1.0
Step 108: State=[-0.91142055 -0.05484104], Reward=-1.0
Step 109: State=[-0.96496613 -0.05354558], Reward=-1.0
Step 110: State=[-1.0170874 -0.05212127], Reward=-1.0
Step 111: State=[-1.06771887 -0.05063146], Reward=-1.0
Step 112: State=[-1.11685507 -0.0491362 ], Reward=-1.0
Step 113: State=[-1.16454566 -0.04769059], Reward=-1.0
Step 114: State=[-1.2 0. ], Reward=-1.0
Step 115: State=[-1.1987581 0.0012419], Reward=-1.0
Step 116: State=[-1.19427021 0.0044879 ], Reward=-1.0
Step 117: State=[-1.18652173 0.00774848], Reward=-1.0
Step 118: State=[-1.17548846 0.01103326], Reward=-1.0
Step 119: State=[-1.16113808 0.01435038], Reward=-1.0
Step 120: State=[-1.14343234 0.01770574], Reward=-1.0
Step 121: State=[-1.12233007 0.02110228], Reward=-1.0
Step 122: State=[-1.09779103 0.02453904], Reward=-1.0
Step 123: State=[-1.06978073 0.0280103 ], Reward=-1.0
Step 124: State=[-1.03827616 0.03150456], Reward=-1.0
Step 125: State=[-1.0032725 0.03500367], Reward=-1.0
Step 126: State=[-0.9647905 0.03848199], Reward=-1.0
Step 127: State=[-0.92288452 0.04190598], Reward=-1.0
Step 128: State=[-0.87765038 0.04523414], Reward=-1.0
Step 129: State=[-0.82923273 0.04841765], Reward=-1.0
Step 130: State=[-0.77783078 0.05140195], Reward=-1.0
Step 131: State=[-0.72370164 0.05412914], Reward=-1.0
Step 132: State=[-0.66716026 0.05654138], Reward=-1.0
Step 133: State=[-0.60857514 0.05858511], Reward=-1.0
Step 134: State=[-0.54835959 0.06021555], Reward=-1.0
Step 135: State=[-0.4869585 0.06140109], Reward=-1.0
Step 136: State=[-0.42483166 0.06212684], Reward=-1.0
Step 137: State=[-0.36243478 0.06239688], Reward=-1.0
Step 138: State=[-0.30020009 0.06223469], Reward=-1.0
Step 139: State=[-0.23851824 0.06168185], Reward=-1.0
Step 140: State=[-0.17772322 0.06079502], Reward=-1.0
Step 141: State=[-0.1180812 0.05964202], Reward=-1.0
Step 142: State=[-0.05978395 0.05829725], Reward=-1.0
Step 143: State=[-0.0029466 0.05683735], Reward=-1.0
Step 144: State=[0.05239085 0.05533745], Reward=-1.0
Step 145: State=[0.10625911 0.05386826], Reward=-1.0
Step 146: State=[0.15875332 0.05249421], Reward=-1.0
Step 147: State=[0.21002575 0.05127242], Reward=-1.0
Step 148: State=[0.26027822 0.05025247], Reward=-1.0
Step 149: State=[0.30975487 0.04947665], Reward=-1.0
Step 150: State=[0.35873547 0.0489806 ], Reward=-1.0
Step 151: State=[0.40752939 0.04879392], Reward=-1.0
Step 152: State=[0.45647027 0.04894088], Reward=-1.0
Step 153: State=[0.50591109 0.04944082], Reward=-1.0
###Markdown
We now visualize the preprogrammed car solving the problem.
###Code
show_video()
###Output
_____no_output_____
###Markdown
Reinforcement LearningQ-Learning is a system of rewards that the algorithm gives an agent for successfully moving the environment into a state considered successful. These rewards are the Q-values from which this algorithm takes its name. The final output from the Q-Learning algorithm is a table of Q-values that indicate the reward value of every action that the agent can take, given every possible environment state. The agent must bin continuous state values into a fixed finite number of columns.Learning occurs when the algorithm runs the agent and environment through a series of episodes and updates the Q-values based on the rewards received from actions taken; Figure 12.REINF provides a high-level overview of this reinforcement or Q-Learning loop.**Figure 12.REINF:Reinforcement/Q Learning**The Q-values can dictate action by selecting the action column with the highest Q-value for the current environment state. The choice between choosing a random action and a Q-value driven action is governed by the epsilon ($\epsilon$) parameter, which is the probability of random action.Each time through the training loop, the training algorithm updates the Q-values according to the following equation. $Q^{new}(s_{t},a_{t}) \leftarrow \underbrace{Q(s_{t},a_{t})}_{\text{old value}} + \underbrace{\alpha}_{\text{learning rate}} \cdot \overbrace{\bigg( \underbrace{\underbrace{r_{t}}_{\text{reward}} + \underbrace{\gamma}_{\text{discount factor}} \cdot \underbrace{\max_{a}Q(s_{t+1}, a)}_{\text{estimate of optimal future value}}}_{\text{new value (temporal difference target)}} - \underbrace{Q(s_{t},a_{t})}_{\text{old value}} \bigg) }^{\text{temporal difference}}$There are several parameters in this equation:* alpha ($\alpha$) - The learning rate, how much should the current step cause the Q-values to be updated.* lambda ($\lambda$) - The discount factor is the percentage of future reward that the algorithm should consider in this update.This equation modifies several values:* $Q(s_t,a_t)$ - The Q-table. For each combination of states, what reward would the agent likely receive for performing each action?* $s_t$ - The current state.* $r_t$ - The last reward received.* $a_t$ - The action that the agent will perform.The equation works by calculating a delta (temporal difference) that the equation should apply to the old state. This learning rate ($\alpha$) scales this delta. A learning rate of 1.0 would fully implement the temporal difference to the Q-values each iteration and would likely be very chaotic.There are two parts to the temporal difference: the new and old values. The new value is subtracted from the old value to provide a delta; the full amount that we would change the Q-value by if the learning rate did not scale this value. The new value is a summation of the reward received from the last action and the maximum of the Q-values from the resulting state when the client takes this action. It is essential to add the maximum of action Q-values for the new state because it estimates the optimal future values from proceeding with this action. Q-Learning CarWe will now use Q-Learning to produce a car that learns to drive itself. Look out, Tesla! We begin by defining two essential functions.
###Code
import gym
import numpy as np
# This function converts the floating point state values into
# discrete values. This is often called binning. We divide
# the range that the state values might occupy and assign
# each region to a bucket.
def calc_discrete_state(state):
discrete_state = (state - env.observation_space.low)/buckets
return tuple(discrete_state.astype(np.int))
# Run one game. The q_table to use is provided. We also
# provide a flag to indicate if the game should be
# rendered/animated. Finally, we also provide
# a flag to indicate if the q_table should be updated.
def run_game(q_table, render, should_update):
done = False
discrete_state = calc_discrete_state(env.reset())
success = False
while not done:
# Exploit or explore
if np.random.random() > epsilon:
# Exploit - use q-table to take current best action
# (and probably refine)
action = np.argmax(q_table[discrete_state])
else:
# Explore - t
action = np.random.randint(0, env.action_space.n)
# Run simulation step
new_state, reward, done, _ = env.step(action)
# Convert continuous state to discrete
new_state_disc = calc_discrete_state(new_state)
# Have we reached the goal position (have we won?)?
if new_state[0] >= env.unwrapped.goal_position:
success = True
# Update q-table
if should_update:
max_future_q = np.max(q_table[new_state_disc])
current_q = q_table[discrete_state + (action,)]
new_q = (1 - LEARNING_RATE) * current_q + LEARNING_RATE * \
(reward + DISCOUNT * max_future_q)
q_table[discrete_state + (action,)] = new_q
discrete_state = new_state_disc
if render:
env.render()
return success
###Output
_____no_output_____
###Markdown
Several hyperparameters are very important for Q-Learning. These parameters will likely need adjustment as you apply Q-Learning to other problems. Because of this, it is crucial to understand the role of each parameter.* **LEARNING_RATE** The rate at which previous Q-values are updated based on new episodes run during training. * **DISCOUNT** The amount of significance to give estimates of future rewards when added to the reward for the current action taken. A value of 0.95 would indicate a discount of 5% to the future reward estimates. * **EPISODES** The number of episodes to train over. Increase this for more complex problems; however, training time also increases.* **SHOW_EVERY** How many episodes to allow to elapse before showing an update.* **DISCRETE_GRID_SIZE** How many buckets to use when converting each of the continuous state variables. For example, [10, 10] indicates that the algorithm should use ten buckets for the first and second state variables.* **START_EPSILON_DECAYING** Epsilon is the probability that the agent will select a random action over what the Q-Table suggests. This value determines the starting probability of randomness.* **END_EPSILON_DECAYING** How many episodes should elapse before epsilon goes to zero and no random actions are permitted. For example, EPISODES//10 means only the first 1/10th of the episodes might have random actions.
###Code
LEARNING_RATE = 0.1
DISCOUNT = 0.95
EPISODES = 50000
SHOW_EVERY = 1000
DISCRETE_GRID_SIZE = [10, 10]
START_EPSILON_DECAYING = 0.5
END_EPSILON_DECAYING = EPISODES//10
###Output
_____no_output_____
###Markdown
We can now make the environment. If we are running in Google COLAB then we wrap the environment to be displayed inside the web browser. Next create the discrete buckets for state and build Q-table.
###Code
if COLAB:
env = wrap_env(gym.make("MountainCar-v0"))
else:
env = gym.make("MountainCar-v0")
epsilon = 1
epsilon_change = epsilon/(END_EPSILON_DECAYING - START_EPSILON_DECAYING)
buckets = (env.observation_space.high - env.observation_space.low) \
/DISCRETE_GRID_SIZE
q_table = np.random.uniform(low=-3, high=0, size=(DISCRETE_GRID_SIZE \
+ [env.action_space.n]))
success = False
###Output
_____no_output_____
###Markdown
We can now make the environment. If we are running in Google COLAB then we wrap the environment to be displayed inside the web browser. Next, create the discrete buckets for state and build Q-table.
###Code
episode = 0
success_count = 0
# Loop through the required number of episodes
while episode<EPISODES:
episode+=1
done = False
# Run the game. If we are local, display render animation at SHOW_EVERY
# intervals.
if episode % SHOW_EVERY == 0:
print(f"Current episode: {episode}, success: {success_count}" +\
" ({float(success_count)/SHOW_EVERY})")
success = run_game(q_table, True, False)
success_count = 0
else:
success = run_game(q_table, False, True)
# Count successes
if success:
success_count += 1
# Move epsilon towards its ending value, if it still needs to move
if END_EPSILON_DECAYING >= episode >= START_EPSILON_DECAYING:
epsilon = max(0, epsilon - epsilon_change)
print(success)
###Output
Current episode: 1000, success: 0 (0.0)
Current episode: 2000, success: 0 (0.0)
Current episode: 3000, success: 0 (0.0)
Current episode: 4000, success: 29 (0.029)
Current episode: 5000, success: 345 (0.345)
Current episode: 6000, success: 834 (0.834)
Current episode: 7000, success: 797 (0.797)
Current episode: 8000, success: 679 (0.679)
Current episode: 9000, success: 600 (0.6)
Current episode: 10000, success: 728 (0.728)
Current episode: 11000, success: 205 (0.205)
Current episode: 12000, success: 612 (0.612)
Current episode: 13000, success: 733 (0.733)
Current episode: 14000, success: 1000 (1.0)
Current episode: 15000, success: 998 (0.998)
Current episode: 16000, success: 879 (0.879)
Current episode: 17000, success: 510 (0.51)
Current episode: 18000, success: 615 (0.615)
Current episode: 19000, success: 220 (0.22)
Current episode: 20000, success: 445 (0.445)
Current episode: 21000, success: 627 (0.627)
Current episode: 22000, success: 597 (0.597)
Current episode: 23000, success: 827 (0.827)
Current episode: 24000, success: 862 (0.862)
Current episode: 25000, success: 322 (0.322)
Current episode: 26000, success: 632 (0.632)
Current episode: 27000, success: 613 (0.613)
Current episode: 28000, success: 409 (0.409)
Current episode: 29000, success: 379 (0.379)
Current episode: 30000, success: 320 (0.32)
Current episode: 31000, success: 327 (0.327)
Current episode: 32000, success: 302 (0.302)
Current episode: 33000, success: 308 (0.308)
Current episode: 34000, success: 336 (0.336)
Current episode: 35000, success: 274 (0.274)
Current episode: 36000, success: 281 (0.281)
Current episode: 37000, success: 301 (0.301)
Current episode: 38000, success: 322 (0.322)
Current episode: 39000, success: 292 (0.292)
Current episode: 40000, success: 299 (0.299)
Current episode: 41000, success: 281 (0.281)
Current episode: 42000, success: 233 (0.233)
Current episode: 43000, success: 380 (0.38)
Current episode: 44000, success: 598 (0.598)
Current episode: 45000, success: 933 (0.933)
Current episode: 46000, success: 986 (0.986)
Current episode: 47000, success: 1000 (1.0)
Current episode: 48000, success: 1000 (1.0)
Current episode: 49000, success: 1000 (1.0)
Current episode: 50000, success: 1000 (1.0)
True
###Markdown
As you can see, the number of successful episodes generally increases as training progresses. It is not advisable to stop the first time that we observe 100% success over 1,000 episodes. There is a randomness to most games, so it is not likely that an agent would retain its 100% success rate with a new run. Once you observe that the agent has gotten 100% for several update intervals, it might be safe to stop training. Running and Observing the AgentNow that the algorithm has trained the agent, we can observe the agent in action. You can use the following code to see the agent in action.
###Code
run_game(q_table, True, False)
show_video()
###Output
_____no_output_____
###Markdown
Inspecting the Q-TableWe can also display the Q-table. The following code shows the action that the agent would perform for each environment state. As the weights of a neural network, this table is not straightforward to interpret. Some patterns do emerge in that directions do arise, as seen by calculating the means of rows and columns. The actions seem consistent at upper and lower halves of both velocity and position.
###Code
import pandas as pd
df = pd.DataFrame(q_table.argmax(axis=2))
df.columns = [f'v-{x}' for x in range(DISCRETE_GRID_SIZE[0])]
df.index = [f'p-{x}' for x in range(DISCRETE_GRID_SIZE[1])]
df
df.mean(axis=0)
df.mean(axis=1)
###Output
_____no_output_____
###Markdown
T81-558: Applications of Deep Neural Networks**Module 12: Deep Learning and Security*** Instructor: [Jeff Heaton](https://sites.wustl.edu/jeffheaton/), McKelvey School of Engineering, [Washington University in St. Louis](https://engineering.wustl.edu/Programs/Pages/default.aspx)* For more information visit the [class website](https://sites.wustl.edu/jeffheaton/t81-558/). Module 12 Video Material* Part 12.1: Introduction to the OpenAI Gym [[Video]](https://www.youtube.com/watch?v=_KbUxgyisjM&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_12_01_ai_gym.ipynb)* **Part 12.2: Introduction to Q-Learning** [[Video]](https://www.youtube.com/watch?v=uwcXWe_Fra0&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_12_02_qlearningreinforcement.ipynb)* Part 12.3: Keras Q-Learning in the OpenAI Gym [[Video]](https://www.youtube.com/watch?v=Ya1gYt63o3M&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_12_03_keras_reinforce.ipynb)* Part 12.4: Atari Games with Keras Neural Networks [[Video]](https://www.youtube.com/watch?v=t2yIu6cRa38&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_12_04_atari.ipynb)* Part 12.5: How Alpha Zero used Reinforcement Learning to Master Chess [[Video]](https://www.youtube.com/watch?v=ikDgyD7nVI8&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_12_05_alpha_zero.ipynb) Part 12.2: Introduction to Q-Learning Single Action CartMountain car actions:* 0 - Apply left force* 1 - Apply no force* 2 - Apply right forceState values:* state[0] - Position * state[1] - VelocityThe following shows a cart that simply applies full-force to climb the hill. The cart is simply not strong enough. It will need to use momentum from the hill behind it.
###Code
import gym
env = gym.make("MountainCar-v0")
env.reset()
done = False
i = 0
while not done:
i += 1
state, reward, done, _ = env.step(2)
env.render()
print(f"Step {i}: State={state}, Reward={reward}")
env.close()
###Output
Step 1: State=[-0.54298351 0.00115394], Reward=-1.0
Step 2: State=[-0.54068426 0.00229925], Reward=-1.0
Step 3: State=[-0.53725693 0.00342733], Reward=-1.0
Step 4: State=[-0.53272719 0.00452974], Reward=-1.0
Step 5: State=[-0.527129 0.00559819], Reward=-1.0
Step 6: State=[-0.52050433 0.00662467], Reward=-1.0
Step 7: State=[-0.51290287 0.00760146], Reward=-1.0
Step 8: State=[-0.50438161 0.00852126], Reward=-1.0
Step 9: State=[-0.4950044 0.00937721], Reward=-1.0
Step 10: State=[-0.48484139 0.01016301], Reward=-1.0
Step 11: State=[-0.47396841 0.01087299], Reward=-1.0
Step 12: State=[-0.46246627 0.01150213], Reward=-1.0
Step 13: State=[-0.45042007 0.0120462 ], Reward=-1.0
Step 14: State=[-0.43791831 0.01250176], Reward=-1.0
Step 15: State=[-0.4250521 0.01286621], Reward=-1.0
Step 16: State=[-0.41191426 0.01313783], Reward=-1.0
Step 17: State=[-0.39859848 0.01331578], Reward=-1.0
Step 18: State=[-0.38519838 0.0134001 ], Reward=-1.0
Step 19: State=[-0.37180672 0.01339166], Reward=-1.0
Step 20: State=[-0.35851456 0.01329216], Reward=-1.0
Step 21: State=[-0.34541053 0.01310403], Reward=-1.0
Step 22: State=[-0.33258017 0.01283036], Reward=-1.0
Step 23: State=[-0.32010531 0.01247486], Reward=-1.0
Step 24: State=[-0.30806361 0.0120417 ], Reward=-1.0
Step 25: State=[-0.29652811 0.0115355 ], Reward=-1.0
Step 26: State=[-0.28556694 0.01096116], Reward=-1.0
Step 27: State=[-0.27524312 0.01032383], Reward=-1.0
Step 28: State=[-0.26561434 0.00962878], Reward=-1.0
Step 29: State=[-0.25673298 0.00888136], Reward=-1.0
Step 30: State=[-0.24864606 0.00808693], Reward=-1.0
Step 31: State=[-0.24139526 0.0072508 ], Reward=-1.0
Step 32: State=[-0.23501706 0.0063782 ], Reward=-1.0
Step 33: State=[-0.22954281 0.00547425], Reward=-1.0
Step 34: State=[-0.22499885 0.00454396], Reward=-1.0
Step 35: State=[-0.22140666 0.00359218], Reward=-1.0
Step 36: State=[-0.21878297 0.00262369], Reward=-1.0
Step 37: State=[-0.21713985 0.00164313], Reward=-1.0
Step 38: State=[-0.21648478 0.00065507], Reward=-1.0
Step 39: State=[-0.21682075 -0.00033597], Reward=-1.0
Step 40: State=[-0.21814623 -0.00132548], Reward=-1.0
Step 41: State=[-0.22045518 -0.00230895], Reward=-1.0
Step 42: State=[-0.22373702 -0.00328184], Reward=-1.0
Step 43: State=[-0.22797653 -0.00423951], Reward=-1.0
Step 44: State=[-0.23315378 -0.00517725], Reward=-1.0
Step 45: State=[-0.239244 -0.00609022], Reward=-1.0
Step 46: State=[-0.24621747 -0.00697347], Reward=-1.0
Step 47: State=[-0.25403939 -0.00782191], Reward=-1.0
Step 48: State=[-0.26266974 -0.00863035], Reward=-1.0
Step 49: State=[-0.27206323 -0.0093935 ], Reward=-1.0
Step 50: State=[-0.28216923 -0.010106 ], Reward=-1.0
Step 51: State=[-0.29293174 -0.01076251], Reward=-1.0
Step 52: State=[-0.30428945 -0.01135771], Reward=-1.0
Step 53: State=[-0.31617585 -0.0118864 ], Reward=-1.0
Step 54: State=[-0.32851945 -0.0123436 ], Reward=-1.0
Step 55: State=[-0.34124405 -0.0127246 ], Reward=-1.0
Step 56: State=[-0.3542691 -0.01302505], Reward=-1.0
Step 57: State=[-0.36751021 -0.01324111], Reward=-1.0
Step 58: State=[-0.38087966 -0.01336945], Reward=-1.0
Step 59: State=[-0.3942871 -0.01340744], Reward=-1.0
Step 60: State=[-0.40764024 -0.01335314], Reward=-1.0
Step 61: State=[-0.42084563 -0.01320539], Reward=-1.0
Step 62: State=[-0.43380952 -0.01296389], Reward=-1.0
Step 63: State=[-0.44643872 -0.0126292 ], Reward=-1.0
Step 64: State=[-0.45864146 -0.01220274], Reward=-1.0
Step 65: State=[-0.47032831 -0.01168684], Reward=-1.0
Step 66: State=[-0.48141298 -0.01108468], Reward=-1.0
Step 67: State=[-0.49181321 -0.01040022], Reward=-1.0
Step 68: State=[-0.50145146 -0.00963826], Reward=-1.0
Step 69: State=[-0.5102557 -0.00880424], Reward=-1.0
Step 70: State=[-0.51815998 -0.00790428], Reward=-1.0
Step 71: State=[-0.52510506 -0.00694507], Reward=-1.0
Step 72: State=[-0.53103883 -0.00593378], Reward=-1.0
Step 73: State=[-0.53591681 -0.00487798], Reward=-1.0
Step 74: State=[-0.53970243 -0.00378562], Reward=-1.0
Step 75: State=[-0.54236732 -0.00266489], Reward=-1.0
Step 76: State=[-0.54389151 -0.0015242 ], Reward=-1.0
Step 77: State=[-5.44263607e-01 -3.72094556e-04], Reward=-1.0
Step 78: State=[-0.54348081 0.00078279], Reward=-1.0
Step 79: State=[-0.541549 0.00193182], Reward=-1.0
Step 80: State=[-0.53848261 0.00306638], Reward=-1.0
Step 81: State=[-0.53430464 0.00417797], Reward=-1.0
Step 82: State=[-0.52904639 0.00525825], Reward=-1.0
Step 83: State=[-0.52274728 0.00629911], Reward=-1.0
Step 84: State=[-0.51545456 0.00729272], Reward=-1.0
Step 85: State=[-0.50722291 0.00823165], Reward=-1.0
Step 86: State=[-0.49811404 0.00910888], Reward=-1.0
Step 87: State=[-0.48819611 0.00991793], Reward=-1.0
Step 88: State=[-0.4775432 0.01065291], Reward=-1.0
Step 89: State=[-0.46623461 0.01130859], Reward=-1.0
Step 90: State=[-0.45435414 0.01188048], Reward=-1.0
Step 91: State=[-0.44198927 0.01236487], Reward=-1.0
Step 92: State=[-0.42923038 0.01275889], Reward=-1.0
Step 93: State=[-0.41616983 0.01306055], Reward=-1.0
Step 94: State=[-0.40290112 0.01326871], Reward=-1.0
Step 95: State=[-0.389518 0.01338313], Reward=-1.0
Step 96: State=[-0.37611358 0.01340442], Reward=-1.0
Step 97: State=[-0.36277956 0.01333402], Reward=-1.0
Step 98: State=[-0.34960543 0.01317413], Reward=-1.0
Step 99: State=[-0.3366778 0.01292763], Reward=-1.0
Step 100: State=[-0.32407975 0.01259805], Reward=-1.0
Step 101: State=[-0.31189033 0.01218942], Reward=-1.0
Step 102: State=[-0.3001841 0.01170623], Reward=-1.0
Step 103: State=[-0.28903082 0.01115328], Reward=-1.0
Step 104: State=[-0.27849515 0.01053567], Reward=-1.0
Step 105: State=[-0.26863652 0.00985862], Reward=-1.0
Step 106: State=[-0.25950904 0.00912749], Reward=-1.0
Step 107: State=[-0.25116142 0.00834761], Reward=-1.0
Step 108: State=[-0.24363708 0.00752434], Reward=-1.0
Step 109: State=[-0.23697416 0.00666292], Reward=-1.0
Step 110: State=[-0.23120564 0.00576852], Reward=-1.0
Step 111: State=[-0.22635946 0.00484618], Reward=-1.0
Step 112: State=[-0.22245866 0.0039008 ], Reward=-1.0
Step 113: State=[-0.21952148 0.00293718], Reward=-1.0
Step 114: State=[-0.21756149 0.00196 ], Reward=-1.0
Step 115: State=[-0.21658763 0.00097386], Reward=-1.0
Step 116: State=[-2.16604342e-01 -1.67115330e-05], Reward=-1.0
Step 117: State=[-0.21761155 -0.0010072 ], Reward=-1.0
Step 118: State=[-0.21960466 -0.00199312], Reward=-1.0
Step 119: State=[-0.22257458 -0.00296991], Reward=-1.0
Step 120: State=[-0.22650757 -0.003933 ], Reward=-1.0
Step 121: State=[-0.23138525 -0.00487768], Reward=-1.0
Step 122: State=[-0.23718442 -0.00579916], Reward=-1.0
Step 123: State=[-0.24387695 -0.00669253], Reward=-1.0
Step 124: State=[-0.2514297 -0.00755275], Reward=-1.0
Step 125: State=[-0.25980435 -0.00837465], Reward=-1.0
Step 126: State=[-0.26895731 -0.00915296], Reward=-1.0
Step 127: State=[-0.27883967 -0.00988236], Reward=-1.0
Step 128: State=[-0.28939716 -0.01055749], Reward=-1.0
Step 129: State=[-0.30057017 -0.01117301], Reward=-1.0
Step 130: State=[-0.31229385 -0.01172368], Reward=-1.0
Step 131: State=[-0.32449829 -0.01220444], Reward=-1.0
Step 132: State=[-0.33710877 -0.01261047], Reward=-1.0
Step 133: State=[-0.35004609 -0.01293732], Reward=-1.0
Step 134: State=[-0.36322703 -0.01318094], Reward=-1.0
Step 135: State=[-0.3765649 -0.01333787], Reward=-1.0
Step 136: State=[-0.3899701 -0.0134052], Reward=-1.0
Step 137: State=[-0.40335089 -0.01338079], Reward=-1.0
Step 138: State=[-0.41661411 -0.01326322], Reward=-1.0
Step 139: State=[-0.429666 -0.0130519], Reward=-1.0
Step 140: State=[-0.44241311 -0.0127471 ], Reward=-1.0
Step 141: State=[-0.4547631 -0.01235 ], Reward=-1.0
Step 142: State=[-0.4666257 -0.0118626], Reward=-1.0
Step 143: State=[-0.47791353 -0.01128782], Reward=-1.0
Step 144: State=[-0.48854292 -0.01062939], Reward=-1.0
Step 145: State=[-0.49843474 -0.00989182], Reward=-1.0
Step 146: State=[-0.50751511 -0.00908037], Reward=-1.0
Step 147: State=[-0.51571607 -0.00820096], Reward=-1.0
Step 148: State=[-0.52297614 -0.00726007], Reward=-1.0
Step 149: State=[-0.52924088 -0.00626474], Reward=-1.0
Step 150: State=[-0.53446331 -0.00522243], Reward=-1.0
Step 151: State=[-0.53860426 -0.00414096], Reward=-1.0
Step 152: State=[-0.54163272 -0.00302845], Reward=-1.0
Step 153: State=[-0.54352598 -0.00189327], Reward=-1.0
Step 154: State=[-0.54426988 -0.0007439 ], Reward=-1.0
###Markdown
Programmed CarThis is a car that I hand-programmed. It uses a simple rule, but solves the problem. The programmed car constantly applies force to one direction or another. It does not reset. Whatever direction the car is currently rolling, it applies force in that direction. Therefore, the car begins to climb a hill, is overpowered, and rolls backward. However, once it begins to roll backwards force is immediately applied in this new direction.
###Code
import gym
env = gym.make("MountainCar-v0")
state = env.reset()
done = False
i = 0
while not done:
i += 1
if state[1]>0:
action = 2
else:
action = 0
state, reward, done, _ = env.step(action)
env.render()
print(f"Step {i}: State={state}, Reward={reward}")
env.close()
###Output
Step 1: State=[-0.51431373 -0.00107771], Reward=-1.0
Step 2: State=[-0.51646107 -0.00214734], Reward=-1.0
Step 3: State=[-0.51966193 -0.00320087], Reward=-1.0
Step 4: State=[-0.52389233 -0.00423039], Reward=-1.0
Step 5: State=[-0.52912052 -0.00522819], Reward=-1.0
Step 6: State=[-0.53530729 -0.00618678], Reward=-1.0
Step 7: State=[-0.54240628 -0.00709898], Reward=-1.0
Step 8: State=[-0.55036428 -0.007958 ], Reward=-1.0
Step 9: State=[-0.55912175 -0.00875748], Reward=-1.0
Step 10: State=[-0.56861331 -0.00949156], Reward=-1.0
Step 11: State=[-0.57876828 -0.01015497], Reward=-1.0
Step 12: State=[-0.58951137 -0.01074309], Reward=-1.0
Step 13: State=[-0.60076333 -0.01125196], Reward=-1.0
Step 14: State=[-0.61244171 -0.01167838], Reward=-1.0
Step 15: State=[-0.62446163 -0.01201992], Reward=-1.0
Step 16: State=[-0.63673657 -0.01227494], Reward=-1.0
Step 17: State=[-0.64917917 -0.0124426 ], Reward=-1.0
Step 18: State=[-0.66170205 -0.01252287], Reward=-1.0
Step 19: State=[-0.67421853 -0.01251648], Reward=-1.0
Step 20: State=[-0.68664341 -0.01242488], Reward=-1.0
Step 21: State=[-0.69889363 -0.01225023], Reward=-1.0
Step 22: State=[-0.71088891 -0.01199528], Reward=-1.0
Step 23: State=[-0.72255227 -0.01166336], Reward=-1.0
Step 24: State=[-0.73381051 -0.01125823], Reward=-1.0
Step 25: State=[-0.7445946 -0.01078409], Reward=-1.0
Step 26: State=[-0.75484 -0.0102454], Reward=-1.0
Step 27: State=[-0.76448689 -0.00964689], Reward=-1.0
Step 28: State=[-0.77348032 -0.00899343], Reward=-1.0
Step 29: State=[-0.78177031 -0.00828998], Reward=-1.0
Step 30: State=[-0.78931187 -0.00754156], Reward=-1.0
Step 31: State=[-0.79606502 -0.00675316], Reward=-1.0
Step 32: State=[-0.80199476 -0.00592974], Reward=-1.0
Step 33: State=[-0.80707094 -0.00507618], Reward=-1.0
Step 34: State=[-0.81126824 -0.00419729], Reward=-1.0
Step 35: State=[-0.81456603 -0.00329779], Reward=-1.0
Step 36: State=[-0.81694832 -0.0023823 ], Reward=-1.0
Step 37: State=[-0.81840369 -0.00145537], Reward=-1.0
Step 38: State=[-8.18925204e-01 -5.21510941e-04], Reward=-1.0
Step 39: State=[-8.18510378e-01 4.14826025e-04], Reward=-1.0
Step 40: State=[-0.81516118 0.00334919], Reward=-1.0
Step 41: State=[-0.80889363 0.00626755], Reward=-1.0
Step 42: State=[-0.7997382 0.00915543], Reward=-1.0
Step 43: State=[-0.78774062 0.01199759], Reward=-1.0
Step 44: State=[-0.77296289 0.01477773], Reward=-1.0
Step 45: State=[-0.75548455 0.01747834], Reward=-1.0
Step 46: State=[-0.73540399 0.02008056], Reward=-1.0
Step 47: State=[-0.71283965 0.02256434], Reward=-1.0
Step 48: State=[-0.68793102 0.02490863], Reward=-1.0
Step 49: State=[-0.66083923 0.0270918 ], Reward=-1.0
Step 50: State=[-0.63174696 0.02909226], Reward=-1.0
Step 51: State=[-0.60085774 0.03088922], Reward=-1.0
Step 52: State=[-0.56839425 0.03246349], Reward=-1.0
Step 53: State=[-0.53459581 0.03379844], Reward=-1.0
Step 54: State=[-0.49971491 0.03488091], Reward=-1.0
Step 55: State=[-0.46401297 0.03570193], Reward=-1.0
Step 56: State=[-0.42775556 0.03625741], Reward=-1.0
Step 57: State=[-0.39120711 0.03654845], Reward=-1.0
Step 58: State=[-0.35462569 0.03658142], Reward=-1.0
Step 59: State=[-0.31825799 0.0363677 ], Reward=-1.0
Step 60: State=[-0.28233478 0.03592322], Reward=-1.0
Step 61: State=[-0.24706714 0.03526764], Reward=-1.0
Step 62: State=[-0.21264364 0.0344235 ], Reward=-1.0
Step 63: State=[-0.17922847 0.03341517], Reward=-1.0
Step 64: State=[-0.14696054 0.03226793], Reward=-1.0
Step 65: State=[-0.11595355 0.03100699], Reward=-1.0
Step 66: State=[-0.08629682 0.02965673], Reward=-1.0
Step 67: State=[-0.05805677 0.02824004], Reward=-1.0
Step 68: State=[-0.03127891 0.02677787], Reward=-1.0
Step 69: State=[-0.00599004 0.02528887], Reward=-1.0
Step 70: State=[0.01779923 0.02378927], Reward=-1.0
Step 71: State=[0.04009206 0.02229283], Reward=-1.0
Step 72: State=[0.06090295 0.02081089], Reward=-1.0
Step 73: State=[0.08025546 0.01935251], Reward=-1.0
Step 74: State=[0.09818008 0.01792462], Reward=-1.0
Step 75: State=[0.11471236 0.01653228], Reward=-1.0
Step 76: State=[0.12989122 0.01517886], Reward=-1.0
Step 77: State=[0.14375749 0.01386628], Reward=-1.0
Step 78: State=[0.15635269 0.01259519], Reward=-1.0
Step 79: State=[0.16771789 0.01136521], Reward=-1.0
Step 80: State=[0.17789293 0.01017504], Reward=-1.0
Step 81: State=[0.18691562 0.00902269], Reward=-1.0
Step 82: State=[0.19482116 0.00790554], Reward=-1.0
Step 83: State=[0.20164168 0.00682052], Reward=-1.0
Step 84: State=[0.20740583 0.00576416], Reward=-1.0
Step 85: State=[0.21213852 0.00473269], Reward=-1.0
Step 86: State=[0.21586063 0.00372211], Reward=-1.0
Step 87: State=[0.21858888 0.00272825], Reward=-1.0
Step 88: State=[0.22033568 0.0017468 ], Reward=-1.0
Step 89: State=[0.22110904 0.00077336], Reward=-1.0
Step 90: State=[ 2.20912527e-01 -1.96509754e-04], Reward=-1.0
Step 91: State=[ 0.21774524 -0.00316729], Reward=-1.0
Step 92: State=[ 0.21159265 -0.00615259], Reward=-1.0
Step 93: State=[ 0.20242705 -0.0091656 ], Reward=-1.0
Step 94: State=[ 0.19020845 -0.01221861], Reward=-1.0
Step 95: State=[ 0.17488593 -0.01532251], Reward=-1.0
Step 96: State=[ 0.15639968 -0.01848625], Reward=-1.0
Step 97: State=[ 0.1346836 -0.02171608], Reward=-1.0
Step 98: State=[ 0.10966883 -0.02501477], Reward=-1.0
Step 99: State=[ 0.08128815 -0.02838068], Reward=-1.0
Step 100: State=[ 0.04948145 -0.03180671], Reward=-1.0
Step 101: State=[ 0.01420223 -0.03527921], Reward=-1.0
Step 102: State=[-0.02457471 -0.03877695], Reward=-1.0
Step 103: State=[-0.06684487 -0.04227015], Reward=-1.0
Step 104: State=[-0.11256492 -0.04572006], Reward=-1.0
Step 105: State=[-0.16164378 -0.04907886], Reward=-1.0
Step 106: State=[-0.21393441 -0.05229063], Reward=-1.0
Step 107: State=[-0.26922758 -0.05529317], Reward=-1.0
Step 108: State=[-0.32724868 -0.05802111], Reward=-1.0
Step 109: State=[-0.38765872 -0.06041004], Reward=-1.0
Step 110: State=[-0.45006028 -0.06240156], Reward=-1.0
Step 111: State=[-0.51400891 -0.06394863], Reward=-1.0
Step 112: State=[-0.57902946 -0.06502055], Reward=-1.0
Step 113: State=[-0.64463619 -0.06560673], Reward=-1.0
Step 114: State=[-0.71035496 -0.06571877], Reward=-1.0
Step 115: State=[-0.77574519 -0.06539023], Reward=-1.0
Step 116: State=[-0.84041959 -0.06467439], Reward=-1.0
Step 117: State=[-0.90405977 -0.06364018], Reward=-1.0
Step 118: State=[-0.96642693 -0.06236716], Reward=-1.0
Step 119: State=[-1.02736712 -0.06094019], Reward=-1.0
Step 120: State=[-1.08681173 -0.05944462], Reward=-1.0
Step 121: State=[-1.14477398 -0.05796225], Reward=-1.0
Step 122: State=[-1.2 0. ], Reward=-1.0
Step 123: State=[-1.1987581 0.0012419], Reward=-1.0
Step 124: State=[-1.19427021 0.0044879 ], Reward=-1.0
Step 125: State=[-1.18652173 0.00774848], Reward=-1.0
Step 126: State=[-1.17548846 0.01103326], Reward=-1.0
Step 127: State=[-1.16113808 0.01435038], Reward=-1.0
Step 128: State=[-1.14343234 0.01770574], Reward=-1.0
Step 129: State=[-1.12233007 0.02110228], Reward=-1.0
Step 130: State=[-1.09779103 0.02453904], Reward=-1.0
Step 131: State=[-1.06978073 0.0280103 ], Reward=-1.0
Step 132: State=[-1.03827616 0.03150456], Reward=-1.0
Step 133: State=[-1.0032725 0.03500367], Reward=-1.0
Step 134: State=[-0.9647905 0.03848199], Reward=-1.0
Step 135: State=[-0.92288452 0.04190598], Reward=-1.0
Step 136: State=[-0.87765038 0.04523414], Reward=-1.0
Step 137: State=[-0.82923273 0.04841765], Reward=-1.0
Step 138: State=[-0.77783078 0.05140195], Reward=-1.0
Step 139: State=[-0.72370164 0.05412914], Reward=-1.0
Step 140: State=[-0.66716026 0.05654138], Reward=-1.0
Step 141: State=[-0.60857514 0.05858511], Reward=-1.0
Step 142: State=[-0.54835959 0.06021555], Reward=-1.0
Step 143: State=[-0.4869585 0.06140109], Reward=-1.0
Step 144: State=[-0.42483166 0.06212684], Reward=-1.0
Step 145: State=[-0.36243478 0.06239688], Reward=-1.0
Step 146: State=[-0.30020009 0.06223469], Reward=-1.0
Step 147: State=[-0.23851824 0.06168185], Reward=-1.0
Step 148: State=[-0.17772322 0.06079502], Reward=-1.0
Step 149: State=[-0.1180812 0.05964202], Reward=-1.0
Step 150: State=[-0.05978395 0.05829725], Reward=-1.0
Step 151: State=[-0.0029466 0.05683735], Reward=-1.0
Step 152: State=[0.05239085 0.05533745], Reward=-1.0
###Markdown
Reinforcement Learning Q-Learning CarWe will now use Q-Learning to produce a car that learns to drive itself. Look out Tesla! Q-Learning works by building a table that provides a lookup table to determine which of several actions should be taken. As we move through a number of training episodes this table is refined.$ Q^{new}(s_{t},a_{t}) \leftarrow (1-\alpha) \cdot \underbrace{Q(s_{t},a_{t})}_{\text{old value}} + \underbrace{\alpha}_{\text{learning rate}} \cdot \overbrace{\bigg( \underbrace{r_{t}}_{\text{reward}} + \underbrace{\gamma}_{\text{discount factor}} \cdot \underbrace{\max_{a}Q(s_{t+1}, a)}_{\text{estimate of optimal future value}} \bigg) }^{\text{learned value}} $
###Code
import gym
import numpy as np
def calc_discrete_state(state):
discrete_state = (state - env.observation_space.low)/buckets
return tuple(discrete_state.astype(np.int))
def run_game(q_table, render, should_update):
done = False
discrete_state = calc_discrete_state(env.reset())
success = False
while not done:
# Exploit or explore
if np.random.random() > epsilon:
# Exploit - use q-table to take current best action (and probably refine)
action = np.argmax(q_table[discrete_state])
else:
# Explore - t
action = np.random.randint(0, env.action_space.n)
# Run simulation step
new_state, reward, done, _ = env.step(action)
#
new_state_disc = calc_discrete_state(new_state)
#
if new_state[0] >= env.goal_position:
success = True
# Update q-table
if should_update:
max_future_q = np.max(q_table[new_state_disc])
current_q = q_table[discrete_state + (action,)]
new_q = (1 - LEARNING_RATE) * current_q + LEARNING_RATE * (reward + DISCOUNT * max_future_q)
q_table[discrete_state + (action,)] = new_q
discrete_state = new_state_disc
if render:
env.render()
return success
LEARNING_RATE = 0.1
DISCOUNT = 0.95
EPISODES = 10000
SHOW_EVERY = 1000
DISCRETE_GRID_SIZE = [10, 10]
START_EPSILON_DECAYING = 1
END_EPSILON_DECAYING = EPISODES//2
env = gym.make("MountainCar-v0")
epsilon = 1
epsilon_change = epsilon/(END_EPSILON_DECAYING - START_EPSILON_DECAYING)
buckets = (env.observation_space.high - env.observation_space.low)/DISCRETE_GRID_SIZE
q_table = np.random.uniform(low=-3, high=0, size=(DISCRETE_GRID_SIZE + [env.action_space.n]))
success = False
episode = 0
success_count = 0
while episode<EPISODES:
episode+=1
done = False
if episode % SHOW_EVERY == 0:
print(f"Current episode: {episode}, success: {success_count} ({float(success_count)/SHOW_EVERY})")
success = run_game(q_table, True, False)
success_count = 0
else:
success = run_game(q_table, False, True)
if success:
success_count += 1
# Move epsilon towards its ending value, if it still needs to move
if END_EPSILON_DECAYING >= episode >= START_EPSILON_DECAYING:
epsilon -= epsilon_change
print(success)
run_game(q_table, True, False)
import pandas as pd
df = pd.DataFrame(q_table.argmax(axis=2))
df.columns = [f'v-{x}' for x in range(DISCRETE_GRID_SIZE[0])]
df.index = [f'p-{x}' for x in range(DISCRETE_GRID_SIZE[1])]
df
np.argmax(q_table[(2,0)])
###Output
_____no_output_____
###Markdown
T81-558: Applications of Deep Neural Networks**Module 12: Reinforcement Learning*** Instructor: [Jeff Heaton](https://sites.wustl.edu/jeffheaton/), McKelvey School of Engineering, [Washington University in St. Louis](https://engineering.wustl.edu/Programs/Pages/default.aspx)* For more information visit the [class website](https://sites.wustl.edu/jeffheaton/t81-558/). Module 12 Video Material* Part 12.1: Introduction to the OpenAI Gym [[Video]](https://www.youtube.com/watch?v=_KbUxgyisjM&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_12_01_ai_gym.ipynb)* **Part 12.2: Introduction to Q-Learning** [[Video]](https://www.youtube.com/watch?v=uwcXWe_Fra0&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_12_02_qlearningreinforcement.ipynb)* Part 12.3: Keras Q-Learning in the OpenAI Gym [[Video]](https://www.youtube.com/watch?v=Ya1gYt63o3M&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_12_03_keras_reinforce.ipynb)* Part 12.4: Atari Games with Keras Neural Networks [[Video]](https://www.youtube.com/watch?v=t2yIu6cRa38&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_12_04_atari.ipynb)* Part 12.5: How Alpha Zero used Reinforcement Learning to Master Chess [[Video]](https://www.youtube.com/watch?v=ikDgyD7nVI8&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_12_05_alpha_zero.ipynb) Google CoLab InstructionsThe following code ensures that Google CoLab is running the correct version of TensorFlow.
###Code
try:
from google.colab import drive
%tensorflow_version 2.x
COLAB = True
print("Note: using Google CoLab")
except:
print("Note: not using Google CoLab")
COLAB = False
if COLAB:
!sudo apt-get install -y xvfb ffmpeg x11-utils
!pip install -q 'gym==0.10.11'
!pip install -q 'imageio==2.4.0'
!pip install -q PILLOW
!pip install -q 'pyglet==1.3.2'
!pip install -q pyvirtualdisplay
!pip install -q tf-agents
###Output
Reading package lists... Done
Building dependency tree
Reading state information... Done
x11-utils is already the newest version (7.7+3build1).
ffmpeg is already the newest version (7:3.4.6-0ubuntu0.18.04.1).
xvfb is already the newest version (2:1.19.6-1ubuntu4.4).
0 upgraded, 0 newly installed, 0 to remove and 31 not upgraded.
###Markdown
Part 12.2: Introduction to Q-LearningQ-Learning is a foundational technique upon which deep reinforcement learning is based. Before we explore deep reinforcement learning, it is essential to understand Q-Learning. Several components make up any Q-Learning system.* **Agent** - The agent is an entity that exists in an environment that takes actions to affect the state of the environment, to receive rewards.* **Environment** - The environment is the universe that the agent exists in. The environment is always in a specific state that is changed by the actions of the agent.* **Actions** - Steps that can be performed by the agent to alter the environment * **Step** - A step occurs each time that the agent performs an action and potentially changes the environment state.* **Episode** - A chain of steps that ultimately culminates in the environment entering a terminal state.* **Epoch** - A training iteration of the agent that contains some number of episodes.* **Terminal State** - A state in which further actions do not make sense. In many environments, a terminal state occurs when the agent has one, lost, or the environment exceeding the maximum number of steps.Q-Learning works by building a table that suggests an action for every possible state. This approach runs into several problems. First, the environment is usually composed of several continuous numbers, resulting in an infinite number of states. Q-Learning handles continuous states by binning these numeric values into ranges. Additionally, Q-Learning primarily deals with discrete actions, such as pressing a joystick up or down. Out of the box, Q-Learning does not deal with continuous inputs, such as a car's accelerator that can be in a range of positions from released to fully engaged. Researchers have come up with clever tricks to allow Q-Learning to accommodate continuous actions.In the next chapter, we will learn more about deep reinforcement learning. Deep neural networks can help to solve the problems of continuous environments and action spaces. For now, we will apply regular Q-Learning to the Mountain Car problem from OpenAI Gym. Introducing the Mountain CarThis section will demonstrate how Q-Learning can create a solution to the mountain car gym environment. The Mountain car is an environment where a car must climb a mountain. Because gravity is stronger than the car's engine, even with full throttle, it cannot merely accelerate up the steep slope. The vehicle is situated in a valley and must learn to utilize potential energy by driving up the opposite hill before the car can make it to the goal at the top of the rightmost hill.First, it might be helpful to visualize the mountain car environment. The following code shows this environment. This code makes use of TF-Agents to perform this render. Usually, we use TF-Agents for the type of deep reinforcement learning that we will see in the next module. However, for now, TF-Agents is just used to render the mountain care environment.
###Code
import tf_agents
from tf_agents.environments import suite_gym
import PIL.Image
import pyvirtualdisplay
display = pyvirtualdisplay.Display(visible=0, size=(1400, 900)).start()
env_name = 'MountainCar-v0'
env = suite_gym.load(env_name)
env.reset()
PIL.Image.fromarray(env.render())
###Output
_____no_output_____
###Markdown
The mountain car environment provides the following discrete actions:* 0 - Apply left force* 1 - Apply no force* 2 - Apply right forceThe mountain car environment is made up of the following continuous values:* state[0] - Position * state[1] - VelocityThe following code shows an agent that applies full throttle to climb the hill. The cart is not strong enough. It will need to use potential energy from the mountain behind it.
###Code
import gym
from gym.wrappers import Monitor
import glob
import io
import base64
from IPython.display import HTML
from pyvirtualdisplay import Display
from IPython import display as ipythondisplay
display = Display(visible=0, size=(1400, 900))
display.start()
"""
Utility functions to enable video recording of gym environment and displaying it
To enable video, just do "env = wrap_env(env)""
"""
def show_video():
mp4list = glob.glob('video/*.mp4')
if len(mp4list) > 0:
mp4 = mp4list[0]
video = io.open(mp4, 'r+b').read()
encoded = base64.b64encode(video)
ipythondisplay.display(HTML(data='''<video alt="test" autoplay
loop controls style="height: 400px;">
<source src="data:video/mp4;base64,{0}" type="video/mp4" />
</video>'''.format(encoded.decode('ascii'))))
else:
print("Could not find video")
def wrap_env(env):
env = Monitor(env, './video', force=True)
return env
import gym
if COLAB:
env = wrap_env(gym.make("MountainCar-v0"))
else:
env = gym.make("MountainCar-v0")
env.reset()
done = False
i = 0
while not done:
i += 1
state, reward, done, _ = env.step(2)
env.render()
print(f"Step {i}: State={state}, Reward={reward}")
env.close()
show_video()
###Output
_____no_output_____
###Markdown
Programmed CarNow we will look at a car that I hand-programmed. This car is straightforward; however, it solves the problem. The programmed car always applies force to one direction or another. It does not break. Whatever direction the vehicle is currently rolling, the agent uses power in that direction. Therefore, the car begins to climb a hill, is overpowered, and turns backward. However, once it starts to roll backward force is immediately applied in this new direction.The following code implements this preprogrammed car.
###Code
import gym
if COLAB:
env = wrap_env(gym.make("MountainCar-v0"))
else:
env = gym.make("MountainCar-v0")
state = env.reset()
done = False
i = 0
while not done:
i += 1
if state[1]>0:
action = 2
else:
action = 0
state, reward, done, _ = env.step(action)
env.render()
print(f"Step {i}: State={state}, Reward={reward}")
env.close()
###Output
Step 1: State=[-0.57730941 -0.00060338], Reward=-1.0
Step 2: State=[-0.5785117 -0.00120229], Reward=-1.0
Step 3: State=[-0.580304 -0.0017923], Reward=-1.0
Step 4: State=[-0.58267307 -0.00236906], Reward=-1.0
Step 5: State=[-0.58560139 -0.00292832], Reward=-1.0
Step 6: State=[-0.58906736 -0.00346598], Reward=-1.0
Step 7: State=[-0.59304548 -0.00397811], Reward=-1.0
Step 8: State=[-0.5975065 -0.00446102], Reward=-1.0
Step 9: State=[-0.60241775 -0.00491125], Reward=-1.0
Step 10: State=[-0.60774335 -0.0053256 ], Reward=-1.0
Step 11: State=[-0.61344454 -0.00570119], Reward=-1.0
Step 12: State=[-0.61948002 -0.00603548], Reward=-1.0
Step 13: State=[-0.62580627 -0.00632625], Reward=-1.0
Step 14: State=[-0.63237791 -0.00657165], Reward=-1.0
Step 15: State=[-0.63914812 -0.00677021], Reward=-1.0
Step 16: State=[-0.64606896 -0.00692084], Reward=-1.0
Step 17: State=[-0.65309179 -0.00702284], Reward=-1.0
Step 18: State=[-0.66016768 -0.00707588], Reward=-1.0
Step 19: State=[-0.66724771 -0.00708003], Reward=-1.0
Step 20: State=[-0.67428342 -0.00703571], Reward=-1.0
Step 21: State=[-0.68122709 -0.00694367], Reward=-1.0
Step 22: State=[-0.68803212 -0.00680503], Reward=-1.0
Step 23: State=[-0.69465331 -0.00662119], Reward=-1.0
Step 24: State=[-0.70104716 -0.00639385], Reward=-1.0
Step 25: State=[-0.70717213 -0.00612496], Reward=-1.0
Step 26: State=[-0.71298884 -0.00581671], Reward=-1.0
Step 27: State=[-0.71846032 -0.00547148], Reward=-1.0
Step 28: State=[-0.72355218 -0.00509185], Reward=-1.0
Step 29: State=[-0.72823271 -0.00468053], Reward=-1.0
Step 30: State=[-0.73247309 -0.00424038], Reward=-1.0
Step 31: State=[-0.73624744 -0.00377435], Reward=-1.0
Step 32: State=[-0.73953293 -0.00328548], Reward=-1.0
Step 33: State=[-0.74230982 -0.00277689], Reward=-1.0
Step 34: State=[-0.74456157 -0.00225175], Reward=-1.0
Step 35: State=[-0.74627483 -0.00171326], Reward=-1.0
Step 36: State=[-0.7474395 -0.00116466], Reward=-1.0
Step 37: State=[-7.48048712e-01 -6.09216585e-04], Reward=-1.0
Step 38: State=[-7.48098908e-01 -5.01962094e-05], Reward=-1.0
Step 39: State=[-7.47589789e-01 5.09118450e-04], Reward=-1.0
Step 40: State=[-0.74452434 0.00306545], Reward=-1.0
Step 41: State=[-0.73892063 0.00560372], Reward=-1.0
Step 42: State=[-0.73081198 0.00810864], Reward=-1.0
Step 43: State=[-0.72024742 0.01056456], Reward=-1.0
Step 44: State=[-0.70729207 0.01295535], Reward=-1.0
Step 45: State=[-0.6920277 0.01526437], Reward=-1.0
Step 46: State=[-0.67455318 0.01747452], Reward=-1.0
Step 47: State=[-0.6549848 0.01956837], Reward=-1.0
Step 48: State=[-0.63345635 0.02152845], Reward=-1.0
Step 49: State=[-0.61011881 0.02333755], Reward=-1.0
Step 50: State=[-0.58513962 0.02497919], Reward=-1.0
Step 51: State=[-0.5587015 0.02643812], Reward=-1.0
Step 52: State=[-0.53100059 0.02770091], Reward=-1.0
Step 53: State=[-0.50224417 0.02875642], Reward=-1.0
Step 54: State=[-0.4726478 0.02959637], Reward=-1.0
Step 55: State=[-0.44243208 0.03021572], Reward=-1.0
Step 56: State=[-0.41181911 0.03061297], Reward=-1.0
Step 57: State=[-0.38102886 0.03079025], Reward=-1.0
Step 58: State=[-0.35027559 0.03075328], Reward=-1.0
Step 59: State=[-0.31976445 0.03051114], Reward=-1.0
Step 60: State=[-0.28968855 0.0300759 ], Reward=-1.0
Step 61: State=[-0.26022651 0.02946204], Reward=-1.0
Step 62: State=[-0.23154055 0.02868596], Reward=-1.0
Step 63: State=[-0.20377533 0.02776522], Reward=-1.0
Step 64: State=[-0.17705734 0.026718 ], Reward=-1.0
Step 65: State=[-0.15149488 0.02556246], Reward=-1.0
Step 66: State=[-0.12717863 0.02431624], Reward=-1.0
Step 67: State=[-0.10418263 0.02299601], Reward=-1.0
Step 68: State=[-0.0825655 0.02161713], Reward=-1.0
Step 69: State=[-0.06237207 0.02019343], Reward=-1.0
Step 70: State=[-0.04363501 0.01873706], Reward=-1.0
Step 71: State=[-0.02637656 0.01725845], Reward=-1.0
Step 72: State=[-0.01061028 0.01576628], Reward=-1.0
Step 73: State=[0.00365726 0.01426754], Reward=-1.0
Step 74: State=[0.01642496 0.01276769], Reward=-1.0
Step 75: State=[0.02769568 0.01127073], Reward=-1.0
Step 76: State=[0.03747504 0.00977935], Reward=-1.0
Step 77: State=[0.04577017 0.00829513], Reward=-1.0
Step 78: State=[0.05258884 0.00681867], Reward=-1.0
Step 79: State=[0.05793855 0.00534971], Reward=-1.0
Step 80: State=[0.06182593 0.00388738], Reward=-1.0
Step 81: State=[0.0642562 0.00243026], Reward=-1.0
Step 82: State=[0.06523276 0.00097657], Reward=-1.0
Step 83: State=[ 0.06475705 -0.00047571], Reward=-1.0
Step 84: State=[ 0.06082837 -0.00392868], Reward=-1.0
Step 85: State=[ 0.0534412 -0.00738717], Reward=-1.0
Step 86: State=[ 0.04258609 -0.01085511], Reward=-1.0
Step 87: State=[ 0.02825135 -0.01433474], Reward=-1.0
Step 88: State=[ 0.01042559 -0.01782576], Reward=-1.0
Step 89: State=[-0.01089895 -0.02132454], Reward=-1.0
Step 90: State=[-0.03572216 -0.0248232 ], Reward=-1.0
Step 91: State=[-0.06403102 -0.02830886], Reward=-1.0
Step 92: State=[-0.0957939 -0.03176288], Reward=-1.0
Step 93: State=[-0.13095425 -0.03516035], Reward=-1.0
Step 94: State=[-0.16942414 -0.03846989], Reward=-1.0
Step 95: State=[-0.21107801 -0.04165386], Reward=-1.0
Step 96: State=[-0.25574716 -0.04466916], Reward=-1.0
Step 97: State=[-0.30321589 -0.04746873], Reward=-1.0
Step 98: State=[-0.35321967 -0.05000379], Reward=-1.0
Step 99: State=[-0.40544638 -0.05222671], Reward=-1.0
Step 100: State=[-0.4595408 -0.05409441], Reward=-1.0
Step 101: State=[-0.51511269 -0.0555719 ], Reward=-1.0
Step 102: State=[-0.57174823 -0.05663553], Reward=-1.0
Step 103: State=[-0.6290239 -0.05727567], Reward=-1.0
Step 104: State=[-0.68652199 -0.0574981 ], Reward=-1.0
Step 105: State=[-0.74384624 -0.05732425], Reward=-1.0
Step 106: State=[-0.80063623 -0.05678999], Reward=-1.0
Step 107: State=[-0.85657951 -0.05594328], Reward=-1.0
Step 108: State=[-0.91142055 -0.05484104], Reward=-1.0
Step 109: State=[-0.96496613 -0.05354558], Reward=-1.0
Step 110: State=[-1.0170874 -0.05212127], Reward=-1.0
Step 111: State=[-1.06771887 -0.05063146], Reward=-1.0
Step 112: State=[-1.11685507 -0.0491362 ], Reward=-1.0
Step 113: State=[-1.16454566 -0.04769059], Reward=-1.0
Step 114: State=[-1.2 0. ], Reward=-1.0
Step 115: State=[-1.1987581 0.0012419], Reward=-1.0
Step 116: State=[-1.19427021 0.0044879 ], Reward=-1.0
Step 117: State=[-1.18652173 0.00774848], Reward=-1.0
Step 118: State=[-1.17548846 0.01103326], Reward=-1.0
Step 119: State=[-1.16113808 0.01435038], Reward=-1.0
Step 120: State=[-1.14343234 0.01770574], Reward=-1.0
Step 121: State=[-1.12233007 0.02110228], Reward=-1.0
Step 122: State=[-1.09779103 0.02453904], Reward=-1.0
Step 123: State=[-1.06978073 0.0280103 ], Reward=-1.0
Step 124: State=[-1.03827616 0.03150456], Reward=-1.0
Step 125: State=[-1.0032725 0.03500367], Reward=-1.0
Step 126: State=[-0.9647905 0.03848199], Reward=-1.0
Step 127: State=[-0.92288452 0.04190598], Reward=-1.0
Step 128: State=[-0.87765038 0.04523414], Reward=-1.0
Step 129: State=[-0.82923273 0.04841765], Reward=-1.0
Step 130: State=[-0.77783078 0.05140195], Reward=-1.0
Step 131: State=[-0.72370164 0.05412914], Reward=-1.0
Step 132: State=[-0.66716026 0.05654138], Reward=-1.0
Step 133: State=[-0.60857514 0.05858511], Reward=-1.0
Step 134: State=[-0.54835959 0.06021555], Reward=-1.0
Step 135: State=[-0.4869585 0.06140109], Reward=-1.0
Step 136: State=[-0.42483166 0.06212684], Reward=-1.0
Step 137: State=[-0.36243478 0.06239688], Reward=-1.0
Step 138: State=[-0.30020009 0.06223469], Reward=-1.0
Step 139: State=[-0.23851824 0.06168185], Reward=-1.0
Step 140: State=[-0.17772322 0.06079502], Reward=-1.0
Step 141: State=[-0.1180812 0.05964202], Reward=-1.0
Step 142: State=[-0.05978395 0.05829725], Reward=-1.0
Step 143: State=[-0.0029466 0.05683735], Reward=-1.0
Step 144: State=[0.05239085 0.05533745], Reward=-1.0
Step 145: State=[0.10625911 0.05386826], Reward=-1.0
Step 146: State=[0.15875332 0.05249421], Reward=-1.0
Step 147: State=[0.21002575 0.05127242], Reward=-1.0
Step 148: State=[0.26027822 0.05025247], Reward=-1.0
Step 149: State=[0.30975487 0.04947665], Reward=-1.0
Step 150: State=[0.35873547 0.0489806 ], Reward=-1.0
Step 151: State=[0.40752939 0.04879392], Reward=-1.0
Step 152: State=[0.45647027 0.04894088], Reward=-1.0
Step 153: State=[0.50591109 0.04944082], Reward=-1.0
###Markdown
We now visualize the preprogrammed car solving the problem.
###Code
show_video()
###Output
_____no_output_____
###Markdown
Reinforcement LearningQ-Learning is a system of rewards that the algorithm gives an agent for successfully moving the environment into a state considered successful. These rewards are the Q-values from which this algorithm takes its name. The final output from the Q-Learning algorithm is a table of Q-values that indicate the reward value of every action that the agent can take, given every possible environment state. The agent must bin continuous state values into a fixed finite number of columns.Learning occurs when the algorithm runs the agent and environment through a series of episodes and updates the Q-values based on the rewards received from actions taken; Figure 12.REINF provides a high-level overview of this reinforcement or Q-Learning loop.**Figure 12.REINF:Reinforcement/Q Learning**The Q-values can dictate action by selecting the action column with the highest Q-value for the current environment state. The choice between choosing a random action and a Q-value driven action is governed by the epsilon ($\epsilon$) parameter, which is the probability of random action.Each time through the training loop, the training algorithm updates the Q-values according to the following equation.$ Q^{new}(s_{t},a_{t}) \leftarrow \underbrace{Q(s_{t},a_{t})}_{\text{old value}} + \underbrace{\alpha}_{\text{learning rate}} \cdot \overbrace{\bigg( \underbrace{\underbrace{r_{t}}_{\text{reward}} + \underbrace{\gamma}_{\text{discount factor}} \cdot \underbrace{\max_{a}Q(s_{t+1}, a)}_{\text{estimate of optimal future value}}}_{\text{new value (temporal difference target)}} - \underbrace{Q(s_{t},a_{t})}_{\text{old value}} \bigg) }^{\text{temporal difference}}$There are several parameters in this equation:* alpha ($\alpha$) - The learning rate, how much should the current step cause the Q-values to be updated.* lambda ($\lambda) - The discount factor is the percentage of future reward that the algorithm should consider in this update.This equation modifies several values:*$Q(s_t,a_t)$ - The Q-table. For each combination of states, what reward would the agent likely receive for performing each action?*$s_t$ - The current state.*$r_t$ - The last reward received.*$a_t$ - The action that the agent will perform.The equation works by calculating a delta (temporal difference) that the equation should apply to the old state. This learning rate ($\alpha) scales this delta. A learning rate of 1.0 would fully implement the temporal difference to the Q-values each iteration and would likely be very chaotic.There are two parts to the temporal difference: the new and old values. The new value is subtracted from the old value to provide a delta; the full amount that we would change the Q-value by if the learning rate did not scale this value. The new value is a summation of the reward received from the last action and the maximum of the Q-values from the resulting state when the client takes this action. It is essential to add the maximum of action Q-values for the new state because it estimates the optimal future values from proceeding with this action. Q-Learning CarWe will now use Q-Learning to produce a car that learns to drive itself. Look out, Tesla! We begin by defining two essential functions.
###Code
import gym
import numpy as np
# This function converts the floating point state values into discrete values.
# This is often called binning. We divide the range that the state values
# might occupy and assign each region to a bucket.
def calc_discrete_state(state):
discrete_state = (state - env.observation_space.low)/buckets
return tuple(discrete_state.astype(np.int))
# Run one game. The q_table to use is provided. We also provide a flag to
# indicate if the game should be rendered/animated. Finally, we also provide
# a flag to indicate if the q_table should be updated.
def run_game(q_table, render, should_update):
done = False
discrete_state = calc_discrete_state(env.reset())
success = False
while not done:
# Exploit or explore
if np.random.random() > epsilon:
# Exploit - use q-table to take current best action
# (and probably refine)
action = np.argmax(q_table[discrete_state])
else:
# Explore - t
action = np.random.randint(0, env.action_space.n)
# Run simulation step
new_state, reward, done, _ = env.step(action)
# Convert continuous state to discrete
new_state_disc = calc_discrete_state(new_state)
# Have we reached the goal position (have we won?)?
if new_state[0] >= env.unwrapped.goal_position:
success = True
# Update q-table
if should_update:
max_future_q = np.max(q_table[new_state_disc])
current_q = q_table[discrete_state + (action,)]
new_q = (1 - LEARNING_RATE) * current_q + LEARNING_RATE * \
(reward + DISCOUNT * max_future_q)
q_table[discrete_state + (action,)] = new_q
discrete_state = new_state_disc
if render:
env.render()
return success
###Output
_____no_output_____
###Markdown
Several hyperparameters are very important for Q-Learning. These parameters will likely need adjustment as you apply Q-Learning to other problems. Because of this, it is crucial to understand the role of each parameter.* **LEARNING_RATE** The rate at which previous Q-values are updated based on new episodes run during training. * **DISCOUNT** The amount of significance to give estimates of future rewards when added to the reward for the current action taken. A value of 0.95 would indicate a discount of 5% to the future reward estimates. * **EPISODES** The number of episodes to train over. Increase this for more complex problems; however, training time also increases.* **SHOW_EVERY** How many episodes to allow to elapse before showing an update.* **DISCRETE_GRID_SIZE** How many buckets to use when converting each of the continuous state variables. For example, [10, 10] indicates that the algorithm should use ten buckets for the first and second state variables.* **START_EPSILON_DECAYING** Epsilon is the probability that the agent will select a random action over what the Q-Table suggests. This value determines the starting probability of randomness.* **END_EPSILON_DECAYING** How many episodes should elapse before epsilon goes to zero and no random actions are permitted. For example, EPISODES//10 means only the first 1/10th of the episodes might have random actions.
###Code
LEARNING_RATE = 0.1
DISCOUNT = 0.95
EPISODES = 50000
SHOW_EVERY = 1000
DISCRETE_GRID_SIZE = [10, 10]
START_EPSILON_DECAYING = 0.5
END_EPSILON_DECAYING = EPISODES//10
###Output
_____no_output_____
###Markdown
We can now make the environment. If we are running in Google COLAB then we wrap the environment to be displayed inside the web browser. Next create the discrete buckets for state and build Q-table.
###Code
if COLAB:
env = wrap_env(gym.make("MountainCar-v0"))
else:
env = gym.make("MountainCar-v0")
epsilon = 1
epsilon_change = epsilon/(END_EPSILON_DECAYING - START_EPSILON_DECAYING)
buckets = (env.observation_space.high - env.observation_space.low)/DISCRETE_GRID_SIZE
q_table = np.random.uniform(low=-3, high=0, size=(DISCRETE_GRID_SIZE + [env.action_space.n]))
success = False
###Output
_____no_output_____
###Markdown
We can now make the environment. If we are running in Google COLAB then we wrap the environment to be displayed inside the web browser. Next, create the discrete buckets for state and build Q-table.
###Code
episode = 0
success_count = 0
# Loop through the required number of episodes
while episode<EPISODES:
episode+=1
done = False
# Run the game. If we are local, display render animation at SHOW_EVERY
# intervals.
if episode % SHOW_EVERY == 0:
print(f"Current episode: {episode}, success: {success_count} ({float(success_count)/SHOW_EVERY})")
success = run_game(q_table, True, False)
success_count = 0
else:
success = run_game(q_table, False, True)
# Count successes
if success:
success_count += 1
# Move epsilon towards its ending value, if it still needs to move
if END_EPSILON_DECAYING >= episode >= START_EPSILON_DECAYING:
epsilon = max(0, epsilon - epsilon_change)
print(success)
###Output
Current episode: 1000, success: 0 (0.0)
Current episode: 2000, success: 0 (0.0)
Current episode: 3000, success: 0 (0.0)
Current episode: 4000, success: 29 (0.029)
Current episode: 5000, success: 345 (0.345)
Current episode: 6000, success: 834 (0.834)
Current episode: 7000, success: 797 (0.797)
Current episode: 8000, success: 679 (0.679)
Current episode: 9000, success: 600 (0.6)
Current episode: 10000, success: 728 (0.728)
Current episode: 11000, success: 205 (0.205)
Current episode: 12000, success: 612 (0.612)
Current episode: 13000, success: 733 (0.733)
Current episode: 14000, success: 1000 (1.0)
Current episode: 15000, success: 998 (0.998)
Current episode: 16000, success: 879 (0.879)
Current episode: 17000, success: 510 (0.51)
Current episode: 18000, success: 615 (0.615)
Current episode: 19000, success: 220 (0.22)
Current episode: 20000, success: 445 (0.445)
Current episode: 21000, success: 627 (0.627)
Current episode: 22000, success: 597 (0.597)
Current episode: 23000, success: 827 (0.827)
Current episode: 24000, success: 862 (0.862)
Current episode: 25000, success: 322 (0.322)
Current episode: 26000, success: 632 (0.632)
Current episode: 27000, success: 613 (0.613)
Current episode: 28000, success: 409 (0.409)
Current episode: 29000, success: 379 (0.379)
Current episode: 30000, success: 320 (0.32)
Current episode: 31000, success: 327 (0.327)
Current episode: 32000, success: 302 (0.302)
Current episode: 33000, success: 308 (0.308)
Current episode: 34000, success: 336 (0.336)
Current episode: 35000, success: 274 (0.274)
Current episode: 36000, success: 281 (0.281)
Current episode: 37000, success: 301 (0.301)
Current episode: 38000, success: 322 (0.322)
Current episode: 39000, success: 292 (0.292)
Current episode: 40000, success: 299 (0.299)
Current episode: 41000, success: 281 (0.281)
Current episode: 42000, success: 233 (0.233)
Current episode: 43000, success: 380 (0.38)
Current episode: 44000, success: 598 (0.598)
Current episode: 45000, success: 933 (0.933)
Current episode: 46000, success: 986 (0.986)
Current episode: 47000, success: 1000 (1.0)
Current episode: 48000, success: 1000 (1.0)
Current episode: 49000, success: 1000 (1.0)
Current episode: 50000, success: 1000 (1.0)
True
###Markdown
As you can see, the number of successful episodes generally increases as training progresses. It is not advisable to stop the first time that we observe 100% success over 1,000 episodes. There is a randomness to most games, so it is not likely that an agent would retain its 100% success rate with a new run. Once you observe that the agent has gotten 100% for several update intervals, it might be safe to stop training. Running and Observing the AgentNow that the algorithm has trained the agent, we can observe the agent in action. You can use the following code to see the agent in action.
###Code
run_game(q_table, True, False)
show_video()
###Output
_____no_output_____
###Markdown
Inspecting the Q-TableWe can also display the Q-table. The following code shows the action that the agent would perform for each environment state. As the weights of a neural network, this table is not straightforward to interpret. Some patterns do emerge in that directions do arise, as seen by calculating the means of rows and columns. The actions seem consistent at upper and lower halves of both velocity and position.
###Code
import pandas as pd
df = pd.DataFrame(q_table.argmax(axis=2))
df.columns = [f'v-{x}' for x in range(DISCRETE_GRID_SIZE[0])]
df.index = [f'p-{x}' for x in range(DISCRETE_GRID_SIZE[1])]
df
df.mean(axis=0)
df.mean(axis=1)
###Output
_____no_output_____
###Markdown
T81-558: Applications of Deep Neural Networks**Module 12: Deep Learning and Security*** Instructor: [Jeff Heaton](https://sites.wustl.edu/jeffheaton/), McKelvey School of Engineering, [Washington University in St. Louis](https://engineering.wustl.edu/Programs/Pages/default.aspx)* For more information visit the [class website](https://sites.wustl.edu/jeffheaton/t81-558/). Module 12 Video Material* Part 12.1: Introduction to the OpenAI Gym [[Video]](https://www.youtube.com/watch?v=_KbUxgyisjM&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_12_01_ai_gym.ipynb)* **Part 12.2: Introduction to Q-Learning** [[Video]](https://www.youtube.com/watch?v=uwcXWe_Fra0&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_12_02_qlearningreinforcement.ipynb)* Part 12.3: Keras Q-Learning in the OpenAI Gym [[Video]](https://www.youtube.com/watch?v=Ya1gYt63o3M&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_12_03_keras_reinforce.ipynb)* Part 12.4: Atari Games with Keras Neural Networks [[Video]](https://www.youtube.com/watch?v=t2yIu6cRa38&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_12_04_atari.ipynb)* Part 12.5: How Alpha Zero used Reinforcement Learning to Master Chess [[Video]](https://www.youtube.com/watch?v=ikDgyD7nVI8&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_12_05_alpha_zero.ipynb) Google CoLab InstructionsThe following code ensures that Google CoLab is running the correct version of TensorFlow.
###Code
try:
from google.colab import drive
%tensorflow_version 2.x
COLAB = True
print("Note: using Google CoLab")
except:
print("Note: not using Google CoLab")
COLAB = False
###Output
_____no_output_____
###Markdown
Part 12.2: Introduction to Q-Learning Single Action CartMountain car actions:* 0 - Apply left force* 1 - Apply no force* 2 - Apply right forceState values:* state[0] - Position * state[1] - VelocityThe following shows a cart that simply applies full-force to climb the hill. The cart is simply not strong enough. It will need to use momentum from the hill behind it.
###Code
import gym
env = gym.make("MountainCar-v0")
env.reset()
done = False
i = 0
while not done:
i += 1
state, reward, done, _ = env.step(2)
env.render()
print(f"Step {i}: State={state}, Reward={reward}")
env.close()
###Output
Step 1: State=[-0.54298351 0.00115394], Reward=-1.0
Step 2: State=[-0.54068426 0.00229925], Reward=-1.0
Step 3: State=[-0.53725693 0.00342733], Reward=-1.0
Step 4: State=[-0.53272719 0.00452974], Reward=-1.0
Step 5: State=[-0.527129 0.00559819], Reward=-1.0
Step 6: State=[-0.52050433 0.00662467], Reward=-1.0
Step 7: State=[-0.51290287 0.00760146], Reward=-1.0
Step 8: State=[-0.50438161 0.00852126], Reward=-1.0
Step 9: State=[-0.4950044 0.00937721], Reward=-1.0
Step 10: State=[-0.48484139 0.01016301], Reward=-1.0
Step 11: State=[-0.47396841 0.01087299], Reward=-1.0
Step 12: State=[-0.46246627 0.01150213], Reward=-1.0
Step 13: State=[-0.45042007 0.0120462 ], Reward=-1.0
Step 14: State=[-0.43791831 0.01250176], Reward=-1.0
Step 15: State=[-0.4250521 0.01286621], Reward=-1.0
Step 16: State=[-0.41191426 0.01313783], Reward=-1.0
Step 17: State=[-0.39859848 0.01331578], Reward=-1.0
Step 18: State=[-0.38519838 0.0134001 ], Reward=-1.0
Step 19: State=[-0.37180672 0.01339166], Reward=-1.0
Step 20: State=[-0.35851456 0.01329216], Reward=-1.0
Step 21: State=[-0.34541053 0.01310403], Reward=-1.0
Step 22: State=[-0.33258017 0.01283036], Reward=-1.0
Step 23: State=[-0.32010531 0.01247486], Reward=-1.0
Step 24: State=[-0.30806361 0.0120417 ], Reward=-1.0
Step 25: State=[-0.29652811 0.0115355 ], Reward=-1.0
Step 26: State=[-0.28556694 0.01096116], Reward=-1.0
Step 27: State=[-0.27524312 0.01032383], Reward=-1.0
Step 28: State=[-0.26561434 0.00962878], Reward=-1.0
Step 29: State=[-0.25673298 0.00888136], Reward=-1.0
Step 30: State=[-0.24864606 0.00808693], Reward=-1.0
Step 31: State=[-0.24139526 0.0072508 ], Reward=-1.0
Step 32: State=[-0.23501706 0.0063782 ], Reward=-1.0
Step 33: State=[-0.22954281 0.00547425], Reward=-1.0
Step 34: State=[-0.22499885 0.00454396], Reward=-1.0
Step 35: State=[-0.22140666 0.00359218], Reward=-1.0
Step 36: State=[-0.21878297 0.00262369], Reward=-1.0
Step 37: State=[-0.21713985 0.00164313], Reward=-1.0
Step 38: State=[-0.21648478 0.00065507], Reward=-1.0
Step 39: State=[-0.21682075 -0.00033597], Reward=-1.0
Step 40: State=[-0.21814623 -0.00132548], Reward=-1.0
Step 41: State=[-0.22045518 -0.00230895], Reward=-1.0
Step 42: State=[-0.22373702 -0.00328184], Reward=-1.0
Step 43: State=[-0.22797653 -0.00423951], Reward=-1.0
Step 44: State=[-0.23315378 -0.00517725], Reward=-1.0
Step 45: State=[-0.239244 -0.00609022], Reward=-1.0
Step 46: State=[-0.24621747 -0.00697347], Reward=-1.0
Step 47: State=[-0.25403939 -0.00782191], Reward=-1.0
Step 48: State=[-0.26266974 -0.00863035], Reward=-1.0
Step 49: State=[-0.27206323 -0.0093935 ], Reward=-1.0
Step 50: State=[-0.28216923 -0.010106 ], Reward=-1.0
Step 51: State=[-0.29293174 -0.01076251], Reward=-1.0
Step 52: State=[-0.30428945 -0.01135771], Reward=-1.0
Step 53: State=[-0.31617585 -0.0118864 ], Reward=-1.0
Step 54: State=[-0.32851945 -0.0123436 ], Reward=-1.0
Step 55: State=[-0.34124405 -0.0127246 ], Reward=-1.0
Step 56: State=[-0.3542691 -0.01302505], Reward=-1.0
Step 57: State=[-0.36751021 -0.01324111], Reward=-1.0
Step 58: State=[-0.38087966 -0.01336945], Reward=-1.0
Step 59: State=[-0.3942871 -0.01340744], Reward=-1.0
Step 60: State=[-0.40764024 -0.01335314], Reward=-1.0
Step 61: State=[-0.42084563 -0.01320539], Reward=-1.0
Step 62: State=[-0.43380952 -0.01296389], Reward=-1.0
Step 63: State=[-0.44643872 -0.0126292 ], Reward=-1.0
Step 64: State=[-0.45864146 -0.01220274], Reward=-1.0
Step 65: State=[-0.47032831 -0.01168684], Reward=-1.0
Step 66: State=[-0.48141298 -0.01108468], Reward=-1.0
Step 67: State=[-0.49181321 -0.01040022], Reward=-1.0
Step 68: State=[-0.50145146 -0.00963826], Reward=-1.0
Step 69: State=[-0.5102557 -0.00880424], Reward=-1.0
Step 70: State=[-0.51815998 -0.00790428], Reward=-1.0
Step 71: State=[-0.52510506 -0.00694507], Reward=-1.0
Step 72: State=[-0.53103883 -0.00593378], Reward=-1.0
Step 73: State=[-0.53591681 -0.00487798], Reward=-1.0
Step 74: State=[-0.53970243 -0.00378562], Reward=-1.0
Step 75: State=[-0.54236732 -0.00266489], Reward=-1.0
Step 76: State=[-0.54389151 -0.0015242 ], Reward=-1.0
Step 77: State=[-5.44263607e-01 -3.72094556e-04], Reward=-1.0
Step 78: State=[-0.54348081 0.00078279], Reward=-1.0
Step 79: State=[-0.541549 0.00193182], Reward=-1.0
Step 80: State=[-0.53848261 0.00306638], Reward=-1.0
Step 81: State=[-0.53430464 0.00417797], Reward=-1.0
Step 82: State=[-0.52904639 0.00525825], Reward=-1.0
Step 83: State=[-0.52274728 0.00629911], Reward=-1.0
Step 84: State=[-0.51545456 0.00729272], Reward=-1.0
Step 85: State=[-0.50722291 0.00823165], Reward=-1.0
Step 86: State=[-0.49811404 0.00910888], Reward=-1.0
Step 87: State=[-0.48819611 0.00991793], Reward=-1.0
Step 88: State=[-0.4775432 0.01065291], Reward=-1.0
Step 89: State=[-0.46623461 0.01130859], Reward=-1.0
Step 90: State=[-0.45435414 0.01188048], Reward=-1.0
Step 91: State=[-0.44198927 0.01236487], Reward=-1.0
Step 92: State=[-0.42923038 0.01275889], Reward=-1.0
Step 93: State=[-0.41616983 0.01306055], Reward=-1.0
Step 94: State=[-0.40290112 0.01326871], Reward=-1.0
Step 95: State=[-0.389518 0.01338313], Reward=-1.0
Step 96: State=[-0.37611358 0.01340442], Reward=-1.0
Step 97: State=[-0.36277956 0.01333402], Reward=-1.0
Step 98: State=[-0.34960543 0.01317413], Reward=-1.0
Step 99: State=[-0.3366778 0.01292763], Reward=-1.0
Step 100: State=[-0.32407975 0.01259805], Reward=-1.0
Step 101: State=[-0.31189033 0.01218942], Reward=-1.0
Step 102: State=[-0.3001841 0.01170623], Reward=-1.0
Step 103: State=[-0.28903082 0.01115328], Reward=-1.0
Step 104: State=[-0.27849515 0.01053567], Reward=-1.0
Step 105: State=[-0.26863652 0.00985862], Reward=-1.0
Step 106: State=[-0.25950904 0.00912749], Reward=-1.0
Step 107: State=[-0.25116142 0.00834761], Reward=-1.0
Step 108: State=[-0.24363708 0.00752434], Reward=-1.0
Step 109: State=[-0.23697416 0.00666292], Reward=-1.0
Step 110: State=[-0.23120564 0.00576852], Reward=-1.0
Step 111: State=[-0.22635946 0.00484618], Reward=-1.0
Step 112: State=[-0.22245866 0.0039008 ], Reward=-1.0
Step 113: State=[-0.21952148 0.00293718], Reward=-1.0
Step 114: State=[-0.21756149 0.00196 ], Reward=-1.0
Step 115: State=[-0.21658763 0.00097386], Reward=-1.0
Step 116: State=[-2.16604342e-01 -1.67115330e-05], Reward=-1.0
Step 117: State=[-0.21761155 -0.0010072 ], Reward=-1.0
Step 118: State=[-0.21960466 -0.00199312], Reward=-1.0
Step 119: State=[-0.22257458 -0.00296991], Reward=-1.0
Step 120: State=[-0.22650757 -0.003933 ], Reward=-1.0
Step 121: State=[-0.23138525 -0.00487768], Reward=-1.0
Step 122: State=[-0.23718442 -0.00579916], Reward=-1.0
Step 123: State=[-0.24387695 -0.00669253], Reward=-1.0
Step 124: State=[-0.2514297 -0.00755275], Reward=-1.0
Step 125: State=[-0.25980435 -0.00837465], Reward=-1.0
Step 126: State=[-0.26895731 -0.00915296], Reward=-1.0
Step 127: State=[-0.27883967 -0.00988236], Reward=-1.0
Step 128: State=[-0.28939716 -0.01055749], Reward=-1.0
Step 129: State=[-0.30057017 -0.01117301], Reward=-1.0
Step 130: State=[-0.31229385 -0.01172368], Reward=-1.0
Step 131: State=[-0.32449829 -0.01220444], Reward=-1.0
Step 132: State=[-0.33710877 -0.01261047], Reward=-1.0
Step 133: State=[-0.35004609 -0.01293732], Reward=-1.0
Step 134: State=[-0.36322703 -0.01318094], Reward=-1.0
Step 135: State=[-0.3765649 -0.01333787], Reward=-1.0
Step 136: State=[-0.3899701 -0.0134052], Reward=-1.0
Step 137: State=[-0.40335089 -0.01338079], Reward=-1.0
Step 138: State=[-0.41661411 -0.01326322], Reward=-1.0
Step 139: State=[-0.429666 -0.0130519], Reward=-1.0
Step 140: State=[-0.44241311 -0.0127471 ], Reward=-1.0
Step 141: State=[-0.4547631 -0.01235 ], Reward=-1.0
Step 142: State=[-0.4666257 -0.0118626], Reward=-1.0
Step 143: State=[-0.47791353 -0.01128782], Reward=-1.0
Step 144: State=[-0.48854292 -0.01062939], Reward=-1.0
Step 145: State=[-0.49843474 -0.00989182], Reward=-1.0
Step 146: State=[-0.50751511 -0.00908037], Reward=-1.0
Step 147: State=[-0.51571607 -0.00820096], Reward=-1.0
Step 148: State=[-0.52297614 -0.00726007], Reward=-1.0
Step 149: State=[-0.52924088 -0.00626474], Reward=-1.0
Step 150: State=[-0.53446331 -0.00522243], Reward=-1.0
Step 151: State=[-0.53860426 -0.00414096], Reward=-1.0
Step 152: State=[-0.54163272 -0.00302845], Reward=-1.0
Step 153: State=[-0.54352598 -0.00189327], Reward=-1.0
Step 154: State=[-0.54426988 -0.0007439 ], Reward=-1.0
###Markdown
Programmed CarThis is a car that I hand-programmed. It uses a simple rule, but solves the problem. The programmed car constantly applies force to one direction or another. It does not reset. Whatever direction the car is currently rolling, it applies force in that direction. Therefore, the car begins to climb a hill, is overpowered, and rolls backward. However, once it begins to roll backwards force is immediately applied in this new direction.
###Code
import gym
env = gym.make("MountainCar-v0")
state = env.reset()
done = False
i = 0
while not done:
i += 1
if state[1]>0:
action = 2
else:
action = 0
state, reward, done, _ = env.step(action)
env.render()
print(f"Step {i}: State={state}, Reward={reward}")
env.close()
###Output
Step 1: State=[-0.51431373 -0.00107771], Reward=-1.0
Step 2: State=[-0.51646107 -0.00214734], Reward=-1.0
Step 3: State=[-0.51966193 -0.00320087], Reward=-1.0
Step 4: State=[-0.52389233 -0.00423039], Reward=-1.0
Step 5: State=[-0.52912052 -0.00522819], Reward=-1.0
Step 6: State=[-0.53530729 -0.00618678], Reward=-1.0
Step 7: State=[-0.54240628 -0.00709898], Reward=-1.0
Step 8: State=[-0.55036428 -0.007958 ], Reward=-1.0
Step 9: State=[-0.55912175 -0.00875748], Reward=-1.0
Step 10: State=[-0.56861331 -0.00949156], Reward=-1.0
Step 11: State=[-0.57876828 -0.01015497], Reward=-1.0
Step 12: State=[-0.58951137 -0.01074309], Reward=-1.0
Step 13: State=[-0.60076333 -0.01125196], Reward=-1.0
Step 14: State=[-0.61244171 -0.01167838], Reward=-1.0
Step 15: State=[-0.62446163 -0.01201992], Reward=-1.0
Step 16: State=[-0.63673657 -0.01227494], Reward=-1.0
Step 17: State=[-0.64917917 -0.0124426 ], Reward=-1.0
Step 18: State=[-0.66170205 -0.01252287], Reward=-1.0
Step 19: State=[-0.67421853 -0.01251648], Reward=-1.0
Step 20: State=[-0.68664341 -0.01242488], Reward=-1.0
Step 21: State=[-0.69889363 -0.01225023], Reward=-1.0
Step 22: State=[-0.71088891 -0.01199528], Reward=-1.0
Step 23: State=[-0.72255227 -0.01166336], Reward=-1.0
Step 24: State=[-0.73381051 -0.01125823], Reward=-1.0
Step 25: State=[-0.7445946 -0.01078409], Reward=-1.0
Step 26: State=[-0.75484 -0.0102454], Reward=-1.0
Step 27: State=[-0.76448689 -0.00964689], Reward=-1.0
Step 28: State=[-0.77348032 -0.00899343], Reward=-1.0
Step 29: State=[-0.78177031 -0.00828998], Reward=-1.0
Step 30: State=[-0.78931187 -0.00754156], Reward=-1.0
Step 31: State=[-0.79606502 -0.00675316], Reward=-1.0
Step 32: State=[-0.80199476 -0.00592974], Reward=-1.0
Step 33: State=[-0.80707094 -0.00507618], Reward=-1.0
Step 34: State=[-0.81126824 -0.00419729], Reward=-1.0
Step 35: State=[-0.81456603 -0.00329779], Reward=-1.0
Step 36: State=[-0.81694832 -0.0023823 ], Reward=-1.0
Step 37: State=[-0.81840369 -0.00145537], Reward=-1.0
Step 38: State=[-8.18925204e-01 -5.21510941e-04], Reward=-1.0
Step 39: State=[-8.18510378e-01 4.14826025e-04], Reward=-1.0
Step 40: State=[-0.81516118 0.00334919], Reward=-1.0
Step 41: State=[-0.80889363 0.00626755], Reward=-1.0
Step 42: State=[-0.7997382 0.00915543], Reward=-1.0
Step 43: State=[-0.78774062 0.01199759], Reward=-1.0
Step 44: State=[-0.77296289 0.01477773], Reward=-1.0
Step 45: State=[-0.75548455 0.01747834], Reward=-1.0
Step 46: State=[-0.73540399 0.02008056], Reward=-1.0
Step 47: State=[-0.71283965 0.02256434], Reward=-1.0
Step 48: State=[-0.68793102 0.02490863], Reward=-1.0
Step 49: State=[-0.66083923 0.0270918 ], Reward=-1.0
Step 50: State=[-0.63174696 0.02909226], Reward=-1.0
Step 51: State=[-0.60085774 0.03088922], Reward=-1.0
Step 52: State=[-0.56839425 0.03246349], Reward=-1.0
Step 53: State=[-0.53459581 0.03379844], Reward=-1.0
Step 54: State=[-0.49971491 0.03488091], Reward=-1.0
Step 55: State=[-0.46401297 0.03570193], Reward=-1.0
Step 56: State=[-0.42775556 0.03625741], Reward=-1.0
Step 57: State=[-0.39120711 0.03654845], Reward=-1.0
Step 58: State=[-0.35462569 0.03658142], Reward=-1.0
Step 59: State=[-0.31825799 0.0363677 ], Reward=-1.0
Step 60: State=[-0.28233478 0.03592322], Reward=-1.0
Step 61: State=[-0.24706714 0.03526764], Reward=-1.0
Step 62: State=[-0.21264364 0.0344235 ], Reward=-1.0
Step 63: State=[-0.17922847 0.03341517], Reward=-1.0
Step 64: State=[-0.14696054 0.03226793], Reward=-1.0
Step 65: State=[-0.11595355 0.03100699], Reward=-1.0
Step 66: State=[-0.08629682 0.02965673], Reward=-1.0
Step 67: State=[-0.05805677 0.02824004], Reward=-1.0
Step 68: State=[-0.03127891 0.02677787], Reward=-1.0
Step 69: State=[-0.00599004 0.02528887], Reward=-1.0
Step 70: State=[0.01779923 0.02378927], Reward=-1.0
Step 71: State=[0.04009206 0.02229283], Reward=-1.0
Step 72: State=[0.06090295 0.02081089], Reward=-1.0
Step 73: State=[0.08025546 0.01935251], Reward=-1.0
Step 74: State=[0.09818008 0.01792462], Reward=-1.0
Step 75: State=[0.11471236 0.01653228], Reward=-1.0
Step 76: State=[0.12989122 0.01517886], Reward=-1.0
Step 77: State=[0.14375749 0.01386628], Reward=-1.0
Step 78: State=[0.15635269 0.01259519], Reward=-1.0
Step 79: State=[0.16771789 0.01136521], Reward=-1.0
Step 80: State=[0.17789293 0.01017504], Reward=-1.0
Step 81: State=[0.18691562 0.00902269], Reward=-1.0
Step 82: State=[0.19482116 0.00790554], Reward=-1.0
Step 83: State=[0.20164168 0.00682052], Reward=-1.0
Step 84: State=[0.20740583 0.00576416], Reward=-1.0
Step 85: State=[0.21213852 0.00473269], Reward=-1.0
Step 86: State=[0.21586063 0.00372211], Reward=-1.0
Step 87: State=[0.21858888 0.00272825], Reward=-1.0
Step 88: State=[0.22033568 0.0017468 ], Reward=-1.0
Step 89: State=[0.22110904 0.00077336], Reward=-1.0
Step 90: State=[ 2.20912527e-01 -1.96509754e-04], Reward=-1.0
Step 91: State=[ 0.21774524 -0.00316729], Reward=-1.0
Step 92: State=[ 0.21159265 -0.00615259], Reward=-1.0
Step 93: State=[ 0.20242705 -0.0091656 ], Reward=-1.0
Step 94: State=[ 0.19020845 -0.01221861], Reward=-1.0
Step 95: State=[ 0.17488593 -0.01532251], Reward=-1.0
Step 96: State=[ 0.15639968 -0.01848625], Reward=-1.0
Step 97: State=[ 0.1346836 -0.02171608], Reward=-1.0
Step 98: State=[ 0.10966883 -0.02501477], Reward=-1.0
Step 99: State=[ 0.08128815 -0.02838068], Reward=-1.0
Step 100: State=[ 0.04948145 -0.03180671], Reward=-1.0
Step 101: State=[ 0.01420223 -0.03527921], Reward=-1.0
Step 102: State=[-0.02457471 -0.03877695], Reward=-1.0
Step 103: State=[-0.06684487 -0.04227015], Reward=-1.0
Step 104: State=[-0.11256492 -0.04572006], Reward=-1.0
Step 105: State=[-0.16164378 -0.04907886], Reward=-1.0
Step 106: State=[-0.21393441 -0.05229063], Reward=-1.0
Step 107: State=[-0.26922758 -0.05529317], Reward=-1.0
Step 108: State=[-0.32724868 -0.05802111], Reward=-1.0
Step 109: State=[-0.38765872 -0.06041004], Reward=-1.0
Step 110: State=[-0.45006028 -0.06240156], Reward=-1.0
Step 111: State=[-0.51400891 -0.06394863], Reward=-1.0
Step 112: State=[-0.57902946 -0.06502055], Reward=-1.0
Step 113: State=[-0.64463619 -0.06560673], Reward=-1.0
Step 114: State=[-0.71035496 -0.06571877], Reward=-1.0
Step 115: State=[-0.77574519 -0.06539023], Reward=-1.0
Step 116: State=[-0.84041959 -0.06467439], Reward=-1.0
Step 117: State=[-0.90405977 -0.06364018], Reward=-1.0
Step 118: State=[-0.96642693 -0.06236716], Reward=-1.0
Step 119: State=[-1.02736712 -0.06094019], Reward=-1.0
Step 120: State=[-1.08681173 -0.05944462], Reward=-1.0
Step 121: State=[-1.14477398 -0.05796225], Reward=-1.0
Step 122: State=[-1.2 0. ], Reward=-1.0
Step 123: State=[-1.1987581 0.0012419], Reward=-1.0
Step 124: State=[-1.19427021 0.0044879 ], Reward=-1.0
Step 125: State=[-1.18652173 0.00774848], Reward=-1.0
Step 126: State=[-1.17548846 0.01103326], Reward=-1.0
Step 127: State=[-1.16113808 0.01435038], Reward=-1.0
Step 128: State=[-1.14343234 0.01770574], Reward=-1.0
Step 129: State=[-1.12233007 0.02110228], Reward=-1.0
Step 130: State=[-1.09779103 0.02453904], Reward=-1.0
Step 131: State=[-1.06978073 0.0280103 ], Reward=-1.0
Step 132: State=[-1.03827616 0.03150456], Reward=-1.0
Step 133: State=[-1.0032725 0.03500367], Reward=-1.0
Step 134: State=[-0.9647905 0.03848199], Reward=-1.0
Step 135: State=[-0.92288452 0.04190598], Reward=-1.0
Step 136: State=[-0.87765038 0.04523414], Reward=-1.0
Step 137: State=[-0.82923273 0.04841765], Reward=-1.0
Step 138: State=[-0.77783078 0.05140195], Reward=-1.0
Step 139: State=[-0.72370164 0.05412914], Reward=-1.0
Step 140: State=[-0.66716026 0.05654138], Reward=-1.0
Step 141: State=[-0.60857514 0.05858511], Reward=-1.0
Step 142: State=[-0.54835959 0.06021555], Reward=-1.0
Step 143: State=[-0.4869585 0.06140109], Reward=-1.0
Step 144: State=[-0.42483166 0.06212684], Reward=-1.0
Step 145: State=[-0.36243478 0.06239688], Reward=-1.0
Step 146: State=[-0.30020009 0.06223469], Reward=-1.0
Step 147: State=[-0.23851824 0.06168185], Reward=-1.0
Step 148: State=[-0.17772322 0.06079502], Reward=-1.0
Step 149: State=[-0.1180812 0.05964202], Reward=-1.0
Step 150: State=[-0.05978395 0.05829725], Reward=-1.0
Step 151: State=[-0.0029466 0.05683735], Reward=-1.0
Step 152: State=[0.05239085 0.05533745], Reward=-1.0
###Markdown
Reinforcement Learning Q-Learning CarWe will now use Q-Learning to produce a car that learns to drive itself. Look out Tesla! Q-Learning works by building a table that provides a lookup table to determine which of several actions should be taken. As we move through a number of training episodes this table is refined. $ Q^{new}(s_{t},a_{t}) \leftarrow (1-\alpha) \cdot \underbrace{Q(s_{t},a_{t})}_{\text{old value}} + \underbrace{\alpha}_{\text{learning rate}} \cdot \overbrace{\bigg( \underbrace{r_{t}}_{\text{reward}} + \underbrace{\gamma}_{\text{discount factor}} \cdot \underbrace{\max_{a}Q(s_{t+1}, a)}_{\text{estimate of optimal future value}} \bigg) }^{\text{learned value}} $
###Code
import gym
import numpy as np
def calc_discrete_state(state):
discrete_state = (state - env.observation_space.low)/buckets
return tuple(discrete_state.astype(np.int))
def run_game(q_table, render, should_update):
done = False
discrete_state = calc_discrete_state(env.reset())
success = False
while not done:
# Exploit or explore
if np.random.random() > epsilon:
# Exploit - use q-table to take current best action (and probably refine)
action = np.argmax(q_table[discrete_state])
else:
# Explore - t
action = np.random.randint(0, env.action_space.n)
# Run simulation step
new_state, reward, done, _ = env.step(action)
#
new_state_disc = calc_discrete_state(new_state)
#
if new_state[0] >= env.goal_position:
success = True
# Update q-table
if should_update:
max_future_q = np.max(q_table[new_state_disc])
current_q = q_table[discrete_state + (action,)]
new_q = (1 - LEARNING_RATE) * current_q + LEARNING_RATE * (reward + DISCOUNT * max_future_q)
q_table[discrete_state + (action,)] = new_q
discrete_state = new_state_disc
if render:
env.render()
return success
LEARNING_RATE = 0.1
DISCOUNT = 0.95
EPISODES = 10000
SHOW_EVERY = 1000
DISCRETE_GRID_SIZE = [10, 10]
START_EPSILON_DECAYING = 1
END_EPSILON_DECAYING = EPISODES//2
env = gym.make("MountainCar-v0")
epsilon = 1
epsilon_change = epsilon/(END_EPSILON_DECAYING - START_EPSILON_DECAYING)
buckets = (env.observation_space.high - env.observation_space.low)/DISCRETE_GRID_SIZE
q_table = np.random.uniform(low=-3, high=0, size=(DISCRETE_GRID_SIZE + [env.action_space.n]))
success = False
episode = 0
success_count = 0
while episode<EPISODES:
episode+=1
done = False
if episode % SHOW_EVERY == 0:
print(f"Current episode: {episode}, success: {success_count} ({float(success_count)/SHOW_EVERY})")
success = run_game(q_table, True, False)
success_count = 0
else:
success = run_game(q_table, False, True)
if success:
success_count += 1
# Move epsilon towards its ending value, if it still needs to move
if END_EPSILON_DECAYING >= episode >= START_EPSILON_DECAYING:
epsilon -= epsilon_change
print(success)
run_game(q_table, True, False)
import pandas as pd
df = pd.DataFrame(q_table.argmax(axis=2))
df.columns = [f'v-{x}' for x in range(DISCRETE_GRID_SIZE[0])]
df.index = [f'p-{x}' for x in range(DISCRETE_GRID_SIZE[1])]
df
np.argmax(q_table[(2,0)])
###Output
_____no_output_____
###Markdown
T81-558: Applications of Deep Neural Networks**Module 12: Reinforcement Learning*** Instructor: [Jeff Heaton](https://sites.wustl.edu/jeffheaton/), McKelvey School of Engineering, [Washington University in St. Louis](https://engineering.wustl.edu/Programs/Pages/default.aspx)* For more information visit the [class website](https://sites.wustl.edu/jeffheaton/t81-558/). Module 12 Video Material* Part 12.1: Introduction to the OpenAI Gym [[Video]](https://www.youtube.com/watch?v=_KbUxgyisjM&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](https://github.com/jeffheaton/t81_558_deep_learning/blob/master/t81_558_class_12_01_ai_gym.ipynb)* **Part 12.2: Introduction to Q-Learning** [[Video]](https://www.youtube.com/watch?v=A3sYFcJY3lA&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](https://github.com/jeffheaton/t81_558_deep_learning/blob/master/t81_558_class_12_02_qlearningreinforcement.ipynb)* Part 12.3: Keras Q-Learning in the OpenAI Gym [[Video]](https://www.youtube.com/watch?v=qy1SJmsRhvM&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](https://github.com/jeffheaton/t81_558_deep_learning/blob/master/t81_558_class_12_03_keras_reinforce.ipynb)* Part 12.4: Atari Games with Keras Neural Networks [[Video]](https://www.youtube.com/watch?v=co0SwPWoZh0&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](https://github.com/jeffheaton/t81_558_deep_learning/blob/master/t81_558_class_12_04_atari.ipynb)* Part 12.5: Application of Reinforcement Learning [[Video]](https://www.youtube.com/watch?v=1jQPP3RfwMI&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](https://github.com/jeffheaton/t81_558_deep_learning/blob/master/t81_558_class_12_05_apply_rl.ipynb) Google CoLab InstructionsThe following code ensures that Google CoLab is running the correct version of TensorFlow.
###Code
try:
from google.colab import drive
%tensorflow_version 2.x
COLAB = True
print("Note: using Google CoLab")
except:
print("Note: not using Google CoLab")
COLAB = False
# HIDE OUTPUT
if COLAB:
!sudo apt-get install -y xvfb ffmpeg x11-utils
!pip install -q gym
!pip install -q 'imageio==2.4.0'
!pip install -q PILLOW
!pip install -q 'pyglet==1.3.2'
!pip install -q pyvirtualdisplay
!pip install -q tf-agents
!pip install -q pygame
###Output
Reading package lists... Done
Building dependency tree
Reading state information... Done
ffmpeg is already the newest version (7:3.4.8-0ubuntu0.2).
Suggested packages:
mesa-utils
The following NEW packages will be installed:
libxxf86dga1 x11-utils xvfb
0 upgraded, 3 newly installed, 0 to remove and 39 not upgraded.
Need to get 993 kB of archives.
After this operation, 2,982 kB of additional disk space will be used.
Get:1 http://archive.ubuntu.com/ubuntu bionic/main amd64 libxxf86dga1 amd64 2:1.1.4-1 [13.7 kB]
Get:2 http://archive.ubuntu.com/ubuntu bionic/main amd64 x11-utils amd64 7.7+3build1 [196 kB]
Get:3 http://archive.ubuntu.com/ubuntu bionic-updates/universe amd64 xvfb amd64 2:1.19.6-1ubuntu4.10 [784 kB]
Fetched 993 kB in 1s (1,252 kB/s)
debconf: unable to initialize frontend: Dialog
debconf: (No usable dialog-like program is installed, so the dialog based frontend cannot be used. at /usr/share/perl5/Debconf/FrontEnd/Dialog.pm line 76, <> line 3.)
debconf: falling back to frontend: Readline
debconf: unable to initialize frontend: Readline
debconf: (This frontend requires a controlling tty.)
debconf: falling back to frontend: Teletype
dpkg-preconfigure: unable to re-open stdin:
Selecting previously unselected package libxxf86dga1:amd64.
(Reading database ... 156210 files and directories currently installed.)
Preparing to unpack .../libxxf86dga1_2%3a1.1.4-1_amd64.deb ...
Unpacking libxxf86dga1:amd64 (2:1.1.4-1) ...
Selecting previously unselected package x11-utils.
Preparing to unpack .../x11-utils_7.7+3build1_amd64.deb ...
Unpacking x11-utils (7.7+3build1) ...
Selecting previously unselected package xvfb.
Preparing to unpack .../xvfb_2%3a1.19.6-1ubuntu4.10_amd64.deb ...
Unpacking xvfb (2:1.19.6-1ubuntu4.10) ...
Setting up xvfb (2:1.19.6-1ubuntu4.10) ...
Setting up libxxf86dga1:amd64 (2:1.1.4-1) ...
Setting up x11-utils (7.7+3build1) ...
Processing triggers for man-db (2.8.3-2ubuntu0.1) ...
Processing triggers for libc-bin (2.27-3ubuntu1.3) ...
/sbin/ldconfig.real: /usr/local/lib/python3.7/dist-packages/ideep4py/lib/libmkldnn.so.0 is not a symbolic link
[K |████████████████████████████████| 3.3 MB 5.1 MB/s
[?25h Building wheel for imageio (setup.py) ... [?25l[?25hdone
[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
albumentations 0.1.12 requires imgaug<0.2.7,>=0.2.5, but you have imgaug 0.2.9 which is incompatible.[0m
[K |████████████████████████████████| 1.0 MB 5.2 MB/s
[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
gym 0.17.3 requires pyglet<=1.5.0,>=1.4.0, but you have pyglet 1.3.2 which is incompatible.[0m
[K |████████████████████████████████| 1.3 MB 5.0 MB/s
[K |████████████████████████████████| 1.0 MB 29.8 MB/s
[K |████████████████████████████████| 21.8 MB 1.2 MB/s
[?25h
###Markdown
Part 12.2: Introduction to Q-LearningQ-Learning is a foundational technology upon which deep reinforcement learning is based. Before we explore deep reinforcement learning, it is essential to understand Q-Learning. Several components make up any Q-Learning system.* **Agent** - The agent is an entity that exists in an environment that takes actions to affect the state of the environment, to receive rewards.* **Environment** - The environment is the universe that the agent exists in. The environment is always in a specific state that is changed by the agent's actions.* **Actions** - Steps that the agent can perform to alter the environment * **Step** - A step occurs when the agent performs an action and potentially changes the environment state.* **Episode** - A chain of steps that ultimately culminates in the environment entering a terminal state.* **Epoch** - A training iteration of the agent that contains some number of episodes.* **Terminal State** - A state in which further actions do not make sense. A terminal state occurs when the agent has one, lost, or the environment exceeds the maximum number of steps in many environments.Q-Learning works by building a table that suggests an action for every possible state. This approach runs into several problems. First, the environment is usually composed of several continuous numbers, resulting in an infinite number of states. Q-Learning handles continuous states by binning these numeric values into ranges. Out of the box, Q-Learning does not deal with continuous inputs, such as a car's accelerator that can range from released to fully engaged. Additionally, Q-Learning primarily deals with discrete actions, such as pressing a joystick up or down. Researchers have developed clever tricks to allow Q-Learning to accommodate continuous actions.Deep neural networks can help solve the problems of continuous environments and action spaces. In the next section, we will learn more about deep reinforcement learning. For now, we will apply regular Q-Learning to the Mountain Car problem from OpenAI Gym. Introducing the Mountain CarThis section will demonstrate how Q-Learning can create a solution to the mountain car gym environment. The Mountain car is an environment where a car must climb a mountain. Because gravity is stronger than the car's engine, it cannot merely accelerate up the steep slope even with full throttle. The vehicle is situated in a valley and must learn to utilize potential energy by driving up the opposite hill before the car can make it to the goal at the top of the rightmost hill.First, it might be helpful to visualize the mountain car environment. The following code shows this environment. This code makes use of TF-Agents to perform this render. Usually, we use TF-Agents for the type of deep reinforcement learning that we will see in the next module. However, TF-Agents is just used to render the mountain care environment for now.
###Code
import tf_agents
from tf_agents.environments import suite_gym
import PIL.Image
import pyvirtualdisplay
display = pyvirtualdisplay.Display(visible=0, size=(1400, 900)).start()
env_name = 'MountainCar-v0'
env = suite_gym.load(env_name)
env.reset()
PIL.Image.fromarray(env.render())
###Output
_____no_output_____
###Markdown
The mountain car environment provides the following discrete actions:* 0 - Apply left force* 1 - Apply no force* 2 - Apply right forceThe mountain car environment is made up of the following continuous values:* state[0] - Position * state[1] - VelocityThe cart is not strong enough. It will need to use potential energy from the mountain behind it. The following code shows an agent that applies full throttle to climb the hill.
###Code
import gym
from gym.wrappers import Monitor
import glob
import io
import base64
from IPython.display import HTML
from pyvirtualdisplay import Display
from IPython import display as ipythondisplay
display = Display(visible=0, size=(1400, 900))
display.start()
def show_video():
mp4list = glob.glob('video/*.mp4')
if len(mp4list) > 0:
mp4 = mp4list[0]
video = io.open(mp4, 'r+b').read()
encoded = base64.b64encode(video)
ipythondisplay.display(HTML(data='''<video alt="test" autoplay
loop controls style="height: 400px;">
<source src="data:video/mp4;base64,{0}"
type="video/mp4" />
</video>'''.format(encoded.decode('ascii'))))
else:
print("Could not find video")
def wrap_env(env):
env = Monitor(env, './video', force=True)
return env
###Output
_____no_output_____
###Markdown
We are now ready to train the agent.
###Code
import gym
if COLAB:
env = wrap_env(gym.make("MountainCar-v0"))
else:
env = gym.make("MountainCar-v0")
env.reset()
done = False
i = 0
while not done:
i += 1
state, reward, done, _ = env.step(2)
env.render()
print(f"Step {i}: State={state}, Reward={reward}")
env.close()
###Output
Step 1: State=[-0.50905189 0.00089766], Reward=-1.0
Step 2: State=[-0.50726329 0.00178859], Reward=-1.0
Step 3: State=[-0.50459717 0.00266613], Reward=-1.0
Step 4: State=[-0.50107348 0.00352369], Reward=-1.0
Step 5: State=[-0.4967186 0.00435488], Reward=-1.0
Step 6: State=[-0.4915651 0.0051535], Reward=-1.0
Step 7: State=[-0.48565149 0.00591361], Reward=-1.0
Step 8: State=[-0.47902187 0.00662962], Reward=-1.0
Step 9: State=[-0.47172557 0.00729629], Reward=-1.0
Step 10: State=[-0.46381676 0.00790881], Reward=-1.0
Step 11: State=[-0.45535392 0.00846285], Reward=-1.0
Step 12: State=[-0.44639934 0.00895458], Reward=-1.0
Step 13: State=[-0.4370186 0.00938074], Reward=-1.0
Step 14: State=[-0.42727993 0.00973867], Reward=-1.0
Step 15: State=[-0.41725364 0.01002629], Reward=-1.0
Step 16: State=[-0.40701147 0.01024216], Reward=-1.0
Step 17: State=[-0.396626 0.01038548], Reward=-1.0
Step 18: State=[-0.38616995 0.01045604], Reward=-1.0
Step 19: State=[-0.37571567 0.01045428], Reward=-1.0
Step 20: State=[-0.36533449 0.01038118], Reward=-1.0
Step 21: State=[-0.35509619 0.0102383 ], Reward=-1.0
Step 22: State=[-0.34506852 0.01002767], Reward=-1.0
Step 23: State=[-0.33531672 0.0097518 ], Reward=-1.0
Step 24: State=[-0.32590314 0.00941358], Reward=-1.0
Step 25: State=[-0.31688687 0.00901627], Reward=-1.0
Step 26: State=[-0.30832346 0.00856341], Reward=-1.0
Step 27: State=[-0.30026469 0.00805876], Reward=-1.0
Step 28: State=[-0.2927584 0.00750629], Reward=-1.0
Step 29: State=[-0.2858483 0.0069101], Reward=-1.0
Step 30: State=[-0.27957395 0.00627436], Reward=-1.0
Step 31: State=[-0.27397063 0.00560332], Reward=-1.0
Step 32: State=[-0.26906936 0.00490127], Reward=-1.0
Step 33: State=[-0.26489689 0.00417247], Reward=-1.0
Step 34: State=[-0.26147568 0.00342121], Reward=-1.0
Step 35: State=[-0.25882396 0.00265172], Reward=-1.0
Step 36: State=[-0.25695571 0.00186825], Reward=-1.0
Step 37: State=[-0.25588073 0.00107498], Reward=-1.0
Step 38: State=[-0.25560462 0.00027611], Reward=-1.0
Step 39: State=[-0.25612883 -0.00052421], Reward=-1.0
Step 40: State=[-0.25745062 -0.00132179], Reward=-1.0
Step 41: State=[-0.25956309 -0.00211247], Reward=-1.0
Step 42: State=[-0.26245514 -0.00289205], Reward=-1.0
Step 43: State=[-0.26611148 -0.00365634], Reward=-1.0
Step 44: State=[-0.27051257 -0.00440109], Reward=-1.0
Step 45: State=[-0.27563463 -0.00512205], Reward=-1.0
Step 46: State=[-0.28144957 -0.00581494], Reward=-1.0
Step 47: State=[-0.28792506 -0.00647549], Reward=-1.0
Step 48: State=[-0.29502448 -0.00709942], Reward=-1.0
Step 49: State=[-0.30270698 -0.0076825 ], Reward=-1.0
Step 50: State=[-0.31092755 -0.00822057], Reward=-1.0
Step 51: State=[-0.31963713 -0.00870957], Reward=-1.0
Step 52: State=[-0.32878273 -0.0091456 ], Reward=-1.0
Step 53: State=[-0.33830768 -0.00952495], Reward=-1.0
Step 54: State=[-0.34815185 -0.00984416], Reward=-1.0
Step 55: State=[-0.35825194 -0.0101001 ], Reward=-1.0
Step 56: State=[-0.36854191 -0.01028996], Reward=-1.0
Step 57: State=[-0.37895331 -0.0104114 ], Reward=-1.0
Step 58: State=[-0.38941582 -0.01046252], Reward=-1.0
Step 59: State=[-0.39985775 -0.01044193], Reward=-1.0
Step 60: State=[-0.41020657 -0.01034882], Reward=-1.0
Step 61: State=[-0.42038952 -0.01018295], Reward=-1.0
Step 62: State=[-0.43033423 -0.00994471], Reward=-1.0
Step 63: State=[-0.43996933 -0.0096351 ], Reward=-1.0
Step 64: State=[-0.4492251 -0.00925577], Reward=-1.0
Step 65: State=[-0.45803405 -0.00880895], Reward=-1.0
Step 66: State=[-0.46633157 -0.00829752], Reward=-1.0
Step 67: State=[-0.47405649 -0.00772492], Reward=-1.0
Step 68: State=[-0.48115161 -0.00709512], Reward=-1.0
Step 69: State=[-0.48756422 -0.00641261], Reward=-1.0
Step 70: State=[-0.49324656 -0.00568234], Reward=-1.0
Step 71: State=[-0.49815623 -0.00490967], Reward=-1.0
Step 72: State=[-0.50225654 -0.00410031], Reward=-1.0
Step 73: State=[-0.5055168 -0.00326026], Reward=-1.0
Step 74: State=[-0.50791261 -0.00239581], Reward=-1.0
Step 75: State=[-0.50942603 -0.00151341], Reward=-1.0
Step 76: State=[-0.5100457 -0.00061968], Reward=-1.0
Step 77: State=[-5.09767002e-01 2.78702550e-04], Reward=-1.0
Step 78: State=[-0.50859201 0.00117499], Reward=-1.0
Step 79: State=[-0.50652953 0.00206248], Reward=-1.0
Step 80: State=[-0.50359501 0.00293452], Reward=-1.0
Step 81: State=[-0.49981043 0.00378458], Reward=-1.0
Step 82: State=[-0.49520411 0.00460632], Reward=-1.0
Step 83: State=[-0.48981049 0.00539362], Reward=-1.0
Step 84: State=[-0.48366986 0.00614064], Reward=-1.0
Step 85: State=[-0.47682797 0.00684189], Reward=-1.0
Step 86: State=[-0.46933572 0.00749226], Reward=-1.0
Step 87: State=[-0.46124864 0.00808708], Reward=-1.0
Step 88: State=[-0.45262646 0.00862217], Reward=-1.0
Step 89: State=[-0.44353257 0.00909389], Reward=-1.0
Step 90: State=[-0.43403342 0.00949915], Reward=-1.0
Step 91: State=[-0.42419795 0.00983547], Reward=-1.0
Step 92: State=[-0.41409699 0.01010096], Reward=-1.0
Step 93: State=[-0.40380259 0.01029439], Reward=-1.0
Step 94: State=[-0.39338746 0.01041514], Reward=-1.0
Step 95: State=[-0.38292426 0.0104632 ], Reward=-1.0
Step 96: State=[-0.37248508 0.01043918], Reward=-1.0
Step 97: State=[-0.36214083 0.01034425], Reward=-1.0
Step 98: State=[-0.35196071 0.01018012], Reward=-1.0
Step 99: State=[-0.34201175 0.00994897], Reward=-1.0
Step 100: State=[-0.33235831 0.00965343], Reward=-1.0
Step 101: State=[-0.32306179 0.00929653], Reward=-1.0
Step 102: State=[-0.31418019 0.0088816 ], Reward=-1.0
Step 103: State=[-0.30576792 0.00841226], Reward=-1.0
Step 104: State=[-0.29787557 0.00789236], Reward=-1.0
Step 105: State=[-0.29054969 0.00732588], Reward=-1.0
Step 106: State=[-0.28383272 0.00671697], Reward=-1.0
Step 107: State=[-0.27776289 0.00606983], Reward=-1.0
Step 108: State=[-0.27237418 0.00538871], Reward=-1.0
Step 109: State=[-0.26769627 0.00467791], Reward=-1.0
Step 110: State=[-0.26375458 0.00394169], Reward=-1.0
Step 111: State=[-0.26057026 0.00318432], Reward=-1.0
Step 112: State=[-0.25816021 0.00241005], Reward=-1.0
Step 113: State=[-0.25653713 0.00162309], Reward=-1.0
Step 114: State=[-0.25570949 0.00082763], Reward=-1.0
Step 115: State=[-2.55681628e-01 2.78670044e-05], Reward=-1.0
Step 116: State=[-0.25645367 -0.00077204], Reward=-1.0
Step 117: State=[-0.25802161 -0.00156793], Reward=-1.0
Step 118: State=[-0.26037723 -0.00235562], Reward=-1.0
Step 119: State=[-0.26350814 -0.00313091], Reward=-1.0
Step 120: State=[-0.26739774 -0.0038896 ], Reward=-1.0
Step 121: State=[-0.27202516 -0.00462742], Reward=-1.0
Step 122: State=[-0.2773653 -0.00534014], Reward=-1.0
Step 123: State=[-0.28338876 -0.00602346], Reward=-1.0
Step 124: State=[-0.29006186 -0.0066731 ], Reward=-1.0
Step 125: State=[-0.29734667 -0.00728481], Reward=-1.0
Step 126: State=[-0.30520105 -0.00785438], Reward=-1.0
Step 127: State=[-0.31357871 -0.00837766], Reward=-1.0
Step 128: State=[-0.32242935 -0.00885064], Reward=-1.0
Step 129: State=[-0.33169883 -0.00926948], Reward=-1.0
Step 130: State=[-0.34132937 -0.00963053], Reward=-1.0
Step 131: State=[-0.35125981 -0.00993044], Reward=-1.0
Step 132: State=[-0.36142598 -0.01016617], Reward=-1.0
Step 133: State=[-0.37176102 -0.01033504], Reward=-1.0
Step 134: State=[-0.38219587 -0.01043485], Reward=-1.0
Step 135: State=[-0.39265972 -0.01046385], Reward=-1.0
Step 136: State=[-0.40308055 -0.01042083], Reward=-1.0
Step 137: State=[-0.41338571 -0.01030515], Reward=-1.0
Step 138: State=[-0.42350248 -0.01011677], Reward=-1.0
Step 139: State=[-0.43335875 -0.00985626], Reward=-1.0
Step 140: State=[-0.44288357 -0.00952483], Reward=-1.0
Step 141: State=[-0.45200787 -0.00912429], Reward=-1.0
Step 142: State=[-0.46066497 -0.00865711], Reward=-1.0
Step 143: State=[-0.46879128 -0.00812631], Reward=-1.0
Step 144: State=[-0.4763268 -0.00753552], Reward=-1.0
Step 145: State=[-0.48321567 -0.00688887], Reward=-1.0
Step 146: State=[-0.48940667 -0.006191 ], Reward=-1.0
Step 147: State=[-0.49485367 -0.00544699], Reward=-1.0
Step 148: State=[-0.49951598 -0.00466232], Reward=-1.0
Step 149: State=[-0.50335876 -0.00384278], Reward=-1.0
Step 150: State=[-0.50635325 -0.00299449], Reward=-1.0
Step 151: State=[-0.50847702 -0.00212377], Reward=-1.0
Step 152: State=[-0.50971416 -0.00123714], Reward=-1.0
Step 153: State=[-5.10055410e-01 -3.41248589e-04], Reward=-1.0
Step 154: State=[-0.50949821 0.0005572 ], Reward=-1.0
Step 155: State=[-0.50804672 0.00145148], Reward=-1.0
Step 156: State=[-0.50571184 0.00233488], Reward=-1.0
Step 157: State=[-0.50251105 0.0032008 ], Reward=-1.0
Step 158: State=[-0.4984683 0.00404274], Reward=-1.0
Step 159: State=[-0.49361386 0.00485444], Reward=-1.0
Step 160: State=[-0.487984 0.00562986], Reward=-1.0
Step 161: State=[-0.48162074 0.00636326], Reward=-1.0
Step 162: State=[-0.47457149 0.00704925], Reward=-1.0
Step 163: State=[-0.46688862 0.00768287], Reward=-1.0
Step 164: State=[-0.45862902 0.0082596 ], Reward=-1.0
Step 165: State=[-0.44985362 0.0087754 ], Reward=-1.0
Step 166: State=[-0.44062681 0.00922681], Reward=-1.0
Step 167: State=[-0.43101588 0.00961093], Reward=-1.0
Step 168: State=[-0.42109043 0.00992545], Reward=-1.0
Step 169: State=[-0.41092173 0.0101687 ], Reward=-1.0
Step 170: State=[-0.4005821 0.01033962], Reward=-1.0
Step 171: State=[-0.3901443 0.0104378], Reward=-1.0
Step 172: State=[-0.37968088 0.01046342], Reward=-1.0
Step 173: State=[-0.36926363 0.01041726], Reward=-1.0
Step 174: State=[-0.35896297 0.01030066], Reward=-1.0
Step 175: State=[-0.34884748 0.01011548], Reward=-1.0
Step 176: State=[-0.33898342 0.00986407], Reward=-1.0
Step 177: State=[-0.32943426 0.00954916], Reward=-1.0
Step 178: State=[-0.32026037 0.00917389], Reward=-1.0
Step 179: State=[-0.31151868 0.00874169], Reward=-1.0
Step 180: State=[-0.30326242 0.00825625], Reward=-1.0
Step 181: State=[-0.29554096 0.00772147], Reward=-1.0
Step 182: State=[-0.28839957 0.00714139], Reward=-1.0
Step 183: State=[-0.28187941 0.00652016], Reward=-1.0
Step 184: State=[-0.27601738 0.00586203], Reward=-1.0
Step 185: State=[-0.27084613 0.00517125], Reward=-1.0
Step 186: State=[-0.26639402 0.00445211], Reward=-1.0
Step 187: State=[-0.26268515 0.00370887], Reward=-1.0
Step 188: State=[-0.25973934 0.00294581], Reward=-1.0
Step 189: State=[-0.25757219 0.00216715], Reward=-1.0
Step 190: State=[-0.25619508 0.00137711], Reward=-1.0
Step 191: State=[-0.25561521 0.00057987], Reward=-1.0
Step 192: State=[-2.55835595e-01 -2.20385847e-04], Reward=-1.0
Step 193: State=[-0.25685509 -0.0010195 ], Reward=-1.0
Step 194: State=[-0.25866838 -0.00181329], Reward=-1.0
Step 195: State=[-0.26126596 -0.00259758], Reward=-1.0
Step 196: State=[-0.26463414 -0.00336818], Reward=-1.0
Step 197: State=[-0.26875498 -0.00412085], Reward=-1.0
Step 198: State=[-0.27360632 -0.00485134], Reward=-1.0
Step 199: State=[-0.27916172 -0.0055554 ], Reward=-1.0
Step 200: State=[-0.28539045 -0.00622873], Reward=-1.0
###Markdown
It helps to visualize the car. The following code shows a video of the car when run from a notebook.
###Code
# HIDE OUTPUT
show_video()
###Output
_____no_output_____
###Markdown
Programmed CarNow we will look at a car that I hand-programmed. This car is straightforward; however, it solves the problem. The programmed car always applies force in one direction or another. It does not break. Whatever direction the vehicle is currently rolling, the agent uses power in that direction. Therefore, the car begins to climb a hill, is overpowered, and turns backward. However, once it starts to roll backward, force is immediately applied in this new direction.The following code implements this preprogrammed car.
###Code
import gym
if COLAB:
env = wrap_env(gym.make("MountainCar-v0"))
else:
env = gym.make("MountainCar-v0")
state = env.reset()
done = False
i = 0
while not done:
i += 1
if state[1] > 0:
action = 2
else:
action = 0
state, reward, done, _ = env.step(action)
env.render()
print(f"Step {i}: State={state}, Reward={reward}")
env.close()
###Output
Step 1: State=[-5.84581471e-01 -5.49227966e-04], Reward=-1.0
Step 2: State=[-0.58567588 -0.0010944 ], Reward=-1.0
Step 3: State=[-0.58730739 -0.00163151], Reward=-1.0
Step 4: State=[-0.58946399 -0.0021566 ], Reward=-1.0
Step 5: State=[-0.59212981 -0.00266582], Reward=-1.0
Step 6: State=[-0.59528526 -0.00315545], Reward=-1.0
Step 7: State=[-0.5989072 -0.00362194], Reward=-1.0
Step 8: State=[-0.60296912 -0.00406192], Reward=-1.0
Step 9: State=[-0.60744137 -0.00447225], Reward=-1.0
Step 10: State=[-0.61229141 -0.00485004], Reward=-1.0
Step 11: State=[-0.61748407 -0.00519267], Reward=-1.0
Step 12: State=[-0.62298187 -0.0054978 ], Reward=-1.0
Step 13: State=[-0.62874529 -0.00576342], Reward=-1.0
Step 14: State=[-0.63473313 -0.00598783], Reward=-1.0
Step 15: State=[-0.64090281 -0.00616968], Reward=-1.0
Step 16: State=[-0.64721076 -0.00630795], Reward=-1.0
Step 17: State=[-0.65361272 -0.00640196], Reward=-1.0
Step 18: State=[-0.66006412 -0.00645139], Reward=-1.0
Step 19: State=[-0.66652037 -0.00645626], Reward=-1.0
Step 20: State=[-0.67293726 -0.00641689], Reward=-1.0
Step 21: State=[-0.6792712 -0.00633394], Reward=-1.0
Step 22: State=[-0.68547958 -0.00620838], Reward=-1.0
Step 23: State=[-0.69152102 -0.00604144], Reward=-1.0
Step 24: State=[-0.69735564 -0.00583462], Reward=-1.0
Step 25: State=[-0.7029453 -0.00558966], Reward=-1.0
Step 26: State=[-0.70825383 -0.00530853], Reward=-1.0
Step 27: State=[-0.7132472 -0.00499337], Reward=-1.0
Step 28: State=[-0.71789372 -0.00464651], Reward=-1.0
Step 29: State=[-0.72216414 -0.00427042], Reward=-1.0
Step 30: State=[-0.72603185 -0.00386771], Reward=-1.0
Step 31: State=[-0.72947294 -0.00344108], Reward=-1.0
Step 32: State=[-0.73246627 -0.00299334], Reward=-1.0
Step 33: State=[-0.73499362 -0.00252735], Reward=-1.0
Step 34: State=[-0.73703966 -0.00204604], Reward=-1.0
Step 35: State=[-0.73859207 -0.00155241], Reward=-1.0
Step 36: State=[-0.73964152 -0.00104945], Reward=-1.0
Step 37: State=[-7.40181738e-01 -5.40214614e-04], Reward=-1.0
Step 38: State=[-7.40209487e-01 -2.77484127e-05], Reward=-1.0
Step 39: State=[-7.39724603e-01 4.84883491e-04], Reward=-1.0
Step 40: State=[-0.73672998 0.00299462], Reward=-1.0
Step 41: State=[-0.73124359 0.00548639], Reward=-1.0
Step 42: State=[-0.72329865 0.00794494], Reward=-1.0
Step 43: State=[-0.71294396 0.01035469], Reward=-1.0
Step 44: State=[-0.70024433 0.01269963], Reward=-1.0
Step 45: State=[-0.685281 0.01496333], Reward=-1.0
Step 46: State=[-0.66815204 0.01712895], Reward=-1.0
Step 47: State=[-0.6489726 0.01917944], Reward=-1.0
Step 48: State=[-0.62787487 0.02109773], Reward=-1.0
Step 49: State=[-0.60500776 0.02286711], Reward=-1.0
Step 50: State=[-0.58053614 0.02447162], Reward=-1.0
Step 51: State=[-0.55463956 0.02589658], Reward=-1.0
Step 52: State=[-0.52751051 0.02712905], Reward=-1.0
Step 53: State=[-0.49935212 0.02815839], Reward=-1.0
Step 54: State=[-0.47037542 0.0289767 ], Reward=-1.0
Step 55: State=[-0.44079621 0.02957922], Reward=-1.0
Step 56: State=[-0.41083164 0.02996456], Reward=-1.0
Step 57: State=[-0.38069679 0.03013485], Reward=-1.0
Step 58: State=[-0.35060117 0.03009562], Reward=-1.0
Step 59: State=[-0.32074557 0.0298556 ], Reward=-1.0
Step 60: State=[-0.29131919 0.02942639], Reward=-1.0
Step 61: State=[-0.26249729 0.02882189], Reward=-1.0
Step 62: State=[-0.23443946 0.02805783], Reward=-1.0
Step 63: State=[-0.20728838 0.02715108], Reward=-1.0
Step 64: State=[-0.18116928 0.0261191 ], Reward=-1.0
Step 65: State=[-0.15618993 0.02497935], Reward=-1.0
Step 66: State=[-0.13244112 0.02374881], Reward=-1.0
Step 67: State=[-0.10999756 0.02244356], Reward=-1.0
Step 68: State=[-0.08891911 0.02107845], Reward=-1.0
Step 69: State=[-0.06925224 0.01966687], Reward=-1.0
Step 70: State=[-0.05103161 0.01822063], Reward=-1.0
Step 71: State=[-0.03428174 0.01674987], Reward=-1.0
Step 72: State=[-0.01901866 0.01526308], Reward=-1.0
Step 73: State=[-0.00525151 0.01376715], Reward=-1.0
Step 74: State=[0.00701595 0.01226746], Reward=-1.0
Step 75: State=[0.01778397 0.01076801], Reward=-1.0
Step 76: State=[0.02705554 0.00927157], Reward=-1.0
Step 77: State=[0.03483534 0.0077798 ], Reward=-1.0
Step 78: State=[0.04112878 0.00629344], Reward=-1.0
Step 79: State=[0.04594123 0.00481245], Reward=-1.0
Step 80: State=[0.04927738 0.00333615], Reward=-1.0
Step 81: State=[0.05114081 0.00186342], Reward=-1.0
Step 82: State=[0.05153359 0.00039279], Reward=-1.0
Step 83: State=[ 0.0504562 -0.0010774], Reward=-1.0
Step 84: State=[ 0.04590739 -0.00454881], Reward=-1.0
Step 85: State=[ 0.03788225 -0.00802514], Reward=-1.0
Step 86: State=[ 0.02637324 -0.01150901], Reward=-1.0
Step 87: State=[ 0.01137205 -0.01500119], Reward=-1.0
Step 88: State=[-0.00712768 -0.01849973], Reward=-1.0
Step 89: State=[-0.02912685 -0.02199916], Reward=-1.0
Step 90: State=[-0.05461647 -0.02548963], Reward=-1.0
Step 91: State=[-0.08357261 -0.02895614], Reward=-1.0
Step 92: State=[-0.11595059 -0.03237798], Reward=-1.0
Step 93: State=[-0.15167884 -0.03572825], Reward=-1.0
Step 94: State=[-0.1906527 -0.03897386], Reward=-1.0
Step 95: State=[-0.23272866 -0.04207597], Reward=-1.0
Step 96: State=[-0.27771965 -0.04499099], Reward=-1.0
Step 97: State=[-0.32539199 -0.04767234], Reward=-1.0
Step 98: State=[-0.37546482 -0.05007283], Reward=-1.0
Step 99: State=[-0.42761244 -0.05214762], Reward=-1.0
Step 100: State=[-0.48147006 -0.05385761], Reward=-1.0
Step 101: State=[-0.5366428 -0.05517274], Reward=-1.0
Step 102: State=[-0.59271773 -0.05607493], Reward=-1.0
Step 103: State=[-0.64927797 -0.05656025], Reward=-1.0
Step 104: State=[-0.7059178 -0.05663983], Reward=-1.0
Step 105: State=[-0.7622574 -0.0563396], Reward=-1.0
Step 106: State=[-0.81795612 -0.05569872], Reward=-1.0
Step 107: State=[-0.8727231 -0.05476698], Reward=-1.0
Step 108: State=[-0.92632481 -0.0536017 ], Reward=-1.0
Step 109: State=[-0.97858908 -0.05226427], Reward=-1.0
Step 110: State=[-1.02940612 -0.05081704], Reward=-1.0
Step 111: State=[-1.07872672 -0.0493206 ], Reward=-1.0
Step 112: State=[-1.1265585 -0.04783178], Reward=-1.0
Step 113: State=[-1.1729608 -0.0464023], Reward=-1.0
Step 114: State=[-1.2 0. ], Reward=-1.0
Step 115: State=[-1.1987581 0.0012419], Reward=-1.0
Step 116: State=[-1.19427021 0.0044879 ], Reward=-1.0
Step 117: State=[-1.18652173 0.00774848], Reward=-1.0
Step 118: State=[-1.17548846 0.01103326], Reward=-1.0
Step 119: State=[-1.16113808 0.01435038], Reward=-1.0
Step 120: State=[-1.14343234 0.01770574], Reward=-1.0
Step 121: State=[-1.12233007 0.02110228], Reward=-1.0
Step 122: State=[-1.09779103 0.02453904], Reward=-1.0
Step 123: State=[-1.06978073 0.0280103 ], Reward=-1.0
Step 124: State=[-1.03827616 0.03150456], Reward=-1.0
Step 125: State=[-1.0032725 0.03500367], Reward=-1.0
Step 126: State=[-0.9647905 0.03848199], Reward=-1.0
Step 127: State=[-0.92288452 0.04190598], Reward=-1.0
Step 128: State=[-0.87765038 0.04523414], Reward=-1.0
Step 129: State=[-0.82923273 0.04841765], Reward=-1.0
Step 130: State=[-0.77783078 0.05140195], Reward=-1.0
Step 131: State=[-0.72370164 0.05412914], Reward=-1.0
Step 132: State=[-0.66716026 0.05654138], Reward=-1.0
Step 133: State=[-0.60857514 0.05858511], Reward=-1.0
Step 134: State=[-0.54835959 0.06021555], Reward=-1.0
Step 135: State=[-0.4869585 0.06140109], Reward=-1.0
Step 136: State=[-0.42483166 0.06212684], Reward=-1.0
Step 137: State=[-0.36243478 0.06239688], Reward=-1.0
Step 138: State=[-0.30020009 0.06223469], Reward=-1.0
Step 139: State=[-0.23851824 0.06168185], Reward=-1.0
Step 140: State=[-0.17772322 0.06079502], Reward=-1.0
Step 141: State=[-0.1180812 0.05964202], Reward=-1.0
Step 142: State=[-0.05978395 0.05829725], Reward=-1.0
Step 143: State=[-0.0029466 0.05683735], Reward=-1.0
Step 144: State=[0.05239085 0.05533745], Reward=-1.0
Step 145: State=[0.10625911 0.05386826], Reward=-1.0
Step 146: State=[0.15875332 0.05249421], Reward=-1.0
Step 147: State=[0.21002575 0.05127242], Reward=-1.0
Step 148: State=[0.26027822 0.05025247], Reward=-1.0
Step 149: State=[0.30975487 0.04947665], Reward=-1.0
Step 150: State=[0.35873547 0.0489806 ], Reward=-1.0
Step 151: State=[0.40752939 0.04879392], Reward=-1.0
Step 152: State=[0.45647027 0.04894088], Reward=-1.0
Step 153: State=[0.50591109 0.04944082], Reward=-1.0
###Markdown
We now visualize the preprogrammed car solving the problem.
###Code
# HIDE OUTPUT
show_video()
###Output
_____no_output_____
###Markdown
Reinforcement LearningQ-Learning is a system of rewards that the algorithm gives an agent for successfully moving the environment into a state considered successful. These rewards are the Q-values from which this algorithm takes its name. The final output from the Q-Learning algorithm is a table of Q-values that indicate the reward value of every action that the agent can take, given every possible environment state. The agent must bin continuous state values into a fixed finite number of columns.Learning occurs when the algorithm runs the agent and environment through episodes and updates the Q-values based on the rewards received from actions taken; Figure 12.REINF provides a high-level overview of this reinforcement or Q-Learning loop.**Figure 12.REINF:Reinforcement/Q Learning**The Q-values can dictate action by selecting the action column with the highest Q-value for the current environment state. The choice between choosing a random action and a Q-value-driven action is governed by the epsilon ($\epsilon$) parameter, the probability of random action.Each time through the training loop, the training algorithm updates the Q-values according to the following equation. $Q^{new}(s_{t},a_{t}) \leftarrow \underbrace{Q(s_{t},a_{t})}_{\text{old value}} + \underbrace{\alpha}_{\text{learning rate}} \cdot \overbrace{\bigg( \underbrace{\underbrace{r_{t}}_{\text{reward}} + \underbrace{\gamma}_{\text{discount factor}} \cdot \underbrace{\max_{a}Q(s_{t+1}, a)}_{\text{estimate of optimal future value}}}_{\text{new value (temporal difference target)}} - \underbrace{Q(s_{t},a_{t})}_{\text{old value}} \bigg) }^{\text{temporal difference}}$There are several parameters in this equation:* alpha ($\alpha$) - The learning rate, how much should the current step cause the Q-values to be updated.* lambda ($\lambda$) - The discount factor is the percentage of future reward that the algorithm should consider in this update.This equation modifies several values:* $Q(s_t,a_t)$ - The Q-table. For each combination of states, what reward would the agent likely receive for performing each action?* $s_t$ - The current state.* $r_t$ - The last reward received.* $a_t$ - The action that the agent will perform.The equation works by calculating a delta (temporal difference) that the equation should apply to the old state. This learning rate ($\alpha$) scales this delta. A learning rate of 1.0 would fully implement the temporal difference in the Q-values each iteration and would likely be very chaotic.There are two parts to the temporal difference: the new and old values. The new value is subtracted from the old value to provide a delta; the full amount we would change the Q-value by if the learning rate did not scale this value. The new value is a summation of the reward received from the last action and the maximum Q-values from the resulting state when the client takes this action. Adding the maximum of action Q-values for the new state is essential because it estimates the optimal future values from proceeding with this action. Q-Learning CarWe will now use Q-Learning to produce a car that learns to drive itself. Look out, Tesla! We begin by defining two essential functions.
###Code
import gym
import numpy as np
# This function converts the floating point state values into
# discrete values. This is often called binning. We divide
# the range that the state values might occupy and assign
# each region to a bucket.
def calc_discrete_state(state):
discrete_state = (state - env.observation_space.low)/buckets
return tuple(discrete_state.astype(int))
# Run one game. The q_table to use is provided. We also
# provide a flag to indicate if the game should be
# rendered/animated. Finally, we also provide
# a flag to indicate if the q_table should be updated.
def run_game(q_table, render, should_update):
done = False
discrete_state = calc_discrete_state(env.reset())
success = False
while not done:
# Exploit or explore
if np.random.random() > epsilon:
# Exploit - use q-table to take current best action
# (and probably refine)
action = np.argmax(q_table[discrete_state])
else:
# Explore - t
action = np.random.randint(0, env.action_space.n)
# Run simulation step
new_state, reward, done, _ = env.step(action)
# Convert continuous state to discrete
new_state_disc = calc_discrete_state(new_state)
# Have we reached the goal position (have we won?)?
if new_state[0] >= env.unwrapped.goal_position:
success = True
# Update q-table
if should_update:
max_future_q = np.max(q_table[new_state_disc])
current_q = q_table[discrete_state + (action,)]
new_q = (1 - LEARNING_RATE) * current_q + LEARNING_RATE * \
(reward + DISCOUNT * max_future_q)
q_table[discrete_state + (action,)] = new_q
discrete_state = new_state_disc
if render:
env.render()
return success
###Output
_____no_output_____
###Markdown
Several hyperparameters are very important for Q-Learning. These parameters will likely need adjustment as you apply Q-Learning to other problems. Because of this, it is crucial to understand the role of each parameter.* **LEARNING_RATE** The rate at which previous Q-values are updated based on new episodes run during training. * **DISCOUNT** The amount of significance to give estimates of future rewards when added to the reward for the current action taken. A value of 0.95 would indicate a discount of 5% on the future reward estimates. * **EPISODES** The number of episodes to train over. Increase this for more complex problems; however, training time also increases.* **SHOW_EVERY** How many episodes to allow to elapse before showing an update.* **DISCRETE_GRID_SIZE** How many buckets to use when converting each continuous state variable. For example, [10, 10] indicates that the algorithm should use ten buckets for the first and second state variables.* **START_EPSILON_DECAYING** Epsilon is the probability that the agent will select a random action over what the Q-Table suggests. This value determines the starting probability of randomness.* **END_EPSILON_DECAYING** How many episodes should elapse before epsilon goes to zero and no random actions are permitted. For example, EPISODES//10 means only the first 1/10th of the episodes might have random actions.
###Code
LEARNING_RATE = 0.1
DISCOUNT = 0.95
EPISODES = 50000
SHOW_EVERY = 1000
DISCRETE_GRID_SIZE = [10, 10]
START_EPSILON_DECAYING = 0.5
END_EPSILON_DECAYING = EPISODES//10
###Output
_____no_output_____
###Markdown
We can now make the environment. If we are running in Google COLAB, we wrap the environment to be displayed inside the web browser. Next, create the discrete buckets for state and build Q-table.
###Code
if COLAB:
env = wrap_env(gym.make("MountainCar-v0"))
else:
env = gym.make("MountainCar-v0")
epsilon = 1
epsilon_change = epsilon/(END_EPSILON_DECAYING - START_EPSILON_DECAYING)
buckets = (env.observation_space.high - env.observation_space.low) \
/ DISCRETE_GRID_SIZE
q_table = np.random.uniform(low=-3, high=0, size=(DISCRETE_GRID_SIZE
+ [env.action_space.n]))
success = False
###Output
_____no_output_____
###Markdown
We can now make the environment. If we are running in Google COLAB, we wrap the environment to be displayed inside the web browser. Next, create the discrete buckets for state and build Q-table.
###Code
episode = 0
success_count = 0
# Loop through the required number of episodes
while episode < EPISODES:
episode += 1
done = False
# Run the game. If we are local, display render animation
# at SHOW_EVERY intervals.
if episode % SHOW_EVERY == 0:
print(f"Current episode: {episode}, success: {success_count}" +
f" {(float(success_count)/SHOW_EVERY)}")
success = run_game(q_table, True, False)
success_count = 0
else:
success = run_game(q_table, False, True)
# Count successes
if success:
success_count += 1
# Move epsilon towards its ending value, if it still needs to move
if END_EPSILON_DECAYING >= episode >= START_EPSILON_DECAYING:
epsilon = max(0, epsilon - epsilon_change)
print(success)
###Output
Current episode: 1000, success: 0 0.0
Current episode: 2000, success: 0 0.0
Current episode: 3000, success: 0 0.0
Current episode: 4000, success: 31 0.031
Current episode: 5000, success: 321 0.321
Current episode: 6000, success: 602 0.602
Current episode: 7000, success: 620 0.62
Current episode: 8000, success: 821 0.821
Current episode: 9000, success: 707 0.707
Current episode: 10000, success: 714 0.714
Current episode: 11000, success: 574 0.574
Current episode: 12000, success: 443 0.443
Current episode: 13000, success: 480 0.48
Current episode: 14000, success: 458 0.458
Current episode: 15000, success: 327 0.327
Current episode: 16000, success: 323 0.323
Current episode: 17000, success: 295 0.295
Current episode: 18000, success: 314 0.314
Current episode: 19000, success: 362 0.362
Current episode: 20000, success: 488 0.488
Current episode: 21000, success: 566 0.566
Current episode: 22000, success: 591 0.591
Current episode: 23000, success: 441 0.441
Current episode: 24000, success: 385 0.385
Current episode: 25000, success: 1000 1.0
Current episode: 26000, success: 1000 1.0
Current episode: 27000, success: 993 0.993
Current episode: 28000, success: 67 0.067
Current episode: 29000, success: 0 0.0
Current episode: 30000, success: 39 0.039
Current episode: 31000, success: 204 0.204
Current episode: 32000, success: 429 0.429
Current episode: 33000, success: 345 0.345
Current episode: 34000, success: 970 0.97
Current episode: 35000, success: 583 0.583
Current episode: 36000, success: 752 0.752
Current episode: 37000, success: 955 0.955
Current episode: 38000, success: 997 0.997
Current episode: 39000, success: 1000 1.0
Current episode: 40000, success: 1000 1.0
Current episode: 41000, success: 1000 1.0
Current episode: 42000, success: 1000 1.0
Current episode: 43000, success: 1000 1.0
Current episode: 44000, success: 1000 1.0
Current episode: 45000, success: 1000 1.0
Current episode: 46000, success: 1000 1.0
Current episode: 47000, success: 1000 1.0
Current episode: 48000, success: 1000 1.0
Current episode: 49000, success: 1000 1.0
Current episode: 50000, success: 1000 1.0
True
###Markdown
As you can see, the number of successful episodes generally increases as training progresses. It is not advisable to stop the first time we observe 100% success over 1,000 episodes. There is a randomness to most games, so it is not likely that an agent would retain its 100% success rate with a new run. It might be safe to stop training once you observe that the agent has gotten 100% for several update intervals. Running and Observing the AgentNow that the algorithm has trained the agent, we can observe the agent in action. You can use the following code to see the agent in action.
###Code
# HIDE OUTPUT
run_game(q_table, True, False)
show_video()
###Output
_____no_output_____
###Markdown
Inspecting the Q-TableWe can also display the Q-table. The following code shows the agent's action for each environment state. As the weights of a neural network, this table is not straightforward to interpret. Some patterns do emerge in that direction, as seen by calculating the means of rows and columns. The actions seem consistent at both velocity and position's upper and lower halves.
###Code
import pandas as pd
df = pd.DataFrame(q_table.argmax(axis=2))
df.columns = [f'v-{x}' for x in range(DISCRETE_GRID_SIZE[0])]
df.index = [f'p-{x}' for x in range(DISCRETE_GRID_SIZE[1])]
df
df.mean(axis=0)
df.mean(axis=1)
###Output
_____no_output_____ |
Day1/.ipynb_checkpoints/Python-ABC-checkpoint.ipynb | ###Markdown
Hands-On Lab My Dear Student! **Let me tell you the best way to learn python is, practice!**Let's do this small hands-on exercise together with me to understand Python essentials All the best! The fate of the mission is in your hands now. Why you will learn in this hands-on exercise?Python's power. You will learn how the cocepts of Python, you will be applying the following concepts:- variable - rules for gud coding style- Data types(number, string, boolean, float) - Most used complex types: - list - Access Element - Looping - List comprehension - Adding item - Removing item - dictionary - Access Element - Looping - dic comprehension - Adding item - Removing item - touple - Conditional statements - if - elif - else- loop - for - while- Functions - inbuilt - user defined
###Code
#Declare a Variable
#Assign value to a variable
#Talk about dynamic types
#print
#talk about number, string, float
#string operations
#loop
#declre a list
#list operations
#declare a dictionary
#dictionay operation
#declare a touple
#touple operations
#moving back a pice of code to a function and calling it
###Output
_____no_output_____
###Markdown
Task 1**A college is maintaining operations of a college (IET-North Engineering College) through a software. This software captures and maintain college_name, year_of_establishment, address, courses and degrees, pincode.With respect to area pincode college has different facilities to engage the students** Instructions:* write down the variables the software program will use * Initialize the variables with required set of data * print the college name and year of establishment
###Code
#Sometimes there are multiple ways of viewing problem statements
#Sometimes it is importnat to understand the futuristic changes
###Output
_____no_output_____
###Markdown
Task 2**College management has decided to crate a new holdings to show all courses offered by college. So, for this let's print all courses offered by college**
###Code
#Sometimes we need to club different items in one
#Sometimes we need to find Index Of a item
#sometimes we need to check the type of item
#Sometimes we need to put logical conditions to make sure we are dealing with right item
###Output
_____no_output_____
###Markdown
Task 3**Add a new recently added facility `digital library` to area with pin code 201302**
###Code
#Can a List Item be accessed using index?
#Can a List Item be accessed using value?
###Output
_____no_output_____
###Markdown
Task 4**One of the degree course is closed by college in year 2020-21 in all colleges. Remove that degree from list of degree courses.** **Add one degree course which is newly introduced**
###Code
#What probing you may do while solving this task
#Which Degree is added?
#Which Degree is removed?
#Will this change for all colleges or for a specific area?
###Output
_____no_output_____
###Markdown
Task 5**One interesting thing about college is, for security reasons, there are 3 gates in college with even pin codes but the name of each gate is the square the number from 1 to 3** Instructions:* explanation: the names of Gate(1,2,3) are Gate1, Gate4, Gate9 repectively* print all Gates name
###Code
#What probing you may do while solving this task?
#Can there be more than one colleges in future with even Pin Code?
#Can there be more than 3 gates in a college?
###Output
_____no_output_____
###Markdown
Task 6**Check if the name of the College is less than 10 characters or equal, take first word as college name for any print media**
###Code
#What probing you may do while solving this task
#Can First World of college be more than 10 characters, what should be done in that case?
#What does print media means?
#What if Name is B.G.Reddy Campus Of Engineering?
###Output
_____no_output_____ |
vision/vision_multiplexing.ipynb | ###Markdown
Convolutional Models of Multiplexing
###Code
import torch
import torch.nn as nn
import torch.optim as optim
from torch.nn import functional
import torchvision
import numpy as np
import matplotlib.pyplot as plt
import time
from IPython import display
# grayscale and inline plotting
%matplotlib inline
plt.rcParams['image.cmap'] = 'gray'
###Output
_____no_output_____
###Markdown
Visualization
###Code
def plot_image(image):
nr, nc = image.shape
extent = [-0.5, nc - 0.5, nr - 0.5, -0.5]
plt.imshow(image, extent=extent, origin='upper', interpolation='nearest')
def visualize(t, loss, errcl, out, x0):
loss_avg = np.divide(
np.cumsum(loss[: t + 1]),
range(1, t + 2)
)
errcl_avg = np.divide(
np.cumsum(errcl[: t + 1]),
range(1, t + 2)
)
n_last_batches = np.min([20, t])
k = np.ones(n_last_batches * 2 + 1) / (n_last_batches + 1)
k[:n_last_batches] = 0
errcl_sm = np.convolve(np.pad(errcl, mode="edge", pad_width=n_last_batches), k, mode="valid")
errcl_sm = errcl_sm[: len(errcl_avg)]
loss_sm = np.convolve(np.pad(loss, mode="edge", pad_width=n_last_batches), k, mode="valid")
loss_sm = loss_sm[: len(loss)]
display.clear_output(wait=True)
plt.subplot(1, 4, 1)
plt.plot(loss, label="loss")
plt.plot(loss_sm, label="smothed loss")
plt.plot(loss_avg, label="avg loss")
plt.legend()
plt.ylim(0, np.max(loss)*1.05)
plt.title("loss: avg - %.4f,\nsmoothed - %.4f,\ncurrent - %.4f" % (loss_avg[t], loss_sm[t], loss[t]))
plt.subplot(1, 4, 2)
plt.plot(errcl, label="cl err")
plt.plot(errcl_sm, label="smothed cl err")
plt.plot(errcl_avg, label="avg cl err")
plt.legend()
plt.ylim(0, np.max(errcl)*1.05)
plt.title("cl error: avg - %.4f,\nsmoothed - %.4f,\ncurrent - %.4f" % (errcl_avg[t], errcl_sm[t], errcl[t]))
plt.subplot(1, 4, 3)
plot_image(x0)
plt.title("input image")
plt.subplot(1, 4, 4)
plt.bar(range(len(out)), out)
plt.title("class confidences")
plt.subplots_adjust(wspace=1.5)
plt.subplots_adjust(hspace=1.5)
plt.gcf().set_size_inches(24.5, 5.5)
display.display(plt.gcf())
###Output
_____no_output_____
###Markdown
Data Preparation
###Code
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
mnist = torchvision.datasets.MNIST(root='data', train=True, download=True) # train data only
trainimages = mnist.data
trainlabels = mnist.targets
mnist = torchvision.datasets.MNIST(root='data', train=False, download=True) # test data only
testimages = mnist.data
testlabels = mnist.targets
# check training data shape
print("Training Data shape is: ", list(trainimages.size()))
print("Training Target shape is: ", list(trainlabels.size()))
print("Training Data shape is: ", list(testimages.size()))
print("Training Target shape is: ", list(testlabels.size()))
tempimg = np.zeros((20,20))
# crop images into 20 x 20
trainimages = trainimages[:, 4:-4, 4:-4]
testimages = testimages[:, 4:-4, 4:-4]
tempimg[5:10,0:5] = trainimages[0][0::4,0::4]
plt.imshow(tempimg)
plt.imshow(trainimages[0])
%%time
def auto_cov(X):
X = X / 255.0
X = (X.T - X.mean(1)).T
return X.T.dot(X)/X.shape[0]
Cov = auto_cov(trainimages.contiguous().view(trainimages.size(0), -1).numpy())
eigvals, eigvecs = np.linalg.eig(Cov)
plt.plot(np.arange(len(eigvals)), eigvals)
plt.ylabel("eigenvalues")
plt.show()
print("{:.2f}% variance explained by top 50 PCs".format(100*eigvals[:50].sum()/eigvals.sum()))
print("{:.2f}% variance explained by top 80 PCs".format(100*eigvals[:80].sum()/eigvals.sum()))
###Output
86.54% variance explained by top 50 PCs
92.08% variance explained by top 80 PCs
###Markdown
Single Instance Architecture
###Code
class LeNet(nn.Module):
# definition of each neural network layer
def __init__(self):
super(LeNet, self).__init__()
self.C1 = nn.Conv2d(1, 6, kernel_size=(3, 3))
self.S2 = nn.MaxPool2d(kernel_size=(2, 2), stride=2)
self.C3 = nn.Conv2d(6, 16, kernel_size=(4, 4))
self.S4 = nn.MaxPool2d(kernel_size=(2, 2), stride=2)
self.C5 = nn.Conv2d(16, 120, kernel_size=(3, 3))
self.F6 = nn.Linear(120, 84)
self.OL = nn.Linear(84, 10)
# definition of the forward pass
def forward(self, x):
x = torch.tanh(self.C1(x))
x = self.S2(x)
x = torch.tanh(self.C3(x))
x = self.S4(x)
x = torch.tanh(self.C5(x))
x = x.view(x.size(0), -1)
x = torch.tanh(self.F6(x))
x = torch.tanh(self.OL(x))
return x
###Output
_____no_output_____
###Markdown
Training
###Code
# %%time
ntrain = trainimages.shape[0]; # number of training examples
nepoch = 10; # number of epochs through training set
disp_freq = 200 # display frequency
batchsize = 32 # minibatch size
errs = []
losses = []
cnn = LeNet().to(device)
# use SGD optimizer, set learning rate parameter as 0.1
optimizer = optim.SGD(cnn.parameters(), lr=0.1)
t_start = time.time()
for iepoch in range(nepoch):
for t in range(int(ntrain / batchsize)):
batchindices = np.random.choice(ntrain, batchsize, replace=False)
trainlabels_iter = trainlabels[batchindices]
# label 1 for the correct digit and -1 for the incorrect digits
y = torch.ones(10, batchsize) * (-1)
y[trainlabels_iter, torch.arange(batchsize, dtype=torch.int64)] = 1
# normalize input images
imgs = trainimages[batchindices].float() / 255.
optimizer.zero_grad()
out = cnn(imgs.view(len(batchindices), 1, 20, 20).to(device))
loss = torch.mean(0.5*(y.to(device) - out.t())**2)
loss.backward()
optimizer.step()
# calculate error rate and loss for plot
pred = torch.argmax(out, dim=1)
err = torch.mean((pred != trainlabels_iter.to(device)).float())
errs.append(err.detach().cpu().numpy())
losses.append(loss.detach().cpu().numpy())
# plots
if (t + 1) % disp_freq == 0:
plt.gcf().clear()
visualize(len(errs) - 1, losses, errs, out[0,:].detach().cpu(), imgs[0].detach().cpu())
print(str(time.time() - t_start) + " seconds per " + str(disp_freq) + " iterations")
t_start = time.time()
time.sleep(0.01)
%%time
ntest = testimages.shape[0]
imgs = testimages.float() / 255.
out = cnn(imgs.view(ntest, 1, 20, 20).to(device))
pred = torch.argmax(out, dim=1)
err = torch.mean((pred != testlabels.to(device)).float())
print("Test Acc {:.2f}%".format(100 * (1-err)))
###Output
Test Acc 97.61%
CPU times: user 39.5 ms, sys: 19.3 ms, total: 58.8 ms
Wall time: 108 ms
###Markdown
Multiple Instance Architecture
###Code
from scipy.stats import ortho_group, special_ortho_group
from scipy import ndimage
class MuxLeNet(nn.Module):
# definition of each neural network layer
def __init__(self, K, mod='Gaussian'):
super(MuxLeNet, self).__init__()
self.K = K
self.C1 = nn.Conv2d(1, 10, kernel_size=(3, 3))
self.S2 = nn.MaxPool2d(kernel_size=(2, 2), stride=2)
self.C3 = nn.Conv2d(10, 16, kernel_size=(4, 4))
self.S4 = nn.MaxPool2d(kernel_size=(2, 2), stride=2)
self.C5 = nn.Conv2d(16, 120, kernel_size=(3, 3))
self.F6 = nn.Linear(120, 84)
self.DCs = nn.ModuleList([nn.Linear(84, 84) for _ in range(self.K)])
self.OL = nn.Linear(84, 10)
self.mod = mod
if mod == 'Gaussian':
self.rop = [torch.randn([1,1,3,3], requires_grad=False).to(device) for _ in range(K)]
elif mod == 'graded':
# identity projections, fixed
self.rop = [(g+1) * torch.ones([1,1,3,3], requires_grad=False).to(device) for g in range(K)]
elif mod == 'identity':
# identity projections, fixed
self.rop = [torch.ones([1,1,3,3], requires_grad=False).to(device) for _ in range(K)]
elif mod == 'learnable':
self.register_parameter(name='rop', param=torch.nn.Parameter(torch.randn([K,1,1,3,3])))
elif mod == 'SO(N)':
self.rop = [torch.Tensor(special_ortho_group.rvs(dim=400)).to(device) for _ in range(self.K)]
elif mod == 'learnable-W':
self.register_parameter(name='rop', param=torch.nn.Parameter(torch.randn([K,400,400])))
elif mod == 'nonlinear':
self.register_parameter(name='rop', param=torch.nn.Parameter(torch.randn([K,16,1,3,3])))
self.register_parameter(name='rop2', param=torch.nn.Parameter(torch.randn([K,1,16,3,3])))
elif mod == 'nonlinear-expand':
# self.expand_factor = 4
self.expand_factor = 8
self.register_parameter(name='rop', param=torch.nn.Parameter(torch.randn([K,16,1,3,3])))
self.register_parameter(name='rop2', param=torch.nn.Parameter(
torch.randn([K,self.expand_factor,16,3,3])))
self.C1 = nn.Conv2d(self.expand_factor, 10, kernel_size=(3, 3))
elif mod == 'rotation':
self.rop = [360 / K * i for i in range(K)]
elif mod == 'remap':
self.rop = [i for i in range(K)]
def proj(self, imgs):
comp_imgs = torch.zeros(imgs.shape[1], imgs.shape[2],
imgs.shape[3], imgs.shape[4]).to(device)
if self.mod == 'rotation':
for i, r in enumerate(self.rop):
comp_imgs += torch.from_numpy((1-2*i) * ndimage.rotate(imgs[i].cpu().numpy(), angle=r,
axes=(2,3), reshape=False)).to(device)
elif self.mod == 'remap':
for i, r in enumerate(self.rop):
row = r % 4
col = r // 4
comp_imgs[:, 5*row:5*(row+1), 5*col:5*(col+1)] += imgs[i][:,::4,::4]
elif self.mod in ['SO(N)', 'learnable-W']:
for i, r in enumerate(self.rop):
comp_imgs += imgs[i].view(-1, 400).mm(r).view(imgs.shape[1], -1, 20, 20)
elif self.mod == 'nonlinear':
for i, r in enumerate(self.rop):
tmp_imgs = nn.functional.conv2d(imgs[i], weight=r, padding=1)
tmp_imgs = torch.tanh(tmp_imgs)
tmp_imgs = nn.functional.conv2d(tmp_imgs, weight=self.rop2[i], padding=1)
comp_imgs += torch.tanh(tmp_imgs)
elif self.mod == 'nonlinear-expand':
comp_imgs = torch.zeros(imgs.shape[1], self.expand_factor * imgs.shape[2],
imgs.shape[3], imgs.shape[4]).to(device)
for i, r in enumerate(self.rop):
tmp_imgs = nn.functional.conv2d(imgs[i], weight=r, padding=1)
tmp_imgs = torch.tanh(tmp_imgs)
tmp_imgs = nn.functional.conv2d(tmp_imgs, weight=self.rop2[i], padding=1)
comp_imgs += torch.tanh(tmp_imgs)
else:
for i, r in enumerate(self.rop):
comp_imgs += nn.functional.conv2d(imgs[i], weight=r, padding=1)
return comp_imgs
# definition of the forward pass
def forward(self, x):
x = torch.tanh(self.C1(x))
x = self.S2(x)
x = torch.tanh(self.C3(x))
x = self.S4(x)
x = torch.tanh(self.C5(x))
x = x.view(x.size(0), -1)
x = torch.tanh(self.F6(x))
out = [torch.tanh(self.OL(torch.tanh(dc(x)))) for dc in self.DCs]
return out
for i, (r, r2) in enumerate(zip([1,2], [3,4])):
print(r, r2)
###Output
1 3
2 4
###Markdown
Sanity Check, K = 1
###Code
# %%time
ntrain = trainimages.shape[0]; # number of training examples
nepoch = 12 # number of epochs through training set
disp_freq = 200 # display frequency
batchsize = 32 # minibatch size
K = 1 # multiplex
errs = []
losses = []
muxcnn = MuxLeNet(K, 'rotation').to(device)
# use SGD optimizer, set learning rate parameter as 0.1
optimizer = optim.SGD(muxcnn.parameters(), lr=0.1)
t_start = time.time()
for iepoch in range(nepoch):
for t in range(int(ntrain / batchsize)):
batchindices = np.random.choice(ntrain, batchsize * K, replace=False)
trainlabels_iter = trainlabels[batchindices]
trainlabels_iter_sep = trainlabels_iter.view(K, batchsize)
# label 1 for the correct digit and -1 for the incorrect digits
ys = torch.ones(10, batchsize * K) * (-1)
ys[trainlabels_iter, torch.arange(batchsize * K, dtype=torch.int64)] = 1
ys = ys.view(-1, K, batchsize)
# normalize input images
imgs = trainimages[batchindices].float() / 255.
comp_imgs = muxcnn.proj(imgs.view(K, batchsize, 1, 20, 20).to(device))
optimizer.zero_grad()
outs = muxcnn(comp_imgs)
loss = 0
for i, out in enumerate(outs):
loss += torch.mean(0.5*(ys[:,i,:].to(device) - out.t())**2)
loss.backward()
optimizer.step()
# calculate error rate and loss for plot
for i, out in enumerate(outs):
pred = torch.argmax(out, dim=1)
err = torch.mean((pred != trainlabels_iter_sep[i].to(device)).float())
errs.append(err.detach().cpu().numpy())
losses.append(loss.detach().cpu().numpy())
# plots
if (t + 1) % disp_freq == 0:
plt.gcf().clear()
visualize(len(errs) - 1, losses, errs, out[0,:].detach().cpu(), imgs.view(K, batchsize, 20, 20)[i, 0].detach().cpu())
print(str(time.time() - t_start) + " seconds per " + str(disp_freq) + " iterations")
t_start = time.time()
time.sleep(0.01)
%%time
ntest = testimages.shape[0]
imgs = testimages.float() / 255.
comp_imgs = muxcnn.proj(imgs.view(K, ntest//K, 1, 20, 20).to(device))
outs = muxcnn(comp_imgs)
for i, out in enumerate(outs):
pred = torch.argmax(out, dim=1)
err = torch.mean((pred != testlabels.view(K, ntest//K)[i].to(device)).float())
print("Test Acc {:.2f}%".format(100 * (1-err)))
###Output
Test Acc 97.95%
CPU times: user 1.11 s, sys: 19 ms, total: 1.13 s
Wall time: 1.13 s
###Markdown
Sanity Check, K=2
###Code
# %%time
ntrain = trainimages.shape[0]; # number of training examples
nepoch = 15; # number of epochs through training set
disp_freq = 200 # display frequency
batchsize = 32 # minibatch size
K = 2 # multiplex
errs = {i:[] for i in range(K)}
losses = []
muxcnn = MuxLeNet(K, 'nonlinear').to(device)
# use SGD optimizer, set learning rate parameter as 0.1
optimizer = optim.SGD(muxcnn.parameters(), lr=0.1)
t_start = time.time()
for iepoch in range(nepoch):
for t in range(int(ntrain / batchsize)):
batchindices = np.random.choice(ntrain, batchsize * K, replace=False)
trainlabels_iter = trainlabels[batchindices]
trainlabels_iter_sep = trainlabels_iter.view(K, batchsize)
# label 1 for the correct digit and -1 for the incorrect digits
ys = torch.ones(10, batchsize * K) * (-1)
ys[trainlabels_iter, torch.arange(batchsize * K, dtype=torch.int64)] = 1
ys = ys.view(-1, K, batchsize).to(device)
# normalize input images
imgs = trainimages[batchindices].float() / 255.
comp_imgs = muxcnn.proj(imgs.view(K, batchsize, 1, 20, 20).to(device))
optimizer.zero_grad()
outs = muxcnn(comp_imgs)
loss = 0
for i, out in enumerate(outs):
loss += torch.mean(0.5*(ys[:,i,:].t() - out)**2)
loss.backward()
optimizer.step()
# calculate error rate and loss for plot
for i, out in enumerate(outs):
pred = torch.argmax(out, dim=1)
err = torch.mean((pred != trainlabels_iter_sep[i].to(device)).float())
errs[i].append(err.detach().cpu().numpy())
if i == 0:
losses.append(loss.detach().cpu().numpy())
# plots
if (t + 1) % disp_freq == 0:
plt.gcf().clear()
visualize(len(errs[i]) - 1, losses, errs[i], out[0,:].detach().cpu(), imgs.view(K, batchsize, 20, 20)[i, 0].detach().cpu())
print(torch.argmax(ys[:, i, 0]))
print(str(time.time() - t_start) + " seconds per " + str(disp_freq) + " iterations")
t_start = time.time()
time.sleep(0.01)
%%time
ntest = testimages.shape[0]
imgs = testimages.float() / 255.
comp_imgs = muxcnn.proj(imgs.view(K, ntest//K, 1, 20, 20).to(device))
outs = muxcnn(comp_imgs)
for i, out in enumerate(outs):
pred = torch.argmax(out, dim=1)
err = torch.mean((pred != testlabels.view(K, ntest//K)[i].to(device)).float())
print("Test Acc {:.2f}%".format(100 * (1-err)))
###Output
Test Acc 91.58%
Test Acc 95.56%
CPU times: user 124 ms, sys: 11.1 ms, total: 135 ms
Wall time: 137 ms
###Markdown
Number of Images vs Testing Accuracy
###Code
%%time
ntrain = trainimages.shape[0]; # number of training examples
nepoch = 15; # number of epochs through training set
batchsize = 32 # minibatch size
Ks = [1,2,4,8,16] # multiplex
muxcnns = [MuxLeNet(K, 'nonlinear-expand').to(device) for K in Ks]
for mi, K in enumerate(Ks):
print("training a model with {} inputs".format(K))
optimizer = optim.SGD(muxcnns[mi].parameters(), lr=0.1)
t_start = time.time()
for iepoch in range(nepoch):
for t in range(int(ntrain / batchsize)):
batchindices = np.random.choice(ntrain, batchsize * K, replace=False)
trainlabels_iter = trainlabels[batchindices]
trainlabels_iter_sep = trainlabels_iter.view(K, batchsize)
# label 1 for the correct digit and -1 for the incorrect digits
ys = torch.ones(10, batchsize * K) * (-1)
ys[trainlabels_iter, torch.arange(batchsize * K, dtype=torch.int64)] = 1
ys = ys.view(-1, K, batchsize).to(device)
# normalize input images
imgs = trainimages[batchindices].float() / 255.
comp_imgs = muxcnns[mi].proj(imgs.view(K, batchsize, 1, 20, 20).to(device))
optimizer.zero_grad()
outs = muxcnns[mi](comp_imgs)
loss = 0
for i, out in enumerate(outs):
loss += torch.mean(0.5*(ys[:,i,:].t() - out)**2)
loss.backward()
optimizer.step()
%%time
ntest = testimages.shape[0]
## from learnable
mean_test_acc = []
for mi, K in enumerate(Ks):
imgs = testimages.float() / 255.
comp_imgs = muxcnns[mi].proj(imgs.view(K, ntest//K, 1, 20, 20).to(device))
outs = muxcnns[mi](comp_imgs)
print("----K={}----".format(K))
errs = []
for i, out in enumerate(outs):
pred = torch.argmax(out, dim=1)
err = torch.mean((pred != testlabels.view(K, ntest//K)[i].to(device)).float())
errs.append(err.cpu().numpy())
print("Test Acc {:.2f}%".format(100 * (1-err)))
mean_test_acc.append(1-np.mean(errs))
nl_exp8_mean_test_acc = mean_test_acc
plt.plot(Ks, nl_exp8_mean_test_acc, 'o-')
plt.xlabel('number of inputs')
plt.ylabel('accuracy')
plt.show()
###Output
_____no_output_____ |
cvnd/CVND_Exercises/1_1_Image_Representation/6_4. Classification.ipynb | ###Markdown
Day and Night Image Classifier---The day/night image dataset consists of 200 RGB color images in two categories: day and night. There are equal numbers of each example: 100 day images and 100 night images.We'd like to build a classifier that can accurately label these images as day or night, and that relies on finding distinguishing features between the two types of images!*Note: All images come from the [AMOS dataset](http://cs.uky.edu/~jacobs/datasets/amos/) (Archive of Many Outdoor Scenes).* Import resourcesBefore you get started on the project code, import the libraries and resources that you'll need.
###Code
import cv2 # computer vision library
import helpers
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
%matplotlib inline
###Output
_____no_output_____
###Markdown
Training and Testing DataThe 200 day/night images are separated into training and testing datasets. * 60% of these images are training images, for you to use as you create a classifier.* 40% are test images, which will be used to test the accuracy of your classifier.First, we set some variables to keep track of some where our images are stored: image_dir_training: the directory where our training image data is stored image_dir_test: the directory where our test image data is stored
###Code
# Image data directories
image_dir_training = "day_night_images/training/"
image_dir_test = "day_night_images/test/"
###Output
_____no_output_____
###Markdown
Load the datasetsThese first few lines of code will load the training day/night images and store all of them in a variable, `IMAGE_LIST`. This list contains the images and their associated label ("day" or "night"). For example, the first image-label pair in `IMAGE_LIST` can be accessed by index: ``` IMAGE_LIST[0][:]```.
###Code
# Using the load_dataset function in helpers.py
# Load training data
IMAGE_LIST = helpers.load_dataset(image_dir_training)
###Output
_____no_output_____
###Markdown
Construct a `STANDARDIZED_LIST` of input images and output labels.This function takes in a list of image-label pairs and outputs a **standardized** list of resized images and numerical labels.
###Code
# Standardize all training images
STANDARDIZED_LIST = helpers.standardize(IMAGE_LIST)
###Output
_____no_output_____
###Markdown
Visualize the standardized dataDisplay a standardized image from STANDARDIZED_LIST.
###Code
# Display a standardized image and its label
# Select an image by index
image_num = 0
selected_image = STANDARDIZED_LIST[image_num][0]
selected_label = STANDARDIZED_LIST[image_num][1]
# Display image and data about it
plt.imshow(selected_image)
print("Shape: "+str(selected_image.shape))
print("Label [1 = day, 0 = night]: " + str(selected_label))
###Output
Shape: (600, 1100, 3)
Label [1 = day, 0 = night]: 1
###Markdown
Feature ExtractionCreate a feature that represents the brightness in an image. We'll be extracting the **average brightness** using HSV colorspace. Specifically, we'll use the V channel (a measure of brightness), add up the pixel values in the V channel, then divide that sum by the area of the image to get the average Value of the image. --- Find the average brightness using the V channelThis function takes in a **standardized** RGB image and returns a feature (a single value) that represent the average level of brightness in the image. We'll use this value to classify the image as day or night.
###Code
# Find the average Value or brightness of an image
def avg_brightness(rgb_image):
# Convert image to HSV
hsv = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2HSV)
# Add up all the pixel values in the V channel
sum_brightness = np.sum(hsv[:,:,2])
area = 600*1100.0 # pixels
# find the avg
avg = sum_brightness/area
return avg
# Testing average brightness levels
# Look at a number of different day and night images and think about
# what average brightness value separates the two types of images
# As an example, a "night" image is loaded in and its avg brightness is displayed
image_num = 190
test_im_night = STANDARDIZED_LIST[image_num][0]
avg = avg_brightness(test_im_night)
print('Night - Avg brightness: ' + str(avg))
image_num = 10
test_im_day = STANDARDIZED_LIST[image_num][0]
avg = avg_brightness(test_im_day)
print('Day - Avg brightness: ' + str(avg))
f, (ax1, ax2) = plt.subplots(1, 2, figsize=(20,10))
ax1.imshow(test_im_night)
ax2.imshow(test_im_day)
###Output
Night - Avg brightness: 24.52624393939394
Day - Avg brightness: 157.08083484848484
###Markdown
Classification and Visualizing ErrorIn this section, we'll turn our average brightness feature into a classifier that takes in a standardized image and returns a `predicted_label` for that image. This `estimate_label` function should return a value: 0 or 1 (night or day, respectively). --- TODO: Build a complete classifier Set a threshold that you think will separate the day and night images by average brightness.
###Code
# This function should take in RGB image input
def estimate_label(rgb_image, threshold = 100):
## TODO: extract average brightness feature from an RGB image
# Use the avg brightness feature to predict a label (0, 1)
predicted_label = 0
## TODO: set the value of a threshold that will separate day and night images
## TODO: Return the predicted_label (0 or 1) based on whether the avg is
# above or below the threshold
if avg_brightness(rgb_image) > threshold:
predicted_label = 1 # day
return predicted_label
## Test out your code by calling the above function and seeing
# how some of your training data is classified
incorrect = []
for img_num in range(len(STANDARDIZED_LIST)):
test_img = STANDARDIZED_LIST[image_num][0]
true_label = STANDARDIZED_LIST[image_num][1]
if true_label != estimate_label(test_img, 130):
incorrect.append([img_num, true_label])
print(len(STANDARDIZED_LIST))
print(len(incorrect))
###Output
240
0
|
SegmentingandClusteringPart2.ipynb | ###Markdown
Peer-graded Assignment: Segmenting and Clustering Neighborhoods in Toronto Part 2
###Code
import pandas as pd
###Output
_____no_output_____
###Markdown
Get the dataframe from first task
###Code
# read data from html
url = 'https://en.wikipedia.org/wiki/List_of_postal_codes_of_Canada:_M'
read_table = pd.read_html(url,header=[0])
df1 = read_table[0]
# rename columns' name
df1 = df1.rename(index=str, columns={'Postcode':'PostalCode','Neighbourhood':'Neighborhood'})
# Ignore cells with a borough that is Not assigned
df1 = df1[df1.Borough !='Not assigned']
df1.reset_index(drop=True,inplace=True)
# groupby
df1 = df1.groupby('PostalCode',as_index=False).agg(lambda x: ','.join(set(x.dropna())))
# If a cell has a borough but a Not assigned neighborhood,
#then the neighborhood will be the same as the borough
df1.loc[df1['Neighborhood'] == 'Not assigned','Neighborhood'] = df1['Borough']
df1.head()
###Output
_____no_output_____
###Markdown
Read csv file with geographical coordinates
###Code
df2 = pd.read_csv('http://cocl.us/Geospatial_data')
df2.head()
###Output
_____no_output_____
###Markdown
Rename column name
###Code
df2.columns = ['PostalCode','Latitude','Longitude']
df2.head()
###Output
_____no_output_____
###Markdown
Checking the shape of two dataframes
###Code
print(df1.shape[0])
print(df2.shape[0])
###Output
103
103
###Markdown
Merge two dataframes
###Code
df_merge = pd.merge(left=df1,right=df2,on='PostalCode')
df_merge.head(15)
###Output
_____no_output_____ |
examples/input_tranformer/spam-classification.ipynb | ###Markdown
Spam Classification Model (Sklearn) - Wrap a ML model for use as a prediction microservice in seldon-core- Run locally on Docker to test- Deploy on seldon-core running on k8s cluster Train Locally
###Code
import numpy as np
import pandas as pd
from sklearn.externals import joblib
from pathlib import Path
import string
from nltk.stem import SnowballStemmer
from nltk.corpus import stopwords
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
import pickle
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
model_path: Path=Path('./')
data = pd.read_csv("spam.csv",encoding='latin-1')
data = data.drop(["Unnamed: 2", "Unnamed: 3", "Unnamed: 4"], axis=1)
data = data.rename(columns={"v1":"class", "v2":"text"})
data.head()
def pre_process(text):
text = text.translate(str.maketrans('', '', string.punctuation))
text = [word for word in text.split() if word.lower() not in stopwords.words('english')]
words = ""
for i in text:
stemmer = SnowballStemmer("english")
words += (stemmer.stem(i))+" "
return words
features = data['text'].copy()
features = features.apply(pre_process)
vectorizer = TfidfVectorizer("english")
_features = vectorizer.fit_transform(features)
with open('Spam-Classifier/model/vectorizer.pkl', 'wb') as vect:
pickle.dump(vectorizer, vect)
vectorizer = joblib.load(model_path.joinpath('Spam-Classifier/model/vectorizer.pkl'))
train_x, test_x, train_y, test_y = train_test_split(_features, data['class'], test_size=0.3, random_state=0)
svc = SVC(kernel='sigmoid', gamma=1.0, probability=True)
svc.fit(train_x,train_y)
# save the model to disk
filename = 'Spam-Classifier/model/model.pkl'
pickle.dump(svc, open(filename, 'wb'))
clf = joblib.load(model_path.joinpath(filename))
prediction = clf.predict(test_x)
accuracy_score(test_y,prediction)
message = np.array(['click here to win the price'])
data = vectorizer.transform(message).todense()
probas = clf.predict_proba(data)
probas
clf.classes_
###Output
_____no_output_____
###Markdown
wrap each model component using s2i
###Code
!s2i build Spam-Classifier/ seldonio/seldon-core-s2i-python3:1.2.2-dev spam-classifier:1.0.0.1
!docker run --name "spam-classifier" -d --rm -p 5000:5000 spam-classifier:1.0.0.1
!curl -g http://localhost:5000/predict --data-urlencode 'json={"data": {"names": ["message"], "ndarray": ["click here to win the price"]}}'
!docker rm spam-classifier --force
!s2i build Translator/ seldonio/seldon-core-s2i-python3:1.2.2-dev translator:1.0.0.1
!docker run --name "eng-translator" -d --rm -p 5000:5000 translator:1.0.0.1
!curl -g http://localhost:5000/transform-input --data-urlencode 'json={"data": {"names": ["message"], "ndarray": ["Wie läuft dein Tag"]}}'
!docker rm eng-translator --force
###Output
eng-translator
###Markdown
Spam Classification Model (Sklearn) - Wrap a ML model for use as a prediction microservice in seldon-core- Run locally on Docker to test- Deploy on seldon-core running on k8s cluster Train Locally
###Code
import numpy as np
import pandas as pd
from sklearn.externals import joblib
from pathlib import Path
import string
from nltk.stem import SnowballStemmer
from nltk.corpus import stopwords
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
import pickle
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
model_path: Path=Path('./')
data = pd.read_csv("spam.csv",encoding='latin-1')
data = data.drop(["Unnamed: 2", "Unnamed: 3", "Unnamed: 4"], axis=1)
data = data.rename(columns={"v1":"class", "v2":"text"})
data.head()
def pre_process(text):
text = text.translate(str.maketrans('', '', string.punctuation))
text = [word for word in text.split() if word.lower() not in stopwords.words('english')]
words = ""
for i in text:
stemmer = SnowballStemmer("english")
words += (stemmer.stem(i))+" "
return words
features = data['text'].copy()
features = features.apply(pre_process)
vectorizer = TfidfVectorizer("english")
_features = vectorizer.fit_transform(features)
with open('Spam-Classifier/model/vectorizer.pkl', 'wb') as vect:
pickle.dump(vectorizer, vect)
vectorizer = joblib.load(model_path.joinpath('Spam-Classifier/model/vectorizer.pkl'))
train_x, test_x, train_y, test_y = train_test_split(_features, data['class'], test_size=0.3, random_state=0)
svc = SVC(kernel='sigmoid', gamma=1.0, probability=True)
svc.fit(train_x,train_y)
# save the model to disk
filename = 'Spam-Classifier/model/model.pkl'
pickle.dump(svc, open(filename, 'wb'))
clf = joblib.load(model_path.joinpath(filename))
prediction = clf.predict(test_x)
accuracy_score(test_y,prediction)
message = np.array(['click here to win the price'])
data = vectorizer.transform(message).todense()
probas = clf.predict_proba(data)
probas
clf.classes_
###Output
_____no_output_____
###Markdown
wrap each model component using s2i
###Code
!s2i build Spam-Classifier/ seldonio/seldon-core-s2i-python3:0.7 spam-classifier:1.0.0.1
!docker run --name "spam-classifier" -d --rm -p 5000:5000 spam-classifier:1.0.0.1
!curl -g http://localhost:5000/predict --data-urlencode 'json={"data": {"names": ["message"], "ndarray": ["click here to win the price"]}}'
!docker rm spam-classifier --force
!s2i build Translator/ seldonio/seldon-core-s2i-python3:0.7 translator:1.0.0.1
!docker run --name "eng-translator" -d --rm -p 5000:5000 translator:1.0.0.1
!curl -g http://localhost:5000/transform-input --data-urlencode 'json={"data": {"names": ["message"], "ndarray": ["Wie läuft dein Tag"]}}'
!docker rm eng-translator --force
###Output
eng-translator
###Markdown
Spam Classification Model (Sklearn) - Wrap a ML model for use as a prediction microservice in seldon-core- Run locally on Docker to test- Deploy on seldon-core running on k8s cluster Train Locally
###Code
import numpy as np
import pandas as pd
from sklearn.externals import joblib
from pathlib import Path
import string
from nltk.stem import SnowballStemmer
from nltk.corpus import stopwords
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
import pickle
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
model_path: Path=Path('./')
data = pd.read_csv("spam.csv",encoding='latin-1')
data = data.drop(["Unnamed: 2", "Unnamed: 3", "Unnamed: 4"], axis=1)
data = data.rename(columns={"v1":"class", "v2":"text"})
data.head()
def pre_process(text):
text = text.translate(str.maketrans('', '', string.punctuation))
text = [word for word in text.split() if word.lower() not in stopwords.words('english')]
words = ""
for i in text:
stemmer = SnowballStemmer("english")
words += (stemmer.stem(i))+" "
return words
features = data['text'].copy()
features = features.apply(pre_process)
vectorizer = TfidfVectorizer("english")
_features = vectorizer.fit_transform(features)
with open('Spam-Classifier/model/vectorizer.pkl', 'wb') as vect:
pickle.dump(vectorizer, vect)
vectorizer = joblib.load(model_path.joinpath('Spam-Classifier/model/vectorizer.pkl'))
train_x, test_x, train_y, test_y = train_test_split(_features, data['class'], test_size=0.3, random_state=0)
svc = SVC(kernel='sigmoid', gamma=1.0, probability=True)
svc.fit(train_x,train_y)
# save the model to disk
filename = 'Spam-Classifier/model/model.pkl'
pickle.dump(svc, open(filename, 'wb'))
clf = joblib.load(model_path.joinpath(filename))
prediction = clf.predict(test_x)
accuracy_score(test_y,prediction)
message = np.array(['click here to win the price'])
data = vectorizer.transform(message).todense()
probas = clf.predict_proba(data)
probas
clf.classes_
###Output
_____no_output_____
###Markdown
wrap each model component using s2i
###Code
!s2i build Spam-Classifier/ seldonio/seldon-core-s2i-python3:1.1.1-rc spam-classifier:1.0.0.1
!docker run --name "spam-classifier" -d --rm -p 5000:5000 spam-classifier:1.0.0.1
!curl -g http://localhost:5000/predict --data-urlencode 'json={"data": {"names": ["message"], "ndarray": ["click here to win the price"]}}'
!docker rm spam-classifier --force
!s2i build Translator/ seldonio/seldon-core-s2i-python3:1.1.1-rc translator:1.0.0.1
!docker run --name "eng-translator" -d --rm -p 5000:5000 translator:1.0.0.1
!curl -g http://localhost:5000/transform-input --data-urlencode 'json={"data": {"names": ["message"], "ndarray": ["Wie läuft dein Tag"]}}'
!docker rm eng-translator --force
###Output
eng-translator
###Markdown
Spam Classification Model (Sklearn) - Wrap a ML model for use as a prediction microservice in seldon-core- Run locally on Docker to test- Deploy on seldon-core running on k8s cluster Train Locally
###Code
import numpy as np
import pandas as pd
from sklearn.externals import joblib
from pathlib import Path
import string
from nltk.stem import SnowballStemmer
from nltk.corpus import stopwords
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
import pickle
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
model_path: Path=Path('./')
data = pd.read_csv("spam.csv",encoding='latin-1')
data = data.drop(["Unnamed: 2", "Unnamed: 3", "Unnamed: 4"], axis=1)
data = data.rename(columns={"v1":"class", "v2":"text"})
data.head()
def pre_process(text):
text = text.translate(str.maketrans('', '', string.punctuation))
text = [word for word in text.split() if word.lower() not in stopwords.words('english')]
words = ""
for i in text:
stemmer = SnowballStemmer("english")
words += (stemmer.stem(i))+" "
return words
features = data['text'].copy()
features = features.apply(pre_process)
vectorizer = TfidfVectorizer("english")
_features = vectorizer.fit_transform(features)
with open('Spam-Classifier/model/vectorizer.pkl', 'wb') as vect:
pickle.dump(vectorizer, vect)
vectorizer = joblib.load(model_path.joinpath('Spam-Classifier/model/vectorizer.pkl'))
train_x, test_x, train_y, test_y = train_test_split(_features, data['class'], test_size=0.3, random_state=0)
svc = SVC(kernel='sigmoid', gamma=1.0, probability=True)
svc.fit(train_x,train_y)
# save the model to disk
filename = 'Spam-Classifier/model/model.pkl'
pickle.dump(svc, open(filename, 'wb'))
clf = joblib.load(model_path.joinpath(filename))
prediction = clf.predict(test_x)
accuracy_score(test_y,prediction)
message = np.array(['click here to win the price'])
data = vectorizer.transform(message).todense()
probas = clf.predict_proba(data)
probas
clf.classes_
###Output
_____no_output_____
###Markdown
wrap each model component using s2i
###Code
!s2i build Spam-Classifier/ seldonio/seldon-core-s2i-python3:1.2.1-dev spam-classifier:1.0.0.1
!docker run --name "spam-classifier" -d --rm -p 5000:5000 spam-classifier:1.0.0.1
!curl -g http://localhost:5000/predict --data-urlencode 'json={"data": {"names": ["message"], "ndarray": ["click here to win the price"]}}'
!docker rm spam-classifier --force
!s2i build Translator/ seldonio/seldon-core-s2i-python3:1.2.1-dev translator:1.0.0.1
!docker run --name "eng-translator" -d --rm -p 5000:5000 translator:1.0.0.1
!curl -g http://localhost:5000/transform-input --data-urlencode 'json={"data": {"names": ["message"], "ndarray": ["Wie läuft dein Tag"]}}'
!docker rm eng-translator --force
###Output
eng-translator
|
poldergemaal.ipynb | ###Markdown
Polder pumping station - machine learning tutorial Polder pumping stationBecause a polder closely resembles a bath tub, it will slowly fill with water because of rainfall if it's not emptied by a pump. This is done by a polder pumping station - or _poldergemaal_ in Dutch. This is a small building with a big pump that can remove water from the polder to canals that eventually transfer it to sea.If the polder is emptied too much, the land in the polder has too little water for nature and farmers. Therefore, an ideal water level is determined by the water board. The pumping station is managed in such way, that this level is followed as closely as possible, by turning the pumps on and off. This resembles the working of for example an oven or central heating in a house._This is what a polder pumping station looks like, although it comes in many shapes and sizes.__Schematic pumping station._In this tutorial, you will create a control system which tries to follow this ideal water level as closely as possible, while it's raining in the polder. This rain is generated randomly. The water level we're aiming at is 0.5 m. (Deep) Reinforcement learningWe'll be using a technique called deep reinforcement learning. Based on simulations, the method tries to decide what is the best action it can do. It uses so-called neural networks, which are originally based on the workings of human brains. These kinds of models have been used to create the best chess robots in the world and for the first time beat the best human in the game of Go. _A Neural Network_The model consists of a number of parts: - Environment: the world the agent interacts with- Agent: the model that alters the environment- State: the state the world (environment) is in at a moment- Reward: this is important; in order to learn to do what we want, the system should deliver rewards. These should be high when the model does what we want it to do, and low when it's doing things that we don't want it to do. RewardIn this tutorial, the first question you will try to solve, is the reward function. You will try to make a function that is high when the water level is around the level we want (so 0.5 m) and low when the water level is away from that number. In this example, we'll flip this and make a penalty: the further away from 0.5, the higher the penalty and the more negative the reward becomes. PythonThe programming is done in the programming called Python. This is a relatively easy programming language and is widely used by data scientist.We're using a so-called Notebook to run the Python code in the browser. Press the play button or press `shift`+`enter` to run a cell. You can basically run all cells after one another, but there's one cell which you'll have to alter before running. HintsThere is a number of hints near the first question. Run a cell with the hint to see the hint.Below is the first hint, but first run the cell below:
###Code
import requests
path_json = r"https://raw.githubusercontent.com/SGnoddeHHDelfland/PolderGemaalBesturing/main/hints.json"
response = requests.get(path_json)
hints = response.json()
def print_hints(number):
print(hints['hints'][number])
###Output
_____no_output_____
###Markdown
This will be your first hint, which we've basically already talked about.
###Code
print_hints(0)
###Output
_____no_output_____
###Markdown
Run this cell to install the model we're using. This is installed on Google, not on your pc. Don't mind all the text that will show up below it.
###Code
!pip install tensorforce
###Output
_____no_output_____
###Markdown
Just run the cell below
###Code
from tensorforce.environments import Environment
from tensorforce.agents import Agent
import numpy as np
import plotly.express as px
import pandas as pd
from random import uniform
###Output
_____no_output_____
###Markdown
Question 1Create a penalty function behind the `penalty = `. This should be a function of the water level (`water_level`).Note: if you want to use a power (tot de macht), this is written as `**` in Python, instead of `^` for example.
###Code
def calculate_penalty(water_level):
penalty = ...
return penalty
###Output
_____no_output_____
###Markdown
Hint 2
###Code
print_hints(1)
###Output
_____no_output_____
###Markdown
Hint 3
###Code
print_hints(2)
###Output
_____no_output_____
###Markdown
Hint 4
###Code
print_hints(3)
###Output
_____no_output_____
###Markdown
Run the cell below, this will define the environment and agent.
###Code
class PolderEnvironment(Environment):
"""Simple polder environment. It is a polder with a single pump attached to it.
If the pump is activated, the waterlevel in the polder will lower.
Rainfall will cause the waterlevel in the polder to rise.
The amount of rainfall is random.
The goal will be to keep the waterlevel between 0.0 and 1.0m NAP and to keep this up for at least 100 timesteps.
"""
def __init__(self):
super().__init__()
self.water_level = np.random.uniform(low=0.0, high=1.0, size=(1,))
def states(self):
return dict(type='float', shape=(1,), min_value=0.0, max_value=1.0)
def actions(self):
return dict(type='int', num_values=2)
# Optional, should only be defined if environment has a natural maximum
# episode length
def max_episode_timesteps(self):
return 500
# Optional
def close(self):
super().close()
def reset(self):
"""Reset state."""
self.timestep = 0
self.water_level = np.random.uniform(low=0.0, high=1.0, size=(1,))
return self.water_level
def response(self, action):
"""Respond to an action."""
return self.water_level - (action * 0.2)
def reward_compute(self):
penalty = calculate_penalty(self.water_level)
return -penalty
# TODO 0 weghalen
def rain(self):
return uniform(0.0,0.25)
# back-up
def terminal(self):
if self.water_level > 1.0 or self.water_level < 0.0:
return True
return False
def execute(self, actions):
## Check the action is either 0 or 1 -- pump on or off.
assert actions == 0 or actions == 1
## Increment timestamp
self.timestep += 1
## Update the current_temp
self.water_level = self.response(actions)
self.water_level += self.rain()
## Compute the reward
reward = self.reward_compute()[0]
## The only way to go terminal is to exceed max_episode_timestamp.
## terminal == False means episode is not done
## terminal == True means it is done.
terminal = self.terminal()
return self.water_level, terminal, reward
###Output
_____no_output_____
###Markdown
Create the environment and agent (just run these cells)
###Code
environment = environment = Environment.create(
environment=PolderEnvironment,
max_episode_timesteps=500)
agent = Agent.create(
agent='tensorforce', environment=environment, update=64,
optimizer=dict(optimizer='adam', learning_rate=1e-3),
objective='policy_gradient', reward_estimation=dict(horizon=1)
)
###Output
_____no_output_____
###Markdown
This is the actual training, so it can take a while
###Code
for _ in range(200):
states = environment.reset()
terminal = False
while not terminal:
actions = agent.act(states=states)
states, terminal, reward = environment.execute(actions=actions)
agent.observe(terminal=terminal, reward=reward)
###Output
_____no_output_____
###Markdown
Run this cell to see whether it worked and see the results. If it didn't work, you'll have to change you penalty function and you'll have to rerun all the cells from the changed cell onwards.
###Code
### Initialize
environment.reset()
environment.water_level = np.random.uniform(low=0.0, high=1.0, size=(1,))
states = environment.water_level
internals = agent.initial_internals()
terminal = False
### Run an episode
temp = [environment.water_level[0]]
while not terminal:
actions, internals = agent.act(states=states, internals=internals, independent=True)
states, terminal, reward = environment.execute(actions=actions)
temp += [states[0]]
fig = px.line(df, x=df.index, y='water level', title='Reinforcement learning poldergemaal: water level over time',
labels={
"index": "Time"})
### Plot the run
df = pd.Series(temp).rename('water level')
fig.update_yaxes(range = [0,1])
fig.show()
###Output
_____no_output_____
###Markdown
Bonus questionsYou'll have to do these questions in the code above. Question 2Change the target water level from 0.5 to 0.6. Hint question 2 - 1
###Code
print_hints(5)
###Output
_____no_output_____
###Markdown
Hint question 2 - 2
###Code
print_hints(6)
###Output
_____no_output_____ |
Day 4/KalpanaLabs_Day4.ipynb | ###Markdown
Strings 🧵What are strings?When Python 🐍 wants to store text, it creates a variable called _string_. A string's sole purpose is to hold text for the programming. It can hold anything - from nothing at all ('') to enough to fill up all the memory on your computer. Create a stringA string is declared in the following way.**variableName = "{value}"**OR**variableName = '{value}'**
###Code
# declaring your name, age, birthdate, and birthYear as variables
yourName = "Aditya" # ENTER CODE HERE
age = "21" # ENTER CODE HERE
birthDate = "30 November" # ENTER CODE HERE
birthYear = "1999" # ENTER CODE HERE
###Output
_____no_output_____
###Markdown
Now a little bit of magic!
###Code
print("My name is " + yourName + "! ")
print("My age is " + age + ".")
print("I was born on " + birthDate + ".")
print("The year was " + birthYear + ".")
###Output
My name is Aditya!
My age is 21.
I was born on 30 November.
The year was 1999.
###Markdown
Analysis of the code. What does the print statement here do?
###Code
###Output
_____no_output_____
###Markdown
String-Formatting Methods---|Method|Description|Example||------|-----------|-------||.upper()|Converts all letters to capital letters|'HELLO WORLD'||.lower()|Converts all letters to lower case|'hello world'||.capitalize()|Converts first letter in a string to uppercase and converts the rest layers to lowercase|'Hello world'||.title()|Converts the first letter, and every letter after a punctuation or space, to uppercase. The other letters are converted to lowercase|'Hello World'| Apply the methodsWe are going to apply the methods on a very famous line from the movie, Harry Potter and the Chamber of Secrets.The line is below👇
###Code
line = "It is our choices, Harry, that show what we truly are, far more than our abilities."
###Output
_____no_output_____
###Markdown
Now print the line
###Code
# ENTER CODE HERE
###Output
_____no_output_____
###Markdown
.upper() methodApplying the **.upper()** method on the string
###Code
lineUpper = line.upper()
###Output
_____no_output_____
###Markdown
Now print the new variable
###Code
# ENTER CODE HERE
###Output
_____no_output_____
###Markdown
.lower() methodApplying the **.lower()** method on the string
###Code
lineLower = line.lower()
###Output
_____no_output_____
###Markdown
Now print the new variable
###Code
# ENTER CODE HERE
###Output
_____no_output_____
###Markdown
.capitalize() methodApplying the **.capitalize()** method on the string
###Code
lineCapitalize = line.capitalize()
###Output
_____no_output_____
###Markdown
Now print the new variable
###Code
# ENTER CODE HERE
###Output
_____no_output_____
###Markdown
.title() methodApplying the **.title()** method on the string
###Code
lineTitle = line.title()
###Output
_____no_output_____
###Markdown
Now print the new variable
###Code
# ENTER CODE HERE
###Output
_____no_output_____
###Markdown
Try it yourself!Seems that we have seen some of the basic string methods in Python!Now create a string variable of your own and apply these methods on them!
###Code
###Output
_____no_output_____ |
notebooks/09.0-clusterability/make-clusterability-plot-convex-hull-indvs-final.ipynb | ###Markdown
Save for paper
###Code
clusterability_df[:3]
ensure_dir(DATA_DIR / "paper_data" / "hopkins_species_comparison" )
clusterability_df.to_pickle(DATA_DIR / "paper_data" / "hopkins_species_comparison" / "all_species.pickle")
pd.__version__
###Output
_____no_output_____ |
Model backlog/Train/9-melanoma-3fold-resnet18-label-smoothing-2.ipynb | ###Markdown
Dependencies
###Code
# !pip install --quiet efficientnet
!pip install --quiet image-classifiers
import warnings, json, re
from scripts_step_lr_schedulers import *
from melanoma_utility_scripts import *
from kaggle_datasets import KaggleDatasets
from sklearn.model_selection import KFold
import tensorflow.keras.layers as L
import tensorflow.keras.backend as K
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
from tensorflow.keras import optimizers, layers, metrics, losses, Model
# import efficientnet.tfkeras as efn
from classification_models.tfkeras import Classifiers
SEED = 0
seed_everything(SEED)
warnings.filterwarnings("ignore")
###Output
_____no_output_____
###Markdown
TPU configuration
###Code
strategy, tpu = set_up_strategy()
print("REPLICAS: ", strategy.num_replicas_in_sync)
AUTO = tf.data.experimental.AUTOTUNE
###Output
REPLICAS: 1
###Markdown
Model parameters
###Code
base_model_path = '/kaggle/input/efficientnet/'
dataset_path = 'melanoma-256x256'
config = {
"HEIGHT": 256,
"WIDTH": 256,
"CHANNELS": 3,
"BATCH_SIZE": 64,
"EPOCHS": 15,
"LEARNING_RATE": 3e-4,
"ES_PATIENCE": 5,
"N_FOLDS": 3,
"BASE_MODEL_PATH": base_model_path + 'efficientnet-b3_weights_tf_dim_ordering_tf_kernels_autoaugment_notop.h5',
"DATASET_PATH": dataset_path
}
with open('config.json', 'w') as json_file:
json.dump(json.loads(json.dumps(config)), json_file)
config
###Output
_____no_output_____
###Markdown
Load data
###Code
database_base_path = '/kaggle/input/siim-isic-melanoma-classification/'
k_fold = pd.read_csv(database_base_path + 'train.csv')
print('Train samples: %d' % len(k_fold))
display(k_fold.head())
GCS_PATH = KaggleDatasets().get_gcs_path(dataset_path)
TRAINING_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/train*.tfrec')
###Output
Train samples: 33126
###Markdown
Auxiliary functions
###Code
# Datasets utility functions
def read_labeled_tfrecord(example, height=config['HEIGHT'], width=config['WIDTH'], channels=config['CHANNELS']):
example = tf.io.parse_single_example(example, LABELED_TFREC_FORMAT)
image = decode_image(example['image'], height, width, channels)
label = tf.cast(example['target'], tf.float32)
# meta features
data = {}
data['patient_id'] = tf.cast(example['patient_id'], tf.int32)
data['sex'] = tf.cast(example['sex'], tf.int32)
data['age_approx'] = tf.cast(example['age_approx'], tf.int32)
data['anatom_site_general_challenge'] = tf.cast(tf.one_hot(example['anatom_site_general_challenge'], 7), tf.int32)
data['diagnosis'] = tf.cast(tf.one_hot(example['diagnosis'], 10), tf.int32)
return {'input_image': image, 'input_meta': data}, label # returns a dataset of (image, data, label)
def read_labeled_tfrecord_eval(example, height=config['HEIGHT'], width=config['WIDTH'], channels=config['CHANNELS']):
example = tf.io.parse_single_example(example, LABELED_TFREC_FORMAT)
image = decode_image(example['image'], height, width, channels)
label = tf.cast(example['target'], tf.float32)
image_name = example['image_name']
# meta features
data = {}
data['patient_id'] = tf.cast(example['patient_id'], tf.int32)
data['sex'] = tf.cast(example['sex'], tf.int32)
data['age_approx'] = tf.cast(example['age_approx'], tf.int32)
data['anatom_site_general_challenge'] = tf.cast(tf.one_hot(example['anatom_site_general_challenge'], 7), tf.int32)
data['diagnosis'] = tf.cast(tf.one_hot(example['diagnosis'], 10), tf.int32)
return {'input_image': image, 'input_meta': data}, label, image_name # returns a dataset of (image, data, label, image_name)
def data_augment(image, label):
p_spatial = tf.random.uniform([1], minval=0, maxval=1, dtype='float32', seed=SEED)
p_rotate = tf.random.uniform([1], minval=0, maxval=1, dtype='float32', seed=SEED)
### Spatial-level transforms
if p_spatial >= .2: # flips
image['input_image'] = tf.image.random_flip_left_right(image['input_image'], seed=SEED)
image['input_image'] = tf.image.random_flip_up_down(image['input_image'], seed=SEED)
if p_spatial >= .7:
image['input_image'] = tf.image.transpose(image['input_image'])
if p_rotate >= .8: # rotate 270
image['input_image'] = tf.image.rot90(image['input_image'], k=3)
elif p_rotate >= .6: # rotate 180
image['input_image'] = tf.image.rot90(image['input_image'], k=2)
elif p_rotate >= .4: # rotate 90
image['input_image'] = tf.image.rot90(image['input_image'], k=1)
return image, label
def load_dataset(filenames, ordered=False, buffer_size=-1):
ignore_order = tf.data.Options()
if not ordered:
ignore_order.experimental_deterministic = False # disable order, increase speed
dataset = tf.data.TFRecordDataset(filenames, num_parallel_reads=buffer_size) # automatically interleaves reads from multiple files
dataset = dataset.with_options(ignore_order) # uses data as soon as it streams in, rather than in its original order
dataset = dataset.map(read_labeled_tfrecord, num_parallel_calls=buffer_size)
return dataset # returns a dataset of (image, data, label)
def load_dataset_eval(filenames, buffer_size=-1):
dataset = tf.data.TFRecordDataset(filenames, num_parallel_reads=buffer_size) # automatically interleaves reads from multiple files
dataset = dataset.map(read_labeled_tfrecord_eval, num_parallel_calls=buffer_size)
return dataset # returns a dataset of (image, data, label, image_name)
def get_training_dataset(filenames, batch_size, buffer_size=-1):
dataset = load_dataset(filenames, ordered=False, buffer_size=buffer_size)
dataset = dataset.map(data_augment, num_parallel_calls=AUTO)
dataset = dataset.repeat() # the training dataset must repeat for several epochs
dataset = dataset.shuffle(2048)
dataset = dataset.batch(batch_size, drop_remainder=True) # slighly faster with fixed tensor sizes
dataset = dataset.prefetch(buffer_size) # prefetch next batch while training (autotune prefetch buffer size)
return dataset
def get_validation_dataset(filenames, ordered=True, repeated=False, batch_size=32, buffer_size=-1):
dataset = load_dataset(filenames, ordered=ordered, buffer_size=buffer_size)
if repeated:
dataset = dataset.repeat()
dataset = dataset.shuffle(2048)
dataset = dataset.batch(batch_size, drop_remainder=repeated)
dataset = dataset.prefetch(buffer_size)
return dataset
def get_eval_dataset(filenames, batch_size=32, buffer_size=-1):
dataset = load_dataset_eval(filenames, buffer_size=buffer_size)
dataset = dataset.batch(batch_size, drop_remainder=False)
dataset = dataset.prefetch(buffer_size)
return dataset
###Output
_____no_output_____
###Markdown
Learning rate scheduler
###Code
lr_min = 1e-6
lr_start = 0
lr_max = config['LEARNING_RATE']
step_size = 26880 // config['BATCH_SIZE'] #(len(k_fold[k_fold[f'fold_{fold_n}'] == 'train']) * 2) // config['BATCH_SIZE']
total_steps = config['EPOCHS'] * step_size
hold_max_steps = 0
warmup_steps = step_size * 5
rng = [i for i in range(0, total_steps, step_size)]
y = [linear_schedule_with_warmup(tf.cast(x, tf.float32), total_steps=total_steps,
warmup_steps=warmup_steps, hold_max_steps=hold_max_steps,
lr_start=lr_start, lr_max=lr_max, lr_min=lr_min) for x in rng]
sns.set(style="whitegrid")
fig, ax = plt.subplots(figsize=(20, 6))
plt.plot(rng, y)
print("Learning rate schedule: {:.3g} to {:.3g} to {:.3g}".format(y[0], max(y), y[-1]))
###Output
Learning rate schedule: 0 to 0.0003 to 3e-05
###Markdown
Model
###Code
def model_fn(input_shape):
input_image = L.Input(shape=input_shape, name='input_image')
ResNet18, preprocess_input = Classifiers.get('resnet18')
base_model = ResNet18(input_shape=input_shape,
weights='imagenet',
include_top=False)
x = base_model(input_image)
x = L.GlobalAveragePooling2D()(x)
output = L.Dense(1, activation='sigmoid')(x)
model = Model(inputs=input_image, outputs=output)
return model
###Output
_____no_output_____
###Markdown
Training
###Code
eval_dataset = get_eval_dataset(TRAINING_FILENAMES, batch_size=config['BATCH_SIZE'], buffer_size=AUTO)
image_names = next(iter(eval_dataset.unbatch().map(lambda data, label, image_name: image_name).batch(len(k_fold)))).numpy().astype('U')
image_data = eval_dataset.map(lambda data, label, image_name: data)
history_list = []
kfold = KFold(config['N_FOLDS'], shuffle=True, random_state=SEED)
for n_fold, (trn_idx, val_idx) in enumerate(kfold.split(TRAINING_FILENAMES)):
n_fold +=1
print('\nFOLD: %d' % (n_fold))
# tf.tpu.experimental.initialize_tpu_system(tpu)
K.clear_session()
### Data
train_filenames = np.array(TRAINING_FILENAMES)[trn_idx]
valid_filenames = np.array(TRAINING_FILENAMES)[val_idx]
train_size = count_data_items(train_filenames)
step_size = train_size // config['BATCH_SIZE']
# Train model
model_path = 'model_fold_%d.h5' % (n_fold)
es = EarlyStopping(monitor='val_loss', mode='min', patience=config['ES_PATIENCE'],
restore_best_weights=True, verbose=1)
checkpoint = ModelCheckpoint(model_path, monitor='val_loss', mode='min', save_best_only=True, save_weights_only=True)
with strategy.scope():
model = model_fn((config['HEIGHT'], config['WIDTH'], config['CHANNELS']))
lr = lambda: linear_schedule_with_warmup(tf.cast(optimizer.iterations, tf.float32),
total_steps=total_steps, warmup_steps=warmup_steps,
hold_max_steps=hold_max_steps, lr_start=lr_start,
lr_max=lr_max, lr_min=lr_min)
optimizer = optimizers.Adam(learning_rate=lr)
model.compile(optimizer, loss=losses.BinaryCrossentropy(label_smoothing=0.2),
metrics=[metrics.AUC()])
history = model.fit(get_training_dataset(train_filenames, batch_size=config['BATCH_SIZE'], buffer_size=AUTO),
validation_data=get_validation_dataset(valid_filenames, ordered=True, repeated=False,
batch_size=config['BATCH_SIZE'], buffer_size=AUTO),
epochs=config['EPOCHS'],
steps_per_epoch=step_size,
callbacks=[checkpoint, es],
verbose=2).history
history_list.append(history)
# Make predictions
preds = model.predict(image_data)
name_preds = dict(zip(image_names, preds.reshape(len(preds))))
k_fold[f'pred_fold_{n_fold}'] = k_fold.apply(lambda x: name_preds[x['image_name']], axis=1)
valid_filenames = np.array(TRAINING_FILENAMES)[val_idx]
valid_dataset = get_eval_dataset(valid_filenames, batch_size=config['BATCH_SIZE'], buffer_size=AUTO)
valid_image_names = next(iter(valid_dataset.unbatch().map(lambda data, label, image_name: image_name).batch(count_data_items(valid_filenames)))).numpy().astype('U')
k_fold[f'fold_{n_fold}'] = k_fold.apply(lambda x: 'validation' if x['image_name'] in valid_image_names else 'train', axis=1)
###Output
FOLD: 1
Downloading data from https://github.com/qubvel/classification_models/releases/download/0.0.1/resnet18_imagenet_1000_no_top.h5
44924928/44920640 [==============================] - 1s 0us/step
Epoch 1/15
323/323 - 100s - loss: 0.4816 - auc: 0.5787 - val_loss: 0.5415 - val_auc: 0.4169
Epoch 2/15
323/323 - 99s - loss: 0.3569 - auc: 0.7896 - val_loss: 0.3607 - val_auc: 0.3586
Epoch 3/15
323/323 - 99s - loss: 0.3548 - auc: 0.8373 - val_loss: 0.3547 - val_auc: 0.6742
Epoch 4/15
323/323 - 98s - loss: 0.3536 - auc: 0.8521 - val_loss: 0.3588 - val_auc: 0.7807
Epoch 5/15
323/323 - 98s - loss: 0.3523 - auc: 0.8741 - val_loss: 0.3572 - val_auc: 0.5639
Epoch 6/15
323/323 - 99s - loss: 0.3510 - auc: 0.8814 - val_loss: 0.3545 - val_auc: 0.8495
Epoch 7/15
323/323 - 98s - loss: 0.3513 - auc: 0.8610 - val_loss: 0.3524 - val_auc: 0.7736
Epoch 8/15
323/323 - 98s - loss: 0.3507 - auc: 0.8900 - val_loss: 0.3560 - val_auc: 0.8347
Epoch 9/15
323/323 - 98s - loss: 0.3508 - auc: 0.8809 - val_loss: 0.3508 - val_auc: 0.8493
Epoch 10/15
323/323 - 98s - loss: 0.3484 - auc: 0.9018 - val_loss: 0.3532 - val_auc: 0.7983
Epoch 11/15
323/323 - 98s - loss: 0.3480 - auc: 0.9026 - val_loss: 0.4033 - val_auc: 0.8126
Epoch 12/15
323/323 - 97s - loss: 0.3481 - auc: 0.9153 - val_loss: 0.3535 - val_auc: 0.6917
Epoch 13/15
323/323 - 98s - loss: 0.3453 - auc: 0.9247 - val_loss: 0.3520 - val_auc: 0.8287
Epoch 14/15
Restoring model weights from the end of the best epoch.
323/323 - 98s - loss: 0.3438 - auc: 0.9315 - val_loss: 0.3522 - val_auc: 0.7845
Epoch 00014: early stopping
FOLD: 2
Epoch 1/15
355/355 - 105s - loss: 0.6695 - auc: 0.5560 - val_loss: 0.4204 - val_auc: 0.5254
Epoch 2/15
355/355 - 103s - loss: 0.3547 - auc: 0.7830 - val_loss: 0.3614 - val_auc: 0.4937
Epoch 3/15
355/355 - 103s - loss: 0.3531 - auc: 0.8343 - val_loss: 0.3556 - val_auc: 0.7799
Epoch 4/15
355/355 - 104s - loss: 0.3521 - auc: 0.8580 - val_loss: 0.3558 - val_auc: 0.8301
Epoch 5/15
355/355 - 102s - loss: 0.3509 - auc: 0.8500 - val_loss: 0.3558 - val_auc: 0.7802
Epoch 6/15
355/355 - 103s - loss: 0.3507 - auc: 0.8639 - val_loss: 0.3554 - val_auc: 0.7613
Epoch 7/15
355/355 - 103s - loss: 0.3516 - auc: 0.8759 - val_loss: 0.3540 - val_auc: 0.8386
Epoch 8/15
355/355 - 104s - loss: 0.3495 - auc: 0.8836 - val_loss: 0.3550 - val_auc: 0.8129
Epoch 9/15
355/355 - 103s - loss: 0.3490 - auc: 0.8906 - val_loss: 0.3570 - val_auc: 0.7035
Epoch 10/15
355/355 - 103s - loss: 0.3482 - auc: 0.9058 - val_loss: 0.3545 - val_auc: 0.8012
Epoch 11/15
355/355 - 103s - loss: 0.3478 - auc: 0.9094 - val_loss: 0.3557 - val_auc: 0.8358
Epoch 12/15
Restoring model weights from the end of the best epoch.
355/355 - 103s - loss: 0.3462 - auc: 0.9320 - val_loss: 0.3540 - val_auc: 0.8204
Epoch 00012: early stopping
FOLD: 3
Epoch 1/15
355/355 - 103s - loss: 0.5140 - auc: 0.5757 - val_loss: 0.5987 - val_auc: 0.4712
Epoch 2/15
355/355 - 103s - loss: 0.3560 - auc: 0.7785 - val_loss: 0.3566 - val_auc: 0.5732
Epoch 3/15
355/355 - 104s - loss: 0.3534 - auc: 0.8306 - val_loss: 0.3536 - val_auc: 0.8342
Epoch 4/15
355/355 - 102s - loss: 0.3528 - auc: 0.8550 - val_loss: 0.3565 - val_auc: 0.8392
Epoch 5/15
355/355 - 103s - loss: 0.3520 - auc: 0.8590 - val_loss: 0.3724 - val_auc: 0.6665
Epoch 6/15
355/355 - 103s - loss: 0.3516 - auc: 0.8450 - val_loss: 0.3542 - val_auc: 0.8008
Epoch 7/15
355/355 - 103s - loss: 0.3514 - auc: 0.8601 - val_loss: 0.3634 - val_auc: 0.8204
Epoch 8/15
355/355 - 103s - loss: 0.3502 - auc: 0.8809 - val_loss: 0.3526 - val_auc: 0.8352
Epoch 9/15
355/355 - 104s - loss: 0.3496 - auc: 0.8971 - val_loss: 0.3554 - val_auc: 0.8296
Epoch 10/15
355/355 - 103s - loss: 0.3489 - auc: 0.9048 - val_loss: 0.3522 - val_auc: 0.8266
Epoch 11/15
355/355 - 102s - loss: 0.3476 - auc: 0.9148 - val_loss: 0.3531 - val_auc: 0.8037
Epoch 12/15
355/355 - 103s - loss: 0.3462 - auc: 0.9181 - val_loss: 0.3526 - val_auc: 0.8311
Epoch 13/15
355/355 - 103s - loss: 0.3448 - auc: 0.9315 - val_loss: 0.3540 - val_auc: 0.8472
Epoch 14/15
355/355 - 103s - loss: 0.3428 - auc: 0.9425 - val_loss: 0.3528 - val_auc: 0.7810
Epoch 15/15
Restoring model weights from the end of the best epoch.
355/355 - 103s - loss: 0.3397 - auc: 0.9628 - val_loss: 0.3534 - val_auc: 0.7865
Epoch 00015: early stopping
###Markdown
Model loss graph
###Code
for n_fold in range(config['N_FOLDS']):
print(f'Fold: {n_fold}')
plot_metrics(history_list[n_fold])
###Output
Fold: 0
###Markdown
Model loss graph aggregated
###Code
plot_metrics_agg(history_list, config['N_FOLDS'])
###Output
_____no_output_____
###Markdown
Model evaluation
###Code
display(evaluate_model(k_fold, config['N_FOLDS']).style.applymap(color_map))
###Output
_____no_output_____
###Markdown
Model evaluation by Subset
###Code
display(evaluate_model_Subset(k_fold, config['N_FOLDS']).style.applymap(color_map))
###Output
_____no_output_____
###Markdown
Confusion matrix
###Code
for n_fold in range(config['N_FOLDS']):
n_fold += 1
pred_col = f'pred_fold_{n_fold}'
train_set = k_fold[k_fold[f'fold_{n_fold}'] == 'train']
valid_set = k_fold[k_fold[f'fold_{n_fold}'] == 'validation']
print(f'Fold: {n_fold}')
plot_confusion_matrix(train_set['target'], np.round(train_set[pred_col]),
valid_set['target'], np.round(valid_set[pred_col]))
###Output
Fold: 1
###Markdown
Visualize predictions
###Code
k_fold['pred'] = 0
for n_fold in range(config['N_FOLDS']):
n_fold +=1
k_fold['pred'] += k_fold[f'pred_fold_{n_fold}'] / config['N_FOLDS']
print('Top 10 samples')
display(k_fold[['image_name', 'sex', 'age_approx','anatom_site_general_challenge', 'diagnosis',
'target', 'pred'] + [c for c in k_fold.columns if (c.startswith('pred_fold'))]].head(10))
print('Top 10 positive samples')
display(k_fold[['image_name', 'sex', 'age_approx','anatom_site_general_challenge', 'diagnosis',
'target', 'pred'] + [c for c in k_fold.columns if (c.startswith('pred_fold'))]].query('target == 1').head(10))
print('Top 10 predicted positive samples')
display(k_fold[['image_name', 'sex', 'age_approx','anatom_site_general_challenge', 'diagnosis',
'target', 'pred'] + [c for c in k_fold.columns if (c.startswith('pred_fold'))]].query('pred >= .5').head(10))
print('Label/prediction distribution')
print(f"Train positive labels: {len(k_fold[k_fold['target'] >= .5])}")
print(f"Train positive predictions: {len(k_fold[k_fold['pred'] >= .5])}")
###Output
Top 10 samples
|
demos/1_time_correlation/Multi_tau_one_time_correlation_example.ipynb | ###Markdown
One Time Correlation Example for NIPA_GEL 250K¶
###Code
import numpy as np
from matplotlib.ticker import MaxNLocator
from matplotlib.colors import LogNorm
import matplotlib.pyplot as plt
import matplotlib.patches as mp
%matplotlib notebook
import skxray.core.correlation as corr
import skxray.core.roi as roi
###Output
_____no_output_____
###Markdown
One Time Correlation¶ Multi-tau Scheme
###Code
# it would be great to have a link to what this multi-tau scheme is!
num_levels = 7
num_bufs = 8
# load the data
img_stack = np.load("100_500_NIPA_GEL.npy")
# plot the first image to make sure the data loaded correctly
plt.imshow(img_stack[0])
plt.title("NIPA_GEL_250K")
plt.show()
###Output
_____no_output_____
###Markdown
Get the Reqiured ROI's Call skxray.diff_roi_choice.roi_rings_step
###Code
# define the ROIs
roi_start = 65 # in pixels
roi_width = 9 # in pixels
roi_spacing = (5.0, 4.0)
x_center = 7. # in pixels
y_center = (129.) # in pixels
num_rings = 3
# get the edges of the rings
edges = roi.ring_edges(roi_start, width=roi_width,
spacing=roi_spacing, num_rings=num_rings)
# get the label array from the ring shaped 3 region of interests(ROI's)
labeled_roi_array = roi.rings(
edges, (y_center, x_center), img_stack.shape[1:])
# extarct the ROI's lables and pixel indices corresponding to those labels
roi_indices, pixel_list = corr.extract_label_indices(labeled_roi_array)
###Output
_____no_output_____
###Markdown
Plot the Reqiured ROI's
###Code
def overlay_rois(ax, inds, pix_list, img_dim, image):
"""
This will plot the reqiured roi's on the image
"""
tt = np.zeros(img_dim).ravel() * np.nan
tt[pix_list] = inds
im = ax.imshow(image, interpolation='none', norm=LogNorm())
im = ax.imshow(tt.reshape(*img_dim), cmap='Paired',
interpolation='nearest')
roi_names = ['gray', 'orange', 'brown']
tt = np.zeros(img_stack.shape[1:]).ravel()
tt[pixel_list] = roi_indices
fig, ax = plt.subplots()
plt.title("NIPA_GEL_250K")
overlay_rois(ax, roi_indices, pixel_list,
img_stack.shape[1:], img_stack[0])
plt.show()
###Output
_____no_output_____
###Markdown
Call the skxray.corr.multi_tau_corr
###Code
# g2 one time correlation results for 3 ROI's
g2, lag_steps = corr.multi_tau_auto_corr(
num_levels, num_bufs, labeled_roi_array, img_stack)
# lag_staps are delays for multiple tau analysis
lag_time = 0.001
lag_step = lag_steps[:g2.shape[0]]
lags = lag_step*lag_time
###Output
_____no_output_____
###Markdown
Plot the one time correlation functions
###Code
fig, axes = plt.subplots(num_rings, sharex=True, figsize=(5,10))
axes[num_rings-1].set_xlabel("lags")
for i, roi_color in zip(range(num_rings), roi_names):
axes[i].set_ylabel("g2")
axes[i].semilogx(lags, g2[:, i], 'o', markerfacecolor=roi_color, markersize=10)
axes[i].set_ylim(bottom=1, top=np.max(g2[1:, i]))
plt.show()
###Output
_____no_output_____ |
Python Fundamentals/Module_1.2_Required_Code_Python_Fundamentals.ipynb | ###Markdown
Module 1 Required Coding Activity Be sure to complete the tutorials and practice prior to attempting this activity. | Important Assignment Requirements | |:-------------------------------| | **NOTE:** This program **requires** **`print`** output and using code syntax used in module 1 such as keywords **`for`**/**`in`** (iteration), **`input`**, **`if`**, **`else`**, **`.isalpha()`** method, **`.lower()`** or **`.upper()`** method | Program: Words after "G"/"g"Create a program inputs a phrase (like a famous quotation) and prints all of the words that start with h-zSample input: `enter a 1 sentence quote, non-alpha separate words:` **`Wheresoever you go, go with all your heart`** Sample output:```WHERESOEVERYOUWITHYOURHEART```  - split the words by building a placeholder variable: **`word`** - loop each character in the input string - check if character is a letter - add a letter to **`word`** each loop until a non-alpha char is encountered - **if** character is alpha - add character to **`word`** - non-alpha detected (space, punctuation, digit,...) defines the end of a word and goes to **`else`** - **`else`** - check **`if`** word is greater than "g" alphabetically - print word - set word = empty string - or **else** - set word = empty string and build the next word Hint: use `.lower()`Consider how you will print the last word if it doesn't end with a non-alpha character like a space or punctuation?
###Code
# [] create words after "G" following the Assignment requirements use of functions, menhods and kwyowrds
# sample quote "Wheresoever you go, go with all your heart" ~ Confucius (551 BC - 479 BC)
# [] copy and paste in edX assignment page
###Output
_____no_output_____
###Markdown
Module 1 Required Coding Activity Be sure to complete the tutorials and practice prior to attempting this activity. | Important Assignment Requirements | |:-------------------------------| | **NOTE:** This program **requires** **`print`** output and using code syntax used in module 1 such as keywords **`for`**/**`in`** (iteration), **`input`**, **`if`**, **`else`**, **`.isalpha()`** method, **`.lower()`** or **`.upper()`** method | Program: Words after "G"/"g"Create a program inputs a phrase (like a famous quotation) and prints all of the words that start with h-zSample input: `enter a 1 sentence quote, non-alpha separate words:` **`Wheresoever you go, go with all your heart`** Sample output:```WHERESOEVERYOUWITHYOURHEART```  - split the words by building a placeholder variable: **`word`** - loop each character in the input string - check if character is a letter - add a letter to **`word`** each loop until a non-alpha char is encountered - **if** character is alpha - add character to **`word`** - non-alpha detected (space, punctuation, digit,...) defines the end of a word and goes to **`else`** - **`else`** - check **`if`** word is greater than "g" alphabetically - print word - set word = empty string - or **else** - set word = empty string and build the next word Hint: use `.lower()`Consider how you will print the last word if it doesn't end with a non-alpha character like a space or punctuation?
###Code
# [] create words after "G" following the Assignment requirements use of functions, menhods and kwyowrds
# sample quote "Wheresoever you go, go with all your heart" ~ Confucius (551 BC - 479 BC)
# [] copy and paste in edX assignment page
quote = input("Quote: ")
word = ""
for item in quote:
if item.isalpha():
word += item
elif word.lower() >= "h":
print(word.upper())
word = ""
else:
word = ""
if word.lower() >= "h":
print(word.upper())
###Output
WHERESOEVER
YOU
WITH
YOUR
HEART
###Markdown
Module 1 Required Coding Activity Be sure to complete the tutorials and practice prior to attempting this activity. | Important Assignment Requirements | |:-------------------------------| | **NOTE:** This program **requires** **`print`** output and using code syntax used in module 1 such as keywords **`for`**/**`in`** (iteration), **`input`**, **`if`**, **`else`**, **`.isalpha()`** method, **`.lower()`** or **`.upper()`** method | Program: Words after "G"/"g"Create a program inputs a phrase (like a famous quotation) and prints all of the words that start with h-zSample input: `enter a 1 sentence quote, non-alpha separate words:` **`Wheresoever you go, go with all your heart`** Sample output:```WHERESOEVERYOUWITHYOURHEART```  - split the words by building a placeholder variable: **`word`** - loop each character in the input string - check if character is a letter - add a letter to **`word`** each loop until a non-alpha char is encountered - **if** character is alpha - add character to **`word`** - non-alpha detected (space, punctuation, digit,...) defines the end of a word and goes to **`else`** - **`else`** - check **`if`** word is greater than "g" alphabetically - print word - set word = empty string - or **else** - set word = empty string and build the next word Hint: use `.lower()`Consider how you will print the last word if it doesn't end with a non-alpha character like a space or punctuation?
###Code
# [] create words after "G" following the Assignment requirements use of functions, menhods and kwyowrds
# sample quote "Wheresoever you go, go with all your heart" ~ Confucius (551 BC - 479 BC)
# [] copy and paste in edX assignment page
quote = input("Enter a quote: ").lower()
word = ""
for character in quote:
if character.isalpha():
word += character
else:
if (word > "h"):
print(word.upper())
word = ""
else:
word = ""
if word.lower() > "h":
print(word.upper())
###Output
WAR
IS
ON
###Markdown
Module 1 Required Coding Activity Be sure to complete the tutorials and practice prior to attempting this activity. | Important Assignment Requirements | |:-------------------------------| | **NOTE:** This program **requires** **`print`** output and using code syntax used in module 1 such as keywords **`for`**/**`in`** (iteration), **`input`**, **`if`**, **`else`**, **`.isalpha()`** method, **`.lower()`** or **`.upper()`** method | Program: Words after "G"/"g"Create a program inputs a phrase (like a famous quotation) and prints all of the words that start with h-zSample input: `enter a 1 sentence quote, non-alpha separate words:` **`Wheresoever you go, go with all your heart`** Sample output:```WHERESOEVERYOUWITHYOURHEART```  - split the words by building a placeholder variable: **`word`** - loop each character in the input string - check if character is a letter - add a letter to **`word`** each loop until a non-alpha char is encountered - **if** character is alpha - add character to **`word`** - non-alpha detected (space, punctuation, digit,...) defines the end of a word and goes to **`else`** - **`else`** - check **`if`** word is greater than "g" alphabetically - print word - set word = empty string - or **else** - set word = empty string and build the next word Hint: use `.lower()`Consider how you will print the last word if it doesn't end with a non-alpha character like a space or punctuation?
###Code
quote=input('Enter a 1 sentence quote, non-alpha separate words: ')
for word in quote.split():
cleaned_word=''
for letter in word:
if letter.isalpha():
cleaned_word+=letter
else:
break
if cleaned_word[0]>'g':
print(cleaned_word.lower())
###Output
Enter a 1 sentence quote, non-alpha separate words: Wheresoever you go, go with all your heart
you
with
your
heart
###Markdown
Module 1 Required Coding Activity Be sure to complete the tutorials and practice prior to attempting this activity. | Important Assignment Requirements | |:-------------------------------| | **NOTE:** This program **requires** **`print`** output and using code syntax used in module 1 such as keywords **`for`**/**`in`** (iteration), **`input`**, **`if`**, **`else`**, **`.isalpha()`** method, **`.lower()`** or **`.upper()`** method | Program: Words after "G"/"g"Create a program inputs a phrase (like a famous quotation) and prints all of the words that start with h-zSample input: `enter a 1 sentence quote, non-alpha separate words:` **`Wheresoever you go, go with all your heart`** Sample output:```WHERESOEVERYOUWITHYOURHEART```  - split the words by building a placeholder variable: **`word`** - loop each character in the input string - check if character is a letter - add a letter to **`word`** each loop until a non-alpha char is encountered - **if** character is alpha - add character to **`word`** - non-alpha detected (space, punctuation, digit,...) defines the end of a word and goes to **`else`** - **`else`** - check **`if`** word is greater than "g" alphabetically - print word - set word = empty string - or **else** - set word = empty string and build the next word Hint: use `.lower()`Consider how you will print the last word if it doesn't end with a non-alpha character like a space or punctuation?
###Code
# [] create words after "G" following the Assignment requirements use of functions, menhods and kwyowrds
# sample quote "Wheresoever you go, go with all your heart" ~ Confucius (551 BC - 479 BC)
# [] copy and paste in edX assignment page
quote = input("enter a 1 sentence quote, non-alpha seperate words: ")
word = ''
for letter in quote:
if letter.isalpha():
word += letter
elif word.lower() >= 'h':
print(word.upper())
word = ''
else:
word = ''
if word.lower() >= "h":
print(word.upper())
###Output
_____no_output_____
###Markdown
Module 1 Required Coding Activity Be sure to complete the tutorials and practice prior to attempting this activity. | Important Assignment Requirements | |:-------------------------------| | **NOTE:** This program **requires** **`print`** output and using code syntax used in module 1 such as keywords **`for`**/**`in`** (iteration), **`input`**, **`if`**, **`else`**, **`.isalpha()`** method, **`.lower()`** or **`.upper()`** method | Program: Words after "G"/"g"Create a program inputs a phrase (like a famous quotation) and prints all of the words that start with h-zSample input: `enter a 1 sentence quote, non-alpha separate words:` **`Wheresoever you go, go with all your heart`** Sample output:```WHERESOEVERYOUWITHYOURHEART```  - split the words by building a placeholder variable: **`word`** - loop each character in the input string - check if character is a letter - add a letter to **`word`** each loop until a non-alpha char is encountered - **if** character is alpha - add character to **`word`** - non-alpha detected (space, punctuation, digit,...) defines the end of a word and goes to **`else`** - **`else`** - check **`if`** word is greater than "g" alphabetically - print word - set word = empty string - or **else** - set word = empty string and build the next word Hint: use `.lower()`Consider how you will print the last word if it doesn't end with a non-alpha character like a space or punctuation?
###Code
# [] create words after "G" following the Assignment requirements use of functions, menhods and kwyowrds
# sample quote "Wheresoever you go, go with all your heart" ~ Confucius (551 BC - 479 BC)
# [] copy and paste in edX assignment page
word = ""
quote = input("Enter a quote: ")+" "
for character in quote:
if character.isalpha():
word += character
else:
if word.lower() >= "h":
print(word.upper())
word = ""
else:
word = ""
###Output
Enter a quote: Wheresoever you go, go with all your heart
WHERESOEVER
YOU
WITH
YOUR
HEART
|
docs/tutorials/kafka.ipynb | ###Markdown
Copyright 2020 The TensorFlow IO Authors.
###Code
#@title Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
###Output
_____no_output_____
###Markdown
Robust machine learning on streaming data using Kafka and Tensorflow-IO View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook OverviewThis tutorial focuses on streaming data from a [Kafka](https://kafka.apache.org/quickstart) cluster into a `tf.data.Dataset` which is then used in conjunction with `tf.keras` for training and inference.Kafka is primarily a distributed event-streaming platform which provides scalable and fault-tolerant streaming data across data pipelines. It is an essential technical component of a plethora of major enterprises where mission-critical data delivery is a primary requirement.**NOTE:** A basic understanding of the [kafka components](https://kafka.apache.org/documentation/intro_concepts_and_terms) will help you in following the tutorial with ease.**NOTE:** A Java runtime environment is required to run this tutorial. Setup Install the required tensorflow-io and kafka packages
###Code
!pip install tensorflow-io
!pip install kafka-python
###Output
Collecting tensorflow-io
Downloading tensorflow_io-0.20.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (22.7 MB)
[K |████████████████████████████████| 22.7 MB 16 kB/s
[?25hCollecting tensorflow-io-gcs-filesystem==0.20.0
Downloading tensorflow_io_gcs_filesystem-0.20.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.3 MB)
[K |████████████████████████████████| 2.3 MB 36.1 MB/s
[?25hRequirement already satisfied: tensorflow<2.7.0,>=2.6.0 in /usr/local/lib/python3.7/dist-packages (from tensorflow-io) (2.6.0)
Requirement already satisfied: keras-preprocessing~=1.1.2 in /usr/local/lib/python3.7/dist-packages (from tensorflow<2.7.0,>=2.6.0->tensorflow-io) (1.1.2)
Requirement already satisfied: wheel~=0.35 in /usr/local/lib/python3.7/dist-packages (from tensorflow<2.7.0,>=2.6.0->tensorflow-io) (0.37.0)
Requirement already satisfied: numpy~=1.19.2 in /usr/local/lib/python3.7/dist-packages (from tensorflow<2.7.0,>=2.6.0->tensorflow-io) (1.19.5)
Requirement already satisfied: astunparse~=1.6.3 in /usr/local/lib/python3.7/dist-packages (from tensorflow<2.7.0,>=2.6.0->tensorflow-io) (1.6.3)
Requirement already satisfied: typing-extensions~=3.7.4 in /usr/local/lib/python3.7/dist-packages (from tensorflow<2.7.0,>=2.6.0->tensorflow-io) (3.7.4.3)
Requirement already satisfied: absl-py~=0.10 in /usr/local/lib/python3.7/dist-packages (from tensorflow<2.7.0,>=2.6.0->tensorflow-io) (0.12.0)
Requirement already satisfied: google-pasta~=0.2 in /usr/local/lib/python3.7/dist-packages (from tensorflow<2.7.0,>=2.6.0->tensorflow-io) (0.2.0)
Requirement already satisfied: termcolor~=1.1.0 in /usr/local/lib/python3.7/dist-packages (from tensorflow<2.7.0,>=2.6.0->tensorflow-io) (1.1.0)
Requirement already satisfied: flatbuffers~=1.12.0 in /usr/local/lib/python3.7/dist-packages (from tensorflow<2.7.0,>=2.6.0->tensorflow-io) (1.12)
Requirement already satisfied: tensorflow-estimator~=2.6 in /usr/local/lib/python3.7/dist-packages (from tensorflow<2.7.0,>=2.6.0->tensorflow-io) (2.6.0)
Requirement already satisfied: gast==0.4.0 in /usr/local/lib/python3.7/dist-packages (from tensorflow<2.7.0,>=2.6.0->tensorflow-io) (0.4.0)
Requirement already satisfied: tensorboard~=2.6 in /usr/local/lib/python3.7/dist-packages (from tensorflow<2.7.0,>=2.6.0->tensorflow-io) (2.6.0)
Requirement already satisfied: wrapt~=1.12.1 in /usr/local/lib/python3.7/dist-packages (from tensorflow<2.7.0,>=2.6.0->tensorflow-io) (1.12.1)
Requirement already satisfied: clang~=5.0 in /usr/local/lib/python3.7/dist-packages (from tensorflow<2.7.0,>=2.6.0->tensorflow-io) (5.0)
Requirement already satisfied: opt-einsum~=3.3.0 in /usr/local/lib/python3.7/dist-packages (from tensorflow<2.7.0,>=2.6.0->tensorflow-io) (3.3.0)
Requirement already satisfied: keras~=2.6 in /usr/local/lib/python3.7/dist-packages (from tensorflow<2.7.0,>=2.6.0->tensorflow-io) (2.6.0)
Requirement already satisfied: h5py~=3.1.0 in /usr/local/lib/python3.7/dist-packages (from tensorflow<2.7.0,>=2.6.0->tensorflow-io) (3.1.0)
Requirement already satisfied: protobuf>=3.9.2 in /usr/local/lib/python3.7/dist-packages (from tensorflow<2.7.0,>=2.6.0->tensorflow-io) (3.17.3)
Requirement already satisfied: grpcio<2.0,>=1.37.0 in /usr/local/lib/python3.7/dist-packages (from tensorflow<2.7.0,>=2.6.0->tensorflow-io) (1.39.0)
Requirement already satisfied: six~=1.15.0 in /usr/local/lib/python3.7/dist-packages (from tensorflow<2.7.0,>=2.6.0->tensorflow-io) (1.15.0)
Requirement already satisfied: cached-property in /usr/local/lib/python3.7/dist-packages (from h5py~=3.1.0->tensorflow<2.7.0,>=2.6.0->tensorflow-io) (1.5.2)
Requirement already satisfied: setuptools>=41.0.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard~=2.6->tensorflow<2.7.0,>=2.6.0->tensorflow-io) (57.4.0)
Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /usr/local/lib/python3.7/dist-packages (from tensorboard~=2.6->tensorflow<2.7.0,>=2.6.0->tensorflow-io) (0.4.5)
Requirement already satisfied: requests<3,>=2.21.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard~=2.6->tensorflow<2.7.0,>=2.6.0->tensorflow-io) (2.23.0)
Requirement already satisfied: tensorboard-data-server<0.7.0,>=0.6.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard~=2.6->tensorflow<2.7.0,>=2.6.0->tensorflow-io) (0.6.1)
Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard~=2.6->tensorflow<2.7.0,>=2.6.0->tensorflow-io) (1.8.0)
Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.7/dist-packages (from tensorboard~=2.6->tensorflow<2.7.0,>=2.6.0->tensorflow-io) (1.0.1)
Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.7/dist-packages (from tensorboard~=2.6->tensorflow<2.7.0,>=2.6.0->tensorflow-io) (3.3.4)
Requirement already satisfied: google-auth<2,>=1.6.3 in /usr/local/lib/python3.7/dist-packages (from tensorboard~=2.6->tensorflow<2.7.0,>=2.6.0->tensorflow-io) (1.34.0)
Requirement already satisfied: cachetools<5.0,>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from google-auth<2,>=1.6.3->tensorboard~=2.6->tensorflow<2.7.0,>=2.6.0->tensorflow-io) (4.2.2)
Requirement already satisfied: rsa<5,>=3.1.4 in /usr/local/lib/python3.7/dist-packages (from google-auth<2,>=1.6.3->tensorboard~=2.6->tensorflow<2.7.0,>=2.6.0->tensorflow-io) (4.7.2)
Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.7/dist-packages (from google-auth<2,>=1.6.3->tensorboard~=2.6->tensorflow<2.7.0,>=2.6.0->tensorflow-io) (0.2.8)
Requirement already satisfied: requests-oauthlib>=0.7.0 in /usr/local/lib/python3.7/dist-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard~=2.6->tensorflow<2.7.0,>=2.6.0->tensorflow-io) (1.3.0)
Requirement already satisfied: importlib-metadata in /usr/local/lib/python3.7/dist-packages (from markdown>=2.6.8->tensorboard~=2.6->tensorflow<2.7.0,>=2.6.0->tensorflow-io) (4.6.4)
Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /usr/local/lib/python3.7/dist-packages (from pyasn1-modules>=0.2.1->google-auth<2,>=1.6.3->tensorboard~=2.6->tensorflow<2.7.0,>=2.6.0->tensorflow-io) (0.4.8)
Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.21.0->tensorboard~=2.6->tensorflow<2.7.0,>=2.6.0->tensorflow-io) (1.24.3)
Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.21.0->tensorboard~=2.6->tensorflow<2.7.0,>=2.6.0->tensorflow-io) (2021.5.30)
Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.21.0->tensorboard~=2.6->tensorflow<2.7.0,>=2.6.0->tensorflow-io) (3.0.4)
Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.21.0->tensorboard~=2.6->tensorflow<2.7.0,>=2.6.0->tensorflow-io) (2.10)
Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.7/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard~=2.6->tensorflow<2.7.0,>=2.6.0->tensorflow-io) (3.1.1)
Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata->markdown>=2.6.8->tensorboard~=2.6->tensorflow<2.7.0,>=2.6.0->tensorflow-io) (3.5.0)
Installing collected packages: tensorflow-io-gcs-filesystem, tensorflow-io
Successfully installed tensorflow-io-0.20.0 tensorflow-io-gcs-filesystem-0.20.0
Collecting kafka-python
Downloading kafka_python-2.0.2-py2.py3-none-any.whl (246 kB)
[K |████████████████████████████████| 246 kB 12.0 MB/s
[?25hInstalling collected packages: kafka-python
Successfully installed kafka-python-2.0.2
###Markdown
Import packages
###Code
import os
from datetime import datetime
import time
import threading
import json
from kafka import KafkaProducer
from kafka.errors import KafkaError
from sklearn.model_selection import train_test_split
import pandas as pd
import tensorflow as tf
import tensorflow_io as tfio
###Output
_____no_output_____
###Markdown
Validate tf and tfio imports
###Code
print("tensorflow-io version: {}".format(tfio.__version__))
print("tensorflow version: {}".format(tf.__version__))
###Output
tensorflow-io version: 0.20.0
tensorflow version: 2.6.0
###Markdown
Download and setup Kafka and Zookeeper instancesFor demo purposes, the following instances are setup locally:- Kafka (Brokers: 127.0.0.1:9092)- Zookeeper (Node: 127.0.0.1:2181)
###Code
!curl -sSOL https://downloads.apache.org/kafka/2.7.0/kafka_2.13-2.7.0.tgz
!tar -xzf kafka_2.13-2.7.0.tgz
###Output
_____no_output_____
###Markdown
Using the default configurations (provided by Apache Kafka) for spinning up the instances.
###Code
!./kafka_2.13-2.7.0/bin/kafka-topics.sh --bootstrap-server "ec2-13-229-46-113.ap-southeast-1.compute.amazonaws.com:9092" --list
!./kafka_2.13-2.7.0/bin/zookeeper-server-start.sh -daemon ./kafka_2.13-2.7.0/config/zookeeper.properties
!./kafka_2.13-2.7.0/bin/kafka-server-start.sh -daemon ./kafka_2.13-2.7.0/config/server.properties
!echo "Waiting for 10 secs until kafka and zookeeper services are up and running"
!sleep 10
###Output
_____no_output_____
###Markdown
Once the instances are started as daemon processes, grep for `kafka` in the processes list. The two java processes correspond to zookeeper and the kafka instances.
###Code
!ps -ef | grep kafka
###Output
_____no_output_____
###Markdown
Create the kafka topics with the following specs:- susy-train: partitions=1, replication-factor=1 - susy-test: partitions=2, replication-factor=1
###Code
!./kafka_2.13-2.7.0/bin/kafka-topics.sh --create --bootstrap-server 127.0.0.1:9092 --replication-factor 1 --partitions 1 --topic susy-train
!./kafka_2.13-2.7.0/bin/kafka-topics.sh --create --bootstrap-server 127.0.0.1:9092 --replication-factor 1 --partitions 2 --topic susy-test
###Output
_____no_output_____
###Markdown
Describe the topic for details on the configuration
###Code
!./kafka_2.13-2.7.0/bin/kafka-topics.sh --describe --bootstrap-server 127.0.0.1:9092 --topic susy-train
!./kafka_2.13-2.7.0/bin/kafka-topics.sh --describe --bootstrap-server 127.0.0.1:9092 --topic susy-test
###Output
_____no_output_____
###Markdown
The replication factor 1 indicates that the data is not being replicated. This is due to the presence of a single broker in our kafka setup.In production systems, the number of bootstrap servers can be in the range of 100's of nodes. That is where the fault-tolerance using replication comes into picture.Please refer to the [docs](https://kafka.apache.org/documentation/replication) for more details. SUSY DatasetKafka being an event streaming platform, enables data from various sources to be written into it. For instance:- Web traffic logs- Astronomical measurements- IoT sensor data- Product reviews and many more.For the purpose of this tutorial, lets download the [SUSY](https://archive.ics.uci.edu/ml/datasets/SUSY) dataset and feed the data into kafka manually. The goal of this classification problem is to distinguish between a signal process which produces supersymmetric particles and a background process which does not.
###Code
!curl -sSOL https://archive.ics.uci.edu/ml/machine-learning-databases/00279/SUSY.csv.gz
###Output
_____no_output_____
###Markdown
Explore the dataset The first column is the class label (1 for signal, 0 for background), followed by the 18 features (8 low-level features then 10 high-level features).The first 8 features are kinematic properties measured by the particle detectors in the accelerator. The last 10 features are functions of the first 8 features. These are high-level features derived by physicists to help discriminate between the two classes.
###Code
COLUMNS = [
# labels
'class',
# low-level features
'lepton_1_pT',
'lepton_1_eta',
'lepton_1_phi',
'lepton_2_pT',
'lepton_2_eta',
'lepton_2_phi',
'missing_energy_magnitude',
'missing_energy_phi',
# high-level derived features
'MET_rel',
'axial_MET',
'M_R',
'M_TR_2',
'R',
'MT2',
'S_R',
'M_Delta_R',
'dPhi_r_b',
'cos(theta_r1)'
]
###Output
_____no_output_____
###Markdown
The entire dataset consists of 5 million rows. However, for the purpose of this tutorial, let's consider only a fraction of the dataset (100,000 rows) so that less time is spent on the moving the data and more time on understanding the functionality of the api.
###Code
susy_iterator = pd.read_csv('SUSY.csv.gz', header=None, names=COLUMNS, chunksize=100000)
susy_df = next(susy_iterator)
susy_df.head()
# Number of datapoints and columns
len(susy_df), len(susy_df.columns)
# Number of datapoints belonging to each class (0: background noise, 1: signal)
len(susy_df[susy_df["class"]==0]), len(susy_df[susy_df["class"]==1])
###Output
_____no_output_____
###Markdown
Split the dataset
###Code
train_df, test_df = train_test_split(susy_df, test_size=0.4, shuffle=True)
print("Number of training samples: ",len(train_df))
print("Number of testing sample: ",len(test_df))
x_train_df = train_df.drop(["class"], axis=1)
y_train_df = train_df["class"]
x_test_df = test_df.drop(["class"], axis=1)
y_test_df = test_df["class"]
# The labels are set as the kafka message keys so as to store data
# in multiple-partitions. Thus, enabling efficient data retrieval
# using the consumer groups.
x_train = list(filter(None, x_train_df.to_csv(index=False).split("\n")[1:]))
y_train = list(filter(None, y_train_df.to_csv(index=False).split("\n")[1:]))
x_test = list(filter(None, x_test_df.to_csv(index=False).split("\n")[1:]))
y_test = list(filter(None, y_test_df.to_csv(index=False).split("\n")[1:]))
NUM_COLUMNS = len(x_train_df.columns)
len(x_train), len(y_train), len(x_test), len(y_test)
###Output
_____no_output_____
###Markdown
Store the train and test data in kafkaStoring the data in kafka simulates an environment for continuous remote data retrieval for training and inference purposes.
###Code
def error_callback(exc):
raise Exception('Error while sendig data to kafka: {0}'.format(str(exc)))
def write_to_kafka(topic_name, items):
count=0
producer = KafkaProducer(bootstrap_servers=['127.0.0.1:9092'])
for message, key in items:
producer.send(topic_name, key=key.encode('utf-8'), value=message.encode('utf-8')).add_errback(error_callback)
count+=1
producer.flush()
print("Wrote {0} messages into topic: {1}".format(count, topic_name))
write_to_kafka("susy-train", zip(x_train, y_train))
write_to_kafka("susy-test", zip(x_test, y_test))
###Output
_____no_output_____
###Markdown
Define the tfio train datasetThe `IODataset` class is utilized for streaming data from kafka into tensorflow. The class inherits from `tf.data.Dataset` and thus has all the useful functionalities of `tf.data.Dataset` out of the box.
###Code
def decode_kafka_item(item):
message = tf.io.decode_csv(item.message, [[0.0] for i in range(NUM_COLUMNS)])
key = tf.strings.to_number(item.key)
return (message, key)
BATCH_SIZE=64
SHUFFLE_BUFFER_SIZE=64
train_ds = tfio.IODataset.from_kafka('susy-train', partition=0, offset=0)
train_ds = train_ds.shuffle(buffer_size=SHUFFLE_BUFFER_SIZE)
train_ds = train_ds.map(decode_kafka_item)
train_ds = train_ds.batch(BATCH_SIZE)
###Output
_____no_output_____
###Markdown
Build and train the model
###Code
# Set the parameters
OPTIMIZER="adam"
LOSS=tf.keras.losses.BinaryCrossentropy(from_logits=True)
METRICS=['accuracy']
EPOCHS=10
# design/build the model
model = tf.keras.Sequential([
tf.keras.layers.Input(shape=(NUM_COLUMNS,)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(256, activation='relu'),
tf.keras.layers.Dropout(0.4),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.4),
tf.keras.layers.Dense(1, activation='sigmoid')
])
print(model.summary())
# compile the model
model.compile(optimizer=OPTIMIZER, loss=LOSS, metrics=METRICS)
# fit the model
model.fit(train_ds, epochs=EPOCHS)
###Output
_____no_output_____
###Markdown
Note: Please do not confuse the training step with online training. It's an entirely different paradigm which will be covered in a later section.Since only a fraction of the dataset is being utilized, our accuracy is limited to ~78% during the training phase. However, please feel free to store additional data in kafka for a better model performance. Also, since the goal was to just demonstrate the functionality of the tfio kafka datasets, a smaller and less-complicated neural network was used. However, one can increase the complexity of the model, modify the learning strategy, tune hyper-parameters etc for exploration purposes. For a baseline approach, please refer to this [article](https://www.nature.com/articles/ncomms5308Sec11). Infer on the test dataTo infer on the test data by adhering to the 'exactly-once' semantics along with fault-tolerance, the `streaming.KafkaGroupIODataset` can be utilized. Define the tfio test datasetThe `stream_timeout` parameter blocks for the given duration for new data points to be streamed into the topic. This removes the need for creating new datasets if the data is being streamed into the topic in an intermittent fashion.
###Code
test_ds = tfio.experimental.streaming.KafkaGroupIODataset(
topics=["susy-test"],
group_id="testcg",
servers="127.0.0.1:9092",
stream_timeout=10000,
configuration=[
"session.timeout.ms=7000",
"max.poll.interval.ms=8000",
"auto.offset.reset=earliest"
],
)
def decode_kafka_test_item(raw_message, raw_key):
message = tf.io.decode_csv(raw_message, [[0.0] for i in range(NUM_COLUMNS)])
key = tf.strings.to_number(raw_key)
return (message, key)
test_ds = test_ds.map(decode_kafka_test_item)
test_ds = test_ds.batch(BATCH_SIZE)
###Output
_____no_output_____
###Markdown
Though this class can be used for training purposes, there are caveats which need to be addressed. Once all the messages are read from kafka and the latest offsets are committed using the `streaming.KafkaGroupIODataset`, the consumer doesn't restart reading the messages from the beginning. Thus, while training, it is possible only to train for a single epoch with the data continuously flowing in. This kind of a functionality has limited use cases during the training phase wherein, once a datapoint has been consumed by the model it is no longer required and can be discarded.However, this functionality shines when it comes to robust inference with exactly-once semantics. evaluate the performance on the test data
###Code
res = model.evaluate(test_ds)
print("test loss, test acc:", res)
###Output
_____no_output_____
###Markdown
Since the inference is based on 'exactly-once' semantics, the evaluation on the test set can be run only once. In order to run the inference again on the test data, a new consumer group should be used. Track the offset lag of the `testcg` consumer group
###Code
!./kafka_2.13-2.7.0/bin/kafka-consumer-groups.sh --bootstrap-server 127.0.0.1:9092 --describe --group testcg
###Output
_____no_output_____
###Markdown
Once the `current-offset` matches the `log-end-offset` for all the partitions, it indicates that the consumer(s) have completed fetching all the messages from the kafka topic. Online learningThe online machine learning paradigm is a bit different from the traditional/conventional way of training machine learning models. In the former case, the model continues to incrementally learn/update it's parameters as soon as the new data points are available and this process is expected to continue indefinitely. This is unlike the latter approaches where the dataset is fixed and the model iterates over it `n` number of times. In online learning, the data once consumed by the model may not be available for training again.By utilizing the `streaming.KafkaBatchIODataset`, it is now possible to train the models in this fashion. Let's continue to use our SUSY dataset for demonstrating this functionality. The tfio training dataset for online learningThe `streaming.KafkaBatchIODataset` is similar to the `streaming.KafkaGroupIODataset` in it's API. Additionally, it is recommended to utilize the `stream_timeout` parameter to configure the duration for which the dataset will block for new messages before timing out. In the instance below, the dataset is configured with a `stream_timeout` of `10000` milliseconds. This implies that, after all the messages from the topic have been consumed, the dataset will wait for an additional 10 seconds before timing out and disconnecting from the kafka cluster. If new messages are streamed into the topic before timing out, the data consumption and model training resumes for those newly consumed data points. To block indefinitely, set it to `-1`.
###Code
online_train_ds = tfio.experimental.streaming.KafkaBatchIODataset(
topics=["susy-train"],
group_id="cgonline",
servers="127.0.0.1:9092",
stream_timeout=10000, # in milliseconds, to block indefinitely, set it to -1.
configuration=[
"session.timeout.ms=7000",
"max.poll.interval.ms=8000",
"auto.offset.reset=earliest"
],
)
###Output
_____no_output_____
###Markdown
Every item that the `online_train_ds` generates is a `tf.data.Dataset` in itself. Thus, all the standard transformations can be applied as usual.
###Code
def decode_kafka_online_item(raw_message, raw_key):
message = tf.io.decode_csv(raw_message, [[0.0] for i in range(NUM_COLUMNS)])
key = tf.strings.to_number(raw_key)
return (message, key)
for mini_ds in online_train_ds:
mini_ds = mini_ds.shuffle(buffer_size=32)
mini_ds = mini_ds.map(decode_kafka_online_item)
mini_ds = mini_ds.batch(32)
model.fit(mini_ds, epochs=3)
###Output
_____no_output_____
###Markdown
Copyright 2020 The TensorFlow IO Authors.
###Code
#@title Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
###Output
_____no_output_____
###Markdown
Robust machine learning on streaming data using Kafka and Tensorflow-IO View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook OverviewThis tutorial focuses on streaming data from a [Kafka](https://docs.confluent.io/current/getting-started.html) cluster into a `tf.data.Dataset` which is then used in conjunction with `tf.keras` for training and inference.Kafka is primarily a distributed event-streaming platform which provides scalable and fault-tolerant streaming data across data pipelines. It is an essential technical component of a plethora of major enterprises where mission-critical data delivery is a primary requirement.**NOTE:** A basic understanding of the [kafka components](https://docs.confluent.io/current/kafka/introduction.html) will help you in following the tutorial with ease. Setup Install the required tensorflow-io and kafka packages
###Code
!pip install tensorflow-io
!pip install kafka-python
###Output
_____no_output_____
###Markdown
Import packages
###Code
import os
from datetime import datetime
import time
import threading
import json
from kafka import KafkaProducer
from kafka.errors import KafkaError
from sklearn.model_selection import train_test_split
import pandas as pd
import tensorflow as tf
import tensorflow_io as tfio
###Output
_____no_output_____
###Markdown
Validate tf and tfio imports
###Code
print("tensorflow-io version: {}".format(tfio.__version__))
print("tensorflow version: {}".format(tf.__version__))
###Output
_____no_output_____
###Markdown
Download and setup Kafka and Zookeeper instancesFor demo purposes, the following instances are setup locally:- Kafka (Brokers: 127.0.0.1:9092)- Zookeeper (Node: 127.0.0.1:2181)
###Code
!curl -sSOL http://packages.confluent.io/archive/5.4/confluent-community-5.4.1-2.12.tar.gz
!tar -xzf confluent-community-5.4.1-2.12.tar.gz
###Output
_____no_output_____
###Markdown
Using the default configurations (provided by the confluent package) for spinning up the instances.
###Code
!cd confluent-5.4.1 && bin/zookeeper-server-start -daemon etc/kafka/zookeeper.properties
!cd confluent-5.4.1 && bin/kafka-server-start -daemon etc/kafka/server.properties
!echo "Waiting for 10 secs until kafka and zookeeper services are up and running"
!sleep 10
###Output
_____no_output_____
###Markdown
Once the instances are started as daemon processes, grep for `kafka` in the processes list. The two java processes correspond to zookeeper and the kafka instances.
###Code
!ps -ef | grep kafka
###Output
_____no_output_____
###Markdown
Create the kafka topics with the following specs:- susy-train: partitions=1, replication-factor=1 - susy-test: partitions=2, replication-factor=1
###Code
!confluent-5.4.1/bin/kafka-topics --create --zookeeper 127.0.0.1:2181 --replication-factor 1 --partitions 1 --topic susy-train
!confluent-5.4.1/bin/kafka-topics --create --zookeeper 127.0.0.1:2181 --replication-factor 1 --partitions 2 --topic susy-test
###Output
_____no_output_____
###Markdown
Describe the topic for details on the configuration
###Code
!confluent-5.4.1/bin/kafka-topics --bootstrap-server 127.0.0.1:9092 --describe --topic susy-train
!confluent-5.4.1/bin/kafka-topics --bootstrap-server 127.0.0.1:9092 --describe --topic susy-test
###Output
_____no_output_____
###Markdown
The replication factor 1 indicates that the data is not being replicated. This is due to the presence of a single broker in our kafka setup.In production systems, the number of bootstrap servers can be in the range of 100's of nodes. That is where the fault-tolerance using replication comes into picture.Please refer to the [docs](https://kafka.apache.org/documentation/replication) for more details. SUSY DatasetKafka being an event streaming platform, enables data from various sources to be written into it. For instance:- Web traffic logs- Astronomical measurements- IoT sensor data- Product reviews and many more.For the purpose of this tutorial, lets download the [SUSY](https://archive.ics.uci.edu/ml/datasets/SUSY) dataset and feed the data into kafka manually. The goal of this classification problem is to distinguish between a signal process which produces supersymmetric particles and a background process which does not.
###Code
!curl -sSOL https://archive.ics.uci.edu/ml/machine-learning-databases/00279/SUSY.csv.gz
###Output
_____no_output_____
###Markdown
Explore the dataset The first column is the class label (1 for signal, 0 for background), followed by the 18 features (8 low-level features then 10 high-level features).The first 8 features are kinematic properties measured by the particle detectors in the accelerator. The last 10 features are functions of the first 8 features. These are high-level features derived by physicists to help discriminate between the two classes.
###Code
COLUMNS = [
# labels
'class',
# low-level features
'lepton_1_pT',
'lepton_1_eta',
'lepton_1_phi',
'lepton_2_pT',
'lepton_2_eta',
'lepton_2_phi',
'missing_energy_magnitude',
'missing_energy_phi',
# high-level derived features
'MET_rel',
'axial_MET',
'M_R',
'M_TR_2',
'R',
'MT2',
'S_R',
'M_Delta_R',
'dPhi_r_b',
'cos(theta_r1)'
]
###Output
_____no_output_____
###Markdown
The entire dataset consists of 5 million rows. However, for the purpose of this tutorial, let's consider only a fraction of the dataset (100,000 rows) so that less time is spent on the moving the data and more time on understanding the functionality of the api.
###Code
susy_iterator = pd.read_csv('SUSY.csv.gz', header=None, names=COLUMNS, chunksize=100000)
susy_df = next(susy_iterator)
susy_df.head()
# Number of datapoints and columns
len(susy_df), len(susy_df.columns)
# Number of datapoints belonging to each class (0: background noise, 1: signal)
len(susy_df[susy_df["class"]==0]), len(susy_df[susy_df["class"]==1])
###Output
_____no_output_____
###Markdown
Split the dataset
###Code
train_df, test_df = train_test_split(susy_df, test_size=0.4, shuffle=True)
print("Number of training samples: ",len(train_df))
print("Number of testing sample: ",len(test_df))
x_train_df = train_df.drop(["class"], axis=1)
y_train_df = train_df["class"]
x_test_df = test_df.drop(["class"], axis=1)
y_test_df = test_df["class"]
# The labels are set as the kafka message keys so as to store data
# in multiple-partitions. Thus, enabling efficient data retrieval
# using the consumer groups.
x_train = list(filter(None, x_train_df.to_csv(index=False).split("\n")[1:]))
y_train = list(filter(None, y_train_df.to_csv(index=False).split("\n")[1:]))
x_test = list(filter(None, x_test_df.to_csv(index=False).split("\n")[1:]))
y_test = list(filter(None, y_test_df.to_csv(index=False).split("\n")[1:]))
NUM_COLUMNS = len(x_train_df.columns)
len(x_train), len(y_train), len(x_test), len(y_test)
###Output
_____no_output_____
###Markdown
Store the train and test data in kafkaStoring the data in kafka simulates an environment for continuous remote data retrieval for training and inference purposes.
###Code
def error_callback(exc):
raise Exception('Error while sendig data to kafka: {0}'.format(str(exc)))
def write_to_kafka(topic_name, items):
count=0
producer = KafkaProducer(bootstrap_servers=['127.0.0.1:9092'])
for message, key in items:
producer.send(topic_name, key=key.encode('utf-8'), value=message.encode('utf-8')).add_errback(error_callback)
count+=1
producer.flush()
print("Wrote {0} messages into topic: {1}".format(count, topic_name))
write_to_kafka("susy-train", zip(x_train, y_train))
write_to_kafka("susy-test", zip(x_test, y_test))
###Output
_____no_output_____
###Markdown
Define the tfio train datasetThe `IODataset` class is utilized for streaming data from kafka into tensorflow. The class inherits from `tf.data.Dataset` and thus has all the useful functionalities of `tf.data.Dataset` out of the box.
###Code
def decode_kafka_item(item):
message = tf.io.decode_csv(item.message, [[0.0] for i in range(NUM_COLUMNS)])
key = tf.strings.to_number(item.key)
return (message, key)
BATCH_SIZE=64
SHUFFLE_BUFFER_SIZE=64
train_ds = tfio.IODataset.from_kafka('susy-train', partition=0, offset=0)
train_ds = train_ds.shuffle(buffer_size=SHUFFLE_BUFFER_SIZE)
train_ds = train_ds.map(decode_kafka_item)
train_ds = train_ds.batch(BATCH_SIZE)
###Output
_____no_output_____
###Markdown
Build and train the model
###Code
# Set the parameters
OPTIMIZER="adam"
LOSS=tf.keras.losses.BinaryCrossentropy(from_logits=True)
METRICS=['accuracy']
EPOCHS=20
# design/build the model
model = tf.keras.Sequential([
tf.keras.layers.Input(shape=(NUM_COLUMNS,)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(256, activation='relu'),
tf.keras.layers.Dropout(0.4),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.4),
tf.keras.layers.Dense(1, activation='sigmoid')
])
print(model.summary())
# compile the model
model.compile(optimizer=OPTIMIZER, loss=LOSS, metrics=METRICS)
# fit the model
model.fit(train_ds, epochs=10)
###Output
_____no_output_____
###Markdown
Note: Please do not confuse the training step with online training. It's an entirely different paradigm which will be covered in a later section.Since only a fraction of the dataset is being utilized, our accuracy is limited to ~78% during the training phase. However, please feel free to store additional data in kafka for better a model performance. Also, since the goal was to just demonstrate the functionality of the tfio kafka datasets, a smaller and less-complicated neural network was used. However, one can increase the complexity of the model, modify the learning strategy, tune hyper-parameters etc for exploration purposes. For a baseline approach, please refer to this [article](https://www.nature.com/articles/ncomms5308Sec11). Infer on the test dataTo infer on the test data by adhering to the 'exactly-once' semantics along with fault-tolerance, the `streaming.KafkaGroupIODataset` can be utilized. Define the tfio test datasetThe `stream_timeout` parameter blocks for the given duration for new data points to be streamed into the topic. This removes the need for creating new datasets if the data is being streamed into the topic in an intermittent fashion.
###Code
test_ds = tfio.experimental.streaming.KafkaGroupIODataset(
topics=["susy-test"],
group_id="testcg",
servers="127.0.0.1:9092",
stream_timeout=10000,
configuration=[
"session.timeout.ms=7000",
"max.poll.interval.ms=8000",
"auto.offset.reset=earliest"
],
)
def decode_kafka_test_item(raw_message, raw_key):
message = tf.io.decode_csv(raw_message, [[0.0] for i in range(NUM_COLUMNS)])
key = tf.strings.to_number(raw_key)
return (message, key)
test_ds = test_ds.map(decode_kafka_test_item)
test_ds = test_ds.batch(BATCH_SIZE)
###Output
_____no_output_____
###Markdown
Though this class can be used for training purposes, there are caveats which need to be addressed. Once all the messages are read from kafka and the latest offsets are committed using the `streaming.KafkaGroupIODataset`, the consumer doesn't restart reading the messages from the beginning. Thus, while training, it is possible only to train for a single epoch with the data continuously flowing in. This kind of a functionality has limited use cases during the training phase wherein, once a datapoint has been consumed by the model it is no longer required and can be discarded.However, this functionality shines when it comes to robust inference with exactly-once semantics. evaluate the performance on the test data
###Code
res = model.evaluate(test_ds)
print("test loss, test acc:", res)
###Output
_____no_output_____
###Markdown
Since the inference is based on 'exactly-once' semantics, the evaluation on the test set can be run only once. In order to run the inference again on the test data, a new consumer group should be used. Track the offset lag of the `testcg` consumer group
###Code
!confluent-5.4.1/bin/kafka-consumer-groups --bootstrap-server 127.0.0.1:9092 --describe --group testcg
###Output
_____no_output_____
###Markdown
Once the `current-offset` matches the `log-end-offset` for all the partitions, it indicates that the consumer(s) have completed fetching all the messages from the kafka topic. Online learningThe online machine learning paradigm is a bit different from the traditional/conventional way of training machine learning models. In the former case, the model continues to incrementally learn/update it's parameters as soon as the new data points are available and this process is expected to continue indefinitely. This is unlike the latter approaches where the dataset is fixed and the model iterates over it `n` number of times. In online learning, the data once consumed by the model may not be available for training again.By utilizing the `streaming.KafkaBatchIODataset`, it is now possible to train the models in this fashion. Let's continue to use our SUSY dataset for demonstrating this functionality. The tfio training dataset for online learningThe `streaming.KafkaBatchIODataset` is similar to the `streaming.KafkaGroupIODataset` in it's API. Additionally, it is recommended to utilize the `stream_timeout` parameter to configure the duration for which the dataset will block for new messages before timing out. In the instance below, the dataset is configured with a `stream_timeout` of `30000` milliseconds. This implies that, after all the messages from the topic have been consumed, the dataset will wait for an additional 30 seconds before timing out and disconnecting from the kafka cluster. If new messages are streamed into the topic before timing out, the data consumption and model training resumes for those newly consumed data points. To block indefinitely, set it to `-1`.
###Code
online_train_ds = tfio.experimental.streaming.KafkaBatchIODataset(
topics=["susy-train"],
group_id="cgonline",
servers="127.0.0.1:9092",
stream_timeout=30000, # in milliseconds, to block indefinitely, set it to -1.
configuration=[
"session.timeout.ms=7000",
"max.poll.interval.ms=8000",
"auto.offset.reset=earliest"
],
)
###Output
_____no_output_____
###Markdown
In addition to training the model on existing data, a background thread will be started, which will start streaming additional data into the `susy-train` topic after a sleep duration of 30 seconds. This demonstrates the functionality of resuming the training as soons as new data is fed into the topic without the need for building the dataset over and over again.
###Code
def error_callback(exc):
raise Exception('Error while sendig data to kafka: {0}'.format(str(exc)))
def write_to_kafka_after_sleep(topic_name, items):
time.sleep(30)
print("#"*100)
print("Writing messages into topic: {0} after a nice sleep !".format(topic_name))
print("#"*100)
count=0
producer = KafkaProducer(bootstrap_servers=['127.0.0.1:9092'])
for message, key in items:
producer.send(topic_name,
key=key.encode('utf-8'),
value=message.encode('utf-8')
).add_errback(error_callback)
count+=1
producer.flush()
print("#"*100)
print("Wrote {0} messages into topic: {1}".format(count, topic_name))
print("#"*100)
def decode_kafka_online_item(raw_message, raw_key):
message = tf.io.decode_csv(raw_message, [[0.0] for i in range(NUM_COLUMNS)])
key = tf.strings.to_number(raw_key)
return (message, key)
###Output
_____no_output_____
###Markdown
Every item that the `online_train_ds` generates is a `tf.data.Dataset` in itself. Thus, all the standard transformations can be applied as usual.
###Code
thread = threading.Thread(target=write_to_kafka_after_sleep,
args=("susy-train", zip(x_train, y_train)))
thread.daemon = True
thread.start()
for mini_ds in online_train_ds:
mini_ds = mini_ds.shuffle(buffer_size=SHUFFLE_BUFFER_SIZE)
mini_ds = mini_ds.map(decode_kafka_online_item)
mini_ds = mini_ds.batch(BATCH_SIZE)
model.fit(mini_ds, epochs=3)
###Output
_____no_output_____
###Markdown
Copyright 2020 The TensorFlow IO Authors.
###Code
#@title Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
###Output
_____no_output_____
###Markdown
Robust machine learning on streaming data using Kafka and Tensorflow-IO View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook OverviewThis tutorial focuses on streaming data from a [Kafka](https://docs.confluent.io/current/getting-started.html) cluster into a `tf.data.Dataset` which is then used in conjunction with `tf.keras` for training and inference.Kafka is primarily a distributed event-streaming platform which provides scalable and fault-tolerant streaming data across data pipelines. It is an essential technical component of a plethora of major enterprises where mission-critical data delivery is a primary requirement.**NOTE:** A basic understanding of the [kafka components](https://docs.confluent.io/current/kafka/introduction.html) will help you in following the tutorial with ease. Setup Install the required tensorflow-io and kafka packages
###Code
!pip install tensorflow-io
!pip install kafka-python
###Output
_____no_output_____
###Markdown
Import packages
###Code
import os
from datetime import datetime
import time
import threading
import json
from kafka import KafkaProducer
from kafka.errors import KafkaError
from sklearn.model_selection import train_test_split
import pandas as pd
import tensorflow as tf
import tensorflow_io as tfio
###Output
_____no_output_____
###Markdown
Validate tf and tfio imports
###Code
print("tensorflow-io version: {}".format(tfio.__version__))
print("tensorflow version: {}".format(tf.__version__))
###Output
_____no_output_____
###Markdown
Download and setup Kafka and Zookeeper instancesFor demo purposes, the following instances are setup locally:- Kafka (Brokers: 127.0.0.1:9092)- Zookeeper (Node: 127.0.0.1:2181)
###Code
!curl -sSOL http://packages.confluent.io/archive/5.4/confluent-community-5.4.1-2.12.tar.gz
!tar -xzf confluent-community-5.4.1-2.12.tar.gz
###Output
_____no_output_____
###Markdown
Using the default configurations (provided by the confluent package) for spinning up the instances.
###Code
!cd confluent-5.4.1 && bin/zookeeper-server-start -daemon etc/kafka/zookeeper.properties
!cd confluent-5.4.1 && bin/kafka-server-start -daemon etc/kafka/server.properties
!echo "Waiting for 10 secs until kafka and zookeeper services are up and running"
!sleep 10
###Output
_____no_output_____
###Markdown
Once the instances are started as daemon processes, grep for `kafka` in the processes list. The two java processes correspond to zookeeper and the kafka instances.
###Code
!ps -ef | grep kafka
###Output
_____no_output_____
###Markdown
Create the kafka topics with the following specs:- susy-train: partitions=1, replication-factor=1 - susy-test: partitions=2, replication-factor=1
###Code
!confluent-5.4.1/bin/kafka-topics --create --zookeeper 127.0.0.1:2181 --replication-factor 1 --partitions 1 --topic susy-train
!confluent-5.4.1/bin/kafka-topics --create --zookeeper 127.0.0.1:2181 --replication-factor 1 --partitions 2 --topic susy-test
###Output
_____no_output_____
###Markdown
Describe the topic for details on the configuration
###Code
!confluent-5.4.1/bin/kafka-topics --bootstrap-server 127.0.0.1:9092 --describe --topic susy-train
!confluent-5.4.1/bin/kafka-topics --bootstrap-server 127.0.0.1:9092 --describe --topic susy-test
###Output
_____no_output_____
###Markdown
The replication factor 1 indicates that the data is not being replicated. This is due to the presence of a single broker in our kafka setup.In production systems, the number of bootstrap servers can be in the range of 100's of nodes. That is where the fault-tolerance using replication comes into picture.Please refer to the [docs](https://kafka.apache.org/documentation/replication) for more details. SUSY DatasetKafka being an event streaming platform, enables data from various sources to be written into it. For instance:- Web traffic logs- Astronomical measurements- IoT sensor data- Product reviews and many more.For the purpose of this tutorial, lets download the [SUSY](https://archive.ics.uci.edu/ml/datasets/SUSY) dataset and feed the data into kafka manually. The goal of this classification problem is to distinguish between a signal process which produces supersymmetric particles and a background process which does not.
###Code
!curl -sSOL https://archive.ics.uci.edu/ml/machine-learning-databases/00279/SUSY.csv.gz
###Output
_____no_output_____
###Markdown
Explore the dataset The first column is the class label (1 for signal, 0 for background), followed by the 18 features (8 low-level features then 10 high-level features).The first 8 features are kinematic properties measured by the particle detectors in the accelerator. The last 10 features are functions of the first 8 features. These are high-level features derived by physicists to help discriminate between the two classes.
###Code
COLUMNS = [
# labels
'class',
# low-level features
'lepton_1_pT',
'lepton_1_eta',
'lepton_1_phi',
'lepton_2_pT',
'lepton_2_eta',
'lepton_2_phi',
'missing_energy_magnitude',
'missing_energy_phi',
# high-level derived features
'MET_rel',
'axial_MET',
'M_R',
'M_TR_2',
'R',
'MT2',
'S_R',
'M_Delta_R',
'dPhi_r_b',
'cos(theta_r1)'
]
###Output
_____no_output_____
###Markdown
The entire dataset consists of 5 million rows. However, for the purpose of this tutorial, let's consider only a fraction of the dataset (100,000 rows) so that less time is spent on the moving the data and more time on understanding the functionality of the api.
###Code
susy_iterator = pd.read_csv('SUSY.csv.gz', header=None, names=COLUMNS, chunksize=100000)
susy_df = next(susy_iterator)
susy_df.head()
# Number of datapoints and columns
len(susy_df), len(susy_df.columns)
# Number of datapoints belonging to each class (0: background noise, 1: signal)
len(susy_df[susy_df["class"]==0]), len(susy_df[susy_df["class"]==1])
###Output
_____no_output_____
###Markdown
Split the dataset
###Code
train_df, test_df = train_test_split(susy_df, test_size=0.4, shuffle=True)
print("Number of training samples: ",len(train_df))
print("Number of testing sample: ",len(test_df))
x_train_df = train_df.drop(["class"], axis=1)
y_train_df = train_df["class"]
x_test_df = test_df.drop(["class"], axis=1)
y_test_df = test_df["class"]
# The labels are set as the kafka message keys so as to store data
# in multiple-partitions. Thus, enabling efficient data retrieval
# using the consumer groups.
x_train = list(filter(None, x_train_df.to_csv(index=False).split("\n")[1:]))
y_train = list(filter(None, y_train_df.to_csv(index=False).split("\n")[1:]))
x_test = list(filter(None, x_test_df.to_csv(index=False).split("\n")[1:]))
y_test = list(filter(None, y_test_df.to_csv(index=False).split("\n")[1:]))
NUM_COLUMNS = len(x_train_df.columns)
len(x_train), len(y_train), len(x_test), len(y_test)
###Output
_____no_output_____
###Markdown
Store the train and test data in kafkaStoring the data in kafka simulates an environment for continuous remote data retrieval for training and inference purposes.
###Code
def error_callback(exc):
raise Exception('Error while sendig data to kafka: {0}'.format(str(exc)))
def write_to_kafka(topic_name, items):
count=0
producer = KafkaProducer(bootstrap_servers=['127.0.0.1:9092'])
for message, key in items:
producer.send(topic_name, key=key.encode('utf-8'), value=message.encode('utf-8')).add_errback(error_callback)
count+=1
producer.flush()
print("Wrote {0} messages into topic: {1}".format(count, topic_name))
write_to_kafka("susy-train", zip(x_train, y_train))
write_to_kafka("susy-test", zip(x_test, y_test))
###Output
_____no_output_____
###Markdown
Define the tfio train datasetThe `IODataset` class is utilized for streaming data from kafka into tensorflow. The class inherits from `tf.data.Dataset` and thus has all the useful functionalities of `tf.data.Dataset` out of the box.
###Code
def decode_kafka_item(item):
message = tf.io.decode_csv(item.message, [[0.0] for i in range(NUM_COLUMNS)])
key = tf.strings.to_number(item.key)
return (message, key)
BATCH_SIZE=64
SHUFFLE_BUFFER_SIZE=64
train_ds = tfio.IODataset.from_kafka('susy-train', partition=0, offset=0)
train_ds = train_ds.shuffle(buffer_size=SHUFFLE_BUFFER_SIZE)
train_ds = train_ds.map(decode_kafka_item)
train_ds = train_ds.batch(BATCH_SIZE)
###Output
_____no_output_____
###Markdown
Build and train the model
###Code
# Set the parameters
OPTIMIZER="adam"
LOSS=tf.keras.losses.BinaryCrossentropy(from_logits=True)
METRICS=['accuracy']
EPOCHS=10
# design/build the model
model = tf.keras.Sequential([
tf.keras.layers.Input(shape=(NUM_COLUMNS,)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(256, activation='relu'),
tf.keras.layers.Dropout(0.4),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.4),
tf.keras.layers.Dense(1, activation='sigmoid')
])
print(model.summary())
# compile the model
model.compile(optimizer=OPTIMIZER, loss=LOSS, metrics=METRICS)
# fit the model
model.fit(train_ds, epochs=EPOCHS)
###Output
_____no_output_____
###Markdown
Note: Please do not confuse the training step with online training. It's an entirely different paradigm which will be covered in a later section.Since only a fraction of the dataset is being utilized, our accuracy is limited to ~78% during the training phase. However, please feel free to store additional data in kafka for a better model performance. Also, since the goal was to just demonstrate the functionality of the tfio kafka datasets, a smaller and less-complicated neural network was used. However, one can increase the complexity of the model, modify the learning strategy, tune hyper-parameters etc for exploration purposes. For a baseline approach, please refer to this [article](https://www.nature.com/articles/ncomms5308Sec11). Infer on the test dataTo infer on the test data by adhering to the 'exactly-once' semantics along with fault-tolerance, the `streaming.KafkaGroupIODataset` can be utilized. Define the tfio test datasetThe `stream_timeout` parameter blocks for the given duration for new data points to be streamed into the topic. This removes the need for creating new datasets if the data is being streamed into the topic in an intermittent fashion.
###Code
test_ds = tfio.experimental.streaming.KafkaGroupIODataset(
topics=["susy-test"],
group_id="testcg",
servers="127.0.0.1:9092",
stream_timeout=10000,
configuration=[
"session.timeout.ms=7000",
"max.poll.interval.ms=8000",
"auto.offset.reset=earliest"
],
)
def decode_kafka_test_item(raw_message, raw_key):
message = tf.io.decode_csv(raw_message, [[0.0] for i in range(NUM_COLUMNS)])
key = tf.strings.to_number(raw_key)
return (message, key)
test_ds = test_ds.map(decode_kafka_test_item)
test_ds = test_ds.batch(BATCH_SIZE)
###Output
_____no_output_____
###Markdown
Though this class can be used for training purposes, there are caveats which need to be addressed. Once all the messages are read from kafka and the latest offsets are committed using the `streaming.KafkaGroupIODataset`, the consumer doesn't restart reading the messages from the beginning. Thus, while training, it is possible only to train for a single epoch with the data continuously flowing in. This kind of a functionality has limited use cases during the training phase wherein, once a datapoint has been consumed by the model it is no longer required and can be discarded.However, this functionality shines when it comes to robust inference with exactly-once semantics. evaluate the performance on the test data
###Code
res = model.evaluate(test_ds)
print("test loss, test acc:", res)
###Output
_____no_output_____
###Markdown
Since the inference is based on 'exactly-once' semantics, the evaluation on the test set can be run only once. In order to run the inference again on the test data, a new consumer group should be used. Track the offset lag of the `testcg` consumer group
###Code
!confluent-5.4.1/bin/kafka-consumer-groups --bootstrap-server 127.0.0.1:9092 --describe --group testcg
###Output
_____no_output_____
###Markdown
Once the `current-offset` matches the `log-end-offset` for all the partitions, it indicates that the consumer(s) have completed fetching all the messages from the kafka topic. Online learningThe online machine learning paradigm is a bit different from the traditional/conventional way of training machine learning models. In the former case, the model continues to incrementally learn/update it's parameters as soon as the new data points are available and this process is expected to continue indefinitely. This is unlike the latter approaches where the dataset is fixed and the model iterates over it `n` number of times. In online learning, the data once consumed by the model may not be available for training again.By utilizing the `streaming.KafkaBatchIODataset`, it is now possible to train the models in this fashion. Let's continue to use our SUSY dataset for demonstrating this functionality. The tfio training dataset for online learningThe `streaming.KafkaBatchIODataset` is similar to the `streaming.KafkaGroupIODataset` in it's API. Additionally, it is recommended to utilize the `stream_timeout` parameter to configure the duration for which the dataset will block for new messages before timing out. In the instance below, the dataset is configured with a `stream_timeout` of `30000` milliseconds. This implies that, after all the messages from the topic have been consumed, the dataset will wait for an additional 30 seconds before timing out and disconnecting from the kafka cluster. If new messages are streamed into the topic before timing out, the data consumption and model training resumes for those newly consumed data points. To block indefinitely, set it to `-1`.
###Code
online_train_ds = tfio.experimental.streaming.KafkaBatchIODataset(
topics=["susy-train"],
group_id="cgonline",
servers="127.0.0.1:9092",
stream_timeout=30000, # in milliseconds, to block indefinitely, set it to -1.
configuration=[
"session.timeout.ms=7000",
"max.poll.interval.ms=8000",
"auto.offset.reset=earliest"
],
)
###Output
_____no_output_____
###Markdown
In addition to training the model on existing data, a background thread will be started, which will start streaming additional data into the `susy-train` topic after a sleep duration of 30 seconds. This demonstrates the functionality of resuming the training as soons as new data is fed into the topic without the need for building the dataset over and over again.
###Code
def error_callback(exc):
raise Exception('Error while sendig data to kafka: {0}'.format(str(exc)))
def write_to_kafka_after_sleep(topic_name, items):
time.sleep(30)
print("#"*100)
print("Writing messages into topic: {0} after a nice sleep !".format(topic_name))
print("#"*100)
count=0
producer = KafkaProducer(bootstrap_servers=['127.0.0.1:9092'])
for message, key in items:
producer.send(topic_name,
key=key.encode('utf-8'),
value=message.encode('utf-8')
).add_errback(error_callback)
count+=1
producer.flush()
print("#"*100)
print("Wrote {0} messages into topic: {1}".format(count, topic_name))
print("#"*100)
def decode_kafka_online_item(raw_message, raw_key):
message = tf.io.decode_csv(raw_message, [[0.0] for i in range(NUM_COLUMNS)])
key = tf.strings.to_number(raw_key)
return (message, key)
###Output
_____no_output_____
###Markdown
Every item that the `online_train_ds` generates is a `tf.data.Dataset` in itself. Thus, all the standard transformations can be applied as usual.
###Code
thread = threading.Thread(target=write_to_kafka_after_sleep,
args=("susy-train", zip(x_train, y_train)))
thread.daemon = True
thread.start()
for mini_ds in online_train_ds:
mini_ds = mini_ds.shuffle(buffer_size=32)
mini_ds = mini_ds.map(decode_kafka_online_item)
mini_ds = mini_ds.batch(32)
model.fit(mini_ds, epochs=3)
###Output
_____no_output_____
###Markdown
Copyright 2020 The TensorFlow IO Authors.
###Code
#@title Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
###Output
_____no_output_____
###Markdown
Robust machine learning on streaming data using Kafka and Tensorflow-IO View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook OverviewThis tutorial focuses on streaming data from a [Kafka](https://kafka.apache.org/quickstart) cluster into a `tf.data.Dataset` which is then used in conjunction with `tf.keras` for training and inference.Kafka is primarily a distributed event-streaming platform which provides scalable and fault-tolerant streaming data across data pipelines. It is an essential technical component of a plethora of major enterprises where mission-critical data delivery is a primary requirement.**NOTE:** A basic understanding of the [kafka components](https://kafka.apache.org/documentation/intro_concepts_and_terms) will help you in following the tutorial with ease.**NOTE:** A Java runtime environment is required to run this tutorial. Setup Install the required tensorflow-io and kafka packages
###Code
!pip install tensorflow-io
!pip install kafka-python
###Output
_____no_output_____
###Markdown
Import packages
###Code
import os
from datetime import datetime
import time
import threading
import json
from kafka import KafkaProducer
from kafka.errors import KafkaError
from sklearn.model_selection import train_test_split
import pandas as pd
import tensorflow as tf
import tensorflow_io as tfio
###Output
_____no_output_____
###Markdown
Validate tf and tfio imports
###Code
print("tensorflow-io version: {}".format(tfio.__version__))
print("tensorflow version: {}".format(tf.__version__))
###Output
_____no_output_____
###Markdown
Download and setup Kafka and Zookeeper instancesFor demo purposes, the following instances are setup locally:- Kafka (Brokers: 127.0.0.1:9092)- Zookeeper (Node: 127.0.0.1:2181)
###Code
!curl -sSOL https://downloads.apache.org/kafka/2.7.0/kafka_2.13-2.7.0.tgz
!tar -xzf kafka_2.13-2.7.0.tgz
###Output
_____no_output_____
###Markdown
Using the default configurations (provided by Apache Kafka) for spinning up the instances.
###Code
!./kafka_2.13-2.7.0/bin/zookeeper-server-start.sh -daemon ./kafka_2.13-2.7.0/config/zookeeper.properties
!./kafka_2.13-2.7.0/bin/kafka-server-start.sh -daemon ./kafka_2.13-2.7.0/config/server.properties
!echo "Waiting for 10 secs until kafka and zookeeper services are up and running"
!sleep 10
###Output
_____no_output_____
###Markdown
Once the instances are started as daemon processes, grep for `kafka` in the processes list. The two java processes correspond to zookeeper and the kafka instances.
###Code
!ps -ef | grep kafka
###Output
_____no_output_____
###Markdown
Create the kafka topics with the following specs:- susy-train: partitions=1, replication-factor=1 - susy-test: partitions=2, replication-factor=1
###Code
!./kafka_2.13-2.7.0/bin/kafka-topics.sh --create --bootstrap-server 127.0.0.1:9092 --replication-factor 1 --partitions 1 --topic susy-train
!./kafka_2.13-2.7.0/bin/kafka-topics.sh --create --bootstrap-server 127.0.0.1:9092 --replication-factor 1 --partitions 2 --topic susy-test
###Output
_____no_output_____
###Markdown
Describe the topic for details on the configuration
###Code
!./kafka_2.13-2.7.0/bin/kafka-topics.sh --describe --bootstrap-server 127.0.0.1:9092 --topic susy-train
!./kafka_2.13-2.7.0/bin/kafka-topics.sh --describe --bootstrap-server 127.0.0.1:9092 --topic susy-test
###Output
_____no_output_____
###Markdown
The replication factor 1 indicates that the data is not being replicated. This is due to the presence of a single broker in our kafka setup.In production systems, the number of bootstrap servers can be in the range of 100's of nodes. That is where the fault-tolerance using replication comes into picture.Please refer to the [docs](https://kafka.apache.org/documentation/replication) for more details. SUSY DatasetKafka being an event streaming platform, enables data from various sources to be written into it. For instance:- Web traffic logs- Astronomical measurements- IoT sensor data- Product reviews and many more.For the purpose of this tutorial, lets download the [SUSY](https://archive.ics.uci.edu/ml/datasets/SUSY) dataset and feed the data into kafka manually. The goal of this classification problem is to distinguish between a signal process which produces supersymmetric particles and a background process which does not.
###Code
!curl -sSOL https://archive.ics.uci.edu/ml/machine-learning-databases/00279/SUSY.csv.gz
###Output
_____no_output_____
###Markdown
Explore the dataset The first column is the class label (1 for signal, 0 for background), followed by the 18 features (8 low-level features then 10 high-level features).The first 8 features are kinematic properties measured by the particle detectors in the accelerator. The last 10 features are functions of the first 8 features. These are high-level features derived by physicists to help discriminate between the two classes.
###Code
COLUMNS = [
# labels
'class',
# low-level features
'lepton_1_pT',
'lepton_1_eta',
'lepton_1_phi',
'lepton_2_pT',
'lepton_2_eta',
'lepton_2_phi',
'missing_energy_magnitude',
'missing_energy_phi',
# high-level derived features
'MET_rel',
'axial_MET',
'M_R',
'M_TR_2',
'R',
'MT2',
'S_R',
'M_Delta_R',
'dPhi_r_b',
'cos(theta_r1)'
]
###Output
_____no_output_____
###Markdown
The entire dataset consists of 5 million rows. However, for the purpose of this tutorial, let's consider only a fraction of the dataset (100,000 rows) so that less time is spent on the moving the data and more time on understanding the functionality of the api.
###Code
susy_iterator = pd.read_csv('SUSY.csv.gz', header=None, names=COLUMNS, chunksize=100000)
susy_df = next(susy_iterator)
susy_df.head()
# Number of datapoints and columns
len(susy_df), len(susy_df.columns)
# Number of datapoints belonging to each class (0: background noise, 1: signal)
len(susy_df[susy_df["class"]==0]), len(susy_df[susy_df["class"]==1])
###Output
_____no_output_____
###Markdown
Split the dataset
###Code
train_df, test_df = train_test_split(susy_df, test_size=0.4, shuffle=True)
print("Number of training samples: ",len(train_df))
print("Number of testing sample: ",len(test_df))
x_train_df = train_df.drop(["class"], axis=1)
y_train_df = train_df["class"]
x_test_df = test_df.drop(["class"], axis=1)
y_test_df = test_df["class"]
# The labels are set as the kafka message keys so as to store data
# in multiple-partitions. Thus, enabling efficient data retrieval
# using the consumer groups.
x_train = list(filter(None, x_train_df.to_csv(index=False).split("\n")[1:]))
y_train = list(filter(None, y_train_df.to_csv(index=False).split("\n")[1:]))
x_test = list(filter(None, x_test_df.to_csv(index=False).split("\n")[1:]))
y_test = list(filter(None, y_test_df.to_csv(index=False).split("\n")[1:]))
NUM_COLUMNS = len(x_train_df.columns)
len(x_train), len(y_train), len(x_test), len(y_test)
###Output
_____no_output_____
###Markdown
Store the train and test data in kafkaStoring the data in kafka simulates an environment for continuous remote data retrieval for training and inference purposes.
###Code
def error_callback(exc):
raise Exception('Error while sendig data to kafka: {0}'.format(str(exc)))
def write_to_kafka(topic_name, items):
count=0
producer = KafkaProducer(bootstrap_servers=['127.0.0.1:9092'])
for message, key in items:
producer.send(topic_name, key=key.encode('utf-8'), value=message.encode('utf-8')).add_errback(error_callback)
count+=1
producer.flush()
print("Wrote {0} messages into topic: {1}".format(count, topic_name))
write_to_kafka("susy-train", zip(x_train, y_train))
write_to_kafka("susy-test", zip(x_test, y_test))
###Output
_____no_output_____
###Markdown
Define the tfio train datasetThe `IODataset` class is utilized for streaming data from kafka into tensorflow. The class inherits from `tf.data.Dataset` and thus has all the useful functionalities of `tf.data.Dataset` out of the box.
###Code
def decode_kafka_item(item):
message = tf.io.decode_csv(item.message, [[0.0] for i in range(NUM_COLUMNS)])
key = tf.strings.to_number(item.key)
return (message, key)
BATCH_SIZE=64
SHUFFLE_BUFFER_SIZE=64
train_ds = tfio.IODataset.from_kafka('susy-train', partition=0, offset=0)
train_ds = train_ds.shuffle(buffer_size=SHUFFLE_BUFFER_SIZE)
train_ds = train_ds.map(decode_kafka_item)
train_ds = train_ds.batch(BATCH_SIZE)
###Output
_____no_output_____
###Markdown
Build and train the model
###Code
# Set the parameters
OPTIMIZER="adam"
LOSS=tf.keras.losses.BinaryCrossentropy(from_logits=True)
METRICS=['accuracy']
EPOCHS=10
# design/build the model
model = tf.keras.Sequential([
tf.keras.layers.Input(shape=(NUM_COLUMNS,)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(256, activation='relu'),
tf.keras.layers.Dropout(0.4),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.4),
tf.keras.layers.Dense(1, activation='sigmoid')
])
print(model.summary())
# compile the model
model.compile(optimizer=OPTIMIZER, loss=LOSS, metrics=METRICS)
# fit the model
model.fit(train_ds, epochs=EPOCHS)
###Output
_____no_output_____
###Markdown
Note: Please do not confuse the training step with online training. It's an entirely different paradigm which will be covered in a later section.Since only a fraction of the dataset is being utilized, our accuracy is limited to ~78% during the training phase. However, please feel free to store additional data in kafka for a better model performance. Also, since the goal was to just demonstrate the functionality of the tfio kafka datasets, a smaller and less-complicated neural network was used. However, one can increase the complexity of the model, modify the learning strategy, tune hyper-parameters etc for exploration purposes. For a baseline approach, please refer to this [article](https://www.nature.com/articles/ncomms5308Sec11). Infer on the test dataTo infer on the test data by adhering to the 'exactly-once' semantics along with fault-tolerance, the `streaming.KafkaGroupIODataset` can be utilized. Define the tfio test datasetThe `stream_timeout` parameter blocks for the given duration for new data points to be streamed into the topic. This removes the need for creating new datasets if the data is being streamed into the topic in an intermittent fashion.
###Code
test_ds = tfio.experimental.streaming.KafkaGroupIODataset(
topics=["susy-test"],
group_id="testcg",
servers="127.0.0.1:9092",
stream_timeout=10000,
configuration=[
"session.timeout.ms=7000",
"max.poll.interval.ms=8000",
"auto.offset.reset=earliest"
],
)
def decode_kafka_test_item(raw_message, raw_key):
message = tf.io.decode_csv(raw_message, [[0.0] for i in range(NUM_COLUMNS)])
key = tf.strings.to_number(raw_key)
return (message, key)
test_ds = test_ds.map(decode_kafka_test_item)
test_ds = test_ds.batch(BATCH_SIZE)
###Output
_____no_output_____
###Markdown
Though this class can be used for training purposes, there are caveats which need to be addressed. Once all the messages are read from kafka and the latest offsets are committed using the `streaming.KafkaGroupIODataset`, the consumer doesn't restart reading the messages from the beginning. Thus, while training, it is possible only to train for a single epoch with the data continuously flowing in. This kind of a functionality has limited use cases during the training phase wherein, once a datapoint has been consumed by the model it is no longer required and can be discarded.However, this functionality shines when it comes to robust inference with exactly-once semantics. evaluate the performance on the test data
###Code
res = model.evaluate(test_ds)
print("test loss, test acc:", res)
###Output
_____no_output_____
###Markdown
Since the inference is based on 'exactly-once' semantics, the evaluation on the test set can be run only once. In order to run the inference again on the test data, a new consumer group should be used. Track the offset lag of the `testcg` consumer group
###Code
!./kafka_2.13-2.7.0/bin/kafka-consumer-groups.sh --bootstrap-server 127.0.0.1:9092 --describe --group testcg
###Output
_____no_output_____
###Markdown
Once the `current-offset` matches the `log-end-offset` for all the partitions, it indicates that the consumer(s) have completed fetching all the messages from the kafka topic. Online learningThe online machine learning paradigm is a bit different from the traditional/conventional way of training machine learning models. In the former case, the model continues to incrementally learn/update it's parameters as soon as the new data points are available and this process is expected to continue indefinitely. This is unlike the latter approaches where the dataset is fixed and the model iterates over it `n` number of times. In online learning, the data once consumed by the model may not be available for training again.By utilizing the `streaming.KafkaBatchIODataset`, it is now possible to train the models in this fashion. Let's continue to use our SUSY dataset for demonstrating this functionality. The tfio training dataset for online learningThe `streaming.KafkaBatchIODataset` is similar to the `streaming.KafkaGroupIODataset` in it's API. Additionally, it is recommended to utilize the `stream_timeout` parameter to configure the duration for which the dataset will block for new messages before timing out. In the instance below, the dataset is configured with a `stream_timeout` of `10000` milliseconds. This implies that, after all the messages from the topic have been consumed, the dataset will wait for an additional 10 seconds before timing out and disconnecting from the kafka cluster. If new messages are streamed into the topic before timing out, the data consumption and model training resumes for those newly consumed data points. To block indefinitely, set it to `-1`.
###Code
online_train_ds = tfio.experimental.streaming.KafkaBatchIODataset(
topics=["susy-train"],
group_id="cgonline",
servers="127.0.0.1:9092",
stream_timeout=10000, # in milliseconds, to block indefinitely, set it to -1.
configuration=[
"session.timeout.ms=7000",
"max.poll.interval.ms=8000",
"auto.offset.reset=earliest"
],
)
###Output
_____no_output_____
###Markdown
Every item that the `online_train_ds` generates is a `tf.data.Dataset` in itself. Thus, all the standard transformations can be applied as usual.
###Code
def decode_kafka_online_item(raw_message, raw_key):
message = tf.io.decode_csv(raw_message, [[0.0] for i in range(NUM_COLUMNS)])
key = tf.strings.to_number(raw_key)
return (message, key)
for mini_ds in online_train_ds:
mini_ds = mini_ds.shuffle(buffer_size=32)
mini_ds = mini_ds.map(decode_kafka_online_item)
mini_ds = mini_ds.batch(32)
model.fit(mini_ds, epochs=3)
###Output
_____no_output_____ |
HW7-Compressive_Sensing.ipynb | ###Markdown
Project
###Code
student_name = 'Salih Kilicli'
###Output
_____no_output_____
###Markdown
Instructions Encoding / DecodingThe first part of this project you will write a set of functions to handle the recovery of sparse vectors of dimension $N$.1. Complete the function `create_observation_matrix` to generate an observation matrix with dimension $m \times N$ containing values drawn from a standard normal distribution scaled by $\sqrt{\frac{\pi}{2m}}$.2. Complete the function `create_observation_vector` to create the observation vector by projecting a sparse input vector to a lower dimension using the observation matrix.3. Run your implementation of the functions above using a sparse random input signal generated by the given function, `create_sparse_signal`. You can use `matplotlib.pyplot` to plot the input sparse signal (see Helper functions below).4. Write the $\ell_1$-minimization problem as a linear programming problem. To find its solution, complete the function `optimize` which uses `scipy.optimize.linprog`, `scipy.optimize.minimize` or cvxpy.5. Run your implementation and use the provided code blocks to output the error and results. Verify that the original input signal has been appropriately recovered. Wavelet Image ProcessingIn this section you will use Wavelets to generate a sparse signal from a grayscal image, and then utilize the encoding/decoding functions you have already completed from the previous section to encode and decode the wavelet coefficients.1. Complete the function `decompose_image` to write the input image as a sum of Haar wavelets (see [`pywt.wavedec2`](https://pywavelets.readthedocs.io/en/latest/ref/2d-dwt-and-idwt.html?highlight=wavedec2d-multilevel-decomposition-using-wavedec2)). The function should return both the coefficient array and slicing data (see [`pywt.coeffs_to_array`](https://pywavelets.readthedocs.io/en/latest/ref/dwt-coefficient-handling.html)).2. Complete the function `reconstruct_image` to reconstruct an image from the Haar coefficients and slicing data (see [`pywt.array_to_coeffs`](https://pywavelets.readthedocs.io/en/latest/ref/dwt-coefficient-handling.htmlsplitting-concatenated-coefficient-array-back-into-its-components) and [`pywt.waverec2`](https://pywavelets.readthedocs.io/en/latest/ref/2d-dwt-and-idwt.htmld-multilevel-reconstruction-using-waverec2)).3. Verify your implementation of `decompose_image` and `reconstruct_image`. In the **Test Code** section load the __shapes2_32.jpg__ image from file (this function is provided), and run the subsequent code blocks to decompose and reconstruct the input image as well as compare the results. 4. Complete the function `create_sparse_wavelet_signal`. This function will return a copy of the input array where the component of `s` largest values are the same and the remaining `N-s` values are set to zero. 5. Run the remainder of the code blocks in **Test Code** and verify that you are able to reconstruct an approximation of the original image using the recovered sparse coefficient vector. Values for `m` and `s` have been chosen for you, but you should play with these values and write additional tests to see their affect on the results. What is your conclusion on the effect of `m` and `s`? Explain why you reach this conclusion. Submitting Your AssignmentYou will submit your completed assignment in two formats:- Jupyter Notebook (.ipynb)- HTML (.html) Jupyter Notebook (.ipynb)You may directly use this notebook to complete your assignment or you may use an external editor/IDE of your choice. However, to submit your code please ensure that your code works in this notebook. HTML (.html)To create an HTML file for your assignment simply select `File > Download as > HTML (.html)` from within the Jupyter Notebook. Both files should be uploaded to [Canvas](https://canvas.tamu.edu). scipy.optimize and cvxpyThis project could be completed with any optimization package, but we recommend that you first try with scipy.optimize, and if you wish additionally with [cvxpy](https://www.cvxpy.org/index.html). We will provide solutions for both scipy.optimize and cvxpy after you submit your project.Also, note that the `scipy.optimize.linprog` supports only `'interior-point'`, `'revised simplex'` and `'simplex'`, while CVX supports many others which may provide better results.If you are using the Anaconda package as was suggested at the beginning of the course you will already have scipy.optimize. However, you may not have cvxpy. The cvxpy package provides a much more understandable and easier means of implementing and performing various optimizations. If you wish to try this check out the [cvxpy installation instructions](https://www.cvxpy.org/install/) for your system. **Note**: Your system may have multiple installations of python, anaconda, and/or pip. Do yourself a favor and verify all paths to your installation and to the conda, pip or other tools you are using to install external packages. If you use the wrong one the package will not be available in your working environment. Helper FunctionsThe following block contains several plotting functions along with a function to create a random sparse signal, a function to output the status of optimize, and a function to load images using PIL.
###Code
import matplotlib.pyplot as plt
plt.style.use('seaborn-darkgrid')
import math
import numpy as np
import seaborn as sns
from scipy.optimize import linprog, minimize
from PIL import Image
import cvxpy as cp
import pywt
import warnings
warnings.filterwarnings('ignore')
def plot_sparse_vectors(vec_a, vec_b, **kwargs):
"""
Plots the passed arrays in one or three separate subplots.
If 'full' is specifed as True then the following three subplots
will be generated:
- The topmost subplot contains both arrays; vec_a will be
drawn first twice as thick as vec_b. The title will be
set if 'title' is specified.
- The bottom left subplot contains only the vec_a, and will
be given a tilte is 'title_a' is specified.
- The bottom right subplot contains only the vec_b, and will
be given a tilte is 'title_b' is specified.
If 'full' is not specified or is False, then a single subplot
will generated as follows:
- The plot contains both arrays; vec_a will be drawn first
twice as thick as vec_b. The title will be set if 'title'
is specified.
"""
use_full_layout = 'full' in kwargs and kwargs['full']
if use_full_layout:
fig = plt.figure(figsize=(20, 8))
gs = fig.add_gridspec(2, 2)
else:
fig = plt.figure(figsize=(20, 4))
gs = fig.add_gridspec(1, 1)
ax = fig.add_subplot(gs[0,:])
if 'title' in kwargs:
ax.set_title(kwargs['title'], fontsize=10)
plt.plot(vec_a, 'g', linewidth=4)
plt.plot(vec_b, 'r', linewidth=2)
if use_full_layout:
ax = fig.add_subplot(gs[1,0])
if 'title_a' in kwargs:
ax.set_title(kwargs['title_a'], fontsize=10)
plt.plot(vec_a, 'g', linewidth=2)
ax = fig.add_subplot(gs[1,1])
if 'title_b' in kwargs:
ax.set_title(kwargs['title_b'], fontsize=10)
plt.plot(vec_b, 'r', linewidth=2)
plt.show()
def plot_image_comparison(img_left, img_right, title_left, title_right):
"""
Plots img_left and img_right as subplots on the same row.
The title_left and title_right are supplied to img_left
and img_right, respectively.
"""
fig = plt.figure(figsize=(10, 4))
ax = fig.add_subplot(1, 2, 1)
ax.imshow(img_left, cmap=plt.cm.gray)
ax.set_title(title_left, fontsize=16)
ax.set_xticks([])
ax.set_yticks([])
ax = fig.add_subplot(1, 2, 2)
ax.imshow(img_right, cmap=plt.cm.gray)
ax.set_title(title_right, fontsize=16)
ax.set_xticks([])
ax.set_yticks([])
fig.tight_layout()
plt.show()
def create_sparse_signal(N, s):
"""
Returns a length N array containing s random values drawn from
a standard normal distribution. The remaining N-s values are
set to zero.
"""
# Create a mask with `s` randomly selected elements set to True
mask = np.full(N, False)
mask[:s] = True
np.random.shuffle(mask)
# Define an s-sparse vector using random values
x = np.zeros(N)
x[mask] = np.random.randn(s)
return x
def output_linprog_status(res):
"""
Outputs the state of the optimization at the return of scipy.optimize.linprog
or scipy.optimize.minimize.
"""
print('Message:', res.message)
print('Success:', res.success)
print('Objective Value:', res.fun)
print('Number of Iterations:', res.nit)
print('Exit Status:')
if res.status == 0:
print(' Optimization proceeding nominally.')
elif res.status == 1:
print(' Iteration limit reached.')
elif res.status == 2:
print(' Problem appears to be infeasible.')
elif res.status == 3:
print(' Problem appears to be unbounded.')
elif res.status == 4:
print(' Numerical difficulties encountered.')
else:
print('Unknown.')
# Alias for linprog status output - minimize and linprog return the same structure
output_minimize_status = output_linprog_status
def output_cvxpy_status(problem):
# Output optimation final status
print('Objective Value:', problem.value)
print('Number of Iterations:', problem.solver_stats.num_iters)
print('Exit Status:', problem.status)
def output_opt_status(opt_res):
if type(opt_res) is cp.problems.problem.Problem:
output_cvxpy_status(opt_res)
else:
output_linprog_status(opt_res) # minimize uses the same function
def load_image(filename):
"""
Loads an image, specified by filename, and returns a 2D array whose values
are in the range [0,1].
"""
# load the image
img = Image.open(filename).convert('L')
# convert image data to numpy array with values in [0,1]
img_arr = np.divide(np.asarray(img), 255.0)
return img_arr
###Output
_____no_output_____
###Markdown
Your Solution: Encoding / DecodingComplete the `create_observation_matrix()` and `create_observation_vector()` functions below, and test them using the **Test Code** below.
###Code
def create_observation_matrix(m, N):
"""
This function returns an mxN array of random values from a
standard normal distribution scaled by sqrt( pi / 2m ).
"""
return np.sqrt(np.pi/(2*m)) * np.random.standard_normal(size=(m, N))
def create_observation_vector(A, x):
"""
This function uses the observation matrix A (mxN) to project the
sparse vector x (Nx1) to a lower dimensional space. The reduced
vector (mx1) is returned.
"""
return np.dot(A, x)
###Output
_____no_output_____
###Markdown
Complete the `optimize()` function below using `scipy.optimize.linprog`, `scipy.optimize.minimize` or cvxpy. **Hint**: If using linprog, when using the interior point method, consider setting `'sparse':True`, `'cholesky':False`, and `'sym_pos':False` in the `options` dictionary (see [scipy.optimize.linprog](https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linprog.htmlscipy-optimize-linprog) and [options for interior-point](https://docs.scipy.org/doc/scipy/reference/optimize.linprog-interior-point.htmllinprog-method-interior-point)). Problem statementThe $\ell_1$-norm linear programming problem for finding the sparse solution $x$ is:$$\text{minimize:} \quad \|z\|_{\ell^1}$$$$ \text{subject to:} \ Az = y $$where $z \in \mathcal{R}^n$, or simply: $$ x = argmin_{z \in \mathcal{R}^n} \|z\|_{\ell^1} \quad \text{subject to} \quad Az = y.$$__Note:__ The $\ell_1$-minimization problem above is __not__ a __linear program__ since the objective function $\|z\|_1=\sum_{i=1}^N|z_i|$ is __not linear__. However, we can transform it to a linear problem with a simple trick. Notice, the problem above is equivalent to the following linear program:$$ \text{minimize:} \quad \sum_{i=1}^N x_i$$$$\text{subject to:} \ Az=y \\ \quad x_i\ge z_i \qquad \text{for all } i=1,\dots, N$$ $$\quad x_i\ge -z_i \qquad \text{for all } i=1,\dots, N.$$.
###Code
def optimize(A, y):
"""
Uses the observation matrix and observation vector to produce
the objective function, equality constraints, inequality
constraints, and bounds to be passed to linprog, minimize or cvxpy.
minimize ||z||_1 = sum(np.abs(z)) subject to A @ z = y for z in R^n
or equivalently
minimize sum(x) subject to A @ z = y, -z_i <= x_i <= z_i for every i
This function then performs the optimization and returns the
structure returned by linprog or minimize (or problem & minimal value from cvxpy).
"""
# create the variable to be minimized
x = cp.Variable(shape = A.shape[1])
z = cp.Variable(shape = A.shape[1])
# create the constraint Az = y
constraints = [A @ z == y,
x >= z,
x >= -z]
# create the objective var to minimize
objective = cp.Minimize(cp.sum(x))
# set up the problem
prob = cp.Problem(objective, constraints)
# solve the problem
prob.solve(solver = 'ECOS') # ECOS, OSQP, SCS -> no need to install
# Number of nonzero elements (above a threshold 1e-8) in the solution
print(f'Feasible ({prob.status}) solution in R^{z.shape[0]} has {sum(np.abs(z.value)>=1e-8)} nonzeros.')
# return the minimized objective value
return prob, z.value
###Output
_____no_output_____
###Markdown
Test CodeAfter completing the above functions run the following code blocks to view your results. SetupThe following code block uses your implementation to generate a sparse input vector of length N, as well as creates the observation matrix, A, and the observation vector, y.
###Code
# Original signal dimension (N=500 default)
N = 500
# Reduced dimension (m=150 default)
m = 150
# Sparsity - number of non-zeros in signal (s=20 default)
s = 20
# Define an s-sparse vector using random values
x = create_sparse_signal(N, s)
# Define the observation matrix, R^{m x N}
A = create_observation_matrix(m, N)
# Define the observation vector, R^m
y = create_observation_vector(A, x)
prob, z = optimize(A, y)
nonzeros_z = z[np.abs(z) >= 1e-8]
print(f'\nnonzeros_z.shape = {nonzeros_z.shape}')
print(f'\nnonzeros_z = \n\n{nonzeros_z}')
###Output
Feasible (optimal) solution in R^500 has 20 nonzeros.
nonzeros_z.shape = (20,)
nonzeros_z =
[ 0.03815071 0.73893797 -1.73143026 0.95339646 0.91925605 -0.43211342
0.7911034 0.73075551 -0.13404511 0.56158518 -1.1332936 -0.01450314
0.04174507 -0.54135962 1.17035387 0.36356738 -0.09519428 0.9292345
-1.20620132 0.32404099]
###Markdown
The following code block plots the original sparse signal.
###Code
fig = plt.figure(figsize=(20, 5))
plt.plot(x, 'b', linewidth=2, alpha=0.75)
plt.title('The original sparse signal')
plt.show()
###Output
_____no_output_____
###Markdown
Perform OptimizationThe following code block runs your optimiation, outputs the status, reovery error and number of non-zeros in the result and thresholded result.
###Code
opt_res, x_star = optimize(A, y)
# Output optimation final status
output_opt_status(opt_res)
# Output the L2 recovery error, norm(x-xstar)
print('L\u00B2-recovery error:', np.linalg.norm(x - x_star))
# Output the number of non-zeros
print('Result vector has', np.count_nonzero(x_star), 'non-zeros out of', N)
# Threshold near-zero values and count 'non-zeros'
z = x_star.copy()
z[np.abs(z) < 1e-8] = 0 # set 'small' values to zero
print('Thresholded result vector has', np.count_nonzero(z), 'non-zeros out of', N)
# plot the input and recovered vectors
plot_sparse_vectors(x, z, full=True, title='Combined', title_a='Original', title_b='Recovered')
###Output
Feasible (optimal) solution in R^500 has 20 nonzeros.
Objective Value: 12.850267839412183
Number of Iterations: 12
Exit Status: optimal
L²-recovery error: 1.680103561242266e-10
Result vector has 500 non-zeros out of 500
Thresholded result vector has 20 non-zeros out of 500
###Markdown
Your Solution: Wavelets
###Code
def decompose_image(img_arr, wavelet='haar'):
"""
This function takes a 2D array of image coefficients in the
range [0,1] and uses pywt.wavedec2 to decompose those
coefficients into wavelet coefficients. It also uses
pywt.coeffs_to_array to reorder those coefficients and create
our coefficient array and slicing data.
The coefficients and slicing data are both returned by this
function.
Visit: https://pywavelets.readthedocs.io/en/latest/ref/wavelets.html#wavelet-families
"""
# decompose the wavelet into its coefficients
coeffs = pywt.wavedec2(img_arr, wavelet)
# reorder the coefficients to a single array in (coeff_arr, coeff_slices) format
array = pywt.coeffs_to_array(coeffs, padding=0)
return array
def reconstruct_image(coeffs_arr, coeffs_slices, wavelet='haar'):
"""
This function takes wavelet coefficients and slicing data
(as produced by pywt.coeffs_to_array) and uses pywt.array_to_coeffs
and pywt.waverec2 to reconstruct an image (a 2D array).
The reconstructed image is returned.
"""
# convert the array into wavelet coefficients
coeffs = pywt.array_to_coeffs(coeffs_arr, coeffs_slices, output_format='wavedec2')
# use wavelet coefficients to reconstruct the 2D image
image = pywt.waverec2(coeffs, wavelet='haar')
return image
def create_sparse_wavelet_signal(coeffs_arr, s):
"""
Returns a copy of coeffs_arr where all values are zero except
the s largest values, no matter where they appear in the array.
"""
# create a 1D copy of 2D coeffs_arr array
# coeffs_arr.ravel() = coeffs_arr.flatten() = coeffs_arr.reshape(-1)
coeffs = coeffs_arr.copy().ravel()
# create a 1D array of zeros
s_largest = np.zeros(coeffs.shape)
# sort the coeffs array (in abs value) and select the indices with largest values
# notice argpartition finds smallest values so use -array to find largest ones
flat_indices = np.argpartition(-np.absolute(coeffs), s-1)[:s]
# assign s largest elements to s_largest, rest 0
s_largest[flat_indices] = coeffs[flat_indices]
return s_largest
###Output
_____no_output_____
###Markdown
__Example:__ Selecting s-largest value (in abs value) of an array A
###Code
S = 5
assert (S < A.size), 's should be smaller than size of A'
# create an example 2D array
A = np.array([[5, 3, 0], [-2, -4, 1], [3, 2, -6]])
print(f'A =\n\n{A}')
flat_A = A.ravel()
print(f'\nflattened(A) = {flat_A}')
flat_indices = np.argpartition(-np.abs(flat_A), S-1)[:S]
print(f'\nIndex of largest {s} elements = {flat_indices}')
B = np.zeros(flat_A.shape)
B[flat_indices] = flat_A[flat_indices]
print(f'\nLargest {S} elements of A = B = \n\n{B}')
print(f'\nReshaped(B) =\n\n{B.reshape(A.shape)}')
###Output
A =
[[ 5 3 0]
[-2 -4 1]
[ 3 2 -6]]
flattened(A) = [ 5 3 0 -2 -4 1 3 2 -6]
Index of largest 20 elements = [8 0 4 1 6]
Largest 5 elements of A = B =
[ 5. 3. 0. 0. -4. 0. 3. 0. -6.]
Reshaped(B) =
[[ 5. 3. 0.]
[ 0. -4. 0.]
[ 3. 0. -6.]]
###Markdown
Test CodeAfter completing the above functions run the following code blocks to view your results.The following code block uses your implementation to ... Setup: Load the input image
###Code
plt.figure(figsize=(10, 4))
img_arr = load_image('shapes2_32.jpg')
plt.imshow(img_arr, cmap='gray');
plt.axis('off');
###Output
_____no_output_____
###Markdown
Setup: Wavelet DecompositionDecompose the `img_arr` into wavelet coefficients and some bookkeeping data used by `pywt.wavedec2` and `pywt.waverec2`.
###Code
# Transform the 2D image data and get the separated coefficient and slice indexing data
coeffs_arr, coeffs_slices = decompose_image(img_arr)
###Output
_____no_output_____
###Markdown
Setup: Wavelet Reconstruction - Sanity CheckSanity Check: Reconstruct the image from your decomposition to ensure that it matches the original input.
###Code
img_recon = reconstruct_image(coeffs_arr, coeffs_slices)
# Compute difference between img_arr and img_recon
print('L\u221E error between original and reconstruction:', np.linalg.norm(img_arr - img_recon, np.inf))
# Visually verify the reconstruction output
plot_image_comparison(img_arr, img_recon, 'Original', 'Reconstruction')
###Output
L∞ error between original and reconstruction: 4.0190073491430667e-14
###Markdown
Setup: Remove 'small' coefficientsThe following block sets our values for `N`, `m` and `s`, and creates a sparse input signal from the input `coeffs_arr`.
###Code
# Find the number of coefficients in the signal
N = coeffs_arr.shape[0] * coeffs_arr.shape[1] # coeffs_arr.size is the same thing (simpler)
# Choose m
m = math.floor(.7 * N)
# Choose s
s = math.floor(.4 * m)
# Create our sparse input signal from the wavelet coefficients
x = create_sparse_wavelet_signal(coeffs_arr, s)
print('Signal Length (N) =', N)
print('Reduced Dimension (m) =', m)
print('Sparsity (s) =', s)
###Output
Signal Length (N) = 1024
Reduced Dimension (m) = 716
Sparsity (s) = 286
###Markdown
Plot the input `coeffs_arr` and the sparse `x` on top of one another.
###Code
plot_sparse_vectors(coeffs_arr.reshape(N), x, title='Original vs s-Sparse Vector')
###Output
_____no_output_____
###Markdown
Setup: Wavelet Reconstruction (2) - Sanity CheckVerify that the sparse version of the coefficient array can be used to reconstruct the original image as well.
###Code
# Reshape the sparse coefficient array to match the original input image
sparse_coeffs_arr = x.reshape(coeffs_arr.shape)
# reconstruct the image from the sparse coefficient array
sparse_img_recon = reconstruct_image(sparse_coeffs_arr, coeffs_slices)
# Compute difference between img_arr and sparse_img_recon
print('L\u221E error between original and sparse reconstruction:',
np.linalg.norm(img_arr - sparse_img_recon, np.inf))
# Visually verify the reconstruction output
plot_image_comparison(img_arr, sparse_img_recon, 'Original', 'Sparse Reconstruction')
###Output
L∞ error between original and sparse reconstruction: 0.016789215686292436
###Markdown
Setup: Create observation matrix and vectorUse the previous implementation of `create_observation_matrix` and `create_observation_vector` to generate the observation vector from `x`.
###Code
# Define the observation matrix, R^{m x N}
A = create_observation_matrix(m, N)
# Define the observation vector, R^m
y = create_observation_vector(A, x)
###Output
_____no_output_____
###Markdown
Perform Optimization (this may take some time)The following code blocks runs your optimization, outputs the status, recovery error and number of non-zeros in the result and thresholded result.
###Code
opt_res, xstar = optimize(A, y)
# Output optimation final status
output_opt_status(opt_res)
# Output the L2 recovery error, norm(x-xstar)
print('L\u00B2-recovery error:', np.linalg.norm(x-xstar))
# Output the number of non-zeros
print('Result Vector has', np.count_nonzero(xstar), 'non-zeros out of', N)
# Threshold near-zero values and count 'non-zeros'
z = xstar.copy()
z[np.abs(z) < 1e-8] = 0
print('Result Vector has', np.count_nonzero(z), 'non-zeros out of', N)
# plot the input and recovered vectors
plot_sparse_vectors(x, z, full=True,
title='Combined',
title_a='Original',
title_b='Recovered')
###Output
Feasible (optimal) solution in R^1024 has 286 nonzeros.
Objective Value: 115.23676469715092
Number of Iterations: 15
Exit Status: optimal
L²-recovery error: 2.1270347955117434e-09
Result Vector has 1024 non-zeros out of 1024
Result Vector has 286 non-zeros out of 1024
###Markdown
Wavelet Reconstruct from L1-minimizationUse the reconstructed values to perform the wavelet reconstruction and compare with the original input.
###Code
# Reshape the reconstructed coefficient array to match the original input image
coeffs_decode_arr = z.reshape(coeffs_arr.shape[0], coeffs_arr.shape[1])
# reconstruct the image from the reconstructed coefficient array
l1_img_recon = reconstruct_image(coeffs_decode_arr, coeffs_slices)
# Compute difference between img_arr and img_recon
print(f'\nL\u221E between original and reconstruction:, {np.linalg.norm(img_arr - l1_img_recon, np.inf)}\n')
# Visually verify the reconstruction output
plot_image_comparison(img_arr, l1_img_recon, 'Original', 'Reconstruction')
###Output
L∞ between original and reconstruction:, 0.01678921618558593
###Markdown
Your Solution: `m` and `s`What is your conclusion on the effect of `m` and `s`? Explain why you reach this conclusion.As the number of non-sparse ($s$) elements _decreases_ the signal seems to be _smoother_, and in the extreme case where $s=0$ it is just a straigth line. $s$ behaves like the __amplitude__ of the signal, whereas the reduced dimension size $m$ more behaves like the $\mathbf{\dfrac{1}{wavelength}}$ and the signal _streches out_ as $m$ _decreases_. Below, some test examples for various $m$ and $s$ values given.
###Code
from IPython.display import Markdown, display
N = coeffs_arr.size
m = math.floor(.7 * N)
s = math.floor(.4 * m)
# Different m and s values to test
s_test = [(m, 256), (m, 128), (m, 64), (m, 32), (m, 16)]
m_test = [(m, s), (600, s), (500, s), (400, s), (300, s)]
def plot_differences(m, s, N = coeffs_arr.size):
# Create our sparse input signal from the wavelet coefficients
x = create_sparse_wavelet_signal(coeffs_arr, s)
A = create_observation_matrix(m, N)
y = create_observation_vector(A, x)
opt_res, xstar = optimize(A, y)
# Threshold near-zero values and count 'non-zeros'
z = xstar.copy()
z[np.abs(z) < 1e-8] = 0
print('Result Vector has', np.count_nonzero(z), 'non-zeros out of', N)
# plot the input and recovered vectors
plot_sparse_vectors(x, z, full=True, title='Combined', title_a='Original', title_b='Recovered')
# Reshape the reconstructed coefficient array to match the original input image
coeffs_decode_arr = z.reshape(coeffs_arr.shape)
# reconstruct the image from the reconstructed coefficient array
l1_img_recon = reconstruct_image(coeffs_decode_arr, coeffs_slices)
# Visually verify the reconstruction output
plot_image_comparison(img_arr, l1_img_recon, 'Original', 'Reconstruction')
# Compute the L2 and Linf recovery error (error between original and reconstructed signals)
display(Markdown('---'))
print(f'For m = {m}, s = {s}:\n')
print('L\u00B2 - recovery error:', np.linalg.norm(x-xstar))
print('L\u221E - recovery error:', np.linalg.norm(img_arr - l1_img_recon, np.inf))
display(Markdown('---'))
for (m, s) in m_test:
print(f'\nm = {m}, s = {s}\n')
plot_differences(m, s)
for (m, s) in s_test:
print(f'\nm = {m}, s = {s}\n')
plot_differences(m, s)
###Output
m = 716, s = 256
Feasible (optimal) solution in R^1024 has 256 nonzeros.
Result Vector has 256 non-zeros out of 1024
|
jupyter-notebook/Dump.ipynb | ###Markdown
Define features
###Code
features = [('id', 'NUMERIC'),
('number_of_words', 'NUMERIC'),
('average word length', 'NUMERIC'),
('length of the longest word', 'NUMERIC'),
('whether start with number', ['True', 'False']),
('whether start with who/what/why/where/when/how', ['True', 'False']),
('number_of_character_1_grams', 'NUMERIC'),
('number_of_character_2_grams', 'NUMERIC'),
('number_of_character_3_grams', 'NUMERIC'),
('clindex', 'NUMERIC'),
('formality_measure', 'NUMERIC'),
('is_exclamation_question_mark_present', ['0', '1']),
('lix', 'NUMERIC'),
('number_of_uppercase_words', 'NUMERIC'),
('rix', 'NUMERIC'),
('number_of_word_1_grams', 'NUMERIC'),
# ('number_of_contractions','NUMERIC'),
('label', ['0', '1']),
]
###Output
_____no_output_____
###Markdown
New features
###Code
# https://stackoverflow.com/questions/10677020/real-word-count-in-nltk
def number_of_words(text):
# TODO
# regexptokenizer = RegexpTokenizer(r'\w+')
# words = regexptokenizer.tokenize(text)
words = word_tokenize(text)
return len(words)
def number_of_character_1_grams(text):
characters = [c for c in text]
onegrams = ngrams(characters, 1)
return len([gram for gram in onegrams])
def number_of_character_2_grams(text):
if len(text) == 0:
return []
characters = [c for c in text]
twograms = ngrams(characters, 2)
return len([gram for gram in twograms])
def number_of_character_3_grams(text):
if len(text) <= 1:
return 0
characters = [c for c in text]
threegrams = ngrams(characters, 3)
return len([gram for gram in threegrams])
# https://en.wikipedia.org/wiki/Coleman%E2%80%93Liau_index
def clindex(text):
text_lower = text.lower()
number_of_letters = 0
for character in text_lower:
if character in ascii_lowercase:
number_of_letters += 1
number_of_sentences = len(sent_tokenize(text))
n_of_words = number_of_words(text)
l = 0
s = 0
# TODO should l and s be 0?
if n_of_words == 0:
pass
else:
# l = Letters ÷ Words × 100
l = number_of_letters / n_of_words * 100
# s = Sentences ÷ Words × 100
s = number_of_sentences / n_of_words * 100
return 0.0588 * l - 0.296 * s - 15.8
# https://stackoverflow.com/questions/10674832/count-verbs-nouns-and-other-parts-of-speech-with-pythons-nltk
def formality_measure(text):
tokenized_text = nltk.word_tokenize(text.lower())
t = nltk.Text(tokenized_text)
pos_tags = nltk.pos_tag(t)
counts = Counter(tag for word,tag in pos_tags)
return (counts['NN'] + counts['NNP'] + counts['NNS'] + counts['JJ'] + counts['JJR'] + counts['JJS'] + counts['IN'] + counts['DT'] + counts['PDT'] + counts['WDT'] - counts['PRP'] - counts['PRP$'] - counts['WP'] - counts['WP$'] - counts['VB'] - counts['VBD'] - counts['VBG'] - counts['VBN'] - counts['VBP'] - counts['VBZ'] - counts['RB'] - counts['RBR'] - counts['RBS'] - counts['WRB'] - counts['UH'] + 100) / 2
def is_exclamation_question_mark_present(text):
return 0 if '!' not in text and '?' not in text else 1
def lix(text):
# TODO should we return 0?
if len(sent_tokenize(text)) == 0:
return 0
return number_of_words(text) / len(sent_tokenize(text))
def number_of_uppercase_words(text):
words = word_tokenize(text)
n_of_uppercase_words = 0
for word in words:
if word[0] in ascii_uppercase:
n_of_uppercase_words += 1
return n_of_uppercase_words
def rix(text):
lw = 0
words = word_tokenize(text)
for word in words:
if len(word) >= 7:
lw += 1
# TODO should we return 0?
if len(sent_tokenize(text)) == 0:
return 0
return lw / len(sent_tokenize(text))
def number_of_word_1_grams(text):
onegrams = ngrams(word_tokenize(text), 1)
return len([gram for gram in onegrams])
# def number_of_contractions(text):
# stripped_contractions = ['aint', 'amnt', 'arent', 'cant', 'couldve', 'couldnt', 'couldntve',
# 'didnt', 'doesnt', 'dont', 'gonna', 'gotta', 'hadnt', 'hadntve', 'hasnt',
# 'havent','hell', 'hes', 'hesnt', 'howd', 'howll',
# 'hows', 'id', 'idnt', 'idve', 'ill', 'im', 'ive', 'ivent', 'isnt',
# 'itd', 'itll', 'its', 'itsnt', 'mightnt','mightve', 'mustnt', 'mustntve', 'mustve', 'neednt', 'ol', 'oughtnt',
# 'shant', 'shed', 'shes', 'shouldve','shouldnt', 'shouldntve', 'somebodydve', 'somebodydntve', 'somebodys',
# 'someonell', 'someones','somethingd', 'somethingdnt', 'somethingdntve', 'somethingdve', 'somethingll',
# 'somethings', 'thatll', 'thats', 'thatd', 'thered', 'therednt', 'theredntve',
# 'theredve', 'therere', 'theres', 'theyd', 'theydnt', 'theydntve', 'theydve',
# 'theyll', 'theyontve', 'theyre', 'theyve', 'theyvent', 'wasnt',
# 'wed', 'wedve', 'wednt', 'wedntve', 'well', 'wontve', 'were', 'weve', 'werent',
# 'whatd', 'whatll', 'whats', 'whatve', 'whens', 'whered', 'wheres',
# 'whereve', 'whod', 'whodve', 'wholl', 'whore', 'whos', 'whove', 'whyd', 'whyre',
# 'whys', 'wont', 'wontve', 'wouldve', 'wouldnt', 'wouldntve', 'yall', 'yallllve', 'yallre', 'yallllvent', 'yaint',
# 'youd', 'youdve', 'youll', 'youre', 'yourent', 'youve', 'youvent']
# words = word_tokenize(text)
# num = len([word.replace("'","") for word in words if word in stripped_contractions])
# return(num)
def extract_features(tweet_id, text):
doc = text.strip().split(' ')
f1 = 0
f2 = 0
f3 = 0
f4 = False
f5 = False
for token in doc:
word = token.lower()
if f1 == 0:
if word[0].isdigit():
f4 = True
if word in ['who', 'what', 'why', 'where', 'when', 'how']:
f5 = True
f1 += 1
length = len(word)
f2 += length
f3 = max(f3, length)
if f1 == 0:
return False
return (tweet_id, f1, f2 * 1.0 / f1, f3, f4, f5, number_of_character_1_grams(text), number_of_character_2_grams(text), number_of_character_3_grams(text), clindex(text), formality_measure(text), is_exclamation_question_mark_present(text), lix(text), number_of_uppercase_words(text), rix(text), number_of_word_1_grams(text))
# https://github.com/ipython/ipython/issues/10123
directory_path = os.getcwd()
dataset_no_figures_path = directory_path + '/../data/dataset_no_figures/'
id_features = {}
with open(dataset_no_figures_path + 'instances_train.jsonl', 'r') as f:
for line in f:
dic = json.loads(line)
if len(dic['postText'][0]) > 0:
feat = extract_features(dic['id'], dic['postText'][0])
if feat:
id_features.setdefault(dic['id'], feat)
print(len(id_features))
id_labels = {}
with open(dataset_no_figures_path + 'truth_train.jsonl', 'r') as f:
for line in f:
dic = json.loads(line)
label = 1
if dic['truthClass'][0] == 'n':
label = 0
if dic['id'] in id_features:
id_labels.setdefault(dic['id'], label)
print(len(id_labels))
data = {}
data.setdefault('attributes', features)
data.setdefault('description', '')
data.setdefault('relation', 'team-one')
data.setdefault('data', [])
for i in id_labels:
tmp = [_ for _ in id_features[i]]
tmp.append(str(id_labels[i]))
data['data'].append(tmp)
with open(dataset_no_figures_path + 'sample_train.arff', 'w') as f:
f.write(arff.dumps(data))
###Output
_____no_output_____
###Markdown
Generate test .arff file
###Code
id_features = {}
id_labels = {}
with open(dataset_no_figures_path + 'instances_test.jsonl', 'r') as f:
for line in f:
dic = json.loads(line)
if len(dic['postText'][0]) > 0:
feat = extract_features(dic['id'], dic['postText'][0])
if feat:
id_features.setdefault(dic['id'], feat)
if dic['id'] in id_features:
id_labels.setdefault(dic['id'], '?')
print(len(id_features))
data = {}
data.setdefault('attributes', features)
data.setdefault('description', '')
data.setdefault('relation', 'team-one')
data.setdefault('data', [])
for i in id_labels:
tmp = [_ for _ in id_features[i]]
tmp.append(str(id_labels[i]))
data['data'].append(tmp)
with open(dataset_no_figures_path + 'sample_test.arff', 'w') as f:
f.write(arff.dumps(data))
###Output
_____no_output_____ |
02_DataAnalysis/labs/BigQuery/lab02_Google_BigQuery_en_Python.ipynb | ###Markdown
Google BigQuery en Pythonhttps://pypi.org/project/google-cloud-bigquery/
###Code
# instalar bigquery
!pip install google-cloud-bigquery
# cargamos las librerías
from google.cloud import bigquery
from google.oauth2 import service_account
# Si trabajamos con Token y secret del service account
#creds = service_account.Credentials.from_service_account_file('PATH DEL FICHERO JSON en .key')
creds = service_account.Credentials.from_service_account_file('/content/thebridgept0521-00ccc9a47591.json')
###Output
_____no_output_____
###Markdown
> previamente debemos crear el directorio en nuestro root /home//.key con el comando **mkdir**.
###Code
# Alternativa con Google Oauth de Google Colab
from google.colab import auth
auth.authenticate_user()
###Output
_____no_output_____
###Markdown
Jerarquía estructura BigQuery- ProjectID- DatasetID o Dataset- Table
###Code
# introducimos el projectID
proj_id = 'thebridgept0521'
# En caso de trabajar con el token
client = bigquery.Client(project=proj_id)
# Probamos Gcp-BQ
query = (
'SELECT name '
'FROM `bigquery-public-data.usa_names.usa_1910_2013` '
'WHERE state = "TX" '
'LIMIT 100 '
)
# También podemos estructura la query de esta forma
query = """
SELECT name
FROM `bigquery-public-data.usa_names.usa_1910_2013`
WHERE state = "TX"
LIMIT 100
"""
# Ejecutaremos el job de BigQuery
query_job = client.query(query) # esta es la llamada a la API
# Iterar sobre el propio job para extraer los resultados
rows = query_job.result()
for row in rows:
print(row.name)
# Test
# Perform a query.
QUERY = (
' SELECT DISTINCT visitId, h.page.pageTitle FROM `bigquery-public-data.google_analytics_sample.ga_sessions_20170801`, '
' UNNEST(hits) AS h WHERE visitId = 1501570398')
query_job = client.query(QUERY) # API request
rows = query_job.result() # Waits for query to finish
for row in rows:
print(row)
###Output
_____no_output_____
###Markdown
Google BigQuery en Pythonhttps://pypi.org/project/google-cloud-bigquery/
###Code
# instalar bigquery
!pip install google-cloud-bigquery
# cargamos las librerías
from google.cloud import bigquery
from google.oauth2 import service_account
# Si trabajamos con Token y secret del service account
#creds = service_account.Credentials.from_service_account_file('PATH DEL FICHERO JSON en .key')
creds = service_account.Credentials.from_service_account_file('/content/thebridgept0521-00ccc9a47591.json')
###Output
_____no_output_____
###Markdown
> previamente debemos crear el directorio en nuestro root /home//.key con el comando **mkdir**.
###Code
# Alternativa con Google Oauth de Google Colab
from google.colab import auth
auth.authenticate_user()
###Output
_____no_output_____
###Markdown
Jerarquía estructura BigQuery- ProjectID- DatasetID o Dataset- Table
###Code
# introducimos el projectID
proj_id = 'thebridgept0521'
# En caso de trabajar con el token
client = bigquery.Client(project=proj_id)
# Probamos Gcp-BQ
query = (
'SELECT name '
'FROM `bigquery-public-data.usa_names.usa_1910_2013` '
'WHERE state = "TX" '
'LIMIT 100 '
)
# También podemos estructura la query de esta forma
query = """
SELECT name
FROM `bigquery-public-data.usa_names.usa_1910_2013`
WHERE state = "TX"
LIMIT 100
"""
# Ejecutaremos el job de BigQuery
query_job = client.query(query) # esta es la llamada a la API
# Iterar sobre el propio job para extraer los resultados
rows = query_job.result()
for row in rows:
print(row.name)
# Test
# Perform a query.
QUERY = (
' SELECT DISTINCT visitId, h.page.pageTitle FROM `bigquery-public-data.google_analytics_sample.ga_sessions_20170801`, '
' UNNEST(hits) AS h WHERE visitId = 1501570398')
query_job = client.query(QUERY) # API request
rows = query_job.result() # Waits for query to finish
for row in rows:
print(row)
query_job = client.query(QUERY) # API request
rows = query_job.result() # Waits for query to finish
for row in rows:
print(type(row[1]))
# También podemos transformar en un dataframe directamente sin para por el Iterator
df = query_job.to_dataframe()
df
type(df)
###Output
_____no_output_____
###Markdown
> A partir del dataframe podemos realizar EDA, transformaciones, limpieza, agregaciones, visualizaciones, enriquecimiento de nuevos datos, join con otras tablas... etc. etc. etc. ***
###Code
# # Realizamos una nueva tarea con otra consulta
# QUERY = """
# SELECT name, state, SUM(number) as count
# FROM `bigquery-public-data.usa_names.usa_1910_current`
# WHERE year BETWEEN 1990 AND 2000 AND
# state IN ('TX', 'NY', 'CA', 'FL', 'NM', 'IL')
# GROUP BY name, state
# ORDER BY count DESC
# LIMIT 10
# """
# Realizamos una nueva tarea con otra consulta
QUERY = """
SELECT name, SUM(number) as count
FROM `bigquery-public-data.usa_names.usa_1910_current`
GROUP BY name, state
ORDER BY count DESC
"""
# realizamos el job de BQ
query_job = client.query(QUERY)
df = client.query(QUERY).to_dataframe()
df.head(20)
df.sample(100)
df.shape
###Output
_____no_output_____
###Markdown
> desde este punto como siempre realizamos nuestro EDA
###Code
# visualizamos el ejemplo anterior
%matplotlib inline
df.plot(kind='bar',
x='name',
y='count')
###Output
_____no_output_____
###Markdown
***
###Code
# Test
# Perform a query natality
sql = """
SELECT
source_year AS year,
COUNT(is_male) AS birth_count
FROM `bigquery-public-data.samples.natality`
GROUP BY year
ORDER BY year DESC
LIMIT 15
"""
query_job = client.query(sql) # API request
df = client.query(sql).to_dataframe()
df
df.plot(kind='bar', x='year', y='birth_count');
###Output
_____no_output_____
###Markdown
***
###Code
# Test
# Perform a query natality
sql = """
SELECT
wday,
SUM(CASE WHEN is_male THEN 1 ELSE 0 END) AS male_births,
SUM(CASE WHEN is_male THEN 0 ELSE 1 END) AS female_births
FROM `bigquery-public-data.samples.natality`
WHERE wday IS NOT NULL
GROUP BY wday
ORDER BY wday ASC
"""
query_job = client.query(sql) # API request
df = client.query(sql).to_dataframe()
df
df.plot(x='wday')
###Output
_____no_output_____
###Markdown
****
###Code
# test
sql = """
SELECT
plurality,
COUNT(1) AS count,
year
FROM
`bigquery-public-data.samples.natality`
WHERE
NOT IS_NAN(plurality) AND plurality > 1
GROUP BY
plurality, year
ORDER BY
count DESC
"""
df = client.query(sql).to_dataframe()
df.head()
pivot_table = df.pivot(index='year', columns='plurality', values='count')
pivot_table.plot(kind='bar', stacked=True, figsize=(15, 7));
sql = """
SELECT
gestation_weeks,
COUNT(1) AS count
FROM
`bigquery-public-data.samples.natality`
WHERE
NOT IS_NAN(gestation_weeks) AND gestation_weeks <> 99
GROUP BY
gestation_weeks
ORDER BY
gestation_weeks
"""
df = client.query(sql).to_dataframe()
ax = df.plot(kind='bar', x='gestation_weeks', y='count', figsize=(15,7))
ax.set_title('Count of Births by Gestation Weeks')
ax.set_xlabel('Gestation Weeks')
ax.set_ylabel('Count');
###Output
_____no_output_____ |
Programming_Language_Translator.ipynb | ###Markdown
Cloning Facebook Research TransCoder Repository
###Code
!git clone https://github.com/facebookresearch/TransCoder.git
###Output
Cloning into 'TransCoder'...
remote: Enumerating objects: 2194, done.[K
remote: Counting objects: 100% (2194/2194), done.[K
remote: Compressing objects: 100% (1106/1106), done.[K
remote: Total 2194 (delta 1088), reused 2191 (delta 1085), pack-reused 0[K
Receiving objects: 100% (2194/2194), 4.03 MiB | 15.81 MiB/s, done.
Resolving deltas: 100% (1088/1088), done.
###Markdown
Installing FastBPE
###Code
!git clone https://github.com/glample/fastBPE
%cd fastBPE
!g++ -std=c++11 -pthread -O3 fastBPE/main.cc -IfastBPE -o fast
!python setup.py install
%cd ..
###Output
Cloning into 'fastBPE'...
remote: Enumerating objects: 5, done.[K
remote: Counting objects: 20% (1/5)[K
remote: Counting objects: 40% (2/5)[K
remote: Counting objects: 60% (3/5)[K
remote: Counting objects: 80% (4/5)[K
remote: Counting objects: 100% (5/5)[K
remote: Counting objects: 100% (5/5), done.[K
remote: Compressing objects: 20% (1/5)[K
remote: Compressing objects: 40% (2/5)[K
remote: Compressing objects: 60% (3/5)[K
remote: Compressing objects: 80% (4/5)[K
remote: Compressing objects: 100% (5/5)[K
remote: Compressing objects: 100% (5/5), done.[K
Unpacking objects: 1% (1/59)
Unpacking objects: 3% (2/59)
Unpacking objects: 5% (3/59)
Unpacking objects: 6% (4/59)
Unpacking objects: 8% (5/59)
Unpacking objects: 10% (6/59)
Unpacking objects: 11% (7/59)
Unpacking objects: 13% (8/59)
Unpacking objects: 15% (9/59)
Unpacking objects: 16% (10/59)
Unpacking objects: 18% (11/59)
Unpacking objects: 20% (12/59)
Unpacking objects: 22% (13/59)
Unpacking objects: 23% (14/59)
Unpacking objects: 25% (15/59)
Unpacking objects: 27% (16/59)
Unpacking objects: 28% (17/59)
Unpacking objects: 30% (18/59)
remote: Total 59 (delta 0), reused 2 (delta 0), pack-reused 54
Unpacking objects: 32% (19/59)
Unpacking objects: 33% (20/59)
Unpacking objects: 35% (21/59)
Unpacking objects: 37% (22/59)
Unpacking objects: 38% (23/59)
Unpacking objects: 40% (24/59)
Unpacking objects: 42% (25/59)
Unpacking objects: 44% (26/59)
Unpacking objects: 45% (27/59)
Unpacking objects: 47% (28/59)
Unpacking objects: 49% (29/59)
Unpacking objects: 50% (30/59)
Unpacking objects: 52% (31/59)
Unpacking objects: 54% (32/59)
Unpacking objects: 55% (33/59)
Unpacking objects: 57% (34/59)
Unpacking objects: 59% (35/59)
Unpacking objects: 61% (36/59)
Unpacking objects: 62% (37/59)
Unpacking objects: 64% (38/59)
Unpacking objects: 66% (39/59)
Unpacking objects: 67% (40/59)
Unpacking objects: 69% (41/59)
Unpacking objects: 71% (42/59)
Unpacking objects: 72% (43/59)
Unpacking objects: 74% (44/59)
Unpacking objects: 76% (45/59)
Unpacking objects: 77% (46/59)
Unpacking objects: 79% (47/59)
Unpacking objects: 81% (48/59)
Unpacking objects: 83% (49/59)
Unpacking objects: 84% (50/59)
Unpacking objects: 86% (51/59)
Unpacking objects: 88% (52/59)
Unpacking objects: 89% (53/59)
Unpacking objects: 91% (54/59)
Unpacking objects: 93% (55/59)
Unpacking objects: 94% (56/59)
Unpacking objects: 96% (57/59)
Unpacking objects: 98% (58/59)
Unpacking objects: 100% (59/59)
Unpacking objects: 100% (59/59), done.
/content/fastBPE
Compiling fastBPE/fastBPE.pyx because it changed.
[1/1] Cythonizing fastBPE/fastBPE.pyx
running install
running bdist_egg
running egg_info
creating fastBPE.egg-info
writing fastBPE.egg-info/PKG-INFO
writing dependency_links to fastBPE.egg-info/dependency_links.txt
writing top-level names to fastBPE.egg-info/top_level.txt
writing manifest file 'fastBPE.egg-info/SOURCES.txt'
package init file 'fastBPE/__init__.py' not found (or not a regular file)
reading manifest template 'MANIFEST.in'
writing manifest file 'fastBPE.egg-info/SOURCES.txt'
installing library code to build/bdist.linux-x86_64/egg
running install_lib
running build_py
running build_ext
building 'fastBPE' extension
creating build
creating build/temp.linux-x86_64-3.6
creating build/temp.linux-x86_64-3.6/fastBPE
x86_64-linux-gnu-gcc -pthread -DNDEBUG -g -fwrapv -O2 -Wall -g -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -fPIC -IfastBPE -I/usr/include/python3.6m -c fastBPE/fastBPE.cpp -o build/temp.linux-x86_64-3.6/fastBPE/fastBPE.o -std=c++11 -Ofast -pthread
creating build/lib.linux-x86_64-3.6
x86_64-linux-gnu-g++ -pthread -shared -Wl,-O1 -Wl,-Bsymbolic-functions -Wl,-Bsymbolic-functions -Wl,-z,relro -Wl,-Bsymbolic-functions -Wl,-z,relro -g -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 build/temp.linux-x86_64-3.6/fastBPE/fastBPE.o -o build/lib.linux-x86_64-3.6/fastBPE.cpython-36m-x86_64-linux-gnu.so
creating build/bdist.linux-x86_64
creating build/bdist.linux-x86_64/egg
copying build/lib.linux-x86_64-3.6/fastBPE.cpython-36m-x86_64-linux-gnu.so -> build/bdist.linux-x86_64/egg
creating stub loader for fastBPE.cpython-36m-x86_64-linux-gnu.so
byte-compiling build/bdist.linux-x86_64/egg/fastBPE.py to fastBPE.cpython-36.pyc
creating build/bdist.linux-x86_64/egg/EGG-INFO
copying fastBPE.egg-info/PKG-INFO -> build/bdist.linux-x86_64/egg/EGG-INFO
copying fastBPE.egg-info/SOURCES.txt -> build/bdist.linux-x86_64/egg/EGG-INFO
copying fastBPE.egg-info/dependency_links.txt -> build/bdist.linux-x86_64/egg/EGG-INFO
copying fastBPE.egg-info/top_level.txt -> build/bdist.linux-x86_64/egg/EGG-INFO
writing build/bdist.linux-x86_64/egg/EGG-INFO/native_libs.txt
zip_safe flag not set; analyzing archive contents...
__pycache__.fastBPE.cpython-36: module references __file__
creating dist
creating 'dist/fastBPE-0.1.1-py3.6-linux-x86_64.egg' and adding 'build/bdist.linux-x86_64/egg' to it
removing 'build/bdist.linux-x86_64/egg' (and everything under it)
Processing fastBPE-0.1.1-py3.6-linux-x86_64.egg
creating /usr/local/lib/python3.6/dist-packages/fastBPE-0.1.1-py3.6-linux-x86_64.egg
Extracting fastBPE-0.1.1-py3.6-linux-x86_64.egg to /usr/local/lib/python3.6/dist-packages
Adding fastBPE 0.1.1 to easy-install.pth file
Installed /usr/local/lib/python3.6/dist-packages/fastBPE-0.1.1-py3.6-linux-x86_64.egg
Processing dependencies for fastBPE==0.1.1
Finished processing dependencies for fastBPE==0.1.1
/content
###Markdown
Installing PyTorch Checking CUDA version to install the compatible PyTorch version
###Code
!nvcc --version
###Output
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2019 NVIDIA Corporation
Built on Sun_Jul_28_19:07:16_PDT_2019
Cuda compilation tools, release 10.1, V10.1.243
###Markdown
Install the correct PyTorch version
###Code
%pip install torch==1.6.0+cu101 torchvision==0.7.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html
###Output
Looking in links: https://download.pytorch.org/whl/torch_stable.html
Requirement already satisfied: torch==1.6.0+cu101 in /usr/local/lib/python3.6/dist-packages (1.6.0+cu101)
Requirement already satisfied: torchvision==0.7.0+cu101 in /usr/local/lib/python3.6/dist-packages (0.7.0+cu101)
Requirement already satisfied: future in /usr/local/lib/python3.6/dist-packages (from torch==1.6.0+cu101) (0.16.0)
Requirement already satisfied: numpy in /usr/local/lib/python3.6/dist-packages (from torch==1.6.0+cu101) (1.18.5)
Requirement already satisfied: pillow>=4.1.1 in /usr/local/lib/python3.6/dist-packages (from torchvision==0.7.0+cu101) (7.0.0)
###Markdown
Installing SacreBleu
###Code
%pip install sacrebleu=="1.2.11"
###Output
Collecting sacrebleu==1.2.11
Downloading https://files.pythonhosted.org/packages/0d/fb/ad7d721fbeeba9e2fe459f489f38a792ca1e5f5b61f09e608f22f400ca66/sacrebleu-1.2.11.tar.gz
Collecting typing
[?25l Downloading https://files.pythonhosted.org/packages/05/d9/6eebe19d46bd05360c9a9aae822e67a80f9242aabbfc58b641b957546607/typing-3.7.4.3.tar.gz (78kB)
[K |████████████████████████████████| 81kB 5.1MB/s
[?25hBuilding wheels for collected packages: sacrebleu, typing
Building wheel for sacrebleu (setup.py) ... [?25l[?25hdone
Created wheel for sacrebleu: filename=sacrebleu-1.2.11-cp36-none-any.whl size=18641 sha256=fab6129dcfbffa8e1fa169c2c0069cbb2071be3df7bd20dec73775063201924b
Stored in directory: /root/.cache/pip/wheels/93/0f/06/e1c5dcbca58e907c17b59be8e1f10ae4e43bb1fb68197a8d7c
Building wheel for typing (setup.py) ... [?25l[?25hdone
Created wheel for typing: filename=typing-3.7.4.3-cp36-none-any.whl size=26309 sha256=1f753426f146b7959b9a2d1aa6f8d1438c2794ba348d7ad877fff832e46c81d0
Stored in directory: /root/.cache/pip/wheels/2d/04/41/8e1836e79581989c22eebac3f4e70aaac9af07b0908da173be
Successfully built sacrebleu typing
Installing collected packages: typing, sacrebleu
Successfully installed sacrebleu-1.2.11 typing-3.7.4.3
###Markdown
Installing Clang
###Code
%pip install clang
###Output
Collecting clang
Downloading https://files.pythonhosted.org/packages/6d/d7/40cdcb82d072cd1c5e3f7ce249a9dfbd8d7d2194d3f0885b5eaa8f310f2b/clang-6.0.0.2-py2.py3-none-any.whl
Installing collected packages: clang
Successfully installed clang-6.0.0.2
###Markdown
Update the code to point to the correct llvm path
###Code
%cd /usr/lib/llvm-6.0/lib
!ln -s libclang.so.1 libclang.so
%cd /content
!sed -i "s|clang.cindex.Config.set_library_path('/usr/lib/llvm-7/lib/')|clang.cindex.Config.set_library_path('/usr/lib/llvm-6.0/lib/')|g" /content/TransCoder/preprocessing/src/code_tokenizer.py
###Output
/usr/lib/llvm-6.0/lib
/content
###Markdown
Downloading the model checkpoints First checkpoint for C++ -> Java, Java -> C++ and Java -> Python
###Code
%mkdir checkpoints
%cd checkpoints
!wget https://dl.fbaipublicfiles.com/transcoder/model_1.pth
###Output
/content/checkpoints
--2020-08-09 22:17:45-- https://dl.fbaipublicfiles.com/transcoder/model_1.pth
Resolving dl.fbaipublicfiles.com (dl.fbaipublicfiles.com)... 172.67.9.4, 104.22.75.142, 104.22.74.142, ...
Connecting to dl.fbaipublicfiles.com (dl.fbaipublicfiles.com)|172.67.9.4|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 622089114 (593M) [application/octet-stream]
Saving to: ‘model_1.pth’
model_1.pth 100%[===================>] 593.27M 66.4MB/s in 9.3s
2020-08-09 22:17:55 (63.6 MB/s) - ‘model_1.pth’ saved [622089114/622089114]
###Markdown
Second checkpoint for C++ -> Python, Python -> C++ and Python -> Java
###Code
!wget https://dl.fbaipublicfiles.com/transcoder/model_2.pth
%cd ..
###Output
--2020-08-09 22:17:56-- https://dl.fbaipublicfiles.com/transcoder/model_2.pth
Resolving dl.fbaipublicfiles.com (dl.fbaipublicfiles.com)... 104.22.74.142, 172.67.9.4, 104.22.75.142, ...
Connecting to dl.fbaipublicfiles.com (dl.fbaipublicfiles.com)|104.22.74.142|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 622089114 (593M) [application/octet-stream]
Saving to: ‘model_2.pth’
model_2.pth 100%[===================>] 593.27M 50.6MB/s in 11s
2020-08-09 22:18:07 (55.9 MB/s) - ‘model_2.pth’ saved [622089114/622089114]
/content
###Markdown
Running the model for translation Update the code to point to the correct BPE codes file path
###Code
!sed -i 's|default="data/BPE_with_comments_codes"|default="/content/TransCoder/data/BPE_with_comments_codes"|g' /content/TransCoder/translate.py
###Output
_____no_output_____
###Markdown
Finally, we reached the interesting part. Let's translate some code files. First, upload the files you want to translate into another language among (cpp, java and python)
###Code
%mkdir -p examples
%cd /content/examples
from google.colab import files
files.upload()
%cd /content
###Output
/content/examples
###Markdown
Second, update the following command to reflect your chosen src lang, tgt lang, the model checkpoint path as mentioned in the previous section and the uploaded input file path.
###Code
INPUT_FILE_PATH = '/content/examples/2.cpp'
SRC_LANG = 'cpp'
TGT_LANG = 'python'
MODEL_PATH = '/content/checkpoints/model_1.pth' if (SRC_LANG, TGT_LANG) in [('cpp', 'java'), ('java', 'cpp'), ('java', 'python')] else '/content/checkpoints/model_2.pth'
!cat $INPUT_FILE_PATH
print('=' * 20)
!echo 'Using checkpoint: $MODEL_PATH'
!python /content/TransCoder/translate.py --src_lang $SRC_LANG --tgt_lang $TGT_LANG --model_path $MODEL_PATH < $INPUT_FILE_PATH
###Output
#include <bits/stdc++.h>
using namespace std;
int main()
{
const int MAX_SIZES = 3;
map<string,int> size_map = {{"small",0}, {"medium", 1}, {"large", 2}};
int T, C, N;
cin >> T;
assert(T > 0);
while(T--){
cin >> C >> N;
assert(C > 0 && N > 0);
map<string, vector<long long> > coffee;
for(int i = 0; i < C; i++){
string coffee_name;
cin >> coffee_name;
long long price;
for(int j = 0; j < MAX_SIZES; j++){
cin >> price;
coffee[coffee_name].push_back(price);
}
}
int delivery_cost = 100/N;
for(int i = 0; i < N; i++){
string person_name, coffee_size, coffee_name;
cin >> person_name >> coffee_size >> coffee_name;
long long total_cost = coffee[coffee_name][size_map[coffee_size]] + delivery_cost;
if(total_cost % 5 == 1) total_cost--;
else if(total_cost % 5 == 4) total_cost++;
cout << person_name << " " << total_cost << "\n";
}
}
return 0;
}
====================
Using checkpoint: /content/checkpoints/model_2.pth
Loading codes from /content/TransCoder/data/BPE_with_comments_codes ...
Read 50000 codes from the codes file.
====================
def __main ( ) :
MAX_SIZES = 3
size_map = { 'small' : 0 , 'medium' : 1 , 'large' : 2 }
T , C , N = sys.argv [ 1 : ]
assert T > 0
while T :
C , N = sys.argv [ 2 : ]
assert C > 0 and N > 0
coffee = { }
for i in range ( C ) :
coffee_name = sys.argv [ 3 ]
price = sys.argv [ 4 ]
for j in range ( MAX_SIZES ) :
price = sys.argv [ 5 ]
coffee [ coffee_name ].append ( price )
delivery_cost = 100 / N
for i in range ( N ) :
person_name , coffee_size , coffee_name = sys.argv [ 3 ]
total_cost = coffee [ coffee_name ] [ size_map [ coffee_size ] ] + delivery_cost
if total_cost % 5 == 1 :
total_cost -= 1
elif total_cost % 5 == 4 :
total_cost += 1
print ( person_name , total_cost , end = ' ' )
|
Home Work (Python).ipynb | ###Markdown
Домашнее задание по теме "Основы Python" **Задание 1**
###Code
len('Насколько проще было бы писать программы, если бы не заказчики')>len('640Кб должно хватить для любых задач. Билл Гейтс (по легенде)')
len('Насколько проще было бы писать программы, если бы не заказчики')>len('640Кб должно хватить для любых задач. Билл Гейтс (по легенде)')
phrase_1='Насколько проще было бы писать программы, если бы не заказчики'
phrase_2='640Кб должно хватить для любых задач. Билл Гейтс (по легенде)'
if phrase_1>phrase_2:
print('фраза 1 длиннее фразы 2')
print('конец программы')
phrase_1 = '640Кб должно хватить для любых задач. Билл Гейтс (по легенде)'
phrase_2 = 'Насколько проще было бы писать программы, если бы не заказчики'
if phrase_2>phrase_1:
print('фраза 2 длиннее фразы 1')
phrase_1 = 'Насколько проще было бы писать программы, если бы не заказчики'
phrase_2 = 'Насколько проще было бы писать программы, если бы не заказчики'
if phrase_1==phrase_2:
print('фразы равной длины')
###Output
фразы равной длины
###Markdown
**Задание 2**
###Code
x=2020
if x%2==0:
print(x,'-високосный год')
else:
print(x,'-обычный год')
x=2019
if x%2==0:
print(x,'-високосный год')
else:
print(x,'-обычный год')
###Output
2019 -обычный год
###Markdown
**Задание 3**
###Code
day=30
month=9
if day==30 and month==9:
print('дева')
###Output
дева
###Markdown
**Задание 4**
###Code
width = 10
length = 205
height = 5
if width<15 and length<15 and height<15:
print('Коробка №1')
elif width>15 and length>15 and heigh>15:
print('Коробка №2')
elif width>200 and lehgth>200 and heigh>200:
print('Упаковка для лыж')
else:
print('Стандартная коробка №3')
###Output
Стандартная коробка №3
###Markdown
Домашнее задание по теме "Основы Python" **Задание 1**
###Code
len('Насколько проще было бы писать программы, если бы не заказчики')>len('640Кб должно хватить для любых задач. Билл Гейтс (по легенде)')
len('Насколько проще было бы писать программы, если бы не заказчики')>len('640Кб должно хватить для любых задач. Билл Гейтс (по легенде)')
phrase_1 = 'Насколько проще было бы писать программы, если бы не заказчики'
phrase_2 = '640Кб должно хватить для любых задач. Билл Гейтс (по легенде)'
if phrase_1 > phrase_2:
print('фраза 1 длиннее фразы 2')
phrase_1 = '640Кб должно хватить для любых задач. Билл Гейтс (по легенде)'
phrase_2 = 'Насколько проще было бы писать программы, если бы не заказчики'
if phrase_2 > phrase_1:
print('фраза 2 длиннее фразы 1')
phrase_1 = 'Насколько проще было бы писать программы, если бы не заказчики'
phrase_2 = 'Насколько проще было бы писать программы, если бы не заказчики'
if phrase_1==phrase_2:
print('фразы равной длины')
###Output
фразы равной длины
###Markdown
**Задание 2**
###Code
x=2020
if x%4==0:
print(x,'-високосный год')
else:
print(x,'-обычный год')
x=2019
if x%4==0:
print(x,'-високосный год')
else:
print(x,'-обычный год')
###Output
2019 -обычный год
###Markdown
**Задание 3**
###Code
m = 'август'
d = 30
if m == 'март' and d >= 21:
print('знак зодиака Овен')
elif m == 'март' and d < 21:
print('знак зодиака Рыбы')
if m == 'апрель' and d >= 21:
print('знак зодиака Телец')
elif m== 'апрель'and d < 21:
print('знак зодиака Овен')
if m == 'май' and d >= 22:
print('знак зодиака Близнецы')
elif m == 'май' and d < 22:
print('знак зодиака Телец')
if m == 'июнь' and d >= 22:
print('знак зодиака Рак')
elif m == 'июнь' and d < 22:
print('знак зодиака Близнецы')
if m == 'июль' and d >= 23:
print('знак зодиака Лев')
elif m == 'июль' and d < 23:
print('знак зодиака Рак')
if m == 'август' and d >= 24:
print('знак зодиака Дева')
elif m == 'август' and d < 24:
print('знак зодиака Лев')
if m == 'сентябрь' and d >= 24:
print('знак зодиака Весы')
elif m == 'сентябрь' and d < 24:
print('знак зодиака Дева')
if m == 'октябрь' and d >= 24:
print('знак зодиака Скорпион')
elif m == 'октябрь' and d < 24:
print('знак зодиака Весы')
if m == 'ноябрь' and d >= 23:
print('знак зодиака Стрелец')
elif m == 'ноябрь' and d < 23:
print('знак зодиака Скорпион')
if m == 'декабрь' and d >= 22:
print('знак зодиака Козерог')
elif m == 'декабрь' and d < 22:
print('знак зодиака Стрелец')
if m == 'январь' and d >= 21:
print('знак зодиака Водолей')
elif m == 'январь' and d < 21:
print('знак зодиака Стрелец')
if m == 'февраль' and d >= 19:
print('знак зодиака Рыбы')
elif m == 'февраль' and d < 19:
print('знак зодиака Водолей')
m = 'октябрь'
d = 26
if m == 'март' and d >= 21:
print('знак зодиака Овен')
elif m == 'март' and d < 21:
print('знак зодиака Рыбы')
if m == 'апрель' and d >= 21:
print('знак зодиака Телец')
elif m== 'апрель'and d < 21:
print('знак зодиака Овен')
if m == 'май' and d >= 22:
print('знак зодиака Близнецы')
elif m == 'май' and d < 22:
print('знак зодиака Телец')
if m == 'июнь' and d >= 22:
print('знак зодиака Рак')
elif m == 'июнь' and d < 22:
print('знак зодиака Близнецы')
if m == 'июль' and d >= 23:
print('знак зодиака Лев')
elif m == 'июль' and d < 23:
print('знак зодиака Рак')
if m == 'август' and d >= 24:
print('знак зодиака Дева')
elif m == 'август' and d < 24:
print('знак зодиака Лев')
if m == 'сентябрь' and d >= 24:
print('знак зодиака Весы')
elif m == 'сентябрь' and d < 24:
print('знак зодиака Дева')
if m == 'октябрь' and d >= 24:
print('знак зодиака Скорпион')
elif m == 'октябрь' and d < 24:
print('знак зодиака Весы')
if m == 'ноябрь' and d >= 23:
print('знак зодиака Стрелец')
elif m == 'ноябрь' and d < 23:
print('знак зодиака Скорпион')
if m == 'декабрь' and d >= 22:
print('знак зодиака Козерог')
elif m == 'декабрь' and d < 22:
print('знак зодиака Стрелец')
if m == 'январь' and d >= 21:
print('знак зодиака Водолей')
elif m == 'январь' and d < 21:
print('знак зодиака Стрелец')
if m == 'февраль' and d >= 19:
print('знак зодиака Рыбы')
elif m == 'февраль' and d < 19:
print('знак зодиака Водолей')
###Output
знак зодиака Скорпион
###Markdown
**Задание 4**
###Code
width = 10
length = 205
height = 5
if 15 < width < 50 or 15 < length < 50 or 15 < height < 50:
print(width,length,height)
print('Коробка №2')
elif width < 15 and length < 15 and heigh < 15:
print('Коробка №1')
elif length > 200:
print('Упаковка для лыж')
else:
print('Стандартная коробка №3')
print('конец программы')
###Output
_____no_output_____ |
notebooks/losses_evaluation/Dstripes/basic/ellwlb/convolutional/AE/DstripesAE_Convolutional_reconst_1ellwlb_05ssim.ipynb | ###Markdown
Settings
###Code
%env TF_KERAS = 1
import os
sep_local = os.path.sep
import sys
sys.path.append('..'+sep_local+'..')
print(sep_local)
os.chdir('..'+sep_local+'..'+sep_local+'..'+sep_local+'..'+sep_local+'..')
print(os.getcwd())
import tensorflow as tf
print(tf.__version__)
###Output
_____no_output_____
###Markdown
Dataset loading
###Code
dataset_name='Dstripes'
import tensorflow as tf
train_ds = tf.data.Dataset.from_generator(
lambda: training_generator,
output_types=tf.float32 ,
output_shapes=tf.TensorShape((batch_size, ) + image_size)
)
test_ds = tf.data.Dataset.from_generator(
lambda: testing_generator,
output_types=tf.float32 ,
output_shapes=tf.TensorShape((batch_size, ) + image_size)
)
_instance_scale=1.0
for data in train_ds:
_instance_scale = float(data[0].numpy().max())
break
_instance_scale
import numpy as np
from collections.abc import Iterable
if isinstance(inputs_shape, Iterable):
_outputs_shape = np.prod(inputs_shape)
_outputs_shape
###Output
_____no_output_____
###Markdown
Model's Layers definition
###Code
units=20
c=50
enc_lays = [
tf.keras.layers.Conv2D(filters=units, kernel_size=3, strides=(2, 2), activation='relu'),
tf.keras.layers.Conv2D(filters=units*9, kernel_size=3, strides=(2, 2), activation='relu'),
tf.keras.layers.Flatten(),
# No activation
tf.keras.layers.Dense(latents_dim)
]
dec_lays = [
tf.keras.layers.Dense(units=c*c*units, activation=tf.nn.relu),
tf.keras.layers.Reshape(target_shape=(c , c, units)),
tf.keras.layers.Conv2DTranspose(filters=units, kernel_size=3, strides=(2, 2), padding="SAME", activation='relu'),
tf.keras.layers.Conv2DTranspose(filters=units*3, kernel_size=3, strides=(2, 2), padding="SAME", activation='relu'),
# No activation
tf.keras.layers.Conv2DTranspose(filters=3, kernel_size=3, strides=(1, 1), padding="SAME")
]
###Output
_____no_output_____
###Markdown
Model definition
###Code
model_name = dataset_name+'AE_Convolutional_reconst_1ell_05ssmi'
experiments_dir='experiments'+sep_local+model_name
from training.autoencoding_basic.autoencoders.autoencoder import autoencoder as AE
inputs_shape=image_size
variables_params = \
[
{
'name': 'inference',
'inputs_shape':inputs_shape,
'outputs_shape':latents_dim,
'layers': enc_lays
}
,
{
'name': 'generative',
'inputs_shape':latents_dim,
'outputs_shape':inputs_shape,
'layers':dec_lays
}
]
from utils.data_and_files.file_utils import create_if_not_exist
_restore = os.path.join(experiments_dir, 'var_save_dir')
create_if_not_exist(_restore)
_restore
#to restore trained model, set filepath=_restore
ae = AE(
name=model_name,
latents_dim=latents_dim,
batch_size=batch_size,
variables_params=variables_params,
filepath=None
)
from evaluation.quantitive_metrics.structural_similarity import prepare_ssim_multiscale
from statistical.losses_utilities import similarity_to_distance
from statistical.ae_losses import expected_loglikelihood_with_lower_bound as ellwlb
ae.compile(loss={'x_logits': lambda x_true, x_logits: ellwlb(x_true, x_logits)+ 0.5*similarity_to_distance(prepare_ssim_multiscale([ae.batch_size]+ae.get_inputs_shape()))(x_true, x_logits)})
###Output
_____no_output_____
###Markdown
Callbacks
###Code
from training.callbacks.sample_generation import SampleGeneration
from training.callbacks.save_model import ModelSaver
es = tf.keras.callbacks.EarlyStopping(
monitor='loss',
min_delta=1e-12,
patience=12,
verbose=1,
restore_best_weights=False
)
ms = ModelSaver(filepath=_restore)
csv_dir = os.path.join(experiments_dir, 'csv_dir')
create_if_not_exist(csv_dir)
csv_dir = os.path.join(csv_dir, ae.name+'.csv')
csv_log = tf.keras.callbacks.CSVLogger(csv_dir, append=True)
csv_dir
image_gen_dir = os.path.join(experiments_dir, 'image_gen_dir')
create_if_not_exist(image_gen_dir)
sg = SampleGeneration(latents_shape=latents_dim, filepath=image_gen_dir, gen_freq=5, save_img=True, gray_plot=False)
###Output
_____no_output_____
###Markdown
Model Training
###Code
from training.callbacks.disentangle_supervied import DisentanglementSuperviedMetrics
from training.callbacks.disentangle_unsupervied import DisentanglementUnsuperviedMetrics
gts_mertics = DisentanglementSuperviedMetrics(
ground_truth_data=eval_dataset,
representation_fn=lambda x: ae.encode(x),
random_state=np.random.RandomState(0),
file_Name=gts_csv,
num_train=10000,
num_test=100,
batch_size=batch_size,
continuous_factors=False,
gt_freq=10
)
gtu_mertics = DisentanglementUnsuperviedMetrics(
ground_truth_data=eval_dataset,
representation_fn=lambda x: ae.encode(x),
random_state=np.random.RandomState(0),
file_Name=gtu_csv,
num_train=20000,
num_test=500,
batch_size=batch_size,
gt_freq=10
)
ae.fit(
x=train_ds,
input_kw=None,
steps_per_epoch=int(1e4),
epochs=int(1e6),
verbose=2,
callbacks=[ es, ms, csv_log, sg, gts_mertics, gtu_mertics],
workers=-1,
use_multiprocessing=True,
validation_data=test_ds,
validation_steps=int(1e4)
)
###Output
_____no_output_____
###Markdown
Model Evaluation inception_score
###Code
from evaluation.generativity_metrics.inception_metrics import inception_score
is_mean, is_sigma = inception_score(ae, tolerance_threshold=1e-6, max_iteration=200)
print(f'inception_score mean: {is_mean}, sigma: {is_sigma}')
###Output
_____no_output_____
###Markdown
Frechet_inception_distance
###Code
from evaluation.generativity_metrics.inception_metrics import frechet_inception_distance
fis_score = frechet_inception_distance(ae, training_generator, tolerance_threshold=1e-6, max_iteration=10, batch_size=32)
print(f'frechet inception distance: {fis_score}')
###Output
_____no_output_____
###Markdown
perceptual_path_length_score
###Code
from evaluation.generativity_metrics.perceptual_path_length import perceptual_path_length_score
ppl_mean_score = perceptual_path_length_score(ae, training_generator, tolerance_threshold=1e-6, max_iteration=200, batch_size=32)
print(f'perceptual path length score: {ppl_mean_score}')
###Output
_____no_output_____
###Markdown
precision score
###Code
from evaluation.generativity_metrics.precision_recall import precision_score
_precision_score = precision_score(ae, training_generator, tolerance_threshold=1e-6, max_iteration=200)
print(f'precision score: {_precision_score}')
###Output
_____no_output_____
###Markdown
recall score
###Code
from evaluation.generativity_metrics.precision_recall import recall_score
_recall_score = recall_score(ae, training_generator, tolerance_threshold=1e-6, max_iteration=200)
print(f'recall score: {_recall_score}')
###Output
_____no_output_____
###Markdown
Image Generation image reconstruction Training dataset
###Code
%load_ext autoreload
%autoreload 2
from training.generators.image_generation_testing import reconstruct_from_a_batch
from utils.data_and_files.file_utils import create_if_not_exist
save_dir = os.path.join(experiments_dir, 'reconstruct_training_images_like_a_batch_dir')
create_if_not_exist(save_dir)
reconstruct_from_a_batch(ae, training_generator, save_dir)
from utils.data_and_files.file_utils import create_if_not_exist
save_dir = os.path.join(experiments_dir, 'reconstruct_testing_images_like_a_batch_dir')
create_if_not_exist(save_dir)
reconstruct_from_a_batch(ae, testing_generator, save_dir)
###Output
_____no_output_____
###Markdown
with Randomness
###Code
from training.generators.image_generation_testing import generate_images_like_a_batch
from utils.data_and_files.file_utils import create_if_not_exist
save_dir = os.path.join(experiments_dir, 'generate_training_images_like_a_batch_dir')
create_if_not_exist(save_dir)
generate_images_like_a_batch(ae, training_generator, save_dir)
from utils.data_and_files.file_utils import create_if_not_exist
save_dir = os.path.join(experiments_dir, 'generate_testing_images_like_a_batch_dir')
create_if_not_exist(save_dir)
generate_images_like_a_batch(ae, testing_generator, save_dir)
###Output
_____no_output_____
###Markdown
Complete Randomness
###Code
from training.generators.image_generation_testing import generate_images_randomly
from utils.data_and_files.file_utils import create_if_not_exist
save_dir = os.path.join(experiments_dir, 'random_synthetic_dir')
create_if_not_exist(save_dir)
generate_images_randomly(ae, save_dir)
from training.generators.image_generation_testing import interpolate_a_batch
from utils.data_and_files.file_utils import create_if_not_exist
save_dir = os.path.join(experiments_dir, 'interpolate_dir')
create_if_not_exist(save_dir)
interpolate_a_batch(ae, testing_generator, save_dir)
###Output
100%|██████████| 15/15 [00:00<00:00, 19.90it/s]
|
Example 5.3.3.ipynb | ###Markdown
5.3.3 Beta distribution and Jacobi Chaos$$ f(k;\alpha,\beta) = \frac{(1-k)^{\alpha} (1+k)^{\beta}}{2^{\alpha+\beta+1} B(\alpha+1,\beta+1)} = Beta (k, \beta+1, \alpha+1, loc =-1, scale =2)$$When $\alpha=\beta=0$, $k\sim U(-1,1)$;When $\alpha =1, \beta =3$, $$ f(k; 1, 3) = \frac{(1-k)(1+k)^3}{32 B(2,4)} = \frac{5(1-k)(1+k)^3}{8}$$[Wiki - Beta Distribution](https://en.wikipedia.org/wiki/Beta_distribution)$$ \zeta \sim Beta (k, \beta+1, \alpha+1, loc =-1, scale =2)$$[Beta in Python](https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.beta.html)When $\alpha = \beta =0$, Jacobi Chaos is [Legendre-chaos](https://en.wikipedia.org/wiki/Legendre_polynomials)**Legendre Polynomial: ($\alpha = \beta = 0$)**$$\begin{align*}P_0 &= 1\\P_1 &= x\\P_2 &= \frac{1}{2}(3x^2 - 1)\\P_3 &= \frac{1}{2}(5x^3 - 3x)\\P_4 &= \frac{1}{8}(35x^4 - 30x^2 + 3)\\\cdots\end{align*}$$Corresponding Hypergeometric orthogonal polynomial$$ P_n^{(\alpha,\beta)}(x) = \frac{(\alpha+1)_n}{n!}\ _2F_1(-n,n+\alpha+\beta+1;\alpha+1;\frac{1-x}{2})$$No package for Jacobi chaos in Python
###Code
k=0.1
print(beta.pdf(k,4,2,loc=-1,scale=2))
print(5*(1-k)*(1+k)**3/8)
import numpy as np
import numpy.polynomial.legendre as Le #$\zeta \sim U(-1,1)$, when $\alpha=\beta=0$, Jacobi=Legendre
from math import factorial
from scipy.stats import beta
from scipy.special import gamma #gamma function
from matplotlib import pyplot as plt
from scipy.integrate import odeint
%matplotlib notebook
def Jacobi(params):
'''
The first 4 (degree from 0 to 4) Meixner polynomial
Follow definition on P642
'''
n = params[0] #degree
a = params[1] #parameter alpha value
b = params[2] #parameter beta value
if n==0:
return lambda u: 1
elif n==1:
return lambda u: (a+1) - (a+b+2)*(1-u)/2
elif n==2:
return lambda u: (a+1)*(a+2)/2 - (a+2)*(a+b+3)*(1-u)/2 + (a+b+3)*(a+b+4)*(1-u)**2/8
elif n==3:
return lambda u: (a+1)*(a+2)*(a+3)/6 - (a+2)*(a+3)*(a+b+4)*(1-u)/4 + (a+3)*(a+b+4)*(a+b+5)*(1-u)**2/8 - (a+b+4)*(a+b+5)*(a+b+6)*(1-u)**3/48
else: #this actually means n=4
return lambda u: (a+1)*(a+2)*(a+3)*(a+4)/24 - (a+2)*(a+3)*(a+4)*(a+b+5)*(1-u)/12 + (a+3)*(a+4)*(a+b+5)*(a+b+6)*(1-u)**2/16 - (a+4)*(a+b+5)*(a+b+6)*(a+b+7)*(1-u)**3/48 + (a+b+5)*(a+b+6)*(a+b+7)*(a+b+8)*(1-u)**4/384
def f(params):
c = params[0]
a = params[1]
b = params[2]
if a==1 and b==1:
return lambda x: x*(a+b+1)
else:
return lambda x: x*c
def Phi(n):
#define H_n
coeffs = [0]*(n+1)
coeffs[n] = 1
return coeffs
def inner2_le(params):
n = params[0]
a = params[1] #store the value of alpha from beta distr
b = params[2] #store the value of beta from beta distr
return gamma(n+a+1)*gamma(n+b+1)/((2*n+a+b+1)*gamma(n+a+b+1)*factorial(n))
def product3_le(i,j,l,params):
#compute \Phi_i*\Phi_j*\Phi_l
a = params[0]
b = params[1]
if a==0 and b==0:
return lambda x: Le.legval(x, Le.legmul(Le.legmul(Phi(i),Phi(j)),Phi(l)))
else: #actually this means a=1, b=3
return lambda x: Jacobi([i]+params)(x)*Jacobi([j]+params)(x)*Jacobi([l]+params)(x)
def inner3_le(P,i,j,l,params):
#compute <\Phi_i\Phi_j\Phi_l>
a = params[0]
b = params[1]
if a==0 and b==0:
#Set up Gauss-Legendre quadrature, weighting function is 1
m=(P+1)**2
x, w=Le.leggauss(m) #x is point, w is the corresponding weight
inner=sum([product3_le(i,j,l,params)(x[idx]) * w[idx] for idx in range(m)])
return inner/2 ##because of the weight
else:
nsample = 1000
rv = beta.rvs(b+1, a+1, loc=-1, scale=2, size=nsample, random_state=None)
inner = np.mean(product3_le(i,j,l,params)(rv))*gamma(a+1)*gamma(b+1)/gamma(a+b+2)
return inner
def ode_system_le(y, t, P, params):
#P indicates the highest degree
a = params[0]
b = params[1]
dydt = np.zeros(P+1)
for l in range(len(dydt)):
dydt[l] = -(sum(sum(inner3_le(P,i,j,l,params)*ki_le[i]*y[j] for j in range(P+1)) for i in range(P+1)))/inner2_le((l,a,b))
return dydt
#h = unif_icdf([-1,1]) #index k follows uniform distr
P = 4
params = [0, 0]
ki_le = [0,1]+[0]*(P-1)
sol_le = odeint(ode_system_le, [1.0]+[0.0]*P, np.linspace(0,1,101), args=(P, params))
plt.figure()
plt.ylim([-1.2,1.2])
plt.xlim([0,1])
x= np.linspace(0,1,101)
for i in range(P+1):
plt.plot(x,sol_le[:,i],label=i)
plt.axhline(y=1.0, color='r', linestyle='-.',label='Deterministic')
plt.legend(prop={'size': 8})
###Output
_____no_output_____
###Markdown
Error plot when $\alpha=\beta=0$$$\bar{y}_{exact}(t) = \frac{\hat{y_0}}{2t}(e^{t} - e^{-t}) \ \ \ \ \ \ \ \ \bar{y}(t) = y_0$$So $$\epsilon_{mean}(t) = \left| \frac{\bar{y}(t) - \bar{y}_{exact}(t)}{\bar{y}_{exact}(t)}\right|$$$$\sigma_{exact}(t) = \frac{1-e^{-2}}{2} \ \ \ \ \ \ \ \ \sigma(t) = a_1y_1^2 +a_2y_2^2+a_3y_3^2+a_4y_4^2$$The coefficients $(a_1, a_2, a_3, a_4)$ in $\sigma(t)$ can be obtained by code below.So$$\epsilon_{variance}(t) = \left| \frac{\sigma(t) - \sigma_{exact}(t)}{\sigma_{exact}(t)} \right|= \ldots$$ This is $\alpha=\beta=0$$\downarrow$
###Code
allcoeff_533_0 = np.zeros((5,4)) #store ki value/ column 0 stores ki when P=1; column 1 stores ki when P=2
allcoeff_533_0[1,:]=np.ones(4)
y_533_0 = np.zeros((5,4)) #row 0 stores y0 for each P from 1-4; row 1 stores y1 for P from 1-4;...
params = [0, 0]
for i in range(4):
P=i+1
ki_le = allcoeff_533_0[:,i]
y_mid=odeint(ode_system_le, [1.0]+[0.0]*P, np.linspace(0,1,2), args=(P, params))[1,:]
y_533_0[:,i] = y_mid.tolist()+[0]*(4-P)
for i in range(9):
#to compute $\bar{y}(t)$
print(beta.expect(Jacobi((i,0,0)), args=(1,1), loc=-1, scale=2, lb=None, ub=None, conditional=False))
def g(params):
n = params
return lambda u: (Jacobi((n,0,0))(u))**2
for i in range(1,5):
print(beta.expect(g(i), args=(1, 1), loc=-1, scale=2, lb=None, ub=None, conditional=False))
############# alpha = beta = 0 ################
mean_533_0 = y_533_0[0,:]
mean_exact_533_0 = 1/2*(np.e - np.e**(-1))
error_mean_533_0 = np.abs((mean_533_0 - mean_exact_533_0)/mean_exact_533_0)
sigma2_533_0=np.zeros(4)
for i in range(4):
sigma2_533_0[i]=1/3*y_533_0[1,i]**2+1/5*y_533_0[2,i]**2+1/7*y_533_0[3,i]**2+1/9*y_533_0[4,i]**2
sigma2_exact_533_0 = 1/2-1/2*np.e**(-2)
error_var_533_0 = np.abs((sigma2_533_0-sigma2_exact_533_0)/sigma2_exact_533_0)
###Output
_____no_output_____
###Markdown
Error plot when $\alpha=1,\beta=3$$$\bar{y}_{exact}(t) = \frac{5\hat{y_0}}{8}(-12e + 612 e^{-1}) \ \ \ \ \ \ \ \ \bar{y}(t) = y_0$$So $$\epsilon_{mean}(t) = \left| \frac{\bar{y}(t) - \bar{y}_{exact}(t)}{\bar{y}_{exact}(t)}\right|$$$$\sigma_{exact}(t) = 5\hat{y_0}^2e^{-2} - \frac{25}{64}\hat{y_0}^2(-12e+612e^{-1})^2 \ \ \ \ \ \ \ \ \sigma(t) = a_1y_1^2 +a_2y_2^2+a_3y_3^2+a_4y_4^2$$The coefficients $(a_1, a_2, a_3, a_4)$ in $\sigma(t)$ can be obtained by code below.So$$\epsilon_{variance}(t) = \left| \frac{\sigma(t) - \sigma_{exact}(t)}{\sigma_{exact}(t)} \right|= \ldots$$ This is $\alpha=1,\beta=3$$\downarrow$
###Code
allcoeff_533_1 = np.zeros((5,4)) #store ki value/ column 0 stores ki when P=1; column 1 stores ki when P=2
allcoeff_533_1[0,:]=1/3*np.ones(4)
allcoeff_533_1[1,:]=1/3*np.ones(4)
y_533_1 = np.zeros((5,4)) #row 0 stores y0 for each P from 1-4; row 1 stores y1 for P from 1-4;...
params = [1, 3]
for i in range(4):
P=i+1
ki_le = allcoeff_533_1[:,i]
y_mid=odeint(ode_system_le, [1.0]+[0.0]*P, np.linspace(0,1,2), args=(P, params))[1,:]
y_533_1[:,i] = y_mid.tolist()+[0]*(4-P)
y_533_1
###Output
_____no_output_____
###Markdown
`beta.expect(func, args=(a, b), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)`
###Code
for i in range(9):
#to compute $\bar{y}(t)$
print(beta.expect(Jacobi((i,1,3)), args=(4,2), loc=-1, scale=2, lb=None, ub=None, conditional=False))
def g(params):
n = params
return lambda u: (Jacobi((n,1,3))(u))**2
for i in range(1,5):
print(beta.expect(g(i), args=(4, 2), loc=-1, scale=2, lb=None, ub=None, conditional=False))
############# alpha = 1, beta = 3 ################
mean_533_1 = y_533_1[0,:]
mean_exact_533_1 = 5/8*(-12*np.e +612*np.e**(-1))
error_mean_533_1 = np.abs((mean_533_1 - mean_exact_533_1)/mean_exact_533_1)
sigma2_533_1=np.zeros(4)
for i in range(4):
sigma2_533_1[i]=8/7*y_533_1[1,i]**2+10/9*y_533_1[2,i]**2+1.0389610389610364*y_533_1[3,i]**2+0.9615384615384587*y_533_1[4,i]**2
sigma2_exact_533_1 = 5*np.e**(-2) -25/64*(-12*np.e +612*np.e**(-1))**2
error_var_533_1 = np.abs((sigma2_533_1-sigma2_exact_533_1)/sigma2_exact_533_1)
print(mean_533_1)
print(mean_exact_533_1)
print(error_mean_533_1)
print(error_var_533_1)
###Output
[0.90656886 0.9902277 0.99044444 0.98238702]
120.32677253463385
[0.99246578 0.99177051 0.99176871 0.99183567]
[1.0000008 1.00000001 1.00000001 1.00000002]
###Markdown
The error of mean plots when $\alpha=\beta=0$ is a little different since it is close to machine epsilon??, I am using lengendre package in python since $\alpha=\beta=0$. But when $\alpha=1, \beta=3$, the error plots are so strange, I am using the lengendre functions I defined by myself
###Code
plt.figure()
plt.xlim([0,5])
plt.semilogy([1,2,3,4],error_mean_533_0,'-bs',label='mean,alpha=0,beta=0')
plt.semilogy([1,2,3,4],error_var_533_0,'-rs',label='variance, alpha=0,beta=0')
plt.semilogy([1,2,3,4],error_mean_533_1,'-.b^',label='mean, alpha=1,beta=3')
plt.semilogy([1,2,3,4],error_var_533_1,'-.r^',label='variance, alpha=1,beta=3')
plt.legend()
###Output
_____no_output_____ |
notebooks/xnn_notebook_simulated_data.ipynb | ###Markdown
Train an XNN model This notebook shows how to implement using Keras (with TensorFlow backend) an Explainable Neural Network as described in [Explainable Neural Networks based on Additive Index Models](https://arxiv.org/pdf/1806.01933.pdf).The architecture of the network is as follows:[Explainable Neural Networks based on Additive Index Models](https://arxiv.org/pdf/1806.01933.pdf)And consists of three layers:(i) The projection layer (first hidden layer) using linear activation function(ii) Subnetworks, which learn a potentially nonlinear transformation of the input(iii) Combination layer calculates a weighted sum the output of the ridge functions Import packages
###Code
import numpy as np
import pandas as pd
import shap
import subprocess
import sys
import pydot
import keras
from keras import backend
from keras.layers import Activation, Add, Dense, Dropout, Input, Lambda, Concatenate
from keras.models import Model
from keras.utils import plot_model
import plotly.plotly as py
import chart_studio.plotly as py
import plotly.tools as tls
import matplotlib.pyplot as plt
from timeit import default_timer as timer
import tensorflow as tf
from keras import backend as K
seed = 12345
np.random.seed(seed)
my_init = keras.initializers.RandomUniform(seed=seed)
output_label = "sim_final"
out_dir = "output_sim4/"
output_to_files = False
def projection_initializer(shape, dtype=None):
inps = shape[0]
subs = shape[1]
if subs > pow(inps, 2) - 1:
raise ValueError("Currently we support only up to 2^features - 1 number of subnetworks.")
weights = []
for i in range(subs):
w = [0] * inps
w[i] = 1
weights.append(w)
return weights
def alpha_beta(alpha, beta, X , R):
""" Calculate the layerwise backpropagation function """
positive_values = [item for item in X if item > 0]
negative_values = [item for item in X if item < 0]
ans = np.array([0.0]*len(X))
if len(positive_values) > 0:
ans += alpha*np.array([item / float(sum(positive_values)) if item > 0 else 0 for item in X])
if len(negative_values) > 0:
ans += -beta * np.array([item / float(sum(negative_values)) if item < 0 else 0 for item in X])
return ans*R
def deep_lift(X_bar, X , R):
""" Deep lift backpropagation function"""
ans = np.array(X) - np.array(X_bar)
ans = ans / (sum(X) - sum(X_bar))
return ans*R
###Output
_____no_output_____
###Markdown
XNN Class
###Code
class XNN:
# define base model
def __init__(self, features, ridge_functions=3, arch=[20,12], bg_samples=100, seed=None, is_categorical=False):
self.seed = seed
self.bg_samples = bg_samples
self.is_categorical = is_categorical
#
# Prepare model architecture
#
# Input to the network, our observation containing all the features
input = Input(shape=(features,), name='main_input')
# Input to ridge function number i is the dot product of our original input vector times coefficients
ridge_input = Dense(ridge_functions,
name="projection_layer",
activation='linear')(input)
self.ridge_networks = []
# Each subnetwork uses only 1 neuron from the projection layer as input so we need to split it
ridge_inputs = Lambda( lambda x: tf.split(x, ridge_functions, 1), name='lambda_1' )(ridge_input)
for i, ridge_input in enumerate(ridge_inputs):
# Generate subnetwork i
mlp = self._mlp(ridge_input, i, arch)
self.ridge_networks.append(mlp)
added = Concatenate(name='concatenate_1')(self.ridge_networks)
# Add the correct output layer for the problem
if self.is_categorical:
out = Dense(1, activation='sigmoid', input_shape= (ridge_functions, ), name='main_output')(added)
else:
out = Dense(1, activation='linear', input_shape= (ridge_functions, ), name='main_output')(added)
self.model = Model(inputs=input, outputs=out)
optimizer = keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, decay=0.0, amsgrad=True)
# Use the correct loss for the problem
if self.is_categorical:
self.model.compile(loss={'main_output': 'binary_crossentropy'}, optimizer=optimizer)
else:
self.model.compile(loss={'main_output': 'mean_squared_error'}, optimizer=optimizer)
self.explainer = None
def _mlp(self, input, idx, arch=[20,12], activation='relu'):
if len(arch) < 1:
return #raise exception
# Hidden layers
mlp = Dense(arch[0], activation=activation, name='mlp_{}_dense_0'.format(idx), kernel_initializer=my_init)(input)
for i, layer in enumerate(arch[1:]):
mlp = Dense(layer, activation=activation, name='mlp_{}_dense_{}'.format(idx, i+1), kernel_initializer=my_init)(mlp)
# Output of the MLP
mlp = Dense(1,
activation='linear',
name='mlp_{}_dense_last'.format(idx),
kernel_regularizer=keras.regularizers.l1(1e-3),
kernel_initializer=my_init)(mlp)
return mlp
def print_architecture(self):
self.model.summary()
def fit(self, X, y, epochs=5, batch_size=128, validation_set=0.0, verbose=0):
inputs = {'main_input': X}
if validation_set == 0:
self.model.fit(inputs, y, epochs=epochs, batch_size=batch_size, validation_split=validation_set, verbose=verbose)
else:
self.model.fit(inputs, y, epochs=epochs, batch_size=batch_size, validation_data=validation_set, verbose=verbose)
#
# Prepare the explainer
#
np.random.seed(self.seed)
if isinstance(X, pd.DataFrame):
background = X.iloc[np.random.choice(X.shape[0], self.bg_samples, replace=False)]
else:
background = X[np.random.choice(X.shape[0], self.bg_samples, replace=False)]
# Explain predictions of the model on the subset
self.explainer = shap.DeepExplainer(self.model, background)
def predict(self, X, pred_contribs=False):
pred_start = timer()
preds = self.model.predict(X)
pred_end = timer()
print("Predictions took {}".format(pred_end - pred_start))
if pred_contribs:
explainer_start = timer()
self.shap_values = self.explainer.shap_values(X)
explainer_end = timer()
print("Explainer took {}".format(explainer_end - explainer_start))
concat_start = timer()
preds = np.concatenate((preds, self.shap_values[0], preds), axis=1)
preds[:,-1] = self.explainer.expected_value
concat_end = timer()
print("Concat took {}".format(concat_end - concat_start))
return preds
def plot_shap(self, X):
shap.summary_plot(self.shap_values, X)
def save(self, filename):
self.model.save(filename)
###Output
_____no_output_____
###Markdown
Load dataset
###Code
# Load the dataset
xnn_data_dir = '~/article-information-2019/data/xnn_output/'
#xnn_data_dir = ''
DATA=pd.read_csv(xnn_data_dir + 'train_simulated_transformed.csv')
print(list(DATA.columns))
TEST=pd.read_csv(xnn_data_dir + 'test_simulated_transformed.csv')
print(list(TEST.columns))
selected_vars = ['binary1', 'binary2', 'cat1_0', 'cat1_1', 'cat1_2', 'cat1_3', 'cat1_4',
'fried1_std', 'fried2_std', 'fried3_std', 'fried4_std', 'fried5_std']
target_var = 'outcome'
X=DATA[selected_vars].values
Y=DATA[target_var].values
TEST_X = TEST[selected_vars].values
TEST_Y = TEST[target_var].values
features = X.shape[1]
DATA.columns
###Output
_____no_output_____
###Markdown
Fit XNN
###Code
# Initialize the XNN
is_cat = True
xnn = XNN(features=features, ridge_functions=features, arch=[8, 6], is_categorical= is_cat)
# plot_model(xnn.model, to_file='model_regression.png')
xnn.print_architecture()
cv_test_preds = {}
cv_train_preds = {}
epoch = []
fold_list = list(set(DATA['cv_fold']))
epochs_max = 20000
# Make predictions on the CV folds
for cv_fold in fold_list:
TRAIN = DATA[DATA['cv_fold'] != cv_fold]
VALID = DATA[DATA['cv_fold'] == cv_fold]
X = TRAIN[selected_vars].values
Y = TRAIN[target_var].values
X_VALID = VALID[selected_vars].values
Y_VALID = VALID[target_var].values
xnn.fit(X, Y, epochs=epochs_max, batch_size=1024, validation_set=(X_VALID, Y_VALID), verbose=1)
if output_to_files:
xnn.save(out_dir + 'cv_' + str(cv_fold) + '_hmda_model.h5')
# CV predictions
cv_test_preds[cv_fold] = xnn.predict(TEST_X, pred_contribs=True)
cv_train_preds[cv_fold] = xnn.predict(X_VALID, pred_contribs=True)
if output_to_files:
pd.DataFrame(pd.concat([TEST, pd.DataFrame(cv_test_preds[cv_fold])], axis=1)).to_csv(out_dir + "test_output_" + str(cv_fold) + "_" + str(epochs_max) + "_" + output_label +".csv" , index=False)
pd.DataFrame(pd.concat([VALID, pd.DataFrame(cv_train_preds[cv_fold])], axis=1)).to_csv(out_dir + "valid_output_" + str(cv_fold) + "_" + str(epochs_max) + "_" + output_label + ".csv" , index=False)
# Run the model on the full training set and make predictions on the test set
X=DATA[selected_vars].values
Y=DATA[target_var].values
xnn.fit(X, Y, epochs=epochs_max, batch_size=1024, validation_set=0, verbose=1)
test_preds = xnn.predict(TEST_X, pred_contribs=True)
if output_to_files:
pd.DataFrame(pd.concat([TEST, pd.DataFrame(test_preds)], axis=1)).to_csv(out_dir + "main_" + str(epochs_max) + "_" + output_label + ".csv" , index=False)
xnn.save(out_dir + 'final_sim_model.h5')
###Output
_____no_output_____
###Markdown
Record layer information Plot projection layer
###Code
# Record the inputs, outputs, weights, and biases
import scipy as sp
int_output = {}
int_output2 = {}
int_weights = {}
int_bias = {}
int_input = {}
original_activations = {}
x_labels = list(map(lambda x: 'x' + str(x+1), range(features)))
intermediate_output = []
# Record and plot the projection weights
#
weight_list = []
for layer in xnn.model.layers:
layer_name = layer.get_config()['name']
if layer_name != "main_input":
print(layer_name)
weights = layer.get_weights()
# Record the biases
try:
bias = layer.get_weights()[1]
int_bias[layer_name] = bias
except:
print("No Bias")
# Record outputs for the test set
intermediate_layer_model = Model(inputs=xnn.model.input, outputs=xnn.model.get_layer(layer_name).output)
if (is_cat) and (layer_name == 'main_output'):
int_output[layer_name] = sp.special.logit(intermediate_layer_model.predict(TEST_X))
int_output[layer_name + "_p"] = intermediate_layer_model.predict(TEST_X)
else:
int_output[layer_name] = intermediate_layer_model.predict(TEST_X)
# Record the outputs from the training set
if is_cat and (layer_name == 'main_output'):
original_activations[layer_name] = sp.special.logit(intermediate_layer_model.predict(X))
original_activations[layer_name + "_p"] = intermediate_layer_model.predict(X)
else:
original_activations[layer_name] = intermediate_layer_model.predict(X)
# Record other weights, inputs, and outputs
int_weights[layer_name] = weights
int_input[layer_name] = layer.input
int_output2[layer_name] = layer.output
# Plot the projection layers
if "projection_layer" in layer.get_config()['name']:
print(layer.get_config()['name'])
# Record the weights for each projection layer
weights = [np.transpose(layer.get_weights()[0])]
weight_list2=[]
for i, weight in enumerate(weights[0]):
weight_list.append(weight)
weight_list2.append(list(np.reshape(weight, (1,features))[0]))
# Plot weights
plt.bar(x_labels, abs(np.reshape(weight, (1,features))[0]), 1, color="blue")
plt.xlabel("Subnetowork {} coefficient".format(i))
plt.ylabel("Weight value")
plt.show()
if "main_output" in layer.get_config()['name']:
weights_main = layer.get_weights()
print(weights_main)
if output_to_files:
pd.DataFrame(weight_list2).to_csv("wp_" + output_label + ".csv", index=False)
###Output
_____no_output_____
###Markdown
Calculate the feature importances
###Code
# Calculate ridge and input function local feature importances
item = 0
feature_output = []
feature_output2 = []
feature_output3 = []
# Find the average outputs
S_bar = sum(original_activations["main_output"])/len(original_activations["main_output"])
# original_activations[layer_name]
output_weights = np.array([int_weights["main_output"][0][ii][0] for ii in range(features)])
output_Z_bar = sum(original_activations["concatenate_1"]*output_weights)/len(original_activations["concatenate_1"])
# For each ridge function calculate the average input activation
input_Z_bar = {}
for ridge_num in range(features):
input_weights = np.array([int_weights["projection_layer"][0][ii][ridge_num] for ii in range(features)])
input_Z_bar[ridge_num] = sum(X*input_weights)/len(X)
# For each test instance, calculate the feature importance scores
for test_num in range(len(TEST_X)):
# Calculate the output activations
activation_list=[int_weights["main_output"][0][ii][0]*int_output["concatenate_1"][test_num][ii] for ii in range(features)]
# Calculate layerwise backpropagaiton to the ridge functions
# For classification, change this to the inverse sigmoid of the output
features_ab = alpha_beta(2, 1, activation_list , int_output["main_output"][test_num][0])
features_ab2 = alpha_beta(2, 1, activation_list , int_output["main_output"][test_num][0]-S_bar)
# Calculate deep lift backpropagation to the ridge functions
features_dl = deep_lift(output_Z_bar, activation_list , int_output["main_output"][test_num][0]-S_bar)
# Calculate the deep lift and layerwise information scores for the input layer
input_scores = []
input_scores_dl = []
input_scores2 = []
input_scores_dl2 = []
for ridge_num in range(features):
weights = int_weights["projection_layer"][0][ridge_num]
output = TEST_X[test_num,:]
# [int_weights["projection_layer"][0][ii][0] for ii in range(features)]
# Calculate the activations from the projection layer
act = TEST_X[test_num,:]*np.array([int_weights["projection_layer"][0][ii][ridge_num] for ii in range(features)])
# Input relevance scores for a single ridge function
input_scores += list(alpha_beta(2,1, act, features_ab[ridge_num]))
input_scores_dl += list(deep_lift(input_Z_bar[ridge_num], act, features_dl[ridge_num]))
input_scores2 += list(alpha_beta(2,1, act, features_ab2[ridge_num]))
# print(sum(TEST_X[0,:]*np.array([int_weights["projection_layer"][0][ii][0] for ii in range(features)]))+int_bias["projection_layer"][0])
# Sum the contribution of the variable importance from each of the projections
input_sum = [sum(input_scores[ii+features*jj] for jj in range(features)) for ii in range(features)]
input_sum2 = [sum(input_scores2[ii+features*jj] for jj in range(features)) for ii in range(features)]
input_sum_dl = [sum(input_scores_dl[ii+features*jj] for jj in range(features)) for ii in range(features)]
input_abs_sum = [sum(abs(input_scores[ii+features*jj]) for jj in range(features)) for ii in range(features)]
# Recored the feature importance information for this instance
feature_output.append(input_sum+input_abs_sum+[int_output["main_output"][test_num][0]]+list(features_ab)+input_scores)
feature_output2.append(input_sum+list(features_ab)+input_sum_dl + list(features_dl))
feature_output3.append(input_sum2+list(features_ab2)+input_sum_dl + list(features_dl))
###Output
_____no_output_____
###Markdown
Find and plot the ridge functions
###Code
intermediate_output = []
for feature_num in range(features):
intermediate_layer_model = Model(inputs=xnn.model.input,
outputs=xnn.model.get_layer('mlp_'+str(feature_num)+'_dense_last').output)
intermediate_output.append(intermediate_layer_model.predict(X))
# Record and plot the ridge functions
ridge_x = []
ridge_y = []
for weight_number in range(len(weight_list)):
ridge_x.append(list(sum(X[:, ii]*weight_list[weight_number][ii] for ii in range(features))))
ridge_y.append(list(intermediate_output[weight_number]))
plt.plot(sum(X[:, ii]*weight_list[weight_number][ii] for ii in range(features)), intermediate_output[weight_number], 'o')
plt.xlabel("x")
plt.ylabel("Subnetwork " + str(weight_number))
plt.legend(loc='lower right')
plt.show()
if output_to_files:
pd.DataFrame(ridge_x).to_csv("ridge_x_"+ output_label +".csv", index=False)
pd.DataFrame(ridge_y).to_csv("ridge_y_" + output_label + ".csv", index=False)
pd.DataFrame(feature_output2).to_csv("feature_output2_" + output_label + ".csv", index=False)
pd.DataFrame(feature_output3).to_csv("feature_output3_" + output_label + ".csv", index=False)
# Make predictions on the test set
preds = xnn.predict(TEST_X, pred_contribs=True)
if output_to_files:
pd.DataFrame(preds).to_csv("preds_" + output_label + ".csv", index=False)
pd.DataFrame(TEST).to_csv("TEST_" + output_label + ".csv", index=False)
# Calculate the Shapley values.
shap.initjs()
shap.summary_plot(xnn.shap_values, X)
y=xnn.shap_values
ind=1
# Calculate the average absolute feature importance across the dataset
layerwise_average_input=np.array([0.0]*features)
layerwise_average_input2=np.array([0.0]*features)
layerwise_average_ridge=np.array([0.0]*features)
layerwise_average_ridge2=np.array([0.0]*features)
layerwise_average_shap=np.array([0.0]*features)
lift_average_input=np.array([0.0]*features)
lift_average_ridge=np.array([0.0]*features)
for ii in range(len(feature_output2)):
layerwise_average_input += np.abs(np.array(feature_output2[ii][0:features])))
layerwise_average_ridge += np.abs(np.array(feature_output2[ii][features:(2*features)]))
layerwise_average_input2 += np.abs(np.array(feature_output3[ii][0:features]))
layerwise_average_ridge2 += np.abs(np.array(feature_output3[ii][features:(2*features)]))
lift_average_input += np.abs(np.array(feature_output2[ii][(2*features):(3*features)]))
lift_average_ridge += np.abs(np.array(feature_output2[ii][(3*features):(4*features)]))
layerwise_average_shap += np.abs(np.array(y[0][ii]))
layerwise_average_input = layerwise_average_input/len(feature_output2)
layerwise_average_ridge = layerwise_average_ridge/len(feature_output2)
layerwise_average_input2 = layerwise_average_input2/len(feature_output2)
layerwise_average_ridge2 = layerwise_average_ridge2/len(feature_output2)
layerwise_average_shap = layerwise_average_shap/len(feature_output2)
lift_average_input = lift_average_input/len(feature_output2)
lift_average_ridge = lift_average_ridge/len(feature_output2)
SCORES = [list(layerwise_average_input), list(layerwise_average_ridge),
list(layerwise_average_input2), list(layerwise_average_ridge2),
list(layerwise_average_shap), list(lift_average_input),
list(lift_average_ridge)]
if output_to_files:
pd.DataFrame(SCORES).to_csv("scores_" + output_label + ".csv", index=False)
###Output
_____no_output_____
###Markdown
Plot feature importance scores
###Code
plt.bar(x, abs(np.reshape(y[0][ind], (1,features))[0]), 1, color="blue")
plt.xlabel("Shap Score Example " + str(ind))
plt.ylabel("")
plt.show()
plt.bar(x, abs(np.reshape(feature_output2[ind][0:features], (1,features))[0]), 1, color="blue")
plt.xlabel("Input Layerwise Propagation Score Example " + str(ind))
plt.ylabel("")
plt.show()
plt.bar(x, abs(np.reshape(feature_output2[ind][features:(2*features)], (1,features))[0]), 1, color="blue")
plt.xlabel("Ridge Layerwise Propagation Score Example " + str(ind))
plt.ylabel("Weight value")
plt.show()
plt.bar(x, abs(np.reshape(feature_output2[ind][2*features:(3*features)], (1,features))[0]), 1, color="blue")
plt.xlabel("Deep Lift Input Score Example " + str(ind))
plt.ylabel("Weight value")
plt.show()
plt.bar(x, abs(np.reshape(feature_output2[ind][3*features:(4*features)], (1,features))[0]), 1, color="blue")
plt.xlabel("Deep Lift Ridge Score Example " + str(ind))
plt.ylabel("Weight value")
plt.show()
plt.bar(x, abs(np.reshape(layerwise_average_input, (1,features))[0]), 1, color="blue")
plt.xlabel("Input Layerwise Propagation Score Average")
plt.ylabel("")
plt.show()
plt.bar(x, abs(np.reshape(layerwise_average_ridge, (1,features))[0]), 1, color="blue")
plt.xlabel("Ridge Layerwise Propagation Score Average")
plt.ylabel("Weight value")
plt.show()
plt.bar(x, abs(np.reshape(layerwise_average_input2, (1,features))[0]), 1, color="blue")
plt.xlabel("Input Layerwise Propagation Score Average 2")
plt.ylabel("")
plt.show()
plt.bar(x, abs(np.reshape(layerwise_average_ridge2, (1,features))[0]), 1, color="blue")
plt.xlabel("Ridge Layerwise Propagation Score Average 2")
plt.ylabel("Weight value")
plt.show()
plt.bar(x, abs(np.reshape(lift_average_input, (1,features))[0]), 1, color="blue")
plt.xlabel("Input Lift Score Average")
plt.ylabel("")
plt.show()
plt.bar(x, abs(np.reshape(lift_average_ridge, (1,features))[0]), 1, color="blue")
plt.xlabel("Ridge Lift Score Average")
plt.ylabel("Weight value")
plt.show()
plt.bar(x, abs(np.reshape(layerwise_average_shap, (1,features))[0]), 1, color="blue")
plt.xlabel("Shapley Score Average")
plt.ylabel("Weight value")
plt.show()
###Output
_____no_output_____ |
Runge-kutta-mv .ipynb | ###Markdown
Create a notebook to perform Runge-Kutta integration for multiple coupled variables
###Code
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
###Output
_____no_output_____
###Markdown
Define our coupled derivatives to integrate
###Code
def dydx(x,y):
#set the derivatives
#our equation is d^2y/dx^2 = y
#so we can wirte
#dy/dx= z
#dz/dx = -y
#we will set y = y[0]
#we will set z = y[1]
#declare an array
y_derivs = np.zeros(2)
y_derivs[0] = y[1]
y_derive[1] = -1*y[0]
return y_derivs
###Output
_____no_output_____
###Markdown
Define the 4th order Rk method
###Code
def rk4_mv_core(dydx,xi,yi,h):
#declare k arrays
k1 = np.zeros(nv)
k2 = np.zeros(nv)
k3 = np.zeros(nv)
k4 = np.zeros(nv)
#define xat 1/2 step
x_ipoh = xi + 0.5*h
#define x at 1 step
x_ipo = xi+h
#declare a temp y array
y_temp = np.zeros(nv)
#get k1 values
y_derivs = dxdy(xi,yi)
k1 = h*yderivs[:]
#get k2 values
y_temp[:] = yi[:]+0.5*k1[:]
y_derivs = dydx(x_ipoh, y_temp)
k2[:] = h*y_derives[:]
#get k3 values
y_temp[:] = yi[:]+0.5*k2[:]
y_derivs = dydx(x_ipoh, y_temp)
k3[:] = h*y_derives[:]
#get k4 values
y_temp[:] = yi[:]+0.5*k3[:]
y_derivs = dydx(x_ipoh, y_temp)
k4[:] = h*y_derives[:]
#advance y by a step h
yipo = yi + (k1+2*k2 + 2*k3 + k4)/6
return yipo
def rk4_mv_ad(dydx,x_i,y_i,nv,h,tol):
#define safety scale
SAFETY = 0.9
H_NEW_FAC = 2.0
#set a maximum number of iteration
imax = 10000
#set an iteration variable
i = 0
#create an error
Delta = np.full(nv,2*tol)
#remember the step
h_step = h
#adjust step
while(Delta.max()/tol > 1.0):
#estimate our error by taking one step of size h
#vs two steps of size h/2
y_2 = rk4_mv_core(dydx,x_i, y_i,nv,h_step)
y_1 = rk4_mv_core(dydx,x_i,y_i, nv,0.5*h_step)
y_11 = rk4_mv_core(dydx,x_i+0.5*h_step,y_1,nv,0.5*h_step)
#compute an error
Delta = np.fabs(y_2-y_11)
#if the error is too large, take a smaller step
if(Delta.max()/tol>1.0):
#our error is too large, decrease the step
h_step *= SAFETY * (Delta.max()/tol)**(-0.25)
#check iteration
if(i>imax):
print('too many iterations in rk4_mv_ad()')
raise StopIteration('ending after i = ',i)
#iterate
i += 1
#next time, try to take a bigger step
h_new = np.fmin(h_step * (delta.max()/tol)**(-0.9), h_step*H_NEW_FAC)
#return the answer, a new step, and the stp we actually took
return y_2, h_new, h_step
###Output
_____no_output_____
###Markdown
Define a wrapper for RK4
###Code
def rk4_mv(dfdx,a,b,y_a,tol):
#dfdx is the derivative wrt x
#a is the lower bound
#b is the upper bound
#y_a are the boundary conditions
#tol is the tolerance for integrating y
#define our starting step
xi = a
yi = y_a.copy()
#an initial step size == make very small
h = 1.0e-4 * (b-a)
#set a maximum number of iterations
imax = 10000
#set a iteration variable
i = 0
#set the number of coupled odes to the
#size of y_a
nv = len(y_a)
#set the initial conditions
x = np.full(1,a)
y = np.ful((1,nv),y_a)
#set a flag
flag = 1
#loop unitl we reach the right side
while(flag):
#calculate y_i+1
yi_new, h_new, h_step = rk4_mv_ad(dydx,xi,yi,nv,h,tol)
#update the step
h = h_new
#prevent an overshoot
if(xi+h_step>b):
#take a smaller step
h = b-xi
#recalculate y_i+1
yi_new, h_new, h_step = rk4_mv_ad(dydx,xi, yi,nv,h,tol)
#break
flag = 0
###Output
_____no_output_____ |
docs/session_4/02_calculate_ndvi_part_1.ipynb | ###Markdown
Calculating NDVI: Part 1This exercise follows on from the previous section. In the [final exercise of the previous session](../session_3/03_geomedian_exercise.ipynb), you constructed a notebook to create geomedian composite.In this section, we will create a new notebook based on the notebook from the previous section. Most of the code will remain unchanged, but we will change the area of interest and time extent. We will also add steps to resample the new dataset and create a geomedian. In the next section, we will calculate and plot NDVI.
###Code
.. note::
We will be using the notebook we created in the previous section, `Create a geomedian composite <../session_3/03_geomedian_exercise.ipynb>`_. If you have not already set up a copy of the notebook called ``Geomedian_composite.ipynb`` with the required packages and functions, follow the instructions in previous section. Ensure you have completed all the steps, including loading the Sentinel-2 dataset.
###Output
_____no_output_____
###Markdown
Set up notebook Create a copy of the notebookBefore you continue with the next step,1. Log in to the Sandbox and open the **Training** folder.2. Make a copy of the `Geomedian_composite.ipynb` notebook.3. Rename the notebook to `Calculate_ndvi.ipynb`.See [create a copy of a notebook and rename it](https://training.digitalearthafrica.org/en/latest/session_1/04_running_a_notebook.htmlCreate-a-copy-of-the-notebook) for more details. Clearing the notebookWe will need to remove any output from previous runs of the notebook.1. Select **Kernel -> Restart Kernel and Clear All Outputs…**.2. When prompted, select **Restart**. Running the notebookThis notebook is still set up to run the Session 3 exercise, so you will need to follow the instructions below to modify it. Work cell by cell and pay attention to what needs to be changed. Set-up1. Run the first cell, which contains the packages and functions for the analysis. No need to change anything here.2. For the `dc = datacube.Datacube` command, change the app name to `"Calculate_ndvi"`. It should look like: ``` dc = datacube.Datacube(app="Calculate_ndvi") ``` Load the data1. Change the x and y values to those shown below and run the cell. ``` x=(-6.1495, -6.1380) y=(13.9182, 13.9111) ```2. Change the time in the `load_ard` function to `("2019-01", "2019-12")`.3. Remove the option `min_gooddata=0.7`. If you completed steps 2, 3 and 4, your load cell should look like ``` sentinel_2_ds = load_ard( dc=dc, products=["s2_l2a"], x=x, y=y, time=("2019-01", "2019-12"), output_crs="EPSG:6933", measurements=['red', 'green', 'blue'], resolution=(-10, 10), group_by='solar_day') ``` 4. Run the cell. The load should return 71 time steps. Plot timestepsThe fifth cell of the notebook contains an `rgb` command to plot the loaded data. To match our example below, modify this cell so that it matches the code below:```timesteps = [1, 6, 8]rgb(sentinel_2_ds, bands=['red', 'green', 'blue'], index=timesteps)```This will plot images for the 1st, 6th and 8th timestep of the loaded data (remember that Python starts counting at 0). Your image should match the one below.
###Code
.. note::
You may also like to run this cell a few times, experimenting with different values for the ``timesteps`` parameter. The load command should have returned 71 time steps, meaning the values in your ``timesteps`` list can be anywhere from ``0`` to ``70``.
###Output
_____no_output_____
###Markdown
Resampling the datasetResampling is used to create a new set of times at regular intervals. Using the resample method, the data can be arranged in days, months, quarterly (three months) or yearly. Below gives examples of how the data are grouped. * `'nD'` - number of days (e.g. `'7D'` for seven days) * `'nM'` - number of months (e.g. `'6M'` for six months) * `'nY'` - number of years (e.g. `'2Y'` for two years) Follow the steps below to resample the dataset time steps to quarterly.1. Delete the code for plotting all RGB images: ``` rgb(sentinel_2_ds, bands=['red', 'green', 'blue'], col='time', size=4) ``` 2. In the cleared cell, write the following code to resample the data and store it in the `resample_sentinel_2_ds` variable: ``` resample_sentinel_2_ds = sentinel_2_ds.resample(time='3MS') ``` `resample_sentinel_2_ds` describes how to group the data into quarterly segments. We can now use this to calculate the geomedian for each quarterly segment.
###Code
.. note::
``S`` at the end of ``'3MS'`` is to group the data by start of the month.
###Output
_____no_output_____ |
labs/.ipynb_checkpoints/lab1-checkpoint.ipynb | ###Markdown
Lab 1When reporting probabilities in a scientific context, the standard is to convert this probabilty into a sigma value, which represents the probabilty of the data To convert sigma values back to a probabilty, some convoluted integration is required. Luckily, python has these capabilites built in. The *erfc* function is one of several scipy functions which returns a probabilty given an input sigma value.
###Code
for x in range(1, 6):
print(sp.special.erfc(x))
###Output
0.15729920705028516
0.004677734981047266
2.2090496998585445e-05
1.541725790028002e-08
1.5374597944280347e-12
###Markdown
Here we can see that *erfc* values roughly match up with the negative 1, 2, 3, and 4 sigma values on a z table (or the positive values subtracted from 1), giving us the probabilty that our target event happened outside of our measured sigma value. As previously mentioned, the accepted standard is to convert this probabilty into a sigma value, but a probabilty can also be converted back into a sigma, as is shown below.
###Code
sp.stats.norm.ppf(3e-7)
###Output
_____no_output_____
###Markdown
Here we see the sigma value reported as a negative number. This is probably due to the fact that the built in function uses the left side of the normal distribution to find the associated sigma value as this would come up first when searching from negative to positive. Rayleigh Distribution A Rayliegh distribution is distinct in that it is not identical on each side of its peak. Applications of Rayleigh distributions are most common in places where long-lived or large events are less common than those of shorter length. Examples are wave height or product lifespan. Let's create a sample set of data with built-in Python functions.
###Code
#def prob_graph(loc, scale, xleft, xright, size)
d = sp.stats.rayleigh.rvs(loc = 2.0, scale = 1, size = 100000)
xleft = 1.95
xright = 7
fig, ax = plt.subplots(1, 1)
ax.hist(d,50, density=True)
plt.tick_params(labelsize = 20)
plt.xlim(xleft, xright)
x = np.linspace(xleft,xright,1000)
ax.plot(x, sp.stats.rayleigh.pdf(x,loc = 2, scale = 1),linewidth = 7,alpha = 0.6)
plt.show()
###Output
_____no_output_____
###Markdown
Looks pretty good! The 100,000 sample size seems to have created a pretty accurate distrobution. However, towards the top end (~X = 6), we can't really tell what is going on. The height of the distribution is controlled by the 'scale' factor in the pdf, with a higher scale representing a wider and shorter distribution. Plotting our data on a semilog graph reveals some interesting secrets.
###Code
#def prob_graph(loc, scale, xleft, xright, size)
d = sp.stats.rayleigh.rvs(loc = 2.0, scale = 1, size = 100000)
xleft = 1.95
xright = 7
fig, ax = plt.subplots(1, 1)
ax.set_yscale('log')
ax.hist(d,50, density=True)
plt.tick_params(labelsize = 20)
plt.xlim([xleft, xright])
x = np.linspace(xleft,xright,1000)
ax.plot(x,sp.stats.rayleigh.pdf(x,loc = 2, scale = 1),linewidth = 7,alpha = 0.6)
plt.show()
###Output
_____no_output_____
###Markdown
Even with the large sample size, there is a suprisingly large amount of innacuracy towards the tail of the distribution. The theoretical data above could represent the lifetime of a company's product in years. If a similar, slightly redesigned product has a lifespan of 4.5 years, what is the chance that this is not an improvement over our original product?
###Code
sp.stats.rayleigh.cdf(4.5)
sp.stats.norm.ppf(0.999959934702607)
###Output
_____no_output_____
###Markdown
This comes out to be a sigma value of 3.94, which while very significant, would not be accepted by the scientific community in a physics-related context. Binomial Distribution
###Code
fig, ax = plt.subplots(1,1)
n, p = 100, .45
m, v, s, k = sp.stats.binom.stats(n, p, moments="mvsk")
x = np.arange(sp.stats.binom.ppf(0.01, n, p), sp.stats.binom.ppf(0.99, n, p))
plt.xlim(30, 60)
ax.plot(x, sp.stats.binom.pmf(x, n, p), 'o')
ax.vlines(x, 0, sp.stats.binom.pmf(x, n, p))
fig, ax = plt.subplots(1,1)
n, p = 100, .45
m, v, s, k = sp.stats.binom.stats(n, p, moments="mvsk")
x = np.arange(sp.stats.binom.ppf(0.01, n, p), sp.stats.binom.ppf(0.99, n, p))
plt.xlim(30, 60)
ax.plot(x, sp.stats.binom.pmf(x, n, p), 'o')
ax.set_yscale('log')
ax.vlines(x, 0, sp.stats.binom.pmf(x, n, p))
###Output
_____no_output_____
###Markdown
In a semilog plot, the distribution takes on the shape of a slightly skewed parabola, looking very similar to, but slightly different from a Gaussian curve. Using the distrubition above, let's assume we flip a coin that is slightly biased to one side. We'd assume most outcomes would land around 45 on one side to 55 on the other, which is reflected in the graph. One difference in comparison to our previous question, which dealt with a continuous probabilty, is that our probabilty only takes on integer values, which makes the binomial distribution good for counting events if we know the general probability that it should happen. Unlike individual data points, statistics about the binomial distribution don't have to necessarily be an integer value. If the average family has 1.9 kids, that clearly does not mean that any familiy has that exact value. So what happens if we get 60 heads on a second coin with unknown properties? Could it be the same type of coin?
###Code
sp.stats.binom.cdf(60, n, p)
sp.stats.norm.ppf(0.9990617681011207)
###Output
_____no_output_____ |
notebooks/employee-attrition.ipynb | ###Markdown
Data Science pipeline in action to solve employee attrition problem This code pattern is a high level overview of what to expect in a data science pipeline and tools that can be used along the way. It starts from framing business question to deploying the model. The pipeline is demonstrated through the employee attrition problem. Employees are the backbone of the organization. Organization's performance is heavily based on the quality of the employees. Challenges that an organization has to face due employee attrition are:1. Expensive in terms of both money and time to train new employees.2. Loss of experienced employees3. Impact in productivity4. Impact profitBefore getting our hands dirty with the data, first step is to frame the business question. Having clarity on below questions is very crucial because the solution that is being developed will make sense only if we have well stated problem.“Good data science is more about the questions you pose of the data rather than data munging and analysis” — Riley Newman Business questions to brainstorm:1. What factors are contributing more to employee attrition?2. What type of measures should the company take in order to retain their employees?3. What business value does the model bring?4. Will the model save lots of money?5. Which business unit faces the attrition problem? Data Science Process Pipeline Above image explains the steps involved in solving a data science problem. It starts from data extraction to result interpretation. Once the model produces acceptable performance, it can be deployed in real-time. Let's solve employee attrition problem...
###Code
!pip install pygal
!pip install cufflinks
!pip install aif360
#import all required libraries
#Data Analysis
import pandas as pd
import numpy as np
import json
#Visulaization libraries
from bokeh.plotting import figure, show, output_file
from bokeh.io import output_notebook
from bokeh.models import ColumnDataSource, LabelSet
from bokeh.palettes import Viridis5
import seaborn as sns
import matplotlib.pyplot as plt
import pygal
import cufflinks as cf
from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
#model developemnt libraries
from sklearn import preprocessing
from sklearn.ensemble import AdaBoostClassifier
from sklearn import metrics
from sklearn.pipeline import Pipeline
from sklearn.feature_selection import mutual_info_classif
from sklearn.feature_selection import chi2
from sklearn.cross_validation import train_test_split
from sklearn.metrics import classification_report
#Bias Mitigation libraries
from aif360.metrics import BinaryLabelDatasetMetric
from aif360.datasets import BinaryLabelDataset
from IPython.display import Markdown, display
from aif360.algorithms.preprocessing.reweighing import Reweighing
#
from IPython.display import SVG, display
import warnings
warnings.filterwarnings("ignore")
#deployment library
from watson_machine_learning_client import WatsonMachineLearningAPIClient
###Output
_____no_output_____
###Markdown
1. Data Collection - Source: Kaggle- Data: IBM HR Analytics dataset (synthetically generated) https://www.kaggle.com/pavansubhasht/ibm-hr-analytics-attrition-dataset/home- License: * Database: https://opendatacommons.org/licenses/odbl/1.0/ * Contents: https://opendatacommons.org/licenses/dbcl/1.0/ Rule of thumb* Know all the available dataset for the problem (database/ internet/ third party etc) . Dataset must be reliable and authentic.* Extract data in a format that can be used* Required Skills for data extraction in general(mostly used and not specific to the pattern): - Distributed Storage: Hadoop, Apache Spark. - Database Management: MySQL, PostgresSQL, MongoDB. - Know to querying Relational Databases and retrieve unstructured Data like text, videos, audio files, documents. Download dataset
###Code
!wget https://github.com/IBM/employee-attrition-aif360/raw/master/data/emp_attrition.csv --output-document=emp_attrition.csv
#Reading csv file in pandas dataframe format.
df_data = pd.read_csv('emp_attrition.csv')
df_data.head()
#Get list of columns in the dataset
df_data.columns
#Dropping columns (intution)
columns = ['DailyRate', 'EducationField', 'EmployeeCount', 'EmployeeNumber', 'HourlyRate', 'MonthlyRate',
'Over18', 'RelationshipSatisfaction', 'StandardHours']
df_data.drop(columns, inplace=True, axis=1)
###Output
_____no_output_____
###Markdown
1.1 Get description of data Generates descriptive statistics that summarize the central tendency, dispersion and shape of a dataset’s distribution, excluding NaN values.Reference link: https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.describe.html
###Code
#This will give description only for numeric fields
df_data.describe()
#To get description of all columns
df_data.describe(include = 'all')
###Output
_____no_output_____
###Markdown
2. Data Cleaning This phase is the most time consuming yet the most importat one. Here, we filter and extract only the information that is needed for problem solving. Quality of the model is highly dependant on the quality of the data that is given as an input. * Understand meaning of every feature and identify errors.* Look for any missing values and find a way to fill the missing values.* Remove duplicate or corrupted records.* Scaling and normalization of data.* Character encoding (string to numerical representation).* Handle inconsistent entry.* Use tools like pandas(python), dplyr(R), numpy. 2.1 Handling missing values
###Code
#Find number of missing values in every feature
df_data.isnull().sum()
###Output
_____no_output_____
###Markdown
Looks like the best dataset!!! No null values :-) But what if we have null values ???? Let's see what we can do in that case.* Find why that data is missing. Human error or missed during extraction* Drop missing values. * Some ways for filling missing values: - Zero - Mean ( works with normal distribution ) - Random values from same distribution ( works well with equal distribution ) - Value after missing value (make sense if data set has some logical order) 2.2 Encode categorical features(in string) as most of the tools works with numbers
###Code
#Columns with string values
categorical_column = ['Attrition', 'BusinessTravel', 'Department',
'Gender', 'JobRole', 'MaritalStatus', 'OverTime']
#Deep copy the original data
data_encoded = df_data.copy(deep=True)
#Use Scikit-learn label encoding to encode character data
lab_enc = preprocessing.LabelEncoder()
for col in categorical_column:
data_encoded[col] = lab_enc.fit_transform(df_data[col])
le_name_mapping = dict(zip(lab_enc.classes_, lab_enc.transform(lab_enc.classes_)))
print('Feature', col)
print('mapping', le_name_mapping)
data_encoded.head()
###Output
_____no_output_____
###Markdown
3. Data Exploration * Find patterns in data through data visualization. Reveal hidden secrets of the data through graphs, analysis and charts. - Univariate analysis * Continous variables : Histograms, boxplots. This gives us understanding about the central tendency and spread * Categorical variable : Bar chart showing frequency in each category - Bivariate analysis * Continous & Continous : Scatter plots to know how continous variables interact with each other * Categorical & categorical : Stacked column chart to show how the frequencies are spread between two categorical variables * Categorical & Continous : Boxplots, Swamplots or even bar charts* Detect outliers* Feature engineering 3.1 Get data distribution between output classes
###Code
data_encoded['Attrition'].value_counts()
###Output
_____no_output_____
###Markdown
From the above result, we can find that about 82% of people stick to the company while rest of them quit :-(**** Data is unbalanced **** 3.2 Finding correlation between variables
###Code
data_correlation = data_encoded.corr()
plt.rcParams["figure.figsize"] = [15,10]
sns.heatmap(data_correlation,xticklabels=data_correlation.columns,yticklabels=data_correlation.columns)
###Output
_____no_output_____
###Markdown
Analysis of correlation results (sample analysis)- Monthly income is highly correlated with Job level.- Job level is highly correlated with total working hours.- Monthly income is highly correlated with total working hours.- Age is also positively correlated with the Total working hours.- Marital status and stock option level are negatively correlated
###Code
#Viewing the analysis obtained above
data_corr_filtered = df_data[['MonthlyIncome', 'TotalWorkingYears', 'Age', 'MaritalStatus', 'StockOptionLevel',
'JobLevel']]
correlation = data_corr_filtered.corr()
plt.rcParams["figure.figsize"] = [20,10]
sns.heatmap(correlation,xticklabels=data_corr_filtered.columns,yticklabels=data_corr_filtered.columns)
###Output
_____no_output_____
###Markdown
3.3 Understanding relationship between features and finding patterns in data through visualizationPopular data visualization libraries in python are: 1. Matplotlib 2. Seaborn 3. ggplot 4. Bokeh 5. pygal 6. Plotly 7. geoplotlib 8. Gleam 9. missingno 10. Leather 3.3.1 Age AnalysisFinding relationship between age and attrition.
###Code
#Plot to see distribution of age overall
plt.rcParams["figure.figsize"] = [7,7]
plt.hist(data_encoded['Age'], bins=np.arange(0,80,10), alpha=0.8, rwidth=0.9, color='blue')
###Output
_____no_output_____
###Markdown
Finding based on above plotThis plot tells that there are more employees in the range of 30 to 40. Approximately 45% of employees fall in this range.
###Code
#We are going to bin age (multiples of 10) to see which age group are likely to leave the company.
#Before that, let us take only employee who are likely to quit.
positive_attrition_df = data_encoded.loc[data_encoded['Attrition'] == 1]
negative_attrition_df = data_encoded.loc[data_encoded['Attrition'] == 0]
plt.hist(positive_attrition_df['Age'], bins=np.arange(0,80,10), alpha=0.8, rwidth=0.9, color='red')
###Output
_____no_output_____
###Markdown
Findings based on above plot- Employees whose age is in the range of 30 - 40 are more likely to quit.- Employees in the range of 20 to 30 are also equally imposing the threat to employers. 3.3.2 Business Travel vs AttritionThere are 3 categories in this: 1. No travel (0). 2. Travel Frequently (1). 3. Travel Rarely (2).Attrition: No = 0 and Yes = 1
###Code
ax = sns.countplot(x="BusinessTravel", hue="Attrition", data=data_encoded)
for p in ax.patches:
ax.annotate('{}'.format(p.get_height()), (p.get_x(), p.get_height()+1))
###Output
_____no_output_____
###Markdown
FindingsFrom the above plot it can be inferred that travel can not be a compelling factor for attrition. Employee who travel rarely are likely to quit more 3.3.3 Department Vs AttritionThere are three categories in department: 1. Human Resources: 0 2. Research & Development: 1 3. Sales: 2Attrition: No = 0 and Yes = 1
###Code
ax = sns.countplot(x="Department", hue="Attrition", data=data_encoded)
for p in ax.patches:
ax.annotate('{}'.format(p.get_height()), (p.get_x(), p.get_height()+1))
###Output
_____no_output_____
###Markdown
Inference: 1. 56% of employess from research and development department are likely to quit. 2. 38% of employees from sales department are likely to quit. 3.3.4 Distance from home Vs Employee Attrition
###Code
plt.hist(negative_attrition_df['DistanceFromHome'], bins=np.arange(0,80,10), alpha=0.8, rwidth=0.9, color='red')
plt.hist(positive_attrition_df['DistanceFromHome'], bins=np.arange(0,80,10), alpha=0.8, rwidth=0.9, color='red')
###Output
_____no_output_____
###Markdown
FindingsPeople who live closeby (0-10 miles) are likely to quit more based on the data 3.3.5 Education vs AttritionThere are five categories: 1. Below College - 1 2. College - 2 3. Bachelor - 3 4. Master - 4 5. Doctor - 5
###Code
ax = sns.countplot(x="Education", hue="Attrition", data=data_encoded)
for p in ax.patches:
ax.annotate('{}'.format(p.get_height()), (p.get_x(), p.get_height()+1))
###Output
_____no_output_____
###Markdown
Inference: 1. 41% of employees having bachelor's degree are likely to quit. 2. 24% of employees having master's are the next in line 3.3.6 Gender vs Attrition
###Code
df_age = data_encoded.copy(deep=True)
df_age.loc[df_age['Age'] <= 20, 'Age'] = 0
df_age.loc[(df_age['Age'] > 20) & (df_age['Age'] <= 30), 'Age'] = 1
df_age.loc[(df_age['Age'] > 30) & (df_age['Age'] <= 40), 'Age'] = 2
df_age.loc[(df_age['Age'] > 40) & (df_age['Age'] <= 50), 'Age'] = 3
df_age.loc[(df_age['Age'] > 50), 'Age'] = 4
df_age = pd.DataFrame({'count': df_age.groupby(["Gender", "Attrition"]).size()}).reset_index()
df_age['Gender-attrition'] = df_age['Gender'].astype(str) + "-" + df_age['Attrition'].astype(str).map(str)
df_age
###Output
_____no_output_____
###Markdown
Here,* Gender - 0 and Attrition - 0 ===> Female employees who will stay* Gender - 0 and Attrition - 1 ===> Female employees who will leave* Gender - 1 and Attrition - 0 ===> Male employees who will stay* Gender - 1 and Attrition - 1 ===> Male employees who will leave
###Code
output_notebook()
# x and y axes
Gender_Attrition = df_age['Gender-attrition'].tolist()
count = df_age['count'].tolist()
print(count)
# Bokeh's mapping of column names and data lists
source = ColumnDataSource(data=dict(Gender_Attrition=Gender_Attrition, count=count, color=Viridis5))
plot_bar = figure(x_range=Gender_Attrition, plot_height=350, title="Counts")
# Render and show the vbar plot
plot_bar.vbar(x='Gender_Attrition', top='count', width=0.9, color='color', source=source)
show(plot_bar)
###Output
_____no_output_____
###Markdown
FindingsFrom the above plot, we can infer that male employees are likely to leave organization as they amount to 63% compared to female who have 36 % attrition rate. 3.3.7 Job Role Vs Attrition Categories in job role:* Healthcare Representative : 0 * Human Resources : 1* Laboratory Technician : 2* Manager : 3 * Manufacturing Director : 4* Research Director : 5* Research Scientist : 6* Sales Executive : 7 * Sales Representative : 8
###Code
df_jrole = pd.DataFrame({'count': data_encoded.groupby(["JobRole", "Attrition"]).size()}).reset_index()
#Considering attrition case
df_jrole_1 = df_jrole.loc[df_jrole['Attrition'] == 1]
import pygal
chart = pygal.Bar(print_values=True)
chart.x_labels = map(str, range(0,9))
chart.add('Count', df_jrole_1['count'])
#chart.render()
display(SVG(chart.render(disable_xml_declaration=True)))
###Output
_____no_output_____
###Markdown
Findings:Top three roles facing attrition- 26% of employees who are likely to quit belong to Laboratory Technician group- 24% of employees belong to Sales Executive group- 19% of employees belong to Research Scientist group 3.3.8 Marital Status vs Attrition Categories: 1. 'Divorced': 0 2. 'Married' : 1 3. 'Single' : 2
###Code
#analyzing employees who has positive attrition
init_notebook_mode(connected=True)
cf.go_offline()
positive_attrition_df['MaritalStatus'].value_counts().iplot(kind='bar')
###Output
_____no_output_____
###Markdown
Inference:Nearly 50 % of the employees who are single are likely to quit 3.3.9 Monthly Income vs Attrition
###Code
sns.distplot(negative_attrition_df['MonthlyIncome'], label='Negative attrition')
sns.distplot(positive_attrition_df['MonthlyIncome'], label='positive attrition')
plt.legend()
###Output
_____no_output_____
###Markdown
Inference: Looks like people who are less likely to leave the company are the ones who are less paid. 4. Model Development 4.1 Extracting label from input data
###Code
input_data = data_encoded.drop(['Attrition'], axis=1)
input_data.head()
target_data = data_encoded[['Attrition']]
target_data.head()
len(input_data.columns)
###Output
_____no_output_____
###Markdown
4.2 Feature Selection It is the process of choosing the best features that can be used in the predictive modeling. 1. Fight against the curse of dimensionality.2. Reduce the overall training time.3. Defense against overfitting.4. Increase model generalizability.Some of the feature selection methods are,1. Filter methods - F Test - Mutual information - Variance threshold - Chi Square - Correlation coefficient - ANNOVA - LDA2. Wrapper methods - Forward search - Backward selection - Recursive feature elimination3. Embedded methods - LASSO Linear Regression
###Code
input_data.columns
col_values = list(input_data.columns.values)
###Output
_____no_output_____
###Markdown
Mutual InformationIt measures the dependence of one variable to another. If,* Mutual information is 0, then variable X carries no information about the variable Y. X and Y are independent.* Mutual information is 1, then variable X can be determined from variable Y. X and Y are dependent.Features can be selected based on their mutual information value.
###Code
#gives top 10 features having maximum mutual information value
feature_scores = mutual_info_classif(input_data, target_data)
for score, fname in sorted(zip(feature_scores, col_values), reverse=True)[:10]:
print(fname, score)
###Output
_____no_output_____
###Markdown
chi-squarechi-square test is applied to test the independence of two events. This method is used to evaluate the likelihood of correlation or association between features using their frequency distribution. This works best with categorial features.
###Code
#gives top 10 features having maximum chi-square value
feature_scores = chi2(input_data, target_data)[0]
for score, fname in sorted(zip(feature_scores, col_values), reverse=True)[:10]:
print(fname, score)
df_data.shape
#column selection based on feature selection
data_selected = df_data[['MonthlyIncome', 'TotalWorkingYears', 'YearsAtCompany', 'YearsInCurrentRole',
'YearsWithCurrManager', 'Age', 'OverTime', 'DistanceFromHome', 'StockOptionLevel',
'JobLevel', 'JobRole', 'WorkLifeBalance', 'Gender', 'Attrition']]
data_selected.head()
len(data_selected.columns)
data_selected.shape
#encoding labels
data_selected.loc[data_selected.Attrition == 'No', 'Attrition'] = 0
data_selected.loc[data_selected.Attrition == 'Yes', 'Attrition'] = 1
data_selected.head()
input_data = data_selected.drop(['Attrition'], axis=1)
target_data = data_selected[['Attrition']]
data_selected.shape
###Output
_____no_output_____
###Markdown
Get Train, Validation and test data
###Code
input_data = data_selected[0:1269]
print('Shape of the input data is ', input_data.shape)
input_data['Attrition'].value_counts()
validation_data = data_selected[1269:1469]
print('Shape of the validation data is ', validation_data.shape)
validation_input_data = validation_data.drop(['Attrition'], axis=1)
print('Shape of the validation input data is ', validation_input_data.shape)
validation_target_data = validation_data[['Attrition']]
print('Shape of the validation target data is ', validation_target_data.shape)
#Using 1 sample as test data to check deployment
test_data = data_selected[1469:]
print(test_data)
print('Shape of the test data is ', test_data.shape)
test_input_data = test_data.drop(['Attrition'], axis=1)
print('Shape of the test input data is ', test_input_data.shape)
test_target_data = test_data[['Attrition']]
print('Shape of the test target data is ', test_target_data.shape)
!wget https://github.com/IBM/employee-attrition-aif360/raw/master/data/Pipeline_LabelEncoder-0.1.zip --output-document=Pipeline_LabelEncoder-0.1.zip
!ls
!pip install Pipeline_LabelEncoder-0.1.zip
#encoding training and validation data.
#custom label encoder library
from Pipeline_LabelEncoder.sklearn_label_encoder import PipelineLabelEncoder
preprocessed_data = PipelineLabelEncoder(columns = ['OverTime', 'JobRole', 'Gender']).fit_transform(input_data)
print('-------------------------')
print('validation data encoding')
validation_enc_data = PipelineLabelEncoder(columns = ['OverTime', 'JobRole', 'Gender']).transform(validation_input_data)
###Output
_____no_output_____
###Markdown
4.3 Bias Mitigation The AI Fairness 360 toolkit is an open-source library to help detect and remove bias in machine learning models. The AI Fairness 360 Python package includes a comprehensive set of metrics for datasets and models to test for biases, explanations for these metrics, and algorithms to mitigate bias in datasets and models.- Github: https://github.com/IBM/AIF360- Interative experience: http://aif360.mybluemix.net/ Convert dataset into a format that can be used by bias mitigation algorithmsWe suspect that there is a bias present in the gender attribute. Intution: Female employees are given favourable outcome (no attrition) compared to male employees. Identify the following in the dataset:1. Favorable label2. Unfavorable label3. Privileged group4. Unprivileged group
###Code
# Gender is the protected attribute.
#label 0: Employee will stay
#label 1: Employee will leave
# Gender 0: Female and Gender 1: Male
privileged_groups = [{'Gender': 0}]
unprivileged_groups = [{'Gender': 1}]
favorable_label = 0
unfavorable_label = 1
#Create binary label dataset that can be used by bias mitigation algorithms
BM_dataset = BinaryLabelDataset(favorable_label=favorable_label,
unfavorable_label=unfavorable_label,
df=preprocessed_data,
label_names=['Attrition'],
protected_attribute_names=['Gender'],
unprivileged_protected_attributes=unprivileged_groups)
display(Markdown("#### Training Data Details"))
print("shape of the training dataset", BM_dataset.features.shape)
print("Training data favorable label", BM_dataset.favorable_label)
print("Training data unfavorable label", BM_dataset.unfavorable_label)
print("Training data protected attribute", BM_dataset.protected_attribute_names)
print("Training data privileged protected attribute (1:Male and 0:Female)",
BM_dataset.privileged_protected_attributes)
print("Training data unprivileged protected attribute (1:Male and 0:Female)",
BM_dataset.unprivileged_protected_attributes)
metric_orig_train = BinaryLabelDatasetMetric(BM_dataset,
unprivileged_groups=unprivileged_groups,
privileged_groups=privileged_groups)
print("Difference in mean outcomes between unprivileged and privileged groups = %f" %
metric_orig_train.mean_difference())
###Output
_____no_output_____
###Markdown
Negative difference indicate the presence of bias. Refer above link to know more about the working of the algorithm.
###Code
RW = Reweighing(unprivileged_groups=unprivileged_groups,
privileged_groups=privileged_groups)
RW.fit(BM_dataset)
train_tf_dataset = RW.transform(BM_dataset)
train_tf_dataset.labels
metric_orig_train = BinaryLabelDatasetMetric(train_tf_dataset,
unprivileged_groups=unprivileged_groups,
privileged_groups=privileged_groups)
print("Difference in mean outcomes between unprivileged and privileged groups = %f"
% metric_orig_train.mean_difference())
###Output
_____no_output_____
###Markdown
4.4 Algorithm This is a highly unbalanced data. Class 0 covers 83.88% of the data whereas class 1 covers 16.12% of the data. Following are the few ways to handle unbalance data.1. Data Level Approach - Random under-sampling - Cluster based over sampling - Synthetic Minority Over-sampling Technique - Modified Synthetic Minority Over-sampling Technique2. Algorithm Ensemble - Bagging - Boosting - Adaptive Boosting (Ada-boost) - Gradient Tree Boosting - XGBoost In our model, Ada-boost ensemble technique is used. Adaboost Short DescriptionMany weak and inaccurate classifiers are combined to produce a highly accurate prediction. The classifer is serially trained. Samples that are misclassified in previous round are given more focus. Initially weight is equal for all the samples. Weight of misclassified instances are increased each time and weight of correctly classified instances are decreased, this will let more misclassfied sampled to be selected for the next round. After each classifier is trained, the weight is assigned to the classifier as well based on accuracy. More accurate classifier is assigned higher weight so that it will have more impact in final outcome.
###Code
#n_estimators is the maximum number of estimators at which the boosting is terminated. Default is 50 and this can be tuned as well.
cls = AdaBoostClassifier(n_estimators=100)
###Output
_____no_output_____
###Markdown
Classification model can be evaluated using different metrics. Some of the important metrics are: 1. Confusion matrix 2. Accuracy 3. Precision 4. Recall 5. Specificity 6. F1-Score
###Code
#finding best estimator
#tune other parameters for better accuracy
estimator = [100, 150, 200, 250, 300, 400, 500, 700, 1000]
for i in estimator:
cls = AdaBoostClassifier(n_estimators=i)
cls.fit(train_tf_dataset.features, train_tf_dataset.labels,sample_weight=train_tf_dataset.instance_weights)
print('--------------------------------------------------------------------------------------------')
print('------ Training Results for {} estimators ---------'.format(i))
predicted_output = cls.predict(train_tf_dataset.features)
accuracy = metrics.accuracy_score(train_tf_dataset.labels, predicted_output)
print('Accuracy for {} estimators is {}'.format(i, accuracy))
print(classification_report(train_tf_dataset.labels, predicted_output))
print('------ Test Results for {} estimators ---------'.format(i))
predicted_output = cls.predict(validation_enc_data)
accuracy = metrics.accuracy_score(validation_target_data, predicted_output)
print('Accuracy for {} estimators is {}'.format(i, accuracy))
print(classification_report(validation_target_data, predicted_output))
print('--------------------------------------------------------------------------------------------')
#Choose the best estimator value from above and replace the 'num_of_estimators' with the value.
num_of_estimators = 100
cls = AdaBoostClassifier(n_estimators=num_of_estimators)
cls.fit(train_tf_dataset.features, train_tf_dataset.labels,sample_weight=train_tf_dataset.instance_weights)
#Creating model pipeline
test_pp = PipelineLabelEncoder(columns = ['OverTime', 'JobRole', 'Gender'])
model_pipeline = Pipeline(steps=[('preprocessor', test_pp),
('classifier', cls)])
###Output
_____no_output_____
###Markdown
For better accuracy,1. Tune hyper-parameters.2. Try above mentioned methods for handling unbalanced data.
###Code
model_pipeline.predict(test_input_data)
###Output
_____no_output_____
###Markdown
5. Inference 1. Factors contributing more to the employee attrition are MonthlyIncome, TotalWorkingYears, YearsAtCompany, YearsInCurrentRole, YearsWithCurrManager, Age, OverTime, DistanceFromHome, StockOptionLevel, JobLevel, JobRole, WorkLifeBalance, Gender.2. Top three roles facing attrition - 26% of employees who are likely to quit belong to Laboratory Technician group. - 24% of employees belong to Sales Executive group. - 19% of employees belong to Research Scientist group. (other inferences are mentioned below each graph)3. The model developed will be able to predict whether an employee will stay or not. This will help company to know the status of an employee in advance and take necessary actions to prevent loss that will incur. 6. Deployment Authenticate to the Watson Machine Learning service. Enter the credentials needed. Credentials can be retrieved from the 'Service Credentials' tab of the service instance instance Replace the information in the following cell with your Watson Machine Learning (WML) credentials.You can find these credentials in your WML instance dashboard under the Service credentials tab.```wml_credentials = { "username": "------------", "password": "------------", "instance_id": "------------", "url": "------------"}```
###Code
# @hidden_cell
wml_credentials = {
}
#Create WML API Client
client = WatsonMachineLearningAPIClient(wml_credentials)
#Create metadata that can be used for creating and saving the custom library. Here, it is for pipeline label encoder.
#Give the path of the custom package (zip).
library_metadata = {
client.runtimes.LibraryMetaNames.NAME: "PipelineLabelEncoder-Custom",
client.runtimes.LibraryMetaNames.DESCRIPTION: "label_encoder_sklearn",
client.runtimes.LibraryMetaNames.FILEPATH: "Pipeline_LabelEncoder-0.1.zip",
client.runtimes.LibraryMetaNames.VERSION: "1.0",
client.runtimes.LibraryMetaNames.PLATFORM: {"name": "python", "versions": ["3.5"]}
}
#Store library
custom_library_details = client.runtimes.store_library(library_metadata)
#Retrieve library uid from the details
custom_library_uid = client.runtimes.get_library_uid(custom_library_details)
print("Custom Library UID is: " + custom_library_uid)
#Define metadata required for creating runtime resource. Yse custom library uid obtained from above step to bind the custom library.
#Runtime resource that is being defined here will be used for configuring online deployment runtime environment
runtimes_meta = {
client.runtimes.ConfigurationMetaNames.NAME: "Employee_Attrition",
client.runtimes.ConfigurationMetaNames.DESCRIPTION: "Data Science Life Cycle explained through employee attrition problem",
client.runtimes.ConfigurationMetaNames.PLATFORM: { "name": "python", "version": "3.5" },
client.runtimes.ConfigurationMetaNames.LIBRARIES_UIDS: [custom_library_uid]
}
#create runtime resource
runtime_resource_details = client.runtimes.store(runtimes_meta)
runtime_resource_details
#From the runtime resource retrieve url and uid
runtime_url = client.runtimes.get_url(runtime_resource_details)
print("Runtimes resource URL: " + runtime_url)
runtime_uid = client.runtimes.get_uid(runtime_resource_details)
print("Runtimes resource UID: " + runtime_uid)
#client.repository is used for storing and managing the model, definitions, runtime requirements details in WML repository
#This metadata associates model with runtime resources
model_property = {client.repository.ModelMetaNames.NAME: "Employee attrition Model",
client.repository.ModelMetaNames.RUNTIME_UID: runtime_uid
}
published_model = client.repository.store_model(model=model_pipeline, meta_props=model_property)
#get uid for the stored model
published_model_uid = client.repository.get_model_uid(published_model)
model_details = client.repository.get_details(published_model_uid)
#create deployment
created_deployment = client.deployments.create(published_model_uid, name="Emp_attrition_model")
#get scoring end point
scoring_endpoint = client.deployments.get_scoring_url(created_deployment)
print(scoring_endpoint)
#Testing deployment
scoring_payload = {'fields': ['MonthlyIncome', 'TotalWorkingYears', 'YearsAtCompany',
'YearsInCurrentRole', 'YearsWithCurrManager', 'Age', 'OverTime',
'DistanceFromHome', 'StockOptionLevel', 'JobLevel', 'JobRole',
'WorkLifeBalance', 'Gender'],
'values': [[4404, 6, 4, 3, 2, 34, 'No', '8', 0, 2, 'Laboratory Technician', 4, 'Male']]}
predictions = client.deployments.score(scoring_endpoint, scoring_payload)
print('prediction',json.dumps(predictions, indent=2))
###Output
_____no_output_____ |
caps_mnist_pruned&quantized.ipynb | ###Markdown
Original implementation at:https://github.com/ageron/handson-ml/blob/master/extra_capsnets.ipynbGeron's model doesn't use the keras functional API. In the keras functional API, you don't need to give the batchsize. When you print the model, you get this:```Layer (type) Output Shape Param _________________________________________________________________input (InputLayer) [(None, 28, 28, 1)] 0 _________________________________________________________________conv_layer_1 (Conv2D) (None, 20, 20, 256) 20992 _________________________________________________________________conv_layer_2 (Conv2D) (None, 6, 6, 256) 5308672 _________________________________________________________________reshape_layer_1 (Reshape) (None, 1, 1152, 8) 0 _________________________________________________________________caps1_output_layer (SquashLa (None, 1, 1152, 8) 0 _________________________________________________________________Total params: 5,329,664Trainable params: 5,329,664Non-trainable params: 0```Notice that the Input-layer has shape (None, 28, 28, 1), but we only specified (28, 28, 1). It added None implicitly and that takes care of the batch.So for anywhere Geron uses the batch size explicitly, you don't need to do anything and tensorflow will take care of.Also note that tensorflow 1 APIs are still provided with the compat layer. I used the reduce_sum from TF1 in the squash layer, that allowed me to use Geron's code.Documentation on how to migrate from TF1 to TF2 can be found here:https://www.tensorflow.org/guide/migrate
###Code
from google.colab import drive
drive.mount('/content/drive')
import numpy as np
import tensorflow as tf
import pandas as pd
import tensorflow.keras as K
#import tensorflow_model_optimization as tfmot
pip install -q tensorflow-model-optimization
import tensorflow_model_optimization as tfmot
caps1_n_maps = 32
caps1_n_caps = caps1_n_maps * 6 * 6 # 1152 primary capsules
caps1_n_dims = 8
caps2_n_caps = 10
caps2_n_dims = 16
tf.random.set_seed(500000)
#class SquashLayer(K.layers.Layer, tfmot.sparsity.keras.PrunableLayer):
class SquashLayer(K.layers.Layer):
def __init__(self, axis=-1, **kwargs):
super(SquashLayer, self).__init__(**kwargs)
self.axis = axis
def build(self, input_shapes):
pass
"""
def get_prunable_weights(self):
return []
"""
def call(self, inputs):
EPSILON = 1.0e-9
squared_norm = tf.compat.v1.reduce_sum(tf.square(inputs),\
axis=self.axis,\
keepdims=True)
safe_norm = tf.sqrt(squared_norm + EPSILON)
squash_factor = squared_norm / (1. + squared_norm)
unit_vector = inputs / safe_norm
return squash_factor * unit_vector
def get_config(self):
config = super(SquashLayer, self).get_config()
config.update({"axis": self.axis})
return config
#class SafeNorm(K.layers.Layer, tfmot.sparsity.keras.PrunableLayer):
class SafeNorm(K.layers.Layer):
def __init__(self, axis=-1, keep_dims = False, **kwargs):
super(SafeNorm, self).__init__(**kwargs)
self.axis = axis
self.keep_dims = keep_dims
def build(self, input_shapes):
pass
"""
def get_prunable_weights(self):
return []
"""
def call(self, input):
EPSILON = 1.0e-9
squared_norm = tf.compat.v1.reduce_sum(tf.square(inputs),\
axis=self.axis,\
keepdims= self.keep_dims)
safe_norm = tf.sqrt(squared_norm + EPSILON)
return safe_norm
def get_config(self):
config = super(SafeNorm, self).get_config()
config.update({"axis": self.axis, "keep_dims": self.keep_dims})
return config
# This should be the part where the digit layer, and where we tile things
# This is incomplete, and work in progress
# TODO: Complete this
class MyDigitCapsLayer(K.layers.Layer, tfmot.sparsity.keras.PrunableLayer):
def __init__(self, **kwargs):
super(MyDigitCapsLayer, self).__init__(**kwargs)
def get_config(self):
config = super(MyDigitCapsLayer, self).get_config()
return config
def build(self, input_shapes):
init_sigma = 0.1 # TODO: use
self.kernel = self.add_weight(\
"kernel",\
(caps1_n_caps, caps2_n_caps, caps2_n_dims, caps1_n_dims),\
initializer="random_normal",\
dtype=tf.float32)
# To debug this function, I used prints to print the shape
# expand_dims just adds an exis, so if you say expand_dims(inshape=(5, 3), -1),
# you get the output shape (5, 3, 1), it just adds an axis at the end
# Then tile just multiplies one of the dimensions (that is it stacks along that direction N times)
# so tile(inshape=(5, 3, 1), [1, 1, 1000]) will yield a shape (5, 3, 1000)
#
# Notice I didn't tile in build, but in call, Most probaly this is the right thing to do
# but we'll only figure out when we actually train
def get_prunable_weights(self):
return [self.kernel]
def call(self, inputs):
# Add a dimension at the end
exp1 = tf.expand_dims(inputs, -1, name="caps1_output_expanded")
# add a dimension along 3rd axis
exp1 = tf.expand_dims(exp1, 2, name="caps2_output_espanced")
# tile along 3rd axis
tile = tf.tile(exp1, [1, 1, caps2_n_caps, 1, 1], name="caps1_output_tiled")
caps2_predicted = tf.matmul(self.kernel, tile, name="caps2_predicted")
return caps2_predicted
# https://www.tensorflow.org/api_docs/python/tf/keras/losses/Loss
class MarginLoss(K.losses.Loss):
def __init__(self, **kwargs):
super(MarginLoss, self).__init__(**kwargs)
def get_config(self):
config = super(MarginLoss, self).get_config()
return config
def safe_norm(self, input, axis=-2, epsilon=1e-5, keep_dims=False, name=None):
squared_norm = tf.reduce_sum(tf.square(input), axis=axis,
keepdims=keep_dims)
return tf.sqrt(squared_norm + epsilon)
"""
def get_prunable_weights(self):
return []
"""
def call(self,y_true, input):
# print(f"y_true.shape = {y_true.shape}, y_pred.shape = {y_pred.shape}")
# return K.losses.MeanSquaredError()(y_true, y_pred)
#y_true = K.Input(shape=[], dtype=tf.int64, name="y")
m_plus = 0.9
m_minus = 0.1
lambda_ = 0.5
#y_true one hot encode y_train
T = tf.one_hot(y_true, depth=caps2_n_caps, name="T")
caps2_output_norm = self.safe_norm(input, keep_dims = True)
present_error_raw = tf.square(\
tf.maximum(0., m_plus - caps2_output_norm),
name="present_error_raw")
present_error = tf.reshape(\
present_error_raw, shape=(-1, 10),
name="present_error")
absent_error_raw = tf.square(\
tf.maximum(0., caps2_output_norm - m_minus),
name="absent_error_raw")
absent_error = tf.reshape(\
absent_error_raw, shape=(-1, 10),
name="absent_error")
L = tf.add(\
T * present_error,\
lambda_ * (1.0 - T) * absent_error,
name="L")
marginLoss = tf.reduce_mean(\
tf.reduce_sum(L, axis=1),\
name="margin_loss")
return marginLoss
#class RoutingByAgreement(K.layers.Layer, tfmot.sparsity.keras.PrunableLayer):
class RoutingByAgreement(K.layers.Layer):
def __init__(self, round_number=-1, **kwargs):
super(RoutingByAgreement, self).__init__(**kwargs)
self.round_number = round_number
def get_config(self):
config = super(RoutingByAgreement, self).get_config()
config.update({"round_number": self.round_number})
return config
def build(self, input_shapes):
self.raw_weights_1 = self.add_weight("raw_weights", \
(caps1_n_caps, caps2_n_caps, 1, 1), \
initializer = "zeros", \
dtype=tf.float32,)
#print("Routing layer: self.raw_weights = ", self.raw_weights.shape, "input_shape = ", input_shapes)
"""
def get_prunable_weights(self):
return [self.raw_weights_1]
"""
@staticmethod
def squash(inputs):
EPSILON = 1.0e-5
squared_norm = tf.compat.v1.reduce_sum(tf.square(inputs),\
keepdims=True)
safe_norm = tf.sqrt(squared_norm + EPSILON)
squash_factor = squared_norm / (1. + squared_norm)
unit_vector = inputs / safe_norm
return squash_factor * unit_vector
def single_round_routing(self, inputs, raw_weights, agreement):
raw_weights = tf.add(raw_weights, agreement)
routing_wt = tf.nn.softmax(raw_weights, axis=2)
wt_predictions = tf.multiply(routing_wt, inputs)
wt_sum = tf.reduce_sum(wt_predictions, axis=1, keepdims=True)
return wt_sum
def call(self, inputs):
agreement = tf.zeros(shape=self.raw_weights_1.shape)
sqsh_wt_sum = None
x = inputs
for i in range(2):
wt_sum = self.single_round_routing(inputs, self.raw_weights_1, agreement)
sqsh_wt_sum = RoutingByAgreement.squash(wt_sum)
sqsh_wt_sum_tiled = tf.tile(\
sqsh_wt_sum ,\
[1, caps1_n_caps, 1, 1, 1],\
name="caps2_output_round_1_tiled")
agreement = tf.matmul(\
x, \
sqsh_wt_sum_tiled,\
transpose_a=True,\
name="agreement")
return sqsh_wt_sum
(x_train, y_train,), (x_test, y_test) = K.datasets.mnist.load_data()
print(x_train.shape, x_test.shape)
x_train = x_train/255.0
x_test = x_test/255.0
#print(x_train[500])
class Model:
@staticmethod
def build(inshape=(28, 28, 1)):
inp = K.Input(shape=inshape, dtype=tf.float32, name='input')
# Primary capsules
# For each digit in the batch
# 32 maps, each 6x6 grid of 8 dimensional vectors
# First Conv layer
conv1_params = \
{
"filters": 256,
"kernel_size": 9,
"strides": 1,
"padding": "valid",
"activation": tf.nn.relu,
}
x = K.layers.Conv2D(**conv1_params, name="conv_layer_1")(inp)
# Second conv layer
conv2_params = \
{
"filters": caps1_n_maps * caps1_n_dims, # 256 convolutional filters
"kernel_size": 9,
"strides": 2,
"padding": "valid",
"activation": tf.nn.relu
}
x = K.layers.Conv2D(**conv2_params, name="conv_layer_2")(x)
# Reshape
x = K.layers.Reshape(\
(caps1_n_caps, caps1_n_dims),\
name="reshape_layer_1")(x)
x = SquashLayer(name="caps1_output_layer")(x)
x = MyDigitCapsLayer(name = "caps2_predicted")(x)
caps2_predicted = x # Save this value for later
#routing by agreement (2 rounds)
x = RoutingByAgreement(name="routing1", round_number=2)(x)
return K.Model(inputs=inp, outputs=x, name='my')
m = Model.build()
print(m.summary())
# y_train_train = tf.one_hot(y_train, depth=caps2_n_caps, name="T")
# print(y_train_train.shape)
# #print(y_train)
class MyAccuracy(K.metrics.Metric):
def __init__(self, **kwargs):
super(MyAccuracy, self).__init__(**kwargs)
self.acc_obj = K.metrics.Accuracy()
self.state = 0
def get_config(self):
config = super(MyAccuracy, self).get_config()
config.update({"acc_obj": None, "state": self.state})
return config
def safe_norm(self, input, axis=-2, epsilon=1e-5, keep_dims=True, name=None):
squared_norm = tf.reduce_sum(tf.square(input), axis=axis,
keepdims=keep_dims)
return tf.sqrt(squared_norm + epsilon)
def update_state(self, y_true, input, sample_weight=None):
if self.acc_obj is None:
self.acc_obj = K.metrics.Accuracy()
y_proba = self.safe_norm(input, axis=-2)
y_proba_argmax = tf.argmax(y_proba, axis=2)
y_pred = tf.squeeze(y_proba_argmax, axis=[1,2], name="y_pred")
#y_true = tf.reshape(y_true, (y_true.shape[0], ))
y_true = tf.cast(y_true, dtype=tf.int64)
self.acc_obj.update_state(y_true, y_pred, sample_weight)
def reset_state(self):
self.acc_obj.reset_state()
def result(self):
return self.acc_obj.result()
class MyReshapeLayer(K.layers.Layer):
def __init__(self, axis=-1, keep_dims = False, **kwargs):
super(MyReshapeLayer, self).__init__(**kwargs)
def build(self, input_shapes):
pass
def safe_norm(self, input, axis=-2, epsilon=1e-5, keep_dims=True, name=None):
squared_norm = tf.reduce_sum(tf.square(input), axis=axis,
keepdims=keep_dims)
return tf.sqrt(squared_norm + epsilon)
def call(self, input):
print('printing shapes ------------------- ')
EPSILON = 1.0e-9
print(input)
y_proba = self.safe_norm(input, axis=-2)
print(y_proba)
y_proba_argmax = tf.argmax(y_proba, axis=2)
print(y_proba_argmax)
y_pred = tf.squeeze(y_proba_argmax, axis=[1,2], name="y_pred")
print(y_pred)
return tf.cast(y_pred, tf.int64)
def get_config(self):
config = super(MyReshapeLayer, self).get_config()
return config
from keras.callbacks import ModelCheckpoint, CSVLogger
comparison_metric = MyAccuracy()
#checkpoint_filepath = "/content/drive/MyDrive/Weights/weights-improvement-{epoch:02d}-{val_my_accuracy:.2f}.hdf5"
model_checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(
filepath = "/content/drive/MyDrive/MnistResults/best_weights1.hdf5",
save_weights_only=True,
monitor=f"val_{comparison_metric.name}",
mode='max',
save_best_only=True)
model_checkpoint_callback2 = tf.keras.callbacks.ModelCheckpoint(
filepath = "/content/drive/MyDrive/MnistResults/latest_weights1.hdf5",
save_weights_only=True,
monitor=f"val_{comparison_metric.name}",
mode='max',
save_best_only=False)
log_csv = CSVLogger("/content/drive/MyDrive/MnistResults/mylogs1.csv", separator = ",", append = False)
callback_list = [model_checkpoint_callback, model_checkpoint_callback2, log_csv]
comparison_metric.name
m.compile(optimizer='adam', loss=MarginLoss(), metrics=[MyAccuracy()])
history = m.fit(x_train, y_train, batch_size=32, epochs=5, verbose= 1, validation_split=0.2, callbacks = callback_list)
# print(f'Best Validation Accuracy = {np.max(history.history["val_my_accuracy"])}')
# print(f'Best Training Accuracy = {np.max(history.history["my_accuracy"])}')
#m.save("/content/drive/MyDrive/WeightsMnist/save.tf", save_format='tf')
#
#!rm -f "/content/drive/MyDrive/WeightsMnist/save3.tf"
basemodel_file = m.save("/content/drive/MyDrive/MnistResults/save_basemodel.tf", save_format='tf')
#Extra layer for evaluate
class DimensionCorrection(K.layers.Layer):
def __init__(self, **kwargs):
super(DimensionCorrection, self).__init__(**kwargs)
def safe_norm(self, input, axis=-2, epsilon=1e-7, keep_dims=False, name=None):
squared_norm = tf.reduce_sum(tf.square(input), axis=axis,
keepdims=keep_dims)
return tf.sqrt(squared_norm + epsilon)
def call(self,y_pred):
y_proba = self.safe_norm(y_pred, axis=-2)
y_proba_argmax = tf.argmax(y_proba, axis=2)
y_pred = tf.squeeze(y_proba_argmax, axis=[1,2], name="y_pred")
return y_pred
y_test = tf.cast(y_test, dtype= tf.int64)
print(y_test.shape)
m = Model.build()
m.load_weights('/content/drive/MyDrive/MnistResults/latest_weights1.hdf5')
m.compile(optimizer='Adam', loss=MarginLoss)
newmodel = K.models.Sequential(\
[\
m,\
DimensionCorrection(),\
]\
)
newmodel.summary()
m.trainable = False
newmodel.compile(optimizer='adam')
y_pred = newmodel.predict(x_test)
import sklearn
from sklearn.metrics import confusion_matrix, accuracy_score, roc_auc_score
print(confusion_matrix(y_test, y_pred))
print(f"accuracy = {accuracy_score(y_test, y_pred)}")
# mm = K.models.load_model('/content/drive/MyDrive/WeightsMnist/save2.tf',\
# custom_objects=\
# {\
# "SquashLayer": SquashLayer,\
# "SafeNorm": SafeNorm,\
# "MyDigitCapsLayer": MyDigitCapsLayer,\
# "RoutingByAgreement": RoutingByAgreement,\
# "MyAccuracy": MyAccuracy,\
# "MarginLoss": MarginLoss,\
# })
# y_pred_eval = DimensionCorrection()
# m2 = Model.build()
# m2.load_weights('/content/drive/MyDrive/WeightsMnist/latest_weights1.hdf5')
# m3 = K.models.Sequential()
# m3.add(m2)
# m3.add(y_pred_eval)
# m3.build()
# m3.compile(optimizer='adam', loss=MarginLoss(), metrics=[MyAccuracy()])
# m3.evaluate(x_test, y_test, batch_size= 32, verbose= 1)
# #m3.evaluate(x_test, y_test, batch_size= 32, verbose= 1)
#converter = tf.lite.TFLiteConverter.from_keras_model(m)
###Output
_____no_output_____
###Markdown
###Code
# converter.optimizations = [tf.lite.Optimize.DEFAULT]
# converter.target_spec.supported_types = [tf.float16]
# quantize_model = converter.convert()
# mm = K.models.load_model('/content/drive/MyDrive/WeightsMnist/save2.tf',\
# custom_objects=\
# {\
# "SquashLayer": SquashLayer,\
# "SafeNorm": SafeNorm,\
# "MyDigitCapsLayer": MyDigitCapsLayer,\
# "RoutingByAgreement": RoutingByAgreement,\
# "MyAccuracy": MyAccuracy,\
# "MarginLoss": MarginLoss,\
# })
# print(type(mm), mm.summary())
# print(mm.weights[0][0][0][0][0:5])
# e = mm.load_weights('/content/drive/MyDrive/WeightsMnist/latest_weights1.hdf5')
# print(mm.weights[0][0][0][0][0:5])
# Create the .tflite file
# tflite_model_file = "/content/drive/MyDrive/WeightsMnist/compressed.tflite"
# converter = tf.lite.TFLiteConverter.from_keras_model(mm)
# converter.optimizations = [tf.lite.Optimize.DEFAULT]
# converter.target_spec.supported_ops = [
# tf.lite.OpsSet.TFLITE_BUILTINS, # enable TensorFlow Lite ops.
# tf.lite.OpsSet.SELECT_TF_OPS # enable TensorFlow ops.
# ]
# tflite_model = converter.convert()
# with open(tflite_model_file, "wb") as f:
# f.write(tflite_model)
###Output
_____no_output_____
###Markdown
###Code
!du -sh /content/drive/MyDrive/MnistResults/*
###Output
27M /content/drive/MyDrive/MnistResults/latest_weights1.hdf5
512 /content/drive/MyDrive/MnistResults/mylogs1.csv
79M /content/drive/MyDrive/MnistResults/save_basemodel.tf
###Markdown
Use this tutorial for pruningquantization has already been done earlierhttps://www.tensorflow.org/model_optimization/guide/pruning/pruning_with_keras PRUNING
###Code
# pip install -q tensorflow-model-optimization
import tensorflow_model_optimization as tfmot
import tempfile
prune_low_magnitude = tfmot.sparsity.keras.prune_low_magnitude
# TODO: Remove this line
mm = m
print("ORIGINAL MODEL")
print(mm.summary())
print('-' * 80)
# Compute end step to finish pruning after 2 epochs.
batch_size = 128
epochs = 2
validation_split = 0.1 # 10% of training set will be used for validation set.
num_images = x_train.shape[0] * (1 - validation_split)
end_step = np.ceil(num_images / batch_size).astype(np.int32) * epochs
# Define model for pruning.
pruning_params = {
'pruning_schedule': tfmot.sparsity.keras.PolynomialDecay(initial_sparsity=0.50,
final_sparsity=0.80,
begin_step=0,
end_step=end_step)
}
"""
model_for_pruning = prune_low_magnitude(mm, **pruning_params)
# `prune_low_magnitude` requires a recompile.
model_for_pruning.compile(optimizer='adam',
loss=MarginLoss(), metrics=[MyAccuracy()])
model_for_pruning.summary()
"""
######################################################################
logdir = tempfile.mkdtemp()
callbacks = [
tfmot.sparsity.keras.UpdatePruningStep(),
tfmot.sparsity.keras.PruningSummaries(log_dir=logdir),
]
# Helper function uses `prune_low_magnitude` to make only the
# Dense layers train with pruning.
def apply_pruning_to_layers(layer):
#print("called")
if isinstance(layer, MyDigitCapsLayer):
print(f"Layer {layer} {layer.name} slated for pruning")
return tfmot.sparsity.keras.prune_low_magnitude(layer, **pruning_params)
elif layer.name == "conv_layer_2":
print(f"Layer {layer} {layer.name} slated for pruning")
return tfmot.sparsity.keras.prune_low_magnitude(layer, **pruning_params)
print(f"Layer {layer} {layer.name} unchanged")
return layer
# Use `tf.keras.models.clone_model` to apply `apply_pruning_to_layers`
# to the layers of the model.
model_for_pruning = tf.keras.models.clone_model(
mm,
clone_function=apply_pruning_to_layers,
)
print(model_for_pruning.summary())
"""
model_for_pruning = K.models.Sequential(\
[\
model_for_pruning,\
MyReshapeLayer(),\
]\
)
"""
model_for_pruning.compile(optimizer='adam', loss=MarginLoss(), metrics=[MyAccuracy()])
#model_for_pruning.compile(optimizer='adam', loss=MarginLoss())
model_for_pruning.fit(x_train, y_train,
batch_size=32, epochs=2, validation_split=validation_split,
callbacks=callbacks)
_, model_for_pruning_accuracy = model_for_pruning.evaluate(
x_test, y_test, verbose=1)
model_for_export = tfmot.sparsity.keras.strip_pruning(model_for_pruning)
pruned_keras_file = "/content/drive/MyDrive/MnistResults/pruned_file1.h5"
tf.keras.models.save_model(model_for_export, pruned_keras_file, include_optimizer=False)
print('Saved pruned Keras model to:', pruned_keras_file)
#converter = tf.lite.TFLiteConverter.from_keras_model(model_for_export)
tflite_model_file = "/content/drive/MyDrive/MnistResults/compressed1.tflite"
converter = tf.lite.TFLiteConverter.from_keras_model(model_for_export)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.target_spec.supported_ops = [
tf.lite.OpsSet.TFLITE_BUILTINS, # enable TensorFlow Lite ops.
tf.lite.OpsSet.SELECT_TF_OPS # enable TensorFlow ops.
]
tflite_model = converter.convert()
with open(tflite_model_file, "wb") as f:
f.write(tflite_model)
def get_gzipped_model_size(file):
# Returns size of gzipped model, in bytes.
import os
import zipfile
_, zipped_file = tempfile.mkstemp('.zip')
with zipfile.ZipFile(zipped_file, 'w', compression=zipfile.ZIP_DEFLATED) as f:
f.write(file)
return os.path.getsize(zipped_file)
#print("Size of gzipped baseline Keras model: %.2f bytes" % (get_gzipped_model_size(basemodel_file)))
print("Size of gzipped pruned Keras model: %.2f bytes" % (get_gzipped_model_size(pruned_keras_file)))
print("Size of gzipped pruned TFlite model: %.2f bytes" % (get_gzipped_model_size(tflite_model_file)))
!du -sh /content/drive/MyDrive/MnistResults/*
###Output
11M /content/drive/MyDrive/MnistResults/compressed1.tflite
27M /content/drive/MyDrive/MnistResults/latest_weights1.hdf5
512 /content/drive/MyDrive/MnistResults/mylogs1.csv
27M /content/drive/MyDrive/MnistResults/pruned_file1.h5
79M /content/drive/MyDrive/MnistResults/save_basemodel.tf
|
Curious Algorithm.ipynb | ###Markdown
A Curious AlgorithmDuring a lecture in a summer calculus class, I took to drawing random geometric patterns around the edges of my notes. As I was toying with different shapes and ideas for simple space filling curves, I came across an algorithm that happened to result in consistent patterns when drawn within triangles. Consider this simple algorithm below: 1. Given any triangle, $P$, pick a point anywhere along one of $P$'s edges and call it `current_point`. 2. From `current_point`, draw to the *farthest* edge of $P$, such that the line drawn is perpindicular to the chosen edge.3. Set `current_point` equal to the end of this drawn perpindicular line, and repeat this recursive process for some number of steps.Following this "right angle algorithm" in detail on paper, I noticed a couple curious properties. The most prominent property I noticed was that given any "initial triangle" and any starting point, the algorithm would quickly converge to some repeating shape, which I will call the "ultimate shape". Interested in finding the exact properties of this ultimate shape and putting my drawing skills to the test, I went home and wrote a program to generate a triangle and implement this right angle algorithm on it, graphing the result. This write up is a description of what I found when testing this algorithm, highlighting its more interesting features.If you would like to see the code I wrote for this, visit the GitHub repository linked [here](https://github.com/samgrassi01/A-Curious-Algorithm). Putting the Algorithm to the TestThe algorithm starts drawing from some point along the edge of the initial triangle, and draws a line to the farthest perpinducular edge, repeating the process from its new location in a recursive manner. When the algorithm is faced with two equal distances, it randomely picks one of the two edges to draw to. With this basic understanding of the algorithms' internals, we are equipt to begin the exploration into why it produces the ultimate shapes it does. Picking an equilateral triangle to begin, I started the algorithm at one of its vertices and let it run for 100 steps, resulting in the graph shown below. **NOTE:** The function `return_points` takes two angles and the right point of the triangle to build, returning the necessary points to make the triangle with the passed exact angles and right end point. The function `drawTriangle` takes `(number_of_iterations, starting_point, outer_triangle_points, steps_to_show)` where `number_of_iterations` is the number of steps the algorithm will execute, `starting_point` is where the algorithm will being drawing, `outer_triangle_points` is the set of three points generated by `return_points` to define the outer triangle, and finally `steps_to_show` is the index-range of steps to graph.
###Code
eq_triangle = return_points(60, 60, [4, 0])
visited_points = drawTriangle(100, [4, 0], eq_triangle, [0, 100])
###Output
_____no_output_____
###Markdown
As you can see, after just a few steps the algorithm converged to a different triangle within the outer one. It can be seen that the ultimate triangle has each edge perpindicular to one of the outer triangle's edges, with all three of its vertices touching the outer triangle's edges. One way I like to think of the outer triangle is an initial condition to this algorithm that will "mold" the lines into their "natural resting points" over time. You can see the result of this above. It seems that with every new step, the outer triangle is forcing the algorithm into its final repeating shape. To eak some more information out of this pattern, I wrote a function, `give_info` to return the inner angles of this ultimate triangle. Below those inner angles are printed along with the last steps the algorithm took for more clarity.
###Code
visited_points = drawTriangle(100, [4, 0], eq_triangle, [90, 100])
give_info(visited_points, eq_triangle)
###Output
Outer Triangle Information:
Inner angles: [60, 60, 60]
Inner Triangle Information:
Inner angles: [60, 60, 60]
###Markdown
Right off the bat, we notice that not only does this algorithm converge to triangle, but this ultimate triangle is *similar* to the outer one, as all the interior angles are the same! This is a rather interesting result. As this initial equilateral outer triangles is scaled up and down, the convergence of the algorithm is not affected, however notice what happens when we change the starting point of the algorithm from $(4, 0)$ to $(3,0)$ and $(1, 0)$, where the final steps the algorithm took for each situation are graphed below.
###Code
visited_points = drawTriangle(100, [3, 0], eq_triangle, [90, 100])
visited_points = drawTriangle(100, [1, 0], eq_triangle, [90, 100])
###Output
_____no_output_____
###Markdown
As the starting point of the algorithm shifted, the ultimate triangle flipped around the axis defined by $x=2$. Infact, when the starting point is to the left or right of $2$, the ultimate triangle will always be pointing in one direction or the other; unless the algorithm starts at the edge points of $(0,0)$ and $(4,0)$, where the ultimate triangles orientation will be determined randomely. When the starting point is at 2, the algorithm picks a random side to follow due to the symmetry of the triangle, and the ultimate triangle will be oriented to either the left or right. Curiousely enough, regardless of where the algorithm starts drawing from, the inner ultimate triangle is always the same size and has the same interior angles.What if we applied this algorithm to an isosceles triangle? Take the example shown below, with the interior angles of both the ultimate inner triangle and initial triangle printed with the resulting graph.
###Code
iso1 = return_points(50, 65, [4, 0])
visited_points = drawTriangle(100, [3.6, 0], iso1, [0, 100])
give_info(visited_points, iso1)
###Output
Outer Triangle Information:
Inner angles: [65, 65, 50]
Inner Triangle Information:
Inner angles: [50, 65, 65]
###Markdown
As you can see, the same thing happened for this particular isosceles triangle; the ultimate triangle the algorithm converged to is similar to the outer triangle!At this point, you are likely thinking that the ultimate shape may not always be a triangle, depending on the properties of the initial (outer) triangle! I will get to that, but first I am going to show that this property of convergence to similar triangles also holds for scalene triangles.
###Code
scalene1 = return_points(60, 70, [4, 0])
visited_points = drawTriangle(100, [3.6, 0], scalene1, [0, 100])
give_info(visited_points, scalene1)
###Output
Outer Triangle Information:
Inner angles: [50, 70, 60]
Inner Triangle Information:
Inner angles: [50, 60, 70]
###Markdown
Once again, we can see the inner ultimate triangle is similar to the outer triangle. One natural question may be, "If the computational resources are not available to find this ultimate triangle, how else might it be found exactly"? The answer would be that this exact inner triangle could be found with relative ease using geometry. Take a look at the *general* diagram below for one of these cases.We know $a, b, c$, and $A, B, C$. It is also known that each of the edges of the inner triangle will be perpindicular with its corresponding edge on the outer triangle, and that the inner ultimate triangle will be similar to the outer one (same interior angles). With this information, all the inner angles can be found, giving enough information to solve for $x, y$, and $z$ shown in the diagram above. After finding these values, the points of the inner ultimate triangle can be found. One interesting formula that can be used to *approximate* the side lengths of the inner ultimate triangle is given by$$a' \approx \frac{sin(\gamma) \cdot a}{\varphi}$$where $\gamma$ is the peak angle of the initial triangle, $a'$ is the inner side length to be approximated, $a$ is the corresponding outer side length, and $\varphi=1.61803 \cdots$, the Golden Ratio. The resulting error of the approximations when using this formula is highly dependent on the triangle being analyzed. In the example triangles I worked on, I saw side length approximations errors of the ultimate inner triangle between $0.1\%$ and $7\%$.The side length to be solved for, $a'$, can be found exactly with$$a' = \frac{sin(\gamma) \cdot a}{c}$$where $c \approx \varphi$. I have a hunch $c$ is given by a function of the peak angle $\gamma$, however I have yet to find this function exactly, assuming it exists. Other Ultimate ShapesAs alluded to earlier, when the angles of the outer triangle are adjusted, the algorithm can generate other interesting repeating shapes. One of the simpler repeating shapes is given below from an isosceles triangle. As a quick note, for most of the examples below I chose not to show the first steps the algorithm took as seeing them is usually not especially informative and they clutter the graph.
###Code
iso2 = return_points(30, 75, [4, 0])
visited_points = drawTriangle(100, [3.6, 0], iso2, [90, 100])
###Output
_____no_output_____
###Markdown
This is the first repeating ultimate shape we have seen that produces something other than a triangle. The above ultimate shape is nothing to get too excited about however, so lets start by slightly increasing and decreasing the interior angles of the isosceles triangle to see what else the algorithm comes up with.
###Code
iso3 = return_points(40, 70, [4, 0])
visited_points = drawTriangle(100, [1, 0], iso3, [90, 100])
iso4 = return_points(20, 80, [4, 0])
visited_points = drawTriangle(100, [3, 0], iso4, [80, 100])
###Output
_____no_output_____
###Markdown
Those patterns are much more interesting! Recall that the algorithm will always draw the longest possible line it can while still obeying the right angle rule, as we can see the result of this taking form in the previous two examples. For this specific isosceles triangle, we can see that as the top angle decreases, the number of "zig-zags" formed within the ultimate shape increases, as the angles are much steeper. As shown below, scalene triangles succumb to a similar phenomena as well, producing different repeating shapes.
###Code
scalene2 = return_points(40, 80, [4, 0])
visited_points = drawTriangle(110, [3, 0], scalene2, [90, 110])
scalene3 = return_points(20, 86, [4, 0])
visited_points = drawTriangle(110, [2, 0], scalene3, [80, 110])
###Output
_____no_output_____
###Markdown
Lets take a look at what happens when we move the top angle in the other direction, starting with a $45-90-45$ triangle. In this case, it is interesting seeing all the steps the algorithm takes, so I plot them all below. The starting point is $(3.7, 0)$.
###Code
iso6 = return_points(90, 45, [4, 0])
visited_points = drawTriangle(130, [3.7, 0], iso6, [0, 130])
###Output
_____no_output_____
###Markdown
The final ultimate shape and its properties are shown below.
###Code
visited_points = drawTriangle(110, [3, 0], iso6, [100, 110])
give_info(visited_points, iso6)
###Output
Outer Triangle Information:
Inner angles: [45, 45, 90]
Inner angles of each triangle are: [45, 90, 45]
###Markdown
When the algorithm was implemented on the above right triangle, it produced some interesting results. The most immidiately noticeable of which being that the hourglass like ultimate shape, is built out of two $45-90-45$ triangles!In the current implementation of the algorithm I have prevented it from drawing along edges or meeting the triangles vertices, to force it into developing the hourglass ultimate shape seen above. It is for this reason that on what looks to be the fourth step above (shown on the first graph of the triangle), the algorithm chose to draw down instead of up to the top vertice of the triangle. If the algorithm had been allowed to do so, the resulting inner shape would have been the two ultimate triangles flipped around the y-axis and scaled up, as pictured below by a previous implementation of the algorithm.The algorithm is applied to a few more obtuse triangles to demonstrate this property of the algorithm converging to an "hour-glass" ultimate shape, composed to two similar triangles.
###Code
iso7 = return_points(100, 40, [4, 0])
visited_points = drawTriangle(150, [3.4, 0], iso7, [100, 150])
give_info(visited_points, iso7)
scalene4 = return_points(110, 30, [4, 0])
visited_points = drawTriangle(150, [1, 0], scalene4, [100, 150])
iso8 = return_points(140, 20, [4, 0])
visited_points = drawTriangle(150, [2.2, 0], iso8, [100, 150])
###Output
_____no_output_____
###Markdown
While this property is true for all obtuse triangles, note what happens as $\gamma$, the peak angle, approaches 180 degrees. As $\gamma \rightarrow 180$, the range of starting points from which the algorithm will converge to this ultimate hour-glass shape decreases, approaching the center of the triangle. Notice what happens if the algorithm starts outside of this "critical range".
###Code
iso9 = return_points(140, 20, [4, 0])
visited_points = drawTriangle(100, [2.3, 0], iso9, [0, 100])
###Output
_____no_output_____
###Markdown
The algorithm gets "stuck" in a corner and approaches the left/right endpoints as the number of steps approaches infinity! Finding the Ultimate TriangleWe have noticed that the ultimate shape may or may not be a triangle in different initial triangles. An important question is "can we define a set of angles for each type of triangle, where the algorithm will always converge to an ultimate triangle?".Lets begin with finding rules for when an isosceles triangle will or will not result in an ultimate triangle. Consider the two initial isosceles triangles below. Notice the minute difference in their interior angles, and the large difference in the ultimate shapes.
###Code
iso2 = return_points(43.2, 68.4, [4, 0])
visited_points = drawTriangle(100, [3.6, 0], iso2, [90, 100])
iso2 = return_points(43.3, 68.35, [4, 0])
visited_points = drawTriangle(100, [4, 0], iso2, [90, 100])
iso2 = return_points(43.3, 68.35, [4, 0])
visited_points = drawTriangle(100, [4, 0], iso2, [0, 10])
###Output
_____no_output_____ |
Oops.ipynb | ###Markdown
create a class for dictonary parsing 1 . write a functoin to give all the keys2 .write a function to give all the values 3 . write a function to throw an exception in case of input is not dictonary4. write a function to take user input and then parse a key and value out of dictonary 5. write a function to insert new key value pair into dictonary
###Code
class dict_parsing:
def __init__(self,a):
self.a = a
def getkeys(self):
if self.notdict():
return list(self.a.keys())
def getvalues(self):
if self.notdict():
return list(self.a.values())
def notdict(self):
if type(self.a) != dict:
raise Exception(self.a,'Not a dictionary')
return 1
def userinput(self):
self.a = eval(input())
print(self.a,type(self.a))
print(self.getkeys())
print(self.getvalues())
def insertion(self,k,v):
self.a[k] = v
d = {"name":"faiz","mobile_number":9873300865,"email_id":"[email protected]"}
dict_class = dict_parsing(d)
dict_class.getkeys()
dict_class.getvalues()
dict_class.insertion(15,"bokhari")
list1 = [1,2,3,4,5,6]
dic = dict_parsing(list1)
dic.notdict()
dict_class.userinput()
###Output
{"name":"faiz","mobile_number":9873300865,"email_id":"[email protected]"}
{'name': 'faiz', 'mobile_number': 9873300865, 'email_id': '[email protected]'} <class 'dict'>
['name', 'mobile_number', 'email_id']
['faiz', 9873300865, '[email protected]']
###Markdown
q1 . Create your own package for all the list function q2 .create your onw package for all the tuple functionq3 . create your own package for all dictonary functionq4 . create your own package for all the set functionrestriction : always use exception handling never usr print statement always use logging while writing a code and log every activity performed by code in respective logging file
###Code
class xyz:
def __init__(self,a,b,c):
self.a = a
self.b = b
self.c = c
def test(self):
print("this is my 1 test method of class xyz")
def test1(self):
print("this is my 2 test method of class xyz")
def test2(self):
print("this is my 3 test method of class xyz")
def test3(self):
print("this is my 3 test method of class xyz")
p = xyz(1,2,3)
p.test1()
class xyz1(xyz):
pass
q = xyz1(3,4,5)
q.test1()
class xyz1(xyz):
def test1(self):
print("this is a test method avialable in xyz1")
g = xyz1(4,5,6)
g.test1()
class xyz:
def __init__(self,a,b,c):
self.a = a
self.b = b
self.c = c
def test(self):
print("this is a meth of xyz class ")
class xyz1:
def __init__(self,p,q,v):
self.p = p
self.v = v
self.q = q
def test1(self):
print("this is a meth from class xyz1")
class child(xyz1,xyz):
def __init__(self,*args,**kwargs):
xyz.__init__(self,*args)
xyz1.__init__(self,**kwargs)
n = child(4,5,6,p=3,q=4,v=5)
n.p
n.v
class xyz:
def __init__(self,a,b,c):
self.a = a
self.b = b
self.c = c
def test(self):
print("this is a meth of xyz class ")
class xyz1(xyz):
def test1(self):
print("this is a meth from class xyz1")
class xyz2(xyz1):
def test2(self):
print("this is a meth from class xyz2")
class xyz3(xyz2):
def test3(self):
print("this is a meth from class xyz3")
v = xyz2(1,2,3)
m = xyz3(4,9,10)
class readFile:
def __init__(self,fileObj, lines):
self.file = fileObj
self.lines = lines
def readFile(self):
file2=open(self.file,'r')
line=file2.readline()
while(line!=""):
print(line)
line=file2.readline()
def writeFile(self):
content_write = open(self.file,'w')
content_write.writelines(lines)
content_write.close()
class readFile1(readFile):
def readFile1(self):
print("inheritance of readFile class")
file1 = r'test1.txt'
lines = 'Inserted Lines .......'
read_write = readFile1(file1,lines)
read_write.writeFile()
read_write.readFile()
class test:
def __init__(self,a,b,c):
self.a = a
self.b = b
self.c = c
class test1(test):
pass
u = test(4,5,6)
u.a
v = test1(1,2,3)
v.a
class test:
def __init__(self):
self._a = 4 #protected variable
self.__b = 10 #private variable
class test1(test):
def __init__(self):
self._a = 7
self.__b = 12
u = test()
u._a
u.__b
v = test1()
v._a
v.__b
class test:
def __init__(self,a,b,c):
self._a = a
self.__b = b
self.c = c
class test1(test):
pass
v = test(4,5,6)
v._a
v._test__b
v.c
u = test1(7,8,9)
u.c
u._a
u._test1__b
u._test__b
class bonousclaculator:
def __init__(self, empid , emprating) :
self.empid = empid
self.emprating = emprating
self._empmail = "[email protected]"
self.__bonusforratingA = "70%"
self.__bonusforraringB = "60%"
self.__bonusforratinC = "40%"
def bonuscalculator(self) :
if self.emprating == "A":
bonus = self.__bonusforratingA
return bonus
elif self.emprating == "B" :
bonus = self.__bonusforraringB
return bonus
else :
bonus = self.__bonusforratinC
return bonus
emp1 = bonousclaculator(101 , "A")
emp2 = bonousclaculator(102 , "B")
emp3 = bonousclaculator(103, "C")
emp1.bonuscalculator()
emp2.bonuscalculator()
emp3.bonuscalculator()
emp1.empid = 104
emp1.empid
emp1.emprating = "B"
emp1.bonuscalculator()
emp1.__bonusforraringB = "90%"
emp1.bonuscalculator()
emp2.emprating
emp2.bonuscalculator()
emp2.__bonusforraringB = "100%"
emp2.bonuscalculator()
emp2.empid = 3548784
emp2.empid
emp2.__bonusforraringB = "fsdfsfagsf"
emp2._bonousclaculator__bonusforraringB
emp2._bonousclaculator__bonusforraringB = "435456"
emp2._bonousclaculator__bonusforraringB
emp1._empmail
emp1._empmail = "[email protected]"
emp1._empmail
#kevy project
def test(a,b):
return a+b
test(3,4)
test("fazlullah"," bokhari")
class insta:
def share_stories(self):
print("this will share my insta story ")
class facebook:
def share_stories(self):
print("this will shared my facebook story ")
def shared_story(app):
app.share_stories()
i = insta()
f = facebook()
shared_story(i)
shared_story(f)
class social_media:
def share_stories(self):
print("share a story")
def upload_pictures(self):
print("this will help you tp uopload picture on social media")
class insta(social_media):
def share_stories(self):
print("this will share my insta story ")
class facebook(social_media):
def share_stories(self):
print("this will shared my facebook story ")
i = insta()
f = facebook()
f.share_stories()
i.share_stories()
class test(Exception):
def __init__(self,msg):
self.msg = msg
try:
raise(test("this is my own exceptiom class "))
except test as t:
print(t)
"""q1 create your own class for to achive multiple , multilevel inheritance
q2 create your own class to represenet ploymorprism
q3 create your own class for custome exception
q4 create your own class to achive encaptulation
q5 create your own class to achive method overloading and overriding . """
# q1 create your own class for to achive multiple , multilevel inheritance
class Faiz:
def __init__(self,name,mob,YT_link):
self.name = name
self.mob = mob
self.yt_link = YT_link
def printFaizDetails(self):
print("Name", self.name)
print("Mobile number: ",self.mob)
print("YouTube Link: ",self.yt_link)
class Employee(Faiz):
def getYouTubeLink(self):
return self.yt_link
class GetEmployeeDetails(Employee):
def prinDetails(self):
return self.getYouTubeLink()
g = GetEmployeeDetails('Fazlullah Bokhar',9873300865, 'https://www.youtube.com/channel/UCGKe5Z0tCXeRmrTXRTJg4fA')
g.printFaizDetails()
g.getYouTubeLink()
#Multiple inheritance
# Parent class1
class Batch_number:
batchnumber = ""
def __init__(self,a,b,c):
self.a = a
self.b= b
self.c = c
def batch(self):
print(self.batchnumber)
# Parent class2
class course_name:
cname = ""
def course(self):
print(self.cname)
# Child class
class Student(Batch_number, course_name):
def deets(self):
print("Batch :", self.batchnumber)
print("course :", self.cname)
# Child class code
s1 = Student(4,5,6)
s1.batchnumber = "2"
s1.cname = "FSDS"
s1.deets()
bn = Batch_number(4,5,6)
bn1 = Batch_number(1,2,3)
bn1.batchnumber
bn1.batchnumber = "sudh"
bn1.batchnumber
bn.batchnumber
Batch_number.batchnumber = "faiz"
bn.batchnumber
bn1.batchnumber
class Batch_number:
batchnumber = "FSDS"
def __init__(self,a,b,c):
self.a = a
self.b= b
self.c = c
@staticmethod
def batch():
print("this is statics method batch")
def batch1(self):
print("this is statics method batch one")
bn = Batch_number(1,2,3)
bn.batch()
Batch_number.batchnumber
Batch_number.a
bn.a
Batch_number.batch1()
bn.batch1()
# 2 create your own class to represenet ploymorprism
class PersonDetails:
def __init__(self,name,p_id,add):
self.name = name
self.id = p_id
self.add = add
class Teacher(PersonDetails):
def printDetails(self):
name = "Mr." + self.name
t_id = self.id
address = self.add
details = [name,t_id,address]
return details
class Student(PersonDetails):
def printDetails(self):
name = self.name
t_id = self.id
address = self.add
details = [name,t_id,address]
return details
s = Student("Faiz",9873,"Delhi")
s.printDetails()
t = Teacher("Fazlullah Bokhari",12345,"Banglore")
t.printDetails()
# 3 create your own class for custome exception
class CustomeException(Exception):
def __init__(self,msg):
self.msg = msg
try:
a = int(input("enter first number: "))
b = int(input("enter second number: "))
result = a/b
if b == 5:
raise(CustomeException("This is custome exception class"))
except CustomeException as c:
print(c)
except ValueError as msg:
print(msg)
except ZeroDivisionError as msg:
print(msg)
else:
try:
result = a/b
print("result:" ,result)
except Exception as e:
print(e)
# 4 create your own class to achive encaptulation
# 5 create your own class to achive method overloading and overriding
class abc :
pass
from abc import abstractmethod
class data_project :
@abstractmethod
def read_file(self) :
pass
def validate_file_name(slef) :
pass
def validate_datatype(self) :
pass
def validate_db_connn(self) :
pass
def create_connn(self) :
pass
def insert_data(self) :
pass
def delete_data(self):
pass
def update_data(self) :
pass
def perform_stats(self) :
pass
def perform_eda(self) :
pass
class test:
def fun(self):
print("this is my sample ")
def __str__(self):
return str("this is function called at the time of print")
t = test()
print(t)
t
# Overloading
class test:
def __init__(self,a,b,c):
self.a = a
self.b = b
self.c = c
def __str__(self):
return "overloaded complete"
t = test(4,5,6)
print(t)
def xyz(*args):
return args
xyz(1,2,5,48,7,8)
xyz("overloading ","example")
#Overriding
class test:
def __init__(self,a,b,c):
self.a = a
self.b = b
self.c = c
def __str__(self):
return "overriding"
def class_fun(self):
print("this is a print from class_fun")
class test1(test):
def class_fun(self):
print("overriding")
test1_obj = test1(8,9,10)
test_obj = test(10,20,30)
test1_obj.class_fun()
test_obj.class_fun()
#4:31
###Output
_____no_output_____
###Markdown
Class, object and Inheritance Class : Is a user defined blueprint from which objects are created.Classes are created by keyword class. Members : Are nothing but variables and functions defined within a class. Note : Function defined as a member of a class is generally called as method. Attributes : Are nothing but the members of the class. Object : Is an instance of a class from which class attributes can be accessed. Note : Self parameter should be passed as a default parameter to the function within the class.
###Code
#Example to perform arithmatic operations using class.
class cal:
def fn(self, a, b):
print('Addition', a+b)
print('subtraction', a-b)
print('multiplication', a*b)
print('division', a/b)
print('floor_division', a//b)
print('modulus', a%b)
print('power', a**b)
ob = cal() #object
ob.fn(5, 3)
###Output
Addition 8
subtraction 2
multiplication 15
division 1.6666666666666667
floor_division 1
modulus 2
power 125
###Markdown
Inheritance : Is nothing but using the attributes and methods of one class in another. Sub class: Is a class which inherits all the attributes and methods of another class. Base class : Is a class from which all the attributes and methods are inherited.
###Code
#example for inheritance.
class family:
grand_parent_1 = 'a'
grand_parent_2 = 'b'
parent_1 = 'c'
parent_2 = 'd'
class parent(family):
parent_1_ch_1 = 'e'
parent_1_ch_2 = 'f'
parent_1_ch_1_c_1 = 'g'
parent_1_ch_1_c_2 = 'h'
p = parent()
print('My grandparent_1 name is {} and my grandparent_2 name is {} they have two childs one of them is {} and the other one is {} then again parent_1 has two childs one of them is {} and the other one is {} and again the child of parent_1 has two childs one of them is {} and the other one is {}'.format(p.grand_parent_1, p.grand_parent_2, p.parent_1, p.parent_2, p.parent_1_ch_1, p.parent_1_ch_2, p.parent_1_ch_1_c_1, p.parent_1_ch_1_c_2))
class a:
number = 0
name = 'noname' #these are the attributes which are just like variables in python.
def fn():
b = a() #this is an object created for class 'a'
b.number = 18
b.name = 'virat'
print(b.name + " " + str(b.number))
if __name__=='__main__':
fn()
###Output
virat 18
###Markdown
Note: While defining a function inside a class a paremeter called self is always passed.
###Code
class a:
def b(self, x, y):
self.x = x
self.y = y #these are the class methods
def main():
c = a()
c.b(5, 6)
print(c.x+c.y)
if __name__=='__main__':
main()
###Output
11
###Markdown
Inheritance: Inheritance is defined as a way in which a particular class inherits features from its base class.Base class is also knows as ‘Superclass’ and the class which inherits from the Superclass is knows as ‘Subclass’
###Code
class pet:
def __init__(self, name, age): #this is the constructor in python
self.name = name
self.age = age
class dog(pet):
def __init__(self, gender):
self.gender = gender
d = dog('toomy')
d.name = 'tommy'
d.age = 7
d.gender = 'female'
print(d.name, d.age, d.gender)
###Output
tommy 7 female
###Markdown
Iterators: Iterators are objects that can be iterated upon.Python uses the __iter__() method to return an iterator object of the class.The iterator object then uses the __next__() method to get the next item.for loops stops when StopIteration Exception is raised.
###Code
class reverse:
def __init__(self, data): #is run when an object is created
self.data = data
self.index = len(data)
def __iter__(self):
return self
def __next__(self):
if(self.index == 0):
raise StopIteration
self.index -= 1
return self.data[self.index]
def main():
rev = reverse('dog')
for char in rev:
print(char, end = '')
if __name__=='__main__':
main()
class a:
def fn(self):
print('Hello')
b = a()
b.fn()
class a:
def __init__(self, name):
self.name = name
def fn(self):
print('Hello Im', self.name)
b = a('Virat')
b.fn()
class csstudent:
stream = 'EEE'
def __init__(self, roll):
self.roll = roll
a = csstudent(101)
b = csstudent(102)
print(a.roll)
print(b.roll)
print(csstudent.stream)
class eestudent:
stream = 'EEE'
def __init__(self, roll):
self.roll = roll
def setAddress(self, address):
self.address = address
def getAddress(self):
return self.address
a = eestudent(101)
a.setAddress('Bangalore')
print(a.getAddress())
###Output
Bangalore
###Markdown
Note: Empty class in python can be created using pass statement.
###Code
class a:
pass
class A:
__a = 0 #hidden variable inside a class
def inc(self, b):
self.__a += b
print(self.__a)
x = A()
x.inc(2)
print(x.__a)
###Output
2
###Markdown
Note: In the above program, we tried to access hidden variable outside the class using object and it threw an exception.
###Code
#Accessing the value of hidden variable using tricky syntax.
class A:
__a = 10
x = A()
print(x._A__a)
###Output
10
###Markdown
Note: We can access the value of hidden attribute by a tricky syntax as shown in the above example. Printing Objects: Printing objects gives us information about objects we are working with.
###Code
class Test:
def __init__(self, a, b):
self.a = a
self.b = b
def __repr__(self):
return 'Test a:%s b%s'%(self.a, self.b)
def __str__(self):
return "From str method of Test: a is %s, b is %s"%(self.a, self.b)
t = Test(1234, 5678)
print(t) #this calls __str__
print([t]) #this calls __repr__
#example for inheritence
class person:
def __init__(self, name):
self.name = name
def getName(self):
return self.name
def isEmp(self):
return False
class Employee(person):
def isEmp(self):
return True
emp = person('AB')
print(emp.getName(), emp.isEmp())
emp = Employee('Virat')
print(emp.getName(), emp.isEmp())
###Output
AB False
Virat True
###Markdown
Note: Issubclass() is a function that directly tells us if a class is subclass of another class.
###Code
#example demonstrating above example
class base(object):
pass
class derived(base):
pass
print(issubclass(derived, base))
print(issubclass(base, derived))
d = derived()
b = base()
print(isinstance(d, base))
print(isinstance(b, derived))
#example demonstarting the multiple inheritance
class Base1(object):
def __init__(self):
self.str1 = 'Virat'
print('Base1')
class Base2(object):
def __init__(self):
self.str2 = 'AB'
print('Base2')
class Derived(Base1, Base2):
def __init__(self):
Base1.__init__(self)
Base2.__init__(self)
print('Derived')
def dis(self):
print(self.str1, self.str2)
d = Derived()
d.dis()
###Output
Base1
Base2
Derived
Virat AB
###Markdown
Polymorphism in Python Polymorphism means having many forms. In programming, polymorphism means same function name (but different signatures) being used for different types.
###Code
#example for inbuilt polymorphic functions.
print(len('Cricket'))
print(len([1, 2, 3])) #note: here len is used to find the length of both string as well as list.
#example for user-defined polymorphism.
def add(x, y, z = 0):
return x+y+z
print(add(2, 3))
print(add(2, 3, 4))
#polymorphism with class methods.
class ind():
def cap(self):
print('Delhi is the capital of India')
def lan(self):
print('Hindi is the official language')
def type(self):
print('India is a developing country')
class usa():
def cap(self):
print('Washington D.C. is the capital of India')
def lan(self):
print('English is the primary language')
def type(self):
print('usa is a developed country')
in_ob = ind()
us_ob = usa()
for i in (in_ob, us_ob):
i.cap()
i.lan()
i.type()
###Output
Delhi is the capital of India
Hindi is the official language
India is a developing country
Washington D.C. is the capital of India
English is the primary language
usa is a developed country
###Markdown
Note: In Python, Polymorphism lets us define methods in the child class that have the same name as the methods in the parent class. In inheritance, the child class inherits the methods from the parent class. However, it is possible to modify a method in a child class that it has inherited from the parent class. This is particularly useful in cases where the method inherited from the parent class doesn’t quite fit the child class. In such cases, we re-implement the method in the child class. This process of re-implementing a method in the child class is known as Method Overriding.
###Code
#example polymorphism with inheritance.
class bird():
def intro(self):
print('There are many type of birds')
def flight(self):
print('Many birds can fly')
class sparrow(bird):
def flight(self):
print('Sparrow can fly')
class ostrich(bird):
def flight(self):
print('Ostrich can not fly')
ob_bi = bird()
ob_sp = sparrow()
ob_os = ostrich()
ob_bi.intro()
ob_bi.flight()
ob_sp.intro()
ob_sp.flight()
ob_os.intro()
ob_os.flight()
# example implementing polymorphism with function.
class ind():
def cap(self):
print('Delhi is the capital of India')
def lan(self):
print('Hindi is the official language')
def type(self):
print('India is a developing country')
class usa():
def cap(self):
print('Washington D.C. is the capital of India')
def lan(self):
print('English is the primary language')
def type(self):
print('usa is a developed country')
def fn(obj):
obj.cap()
obj.lan()
obj.type()
ob_in = ind()
ob_us = usa()
fn(ob_in)
fn(ob_us)
from datetime import date
class Person:
def __init__(self, name, age):
self.name = name
self.age = age
@classmethod
def frombirthyear(cls, name, year):
return cls(name, date.today().year-year)
@staticmethod
def isAdult(age):
return age>18
person1 = Person('Virat', 30)
person2 = Person.frombirthyear('Virat', 1990)
print(person1.age)
print(person2.age)
print(Person.isAdult(30))
#example for changing the class member in python.
class CSSstudent:
stream = 'cse'
def __init__(self, name, roll):
self.name = name
self.roll = roll
a = CSSstudent('virat', 31)
b = CSSstudent('AB', 34)
print('Initially')
print(a.stream)
print(b.stream)
a.stream = 'ece' #you can not change class variable using object.
print('After changing')
print(a.stream)
print(b.stream)
###Output
Initially
cse
cse
After changing
ece
cse
###Markdown
Note: We can only change class variables using class name.
###Code
#example demonstrating above note.
class CSSstudent:
stream = 'cse'
def __init__(self, name, roll):
self.name = name
self.roll = roll
a = CSSstudent('virat', 31)
print(a.stream)
CSSstudent.stream = 'ece'
b = CSSstudent('AB', 34)
print(b.stream)
###Output
cse
ece
###Markdown
Constructors in python Constructors are generally used for instantiating an object.The task of constructors is to initialize(assign values) to the data members of the class when an object of class is created.In Python the __init__() method is called the constructor and is always called when an object is created. There are two types of constructors in python.1. __Default__ Constructor.2. __Parameterized__ Constructor. The default constructor is simple constructor which doesn’t accept any arguments.It’s definition has only one argument which is a reference to the instance being constructed.Constructor with parameters is known as parameterized constructor.The parameterized constructor take its first argument as a reference to the instance being constructed known as self and the rest of the arguments are provided by the programmer.
###Code
class A:
name = ""
def __init__(self): #default constructor
self.name = "AB"
def print_name(self):
print(self.name)
obj = A()
obj.print_name()
class Subtraction:
first = 0
second = 0
answer = 0
def __init__(self, f, s): #parameterized constructor
self.first = f
self.second = s
def display(self):
print('First = '+ str(self.first))
print('Second = '+ str(self.second))
print('Answer ='+str(self.answer))
def calculate(self):
self.answer = self.first - self.second
ob = Subtraction(2000, 1000)
ob.calculate()
ob.display()
###Output
First = 2000
Second = 1000
Answer =1000
###Markdown
Destructors in python Destrucors are called when an object gets destroyed. In Python, destructors are not needed as much needed in C++ because Python has a garbage collector that handles memory management automatically.The _____del_____() method is known as destructor in python. It is called when all references to the object have been deleted i.e when an object is garbage collected.
###Code
#example demonstrating usage of destructor in python.
class A:
def __init__(self):
print('Created')
def __del__(self):
print('Destructor is called')
a = A()
del a
###Output
Created
Destructor is called
###Markdown
Note : The destructor was called after the program ended or when all the references to object are deleted i.e when the reference count becomes zero, not when object went out of scope.
###Code
class A:
def __init__(self):
print('Created')
def __del__(self):
print('Destructor called')
def make_ob():
print('Making object...')
ob = A()
print('func end....')
return ob
print('calling make_ob func...')
ob = make_ob()
print('Program end')
###Output
calling make_ob func...
Making object...
Created
func end....
Program end
###Markdown
str() v/s repr() in python str() and repr() are both used to string represention of an object.
###Code
#example of str()
a = 'Hello World'
print(str(a))
print(str(230/13))
#example of repr()
b = 'Hello World'
print(repr(b))
print(repr(230/13))
import datetime
a = datetime.datetime.now()
print(str(a))
print(repr(a))
class complex:
def __init__(self, real, imag):
self.real = real
self.imag = imag
def __repr__(self):
return 'Rational(%s, %s)'%(self.real, self.imag)
def __str__(self):
return '%s + i%s'%(self.real, self.imag)
t = complex(10, 20)
print(str(t))
print(repr(t))
#examples using type function.
a = 3
print(type(a))
l = [1, 2, 3]
print(type(l))
b = 'hello'
print(type(b))
###Output
<class 'int'>
<class 'list'>
<class 'str'>
###Markdown
Note: Every type in Python is defined by Class. So in above example, unlike C or Java where int, char, float are primary data types, in Python they are object of int class or str class. So we can make a new type by creating a class of that type. For example we can create a new type Student by creating Student class.
###Code
#example.
class student:
pass
st_ob = student()
print(type(st_ob))
###Output
<class '__main__.student'>
###Markdown
Class and Instance Attribute in Python. Class Attributes belongs to class instance, they will be shared by all the instances. Such attributes are defined in the class body.
###Code
class sampleclass:
count = 0
def increase(self):
sampleclass.count += 1
s1 = sampleclass()
s1.increase()
print(s1.count)
s2 = sampleclass()
s2.increase()
print(s2.count)
print(sampleclass.count)
###Output
1
2
2
###Markdown
Instance Attributes: Unlike class attributes instance attributes are not shared by all the objects. Every object has it's own copy of instance attribute.To list the attributes of an object we have two functions:1.vars() : This function displays the object attributes in dictionary format.2.dir() : Whereas this function displays more attributes than vars function. This displays class attributes as well.
###Code
class emp:
def __init__(self, name, age):
self.name = name
self.age = age
def show(self):
print(self.name)
print(self.age)
e1 = emp('XYZ', 20)
print(vars(e1))
print(dir(e1))
###Output
{'name': 'XYZ', 'age': 20}
['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'age', 'name', 'show']
###Markdown
Reflection in Python. Reflection refers to the ability for code to be able to examine attributes about objects that might be passed as parameters to a function. For example, if we write type(obj) then Python will return an object which represents the type of obj.Using reflection, we can write one recursive reverse function that will work for strings, lists, and any other sequence that supports slicing and concatenation. If an obj is a reference to a string, then Python will return the str type object. Further, if we write str() we get a string which is the empty string. In other words, writing str() is the same thing as writing “”. Likewise, writing list() is the same thing as writing [].
###Code
def reverse(seq):
SeqType = type(seq)
emptySeq = SeqType()
if seq == emptySeq:
return emptySeq
restrev = reverse(seq[1:])
first = seq[0:1]
result = restrev + first
return result
print(reverse([1, 2, 3, 4]))
print(reverse("HELLO"))
###Output
[4, 3, 2, 1]
OLLEH
###Markdown
Reflection-enabling functions: Include type(), isinstance(), getattr(), dir() and callable().Callable(): Any function that can be called. For an object, determines whether the object can be called. A class can be made callable by defining __class__() method. This method return True if the object appears to be callable, else it returns False.
###Code
#example for callable().
x = 5
def fn():
print('callable')
y = fn
if(callable(x)):
print('True')
else:
print('False')
if(callable(y)):
print('True')
else:
print('False')
#example for callable when used in OOPS.
class a:
def __call__(self):
print('Something')
print(callable(a))
###Output
True
###Markdown
Dir: This method try's to return the valid attributes of an object.If the object has __dir__() method, the method will be called and must return the list of attributes. If the object doesn’t have __dir()__ method, this method tries to find information from the __dict__ attribute (if defined), and from type object. In this case, the list returned from dir() may not be complete.
###Code
#example.
a = [1, 2, 3, 4]
print(dir(a))
b = ['a', 'b']
print(dir(a))
###Output
['__add__', '__class__', '__contains__', '__delattr__', '__delitem__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__', '__iadd__', '__imul__', '__init__', '__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__rmul__', '__setattr__', '__setitem__', '__sizeof__', '__str__', '__subclasshook__', 'append', 'clear', 'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove', 'reverse', 'sort']
['__add__', '__class__', '__contains__', '__delattr__', '__delitem__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__', '__iadd__', '__imul__', '__init__', '__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__rmul__', '__setattr__', '__setitem__', '__sizeof__', '__str__', '__subclasshook__', 'append', 'clear', 'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove', 'reverse', 'sort']
###Markdown
Getattr(): Will return the value of named attribute of an object. If not found, it returns the default value provided to the function. The getattr method takes three parameters object, name and default(optional).
###Code
#example.
class employee:
salary = 25000
company = 'XYZ'
e = employee()
print(getattr(e, 'salary'))
print(e.salary)
###Output
25000
25000
###Markdown
Barrier Objects in Python. Some common function calls related to threading.Barrier class are:barrier.broken: Returns True if the barrier is in broken state.barrier.parties: Number of threads required to pass a barrier.barrier.abort(): Put the barrier into broken state. This causes any future calls to wait() to fail with the BrokenBarrierError.Abort function calls on barrier are often required to skip the conditions of deadlocking during program execution.barrier.reset(): Return the barrier to default, empty state.barrier.wait(): Pass the barrier. When all the threads party to the barrier have called this function, they are all released simultaneously. If a timeout is provided, it is used in preference to any that was supplied to the class constructor.The return value is an integer in the range 0 to parties – 1, different for each thread. If the call times out, the barrier is put into the broken state. This method may raise a BrokenBarrierError exception if the barrier is broken or reset while a thread is waiting.barrier.n_wait: The number of threads currently waiting in the barrier.
###Code
import threading
barrier = threading.Barrier(3)
class thread(threading.Thread):
def __init__(self, thread_ID):
threading.Thread.__init__(self)
self.thread_ID = thread_ID
def run(self):
print(str(self.thread_ID) + '\n')
barrier.wait()
t1 = thread(100)
t2 = thread(101)
t1.start()
t2.start()
barrier.wait()
print('Exit\n')
###Output
100
101
Exit
###Markdown
Timer Objects in python. Timer objects are used to represent actions that needs to be scheduled to run after a certain instant of time. These objects get scheduled to run on a separate thread that carries out the action. However, the interval that a timer is initialized with might not be the actual instant when the action was actually performed by the interpreter because it is the responsibility of the thread scheduler to actually schedule the thread corresponding to the timer object.Timer is a sub class of Thread class defined in python. It is started by calling the start() function corresponding to the timer explicitly.
###Code
#example for creating a timer object.
import threading
def fn():
print('Hello there')
timer = threading.Timer(10.0, fn)
timer.start()
print('Exit')
###Output
Exit
Hello there
###Markdown
cancelling a timer: Stop the timer, and cancel the execution of the timer’s action. This will only work if the timer is still in its waiting stage.
###Code
import threading
def fn():
print('Hello There')
timer = threading.Timer(1.0, fn)
timer.start()
print('Cancelling Timer')
timer.cancel()
print('Exit')
###Output
Cancelling Timer
Exit
###Markdown
Garbage Collection in python. Python's memory allocation and deallocation is automatic. Python uses two stratergies to allocate and deallocate the memory.1.Reference counting.2.Garbage Collection. Prior to Python version 2.0, the Python interpreter only used reference counting for memory management. Reference counting works by counting the number of times an object is referenced by other objects in the system. When references to an object are removed, the reference count for an object is decremented. When the reference count becomes zero, the object is deallocated.
###Code
#example for reference counting.
b = 9 #here 9 is an object and 'b' is reference to an object.
b = 4 #reference count of object 'b' becomes zero as the value of object changes.
###Output
_____no_output_____
###Markdown
A reference cycle is created when there is no way that the refence count of the object can reach.Note: A reference cycle is created when there is no way the reference count of the object can reach. Reference cycles involving lists, tuples, instances, classes, dictionaries, and functions are common. The easiest way to create a reference cycle is to create an object which refers to itself.
###Code
#example demonstarting above note.
def fn():
x = []
x.append(x)
fn()
#Ways to make an object eligible for garbage collection
#1.
x = []
x.append(1)
x.append(2)
del x
###Output
_____no_output_____
###Markdown
2.Automatic Garbage Collection of Cycles: Because reference cycles take computational work to discover, garbage collection must be a scheduled activity. Python schedules garbage collection based upon a threshold of object allocations and object deallocations. When the number of allocations minus the number of deallocations is greater than the threshold number, the garbage collector is run. One can inspect the threshold for new objects (objects in Python known as generation 0 objects) by importing the gc module and asking for garbage collection thresholds.
###Code
import gc
print(gc.get_threshold())
###Output
(700, 10, 10)
###Markdown
Here, the default threshold on the above system is 700. This means when the number of allocations vs. the number of deallocations is greater than 700 the automatic garbage collector will run. Thus any portion of your code which frees up large blocks of memory is a good candidate for running manual garbage collection. 3.Manual Garbage Collection: Invoking the garbage collector manually during the execution of a program can be a good idea on how to handle memory being consumed by reference cycles.
###Code
import gc
collected = gc.collect()
print(collected)
###Output
204
###Markdown
Inheritance
###Code
class Animal:
def __init__(self):
print("Animal Got Created")
def whoami(self):
print('i am an animal')
def eat(self):
print('eating')
class Dog(Animal):
def __init__(self):
Animal.__init__(self)
print("nik got created")
def whoami(self):
print('i am nik -mr.street')
def talk(self):
print('our nik says bhoww bhoww')
nik = Dog()
nik.eat()
nik.whoami()
###Output
i am nik -mr.street
|
doc/ipython-notebooks/multiclass/Tree/TreeEnsemble.ipynb | ###Markdown
Ensemble of Decision Trees *By Parijat Mazumdar (GitHub ID: [mazumdarparijat](https://github.com/mazumdarparijat))* This notebook illustrates the use of [Random Forests](http://en.wikipedia.org/wiki/Random_forest) in Shogun for classification and regression. We will understand the functioning of Random Forests, discuss about the importance of its various parameters and appreciate the usefulness of this learning method. What is Random Forest? Random Forest is an ensemble learning method in which a collection of decision trees are grown during training and the combination of the outputs of all the individual trees are considered during testing or application. The strategy for combination can be varied but generally, in case of classification, the mode of the output classes is used and, in case of regression, the mean of the outputs is used. The randomness in the method, as the method's name suggests, is infused mainly by the random subspace sampling done while training individual trees. While choosing the best split during tree growing, only a small randomly chosen subset of all the features is considered. The subset size is a user-controlled parameter and is usually the square root of the total number of available features. The purpose of the random subset sampling method is to decorrelate the individual trees in the forest, thus making the overall model more generic; i.e. decrease the variance without increasing the bias (see [bias-variance trade-off](http://en.wikipedia.org/wiki/Bias%E2%80%93variance_dilemma)). The purpose of Random Forest, in summary, is to reduce the generalization error of the model as much as possible. Random Forest vs Decision Tree In this section, we will appreciate the importance of training a Random Forest over a single decision tree. In the process, we will also learn how to use Shogun's [Random Forest class](http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CRandomForest.html). For this purpose, we will use the [letter recognition dataset](https://archive.ics.uci.edu/ml/datasets/Letter+Recognition). This dataset contains pixel information (16 features) of 20000 samples of the English alphabet. This is a 26-class classification problem where the task is to predict the alphabet given the 16 pixel features. We start by loading the training dataset.
###Code
import os
SHOGUN_DATA_DIR=os.getenv('SHOGUN_DATA_DIR', '../../../../data')
import shogun as sg
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
def load_file(feat_file,label_file):
feats=sg.create_features(sg.CSVFile(feat_file))
labels=sg.create_labels(sg.CSVFile(label_file))
return (feats, labels)
trainfeat_file=os.path.join(SHOGUN_DATA_DIR, 'uci/letter/train_fm_letter.dat')
trainlab_file=os.path.join(SHOGUN_DATA_DIR, 'uci/letter/train_label_letter.dat')
train_feats,train_labels=load_file(trainfeat_file,trainlab_file)
###Output
_____no_output_____
###Markdown
Next, we decide the parameters of our Random Forest.
###Code
def setup_random_forest(num_trees,rand_subset_size,combination_rule,feature_types):
rf=sg.create_machine("RandomForest", num_bags=num_trees,
combination_rule=combination_rule)
rf.get("machine").put("m_randsubset_size", rand_subset_size)
rf.get("machine").put("nominal", feature_types)
return rf
comb_rule=sg.create_combination_rule("MajorityVote")
feat_types=np.array([False]*16)
rand_forest=setup_random_forest(10,4,comb_rule,feat_types)
###Output
_____no_output_____
###Markdown
In the above code snippet, we decided to create a forest using 10 trees in which each split in individual trees will be using a randomly chosen subset of 4 features. Note that 4 here is the square root of the total available features (16) and is hence the usually chosen value as mentioned in the introductory paragraph. The strategy for combination chosen is [Majority Vote](http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1MajorityVote.html) which, as the name suggests, chooses the mode of all the individual tree outputs. The given features are all continuous in nature and hence feature types are all set false (i.e. not nominal). Next, we train our Random Forest and use it to classify letters in our test dataset.
###Code
# train forest
rand_forest.put('labels', train_labels)
rand_forest.train(train_feats)
# load test dataset
testfeat_file= os.path.join(SHOGUN_DATA_DIR, 'uci/letter/test_fm_letter.dat')
testlab_file= os.path.join(SHOGUN_DATA_DIR, 'uci/letter/test_label_letter.dat')
test_feats,test_labels=load_file(testfeat_file,testlab_file)
# apply forest
output_rand_forest_train=rand_forest.apply_multiclass(train_feats)
output_rand_forest_test=rand_forest.apply_multiclass(test_feats)
###Output
_____no_output_____
###Markdown
We have with us the labels predicted by our Random Forest model. Let us also get the predictions made by a single tree. For this purpose, we train a [CART-flavoured decision tree](http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CARTree.html).
###Code
def train_cart(train_feats,train_labels,feature_types,problem_type):
c=sg.create_machine("CARTree", nominal=feature_types,
mode=problem_type,
folds=2,
apply_cv_pruning=False,
labels=train_labels)
c.train(train_feats)
return c
# train CART
cart=train_cart(train_feats,train_labels,feat_types,"PT_MULTICLASS")
# apply CART model
output_cart_train=cart.apply_multiclass(train_feats)
output_cart_test=cart.apply_multiclass(test_feats)
###Output
_____no_output_____
###Markdown
With both results at our disposal, let us find out which one is better.
###Code
accuracy=sg.create_evaluation("MulticlassAccuracy")
rf_train_accuracy=accuracy.evaluate(output_rand_forest_train,train_labels)*100
rf_test_accuracy=accuracy.evaluate(output_rand_forest_test,test_labels)*100
cart_train_accuracy=accuracy.evaluate(output_cart_train,train_labels)*100
cart_test_accuracy=accuracy.evaluate(output_cart_test,test_labels)*100
print('Random Forest training accuracy : '+str(round(rf_train_accuracy,3))+'%')
print('CART training accuracy : '+str(round(cart_train_accuracy,3))+'%')
print
print('Random Forest test accuracy : '+str(round(rf_test_accuracy,3))+'%')
print('CART test accuracy : '+str(round(cart_test_accuracy,3))+'%')
###Output
_____no_output_____
###Markdown
As it is clear from the results above, we see a significant improvement in the predictions. The reason for the improvement is clear when one looks at the training accuracy. The single decision tree was over-fitting on the training dataset and hence was not generic. Random Forest on the other hand appropriately trades off training accuracy for the sake of generalization of the model. Impressed already? Let us now see what happens if we increase the number of trees in our forest. Random Forest parameters : Number of trees and random subset size In the last section, we trained a forest of 10 trees. What happens if we make our forest with 20 trees? Let us try to answer this question in a generic way.
###Code
def get_rf_accuracy(num_trees,rand_subset_size):
rf=setup_random_forest(num_trees,rand_subset_size,comb_rule,feat_types)
rf.put('labels', train_labels)
rf.train(train_feats)
out_test=rf.apply_multiclass(test_feats)
acc=sg.create_evaluation("MulticlassAccuracy")
return acc.evaluate(out_test,test_labels)
###Output
_____no_output_____
###Markdown
The method above takes the number of trees and subset size as inputs and returns the evaluated accuracy as output. Let us use this method to get the accuracy for different number of trees keeping the subset size constant at 4.
###Code
num_trees4=[5,10,20,50,100]
rf_accuracy_4=[round(get_rf_accuracy(i,4)*100,3) for i in num_trees4]
print('Random Forest accuracies (as %) :' + str(rf_accuracy_4))
# plot results
x4=[1]
y4=[86.48] # accuracy for single tree-CART
x4.extend(num_trees4)
y4.extend(rf_accuracy_4)
plt.plot(x4,y4,'--bo')
plt.xlabel('Number of trees')
plt.ylabel('Multiclass Accuracy (as %)')
plt.xlim([0,110])
plt.ylim([85,100])
plt.show()
###Output
_____no_output_____
###Markdown
NOTE : The above code snippet takes about a minute to execute. Please wait patiently. We see from the above plot that the accuracy of the model keeps on increasing as we increase the number of trees on our Random Forest and eventually satarates at some value. Extrapolating the above plot qualitatively, the saturation value will be somewhere around 96.5%. The jump of accuracy from 86.48% for a single tree to 96.5% for a Random Forest with about 100 trees definitely highlights the importance of the Random Forest algorithm.The inevitable question at this point is whether it is possible to achieve higher accuracy saturation by working with lesser (or greater) random feature subset size. Let us figure this out by repeating the above procedure for random subset size as 2 and 8.
###Code
# subset size 2
num_trees2=[10,20,50,100]
rf_accuracy_2=[round(get_rf_accuracy(i,2)*100,3) for i in num_trees2]
print('Random Forest accuracies (as %) :' + str(rf_accuracy_2))
# subset size 8
num_trees8=[5,10,50,100]
rf_accuracy_8=[round(get_rf_accuracy(i,8)*100,3) for i in num_trees8]
print('Random Forest accuracies (as %) :' + str(rf_accuracy_8))
###Output
_____no_output_____
###Markdown
NOTE : The above code snippets take about a minute each to execute. Please wait patiently. Let us plot all the results together and then comprehend the results.
###Code
x2=[1]
y2=[86.48]
x2.extend(num_trees2)
y2.extend(rf_accuracy_2)
x8=[1]
y8=[86.48]
x8.extend(num_trees8)
y8.extend(rf_accuracy_8)
plt.plot(x2,y2,'--bo',label='Subset Size = 2')
plt.plot(x4,y4,'--r^',label='Subset Size = 4')
plt.plot(x8,y8,'--gs',label='Subset Size = 8')
plt.xlabel('Number of trees')
plt.ylabel('Multiclass Accuracy (as %) ')
plt.legend(bbox_to_anchor=(0.92,0.4))
plt.xlim([0,110])
plt.ylim([85,100])
plt.show()
###Output
_____no_output_____
###Markdown
As we can see from the above plot, the subset size does not have a major impact on the saturated accuracy obtained in this particular dataset. While this is true in many datasets, this is not a generic observation. In some datasets, the random feature sample size does have a measurable impact on the test accuracy. A simple strategy to find the optimal subset size is to use cross-validation. But with Random Forest model, there is actually no need to perform cross-validation. Let us see how in the next section. Out-of-bag error The individual trees in a Random Forest are trained over data vectors randomly chosen with replacement. As a result, some of the data vectors are left out of training by each of the individual trees. These vectors form the out-of-bag (OOB) vectors of the corresponding trees. A data vector can be part of OOB classes of multiple trees. While calculating OOB error, a data vector is applied to only those trees of which it is a part of OOB class and the results are combined. This combined result averaged over similar estimate for all other vectors gives the OOB error. The OOB error is an estimate of the generalization bound of the Random Forest model. Let us see how to compute this OOB estimate in Shogun.
###Code
rf=setup_random_forest(100,2,comb_rule,feat_types)
rf.put('labels', train_labels)
rf.train(train_feats)
# set evaluation strategy
rf.put("oob_evaluation_metric", sg.create_evaluation("MulticlassAccuracy"))
oobe=rf.get("oob_error")
print('OOB accuracy : '+str(round(oobe*100,3))+'%')
###Output
_____no_output_____
###Markdown
The above OOB accuracy calculated is found to be slighly less than the test error evaluated in the previous section (see plot for num_trees=100 and rand_subset_size=2). This is because of the fact that the OOB estimate depicts the expected error for any generalized set of data vectors. It is only natural that for some set of vectors, the actual accuracy is slightly greater than the OOB estimate while in some cases the accuracy observed in a bit lower.Let us now apply the Random Forest model to the [wine dataset](https://archive.ics.uci.edu/ml/datasets/Wine). This dataset is different from the previous one in the sense that this dataset is small and has no separate test dataset. Hence OOB (or equivalently cross-validation) is the only viable strategy available here. Let us read the dataset first.
###Code
trainfeat_file= os.path.join(SHOGUN_DATA_DIR, 'uci/wine/fm_wine.dat')
trainlab_file= os.path.join(SHOGUN_DATA_DIR, 'uci/wine/label_wine.dat')
train_feats,train_labels=load_file(trainfeat_file,trainlab_file)
###Output
_____no_output_____
###Markdown
Next let us find out the appropriate feature subset size. For this we will make use of OOB error.
###Code
def get_oob_errors_wine(num_trees,rand_subset_size):
feat_types=np.array([False]*13)
rf=setup_random_forest(num_trees,rand_subset_size,sg.create_combination_rule("MajorityVote"),feat_types)
rf.put('labels', train_labels)
rf.train(train_feats)
rf.put("oob_evaluation_metric", sg.create_evaluation("MulticlassAccuracy"))
return rf.get("oob_error")
size=[1,2,4,6,8,10,13]
oobe=[round(get_oob_errors_wine(400,i)*100,3) for i in size]
print('Out-of-box Accuracies (as %) : '+str(oobe))
plt.plot(size,oobe,'--bo')
plt.xlim([0,14])
plt.xlabel('Random subset size')
plt.ylabel('Multiclass accuracy')
plt.show()
###Output
_____no_output_____
###Markdown
From the above plot it is clear that subset size of 2 or 3 produces maximum accuracy for wine classification. At this value of subset size, the expected classification accuracy is of the model is 98.87%. Finally, as a sanity check, let us plot the accuracy vs number of trees curve to ensure that 400 is indeed a sufficient value ie. the oob error saturates before 400.
###Code
size=[50,100,200,400,600]
oobe=[round(get_oob_errors_wine(i,2)*100,3) for i in size]
print('Out-of-box Accuracies (as %) : '+str(oobe))
plt.plot(size,oobe,'--bo')
plt.xlim([40,650])
plt.ylim([90,100])
plt.xlabel('Number of trees')
plt.ylabel('Multiclass accuracy')
plt.show()
###Output
_____no_output_____
###Markdown
Ensemble of Decision Trees *By Parijat Mazumdar (GitHub ID: [mazumdarparijat](https://github.com/mazumdarparijat))* This notebook illustrates the use of [Random Forests](http://en.wikipedia.org/wiki/Random_forest) in Shogun for classification and regression. We will understand the functioning of Random Forests, discuss about the importance of its various parameters and appreciate the usefulness of this learning method. What is Random Forest? Random Forest is an ensemble learning method in which a collection of decision trees are grown during training and the combination of the outputs of all the individual trees are considered during testing or application. The strategy for combination can be varied but generally, in case of classification, the mode of the output classes is used and, in case of regression, the mean of the outputs is used. The randomness in the method, as the method's name suggests, is infused mainly by the random subspace sampling done while training individual trees. While choosing the best split during tree growing, only a small randomly chosen subset of all the features is considered. The subset size is a user-controlled parameter and is usually the square root of the total number of available features. The purpose of the random subset sampling method is to decorrelate the individual trees in the forest, thus making the overall model more generic; i.e. decrease the variance without increasing the bias (see [bias-variance trade-off](http://en.wikipedia.org/wiki/Bias%E2%80%93variance_dilemma)). The purpose of Random Forest, in summary, is to reduce the generalization error of the model as much as possible. Random Forest vs Decision Tree In this section, we will appreciate the importance of training a Random Forest over a single decision tree. In the process, we will also learn how to use Shogun's [Random Forest class](http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CRandomForest.html). For this purpose, we will use the [letter recognition dataset](https://archive.ics.uci.edu/ml/datasets/Letter+Recognition). This dataset contains pixel information (16 features) of 20000 samples of the English alphabet. This is a 26-class classification problem where the task is to predict the alphabet given the 16 pixel features. We start by loading the training dataset.
###Code
import os
SHOGUN_DATA_DIR=os.getenv('SHOGUN_DATA_DIR', '../../../../data')
from shogun import CSVFile,features,MulticlassLabels
def load_file(feat_file,label_file):
feats=features(CSVFile(feat_file))
labels=MulticlassLabels(CSVFile(label_file))
return (feats, labels)
trainfeat_file=os.path.join(SHOGUN_DATA_DIR, 'uci/letter/train_fm_letter.dat')
trainlab_file=os.path.join(SHOGUN_DATA_DIR, 'uci/letter/train_label_letter.dat')
train_feats,train_labels=load_file(trainfeat_file,trainlab_file)
###Output
_____no_output_____
###Markdown
Next, we decide the parameters of our Random Forest.
###Code
from shogun import RandomForest, MajorityVote
from numpy import array
def setup_random_forest(num_trees,rand_subset_size,combination_rule,feature_types):
rf=RandomForest(rand_subset_size,num_trees)
rf.put('combination_rule', combination_rule)
rf.set_feature_types(feature_types)
return rf
comb_rule=MajorityVote()
feat_types=array([False]*16)
rand_forest=setup_random_forest(10,4,comb_rule,feat_types)
###Output
_____no_output_____
###Markdown
In the above code snippet, we decided to create a forest using 10 trees in which each split in individual trees will be using a randomly chosen subset of 4 features. Note that 4 here is the square root of the total available features (16) and is hence the usually chosen value as mentioned in the introductory paragraph. The strategy for combination chosen is [Majority Vote](http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CMajorityVote.html) which, as the name suggests, chooses the mode of all the individual tree outputs. The given features are all continuous in nature and hence feature types are all set false (i.e. not nominal). Next, we train our Random Forest and use it to classify letters in our test dataset.
###Code
# train forest
rand_forest.put('labels', train_labels)
rand_forest.train(train_feats)
# load test dataset
testfeat_file= os.path.join(SHOGUN_DATA_DIR, 'uci/letter/test_fm_letter.dat')
testlab_file= os.path.join(SHOGUN_DATA_DIR, 'uci/letter/test_label_letter.dat')
test_feats,test_labels=load_file(testfeat_file,testlab_file)
# apply forest
output_rand_forest_train=rand_forest.apply_multiclass(train_feats)
output_rand_forest_test=rand_forest.apply_multiclass(test_feats)
###Output
_____no_output_____
###Markdown
We have with us the labels predicted by our Random Forest model. Let us also get the predictions made by a single tree. For this purpose, we train a [CART-flavoured decision tree](http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CCARTree.html).
###Code
from shogun import CARTree, PT_MULTICLASS
def train_cart(train_feats,train_labels,feature_types,problem_type):
c=CARTree(feature_types,problem_type,2,False)
c.put('labels', train_labels)
c.train(train_feats)
return c
# train CART
cart=train_cart(train_feats,train_labels,feat_types,PT_MULTICLASS)
# apply CART model
output_cart_train=cart.apply_multiclass(train_feats)
output_cart_test=cart.apply_multiclass(test_feats)
###Output
_____no_output_____
###Markdown
With both results at our disposal, let us find out which one is better.
###Code
from shogun import MulticlassAccuracy
accuracy=MulticlassAccuracy()
rf_train_accuracy=accuracy.evaluate(output_rand_forest_train,train_labels)*100
rf_test_accuracy=accuracy.evaluate(output_rand_forest_test,test_labels)*100
cart_train_accuracy=accuracy.evaluate(output_cart_train,train_labels)*100
cart_test_accuracy=accuracy.evaluate(output_cart_test,test_labels)*100
print('Random Forest training accuracy : '+str(round(rf_train_accuracy,3))+'%')
print('CART training accuracy : '+str(round(cart_train_accuracy,3))+'%')
print
print('Random Forest test accuracy : '+str(round(rf_test_accuracy,3))+'%')
print('CART test accuracy : '+str(round(cart_test_accuracy,3))+'%')
###Output
_____no_output_____
###Markdown
As it is clear from the results above, we see a significant improvement in the predictions. The reason for the improvement is clear when one looks at the training accuracy. The single decision tree was over-fitting on the training dataset and hence was not generic. Random Forest on the other hand appropriately trades off training accuracy for the sake of generalization of the model. Impressed already? Let us now see what happens if we increase the number of trees in our forest. Random Forest parameters : Number of trees and random subset size In the last section, we trained a forest of 10 trees. What happens if we make our forest with 20 trees? Let us try to answer this question in a generic way.
###Code
def get_rf_accuracy(num_trees,rand_subset_size):
rf=setup_random_forest(num_trees,rand_subset_size,comb_rule,feat_types)
rf.put('labels', train_labels)
rf.train(train_feats)
out_test=rf.apply_multiclass(test_feats)
acc=MulticlassAccuracy()
return acc.evaluate(out_test,test_labels)
###Output
_____no_output_____
###Markdown
The method above takes the number of trees and subset size as inputs and returns the evaluated accuracy as output. Let us use this method to get the accuracy for different number of trees keeping the subset size constant at 4.
###Code
import matplotlib.pyplot as plt
% matplotlib inline
num_trees4=[5,10,20,50,100]
rf_accuracy_4=[round(get_rf_accuracy(i,4)*100,3) for i in num_trees4]
print('Random Forest accuracies (as %) :' + str(rf_accuracy_4))
# plot results
x4=[1]
y4=[86.48] # accuracy for single tree-CART
x4.extend(num_trees4)
y4.extend(rf_accuracy_4)
plt.plot(x4,y4,'--bo')
plt.xlabel('Number of trees')
plt.ylabel('Multiclass Accuracy (as %)')
plt.xlim([0,110])
plt.ylim([85,100])
plt.show()
###Output
_____no_output_____
###Markdown
NOTE : The above code snippet takes about a minute to execute. Please wait patiently. We see from the above plot that the accuracy of the model keeps on increasing as we increase the number of trees on our Random Forest and eventually satarates at some value. Extrapolating the above plot qualitatively, the saturation value will be somewhere around 96.5%. The jump of accuracy from 86.48% for a single tree to 96.5% for a Random Forest with about 100 trees definitely highlights the importance of the Random Forest algorithm.The inevitable question at this point is whether it is possible to achieve higher accuracy saturation by working with lesser (or greater) random feature subset size. Let us figure this out by repeating the above procedure for random subset size as 2 and 8.
###Code
# subset size 2
num_trees2=[10,20,50,100]
rf_accuracy_2=[round(get_rf_accuracy(i,2)*100,3) for i in num_trees2]
print('Random Forest accuracies (as %) :' + str(rf_accuracy_2))
# subset size 8
num_trees8=[5,10,50,100]
rf_accuracy_8=[round(get_rf_accuracy(i,8)*100,3) for i in num_trees8]
print('Random Forest accuracies (as %) :' + str(rf_accuracy_8))
###Output
_____no_output_____
###Markdown
NOTE : The above code snippets take about a minute each to execute. Please wait patiently. Let us plot all the results together and then comprehend the results.
###Code
x2=[1]
y2=[86.48]
x2.extend(num_trees2)
y2.extend(rf_accuracy_2)
x8=[1]
y8=[86.48]
x8.extend(num_trees8)
y8.extend(rf_accuracy_8)
plt.plot(x2,y2,'--bo',label='Subset Size = 2')
plt.plot(x4,y4,'--r^',label='Subset Size = 4')
plt.plot(x8,y8,'--gs',label='Subset Size = 8')
plt.xlabel('Number of trees')
plt.ylabel('Multiclass Accuracy (as %) ')
plt.legend(bbox_to_anchor=(0.92,0.4))
plt.xlim([0,110])
plt.ylim([85,100])
plt.show()
###Output
_____no_output_____
###Markdown
As we can see from the above plot, the subset size does not have a major impact on the saturated accuracy obtained in this particular dataset. While this is true in many datasets, this is not a generic observation. In some datasets, the random feature sample size does have a measurable impact on the test accuracy. A simple strategy to find the optimal subset size is to use cross-validation. But with Random Forest model, there is actually no need to perform cross-validation. Let us see how in the next section. Out-of-bag error The individual trees in a Random Forest are trained over data vectors randomly chosen with replacement. As a result, some of the data vectors are left out of training by each of the individual trees. These vectors form the out-of-bag (OOB) vectors of the corresponding trees. A data vector can be part of OOB classes of multiple trees. While calculating OOB error, a data vector is applied to only those trees of which it is a part of OOB class and the results are combined. This combined result averaged over similar estimate for all other vectors gives the OOB error. The OOB error is an estimate of the generalization bound of the Random Forest model. Let us see how to compute this OOB estimate in Shogun.
###Code
rf=setup_random_forest(100,2,comb_rule,feat_types)
rf.put('labels', train_labels)
rf.train(train_feats)
# set evaluation strategy
eval=MulticlassAccuracy()
oobe=rf.get_oob_error(eval)
print('OOB accuracy : '+str(round(oobe*100,3))+'%')
###Output
_____no_output_____
###Markdown
The above OOB accuracy calculated is found to be slighly less than the test error evaluated in the previous section (see plot for num_trees=100 and rand_subset_size=2). This is because of the fact that the OOB estimate depicts the expected error for any generalized set of data vectors. It is only natural that for some set of vectors, the actual accuracy is slightly greater than the OOB estimate while in some cases the accuracy observed in a bit lower.Let us now apply the Random Forest model to the [wine dataset](https://archive.ics.uci.edu/ml/datasets/Wine). This dataset is different from the previous one in the sense that this dataset is small and has no separate test dataset. Hence OOB (or equivalently cross-validation) is the only viable strategy available here. Let us read the dataset first.
###Code
trainfeat_file= os.path.join(SHOGUN_DATA_DIR, 'uci/wine/fm_wine.dat')
trainlab_file= os.path.join(SHOGUN_DATA_DIR, 'uci/wine/label_wine.dat')
train_feats,train_labels=load_file(trainfeat_file,trainlab_file)
###Output
_____no_output_____
###Markdown
Next let us find out the appropriate feature subset size. For this we will make use of OOB error.
###Code
import matplotlib.pyplot as plt
def get_oob_errors_wine(num_trees,rand_subset_size):
feat_types=array([False]*13)
rf=setup_random_forest(num_trees,rand_subset_size,MajorityVote(),feat_types)
rf.put('labels', train_labels)
rf.train(train_feats)
eval=MulticlassAccuracy()
return rf.get_oob_error(eval)
size=[1,2,4,6,8,10,13]
oobe=[round(get_oob_errors_wine(400,i)*100,3) for i in size]
print('Out-of-box Accuracies (as %) : '+str(oobe))
plt.plot(size,oobe,'--bo')
plt.xlim([0,14])
plt.xlabel('Random subset size')
plt.ylabel('Multiclass accuracy')
plt.show()
###Output
_____no_output_____
###Markdown
From the above plot it is clear that subset size of 2 or 3 produces maximum accuracy for wine classification. At this value of subset size, the expected classification accuracy is of the model is 98.87%. Finally, as a sanity check, let us plot the accuracy vs number of trees curve to ensure that 400 is indeed a sufficient value ie. the oob error saturates before 400.
###Code
size=[50,100,200,400,600]
oobe=[round(get_oob_errors_wine(i,2)*100,3) for i in size]
print('Out-of-box Accuracies (as %) : '+str(oobe))
plt.plot(size,oobe,'--bo')
plt.xlim([40,650])
plt.ylim([95,100])
plt.xlabel('Number of trees')
plt.ylabel('Multiclass accuracy')
plt.show()
###Output
_____no_output_____
###Markdown
Ensemble of Decision Trees *By Parijat Mazumdar (GitHub ID: [mazumdarparijat](https://github.com/mazumdarparijat))* This notebook illustrates the use of [Random Forests](http://en.wikipedia.org/wiki/Random_forest) in Shogun for classification and regression. We will understand the functioning of Random Forests, discuss about the importance of its various parameters and appreciate the usefulness of this learning method. What is Random Forest? Random Forest is an ensemble learning method in which a collection of decision trees are grown during training and the combination of the outputs of all the individual trees are considered during testing or application. The strategy for combination can be varied but generally, in case of classification, the mode of the output classes is used and, in case of regression, the mean of the outputs is used. The randomness in the method, as the method's name suggests, is infused mainly by the random subspace sampling done while training individual trees. While choosing the best split during tree growing, only a small randomly chosen subset of all the features is considered. The subset size is a user-controlled parameter and is usually the square root of the total number of available features. The purpose of the random subset sampling method is to decorrelate the individual trees in the forest, thus making the overall model more generic; i.e. decrease the variance without increasing the bias (see [bias-variance trade-off](http://en.wikipedia.org/wiki/Bias%E2%80%93variance_dilemma)). The purpose of Random Forest, in summary, is to reduce the generalization error of the model as much as possible. Random Forest vs Decision Tree In this section, we will appreciate the importance of training a Random Forest over a single decision tree. In the process, we will also learn how to use Shogun's [Random Forest class](http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CRandomForest.html). For this purpose, we will use the [letter recognition dataset](https://archive.ics.uci.edu/ml/datasets/Letter+Recognition). This dataset contains pixel information (16 features) of 20000 samples of the English alphabet. This is a 26-class classification problem where the task is to predict the alphabet given the 16 pixel features. We start by loading the training dataset.
###Code
import os
SHOGUN_DATA_DIR=os.getenv('SHOGUN_DATA_DIR', '../../../../data')
import shogun as sg
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
def load_file(feat_file,label_file):
feats=sg.features(sg.CSVFile(feat_file))
labels=sg.labels(sg.CSVFile(label_file))
return (feats, labels)
trainfeat_file=os.path.join(SHOGUN_DATA_DIR, 'uci/letter/train_fm_letter.dat')
trainlab_file=os.path.join(SHOGUN_DATA_DIR, 'uci/letter/train_label_letter.dat')
train_feats,train_labels=load_file(trainfeat_file,trainlab_file)
###Output
_____no_output_____
###Markdown
Next, we decide the parameters of our Random Forest.
###Code
def setup_random_forest(num_trees,rand_subset_size,combination_rule,feature_types):
rf=sg.machine("RandomForest", num_bags=num_trees,
combination_rule=combination_rule)
rf.get("machine").put("m_randsubset_size", rand_subset_size)
rf.get("machine").put("nominal", feature_types)
return rf
comb_rule=sg.combination_rule("MajorityVote")
feat_types=np.array([False]*16)
rand_forest=setup_random_forest(10,4,comb_rule,feat_types)
###Output
_____no_output_____
###Markdown
In the above code snippet, we decided to create a forest using 10 trees in which each split in individual trees will be using a randomly chosen subset of 4 features. Note that 4 here is the square root of the total available features (16) and is hence the usually chosen value as mentioned in the introductory paragraph. The strategy for combination chosen is [Majority Vote](http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1MajorityVote.html) which, as the name suggests, chooses the mode of all the individual tree outputs. The given features are all continuous in nature and hence feature types are all set false (i.e. not nominal). Next, we train our Random Forest and use it to classify letters in our test dataset.
###Code
# train forest
rand_forest.put('labels', train_labels)
rand_forest.train(train_feats)
# load test dataset
testfeat_file= os.path.join(SHOGUN_DATA_DIR, 'uci/letter/test_fm_letter.dat')
testlab_file= os.path.join(SHOGUN_DATA_DIR, 'uci/letter/test_label_letter.dat')
test_feats,test_labels=load_file(testfeat_file,testlab_file)
# apply forest
output_rand_forest_train=rand_forest.apply_multiclass(train_feats)
output_rand_forest_test=rand_forest.apply_multiclass(test_feats)
###Output
_____no_output_____
###Markdown
We have with us the labels predicted by our Random Forest model. Let us also get the predictions made by a single tree. For this purpose, we train a [CART-flavoured decision tree](http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CARTree.html).
###Code
def train_cart(train_feats,train_labels,feature_types,problem_type):
c=sg.machine("CARTree", nominal=feature_types,
mode=problem_type,
folds=2,
apply_cv_pruning=False,
labels=train_labels)
c.train(train_feats)
return c
# train CART
cart=train_cart(train_feats,train_labels,feat_types,"PT_MULTICLASS")
# apply CART model
output_cart_train=cart.apply_multiclass(train_feats)
output_cart_test=cart.apply_multiclass(test_feats)
###Output
_____no_output_____
###Markdown
With both results at our disposal, let us find out which one is better.
###Code
accuracy=sg.evaluation("MulticlassAccuracy")
rf_train_accuracy=accuracy.evaluate(output_rand_forest_train,train_labels)*100
rf_test_accuracy=accuracy.evaluate(output_rand_forest_test,test_labels)*100
cart_train_accuracy=accuracy.evaluate(output_cart_train,train_labels)*100
cart_test_accuracy=accuracy.evaluate(output_cart_test,test_labels)*100
print('Random Forest training accuracy : '+str(round(rf_train_accuracy,3))+'%')
print('CART training accuracy : '+str(round(cart_train_accuracy,3))+'%')
print
print('Random Forest test accuracy : '+str(round(rf_test_accuracy,3))+'%')
print('CART test accuracy : '+str(round(cart_test_accuracy,3))+'%')
###Output
_____no_output_____
###Markdown
As it is clear from the results above, we see a significant improvement in the predictions. The reason for the improvement is clear when one looks at the training accuracy. The single decision tree was over-fitting on the training dataset and hence was not generic. Random Forest on the other hand appropriately trades off training accuracy for the sake of generalization of the model. Impressed already? Let us now see what happens if we increase the number of trees in our forest. Random Forest parameters : Number of trees and random subset size In the last section, we trained a forest of 10 trees. What happens if we make our forest with 20 trees? Let us try to answer this question in a generic way.
###Code
def get_rf_accuracy(num_trees,rand_subset_size):
rf=setup_random_forest(num_trees,rand_subset_size,comb_rule,feat_types)
rf.put('labels', train_labels)
rf.train(train_feats)
out_test=rf.apply_multiclass(test_feats)
acc=sg.evaluation("MulticlassAccuracy")
return acc.evaluate(out_test,test_labels)
###Output
_____no_output_____
###Markdown
The method above takes the number of trees and subset size as inputs and returns the evaluated accuracy as output. Let us use this method to get the accuracy for different number of trees keeping the subset size constant at 4.
###Code
num_trees4=[5,10,20,50,100]
rf_accuracy_4=[round(get_rf_accuracy(i,4)*100,3) for i in num_trees4]
print('Random Forest accuracies (as %) :' + str(rf_accuracy_4))
# plot results
x4=[1]
y4=[86.48] # accuracy for single tree-CART
x4.extend(num_trees4)
y4.extend(rf_accuracy_4)
plt.plot(x4,y4,'--bo')
plt.xlabel('Number of trees')
plt.ylabel('Multiclass Accuracy (as %)')
plt.xlim([0,110])
plt.ylim([85,100])
plt.show()
###Output
_____no_output_____
###Markdown
NOTE : The above code snippet takes about a minute to execute. Please wait patiently. We see from the above plot that the accuracy of the model keeps on increasing as we increase the number of trees on our Random Forest and eventually satarates at some value. Extrapolating the above plot qualitatively, the saturation value will be somewhere around 96.5%. The jump of accuracy from 86.48% for a single tree to 96.5% for a Random Forest with about 100 trees definitely highlights the importance of the Random Forest algorithm.The inevitable question at this point is whether it is possible to achieve higher accuracy saturation by working with lesser (or greater) random feature subset size. Let us figure this out by repeating the above procedure for random subset size as 2 and 8.
###Code
# subset size 2
num_trees2=[10,20,50,100]
rf_accuracy_2=[round(get_rf_accuracy(i,2)*100,3) for i in num_trees2]
print('Random Forest accuracies (as %) :' + str(rf_accuracy_2))
# subset size 8
num_trees8=[5,10,50,100]
rf_accuracy_8=[round(get_rf_accuracy(i,8)*100,3) for i in num_trees8]
print('Random Forest accuracies (as %) :' + str(rf_accuracy_8))
###Output
_____no_output_____
###Markdown
NOTE : The above code snippets take about a minute each to execute. Please wait patiently. Let us plot all the results together and then comprehend the results.
###Code
x2=[1]
y2=[86.48]
x2.extend(num_trees2)
y2.extend(rf_accuracy_2)
x8=[1]
y8=[86.48]
x8.extend(num_trees8)
y8.extend(rf_accuracy_8)
plt.plot(x2,y2,'--bo',label='Subset Size = 2')
plt.plot(x4,y4,'--r^',label='Subset Size = 4')
plt.plot(x8,y8,'--gs',label='Subset Size = 8')
plt.xlabel('Number of trees')
plt.ylabel('Multiclass Accuracy (as %) ')
plt.legend(bbox_to_anchor=(0.92,0.4))
plt.xlim([0,110])
plt.ylim([85,100])
plt.show()
###Output
_____no_output_____
###Markdown
As we can see from the above plot, the subset size does not have a major impact on the saturated accuracy obtained in this particular dataset. While this is true in many datasets, this is not a generic observation. In some datasets, the random feature sample size does have a measurable impact on the test accuracy. A simple strategy to find the optimal subset size is to use cross-validation. But with Random Forest model, there is actually no need to perform cross-validation. Let us see how in the next section. Out-of-bag error The individual trees in a Random Forest are trained over data vectors randomly chosen with replacement. As a result, some of the data vectors are left out of training by each of the individual trees. These vectors form the out-of-bag (OOB) vectors of the corresponding trees. A data vector can be part of OOB classes of multiple trees. While calculating OOB error, a data vector is applied to only those trees of which it is a part of OOB class and the results are combined. This combined result averaged over similar estimate for all other vectors gives the OOB error. The OOB error is an estimate of the generalization bound of the Random Forest model. Let us see how to compute this OOB estimate in Shogun.
###Code
rf=setup_random_forest(100,2,comb_rule,feat_types)
rf.put('labels', train_labels)
rf.train(train_feats)
# set evaluation strategy
rf.put("oob_evaluation_metric", sg.evaluation("MulticlassAccuracy"))
oobe=rf.get("oob_error")
print('OOB accuracy : '+str(round(oobe*100,3))+'%')
###Output
_____no_output_____
###Markdown
The above OOB accuracy calculated is found to be slighly less than the test error evaluated in the previous section (see plot for num_trees=100 and rand_subset_size=2). This is because of the fact that the OOB estimate depicts the expected error for any generalized set of data vectors. It is only natural that for some set of vectors, the actual accuracy is slightly greater than the OOB estimate while in some cases the accuracy observed in a bit lower.Let us now apply the Random Forest model to the [wine dataset](https://archive.ics.uci.edu/ml/datasets/Wine). This dataset is different from the previous one in the sense that this dataset is small and has no separate test dataset. Hence OOB (or equivalently cross-validation) is the only viable strategy available here. Let us read the dataset first.
###Code
trainfeat_file= os.path.join(SHOGUN_DATA_DIR, 'uci/wine/fm_wine.dat')
trainlab_file= os.path.join(SHOGUN_DATA_DIR, 'uci/wine/label_wine.dat')
train_feats,train_labels=load_file(trainfeat_file,trainlab_file)
###Output
_____no_output_____
###Markdown
Next let us find out the appropriate feature subset size. For this we will make use of OOB error.
###Code
def get_oob_errors_wine(num_trees,rand_subset_size):
feat_types=np.array([False]*13)
rf=setup_random_forest(num_trees,rand_subset_size,sg.combination_rule("MajorityVote"),feat_types)
rf.put('labels', train_labels)
rf.train(train_feats)
rf.put("oob_evaluation_metric", sg.evaluation("MulticlassAccuracy"))
return rf.get("oob_error")
size=[1,2,4,6,8,10,13]
oobe=[round(get_oob_errors_wine(400,i)*100,3) for i in size]
print('Out-of-box Accuracies (as %) : '+str(oobe))
plt.plot(size,oobe,'--bo')
plt.xlim([0,14])
plt.xlabel('Random subset size')
plt.ylabel('Multiclass accuracy')
plt.show()
###Output
_____no_output_____
###Markdown
From the above plot it is clear that subset size of 2 or 3 produces maximum accuracy for wine classification. At this value of subset size, the expected classification accuracy is of the model is 98.87%. Finally, as a sanity check, let us plot the accuracy vs number of trees curve to ensure that 400 is indeed a sufficient value ie. the oob error saturates before 400.
###Code
size=[50,100,200,400,600]
oobe=[round(get_oob_errors_wine(i,2)*100,3) for i in size]
print('Out-of-box Accuracies (as %) : '+str(oobe))
plt.plot(size,oobe,'--bo')
plt.xlim([40,650])
plt.ylim([90,100])
plt.xlabel('Number of trees')
plt.ylabel('Multiclass accuracy')
plt.show()
###Output
_____no_output_____
###Markdown
Ensemble of Decision Trees *By Parijat Mazumdar (GitHub ID: [mazumdarparijat](https://github.com/mazumdarparijat))* This notebook illustrates the use of [Random Forests](http://en.wikipedia.org/wiki/Random_forest) in Shogun for classification and regression. We will understand the functioning of Random Forests, discuss about the importance of its various parameters and appreciate the usefulness of this learning method. What is Random Forest? Random Forest is an ensemble learning method in which a collection of decision trees are grown during training and the combination of the outputs of all the individual trees are considered during testing or application. The strategy for combination can be varied but generally, in case of classification, the mode of the output classes is used and, in case of regression, the mean of the outputs is used. The randomness in the method, as the method's name suggests, is infused mainly by the random subspace sampling done while training individual trees. While choosing the best split during tree growing, only a small randomly chosen subset of all the features is considered. The subset size is a user-controlled parameter and is usually the square root of the total number of available features. The purpose of the random subset sampling method is to decorrelate the individual trees in the forest, thus making the overall model more generic; i.e. decrease the variance without increasing the bias (see [bias-variance trade-off](http://en.wikipedia.org/wiki/Bias%E2%80%93variance_dilemma)). The purpose of Random Forest, in summary, is to reduce the generalization error of the model as much as possible. Random Forest vs Decision Tree In this section, we will appreciate the importance of training a Random Forest over a single decision tree. In the process, we will also learn how to use Shogun's [Random Forest class](http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CRandomForest.html). For this purpose, we will use the [letter recognition dataset](https://archive.ics.uci.edu/ml/datasets/Letter+Recognition). This dataset contains pixel information (16 features) of 20000 samples of the English alphabet. This is a 26-class classification problem where the task is to predict the alphabet given the 16 pixel features. We start by loading the training dataset.
###Code
import os
SHOGUN_DATA_DIR=os.getenv('SHOGUN_DATA_DIR', '../../../../data')
import shogun as sg
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
def load_file(feat_file,label_file):
feats=sg.create_features(sg.read_csv(feat_file))
labels=sg.create_labels(sg.read_csv(label_file))
return (feats, labels)
trainfeat_file=os.path.join(SHOGUN_DATA_DIR, 'uci/letter/train_fm_letter.dat')
trainlab_file=os.path.join(SHOGUN_DATA_DIR, 'uci/letter/train_label_letter.dat')
train_feats,train_labels=load_file(trainfeat_file,trainlab_file)
###Output
_____no_output_____
###Markdown
Next, we decide the parameters of our Random Forest.
###Code
def setup_random_forest(num_trees,rand_subset_size,combination_rule,feature_types):
rf=sg.create_machine("RandomForest", num_bags=num_trees,
combination_rule=combination_rule)
rf.get("machine").put("m_randsubset_size", rand_subset_size)
rf.get("machine").put("nominal", feature_types)
return rf
comb_rule=sg.create_combination_rule("MajorityVote")
feat_types=np.array([False]*16)
rand_forest=setup_random_forest(10,4,comb_rule,feat_types)
###Output
_____no_output_____
###Markdown
In the above code snippet, we decided to create a forest using 10 trees in which each split in individual trees will be using a randomly chosen subset of 4 features. Note that 4 here is the square root of the total available features (16) and is hence the usually chosen value as mentioned in the introductory paragraph. The strategy for combination chosen is [Majority Vote](http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1MajorityVote.html) which, as the name suggests, chooses the mode of all the individual tree outputs. The given features are all continuous in nature and hence feature types are all set false (i.e. not nominal). Next, we train our Random Forest and use it to classify letters in our test dataset.
###Code
# train forest
rand_forest.put('labels', train_labels)
rand_forest.train(train_feats)
# load test dataset
testfeat_file= os.path.join(SHOGUN_DATA_DIR, 'uci/letter/test_fm_letter.dat')
testlab_file= os.path.join(SHOGUN_DATA_DIR, 'uci/letter/test_label_letter.dat')
test_feats,test_labels=load_file(testfeat_file,testlab_file)
# apply forest
output_rand_forest_train=rand_forest.apply_multiclass(train_feats)
output_rand_forest_test=rand_forest.apply_multiclass(test_feats)
###Output
_____no_output_____
###Markdown
We have with us the labels predicted by our Random Forest model. Let us also get the predictions made by a single tree. For this purpose, we train a [CART-flavoured decision tree](http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CARTree.html).
###Code
def train_cart(train_feats,train_labels,feature_types,problem_type):
c=sg.create_machine("CARTree", nominal=feature_types,
mode=problem_type,
folds=2,
apply_cv_pruning=False,
labels=train_labels)
c.train(train_feats)
return c
# train CART
cart=train_cart(train_feats,train_labels,feat_types,"PT_MULTICLASS")
# apply CART model
output_cart_train=cart.apply_multiclass(train_feats)
output_cart_test=cart.apply_multiclass(test_feats)
###Output
_____no_output_____
###Markdown
With both results at our disposal, let us find out which one is better.
###Code
accuracy=sg.create_evaluation("MulticlassAccuracy")
rf_train_accuracy=accuracy.evaluate(output_rand_forest_train,train_labels)*100
rf_test_accuracy=accuracy.evaluate(output_rand_forest_test,test_labels)*100
cart_train_accuracy=accuracy.evaluate(output_cart_train,train_labels)*100
cart_test_accuracy=accuracy.evaluate(output_cart_test,test_labels)*100
print('Random Forest training accuracy : '+str(round(rf_train_accuracy,3))+'%')
print('CART training accuracy : '+str(round(cart_train_accuracy,3))+'%')
print
print('Random Forest test accuracy : '+str(round(rf_test_accuracy,3))+'%')
print('CART test accuracy : '+str(round(cart_test_accuracy,3))+'%')
###Output
_____no_output_____
###Markdown
As it is clear from the results above, we see a significant improvement in the predictions. The reason for the improvement is clear when one looks at the training accuracy. The single decision tree was over-fitting on the training dataset and hence was not generic. Random Forest on the other hand appropriately trades off training accuracy for the sake of generalization of the model. Impressed already? Let us now see what happens if we increase the number of trees in our forest. Random Forest parameters : Number of trees and random subset size In the last section, we trained a forest of 10 trees. What happens if we make our forest with 20 trees? Let us try to answer this question in a generic way.
###Code
def get_rf_accuracy(num_trees,rand_subset_size):
rf=setup_random_forest(num_trees,rand_subset_size,comb_rule,feat_types)
rf.put('labels', train_labels)
rf.train(train_feats)
out_test=rf.apply_multiclass(test_feats)
acc=sg.create_evaluation("MulticlassAccuracy")
return acc.evaluate(out_test,test_labels)
###Output
_____no_output_____
###Markdown
The method above takes the number of trees and subset size as inputs and returns the evaluated accuracy as output. Let us use this method to get the accuracy for different number of trees keeping the subset size constant at 4.
###Code
num_trees4=[5,10,20,50,100]
rf_accuracy_4=[round(get_rf_accuracy(i,4)*100,3) for i in num_trees4]
print('Random Forest accuracies (as %) :' + str(rf_accuracy_4))
# plot results
x4=[1]
y4=[86.48] # accuracy for single tree-CART
x4.extend(num_trees4)
y4.extend(rf_accuracy_4)
plt.plot(x4,y4,'--bo')
plt.xlabel('Number of trees')
plt.ylabel('Multiclass Accuracy (as %)')
plt.xlim([0,110])
plt.ylim([85,100])
plt.show()
###Output
_____no_output_____
###Markdown
NOTE : The above code snippet takes about a minute to execute. Please wait patiently. We see from the above plot that the accuracy of the model keeps on increasing as we increase the number of trees on our Random Forest and eventually satarates at some value. Extrapolating the above plot qualitatively, the saturation value will be somewhere around 96.5%. The jump of accuracy from 86.48% for a single tree to 96.5% for a Random Forest with about 100 trees definitely highlights the importance of the Random Forest algorithm.The inevitable question at this point is whether it is possible to achieve higher accuracy saturation by working with lesser (or greater) random feature subset size. Let us figure this out by repeating the above procedure for random subset size as 2 and 8.
###Code
# subset size 2
num_trees2=[10,20,50,100]
rf_accuracy_2=[round(get_rf_accuracy(i,2)*100,3) for i in num_trees2]
print('Random Forest accuracies (as %) :' + str(rf_accuracy_2))
# subset size 8
num_trees8=[5,10,50,100]
rf_accuracy_8=[round(get_rf_accuracy(i,8)*100,3) for i in num_trees8]
print('Random Forest accuracies (as %) :' + str(rf_accuracy_8))
###Output
_____no_output_____
###Markdown
NOTE : The above code snippets take about a minute each to execute. Please wait patiently. Let us plot all the results together and then comprehend the results.
###Code
x2=[1]
y2=[86.48]
x2.extend(num_trees2)
y2.extend(rf_accuracy_2)
x8=[1]
y8=[86.48]
x8.extend(num_trees8)
y8.extend(rf_accuracy_8)
plt.plot(x2,y2,'--bo',label='Subset Size = 2')
plt.plot(x4,y4,'--r^',label='Subset Size = 4')
plt.plot(x8,y8,'--gs',label='Subset Size = 8')
plt.xlabel('Number of trees')
plt.ylabel('Multiclass Accuracy (as %) ')
plt.legend(bbox_to_anchor=(0.92,0.4))
plt.xlim([0,110])
plt.ylim([85,100])
plt.show()
###Output
_____no_output_____
###Markdown
As we can see from the above plot, the subset size does not have a major impact on the saturated accuracy obtained in this particular dataset. While this is true in many datasets, this is not a generic observation. In some datasets, the random feature sample size does have a measurable impact on the test accuracy. A simple strategy to find the optimal subset size is to use cross-validation. But with Random Forest model, there is actually no need to perform cross-validation. Let us see how in the next section. Out-of-bag error The individual trees in a Random Forest are trained over data vectors randomly chosen with replacement. As a result, some of the data vectors are left out of training by each of the individual trees. These vectors form the out-of-bag (OOB) vectors of the corresponding trees. A data vector can be part of OOB classes of multiple trees. While calculating OOB error, a data vector is applied to only those trees of which it is a part of OOB class and the results are combined. This combined result averaged over similar estimate for all other vectors gives the OOB error. The OOB error is an estimate of the generalization bound of the Random Forest model. Let us see how to compute this OOB estimate in Shogun.
###Code
rf=setup_random_forest(100,2,comb_rule,feat_types)
rf.put('labels', train_labels)
rf.train(train_feats)
# set evaluation strategy
rf.put("oob_evaluation_metric", sg.create_evaluation("MulticlassAccuracy"))
oobe=rf.get("oob_error")
print('OOB accuracy : '+str(round(oobe*100,3))+'%')
###Output
_____no_output_____
###Markdown
The above OOB accuracy calculated is found to be slighly less than the test error evaluated in the previous section (see plot for num_trees=100 and rand_subset_size=2). This is because of the fact that the OOB estimate depicts the expected error for any generalized set of data vectors. It is only natural that for some set of vectors, the actual accuracy is slightly greater than the OOB estimate while in some cases the accuracy observed in a bit lower.Let us now apply the Random Forest model to the [wine dataset](https://archive.ics.uci.edu/ml/datasets/Wine). This dataset is different from the previous one in the sense that this dataset is small and has no separate test dataset. Hence OOB (or equivalently cross-validation) is the only viable strategy available here. Let us read the dataset first.
###Code
trainfeat_file= os.path.join(SHOGUN_DATA_DIR, 'uci/wine/fm_wine.dat')
trainlab_file= os.path.join(SHOGUN_DATA_DIR, 'uci/wine/label_wine.dat')
train_feats,train_labels=load_file(trainfeat_file,trainlab_file)
###Output
_____no_output_____
###Markdown
Next let us find out the appropriate feature subset size. For this we will make use of OOB error.
###Code
def get_oob_errors_wine(num_trees,rand_subset_size):
feat_types=np.array([False]*13)
rf=setup_random_forest(num_trees,rand_subset_size,sg.create_combination_rule("MajorityVote"),feat_types)
rf.put('labels', train_labels)
rf.train(train_feats)
rf.put("oob_evaluation_metric", sg.create_evaluation("MulticlassAccuracy"))
return rf.get("oob_error")
size=[1,2,4,6,8,10,13]
oobe=[round(get_oob_errors_wine(400,i)*100,3) for i in size]
print('Out-of-box Accuracies (as %) : '+str(oobe))
plt.plot(size,oobe,'--bo')
plt.xlim([0,14])
plt.xlabel('Random subset size')
plt.ylabel('Multiclass accuracy')
plt.show()
###Output
_____no_output_____
###Markdown
From the above plot it is clear that subset size of 2 or 3 produces maximum accuracy for wine classification. At this value of subset size, the expected classification accuracy is of the model is 98.87%. Finally, as a sanity check, let us plot the accuracy vs number of trees curve to ensure that 400 is indeed a sufficient value ie. the oob error saturates before 400.
###Code
size=[50,100,200,400,600]
oobe=[round(get_oob_errors_wine(i,2)*100,3) for i in size]
print('Out-of-box Accuracies (as %) : '+str(oobe))
plt.plot(size,oobe,'--bo')
plt.xlim([40,650])
plt.ylim([90,100])
plt.xlabel('Number of trees')
plt.ylabel('Multiclass accuracy')
plt.show()
###Output
_____no_output_____
###Markdown
Ensemble of Decision Trees *By Parijat Mazumdar (GitHub ID: [mazumdarparijat](https://github.com/mazumdarparijat))* This notebook illustrates the use of [Random Forests](http://en.wikipedia.org/wiki/Random_forest) in Shogun for classification and regression. We will understand the functioning of Random Forests, discuss about the importance of its various parameters and appreciate the usefulness of this learning method. What is Random Forest? Random Forest is an ensemble learning method in which a collection of decision trees are grown during training and the combination of the outputs of all the individual trees are considered during testing or application. The strategy for combination can be varied but generally, in case of classification, the mode of the output classes is used and, in case of regression, the mean of the outputs is used. The randomness in the method, as the method's name suggests, is infused mainly by the random subspace sampling done while training individual trees. While choosing the best split during tree growing, only a small randomly chosen subset of all the features is considered. The subset size is a user-controlled parameter and is usually the square root of the total number of available features. The purpose of the random subset sampling method is to decorrelate the individual trees in the forest, thus making the overall model more generic; i.e. decrease the variance without increasing the bias (see [bias-variance trade-off](http://en.wikipedia.org/wiki/Bias%E2%80%93variance_dilemma)). The purpose of Random Forest, in summary, is to reduce the generalization error of the model as much as possible. Random Forest vs Decision Tree In this section, we will appreciate the importance of training a Random Forest over a single decision tree. In the process, we will also learn how to use Shogun's [Random Forest class](http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CRandomForest.html). For this purpose, we will use the [letter recognition dataset](https://archive.ics.uci.edu/ml/datasets/Letter+Recognition). This dataset contains pixel information (16 features) of 20000 samples of the English alphabet. This is a 26-class classification problem where the task is to predict the alphabet given the 16 pixel features. We start by loading the training dataset.
###Code
import os
SHOGUN_DATA_DIR=os.getenv('SHOGUN_DATA_DIR', '../../../../data')
from shogun import CSVFile,features,MulticlassLabels
def load_file(feat_file,label_file):
feats=features(CSVFile(feat_file))
labels=MulticlassLabels(CSVFile(label_file))
return (feats, labels)
trainfeat_file=os.path.join(SHOGUN_DATA_DIR, 'uci/letter/train_fm_letter.dat')
trainlab_file=os.path.join(SHOGUN_DATA_DIR, 'uci/letter/train_label_letter.dat')
train_feats,train_labels=load_file(trainfeat_file,trainlab_file)
###Output
_____no_output_____
###Markdown
Next, we decide the parameters of our Random Forest.
###Code
from shogun import RandomForest, MajorityVote
from numpy import array
def setup_random_forest(num_trees,rand_subset_size,combination_rule,feature_types):
rf=RandomForest(rand_subset_size,num_trees)
rf.put('combination_rule', combination_rule)
rf.set_feature_types(feature_types)
return rf
comb_rule=MajorityVote()
feat_types=array([False]*16)
rand_forest=setup_random_forest(10,4,comb_rule,feat_types)
###Output
_____no_output_____
###Markdown
In the above code snippet, we decided to create a forest using 10 trees in which each split in individual trees will be using a randomly chosen subset of 4 features. Note that 4 here is the square root of the total available features (16) and is hence the usually chosen value as mentioned in the introductory paragraph. The strategy for combination chosen is [Majority Vote](http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1MajorityVote.html) which, as the name suggests, chooses the mode of all the individual tree outputs. The given features are all continuous in nature and hence feature types are all set false (i.e. not nominal). Next, we train our Random Forest and use it to classify letters in our test dataset.
###Code
# train forest
rand_forest.put('labels', train_labels)
rand_forest.train(train_feats)
# load test dataset
testfeat_file= os.path.join(SHOGUN_DATA_DIR, 'uci/letter/test_fm_letter.dat')
testlab_file= os.path.join(SHOGUN_DATA_DIR, 'uci/letter/test_label_letter.dat')
test_feats,test_labels=load_file(testfeat_file,testlab_file)
# apply forest
output_rand_forest_train=rand_forest.apply_multiclass(train_feats)
output_rand_forest_test=rand_forest.apply_multiclass(test_feats)
###Output
_____no_output_____
###Markdown
We have with us the labels predicted by our Random Forest model. Let us also get the predictions made by a single tree. For this purpose, we train a [CART-flavoured decision tree](http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CARTree.html).
###Code
from shogun import CARTree, PT_MULTICLASS
def train_cart(train_feats,train_labels,feature_types,problem_type):
c=CARTree(feature_types,problem_type,2,False)
c.put('labels', train_labels)
c.train(train_feats)
return c
# train CART
cart=train_cart(train_feats,train_labels,feat_types,PT_MULTICLASS)
# apply CART model
output_cart_train=cart.apply_multiclass(train_feats)
output_cart_test=cart.apply_multiclass(test_feats)
###Output
_____no_output_____
###Markdown
With both results at our disposal, let us find out which one is better.
###Code
from shogun import MulticlassAccuracy
accuracy=MulticlassAccuracy()
rf_train_accuracy=accuracy.evaluate(output_rand_forest_train,train_labels)*100
rf_test_accuracy=accuracy.evaluate(output_rand_forest_test,test_labels)*100
cart_train_accuracy=accuracy.evaluate(output_cart_train,train_labels)*100
cart_test_accuracy=accuracy.evaluate(output_cart_test,test_labels)*100
print('Random Forest training accuracy : '+str(round(rf_train_accuracy,3))+'%')
print('CART training accuracy : '+str(round(cart_train_accuracy,3))+'%')
print
print('Random Forest test accuracy : '+str(round(rf_test_accuracy,3))+'%')
print('CART test accuracy : '+str(round(cart_test_accuracy,3))+'%')
###Output
_____no_output_____
###Markdown
As it is clear from the results above, we see a significant improvement in the predictions. The reason for the improvement is clear when one looks at the training accuracy. The single decision tree was over-fitting on the training dataset and hence was not generic. Random Forest on the other hand appropriately trades off training accuracy for the sake of generalization of the model. Impressed already? Let us now see what happens if we increase the number of trees in our forest. Random Forest parameters : Number of trees and random subset size In the last section, we trained a forest of 10 trees. What happens if we make our forest with 20 trees? Let us try to answer this question in a generic way.
###Code
def get_rf_accuracy(num_trees,rand_subset_size):
rf=setup_random_forest(num_trees,rand_subset_size,comb_rule,feat_types)
rf.put('labels', train_labels)
rf.train(train_feats)
out_test=rf.apply_multiclass(test_feats)
acc=MulticlassAccuracy()
return acc.evaluate(out_test,test_labels)
###Output
_____no_output_____
###Markdown
The method above takes the number of trees and subset size as inputs and returns the evaluated accuracy as output. Let us use this method to get the accuracy for different number of trees keeping the subset size constant at 4.
###Code
import matplotlib.pyplot as plt
% matplotlib inline
num_trees4=[5,10,20,50,100]
rf_accuracy_4=[round(get_rf_accuracy(i,4)*100,3) for i in num_trees4]
print('Random Forest accuracies (as %) :' + str(rf_accuracy_4))
# plot results
x4=[1]
y4=[86.48] # accuracy for single tree-CART
x4.extend(num_trees4)
y4.extend(rf_accuracy_4)
plt.plot(x4,y4,'--bo')
plt.xlabel('Number of trees')
plt.ylabel('Multiclass Accuracy (as %)')
plt.xlim([0,110])
plt.ylim([85,100])
plt.show()
###Output
_____no_output_____
###Markdown
NOTE : The above code snippet takes about a minute to execute. Please wait patiently. We see from the above plot that the accuracy of the model keeps on increasing as we increase the number of trees on our Random Forest and eventually satarates at some value. Extrapolating the above plot qualitatively, the saturation value will be somewhere around 96.5%. The jump of accuracy from 86.48% for a single tree to 96.5% for a Random Forest with about 100 trees definitely highlights the importance of the Random Forest algorithm.The inevitable question at this point is whether it is possible to achieve higher accuracy saturation by working with lesser (or greater) random feature subset size. Let us figure this out by repeating the above procedure for random subset size as 2 and 8.
###Code
# subset size 2
num_trees2=[10,20,50,100]
rf_accuracy_2=[round(get_rf_accuracy(i,2)*100,3) for i in num_trees2]
print('Random Forest accuracies (as %) :' + str(rf_accuracy_2))
# subset size 8
num_trees8=[5,10,50,100]
rf_accuracy_8=[round(get_rf_accuracy(i,8)*100,3) for i in num_trees8]
print('Random Forest accuracies (as %) :' + str(rf_accuracy_8))
###Output
_____no_output_____
###Markdown
NOTE : The above code snippets take about a minute each to execute. Please wait patiently. Let us plot all the results together and then comprehend the results.
###Code
x2=[1]
y2=[86.48]
x2.extend(num_trees2)
y2.extend(rf_accuracy_2)
x8=[1]
y8=[86.48]
x8.extend(num_trees8)
y8.extend(rf_accuracy_8)
plt.plot(x2,y2,'--bo',label='Subset Size = 2')
plt.plot(x4,y4,'--r^',label='Subset Size = 4')
plt.plot(x8,y8,'--gs',label='Subset Size = 8')
plt.xlabel('Number of trees')
plt.ylabel('Multiclass Accuracy (as %) ')
plt.legend(bbox_to_anchor=(0.92,0.4))
plt.xlim([0,110])
plt.ylim([85,100])
plt.show()
###Output
_____no_output_____
###Markdown
As we can see from the above plot, the subset size does not have a major impact on the saturated accuracy obtained in this particular dataset. While this is true in many datasets, this is not a generic observation. In some datasets, the random feature sample size does have a measurable impact on the test accuracy. A simple strategy to find the optimal subset size is to use cross-validation. But with Random Forest model, there is actually no need to perform cross-validation. Let us see how in the next section. Out-of-bag error The individual trees in a Random Forest are trained over data vectors randomly chosen with replacement. As a result, some of the data vectors are left out of training by each of the individual trees. These vectors form the out-of-bag (OOB) vectors of the corresponding trees. A data vector can be part of OOB classes of multiple trees. While calculating OOB error, a data vector is applied to only those trees of which it is a part of OOB class and the results are combined. This combined result averaged over similar estimate for all other vectors gives the OOB error. The OOB error is an estimate of the generalization bound of the Random Forest model. Let us see how to compute this OOB estimate in Shogun.
###Code
rf=setup_random_forest(100,2,comb_rule,feat_types)
rf.put('labels', train_labels)
rf.train(train_feats)
# set evaluation strategy
eval=MulticlassAccuracy()
oobe=rf.get_oob_error(eval)
print('OOB accuracy : '+str(round(oobe*100,3))+'%')
###Output
_____no_output_____
###Markdown
The above OOB accuracy calculated is found to be slighly less than the test error evaluated in the previous section (see plot for num_trees=100 and rand_subset_size=2). This is because of the fact that the OOB estimate depicts the expected error for any generalized set of data vectors. It is only natural that for some set of vectors, the actual accuracy is slightly greater than the OOB estimate while in some cases the accuracy observed in a bit lower.Let us now apply the Random Forest model to the [wine dataset](https://archive.ics.uci.edu/ml/datasets/Wine). This dataset is different from the previous one in the sense that this dataset is small and has no separate test dataset. Hence OOB (or equivalently cross-validation) is the only viable strategy available here. Let us read the dataset first.
###Code
trainfeat_file= os.path.join(SHOGUN_DATA_DIR, 'uci/wine/fm_wine.dat')
trainlab_file= os.path.join(SHOGUN_DATA_DIR, 'uci/wine/label_wine.dat')
train_feats,train_labels=load_file(trainfeat_file,trainlab_file)
###Output
_____no_output_____
###Markdown
Next let us find out the appropriate feature subset size. For this we will make use of OOB error.
###Code
import matplotlib.pyplot as plt
def get_oob_errors_wine(num_trees,rand_subset_size):
feat_types=array([False]*13)
rf=setup_random_forest(num_trees,rand_subset_size,MajorityVote(),feat_types)
rf.put('labels', train_labels)
rf.train(train_feats)
eval=MulticlassAccuracy()
return rf.get_oob_error(eval)
size=[1,2,4,6,8,10,13]
oobe=[round(get_oob_errors_wine(400,i)*100,3) for i in size]
print('Out-of-box Accuracies (as %) : '+str(oobe))
plt.plot(size,oobe,'--bo')
plt.xlim([0,14])
plt.xlabel('Random subset size')
plt.ylabel('Multiclass accuracy')
plt.show()
###Output
_____no_output_____
###Markdown
From the above plot it is clear that subset size of 2 or 3 produces maximum accuracy for wine classification. At this value of subset size, the expected classification accuracy is of the model is 98.87%. Finally, as a sanity check, let us plot the accuracy vs number of trees curve to ensure that 400 is indeed a sufficient value ie. the oob error saturates before 400.
###Code
size=[50,100,200,400,600]
oobe=[round(get_oob_errors_wine(i,2)*100,3) for i in size]
print('Out-of-box Accuracies (as %) : '+str(oobe))
plt.plot(size,oobe,'--bo')
plt.xlim([40,650])
plt.ylim([95,100])
plt.xlabel('Number of trees')
plt.ylabel('Multiclass accuracy')
plt.show()
###Output
_____no_output_____ |
docs/_build/html/user_guide/notebooks/data_gfs.ipynb | ###Markdown
**Brian Blaylock** *July 20, 2021* GFS DataThe product names are not as simple as the HRRR dataset, but we can still get GFS data.
###Code
from herbie.archive import Herbie
from toolbox.cartopy_tools import common_features, pc
from paint.standard2 import cm_tmp
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
H = Herbie('2021-07-11',
model='gfs',
product='pgrb2.0p25')
H.SOURCES
x = H.xarray('^TMP:2 m above')
ax = common_features(crs=x.herbie.crs, figsize=[8,8]).ax
p = ax.pcolormesh(x.longitude, x.latitude, x.t2m,
transform=pc,
**cm_tmp(units='K').cmap_kwargs)
plt.colorbar(p, ax=ax,
orientation='horizontal', pad=.05,
**cm_tmp(units='K').cbar_kwargs)
ax.set_title(x.t2m.GRIB_name, loc='right')
ax.set_title(f"{x.model.upper()}: {H.product_description}", loc='left')
ax = common_features(crs=ccrs.Geostationary(central_longitude=-100), figsize=[10,10]).ax
p = ax.pcolormesh(x.longitude, x.latitude, x.t2m,
transform=pc,
**cm_tmp(units='K').cmap_kwargs)
plt.colorbar(p, ax=ax,
orientation='horizontal', pad=.05, shrink=.8,
**cm_tmp(units='K').cbar_kwargs)
ax.set_title(x.t2m.GRIB_name, loc='right')
ax.set_title(f"{x.model.upper()}: {H.product_description}", loc='left')
###Output
_____no_output_____
###Markdown
Can also use metpy to parse GFS grid_mappingThis works because Herbie attempts to parse the grid_mapping from the cfgrib GRIB info.
###Code
crs = x.metpy.parse_cf().metpy_crs.item().to_cartopy()
ax = common_features(crs=crs, figsize=[8,8]).ax
p = ax.pcolormesh(x.longitude, x.latitude, x.t2m,
transform=pc,
**cm_tmp(units='K').cmap_kwargs)
ax = common_features(crs=ccrs.Robinson(), figsize=[8,8]).ax
p = ax.pcolormesh(x.longitude, x.latitude, x.t2m,
transform=pc,
**cm_tmp(units='K').cmap_kwargs)
###Output
_____no_output_____
###Markdown
Get data from the GFS wave output
###Code
H = Herbie('2021-07-11',
model='gfs_wave')
H.read_idx()
x = H.xarray('SWELL:1 in sequence', remove_grib=False)
x.swell.plot()
x.herbie.crs
x
###Output
_____no_output_____
###Markdown
**Brian Blaylock** *July 20, 2021* GFS DataThe product names are not as simple as the HRRR dataset, but we can still get GFS data.
###Code
from herbie.archive import Herbie
from toolbox.cartopy_tools import common_features, pc
from paint.standard2 import cm_tmp
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
H = Herbie('2021-07-11',
model='gfs',
product='pgrb2.0p25')
H.SOURCES
x = H.xarray('^TMP:2 m above')
ax = common_features(crs=x.herbie.crs, figsize=[8,8]).ax
p = ax.pcolormesh(x.longitude, x.latitude, x.t2m,
transform=pc,
**cm_tmp(units='K').cmap_kwargs)
plt.colorbar(p, ax=ax,
orientation='horizontal', pad=.05,
**cm_tmp(units='K').cbar_kwargs)
ax.set_title(x.t2m.GRIB_name, loc='right')
ax.set_title(f"{x.model.upper()}: {H.product_description}", loc='left')
ax = common_features(crs=ccrs.Geostationary(central_longitude=-100), figsize=[10,10]).ax
p = ax.pcolormesh(x.longitude, x.latitude, x.t2m,
transform=pc,
**cm_tmp(units='K').cmap_kwargs)
plt.colorbar(p, ax=ax,
orientation='horizontal', pad=.05, shrink=.8,
**cm_tmp(units='K').cbar_kwargs)
ax.set_title(x.t2m.GRIB_name, loc='right')
ax.set_title(f"{x.model.upper()}: {H.product_description}", loc='left')
###Output
_____no_output_____
###Markdown
Can also use metpy to parse GFS grid_mappingThis works because Herbie attempts to parse the grid_mapping from the cfgrib GRIB info.
###Code
crs = x.metpy.parse_cf().metpy_crs.item().to_cartopy()
ax = common_features(crs=crs, figsize=[8,8]).ax
p = ax.pcolormesh(x.longitude, x.latitude, x.t2m,
transform=pc,
**cm_tmp(units='K').cmap_kwargs)
ax = common_features(crs=ccrs.Robinson(), figsize=[8,8]).ax
p = ax.pcolormesh(x.longitude, x.latitude, x.t2m,
transform=pc,
**cm_tmp(units='K').cmap_kwargs)
###Output
_____no_output_____
###Markdown
Get data from the GFS wave output
###Code
H = Herbie('2021-07-11',
model='gfs_wave')
H.read_idx()
x = H.xarray('SWELL:1 in sequence', remove_grib=False)
x.swell.plot()
x.herbie.crs
x
###Output
_____no_output_____
###Markdown
**Brian Blaylock** *July 20, 2021* GFS DataThe product names are not as simple as the HRRR dataset, but we can still get GFS data.
###Code
from herbie.archive import Herbie
from toolbox.cartopy_tools import common_features, pc
from paint.standard2 import cm_tmp
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
H = Herbie('2021-07-11',
model='gfs',
product='pgrb2.0p25')
H.SOURCES
x = H.xarray('^TMP:2 m above')
ax = common_features(crs=x.herbie.crs, figsize=[8,8]).ax
p = ax.pcolormesh(x.longitude, x.latitude, x.t2m,
transform=pc,
**cm_tmp(units='K').cmap_kwargs)
plt.colorbar(p, ax=ax,
orientation='horizontal', pad=.05,
**cm_tmp(units='K').cbar_kwargs)
ax.set_title(x.t2m.GRIB_name, loc='right')
ax.set_title(f"{x.model.upper()}: {H.product_description}", loc='left')
ax = common_features(crs=ccrs.Geostationary(central_longitude=-100), figsize=[10,10]).ax
p = ax.pcolormesh(x.longitude, x.latitude, x.t2m,
transform=pc,
**cm_tmp(units='K').cmap_kwargs)
plt.colorbar(p, ax=ax,
orientation='horizontal', pad=.05, shrink=.8,
**cm_tmp(units='K').cbar_kwargs)
ax.set_title(x.t2m.GRIB_name, loc='right')
ax.set_title(f"{x.model.upper()}: {H.product_description}", loc='left')
###Output
_____no_output_____
###Markdown
Can also use metpy to parse GFS grid_mappingThis works because Herbie attempts to parse the grid_mapping from the cfgrib GRIB info.
###Code
crs = x.metpy.parse_cf().metpy_crs.item().to_cartopy()
ax = common_features(crs=crs, figsize=[8,8]).ax
p = ax.pcolormesh(x.longitude, x.latitude, x.t2m,
transform=pc,
**cm_tmp(units='K').cmap_kwargs)
ax = common_features(crs=ccrs.Robinson(), figsize=[8,8]).ax
p = ax.pcolormesh(x.longitude, x.latitude, x.t2m,
transform=pc,
**cm_tmp(units='K').cmap_kwargs)
###Output
_____no_output_____
###Markdown
Get data from the GFS wave output
###Code
H = Herbie('2021-07-11',
model='gfs_wave')
H.read_idx()
x = H.xarray('SWELL:1 in sequence', remove_grib=False)
x.swell.plot()
x.herbie.crs
x
###Output
_____no_output_____
###Markdown
**Brian Blaylock** *July 20, 2021* GFS DataThe product names are not as simple as the HRRR dataset, but we can still get GFS data.
###Code
from herbie.archive import Herbie
from toolbox.cartopy_tools import common_features, pc
from paint.standard2 import cm_tmp
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
H = Herbie('2021-07-11',
model='gfs',
product='pgrb2.0p25')
H.SOURCES
x = H.xarray('^TMP:2 m above')
ax = common_features(crs=x.herbie.crs, figsize=[8,8]).ax
p = ax.pcolormesh(x.longitude, x.latitude, x.t2m,
transform=pc,
**cm_tmp(units='K').cmap_kwargs)
plt.colorbar(p, ax=ax,
orientation='horizontal', pad=.05,
**cm_tmp(units='K').cbar_kwargs)
ax.set_title(x.t2m.GRIB_name, loc='right')
ax.set_title(f"{x.model.upper()}: {H.product_description}", loc='left')
ax = common_features(crs=ccrs.Geostationary(central_longitude=-100), figsize=[10,10]).ax
p = ax.pcolormesh(x.longitude, x.latitude, x.t2m,
transform=pc,
**cm_tmp(units='K').cmap_kwargs)
plt.colorbar(p, ax=ax,
orientation='horizontal', pad=.05, shrink=.8,
**cm_tmp(units='K').cbar_kwargs)
ax.set_title(x.t2m.GRIB_name, loc='right')
ax.set_title(f"{x.model.upper()}: {H.product_description}", loc='left')
###Output
_____no_output_____
###Markdown
Can also use metpy to parse GFS grid_mappingThis works because Herbie attempts to parse the grid_mapping from the cfgrib GRIB info.
###Code
crs = x.metpy.parse_cf().metpy_crs.item().to_cartopy()
ax = common_features(crs=crs, figsize=[8,8]).ax
p = ax.pcolormesh(x.longitude, x.latitude, x.t2m,
transform=pc,
**cm_tmp(units='K').cmap_kwargs)
ax = common_features(crs=ccrs.Robinson(), figsize=[8,8]).ax
p = ax.pcolormesh(x.longitude, x.latitude, x.t2m,
transform=pc,
**cm_tmp(units='K').cmap_kwargs)
###Output
_____no_output_____
###Markdown
Get data from the GFS wave output
###Code
H = Herbie('2021-07-11',
model='gfs_wave')
H.read_idx()
x = H.xarray('SWELL:1 in sequence', remove_grib=False)
x.swell.plot()
x.herbie.crs
x
###Output
_____no_output_____ |
bronze/B07_Probabilistic_Bit.ipynb | ###Markdown
Prepared by Abuzer Yakaryilmaz Özlem Salehi | July 01, 2019 (updated) This cell contains some macros. If there is a problem with displaying mathematical formulas, please run this cell to load these macros. $ \newcommand{\bra}[1]{\langle 1|} $$ \newcommand{\ket}[1]{|1\rangle} $$ \newcommand{\braket}[2]{\langle 1|2\rangle} $$ \newcommand{\dot}[2]{ 1 \cdot 2} $$ \newcommand{\biginner}[2]{\left\langle 1,2\right\rangle} $$ \newcommand{\mymatrix}[2]{\left( \begin{array}{1} 2\end{array} \right)} $$ \newcommand{\myvector}[1]{\mymatrix{c}{1}} $$ \newcommand{\myrvector}[1]{\mymatrix{r}{1}} $$ \newcommand{\mypar}[1]{\left( 1 \right)} $$ \newcommand{\mybigpar}[1]{ \Big( 1 \Big)} $$ \newcommand{\sqrttwo}{\frac{1}{\sqrt{2}}} $$ \newcommand{\dsqrttwo}{\dfrac{1}{\sqrt{2}}} $$ \newcommand{\onehalf}{\frac{1}{2}} $$ \newcommand{\donehalf}{\dfrac{1}{2}} $$ \newcommand{\hadamard}{ \mymatrix{rr}{ \sqrttwo & \sqrttwo \\ \sqrttwo & -\sqrttwo }} $$ \newcommand{\vzero}{\myvector{1\\0}} $$ \newcommand{\vone}{\myvector{0\\1}} $$ \newcommand{\vhadamardzero}{\myvector{ \sqrttwo \\ \sqrttwo } } $$ \newcommand{\vhadamardone}{ \myrvector{ \sqrttwo \\ -\sqrttwo } } $$ \newcommand{\myarray}[2]{ \begin{array}{1}2\end{array}} $$ \newcommand{\X}{ \mymatrix{cc}{0 & 1 \\ 1 & 0} } $$ \newcommand{\Z}{ \mymatrix{rr}{1 & 0 \\ 0 & -1} } $$ \newcommand{\Htwo}{ \mymatrix{rrrr}{ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} } } $$ \newcommand{\CNOT}{ \mymatrix{cccc}{1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0} } $$ \newcommand{\norm}[1]{ \left\lVert 1 \right\rVert } $ One Probabilistic Bit A probabilistic bit is a bit that is equal to 0 with probability $Pr(0)$ and equal to 1 with probability$Pr(1)$, for some probabilities $Pr(0), Pr(1) \geq 0$ such that $Pr(0) + Pr(1) = 1$ A coin is a probabilistic bit. After flipping a coin, we can get a Head by probability $Pr(Head)$ or a Tail by probability $Pr(Tail)$. We can represent these two cases by a single bit: 0 represents Head 1 represents Tail Vector Representation Suppose that Asja flips a coin secretly.Because we do not see the result, our information about the outcome will be probabilistic:Since we have two different outcomes Head (0) and Tail (1), then, we can use a column vector of size 2 to hold the probabilities of getting Head and getting Tail. Hence, our knowledge about the outcome is $\myvector{Pr(Head) \\ Pr(Tail)}$.The first entry shows the probability of getting Head, and the second entry shows the probability of getting Tail. If the coin is fair,$\rightarrow$ The result is Head with probability $0.5$ and the result is Tail with probability $0.5$.If the coin has a bias $ \dfrac{Pr(Head)}{Pr(Tail)} = \dfrac{3}{1}$, then our information about the outcome is as follows:$\rightarrow$ The result is Head with probability $ 0.75 $ and the result is Tail with probability $ 0.25 $. For the fair coin, our information after the coin-flip is $ \myvector{0.5 \\ 0.5} $. For the biased coin, it is $ \myvector{0.75 \\ 0.25} $. $ \myvector{0.5 \\ 0.5} $ and $ \myvector{0.75 \\ 0.25} $ are two examples of 2-dimensional (column) vectors. Task 1 Suppose that Balvis secretly flips a coin having bias $ \dfrac{Pr(Head)}{Pr(Tail)} = \dfrac{1}{4}$.Represent your information about the outcome as a column vector.solution:$ \myvector{0.2 \\ 0.8} $ Task 2 Suppose that Fyodor secretly rolls a loaded (tricky) dice with the bias $$ Pr(1):Pr(2):Pr(3):Pr(4):Pr(5):Pr(6) = 7:5:4:2:6:1 . $$Represent your information about the result as a column vector. Remark that the size of your column should be 6.You may use python for your calculations.
###Code
divisions=[7,5,4,2,6,1]
total=0
for i in range(6):
total+=divisions[i]
print("Total is:", total)
onedivision=1/total
print("Probability of one portion is:",onedivision)
for i in range(6):
print("the probability of rolling",i+1,"is",(onedivision*divisions[i]))
###Output
Total is: 25
Probability of one portion is: 0.04
the probability of rolling 1 is 0.28
the probability of rolling 2 is 0.2
the probability of rolling 3 is 0.16
the probability of rolling 4 is 0.08
the probability of rolling 5 is 0.24
the probability of rolling 6 is 0.04
|
nbs/63_seg_dataset_isri_unlv.ipynb | ###Markdown
ISRI UNLV> [image] -> [segmentation maps]download dataset from https://code.google.com/archive/p/isri-ocr-evaluation-tools/ dir structure: `./data/isri_unlv/ | bus.2B | 0/ | ...2B.tif | ...2B.txt | ...2B.uzn ... | 1/ ... ...`
###Code
#export
from ocr.core import save_dict, read_dict, plot
from fastai import *
from fastai.vision import *
import pandas as pd
import numpy as np
import cv2
from tqdm.notebook import tqdm
from pathlib import PosixPath
#export
cat2id = {
'Background': 0,
'Attent_line': 1,
'Other_Text': 2,
'cc': 3,
'Company_Sig': 4,
'Subject': 5,
'Enclosure': 6,
'Sign/Type': 7,
'Inside_Addr': 8,
'Dateline': 9,
'Footnote': 10,
'Closing': 10,
'Salutat': 11,
'Signer': 12,
'Letterhead': 13,
'Table': 14,
'Caption': 15,
'Header/Footer': 16,
'Text': 17
}
class isri_unlv_config:
MAIN_DIR = PosixPath('../data/isri_unlv/')
SEG_DIR = PosixPath('../data/seg/labels/')
IMG_DIR = PosixPath('../data/seg/images/')
cat2id = cat2id
im = cv2.imread(str(isri_unlv_config.MAIN_DIR/'bus.2B'/'0'/'8500_001.2B.tif'))
plot(im)
l,t,w,h,cat = [177, 381, 400, 64, 'Dateline']
plot(im[t:t+h , l:l+w])
cat_freq = {
'Attent_line': 8,
'Other_Text': 28,
'cc': 31,
'Company_Sig': 32,
'Subject': 51,
'Enclosure': 116,
'Sign/Type': 259,
'Inside_Addr': 361,
'Dateline': 514,
'Footnote': 615,
'Closing': 634,
'Salutat': 654,
'Signer': 761,
'Letterhead': 1365,
'Table': 1668,
'Caption': 3453,
'Header/Footer': 6723,
'Text': 24762
}
cats = ['Background', 'Attent_line', 'Other_Text', 'cc', 'Company_Sig', 'Subject', 'Enclosure', 'Sign/Type', 'Inside_Addr', 'Dateline', 'Footnote', 'Closing', 'Salutat', 'Signer', 'Letterhead', 'Table', 'Caption', 'Header/Footer', 'Text']
cat2id = {c:i for i,c in enumerate(cats)}
read = lambda fp: open(fp).read()
read_lines = lambda fp: open(fp).readlines()
cat_freq = defaultdict(lambda: 0)
doc2paths = defaultdict(lambda: {'img': None, 'txt': None, 'uzn': None})
for fp in isri_unlv_config.MAIN_DIR.iterdir():
if str(fp)[-1] == 'B' or str(fp)[-1] == 'A':
document_category = str(fp).split('/')[-1]
for subfp in fp.iterdir():
if os.path.isdir(subfp):
page_id = str(subfp).split('/')[-1]
for i,fpath in enumerate(subfp.iterdir()):
doc_name = str(fpath).split('/')[-1][:-4]
fn = 'isri_unlv_{}_{}'.format(document_category, page_id, i)
if str(fpath)[-4:] == '.tif':
doc2paths[doc_name]['img'] = fpath
if str(fpath)[-4:] == '.txt':
doc2paths[doc_name]['txt'] = fpath
if str(fpath)[-4:] == '.uzn':
doc2paths[doc_name]['uzn'] = fpath
doc2paths = dict(doc2paths)
del doc2paths['total']
for name in doc2paths.keys():
x = doc2paths[name]
if x['uzn'] is None or x['img'] is None or x['txt'] is None:
raise Exception('wtf', name)
def preprocess_category(cstr): # category string -> id int
return cat2id[cstr] if cstr in cat2id else cat2id['Background']
read = lambda fp: open(fp).read()
read_lines = lambda fp: open(fp).readlines()
cat_freq = defaultdict(lambda: 0)
for i, name in enumerate(progress_bar(doc2paths.keys())):
fn = 'isri_unlv_{}'.format(i)
uzn_path = doc2paths[name]['uzn']
img_path = doc2paths[name]['img']
txt_path = doc2paths[name]['txt']
# img
im = cv2.imread(str(img_path))
cv2.imwrite(str(isri_unlv_config.IMG_DIR/(fn+'.png')), im)
# seg
seg = np.zeros(im.shape[:2] + (1,), dtype=int) + cat2id['Background']
for line in read_lines(uzn_path):
try: l,t,w,h,cat = [w for w in line.split(' ') if w != '']
except: continue # there are some ` ` (double space) lines
cat = cat[:-1]
cat_freq[cat] += 1
cat_id = preprocess_category(cat)
l,t,w,h = map(int, [l,t,w,h])
seg[ t:t+h , l:l+w ] = cat_id
seg = ImageSegment(tensor(seg).permute(2,0,1))
seg.save(str(isri_unlv_config.SEG_DIR/(fn+'.png')))
# txt
# ...
cat_freq = dict(sorted(cat_freq.items(), key=lambda k:k[1]))
cat_freq
###Output
_____no_output_____ |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.