path
stringlengths
7
265
concatenated_notebook
stringlengths
46
17M
Tonality_classicalDB/ClassicalDB_musicbrainz_metadata.ipynb
###Markdown Tonality classicalDB musicbrainz metadataAudios in Tonality classicalDB dataset are proprietaries. We are going to upload to zenodo different musicbrainz metadata for each audio.Chromaprint is computed with essentia library ###Code !pip install git+https://github.com/MTG/mirdata.git@Pedro/classicalDB !pip install librosa import mirdata classicalDB = mirdata.Dataset('tonality_classicalDB') classicalDB.download() from google.colab import drive drive.mount('/content/gdrive') cp -r "/content/gdrive/MyDrive/classicalDB" /root/mir_datasets/classicalDB # classicalDB.validate() import json import os import numpy as np import sys import essentia.standard as estd import acoustid os.system("mkdir /root/mir_datasets/classicalDB/musicbrainz_metadata") def save_json(dictionary, name_file): with open(name_file, 'w') as fp: json.dump(dictionary, fp, sort_keys=True, indent=4) for k, track in classicalDB.load_tracks().items(): print("Computing " + track.title + "....", end='') audio = estd.MonoLoader(filename=track.audio_path, sampleRate=44100)() client = 'xxxxxx' # This is not a valid key. Use your key. request = acoustid.match(client, track.audio_path) similar_mbids = [] for score, recording_id, title, artist in acoustid.match(client, track.audio_path): similar_mbids.append({'score': score, 'mbid': recording_id, 'title': title, 'artist': artist}) results = { 'chromaprint': estd.Chromaprinter()(audio), 'similar_mbids': similar_mbids } save_json(results, os.path.splitext(track.audio_path.replace('/audio/', '/musicbrainz_metadata/'))[0] + '.json') print("OK") ###Output Computing 01-Allegro__Gloria_in_excelsis_Deo_in_D_Major - D....OK Computing 01-BWV_565_Toccata___Toccata_D_minor - Dm....OK Computing 01-Bach_BWV525_GMajor - G....OK Computing 01-Brahms_Violin_Concerto_in_D_Major - D....OK Computing 01-Chopin_Piano_Concerto_No._1_in_E_minor_I__Allegro_maestoso_risoluto - Em....OK Computing 01-Concerto_en_La_Majeur_pour_deux_Violons_A_Scordatura_et_basse_continue._Affetuoso - A....OK Computing 01-Concerto_for_violin_and_orchestra_in_A_minor_BWV_1041 - Am....OK Computing 01-Concerto_n.4_G_Major_BWV_1049___1_Allegro - G major - G....OK Computing 01-Concierto_n_1_F_Major-_1_Allegro - F major - F....OK Computing 01-F_major_op._18_no._1_-_Allegro_con_brio - F....OK Computing 01-I._String_Quartet_No.16_KV_428_Eb_major__Allegro_ma_non_troppo - Eb....OK Computing 01-I._String_Quartet_No.20_KV_499_D_Major__Allegretto - D....OK Computing 01-I._String_Quintet_No.22_KV_589_Bb_Major__Allegro - Bb....OK Computing 01-I._String_Quintet_No._5_Larghetto-Allegro_-_D_Major_KV_593 - D....OK Computing 01-Ludwig_Van_Beethoven_-_Symphony_N_9_In_Re_Minor_Op_125-allegro_ma_non_troppo - Dm....OK Computing 01-Mozart__KV_448_Allegro_con_spiritu_D_Major - D....OK Computing 01-No._1_b-moll_op._9_No._1___Larghetto - Bbm....OK Computing 01-No._3_in_C_major_op._59 - C....OK Computing 01-Op_132_(A_min)_Assai_sostenuto_-_Allegro - Am....OK Computing 01-Peter_Ilyich_Tchaikovsky___Piano_Concerto_No_1_in_B_flat_minor_Op_23_-_I._Allegro_non_troppo_e_molto_maestoso - Bbm....OK Computing 01-Prelude_-_Suite_Nr._1_G-major_BWV.1007 - G....OK Computing 01-Prelude_and_Fugue_No._13_F-sharp_major_BWV_882_-_1._Praeludium - F#....OK Computing 01-Prelude_and_Fugue_No._1_in_C_major_BWV_870_-_1._Praeludium - C....OK Computing 01-Quartet__E-flat_major_Op._127__I._Maestoso_-_Allegro - Eb....OK Computing 01-Quartet_in_B-flat_major_Op._130__I.__Adagio_ma_non_troppo_-_Allegro - Bb....OK Computing 01-Quartet_in_F-major_(Hess_34)_-_Transcription_of_Piano_Sonata_Op_14._No.1_-_1 - F....OK Computing 01-Quartett_c-moll_op_18_No._4_in_C_minor_en_ut_mineur_1 - Cm....OK Computing 01-Requiem_Mass_in_D_minor._K.626-Introitus_-_Requiem_aeternam - Dm....OK Computing 01-Sonata_for_Piano__Cello_in_A_Major_Op._69_1._Allegro_ma_non_tanto - A....OK Computing 01-Sonate_B_-Dur_RV_47 - Bb....OK Computing 01-Sonate_B_Dur_RV46 - Bb....OK Computing 01-Spring_-_Concerto_#1_in_E_major_-_1_-_Allegro - E....OK Computing 01-String_Quartet_No.14_in_G_major_K._387_-_I._Allegro_vivace_assai - G....OK Computing 01-String_Quartet_No._10_in_C_major_K._170_-_I._Andante - C....OK Computing 01-String_Quartet_No.__1_in_G_major_K._80_(83f)_-_I._Adagio - G....OK Computing 01-String_Quartet_No.__6_in_B_flat_major_K._159_-_I._Andante - Bb....OK Computing 01-String_Quintet_No._1_in_B_flat_KV174_-_I._Allegro - Bb....OK Computing 01-Suite_#1_in_C_Major-_I__Ouverture - C....OK Computing 01-Telemann_TWV41C5_CMajor - C....OK Computing 01-Toccata__Fugue_in_D_minor_BWV_565__Toccata - Dm....OK Computing 01-Tomaso_Albinoni___Adagio_in_Sol_minore - Gm....OK Computing 01-Twelve_Variations_in_F_Major_on_the_Mozart_theme__Ein_Madchen_oder_Weibchen__Theme._Allegretto - F....OK Computing 01-brahms-string_quartet_nr.3_in_b_flat_opus_67_vivace-aaf - Bb....OK Computing 01-carl_nielsen-symphony_no._1_in_g_minor_op._7_-_i._allegro_orgoglioso - Gm....OK Computing 01-glenn_gould-invention_1_in_c_major-aaf - C....OK Computing 01-jacques_loussier_trio--toccata_in_c_major_(toccata) - C....OK Computing 01-mozart_-_sonata_in_a_k._331-twc - A....OK Computing 01-nocturnes_op._9_no._1_in_b-flat_minor-ond - Bbm....OK Computing 01-pachelbel_-_canon_in_d_major-xmas - D....OK Computing 01-royal_philharmonic_collection-sonata_in_c_minor_kv457 - Cm....OK Computing 01-seiji_ozawa_-_berliner_philharmoniker_-_symphony_no_1_in_d_major_op_25_-_1__allegro - D....OK Computing 01-sibelius-violin_concerto_in_d_minor_op.47_allegro_moderato - Dm....OK Computing 01-sinphonie_9_opus_95_b_minor_-_anton_dvorak-krema - Bm....OK Computing 01-the_swingle_singers--fugue_in_d_minor - Dm....OK Computing 01_chopin_-_nocturne_in_c-sharp_minor - C#m....OK Computing 01_d._scarlatti_-_sonata_in_d_minor - Dm....OK Computing 02-Antonio_Vivaldi___Concerto_in_Do_per_due_trombettearchi(Allegro-Largo-Allegro) - C....OK Computing 02-No._2_Es-dur_op._9_No._2___Andante - Eb....OK Computing 02-Variation_I_F_Major - F....OK Computing 02-frederic_chopin--waltz_in_c-sharp_minor_op.64_no.2 - C#m....OK Computing 02-glenn_gould-sinfonia_1_in_c_major-aaf - C....OK Computing 02-mozart_-_sinfonia_concertante_in_e-flat-twc - Eb....OK Computing 02-nocturnes_op._9_no._2_in_e-flat_minor-ond - Ebm....OK Computing 02-royal_philharmonic_collection-no_2_in_e_minor - Em....OK Computing 02-royal_philharmonic_collection-symphony_40_in_g_minor - Gm....OK Computing 02_chopin_-_nocturne_in_e_minor_op._72_no._1 - Em....OK Computing 03-BWV_534_Prelude___Prelude_F_minor - Fm....OK Computing 03-J.S._Bach___Konzert_für_Oboe__Violine_C-moll_BWV_1060_-_Allegro - Cm....OK Computing 03-No._3_H-dur_op._9_No._3___Allegretto - B....OK Computing 03-Prelude_and_Fugue_No._14_F-sharp_minor_BWV_883_-_1._Praeludium - F#m....OK Computing 03-Prelude_and_Fugue_No._2_in_C_minor_BWV_871_-_1._Praeludium - Cm....OK Computing 03-Toccata_Adagio__Fugue_in_C_major_BWV_564__Toccata - C....OK Computing 03-Variation_II_F_Major - F....OK Computing 03-frederic_chopin--prelude_in_b_minor_op.28_no.6-lento_assai - Bm....OK Computing 03-glenn_gould-invention_2_in_c_minor-aaf - Cm....OK Computing 03-mozart_-_serenade_no._10_in_b-flat_for_winds-twc - Bb....OK Computing 03-nocturnes_op._9_no._3_in_b_major-ond - B....OK Computing 03-royal_philharmonic_collection-no_3_in_a_flat_major - Ab....OK Computing 03_chopin_-_nocturne_in_c_minor_op._48_no._1 - Cm....OK Computing 03_pasquini_-_canzone_in_e_minor - Em....OK Computing 04-Bach_BWV529_FMajor - F....OK Computing 04-Ballade_No._1_Op.23__G__minor - Gm....OK Computing 04-Brahms_Sonatensatz_in_C_minor - Cm....OK Computing 04-Concerto_for_violin_and_orchestra_in_D_minor_BWV_1043 - Dm....OK Computing 04-Concerto_n.5_D_Major_BWV_1050___1_Allegro - D....OK Computing 04-No._4_F-dur_op._15_No._1___Andante_cantabile - F....OK Computing 04-Prelude__Fugue_in_F-major_(Hess_30)_-1 - F....OK Computing 04-Schubert__Op._103_F_minor - Fm....OK Computing 04-Serge_Rachmaninoff___Piano_Concerto_No_2_in_C_minor_Op_18_-_I._Moderato - Cm....OK Computing 04-String_Quartet_No.__7_in_E_flat_major_K._160_(159a)_-_I._Allegro - Eb....OK Computing 04-Summer_-_Concerto_#2_in_G_minor_-_1_-_Allegro_non_molto - Gm....OK Computing 04-Variation_III_F_Major - F....OK Computing 04-frederic_chopin--prelude_in_d-flat_major_op.28_no.15-sostenuto - Db....OK Computing 04-glenn_gould-sinfonia_2_in_c_minor-aaf - Cm....OK Computing 04-jacques_loussier_trio--sicilienne_in_g_minor - Gm....OK Computing 04-mozart_-_divertimento_no._11_in_d-twc - D....OK Computing 04-nocturnes_op._15_no._1_in_f_major-ond - F....OK Computing 04-royal_philharmonic_collection-no_4_in_f_major - F....OK Computing 04-royal_philharmonic_collection-sonata_in_b_flat_major_ - Bb....OK Computing 04-the_swingle_singers--prelude_in_f_major - F....OK Computing 04_a._marcello_-_andante_in_d_minor - Dm....OK Computing 04_chopin_-_ballade_no._2_in_f_major_op._38 - F....OK Computing 05-BWV_542_Fantasia___Fantasia_G_minor - Gm....OK Computing 05-Brahms_Hungarian_Dances_n1_G_minor - Gm....OK Computing 05-Concerto_en_Re_Majeur_pour_quatre_violons_sans_basse_continue._Adagio - D....OK Computing 05-Concierto_n_2__F_Major-_1_allegro - F....OK Computing 05-G_major_op._18_no._2_-_Allegro - G....OK Computing 05-I._String_Quartet_No.17_KV_458__The_Hunt__Bb_Major__Allegro_vivace_assai - Bbm....OK Computing 05-I._String_Quartet_No.21_KV_575_D_Major__Allegretto - D....OK Computing 05-I._String_Quintet_No.19_KV_465_C_Major__Dissonance____Adagio_-_Allegro - C....OK Computing 05-I._String_Quintet_No.23_KV_590_F_Major__Allegro_moderato - F....OK Computing 05-I._String_Quintet_No._6_Allegro_di_molto_Eb_Major__KV_614 - Eb....OK Computing 05-No._7_cis-moll_op._27_No._1___Larghetto - C#m....OK Computing 05-Nocturne_No._4_Op._15_No._1_F_Major - F....OK Computing 05-Prelude_and_Fugue_No._15_G_major_BWV_884_-_1._Praeludium - G....OK Computing 05-Prelude_and_Fugue_No._3_in_C-sharp_major_BWV_872_-_1._Praeludium - C#....OK Computing 05-Qartett_in_E_flat_major_(_Harp_)_op._74 - Eb....OK Computing 05-Quartet_in_C-sharp_major_Op._131__I._Adagio_ma_non_troppo_e_molto_espressivo_-_attacca - C#....OK Computing 05-Quartett_A-Major_op_18_No._5_in_A_major_en_la_majeur_1 - A....OK Computing 05-Quartett_A-dur_op_18_No._5_in_A_major_en_la_majeur_1 - A....OK Computing 05-Sonata_for_Piano__Cello_in_C_Major_Op._102_No._1_1._Andante - C....OK Computing 05-Sonate_F_-Dur_RV_41 - F....OK Computing 05-Sonate_a_moll_RV44 - Am....OK Computing 05-String_Quartet_No.15_in_D_minor_K._421_(417b)_-_I._Allegro_moderato - Dm....OK Computing 05-String_Quartet_No._11_in_E_flat_major_K._171_-_I._Adagio_-_Allegro_assai_-_Adagio - Eb....OK Computing 05-String_Quartet_No.__2_in_D_major_K._155_(134a)_-_I._Allegro - D....OK Computing 05-String_Quintet_No._4_in_C_minor_KV406_516b_-_I._Allegro - Cm....OK Computing 05-Variation_IV_F_Major - F....OK Computing 05-brahms-clarinet_quintet_in_b_minor_opus_115_allegretto-aaf - Bm....OK Computing 05-glenn_gould-invention_5_in_e_flat_major-aaf - Eb....OK Computing 05-mozart_-_piano_concerto_no._24_in_c_minor-twc - Cm....OK Computing 05-nocturnes_op._15_no._2_in_f-sharp_major-ond - F#....OK Computing 05-seiji_ozawa_-_berliner_philharmoniker_-_symphony_no_6_in_e_flat_minor_op__111_-_1__allegro_moderato - Ebm....OK Computing 05-sibelius-serenade_no.2_in_g_minor_op.69b - Gm....OK Computing 05_chopin_-_ballade_no._1_in_g_minor_op._23 - Gm....OK Computing 06-Brahms_Hungarian_Dances_n2_D_minor - Dm....OK Computing 06-Johann_Pachelbel___Canon_in_D_major - D....OK Computing 06-No._8_Des-dur_op._27_No._2___Lento_sustenuto - Db....OK Computing 06-Nocturne_No._5_Op._15_No._2_F_sharp_Major - F#....OK Computing 06-Op_135_(F_maj)_Allegretto - F....OK Computing 06-Passacaglia_in_C_minor_BWV_582 - Cm....OK Computing 06-Prelude__Fugue_in_C-major_(Hess_31)_-_1 - C....OK Computing 06-Variation_V_F_Major - F....OK Computing 06-brahms-clarinet_quintet_in_b_minor_opus_115_adagio-aaf - Bm....OK Computing 06-glenn_gould-sinfonia_5_in_e_flat_major-aaf - Eb....OK Computing 06-jacques_loussier_trio--passacaglia_in_c_minor - Cm....OK Computing 06-mozart_-_clarinet_quintet_in_a-twc - A....OK Computing 06-nocturnes_op._15_no._3_in_g_minor-ond - Gm....OK Computing 06-royal_philharmonic_collection-no_7_in_c_minor - Cm....OK Computing 06-the_swingle_singers--fugue_in_c_minor - Cm....OK Computing 06_chopin_-_waltz_no._3_in_a_minor_op._34_no._2 - Am....OK Computing 07-Autumn_-_Concerto_#3_in_F_major__-_1_-_Allegro - F....OK Computing 07-BWV_564_Toccata___Toccata_C_Major - C....OK Computing 07-Bach_BWV526_EMinor - Em....OK Computing 07-Brahms_Hungarian_Dances_n7_A_Major - A....OK Computing 07-Concerto_for_violin_and_orchestra_in_E_major_BWV_1042 - E....OK Computing 07-Concerto_n.6_Bb_Major_BWV_1051___1_Allegro - Bb....OK Computing 07-No._9_H-dur_op._32_No._1___Andante_sustenuto - B....OK Computing 07-Pastorale_in_F_major_BWV_590 - F....OK Computing 07-Polonaise_No._6_Op._53_A_flat_major - Ab....OK Computing 07-Prelude_and_Fugue_No._16_G_minor_BWV_885_-_1._Praeludium - Gm....OK Computing 07-Prelude_and_Fugue_No._4_in_C-sharp_minor_BWV_873_-_1._Praeludium - C#m....OK Computing 07-String_Quartet_No.__8_in_F_major_K._168_-_I._Allegro - F....OK Computing 07-Variation_VI_F_Major - F....OK Computing 07-frederic_chopin--mazurka_in_e_minor_op._41_no.2-andantino - Em....OK Computing 07-glenn_gould-invention_14_in_b_flat_major-aaf - Bb....OK Computing 07-mozart_-_violin_sonata_in_e-flat-twc - Eb....OK Computing 07-nocturnes_op._27_no._1_in_c-sharp_minor-ond - C#m....OK Computing 07-royal_philharmonic_collection-fantasie_in_c_minor_kv4 - Cm....OK Computing 07-royal_philharmonic_collection-no_8_in_g_minor - Gm....OK Computing 07-the_swingle_singers--fugue_in_d_major - D....OK Computing 07_chopin_-_prelude_no._4_in_e_minor_op._28_no._4 - Em....OK Computing 07_handel_-_allegro_in_d_minor - Dm....OK Computing 08-Brahms_Hungarian_Dances_n9_E_minor - Em....OK Computing 08-No._10_As-dur_op._32_No._2___Lento - Ab....OK Computing 08-Preludium_-_Suite_Nr._4_E_flat_Major-dur_BWV.1010 - Eb....OK Computing 08-Quartet_in_F-major_(Hess_32)_-_Op._18_No._1_first_version_-_1 - F....OK Computing 08-String_Quartet_No.__3_in_G_major_K._156_(134b)_-_I._Presto - G....OK Computing 08-Suite_#2_in_B_Minor-_I__Ouverture - Bm....OK Computing 08-Telemann_TWV41d4_Dminor - Dm....OK Computing 08-Variation_VII_F_Major - F....OK Computing 08-glenn_gould-sinfonia_14_in_b_flat_major-aaf - Bb....OK Computing 08-mozart_-_piano_concerto_no._17_in_g-twc - G....OK Computing 08-nocturnes_op._27_no._2_in_d-flat_major-ond - Db....OK Computing 08-royal_philharmonic_collection-allegretto_in_c_minor - Cm....OK Computing 08-royal_philharmonic_collection-no_1_in_b_major - B....OK Computing 08-royal_philharmonic_collection-sonata_in_g_major_kv283 - G....OK Computing 09-Concerto_en_La_Majeur_pour_flute_à_bec_viole_de_gambe_cordes_et_basse_continue._Tempo_non_precise - A....OK Computing 09-Concierto_n_3_G_Major-_2_adagio_(George_Malcolm) - G....OK Computing 09-D_major_op._18_no._3_-_Allegro - D....OK Computing 09-No._12_G-dur_op._37_No._2___Andantino - G....OK Computing 09-Prelude_and_Fugue_No._17_A-flat_major_BWV_886_-_1._Praeludium - Ab....OK Computing 09-Prelude_and_Fugue_No._5_in_D_major_BWV_874_-_1._Praeludium - D....OK Computing 09-Quartet_in_F_minor_op._95 - Fm....OK Computing 09-Quartett_B-dur_op_18_No._6_in_B_flat_major_en_si_bemol_majeur_1 - Bb....OK Computing 09-Sonata_for_Piano__Cello_in_D_Major_Op._102_No._2_1._Allegro_con_brio - D....OK Computing 09-Sonate_Es_Dur_RV39 - Eb....OK Computing 09-Sonate_a_-moll_RV_43 - Am....OK Computing 09-String_Quartet_No._12_in_B_flat_major_K._172_-_I._Allegro_spiritoso - Bb....OK Computing 09-Variation_VIII_F_Major - F....OK Computing 09-glenn_gould-invention_11_in_g_minor-aaf - Gm....OK Computing 09-nocturnes_op._32_no._1_in_b_major-ond - B....OK Computing 09-royal_philharmonic_collection-no_2_in_e_minor - Em....OK Computing 09_bach_-_english_ste_3_in_g_minor_-_courante - Gm....OK Computing 10-BWV 525 Trio sonata No. 1 - (Allegro) _ (Allegro)_E_flat_Major - Eb....OK Computing 10-BWV_525_Trio_sonata_No._1_-_(Allegro)___(Allegro)_E_flat_Major - Eb....OK Computing 10-Bach_BWV997_DMinor - Dm....OK Computing 10-Haydn_-_Concert_for_trumpet_and_orchestra_in_Eb_major - Eb....OK Computing 10-No. 13 c-moll op. 48 No. 1 _ Lento - C,....OK Computing 10-Variation_IX_F_Major - F....OK Computing 10-Winter_-_Concerto_#4_in_F_minor__-_1_-_Allegro_non_molto - Fm....OK Computing 10-glenn_gould-sinfonia_11_in_g_minor-aaf - Gm....OK Computing 10-nocturnes_op._32_no._2_in_a-flat_major-ond - Ab....OK Computing 10-royal_philharmonic_collection-no_5_in_b_flat_major - Bb....OK Computing 10-the_swingle_singers--prelude_in_c_major - C....OK Computing 101-dmitri_shostakovich--no.1_in_c_major - C....OK Computing 101-wa_mozart-symphony-no-25-in-g-minor-rare - Gm....OK Computing 102-dmitri_shostakovich--no.2_in_a_minor - Am....OK Computing 102-fatansie_impromptu_in_c_shrap_minor_-_op_66_no_4-bfhmp3 - C#m....OK Computing 103-dmitri_shostakovich--no.3_in_g_major - G....OK Computing 104-concerto_in_e_minor_op_4_no_2_-_1_allegro-kir - Em....OK Computing 104-dmitri_shostakovich--no.4_in_e_minor - E....OK Computing 104-mazurka_-_op_7_in_b_major-bfhmp3 - B....OK Computing 105-dmitri_shostakovich--no.5_in_d_major - D....OK Computing 105-etude_-_op_10_no_12_in_c_minor_(revolution)-bfhmp3 - Cm....OK Computing 106-dmitri_shostakovich--no.6_in_b_minor - Bm....OK Computing 106-polonaise_-_op_53_in_a_flat_major_(heroic)-bfhmp3 - Ab....OK Computing 107-waltz_-_op_64_no_2_in_c_sharp_minor-bfhmp3 - C#m....OK Computing 108-dmitri_shostakovich--no.8_in_f_sharp_minor - F#m....OK Computing 108-nocturne_-_op_9_no_2_in_e_flat_major-bfhmp3 - Eb....OK Computing 108-va-bach-air_of_a_g_string_from_suite_no.3_in_g_major-wcr - G....OK Computing 108-wa_mozart-mass-in-c-minor-rare - Cm....OK Computing 109-dmitri_shostakovich--no.9_in_e_major - E....OK Computing 10_bach_-_english_ste_3_in_g_minor_-_allemande - Gm....OK Computing 11-Benedetto_Marcello___Concerto_per_Oboe_Re_minor_-_Andante_e_spiccato - Dm....OK Computing 11-Elgar_-_March_of_pomp_and_circumstance_in_D_MajorComparison - D....OK Computing 11-No._15_f-moll_op._55_No._1___Andante - Fm....OK Computing 11-Prelude_and_Fugue_No._18_G-sharp_minor_BWV_887_-_1._Praeludium - G#m....OK Computing 11-Prelude_and_Fugue_No._6_in_D_minor_BWV_875_-_1._Praeludium - Dm....OK Computing 11-Variation_X_Adagio_F_Major - F....OK Computing 11-glenn_gould-invention_10_in_g_major-aaf - G....OK Computing 11-nocturnes_op._55_no._1_in_f_minor-ond - Fm....OK Computing 11-royal_philharmonic_collection-no_6_in_b_flat_major - Bb....OK Computing 110-concerto_in_a_minor_op_4_no_4_-_1_allegro-kir - Am....OK Computing 110-dmitri_shostakovich--no.10_in_c_sharp_minor - C#m....OK Computing 110-prelude_-_op_28_no_15_raindrop_in_d_sharp_major-bfhmp3 - D#....OK Computing 111-dmitri_shostakovich--no.11_in_b_major - B....OK Computing 111-wa_mozart-adagio-in-c-minor-for-glass-armonica-rare - Cm....OK Computing 111-waltz_-_op_64_no_1_minute_waltz_in_d_flat_minor-bfhmp3 - Dbm....OK Computing 112-ballad_-_op_23_no_1_in_g_minor-bfhmp3 - Gm....OK Computing 112-dmitri_shostakovich--no12_in_g_sharp_minor-fixed - G#m....OK Computing 113-etude_-_op_10_no_3_in_e_major-bfhmp3 - E....OK Computing 116-concerto_in_g_minor_op_4_no_6_-_1_allegro-kir - Gm....OK Computing 11_bach_-_english_ste_3_in_g_minor_-_allegro - Gm....OK Computing 11_chopin_-_mazurka_in_a_minor_op._17_no._4 - Am....OK Computing 12-Allegro__Canta_in_prato_in_G_Major - G....OK Computing 12-Minuett_in_A-flat_major_(Hess_33) - Ab....OK Computing 12-No._18_E-dur_op._62_No._2___Lento - E....OK Computing 12-String_Quartet_No.__4_in_C_major_K._157_-_I._Allegro - C....OK Computing 12-Telemann_TWV41f1_FMinor - Fm....OK Computing 12-Twelve_Variations_in_g_Major_on_a_Theme_from__Judas_Maccabaeus__Thema._Allegretto - G....OK Computing 12-Variation_XI_Poco_Adagio_quasi_Andante_F_minor-_attacca_subito - Fm....OK Computing 12-ballad_in_d_minor_op.15-i-fuf - Dm....OK Computing 12-glenn_gould-sinfonia_10_in_g_major-aaf - G....OK Computing 12-nocturnes_op._55_no._2_in_e-flat_major-ond - Eb....OK Computing 12-royal_philharmonic_collection-no_7_in_c_major - C....OK Computing 12-the_swingle_singers--invention_in_c_major - C....OK Computing 13-Concero_en_Sol_Mineur_pour_flute_a_bec_violons_et_basse_continue._Allegro - Gm....OK Computing 13-La_Tempesta_Di_Mare_in_Eb_Major-_1_-_Presto - Eb....OK Computing 13-No._19_e-moll_op._post._72_No._1___Andante - Em....OK Computing 13-Prelude_and_Fugue_No._19_A_major_BWV_888_-_1._Praeludium - A....OK Computing 13-Prelude_and_Fugue_No._7_in_E-flat_major_BWV_876_-_1._Praeludium - Eb....OK Computing 13-Sonate_B-Dur_RV_45 - Bb....OK Computing 13-Sonate_g_moll_RV42 - Gm....OK Computing 13-String_Quartet_No._13_in_D_minor_K._173_-_I._Allegro_ma_molto_moderato - Dm....OK Computing 13-Variation_XII_Allegro_F_Major - F....OK Computing 13-glenn_gould-invention_15_in_b_minor-aaf - Bm....OK Computing 13-mazurek_in_e_minor_op.49-fuf - Em....OK Computing 13-nocturnes_op._post._72_no.1_in_e_minor-ond - Em....OK Computing 13-royal_philharmonic_collection-no_8_in_a_flat_major - Ab....OK Computing 13-the_swingle_singers--fugue_in_d_major - D....OK Computing 14-Sonata_for_Piano__Cello_in_F_Major_Op._5_No._1_1._Adagio_sostenuto - F....OK Computing 14-glenn_gould-sinfonia_15_in_b_minor-aaf - Bm....OK Computing 14-nocturnes_in_c-sharp_minor_(1830)-ond - C#m....OK Computing 14-original_broadway_cast-invention_in_c_minor - Cm....OK Computing 15-Allegro__Dixit_Dominus_in_D_Major - D....OK Computing 15-Prelude_-_Suite_Nr._5_c_Minor-moll_BWV.1011 - Cm....OK Computing 15-Prelude_and_Fugue_No._20_A_minor_BWV_889_-_1._Praeludium - Am....OK Computing 15-Prelude_and_Fugue_No._8_in_D-sharp_minor_BWV_877_-_1._Praeludium - D#m....OK Computing 15-String_Quartet_No.__5_in_F_major_K._158_-_I._Allegro - F....OK Computing 15-Suite_#3_in_D_Major-_I__Ouverture - D....OK Computing 15-glenn_gould-invention_7_in_e_minor-aaf - Em....OK Computing 15-nocturne_in_c_minor_(1837)-ond - Cm....OK Computing 15-the_swingle_singers--prelude_and_fugue_in_e_minor_n - Em....OK Computing 16-Il_Piacere_in_C_Major-_1_-_Allegro - C....OK Computing 16-Telemann_TWV42B4_BflatMajor - Bb....OK Computing 16-glenn_gould-sinfonia_7_in_e_minor-aaf - Em....OK Computing 16_a._soler_-_sonata_in_d_minor - Dm....OK Computing 17-Concerto_en_Do_Majeur_pour_quatre_violons_sans_basse._Grave - C....OK Computing 17-Prelude_and_Fugue_No._21_B-flat_major_BWV_890_-_1._Praeludium - Bb....OK Computing 17-Prelude_and_Fugue_No._9_in_E_major_BWV_878_-_1._Praeludium - E....OK Computing 17-Sonate_A_Dur_Vivaldi - A....OK Computing 17-Sonate_e_-moll_RV_40 - Em....OK Computing 17-arturo_sandoval--concerto_in_d_major_(first_movement) - D....OK Computing 17-glenn_gould-invention_6_in_e_major-aaf - E....OK Computing 17_galles_-_sonata_in_b_minor - Bm....OK Computing 18-Sonata_for_Piano_and_Cello_in_G_Minor_Op._5_No._2_1._Adagio_sostenuto_e_espressivo_-_attacca - Gm....OK Computing 18-glenn_gould-sinfonia_6_in_e_major-aaf - E....OK Computing 18-the_swingle_singers--prelude_and_fugue_in_c_major - C....OK Computing 19-Prelude_and_Fugue_No._10_in_E_minor_BWV_879_-_1._Praeludium - Em....OK Computing 19-Prelude_and_Fugue_No._22_B-flat_minor_BWV_891_-_1._Praeludium - Bbm....OK Computing 19-glenn_gould-invention_13_in_a_minor-aaf - Am....OK Computing 19-the_swingle_singers--fugue_in_g_major - G....OK Computing 20-Telemann_TWV41C2_CMajor - C....OK Computing 20-glenn_gould-sinfonia_13_in_a_minor-aaf - Am....OK Computing 201-dmitri_shostakovich--no.13_in_f_sharp_major - F#....OK Computing 202-dmitri_shostakovich--no.14_in_e_flat_minor - Ebm....OK Computing 202-va-chopin-nocturne_no2_in_e_flat-wcr - Eb....OK Computing 202_bizet-syphony_in_c_adagio-sns - C....OK Computing 203-dmitri_shostakovich--no.15_in_d_flat_major - Db....OK Computing 204-concerto_for_piano_and_orchestra_in_a_minor_op__16-bfhmp3 - Am....OK Computing 204-dmitri_shostakovich--no.16_in_b_flat_minor - Bbm....OK Computing 204-va-liszt-liebestraum_no3_in_a_flat-wcr - Ab....OK Computing 205-concerto_in_d_minor_op_4_no_8_-_1_allegro-kir - Dm....OK Computing 205-dmitri_shostakovich--no.17_in_a_flat_major - Ab....OK Computing 206-dmitri_shostakovich--no.18_in_f_minor - Fm....OK Computing 207-dmitri_shostakovich--no.19_in_e_flat_major - Eb....OK Computing 207-va-elgar-cello_concerto_in_e_adagio-wcr - E....OK Computing 208-dmitri_shostakovich--no.20_in_c_minor - Cm....OK Computing 209-dmitri_shostakovich--no.21_in_b_flat_major - Bb....OK Computing 209-wa_mozart-piano-concerto-in-d-minor-1st-movement-rare - Dm....OK Computing 21-Concerto_en_Mi_Mineur_pour_flute_à_bec_flute_traversiere_cordes_et_basse_continue._Largo - Em....OK Computing 21-Prelude_and_Fugue_No._11_in_F_major_BWV_880_-_1._Praeludium - F....OK Computing 21-Prelude_and_Fugue_No._23_B_major_BWV_892_-_1._Praeludium - B....OK Computing 21-Seven_Variations_in_E_flat_Major_from__The_Magic_Flute__Thema._Andante - Eb....OK Computing 210-dmitri_shostakovich--no.22_in_g_minor - Gm....OK Computing 211-concerto_in_c_minor_op_4_no_10_-_1-kir - Cm....OK Computing 211-dmitri_shostakovich--no.23_in_f_major - F....OK Computing 212-dmitri_shostakovich--no.24_in_d_minor - Dm....OK Computing 23-Prelude_and_Fugue_No._12_in_F_minor_BWV_881_-_1._Praeludium - F....OK Computing 23-Prelude_and_Fugue_No._24_B_minor_BWV_893_-_1._Praeludium - Bm....OK Computing 23-glenn_gould-invention_3_in_d_major-aaf - D....OK Computing 24-glenn_gould-sinfonia_3_in_d_major-aaf - D....OK Computing 25-glenn_gould-invention_4_in_d_minor-aaf - Dm....OK Computing 26-glenn_gould-sinfonia_4_in_d_minor-aaf - Dm....OK Computing 27-glenn_gould-invention_8_in_f_major-aaf - F....OK Computing 28-glenn_gould-sinfonia_8_in_f_major-aaf - F....OK Computing 29-glenn_gould-invention_9_in_f_minor-aaf - Fm....OK Computing 30-glenn_gould-sinfonia_9_in_f_minor-aaf - Fm....OK Computing 311-mozart-adagio_in_b_flat_kv_411-484a-mil - Bb....OK Computing 311-va-boccherini-munuet_from_string_quarter_in_e_major-wcr - E....OK Computing 312-mozart-adagio_in_f_kv_410-484d-mil - F....OK Computing 313-mozart-adagio_in_c_kv_app._94-580a-mil - C....OK Computing A_flat_major_02_Valse_Brillante_Op34_No1 - Ab....OK Computing A_flat_major_05_Grande_Valse_Op42 - Ab....OK Computing A_flat_major_07_Polonaise_Op53_No1 - Ab....OK Computing A_flat_major_08-Mazurka_Op_No_8 - Ab....OK Computing A_flat_major_08_Polonaise_Fantasie_Op61 - Ab....OK Computing A_flat_major_08_Valse_Op64_No_3 - Ab....OK Computing A_flat_major_09_Valse_Op69_No1 - Ab....OK Computing A_flat_major_10_No_10_Vivacce_Assai - Ab....OK Computing A_flat_major_12_Valse_Brown_Index_21 - Ab....OK Computing A_flat_major_13_No_1_Allegro_sostenuto_13 - Ab....OK Computing A_flat_major_16-Mazurka_Op_No_6 - Ab....OK Computing A_flat_major_27_No_3_Allegretto - Ab....OK Computing A_flat_major_29-Mazurka_Op_No_9 - Ab....OK Computing A_flat_major_31-Mazurka_Op_No_1 - Ab....OK Computing A_flat_major_37-Mazurka_Op_No_7 - Ab....OK Computing A_flat_major_Ballade_III_Op_47_Chopin_Complete_Piano_Music - Ab....OK Computing A_flat_major_Gallop_Marquis_Chopin_Complete_Piano_Music - Ab....OK Computing A_flat_major_No_3_Dvorak_Slavonics_Dances - Ab....OK Computing A_flat_major_No_8_Dvorak_Slavonics_Dances - Ab....OK Computing A_flat_major_Nocturne_Op_32_No_2_Chopin_Vol_1 - Ab....OK Computing A_flat_major_Nouvelle_Etude_No_2_Chopin_Complete_Piano_Music - Ab....OK Computing A_flat_major_Prelude_No_17 - Ab....OK Computing A_flat_major_Schubert_Four_Impromptus_Op_142_D_935_2_Jandó - Ab....OK Computing A_flat_major_Schubert_Four_Impromptus_Op_90_D_899_4_Jandó - Ab....OK Computing A_flat_major_Tarantella_08_ - Ab....OK Computing A_flat_minor_Leos_Janacek_Adagio_Tzygane - Abm....OK Computing A_flat_minor_Leos_Janacek_Allegretto_Tzygane - Abm....OK Computing A_flat_minor_Leos_Janacek_Ballada_con_moto_Tzygane - Abm....OK Computing A_major_02_Fantasia_in_Polish_Airs_Op13 - A....OK Computing A_major_5_Allegro_CD04_Full_Symphonie_Mozart - A....OK Computing A_major_5_Allegro_moderato_CD06_Full_Symphonie_Mozart - A....OK Computing A_major_6_Andante_CD04_Full_Symphonie_Mozart - A....OK Computing A_major_6_Andante_CD06_Full_Symphonie_Mozart - A....OK Computing A_major_7_Menuetto_trio_CD04_Full_Symphonie_Mozart - A....OK Computing A_major_7_Menuetto_trio_CD06_Full_Symphonie_Mozart - A....OK Computing A_major_8_Allegro_CD04_Full_Symphonie_Mozart - A....OK Computing A_major_8_Allegro_con_spirito_CD06_Full_Symphonie_Mozart - A....OK Computing A_major_Comarosa_arr_Bream_SOnata_Julian_Bream_Baroque_Guitar - A....OK Computing A_major_Concerto_BWV_1055_III_Allegro_ma_non_tanto_Bach_Complet_Orchestral - A....OK Computing A_major_Concerto_BWV_1055_II_Larghetto_Bach_Complet_Orchestral - A....OK Computing A_major_Concerto_BWV_1055_I_Allegro_Bach_Complet_Orchestral - A....OK Computing A_major_Concerto_No_23_AK488_Adagio_Mozart_Piano_concerto_23_26 - A....OK Computing A_major_Concerto_No_23_AK488_Allegro_assai_Mozart_Piano_concerto_23_26 - A....OK Computing A_major_L_391_Domenico_Scarlatti_Piano_Sonatas - A....OK Computing A_major_No3_A_flat_Major - A....OK Computing A_major_No_5_Dvorak_Slavonics_Dances - A....OK Computing A_major_Prelude_No_07 - A....OK Computing A_minor_02_No_2_Allegro - Am....OK Computing A_minor_03_Valse_Op34 - Am....OK Computing A_minor_06-Mazurka_Op_No_6 - Am....OK Computing A_minor_13-Mazurka_Op_No_3 - Am....OK Computing A_minor_16_No_4_Agitato - Am....OK Computing A_minor_16_valse_Brown_index_150 - Am....OK Computing A_minor_23_No_11_Allegro_con_Brio - A....OK Computing A_minor_30-Mazurka_Op_No_0 - Am....OK Computing A_minor_Georges_Enescu_Allegro_Tzygane - Am....OK Computing A_minor_Georges_Enescu_Andante_Tzygane - Am....OK Computing A_minor_Georges_Enescu_moderato_Tzygane - Am....OK Computing A_minor_Prelude_No_02_ - Am....OK Computing A_minor_Quartet_No_7_Op_16_2_Andante_cantabile_Dvorak_String_Quartet_No7_Dvorak_String_Quartet_No7 - Am....OK Computing A_minor_Quartet_No_7_in_Op_16_3_Allegro_scherzando_Dvorak_String_Quartet_No7 - Am....OK Computing A_minor_Ravel_Trio_in_4th_Mov_Finale_Anime_Rubinstein_Heifetz_Piatigorsky_ - Am....OK Computing B_flat_Major_Introduction_Variatons_on_Je_vends_des_scapulaires_01_ - Bb....OK Computing B_flat_major_01_Variations_on_Mozart_La_ci_darem_la_mano_Op42 - Bb....OK Computing B_flat_major_05-Mazurka_Op_No_5 - Bb....OK Computing B_flat_major_10-Mazurka_Op_No_0 - Bb....OK Computing B_flat_major_10_Allegro_CD1_Full_Symphonie_Mozart - Bb....OK Computing B_flat_major_11_Allegro_spiritoso_CD05_Full_Symphonie_Mozart - Bb....OK Computing B_flat_major_11_Andante_CD1_Full_Symphonie_Mozart - Bb....OK Computing B_flat_major_12_Allegro_molto_CD1_Full_Symphonie_Mozart - Bb....OK Computing B_flat_major_12_Andantino_grazioso_CD05_Full_Symphonie_Mozart - Bb....OK Computing B_flat_major_13_Allegro_CD05_Full_Symphonie_Mozart - Bb....OK Computing B_flat_major_1_Allegro_assai_CD10_Full_Symphonie_Mozart - Bb....OK Computing B_flat_major_2_Andante_moderato_CD10_Full_Symphonie_Mozart - Bb....OK Computing B_flat_major_3_Menuetto_trio_CD10_Full_Symphonie_Mozart - Bb....OK Computing B_flat_major_4_Allegro_assai_CD10_Full_Symphonie_Mozart - Bb....OK Computing B_flat_major_Cantabile_Chopin_Complete_Piano_Music - Bb....OK Computing B_flat_major_No_6_Dvorak_Slavonics_Dances - Bb....OK Computing B_flat_major_Piano_Trio_No_1_3_Allegretto_scherzando_Dvorak_Piano_Trios_Vol2 - Bb....OK Computing B_flat_major_Piano_Trio_No_1_4_Finale_Allegro_vivace_Dvorak_Piano_Trios_Vol2 - Bb....OK Computing B_flat_major_Prelude_No_21_ - Bb....OK Computing B_flat_major_Schubert_Four_Impromptus_Op_142_D_935_3_Jandó - bb....OK Computing B_flat_major_Sonata_for_clarinet_in_and_piano_Allegro_con_fuoco_Tres_anime_F_Poulenc_Complete_Chamber_Music_Vol_2 - Bb....OK Computing B_flat_major_Sonata_for_clarinet_in_and_piano_Allegro_tristemente_Allegretto_tres_calme_tempo_allegretto_F_Poulenc_Complete_Chamber_Music_Vol_2 - Bb....OK Computing B_flat_major_Sonata_for_clarinet_in_and_piano_Romanza_Tres_calme_F_Poulenc_Complete_Chamber_Music_Vol_2 - Bb....OK Computing B_flat_minor_02_Scherzo_No2_Op_31 - Bbm....OK Computing B_flat_minor_17-Mazurka_Op_No_7 - Bbm....OK Computing B_flat_minor_No_5_Dvorak_Slavonics_Dances - Bbm....OK Computing B_flat_minor_Nocturne_Op_9_No_1_Chopin_Vol_1 - Bbm....OK Computing B_flat_minor_Prelude_No_16_ - Bbm....OK Computing B_major_28-Mazurka_Op_No_8 - B....OK Computing B_major_33-Mazurka_Op_No_3 - B....OK Computing B_major_39-Mazurka_Op_No_9 - B....OK Computing B_major_No_1_Dvorak_Slavonics_Dances - B....OK Computing B_major_Nocturne_Op_32_No_1_Chopin_Vol_1 - B....OK Computing B_major_Nocturne_Op_62_No_1_Chopin_Vol_2 - B....OK Computing B_major_Nocturne_Op_9_No_3_Chopin_Vol_1 - B....OK Computing B_major_Prelude_No_11_ - B....OK Computing B_minor_01_Scherzo_No1 - Bm....OK Computing B_minor_10_Valse_Op69_No2 - Bm....OK Computing B_minor_19-Mazurka_Op_No_9 - Bm....OK Computing B_minor_25-Mazurka_Op_No_5 - Bm....OK Computing B_minor_Allegro_22_No_10_con_fuoco - Bm....OK Computing B_minor_Badinerie_Bach_Suites_ouvertures - Bm....OK Computing B_minor_Bourr_e_I_II_Bach_Suites_ouvertures - Bm....OK Computing B_minor_Menuet_Bach_Suites_ouvertures - Bm....OK Computing B_minor_Polonaise_Bach_Suites_ouvertures - Bm....OK Computing B_minor_Pr_lude_in_arranjed_from_the_Well_Tempered_Clavier_Book_I_n_24_Bach_Suites_ouvertures - Bm....OK Computing B_minor_Prelude_No_06_ - Bm....OK Computing B_minor_Rondeau_Bach_Suites_ouvertures - Bm....OK Computing B_minor_Sarabande_Bach_Suites_ouvertures - Bm....OK Computing B_minor_Siciliano_arranged_from_the_Violin_Sonata_n_4_in_C_minor_BWV_1017_Bach_Suites_ouvertures - Bm....OK Computing B_minor_Suite_n_2_in_BWV_1067_Overture_Bach_Suites_ouvertures - B....OK Computing B_minor_Wachet_auf_ruft_uns_die_Stimme_arranged_from_Chorale_Variation_BWV_140_Bach_Suites_ouvertures - Bm....OK Computing C_major_01_No_1_allegro - C....OK Computing C_major_04_Allegro_vivace_CD14_Full_Symphonie_Mozart - C....OK Computing C_major_05_Andante_cantabile_CD14_Full_Symphonie_Mozart - C....OK Computing C_major_06_Menuetto_trio_Allegretto_CD14_Full_Symphonie_Mozart - C....OK Computing C_major_07_Molto_allegro_CD14_Full_Symphonie_Mozart - C....OK Computing C_major_07_No_7_Vivace - C....OK Computing C_major_09-Mazurka_Op_No_9 - C....OK Computing C_major_10_Allegro_vivace_CD10_Full_Symphonie_Mozart - C....OK Computing C_major_15-Mazurka_Op_No_5 - C....OK Computing C_major_1_Allegro_spiritoso_CD08_Full_Symphonie_Mozart - C....OK Computing C_major_1_Molto_allegro_CD09_Full_Symphonie_Mozart - C....OK Computing C_major_24-Mazurka_Op_No_4 - C....OK Computing C_major_2_Andante_CD08_Full_Symphonie_Mozart - C....OK Computing C_major_2_Andante_Cantabile_Con_Moto_LVBeethoven_Symphonies_No1No2 - C....OK Computing C_major_2_Andantino_CD09_Full_Symphonie_Mozart - C....OK Computing C_major_3_Menuetto_Allegretto_trio_CD08_Full_Symphonie_Mozart - C....OK Computing C_major_3_Menuetto_Allegro_Molto_E_Vivace_LVBeethoven_Symphonies_No1No2 - C....OK Computing C_major_3_Presto_assai_CD09_Full_Symphonie_Mozart - C....OK Computing C_major_40-Mazurka_Op_No_0 - C....OK Computing C_major_4_Presto_CD08_Full_Symphonie_Mozart - C....OK Computing C_major_5_Allegro_assai_CD05_Full_Symphonie_Mozart - C....OK Computing C_major_6_Adagio_Allegro_spiritoso_CD11_Full_Symphonie_Mozart - C....OK Computing C_major_6_Andantino_grazioso_CD05_Full_Symphonie_Mozart - C....OK Computing C_major_7_Andante_CD11_Full_Symphonie_Mozart - C....OK Computing C_major_7_Presto_assai_CD05_Full_Symphonie_Mozart - C....OK Computing C_major_8_Allegro_vivace_CD10_Full_Symphonie_Mozart - C....OK Computing C_major_8_Menuetto_trio_CD11_Full_Symphonie_Mozart - C....OK Computing C_major_9_Andante_di_molto_piu_tosto_allegretto_CD10_Full_Symphonie_Mozart - C....OK Computing C_major_9_Presto_CD11_Full_Symphonie_Mozart - C....OK Computing C_major_Bolero_06_ - C....OK Computing C_major_Bourr_e_I_II_Bach_Suites_ouvertures - C....OK Computing C_major_Courante_Bach_Suites_ouvertures - C....OK Computing C_major_Forlane_Bach_Suites_ouvertures - C....OK Computing C_major_Gavotte_I_II_Bach_Suites_ouvertures - C....OK Computing C_major_Menuet_I_II_Bach_Suites_ouvertures - C....OK Computing C_major_No_1_Dvorak_Slavonics_Dances - C....OK Computing C_major_No_7_Dvorak_Slavonics_Dances - C....OK Computing C_major_Passepied_I_II_Bach_Suites_ouvertures - C....OK Computing C_major_Prelude_No_01_ - C....OK Computing C_major_Suite_n_1_BWV_1066_Overture_Bach_Suites_ouvertures - C....OK Computing C_major_Sym_No_1_in_1_Adagio_Molto_Allegro_Con_Brio_LVBeethoven_Symphonies_No1No2 - C....OK Computing C_minor_05_Polonaise_Op.40_n2 - Cm....OK Computing C_minor_08_Suite_No_5_BWV_1011_Allemande_JSBach_Suite_Pour_Violoncelle - Cm....OK Computing C_minor_09_Suite_No_5_BWV_1011_Courante_JSBach_Suite_Pour_Violoncelle - Cm....OK Computing C_minor_10_Suite_No_5_BWV_1011_Sarabande_JSBach_Suite_Pour_Violoncelle - Cm....OK Computing C_minor_11_Suite_No_5_BWV_1011_Gavotte_1_2_JSBach_Suite_Pour_Violoncelle - Cm....OK Computing C_minor_11_Suite_No_5_BWV_1011_Gigue_JSBach_Suite_Pour_Violoncelle - Cm....OK Computing C_minor_12_No_12_Allegro_con_Fuoco - Cm....OK Computing C_minor_18-Mazurka_Op_No_8 - Cm....OK Computing C_minor_24_No_12_Allegro_molto - Cm....OK Computing C_minor_41-Mazurka_Op_No_1 - Cm....OK Computing C_minor_7_Suite_No_5_BWV_1011_Prelude_JSBach_Suite_Pour_Violoncelle - Cm....OK Computing C_minor_Introduction_Rondo_07_ - Cm....OK Computing C_minor_No_7_Dvorak_Slavonics_Dances - Cm....OK Computing C_minor_Nocturne_B_I_108_Chopin_Vol_1 - Cm....OK Computing C_minor_Nocturne_Op_48_No_1_Chopin_Vol_2 - Cm....OK Computing C_minor_Pno_trio_no_1_op_8_Shostakovitch_Piano_Trios_1_2 - Cm....OK Computing C_minor_Prelude_No_20_ - Cm....OK Computing C_minor_Rondo_02_ - Cm....OK Computing C_minor_Schubert_Four_Impromptus_Op_90_D_899_1_Jandó - Cm....OK Computing C_minor_Vladimir_Horowitz_Etude_In_Op_25_No_12_Chopin - Cm....OK Computing C_sharp_minor_02_Polonaise_Op.26_n1 - C#m....OK Computing C_sharp_minor_03_Scherzo_No3_Op_39 - C#m....OK Computing C_sharp_minor_04_No_4_Presto - C#m....OK Computing C_sharp_minor_07_Valse_Op64_No2 - C#m....OK Computing C_sharp_minor_19_No_7_Lento - C#m....OK Computing C_sharp_minor_21-Mazurka_Op_No_1 - C#m....OK Computing C_sharp_minor_26-Mazurka_Op_No_6 - C#m....OK Computing C_sharp_minor_35-Mazurka_Op_No_5 - C#m....OK Computing C_sharp_minor_38-Mazurka_Op_No_8 - C#m....OK Computing C_sharp_minor_Nocturne_B_I_49_Chopin_Vol_1 - C#....OK Computing C_sharp_minor_Nocturne_Op_27_No_1_Chopin_Vol_1 - C#m....OK Computing C_sharp_minor_Prelude_No_10_ - C#m....OK Computing C_sharp_minor_Prelude_No_25_ - C#m....OK Computing D_flat_major_06_Berceuse_Op_57 - Db....OK Computing D_flat_major_06_Valse_p64_No1_Minute_Waltz - Db....OK Computing D_flat_major_13_Valse_Op70_No3 - Db....OK Computing D_flat_major_20-Mazurka_Op_No_0 - Db....OK Computing D_flat_major_20_No_8_Vivace_assai - Db....OK Computing D_flat_major_26_No_2_Allegretto - Db....OK Computing D_flat_major_Berceuse_Op_57_Chopin_Complete_Piano_Music - Db....OK Computing D_flat_major_No_4_Dvorak_Slavonics_Dances - Db....OK Computing D_flat_major_Nocturne_Op_27_No_2_Chopin_Vol_1 - Db....OK Computing D_flat_major_Nouvelle_Etude_No_3_Chopin_Complete_Piano_Music - Db....OK Computing D_flat_major_Prelude_No_15_ - Db....OK Computing D_major_01_Allegro_assai_CD14_Full_Symphonie_Mozart - D....OK Computing D_major_01_Allegro_vivace_CD12_Full_Symphonie_Mozart - D....OK Computing D_major_02_Andante_CD12_Full_Symphonie_Mozart - D....OK Computing D_major_02_Andante_CD14_Full_Symphonie_Mozart - D....OK Computing D_major_02_Ludwig_van_Beethoven_Violin_Concerto_Op_61_Larghetto - D....OK Computing D_major_03_Allegro_CD12_Full_Symphonie_Mozart - D....OK Computing D_major_03_Allegro_CD14_Full_Symphonie_Mozart - D....OK Computing D_major_03_Ludwig_van_Beethoven_Violin_Concerto_Op_61_Rondo_Allegro - D....OK Computing D_major_04_Allegro_con_spirito_CD12_Full_Symphonie_Mozart - D....OK Computing D_major_05_Andante_CD12_Full_Symphonie_Mozart - D....OK Computing D_major_06_Menuetto_trio_CD12_Full_Symphonie_Mozart - D....OK Computing D_major_07_Finale_Presto_CD12_Full_Symphonie_Mozart - D....OK Computing D_major_08_Adagio_Allegro_CD12_Full_Symphonie_Mozart - D....OK Computing D_major_09_Andante_CD12_Full_Symphonie_Mozart - D....OK Computing D_major_10_Andante_CD04_Full_Symphonie_Mozart - D....OK Computing D_major_10_Menuetto_trio_CD08_Full_Symphonie_Mozart - D....OK Computing D_major_10_Presto_CD12_Full_Symphonie_Mozart - D....OK Computing D_major_10_Presto_assai_CD05_Full_Symphonie_Mozart - D....OK Computing D_major_11_Andante_grazioso_CD02_Full_Symphonie_Mozart - D....OK Computing D_major_11_Andantino_grazioso_Allegro_CD08_Full_Symphonie_Mozart - D....OK Computing D_major_11_Molto_allegro_CD04_Full_Symphonie_Mozart - D....OK Computing D_major_12_Allegro_moderato_CD04_Full_Symphonie_Mozart - D....OK Computing D_major_12_Presto_CD02_Full_Symphonie_Mozart - D....OK Computing D_major_13_Allegro_assai_CD02_Full_Symphonie_Mozart - D....OK Computing D_major_13_Andante_CD04_Full_Symphonie_Mozart - D....OK Computing D_major_13_Molto Allegro_CD1_Full_Symphonie_Mozart - D....OK Computing D_major_13_Suite_No_6_BWV_1012_Prelude_JSBach_Suite_Pour_Violoncelle - D....OK Computing D_major_14_Andante_CD1_Full_Symphonie_Mozart - D....OK Computing D_major_14_Andante_grazioso_CD02_Full_Symphonie_Mozart - D....OK Computing D_major_14_Presto_CD04_Full_Symphonie_Mozart - D....OK Computing D_major_15_Menuetto_Trio_CD1_Full_Symphonie_Mozart - D....OK Computing D_major_15_Presto_CD02_Full_Symphonie_Mozart - D....OK Computing D_major_15_Suite_No_6_BWV_1012_Courante_JSBach_Suite_Pour_Violoncelle - D....OK Computing D_major_16_Finale_CD1_Full_Symphonie_Mozart - D....OK Computing D_major_16_Suite_No_6_BWV_1012_Sarabande_JSBach_Suite_Pour_Violoncelle - D....OK Computing D_major_17_Allegro_CD1_Full_Symphonie_Mozart - D....OK Computing D_major_17_Suite_No_6_BWV_1012_Gavotte_12_JSBach_Suite_Pour_Violoncelle - D....OK Computing D_major_18_Andante_CD1_Full_Symphonie_Mozart - D....OK Computing D_major_18_Suite_No_6_BWV_1012_Gigue_JSBach_Suite_Pour_Violoncelle - D....OK Computing D_major_19_Allegro_molto_CD1_Full_Symphonie_Mozart2 - D....OK Computing D_major_1_Allegro_CD02_Full_Symphonie_Mozart - D....OK Computing D_major_1_Allegro_CD04_Full_Symphonie_Mozart - D....OK Computing D_major_1_March_K408_N_2_K385a_CD11_Full_Symphonie_Mozart - D....OK Computing D_major_1_Molto_allegro_CD07_Full_Symphonie_Mozart - D....OK Computing D_major_20_Allegro_CD1_Full_Symphonie_Mozart - D....OK Computing D_major_21_Andante_CD1_Full_Symphonie_Mozart - D....OK Computing D_major_22_Menuetto_Trio_CD1_Full_Symphonie_Mozart - D....OK Computing D_major_23-Mazurka_Op_No_3 - D....OK Computing D_major_23_Presto_CD1_Full_Symphonie_Mozart - D....OK Computing D_major_2_Allegro_con_spirito_CD11_Full_Symphonie_Mozart - D....OK Computing D_major_2_Andante_CD02_Full_Symphonie_Mozart - D....OK Computing D_major_2_Andante_CD04_Full_Symphonie_Mozart - D....OK Computing D_major_2_Andantino_con_moto_CD07_Full_Symphonie_Mozart - D....OK Computing D_major_3_Andante_CD11_Full_Symphonie_Mozart - D....OK Computing D_major_3_Menuetto_Trio_CD02_Full_Symphonie_Mozart - D....OK Computing D_major_3_Menuetto_trio_CD04_Full_Symphonie_Mozart - D....OK Computing D_major_3_Menuetto_trio_CD07_Full_Symphonie_Mozart - D....OK Computing D_major_4_Allegro_CD04_Full_Symphonie_Mozart - D....OK Computing D_major_4_Allegro_CD1_Full_Symphonie_Mozart - D....OK Computing D_major_4_Allegro_maestosos_Allegro_molto_CD09_Full_Symphonie_Mozart - D....OK Computing D_major_4_Menuetto_trio_CD11_Full_Symphonie_Mozart - D....OK Computing D_major_4_Presto_CD02_Full_Symphonie_Mozart - D....OK Computing D_major_4_Presto_CD07_Full_Symphonie_Mozart - D....OK Computing D_major_5_Adagio_maestoso_Allegro_con_spirito_CD10_Full_Symphonie_Mozart - D....OK Computing D_major_5_Allegro_CD02_Full_Symphonie_Mozart - D....OK Computing D_major_5_Allegro_molto_CD08_Full_Symphonie_Mozart - D....OK Computing D_major_5_Andante_CD1_Full_Symphonie_Mozart - D....OK Computing D_major_5_Andante_maestoso_Allegro_assai_CD07_Full_Symphonie_Mozart - D....OK Computing D_major_5_Menuetto_galante_trio_CD09_Full_Symphonie_Mozart - D....OK Computing D_major_5_Presto_CD11_Full_Symphonie_Mozart - D....OK Computing D_major_6_Andante_CD02_Full_Symphonie_Mozart - D....OK Computing D_major_6_Andante_CD07_Full_Symphonie_Mozart - D....OK Computing D_major_6_Andante_CD09_Full_Symphonie_Mozart - D....OK Computing D_major_6_Andante_grazioso_CD08_Full_Symphonie_Mozart - D....OK Computing D_major_6_Andantino_CD10_Full_Symphonie_Mozart - D....OK Computing D_major_6_Presto_CD1_Full_Symphonie_Mozart - D....OK Computing D_major_7_Allegro_CD02_Full_Symphonie_Mozart - D....OK Computing D_major_7_Allegro_CD08_Full_Symphonie_Mozart - D....OK Computing D_major_7_Menuetto_2_trios_CD09_Full_Symphonie_Mozart - D....OK Computing D_major_7_Menuetto_trio_CD07_Full_Symphonie_Mozart - D....OK Computing D_major_7_Presto_CD10_Full_Symphonie_Mozart - D....OK Computing D_major_8_Adagio_Allegro_assai_CD09_Full_Symphonie_Mozart - D....OK Computing D_major_8_Allegro_assai_CD08_Full_Symphonie_Mozart - D....OK Computing D_major_8_Allegro_spiritoso_CD05_Full_Symphonie_Mozart - D....OK Computing D_major_8_Andante_CD1_Full_Symphonie_Mozart - D....OK Computing D_major_8_Prestissimo_CD07_Full_Symphonie_Mozart - D....OK Computing D_major_9_Andante_CD08_Full_Symphonie_Mozart - D....OK Computing D_major_9_Andantino_grazioso_CD05_Full_Symphonie_Mozart - D....OK Computing D_major_9_Molto_allegro_CD04_Full_Symphonie_Mozart - D....OK Computing D_major_9_Presto_CD1_Full_Symphonie_Mozart - D....OK Computing D_major_Classical_Mozart_Pachabel_Cannon_in_D_Piano_ - D....OK Computing D_major_Concerto_No_26_DK537_Allegro_Mozart_Piano_concerto_23_26 - D....OK Computing D_major_Concerto_No_26_DK537_Larghetto_Mozart_Piano_concerto_23_26 - D....OK Computing D_major_No_6_Dvorak_Slavonics_Dances - D....OK Computing D_major_Prelude_No_05_ - D....OK Computing D_minor_Adagio_Concerto_pour_piano_No5_Sonate_pour_piano_LVBeethoven_Tempest - Dm....OK Computing D_minor_Allegretto_Concerto_pour_piano_No5_Sonate_pour_piano_LVBeethoven_Tempest - Dm....OK Computing D_minor_Bagatelle_in_for_Violin_and_piano_F_Poulenc_Complete_Chamber_Music_Vol_2 - Dm....OK Computing D_minor_Concerto_BWV_1052_III_Allegro_Bach_Complet_Orchestral - Dm....OK Computing D_minor_Concerto_BWV_1052_II_Adagio_Bach_Complet_Orchestral - Dm....OK Computing D_minor_Concerto_BWV_1052_I_Allegro_Bach_Complet_Orchestral - Dm....OK Computing D_minor_Fantasia_in_Beethoven_Mozart_Schubert_Brahms_Schumann - Dm....OK Computing D_minor_Largo_Allegro_Concerto_pour_piano_No5_Sonate_pour_piano_LVBeethoven_Tempest - Dm....OK Computing D_minor_Prelude_No_24_ - Dm....OK Computing D_minor_Toccata_Et_Fugue_BWV_565_Bach_Oeuvres_Pour_Orgue - Dm....OK Computing D_minor_Visee_Suite_Allemande_Julian_Bream_Baroque_Guitar - Dm....OK Computing D_minor_Visee_Suite_Bourree_Julian_Bream_Baroque_Guitar - Dm....OK Computing D_minor_Visee_Suite_Courante_Julian_Bream_Baroque_Guitar - Dm....OK Computing D_minor_Visee_Suite_Gavotte_Julian_Bream_Baroque_Guitar - Dm....OK Computing D_minor_Visee_Suite_Gigue_Julian_Bream_Baroque_Guitar - Dm....OK Computing D_minor_Visee_Suite_Menuets_I_and_II_Julian_Bream_Baroque_Guitar - Dm....OK Computing D_minor_Visee_Suite_Sarabande_Julian_Bream_Baroque_Guitar - Dm....OK Computing D_minor_Visee_Suite_in_Prelude_Julian_Bream_Baroque_Guitar - Dm....OK Computing D_sharp_major_14_Suite_No_6_BWV_1012_Allemande_JSBach_Suite_Pour_Violoncelle - D#....OK Computing E_flat_major_01_Adagio_Allegro_CD13_Full_Symphonie_Mozart - Eb....OK Computing E_flat_major_01_Andante_Spianato_et_Grande_Polonaise_Brillante_Op.62 - Eb....OK Computing E_flat_major_01_Grande_Valse_Brillante_Op18 - Eb....OK Computing E_flat_major_01_Suite_No_4_BWV_1010_I_Prelude_JSBach_Suite_Pour_Violoncelle - Eb....OK Computing E_flat_major_02_Andante_con_moto_CD13_Full_Symphonie_Mozart - Eb....OK Computing E_flat_major_02_Suite_No_4_BWV_1010_Allemande_JSBach_Suite_Pour_Violoncelle - Eb....OK Computing E_flat_major_03_Menuetto_trio_Allegretto_CD13_Full_Symphonie_Mozart - Eb....OK Computing E_flat_major_03_Suite_No_4_BWV_1010_Courante_JSBach_Suite_Pour_Violoncelle - Eb....OK Computing E_flat_major_04_Finale_Allegro_CD13_Full_Symphonie_Mozart - Eb....OK Computing E_flat_major_04_Suite_No_4_BWV_1010_Sarabande_JSBach_Suite_Pour_Violoncelle - Eb....OK Computing E_flat_major_05_Suite_No_4_BWV_1010_Bourree_1_2_JSBach_Suite_Pour_Violoncelle - Eb....OK Computing E_flat_major_06_Suite_No_4_BWV_1010_Gigue_JSBach_Suite_Pour_Violoncelle - Eb....OK Computing E_flat_major_11_No_11_Allegretto - Eb....OK Computing E_flat_major_17_valse_Brown_Index_133 - Eb....OK Computing E_flat_major_18_valse_Opposth - Eb....OK Computing E_flat_major_1_Allegro_molto_CD1_Full_Symphonie_Mozart - Eb....OK Computing E_flat_major_1_Molto_presto_Andante_Allegro_CD05_Full_Symphonie_Mozart - Eb....OK Computing E_flat_major_2_Andante_CD1_Full_Symphonie_Mozart - Eb....OK Computing E_flat_major_3_Presto_CD1_Full_Symphonie_Mozart - Eb....OK Computing E_flat_major_5_Adagio_un_poco_mosso_Beethoven_Piano_Concerto_5_Emperor - Eb....OK Computing E_flat_major_5_Allegro_Beethoven_Piano_Concerto_5_Emperor - Eb....OK Computing E_flat_major_5_Allegro_CD03_Full_Symphonie_Mozart - Eb....OK Computing E_flat_major_5_Rondo_Allegro_Beethoven_Piano_Concerto_5_Emperor - Eb....OK Computing E_flat_major_6_Andante_CD03_Full_Symphonie_Mozart - Eb....OK Computing E_flat_major_7_Menuetto_trio_CD03_Full_Symphonie_Mozart - Eb....OK Computing E_flat_major_8_Allegro_CD03_Full_Symphonie_Mozart - Eb....OK Computing E_flat_major_9_Andantino_grazioso_Anhang_CD03_Full_Symphonie_Mozart - Eb....OK Computing E_flat_major_Beethoven_Piano_Concerto_No_5_in_Op_73_Emporor_Pachelbel_Bach_Beethoven_Schubert_Mozart_Dvorak_C - Eb....OK Computing E_flat_major_Largo_Chopin_Complete_Piano_Music - Eb....OK Computing E_flat_major_Nocturne_Op_55_No_2_Chopin_Vol_2 - Eb....OK Computing E_flat_major_Nocturne_Op_9_No_2_Chopin_Vol_1 - Eb....OK Computing E_flat_major_Prelude_No_19_ - Eb....OK Computing E_flat_major_Schubert_Four_Impromptus_Op_90_D_899_2_Jandó - Eb....OK Computing E_flat_major_Symphony_Finale_Vivace_Haydn_Symphonie_No99_101_Die_Uhr - Eb....OK Computing E_flat_major_Symphony_No_99_Adagio_Haydn_Symphonie_No99_101_Die_Uhr - Eb....OK Computing E_flat_major_Symphony_No_99_in_Adagio_Vivace_assai_Haydn_Symphonie_No99_101_Die_Uhr - Eb....OK Computing E_flat_minor_03_Polonaise_Op.26_n2 - Ebm....OK Computing E_flat_minor_04-Mazurka_Op_No_4 - Ebm....OK Computing E_flat_minor_06_No_6_Andante_con_molto_ - Eb....OK Computing E_flat_minor_Prelude_No_14_ - Ebm....OK Computing E_major_03-Mazurka_Op_No_3 - E....OK Computing E_major_03_No_3_Lento_ma_non_Troppo - E....OK Computing E_major_04_Polonaise_Op40_No1 - E....OK Computing E_major_04_Scherzo_No4_Op_54 - E....OK Computing E_major_15_Valse_Brown_index_44 - E....OK Computing E_major_Concerto_BWV_1053_III_Allegro_Bach_Complet_Orchestral - E....OK Computing E_major_Concerto_BWV_1053_II_Siciliano_Bach_Complet_Orchestral - E....OK Computing E_major_Concerto_BWV_1053_I_Allegro_Bach_Complet_Orchestral - E....OK Computing E_major_L_210_Domenico_Scarlatti_Piano_Sonatas - E....OK Computing E_major_Nocturne_Op_62_No_2_Chopin_Vol_2 - E....OK Computing E_major_Prelude_No_09_ - E....OK Computing E_major_Spring_Allegro_Antonio_Vivaldi_The_Four_Seasons - E....OK Computing E_major_Spring_Danza_pastrorale_Allegro_Antonio_Vivaldi_The_Four_Seasons - E....OK Computing E_major_Spring_Largo_e_pianissimo_sempre_Antonio_Vivaldi_The_Four_Seasons - E....OK Computing E_major_Variations_sur_in_air_national_allemand_03_ - E....OK Computing E_minor_11_Mazurka_Op_No_1 - Em....OK Computing E_minor_12_Mazurka_Op_No_2 - Em....OK Computing E_minor_14_Valse_OpPosth - Em....OK Computing E_minor_17_No_5_Vivace17 - Em....OK Computing E_minor_27-Mazurka_Op_No_7 - Em....OK Computing E_minor_JSBach_Les_Grandes_Toccatas - Em....OK Computing E_minor_No_2_Dvorak_Slavonics_Dances - Em....OK Computing E_minor_Nocturne_Op_72_No_1_Chopin_Vol_2 - Em....OK Computing E_minor_Pno_trio_no_2_op_67_Allegretto_Shostakovitch_Piano_Trios_1_2 - Em....OK Computing E_minor_Pno_trio_no_2_op_67_Allegro_non_troppo_Shostakovitch_Piano_Trios_1_2 - Em....OK Computing E_minor_Pno_trio_no_2_op_67_Andante_Shostakovitch_Piano_Trios_1_2 - Em....OK Computing E_minor_Pno_trio_no_2_op_67_Largo_Shostakovitch_Piano_Trios_1_2 - Em....OK Computing E_minor_Prelude_No_04_ - Em....OK Computing F_Sharp_minor_Prelude_No_08_ - F....OK Computing F_major_03_Krakowiak_Op14 - F....OK Computing F_major_04_Valse_Brillante_OP34_No3 - F....OK Computing F_major_05_Ludwig_van_Beethoven_Romance_No_2_Op_50_Beethoven_RomanceBeethoven_Romance - F....OK Computing F_major_08_No_8_allegro - F....OK Computing F_major_15_No_3_allegro - F....OK Computing F_major_1_Allegro_CD03_Full_Symphonie_Mozart - F....OK Computing F_major_20_Allegro_CD02_Full_Symphonie_Mozart - F....OK Computing F_major_21_Andante_CD02_Full_Symphonie_Mozart - F....OK Computing F_major_22_Menuetto_Trio_CD02_Full_Symphonie_Mozart - F....OK Computing F_major_23_Allegro_molto_CD02_Full_Symphonie_Mozart - F....OK Computing F_major_2_Andantino_grazioso_CD03_Full_Symphonie_Mozart - F....OK Computing F_major_3_Menuetto_trio_CD03_Full_Symphonie_Mozart - F....OK Computing F_major_4_Molto_allegro_CD03_Full_Symphonie_Mozart - F....OK Computing F_major_7_Allegro_assai_CD1_Full_Symphonie_Mozart - F....OK Computing F_major_Allegro_moderato_Tres_doux_Ravel_String_Quartet_No_1 - G....OK Computing F_major_Assez_vif_Tres_rythme_Ravel_String_Quartet_No_1 - F....OK Computing F_major_Autumn_Adagio_Antonio_Vivaldi_The_Four_Seasons - F....OK Computing F_major_Autumn_Allegro_2_Antonio_Vivaldi_The_Four_Seasons - F....OK Computing F_major_Autumn_Allegro_Antonio_Vivaldi_The_Four_Seasons - F....OK Computing F_major_Ballade_II_Op_38_Chopin_Complete_Piano_Music - F....OK Computing F_major_Classical_Piano_Bach_Fantasia_in_D_minor - Dm....OK Computing F_major_Concerto_No_1_1_Allegro_JSBach_Concertos_Brandebourgeois_1_2_3_5 - F....OK Computing F_major_Concerto_No_1_2_Adagio_JSBach_Concertos_Brandebourgeois_1_2_3_5 - F....OK Computing F_major_Concerto_No_1_3_Allegro_JSBach_Concertos_Brandebourgeois_1_2_3_5 - F....OK Computing F_major_Concerto_No_1_4_Menueto_JSBach_Concertos_Brandebourgeois_1_2_3_5 - F....OK Computing F_major_Concerto_No_2_1_Allegro_JSBach_Concertos_Brandebourgeois_1_2_3_5 - F....OK Computing F_major_Concerto_No_2_2_Andante_JSBach_Concertos_Brandebourgeois_1_2_3_5 - F....OK Computing F_major_Concerto_No_2_3_Allegro_assai_JSBach_Concertos_Brandebourgeois_1_2_3_5 - F....OK Computing F_major_Introduction_and_Allegro_for_Harp_FLute_Clarinet_Ravel_String_Quartet - F....OK Computing F_major_No_3_Dvorak_Slavonics_Dances - F....OK Computing F_major_No_4_Dvorak_Slavonics_Dances - F....OK Computing F_major_Nocturne_Op_15_No_1_Chopin_Vol_1 - F....OK Computing F_major_Prelude_No_23_ - F....OK Computing F_major_Rondo_a_la_Mazur_04_ - F....OK Computing F_major_Tres_lent_Ravel_String_Quartet_No_1 - F....OK Computing F_major_Vif_et_agite_Ravel_String_Quartet_No_1 - F....OK Computing F_minor_04_Maestoso - Fm....OK Computing F_minor_05_Fantasie_Op_49 - Fm....OK Computing F_minor_05_Larguetto - Fm....OK Computing F_minor_06_Allegro_vivace - Fm....OK Computing F_minor_07-Mazurka_Op_No_7 - Fm....OK Computing F_minor_09_No_9_Allegro_molto_agitato - Fm....OK Computing F_minor_14_No_2_Presto - Fm....OK Computing F_minor_25_No_1_Andantino - Fm....OK Computing F_minor_34-Mazurka_Op_No_4 - Fm....OK Computing F_minor_Ballade_IV_Op_52_Chopin_Complete_Piano_Music - Fm....OK Computing F_minor_Concerto_BWV_1056_III_Presto_Bach_Complet_Orchestral - Fm....OK Computing F_minor_Concerto_BWV_1056_II_Largo_Bach_Complet_Orchestral - Fm....OK Computing F_minor_Concerto_BWV_1056_I_Allegro_Bach_Complet_Orchestral - Fm....OK Computing F_minor_Fantasie_Op_49_Chopin_Complete_Piano_Music - Fm....OK Computing F_minor_L_118_Domenico_Scarlatti_Piano_Sonatas - Fm....OK Computing F_minor_L_383_Domenico_Scarlatti_Piano_Sonatas - Fm....OK Computing F_minor_No_5_inOp_9_3_Tempo_di_valse_Dvorak_String_Quartet_No5_ - Fm....OK Computing F_minor_No_5_in_Op_9_2_Andante_con_moto_quasi_allegretto_Dvorak_String_Quartet_No5_ - Fm....OK Computing F_minor_Nocturne_Op_55_No_1_Chopin_Vol_2 - Fm....OK Computing F_minor_Nouvelle_Etude_No_1_Chopin_Complete_Piano_Music - Fm....OK Computing F_minor_Piano_Trio_Op_65_B_130_III_Poco_adagio_Dvorak_Piano_Trios_Vol1 - Fm....OK Computing F_minor_Piano_Trio_Op_65_B_130_II_Allegro_grazioso_Dvorak_Piano_Trios_Vol1 - Fm....OK Computing F_minor_Piano_Trio_Op_65_B_130_IV_Finale_Allegro_con_brio_Dvorak_Piano_Trios_Vol1 - Fm....OK Computing F_minor_Piano_Trio_Op_65_B_130_I_Allegro_ma_non_troppo_Dvorak_Piano_Trios_Vol1 - Fm....OK Computing F_minor_Prelude_No_18_ - Fm....OK Computing F_minor_Schubert_Four_Impromptus_Op_142_D_935_1_Jandó - Fm....OK Computing F_minor_Schubert_Four_Impromptus_Op_142_D_935_4_Jandó - Fm....OK Computing F_minor_Winter_Allegro_Antonio_Vivaldi_The_Four_Seasons - Fm....OK Computing F_minor_Winter_Allegro_non_molto_Antonio_Vivaldi_The_Four_Seasons - Fm....OK Computing F_minor_Winter_Largo_Antonio_Vivaldi_The_Four_Seasons - Fm....OK Computing F_sharp_major_07_Barcarolle_Op_60 - F#....OK Computing F_sharp_major_Nocturne_Op_15_No_2_Chopin_Vol_1 - F#....OK Computing F_sharp_major_Prelude_No_13_ - F#....OK Computing F_sharp_minor_01-Mazurka_Op_No_1 - F#m....OK Computing F_sharp_minor_06_Polonaise_Op.44_n1 - F#m....OK Computing F_sharp_minor_32-Mazurka_Op_No_2 - F#m....OK Computing F_sharp_minor_JSBach_Les_Grandes_Toccatas - F#m....OK Computing F_sharp_minor_Nocturne_Op_48_No_2_Chopin_Vol_2 - F#m....OK Computing G_flat_major_05_No_5_Vivace - Gb....OK Computing G_flat_major_11_Valse_Op70_No1 - Gb....OK Computing G_flat_major_21_No_9_Allegro_assai - Gb....OK Computing G_flat_major_Schubert_Four_Impromptus_Op_90_D_899_3_Jandó - Gb....OK Computing G_major_04_Ludwig_van_Beethoven_Romance_No_1_Op_40_Beethoven_RomanceBeethoven_Romance - G....OK Computing G_major_10_Andante_CD09_Full_Symphonie_Mozart - G....OK Computing G_major_11_Tempo_primo_CD09_Full_Symphonie_Mozart - G....OK Computing G_major_2_Allegro_CD05_Full_Symphonie_Mozart - G....OK Computing G_major_36-Mazurka_Op_No_6 - G....OK Computing G_major_3_Andantino_grazioso_CD05_Full_Symphonie_Mozart - G....OK Computing G_major_4_Presto_CD05_Full_Symphonie_Mozart - G....OK Computing G_major_8_Allegro_Andante_CD02_Full_Symphonie_Mozart - G....OK Computing G_major_9_Allegro_spiritoso_CD09_Full_Symphonie_Mozart - G....OK Computing G_major_9_Rondo_Allegro_CD02_Full_Symphonie_Mozart - G....OK Computing G_major_Concerto_No_3_1_Allegro_moderato_JSBach_Concertos_Brandebourgeois_1_2_3_5 - G....OK Computing G_major_Concerto_No_3_3_Allegro_JSBach_Concertos_Brandebourgeois_1_2_3_5 - G....OK Computing G_major_Debussy_Trio_No_1_Andant_o_con_moto_allegro_Debussy_French_Trios_Piano - G....OK Computing G_major_Debussy_Trio_No_1_Andante_espressivo_Debussy_French_Trios_Piano - Gm....OK Computing G_major_Debussy_Trio_No_1_F_ale_Appassionato_Debussy_French_Trios_Piano - G....OK Computing G_major_Debussy_Trio_No_1_Scherzo_termezzo_Moderato_con_allegro_Debussy_French_Trios_Piano - G....OK Computing G_major_Flute_Concerto_No_1_K313_III_Rondo_tempo_di_menuetto_Alberto_Lizzio_Mozart_Festival_Orchestra_Mozart - G....OK Computing G_major_Flute_Concerto_No_1_K313_II_Andante_non_troppo_Alberto_Lizzio_Mozart_Festival_Orchestra_Mozart - G....OK Computing G_major_Flute_Concerto_No_1_in_K313_I_Allegro_maestoso_Alberto_Lizzio_Mozart_Festival_Orchestra_Mozart - G....OK Computing G_major_L_103_Domenico_Scarlatti_Piano_Sonatas - G....OK Computing G_major_L_387_Domenico_Scarlatti_Piano_Sonatas - G....OK Computing G_major_L_487_Domenico_Scarlatti_Piano_Sonatas - G....OK Computing G_major_Nocturne_Op_37_No_2_Chopin_Vol_2 - G....OK Computing G_major_Prelude_No_03_ - G....OK Computing G_minor_05_Janusz_Olejniczak_Chopin_Ballade_No_1_in_Op_23 - Gm....OK Computing G_minor_05_Molto_Allegro_CD13_Full_Symphonie_Mozart - Gm....OK Computing G_minor_07_Menuetto_trio_Allegretto_CD13_Full_Symphonie_Mozart - Gm....OK Computing G_minor_08_Allegro_assai_CD13_Full_Symphonie_Mozart - Gm....OK Computing G_minor_14_Mazurka_Op_No_4 - Gm....OK Computing G_minor_1_Allegro_con_brio_CD06_Full_Symphonie_Mozart - Gm....OK Computing G_minor_2_Andante_CD06_Full_Symphonie_Mozart - Gm....OK Computing G_minor_3_Menuetto_trio_CD06_Full_Symphonie_Mozart - Gm....OK Computing G_minor_4_Allegro_CD06_Full_Symphonie_Mozart - Gm....OK Computing G_minor_Allemande_Bach_Suites_ouvertures - Gm....OK Computing G_minor_Anime_et_tres_decide_debussy_Debussy_String_Quartet_No1 - Gm....OK Computing G_minor_Assez_vif_et_bien_rythme_Debussy_String_Quartet_No1 - Gm....OK Computing G_minor_Ballade_I_Op_23_Chopin_Complete_Piano_Music - Gm....OK Computing G_minor_Courante_Bach_Suites_ouvertures - Gm....OK Computing G_minor_Dvorak_Piano_Concerto_in_1_Allegro_agitato_Carlos_Kleiber_Sviatoslav_Richter - Gm....OK Computing G_minor_Gavotte_Bach_Suites_ouvertures - Gm....OK Computing G_minor_JSBach_Les_Grandes_Toccatas - Gm....OK Computing G_minor_No_8_Dvorak_Slavonics_Dances - Gm....OK Computing G_minor_Nocturne_Op_15_No_3_Chopin_Vol_1 - Gm....OK Computing G_minor_Nocturne_Op_37_No_1_Chopin_Vol_2 - Gm....OK Computing G_minor_Piano_Trio_No2_Allegro_moderato_Dvorak_Piano_Trios_Vol2 - Gm....OK Computing G_minor_Piano_Trio_No2_Largo_Dvorak_Piano_Trios_Vol2 - Gm....OK Computing G_minor_Prelude_No_22_ - Gm....OK Computing G_minor_Sarabande_Bach_Suites_ouvertures - Gm....OK Computing G_minor_Suite_in_arranged_from_English_Suite_n_3_BWV_808_Pr_lude_Bach_Suites_ouvertures - Gm....OK Computing G_minor_Summer_Adagio_Presto_Antonio_Vivaldi_The_Four_Seasons - Gm....OK Computing G_minor_Summer_Allegro_non_molto_Antonio_Vivaldi_The_Four_Seasons - Gm....OK Computing G_minor_Summer_Presto_Antonio_Vivaldi_The_Four_Seasons - Gm....OK Computing G_minor_The_Pianist_06_Frederic_Chopin_Waltz_No_3_in_Op_32_No_2 - G....OK Computing G_minor_Tres_modere_debussy_Debussy_String_Quartet_No1 - Gm....OK Computing G_sharp_minor_02_Mazurka_Op_No_2 - G#m....OK Computing G_sharp_minor_18_No_6_allegro - G#m....OK Computing G_sharp_minor_22_Mazurka_Op_No_2 - G#m....OK Computing G_sharp_minor_Prelude_No_12 - G#m....OK Computing No_7_A_major - A....OK Computing Vanessa_Mae_-_The_Violin_Player_-_01_-_Toccata_And_Fugue_In_D_Minor - Dm....OK Computing Vivaldi_Sonate_A_Major - A....OK Computing Vladimir_Horowitz_-_Mozart_-_01_-_Piano_Sonata_In_B_Flat_Major_K.281_-_Allegro - Bb....OK Computing Vladimir_Horowitz_-_Mozart_-_04_-_Piano_Sonata_In_C_Major_K.330_-_Allegro_Moderato - C....OK Computing Vladimir_Horowitz_-_Mozart_-_07_-_Piano_Sonata_In_B_Flat_Major_K.333_-_Allegro - Bb....OK Computing Vladimir_Horowitz_-_Mozart_-_10_-_Adagio_In_B_Minor_K.540 - Bm....OK Computing Vladimir_Horowitz_-_Mozart_-_11_-_Rondo_In_D_Major_K.485 - D....OK Computing mozart-04-no.24_in_c_minor-osc - Cm....OK Computing mozart-11-no.4_in_d_major_k.218-osc - D....OK
example/.ipynb_checkpoints/test-lstm-checkpoint.ipynb
###Markdown demoThis is a demo for model temporal test and plot the result map and time series. Before this we trained a model using [train-lstm.py](train-lstm.py). By default the model will be saved in [here](output/CONUSv4f1/). - Load packages and define test options ###Code import os from hydroDL.data import dbCsv from hydroDL.post import plot, stat from hydroDL import master # change to your path cDir = r'/home/kxf227/work/GitHUB/hydroDL-dev/example/' out = os.path.join(cDir, 'output', 'CONUSv4f1') rootDB = os.path.join(cDir, 'data') nEpoch = 100 tRange = [20160401, 20170401] ###Output _____no_output_____ ###Markdown - Test the model in another year ###Code df, yp, yt = master.test( out, tRange=[20160401, 20170401], subset='CONUSv4f1', epoch=100, reTest=True) yp = yp.squeeze() yt = yt.squeeze() ###Output read master file /home/kxf227/work/GitHUB/hydroDL-dev/example/output/CONUSv4f1/master.json read master file /home/kxf227/work/GitHUB/hydroDL-dev/example/output/CONUSv4f1/master.json output files: ['/home/kxf227/work/GitHUB/hydroDL-dev/example/output/CONUSv4f1/CONUSv4f1_20160401_20170401_ep100_SMAP_AM.csv'] Runing new results /home/kxf227/work/GitHUB/hydroDL-dev/example/data/Subset/CONUSv4f1.csv read /home/kxf227/work/GitHUB/hydroDL-dev/example/data/CONUSv4f1/2016/SMAP_AM.csv 0.06371784210205078 read /home/kxf227/work/GitHUB/hydroDL-dev/example/data/CONUSv4f1/2016/APCP_FORA.csv 0.052048444747924805 read /home/kxf227/work/GitHUB/hydroDL-dev/example/data/CONUSv4f1/2016/DLWRF_FORA.csv 0.053551435470581055 read /home/kxf227/work/GitHUB/hydroDL-dev/example/data/CONUSv4f1/2016/DSWRF_FORA.csv 0.05208420753479004 read /home/kxf227/work/GitHUB/hydroDL-dev/example/data/CONUSv4f1/2016/TMP_2_FORA.csv 0.05216193199157715 read /home/kxf227/work/GitHUB/hydroDL-dev/example/data/CONUSv4f1/2016/SPFH_2_FORA.csv 0.05547213554382324 read /home/kxf227/work/GitHUB/hydroDL-dev/example/data/CONUSv4f1/2016/VGRD_10_FORA.csv 0.053055524826049805 read /home/kxf227/work/GitHUB/hydroDL-dev/example/data/CONUSv4f1/2016/UGRD_10_FORA.csv 0.05231595039367676 batch 0 read master file /home/kxf227/work/GitHUB/hydroDL-dev/example/output/CONUSv4f1/master.json ###Markdown - Calculate statistic metrices and plot result. An interactive map will be generated, where users can click on map to show time series of observation and model predictions. ###Code # calculate stat statErr = stat.statError(yp, yt) dataGrid = [statErr['RMSE'], statErr['Corr']] dataTs = [yp, yt] t = df.getT() crd = df.getGeo() mapNameLst = ['RMSE', 'Correlation'] tsNameLst = ['LSTM', 'SMAP'] colorMap = None colorTs = None # plot map and time series %matplotlib notebook plot.plotTsMap( dataGrid, dataTs, lat=crd[0], lon=crd[1], t=t, mapNameLst=mapNameLst, tsNameLst=tsNameLst, isGrid=True) ###Output _____no_output_____
03-visualisations_in_the_browser.ipynb
###Markdown 03 - Test some Matplotlib visualisationsThis notebook tests some Matplotlib data visualisation capabilities from [GitHub.dev](https://github.dev) console using Python in the browser directly 😍 ###Code import matplotlib import matplotlib.pyplot as plt from matplotlib.pyplot import figure import numpy as np ###Output _____no_output_____ ###Markdown Confidence bands examplesThis example comes from [matplotlib gallery](https://matplotlib.org/stable/gallery/lines_bars_and_markers/fill_between_demo.htmlsphx-glr-gallery-lines-bars-and-markers-fill-between-demo-py), showing an example of an chart using filling the area between lines. ###Code N = 21 x = np.linspace(0, 10, 11) y = [3.9, 4.4, 10.8, 10.3, 11.2, 13.1, 14.1, 9.9, 13.9, 15.1, 12.5] # fit a linear curve an estimate its y-values and their error. a, b = np.polyfit(x, y, deg=1) y_est = a * x + b y_err = x.std() * np.sqrt(1/len(x) + (x - x.mean())**2 / np.sum((x - x.mean())**2)) fig, ax = plt.subplots() ax.plot(x, y_est, '-') ax.fill_between(x, y_est - y_err, y_est + y_err, alpha=0.2) ax.plot(x, y, 'o', color='tab:brown') plt.show() ###Output _____no_output_____ ###Markdown Box plot vs. violin plot comparisonThis example comes from [matplotlib gallery](https://matplotlib.org/stable/gallery/statistics/boxplot_vs_violin.htmlsphx-glr-gallery-statistics-boxplot-vs-violin-py), comparing two useful types of charts used for distribution visualisation: Box plot vs. violin plot. ###Code fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(9, 4)) # Fixing random state for reproducibility np.random.seed(19680801) # generate some random test data all_data = [np.random.normal(0, std, 100) for std in range(6, 10)] # plot violin plot axs[0].violinplot(all_data, showmeans=False, showmedians=True) axs[0].set_title('Violin plot') # plot box plot axs[1].boxplot(all_data) axs[1].set_title('Box plot') # adding horizontal grid lines for ax in axs: ax.yaxis.grid(True) ax.set_xticks([y + 1 for y in range(len(all_data))]) ax.set_xlabel('Four separate samples') ax.set_ylabel('Observed values') # add x-tick labels plt.setp(axs, xticks=[y + 1 for y in range(len(all_data))], xticklabels=['x1', 'x2', 'x3', 'x4']) plt.show() ###Output _____no_output_____ ###Markdown Bar chart on polar axis¶Another example from [matplotlib gallery](https://matplotlib.org/stable/gallery/pie_and_polar_charts/polar_bar.htmlsphx-glr-gallery-pie-and-polar-charts-polar-bar-py), showing a bar chart on a polar axis, which can be used also for a radar chart type visualisation. ###Code # Fixing random state for reproducibility np.random.seed(19680801) # Compute pie slices N = 20 theta = np.linspace(0.0, 2 * np.pi, N, endpoint=False) radii = 10 * np.random.rand(N) width = np.pi / 4 * np.random.rand(N) colors = plt.cm.viridis(radii / 10.) ax = plt.subplot(projection='polar') ax.bar(theta, radii, width=width, bottom=0.0, color=colors, alpha=0.5) plt.show() ###Output _____no_output_____ ###Markdown GitHub contribution-like visualisation in pure matplotlibHere is an example of a more advanced visualisation, which is in fact a time-series visualisation. I am taking the following approach:* Create a simple visualisation which resembles GitHub's contribution like visualisation.* Generate time series data first, without using Pandas (I'm going to test it in an another example), so using two vectors - one with dates for the last 12 months, the other one with numeric values between 0 and 10 to simulate GitHub contributions.* Generate a visualisation for the dataset above. ###Code week_numbers = [f'Week {str(x)}' for x in np.arange(1, 53)] week_days = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"] contributions = np.random.randint(15, size=(7,52)) matplotlib.rc('figure', figsize=(12, 2)) fig, ax = plt.subplots() im = ax.imshow(contributions) # We want to show all ticks... ax.set_xticks(np.arange(len(week_numbers))) ax.set_yticks(np.arange(len(week_days))) # ... and label them with the respective list entries ax.set_xticks([]) ax.set_yticklabels(week_days) ax.set_title("Contributions in the last 12 months") fig.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown Not bad. Now let's try to give it some love and styling! Chart is based on an [annotated heatmap example](https://matplotlib.org/stable/gallery/images_contours_and_fields/image_annotated_heatmap.html). ###Code def heatmap(data, row_labels, col_labels, ax=None, cbar_kw={}, cbarlabel="", **kwargs): if not ax: ax = plt.gca() im = ax.imshow(data, **kwargs) cbar = ax.figure.colorbar(im, ax=ax, **cbar_kw) cbar.ax.set_ylabel(cbarlabel, rotation=-90, va="bottom") ax.set_xticks(np.arange(data.shape[1])) ax.set_yticks(np.arange(data.shape[0])) ax.set_xticklabels([]) ax.set_yticklabels(row_labels) ax.tick_params(top=False, bottom=False, labeltop=False, labelbottom=False) [ax.spines[x].set_visible(False) for x in ['top', 'right', 'bottom', 'left']] ax.set_xticks(np.arange(data.shape[1]+1)-.5, minor=True) ax.set_yticks(np.arange(data.shape[0]+1)-.5, minor=True) ax.grid(which="minor", color="w", linestyle='-', linewidth=3) ax.tick_params(which="minor", bottom=False, left=False) return im, cbar fig, ax = plt.subplots() im, cbar = heatmap(contributions, week_days, [], ax=ax, cmap="summer", cbarlabel="Contributions [daily]") fig.tight_layout() plt.show() ###Output _____no_output_____
content/lessons/03/Now-You-Code/NYC1-Vote-Or-Retire.ipynb
###Markdown Now You Code 1: Vote or Retire? Part 1Write a program to ask for your age as input, then output 1) whether or not you can vote and 2) whether your not you can retire. Let's assume the voting age is 18 or higher, and the retirement age is 65 or higher.**NOTE:** This program is making two seprate decisions, and thus should have two separate if else statements.Example Run:```Enter your age: 45You can vote.You cannot retire.``` Step 1: Problem AnalysisInputs: ageOutputs: if can vote or retireAlgorithm (Steps in Program): enter the ageif age less than 18, can't vote, cant retireif age greater than 18 but less than 65, can vote, can't retireif age greater thab 18 and 65, can vote, can retire ###Code #Step 2: write code here age = int(input("Input age here: ")) if age >=18: print("You can vote") if age>=65: print("You can retire!") else: print("You are not old enough") ###Output Input age here: 7 You are not old enough ###Markdown Part 2Now that you have it working, re-write your code to handle bad input using Python's `try... except` statement:Example run:```Enter your age: threveThat's not an age!```**Note:** Exception handling is not part of our algorithm. It's a programming concern, not a problem-solving concern! ###Code ## Step 2 (again): write code again but handle errors with try...except #Step 2: write code here try: age = int(input("Input age here: ")) if age >=18: print("You can vote") if age>=65: print("You can retire!") else: if age <18: print("You can't vote.") if age<65: print("You can't retire") if age<0: print("That's not an age.") except: print("Invalid input.") ###Output Input age here: h Invalid input. ###Markdown Now You Code 1: Vote or Retire? Part 1Write a program to ask for your age as input, then output 1) whether or not you can vote and 2) whether your not you can retire. Let's assume the voting age is 18 or higher, and the retirement age is 65 or higher.**NOTE:** This program is making two seprate decisions, and thus should have two separate if else statements.Example Run:```Enter your age: 45You can vote.You cannot retire.``` Step 1: Problem AnalysisInputs:Outputs:Algorithm (Steps in Program): ###Code #Step 2: write code here age= int(input("enter your age: ")) if age >=18: print("you can vote.") else: print("You cant vote.") if age >= 64: print("you can retire.") else: print("you can't retire.") ###Output enter your age: five ###Markdown Part 2Now that you have it working, re-write your code to handle bad input using Python's `try... except` statement:Example run:```Enter your age: threveThat's not an age!```**Note:** Exception handling is not part of our algorithm. It's a programming concern, not a problem-solving concern! ###Code ## Step 2 (again): write code again but handle errors with try...except try: age= int(input("enter your age: ")) if age >=18: print("you can vote.") else: print("You cant vote.") if age >= 64: print("you can retire.") else: print("you can't retire.") except: print("try again") ###Output enter your age: five try again ###Markdown Now You Code 1: Vote or Retire? Part 1Write a program to ask for your age as input, then output 1) whether or not you can vote and 2) whether your not you can retire. Let's assume the voting age is 18 or higher, and the retirement age is 65 or higher.**NOTE:** This program is making two seprate decisions, and thus should have two separate if else statements.Example Run:```Enter your age: 45You can vote.You cannot retire.``` Step 1: Problem AnalysisInputs: age Outputs: can vote and can retire Algorithm (Steps in Program): ###Code age = int(input("how old are you?: ")) if age <18: print("you cannot vote or retire") else: print("you can vote") if age >65: print("you can retire") ###Output how old are you?: 16.5 ###Markdown Part 2Now that you have it working, re-write your code to handle bad input using Python's `try... except` statement:Example run:```Enter your age: threveThat's not an age!```**Note:** Exception handling is not part of our algorithm. It's a programming concern, not a problem-solving concern! ###Code try: age = int(input("how old are you?: ")) if age <0: print("that is not an age") if age <18: print("you cannot vote or retire") elif age >=18: print("you can vote") if age >=65: print("you can retire") except: print("you didn't put in an age") ###Output how old are you?: 19 you can vote ###Markdown Now You Code 1: Vote or Retire? Part 1Write a program to ask for your age as input, then output 1) whether or not you can vote and 2) whether your not you can retire. Let's assume the voting age is 18 or higher, and the retirement age is 65 or higher.**NOTE:** This program is making two seprate decisions, and thus should have two separate if else statements.Example Run:```Enter your age: 45You can vote.You cannot retire.``` Step 1: Problem AnalysisInputs:ageOutputs:can/can not vote, can/can not retireAlgorithm (Steps in Program):ask for age, see if age is >= 18, give coresponding answer, see if age is >= 65, give coresponding answer ###Code age=int(input("enter your age: ")) if age>=65: print("you can vote and retire") elif age>=18: print("you can vote but not retire") else: print("you can not vote or retire") ###Output enter your age: 70 you can vote and retire ###Markdown Part 2Now that you have it working, re-write your code to handle bad input using Python's `try... except` statement:Example run:```Enter your age: threveThat's not an age!```**Note:** Exception handling is not part of our algorithm. It's a programming concern, not a problem-solving concern! ###Code age=input("enter your age: ") try: if int(age)>=65: print("you can vote and retire") elif int(age)>=18: print("you can vote but not retire") elif int(age)<0: print("please enter a valid age") else: print("you can not vote or retire") except: print ("thats not an age") ###Output enter your age: -9 please enter a valid age ###Markdown Now You Code 1: Vote or Retire? Part 1Write a program to ask for your age as input, then output 1) whether or not you can vote and 2) whether your not you can retire. Let's assume the voting age is 18 or higher, and the retirement age is 65 or higher.**NOTE:** This program is making two seprate decisions, and thus should have two separate if else statements.Example Run:```Enter your age: 45You can vote.You cannot retire.``` Step 1: Problem AnalysisInputs:Outputs:Algorithm (Steps in Program): ###Code #Step 2: write code here ###Output _____no_output_____ ###Markdown Part 2Now that you have it working, re-write your code to handle bad input using Python's `try... except` statement:Example run:```Enter your age: threveThat's not an age!```**Note:** Exception handling is not part of our algorithm. It's a programming concern, not a problem-solving concern! ###Code ## Step 2 (again): write code again but handle errors with try...except ###Output _____no_output_____ ###Markdown Now You Code 1: Vote or Retire? Part 1Write a program to ask for your age as input, then output 1) whether or not you can vote and 2) whether your not you can retire. Let's assume the voting age is 18 or higher, and the retirement age is 65 or higher.**NOTE:** This program is making two seprate decisions, and thus should have two separate if else statements.Example Run:```Enter your age: 45You can vote.You cannot retire.``` Step 1: Problem AnalysisInputs:Outputs:Algorithm (Steps in Program): ###Code #Step 2: write code here age=int(input("Enter your age: ")) if age>=18 : print("You can vote") else: print("You can't vote, the voting age is 18 or older.") if age>=65 : print("You can retire") else: print("You can't retire. The retirement age is 65 or older.") ###Output Enter your age: 12 You can't vote, the voting age is 18 or older. You can't retire. The retirement age is 65 or older. ###Markdown Part 2Now that you have it working, re-write your code to handle bad input using Python's `try... except` statement:Example run:```Enter your age: threveThat's not an age!```**Note:** Exception handling is not part of our algorithm. It's a programming concern, not a problem-solving concern! ###Code ## Step 2 (again): write code again but handle errors with try...except try: age=int(input("Enter your age: ")) if age>0: print(age) if age>=18 : print("You can vote") else: print("You can't vote, the voting age is 18 or older.") if age>=65 : print("You can retire") else: print("You can't retire. The retirement age is 65 or older.") else: print("That's not an age!") except: print("That's not an age!") ###Output Enter your age: two That's not an age! ###Markdown Now You Code 1: Vote or Retire? Part 1Write a program to ask for your age as input, then output 1) whether or not you can vote and 2) whether your not you can retire. Let's assume the voting age is 18 or higher, and the retirement age is 65 or higher.**NOTE:** This program is making two seprate decisions, and thus should have two separate if else statements.Example Run:```Enter your age: 45You can vote.You cannot retire.``` Step 1: Problem AnalysisInputs: Age Outputs: Can you retire and can you voteAlgorithm (Steps in Program):Input ageif age greater than or equal to 18 print "you can vote" else print"You can not vote"If age greater than or equal to 65 print "You can retire" else print "You can not retire" ###Code #Step 2: write code here age = int(input("Enter your age: ")) if age >= 18: print("You can vote") else: print("You can not vote") if age >= 65: print("You can retire") else: print("You can not retire") ###Output Enter your age: 22 You can vote You can not retire ###Markdown Part 2Now that you have it working, re-write your code to handle bad input using Python's `try... except` statement:Example run:```Enter your age: threveThat's not an age!```**Note:** Exception handling is not part of our algorithm. It's a programming concern, not a problem-solving concern! ###Code ## Step 2 (again): write code again but handle errors with try...except try: age = int(input("Enter your age: ")) if age >= 18: print("You can vote") else: print("You can not vote") if age >= 65: print("You can retire") else: print("You can not retire") except: print("That is not an age!") ###Output _____no_output_____ ###Markdown Now You Code 1: Vote or Retire? Part 1Write a program to ask for your age as input, then output 1) whether or not you can vote and 2) whether your not you can retire. Let's assume the voting age is 18 or higher, and the retirement age is 65 or higher.**NOTE:** This program is making two seprate decisions, and thus should have two separate if else statements.Example Run:```Enter your age: 45You can vote.You cannot retire.``` Step 1: Problem AnalysisInputs:user inputs their age.Outputs:the computer tells them if they can vote and if they can retire.Algorithm (Steps in Program):input age, if else age is 18 or 65, they can or cannot vote and or retire. ###Code #Step 2: write code here age=int(input("how old are you?")) if(age>=18): print("you are %d you can vote!" %(age)) if(age>=65): print(" and you can retire!") else: print("sorry! you aren't of age!") ###Output how old are you?47.5 ###Markdown Part 2Now that you have it working, re-write your code to handle bad input using Python's `try... except` statement:Example run:```Enter your age: threveThat's not an age!```**Note:** Exception handling is not part of our algorithm. It's a programming concern, not a problem-solving concern! ###Code ## Step 2 (again): write code again but handle errors with try...except try: age=int(input("how old are you?")) if(age>=18): print("you are %d you can vote!" %(age)) if(age>=65): print(" and you can retire!") else: print("sorry! you aren't of age!") if(age<=0): print("thats not an age!") except: print("Invalid input") ###Output how old are you?-50 sorry! you aren't of age! thats not an age! ###Markdown Now You Code 1: Vote or Retire? Part 1Write a program to ask for your age as input, then output 1) whether or not you can vote and 2) whether your not you can retire. Let's assume the voting age is 18 or higher, and the retirement age is 65 or higher.**NOTE:** This program is making two seprate decisions, and thus should have two separate if else statements.Example Run:```Enter your age: 45You can vote.You cannot retire.``` Step 1: Problem AnalysisInputs:Outputs:Algorithm (Steps in Program): ###Code #Step 2: write code here age = int(input("Enter your age ")) if age >= 65: print ("You can vote.") print("You can retire.") elif age < 18: print ("You cannot vote.") print ("Youu cannot retire.") else: print ("You can vote.") print ("You cannot retire.") ###Output Enter your age 5 You cannot vote. Youu cannot retire. ###Markdown Part 2Now that you have it working, re-write your code to handle bad input using Python's `try... except` statement:Example run:```Enter your age: threveThat's not an age!```**Note:** Exception handling is not part of our algorithm. It's a programming concern, not a problem-solving concern! ###Code ## Step 2 (again): write code again but handle errors with try...except try: age = int(input("Enter your age ")) if age >= 65: print ("You can vote.") print("You can retire.") elif age<0: print("That is not an age!") elif age < 18: print ("You cannot vote.") print ("Youu cannot retire.") else: print ("You can vote.") print ("You cannot retire.") except: print("That's not a number!") ###Output Enter your age -5 That is not an age!
jupyter/chap18.ipynb
###Markdown Chapter 18 *Modeling and Simulation in Python*Copyright 2021 Allen DowneyLicense: [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International](https://creativecommons.org/licenses/by-nc-sa/4.0/) ###Code # check if the libraries we need are installed try: import pint except ImportError: !pip install pint try: import modsim except ImportError: !pip install modsimpy ###Output _____no_output_____ ###Markdown Code from the previous chapterRead the data. ###Code import os filename = 'glucose_insulin.csv' if not os.path.exists(filename): !wget https://raw.githubusercontent.com/AllenDowney/ModSimPy/master/data/glucose_insulin.csv from pandas import read_csv data = read_csv(filename, index_col='time'); ###Output _____no_output_____ ###Markdown Interpolate the insulin data. ###Code from modsim import interpolate I = interpolate(data.insulin) ###Output _____no_output_____ ###Markdown In this chapter, we implement the glucose minimal model described in the previous chapter. We'll start with `run_simulation`, which solvesdifferential equations using discrete time steps. This method works well enough for many applications, but it is not very accurate. In this chapter we explore a better option: using an **ODE solver**. ImplementationTo get started, let's assume that the parameters of the model are known.We'll implement the model and use it to generate time series for `G` and `X`. Then we'll see how to find the parameters that generate the series that best fits the data. We can pass `params` and `data` to `make_system`: ###Code from modsim import State, System def make_system(params, data): G0, k1, k2, k3 = params Gb = data.glucose[0] Ib = data.insulin[0] I = interpolate(data.insulin) t_0 = data.index[0] t_end = data.index[-1] init = State(G=G0, X=0) return System(params=params, init=init, Gb=Gb, Ib=Ib, I=I, t_0=t_0, t_end=t_end, dt=2) ###Output _____no_output_____ ###Markdown `make_system` uses the measurements at `t=0` as the basal levels, `Gb`and `Ib`. It gets `t_0` and `t_end` from the data. And it uses theparameter `G0` as the initial value for `G`. Then it packs everythinginto a `System` object. Taking advantage of estimates from prior work, we'll start with thesevalues: ###Code # G0, k1, k2, k3 params = 290, 0.03, 0.02, 1e-05 system = make_system(params, data) ###Output _____no_output_____ ###Markdown Here's the update function: ###Code def update_func(state, t, system): G, X = state G0, k1, k2, k3 = system.params I, Ib, Gb = system.I, system.Ib, system.Gb dt = system.dt dGdt = -k1 * (G - Gb) - X*G dXdt = k3 * (I(t) - Ib) - k2 * X G += dGdt * dt X += dXdt * dt return State(G=G, X=X) ###Output _____no_output_____ ###Markdown As usual, the update function takes a `State` object, a time, and a`System` object as parameters. The first line uses multiple assignmentto extract the current values of `G` and `X`.The following lines unpack the parameters we need from the `System`object.Computing the derivatives `dGdt` and `dXdt` is straightforward; we justtranslate the equations from math notation to Python.Then, to perform the update, we multiply each derivative by the discretetime step `dt`, which is 2 min in this example. The return value is a`State` object with the new values of `G` and `X`.Before running the simulation, it is a good idea to run the updatefunction with the initial conditions: ###Code update_func(system.init, system.t_0, system) ###Output _____no_output_____ ###Markdown If it runs without errors and there is nothing obviously wrong with theresults, we are ready to run the simulation. We'll use this version of`run_simulation`, which is very similar to previous versions: ###Code from modsim import linrange, TimeFrame def run_simulation(system, update_func): init = system.init t_0, t_end, dt = system.t_0, system.t_end, system.dt t_array = linrange(system.t_0, system.t_end, system.dt) n = len(t_array) frame = TimeFrame(index=t_array, columns=init.index) frame.iloc[0] = system.init for i in range(n-1): t = t_array[i] state = frame.iloc[i] frame.iloc[i+1] = update_func(state, t, system) return frame ###Output _____no_output_____ ###Markdown We can run it like this: ###Code results = run_simulation(system, update_func) results.head() from modsim import decorate results.G.plot(style='-', label='simulation') data.glucose.plot(style='o', color='C0', label='glucose data') decorate(ylabel='Concentration (mg/dL)') results.X.plot(color='C1', label='remote insulin') decorate(xlabel='Time (min)', ylabel='Concentration (arbitrary units)') ###Output _____no_output_____ ###Markdown shows the results. The top plot showssimulated glucose levels from the model along with the measured data.The bottom plot shows simulated insulin levels in tissue fluid, which is in unspecified units, and not to be confused with measured insulinlevels in the blood.With the parameters I chose, the model fits the data well, except forthe first few data points, where we don't expect the model to beaccurate. Solving differential equationsSo far we have solved differential equations by rewriting them asdifference equations. In the current example, the differential equations are: $$\frac{dG}{dt} = -k_1 \left[ G(t) - G_b \right] - X(t) G(t)$$$$\frac{dX}{dt} = k_3 \left[I(t) - I_b \right] - k_2 X(t)$$ If we multiply both sides by $dt$, we have:$$dG = \left[ -k_1 \left[ G(t) - G_b \right] - X(t) G(t) \right] dt$$$$dX = \left[ k_3 \left[I(t) - I_b \right] - k_2 X(t) \right] dt$$ When $dt$ is very small, or more precisely **infinitesimal**, this equation is exact. But in our simulations, $dt$ is 2 min, which is not very small. In effect, the simulations assume that the derivatives $dG/dt$ and $dX/dt$ are constant during each 2 min time step. This method, evaluating derivatives at discrete time steps and assuming that they are constant in between, is called **Euler's method** (see ).Euler's method is good enough for some simple problems, but it is notvery accurate. Other methods are more accurate, but many of them aresubstantially more complicated.One of the best simple methods is called **Ralston's method**. TheModSim library provides a function called `run_ode_solver` thatimplements it.The "ODE" in `run_ode_solver` stands for "ordinary differentialequation". The equations we are solving are "ordinary" because all thederivatives are with respect to the same variable; in other words, there are no partial derivatives.To use `run_ode_solver`, we have to provide a "slope function", likethis: ###Code def slope_func(t, state, system): G, X = state G0, k1, k2, k3 = system.params I, Ib, Gb = system.I, system.Ib, system.Gb dGdt = -k1 * (G - Gb) - X*G dXdt = k3 * (I(t) - Ib) - k2 * X return dGdt, dXdt ###Output _____no_output_____ ###Markdown `slope_func` is similar to `update_func`; in fact, it takes the sameparameters in the same order. But `slope_func` is simpler, because allwe have to do is compute the derivatives, that is, the slopes. We don'thave to do the updates; `run_ode_solver` does them for us.Now we can call `run_ode_solver` like this: ###Code from modsim import run_solve_ivp results2, details = run_solve_ivp(system, slope_func) details ###Output _____no_output_____ ###Markdown `run_ode_solver` is similar to `run_simulation`: it takes a `System`object and a slope function as parameters. It returns two values: a`TimeFrame` with the solution and a `ModSimSeries` with additionalinformation.A `ModSimSeries` is like a `System` or `State` object; it contains a setof variables and their values. The `ModSimSeries` from `run_ode_solver`,which we assign to `details`, contains information about how the solverran, including a success code and diagnostic message.The `TimeFrame`, which we assign to `results`, has one row for each timestep and one column for each state variable. In this example, the rowsare time from 0 to 182 minutes; the columns are the state variables, `G`and `X`. ###Code from modsim import decorate results2.G.plot(style='-', label='simulation') data.glucose.plot(style='o', color='C0', label='glucose data') decorate(ylabel='Concentration (mg/dL)') results2.X.plot(color='C1', label='remote insulin') decorate(xlabel='Time (min)', ylabel='Concentration (arbitrary units)') ###Output _____no_output_____ ###Markdown shows the results from `run_simulation` and`run_ode_solver`. The difference between them is barely visible.We can compute the percentage differences like this: ###Code diff = results.G - results2.G percent_diff = diff / results2.G * 100 percent_diff.abs().max() ###Output _____no_output_____ ###Markdown The largest percentage difference is less than 2%, which is small enough that it probably doesn't matter in practice. SummaryYou might be interested in this article about [people making a DIY artificial pancreas](https://www.bloomberg.com/news/features/2018-08-08/the-250-biohack-that-s-revolutionizing-life-with-diabetes). Exercises **Exercise:** Our solution to the differential equations is only approximate because we used a finite step size, `dt=2` minutes.If we make the step size smaller, we expect the solution to be more accurate. Run the simulation with `dt=1` and compare the results. What is the largest relative error between the two solutions? ###Code # Solution system.dt = 1 results3, details = run_simulation(system, slope_func) details # Solution results2.G.plot(style='C2--', label='run_ode_solver (dt=2)') results3.G.plot(style='C3:', label='run_ode_solver (dt=1)') decorate(xlabel='Time (m)', ylabel='mg/dL') # Solution diff = (results2.G - results3.G).dropna() percent_diff = diff / results2.G * 100 # Solution max(abs(percent_diff)) ###Output _____no_output_____
02_Modeling_MFCC.ipynb
###Markdown **Capstone Project: Audio Classification Of Emotions** Modeling on MFCC ###Code #Mount Drive from google.colab import drive drive.mount('/content/My_Drive/') ###Output Drive already mounted at /content/My_Drive/; to attempt to forcibly remount, call drive.mount("/content/My_Drive/", force_remount=True). ###Markdown Imports ###Code #Import basic, plotting libraries import matplotlib.pyplot as plt import pandas as pd import numpy as np import seaborn as sns %matplotlib inline #Import SK-Learn Libraries from sklearn.metrics import confusion_matrix, classification_report from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier as R_Forest from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier as KNNClassifier from sklearn import svm from sklearn.preprocessing import LabelEncoder, StandardScaler, RobustScaler #Import Keras Layers import keras from keras import layers from keras import models from keras.layers import GlobalAveragePooling1D, Dense, MaxPooling1D, Conv1D, Flatten, Dropout from keras.models import Sequential from keras.layers.core import Activation, Dense from keras.layers import BatchNormalization from tensorflow.keras.optimizers import RMSprop from keras.layers import GaussianNoise ###Output _____no_output_____ ###Markdown Functions ###Code def cf_matrix(y_preds, y_test): '''This function creates a confusion matrix on our data''' cf_matrix = confusion_matrix(y_preds, y_test) cmn = cf_matrix.astype('float') / cf_matrix.sum(axis=1)[:, np.newaxis] fig, ax = plt.subplots(figsize=(10,10)) labels = ['Angry', 'Calm', 'Disgust', 'Fearful', 'Happy', 'Neutral', 'Sad', 'Suprised'] sns.heatmap(cmn, linewidths=1, annot=True, ax=ax, fmt='.2f', cmap="OrRd") ax.set_xlabel('Predicted labels');ax.set_ylabel('True labels') ax.set_title('Confusion Matrix') ax.xaxis.set_ticklabels(labels); ax.yaxis.set_ticklabels(labels); #Set a random seed for reproducibility. np.random.seed(42) #Read_CSV df = pd.read_csv('Data/DataFrames/MFCC_Data.csv') #Encoded Labels levels = ['Angry', 'Calm', 'Disgust', 'Fearful', 'Happy', 'Neutral', 'Sad', 'Suprised'] #Show dataframe df.head(2) le = LabelEncoder() df['encoded_label']= le.fit_transform(df['label']) #Select X and y features X = df.iloc[:, 10:].values y = df['encoded_label'].values print(X.shape) print(y.shape) #Add as array X = np.asarray(X) y = np.asarray(y) X.shape, y.shape #Create train-test split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42, shuffle = True) X_train.shape, y_train.shape, X_test.shape, y_test.shape #Scale X_training Data sc = StandardScaler() X_train_sc = sc.fit_transform(X_train) X_test_sc = sc.transform(X_test) #Expand dimensions for nueral net X_train_sc_1 = np.expand_dims(X_train_sc, axis=2) X_test_sc_1 = np.expand_dims(X_test_sc, axis=2) X_train_sc_1.shape, X_test_sc_1.shape ###Output _____no_output_____ ###Markdown Models ###Code SVM = svm.SVC() SVM.fit(X_train_sc, y_train) y_predSVM = SVM.predict(X_test_sc) print(classification_report(y_test,y_predSVM,target_names=levels)) cf_matrix(y_predSVM,y_test) ###Output _____no_output_____ ###Markdown K-Nearest Neighbors ###Code clf = KNNClassifier() clf.fit(X_train_sc, y_train) y_predKNN = clf.predict(X_test_sc) print(classification_report(y_test,y_predKNN,target_names=levels)) cf_matrix(y_predKNN,y_test) ###Output _____no_output_____ ###Markdown Random Forest Classifier ###Code rforest = R_Forest(criterion="gini", max_depth=5, max_features="log2", min_samples_leaf = 3, min_samples_split = 20, n_estimators= 22000, ) #Fit Random forest rforest.fit(X_train_sc, y_train) #Get predictions y_pred = rforest.predict(X_test_sc) #Print classification report print(classification_report(y_test,y_pred,target_names=levels)) #Plot confusion matrix cf_matrix(y_pred,y_test) ###Output /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:5: RuntimeWarning: invalid value encountered in true_divide """ ###Markdown Decision Tree Classifier ###Code #Instantiate decision tree dtree = DecisionTreeClassifier() #Fit decision tree dtree.fit(X_train_sc, y_train) #Predict data y_preds = dtree.predict(X_test_sc) #Print classification report print(classification_report(y_test,y_preds,target_names=levels)) #Plot confusion matrix cf_matrix(y_preds,y_test) ###Output _____no_output_____ ###Markdown Convolutional Nueral Net (CNN) ###Code #Develop model model = models.Sequential() model.add(Conv1D(264, kernel_size=5, strides=1, activation='relu', input_shape=(X_train.shape[1], 1))) model.add(Dropout(0.2)) model.add(MaxPooling1D(pool_size=5, strides = 2)) model.add(GaussianNoise(0.1)) model.add(Conv1D(128, kernel_size=5, strides=1, activation='relu')) model.add(Dropout(0.2)) model.add(layers.Flatten()) model.add(layers.Dense(64, activation='relu')) model.add(layers.Dense(8, activation='softmax')) # Select loss function and optimizer model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.summary() #fit and train model history = model.fit( X_train_sc_1, y_train, epochs=60, batch_size=15, validation_data=(X_test_sc_1, y_test) ) #Show nueral net performance print("Train Accuracy : " , model.evaluate(X_train_sc_1,y_train)[1]*100 , "%") print("Test Accuracy : " , model.evaluate(X_test_sc_1,y_test)[1]*100 , "%") epochs = [i for i in range(60)] fig , ax = plt.subplots(1,2) train_acc = history.history['accuracy'] train_loss = history.history['loss'] test_acc = history.history['val_accuracy'] test_loss = history.history['val_loss'] fig.set_size_inches(20,6) ax[0].plot(epochs , train_loss , label = 'Training Loss') ax[0].plot(epochs , test_loss , label = 'Testing Loss') ax[0].set_title('Training & Testing Loss') ax[0].legend() ax[0].set_xlabel("Epochs") ax[1].plot(epochs , train_acc , label = 'Training Accuracy') ax[1].plot(epochs , test_acc , label = 'Testing Accuracy') ax[1].set_title('Training & Testing Accuracy') ax[1].legend() ax[1].set_xlabel("Epochs") plt.show() #Predict on test data y_predictions = model.predict(X_test_sc_1).argmax(axis=1) #Print classification report print(classification_report(y_test,y_predictions, target_names=levels)) #Plot confusion matrix cf_matrix(y_predictions,y_test) #Save Model save_format='h5' model.save("Chosen_Model.h5") ###Output _____no_output_____
categorical-tabular-pytorch-classifier-ii.ipynb
###Markdown Categorical Tabular Pytorch Classifier_By Nick Brooks, 2020-01-10_ ###Code # This Python 3 environment comes with many helpful analytics libraries installed # It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python # For example, here's several helpful packages to load in import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os import sys for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. from sklearn import preprocessing from sklearn.model_selection import train_test_split import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable import torch.optim as optim from sklearn import metrics import matplotlib.pyplot as plt from torch.optim.lr_scheduler import ReduceLROnPlateau # from torch.utils.data import Dataset, DataLoader print("\nPytorch Version: {}".format(torch.__version__)) print("Python Version: {}\n".format(sys.version)) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print("Pytorch Compute Device: {}".format(device)) from contextlib import contextmanager import time import gc notebookstart = time.time() @contextmanager def timer(name): """ Time Each Process """ t0 = time.time() yield print('\n[{}] done in {} Minutes'.format(name, round((time.time() - t0)/60,2))) seed = 50 debug = None if debug: nrow = 20000 else: nrow = None with timer("Load"): PATH = "/kaggle/input/cat-in-the-dat-ii/" train = pd.read_csv(PATH + "train.csv", index_col = 'id', nrows = nrow) test = pd.read_csv(PATH + "test.csv", index_col = 'id', nrows = nrow) submission_df = pd.read_csv(PATH + "sample_submission.csv") [print(x.shape) for x in [train, test, submission_df]] traindex = train.index testdex = test.index y_var = train.target.copy() print("Target Distribution:\n",y_var.value_counts(normalize = True).to_dict()) df = pd.concat([train.drop('target',axis = 1), test], axis = 0) del train, test, submission_df with timer("FE 1"): drop_cols=["bin_0"] # Split 2 Letters; This is the only part which is not generic and would actually require data inspection df["ord_5a"]=df["ord_5"].str[0] df["ord_5b"]=df["ord_5"].str[1] drop_cols.append("ord_5") xor_cols = [] nan_cols = [] for col in df.columns: # NUll Values tmp_null = df.loc[:,col].isnull().sum() if tmp_null > 0: print("{} has {} missing values.. Filling".format(col, tmp_null)) nan_cols.append(col) if df.loc[:,col].dtype == "O": df.loc[:,col].fillna("NAN", inplace=True) else: df.loc[:,col].fillna(-1, inplace=True) # Categories that do not overlap train_vals = set(df.loc[traindex, col].unique()) test_vals = set(df.loc[testdex, col].unique()) xor_cat_vals=train_vals ^ test_vals if xor_cat_vals: df.loc[df[col].isin(xor_cat_vals), col]="xor" print("{} has {} xor factors, {} rows".format(col, len(xor_cat_vals),df.loc[df[col] == 'xor',col].shape[0])) xor_cols.append(col) # One Hot Encode None-Ordered Categories ordinal_cols=['ord_1', 'ord_2', 'ord_3', 'ord_4', 'ord_5a', 'day', 'month'] X_oh=df[df.columns.difference(ordinal_cols)] oh1=pd.get_dummies(X_oh, columns=X_oh.columns, drop_first=True, sparse=True) ohc1=oh1.sparse.to_coo() from sklearn.base import TransformerMixin from itertools import repeat import scipy class ThermometerEncoder(TransformerMixin): """ Assumes all values are known at fit """ def __init__(self, sort_key=None): self.sort_key = sort_key self.value_map_ = None def fit(self, X, y=None): self.value_map_ = {val: i for i, val in enumerate(sorted(X.unique(), key=self.sort_key))} return self def transform(self, X, y=None): values = X.map(self.value_map_) possible_values = sorted(self.value_map_.values()) idx1 = [] idx2 = [] all_indices = np.arange(len(X)) for idx, val in enumerate(possible_values[:-1]): new_idxs = all_indices[values > val] idx1.extend(new_idxs) idx2.extend(repeat(idx, len(new_idxs))) result = scipy.sparse.coo_matrix(([1] * len(idx1), (idx1, idx2)), shape=(len(X), len(possible_values)), dtype="int8") return result other_classes = ["NAN", 'xor'] with timer("Thermometer Encoder"): thermos=[] for col in ordinal_cols: if col=="ord_1": sort_key=(other_classes + ['Novice', 'Contributor', 'Expert', 'Master', 'Grandmaster']).index elif col=="ord_2": sort_key= (other_classes + ['Freezing', 'Cold', 'Warm', 'Hot', 'Boiling Hot', 'Lava Hot']).index elif col in ["ord_3", "ord_4", "ord_5a"]: sort_key=str elif col in ["day", "month"]: sort_key=int else: raise ValueError(col) enc=ThermometerEncoder(sort_key=sort_key) thermos.append(enc.fit_transform(df[col])) ohc=scipy.sparse.hstack([ohc1] + thermos).tocsr() display(ohc) X_sparse = ohc[:len(traindex)] test_sparse = ohc[len(traindex):] print(X_sparse.shape) print(test_sparse.shape) del ohc; gc.collect() # Train Test Split X_train, X_valid, y_train, y_valid = train_test_split(X_sparse, y_var, test_size=0.2, shuffle=True) [print(table.shape) for table in [X_train, y_train, X_valid, y_valid]]; class TabularDataset(torch.utils.data.Dataset): def __init__(self, data, y=None): self.n = data.shape[0] self.y = y self.X = data def __len__(self): return self.n def __getitem__(self, idx): if self.y is not None: return [self.X[idx].toarray(), self.y.astype(float).values[idx]] else: return [self.X[idx].toarray()] train_dataset = TabularDataset(data = X_train, y = y_train) valid_dataset = TabularDataset(data = X_valid, y = y_valid) submission_dataset = TabularDataset(data = test_sparse, y = None) batch_size = 16384 train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True) val_loader = torch.utils.data.DataLoader(valid_dataset, batch_size=batch_size, shuffle=False) submission_loader = torch.utils.data.DataLoader(submission_dataset, batch_size=batch_size, shuffle=False) next(iter(train_loader)) class Net(nn.Module): def __init__(self, dropout = .60): super().__init__() self.dropout = dropout self.fc1 = nn.Linear(X_sparse.shape[1], 4096) self.d1 = nn.Dropout(p=self.dropout) self.bn1 = nn.BatchNorm1d(num_features=4096) self.fc2 = nn.Linear(4096, 2048) self.d2 = nn.Dropout(p=self.dropout) self.bn2 = nn.BatchNorm1d(num_features=2048) self.fc3 = nn.Linear(2048, 64) self.d3 = nn.Dropout(p=self.dropout) self.bn3 = nn.BatchNorm1d(num_features=64) self.fc4 = nn.Linear(64, 1) self.out_act = nn.Sigmoid() def forward(self, x): x = F.relu(self.fc1(x)) x = self.d1(x) x = self.bn1(x) x = F.relu(self.fc2(x)) x = self.d2(x) x = self.bn2(x) x = F.relu(self.fc3(x)) x = self.d3(x) x = self.bn3(x) x = self.fc4(x) x = self.out_act(x) return x net = Net() net.to(device) ###Output _____no_output_____ ###Markdown Lets follow a recipe:1. Fix random seed.1. Do not trust learning rate decay defaults - Check, remove nesterov and momentum.1. ###Code learning_rate = 0.01 # https://github.com/ncullen93/torchsample/blob/master/README.md # optimizer = torch.optim.SGD(net.parameters(), lr=learning_rate, momentum=0, nesterov=0) # scheduler = ReduceLROnPlateau(optimizer, min_lr = 0.00001, mode='min', factor=0.5, patience=3, verbose=True) EPOCHS = 50 criterion = nn.BCELoss() optimizer = optim.Adam(net.parameters(), lr=learning_rate) nn_output = [] patience = 0 min_val_loss = np.Inf full_train_loss = [] full_val_loss = [] for epoch in range(EPOCHS): # 3 full passes over the data train_loss = [] train_metric_pred = [] train_metric_label = [] net.train() for data in train_loader: # `data` is a batch of data X, y = Variable(data[0].to(device).squeeze(1).float()), Variable(data[1].to(device)) # X is the batch of features, y is the batch of targets. optimizer.zero_grad() # sets gradients to 0 before loss calc. You will do this likely every step. output = net(X).squeeze() # pass in the reshaped batch tloss = criterion(output, y) # calc and grab the loss value tloss.backward() # apply this loss backwards thru the network's parameters optimizer.step() # attempt to optimize weights to account for loss/gradients train_loss.append(tloss.item()) train_metric_pred.append(output.detach().cpu().numpy()) train_metric_label.append(y.cpu().numpy()) # Evaluation with the validation set train_metric_score = metrics.roc_auc_score(np.concatenate(train_metric_label), np.concatenate(train_metric_pred)) full_train_loss.append(train_loss) net.eval() # eval mode val_loss = [] val_metric_pred = [] val_metric_label = [] val_metric_score = 0 with torch.no_grad(): for data in val_loader: X, y = Variable(data[0].to(device).squeeze(1).float()), Variable(data[1].to(device)) preds = net(X).squeeze() # get predictions vloss = criterion(preds, y) # calculate the loss val_loss.append(vloss.item()) val_metric_pred.append(preds.detach().cpu().numpy()) val_metric_label.append(y.cpu().numpy()) val_metric_score = metrics.roc_auc_score(np.concatenate(val_metric_label), np.concatenate(val_metric_pred)) full_val_loss.append(val_loss) mean_val_loss = np.mean(val_loss) tmp_nn_output = [epoch + 1,EPOCHS, np.mean(train_loss), train_metric_score, mean_val_loss, val_metric_score ] nn_output.append(tmp_nn_output) # ReduceLossOnPlateau # scheduler.step(final_val_loss) # Print the loss and accuracy for the validation set print('Epoch [{}/{}] train loss: {:.4f} train metric: {:.4f} valid loss: {:.4f} val metric: {:.4f}' .format(*tmp_nn_output)) # Early Stopping if min_val_loss > round(mean_val_loss,4) : min_val_loss = round(mean_val_loss,4) patience = 0 # Checkpoint Best Model so far checkpoint = {'model': Net(), 'state_dict': net.state_dict().copy(), 'optimizer' : optimizer.state_dict().copy()} else: patience += 1 if patience > 6: print("Early Stopping..") break # Plot loss by batch.. √ # Checkpoint √ # Try batch norm.. √ # Examine Gradients # Try Adam 3e-4 # Fix Seen # Fix decay/ momentum pd_results = pd.DataFrame(nn_output, columns = ['epoch','total_epochs','train_loss','train_metric','valid_loss','valid_metric'] ) display(pd_results) train_batch_loss = np.concatenate(full_train_loss) val_batch_loss = np.concatenate(full_val_loss) fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(12, 4)) axes[0].plot(train_batch_loss, label='validation_loss') axes[0].plot(val_batch_loss, label='train_loss') axes[0].set_title("Loss") axes[0].legend() axes[1].plot(pd_results['epoch'],pd_results['valid_metric'], label='Val') axes[1].plot(pd_results['epoch'],pd_results['train_metric'], label='Train') # axes[1].plot(pd_results['epoch'],pd_results['test_acc'], label='test_acc') axes[1].set_title("Roc_AUC Score") axes[1].legend() plt.show() # Load Best Model net = checkpoint['model'].to(device) net.load_state_dict(checkpoint['state_dict']) net.eval() # Safety first predictions = torch.Tensor().to(device) # Tensor for all predictions # Go through the test set, saving the predictions in... 'predictions' for data in submission_loader: X = data[0].squeeze(1).float() preds = net(X.to(device)).squeeze() predictions = torch.cat((predictions, preds)) submission = pd.DataFrame({'id': testdex, 'target': predictions.cpu().detach().numpy()}) submission.to_csv('submission.csv', index=False) submission.head() ###Output _____no_output_____
Seminar 16/.ipynb_checkpoints/Tasks 345-checkpoint.ipynb
###Markdown Task 1 ###Code Image(filename='Task1.jpg') ###Output _____no_output_____ ###Markdown Task 2 При n = 5. Если нарисовать тетраэдр из точек класса 1, и поместить внутрь него точку класса 2, то не найдётся плоскости, отделяющей классы друг от друга. При этом, если n = 4 (и точки не лежат в одной плоскости), всегда найдётся плоскость, разделяющая классы. ![Task2.png](attachment:Task2.png) Task 3 ###Code df = pd.read_csv("../Bonus19/BRCA_pam50.tsv", sep="\t", index_col=0) df3 = df.loc[df["Subtype"].isin(["Luminal A","Luminal B"])] X3 = df3.iloc[:, :-1].to_numpy() y3 = df3["Subtype"].to_numpy() X3_train, X3_test, y3_train, y3_test = train_test_split( X3, y3, stratify=y3, test_size=0.2, random_state=17 ) svm = SVC(kernel="linear", C=3.5) svm.fit(X3_train, y3_train); pass y3_pred = svm.predict(X3_test) print("Balanced accuracy score:", balanced_accuracy_score(y3_pred, y3_test)) M = confusion_matrix(y3_test, y3_pred) print(M) TPR = M[0, 0] / (M[0, 0] + M[0, 1]) TNR = M[1, 1] / (M[1, 0] + M[1, 1]) print("TPR:", round(TPR, 3), "TNR:", round(TNR, 3)) plot_roc_curve(svm, X3_test, y3_test) plt.plot(1 - TPR, TNR, "x", c="red") plt.show() coef = np.argsort(np.abs(svm.coef_[0]))[-5:] df3 = df3.iloc[:, coef] X3 = df3.iloc[:, :-1].to_numpy() X3_train, X3_test, y3_train, y3_test = train_test_split( X3, y3, stratify=y3, test_size=0.2, random_state=17 ) svm = SVC(kernel="linear", C=3.5) svm.fit(X3_train, y3_train); pass y3_pred = svm.predict(X3_test) print("Balanced accuracy score:", balanced_accuracy_score(y3_pred, y3_test)) M = confusion_matrix(y3_test, y3_pred) print(M) TPR = M[0, 0] / (M[0, 0] + M[0, 1]) TNR = M[1, 1] / (M[1, 0] + M[1, 1]) print("TPR:", round(TPR, 3), "TNR:", round(TNR, 3)) plot_roc_curve(svm, X3_test, y3_test) plt.plot(1 - TPR, TNR, "x", c="red") plt.show() ###Output Balanced accuracy score: 0.7395786642761093 [[76 7] [21 16]] TPR: 0.916 TNR: 0.432 ###Markdown Task 4 ###Code X4_pca = PCA(n_components=2).fit_transform(df.iloc[:, :-1].to_numpy()) X4 = df.iloc[:, :-1].to_numpy() y4 = df["Subtype"].to_numpy() X4_train, X4_test, y4_train, y4_test = train_test_split( X4, y4, stratify=y4, test_size=0.2, random_state=17 ) X4_pca_train, X4_pca_test, y4_train, y4_test = train_test_split( X4_pca, y4, stratify=y4, test_size=0.2, random_state=17 ) svm = SVC(kernel="linear", C=3.5) svm.fit(X4_train, y4_train); pass y4_pred = svm.predict(X4_test) print("Balanced accuracy score:", balanced_accuracy_score(y4_pred, y4_test)) M = confusion_matrix(y4_test, y4_pred) print(M) svm = SVC(kernel="linear", C=3.5) svm.fit(X4_pca_train, y4_train); pass y4_pred = svm.predict(X4_pca_test) print("Balanced accuracy score:", balanced_accuracy_score(y4_pred, y4_test)) M = confusion_matrix(y4_test, y4_pred) print(M) ###Output Balanced accuracy score: 0.8545343545343546 [[ 7 0 0 6 0 0] [ 0 17 3 0 0 0] [ 1 0 75 6 0 0] [ 2 0 11 24 0 0] [ 1 0 2 0 1 0] [ 0 0 0 0 0 27]] ###Markdown Task 5 ###Code X1_1 = np.random.multivariate_normal([0,0], [[1, 1], [1, 1]], 10000) X1_2 = np.random.multivariate_normal([10,10], [[1, 1], [1, 1]], 10000) X1 = np.concatenate([X1_1, X1_2]) y1 = np.concatenate([["0"]*10000, ["1"]*10000]) X2_1 = np.random.multivariate_normal([0,0], [[1, 1], [1, 1]], 10000) X2_2 = np.random.multivariate_normal([0,0], [[1, 1], [1, 1]], 10000) X2 = np.concatenate([X2_1, X2_2]) y2 = np.concatenate([["0"]*10000, ["1"]*10000]) X1_train, X1_test, y1_train, y1_test = train_test_split( X1, y1, stratify=y1, test_size=0.2, random_state=17 ) X2_train, X2_test, y2_train, y2_test = train_test_split( X2, y2, stratify=y2, test_size=0.2, random_state=17 ) svm = SVC(kernel="linear", C=3.5) time_start = time() svm.fit(X1_train, y1_train); pass time_stop = time() print("Time:", time_stop - time_start) y1_pred = svm.predict(X1_test) print("Balanced accuracy score:", balanced_accuracy_score(y1_pred, y1_test)) M = confusion_matrix(y1_test, y1_pred) print(M) time_start = time() svm.fit(X2_train, y2_train); pass time_stop = time() print("Time:", time_stop - time_start) y2_pred = svm.predict(X2_test) print("Balanced accuracy score:", balanced_accuracy_score(y2_pred, y2_test)) M = confusion_matrix(y2_test, y2_pred) print(M) ###Output Time: 4.307581901550293 Balanced accuracy score: 0.4879797940337708 [[1017 983] [1065 935]]
workflow/preprocessing/01_rgi7_reg_files.ipynb
###Markdown Modify the RGI6 regions files for RGI7 List of changes:- Region 12 (Caucasus and Middle East): there is a cluster of glaciers south of the current extent of the region and subregion polygons. There are no regions below them, so there shouldn't be much of an issue in simply updating the geometry a little bit: we shift the southern boundary by 2° (from 32°N to 30°N).- the data type of the RGI_CODE attribute in the region file of version 6 is int. For consistency with the RGI files, it should be str (format with leading zero, for example `02`). We change this as well. ###Code # go down from rgi7_scripts/workflow/preprocessing data_dir = '../../../rgi7_data/' import os import numpy as np import shapely.geometry as shpg import geopandas as gpd from utils import mkdir ###Output _____no_output_____ ###Markdown Regions ###Code out_dir = os.path.abspath(os.path.join(data_dir, '00_rgi70_regions')) mkdir(out_dir) # Read the RGI region files rgi_dir = os.path.join(data_dir, 'l0_RGIv6') rgi_reg = gpd.read_file('zip://' + os.path.join(data_dir, 'l0_RGIv6', '00_rgi60_regions.zip', '00_rgi60_O1Regions.shp')) # Select the RGI 12 polygon poly = rgi_reg.loc[rgi_reg.RGI_CODE == 12].iloc[0].geometry poly.bounds ###Output _____no_output_____ ###Markdown Let's go down to 30° South instead: ###Code x, y = poly.exterior.xy ny = np.where(np.isclose(y, 31), 30, y) new_poly = shpg.Polygon(np.array((x, ny)).T) rgi_reg.loc[rgi_reg.RGI_CODE == 12, 'geometry'] = new_poly # Change type and format rgi_reg['RGI_CODE'] = ['{:02d}'.format(int(s)) for s in rgi_reg.RGI_CODE] rgi_reg rgi_reg.to_file(os.path.join(out_dir, '00_rgi70_O1Regions.shp')) # Check rgi_reg = gpd.read_file(os.path.join(out_dir, '00_rgi70_O1Regions.shp')) assert rgi_reg.RGI_CODE.dtype == 'O' ###Output _____no_output_____ ###Markdown Subregions ###Code rgi_reg = gpd.read_file('zip://' + os.path.join(data_dir, 'l0_RGIv6', '00_rgi60_regions.zip', '00_rgi60_O2Regions.shp')) poly = rgi_reg.loc[rgi_reg.RGI_CODE == '12-02'].iloc[0].geometry poly.bounds x, y = poly.exterior.xy ny = np.where(np.isclose(y, 32), 30, y) new_poly = shpg.Polygon(np.array((x, ny)).T) rgi_reg.loc[rgi_reg.RGI_CODE == '12-02', 'geometry'] = new_poly rgi_reg.to_file(os.path.join(out_dir, '00_rgi70_O2Regions.shp')) rgi_reg ###Output _____no_output_____ ###Markdown Modify the RGI6 regions files for RGI7 List of changes:- Region 12 (Caucasus and Middle East): there is a cluster of glaciers south of the current extent of the region and subregion polygons. There are no regions below them, so there shouldn't be much of an issue in simply updating the geometry a little bit: we shift the southern boundary by 2° (from 32°N to 30°N).- the data type of the RGI_CODE attribute in the region file of version 6 is int. For consistency with the RGI files, it should be str (format with leading zero, for example `02`). We change this as well. ###Code # go down from rgi7_scripts/workflow/preprocessing data_dir = '../../../rgi7_data/' import os import numpy as np import shapely.geometry as shpg import geopandas as gpd from utils import mkdir ###Output _____no_output_____ ###Markdown Regions ###Code out_dir = os.path.abspath(os.path.join(data_dir, '00_rgi70_regions')) mkdir(out_dir) # Read the RGI region files rgi_dir = os.path.join(data_dir, 'l0_RGIv6') rgi_reg = gpd.read_file('zip://' + os.path.join(data_dir, 'l0_RGIv6', '00_rgi60_regions.zip', '00_rgi60_O1Regions.shp')) # Select the RGI 12 polygon poly = rgi_reg.loc[rgi_reg.RGI_CODE == 12].iloc[0].geometry poly.bounds ###Output _____no_output_____ ###Markdown Let's go down to 30° South instead: ###Code x, y = poly.exterior.xy ny = np.where(np.isclose(y, 31), 30, y) new_poly = shpg.Polygon(np.array((x, ny)).T) rgi_reg.loc[rgi_reg.RGI_CODE == 12, 'geometry'] = new_poly # Change type and format rgi_reg['RGI_CODE'] = ['{:02d}'.format(int(s)) for s in rgi_reg.RGI_CODE] rgi_reg rgi_reg.to_file(os.path.join(out_dir, '00_rgi70_O1Regions.shp')) # Check rgi_reg = gpd.read_file(os.path.join(out_dir, '00_rgi70_O1Regions.shp')) assert rgi_reg.RGI_CODE.dtype == 'O' ###Output _____no_output_____ ###Markdown Subregions ###Code rgi_reg = gpd.read_file('zip://' + os.path.join(data_dir, 'l0_RGIv6', '00_rgi60_regions.zip', '00_rgi60_O2Regions.shp')) poly = rgi_reg.loc[rgi_reg.RGI_CODE == '12-02'].iloc[0].geometry poly.bounds x, y = poly.exterior.xy ny = np.where(np.isclose(y, 32), 30, y) new_poly = shpg.Polygon(np.array((x, ny)).T) rgi_reg.loc[rgi_reg.RGI_CODE == '12-02', 'geometry'] = new_poly rgi_reg.to_file(os.path.join(out_dir, '00_rgi70_O2Regions.shp')) rgi_reg ###Output _____no_output_____
examples/talk_2020-0302-lale.ipynb
###Markdown Lale: Type-Driven Auto-ML with Scikit-Learn https://github.com/ibm/lale Example Dataset ###Code !pip install 'liac-arff>=2.4.0' import lale.datasets.openml import pandas as pd (train_X, train_y), (test_X, test_y) = lale.datasets.openml.fetch( 'credit-g', 'classification', preprocess=False) print(f'train_X.shape {train_X.shape}') pd.concat([train_y.tail(), train_X.tail()], axis=1) ###Output train_X.shape (670, 20) ###Markdown Algorithm Selection and Hyperparameter Tuning ###Code from sklearn.preprocessing import Normalizer as Norm from sklearn.preprocessing import OneHotEncoder as OneHot from sklearn.linear_model import LogisticRegression as LR from xgboost import XGBClassifier as XGBoost from sklearn.svm import LinearSVC from lale.operators import make_pipeline, make_union from lale.lib.lale import Project, ConcatFeatures, NoOp lale.wrap_imported_operators() project_nums = Project(columns={'type': 'number'}) project_cats = Project(columns={'type': 'string'}) planned_pipeline = ( (project_nums >> (Norm | NoOp) & project_cats >> OneHot) >> ConcatFeatures >> (LR | LinearSVC(dual=False)| XGBoost)) planned_pipeline.visualize() import sklearn.metrics from lale.lib.lale import Hyperopt auto_optimizer = Hyperopt(estimator=planned_pipeline, cv=3, max_evals=5) auto_trained = auto_optimizer.fit(train_X, train_y) auto_y = auto_trained.predict(test_X) print(f'accuracy {sklearn.metrics.accuracy_score(test_y, auto_y):.1%}') ###Output 100%|█████████| 5/5 [01:08<00:00, 13.74s/trial, best loss: -0.7507273649370062] accuracy 72.1% ###Markdown Displaying Automation Results ###Code best_pipeline = auto_trained.get_pipeline() best_pipeline.visualize() from lale.pretty_print import ipython_display ipython_display(best_pipeline, show_imports=False) ###Output _____no_output_____ ###Markdown JSON Schemashttps://json-schema.org/ ###Code ipython_display(XGBoost.hyperparam_schema('n_estimators')) ipython_display(XGBoost.hyperparam_schema('booster')) import jsonschema import sys try: XGBoost(n_estimators=0.5, booster='gbtree') except jsonschema.ValidationError as e: print(e.message, file=sys.stderr) ###Output Invalid configuration for XGBoost(n_estimators=0.5, booster='gbtree') due to invalid value n_estimators=0.5. Schema of argument n_estimators: { "description": "Number of trees to fit.", "type": "integer", "default": 1000, "minimumForOptimizer": 500, "maximumForOptimizer": 1500, } Value: 0.5 ###Markdown Customizing Schemas ###Code import lale.schemas as schemas Grove = XGBoost.customize_schema( n_estimators=schemas.Int(minimum=2, maximum=10), booster=schemas.Enum(['gbtree'], default='gbtree')) grove_planned = ( Project(columns={'type': 'number'}) >> Norm & Project(columns={'type': 'string'}) >> OneHot ) >> ConcatFeatures >> Grove grove_optimizer = Hyperopt(estimator=grove_planned, cv=3, max_evals=10) grove_trained = grove_optimizer.fit(train_X, train_y) grove_y = grove_trained.predict(test_X) print(f'accuracy {sklearn.metrics.accuracy_score(test_y, grove_y):.1%}') grove_best = grove_trained.get_pipeline() ipython_display(grove_best, show_imports=False) ###Output _____no_output_____ ###Markdown Lale: Type-Driven Auto-ML with Scikit-Learn https://github.com/ibm/lale Example Dataset ###Code !pip install 'liac-arff>=2.4.0' import lale.datasets.openml import pandas as pd (train_X, train_y), (test_X, test_y) = lale.datasets.openml.fetch( 'credit-g', 'classification', preprocess=False) pd.concat([pd.DataFrame({'y': train_y}, index=train_X.index).tail(), train_X.tail()], axis=1) ###Output _____no_output_____ ###Markdown Algorithm Selection and Hyperparameter Tuning ###Code from sklearn.preprocessing import Normalizer as Norm from sklearn.preprocessing import OneHotEncoder as OneHot from sklearn.linear_model import LogisticRegression as LR from xgboost import XGBClassifier as XGBoost from sklearn.svm import LinearSVC from lale.operators import make_pipeline, make_union from lale.lib.lale import Project, ConcatFeatures, NoOp lale.wrap_imported_operators() project_nums = Project(columns={'type': 'number'}) project_cats = Project(columns={'type': 'string'}) planned_pipeline = ( (project_nums >> (Norm | NoOp) & project_cats >> OneHot) >> ConcatFeatures >> (LR | LinearSVC(dual=False)| XGBoost)) planned_pipeline.visualize() import sklearn.metrics from lale.lib.lale import Hyperopt auto_optimizer = Hyperopt(estimator=planned_pipeline, cv=3, max_evals=5) auto_trained = auto_optimizer.fit(train_X, train_y) auto_y = auto_trained.predict(test_X) print(f'accuracy {sklearn.metrics.accuracy_score(test_y, auto_y):.1%}') ###Output 100%|████████████| 5/5 [00:47<00:00, 9.36s/it, best loss: -0.7507273649370062] accuracy 72.1% ###Markdown Displaying Automation Results ###Code best_pipeline = auto_trained.get_pipeline() best_pipeline.visualize() from lale.pretty_print import ipython_display ipython_display(best_pipeline, show_imports=False) ###Output _____no_output_____ ###Markdown JSON Schemashttps://json-schema.org/ ###Code ipython_display(XGBoost.hyperparam_schema('n_estimators')) ipython_display(XGBoost.hyperparam_schema('booster')) import jsonschema import sys try: XGBoost(n_estimators=0.5, booster='gbtree') except jsonschema.ValidationError as e: print(e.message, file=sys.stderr) ###Output Invalid configuration for XGBoost(n_estimators=0.5, booster='gbtree') due to invalid value n_estimators=0.5. Schema of argument n_estimators: { 'description': 'Number of trees to fit.', 'type': 'integer', 'default': 100, 'minimumForOptimizer': 10, 'maximumForOptimizer': 1500} Value: 0.5 ###Markdown Customizing Schemas ###Code import lale.schemas as schemas Grove = XGBoost.customize_schema( n_estimators=schemas.Int(min=2, max=10), booster=schemas.Enum(['gbtree'])) grove_planned = ( Project(columns={'type': 'number'}) >> Norm & Project(columns={'type': 'string'}) >> OneHot ) >> ConcatFeatures >> Grove grove_optimizer = Hyperopt(estimator=grove_planned, cv=3, max_evals=10) grove_trained = grove_optimizer.fit(train_X, train_y) grove_y = grove_trained.predict(test_X) print(f'accuracy {sklearn.metrics.accuracy_score(test_y, grove_y):.1%}') grove_best = grove_trained.get_pipeline() ipython_display(grove_best, show_imports=False) ###Output _____no_output_____ ###Markdown Lale: Type-Driven Auto-ML with Scikit-Learn https://github.com/ibm/lale Example Dataset ###Code !pip install 'liac-arff>=2.4.0' import lale.datasets.openml import pandas as pd (train_X, train_y), (test_X, test_y) = lale.datasets.openml.fetch( 'credit-g', 'classification', preprocess=False) print(f'train_X.shape {train_X.shape}') pd.concat([train_y.tail(), train_X.tail()], axis=1) ###Output train_X.shape (670, 20) ###Markdown Algorithm Selection and Hyperparameter Tuning ###Code from sklearn.preprocessing import Normalizer as Norm from sklearn.preprocessing import OneHotEncoder as OneHot from sklearn.linear_model import LogisticRegression as LR from xgboost import XGBClassifier as XGBoost from sklearn.svm import LinearSVC from lale.operators import make_pipeline, make_union from lale.lib.lale import Project, ConcatFeatures, NoOp lale.wrap_imported_operators() project_nums = Project(columns={'type': 'number'}) project_cats = Project(columns={'type': 'string'}) planned_pipeline = ( (project_nums >> (Norm | NoOp) & project_cats >> OneHot) >> ConcatFeatures >> (LR | LinearSVC(dual=False)| XGBoost)) planned_pipeline.visualize() import sklearn.metrics from lale.lib.lale import Hyperopt auto_optimizer = Hyperopt(estimator=planned_pipeline, cv=3, max_evals=5) auto_trained = auto_optimizer.fit(train_X, train_y) auto_y = auto_trained.predict(test_X) print(f'accuracy {sklearn.metrics.accuracy_score(test_y, auto_y):.1%}') ###Output 100%|█████████| 5/5 [01:08<00:00, 13.74s/trial, best loss: -0.7507273649370062] accuracy 72.1% ###Markdown Displaying Automation Results ###Code best_pipeline = auto_trained.get_pipeline() best_pipeline.visualize() from lale.pretty_print import ipython_display ipython_display(best_pipeline, show_imports=False) ###Output _____no_output_____ ###Markdown JSON Schemashttps://json-schema.org/ ###Code ipython_display(XGBoost.hyperparam_schema('n_estimators')) ipython_display(XGBoost.hyperparam_schema('booster')) import jsonschema import sys try: XGBoost(n_estimators=0.5, booster='gbtree') except jsonschema.ValidationError as e: print(e.message, file=sys.stderr) ###Output Invalid configuration for XGBoost(n_estimators=0.5, booster='gbtree') due to invalid value n_estimators=0.5. Schema of argument n_estimators: { "description": "Number of trees to fit.", "type": "integer", "default": 1000, "minimumForOptimizer": 500, "maximumForOptimizer": 1500, } Value: 0.5 ###Markdown Customizing Schemas ###Code import lale.schemas as schemas Grove = XGBoost.customize_schema( n_estimators=schemas.Int(minimum=2, maximum=10), booster=schemas.Enum(['gbtree'], default='gbtree')) grove_planned = ( Project(columns={'type': 'number'}) >> Norm & Project(columns={'type': 'string'}) >> OneHot ) >> ConcatFeatures >> Grove grove_optimizer = Hyperopt(estimator=grove_planned, cv=3, max_evals=10) grove_trained = grove_optimizer.fit(train_X, train_y) grove_y = grove_trained.predict(test_X) print(f'accuracy {sklearn.metrics.accuracy_score(test_y, grove_y):.1%}') grove_best = grove_trained.get_pipeline() ipython_display(grove_best, show_imports=False) ###Output _____no_output_____ ###Markdown Lale: Type-Driven Auto-ML with Scikit-Learn https://github.com/ibm/lale Example Dataset ###Code !pip install 'liac-arff>=2.4.0' import lale.datasets.openml import pandas as pd (train_X, train_y), (test_X, test_y) = lale.datasets.openml.fetch( 'credit-g', 'classification', preprocess=False) print(f'train_X.shape {train_X.shape}') pd.concat([train_y.tail(), train_X.tail()], axis=1) ###Output train_X.shape (670, 20) ###Markdown Algorithm Selection and Hyperparameter Tuning ###Code from sklearn.preprocessing import Normalizer as Norm from sklearn.preprocessing import OneHotEncoder as OneHot from sklearn.linear_model import LogisticRegression as LR from xgboost import XGBClassifier as XGBoost from sklearn.svm import LinearSVC from lale.operators import make_pipeline, make_union from lale.lib.lale import Project, ConcatFeatures, NoOp lale.wrap_imported_operators() project_nums = Project(columns={'type': 'number'}) project_cats = Project(columns={'type': 'string'}) planned_pipeline = ( (project_nums >> (Norm | NoOp) & project_cats >> OneHot) >> ConcatFeatures >> (LR | LinearSVC(dual=False)| XGBoost)) planned_pipeline.visualize() import sklearn.metrics from lale.lib.lale import Hyperopt auto_optimizer = Hyperopt(estimator=planned_pipeline, cv=3, max_evals=5) auto_trained = auto_optimizer.fit(train_X, train_y) auto_y = auto_trained.predict(test_X) print(f'accuracy {sklearn.metrics.accuracy_score(test_y, auto_y):.1%}') ###Output 100%|█████████| 5/5 [01:08<00:00, 13.74s/trial, best loss: -0.7507273649370062] accuracy 72.1% ###Markdown Displaying Automation Results ###Code best_pipeline = auto_trained.get_pipeline() best_pipeline.visualize() from lale.pretty_print import ipython_display ipython_display(best_pipeline, show_imports=False) ###Output _____no_output_____ ###Markdown JSON Schemashttps://json-schema.org/ ###Code ipython_display(XGBoost.hyperparam_schema('n_estimators')) ipython_display(XGBoost.hyperparam_schema('booster')) import jsonschema import sys try: XGBoost(n_estimators=0.5, booster='gbtree') except jsonschema.ValidationError as e: print(e.message, file=sys.stderr) ###Output Invalid configuration for XGBoost(n_estimators=0.5, booster='gbtree') due to invalid value n_estimators=0.5. Schema of argument n_estimators: { "description": "Number of trees to fit.", "type": "integer", "default": 1000, "minimumForOptimizer": 500, "maximumForOptimizer": 1500, } Value: 0.5 ###Markdown Customizing Schemas ###Code import lale.schemas as schemas Grove = XGBoost.customize_schema( n_estimators=schemas.Int(min=2, max=10), booster=schemas.Enum(['gbtree'], default='gbtree')) grove_planned = ( Project(columns={'type': 'number'}) >> Norm & Project(columns={'type': 'string'}) >> OneHot ) >> ConcatFeatures >> Grove grove_optimizer = Hyperopt(estimator=grove_planned, cv=3, max_evals=10) grove_trained = grove_optimizer.fit(train_X, train_y) grove_y = grove_trained.predict(test_X) print(f'accuracy {sklearn.metrics.accuracy_score(test_y, grove_y):.1%}') grove_best = grove_trained.get_pipeline() ipython_display(grove_best, show_imports=False) ###Output _____no_output_____
samples/chihuahua/train-chihuaha.ipynb
###Markdown Training deteksi Chihuahuya ###Code import warnings warnings.filterwarnings('ignore') !pip install tensorflow-gpu==2.0.0 # %tensorflow_version 2.0.0 !pip install keras==2.3.1 import os import sys import json import datetime import numpy as np import skimage.draw from google.colab import drive drive.mount('/content/drive') # Root directory dari project ROOT_DIR = os.path.abspath("/content/drive/MyDrive/Deep Learning/Tugas Kelompok DL/Tugas Implementasi Mask RCNN/Colab/Mask_RCNN-master") print(ROOT_DIR) # Import Mask RCNN sys.path.append(ROOT_DIR) # To find local version of the library from mrcnn.config import Config from mrcnn import model as modellib, utils # Path to trained weights file COCO_WEIGHTS_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5") # Directory to save logs and model checkpoints, if not provided # through the command line argument --logs DEFAULT_LOGS_DIR = os.path.join(ROOT_DIR, "logs") class ChihuahuaConfig(Config): """Configuration for training on the balloon dataset. Derives from the base Config class and overrides some values. """ # Give the configuration a recognizable name NAME = "chihuahua" # We use a GPU with 12GB memory, which can fit two images. # Adjust down if you use a smaller GPU. IMAGES_PER_GPU = 2 # Number of classes (including background) NUM_CLASSES = 1 + 1 # Background + balloon # Number of training steps per epoch STEPS_PER_EPOCH = 100 # Skip detections with < 90% confidence DETECTION_MIN_CONFIDENCE = 0.9 class ChihuahuaDataset(utils.Dataset): def load_chihuahua(self, dataset_dir, subset): # Add classes. We have only one class to add. self.add_class("chihuahua", 1, "chihuaha") # Train or validation dataset? assert subset in ["train", "val"] dataset_dir = os.path.join(dataset_dir, subset) # Load annotations # VGG Image Annotator (up to version 1.6) saves each image in the form: # { 'filename': '28503151_5b5b7ec140_b.jpg', # 'regions': { # '0': { # 'region_attributes': {}, # 'shape_attributes': { # 'all_points_x': [...], # 'all_points_y': [...], # 'name': 'polygon'}}, # ... more regions ... # }, # 'size': 100202 # } # We mostly care about the x and y coordinates of each region # Note: In VIA 2.0, regions was changed from a dict to a list. annotations = json.load(open(os.path.join(dataset_dir, "via_region_data.json"))) annotations = list(annotations.values()) # don't need the dict keys # The VIA tool saves images in the JSON even if they don't have any # annotations. Skip unannotated images. annotations = [a for a in annotations if a['regions']] # Add images for a in annotations: # Get the x, y coordinaets of points of the polygons that make up # the outline of each object instance. These are stores in the # shape_attributes (see json format above) # The if condition is needed to support VIA versions 1.x and 2.x. if type(a['regions']) is dict: polygons = [r['shape_attributes'] for r in a['regions'].values()] else: polygons = [r['shape_attributes'] for r in a['regions']] # load_mask() needs the image size to convert polygons to masks. # Unfortunately, VIA doesn't include it in JSON, so we must read # the image. This is only managable since the dataset is tiny. image_path = os.path.join(dataset_dir, a['filename']) image = skimage.io.imread(image_path) height, width = image.shape[:2] self.add_image( "chihuahua", image_id=a['filename'], # use file name as a unique image id path=image_path, width=width, height=height, polygons=polygons) def load_mask(self, image_id): """Generate instance masks for an image. Returns: masks: A bool array of shape [height, width, instance count] with one mask per instance. class_ids: a 1D array of class IDs of the instance masks. """ # If not a balloon dataset image, delegate to parent class. image_info = self.image_info[image_id] if image_info["source"] != "chihuahua": return super(self.__class__, self).load_mask(image_id) # Convert polygons to a bitmap mask of shape # [height, width, instance_count] info = self.image_info[image_id] mask = np.zeros([info["height"], info["width"], len(info["polygons"])], dtype=np.uint8) for i, p in enumerate(info["polygons"]): # Get indexes of pixels inside the polygon and set them to 1 rr, cc = skimage.draw.polygon(p['all_points_y'], p['all_points_x']) mask[rr, cc, i] = 1 # Return mask, and array of class IDs of each instance. Since we have # one class ID only, we return an array of 1s return mask.astype(np.bool), np.ones([mask.shape[-1]], dtype=np.int32) def image_reference(self, image_id): """Return the path of the image.""" info = self.image_info[image_id] if info["source"] == "chihuahua": return info["path"] else: super(self.__class__, self).image_reference(image_id) def train(model): """Train the model.""" # Training dataset. dataset_train = ChihuahuaDataset() dataset_train.load_chihuahua(dataset, "train") dataset_train.prepare() # Validation dataset dataset_val = ChihuahuaDataset() dataset_val.load_chihuahua(dataset, "val") dataset_val.prepare() # *** This training schedule is an example. Update to your needs *** # Since we're using a very small dataset, and starting from # COCO trained weights, we don't need to train too long. Also, # no need to train all layers, just the heads should do it. print("Training network heads") model.train(dataset_train, dataset_val, learning_rate=config.LEARNING_RATE, epochs=30, layers='heads') dataset = ROOT_DIR + '/datasets/chihuahua/' # parameter untuk weights # 'coco: load pretrained weights dari coco # 'imagenet': load pretrained weights dari imagenet # 'last': load pretrained weights dari proses training (belum selesai) yang terbaru weights = 'last' logs = DEFAULT_LOGS_DIR print("Weights: ", weights) print("Dataset: ", dataset) print("Logs: ", logs) # Configurations config = ChihuahuaConfig() # Create model model = modellib.MaskRCNN(mode="training", config=config, model_dir=logs) # Select weights file to load if weights.lower() == "coco": weights_path = COCO_WEIGHTS_PATH if not os.path.exists(weights_path): utils.download_trained_weights(weights_path) elif weights.lower() == "last": # Find last trained weights weights_path = model.find_last() elif weights.lower() == "imagenet": # Start from ImageNet trained weights weights_path = model.get_imagenet_weights() else: weights_path = weights # Load weights print("Loading weights ", weights_path) if weights.lower() == "coco": # Exclude the last layers because they require a matching # number of classes model.load_weights(weights_path, by_name=True, exclude=[ "mrcnn_class_logits", "mrcnn_bbox_fc", "mrcnn_bbox", "mrcnn_mask"]) else: model.load_weights(weights_path, by_name=True) # Train or evaluate train(model) ###Output _____no_output_____
.ipynb_checkpoints/Ward49_plotly-checkpoint.ipynb
###Markdown Create basic map ###Code # Create a map px.set_mapbox_access_token(open(".mapbox_token").read()) fig = px.scatter_mapbox(ward49_df, lat="latitude", lon="longitude", hover_data=["name","address"], zoom=12) #fig.update_layout(mapbox_style="open-street-map") #fig.update_layout(mapbox_style="basic") fig.update_layout(mapbox_style="streets") fig.show() # Add markers to the map for lat, lon, name in zip(ward49_df['latitude'], ward49_df['longitude'], ward49_df['name']): label = folium.Popup(str(name), parse_html=True) folium.CircleMarker( [lat, lon], radius=5, popup=label, fill=True, fill_opacity=0.7).add_to(chicago_map) # Display the map chicago_map ###Output _____no_output_____ ###Markdown Test interactive map ###Code # Create a map chicago_map = folium.Map(location=[latitude, longitude], zoom_start=14) #ward49_df[ward49_df['location_type'] == 'Library'] ward49_df[ward49_df['location_type'] == 'Library'][['latitude','longitude']] points1 = [(42.006708, -87.673408)] library_group = folium.FeatureGroup(name='Library').add_to(chicago_map) for tuple_ in points1: label = folium.Popup('Rogers Park Library', parse_html=True) library_group.add_child(folium.CircleMarker( (42.006708, -87.673408), radius=5, popup=label, fill=True, fill_opacity=0.7) ) ward49_df[ward49_df['location_type'] == 'High School'][['latitude','longitude']] points2 = [(42.002688, -87.669192), (42.013031, -87.674818)] hs_group = folium.FeatureGroup(name='High School').add_to(chicago_map) for tuple_ in points2: label = folium.Popup('High School', parse_html=True) hs_group.add_child(folium.CircleMarker( tuple_, radius=5, popup=label, fill=True, fill_opacity=0.7) ) folium.LayerControl().add_to(chicago_map) chicago_map ###Output _____no_output_____ ###Markdown Create Interactive Map ###Code # Create a map chicago_map = folium.Map(location=[latitude, longitude], zoom_start=14) fgroup = [] for i in range(len(location_type_list)): #print(i, location_type_list[i]) fgroup.append(folium.FeatureGroup(name=location_type_list[i]).add_to(chicago_map)) for row in ward49_df[ward49_df['location_type'] == location_type_list[i]].itertuples(): #print(row.name, row.latitude, row.longitude) label = folium.Popup(row.name, parse_html=True) fgroup[i].add_child(folium.CircleMarker( [row.latitude, row.longitude], radius=5, popup=label, fill=True, fill_opacity=0.7).add_to(chicago_map) ) fgroup folium.LayerControl().add_to(chicago_map) chicago_map ###Output _____no_output_____ ###Markdown Try different marker types ###Code # Create a map chicago_map = folium.Map(location=[latitude, longitude], zoom_start=14) # Add markers to the map for lat, lon, name in zip(ward49_df['latitude'], ward49_df['longitude'], ward49_df['name']): label = folium.Popup(str(name), parse_html=True) icon = folium.Icon(color='red', icon='bell', prefix='fa') folium.Marker( location=[lat, lon], icon=icon, popup=label).add_to(chicago_map) chicago_map ###Output _____no_output_____ ###Markdown Customize interactive map ###Code # Create a map chicago_map = folium.Map(location=[latitude, longitude], zoom_start=13) fgroup = [] for i in range(len(location_type_list)): #print(i, location_type_list[i]) fgroup.append(folium.FeatureGroup(name=location_type_list[i]).add_to(chicago_map)) for row in ward49_df[ward49_df['location_type'] == location_type_list[i]].itertuples(): #print(row.name, row.latitude, row.longitude) label = folium.Popup(row.name, parse_html=True) if row.location_type == 'Elementary School': icon = folium.Icon(color='red', icon='bell', prefix='fa') elif row.location_type == 'High School': icon = folium.Icon(color='blue', icon='graduation-cap', prefix='fa') elif row.location_type == 'Library': icon = folium.Icon(color='green', icon='book', prefix='fa') else: icon = folium.Icon(color='gray', icon='question-circle', prefix='fa') fgroup[i].add_child(folium.Marker( location=[row.latitude, row.longitude], icon=icon, popup=label).add_to(chicago_map) ) folium.LayerControl().add_to(chicago_map) chicago_map ###Output _____no_output_____
reference_parsing/model_dev/M2_TEST.ipynb
###Markdown UNA TANTUM ingest parsed references. ###Code # Export references # Dump json from support_functions import json_outputter _, refs, _ = json_outputter(data2,40) issues_dict = list() # update processing collection # get all bids and issues just dumped for r in refs: issues_dict.append((r["bid"], r["issue"])) valid_issues = list() for bid,issue in list(set(issues_dict)): doc = db.processing.find_one({"bid":bid,"number":issue}) if not doc: print(bid+" "+issue) continue if not doc["is_parsed"]: valid_issues.append((bid,issue)) valid_issues = list(set(valid_issues)) print(valid_issues) # clean refs refs_keep = list() for r in refs: if (r["bid"],r["issue"]) in valid_issues: refs_keep.append(r) from pymongo import MongoClient # dump in Mongo con = MongoClient("128.178.60.49") con.linkedbooks.authenticate('scripty', 'L1nk3dB00ks', source='admin') db = con.linkedbooks_sandbox db.references.insert_many(refs_keep) for bid,issue in valid_issues: try: db.processing.find_one_and_update({'bid': bid,'number':issue}, {'$set': {'is_parsed': True}}) except: print("Missing item in Processing: %s, %s"%(bid,issue)) continue [mongo_prod] db-host = 128.178.245.10 db-name = linkedbooks_refactored db-port = 27017 username = scripty password = L1nk3dB00ks auth-db = admin [mongo_dev] db-host = 128.178.60.49 db-name = linkedbooks_refactored db-port = 27017 username = scripty password = L1nk3dB00ks auth-db = admin [mongo_sand] db-host = 128.178.60.49 db-name = linkedbooks_sandbox db-port = 27017 username = scripty password = L1nk3dB00ks auth-db = admin [mongo_source] db-host = 128.178.60.49 db-name = linkedbooks_dev db-port = 27017 username = scripty password = L1nk3dB00ks auth-db = admin ###Output _____no_output_____
notebooks/triclustering.ipynb
###Markdown Tri-clustering IntroductionThis notebook illustrates how to use [Clustering Geo-data Cubes (CGC)](https://cgc.readthedocs.io) to perform a tri-clustering analysis of geospatial data. This notebook builds on an analogous tutorial that illustrates how to run co-clustering analyses using CGC (see the [web page](https://cgc-tutorial.readthedocs.io/en/latest/notebooks/coclustering.html) or the [notebook on GitHub](https://github.com/esciencecenter-digital-skills/tutorial-cgc/blob/main/notebooks/coclustering.ipynb)), we recommend to have a look at that first. Tri-clustering is the natural generalization of co-clustering to three dimensions. As in co-clustering, one looks for similarity patterns in a data array (in 3D, a data cube) by simultaneously clustering all its dimensions. For geospatial data, the use of tri-clustering enables the analysis of datasets that include an additional dimension on top of space and time. This extra dimension is ofter referred to as the 'band' dimension by analogy with color images, which include three data layers (red, green and blue) for each pixel. Tri-clusters in such arrays can be identified as spatial regions for which data across a subset of bands behave similarly in a subset of the times considered. In this notebook we illustrate how to perform a tri-clustering analysis with the CGC package using a phenological dataset that includes three products: the day of the year of first leaf appearance, first bloom, and last freeze in the conterminous United States. For more information about this dataset please check the [co-clustering tutorial](https://github.com/esciencecenter-digital-skills/tutorial-cgc/blob/main/notebooks/coclustering.ipynb) or have a look at the [original publication](https://doi.org/10.1016/j.agrformet.2018.06.028). Note that in addition to CGC, whose installation instructions can be found [here](https://github.com/phenology/cgc), few other packages are required in order to run this notebook. Please have a look at this tutorial's [installation instructions](https://github.com/escience-academy/tutorial-cgc). Imports and general configuration ###Code import cgc import logging import matplotlib.pyplot as plt import numpy as np import xarray as xr from dask.distributed import Client, LocalCluster from cgc.triclustering import Triclustering from cgc.kmeans import Kmeans from cgc.utils import calculate_tricluster_averages print(f'CGC version: {cgc.__version__}') ###Output CGC version: 0.5.0 ###Markdown CGC makes use of `logging`, set the desired verbosity via: ###Code logging.basicConfig(level=logging.INFO) ###Output _____no_output_____ ###Markdown Reading the dataWe use [the Xarray package](http://xarray.pydata.org) to read the data. We open the Zarr archive containing the data set and convert it from a collection of three data variables (each having dimensions: time, x and y) to a single array (a `DataArray`): ###Code spring_indices = xr.open_zarr('../data/spring-indices.zarr', chunks=None) print(spring_indices) ###Output <xarray.Dataset> Dimensions: (time: 40, y: 155, x: 312) Coordinates: * time (time) int64 1980 1981 1982 1983 1984 ... 2016 2017 2018 2019 * x (x) float64 -126.2 -126.0 -125.7 -125.5 ... -56.8 -56.57 -56.35 * y (y) float64 49.14 48.92 48.69 48.47 ... 15.23 15.01 14.78 14.56 Data variables: first-bloom (time, y, x) float64 ... first-leaf (time, y, x) float64 ... last-freeze (time, y, x) float64 ... Attributes: crs: +init=epsg:4326 res: [0.22457882102988036, -0.22457882102988042] transform: [0.22457882102988036, 0.0, -126.30312894720473, 0.0, -0.22457... ###Markdown (NOTE: if the dataset is not available locally, replace the path above with the following URL: https://raw.githubusercontent.com/esciencecenter-digital-skills/tutorial-cgc/main/data/spring-indices.zarr . The `aiohttp` and `requests` packages need to be installed to open remote data, which can be done via: `pip install aiohttp requests`) ###Code spring_indices = spring_indices.to_array(dim='spring_index') print(spring_indices) ###Output <xarray.DataArray (spring_index: 3, time: 40, y: 155, x: 312)> array([[[[117., 120., 126., ..., 184., 183., 179.], [ nan, nan, 118., ..., 181., 178., 176.], [ nan, nan, nan, ..., 176., 176., 176.], ..., [ nan, nan, nan, ..., nan, nan, nan], [ nan, nan, nan, ..., nan, nan, nan], [ nan, nan, nan, ..., nan, nan, nan]], [[ 92., 96., 104., ..., 173., 173., 170.], [ nan, nan, 92., ..., 171., 167., 164.], [ nan, nan, nan, ..., 165., 164., 163.], ..., [ nan, nan, nan, ..., nan, nan, nan], [ nan, nan, nan, ..., nan, nan, nan], [ nan, nan, nan, ..., nan, nan, nan]], [[131., 134., 139., ..., 187., 187., 183.], [ nan, nan, 133., ..., 183., 180., 178.], [ nan, nan, nan, ..., 176., 176., 176.], ..., ... ..., [ nan, nan, nan, ..., nan, nan, nan], [ nan, nan, nan, ..., nan, nan, nan], [ nan, nan, nan, ..., nan, nan, nan]], [[ 53., 55., 64., ..., 156., 155., 153.], [ nan, nan, 54., ..., 154., 151., 148.], [ nan, nan, nan, ..., 147., 147., 147.], ..., [ nan, nan, nan, ..., nan, nan, nan], [ nan, nan, nan, ..., nan, nan, nan], [ nan, nan, nan, ..., nan, nan, nan]], [[ 68., 69., 75., ..., 142., 135., 129.], [ nan, nan, 68., ..., 137., 134., 132.], [ nan, nan, nan, ..., 132., 133., 133.], ..., [ nan, nan, nan, ..., nan, nan, nan], [ nan, nan, nan, ..., nan, nan, nan], [ nan, nan, nan, ..., nan, nan, nan]]]]) Coordinates: * time (time) int64 1980 1981 1982 1983 1984 ... 2016 2017 2018 2019 * x (x) float64 -126.2 -126.0 -125.7 ... -56.8 -56.57 -56.35 * y (y) float64 49.14 48.92 48.69 48.47 ... 15.01 14.78 14.56 * spring_index (spring_index) <U11 'first-bloom' 'first-leaf' 'last-freeze' Attributes: crs: +init=epsg:4326 res: [0.22457882102988036, -0.22457882102988042] transform: [0.22457882102988036, 0.0, -126.30312894720473, 0.0, -0.22457... ###Markdown The spring index is now loaded as a 4D-array whose dimensions (spring index, time, y, x) are labeled with coordinates (spring-index label, year, latitude, longitude). We can inspect the data set by plotting a slice along the time dimension: ###Code # select years from 1990 to 1992 spring_indices.sel(time=slice(1990, 1992)).plot.imshow(row='spring_index', col='time') ###Output _____no_output_____ ###Markdown We manipulate the array spatial dimensions creating a combined (x, y) dimension. We also drop the grid cells that have null values for any spring-index and year: ###Code spring_indices = spring_indices.stack(space=['x', 'y']) location = np.arange(spring_indices.space.size) # create a combined (x,y) index spring_indices = spring_indices.assign_coords(location=('space', location)) # drop pixels that are null-valued for any year/spring-index spring_indices = spring_indices.dropna('space', how='any') print(spring_indices) # size of the array print("{} MB".format(spring_indices.nbytes/2**20)) ###Output 21.591796875 MB ###Markdown The tri-clustering analysis OverviewOnce we have loaded the data set as a 3D array, we can run the tri-clustering analysis. As for co-clustering, the algorithm implemented in CGC starts from a random cluster assignment and it iteratively updates the tri-clusters. When the loss function does not change by more than a given threshold in two consecutive iterations, the cluster assignment is considered converged. Also for tri-clustering multiple differently-initialized runs need to be performed in order to sample the cluster space, and to avoid local minima as much as possible. For more information about the algorithm, have a look at CGC's [co-clustering](https://cgc.readthedocs.io/en/latest/coclustering.htmlco-clustering) and [tri-clustering](https://cgc.readthedocs.io/en/latest/triclustering.htmltri-clustering) documentation. To run the analysis for the data set that we have loaded in the previous section, we first choose an initial number of clusters for the band, space, and time dimensions, and set the values of few other parameters: ###Code num_band_clusters = 3 num_time_clusters = 5 num_space_clusters = 20 max_iterations = 50 # maximum number of iterations conv_threshold = 0.1 # convergence threshold nruns = 3 # number of differently-initialized runs ###Output _____no_output_____ ###Markdown **NOTE**: the number of clusters have been selected in order to keep the memory requirement and the time of the execution suitable to run this tutorial on [mybinder.org](https://mybinder.org). If the infrastructure where you are running this notebook has more memory and computing power available, feel free to increase these values. We then instantiate a `Triclustering` object: ###Code tc = Triclustering( spring_indices.data, # data array with shape: (bands, rows, columns) num_time_clusters, num_space_clusters, num_band_clusters, max_iterations=max_iterations, conv_threshold=conv_threshold, nruns=nruns ) ###Output _____no_output_____ ###Markdown As for co-clustering, one can now run the analysis on a local system, using a [Numpy](https://numpy.org)-based implementation, or on a distributed system, using a [Dask](https://dask.org)-based implementation. Numpy-based implementation (local) Also for tri-clustering, the `nthreads` argument sets the number of threads spawn (i.e. the number of runs that are simultaneously executed): ###Code results = tc.run_with_threads(nthreads=1) ###Output INFO:cgc.triclustering:Waiting for run 0 INFO:cgc.triclustering:Error = -896077199.4136138 WARNING:cgc.triclustering:Run not converged in 50 iterations INFO:cgc.triclustering:Waiting for run 1 INFO:cgc.triclustering:Error = -895762548.9296267 WARNING:cgc.triclustering:Run not converged in 50 iterations INFO:cgc.triclustering:Waiting for run 2 INFO:cgc.triclustering:Error = -895838866.2336675 WARNING:cgc.triclustering:Run not converged in 50 iterations ###Markdown The output might indicate that for some of the runs convergence is not achieved within the specified number of iterations - increasing this value to ~500 should lead to converged solutions within the threshold provided. **NOTE**: The low-memory implementation that is available for the [co-clustering algorithm](https://cgc.readthedocs.io/en/latest/coclustering.htmlco-clustering) is currently not available for tri-clustering. Dask-based implementation (distributed systems) As for the [co-clusterign algorithm](https://cgc.readthedocs.io/en/latest/coclustering.htmlco-clustering), Dask arrays are employed in a dedicated implementation to process the data in chunks. If a compute cluster is used, data are distributed across the nodes of the cluster. In order to load the data set as a `DataArray` using Dask arrays as underlying structure, we specify the `chunks` argument in `xr.open_zarr()`: ###Code # set a chunk size of 10 along the time dimension, no chunking in x and y chunks = {'time': 10, 'x': -1, 'y': -1 } spring_indices_dask = xr.open_zarr('../data/spring-indices.zarr', chunks=chunks) spring_indices_dask = spring_indices_dask.to_array(dim='spring-index') print(spring_indices_dask) ###Output <xarray.DataArray 'stack-c18f111b8b48c3553ca6f85e4bf3b06f' (spring-index: 3, time: 40, y: 155, x: 312)> dask.array<stack, shape=(3, 40, 155, 312), dtype=float64, chunksize=(1, 10, 155, 312), chunktype=numpy.ndarray> Coordinates: * time (time) int64 1980 1981 1982 1983 1984 ... 2016 2017 2018 2019 * x (x) float64 -126.2 -126.0 -125.7 ... -56.8 -56.57 -56.35 * y (y) float64 49.14 48.92 48.69 48.47 ... 15.01 14.78 14.56 * spring-index (spring-index) <U11 'first-bloom' 'first-leaf' 'last-freeze' Attributes: crs: +init=epsg:4326 res: [0.22457882102988036, -0.22457882102988042] transform: [0.22457882102988036, 0.0, -126.30312894720473, 0.0, -0.22457... ###Markdown We perform the same data manipulation as carried out in the previuos section. Note that all operations involving Dask arrays (including the data loading) are computed ["lazily"](https://tutorial.dask.org/01x_lazy.html) (i.e. they are not carried out until the very end). ###Code spring_indices_dask = spring_indices_dask.stack(space=['x', 'y']) spring_indices_dask = spring_indices_dask.dropna('space', how='any') tc_dask = Triclustering( spring_indices_dask.data, num_time_clusters, num_space_clusters, num_band_clusters, max_iterations=max_iterations, conv_threshold=conv_threshold, nruns=nruns ) ###Output _____no_output_____ ###Markdown For testing, we make use of a local Dask cluster, i.e. a cluster of processes and threads running on the same machine where the cluster is created: ###Code cluster = LocalCluster() print(cluster) ###Output LocalCluster(a71fe34b, 'tcp://127.0.0.1:60738', workers=4, threads=8, memory=16.00 GiB) ###Markdown Connection to the cluster takes place via the `Client` object: ###Code client = Client(cluster) print(client) ###Output <Client: 'tcp://127.0.0.1:60738' processes=4 threads=8, memory=16.00 GiB> ###Markdown To start the tri-clustering runs, we now pass the instance of the `Client` to the `run_with_dask` method (same as for co-clustering): ###Code results = tc_dask.run_with_dask(client=client) ###Output INFO:cgc.triclustering:Run 0 INFO:cgc.triclustering:Error = -896082522.82864 WARNING:cgc.triclustering:Run not converged in 50 iterations INFO:cgc.triclustering:Run 1 INFO:cgc.triclustering:Error = -896073513.6485721 WARNING:cgc.triclustering:Run not converged in 50 iterations INFO:cgc.triclustering:Run 2 INFO:cgc.triclustering:Error = -895915302.3762344 WARNING:cgc.triclustering:Run not converged in 50 iterations ###Markdown When the runs are finished, we can close the connection to the cluster: ###Code client.close() ###Output _____no_output_____ ###Markdown Inspecting the results The tri-clustering results object includes the band-cluster assignment (`results.bnd_clusters`) in addition to cluster assignments in the two other dimensions, which are referred to as rows and columns by analogy with co-clustering: ###Code print(f"Row (time) clusters: {results.row_clusters}") print(f"Column (space) clusters: {results.col_clusters}") print(f"Band clusters: {results.bnd_clusters}") ###Output Row (time) clusters: [2 4 2 4 2 3 4 3 3 2 1 4 4 4 4 4 2 4 4 4 1 4 2 4 4 4 4 3 2 4 3 3 1 0 0 1 1 1 0 0] Column (space) clusters: [17 17 17 ... 13 13 13] Band clusters: [1 2 0] ###Markdown We first create `DataArray`'s for the spatial, temporal and band clusters: ###Code time_clusters = xr.DataArray(results.row_clusters, dims='time', coords=spring_indices.time.coords, name='time cluster') space_clusters = xr.DataArray(results.col_clusters, dims='space', coords=spring_indices.space.coords, name='space cluster') band_clusters = xr.DataArray(results.bnd_clusters, dims='spring_index', coords=spring_indices.spring_index.coords, name='band cluster') ###Output _____no_output_____ ###Markdown We can now visualize the temporal clusters to which each year belongs, and make a histogram of the number of years in each cluster: ###Code fig, ax = plt.subplots(1, 2) # line plot time_clusters.plot(ax=ax[0], x='time', marker='o') ax[0].set_yticks(range(num_time_clusters)) # temporal cluster histogram time_clusters.plot.hist(ax=ax[1], bins=num_time_clusters) ###Output _____no_output_____ ###Markdown Similarly, we can visualize the assignment of the spring indices to the band clusters: ###Code fig, ax = plt.subplots(1, 2) # line plot band_clusters.plot(ax=ax[0], x='spring_index', marker='o') ax[0].set_yticks(range(num_band_clusters)) # band cluster histogram band_clusters.plot.hist(ax=ax[1], bins=num_band_clusters) ax[1].set_xticks(range(num_band_clusters)) ###Output _____no_output_____ ###Markdown Spatial clusters can also be visualized after 'unstacking' the location index that we have initially created, thus reverting to the original (x, y) coordinates: ###Code space_clusters_xy = space_clusters.unstack('space') space_clusters_xy.isel().plot.imshow( x='x', y='y', levels=range(num_space_clusters+1) ) ###Output _____no_output_____ ###Markdown The average spring index value of each tri-cluster can be computed via a dedicated utility function in CGC, which return the cluster means in a 3D-array with dimensions `(n_bnd_clusters, n_row_clusters, n_col_clusters)`. We calculate the cluster averages and create a `DataArray` for further manipulation and plotting: ###Code # calculate the tri-cluster averages means = calculate_tricluster_averages( spring_indices.data, time_clusters, space_clusters, band_clusters, num_time_clusters, num_space_clusters, num_band_clusters ) means = xr.DataArray( means, coords=( ('band_clusters', range(num_band_clusters)), ('time_clusters', range(num_time_clusters)), ('space_clusters', range(num_space_clusters)) ) ) ###Output _____no_output_____ ###Markdown The computed cluster means and the spatial clusters can be employed to plot the average spring-index value for each of the band and temporal clusters. It is important to realize that multiple spring indices might get assigned to the same band cluster, in which case the corresponding cluster-based means are computed over more than one spring index. ###Code space_means = means.sel(space_clusters=space_clusters, drop=True) space_means = space_means.unstack('space') space_means.plot.imshow( x='x', y='y', row='band_clusters', col='time_clusters', vmin=50, vmax=120 ) ###Output _____no_output_____ ###Markdown K-means refinement Overview As co-clustering, also tri-clustering leads to a 'blocked' structure of the original data. Also here, an additional cluster-refinement analysis using [k-means](https://en.wikipedia.org/wiki/K-means_clustering) can help to identify patterns that are common across blocks (actually cubes for tri-clustering) and to merge the blocks with the highest similarity degree within the same cluster. See the [co-clustering](https://cgc-tutorial.readthedocs.io/en/latest/notebooks/coclustering.html) tutorial for more details on the selection of optimal k-value. ###Code clusters = (results.bnd_clusters, results.row_clusters, results.col_clusters) nclusters = (num_band_clusters, num_time_clusters, num_space_clusters) km = Kmeans( spring_indices.data, clusters=clusters, nclusters=nclusters, k_range=range(2, 10) ) ###Output _____no_output_____ ###Markdown The refinement analysis is then run as: ###Code results_kmeans = km.compute() ###Output _____no_output_____ ###Markdown Results The object returned by `Kmeans.compute` contains all results, most importantly the optimal `k` value: ###Code print(f"Optimal k value: {results_kmeans.k_value}") ###Output Optimal k value: 2 ###Markdown The centroids of the tri-cluster means can be employed to plot the refined cluster averages of the spring index dataset. Note that the refined clusters merge tri-clusters across all dimensions, including the band axis. Thus, the means of these refined clusters correspond to averages over more than one spring index. ###Code means_kmeans = xr.DataArray( results_kmeans.cl_mean_centroids, coords=( ('band_clusters', range(num_band_clusters)), ('time_clusters', range(num_time_clusters)), ('space_clusters', range(num_space_clusters)) ) ) # drop tri-clusters that are not populated means_kmeans = means_kmeans.dropna('band_clusters', how='all') means_kmeans = means_kmeans.dropna('time_clusters', how='all') means_kmeans = means_kmeans.dropna('space_clusters', how='all') space_means = means_kmeans.sel(space_clusters=space_clusters, drop=True) space_means = space_means.unstack('space') space_means.squeeze().plot.imshow( x='x', y='y', row='band_clusters', col='time_clusters', vmin=50, vmax=120 ) ###Output _____no_output_____ ###Markdown Tri-clustering IntroductionThis notebook illustrates how to use [Clustering Geo-data Cubes (CGC)](https://cgc.readthedocs.io) to perform a tri-clustering analysis of geospatial data. This notebook builds on an analogous tutorial that illustrates how to run co-clustering analyses using CGC (see the [web page](https://cgc-tutorial.readthedocs.io/en/latest/notebooks/coclustering.html) or the [notebook on GitHub](https://github.com/esciencecenter-digital-skills/tutorial-cgc/blob/main/notebooks/coclustering.ipynb)), we recommend to have a look at that first. Tri-clustering is the natural generalization of co-clustering to three dimensions. As in co-clustering, one looks for similarity patterns in a data array (in 3D, a data cube) by simultaneously clustering all its dimensions. For geospatial data, the use of tri-clustering enables the analysis of datasets that include an additional dimension on top of space and time. This extra dimension is ofter referred to as the 'band' dimension by analogy with color images, which include three data layers (red, green and blue) for each pixel. Tri-clusters in such arrays can be identified as spatial regions for which data across a subset of bands behave similarly in a subset of the times considered. In this notebook we illustrate how to perform a tri-clustering analysis with the CGC package using a phenological dataset that includes three products: the day of the year of first leaf appearance, first bloom, and last freeze in the conterminous United States. For more information about this dataset please check the [co-clustering tutorial](https://github.com/esciencecenter-digital-skills/tutorial-cgc/blob/main/notebooks/coclustering.ipynb) or have a look at the [original publication](https://doi.org/10.1016/j.agrformet.2018.06.028). Note that in addition to CGC, whose installation instructions can be found [here](https://github.com/phenology/cgc), few other packages are required in order to run this notebook. Please have a look at this tutorial's [installation instructions](https://github.com/escience-academy/tutorial-cgc). Imports and general configuration ###Code import cgc import logging import matplotlib.pyplot as plt import numpy as np import xarray as xr from dask.distributed import Client, LocalCluster from cgc.triclustering import Triclustering from cgc.kmeans import Kmeans from cgc.utils import calculate_tricluster_averages print(f'CGC version: {cgc.__version__}') ###Output CGC version: 0.6.1 ###Markdown CGC makes use of `logging`, set the desired verbosity via: ###Code logging.basicConfig(level=logging.INFO) ###Output _____no_output_____ ###Markdown Reading the dataWe use [the Xarray package](http://xarray.pydata.org) to read the data. We open the Zarr archive containing the data set and convert it from a collection of three data variables (each having dimensions: time, x and y) to a single array (a `DataArray`): ###Code spring_indices = xr.open_zarr('../data/spring-indices.zarr', chunks=None) print(spring_indices) ###Output <xarray.Dataset> Dimensions: (time: 40, y: 155, x: 312) Coordinates: * time (time) int64 1980 1981 1982 1983 1984 ... 2016 2017 2018 2019 * x (x) float64 -126.2 -126.0 -125.7 -125.5 ... -56.8 -56.57 -56.35 * y (y) float64 49.14 48.92 48.69 48.47 ... 15.23 15.01 14.78 14.56 Data variables: first-bloom (time, y, x) float64 ... first-leaf (time, y, x) float64 ... last-freeze (time, y, x) float64 ... Attributes: crs: +init=epsg:4326 res: [0.22457882102988036, -0.22457882102988042] transform: [0.22457882102988036, 0.0, -126.30312894720473, 0.0, -0.22457... ###Markdown (NOTE: if the dataset is not available locally, replace the path above with the following URL: https://raw.githubusercontent.com/esciencecenter-digital-skills/tutorial-cgc/main/data/spring-indices.zarr . The `aiohttp` and `requests` packages need to be installed to open remote data, which can be done via: `pip install aiohttp requests`) ###Code spring_indices = spring_indices.to_array(dim='spring_index') print(spring_indices) ###Output <xarray.DataArray (spring_index: 3, time: 40, y: 155, x: 312)> array([[[[117., 120., 126., ..., 184., 183., 179.], [ nan, nan, 118., ..., 181., 178., 176.], [ nan, nan, nan, ..., 176., 176., 176.], ..., [ nan, nan, nan, ..., nan, nan, nan], [ nan, nan, nan, ..., nan, nan, nan], [ nan, nan, nan, ..., nan, nan, nan]], [[ 92., 96., 104., ..., 173., 173., 170.], [ nan, nan, 92., ..., 171., 167., 164.], [ nan, nan, nan, ..., 165., 164., 163.], ..., [ nan, nan, nan, ..., nan, nan, nan], [ nan, nan, nan, ..., nan, nan, nan], [ nan, nan, nan, ..., nan, nan, nan]], [[131., 134., 139., ..., 187., 187., 183.], [ nan, nan, 133., ..., 183., 180., 178.], [ nan, nan, nan, ..., 176., 176., 176.], ..., ... ..., [ nan, nan, nan, ..., nan, nan, nan], [ nan, nan, nan, ..., nan, nan, nan], [ nan, nan, nan, ..., nan, nan, nan]], [[ 53., 55., 64., ..., 156., 155., 153.], [ nan, nan, 54., ..., 154., 151., 148.], [ nan, nan, nan, ..., 147., 147., 147.], ..., [ nan, nan, nan, ..., nan, nan, nan], [ nan, nan, nan, ..., nan, nan, nan], [ nan, nan, nan, ..., nan, nan, nan]], [[ 68., 69., 75., ..., 142., 135., 129.], [ nan, nan, 68., ..., 137., 134., 132.], [ nan, nan, nan, ..., 132., 133., 133.], ..., [ nan, nan, nan, ..., nan, nan, nan], [ nan, nan, nan, ..., nan, nan, nan], [ nan, nan, nan, ..., nan, nan, nan]]]]) Coordinates: * time (time) int64 1980 1981 1982 1983 1984 ... 2016 2017 2018 2019 * x (x) float64 -126.2 -126.0 -125.7 ... -56.8 -56.57 -56.35 * y (y) float64 49.14 48.92 48.69 48.47 ... 15.01 14.78 14.56 * spring_index (spring_index) <U11 'first-bloom' 'first-leaf' 'last-freeze' Attributes: crs: +init=epsg:4326 res: [0.22457882102988036, -0.22457882102988042] transform: [0.22457882102988036, 0.0, -126.30312894720473, 0.0, -0.22457... ###Markdown The spring index is now loaded as a 4D-array whose dimensions (spring index, time, y, x) are labeled with coordinates (spring-index label, year, latitude, longitude). We can inspect the data set by plotting a slice along the time dimension: ###Code # select years from 1990 to 1992 spring_indices.sel(time=slice(1990, 1992)).plot.imshow(row='spring_index', col='time') ###Output _____no_output_____ ###Markdown We manipulate the array spatial dimensions creating a combined (x, y) dimension. We also drop the grid cells that have null values for any spring-index and year: ###Code spring_indices = spring_indices.stack(space=['x', 'y']) location = np.arange(spring_indices.space.size) # create a combined (x,y) index spring_indices = spring_indices.assign_coords(location=('space', location)) # drop pixels that are null-valued for any year/spring-index spring_indices = spring_indices.dropna('space', how='any') print(spring_indices) # size of the array print("{} MB".format(spring_indices.nbytes/2**20)) ###Output 21.591796875 MB ###Markdown The tri-clustering analysis OverviewOnce we have loaded the data set as a 3D array, we can run the tri-clustering analysis. As for co-clustering, the algorithm implemented in CGC starts from a random cluster assignment and it iteratively updates the tri-clusters. When the loss function does not change by more than a given threshold in two consecutive iterations, the cluster assignment is considered converged. Also for tri-clustering multiple differently-initialized runs need to be performed in order to sample the cluster space, and to avoid local minima as much as possible. For more information about the algorithm, have a look at CGC's [co-clustering](https://cgc.readthedocs.io/en/latest/coclustering.htmlco-clustering) and [tri-clustering](https://cgc.readthedocs.io/en/latest/triclustering.htmltri-clustering) documentation. To run the analysis for the data set that we have loaded in the previous section, we first choose an initial number of clusters for the band, space, and time dimensions, and set the values of few other parameters: ###Code num_band_clusters = 3 num_time_clusters = 5 num_space_clusters = 20 max_iterations = 50 # maximum number of iterations conv_threshold = 0.1 # convergence threshold nruns = 3 # number of differently-initialized runs ###Output _____no_output_____ ###Markdown **NOTE**: the number of clusters have been selected in order to keep the memory requirement and the time of the execution suitable to run this tutorial on [mybinder.org](https://mybinder.org). If the infrastructure where you are running this notebook has more memory and computing power available, feel free to increase these values. We then instantiate a `Triclustering` object: ###Code tc = Triclustering( spring_indices.data, # data array with shape: (bands, rows, columns) num_time_clusters, num_space_clusters, num_band_clusters, max_iterations=max_iterations, conv_threshold=conv_threshold, nruns=nruns ) ###Output _____no_output_____ ###Markdown As for co-clustering, one can now run the analysis on a local system, using a [Numpy](https://numpy.org)-based implementation, or on a distributed system, using a [Dask](https://dask.org)-based implementation. Numpy-based implementation (local) Also for tri-clustering, the `nthreads` argument sets the number of threads spawn (i.e. the number of runs that are simultaneously executed): ###Code results = tc.run_with_threads(nthreads=1) ###Output INFO:cgc.triclustering:Waiting for run 0 INFO:cgc.triclustering:Error = -895673372.3176122 WARNING:cgc.triclustering:Run not converged in 50 iterations INFO:cgc.triclustering:Waiting for run 1 INFO:cgc.triclustering:Error = -895965783.8523508 WARNING:cgc.triclustering:Run not converged in 50 iterations INFO:cgc.triclustering:Waiting for run 2 INFO:cgc.triclustering:Error = -895841515.538431 WARNING:cgc.triclustering:Run not converged in 50 iterations ###Markdown The output might indicate that for some of the runs convergence is not achieved within the specified number of iterations - increasing this value to ~500 should lead to converged solutions within the threshold provided. **NOTE**: The low-memory implementation that is available for the [co-clustering algorithm](https://cgc.readthedocs.io/en/latest/coclustering.htmlco-clustering) is currently not available for tri-clustering. Dask-based implementation (distributed systems) As for the [co-clusterign algorithm](https://cgc.readthedocs.io/en/latest/coclustering.htmlco-clustering), Dask arrays are employed in a dedicated implementation to process the data in chunks. If a compute cluster is used, data are distributed across the nodes of the cluster. In order to load the data set as a `DataArray` using Dask arrays as underlying structure, we specify the `chunks` argument in `xr.open_zarr()`: ###Code # set a chunk size of 10 along the time dimension, no chunking in x and y chunks = {'time': 10, 'x': -1, 'y': -1 } spring_indices_dask = xr.open_zarr('../data/spring-indices.zarr', chunks=chunks) spring_indices_dask = spring_indices_dask.to_array(dim='spring-index') print(spring_indices_dask) ###Output <xarray.DataArray 'stack-c18f111b8b48c3553ca6f85e4bf3b06f' (spring-index: 3, time: 40, y: 155, x: 312)> dask.array<stack, shape=(3, 40, 155, 312), dtype=float64, chunksize=(1, 10, 155, 312), chunktype=numpy.ndarray> Coordinates: * time (time) int64 1980 1981 1982 1983 1984 ... 2016 2017 2018 2019 * x (x) float64 -126.2 -126.0 -125.7 ... -56.8 -56.57 -56.35 * y (y) float64 49.14 48.92 48.69 48.47 ... 15.01 14.78 14.56 * spring-index (spring-index) <U11 'first-bloom' 'first-leaf' 'last-freeze' Attributes: crs: +init=epsg:4326 res: [0.22457882102988036, -0.22457882102988042] transform: [0.22457882102988036, 0.0, -126.30312894720473, 0.0, -0.22457... ###Markdown We perform the same data manipulation as carried out in the previuos section. Note that all operations involving Dask arrays (including the data loading) are computed ["lazily"](https://tutorial.dask.org/01x_lazy.html) (i.e. they are not carried out until the very end). ###Code spring_indices_dask = spring_indices_dask.stack(space=['x', 'y']) spring_indices_dask = spring_indices_dask.dropna('space', how='any') tc_dask = Triclustering( spring_indices_dask.data, num_time_clusters, num_space_clusters, num_band_clusters, max_iterations=max_iterations, conv_threshold=conv_threshold, nruns=nruns ) ###Output _____no_output_____ ###Markdown For testing, we make use of a local Dask cluster, i.e. a cluster of processes and threads running on the same machine where the cluster is created: ###Code cluster = LocalCluster() print(cluster) ###Output LocalCluster(a275c145, 'tcp://127.0.0.1:54694', workers=4, threads=8, memory=16.00 GiB) ###Markdown Connection to the cluster takes place via the `Client` object: ###Code client = Client(cluster) print(client) ###Output <Client: 'tcp://127.0.0.1:54694' processes=4 threads=8, memory=16.00 GiB> ###Markdown To start the tri-clustering runs, we now pass the instance of the `Client` to the `run_with_dask` method (same as for co-clustering): ###Code results = tc_dask.run_with_dask(client=client) ###Output INFO:cgc.triclustering:Run 0 INFO:cgc.triclustering:Error = -895886041.7753079 WARNING:cgc.triclustering:Run not converged in 50 iterations INFO:cgc.triclustering:Run 1 INFO:cgc.triclustering:Error = -896127501.3032976 WARNING:cgc.triclustering:Run not converged in 50 iterations INFO:cgc.triclustering:Run 2 INFO:cgc.triclustering:Error = -895944321.1238331 WARNING:cgc.triclustering:Run not converged in 50 iterations ###Markdown When the runs are finished, we can close the connection to the cluster: ###Code client.close() ###Output _____no_output_____ ###Markdown Inspecting the results The tri-clustering results object includes the band-cluster assignment (`results.bnd_clusters`) in addition to cluster assignments in the two other dimensions, which are referred to as rows and columns by analogy with co-clustering: ###Code print(f"Row (time) clusters: {results.row_clusters}") print(f"Column (space) clusters: {results.col_clusters}") print(f"Band clusters: {results.bnd_clusters}") ###Output Row (time) clusters: [0 2 2 2 2 0 4 0 0 0 4 2 2 2 2 2 0 2 2 4 4 2 0 2 2 4 4 0 2 2 0 0 4 3 3 1 1 4 3 3] Column (space) clusters: [ 9 9 9 ... 14 14 14] Band clusters: [2 1 0] ###Markdown We first create `DataArray`'s for the spatial, temporal and band clusters: ###Code time_clusters = xr.DataArray(results.row_clusters, dims='time', coords=spring_indices.time.coords, name='time cluster') space_clusters = xr.DataArray(results.col_clusters, dims='space', coords=spring_indices.space.coords, name='space cluster') band_clusters = xr.DataArray(results.bnd_clusters, dims='spring_index', coords=spring_indices.spring_index.coords, name='band cluster') ###Output _____no_output_____ ###Markdown We can now visualize the temporal clusters to which each year belongs, and make a histogram of the number of years in each cluster: ###Code fig, ax = plt.subplots(1, 2) # line plot time_clusters.plot(ax=ax[0], x='time', marker='o') ax[0].set_yticks(range(num_time_clusters)) # temporal cluster histogram time_clusters.plot.hist(ax=ax[1], bins=num_time_clusters) ###Output _____no_output_____ ###Markdown Similarly, we can visualize the assignment of the spring indices to the band clusters: ###Code fig, ax = plt.subplots(1, 2) # line plot band_clusters.plot(ax=ax[0], x='spring_index', marker='o') ax[0].set_yticks(range(num_band_clusters)) # band cluster histogram band_clusters.plot.hist(ax=ax[1], bins=num_band_clusters) ax[1].set_xticks(range(num_band_clusters)) ###Output _____no_output_____ ###Markdown Spatial clusters can also be visualized after 'unstacking' the location index that we have initially created, thus reverting to the original (x, y) coordinates: ###Code space_clusters_xy = space_clusters.unstack('space') space_clusters_xy.isel().plot.imshow( x='x', y='y', levels=range(num_space_clusters+1) ) ###Output _____no_output_____ ###Markdown The average spring index value of each tri-cluster can be computed via a dedicated utility function in CGC, which return the cluster means in a 3D-array with dimensions `(n_bnd_clusters, n_row_clusters, n_col_clusters)`. We calculate the cluster averages and create a `DataArray` for further manipulation and plotting: ###Code # calculate the tri-cluster averages means = calculate_tricluster_averages( spring_indices.data, time_clusters, space_clusters, band_clusters, num_time_clusters, num_space_clusters, num_band_clusters ) means = xr.DataArray( means, coords=( ('band_clusters', range(num_band_clusters)), ('time_clusters', range(num_time_clusters)), ('space_clusters', range(num_space_clusters)) ) ) ###Output _____no_output_____ ###Markdown The computed cluster means and the spatial clusters can be employed to plot the average spring-index value for each of the band and temporal clusters. It is important to realize that multiple spring indices might get assigned to the same band cluster, in which case the corresponding cluster-based means are computed over more than one spring index. ###Code space_means = means.sel(space_clusters=space_clusters, drop=True) space_means = space_means.unstack('space') space_means.plot.imshow( x='x', y='y', row='band_clusters', col='time_clusters', vmin=50, vmax=120 ) ###Output _____no_output_____ ###Markdown K-means refinement Overview As co-clustering, also tri-clustering leads to a 'blocked' structure of the original data. Also here, an additional cluster-refinement analysis using [k-means](https://en.wikipedia.org/wiki/K-means_clustering) can help to identify patterns that are common across blocks (actually cubes for tri-clustering) and to merge the blocks with the highest similarity degree within the same cluster. See the [co-clustering](https://cgc-tutorial.readthedocs.io/en/latest/notebooks/coclustering.html) tutorial for more details on the selection of optimal k-value. ###Code clusters = (results.bnd_clusters, results.row_clusters, results.col_clusters) nclusters = (num_band_clusters, num_time_clusters, num_space_clusters) km = Kmeans( spring_indices.data, clusters=clusters, nclusters=nclusters, k_range=range(2, 10) ) ###Output _____no_output_____ ###Markdown The refinement analysis is then run as: ###Code results_kmeans = km.compute() ###Output _____no_output_____ ###Markdown Results The object returned by `Kmeans.compute` contains all results, most importantly the optimal `k` value: ###Code print(f"Optimal k value: {results_kmeans.k_value}") ###Output Optimal k value: 2 ###Markdown The refined tri-cluster averages of the spring index dataset are available as `results_kmeans.cluster_averages`. Note that the refined clusters merge tri-clusters across all dimensions, including the band axis. Thus, the means of these refined clusters correspond to averages over more than one spring index. In the following, we will plot instead the refined cluster labels (`results_kmeans.labels`): ###Code labels = xr.DataArray( results_kmeans.labels, coords=( ('band_clusters', range(num_band_clusters)), ('time_clusters', range(num_time_clusters)), ('space_clusters', range(num_space_clusters)) ) ) # drop tri-clusters that are not populated labels = labels.dropna('band_clusters', how='all') labels = labels.dropna('time_clusters', how='all') labels = labels.dropna('space_clusters', how='all') labels = labels.sel(space_clusters=space_clusters, drop=True) labels = labels.unstack('space') labels.squeeze().plot.imshow( x='x', y='y', row='band_clusters', col='time_clusters', levels=range(results_kmeans.k_value + 1) ) ###Output _____no_output_____
test/perceptron.ipynb
###Markdown 感知机朴素模式 ###Code from algo import NaivePerceptron, Perceptron import numpy as np import matplotlib.pyplot as plt n_perceptron = NaivePerceptron() perceptron = Perceptron() X = np.array([[3, 3], [4, 3], [1, 1], [1, 2.5]]) y = np.array([1, 1, -1, -1]) X, y %timeit n_perceptron.fit(X, y) %timeit perceptron.fit(X, y) ###Output 25 µs ± 1 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each) 24.7 µs ± 2.14 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each) ###Markdown $y(\sum_{j=1}^{N}\alpha_j y_j x_j \cdot x_i + b)$ ###Code from mpl_toolkits.mplot3d import Axes3D X = np.array([[3, 3], [4, 3], [1, 1], [1, 2.5]]) y = np.array([1, 1, -1, -1]) fig = plt.figure(figsize=(12, 8)) ax1 = plt.axes(projection='3d') for i, j, k in zip(X[:, 0], X[:, 1], y): if k == 1: ax1.scatter3D(i, j, k, c='red') else: ax1.scatter3D(i, j, k, c='blue') a = np.linspace(-1,5,50) b = np.linspace(-1,2,50) X_a,Y_a = np.meshgrid(a,b) Z = X_a * perceptron.weight[0] + Y_a * perceptron.weight[1] + perceptron.bias ax1.plot_surface(X_a, Y_a, Z, alpha=0.3) plt.show() from mpl_toolkits.mplot3d import Axes3D X = np.array([[3, 3], [4, 3], [1, 1], [1, 2.5]]) y = np.array([1, 1, -1, -1]) fig = plt.figure(figsize=(12, 8)) ax1 = plt.axes(projection='3d') for i, j, k in zip(X[:, 0], X[:, 1], y): if k == 1: ax1.scatter3D(i, j, k, c='red') else: ax1.scatter3D(i, j, k, c='blue') a = np.linspace(-1,5,500) b = np.linspace(-1,4,50) X_a,Y_a = np.meshgrid(a,b) Z = X_a * n_perceptron.weight[0] + Y_a * n_perceptron.weight[1] + n_perceptron.bias ax1.plot_surface(X_a, Y_a, Z, alpha=0.3) plt.show() ###Output _____no_output_____
0.15/_downloads/plot_linear_model_patterns.ipynb
###Markdown Linear classifier on sensor data with plot patterns and filtersDecoding, a.k.a MVPA or supervised machine learning applied to MEG and EEGdata in sensor space. Fit a linear classifier with the LinearModel objectproviding topographical patterns which are more neurophysiologicallyinterpretable [1]_ than the classifier filters (weight vectors).The patterns explain how the MEG and EEG data were generated from thediscriminant neural sources which are extracted by the filters.Note patterns/filters in MEG data are more similar than EEG databecause the noise is less spatially correlated in MEG than EEG.References----------.. [1] Haufe, S., Meinecke, F., Görgen, K., Dähne, S., Haynes, J.-D., Blankertz, B., & Bießmann, F. (2014). On the interpretation of weight vectors of linear models in multivariate neuroimaging. NeuroImage, 87, 96–110. doi:10.1016/j.neuroimage.2013.10.067 ###Code # Authors: Alexandre Gramfort <[email protected]> # Romain Trachel <[email protected]> # Jean-Remi King <[email protected]> # # License: BSD (3-clause) import mne from mne import io, EvokedArray from mne.datasets import sample from mne.decoding import Vectorizer, get_coef from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression from sklearn.pipeline import make_pipeline # import a linear classifier from mne.decoding from mne.decoding import LinearModel print(__doc__) data_path = sample.data_path() ###Output _____no_output_____ ###Markdown Set parameters ###Code raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif' event_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw-eve.fif' tmin, tmax = -0.1, 0.4 event_id = dict(aud_l=1, vis_l=3) # Setup for reading the raw data raw = io.read_raw_fif(raw_fname, preload=True) raw.filter(.5, 25, fir_design='firwin') events = mne.read_events(event_fname) # Read epochs epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True, decim=4, baseline=None, preload=True) labels = epochs.events[:, -1] # get MEG and EEG data meg_epochs = epochs.copy().pick_types(meg=True, eeg=False) meg_data = meg_epochs.get_data().reshape(len(labels), -1) ###Output _____no_output_____ ###Markdown Decoding in sensor space using a LogisticRegression classifier ###Code clf = LogisticRegression() scaler = StandardScaler() # create a linear model with LogisticRegression model = LinearModel(clf) # fit the classifier on MEG data X = scaler.fit_transform(meg_data) model.fit(X, labels) # Extract and plot spatial filters and spatial patterns for name, coef in (('patterns', model.patterns_), ('filters', model.filters_)): # We fitted the linear model onto Z-scored data. To make the filters # interpretable, we must reverse this normalization step coef = scaler.inverse_transform([coef])[0] # The data was vectorized to fit a single model across all time points and # all channels. We thus reshape it: coef = coef.reshape(len(meg_epochs.ch_names), -1) # Plot evoked = EvokedArray(coef, meg_epochs.info, tmin=epochs.tmin) evoked.plot_topomap(title='MEG %s' % name) ###Output _____no_output_____ ###Markdown Let's do the same on EEG data using a scikit-learn pipeline ###Code X = epochs.pick_types(meg=False, eeg=True) y = epochs.events[:, 2] # Define a unique pipeline to sequentially: clf = make_pipeline( Vectorizer(), # 1) vectorize across time and channels StandardScaler(), # 2) normalize features across trials LinearModel(LogisticRegression())) # 3) fits a logistic regression clf.fit(X, y) # Extract and plot patterns and filters for name in ('patterns_', 'filters_'): # The `inverse_transform` parameter will call this method on any estimator # contained in the pipeline, in reverse order. coef = get_coef(clf, name, inverse_transform=True) evoked = EvokedArray(coef, epochs.info, tmin=epochs.tmin) evoked.plot_topomap(title='EEG %s' % name[:-1]) ###Output _____no_output_____
_posts/scikit/permutations-the-significance-of-a-classification-score/Test with permutations the significance of a classification score.ipynb
###Markdown In order to test if a classification score is significative a technique in repeating the classification procedure after randomizing, permuting, the labels. The p-value is then given by the percentage of runs for which the score obtained is greater than the classification score obtained in the first place. New to Plotly?Plotly's Python library is free and open source! [Get started](https://plot.ly/python/getting-started/) by downloading the client and [reading the primer](https://plot.ly/python/getting-started/).You can set up Plotly to work in [online](https://plot.ly/python/getting-started/initialization-for-online-plotting) or [offline](https://plot.ly/python/getting-started/initialization-for-offline-plotting) mode, or in [jupyter notebooks](https://plot.ly/python/getting-started/start-plotting-online).We also have a quick-reference [cheatsheet](https://images.plot.ly/plotly-documentation/images/python_cheat_sheet.pdf) (new!) to help you get started! Version ###Code import sklearn sklearn.__version__ ###Output _____no_output_____ ###Markdown Imports This tutorial imports [SVC](http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.htmlsklearn.svm.SVC), [StratifiedKFold](http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.htmlsklearn.model_selection.StratifiedKFold) and [permutation_test_score](http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.permutation_test_score.htmlsklearn.model_selection.permutation_test_score). ###Code import plotly.plotly as py import plotly.graph_objs as go print(__doc__) import numpy as np from sklearn.svm import SVC from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import permutation_test_score from sklearn import datasets ###Output Automatically created module for IPython interactive environment ###Markdown Calculations Loading a dataset ###Code iris = datasets.load_iris() X = iris.data y = iris.target n_classes = np.unique(y).size # Some noisy data not correlated random = np.random.RandomState(seed=0) E = random.normal(size=(len(X), 2200)) # Add noisy data to the informative features for make the task harder X = np.c_[X, E] svm = SVC(kernel='linear') cv = StratifiedKFold(2) score, permutation_scores, pvalue = permutation_test_score( svm, X, y, scoring="accuracy", cv=cv, n_permutations=100, n_jobs=1) print("Classification score %s (pvalue : %s)" % (score, pvalue)) ###Output Classification score 0.513333333333 (pvalue : 0.00990099009901) ###Markdown Plot Results View histogram of permutation scores ###Code trace = go.Histogram(x=permutation_scores, nbinsx=20, marker=dict(color='blue', line=dict(color='black', width=1)), name='Permutation scores') trace1 = go.Scatter(x=2 * [score], y=[0, 20], mode='lines', line=dict(color='green', dash='dash'), name='Classification Score' ' (pvalue %s)' % pvalue ) trace2 = go.Scatter(x=2 * [1. / n_classes], y=[1, 20], mode='lines', line=dict(color='black', dash='dash'), name='Luck' ) data = [trace, trace1, trace2] layout = go.Layout(xaxis=dict(title='Score')) fig = go.Figure(data=data, layout=layout) py.iplot(fig) ###Output _____no_output_____ ###Markdown License Author: Alexandre Gramfort License: BSD 3 clause ###Code from IPython.display import display, HTML display(HTML('<link href="//fonts.googleapis.com/css?family=Open+Sans:600,400,300,200|Inconsolata|Ubuntu+Mono:400,700" rel="stylesheet" type="text/css" />')) display(HTML('<link rel="stylesheet" type="text/css" href="http://help.plot.ly/documentation/all_static/css/ipython-notebook-custom.css">')) ! pip install git+https://github.com/plotly/publisher.git --upgrade import publisher publisher.publish( 'Test with permutations the significance of a classification score.ipynb', 'scikit-learn/plot-permutation-test-for-classification/', 'Test with Permutations the Significance of a Classification Score | plotly', ' ', title = 'Test with Permutations the Significance of a Classification Score | plotly', name = 'Test with Permutations the Significance of a Classification Score', has_thumbnail='true', thumbnail='thumbnail/j-l-bound.jpg', language='scikit-learn', page_type='example_index', display_as='feature_selection', order=7, ipynb= '~Diksha_Gabha/3094') ###Output _____no_output_____
Transformer/image_classification_with_vision_transformer.ipynb
###Markdown ***Source_Link:https://keras.io/examples/vision/image_classification_with_vision_transformer/*** ###Code pip install -U tensorflow-addons import numpy as np import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers import tensorflow_addons as tfa #Prepare the data num_classes = 100 input_shape = (32, 32, 3) (x_train, y_train), (x_test, y_test) = keras.datasets.cifar100.load_data() print(f"x_train shape: {x_train.shape} - y_train shape: {y_train.shape}") print(f"x_test shape: {x_test.shape} - y_test shape: {y_test.shape}") #Configure the hyperparameters learning_rate = 0.001 weight_decay = 0.0001 batch_size = 256 num_epochs = 100 image_size = 72 # We'll resize input images to this size patch_size = 6 # Size of the patches to be extract from the input images num_patches = (image_size // patch_size) ** 2 projection_dim = 64 num_heads = 4 transformer_units = [ projection_dim * 2, projection_dim, ] # Size of the transformer layers transformer_layers = 8 mlp_head_units = [2048, 1024] # Size of the dense layers of the final classifier #Use data augmentation data_augmentation = keras.Sequential( [ layers.Normalization(), layers.Resizing(image_size, image_size), layers.RandomFlip("horizontal"), layers.RandomRotation(factor=0.02), layers.RandomZoom( height_factor=0.2, width_factor=0.2 ), ], name="data_augmentation", ) # Compute the mean and the variance of the training data for normalization. data_augmentation.layers[0].adapt(x_train) #Implement multilayer perceptron (MLP) def mlp(x, hidden_units, dropout_rate): for units in hidden_units: x = layers.Dense(units, activation=tf.nn.gelu)(x) x = layers.Dropout(dropout_rate)(x) return x #Implement patch creation as a layer class Patches(layers.Layer): def __init__(self, patch_size): super(Patches, self).__init__() self.patch_size = patch_size def call(self, images): batch_size = tf.shape(images)[0] patches = tf.image.extract_patches( images=images, sizes=[1, self.patch_size, self.patch_size, 1], strides=[1, self.patch_size, self.patch_size, 1], rates=[1, 1, 1, 1], padding="VALID", ) patch_dims = patches.shape[-1] patches = tf.reshape(patches, [batch_size, -1, patch_dims]) return patches import matplotlib.pyplot as plt plt.figure(figsize=(4, 4)) image = x_train[np.random.choice(range(x_train.shape[0]))] plt.imshow(image.astype("uint8")) plt.axis("off") resized_image = tf.image.resize( tf.convert_to_tensor([image]), size=(image_size, image_size) ) patches = Patches(patch_size)(resized_image) print(f"Image size: {image_size} X {image_size}") print(f"Patch size: {patch_size} X {patch_size}") print(f"Patches per image: {patches.shape[1]}") print(f"Elements per patch: {patches.shape[-1]}") n = int(np.sqrt(patches.shape[1])) plt.figure(figsize=(4, 4)) for i, patch in enumerate(patches[0]): ax = plt.subplot(n, n, i + 1) patch_img = tf.reshape(patch, (patch_size, patch_size, 3)) plt.imshow(patch_img.numpy().astype("uint8")) plt.axis("off") #Implement the patch encoding layer class PatchEncoder(layers.Layer): def __init__(self, num_patches, projection_dim): super(PatchEncoder, self).__init__() self.num_patches = num_patches self.projection = layers.Dense(units=projection_dim) self.position_embedding = layers.Embedding( input_dim=num_patches, output_dim=projection_dim ) def call(self, patch): positions = tf.range(start=0, limit=self.num_patches, delta=1) encoded = self.projection(patch) + self.position_embedding(positions) return encoded #Build the ViT model def create_vit_classifier(): inputs = layers.Input(shape=input_shape) # Augment data. augmented = data_augmentation(inputs) # Create patches. patches = Patches(patch_size)(augmented) # Encode patches. encoded_patches = PatchEncoder(num_patches, projection_dim)(patches) # Create multiple layers of the Transformer block. for _ in range(transformer_layers): # Layer normalization 1. x1 = layers.LayerNormalization(epsilon=1e-6)(encoded_patches) # Create a multi-head attention layer. attention_output = layers.MultiHeadAttention( num_heads=num_heads, key_dim=projection_dim, dropout=0.1 )(x1, x1) # Skip connection 1. x2 = layers.Add()([attention_output, encoded_patches]) # Layer normalization 2. x3 = layers.LayerNormalization(epsilon=1e-6)(x2) # MLP. x3 = mlp(x3, hidden_units=transformer_units, dropout_rate=0.1) # Skip connection 2. encoded_patches = layers.Add()([x3, x2]) # Create a [batch_size, projection_dim] tensor. representation = layers.LayerNormalization(epsilon=1e-6)(encoded_patches) representation = layers.Flatten()(representation) representation = layers.Dropout(0.5)(representation) # Add MLP. features = mlp(representation, hidden_units=mlp_head_units, dropout_rate=0.5) # Classify outputs. logits = layers.Dense(num_classes)(features) # Create the Keras model. model = keras.Model(inputs=inputs, outputs=logits) return model #Compile, train, and evaluate the mode def run_experiment(model): optimizer = tfa.optimizers.AdamW( learning_rate=learning_rate, weight_decay=weight_decay ) model.compile( optimizer=optimizer, loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=[ keras.metrics.SparseCategoricalAccuracy(name="accuracy"), keras.metrics.SparseTopKCategoricalAccuracy(5, name="top-5-accuracy"), ], ) checkpoint_filepath = "/tmp/checkpoint" checkpoint_callback = keras.callbacks.ModelCheckpoint( checkpoint_filepath, monitor="val_accuracy", save_best_only=True, save_weights_only=True, ) history = model.fit( x=x_train, y=y_train, batch_size=batch_size, epochs=num_epochs, validation_split=0.1, callbacks=[checkpoint_callback], ) model.load_weights(checkpoint_filepath) _, accuracy, top_5_accuracy = model.evaluate(x_test, y_test) print(f"Test accuracy: {round(accuracy * 100, 2)}%") print(f"Test top 5 accuracy: {round(top_5_accuracy * 100, 2)}%") return history vit_classifier = create_vit_classifier() history = run_experiment(vit_classifier) ###Output _____no_output_____
content/lessons/11-WebAPIs/Slides.ipynb
###Markdown IST256 Lesson 11 Web Services and API's- Assigned Reading https://ist256.github.io/spring2020/readings/Web-APIs-In-Python.html Links- Participation: [https://poll.ist256.com](https://poll.ist256.com)- Zoom Chat! FEQT (Future Exam Questions Training) 1What prints on the last line of this program? ###Code import requests w = 'http://httpbin.org/get' x = { 'a' :'b', 'c':'d'} z = { 'w' : 'r'} response = requests.get(w, params = x, headers = z) print(response.url) ###Output http://httpbin.org/get?a=b&c=d ###Markdown A. `http://httpbin.org/get?a=b` B. `http://httpbin.org/get?c=d` C. `http://httpbin.org/get?a=b&c=d` D. `http://httpbin.org/get` Vote Now: [https://poll.ist256.com](https://poll.ist256.com) FEQT (Future Exam Questions Training) 2Which line de-serializes the response? ###Code import requests # <= load up a bunch of pre-defined functions from the requests module w = 'http://httpbin.org/ip' # <= string response = requests.get(w) # <= w is a url. HTTP POST/GET/PUT/DELETE Verbs of HTTP response.raise_for_status() # <= response code.if not 2??, throw exception 4 client 5 server d = response.json() #<= de-serilaize! d['origin'] ###Output _____no_output_____ ###Markdown A. `2` B. `3` C. `4` D. `5` Vote Now: [https://poll.ist256.com](https://poll.ist256.com) Agenda- Lesson 10 Homework Solution- A look at web API's - Places to find web API's- How to read API documentation- Examples of using API's Connect Activity**Question:** A common two-step verification process uses by API's discussed in the reading isA. `OAUTH2` B. `Multi-Factor` C. `API Key in Header` D. `JSON format` Vote Now: [https://poll.ist256.com](https://poll.ist256.com) The Web Has Evolved…. From **User-Consumption**- Check the news / weather in your browser- Search the web for "George Washington's birthday"- **Internet is for people**.To **Device-Consumption**- Get news/ weather alerts on your Phone- Ask Alexa “When is George Washingon's Birthday?"- **Internet of Things**. Device Consuption Requires a Web API- API = Application Program Interface. In essence is a formal definition of functions exposed by a service.- Web API - API which works over HTTP.- In essence you can call functions and access services using the HTTP protocol.- Basic use starts with an HTTP request and the output is typically a JSON response.- We saw examples of this previously with: - Open Street Maps Geocoding: https://nominatim.openstreetmap.org/search?q=address&format=json - Weather Data Service: https://openweathermap.org- Thanks to APIs' we can write programs to interact with a variety of services. Finding API's requires research… Start googling…"foreign exchange rate api"![image.png](attachment:image.png) Then start reading the documentation on fixer.io …![image.png](attachment:image.png) Then start hacking away in Python … ###Code import requests url = "http://data.fixer.io/api/latest?access_key=159f1a48ad7a3d6f4dbe5d5a" response = requests.get(url) response.json() ###Output _____no_output_____
Week3/DQN_Torch.ipynb
###Markdown Reinforcement Learning: Deep Q Networks using Pytorch Custom Environment to train our model on ###Code import gym from gym import spaces import numpy as np import random from copy import deepcopy class gridworld_custom(gym.Env): """Custom Environment that follows gym interface""" metadata = {'render.modes': ['human']} def __init__(self, *args, **kwargs): super(gridworld_custom, self).__init__() self.current_step = 0 self.reward_range = (-10, 100) self.action_space = spaces.Discrete(2) self.observation_space = spaces.Box(low=np.array( [0, 0]), high=np.array([4, 4]), dtype=np.int64) self.target_coord = (4, 4) self.death_coord = [(3, 1), (4, 2)] def Reward_Function(self, obs): if (obs[0] == self.target_coord[0] and obs[1] == self.target_coord[1]): return 20 elif (obs[0] == self.death_coord[0][0] and obs[1] == self.death_coord[0][1]) or \ (obs[0] == self.death_coord[1][0] and obs[1] == self.death_coord[1][1]): return -10 else: return -1 return 0 def reset(self): self.current_step = 0 self.prev_obs = [random.randint(0, 4), random.randint(0, 4)] if (self.prev_obs[0] == self.target_coord[0] and self.prev_obs[1] == self.target_coord[1]): return self.reset() return self.prev_obs def step(self, action): action = int(action) self.current_step += 1 obs = deepcopy(self.prev_obs) if(action == 0): if(self.prev_obs[0] < 4): obs[0] = obs[0] + 1 else: obs[0] = obs[0] if(action == 1): if(self.prev_obs[0] > 0): obs[0] = obs[0] - 1 else: obs[0] = obs[0] if(action == 2): if(self.prev_obs[1] < 4): obs[1] = obs[1] + 1 else: obs[1] = obs[1] if(action == 3): if(self.prev_obs[1] > 0): obs[1] = obs[1] - 1 else: obs[1] = obs[1] reward = self.Reward_Function(obs) if (obs[0] == self.target_coord[0] and obs[1] == self.target_coord[1]) or (self.current_step >= 250): done = True else: done = False self.prev_obs = obs return obs, reward, done, {} def render(self, mode='human', close=False): for i in range(0, 5): for j in range(0, 5): if i == self.prev_obs[0] and j == self.prev_obs[1]: print("*", end=" ") elif i == self.target_coord[0] and j == self.target_coord[1]: print("w", end=" ") elif (i == self.death_coord[0][0] and j == self.death_coord[0][1]) or \ (i == self.death_coord[1][0] and j == self.death_coord[1][1]): print("D", end=" ") else: print("_", end=" ") print() print() print() ###Output _____no_output_____ ###Markdown Import required Packages ###Code import numpy as np import matplotlib.pyplot as plt from copy import deepcopy from statistics import mean import pandas as pd import torch import torch.nn as nn import torch.nn.functional as F from tqdm.auto import tqdm #from tqdm import tqdm ###Output _____no_output_____ ###Markdown Build The neuralnet ###Code class NeuralNetwork(nn.Module): def __init__(self): super(NeuralNetwork, self).__init__() self.layer1 = nn.Linear(2, 8) self.layer2 = nn.Linear(8, 8) self.layer3 = nn.Linear(8, 4) def forward(self, x): l1 = self.layer1(x) l1 = F.relu(l1) l2 = self.layer2(l1) l2 = F.relu(l2) l3 = self.layer3(l2) output = l3 return output ###Output _____no_output_____ ###Markdown Check to see if there is a GPU which can be used to accelerate the workflows ###Code device = 'cuda' if torch.cuda.is_available() else 'cpu' ## Force Use a Device #device = 'cuda' #for GPU #device = 'cpu' #for CPU print(f'Using {device} device') ###Output _____no_output_____ ###Markdown Initialize the neuralnets ###Code q_network = NeuralNetwork().to(device) loss_function = nn.MSELoss() optimizer = torch.optim.Adam(q_network.parameters(), lr = 1e-3) ###Output _____no_output_____ ###Markdown Initialise the environment ###Code env = gridworld_custom() ###Output _____no_output_____ ###Markdown Check up the functionality of epsilon greedy. Just for reference. ###Code epsilon = 1 epsilon_decay = 0.999 episodes = 5000 epsilon_copy = deepcopy(epsilon) eps = [] for i in range(episodes): epsilon_copy = epsilon_copy * epsilon_decay eps.append(epsilon_copy) plt.plot(eps) plt.show() ###Output _____no_output_____ ###Markdown Run everything ###Code gamma = 0.99 batch_size = 32 pbar = tqdm(range(episodes)) last_loss = 0.0 losses_array = [] rewards_array = [] for episode in pbar: prev_obs = env.reset() done = False mem_size = 0 curr_state_mem = np.array([[0,0]] * batch_size) prev_state_mem = np.array([[0,0]] * batch_size) action_mem = np.array([0] * batch_size) reward_mem = np.array([0] * batch_size) rewards = [] epsilon = epsilon * epsilon_decay while not(done) : if(random.uniform(0, 1) > epsilon): with torch.no_grad(): prev_q = q_network(torch.tensor(prev_obs, device=device).float()) prev_q = prev_q.cpu().detach().numpy() action = np.argmax(prev_q) else: action = random.randint(0,3) obs, reward, done, _ = env.step(action) rewards.append(reward) prev_state_mem[mem_size] = prev_obs curr_state_mem[mem_size] = obs action_mem[mem_size] = action reward_mem[mem_size] = reward mem_size = mem_size + 1 prev_obs = obs if(mem_size == batch_size): with torch.no_grad(): target_q = q_network(torch.tensor(curr_state_mem, device=device).float()).max(1)[0].detach() expected_q_mem = torch.tensor(reward_mem, device=device).float() + ( gamma * target_q ) network_q_mem = q_network(torch.tensor(prev_state_mem, device=device).float()).gather(1, torch.tensor(action_mem, device=device).type(torch.int64).unsqueeze(1)).squeeze(1) loss = loss_function(network_q_mem, expected_q_mem) last_loss = "{:.3f}".format(loss.item()) mem_size = 0 optimizer.zero_grad() loss.backward() optimizer.step() pbar.set_description("loss = %s" % last_loss) losses_array.append(last_loss) rewards_array.append(mean(rewards)) ###Output _____no_output_____ ###Markdown Plot Losses ###Code plt.plot(losses_array, label="loss") plt.legend() plt.show() ###Output _____no_output_____ ###Markdown Plot Loss Trend ###Code resolution = 50 cumsum_losses = np.array(pd.Series(np.array(losses_array)).rolling(window=resolution).mean() ) plt.plot(cumsum_losses, label="loss") plt.legend() plt.show() ###Output _____no_output_____ ###Markdown Plot Rewards ###Code plt.plot(rewards_array, label="rewards") plt.legend() plt.show() ###Output _____no_output_____ ###Markdown Plot reward trend ###Code resolution = 50 cumsum_rewards = np.array(pd.Series(np.array(rewards_array)).rolling(window=resolution).mean() ) plt.plot(cumsum_rewards, label="rewards") plt.legend() plt.show() ###Output _____no_output_____ ###Markdown Test the trained model ###Code prev_obs = env.reset() done = False env.render() while not(done): with torch.no_grad(): prev_q = q_network(torch.tensor(prev_obs, device=device).float()) prev_q = prev_q.cpu().detach().numpy() action = np.argmax(prev_q) obs, reward, done, _ = env.step(action) prev_obs = obs env.render() ###Output _____no_output_____
Data_Jobs_Listings_Glassdoor.ipynb
###Markdown Data Jobs Listings - GlassdoorThe purpose of this notebook is to select data related to data jobs in Brazil.https://www.kaggle.com/andresionek/data-jobs-listings-glassdoor ###Code # Libraries import pandas as pd import json ###Output _____no_output_____ ###Markdown Kaggle API key ###Code # Kaggle API key !pip install kaggle !mkdir ~/.kaggle !touch '/root/.kaggle/kaggle.json' ###################################################################################### # Copy USER NAME and API KEY from Kaggle # api_token = {"username":"username","key":"TOKEN_HERE"} api_token = {"username":"","key":""} ###################################################################################### with open('/root/.kaggle/kaggle.json', 'w') as file: json.dump(api_token, file) !chmod 600 /root/.kaggle/kaggle.json # Download dataset !kaggle datasets download -d andresionek/data-jobs-listings-glassdoor ###Output data-jobs-listings-glassdoor.zip: Skipping, found more recently modified local copy (use --force to force download) ###Markdown If you get the "Unauthorized" error as a result of this cell:1. Delete the file kaggle.json with the following command: !rm /root/.kaggle/kaggle.json 2. Check or regenerate the Kaggle token. ###Code # Unzip the compressed file !unzip data-jobs-listings-glassdoor.zip # List available files !ls ###Output country_names_2_digit_codes.csv glassdoor_reviews.csv currency_exchange.csv glassdoor_reviews_val_reviewResponses.csv data-jobs-listings-glassdoor.zip glassdoor_salary_salaries.csv glassdoor_benefits_comments.csv glassdoor_wwfu.csv glassdoor_benefits_highlights.csv glassdoor_wwfu_val_captions.csv glassdoor_breadCrumbs.csv glassdoor_wwfu_val_photos.csv glassdoor.csv glassdoor_wwfu_val_videos.csv glassdoor_overview_competitors.csv sample_data glassdoor_photos.csv ###Markdown Display configuration ###Code # display all columns pd.set_option('max_columns', None) # display all rows #pd.set_option('max_rows', None) # display the entire column width #pd.set_option('max_colwidth', None) # display all values of an item #pd.set_option('max_seq_item', None) # Load data with labels glassdoor = pd.read_csv('glassdoor.csv') print("Dataset dimension (rows, columns): ", glassdoor.shape) glassdoor.sample(5) ###Output Dataset dimension (rows, columns): (165290, 163) ###Markdown Explore columns ###Code # List all columns glassdoor.columns.to_list() # Unique values for country names glassdoor['map.country'].unique() ###Output _____no_output_____ ###Markdown Brazil ###Code # Select lines related to variations of "Brazil" glassdoor_br = glassdoor.loc[glassdoor['map.country'].isin(['brasil', 'brazil', 'BRAZIL', 'BRASIL', 'Brasil', 'Brazil', 'Br', 'BR', 'br', 'bR', 'BRA', 'Bra', 'bra'])] # Number of rows and columns glassdoor_br.shape glassdoor_br.sample(5) ###Output _____no_output_____ ###Markdown CSV ###Code # Export data from Google Colaboratory to local machine from google.colab import files glassdoor_br.to_csv('glassdoor_br.csv') files.download('glassdoor_br.csv') ###Output _____no_output_____
C4/W3/assignment/C4_W3_Assignment_Solution.ipynb
###Markdown ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown **Note:** This notebook can run using TensorFlow 2.5.0 ###Code #!pip install tensorflow==2.5.0 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt print(tf.__version__) def plot_series(time, series, format="-", start=0, end=None): plt.plot(time[start:end], series[start:end], format) plt.xlabel("Time") plt.ylabel("Value") plt.grid(False) def trend(time, slope=0): return slope * time def seasonal_pattern(season_time): """Just an arbitrary pattern, you can change it if you wish""" return np.where(season_time < 0.1, np.cos(season_time * 6 * np.pi), 2 / np.exp(9 * season_time)) def seasonality(time, period, amplitude=1, phase=0): """Repeats the same pattern at each period""" season_time = ((time + phase) % period) / period return amplitude * seasonal_pattern(season_time) def noise(time, noise_level=1, seed=None): rnd = np.random.RandomState(seed) return rnd.randn(len(time)) * noise_level time = np.arange(10 * 365 + 1, dtype="float32") baseline = 10 series = trend(time, 0.1) baseline = 10 amplitude = 40 slope = 0.005 noise_level = 3 # Create the series series = baseline + trend(time, slope) + seasonality(time, period=365, amplitude=amplitude) # Update with noise series += noise(time, noise_level, seed=51) split_time = 3000 time_train = time[:split_time] x_train = series[:split_time] time_valid = time[split_time:] x_valid = series[split_time:] window_size = 20 batch_size = 32 shuffle_buffer_size = 1000 plot_series(time, series) def windowed_dataset(series, window_size, batch_size, shuffle_buffer): dataset = tf.data.Dataset.from_tensor_slices(series) dataset = dataset.window(window_size + 1, shift=1, drop_remainder=True) dataset = dataset.flat_map(lambda window: window.batch(window_size + 1)) dataset = dataset.shuffle(shuffle_buffer).map(lambda window: (window[:-1], window[-1])) dataset = dataset.batch(batch_size).prefetch(1) return dataset tf.keras.backend.clear_session() tf.random.set_seed(51) np.random.seed(51) tf.keras.backend.clear_session() dataset = windowed_dataset(x_train, window_size, batch_size, shuffle_buffer_size) model = tf.keras.models.Sequential([ tf.keras.layers.Lambda(lambda x: tf.expand_dims(x, axis=-1),# YOUR CODE HERE), input_shape=[None]), ### START CODE HERE tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(32, return_sequences=True)), tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(32)), tf.keras.layers.Dense(1), ### END CODE HERE tf.keras.layers.Lambda(lambda x: x * 10.0)# YOUR CODE HERE) ]) lr_schedule = tf.keras.callbacks.LearningRateScheduler( lambda epoch: 1e-8 * 10**(epoch / 20)) optimizer = tf.keras.optimizers.SGD(learning_rate=1e-8, momentum=0.9) model.compile(loss=tf.keras.losses.Huber(), optimizer=optimizer, metrics=["mae"]) history = model.fit(dataset, epochs=100, callbacks=[lr_schedule]) plt.semilogx(history.history["lr"], history.history["loss"]) plt.axis([1e-8, 1e-4, 0, 30]) # FROM THIS PICK A LEARNING RATE tf.keras.backend.clear_session() tf.random.set_seed(51) np.random.seed(51) tf.keras.backend.clear_session() dataset = windowed_dataset(x_train, window_size, batch_size, shuffle_buffer_size) model = tf.keras.models.Sequential([ tf.keras.layers.Lambda(lambda x: tf.expand_dims(x, axis=-1),# YOUR CODE HERE), input_shape=[None]), ### START CODE HERE tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(32, return_sequences=True)), tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(32)), tf.keras.layers.Dense(1), ### END CODE HERE tf.keras.layers.Lambda(lambda x: x * 100.0)# YOUR CODE HERE) ]) model.compile(loss="mse", optimizer=tf.keras.optimizers.SGD(learning_rate=1e-5, momentum=0.9),metrics=["mae"])# PUT YOUR LEARNING RATE HERE#, momentum=0.9),metrics=["mae"]) history = model.fit(dataset,epochs=500,verbose=1) # FIND A MODEL AND A LR THAT TRAINS TO AN MAE < 3 forecast = [] results = [] for time in range(len(series) - window_size): forecast.append(model.predict(series[time:time + window_size][np.newaxis])) forecast = forecast[split_time-window_size:] results = np.array(forecast)[:, 0, 0] plt.figure(figsize=(10, 6)) plot_series(time_valid, x_valid) plot_series(time_valid, results) tf.keras.metrics.mean_absolute_error(x_valid, results).numpy() # YOUR RESULT HERE SHOULD BE LESS THAN 4 import matplotlib.image as mpimg import matplotlib.pyplot as plt #----------------------------------------------------------- # Retrieve a list of list results on training and test data # sets for each training epoch #----------------------------------------------------------- mae=history.history['mae'] loss=history.history['loss'] epochs=range(len(loss)) # Get number of epochs #------------------------------------------------ # Plot MAE and Loss #------------------------------------------------ plt.plot(epochs, mae, 'r') plt.plot(epochs, loss, 'b') plt.title('MAE and Loss') plt.xlabel("Epochs") plt.ylabel("Accuracy") plt.legend(["MAE", "Loss"]) plt.figure() epochs_zoom = epochs[200:] mae_zoom = mae[200:] loss_zoom = loss[200:] #------------------------------------------------ # Plot Zoomed MAE and Loss #------------------------------------------------ plt.plot(epochs_zoom, mae_zoom, 'r') plt.plot(epochs_zoom, loss_zoom, 'b') plt.title('MAE and Loss') plt.xlabel("Epochs") plt.ylabel("Accuracy") plt.legend(["MAE", "Loss"]) plt.figure() ###Output _____no_output_____ ###Markdown ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown **Note:** This notebook can run using TensorFlow 2.5.0 ###Code #!pip install tensorflow==2.5.0 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt print(tf.__version__) def plot_series(time, series, format="-", start=0, end=None): plt.plot(time[start:end], series[start:end], format) plt.xlabel("Time") plt.ylabel("Value") plt.grid(False) def trend(time, slope=0): return slope * time def seasonal_pattern(season_time): """Just an arbitrary pattern, you can change it if you wish""" return np.where(season_time < 0.1, np.cos(season_time * 6 * np.pi), 2 / np.exp(9 * season_time)) def seasonality(time, period, amplitude=1, phase=0): """Repeats the same pattern at each period""" season_time = ((time + phase) % period) / period return amplitude * seasonal_pattern(season_time) def noise(time, noise_level=1, seed=None): rnd = np.random.RandomState(seed) return rnd.randn(len(time)) * noise_level time = np.arange(10 * 365 + 1, dtype="float32") baseline = 10 series = trend(time, 0.1) baseline = 10 amplitude = 40 slope = 0.005 noise_level = 3 # Create the series series = baseline + trend(time, slope) + seasonality(time, period=365, amplitude=amplitude) # Update with noise series += noise(time, noise_level, seed=51) split_time = 3000 time_train = time[:split_time] x_train = series[:split_time] time_valid = time[split_time:] x_valid = series[split_time:] window_size = 20 batch_size = 32 shuffle_buffer_size = 1000 plot_series(time, series) def windowed_dataset(series, window_size, batch_size, shuffle_buffer): dataset = tf.data.Dataset.from_tensor_slices(series) dataset = dataset.window(window_size + 1, shift=1, drop_remainder=True) dataset = dataset.flat_map(lambda window: window.batch(window_size + 1)) dataset = dataset.shuffle(shuffle_buffer).map(lambda window: (window[:-1], window[-1])) dataset = dataset.batch(batch_size).prefetch(1) return dataset tf.keras.backend.clear_session() tf.random.set_seed(51) np.random.seed(51) tf.keras.backend.clear_session() dataset = windowed_dataset(x_train, window_size, batch_size, shuffle_buffer_size) model = tf.keras.models.Sequential([ tf.keras.layers.Lambda(lambda x: tf.expand_dims(x, axis=-1),# YOUR CODE HERE), input_shape=[None]), ### START CODE HERE tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(32, return_sequences=True)), tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(32)), tf.keras.layers.Dense(1), ### END CODE HERE tf.keras.layers.Lambda(lambda x: x * 10.0)# YOUR CODE HERE) ]) lr_schedule = tf.keras.callbacks.LearningRateScheduler( lambda epoch: 1e-8 * 10**(epoch / 20)) optimizer = tf.keras.optimizers.SGD(learning_rate=1e-8, momentum=0.9) model.compile(loss=tf.keras.losses.Huber(), optimizer=optimizer, metrics=["mae"]) history = model.fit(dataset, epochs=100, callbacks=[lr_schedule]) plt.semilogx(history.history["lr"], history.history["loss"]) plt.axis([1e-8, 1e-4, 0, 30]) # FROM THIS PICK A LEARNING RATE tf.keras.backend.clear_session() tf.random.set_seed(51) np.random.seed(51) tf.keras.backend.clear_session() dataset = windowed_dataset(x_train, window_size, batch_size, shuffle_buffer_size) model = tf.keras.models.Sequential([ tf.keras.layers.Lambda(lambda x: tf.expand_dims(x, axis=-1),# YOUR CODE HERE), input_shape=[None]), ### START CODE HERE tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(32, return_sequences=True)), tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(32)), tf.keras.layers.Dense(1), ### END CODE HERE tf.keras.layers.Lambda(lambda x: x * 100.0)# YOUR CODE HERE) ]) model.compile(loss="mse", optimizer=tf.keras.optimizers.SGD(learning_rate=1e-5, momentum=0.9),metrics=["mae"])# PUT YOUR LEARNING RATE HERE#, momentum=0.9),metrics=["mae"]) history = model.fit(dataset,epochs=500,verbose=1) # FIND A MODEL AND A LR THAT TRAINS TO AN MAE < 3 forecast = [] results = [] for time in range(len(series) - window_size): forecast.append(model.predict(series[time:time + window_size][np.newaxis])) forecast = forecast[split_time-window_size:] results = np.array(forecast)[:, 0, 0] plt.figure(figsize=(10, 6)) plot_series(time_valid, x_valid) plot_series(time_valid, results) tf.keras.metrics.mean_absolute_error(x_valid, results).numpy() # YOUR RESULT HERE SHOULD BE LESS THAN 4 import matplotlib.image as mpimg import matplotlib.pyplot as plt #----------------------------------------------------------- # Retrieve a list of list results on training and test data # sets for each training epoch #----------------------------------------------------------- mae=history.history['mae'] loss=history.history['loss'] epochs=range(len(loss)) # Get number of epochs #------------------------------------------------ # Plot MAE and Loss #------------------------------------------------ plt.plot(epochs, mae, 'r') plt.plot(epochs, loss, 'b') plt.title('MAE and Loss') plt.xlabel("Epochs") plt.ylabel("Accuracy") plt.legend(["MAE", "Loss"]) plt.figure() epochs_zoom = epochs[200:] mae_zoom = mae[200:] loss_zoom = loss[200:] #------------------------------------------------ # Plot Zoomed MAE and Loss #------------------------------------------------ plt.plot(epochs_zoom, mae_zoom, 'r') plt.plot(epochs_zoom, loss_zoom, 'b') plt.title('MAE and Loss') plt.xlabel("Epochs") plt.ylabel("Accuracy") plt.legend(["MAE", "Loss"]) plt.figure() ###Output _____no_output_____ ###Markdown ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown **Note:** This notebook can run using TensorFlow 2.5.0 ###Code #!pip install tensorflow==2.5.0 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt print(tf.__version__) def plot_series(time, series, format="-", start=0, end=None): plt.plot(time[start:end], series[start:end], format) plt.xlabel("Time") plt.ylabel("Value") plt.grid(False) def trend(time, slope=0): return slope * time def seasonal_pattern(season_time): """Just an arbitrary pattern, you can change it if you wish""" return np.where(season_time < 0.1, np.cos(season_time * 6 * np.pi), 2 / np.exp(9 * season_time)) def seasonality(time, period, amplitude=1, phase=0): """Repeats the same pattern at each period""" season_time = ((time + phase) % period) / period return amplitude * seasonal_pattern(season_time) def noise(time, noise_level=1, seed=None): rnd = np.random.RandomState(seed) return rnd.randn(len(time)) * noise_level time = np.arange(10 * 365 + 1, dtype="float32") baseline = 10 series = trend(time, 0.1) baseline = 10 amplitude = 40 slope = 0.005 noise_level = 3 # Create the series series = baseline + trend(time, slope) + seasonality(time, period=365, amplitude=amplitude) # Update with noise series += noise(time, noise_level, seed=51) split_time = 3000 time_train = time[:split_time] x_train = series[:split_time] time_valid = time[split_time:] x_valid = series[split_time:] window_size = 20 batch_size = 32 shuffle_buffer_size = 1000 plot_series(time, series) def windowed_dataset(series, window_size, batch_size, shuffle_buffer): dataset = tf.data.Dataset.from_tensor_slices(series) dataset = dataset.window(window_size + 1, shift=1, drop_remainder=True) dataset = dataset.flat_map(lambda window: window.batch(window_size + 1)) dataset = dataset.shuffle(shuffle_buffer).map(lambda window: (window[:-1], window[-1])) dataset = dataset.batch(batch_size).prefetch(1) return dataset tf.keras.backend.clear_session() tf.random.set_seed(51) np.random.seed(51) tf.keras.backend.clear_session() dataset = windowed_dataset(x_train, window_size, batch_size, shuffle_buffer_size) model = tf.keras.models.Sequential([ tf.keras.layers.Lambda(lambda x: tf.expand_dims(x, axis=-1),# YOUR CODE HERE), input_shape=[None]), ### START CODE HERE tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(32, return_sequences=True)), tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(32)), tf.keras.layers.Dense(1), ### END CODE HERE tf.keras.layers.Lambda(lambda x: x * 10.0)# YOUR CODE HERE) ]) lr_schedule = tf.keras.callbacks.LearningRateScheduler( lambda epoch: 1e-8 * 10**(epoch / 20)) optimizer = tf.keras.optimizers.SGD(learning_rate=1e-8, momentum=0.9) model.compile(loss=tf.keras.losses.Huber(), optimizer=optimizer, metrics=["mae"]) history = model.fit(dataset, epochs=100, callbacks=[lr_schedule]) plt.semilogx(history.history["lr"], history.history["loss"]) plt.axis([1e-8, 1e-4, 0, 30]) # FROM THIS PICK A LEARNING RATE tf.keras.backend.clear_session() tf.random.set_seed(51) np.random.seed(51) tf.keras.backend.clear_session() dataset = windowed_dataset(x_train, window_size, batch_size, shuffle_buffer_size) model = tf.keras.models.Sequential([ tf.keras.layers.Lambda(lambda x: tf.expand_dims(x, axis=-1),# YOUR CODE HERE), input_shape=[None]), ### START CODE HERE tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(32, return_sequences=True)), tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(32)), tf.keras.layers.Dense(1), ### END CODE HERE tf.keras.layers.Lambda(lambda x: x * 100.0)# YOUR CODE HERE) ]) model.compile(loss="mse", optimizer=tf.keras.optimizers.SGD(learning_rate=1e-5, momentum=0.9),metrics=["mae"])# PUT YOUR LEARNING RATE HERE#, momentum=0.9),metrics=["mae"]) history = model.fit(dataset,epochs=500,verbose=1) # FIND A MODEL AND A LR THAT TRAINS TO AN MAE < 3 forecast = [] results = [] for time in range(len(series) - window_size): forecast.append(model.predict(series[time:time + window_size][np.newaxis])) forecast = forecast[split_time-window_size:] results = np.array(forecast)[:, 0, 0] plt.figure(figsize=(10, 6)) plot_series(time_valid, x_valid) plot_series(time_valid, results) tf.keras.metrics.mean_absolute_error(x_valid, results).numpy() # YOUR RESULT HERE SHOULD BE LESS THAN 4 import matplotlib.image as mpimg import matplotlib.pyplot as plt #----------------------------------------------------------- # Retrieve a list of list results on training and test data # sets for each training epoch #----------------------------------------------------------- mae=history.history['mae'] loss=history.history['loss'] epochs=range(len(loss)) # Get number of epochs #------------------------------------------------ # Plot MAE and Loss #------------------------------------------------ plt.plot(epochs, mae, 'r') plt.plot(epochs, loss, 'b') plt.title('MAE and Loss') plt.xlabel("Epochs") plt.ylabel("Accuracy") plt.legend(["MAE", "Loss"]) plt.figure() epochs_zoom = epochs[200:] mae_zoom = mae[200:] loss_zoom = loss[200:] #------------------------------------------------ # Plot Zoomed MAE and Loss #------------------------------------------------ plt.plot(epochs_zoom, mae_zoom, 'r') plt.plot(epochs_zoom, loss_zoom, 'b') plt.title('MAE and Loss') plt.xlabel("Epochs") plt.ylabel("Accuracy") plt.legend(["MAE", "Loss"]) plt.figure() ###Output _____no_output_____
UQ_v2.ipynb
###Markdown The following are helper functions -- generally these should be used as is ###Code def data_describe(x): [min_value, p_1, p_10, p_50, p_90, p_99, max_value] = np.percentile(x, [0, 1, 10, 50, 90, 99, 100]) print('========================') print('Number of Monte Carlo Samples: {:d}'.format(len(x))) print('========================') print('min : {:.7e}'.format(min_value)) print('max : {:.7e}'.format(max_value)) print('mean : {:.7e}'.format(x.mean())) print('median : {:.7e}'.format(np.median(x))) print('std : {:.7e}'.format(x.std())) print('========================') print('Data percentiles') print('P1 : {:.7e}'.format(p_1)) print('P10 : {:.7e}'.format(p_10)) print('P50 : {:.7e}'.format(p_50)) print('P90 : {:.7e}'.format(p_90)) print('P99 : {:.7e}'.format(p_99)) print('========================') def sensitivity_analysis(df, figsize=None, xlabel='Data'): min_value = np.inf max_value = -np.inf n_subfigures = len(df.columns) if figsize is None: figsize=(8,5*n_subfigures) fig, axs = plt.subplots(n_subfigures, 1, sharex=False, figsize=figsize) sensitivity_df = df.copy() for idx_ , col_ in enumerate(df.columns): temp_df = df.copy() for temp_col_ in temp_df.columns: if temp_col_ == col_: continue temp_df[temp_col_] = temp_df[temp_col_].mean() # perform the calculations on temp_df temp_STOIIP = calculate_STOIIP(temp_df) sensitivity_df[col_] = temp_STOIIP min_value_ = temp_STOIIP.min() max_value_ = temp_STOIIP.max() if min_value_ < min_value: min_value = min_value_ if max_value_ > max_value: max_value = max_value_ plot_distribution(temp_STOIIP, axs=axs[idx_], xlabel='{}--{}'.format(xlabel, col_)) print('Sensitivity_analysis for {}--{}'.format(xlabel, col_)) data_describe(temp_STOIIP) #axs[idx_].axvline(x=temp_STOIIP.mean(), color='r') #axs[idx_].axvline(x=temp_STOIIP.min(), color='b') #axs[idx_].axvline(x=temp_STOIIP.max(), color='b') slack_value = (max_value-min_value)/20 for idx_ , col_ in enumerate(df.columns): axs[idx_].set_xlim([min_value - slack_value, max_value + slack_value]) plt.show() return sensitivity_df def ordered_boxplot(sensitivity_df, xlabel='Data'): variations_np = [] min_value = np.inf max_value = -np.inf for column_ in sensitivity_df.columns: [p_0, p_10, p_90, p_100] = np.percentile(sensitivity_df[column_].values, [0, 10, 90, 100]) data_variation = p_90-p_10 variations_np.append(data_variation) if p_0 < min_value: min_value = p_0 if p_100 > max_value: max_value = p_100 variations_np = np.array(variations_np) sort_index = np.argsort(variations_np) fig, axs = plt.subplots(1, 1, tight_layout=True, figsize=(12, 6)) new_median = sensitivity_df.mean(axis=0).values sensitivity_df2 = sensitivity_df.iloc[:, sort_index] # axs.boxplot(sensitivity_df2.values, labels=sensitivity_df2.columns, usermedians=new_median, whis=[0, 100], vert=False) axs.boxplot(sensitivity_df2.values, labels=sensitivity_df2.columns, usermedians=new_median, whis=[10, 90], vert=False) # axs.boxplot(sensitivity_df2.values, labels=sensitivity_df2.columns, usermedians=new_median, vert=False) axs.axvline(x=sensitivity_df2.iloc[:,0].mean(), color='r', linewidth=2) axs.grid(alpha=0.75) # boxplot = sensitivity_df.boxplot() # parts = axs.violinplot( # sensitivity_df, showmeans=False, showmedians=False, # showextrema=False) slack_value = (max_value-min_value)/20 axs.set_xlim([min_value - slack_value, max_value + slack_value]) axs.set_xlabel(xlabel) plt.show() def plot_distribution(x, axs=None, xlim=None, ylim=None, figsize_=(15,8), bins_=100, kde_=True, cumulative_=False, xlabel='Distribution'): # plot the data if axs == None: fig, axs = plt.subplots(figsize=figsize_) axs.hist(x, density=False, bins=bins_, facecolor='b', alpha=0.5) axs.grid(alpha=0.75) axs.set_xlabel(xlabel) axs.set_ylabel('Count') # axs.set_title('Histogram plot of a random variable') # axs.set_xlim([x.min(), x.max()]) if xlim: x_min, x_max = xlim else: x_min, x_max = axs.get_xlim() if ylim: y_min, y_max = ylim else: y_min, y_max = axs.get_ylim() axs.set_xlim([x_min, x_max]) axs.set_ylim([y_min, y_max]) # axs.yaxis.set_major_formatter(matplotlib.ticker.FormatStrFormatter('%.3e')) def plot_ecdf(x, axs=None, xlim=None, ylim=None, figsize_=(15,8), bins_=100, xlabel='Data'): if axs == None: fig, axs = plt.subplots(figsize=figsize_) axs.hist(x,cumulative=True, density=True, bins=bins_, alpha=0.5) # plt.text(60, .025, '$P_{10}={:e},\\ P_{50}={:e},\\ P_90={:e}$'.format(p_10, p_50, p_90)) axs.grid(alpha=0.75) axs.set_xlabel(xlabel) axs.set_ylabel('ECDF') axs.set_title('Empirical distribution function plot') if xlim: x_min, x_max = xlim else: x_min, x_max = axs.get_xlim() if ylim: y_min, y_max = ylim else: y_min, y_max = axs.get_ylim() axs.set_xlim([x_min, x_max]) axs.set_ylim([y_min, y_max]) str_shift = 0.05 [p_10, p_50, p_90] = np.percentile(x, [10, 50, 90]) axs.hlines(y=0.1, xmin=x_min, xmax=p_10) axs.vlines(x=p_10, ymin=0, ymax=0.1) text_str = "$P_{10}=" + "{:.3e}".format(p_10) + "$" plt.text(p_10, 0.1+str_shift, text_str, {'color': 'black', 'fontsize': 18, 'ha': 'center', 'va': 'center'}) # 'bbox': dict(boxstyle="round", fc="white", ec="black", pad=0.5)}) axs.hlines(y=0.5, xmin=x_min, xmax=p_50) axs.vlines(x=p_50, ymin=0, ymax=0.5) text_str = "$P_{50}=" + "{:.3e}".format(p_50) + "$" plt.text(p_50, 0.5+str_shift, text_str, {'color': 'black', 'fontsize': 18, 'ha': 'center', 'va': 'center'}) axs.hlines(y=0.9, xmin=x_min, xmax=p_90) axs.vlines(x=p_90, ymin=0, ymax=0.9) text_str = "$P_{90}=" + "{:.3e}".format(p_90) + "$" plt.text(p_90, 0.9+str_shift, text_str, {'color': 'black', 'fontsize': 18, 'ha': 'center', 'va': 'center'}) axs.yaxis.set_major_formatter(matplotlib.ticker.FormatStrFormatter('%.3f')) # number of Monte Carlo samples # use the same for all Random Variables n_samples = 1e6 n_samples = np.int64(n_samples) # random numbers from uniform distribution lower_limit = 10 upper_limit = 20 x_uniform = rand.uniform(low=lower_limit, high=upper_limit, size=n_samples) plot_distribution(x_uniform,figsize_=(8,5), xlim=[lower_limit, upper_limit]) plot_ecdf(x_uniform, figsize_=(8,5), xlim=[lower_limit, upper_limit]) # generate random numbers from N(0,1) x_mean = 0 x_std = 1 x_normal = rand.normal(loc=x_mean, scale=x_std, size=n_samples) plot_distribution(x_normal,figsize_=(8,5)) plot_ecdf(x_normal, figsize_=(8,5)) # generate log-normal random variable --> always positive because it is exponential of Normal random variable # this distribution is defined in log_x_mean = 2 log_x_std = 1 x_lognormal = rand.lognormal(mean=log_x_mean, sigma=log_x_std, size=n_samples) plot_distribution(x_lognormal,figsize_=(8,5), xlim=[0, 100]) plot_ecdf(x_lognormal, figsize_=(8,5), xlim=[0, 100]) ###Output _____no_output_____ ###Markdown logarithm of lognormal should be a normal distribution ###Code print('Plot the logarithm of the distribution') plot_distribution(np.log(x_lognormal),figsize_=(8,5)) # generate random numbers from a triangular distribution x_low = 0 x_mode = 7 x_high = 10 x_tri = rand.triangular(left=x_low, mode=x_mode, right=x_high, size=n_samples) plot_distribution(x_tri,figsize_=(8,5), xlim=[x_low, x_high]) plot_ecdf(x_tri, figsize_=(8,5), xlim=[x_low, x_high]) ###Output _____no_output_____ ###Markdown The following is a specific example for STOIIP calculation ###Code # 1- define data distributions Bo = rand.uniform(low=1.19, high=1.21, size=n_samples) # units Bbl/STB Sw = rand.uniform(low=0.19, high=0.45, size=n_samples) porosity = rand.triangular(left=0.17, mode=0.213, right=0.24, size=n_samples) GRV = rand.triangular(left=0.55, mode=0.64, right=0.72, size=n_samples) # units 10^9 m3 # 2- put your data into named tuples in a pandas.DataFrame data_df = pd.DataFrame() data_df['GRV'] = GRV data_df['porosity'] = porosity data_df['Sw'] = Sw data_df['Bo'] = Bo # 3- define your calculation inside a function with data # http://www.oilfieldwiki.com/wiki/Oil_in_place # perform Monte Carlo simulation on the random variables # define the calculations needed def calculate_STOIIP(data_df): STOIIP = 7758 * (data_df['GRV'] * 1e9) * data_df['porosity'] * (1 - data_df['Sw']) / data_df['Bo'] # units barrels return STOIIP # perform analysis t0 = time.time() STOIIP = calculate_STOIIP(data_df) print('finished MC calucation of STOIIP in {} sec'.format(time.time()-time.time())) data_describe(STOIIP) plot_distribution(STOIIP, figsize_=(10,5), xlabel='STOIIP') plot_ecdf(STOIIP, figsize_=(10,5), xlabel='STOIIP') sensitivity_df = sensitivity_analysis(data_df, figsize=(12,6*5), xlabel='STOIIP') ordered_boxplot(sensitivity_df, xlabel='STOIIP') ###Output _____no_output_____
Chap 4: Metaclass & Property/Chap 34 Register class exists by metaclass.ipynb
###Markdown 메타클래스로 클래스의 존재를 등록하자메타클래스를 사용하는 또 다른 일반적인 사례는 프로그램에 있는 타입을 자동으로 등록하는 것이다. 등록(registration)은 간단한 식별자(identifier)를 대응하는 클래스에 매핑하는 역방향 조회(reverse lookup)를 수행할 때 유용하다.예를 들어 Python 객체를 직렬화한 표현을 JSON으로 구현한다고 해보자. ###Code import json class Serializable(object): def __init__(self, *args): self.args = args def serialize(self): return json.dumps({'args': self.args}) ###Output _____no_output_____ ###Markdown 간단한 불변 자료 구조를 문자열로 쉽게 직렬화할 수 있다. ###Code class Point2D(Serializable): def __init__(self, x, y): super().__init__(x, y) self.x = x self.y = y def __repr__(self): return 'Point2D(%d, %d)' % (self.x, self.y) point = Point2D(5, 3) print('Object: ', point) print('Serialized:', point.serialize()) ###Output Object: Point2D(5, 3) Serialized: {"args": [5, 3]} ###Markdown 역직렬화하는 또 다른 클래스 ###Code class Deserializable(Serializable): @classmethod def deserialize(cls, json_data): params = json.loads(json_data) return cls(*params['args']) ###Output _____no_output_____ ###Markdown Deserializable을 이용하면 간단한 불변 객체들을 범용적인 방식으로 쉽게 직렬화하고 역직렬화 할 수 있다. ###Code class BetterPoint2D(Deserializable): # ... def __init__(self, x, y): super().__init__(x, y) self.x = x self.y = y def __repr__(self): return 'Point2D(%d, %d)' % (self.x, self.y) @classmethod def deserialize(cls, json_data): params = json.loads(json_data) return cls(*params['args']) point = BetterPoint2D(5, 3) print('Before: ', point) data = point.serialize() print('Serialized: ', data) after = BetterPoint2D.deserialize(data) print('After: ', after) ###Output Before: Point2D(5, 3) Serialized: {"args": [5, 3]} After: Point2D(5, 3) ###Markdown 직렬화된 데이터에 대응하는 타입을 미리 알고 있을 경우에만 대응 가능하다는 문제가 있다. 이상적으로 JSON으로 직렬화되는 클래스를 많이 갖추고 그중 어떤 클래스든 대응하는 Python 객체로 역직렬화하는 공통 함수를 하나만 두려고 할 것이다.이렇게 만들려면 직렬화할 객체의 클래스 이름을 JSON 데이터에 포함시키면 된다. ###Code class BetterSerializable(object): def __init__(self, *args): self.args = args def serialize(self): return json.dumps({ 'class': self.__class__.__name__, 'args': self.args, }) def __repr__(self): return 'Point2D(%d, %d)' % (self.x, self.y) ###Output _____no_output_____ ###Markdown 다음으로 클래스 이름을 해당 클ㄹ래스의 객체 생성자에 매핑하고 이 매핑을 관리한다. 범용 역직렬화 함수는 register_class에 넘긴 클래스가 어떤 것이든 제대로 동작한다. ###Code registry = {} def register_class(target_class): registry[target_class.__name__] = target_class def deserialize(data): params = json.loads(data) name = params['class'] target_class = registry[name] return target_class(*params['args']) ###Output _____no_output_____ ###Markdown deserialize가 항상 제대로 동작함을 보장하려면 추후에 역직렬화할 법한 모든 클래스에 register_class를 호출해야 한다. ###Code class EvenBetterPoint2D(BetterSerializable): def __init__(self, x, y): super().__init__(x, y) self.x = x self.y = y register_class(EvenBetterPoint2D) ###Output _____no_output_____ ###Markdown 이제 어떤 클래스를 담고 있는지 몰라도 임의의 JSON 문자열을 역직렬화할 수 있다. ###Code point = EvenBetterPoint2D(5, 3) print('Before: ', point) data = point.serialize() print('Serialized: ', data) after = deserialize(data) print('After: ', after) class Point3D(BetterSerializable): def __init__(self, x, y, z): super().__init__(x, y, z) self.x = x self.y = y self.z = z point = Point3D(5, 9, -4) data = point.serialize() deserialize(data) ###Output _____no_output_____ ###Markdown BetterSerializable를 상속해서 서브클래스를 만들더라도 class 문의 본문 이후에 register_class를 호출하지 않으면 실제로 모든 기능을 사용하진 못한다.프로그래머가 의도한 대로 BetterSerializable을 사용하고 모든 경우에 `register_class`가 호출된다고 확신 하기 위해 메타클래스를 이용하면 서브클래스가 정의될 때 class 문을 가로채는 방법으로 만들 수 있다. 메타 클래스로 클래스 본문이 끝나자마자 새 타입을 등록하면 된다. ###Code class Meta(type): def __new__(meta, name, bases, class_dict): cls = type.__new__(meta, name, bases, class_dict) register_class(cls) return cls class RegisteredSerializable(BetterSerializable, metaclass=Meta): pass ###Output _____no_output_____ ###Markdown RegisterSerializable의 서브클래스를 정의할 때 register_class가 호출되어 deserialize가 항상 기대한 대로 동작할 것이라고 확신할 수 있다. ###Code class Vector3D(RegisteredSerializable): def __init__(self, x, y, z): super().__init__(x, y, z) self.x, self.y, self.z = x, y, z v3 = Vector3D(10, -7, 3) print('Before: ', v3) data = v3.serialize() print('Serialized: ', data) after = deserialize(data) print('After: ', deserialize(data)) ###Output Before: Point2D(10, -7) Serialized: {"class": "Vector3D", "args": [10, -7, 3]} After: Point2D(10, -7)
Calorias_respectoTiempo.ipynb
###Markdown Estimar el efecto del consumo calórico en el tiempo* Andrea Catalina Fernández Mena A01197705* Catedrático: Ing. David Rivera Rangel Crearemos una celda de código nueva para cada línea de código e iremos escribiendo y corriendo una por una para detectar posibles errores ademas de ver los resultados al ir avanzando: ###Code import pandas as pd # importa la librería pandas y la asigna a la variable pd ###Output _____no_output_____ ###Markdown Creamos la variable datos_consumo para cargar el archivo con la función read_excel de la librería Pandas: ###Code datos_consumo = pd.read_excel('DatosSemana1a4.xlsx') # indicamos el nombre de nuestro archivo a ser leído ###Output _____no_output_____ ###Markdown Usamos la función head() para comprobar que los datos se cargaron correctemente en el dataframe viendo los primeros 5 registros: ###Code datos_consumo.head() ###Output _____no_output_____ ###Markdown Creamos una variable datos para asignarle el DafaFrame que contendrá solo los datos que necesitamos: ###Code datos = datos_consumo[["Fecha (dd/mm/aa)","Calorías (kcal)"]] # seleccionamos las dos columnas que necesitaremos ###Output _____no_output_____ ###Markdown Usamos la función head() para comprobar que los datos se cargaron correctemente en el dataframe viendo los primeros 5 registros: ###Code datos.head() # imprimiendo los datos selecccionados ###Output _____no_output_____ ###Markdown Usaremos la función sum() para calcular el total de calorías consumidas: ###Code suma_calorías = datos["Calorías (kcal)"].sum() suma_calorías # despliega el total de calorias ###Output _____no_output_____ ###Markdown Ahora contaremos el total de días diferentes de consumo de calorías con la función nunique(): ###Code días = datos["Fecha (dd/mm/aa)"].nunique() días # despliega el total de días unicos ###Output _____no_output_____ ###Markdown Calculamos el promedio de calorías: ###Code calorías_promedio = suma_calorías/días # total de calorías consumidas entre el número de días que tomó consumirlas print("Tu promedio de calorías consumidas en", días,"días es:", calorías_promedio) ###Output Tu promedio de calorías consumidas en 25 días es: 1510.5439999999999 ###Markdown Definimos las variables requeridas para el cálculo en la ecuación, empleamos la función input() para habilitar la captura de datos por el usuario e int() para indicar que las variables son números enteros: ###Code peso = int(input("Ingresa tu peso en kilogramos: ")) altura = int(input("Ingresa tu altura en centimetros: ")) edad = int(input("Ingresa tu edad en años: ")) genero = input("Ingresa tu género, Mujer/Hombre: ") ###Output Ingresa tu peso en kilogramos: 52 Ingresa tu altura en centimetros: 159 Ingresa tu edad en años: 19 Ingresa tu género, Mujer/Hombre: Mujer ###Markdown Con esto, procedemos a realizar la estimación de calorías requeridas diarias de acuerdo con los datos, utilizando la ecuación de Harris-Benedict: ###Code if(genero == "Mujer"): calorías_requeridas = 655+(9.56*peso)+(1.85*altura)-(4.68*edad) # fórmula para estimar calorías requeridas en mujer elif(genero == "Hombre"): calorías_requeridas = 66.5+(13.75*peso)+(5*altura)-(6.8*edad) # fórmula para estimar calorías requeridas en hombre print("Con base en tus datos, tu consumo de calorías al día debe ser de:", calorías_requeridas) ###Output Con base en tus datos, tu consumo de calorías al día debe ser de: 1357.35 ###Markdown Calculamos la diferencia entre las calorías consumidas y las calorías requeridas, esto indicará si tu consumo es mayor, menor o igual: ###Code diferencia = calorías_promedio - calorías_requeridas diferencia ###Output _____no_output_____ ###Markdown Por último, usaremos esa diferencia para hacer una aproximación de su efecto en un año si se conoce que 3500 calorías equivalen alrededor de 450 gramos: ###Code efecto_anual = diferencia * 450/3500 * 365 /1000 # realiza la proporción, se multiplica por 365 (días) y se divide entre 1000 (gramos) para obtener kilogramos print("Si continuas con el consumo calórico actual, en un año tu cambio de masa corporal sería aproximadamente de:",efecto_anual,"kg") ###Output Si continuas con el consumo calórico actual, en un año tu cambio de masa corporal sería aproximadamente de: 7.18917557142857 kg
2-horse-vs-humans-classifier/Horses-vs-Humans-using-Inception.ipynb
###Markdown Classification of Horses vs HumansData downloaded from https://storage.googleapis.com/laurencemoroney-blog.appspot.com/horse-or-human.zip containing around 1280 CGI generated images of horses and humans in different poses. ###Code #Importing the necessary libraries import os import tensorflow as tf from tensorflow.keras import layers from tensorflow.keras import Model from os import getcwd #Loading the pretrained inception model INCEPTION_WEIGHTS = r"C:\Users\ku.kulshrestha\Downloads\inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5" # Import the inception model from tensorflow.keras.applications.inception_v3 import InceptionV3 #Instance of the inception model from the local pre-trained weights local_weights_file = INCEPTION_WEIGHTS pre_trained_model = InceptionV3(input_shape=(150,150,3), weights=None, include_top=False) pre_trained_model.load_weights(local_weights_file) # Making all the layers in the pre-trained model non-trainable for layer in pre_trained_model.layers: layer.trainable=False pre_trained_model.summary() #Using the outpt of mixed7 layer last_layer = pre_trained_model.get_layer('mixed7') print('last layer output shape: ', last_layer.output_shape) last_output = last_layer.output #Callback definition for stoping training at 97% accuracy class myCallback(tf.keras.callbacks.Callback): def on_epoch_end(self, epoch, logs={}): if(logs.get('accuracy')>0.97): print("\nReached 97.0% accuracy so cancelling training!") self.model.stop_training = True # Addition of final trainable layers from tensorflow.keras.optimizers import RMSprop x = layers.Flatten()(last_output) x = layers.Dense(1024, activation='relu')(x) x = layers.Dropout(0.2)(x) x = layers.Dense (1, activation='sigmoid')(x) model = Model(pre_trained_model.input, x) model.compile(optimizer = RMSprop(lr=0.0001), loss = 'binary_crossentropy', metrics = ['accuracy']) model.summary() #Unziping the data path_horse_or_human = r"C:\Users\ku.kulshrestha\Documents\CourseraTensorflow\C2CNN\horse-or-human.zip" path_validation_horse_or_human = r"C:\Users\ku.kulshrestha\Documents\CourseraTensorflow\C2CNN\validation-horse-or-human.zip" from tensorflow.keras.preprocessing.image import ImageDataGenerator import os import zipfile import shutil local_zip = path_horse_or_human zip_ref = zipfile.ZipFile(local_zip, 'r') zip_ref.extractall(r'C:\Users\ku.kulshrestha\Documents\github repos\mini-projects\data\horse-or-human-training') zip_ref.close() local_zip = path_validation_horse_or_human zip_ref = zipfile.ZipFile(local_zip, 'r') zip_ref.extractall(r'C:\Users\ku.kulshrestha\Documents\github repos\mini-projects\data\horse-or-human-validation') zip_ref.close() # Define our example directories and files train_dir = r'C:\Users\ku.kulshrestha\Documents\github repos\mini-projects\data\horse-or-human-training' validation_dir = r'C:\Users\ku.kulshrestha\Documents\github repos\mini-projects\data\horse-or-human-validation' train_horses_dir = os.path.join(train_dir,'horses') train_humans_dir = os.path.join(train_dir,'humans') validation_horses_dir = os.path.join(validation_dir,'horses') validation_humans_dir = os.path.join(validation_dir,'humans') train_horses_fnames = os.listdir(train_horses_dir) train_humans_fnames = os.listdir(train_humans_dir) validation_horses_fnames = os.listdir(validation_horses_dir) validation_humans_fnames = os.listdir(validation_humans_dir) print(len(train_horses_fnames)) print(len(train_humans_fnames)) print(len(validation_horses_fnames)) print(len(validation_humans_fnames)) #Setting up training and validation ImageDataGenerators train_datagen = ImageDataGenerator(rescale=1./255, horizontal_flip=True, shear_range=0.2, height_shift_range=0.2, width_shift_range=0.2, rotation_range=40, zoom_range=0.2, fill_mode='nearest') test_datagen = ImageDataGenerator(rescale=1./255) train_generator = train_datagen.flow_from_directory(directory=train_dir, batch_size=20, class_mode='binary', target_size=(150,150)) validation_generator = test_datagen.flow_from_directory(directory=validation_dir, batch_size=20, class_mode='binary', target_size=(150,150)) #Training the model callbacks = myCallback() history = model.fit_generator(train_generator, epochs=10, validation_data=validation_generator, steps_per_epoch=50, validation_steps=50, verbose=1, callbacks=[callbacks]) #Plotting training and validation loss and accuracy %matplotlib inline import matplotlib.pyplot as plt acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs = range(len(acc)) plt.plot(epochs, acc, 'r', label='Training accuracy') plt.plot(epochs, val_acc, 'b', label='Validation accuracy') plt.title('Training and validation accuracy') plt.legend(loc=0) plt.figure() plt.show() ###Output _____no_output_____
examples/Learning Parameters in Discrete Bayesian Networks.ipynb
###Markdown Parameter Learning in Discrete Bayesian Networks In this notebook, we show an example for learning the parameters (CPDs) of a Discrete Bayesian Network given the data and the model structure. pgmpy has two main methods for learning the parameters:1. MaximumLikelihood Estimator (pgmpy.estimators.MaximumLikelihoodEstimator)2. Bayesian Estimator (pgmpy.estimators.BayesianEstimator)3. Expectation Maximization (pgmpy.estimators.ExpectationMaximization)In the examples, we will try to generate some data from given models and then try to learn the model parameters back from the generated data. Step 1: Generate some data ###Code # Use the alarm model to generate data from it. from pgmpy.utils import get_example_model from pgmpy.sampling import BayesianModelSampling alarm_model = get_example_model("alarm") samples = BayesianModelSampling(alarm_model).forward_sample(size=int(1e5)) samples.head() ###Output Generating for node: CVP: 100%|██████████| 37/37 [00:01<00:00, 24.08it/s] ###Markdown Step 2: Define a model structureIn this case, since we are trying to learn the model parameters back we will use the model structure that we used to generate the data from. ###Code # Defining the Bayesian Model structure from pgmpy.models import BayesianNetwork model_struct = BayesianNetwork(ebunch=alarm_model.edges()) model_struct.nodes() ###Output _____no_output_____ ###Markdown Step 3: Learning the model parameters ###Code # Fitting the model using Maximum Likelihood Estimator from pgmpy.estimators import MaximumLikelihoodEstimator mle = MaximumLikelihoodEstimator(model=model_struct, data=samples) # Estimating the CPD for a single node. print(mle.estimate_cpd(node="FIO2")) print(mle.estimate_cpd(node="CVP")) # Estimating CPDs for all the nodes in the model mle.get_parameters()[:10] # Show just the first 10 CPDs in the output # Verifying that the learned parameters are almost equal. np.allclose( alarm_model.get_cpds("FIO2").values, mle.estimate_cpd("FIO2").values, atol=0.01 ) # Fitting the using Bayesian Estimator from pgmpy.estimators import BayesianEstimator best = BayesianEstimator(model=model_struct, data=samples) print(best.estimate_cpd(node="FIO2", prior_type="BDeu", equivalent_sample_size=1000)) # Uniform pseudo count for each state. Can also accept an array of the size of CPD. print(best.estimate_cpd(node="CVP", prior_type="dirichlet", pseudo_counts=100)) # Learning CPDs for all the nodes in the model. For learning all parameters with BDeU prior, a dict of # pseudo_counts need to be provided best.get_parameters(prior_type="BDeu", equivalent_sample_size=1000)[:10] # Shortcut for learning all the parameters and adding the CPDs to the model. model_struct = BayesianNetwork(ebunch=alarm_model.edges()) model_struct.fit(data=samples, estimator=MaximumLikelihoodEstimator) print(model_struct.get_cpds("FIO2")) model_struct = BayesianNetwork(ebunch=alarm_model.edges()) model_struct.fit( data=samples, estimator=BayesianEstimator, prior_type="BDeu", equivalent_sample_size=1000, ) print(model_struct.get_cpds("FIO2")) ###Output +--------------+---------+ | FIO2(LOW) | 0.04859 | +--------------+---------+ | FIO2(NORMAL) | 0.95141 | +--------------+---------+ +--------------+-----------+ | FIO2(LOW) | 0.0530594 | +--------------+-----------+ | FIO2(NORMAL) | 0.946941 | +--------------+-----------+ ###Markdown The Expecation Maximization (EM) algorithm can also learn the parameters when we have some latent variables in the model. ###Code from pgmpy.estimators import ExpectationMaximization as EM # Define a model structure with latent variables model_latent = BayesianNetwork( ebunch=alarm_model.edges(), latents=["HYPOVOLEMIA", "LVEDVOLUME", "STROKEVOLUME"] ) # Dataset for latent model which doesn't have values for the latent variables samples_latent = samples.drop(model_latent.latents, axis=1) model_latent.fit(samples_latent, estimator=EM) ###Output 11%|█ | 11/100 [28:03<3:46:14, 152.52s/it] ###Markdown Parameter Learning in Discrete Bayesian Networks In this notebook, we show an example for learning the parameters (CPDs) of a Discrete Bayesian Network given the data and the model structure. pgmpy has two main methods for learning the parameters:1. MaximumLikelihood Estimator (pgmpy.estimators.MaximumLikelihoodEstimator)2. Bayesian Estimator (pgmpy.estimators.BayesianEstimator)3. Expectation Maximization (pgmpy.estimators.ExpectationMaximization)In the examples, we will try to generate some data from given models and then try to learn the model parameters back from the generated data. Step 1: Generate some data ###Code # Use the alarm model to generate data from it. from pgmpy.utils import get_example_model from pgmpy.sampling import BayesianModelSampling alarm_model = get_example_model('alarm') samples = BayesianModelSampling(alarm_model).forward_sample(size=int(1e5)) samples.head() ###Output Generating for node: CVP: 100%|██████████| 37/37 [00:01<00:00, 24.08it/s] ###Markdown Step 2: Define a model structureIn this case, since we are trying to learn the model parameters back we will use the model structure that we used to generate the data from. ###Code # Defining the Bayesian Model structure from pgmpy.models import BayesianNetwork model_struct = BayesianNetwork(ebunch=alarm_model.edges()) model_struct.nodes() ###Output _____no_output_____ ###Markdown Step 3: Learning the model parameters ###Code # Fitting the model using Maximum Likelihood Estimator from pgmpy.estimators import MaximumLikelihoodEstimator mle = MaximumLikelihoodEstimator(model=model_struct, data=samples) # Estimating the CPD for a single node. print(mle.estimate_cpd(node='FIO2')) print(mle.estimate_cpd(node='CVP')) # Estimating CPDs for all the nodes in the model mle.get_parameters()[:10] # Show just the first 10 CPDs in the output # Verifying that the learned parameters are almost equal. np.allclose(alarm_model.get_cpds('FIO2').values, mle.estimate_cpd('FIO2').values, atol=0.01) # Fitting the using Bayesian Estimator from pgmpy.estimators import BayesianEstimator best = BayesianEstimator(model=model_struct, data=samples) print(best.estimate_cpd(node='FIO2', prior_type="BDeu", equivalent_sample_size=1000)) # Uniform pseudo count for each state. Can also accept an array of the size of CPD. print(best.estimate_cpd(node='CVP', prior_type="dirichlet", pseudo_counts=100)) # Learning CPDs for all the nodes in the model. For learning all parameters with BDeU prior, a dict of # pseudo_counts need to be provided best.get_parameters(prior_type="BDeu", equivalent_sample_size=1000)[:10] # Shortcut for learning all the parameters and adding the CPDs to the model. model_struct = BayesianNetwork(ebunch=alarm_model.edges()) model_struct.fit(data=samples, estimator=MaximumLikelihoodEstimator) print(model_struct.get_cpds('FIO2')) model_struct = BayesianNetwork(ebunch=alarm_model.edges()) model_struct.fit(data=samples, estimator=BayesianEstimator, prior_type='BDeu', equivalent_sample_size=1000) print(model_struct.get_cpds('FIO2')) ###Output +--------------+---------+ | FIO2(LOW) | 0.04859 | +--------------+---------+ | FIO2(NORMAL) | 0.95141 | +--------------+---------+ +--------------+-----------+ | FIO2(LOW) | 0.0530594 | +--------------+-----------+ | FIO2(NORMAL) | 0.946941 | +--------------+-----------+ ###Markdown The Expecation Maximization (EM) algorithm can also learn the parameters when we have some latent variables in the model. ###Code from pgmpy.estimators import ExpectationMaximization as EM # Define a model structure with latent variables model_latent = BayesianNetwork(ebunch=alarm_model.edges(), latents=['HYPOVOLEMIA', 'LVEDVOLUME', 'STROKEVOLUME']) # Dataset for latent model which doesn't have values for the latent variables samples_latent = samples.drop(model_latent.latents, axis=1) model_latent.fit(samples_latent, estimator=EM) ###Output 11%|█ | 11/100 [28:03<3:46:14, 152.52s/it]
4-regression/4.1 - Linear Regression Ad Sales Revenue.ipynb
###Markdown Predicting Sales Amount Using Money Spent on Ads Welcome to the practical section of module 4.1, here we'll explore how to use python to implement a simple linear regression model. We'll be working with a small dataset that represents the the thousands of unit of product sales agains the thousands of dollars spent in the 3 media channels: TV, Radio and Newspaper. In this module, well be investigating the relation between TV expenditure and the amount of sales. When a company wants to sell more product they contact a TV channel to display ads, to inform consumers. As a company it would be very beneficial to know your expected sales based on how you spend your ad money. This will allow you to better allocate funds and potentially optimize profit! First we'll start by importing the necessary modules for our work: ###Code import pandas as pd import numpy as np from sklearn.linear_model import SGDRegressor from sklearn.preprocessing import StandardScaler %matplotlib inline import matplotlib.pyplot as plt plt.rcParams['figure.figsize'] = (10, 10) ###Output _____no_output_____ ###Markdown We first import the **pandas** library which we use to read and visualize our data. Then we import the **numpy** library to help with various calculations. Finally we import from *scikit-learn* linear models (refernced by **sklearn.linear_model**) the **SGDRegressor** which implements our gradient descent based linear regression algorithm.The last three lines in the end are configuration for **metaplotlib** (which is used interneally by **pandas** for visualization and plotting) to have our plots appear inline here in the notebook.The line in the middle that (which imports the **StandardScalar** algorithm) is necessary for the feature scaling implemented in the following function. No worries if you don't know what feature scaling is, just treat for now as a black-box function that puts the data in a cleaner form for the learning process. We'll get to the details of feature scaling in the next module. ###Code def scale_features(X, scalar=None): if(len(X.shape) == 1): X = X.reshape(-1, 1) if scalar == None: scalar = StandardScaler() scalar.fit(X) return scalar.transform(X), scalar ###Output _____no_output_____ ###Markdown Visualizing the Data The next thing to do now is to read our dataset and visualize it. Usually we find our datasets in **csv** files (Comma Separated Values) and these can be easily read using pandas **read_csv** method which takes the path of the csv files (be it a local disk path or a web url) and returns a *DataFrame* object that we can query it like python dictionaries and list (More info on how to work with *DataFrames* can be found in [this](http://pandas.pydata.org/pandas-docs/version/0.18.1/tutorials.htmlpandas-cookbook) quick cook book of pandas) ###Code # get the advertising data set dataset = pd.read_csv('../datasets/Advertising.csv') dataset = dataset[["TV", "Radio", "Newspaper", "Sales"]] # filtering the Unamed index column out of the dataset # here we the first 10 samples of the dataset dataset[:10] ###Output _____no_output_____ ###Markdown After reading the data set, it's a good idea to plot the data points to get a visual understanding of the data and how they are distribiuted. Plotting is made extermly simple with pandas, all we have to fo is to call the **plot** method on our DataFrame.The **plot** methods takes many arguments, but for now we're intersted in 3 of them:* *kind*: The type of the plot we wish to generate* *x*: What constitutes the x-axis* *y*: What constitutes the y-axisIn the following, we're creating a scatter plot of the data points with the thousands of dollars spent on TV on the x-axis and the thousands of unit sold on the y axis. ###Code dataset.plot(kind='scatter', x='TV', y='Sales') ###Output _____no_output_____ ###Markdown Now it's time prepare our data:1. First, we'll divide our dataset into two parts: one part we're going use to train our linear regression model, and the second we're going to use to evaluate the trained model and if it can generalize well to new unseen data.3. Second, we'll use the **scale_features** to scale our training and test variables. Training the Model ###Code dataset_size = len(dataset) training_size = np.floor(dataset_size * 0.8).astype(int) # First we split the shuffled dataset into two parts: training and test X_training = dataset["TV"][:training_size] y_training = dataset["Sales"][:training_size] X_test = dataset["TV"][training_size:] y_test = dataset["Sales"][training_size:] # Second we apply feature scaling on X_training and X_test X_training, training_scalar = scale_features(X_training) X_test,_ = scale_features(X_test, scalar=training_scalar) ###Output _____no_output_____ ###Markdown Now we're ready to use the scikit-learn's **SGDRegressor** to build our linear regression model. The procedure simple: we need to construct an instance of **SGDRegressor** then use the **fit** method on that instance to train our model by passing to it our training X and y.Now, there are many arguments we can use to construct an **SGDRegressor** instance, and we'll go through some of them as we progress in the chapter, but for now we're focus on one argument called *loss*. This argument determines the cost function we're gonna use with our model. As we learned in the videos, we'll be using the Measn Squared Error cost function (aka Least Squard Error cost), and we can specify that in **SGDRegressor** by passing 'squared_loss' as the value of the *loss* argument. ###Code model = SGDRegressor(loss='squared_loss') model.fit(X_training, y_training) ###Output _____no_output_____ ###Markdown Now we have trained our linear regression model. As we know, our hypothesis takes the form $y = w_0 + w_1x$. We can access the value of $w_0$ with **model.intercept_** and the value of $w_1$ with **model.coef_**. ###Code w0 = model.intercept_ w1 = model.coef_ print "Trained model: y = %0.2f + %0.2fx" % (w0, w1) ###Output Trained model: y = 12.19 + 3.65x ###Markdown To get an idea of how well our model works, we need to try it on some data that it hasn't seen before in the training. Those are of X_test, y_test we seperated before from the training data. We can calculate the mean squared error (MSE) on the test data using the **predict** method of the model to get the predicted y values. ###Code MSE = np.mean((y_test - model.predict(X_test)) ** 2) print "The Test Data MSE is: %0.3f" % (MSE) ###Output The Test Data MSE is: 13.170 ###Markdown Visualizing the Model Now, it's a good idea to plot our training data point along side with the regression model line to visualize the estimation. To do that we create a new column in our dataset DataFrame that contains the model's predicted values of sales. We get those using the model's method **predict**. Then we plot the line that represents the model predictions. ###Code # We create the predicted sales column scaled_tv,_ = scale_features(dataset["TV"], scalar=training_scalar) dataset["Predicted Sales"] = model.predict(scaled_tv) # We then scatter plot our data points as before but we save the resulting plot for later reuse plot_ax = dataset.plot(kind='scatter', x='TV', y='Sales') # Then we plot a line with the "Predicted Sales" column # notice that we resued our prvious plot in the 'ax' argument to draw the line over the scatter points # we also specify the xlim argument (the range of x axis visible in the plot) to prevent the plot form zooming in dataset.plot(kind='line', x='TV', y='Predicted Sales', color='red', ax=plot_ax, xlim=(-50, 350)) ###Output _____no_output_____
examples/vision.ipynb
###Markdown Vision example Images can be in labeled folders, or a single folder with a CSV. ###Code path = untar_data(URLs.MNIST_SAMPLE) path ###Output _____no_output_____ ###Markdown Image folder version Create a `DataBunch`, optionally with transforms: ###Code data = ImageDataBunch.from_folder(path, ds_tfms=(rand_pad(2, 28), []), bs=64) data.normalize(imagenet_stats) img,label = data.train_ds[0] img ###Output _____no_output_____ ###Markdown Create and fit a `Learner`: ###Code learn = cnn_learner(data, models.resnet18, metrics=accuracy) learn.fit_one_cycle(1, 0.01) accuracy(*learn.get_preds()) ###Output _____no_output_____ ###Markdown CSV version Same as above, using CSV instead of folder name for labels ###Code data = ImageDataBunch.from_csv(path, ds_tfms=(rand_pad(2, 28), []), bs=64) data.normalize(imagenet_stats) img,label = data.train_ds[0] img learn = cnn_learner(data, models.resnet18, metrics=accuracy) learn.fit_one_cycle(1, 0.01) ###Output _____no_output_____ ###Markdown Vision example Images can be in labeled folders, or a single folder with a CSV. ###Code untar_data(MNIST_PATH) MNIST_PATH ###Output _____no_output_____ ###Markdown Create a `DataBunch`: ###Code data = image_data_from_folder(MNIST_PATH) img,label = data.train_ds[0] img ###Output _____no_output_____ ###Markdown Create and fit a `Learner`: ###Code learn = ConvLearner(data, tvm.resnet18, metrics=accuracy) learn.fit(1) ###Output _____no_output_____ ###Markdown Vision example Images can be in labeled folders, or a single folder with a CSV. ###Code untar_mnist() MNIST_PATH ###Output _____no_output_____ ###Markdown Create a `DataBunch`: ###Code data = image_data_from_folder(MNIST_PATH) img,label = data.train_ds[0] img ###Output _____no_output_____ ###Markdown Create and fit a `Learner`: ###Code learn = ConvLearner(data, tvm.resnet18, metrics=accuracy) learn.fit(1) ###Output _____no_output_____ ###Markdown Vision example Images can be in labeled folders, or a single folder with a CSV. ###Code untar_data(Paths.MNIST) Paths.MNIST ###Output _____no_output_____ ###Markdown Create a `DataBunch`, optionally with transforms: ###Code data = image_data_from_folder(Paths.MNIST, ds_tfms=(rand_pad(2, 28), [])) data.normalize(imagenet_stats) img,label = data.train_ds[0] img ###Output _____no_output_____ ###Markdown Create and fit a `Learner`: ###Code learn = ConvLearner(data, tvm.resnet18, metrics=accuracy) learn.fit_one_cycle(1, 0.01) accuracy(*learn.get_preds()) ###Output _____no_output_____ ###Markdown Vision example Images can be in labeled folders, or a single folder with a CSV. ###Code path = untar_data(URLs.MNIST_SAMPLE) path ###Output _____no_output_____ ###Markdown Image folder version Create a `DataBunch`, optionally with transforms: ###Code data = ImageDataBunch.from_folder(path, ds_tfms=(rand_pad(2, 28), []), bs=64) data.normalize(imagenet_stats) img,label = data.train_ds[0] img ###Output _____no_output_____ ###Markdown Create and fit a `Learner`: ###Code learn = ConvLearner(data, tvm.resnet18, metrics=accuracy) learn.fit_one_cycle(1, 0.01) accuracy(*learn.get_preds()) ###Output _____no_output_____ ###Markdown CSV version Same as above, using CSV instead of folder name for labels ###Code data = ImageDataBunch.from_csv(path, ds_tfms=(rand_pad(2, 28), []), bs=64) data.normalize(imagenet_stats) img,label = data.train_ds[0] img learn = ConvLearner(data, tvm.resnet18, metrics=accuracy) learn.fit_one_cycle(1, 0.01) ###Output _____no_output_____ ###Markdown Vision example Images can be in labeled folders, or a single folder with a CSV. ###Code path = untar_data(URLs.MNIST_SAMPLE) path ###Output _____no_output_____ ###Markdown Create a `DataBunch`, optionally with transforms: ###Code data = image_data_from_folder(path, ds_tfms=(rand_pad(2, 28), []), bs=64) data.normalize(imagenet_stats) img,label = data.train_ds[0] img ###Output _____no_output_____ ###Markdown Create and fit a `Learner`: ###Code learn = ConvLearner(data, tvm.resnet18, metrics=accuracy) learn.fit_one_cycle(1, 0.01) accuracy(*learn.get_preds()) ###Output _____no_output_____ ###Markdown Vision example Images can be in labeled folders, or a single folder with a CSV. ###Code path = untar_data(URLs.MNIST_SAMPLE) path ###Output _____no_output_____ ###Markdown Image folder version Create a `DataBunch`, optionally with transforms: ###Code data = ImageDataBunch.from_folder(path, ds_tfms=(rand_pad(2, 28), []), bs=64) data.normalize(imagenet_stats) img,label = data.train_ds[0] img ###Output _____no_output_____ ###Markdown Create and fit a `Learner`: ###Code learn = create_cnn(data, models.resnet18, metrics=accuracy) learn.fit_one_cycle(1, 0.01) accuracy(*learn.get_preds()) ###Output _____no_output_____ ###Markdown CSV version Same as above, using CSV instead of folder name for labels ###Code data = ImageDataBunch.from_csv(path, ds_tfms=(rand_pad(2, 28), []), bs=64) data.normalize(imagenet_stats) img,label = data.train_ds[0] img learn = create_cnn(data, models.resnet18, metrics=accuracy) learn.fit_one_cycle(1, 0.01) ###Output _____no_output_____ ###Markdown Vision example Images can be in labeled folders, or a single folder with a CSV. ###Code untar_data(MNIST_PATH) MNIST_PATH ###Output _____no_output_____ ###Markdown Create a `DataBunch`, optionally with transforms: ###Code data = image_data_from_folder(MNIST_PATH, ds_tfms=(rand_pad(2, 28), [])) img,label = data.train_ds[0] img ###Output _____no_output_____ ###Markdown Create and fit a `Learner`: ###Code learn = ConvLearner(data, tvm.resnet18, metrics=accuracy) learn.fit(1) accuracy(*learn.get_preds()) ###Output _____no_output_____ ###Markdown Vision example Images can be in labeled folders, or a single folder with a CSV. ###Code path = untar_data(URLs.MNIST_SAMPLE) path ###Output _____no_output_____ ###Markdown Create a `DataBunch`, optionally with transforms: ###Code data = ImageDataBunch.from_folder(path, ds_tfms=(rand_pad(2, 28), []), bs=64) data.normalize(imagenet_stats) img,label = data.train_ds[0] img ###Output _____no_output_____ ###Markdown Create and fit a `Learner`: ###Code learn = ConvLearner(data, tvm.resnet18, metrics=accuracy) learn.fit_one_cycle(1, 0.01) accuracy(*learn.get_preds()) ###Output _____no_output_____ ###Markdown Create and fit a `Learner`: ###Code learn = ConvLearner(data, tvm.resnet18, metrics=accuracy) learn.fit(1) ###Output _____no_output_____ ###Markdown Vision example Images can be in labeled folders, or a single folder with a CSV. ###Code untar_data(MNIST_PATH) MNIST_PATH ###Output _____no_output_____ ###Markdown Create a `DataBunch`, optionally with transforms: ###Code data = image_data_from_folder(MNIST_PATH, ds_tfms=(rand_pad(2, 28), [])) img,label = data.train_ds[0] img ###Output _____no_output_____ ###Markdown Create and fit a `Learner`: ###Code learn = ConvLearner(data, tvm.resnet18, metrics=accuracy) learn.fit(1) accuracy(*learn.get_preds()) ###Output _____no_output_____ ###Markdown Vision example Images can be in labeled folders, or a single folder with a CSV. ###Code path = untar_data(URLs.MNIST_SAMPLE) path ###Output _____no_output_____ ###Markdown Image folder version Create a `DataBunch`, optionally with transforms: ###Code data = ImageDataBunch.from_folder(path, ds_tfms=(rand_pad(2, 28), []), bs=64) data.normalize(imagenet_stats) img,label = data.train_ds[0] img ###Output _____no_output_____ ###Markdown Create and fit a `Learner`: ###Code learn = create_cnn(data, models.resnet18, metrics=accuracy) learn.fit_one_cycle(1, 0.01) accuracy(*learn.get_preds()) ###Output _____no_output_____ ###Markdown CSV version Same as above, using CSV instead of folder name for labels ###Code data = ImageDataBunch.from_csv(path, ds_tfms=(rand_pad(2, 28), []), bs=64) data.normalize(imagenet_stats) img,label = data.train_ds[0] img learn = create_cnn(data, models.resnet18, metrics=accuracy) learn.fit_one_cycle(1, 0.01) ###Output _____no_output_____ ###Markdown Vision example Images can be in labeled folders, or a single folder with a CSV. ###Code path = untar_data(URLs.MNIST_SAMPLE) path ###Output _____no_output_____ ###Markdown Image folder version Create a `DataBunch`, optionally with transforms: ###Code data = ImageDataBunch.from_folder(path, ds_tfms=(rand_pad(2, 28), []), bs=64) data.normalize(imagenet_stats) img,label = data.train_ds[0] img ###Output _____no_output_____ ###Markdown Create and fit a `Learner`: ###Code learn = create_cnn(data, models.resnet18, metrics=accuracy) learn.fit_one_cycle(1, 0.01) accuracy(*learn.get_preds()) ###Output _____no_output_____ ###Markdown CSV version Same as above, using CSV instead of folder name for labels ###Code data = ImageDataBunch.from_csv(path, ds_tfms=(rand_pad(2, 28), []), bs=64) data.normalize(imagenet_stats) img,label = data.train_ds[0] img learn = create_cnn(data, models.resnet18, metrics=accuracy) learn.fit_one_cycle(1, 0.01) ###Output _____no_output_____ ###Markdown Vision example Images can be in labeled folders, or a single folder with a CSV. ###Code untar_data(MNIST_PATH) MNIST_PATH ###Output _____no_output_____ ###Markdown Create a `DataBunch`, optionally with transforms: ###Code data = image_data_from_folder(MNIST_PATH, ds_tfms=(rand_pad(2, 28), [])) img,label = data.train_ds[0] img ###Output _____no_output_____ ###Markdown Create and fit a `Learner`: ###Code learn = ConvLearner(data, tvm.resnet18, metrics=accuracy) learn.fit(1) accuracy(*learn.get_preds()) ###Output _____no_output_____ ###Markdown Vision example Images can be in labeled folders, or a single folder with a CSV. ###Code untar_data(MNIST_PATH) MNIST_PATH ###Output _____no_output_____ ###Markdown Create a `DataBunch`: ###Code data = image_data_from_folder(MNIST_PATH) img,label = data.train_ds[0] img ###Output _____no_output_____ ###Markdown Vision example Images can be in labeled folders, or a single folder with a CSV. ###Code path = untar_data(URLs.MNIST_SAMPLE) path ###Output _____no_output_____ ###Markdown Image folder version Create a `DataBunch`, optionally with transforms: ###Code data = ImageDataBunch.from_folder(path, ds_tfms=(rand_pad(2, 28), []), bs=64) data.normalize(imagenet_stats) img,label = data.train_ds[0] img ###Output _____no_output_____ ###Markdown Create and fit a `Learner`: ###Code learn = ConvLearner(data, models.resnet18, metrics=accuracy) learn.fit_one_cycle(1, 0.01) accuracy(*learn.get_preds()) ###Output _____no_output_____ ###Markdown CSV version Same as above, using CSV instead of folder name for labels ###Code data = ImageDataBunch.from_csv(path, ds_tfms=(rand_pad(2, 28), []), bs=64) data.normalize(imagenet_stats) img,label = data.train_ds[0] img learn = ConvLearner(data, models.resnet18, metrics=accuracy) learn.fit_one_cycle(1, 0.01) ###Output _____no_output_____
code/final-notebooks/q1-infections-province-time.ipynb
###Markdown Importing Libraries ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline ###Output _____no_output_____ ###Markdown Question: How did the disease spread within the provinces over time? (Descriptive / Exploratory) Reading Data - Infections over Time per Province [Dataset Description](https://www.kaggle.com/kimjihoo/ds4c-what-is-this-dataset-detailed-description) Quick Data Exploration ###Code infections_prov_time = pd.read_csv('../../data/TimeProvince.csv') infections_prov_time.head() infections_prov_time.describe() infections_prov_time[infections_prov_time['province'] == 'Seoul'].sort_values(['province','date']).head(20) ###Output _____no_output_____ ###Markdown Munging data to compute the number of infections per day since 1st infection day ###Code infections_prov_time_clean = infections_prov_time.rename(index=str, columns={'confirmed':'accum_confirmed', 'released':'accum_released', 'deceased':'accum_deceased'}) infections_prov_time_clean #Finding date of 1st infection per province day_one_per_province = infections_prov_time_clean[infections_prov_time_clean['accum_confirmed'] > 0] \ .sort_values(['province','date']) \ .groupby(['province']) \ .head(1) \ .reset_index() \ .filter(['province','date']) \ .assign(days_since_day1 = 1) day_one_per_province # Adding the 1st infection date per province as a column to the infections data frame infections_since_day1 = pd.merge(infections_prov_time_clean,day_one_per_province, how='left') # Computing the number of days since 1st infection date for each date per province and # Keeping only data from 1st infection date on per province infections_since_day1['after_day1'] = infections_since_day1.groupby(['province']).days_since_day1.transform(lambda x : x.ffill()) infections_since_day1 = infections_since_day1[infections_since_day1['after_day1'] == 1] infections_since_day1['days_since_day1'] = infections_since_day1.groupby(['province']).after_day1.transform(lambda x : x.cumsum()) infections_since_day1 = infections_since_day1.drop(columns=['after_day1'], axis=1) infections_since_day1 infections_since_day1.sort_values(['days_since_day1','province']) ###Output _____no_output_____ ###Markdown Adding population density data to compute proportional rates ###Code province_data = { 'province': ['Gyeonggi-do', 'Gangwon-do', 'Chungcheongbuk-do', 'Chungcheongnam-do', 'Jeollabuk-do', 'Jeollanam-do', 'Gyeongsangbuk-do', 'Gyeongsangnam-do', 'Busan', 'Daegu', 'Daejeon', 'Gwangju', 'Incheon', 'Ulsan', 'Seoul', 'Jeju-do', 'Sejong'], 'population': [12479061, 1518040, 1589377, 2107802, 1834114, 1799044, 2680294, 3334524, 3448737, 2466052, 1538394, 1502881, 2890451, 1166615, 9904312, 605619, 204088], 'area': [10183.5, 16827.1, 7407.3, 8226.1, 8069.1, 12318.8, 19031.4, 10539.6, 769.6, 883.6, 539.3, 501.2, 1062.6, 1060.8, 605.2, 1849.1, 464.9] } provinces = pd.DataFrame(data = province_data, columns = ['province', 'population', 'area']) provinces['pop_density'] = provinces['population'] / provinces['area'] provinces # Merging infections data with province data infections_since_day1_full = pd.merge(infections_since_day1, provinces, how='left') # Computing population infection metrics infections_since_day1_full['accum_confirmed_perc_total_pop'] = 100 * (infections_since_day1_full['accum_confirmed'] / infections_since_day1_full['population']) infections_since_day1_full['accum_confirmed_per_million_people'] = (infections_since_day1_full['accum_confirmed'] / (infections_since_day1_full['population']/10**6)) infections_since_day1_full ###Output _____no_output_____ ###Markdown Finding the provinces with higher infection rate (actual numbers and proportional numbers) ###Code total_per_province = infections_since_day1_full.sort_values(['province','date']).groupby('province').tail(1).reset_index() total_per_province = total_per_province[['date','province','days_since_day1','population','pop_density','accum_confirmed','accum_confirmed_perc_total_pop','accum_confirmed_per_million_people']] total_per_province province_inf_rate_real_nos = total_per_province.sort_values('accum_confirmed', ascending=False) province_inf_rate_real_nos def plot_infection_curve_per_province(infections_data, provinces, infections_var, title, ylabel, log_scale=False, figsize=(10,6), filepath=''): ''' INPUT infections_data - pandas dataframe, infections data provinces - list of strings, the subset of provinces to be used infections_var - string, varible in the dataset to be used in plot y axis title - string, plot title ylabel - string, plot y-axis label log_scale - boolean, default False, whether or not to use log scale on y axis figsize - int tuple, default (10, 6), plot figure size filepath - string, default '' (not save), filepath to save plot image to OUTPUT A line plot representing the infection curve of the given provinces over time since the 1st day of infection This function plots the COVID-19 infection curve of a set of provinces using a line plot ''' # Defines a color palette for each province in the top provinces in the number of cases provinces_palette = {'Daegu':'#9b59b6', 'Gyeongsangbuk-do':'#3498db', 'Gyeonggi-do':'#95a5a6','Seoul':'#e74c3c', 'Chungcheongnam-do':'#34495e', 'Sejong':'#2ecc71'} # Plots figure with characteristics based on the input parameters f = plt.figure(figsize=figsize) sns.set_style('whitegrid') p = sns.lineplot(x="days_since_day1", y=infections_var, hue="province", data=infections_data[infections_data.province.isin(provinces)], palette=provinces_palette) p.axes.set_title(title, fontsize = 16, weight='bold') p.set_xlabel('Days since day 1', fontsize = 10) p.set_ylabel(ylabel, fontsize = 10) # Uses log scale on the y axis (if requested) if log_scale: p.set_yscale("log") # Saves figure to the specified filepath (if passed) if (filepath != ''): f.savefig(filepath, bbox_inches='tight', dpi=600); # Computes top 5 provinces in terms of accumulated number of cases # Plots infection curve for all provinces in the top-5 top_infected_provinces_real_nos = total_per_province.sort_values('accum_confirmed', ascending=False).head(5).province plot_infection_curve_per_province(infections_data=infections_since_day1_full, provinces=top_infected_provinces_real_nos, infections_var='accum_confirmed', title='Infection Curve per Province since day 1', ylabel='Number of confirmed cases') # Uses top 5 provinces in terms of accumulated number of cases # Plots infection curve for all provinces in the top-5 applying a log-scale to y-axis plot_infection_curve_per_province(infections_data=infections_since_day1_full, provinces=top_infected_provinces_real_nos, infections_var='accum_confirmed', title='Infection Curve per Province since day 1', ylabel='Number of confirmed cases - log scale', log_scale=True) # Computes top 5 provinces in terms of proportion of accumulated number of cases to the total population # Plots infection curve for all provinces in the top-5 top_infected_provinces_prop_nos = total_per_province.sort_values('accum_confirmed_perc_total_pop', ascending=False).head(5).province plot_infection_curve_per_province(infections_data=infections_since_day1_full, provinces=top_infected_provinces_prop_nos, infections_var='accum_confirmed_perc_total_pop', title='Proportional Infection Curve per Province since day 1', ylabel='Number of confirmed cases / Total Population (%)', log_scale=False, figsize=(16,6)) # Top 5 provinces in terms of accumulated infections per million people total_per_province.sort_values('accum_confirmed_per_million_people', ascending=False).head(5) # Computes top 5 provinces in terms of accumulated number of cases per million people # Plots infection curve for all provinces in the top-5 top_infected_provinces_perm_nos = total_per_province.sort_values('accum_confirmed_per_million_people', ascending=False).head(5).province plot_infection_curve_per_province(infections_data=infections_since_day1_full, provinces=top_infected_provinces_perm_nos, infections_var='accum_confirmed_per_million_people', title='Proportional Infection Curve per Province since day 1 (real numbers)', ylabel='Number of confirmed cases per million people', filepath='../../assets/q1-province-infections-over-time-real.png') # Uses top 5 provinces in terms of accumulated number of cases per million people # Plots infection curve for all provinces in the top-5 applying a log-scale to y-axis plot_infection_curve_per_province(infections_data=infections_since_day1_full, provinces=top_infected_provinces_perm_nos, infections_var='accum_confirmed_per_million_people', title='Proportional Infection Curve per Province since day 1 (log scale)', ylabel='Number of confirmed cases per million people - log scale', filepath='../../assets/q1-province-infections-over-time-log.png', log_scale=True) ###Output _____no_output_____
regression_insurance.ipynb
###Markdown Regression Task: Medical Insurance CostsIn this project, we develop a data pipeline to handle the well-known [health insurance costs dataset](https://www.kaggle.com/mirichoi0218/insurance), and implement gradient-based and linear algebra solutions to perform linear regression. *** Step 1: The Problem ###Code # Import some common packages import os.path import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import pandas as pd # Setup matplotlib for graphical display %matplotlib inline mpl.rc('axes', labelsize=14) mpl.rc('xtick', labelsize=12) mpl.rc('ytick', labelsize=12) # To make this notebook's output stable across runs SEED = 42 np.random.seed(SEED) ###Output _____no_output_____ ###Markdown Below is a preview of our dataset for this project. We will be building a regression model to predict insurance costs given certain features. ###Code data = pd.read_csv('insurance.csv') data feature_names = data.columns[:-1] label_name = data.columns[-1] print("Features:", feature_names.values) print("Label:", label_name) ###Output Features: ['age' 'sex' 'bmi' 'children' 'smoker' 'region'] Label: charges ###Markdown The dataset consists of:- 1338 entries- 7 variables (6 features + 1 label)- 3 categorical features- 0 missing values ###Code data.info() num_feature_names = data.dtypes[data.dtypes != 'object'].index.drop(label_name) cat_feature_names = data.dtypes[data.dtypes == 'object'].index print("Numerical: ", num_feature_names.values) print("Categorical: ", cat_feature_names.values) ###Output Numerical: ['age' 'bmi' 'children'] Categorical: ['sex' 'smoker' 'region'] ###Markdown Below is a statistical summary of the numerical variables. Note, however, that two of these (age and children) are discrete data, which may result from phenomena vastly different from those of Gaussian-distributed data (e.g. Poisson processes). Therefore, we should be cautious in how we interpret the standard deviation. ###Code data.describe() ###Output _____no_output_____ ###Markdown We can visualize our data to get a better look. Below, we see that of the 4 numerical variables, only BMI has a normal distribution, making its standard deviation of ~6 a useful measure of variation. ###Code data.hist(figsize=(7,5)) plt.show() ###Output _____no_output_____ ###Markdown --- Step 2: Data Analysis & Preprocessing ###Code from sklearn.model_selection import train_test_split train, test = train_test_split(data, test_size=0.2, random_state=SEED) print(train.shape) print(test.shape) ###Output (1070, 7) (268, 7) ###Markdown We can inspect correlation scores with respect to the label to form conjectures about our predictors. It appears that **age may have some useful linear relationship with medical costs**, while number of children has essentially none. ###Code corr_matrix = train.corr() corr_scores = pd.DataFrame(corr_matrix[label_name].sort_values(ascending=False)) corr_scores ###Output _____no_output_____ ###Markdown Our scatter matrix below confirms this, while revealing some interesting patterns. There appear to be three "lines" of medical costs, all trending upwards with age. BMI has two discernable clusters, while the number of children lacks a clear general relationship; the most that can be said is that families with 5 children have less variation in medical costs.Note that these 2D plots necessarily lack the dimensionality of the full dataset. **Ideally, our machine learning model should be able to combine features to pick apart the separate trends** we see in the age plot. ###Code from pandas.plotting import scatter_matrix scatter_matrix(train, figsize=(16, 10)) plt.show() ###Output _____no_output_____ ###Markdown We construct a data preprocessing pipeline to perform imputation and scaling on numerical features, and one-hot encoding on categorical features. ###Code from sklearn.pipeline import Pipeline from sklearn.impute import SimpleImputer from sklearn.preprocessing import StandardScaler, OneHotEncoder from sklearn.compose import ColumnTransformer num_pipeline = Pipeline([ ('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler()) ]) cat_pipeline = Pipeline([ ('onehot', OneHotEncoder()) ]) full_pipeline = ColumnTransformer(transformers=[ ('num', num_pipeline, num_feature_names), ('cat', cat_pipeline, cat_feature_names) ], remainder='passthrough') # Reorder column names to account for post-transformation changes cat_one_hot_feature_names = [] for cat_feature_name in cat_feature_names: for val in data[cat_feature_name].unique(): cat_one_hot_feature_names.append(cat_feature_name + ' - ' + val) columns_reordered = np.concatenate((num_feature_names, cat_one_hot_feature_names, [label_name])) columns_reordered train_prepared = pd.DataFrame(full_pipeline.fit_transform(train), columns=columns_reordered) ###Output _____no_output_____ ###Markdown Below we can inspect an updated histogram graph to see that our desired transformations have taken place. ###Code train_prepared.hist(figsize=(15,10)) plt.show() ###Output _____no_output_____ ###Markdown Finally, we form our X and y matrices by respectively dropping and selecting the label column from our data. It is essential that we apply our pipeline to the test set, or else our evaluation will be invalid. ###Code X_train = train_prepared.drop(label_name, axis=1) y_train = train_prepared[[label_name]] test_prepared = pd.DataFrame(full_pipeline.fit_transform(test), columns=columns_reordered) X_test = test_prepared.drop(label_name, axis=1) y_test = test_prepared[[label_name]] ###Output _____no_output_____ ###Markdown - - - Step 3: Gradient DescentWe implement gradient descent for linear regression below, taking care to insert a column of 1s for our $\textbf{x}_0$ intercept on a copy of the user's data. ###Code class MyLinearRegression: """ Define what a linear regressor can do """ def __init__ (self): """ Initialize the regressor """ # parameter vector - initialized to random floats self.theta = np.random.randn(X_train.shape[1]+1, 1) # learning rate - initialized to a good default self.alpha = 0.001; # cost history - initialized to empty list self.cost = []; def gradientDescent(self, X_train, y_train, theta, alpha, iters): """ Implementatation of the gradient descent INPUT: alpha: the learning rate iters: number of iterations OUTPUT: theta: updated value for theta cost: value of the cost function """ # Add x0 column X = X_train.copy() X.insert(0, 'dummy', 1) m = X.shape[1] cost = [] for iter in range(iters): gradients = 2/m * X.T.dot(X.dot(theta).values - y_train) theta -= alpha * gradients diff = (X.dot(theta) - y_train).values cost_iter = np.linalg.norm(1/m * diff.T * diff) cost.append(cost_iter) return theta, cost def fitUsingGradientDescent(self, X_train, y_train): """ Train the regressor using gradient descent """ m = X_train.shape[1]+1 # add one for intercept self.theta = np.random.randn(m, 1) self.theta, self.cost = self.gradientDescent(X_train, y_train, self.theta, self.alpha, 200) def fitUsingNormalEquation(self, X_train, y_train): """ Training using the Normal (close form) equation """ # Add x0 column X = X_train.copy() X.insert(0, 'dummy', 1) self.theta = np.linalg.pinv(X.T.dot(X)).dot(X.T).dot(y_train).flatten() def predict(self, X_test): """ Predicting the label """ # Add x0 column X = X_test.copy() X.insert(0, 'dummy', 1) y_predict = X.dot(self.theta) return y_predict def __str__(self): """ Print out the parameter out when call print() """ return f"Parameter vector is {self.theta}" ###Output _____no_output_____ ###Markdown **Learning Rate:** We try out different learning rates for the dataset to find a learning rate that converges quickly. ###Code # Use the following code to plot out your learning rate # iters and cost must be supplied to plot out the cost function # You must plot multiple curves corresponding to different learning rates to justify the best one. alphas = [0.0001, 0.0003, 0.001, 0.003] models = {} for alpha in alphas: # Train model model_gd = MyLinearRegression() model_gd.alpha = alpha model_gd.fitUsingGradientDescent(X_train, y_train) iters = len(model_gd.cost) models[model_gd.cost[-1]] = (model_gd, alpha) # Plot cost plt.plot(np.linspace(0, iters, num=iters), model_gd.cost) plt.xlabel('Iterations') plt.ylabel('Cost') plt.title('Error vs. Training Iterations') plt.legend(alphas) plt.show() ###Output _____no_output_____ ###Markdown We see that our gradient descent-based model converges quickest with a learning rate of 0.003 among the rates tested. We can also confirm that it achieves the lowest cost at the end of training. We select this model for evaluation. ###Code best_cost = np.min(list(models.keys())) # lowest final cost myGradientDescentModel = models[best_cost][0] # model of lowest final cost best_alpha = models[best_cost][1] # learning rate for that model print("Best learning rate: ", best_alpha) print("Lowest cost: ", best_cost) ###Output Best learning rate: 0.003 Lowest cost: 3323926618.4300027 ###Markdown - - - Step 4: Normal Equation Below is the closed-form solution for linear regression, known as the normal equation.$ \mathbf{\theta} = ({\mathbf{X}^{T}\mathbf{X}})^{-1}\mathbf{X}^{T}\mathbf{y}.$It is implemented in the regressor class above as an alternative method of finding the best-fit line. ###Code # Implement the normalEquation method of the MyLinearRegression Class before executing the code below: myNormalEquationModel = MyLinearRegression() myNormalEquationModel.fitUsingNormalEquation(X_train, y_train) ###Output _____no_output_____ ###Markdown - - - Step 5: Model Evaluation Next, we compare the gradient descent approach to the normal equation, also including Sklearn's Stochastic Gradient Descent model for good measure. We evaluate the models by computing their Root Mean Square Error on the test data. ###Code from sklearn.metrics import mean_squared_error, mean_absolute_error from sklearn.exceptions import DataConversionWarning from sklearn.utils.testing import ignore_warnings @ignore_warnings(category=DataConversionWarning) def evaluate(model, fit, name): fit(X_train, y_train) y_predict = model.predict(X_test) mse = mean_squared_error(y_test, y_predict) rmse = np.sqrt(mse) mae = mean_absolute_error(y_test, y_predict) print(name) print('RMSE: ', str(rmse)) print('MAE: ', str(mae)) print() ###Output _____no_output_____ ###Markdown We can see that Sklearn's SGD model performs the best as measured by RMSE, but just barely. All models essentially hold the same predictive power, with our custom GD and Normal Equation-based models being near replicas.An RMSE of ~5790 can be interpreted as indicating **a "typical" error of \$5790 dollars when predicting insurance costs, biased upwards by outliers**. We also include Mean Average Error for comparison, which confirms that all models are highly similar but Sklearn's SGD regressor is slightly less susceptible to errors when modeling outliers. MAE indicates a true "average" error in either direction of \$4140.Given that a median medical charge is $9382, **our linear models score poorly using either metric. None of them are ready to deploy for real-world use.** ###Code from sklearn.metrics import mean_squared_error # Use the built-in SGD Regressor model from sklearn.linear_model import SGDRegressor model_sgd = SGDRegressor(random_state=SEED) evaluate(model_sgd, model_sgd.fit, 'Sklearn SGD Model') evaluate(myGradientDescentModel, myGradientDescentModel.fitUsingGradientDescent, 'My GD Model (alpha: ' + str(best_alpha) + ')') evaluate(myNormalEquationModel, myNormalEquationModel.fitUsingNormalEquation, 'My Normal Eq. Model') ###Output Sklearn SGD Model RMSE: 5791.587879020164 MAE: 4141.152345577996 My GD Model (alpha: 0.003) RMSE: 5795.33253302007 MAE: 4167.870547846676 My Normal Eq. Model RMSE: 5795.332533018759 MAE: 4167.870547845393 ###Markdown - - - Step 6: The Solution In this project, we develop a regressor capable of using either batch gradient descent or linear algebra to model linear relationships among variables. We apply this model to the task of predicting medical insurance costs, which it does poorly as measured by RMSE.However, this project moves us closer to our goal by uncovering important insights. By analyzing the coefficients of our linear model, we can assess the importance of different features on our predictions.- The high-magnitude coefficients of the smoker (yes/no) features suggest that smoking has a strong predictive value for medical costs, which makes intuitive sense, as smoking has been linked to lung and other diseases. - Sex and age appear to matter a good deal in our modeling attempt, the latter of which supports our earlier conjecture during the data visualization process- Similarly, the low coefficient for number of children reflects our earlier intuition that this feature is not very important for predictionsIt may be worth investigating these findings with a nonlinear model, such as a random forest regressor, as a linear model clearly lacks the power to predict with low error. Based on our work during the visualization steps, it may also be useful to transform number of children into a binary categorical variable (less than 5 or not), or experiment with other feature engineering approaches. In particular, the age feature stands out as a good candidate for feature engineering, as our scatter plot shows multiple overlapping linear trends. ###Code coef = myGradientDescentModel.theta.sort_values(by='charges', ascending=False) coef.columns = ['coefficient'] coef ###Output _____no_output_____
object-detection/YOLO v3.ipynb
###Markdown YOLO3 example based on https://github.com/experiencor/keras-yolo3We first need to create a model and load some existing weights (as we don't want to retrain). The model architecture is called a “DarkNet” and was originally loosely based on the VGG-16 model. To help, we copy out some functions from: https://github.com/experiencor/keras-yolo3 ###Code # create a YOLOv3 Keras model and save it to file # based on https://github.com/experiencor/keras-yolo3 import struct import numpy as np from keras.layers import Conv2D from keras.layers import Input from keras.layers import BatchNormalization from keras.layers import LeakyReLU from keras.layers import ZeroPadding2D from keras.layers import UpSampling2D from keras.layers.merge import add, concatenate from keras.models import Model def _conv_block(inp, convs, skip=True): x = inp count = 0 for conv in convs: if count == (len(convs) - 2) and skip: skip_connection = x count += 1 if conv['stride'] > 1: x = ZeroPadding2D(((1,0),(1,0)))(x) # peculiar padding as darknet prefer left and top x = Conv2D(conv['filter'], conv['kernel'], strides=conv['stride'], padding='valid' if conv['stride'] > 1 else 'same', # peculiar padding as darknet prefer left and top name='conv_' + str(conv['layer_idx']), use_bias=False if conv['bnorm'] else True)(x) if conv['bnorm']: x = BatchNormalization(epsilon=0.001, name='bnorm_' + str(conv['layer_idx']))(x) if conv['leaky']: x = LeakyReLU(alpha=0.1, name='leaky_' + str(conv['layer_idx']))(x) return add([skip_connection, x]) if skip else x def make_yolov3_model(): input_image = Input(shape=(None, None, 3)) # Layer 0 => 4 x = _conv_block(input_image, [{'filter': 32, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 0}, {'filter': 64, 'kernel': 3, 'stride': 2, 'bnorm': True, 'leaky': True, 'layer_idx': 1}, {'filter': 32, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 2}, {'filter': 64, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 3}]) # Layer 5 => 8 x = _conv_block(x, [{'filter': 128, 'kernel': 3, 'stride': 2, 'bnorm': True, 'leaky': True, 'layer_idx': 5}, {'filter': 64, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 6}, {'filter': 128, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 7}]) # Layer 9 => 11 x = _conv_block(x, [{'filter': 64, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 9}, {'filter': 128, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 10}]) # Layer 12 => 15 x = _conv_block(x, [{'filter': 256, 'kernel': 3, 'stride': 2, 'bnorm': True, 'leaky': True, 'layer_idx': 12}, {'filter': 128, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 13}, {'filter': 256, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 14}]) # Layer 16 => 36 for i in range(7): x = _conv_block(x, [{'filter': 128, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 16+i*3}, {'filter': 256, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 17+i*3}]) skip_36 = x # Layer 37 => 40 x = _conv_block(x, [{'filter': 512, 'kernel': 3, 'stride': 2, 'bnorm': True, 'leaky': True, 'layer_idx': 37}, {'filter': 256, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 38}, {'filter': 512, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 39}]) # Layer 41 => 61 for i in range(7): x = _conv_block(x, [{'filter': 256, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 41+i*3}, {'filter': 512, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 42+i*3}]) skip_61 = x # Layer 62 => 65 x = _conv_block(x, [{'filter': 1024, 'kernel': 3, 'stride': 2, 'bnorm': True, 'leaky': True, 'layer_idx': 62}, {'filter': 512, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 63}, {'filter': 1024, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 64}]) # Layer 66 => 74 for i in range(3): x = _conv_block(x, [{'filter': 512, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 66+i*3}, {'filter': 1024, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 67+i*3}]) # Layer 75 => 79 x = _conv_block(x, [{'filter': 512, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 75}, {'filter': 1024, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 76}, {'filter': 512, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 77}, {'filter': 1024, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 78}, {'filter': 512, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 79}], skip=False) # Layer 80 => 82 yolo_82 = _conv_block(x, [{'filter': 1024, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 80}, {'filter': 255, 'kernel': 1, 'stride': 1, 'bnorm': False, 'leaky': False, 'layer_idx': 81}], skip=False) # Layer 83 => 86 x = _conv_block(x, [{'filter': 256, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 84}], skip=False) x = UpSampling2D(2)(x) x = concatenate([x, skip_61]) # Layer 87 => 91 x = _conv_block(x, [{'filter': 256, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 87}, {'filter': 512, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 88}, {'filter': 256, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 89}, {'filter': 512, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 90}, {'filter': 256, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 91}], skip=False) # Layer 92 => 94 yolo_94 = _conv_block(x, [{'filter': 512, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 92}, {'filter': 255, 'kernel': 1, 'stride': 1, 'bnorm': False, 'leaky': False, 'layer_idx': 93}], skip=False) # Layer 95 => 98 x = _conv_block(x, [{'filter': 128, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 96}], skip=False) x = UpSampling2D(2)(x) x = concatenate([x, skip_36]) # Layer 99 => 106 yolo_106 = _conv_block(x, [{'filter': 128, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 99}, {'filter': 256, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 100}, {'filter': 128, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 101}, {'filter': 256, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 102}, {'filter': 128, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 103}, {'filter': 256, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 104}, {'filter': 255, 'kernel': 1, 'stride': 1, 'bnorm': False, 'leaky': False, 'layer_idx': 105}], skip=False) model = Model(input_image, [yolo_82, yolo_94, yolo_106]) return model class WeightReader: def __init__(self, weight_file): with open(weight_file, 'rb') as w_f: major, = struct.unpack('i', w_f.read(4)) minor, = struct.unpack('i', w_f.read(4)) revision, = struct.unpack('i', w_f.read(4)) if (major*10 + minor) >= 2 and major < 1000 and minor < 1000: w_f.read(8) else: w_f.read(4) transpose = (major > 1000) or (minor > 1000) binary = w_f.read() self.offset = 0 self.all_weights = np.frombuffer(binary, dtype='float32') def read_bytes(self, size): self.offset = self.offset + size return self.all_weights[self.offset-size:self.offset] def load_weights(self, model): for i in range(106): try: conv_layer = model.get_layer('conv_' + str(i)) print("loading weights of convolution #" + str(i)) if i not in [81, 93, 105]: norm_layer = model.get_layer('bnorm_' + str(i)) size = np.prod(norm_layer.get_weights()[0].shape) beta = self.read_bytes(size) # bias gamma = self.read_bytes(size) # scale mean = self.read_bytes(size) # mean var = self.read_bytes(size) # variance weights = norm_layer.set_weights([gamma, beta, mean, var]) if len(conv_layer.get_weights()) > 1: bias = self.read_bytes(np.prod(conv_layer.get_weights()[1].shape)) kernel = self.read_bytes(np.prod(conv_layer.get_weights()[0].shape)) kernel = kernel.reshape(list(reversed(conv_layer.get_weights()[0].shape))) kernel = kernel.transpose([2,3,1,0]) conv_layer.set_weights([kernel, bias]) else: kernel = self.read_bytes(np.prod(conv_layer.get_weights()[0].shape)) kernel = kernel.reshape(list(reversed(conv_layer.get_weights()[0].shape))) kernel = kernel.transpose([2,3,1,0]) conv_layer.set_weights([kernel]) except ValueError: print("no convolution #" + str(i)) def reset(self): self.offset = 0 # define the model model = make_yolov3_model() # load the model weights weight_reader = WeightReader('yolov3.weights') # set the model weights into the model weight_reader.load_weights(model) # save the model to file model.save('model.h5') ###Output Using TensorFlow backend. WARNING: Logging before flag parsing goes to stderr. W0702 17:11:54.469815 15024 deprecation_wrapper.py:119] From c:\appl\applications\miniconda3\envs\cv\lib\site-packages\keras\backend\tensorflow_backend.py:74: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get_default_graph instead. W0702 17:11:54.514363 15024 deprecation_wrapper.py:119] From c:\appl\applications\miniconda3\envs\cv\lib\site-packages\keras\backend\tensorflow_backend.py:517: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead. W0702 17:11:54.527688 15024 deprecation_wrapper.py:119] From c:\appl\applications\miniconda3\envs\cv\lib\site-packages\keras\backend\tensorflow_backend.py:4138: The name tf.random_uniform is deprecated. Please use tf.random.uniform instead. W0702 17:11:54.568421 15024 deprecation_wrapper.py:119] From c:\appl\applications\miniconda3\envs\cv\lib\site-packages\keras\backend\tensorflow_backend.py:174: The name tf.get_default_session is deprecated. Please use tf.compat.v1.get_default_session instead. W0702 17:11:54.568421 15024 deprecation_wrapper.py:119] From c:\appl\applications\miniconda3\envs\cv\lib\site-packages\keras\backend\tensorflow_backend.py:181: The name tf.ConfigProto is deprecated. Please use tf.compat.v1.ConfigProto instead. W0702 17:11:54.713616 15024 deprecation_wrapper.py:119] From c:\appl\applications\miniconda3\envs\cv\lib\site-packages\keras\backend\tensorflow_backend.py:1834: The name tf.nn.fused_batch_norm is deprecated. Please use tf.compat.v1.nn.fused_batch_norm instead. W0702 17:12:04.409566 15024 deprecation_wrapper.py:119] From c:\appl\applications\miniconda3\envs\cv\lib\site-packages\keras\backend\tensorflow_backend.py:2018: The name tf.image.resize_nearest_neighbor is deprecated. Please use tf.compat.v1.image.resize_nearest_neighbor instead. ###Markdown Now that we have a saved model, we can simply load this and make predictions ###Code # load yolov3 model and perform object detection # based on https://github.com/experiencor/keras-yolo3 import numpy as np from numpy import expand_dims from keras.models import load_model from keras.preprocessing.image import load_img from keras.preprocessing.image import img_to_array from matplotlib import pyplot from matplotlib.patches import Rectangle class BoundBox: def __init__(self, xmin, ymin, xmax, ymax, objness = None, classes = None): self.xmin = xmin self.ymin = ymin self.xmax = xmax self.ymax = ymax self.objness = objness self.classes = classes self.label = -1 self.score = -1 def get_label(self): if self.label == -1: self.label = np.argmax(self.classes) return self.label def get_score(self): if self.score == -1: self.score = self.classes[self.get_label()] return self.score def _sigmoid(x): return 1. / (1. + np.exp(-x)) def decode_netout(netout, anchors, obj_thresh, net_h, net_w): grid_h, grid_w = netout.shape[:2] nb_box = 3 netout = netout.reshape((grid_h, grid_w, nb_box, -1)) nb_class = netout.shape[-1] - 5 boxes = [] netout[..., :2] = _sigmoid(netout[..., :2]) netout[..., 4:] = _sigmoid(netout[..., 4:]) netout[..., 5:] = netout[..., 4][..., np.newaxis] * netout[..., 5:] netout[..., 5:] *= netout[..., 5:] > obj_thresh for i in range(grid_h*grid_w): row = i / grid_w col = i % grid_w for b in range(nb_box): # 4th element is objectness score objectness = netout[int(row)][int(col)][b][4] if(objectness.all() <= obj_thresh): continue # first 4 elements are x, y, w, and h x, y, w, h = netout[int(row)][int(col)][b][:4] x = (col + x) / grid_w # center position, unit: image width y = (row + y) / grid_h # center position, unit: image height w = anchors[2 * b + 0] * np.exp(w) / net_w # unit: image width h = anchors[2 * b + 1] * np.exp(h) / net_h # unit: image height # last elements are class probabilities classes = netout[int(row)][col][b][5:] box = BoundBox(x-w/2, y-h/2, x+w/2, y+h/2, objectness, classes) boxes.append(box) return boxes def correct_yolo_boxes(boxes, image_h, image_w, net_h, net_w): new_w, new_h = net_w, net_h for i in range(len(boxes)): x_offset, x_scale = (net_w - new_w)/2./net_w, float(new_w)/net_w y_offset, y_scale = (net_h - new_h)/2./net_h, float(new_h)/net_h boxes[i].xmin = int((boxes[i].xmin - x_offset) / x_scale * image_w) boxes[i].xmax = int((boxes[i].xmax - x_offset) / x_scale * image_w) boxes[i].ymin = int((boxes[i].ymin - y_offset) / y_scale * image_h) boxes[i].ymax = int((boxes[i].ymax - y_offset) / y_scale * image_h) def _interval_overlap(interval_a, interval_b): x1, x2 = interval_a x3, x4 = interval_b if x3 < x1: if x4 < x1: return 0 else: return min(x2,x4) - x1 else: if x2 < x3: return 0 else: return min(x2,x4) - x3 def bbox_iou(box1, box2): intersect_w = _interval_overlap([box1.xmin, box1.xmax], [box2.xmin, box2.xmax]) intersect_h = _interval_overlap([box1.ymin, box1.ymax], [box2.ymin, box2.ymax]) intersect = intersect_w * intersect_h w1, h1 = box1.xmax-box1.xmin, box1.ymax-box1.ymin w2, h2 = box2.xmax-box2.xmin, box2.ymax-box2.ymin union = w1*h1 + w2*h2 - intersect return float(intersect) / union def do_nms(boxes, nms_thresh): if len(boxes) > 0: nb_class = len(boxes[0].classes) else: return for c in range(nb_class): sorted_indices = np.argsort([-box.classes[c] for box in boxes]) for i in range(len(sorted_indices)): index_i = sorted_indices[i] if boxes[index_i].classes[c] == 0: continue for j in range(i+1, len(sorted_indices)): index_j = sorted_indices[j] if bbox_iou(boxes[index_i], boxes[index_j]) >= nms_thresh: boxes[index_j].classes[c] = 0 # load and prepare an image def load_image_pixels(filename, shape): # load the image to get its shape image = load_img(filename) width, height = image.size # load the image with the required size image = load_img(filename, target_size=shape) # convert to numpy array image = img_to_array(image) # scale pixel values to [0, 1] image = image.astype('float32') image /= 255.0 # add a dimension so that we have one sample image = expand_dims(image, 0) return image, width, height # get all of the results above a threshold def get_boxes(boxes, labels, thresh): v_boxes, v_labels, v_scores = list(), list(), list() # enumerate all boxes for box in boxes: # enumerate all possible labels for i in range(len(labels)): # check if the threshold for this label is high enough if box.classes[i] > thresh: v_boxes.append(box) v_labels.append(labels[i]) v_scores.append(box.classes[i]*100) # don't break, many labels may trigger for one box return v_boxes, v_labels, v_scores # draw all results def draw_boxes(filename, v_boxes, v_labels, v_scores): # load the image data = pyplot.imread(filename) # plot the image pyplot.imshow(data) # get the context for drawing boxes ax = pyplot.gca() # plot each box for i in range(len(v_boxes)): box = v_boxes[i] # get coordinates y1, x1, y2, x2 = box.ymin, box.xmin, box.ymax, box.xmax # calculate width and height of the box width, height = x2 - x1, y2 - y1 # create the shape rect = Rectangle((x1, y1), width, height, fill=False, color='white') # draw the box ax.add_patch(rect) # draw text and score in top left corner label = "%s (%.3f)" % (v_labels[i], v_scores[i]) pyplot.text(x1, y1, label, color='white') # show the plot pyplot.show() # load yolov3 model model = load_model('model.h5') # define the expected input shape for the model input_w, input_h = 416, 416 # define our new photo photo_filename = 'boat.png' # load and prepare image image, image_w, image_h = load_image_pixels(photo_filename, (input_w, input_h)) # make prediction yhat = model.predict(image) # summarize the shape of the list of arrays print([a.shape for a in yhat]) # define the anchors anchors = [[116,90, 156,198, 373,326], [30,61, 62,45, 59,119], [10,13, 16,30, 33,23]] # define the probability threshold for detected objects class_threshold = 0.6 boxes = list() for i in range(len(yhat)): # decode the output of the network boxes += decode_netout(yhat[i][0], anchors[i], class_threshold, input_h, input_w) # correct the sizes of the bounding boxes for the shape of the image correct_yolo_boxes(boxes, image_h, image_w, input_h, input_w) # suppress non-maximal boxes do_nms(boxes, 0.5) # define the labels labels = ["person", "bicycle", "car", "motorbike", "aeroplane", "bus", "train", "truck", "boat", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "sofa", "pottedplant", "bed", "diningtable", "toilet", "tvmonitor", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush"] # get the details of the detected objects v_boxes, v_labels, v_scores = get_boxes(boxes, labels, class_threshold) # summarize what we found for i in range(len(v_boxes)): print(v_labels[i], v_scores[i]) # draw what we found draw_boxes(photo_filename, v_boxes, v_labels, v_scores) ###Output boat 99.89145398139954
eda-us-accidents-2016-2020.ipynb
###Markdown US Accidents - Exploratory Data AnalysisEDADataset (Source, What it contains, How it will be useful)* Dataset from Kaggle* Information about accidents* Can be useful to prevent further accidents* This dataset does not contain data for New York Select the dataset : US Accidents (2016 - 2020) ###Code data_filename = 'US_Accidents_Dec20_updated.csv' ###Output _____no_output_____ ###Markdown Data Preparation and Cleaning1. Load the file using Pandas2. Look at the informations about the file3. Fix all the missing and incorrect values ###Code df = pd.read_csv(data_filename) df df.info() df.describe() numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] numeric_df = df.select_dtypes(include=numerics) len(numeric_df.columns) missing_percentages = df.isna().sum().sort_values(ascending=False) / len(df) * 100 missing_percentages missing_percentages[missing_percentages != 0] type(missing_percentages) missing_percentages[missing_percentages != 0].plot(kind='barh') ###Output _____no_output_____ ###Markdown * Remove the columns that we don't want to use. Exploratory Analysis and Visualizations* Columns to be analyzed:1. City : To analyze the cities with the most and least number of accidents.2. Start_Time : To analyze the time at which the accidents are taking place.3. Start_Lat, Start_Lng: To analyze and track the exact location of accidents and plot on a map.4. Temperature5. Weather Conditon6. State ###Code df.columns ###Output _____no_output_____ ###Markdown Analyzing column 'City' ###Code df.City cities = df.City.unique() len(cities) cities_by_accident = df.City.value_counts() cities_by_accident cities_by_accident[:10] cities_by_accident[:20].plot(kind='barh') import seaborn as sns sns.set_style('darkgrid') sns.histplot(cities_by_accident, log_scale=True) cities_by_accident[cities_by_accident == 1] high_accident_cities = cities_by_accident[cities_by_accident >= 1000] low_accident_cities = cities_by_accident[cities_by_accident < 1000] len(high_accident_cities) / len(cities) sns.histplot(high_accident_cities, log_scale=True) sns.histplot(high_accident_cities, log_scale=True) ###Output _____no_output_____ ###Markdown * Both the plot seems to be following an exponential distribution graph. Analyzing Column Start Time ###Code df.Start_Time df.Start_Time = pd.to_datetime(df.Start_Time) df.Start_Time[0] sns.distplot(df.Start_Time.dt.hour, bins=24, kde=False, norm_hist=True) sns.distplot(df.Start_Time.dt.dayofweek, bins=7, kde=False, norm_hist=True) ###Output _____no_output_____ ###Markdown - Is the distribution of accidents by hour the same on weekends as on weekdays? ###Code sundays_start_time = df.Start_Time[df.Start_Time.dt.dayofweek == 6] sns.distplot(sundays_start_time.dt.hour, bins=24, kde=False, norm_hist=True) monday_start_time = df.Start_Time[df.Start_Time.dt.dayofweek == 0] sns.distplot(monday_start_time.dt.hour, bins=24, kde=False, norm_hist=True) ###Output _____no_output_____ ###Markdown - On Sundays, the peak occurs between 5 P.M. and 12 A.M. unlike weekdays (as shown in Monday's graph above) ###Code sns.distplot(df.Start_Time.dt.month, bins=12, kde=False, norm_hist=True) ###Output _____no_output_____ ###Markdown Analyzing Column Start_Lat and Start_Lng ###Code df.Start_Lat df.Start_Lng sns.scatterplot(x = df.Start_Lng, y = df.Start_Lat) import folium from folium.plugins import HeatMap sample_df = df.sample(int(0.001 * len(df))) lat_lng_pairs = list(zip(list(sample_df.Start_Lat), list(sample_df.Start_Lng))) map = folium.Map() HeatMap(lat_lng_pairs).add_to(map) map ###Output _____no_output_____ ###Markdown Analyzing Column 'State' ###Code df.State states = df.State.unique() len(states) states_by_accident = df.State.value_counts() states_by_accident[:10].plot(kind='barh') ###Output _____no_output_____
5 - FC layers retraining/3 - FC layers retraining/Retraining_FC_layers.ipynb
###Markdown In this notebook, we load what was captured by the SCAMP5 host application when the camera was shown MNIST data. We use this to retrain the fully connected layers, taking noise into account. * Parse the .txt file to create numpy training/testing data. It also saved as .pck, for not having to re-parse the file each time. * This data is then used to train fully connected layers. ###Code !nvidia-smi # Partial MNIST by AnalogNet: 100 examples for each digit in each subset (train/test) #RAW_OUTPUT_FILENAME = 'text_log_20190628_1735_33_reencoded.TXT' # Whole MNIST capture by AnalogNet #RAW_OUTPUT_FILENAME = 'text_log_20190702_1750.txt' #-> 92.6% testing acc with legacy training #-> 93.8% testing acc with long training #-> 93.9% testing acc with very long training # Whole MNIST capture by AnalogNet, with 12 bins instead of 9 (new pooling) #RAW_OUTPUT_FILENAME = 'text_log_20190714_1101.txt' # -> 96.4% testing acc with legacy training # -> 96.8% testing acc with long/very long training # Whole MNIST capture by AnalogNet, with 12 bins instead of 9, and no # overlapping between bins #RAW_OUTPUT_FILENAME = 'text_log_20190718_0030.txt' # -> 96.3% testing acc with legacy training # -> 96.7% testing acc with long training # -> 96.6% testing acc with very long training # Whole MNIST capture by 3 quantise 3 #RAW_OUTPUT_FILENAME = 'text_log_20190712_2041.txt' #-> gives 91.9% testing acc with 2 layers, ReLU, very long training... # Whole MNIST capture by 3 quantise 3, with 150 collected events per feature map #RAW_OUTPUT_FILENAME = 'text_log_20190714_0030.txt' #-> gives 92.7% testing acc with 2 layers, long training. #-> 93.2% testing acc with 2 layers, very long training # Whole MNIST capture by 3 quantise 3, with 150 collected events per feature map, # and 12 bins instead of 9 (new pooling) #RAW_OUTPUT_FILENAME = 'text_log_20190715_0000_38.txt' # -> 94.6% testing acc with legacy training # -> 95.7% testing acc with long training # -> 95.8% testing acc with very long training # Whole MNIST capture by 4 maxpool 8 #RAW_OUTPUT_FILENAME = 'text_log_20190717_0042.txt' # -> 91.9% testing acc with legacy training # -> 92.6% testing acc with long training # -> 92.9% testing acc with very long training # Whole MNIST capture by 4 maxpool 8 bis (debugged) #RAW_OUTPUT_FILENAME = 'text_log_20190731_2346.txt' # -> % testing acc with legacy training # -> % testing acc with long training # -> 92.9% testing acc with very long training ####################################################################### # Depth separable convolutions, accumulation # Whole MNIST capture by one layer (similar to AnalogNet, slightly # different register managmenent) #RAW_OUTPUT_FILENAME = 'text_log_20190719_0106.txt' # -> 96.2% testing acc with legacy training # -> 96.8% testing acc with long training # -> 96.9% testing acc with very long training # Whole MNIST capture by two layers of depth separable conv, with leaky ReLU (.25) #RAW_OUTPUT_FILENAME = 'text_log_20190726_0022.txt' # -> 93.4% testing acc with legacy training # -> 94.7% testing acc with long training # -> 94.4% testing acc with very long training # Whole MNIST capture by three layers of depth separable conv, with leaky ReLU (.25) #RAW_OUTPUT_FILENAME = 'text_log_20190727_0013.txt' # -> 93.3% testing acc with legacy training # -> 94.1% testing acc with long training # -> 94.4% testing acc with very long training # Whole MNIST capture by four layers of depth separable conv, with leaky ReLU (.25) #RAW_OUTPUT_FILENAME = 'text_log_20190731_0245.txt' # -> 92.0% testing acc with legacy training # -> 93.2% testing acc with long training # -> 93.3% testing acc with very long training ####################################################################### # One layer network, with increasingly many kernels # Whole MNIST capture by one layer 1 kernel #RAW_OUTPUT_FILENAME = 'out13.txt' # -> % testing acc with legacy training # -> % testing acc with long training # -> 89.99% testing acc with very long training # Whole MNIST capture by one layer 2 kernel #RAW_OUTPUT_FILENAME = 'out25.txt' # -> % testing acc with legacy training # -> % testing acc with long training # -> 89.73% testing acc with very long training ## -> 93.78% testing acc, when simulating a 2 layers net by truncating a 6 layer one... # Whole MNIST capture by one layer 3 kernel #RAW_OUTPUT_FILENAME = 'out37.txt' # -> % testing acc with legacy training # -> % testing acc with long training # -> 95.81% testing acc with very long training ## -> 96.09% testing acc, when simulating a 3 layers net by truncating a 6 layer one... ## -> 96.06% testing acc, when simulating a 3 layers net by truncating a 7 layer one... # Whole MNIST capture by one layer 4 kernel #RAW_OUTPUT_FILENAME = 'out49.txt' # -> % testing acc with legacy training # -> % testing acc with long training # -> 96.94% testing acc with very long training # Whole MNIST capture by one layer 5 kernel #RAW_OUTPUT_FILENAME = 'out61.txt' # -> % testing acc with legacy training # -> % testing acc with long training # -> 97.04% testing acc with very long training # Whole MNIST capture by one layer 6 kernel RAW_OUTPUT_FILENAME = 'out73.txt' # -> % testing acc with legacy training # -> % testing acc with long training # -> 97.7% testing acc with very long training # Whole MNIST capture by one layer 7 kernel #RAW_OUTPUT_FILENAME = 'out85.txt' # -> % testing acc with legacy training # -> % testing acc with long training # -> 98.21% testing acc with very long training # Whole MNIST capture by one layer 8 kernel #RAW_OUTPUT_FILENAME = 'out97.txt' # -> % testing acc with legacy training # -> % testing acc with long training # -> 97.98% testing acc with very long training BATCH_SIZE = 50 LR = 0.0001 EPOCHS = 100 ###Output _____no_output_____ ###Markdown 0. Imports and utils functions ###Code import ast import numpy as np import matplotlib.pyplot as plt import pickle import tensorflow as tf def find_first(item, vec): '''return the index of the first occurence of item in vec''' for i in range(len(vec)): if item == vec[i]: return i return len(vec) # Move to the end if item not found def test_accuracy(verbose=False): accs = np.zeros(x_test.shape[0] // BATCH_SIZE) for i in range(x_test.shape[0] // BATCH_SIZE): start = i * BATCH_SIZE stop = start + BATCH_SIZE xs = x_test[start:stop] ys = y_test[start:stop, 0] current_acc = sess.run(acc_op, feed_dict={in_data_ph: xs, gt_label_ph: ys}) accs[i] = current_acc if verbose: print('Testing Acc.: {}'.format( accs.mean())) return accs.mean() ###Output _____no_output_____ ###Markdown 1. Parse the raw .txt output file Structure of the file:* garbage...* garbage...* garbage...* [garbage too]* [garbage starting with 0 or 1]* [10, training 0s]* [garbage starting with 0 or 1]* [10, testing 0s]* [garbage starting with 0 or 1]* [10, training 1s]* [garbage starting with 0 or 1]* [10, testing 1s]...* [10, testing 9s]* [garbage starting with 0 or 1] ###Code listedContent = [] with open(RAW_OUTPUT_FILENAME, 'r+') as f: for line in f: if line[0] == '[': listedContent.append(ast.literal_eval(line)) raw_output = np.array(listedContent) plt.plot(raw_output[:,0]) plt.show # This should show the aforementioned alternating pattern ### Special case, for out61.txt and out73.txt datasets # DO NOT EXECUTE OTHERWISE ! if RAW_OUTPUT_FILENAME == 'out61.txt' or RAW_OUTPUT_FILENAME == 'out73.txt': l = raw_output[:,0] K = -1 for i in range(l.shape[0] - 2): if l[i-1] < 10 and l[i] == 10 and l[i+1] >= 2 and l[i+2] < 2: print(i) K = i if K >= 0: raw_output[K,0] = 0 raw_output[K+1,0] = 0 # Remove the starting garbage moveIndex = find_first(10, raw_output[:,0]) raw_output = raw_output[moveIndex:] trainingSetX = [0]*10 testingSetX = [0]*10 trainingSetY = [0]*10 testingSetY = [0]*10 for i in range(10): moveIndex = min(find_first(0, raw_output[:,0]), find_first(1, raw_output[:,0])) trainingSetX[i] = raw_output[:moveIndex,1:] trainingSetY[i] = i*np.ones((trainingSetX[i].shape[0],1)) raw_output = raw_output[moveIndex:] moveIndex = find_first(10, raw_output[:,0]) raw_output = raw_output[moveIndex:] moveIndex = min(find_first(0, raw_output[:,0]), find_first(1, raw_output[:,0])) testingSetX[i] = raw_output[:moveIndex,1:] testingSetY[i] = i*np.ones((testingSetX[i].shape[0],1)) raw_output = raw_output[moveIndex:] moveIndex = find_first(10, raw_output[:,0]) raw_output = raw_output[moveIndex:] for label in range(10): print('Training {0}s: {1}'.format(label, trainingSetX[label].shape[0])) print('Testing {0}s: {1}'.format(label, testingSetX[label].shape[0])) x_train = np.concatenate(trainingSetX) y_train = np.concatenate(trainingSetY) x_test = np.concatenate(testingSetX) y_test = np.concatenate(testingSetY) print('Training set input data: {}'.format(x_train.shape)) print('Training set labels: {}'.format(y_train.shape)) print('Testing set input data: {}'.format(x_test.shape)) print('Testing set labels: {}'.format(y_test.shape)) pickle.dump(((x_train, y_train),(x_test, y_test)), open(RAW_OUTPUT_FILENAME + '.pck', 'wb')) ###Output _____no_output_____ ###Markdown 2. Train 1 FC layer 2.1 Load data from pickled files ###Code (x_train, y_train),(x_test, y_test) = pickle.load( open(RAW_OUTPUT_FILENAME + '.pck', 'rb')) print('Training set input data: {}'.format(x_train.shape)) print('Training set labels: {}'.format(y_train.shape)) print('Testing set input data: {}'.format(x_test.shape)) print('Testing set labels: {}'.format(y_test.shape)) y_train = y_train.astype(np.uint8) y_test = y_test.astype(np.uint8) ###Output _____no_output_____ ###Markdown 2.2 Network and graph definition ###Code def network_1fc(input): out = tf.layers.dense(input, 10, name='dense1') return out tf.reset_default_graph() in_data_ph = tf.placeholder(tf.float32, [BATCH_SIZE,72]) gt_label_ph = tf.placeholder(tf.uint8) out_label_op = network_1fc(in_data_ph) pred_op = tf.dtypes.cast( tf.keras.backend.argmax(out_label_op), tf.uint8) loss_op = tf.reduce_mean( tf.keras.backend.sparse_categorical_crossentropy(gt_label_ph, out_label_op, from_logits=True)) acc_op = tf.contrib.metrics.accuracy(gt_label_ph, pred_op) lr_ph = tf.placeholder(tf.float32) opt_op = tf.train.AdamOptimizer(learning_rate=lr_ph).minimize(loss_op) ###Output _____no_output_____ ###Markdown 2.3 Training ###Code sess = tf.Session() sess.run(tf.global_variables_initializer()) for epoch in range(EPOCHS): if epoch < EPOCHS/2: lr_feed = LR else: lr_feed = LR/5 random_perm = np.random.permutation(x_train.shape[0]) losses = np.zeros(x_train.shape[0] // BATCH_SIZE) for i in range(x_train.shape[0] // BATCH_SIZE): start = i * BATCH_SIZE stop = start + BATCH_SIZE selected = random_perm[start:stop] xs = x_train[selected] ys = y_train[selected] _, current_loss = sess.run([opt_op, loss_op], feed_dict={in_data_ph: xs, gt_label_ph: ys, lr_ph: lr_feed}) losses[i] = current_loss if epoch % 20 == 0: print('Epoch {} completed, average training loss is {}'.format( epoch+1, losses.mean())) test_accuracy() test_accuracy() ###Output Epoch 1 completed, average training loss is 6.933345697085063 ###Markdown 3. Train 2 FC layer 3.1 Load data from pickled files ###Code (x_train, y_train),(x_test, y_test) = pickle.load( open(RAW_OUTPUT_FILENAME + '.pck', 'rb')) print('Training set input data: {}'.format(x_train.shape)) print('Training set labels: {}'.format(y_train.shape)) print('Testing set input data: {}'.format(x_test.shape)) print('Testing set labels: {}'.format(y_test.shape)) ############### RESTRICT TO FIRST 3 KERNELS x_train = x_train[:,:36] x_test = x_test[:,:36] print('Training set input data: {}'.format(x_train.shape)) print('Training set labels: {}'.format(y_train.shape)) print('Testing set input data: {}'.format(x_test.shape)) print('Testing set labels: {}'.format(y_test.shape)) y_train = y_train.astype(np.uint8) y_test = y_test.astype(np.uint8) ###Output _____no_output_____ ###Markdown 3.2 Network and graph definition ###Code def network_2fc(input): fc1 = tf.layers.dense(input, 50, name='dense1', activation=tf.nn.relu) out = tf.layers.dense(fc1, 10, name='dense2') return out tf.reset_default_graph() in_data_ph = tf.placeholder(tf.float32, [BATCH_SIZE,36]) gt_label_ph = tf.placeholder(tf.uint8) out_label_op = network_2fc(in_data_ph) pred_op = tf.dtypes.cast( tf.keras.backend.argmax(out_label_op), tf.uint8) loss_op = tf.reduce_mean( tf.keras.backend.sparse_categorical_crossentropy(gt_label_ph, out_label_op, from_logits=True)) acc_op = tf.contrib.metrics.accuracy(gt_label_ph, pred_op) lr_ph = tf.placeholder(tf.float32) opt_op = tf.train.AdamOptimizer(learning_rate=lr_ph).minimize(loss_op) ###Output WARNING: Logging before flag parsing goes to stderr. W0807 14:27:04.759977 140005153736576 deprecation.py:323] From <ipython-input-23-24a71349388f>:2: dense (from tensorflow.python.layers.core) is deprecated and will be removed in a future version. Instructions for updating: Use keras.layers.dense instead. W0807 14:27:04.770270 140005153736576 deprecation.py:506] From /usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/init_ops.py:1251: calling VarianceScaling.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version. Instructions for updating: Call initializer instance with the dtype argument instead of passing it to the constructor W0807 14:27:08.046772 140005153736576 lazy_loader.py:50] The TensorFlow contrib module will not be included in TensorFlow 2.0. For more information, please see: * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md * https://github.com/tensorflow/addons * https://github.com/tensorflow/io (for I/O related ops) If you depend on functionality not listed there, please file an issue. ###Markdown 3.3 Training ###Code sess = tf.Session() saver = tf.train.Saver() sess.run(tf.global_variables_initializer()) """ # Legacy training, providing 92.6% testing accuracy with AnalogNet data for epoch in range(EPOCHS): if epoch < EPOCHS/2: lr_feed = LR else: lr_feed = LR/5 """ """ # Longer training -> 91.9% testing accuracy with 3-quantise-3 data for epoch in range(EPOCHS*4): if epoch < EPOCHS: lr_feed = LR*4 elif epoch < 2*EPOCHS: lr_feed = LR * 1.5 elif epoch < 3*EPOCHS: lr_feed = LR / 2 else: lr_feed = LR/5 """ """ # Even Longer training for epoch in range(EPOCHS*10): if epoch < EPOCHS: lr_feed = LR*8 elif epoch < 3*EPOCHS: lr_feed = LR * 4 elif epoch < 6*EPOCHS: lr_feed = LR * 2 elif epoch < 8: lr_feed = LR elif epoch < 9: lr_feed = LR / 2. else: lr_feed = LR / 5. """ max_test_accuracy = 0. for epoch in range(EPOCHS*10): if epoch < EPOCHS: lr_feed = LR*8 elif epoch < 3*EPOCHS: lr_feed = LR * 4 elif epoch < 6*EPOCHS: lr_feed = LR * 2 elif epoch < 8: lr_feed = LR elif epoch < 9: lr_feed = LR / 2. else: lr_feed = LR / 5. random_perm = np.random.permutation(x_train.shape[0]) losses = np.zeros(x_train.shape[0] // BATCH_SIZE) for i in range(x_train.shape[0] // BATCH_SIZE): start = i * BATCH_SIZE stop = start + BATCH_SIZE selected = random_perm[start:stop] xs = x_train[selected] ys = y_train[selected, 0] _, current_loss = sess.run([opt_op, loss_op], feed_dict={in_data_ph: xs, gt_label_ph: ys, lr_ph: lr_feed}) losses[i] = current_loss current_test_accuracy = test_accuracy() # Save best model if current_test_accuracy > max_test_accuracy: saver.save(sess, '2_fc/model.ckpt') max_test_accuracy = current_test_accuracy if epoch % 20 == 0: print('Epoch {} completed, average training loss is {}'.format( epoch+1, losses.mean())) print('Testing Acc.: {}'.format(current_test_accuracy)) # Restore best model ckpt = tf.train.get_checkpoint_state('2_fc') saver.restore(sess, ckpt.model_checkpoint_path) _ = test_accuracy(verbose=True) max_test_accuracy ###Output _____no_output_____ ###Markdown 3.4 Extract weights, and manually run the FC layers (matrix operations, as on SCAMP5's microcontroller) 3.4.1 Weights extraction ###Code #[n.name for n in tf.get_default_graph().as_graph_def().node] with tf.variable_scope('dense1', reuse=True) as scope_conv: fc1_k = tf.get_variable('kernel') fc1_b = tf.get_variable('bias') with tf.variable_scope('dense2', reuse=True) as scope_conv: fc2_k = tf.get_variable('kernel') fc2_b = tf.get_variable('bias') fc1_k, fc1_b, fc2_k, fc2_b = sess.run([fc1_k, fc1_b, fc2_k, fc2_b]) pickle.dump((fc1_k, fc1_b, fc2_k, fc2_b), open(RAW_OUTPUT_FILENAME + '_trained_weights_2_fc.pck', 'wb')) fc1_k, fc1_b, fc2_k, fc2_b = pickle.load( open(RAW_OUTPUT_FILENAME + '_trained_weights_2_fc.pck', 'rb')) ###Output _____no_output_____ ###Markdown 3.4.2 Compute accuracy when manually running the FC layers (matrix mult) ###Code def forward_pass(inputVec): res1 = np.dot(inputVec, fc1_k) + fc1_b np.maximum(res1, 0, res1) res2 = np.dot(res1, fc2_k) + fc2_b return res2 l = np.array([9, 0, 0, 9, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) print(forward_pass(l)) print(fc1_k) correctPrediction = [] for (x, y) in zip(x_test, y_test): pred = np.argmax(forward_pass(x)) correctPrediction.append(pred == y) np.array(correctPrediction).mean() ###Output _____no_output_____ ###Markdown 3.4.3 Round the weights and compute accuracy ###Code PRECISION = 10000 fc1_k, fc1_b, fc2_k, fc2_b = fc1_k*PRECISION//1, fc1_b*PRECISION//1, fc2_k*PRECISION//1, fc2_b*PRECISION*PRECISION//1 correctPrediction = [] for (x, y) in zip(x_test, y_test): pred = np.argmax(forward_pass(x)) correctPrediction.append(pred == y) np.array(correctPrediction).mean() print(fc1_k.shape) ###Output (32, 50)
Lecture/Notebooks/Machine Learning/L2/ML_L2_27_Apr_Decision_Trees_ipynb_txt.ipynb
###Markdown **Machine Learning with Tree based Models** ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns ###Output /usr/local/lib/python3.6/dist-packages/statsmodels/tools/_testing.py:19: FutureWarning: pandas.util.testing is deprecated. Use the functions in the public API at pandas.testing instead. import pandas.util.testing as tm ###Markdown Classification and Regression Trees (CART) --- Decision tree for classification--- ###Code cancer_data = pd.read_csv('wbc.csv') cancer_data.head() cancer_data.shape print(cancer_data.isna().sum()) cancer_data.dropna(axis = 1, inplace=True) # Dropping column cancer_data.head() cancer_data.info() cancer_data.dtypes cancer_data.describe() cancer_data.hist(figsize=(20,20)) cancer_data.diagnosis.value_counts() sns.countplot(cancer_data.diagnosis, palette='Set1') cancer_data.head() cancer_data['diagnosis'] = cancer_data['diagnosis'].apply(lambda x: 0 if x=="B" else 1) cancer_data.diagnosis.value_counts() cancer_data.info() cancer_data_sub = cancer_data[["diagnosis", "radius_mean", "concave points_mean"]] cancer_data_sub.head(20) # X = cancer_data_sub.drop(['diagnosis'], axis = 1) X = cancer_data_sub.iloc[:,1:3] y = cancer_data_sub.diagnosis print(X,y) # Import DecisionTreeClassifier from sklearn.tree import DecisionTreeClassifier # Import train_test_split from sklearn.model_selection import train_test_split # Import accuracy_score from sklearn.metrics import accuracy_score # Split dataset into 80% train, 20% test X_train, X_test, y_train, y_test= train_test_split(X, y, test_size=0.2, stratify=y, random_state=1) # Instantiate a DecisionTreeClassifier 'dt' with a maximum depth of 6 dt = DecisionTreeClassifier(max_depth=6, random_state=1) # dt = DecisionTreeClassifier(max_depth=6, criterion='gini', random_state=1) # default=gini # Fit dt to the training set dt.fit(X_train, y_train) # Predict test set labels y_pred = dt.predict(X_test) # Compute test set accuracy acc = accuracy_score(y_test, y_pred) print("Test set accuracy: {:.2f}".format(acc)) from mlxtend.plotting import plot_decision_regions # http://rasbt.github.io/mlxtend/user_guide/plotting/plot_decision_regions/ plot_decision_regions(X.values, y.values, clf=dt, legend=2) # Import LogisticRegression from sklearn.linear_model from sklearn.linear_model import LogisticRegression # Instatiate logreg logreg = LogisticRegression(random_state=1) # Fit logreg to the training set logreg.fit(X_train, y_train) # Predict test set labels y_pred = logreg.predict(X_test) # Compute test set accuracy acc = accuracy_score(y_test, y_pred) print("Test set accuracy: {:.2f}".format(acc)) from mlxtend.plotting import plot_decision_regions plot_decision_regions(X.values, y.values, clf=logreg, legend=2) sns.scatterplot(cancer_data_sub.radius_mean, cancer_data_sub['concave points_mean'],hue = cancer_data_sub.diagnosis) ###Output _____no_output_____ ###Markdown --- Decision tree for regression--- ###Code auto_data = pd.read_csv('auto.csv') auto_data.head() auto_data = pd.get_dummies(auto_data) auto_data.head() X = auto_data.drop(['mpg'], axis = 1) y = auto_data['mpg'] print(X,y) X_train, X_test, y_train, y_test= train_test_split(X, y, test_size=0.2, random_state=1) # Import DecisionTreeRegressor from sklearn.tree from sklearn.tree import DecisionTreeRegressor # Instantiate dt dt = DecisionTreeRegressor(max_depth=8, min_samples_leaf=0.13, random_state=3) # Fit dt to the training set dt.fit(X_train, y_train) # Import mean_squared_error from sklearn.metrics as MSE from sklearn.metrics import mean_squared_error as MSE # Compute y_pred y_pred = dt.predict(X_test) # Compute mse_dt mse_dt = MSE(y_test, y_pred) # Compute rmse_dt rmse_dt = mse_dt**0.5 # Print rmse_dt print("Test set RMSE of dt: {:.2f}".format(rmse_dt)) from sklearn.linear_model import LinearRegression lr = LinearRegression() lr.fit(X_train, y_train) # Predict test set labels y_pred_lr = lr.predict(X_test) # Compute mse_lr mse_lr = MSE(y_test, y_pred_lr) # Compute rmse_lr rmse_lr = mse_lr**0.5 # Print rmse_lr print('Linear Regression test set RMSE: {:.2f}'.format(rmse_lr)) # Print rmse_dt print('Regression Tree test set RMSE: {:.2f}'.format(rmse_dt)) ###Output Linear Regression test set RMSE: 3.98 Regression Tree test set RMSE: 4.27 ###Markdown --- Advantages of CARTs---* Simple to understand.* Simple to interpret.* Easy to use.* Flexibility: ability to describe non-linear dependencies.* Preprocessing: no need to standardize or normalize features, ... --- Limitations of CARTs---* Sensitive to small variations in the training set.* High variance: unconstrained CARTs may overfit the training set.* Solution: ensemble learning. Ensemble Learning --- Voting Classifier --- ###Code # Import functions to compute accuracy and split data from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split # Import models, including VotingClassifier meta-model from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier as KNN from sklearn.ensemble import VotingClassifier # Set seed for reproducibility SEED = 1 cancer_data.head() # Drop the id and diagnosis from the features X = cancer_data.drop(['diagnosis', 'id'], axis=1) # Select the diagnosis as a label y = cancer_data.diagnosis # Split data into 70% train and 30% test X_train, X_test, y_train, y_test = train_test_split(X, y, test_size= 0.3, random_state= SEED) # Instantiate individual classifiers lr = LogisticRegression(random_state=SEED) knn = KNN() dt = DecisionTreeClassifier(random_state=SEED) # Define a list called classifier that contains the tuples (classifier_name, classifier) classifiers = [('Logistic Regression', lr), ('K Nearest Neighbours', knn), ('Classification Tree', dt)] import warnings warnings.filterwarnings("ignore") # Iterate over the defined list of tuples containing the classifiers for clf_name, clf in classifiers: #fit clf to the training set clf.fit(X_train, y_train) # Predict the labels of the test set y_pred = clf.predict(X_test) # Evaluate the accuracy of clf on the test set print('{:s} : {:.3f}'.format(clf_name, accuracy_score(y_test, y_pred))) # Instantiate a VotingClassifier 'vc' vc = VotingClassifier(estimators=classifiers) # Fit 'vc' to the traing set and predict test set labels vc.fit(X_train, y_train) y_pred = vc.predict(X_test) # Evaluate the test-set accuracy of 'vc' print("Voting classifier: ", round(accuracy_score(y_test, y_pred),3)) ###Output Voting classifier: 0.953 ###Markdown --- Bagging ---Bagging is an ensemble method involving training the same algorithm many times using different subsets sampled from the training data. ###Code # Import models and utility functions from sklearn.ensemble import BaggingClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split # Set seed for reproducibility SEED = 1 cancer_data.head() # Drop the id and diagnosis from the features X = cancer_data.drop(['diagnosis', 'id'], axis=1) # Select the diagnosis as a label y = cancer_data.diagnosis # Split data into 70% train and 30% test X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, stratify=y, random_state=SEED) # Instantiate a classification-tree 'dt' dt = DecisionTreeClassifier(max_depth=4, min_samples_leaf=0.16, random_state=SEED) # Instantiate a BaggingClassifier 'bc' bc = BaggingClassifier(base_estimator=dt, n_estimators=300, n_jobs=-1) # n_jobs=-1 means that all the CPU cores are used in computation. # Fit 'bc' to the training set bc.fit(X_train, y_train) # Predict test set labels y_pred = bc.predict(X_test) # Evaluate and print test-set accuracy accuracy = accuracy_score(y_test, y_pred) print('Accuracy of Bagging Classifier: {:.3f}'.format(accuracy)) ###Output _____no_output_____ ###Markdown --- Random Forests---An ensemble method which uses a decision tree as a base estimator. ###Code # Basic imports from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error as MSE # Set seed for reproducibility SEED = 1 auto_data.head() X = auto_data.drop(['mpg'], axis = 1) y = auto_data['mpg'] # Split dataset into 70% train and 30% test X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,random_state=SEED) # Instantiate a random forests regressor 'rf' 400 estimators rf = RandomForestRegressor(n_estimators=400, min_samples_leaf=0.12, random_state=SEED) # Fit 'rf' to the training set rf.fit(X_train, y_train) # Predict the test set labels 'y_pred' y_pred = rf.predict(X_test) # Evaluate the test set RMSE rmse_test = MSE(y_test, y_pred)**(1/2) # Print the test set RMSE print('Test set RMSE of rf: {:.2f}'.format(rmse_test)) # Create a pd.Series of features importances importances_rf = pd.Series(rf.feature_importances_, index = X.columns) # Sort importances_rf sorted_importances_rf = importances_rf.sort_values() # Make a horizontal bar plot sorted_importances_rf.plot(kind='barh'); plt.show() ###Output _____no_output_____ ###Markdown --- Boosting ---Boosting refers to an ensemble method in which several models are trained sequentially with each model learning from the errors of its predecessors. ###Code cancer_data.head() # Drop the id and diagnosis from the features X = cancer_data.drop(['diagnosis', 'id'], axis=1) # Select the diagnosis as a label y = cancer_data.diagnosis # Import models and utility functions from sklearn.ensemble import AdaBoostClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import roc_auc_score from sklearn.model_selection import train_test_split # Set seed for reproducibility SEED = 1 # Split data into 70% train and 30% test X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, stratify=y, random_state=SEED) # Instantiate a classification-tree 'dt' dt = DecisionTreeClassifier(max_depth=1, random_state=SEED) # Instantiate an AdaBoost classifier 'adab_clf' adb_clf = AdaBoostClassifier(base_estimator=dt, n_estimators=100) # Fit 'adb_clf' to the training set adb_clf.fit(X_train, y_train) # Predict the test set probabilities of positive class y_pred_proba = adb_clf.predict_proba(X_test)[:,1] # Evaluate test-set roc_auc_score adb_clf_roc_auc_score = roc_auc_score(y_test, y_pred_proba) # Print adb_clf_roc_auc_score print('ROC AUC score: {:.2f}'.format(adb_clf_roc_auc_score)) from sklearn.metrics import roc_curve fper, tper, thresholds = roc_curve(y_test, y_pred_proba) plt.plot(fper, tper) plt.plot([0,1], [0,1], 'k--') plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Adaboost ROC curve') # show the plot plt.show() ###Output _____no_output_____
python/Logging_Images.ipynb
###Markdown Using WhyLogs to Profile Images--- This notebook provides an example how you can use whylogs to profile unstructure data like images. ###Code from PIL import Image import numpy as np import os from matplotlib.pyplot import imshow import matplotlib.pyplot as plt %matplotlib inline %load_ext autoreload %autoreload 2 import seaborn as sns with open("../../whylogs-python/testdata/images/flower2.jpg","rb") as img_f: img= Image.open(img_f) imshow(np.asarray(img)) w,h = img.size total_num_pixels= w*h print("withd :\t{}\nheight:\t{}\nnumber of pixels:{}".format(w,h,total_num_pixels)) ###Output withd : 300 height: 225 number of pixels:67500 ###Markdown We can create logger and create a profile sketch of the image data ###Code from whylogs import get_or_create_session _session=None session = get_or_create_session() logger=session.logger("image_dataset2") logger.log_image("../../whylogs-python/testdata/images/flower2.jpg") profile=logger.profile ###Output _____no_output_____ ###Markdown You can obtain the histogram sketch of image data features. e.g Saturation below ###Code imageProfiles = profile.flat_summary()["hist"] print(imageProfiles["Saturation"]) ###Output {'bin_edges': [0.0, 8.50000085, 17.0000017, 25.500002549999998, 34.0000034, 42.500004249999996, 51.000005099999996, 59.500005949999995, 68.0000068, 76.50000764999999, 85.00000849999999, 93.50000935, 102.00001019999999, 110.50001104999998, 119.00001189999999, 127.50001275, 136.0000136, 144.50001444999998, 153.00001529999997, 161.50001615, 170.00001699999999, 178.50001784999998, 187.0000187, 195.50001955, 204.00002039999998, 212.50002124999997, 221.00002209999997, 229.50002295, 238.00002379999998, 246.50002464999997, 255.0000255], 'counts': [128, 384, 512, 256, 384, 904, 656, 800, 1424, 2718, 4132, 5966, 5330, 5994, 4826, 4738, 3738, 4256, 3076, 3440, 2486, 2330, 1506, 1084, 1108, 788, 648, 576, 768, 2544]} ###Markdown Along with all the metadata collected from the image ###Code print(profile.flat_summary()["summary"]["column"].values) ###Output ['Flash' 'ImageWidth' 'X-Resolution' 'Saturation' 'Compression' 'Quality' 'Y-Resolution' 'ResolutionUnit' 'Model' 'Orientation' 'RowsPerStrip' 'BitsPerSample' 'Brightness' 'ExposureTime' 'Software' 'Hue' 'BrightnessValue' 'ImageLength' 'PhotometricInterpretationSamplesPerPixel'] ###Markdown Custom Functions--- One can also create custom functions to profile image specific features. E.g. Two example below demostrate get the average of image pixels per column, while the second function simple allow you to create a distribution sketch of the blue values. Also ComposeTransforms functions allow you mix and match functions to create new features to monitor. ###Code class AvgValue: def __call__(self, x): return np.mean(np.array(x)).reshape(-1,1) def __repr__(self,): return self.__class__.__name__ mylamdda =(lambda x: np.mean(x,axis=1).reshape(-1,1)) class MyBlue: def __call__(self, x): _,_,b= x.split() return np.array(b).reshape(-1,1) def __repr__(self,): return self.__class__.__name__ from whylogs.features.transforms import ComposeTransforms, Brightness,Saturation _session=None session=None session = get_or_create_session() logger2=session.logger("image_dataset_custom_functions") logger2.log_image(torch.(3, feature_transforms = [ AvgValue(), MyBlue(), ComposeTransforms([MyBlue(),AvgValue()])]) logger2.log_annotation(pathfile, ) profile2=logger2.profile print(profile2.flat_summary()["summary"]["column"].values) ###Output _____no_output_____ ###Markdown Check histograms We can obtain the idenvidual histograms for the features ###Code minnpf = np.frompyfunc(lambda x, y: min(x,y), 2, 1) maxnpf = np.frompyfunc(lambda x, y: max(x,y), 2, 1) def get_custom_histogram_info(profiles, variable, n_bins): summaries = [profile.flat_summary()["summary"] for profile in profiles] min_range= minnpf.accumulate([ summary[summary["column"]==variable]["min"].values[0] for summary in summaries], dtype=np.object).astype(np.int) max_range= maxnpf.accumulate([ summary[summary["column"]==variable]["max"].values[0] for summary in summaries], dtype=np.object).astype(np.int) bins = np.linspace(int(min_range), int(max_range), int((max_range-min_range)/n_bins)) counts= [ profile.columns[variable].number_tracker.histogram.get_pmf(bins[:-1]) for profile in profiles] return bins, counts def plot_distribution_shift(profiles, variable, n_bins): """Visualization for distribution shift""" bins, counts = get_custom_histogram_info(profiles, variable, n_bins) fig, ax = plt.subplots(figsize=(10, 3)) for idx, profile in enumerate(profiles): sns.histplot(x=bins, weights=counts[idx], bins=n_bins, label=profile.name, alpha=0.7, ax=ax) ax.legend() plt.show() plot_distribution_shift([profile2],"MyBlue",10) plot_distribution_shift([profile],"Saturation",10) ###Output _____no_output_____ ###Markdown Using whylogs to Profile Images--- This notebook provides an example how you can use whylogs to profile unstructure data like images. ###Code from PIL import Image import numpy as np import os from matplotlib.pyplot import imshow import matplotlib.pyplot as plt %matplotlib inline %load_ext autoreload %autoreload 2 import seaborn as sns with open("flower2.jpg","rb") as img_f: img= Image.open(img_f) imshow(np.asarray(img)) w,h = img.size total_num_pixels= w*h print("withd :\t{}\nheight:\t{}\nnumber of pixels:{}".format(w,h,total_num_pixels)) ###Output withd : 300 height: 225 number of pixels:67500 ###Markdown We can create logger and create a profile sketch of the image data ###Code from whylogs import get_or_create_session _session=None session = get_or_create_session() logger=session.logger("image_dataset2") logger.log_image("flower2.jpg") profile=logger.profile ###Output _____no_output_____ ###Markdown You can obtain the histogram sketch of image data features. e.g Saturation below ###Code imageProfiles = profile.flat_summary()["hist"] print(imageProfiles["Saturation"]) ###Output {'bin_edges': [0.0, 8.50000085, 17.0000017, 25.500002549999998, 34.0000034, 42.500004249999996, 51.000005099999996, 59.500005949999995, 68.0000068, 76.50000764999999, 85.00000849999999, 93.50000935, 102.00001019999999, 110.50001104999998, 119.00001189999999, 127.50001275, 136.0000136, 144.50001444999998, 153.00001529999997, 161.50001615, 170.00001699999999, 178.50001784999998, 187.0000187, 195.50001955, 204.00002039999998, 212.50002124999997, 221.00002209999997, 229.50002295, 238.00002379999998, 246.50002464999997, 255.0000255], 'counts': [64, 512, 576, 128, 512, 664, 1024, 896, 1240, 2550, 4156, 5940, 5594, 6010, 4836, 4636, 3712, 4232, 2972, 3506, 2506, 2484, 1258, 1286, 884, 1002, 416, 624, 704, 2576]} ###Markdown Along with all the metadata collected from the image ###Code print(profile.flat_summary()["summary"]["column"].values) ###Output ['Orientation' 'Software' 'Y-Resolution' 'Model' 'BrightnessValue' 'Flash' 'ImageLength' 'PhotometricInterpretationSamplesPerPixel' 'ImageWidth' 'BitsPerSample' 'Saturation' 'Compression' 'ExposureTime' 'RowsPerStrip' 'ResolutionUnit' 'X-Resolution' 'Quality' 'Hue' 'Brightness'] ###Markdown Custom Functions--- One can also create custom functions to profile image specific features. E.g. Two example below demostrate get the average of image pixels per column, while the second function simple allow you to create a distribution sketch of the blue values. Also ComposeTransforms functions allow you mix and match functions to create new features to monitor. ###Code class AvgValue: def __call__(self, x): return np.mean(np.array(x)).reshape(-1,1) def __repr__(self,): return self.__class__.__name__ class MyBlue: def __call__(self, x): _,_,b= x.split() return np.array(b).reshape(-1,1) def __repr__(self,): return self.__class__.__name__ from whylogs.features.transforms import ComposeTransforms, Brightness,Saturation _session=None session=None session = get_or_create_session() logger2=session.logger("image_dataset_custom_functions") logger2.log_image("flower2.jpg",feature_transforms = [ AvgValue(), MyBlue(), ComposeTransforms([MyBlue(),AvgValue()])]) profile2=logger2.profile print(profile2.flat_summary()["summary"]["column"].values) ###Output _____no_output_____ ###Markdown Check histograms We can obtain the idenvidual histograms for the features ###Code minnpf = np.frompyfunc(lambda x, y: min(x,y), 2, 1) maxnpf = np.frompyfunc(lambda x, y: max(x,y), 2, 1) def get_custom_histogram_info(profiles, variable, n_bins): summaries = [profile.flat_summary()["summary"] for profile in profiles] min_range= minnpf.accumulate([ summary[summary["column"]==variable]["min"].values[0] for summary in summaries], dtype=np.object).astype(np.int) max_range= maxnpf.accumulate([ summary[summary["column"]==variable]["max"].values[0] for summary in summaries], dtype=np.object).astype(np.int) bins = np.linspace(int(min_range), int(max_range), int((max_range-min_range)/n_bins)) counts= [ profile.columns[variable].number_tracker.histogram.get_pmf(bins[:-1]) for profile in profiles] return bins, counts def plot_distribution_shift(profiles, variable, n_bins): """Visualization for distribution shift""" bins, counts = get_custom_histogram_info(profiles, variable, n_bins) fig, ax = plt.subplots(figsize=(10, 3)) for idx, profile in enumerate(profiles): sns.histplot(x=bins, weights=counts[idx], bins=n_bins, label=profile.name, alpha=0.7, ax=ax) ax.legend() plt.show() plot_distribution_shift([profile2],"MyBlue",10) plot_distribution_shift([profile],"Saturation",10) ###Output _____no_output_____
ML_Model_Building/Clean_Training_Data.ipynb
###Markdown Copyright (c) Microsoft Corporation. Licensed under the MIT license. Clean Training Data This notebook will clean the training dataset and load the cleaned data into a spark database for training the models. ###Code DATA_LAKE_ACCOUNT_NAME = "" FILE_SYSTEM_NAME = "" df = spark.read.load(f"abfss://{FILE_SYSTEM_NAME}@{DATA_LAKE_ACCOUNT_NAME}.dfs.core.windows.net/synapse/workspaces/2019-Oct.csv", format="csv", header = True) df1 = spark.read.load(f"abfss://{FILE_SYSTEM_NAME}@{DATA_LAKE_ACCOUNT_NAME}.dfs.core.windows.net/synapse/workspaces/2019-Nov.csv", format="csv", header = True) df2 = spark.read.load(f"abfss://{FILE_SYSTEM_NAME}@{DATA_LAKE_ACCOUNT_NAME}.dfs.core.windows.net/synapse/workspaces/2019-Dec.csv", format="csv", header = True) df3 = spark.read.load(f"abfss://{FILE_SYSTEM_NAME}@{DATA_LAKE_ACCOUNT_NAME}.dfs.core.windows.net/synapse/workspaces/2020-Jan.csv", format="csv", header = True) df = df.union(df1) df = df.union(df2) df = df.union(df3) df.write.saveAsTable("full_dataset", mode="overwrite", format="delta") full_dataset = spark.read.format("delta").load(f"abfss://{FILE_SYSTEM_NAME}@{DATA_LAKE_ACCOUNT_NAME}.dfs.core.windows.net/synapse/workspaces/full_dataset/") # remove all null values from category and brand filtered_df = full_dataset.filter((full_dataset.category_code != 'null') & (full_dataset.brand != 'null')) #filter on construction and remove misplaced brands construction_df = filtered_df.filter((filtered_df.category_code.contains('construction')) & (filtered_df.brand != 'apple') & (filtered_df.brand != 'philips') & (filtered_df.brand != 'oystercosmetics')& (filtered_df.brand != 'tefal') & (filtered_df.brand != 'hyundai') & (filtered_df.brand != 'polaris') & (filtered_df.brand != 'puma') & (filtered_df.brand != 'samsung') & (filtered_df.brand != 'maybellinenewyork') & (filtered_df.brand != 'lg') & (filtered_df.brand != 'sony') & (filtered_df.brand != 'nokia') & (filtered_df.brand != 'nike') & (filtered_df.brand != 'fila') & (filtered_df.brand != 'milanicosmetics') & (filtered_df.brand != 'shoesrepublic') &(filtered_df.brand != 'hp')&(filtered_df.brand != 'jbl')) #filter on electronics and remove misplaced brands electronic_df = filtered_df.filter((filtered_df.category_code.contains('electronics'))& (filtered_df.brand != 'houseofseasons') & (filtered_df.brand != 'jaguar') & (filtered_df.brand != 'shoesrepublic') & (filtered_df.brand != 'tefal') & (filtered_df.brand != 'nike') & (filtered_df.brand != 'hyundai') & (filtered_df.brand != 'puma')) #filter on apparel and remove misplaced brands apparel_df = filtered_df.filter((filtered_df.category_code.contains('apparel')) & (filtered_df.brand != 'toyota') & (filtered_df.brand != 'canon')& (filtered_df.brand != 'samsung') & (filtered_df.brand != 'hp')& (filtered_df.brand != 'nikon') & (filtered_df.brand != 'jbl') & (filtered_df.brand != 'apple') & (filtered_df.brand != 'x-digital') & (filtered_df.brand != 'tefal') & (filtered_df.brand != 'fujifilm') & (filtered_df.brand != 'toysmax') & (filtered_df.brand != 'houseofseasons') & (filtered_df.brand != 'toshiba') & (filtered_df.brand != 'playdoh') & (filtered_df.brand != 'jaguar') & (filtered_df.brand != 'microsoft') & (filtered_df.brand != 'tv-shop') & (filtered_df.brand != 'xp-pen') & (filtered_df.brand != 'philips') & (filtered_df.brand != 'logitech') & (filtered_df.brand != 'm-audio') & (filtered_df.brand != 'sony') & (filtered_df.brand != 'lg') & (filtered_df.brand != 'hyundai')) #filtered on computers and removed misplaced brands computer_df = filtered_df.filter((filtered_df.category_code.contains('computers')) & (filtered_df.brand != 'fila') & (filtered_df.brand != 'moosetoys') & (filtered_df.brand != 'tefal') & (filtered_df.brand != 'hotwheels') & (filtered_df.brand != 'taftoys') & (filtered_df.brand != 'barbi') & (filtered_df.brand != 'fitbit') & (filtered_df.brand != 'nike')) #filtered on appliances and removed misplaced brands appliance_df = filtered_df.filter((filtered_df.category_code.contains('appliances')) & (filtered_df.brand != 'fila')& (filtered_df.brand != 'shoesrepublic') & (filtered_df.brand != 'toshiba')& (filtered_df.brand != 'hp')& (filtered_df.brand != 'nokia')&(filtered_df.brand != 'hyundai')& (filtered_df.brand != 'moosetoys') & (filtered_df.brand != 'jaguar') & (filtered_df.brand != 'colorkid') & (filtered_df.brand != 'apple') & (filtered_df.brand != 'jbl') & (filtered_df.brand != 'toyota') & (filtered_df.brand != 'nike') & (filtered_df.brand != 'logitech')) #filtered on auto and removed misplaced brands auto_df = filtered_df.filter((filtered_df.category_code.contains('auto')) & (filtered_df.brand != 'philips')& (filtered_df.brand != 'sony') & (filtered_df.brand != 'toshiba') & (filtered_df.brand != 'fujifilm') & (filtered_df.brand != 'nikon') & (filtered_df.brand != 'canon') & (filtered_df.brand != 'samsung') & (filtered_df.brand != 'hp')) #filtered on furniture and removed misplaced brands furniture_df = filtered_df.filter((filtered_df.category_code.contains('furniture')) & (filtered_df.brand != 'philips')& (filtered_df.brand != 'lg')& (filtered_df.brand != 'samsung') & (filtered_df.brand != 'hyundai')& (filtered_df.brand != 'sony') & (filtered_df.brand != 'logitech') & (filtered_df.brand != 'microsoft') & (filtered_df.brand != 'toshiba') & (filtered_df.brand != 'fujifilm') & (filtered_df.brand != 'tefal') & (filtered_df.brand != 'apple') & (filtered_df.brand != 'nikon') & (filtered_df.brand != 'dell') & (filtered_df.brand != 'nike') & (filtered_df.brand != 'newsuntoys') & (filtered_df.brand != 'canon') & (filtered_df.brand != 'puma') & (filtered_df.brand != 'hp') ) #filtered on kids and removed misplaced brands kids_df = filtered_df.filter((filtered_df.category_code.contains('kids')) & (filtered_df.brand != 'tefal')& (filtered_df.brand != 'puma') & (filtered_df.brand != 'hp') & (filtered_df.brand != 'apple') & (filtered_df.brand != 'nike') & (filtered_df.brand != 'canon') & (filtered_df.brand != 'lg') & (filtered_df.brand != 'sony') & (filtered_df.brand != 'samsung')) #filtered on sports and removed misplaced brands sports_df = filtered_df.filter((filtered_df.category_code.contains('sport')) & (filtered_df.brand != 'philips')& (filtered_df.brand != 'hp') & (filtered_df.brand != 'canon') & (filtered_df.brand != 'logitech') & (filtered_df.brand != 'microsoft') & (filtered_df.brand != 'apple') & (filtered_df.brand != 'jbl') & (filtered_df.brand != 'nikon') & (filtered_df.brand != 'mersedes-benz') & (filtered_df.brand != 'toyland') & (filtered_df.brand != 'lg') & (filtered_df.brand != 'samsung') & (filtered_df.brand != 'ikea') & (filtered_df.brand != 'logitech') & (filtered_df.brand != 'bmw') & (filtered_df.brand != 'jeep') & (filtered_df.brand != 'sony') & (filtered_df.brand != 'asus') & (filtered_df.brand != 'hyundai')) #filtered on country_yard and removed misplaced brands country_df = filtered_df.filter((filtered_df.category_code.contains('country_yard')) & (filtered_df.brand != 'nike')& (filtered_df.brand != 'samsung') & (filtered_df.brand != 'sony') & (filtered_df.brand != 'vans') & (filtered_df.brand != 'hyundai') & (filtered_df.brand != 'puma') & (filtered_df.brand != 'columbia') & (filtered_df.brand != 'adidas')& (filtered_df.brand != 'apple')) #filtered on stationary and removed misplaced brands stationery_df = filtered_df.filter((filtered_df.category_code.contains('stationery')) & (filtered_df.brand !='hyundai') & (filtered_df.brand !='puma') & (filtered_df.brand !='nike') & (filtered_df.brand !='jeep') & (filtered_df.brand !='jaguar') & (filtered_df.brand !='toyota') & (filtered_df.brand !='shoesrepublic') & (filtered_df.brand !='tefal') & (filtered_df.brand !='fila')) #filtered on accessories and removed misplaced brands accessories_df = filtered_df.filter((filtered_df.category_code == 'accessories.umbrella') |(filtered_df.category_code == 'accessories.wallet') |(filtered_df.category_code == 'accessories.bag') &(filtered_df.brand != 'hyundai')) medicine_df = filtered_df.filter((filtered_df.category_code.contains('medicine')) & (filtered_df.brand != 'ikea')) # combine all the separated DataFrames into one to load into a table. df = medicine_df.union(accessories_df) df = df.union(stationery_df) df = df.union(country_df) df = df.union(sports_df) df = df.union(kids_df) df = df.union(furniture_df) df = df.union(auto_df) df = df.union(appliance_df) df = df.union(computer_df) df = df.union(apparel_df) df = df.union(electronic_df) df = df.union(construction_df) # load the cleaned data to a spark database try: spark.sql("CREATE DATABASE retailaidb") except: print("Database already exists") df.write.saveAsTable("retailaidb.cleaned_dataset") ###Output _____no_output_____ ###Markdown Copyright (c) Microsoft Corporation. Licensed under the MIT license. Clean Training Data This notebook will clean the training dataset and load the cleaned data into a spark database for training the models. ###Code DATA_LAKE_ACCOUNT_NAME = "" FILE_SYSTEM_NAME = "" df = spark.read.load(f"abfss://{FILE_SYSTEM_NAME}@{DATA_LAKE_ACCOUNT_NAME}.dfs.core.windows.net/synapse/workspaces/2019-Oct.csv", format="csv", header = True) df1 = spark.read.load(f"abfss://{FILE_SYSTEM_NAME}@{DATA_LAKE_ACCOUNT_NAME}.dfs.core.windows.net/synapse/workspaces/2019-Nov.csv", format="csv", header = True) df2 = spark.read.load(f"abfss://{FILE_SYSTEM_NAME}@{DATA_LAKE_ACCOUNT_NAME}.dfs.core.windows.net/synapse/workspaces/2019-Dec.csv", format="csv", header = True) df3 = spark.read.load(f"abfss://{FILE_SYSTEM_NAME}@{DATA_LAKE_ACCOUNT_NAME}.dfs.core.windows.net/synapse/workspaces/2020-Jan.csv", format="csv", header = True) df = df.union(df1) df = df.union(df2) df = df.union(df3) df.write.saveAsTable("full_dataset", mode="overwrite", format="delta") full_dataset = spark.read.table('full_dataset') # remove all null values from category and brand filtered_df = full_dataset.filter((full_dataset.category_code != 'null') & (full_dataset.brand != 'null')) #filter on construction and remove misplaced brands construction_df = filtered_df.filter((filtered_df.category_code.contains('construction')) & (filtered_df.brand != 'apple') & (filtered_df.brand != 'philips') & (filtered_df.brand != 'oystercosmetics')& (filtered_df.brand != 'tefal') & (filtered_df.brand != 'hyundai') & (filtered_df.brand != 'polaris') & (filtered_df.brand != 'puma') & (filtered_df.brand != 'samsung') & (filtered_df.brand != 'maybellinenewyork') & (filtered_df.brand != 'lg') & (filtered_df.brand != 'sony') & (filtered_df.brand != 'nokia') & (filtered_df.brand != 'nike') & (filtered_df.brand != 'fila') & (filtered_df.brand != 'milanicosmetics') & (filtered_df.brand != 'shoesrepublic') &(filtered_df.brand != 'hp')&(filtered_df.brand != 'jbl')) #filter on electronics and remove misplaced brands electronic_df = filtered_df.filter((filtered_df.category_code.contains('electronics'))& (filtered_df.brand != 'houseofseasons') & (filtered_df.brand != 'jaguar') & (filtered_df.brand != 'shoesrepublic') & (filtered_df.brand != 'tefal') & (filtered_df.brand != 'nike') & (filtered_df.brand != 'hyundai') & (filtered_df.brand != 'puma')) #filter on apparel and remove misplaced brands apparel_df = filtered_df.filter((filtered_df.category_code.contains('apparel')) & (filtered_df.brand != 'toyota') & (filtered_df.brand != 'canon')& (filtered_df.brand != 'samsung') & (filtered_df.brand != 'hp')& (filtered_df.brand != 'nikon') & (filtered_df.brand != 'jbl') & (filtered_df.brand != 'apple') & (filtered_df.brand != 'x-digital') & (filtered_df.brand != 'tefal') & (filtered_df.brand != 'fujifilm') & (filtered_df.brand != 'toysmax') & (filtered_df.brand != 'houseofseasons') & (filtered_df.brand != 'toshiba') & (filtered_df.brand != 'playdoh') & (filtered_df.brand != 'jaguar') & (filtered_df.brand != 'microsoft') & (filtered_df.brand != 'tv-shop') & (filtered_df.brand != 'xp-pen') & (filtered_df.brand != 'philips') & (filtered_df.brand != 'logitech') & (filtered_df.brand != 'm-audio') & (filtered_df.brand != 'sony') & (filtered_df.brand != 'lg') & (filtered_df.brand != 'hyundai')) #filtered on computers and removed misplaced brands computer_df = filtered_df.filter((filtered_df.category_code.contains('computers')) & (filtered_df.brand != 'fila') & (filtered_df.brand != 'moosetoys') & (filtered_df.brand != 'tefal') & (filtered_df.brand != 'hotwheels') & (filtered_df.brand != 'taftoys') & (filtered_df.brand != 'barbi') & (filtered_df.brand != 'fitbit') & (filtered_df.brand != 'nike')) #filtered on appliances and removed misplaced brands appliance_df = filtered_df.filter((filtered_df.category_code.contains('appliances')) & (filtered_df.brand != 'fila')& (filtered_df.brand != 'shoesrepublic') & (filtered_df.brand != 'toshiba')& (filtered_df.brand != 'hp')& (filtered_df.brand != 'nokia')&(filtered_df.brand != 'hyundai')& (filtered_df.brand != 'moosetoys') & (filtered_df.brand != 'jaguar') & (filtered_df.brand != 'colorkid') & (filtered_df.brand != 'apple') & (filtered_df.brand != 'jbl') & (filtered_df.brand != 'toyota') & (filtered_df.brand != 'nike') & (filtered_df.brand != 'logitech')) #filtered on auto and removed misplaced brands auto_df = filtered_df.filter((filtered_df.category_code.contains('auto')) & (filtered_df.brand != 'philips')& (filtered_df.brand != 'sony') & (filtered_df.brand != 'toshiba') & (filtered_df.brand != 'fujifilm') & (filtered_df.brand != 'nikon') & (filtered_df.brand != 'canon') & (filtered_df.brand != 'samsung') & (filtered_df.brand != 'hp')) #filtered on furniture and removed misplaced brands furniture_df = filtered_df.filter((filtered_df.category_code.contains('furniture')) & (filtered_df.brand != 'philips')& (filtered_df.brand != 'lg')& (filtered_df.brand != 'samsung') & (filtered_df.brand != 'hyundai')& (filtered_df.brand != 'sony') & (filtered_df.brand != 'logitech') & (filtered_df.brand != 'microsoft') & (filtered_df.brand != 'toshiba') & (filtered_df.brand != 'fujifilm') & (filtered_df.brand != 'tefal') & (filtered_df.brand != 'apple') & (filtered_df.brand != 'nikon') & (filtered_df.brand != 'dell') & (filtered_df.brand != 'nike') & (filtered_df.brand != 'newsuntoys') & (filtered_df.brand != 'canon') & (filtered_df.brand != 'puma') & (filtered_df.brand != 'hp') ) #filtered on kids and removed misplaced brands kids_df = filtered_df.filter((filtered_df.category_code.contains('kids')) & (filtered_df.brand != 'tefal')& (filtered_df.brand != 'puma') & (filtered_df.brand != 'hp') & (filtered_df.brand != 'apple') & (filtered_df.brand != 'nike') & (filtered_df.brand != 'canon') & (filtered_df.brand != 'lg') & (filtered_df.brand != 'sony') & (filtered_df.brand != 'samsung')) #filtered on sports and removed misplaced brands sports_df = filtered_df.filter((filtered_df.category_code.contains('sport')) & (filtered_df.brand != 'philips')& (filtered_df.brand != 'hp') & (filtered_df.brand != 'canon') & (filtered_df.brand != 'logitech') & (filtered_df.brand != 'microsoft') & (filtered_df.brand != 'apple') & (filtered_df.brand != 'jbl') & (filtered_df.brand != 'nikon') & (filtered_df.brand != 'mersedes-benz') & (filtered_df.brand != 'toyland') & (filtered_df.brand != 'lg') & (filtered_df.brand != 'samsung') & (filtered_df.brand != 'ikea') & (filtered_df.brand != 'logitech') & (filtered_df.brand != 'bmw') & (filtered_df.brand != 'jeep') & (filtered_df.brand != 'sony') & (filtered_df.brand != 'asus') & (filtered_df.brand != 'hyundai')) #filtered on country_yard and removed misplaced brands country_df = filtered_df.filter((filtered_df.category_code.contains('country_yard')) & (filtered_df.brand != 'nike')& (filtered_df.brand != 'samsung') & (filtered_df.brand != 'sony') & (filtered_df.brand != 'vans') & (filtered_df.brand != 'hyundai') & (filtered_df.brand != 'puma') & (filtered_df.brand != 'columbia') & (filtered_df.brand != 'adidas')& (filtered_df.brand != 'apple')) #filtered on stationary and removed misplaced brands stationery_df = filtered_df.filter((filtered_df.category_code.contains('stationery')) & (filtered_df.brand !='hyundai') & (filtered_df.brand !='puma') & (filtered_df.brand !='nike') & (filtered_df.brand !='jeep') & (filtered_df.brand !='jaguar') & (filtered_df.brand !='toyota') & (filtered_df.brand !='shoesrepublic') & (filtered_df.brand !='tefal') & (filtered_df.brand !='fila')) #filtered on accessories and removed misplaced brands accessories_df = filtered_df.filter((filtered_df.category_code == 'accessories.umbrella') |(filtered_df.category_code == 'accessories.wallet') |(filtered_df.category_code == 'accessories.bag') &(filtered_df.brand != 'hyundai')) medicine_df = filtered_df.filter((filtered_df.category_code.contains('medicine')) & (filtered_df.brand != 'ikea')) # combine all the separated DataFrames into one to load into a table. df = medicine_df.union(accessories_df) df = df.union(stationery_df) df = df.union(country_df) df = df.union(sports_df) df = df.union(kids_df) df = df.union(furniture_df) df = df.union(auto_df) df = df.union(appliance_df) df = df.union(computer_df) df = df.union(apparel_df) df = df.union(electronic_df) df = df.union(construction_df) # load the cleaned data to a spark database try: spark.sql("CREATE DATABASE retailaidb") except: print("Database already exists") df.write.saveAsTable("retailaidb.cleaned_dataset") ###Output _____no_output_____
sf-crime/sf-crime-vec-sklearn.ipynb
###Markdown [San Francisco Crime Classification | Kaggle](https://www.kaggle.com/c/sf-crime) [SF Crime Prediction with scikit-learn 을 따라해 본다. | Kaggle](https://www.kaggle.com/rhoslug/sf-crime-prediction-with-scikit-learn) Data fields* 날짜 - 범죄 사건의 타임 스탬프* 범주 - 범죄 사건 카테고리 (train.csv에만 해당) 이 변수를 예측하는 게 이 경진대회 과제임* 설명 - 범죄 사건에 대한 자세한 설명 (train.csv에만 있음)* DayOfWeek - 요일* PdDistrict - 경찰서 구의 이름* 해결 방법 - 범죄 사건이 어떻게 해결 되었는지 (train.csv에서만)* 주소 - 범죄 사건의 대략적인 주소 * X - 경도* Y - 위도* Dates - timestamp of the crime incident* Category - category of the crime incident (only in train.csv). This is the target variable you are going to predict.* Descript - detailed description of the crime incident (only in train.csv)* DayOfWeek - the day of the week* PdDistrict - name of the Police Department District* Resolution - how the crime incident was resolved (only in train.csv)* Address - the approximate street address of the crime incident * X - Longitude * Y - Latitude ###Code from __future__ import print_function, division import pandas as pd import numpy as np df_train = pd.read_csv('data/train.csv', parse_dates=['Dates']) df_train.shape df_train.head() # 'Descript', 'Dates', 'Resolution' 는 제거 df_train.drop(['Descript', 'Dates', 'Resolution'], axis=1, inplace=True) df_train.shape df_test = pd.read_csv('data/test.csv', parse_dates=['Dates']) df_test.shape df_test.head() df_test.drop(['Dates'], axis=1, inplace=True) df_test.head() # 트레이닝과 검증셋을 선택한다. inds = np.arange(df_train.shape[0]) inds np.random.shuffle(inds) df_train.shape[0] # 트레인 셋 train_inds = inds[:int(0.2 * df_train.shape[0])] print(train_inds.shape) # 검증 셋 val_inds = inds[int(0.2) * df_train.shape[0]:] print(val_inds.shape) # 컬럼명을 추출한다. col_names = np.sort(df_train['Category'].unique()) col_names # 카테고리를 숫자로 변환해 준다. df_train['Category'] = pd.Categorical(df_train['Category']).codes df_train['DayOfWeek'] = pd.Categorical(df_train['DayOfWeek']).codes df_train['PdDistrict'] = pd.Categorical(df_train['PdDistrict']).codes df_test['DayOfWeek'] = pd.Categorical(df_test['DayOfWeek']).codes df_test['PdDistrict'] = pd.Categorical(df_test['PdDistrict']).codes df_train.head() df_test.head() from sklearn.feature_extraction.text import CountVectorizer # text 빈도를 추출한다. cvec = CountVectorizer() cvec bows_train = cvec.fit_transform(df_train['Address'].values) bows_test = cvec.fit_transform(df_test['Address'].values) # 트레이닝과 검증셋을 나눈다. df_val = df_train.iloc[val_inds] df_val.head() df_val.shape df_train = df_train.iloc[train_inds] df_train.shape df_train.head() from patsy import dmatrices, dmatrix y_train, X_train = dmatrices('Category ~ X + Y + DayOfWeek + PdDistrict', df_train) y_train.shape # 벡터화 된 주소 X_train = np.hstack((X_train, bows_train[train_inds, :].toarray())) X_train.shape y_val, X_val = dmatrices('Category ~ X + Y + DayOfWeek + PdDistrict', df_val) X_val = np.hstack((X_val, bows_train[val_inds, :].toarray())) X_test = dmatrix('X + Y + DayOfWeek + PdDistrict', df_test) X_test = np.hstack((X_test, bows_test.toarray())) # IncrementalPCA from sklearn.decomposition import IncrementalPCA from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression ipca = IncrementalPCA(n_components=4, batch_size=5) ipca # 로컬 메모리 부족으로 실행 실패 T_T X_train = ipca.fit_transform(X_train) X_val = ipca.transform(X_val) X_test = ipca.transform(X_test) # 로지스틱 회귀를 생성하고 fit 시킨다. logistic = LogisticRegression() logistic.fit(X_train, y_train.ravel()) # 정확도를 본다. print('Mean accuracy (Logistic): {:.4f}.format(logistic.score(X_val, y_val.ravel())))') # 랜덤 포레스트로 fit 시키고 정확도를 본다. randforest = RandomForestClassifier() randforest.fit(X_train, y_train.ravel()) # 정확도를 본다. print('Mean accuracy (Logistic): {:.4f}.format(logistic.score(X_val, y_val.ravel())))') # Make predictions predict_probs = logistic.predict_proba(X_test) df_pred = pd.DataFrame(data=predict_probs, columns=col_names) df_pred['Id'] = df_test['Id'].astype(int) df_pred.to_csv('output.csv', index=False) ###Output _____no_output_____ ###Markdown [San Francisco Crime Classification | Kaggle](https://www.kaggle.com/c/sf-crime) [SF Crime Prediction with scikit-learn 을 따라해 본다. | Kaggle](https://www.kaggle.com/rhoslug/sf-crime-prediction-with-scikit-learn) Data fields* 날짜 - 범죄 사건의 타임 스탬프* 범주 - 범죄 사건 카테고리 (train.csv에만 해당) 이 변수를 예측하는 게 이 경진대회 과제임* 설명 - 범죄 사건에 대한 자세한 설명 (train.csv에만 있음)* DayOfWeek - 요일* PdDistrict - 경찰서 구의 이름* 해결 방법 - 범죄 사건이 어떻게 해결 되었는지 (train.csv에서만)* 주소 - 범죄 사건의 대략적인 주소 * X - 경도* Y - 위도* Dates - timestamp of the crime incident* Category - category of the crime incident (only in train.csv). This is the target variable you are going to predict.* Descript - detailed description of the crime incident (only in train.csv)* DayOfWeek - the day of the week* PdDistrict - name of the Police Department District* Resolution - how the crime incident was resolved (only in train.csv)* Address - the approximate street address of the crime incident * X - Longitude * Y - Latitude ###Code import pandas as pd import numpy as np df_train = pd.read_csv('data/train.csv', parse_dates=['Dates']) df_train.shape df_train.head() # 'Descript', 'Dates', 'Resolution' 는 제거 df_train.drop(['Descript', 'Dates', 'Resolution'], axis=1, inplace=True) df_train.shape df_test = pd.read_csv('data/test.csv', parse_dates=['Dates']) df_test.shape df_test.head() df_submit = pd.read_csv("data/sampleSubmission.csv") df_submit.head() df_train["Category"].value_counts() df_test.drop(['Dates'], axis=1, inplace=True) df_test.head() # 트레이닝과 검증셋을 선택한다. inds = np.arange(df_train.shape[0]) inds np.random.shuffle(inds) df_train.shape[0] df_train.shape[0] * 0.8 # 트레인 셋 train_inds = inds[:int(0.8 * df_train.shape[0])] print(train_inds.shape) # 검증 셋 val_inds = inds[int(0.8) * df_train.shape[0]:] print(val_inds.shape) # 컬럼명을 추출한다. col_names = np.sort(df_train['Category'].unique()) col_names # 카테고리를 숫자로 변환해 준다. df_train['Category'] = pd.Categorical(df_train['Category']).codes df_train['DayOfWeek'] = pd.Categorical(df_train['DayOfWeek']).codes df_train['PdDistrict'] = pd.Categorical(df_train['PdDistrict']).codes df_test['DayOfWeek'] = pd.Categorical(df_test['DayOfWeek']).codes df_test['PdDistrict'] = pd.Categorical(df_test['PdDistrict']).codes df_train.head() df_test.head() from sklearn.feature_extraction.text import CountVectorizer # text 빈도를 추출한다. cvec = CountVectorizer() cvec bows_train = cvec.fit_transform(df_train['Address'].values) bows_test = cvec.transform(df_test['Address'].values) # 트레이닝과 검증셋을 나눈다. df_val = df_train.iloc[val_inds] df_val.head() df_val.shape df_train = df_train.iloc[train_inds] df_train.shape df_train.head() from patsy import dmatrices, dmatrix y_train, X_train = dmatrices('Category ~ X + Y + DayOfWeek + PdDistrict', df_train) y_train.shape # 벡터화 된 주소 X_train = np.hstack((X_train, bows_train[train_inds, :].toarray())) X_train.shape y_val, X_val = dmatrices('Category ~ X + Y + DayOfWeek + PdDistrict', df_val) X_val = np.hstack((X_val, bows_train[val_inds, :].toarray())) X_test = dmatrix('X + Y + DayOfWeek + PdDistrict', df_test) X_test = np.hstack((X_test, bows_test.toarray())) # IncrementalPCA from sklearn.decomposition import IncrementalPCA from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression ipca = IncrementalPCA(n_components=4, batch_size=5) ipca X_train = ipca.fit_transform(X_train) X_val = ipca.transform(X_val) X_test = ipca.transform(X_test) # 로지스틱 회귀를 생성하고 fit 시킨다. logistic = LogisticRegression() logistic.fit(X_train, y_train.ravel()) # 정확도를 본다. print('Mean accuracy (Logistic):', logistic.score(X_val, y_val.ravel())) # 랜덤 포레스트로 fit 시키고 정확도를 본다. randforest = RandomForestClassifier() randforest.fit(X_train, y_train.ravel()) # 정확도를 본다. print('Mean accuracy (Logistic):', logistic.score(X_val, y_val.ravel())) # Make predictions predict_probs = logistic.predict_proba(X_test) df_pred = pd.DataFrame(data=predict_probs, columns=col_names) df_pred['Id'] = df_test['Id'].astype(int) df_pred df_pred.to_csv('output.csv', index=False) ###Output _____no_output_____
examples/text-processing/text_preprocessing_demo.ipynb
###Markdown This notebook demos some functionality in ConvoKit to preprocess text, and store the results. In particular, it shows examples of:* A `TextProcessor` base class that maps per-utterance attributes to per-utterance outputs;* A `TextParser` class that does dependency parsing;* Selective and decoupled data storage and loading;* Per-utterance calls to a transformer;* Pipelining transformers. Preliminaries: loading an existing corpus. To start, we load a clean version of a corpus. For speed we will use a 200-utterance subset of the tennis corpus. ###Code import os os.chdir('../..') import convokit from convokit import download # OPTION 1: DOWNLOAD CORPUS # UNCOMMENT THESE LINES TO DOWNLOAD CORPUS # DATA_DIR = '<YOUR DIRECTORY>' ROOT_DIR = download('tennis-corpus') # OPTION 2: READ PREVIOUSLY-DOWNLOADED CORPUS FROM DISK # UNCOMMENT THIS LINE AND REPLACE WITH THE DIRECTORY WHERE THE TENNIS-CORPUS IS LOCATED # ROOT_DIR = '<YOUR DIRECTORY>' corpus = convokit.Corpus(ROOT_DIR, utterance_end_index=199) corpus.print_summary_stats() # SET YOUR OWN OUTPUT DIRECTORY HERE. OUT_DIR = '<YOUR OUTPUT DIRECTORY>' ###Output _____no_output_____ ###Markdown Here's an example of an utterance from this corpus (questions asked to tennis players after matches, and the answers they give): ###Code test_utt_id = '1681_14.a' utt = corpus.get_utterance(test_utt_id) utt.text ###Output _____no_output_____ ###Markdown Right now, `utt.meta` contains the following fields: ###Code utt.meta ###Output _____no_output_____ ###Markdown The TextProcessor class Many of our transformers are per-utterance mappings of one attribute of an utterance to another. To facilitate these calls, we use a `TextProcessor` class that inherits from `Transformer`. `TextProcessor` is initialized with the following arguments:* `proc_fn`: the mapping function. Supports one of two function signatures: `proc_fn(input)` and `proc_fn(input, auxiliary_info)`. * `input_field`: the attribute of the utterance that `proc_fn` will take as input. If set to `None`, will default to reading `utt.text`, as seems to be presently done.* `output_field`: the name of the attribute that the output of `proc_fn` will be written to. * `aux_input`: any auxiliary input that `proc_fn` needs (e.g., a pre-loaded model); passed in as a dict.* `input_filter`: a boolean function of signature `input_filter(utterance, aux_input)`, where `aux_input` is again passed as a dict. If this returns `False` then the particular utterance will be skipped; by default it will always return `True`.Both `input_field` and `output_field` support multiple items -- that is, `proc_fn` could take in multiple attributes of an utterance and output multiple attributes. I'll show how this works in advanced usage, below."Attribute" is a deliberately generic term. `TextProcessor` could produce "features" as we may conventionally think of them (e.g., wordcount, politeness strategies). It can also be used to pre-process text, i.e., generate alternate representations of the text. ###Code from convokit.text_processing import TextProcessor ###Output _____no_output_____ ###Markdown simple example: cleaning the text As a simple example, suppose we want to remove hyphens "`--`" from the text as a preprocessing step. To use `TextProcessor` to do this for us, we'd define the following as a `proc_fn`: ###Code def preprocess_text(text): text = text.replace(' -- ', ' ') return text ###Output _____no_output_____ ###Markdown Below, we initialize `prep`, a `TextProcessor` object that will run `preprocess_text` on each utterance.When we call `prep.transform()`, the following will occur:* Because we didn't specify an input field, `prep` will pass `utterance.text` into `preprocess_text`* It will write the output -- the text minus the hyphens -- to a field called `clean_text` that will be stored in the utterance meta and that can be accessed as `utt.meta['clean_text']` or `utt.get_info('clean_text')` ###Code prep = TextProcessor(proc_fn=preprocess_text, output_field='clean_text') corpus = prep.transform(corpus) ###Output _____no_output_____ ###Markdown And as desired, we now have a new field attached to `utt`. ###Code utt.get_info('clean_text') ###Output _____no_output_____ ###Markdown Parsing text with the TextParser class One common utterance-level thing we want to do is parse the text. In practice, in increasing order of (computational) difficulty, this typically entails:* proper tokenizing of words and sentences;* POS-tagging;* dependency-parsing. As such, we provide a `TextParser` class that inherits from `TextProcessor` to do all of this, taking in the following arguments:* `output_field`: defaults to `'parsed'`* `input_field`* `mode`: whether we want to go through all of the above steps (which may be expensive) or stop mid-way through. Supports the following options: `'tokenize'`, `'tag'`, `'parse'` (the default).Under the surface, `TextParser` actually uses two separate models: a `spacy` object that does word tokenization, tagging and parsing _per sentence_, and `nltk`'s sentence tokenizer. The rationale is:* `spacy` doesn't support sentence tokenization without dependency-parsing, and we often want sentence tokenization without having to go through the effort of parsing.* We want to be consistent (as much as possible, given changes to spacy and nltk) in the tokenizations we produce, between runs where we don't want parsing and runs where we do.If we've pre-loaded these models, we can pass them into the constructor too, as:* `spacy_nlp`* `sent_tokenizer` ###Code from convokit.text_processing import TextParser parser = TextParser(input_field='clean_text', verbosity=50) corpus = parser.transform(corpus) ###Output 050/200 utterances processed 100/200 utterances processed 150/200 utterances processed 200/200 utterances processed ###Markdown parse outputA parse produced by `TextParser` is serialized in text form. It is a list consisting of sentences, where each sentence is a dict with* `toks`: a list of tokens (i.e., words) in the sentence;* `rt`: the index of the root of the dependency tree (i.e., `sentence['toks'][sentence['rt']` gives the root)Each token, in turn, contains the following:* `tok`: the text of the token;* `tag`: the tag;* `up`: the index of the parent of the token in the dependency tree (no entry for the root);* `down`: the indices of the children of the token;* `dep`: the dependency of the edge between the token and its parent. ###Code test_parse = utt.get_info('parsed') test_parse[0] ###Output _____no_output_____ ###Markdown If we didn't want to go through the trouble of dependency-parsing (which could be expensive) we could initialize `TextParser` with `mode='tag'`, which only POS-tags tokens: ###Code texttagger = TextParser(output_field='tagged', input_field='clean_text', mode='tag') corpus = texttagger.transform(corpus) utt.get_info('tagged')[0] ###Output _____no_output_____ ###Markdown Storing and loading corpora We've now computed a bunch of utterance-level attributes. ###Code list(utt.meta.keys()) ###Output _____no_output_____ ###Markdown By default, calling `corpus.dump` will write all of these attributes to disk, within the file that stores utterances; later calling `corpus.load` will load all of these attributes back into a new corpus. For big objects like parses, this incurs a high computational burden (especially if in a later use case you might not even need to look at parses). To avoid this, `corpus.dump` takes an optional argument `fields_to_skip`, which is a dict of object type (`'utterance'`, `'conversation'`, `'user'`, `'corpus'`) to a list of fields that we do not want to write to disk. The following call will write the corpus to disk, without any of the preprocessing output we generated above: ###Code corpus.dump(os.path.basename(OUT_DIR), base_path=os.path.dirname(OUT_DIR), fields_to_skip={'utterance': ['parsed','tagged','clean_text']}) ###Output _____no_output_____ ###Markdown For attributes we want to keep around, but that we don't want to read and write to disk in a big batch with all the other corpus data, `corpus.dump_info` will dump fields of a Corpus object into separate files. This takes the following arguments as input:* `obj_type`: which type of Corpus object you're dealing with.* `fields`: a list of the fields to write. * `dir_name`: which directory to write to; by default will write to the directory you read the corpus from.This function will write each field in `fields` to a separate file called `info..jsonl` where each line of the file is a json-serialized dict: `{"id": , "value": }`. ###Code corpus.dump_info('utterance',['parsed','tagged'], dir_name = OUT_DIR) ###Output _____no_output_____ ###Markdown As expected, we now have the following files in the output directory: ###Code ls $OUT_DIR ###Output _____no_output_____ ###Markdown If we now initialize a new corpus by reading from this directory: ###Code new_corpus = convokit.Corpus(OUT_DIR) new_utt = new_corpus.get_utterance(test_utt_id) ###Output _____no_output_____ ###Markdown We see that things that we've omitted in the `corpus.dump` call will not be read. ###Code new_utt.meta.keys() ###Output _____no_output_____ ###Markdown As a counterpart to `corpus.dump_info` we can also load auxiliary information on-demand. Here, this call will look for `info..jsonl` in the directory of `new_corpus` (or an optionally-specified `dir_name`) and attach the value specified in each line of the file to the utterance with the associated id: ###Code new_corpus.load_info('utterance',['parsed']) new_utt.get_info('parsed') ###Output _____no_output_____ ###Markdown Per-utterance calls `TextProcessor` objects also support calls per-utterance via `TextProcessor.transform_utterance()`. These calls take in raw strings as well as utterances, and will return an utterance: ###Code test_str = "I played -- a tennis match." prep.transform_utterance(test_str) from convokit.model import Utterance adhoc_utt = Utterance(text=test_str) adhoc_utt = prep.transform_utterance(adhoc_utt) adhoc_utt.get_info('clean_text') ###Output _____no_output_____ ###Markdown Pipelines Finally, we can string together multiple transformers, and hence `TextProcessors`, into a pipeline, using a `ConvokitPipeline` object. This is analogous to (and in fact inherits from) scikit-learn's `Pipeline` class. ###Code from convokit.convokitPipeline import ConvokitPipeline ###Output _____no_output_____ ###Markdown As an example, suppose we want to both clean the text and parse it. We can chain the required steps to get there by initializing `ConvokitPipeline` with a list of steps, represented as a tuple of `(, initialized transformer-like object)`:* `'prep'`, our de-hyphenator* `'parse'`, our parser ###Code parse_pipe = ConvokitPipeline([('prep', TextProcessor(preprocess_text, 'clean_text_pipe')), ('parse', TextParser('parsed_pipe', input_field='clean_text_pipe', verbosity=50))]) corpus = parse_pipe.transform(corpus) utt.get_info('parsed_pipe') ###Output _____no_output_____ ###Markdown As promised, the pipeline also works to transform utterances. ###Code test_utt = parse_pipe.transform_utterance(test_str) test_utt.get_info('parsed_pipe') ###Output _____no_output_____ ###Markdown Some advanced usage: playing around with parameters The point of the following is to demonstrate more elaborate calls to `TextProcessor`. As an example, we will count words in an utterance.First, we'll initialize a `TextProcessor` that does wordcounts (i.e., `len(x.split())`) on just the raw text (`utt.text`), writing output to field `wc_raw`. ###Code wc_raw = TextProcessor(proc_fn=lambda x: len(x.split()), output_field='wc_raw') corpus = wc_raw.transform(corpus) utt.get_info('wc_raw') ###Output _____no_output_____ ###Markdown If we instead wanted to wordcount our preprocessed text, with the hyphens removed, we can specify `input_field='clean_text'` -- as such, the `TextProcessor` will read from `utt.get_info('clean_text')` instead. ###Code wc = TextProcessor(proc_fn=lambda x: len(x.split()), output_field='wc', input_field='clean_text') corpus = wc.transform(corpus) ###Output _____no_output_____ ###Markdown Here we see that we are no longer counting the extra hyphen. ###Code utt.get_info('wc') ###Output _____no_output_____ ###Markdown Likewise, we can count characters: ###Code chars = TextProcessor(proc_fn=lambda x: len(x), output_field='ch', input_field='clean_text') corpus = chars.transform(corpus) utt.get_info('ch') ###Output _____no_output_____ ###Markdown Suppose that for some reason we now wanted to calculate:* characters per word* words per character (the reciprocal)This requires:* a `TextProcessor` that takes in multiple input fields, `'ch'` and `'wc'`;* and that writes to multiple output fields, `'char_per_word'` and `'word_per_char'`.Here's how the resultant object, `char_per_word`, handles this:* in `transform()`, we pass `proc_fn` a dict mapping input field name to value, e.g., `{'wc': 22, 'ch': 120}`* `proc_fn` will be written to return a tuple, where each element of that tuple corresponds to each element of the list we've passed to `output_field`, e.g., ```out0, out1 = proc_fn(input)utt.set_info('char_per_word', out0) utt.set_info('word_per_char', out1)``` ###Code char_per_word = TextProcessor(proc_fn=lambda x: (x['ch']/x['wc'], x['wc']/x['ch']), output_field=['char_per_word', 'word_per_char'], input_field=['ch','wc']) corpus = char_per_word.transform(corpus) utt.get_info('char_per_word') utt.get_info('word_per_char') ###Output _____no_output_____ ###Markdown Some advanced usage: input filters Just for the sake of demonstration, suppose we wished to save some computation time and only parse the questions in a corpus. We can do this by specifying `input_filter` (which, recall discussion above, takes as argument an `Utterance` object). ###Code def is_question(utt, aux={}): return utt.meta['is_question'] qparser = TextParser(output_field='qparsed', input_field='clean_text', input_filter=is_question, verbosity=50) corpus = qparser.transform(corpus) ###Output 050/200 utterances processed 100/200 utterances processed 150/200 utterances processed 200/200 utterances processed ###Markdown Since our test utterance is not a question, `qparser.transform()` will skip over it, and hence the utterance won't have the 'qparsed' attribute (and `get_info` returns `None`): ###Code utt.get_info('qparsed') ###Output _____no_output_____ ###Markdown However, if we take an utterance that's a question, we see that it is indeed parsed: ###Code q_utt_id = '1681_14.q' q_utt = corpus.get_utterance(q_utt_id) q_utt.text q_utt.get_info('qparsed') ###Output _____no_output_____ ###Markdown This notebook demos some functionality in ConvoKit to preprocess text, and store the results. In particular, it shows examples of:* A `TextProcessor` base class that maps per-utterance attributes to per-utterance outputs;* A `TextParser` class that does dependency parsing;* Selective and decoupled data storage and loading;* Per-utterance calls to a transformer;* Pipelining transformers. Preliminaries: loading an existing corpus. To start, we load a clean version of a corpus. For speed we will use a 200-utterance subset of the tennis corpus. ###Code import os import convokit from convokit import download, Speaker # OPTION 1: DOWNLOAD CORPUS # UNCOMMENT THESE LINES TO DOWNLOAD CORPUS # DATA_DIR = '<YOUR DIRECTORY>' # ROOT_DIR = download('tennis-corpus') # OPTION 2: READ PREVIOUSLY-DOWNLOADED CORPUS FROM DISK # UNCOMMENT THIS LINE AND REPLACE WITH THE DIRECTORY WHERE THE TENNIS-CORPUS IS LOCATED # ROOT_DIR = '<YOUR DIRECTORY>' corpus = convokit.Corpus(ROOT_DIR, utterance_end_index=199) corpus.print_summary_stats() # SET YOUR OWN OUTPUT DIRECTORY HERE. # OUT_DIR = '<YOUR DIRECTORY>' ###Output _____no_output_____ ###Markdown Here's an example of an utterance from this corpus (questions asked to tennis players after matches, and the answers they give): ###Code test_utt_id = '1681_14.a' utt = corpus.get_utterance(test_utt_id) utt.text ###Output _____no_output_____ ###Markdown Right now, `utt.meta` contains the following fields: ###Code utt.meta ###Output _____no_output_____ ###Markdown The TextProcessor class Many of our transformers are per-utterance mappings of one attribute of an utterance to another. To facilitate these calls, we use a `TextProcessor` class that inherits from `Transformer`. `TextProcessor` is initialized with the following arguments:* `proc_fn`: the mapping function. Supports one of two function signatures: `proc_fn(input)` and `proc_fn(input, auxiliary_info)`. * `input_field`: the attribute of the utterance that `proc_fn` will take as input. If set to `None`, will default to reading `utt.text`, as seems to be presently done.* `output_field`: the name of the attribute that the output of `proc_fn` will be written to. * `aux_input`: any auxiliary input that `proc_fn` needs (e.g., a pre-loaded model); passed in as a dict.* `input_filter`: a boolean function of signature `input_filter(utterance, aux_input)`, where `aux_input` is again passed as a dict. If this returns `False` then the particular utterance will be skipped; by default it will always return `True`.Both `input_field` and `output_field` support multiple items -- that is, `proc_fn` could take in multiple attributes of an utterance and output multiple attributes. I'll show how this works in advanced usage, below."Attribute" is a deliberately generic term. `TextProcessor` could produce "features" as we may conventionally think of them (e.g., wordcount, politeness strategies). It can also be used to pre-process text, i.e., generate alternate representations of the text. ###Code from convokit.text_processing import TextProcessor ###Output _____no_output_____ ###Markdown simple example: cleaning the text As a simple example, suppose we want to remove hyphens "`--`" from the text as a preprocessing step. To use `TextProcessor` to do this for us, we'd define the following as a `proc_fn`: ###Code def preprocess_text(text): text = text.replace(' -- ', ' ') return text ###Output _____no_output_____ ###Markdown Below, we initialize `prep`, a `TextProcessor` object that will run `preprocess_text` on each utterance.When we call `prep.transform()`, the following will occur:* Because we didn't specify an input field, `prep` will pass `utterance.text` into `preprocess_text`* It will write the output -- the text minus the hyphens -- to a field called `clean_text` that will be stored in the utterance meta and that can be accessed as `utt.meta['clean_text']` or `utt.get_info('clean_text')` ###Code prep = TextProcessor(proc_fn=preprocess_text, output_field='clean_text') corpus = prep.transform(corpus) ###Output _____no_output_____ ###Markdown And as desired, we now have a new field attached to `utt`. ###Code utt.retrieve_meta('clean_text') ###Output _____no_output_____ ###Markdown Parsing text with the TextParser class One common utterance-level thing we want to do is parse the text. In practice, in increasing order of (computational) difficulty, this typically entails:* proper tokenizing of words and sentences;* POS-tagging;* dependency-parsing. As such, we provide a `TextParser` class that inherits from `TextProcessor` to do all of this, taking in the following arguments:* `output_field`: defaults to `'parsed'`* `input_field`* `mode`: whether we want to go through all of the above steps (which may be expensive) or stop mid-way through. Supports the following options: `'tokenize'`, `'tag'`, `'parse'` (the default).Under the surface, `TextParser` actually uses two separate models: a `spacy` object that does word tokenization, tagging and parsing _per sentence_, and `nltk`'s sentence tokenizer. The rationale is:* `spacy` doesn't support sentence tokenization without dependency-parsing, and we often want sentence tokenization without having to go through the effort of parsing.* We want to be consistent (as much as possible, given changes to spacy and nltk) in the tokenizations we produce, between runs where we don't want parsing and runs where we do.If we've pre-loaded these models, we can pass them into the constructor too, as:* `spacy_nlp`* `sent_tokenizer` ###Code from convokit.text_processing import TextParser parser = TextParser(input_field='clean_text', verbosity=50) corpus = parser.transform(corpus) ###Output 050/200 utterances processed 100/200 utterances processed 150/200 utterances processed 200/200 utterances processed ###Markdown parse outputA parse produced by `TextParser` is serialized in text form. It is a list consisting of sentences, where each sentence is a dict with* `toks`: a list of tokens (i.e., words) in the sentence;* `rt`: the index of the root of the dependency tree (i.e., `sentence['toks'][sentence['rt']` gives the root)Each token, in turn, contains the following:* `tok`: the text of the token;* `tag`: the tag;* `up`: the index of the parent of the token in the dependency tree (no entry for the root);* `down`: the indices of the children of the token;* `dep`: the dependency of the edge between the token and its parent. ###Code test_parse = utt.retrieve_meta('parsed') test_parse[0] ###Output _____no_output_____ ###Markdown If we didn't want to go through the trouble of dependency-parsing (which could be expensive) we could initialize `TextParser` with `mode='tag'`, which only POS-tags tokens: ###Code texttagger = TextParser(output_field='tagged', input_field='clean_text', mode='tag') corpus = texttagger.transform(corpus) utt.retrieve_meta('tagged')[0] ###Output _____no_output_____ ###Markdown Storing and loading corpora We've now computed a bunch of utterance-level attributes. ###Code list(utt.meta.keys()) ###Output _____no_output_____ ###Markdown By default, calling `corpus.dump` will write all of these attributes to disk, within the file that stores utterances; later calling `corpus.load` will load all of these attributes back into a new corpus. For big objects like parses, this incurs a high computational burden (especially if in a later use case you might not even need to look at parses). To avoid this, `corpus.dump` takes an optional argument `fields_to_skip`, which is a dict of object type (`'utterance'`, `'conversation'`, `'speaker'`, `'corpus'`) to a list of fields that we do not want to write to disk. The following call will write the corpus to disk, without any of the preprocessing output we generated above: ###Code corpus.dump(os.path.basename(OUT_DIR), base_path=os.path.dirname(OUT_DIR), fields_to_skip={'utterance': ['parsed','tagged','clean_text']}) ###Output _____no_output_____ ###Markdown For attributes we want to keep around, but that we don't want to read and write to disk in a big batch with all the other corpus data, `corpus.dump_info` will dump fields of a Corpus object into separate files. This takes the following arguments as input:* `obj_type`: which type of Corpus object you're dealing with.* `fields`: a list of the fields to write. * `dir_name`: which directory to write to; by default will write to the directory you read the corpus from.This function will write each field in `fields` to a separate file called `info..jsonl` where each line of the file is a json-serialized dict: `{"id": , "value": }`. ###Code corpus.dump_info('utterance',['parsed','tagged'], dir_name = OUT_DIR) ###Output _____no_output_____ ###Markdown As expected, we now have the following files in the output directory: ###Code ls $OUT_DIR ###Output conversations.json index.json info.tagged.jsonl users.json corpus.json info.parsed.jsonl speakers.json utterances.jsonl ###Markdown If we now initialize a new corpus by reading from this directory: ###Code new_corpus = convokit.Corpus(OUT_DIR) new_utt = new_corpus.get_utterance(test_utt_id) ###Output _____no_output_____ ###Markdown We see that things that we've omitted in the `corpus.dump` call will not be read. ###Code new_utt.meta.keys() ###Output _____no_output_____ ###Markdown As a counterpart to `corpus.dump_info` we can also load auxiliary information on-demand. Here, this call will look for `info..jsonl` in the directory of `new_corpus` (or an optionally-specified `dir_name`) and attach the value specified in each line of the file to the utterance with the associated id: ###Code new_corpus.load_info('utterance',['parsed']) new_utt.retrieve_meta('parsed') ###Output _____no_output_____ ###Markdown Per-utterance calls `TextProcessor` objects also support calls per-utterance via `TextProcessor.transform_utterance()`. These calls take in raw strings as well as utterances, and will return an utterance: ###Code test_str = "I played -- a tennis match." prep.transform_utterance(test_str) adhoc_utt = prep.transform_utterance(adhoc_utt) adhoc_utt.retrieve_meta('clean_text') ###Output _____no_output_____ ###Markdown Pipelines Finally, we can string together multiple transformers, and hence `TextProcessors`, into a pipeline, using a `ConvokitPipeline` object. This is analogous to (and in fact inherits from) scikit-learn's `Pipeline` class. ###Code from convokit.convokitPipeline import ConvokitPipeline ###Output _____no_output_____ ###Markdown As an example, suppose we want to both clean the text and parse it. We can chain the required steps to get there by initializing `ConvokitPipeline` with a list of steps, represented as a tuple of `(, initialized transformer-like object)`:* `'prep'`, our de-hyphenator* `'parse'`, our parser ###Code parse_pipe = ConvokitPipeline([('prep', TextProcessor(preprocess_text, 'clean_text_pipe')), ('parse', TextParser('parsed_pipe', input_field='clean_text_pipe', verbosity=50))]) corpus = parse_pipe.transform(corpus) utt.retrieve_meta('parsed_pipe') ###Output _____no_output_____ ###Markdown As promised, the pipeline also works to transform utterances. ###Code test_utt = parse_pipe.transform_utterance(test_str) test_utt.retrieve_meta('parsed_pipe') ###Output _____no_output_____ ###Markdown Some advanced usage: playing around with parameters The point of the following is to demonstrate more elaborate calls to `TextProcessor`. As an example, we will count words in an utterance.First, we'll initialize a `TextProcessor` that does wordcounts (i.e., `len(x.split())`) on just the raw text (`utt.text`), writing output to field `wc_raw`. ###Code wc_raw = TextProcessor(proc_fn=lambda x: len(x.split()), output_field='wc_raw') corpus = wc_raw.transform(corpus) utt.retrieve_meta('wc_raw') ###Output _____no_output_____ ###Markdown If we instead wanted to wordcount our preprocessed text, with the hyphens removed, we can specify `input_field='clean_text'` -- as such, the `TextProcessor` will read from `utt.get_info('clean_text')` instead. ###Code wc = TextProcessor(proc_fn=lambda x: len(x.split()), output_field='wc', input_field='clean_text') corpus = wc.transform(corpus) ###Output _____no_output_____ ###Markdown Here we see that we are no longer counting the extra hyphen. ###Code utt.retrieve_meta('wc') ###Output _____no_output_____ ###Markdown Likewise, we can count characters: ###Code chars = TextProcessor(proc_fn=lambda x: len(x), output_field='ch', input_field='clean_text') corpus = chars.transform(corpus) utt.retrieve_meta('ch') ###Output _____no_output_____ ###Markdown Suppose that for some reason we now wanted to calculate:* characters per word* words per character (the reciprocal)This requires:* a `TextProcessor` that takes in multiple input fields, `'ch'` and `'wc'`;* and that writes to multiple output fields, `'char_per_word'` and `'word_per_char'`.Here's how the resultant object, `char_per_word`, handles this:* in `transform()`, we pass `proc_fn` a dict mapping input field name to value, e.g., `{'wc': 22, 'ch': 120}`* `proc_fn` will be written to return a tuple, where each element of that tuple corresponds to each element of the list we've passed to `output_field`, e.g., ```out0, out1 = proc_fn(input)utt.set_info('char_per_word', out0) utt.set_info('word_per_char', out1)``` ###Code char_per_word = TextProcessor(proc_fn=lambda x: (x['ch']/x['wc'], x['wc']/x['ch']), output_field=['char_per_word', 'word_per_char'], input_field=['ch','wc']) corpus = char_per_word.transform(corpus) utt.retrieve_meta('char_per_word') utt.retrieve_meta('word_per_char') ###Output _____no_output_____ ###Markdown Some advanced usage: input filters Just for the sake of demonstration, suppose we wished to save some computation time and only parse the questions in a corpus. We can do this by specifying `input_filter` (which, recall discussion above, takes as argument an `Utterance` object). ###Code def is_question(utt, aux={}): return utt.meta['is_question'] qparser = TextParser(output_field='qparsed', input_field='clean_text', input_filter=is_question, verbosity=50) corpus = qparser.transform(corpus) ###Output 050/200 utterances processed 100/200 utterances processed 150/200 utterances processed 200/200 utterances processed ###Markdown Since our test utterance is not a question, `qparser.transform()` will skip over it, and hence the utterance won't have the 'qparsed' attribute (and `get_info` returns `None`): ###Code utt.retrieve_meta('qparsed') ###Output _____no_output_____ ###Markdown However, if we take an utterance that's a question, we see that it is indeed parsed: ###Code q_utt_id = '1681_14.q' q_utt = corpus.get_utterance(q_utt_id) q_utt.text q_utt.retrieve_meta('qparsed') ###Output _____no_output_____ ###Markdown This notebook demos some functionality in ConvoKit to preprocess text, and store the results. In particular, it shows examples of:* A `TextProcessor` base class that maps per-utterance attributes to per-utterance outputs;* A `TextParser` class that does dependency parsing;* Selective and decoupled data storage and loading;* Per-utterance calls to a transformer;* Pipelining transformers. Preliminaries: loading an existing corpus. To start, we load a clean version of a corpus. For speed we will use a 200-utterance subset of the tennis corpus. ###Code import os import convokit from convokit import download # OPTION 1: DOWNLOAD CORPUS # UNCOMMENT THESE LINES TO DOWNLOAD CORPUS # DATA_DIR = '<YOUR DIRECTORY>' # ROOT_DIR = download('tennis-corpus') # OPTION 2: READ PREVIOUSLY-DOWNLOADED CORPUS FROM DISK # UNCOMMENT THIS LINE AND REPLACE WITH THE DIRECTORY WHERE THE TENNIS-CORPUS IS LOCATED # ROOT_DIR = '<YOUR DIRECTORY>' corpus = convokit.Corpus(ROOT_DIR, utterance_end_index=199) corpus.print_summary_stats() # SET YOUR OWN OUTPUT DIRECTORY HERE. OUT_DIR = '<YOUR DIRECTORY>' ###Output _____no_output_____ ###Markdown Here's an example of an utterance from this corpus (questions asked to tennis players after matches, and the answers they give): ###Code test_utt_id = '1681_14.a' utt = corpus.get_utterance(test_utt_id) utt.text ###Output _____no_output_____ ###Markdown Right now, `utt.meta` contains the following fields: ###Code utt.meta ###Output _____no_output_____ ###Markdown The TextProcessor class Many of our transformers are per-utterance mappings of one attribute of an utterance to another. To facilitate these calls, we use a `TextProcessor` class that inherits from `Transformer`. `TextProcessor` is initialized with the following arguments:* `proc_fn`: the mapping function. Supports one of two function signatures: `proc_fn(input)` and `proc_fn(input, auxiliary_info)`. * `input_field`: the attribute of the utterance that `proc_fn` will take as input. If set to `None`, will default to reading `utt.text`, as seems to be presently done.* `output_field`: the name of the attribute that the output of `proc_fn` will be written to. * `aux_input`: any auxiliary input that `proc_fn` needs (e.g., a pre-loaded model); passed in as a dict.* `input_filter`: a boolean function of signature `input_filter(utterance, aux_input)`, where `aux_input` is again passed as a dict. If this returns `False` then the particular utterance will be skipped; by default it will always return `True`.Both `input_field` and `output_field` support multiple items -- that is, `proc_fn` could take in multiple attributes of an utterance and output multiple attributes. I'll show how this works in advanced usage, below."Attribute" is a deliberately generic term. `TextProcessor` could produce "features" as we may conventionally think of them (e.g., wordcount, politeness strategies). It can also be used to pre-process text, i.e., generate alternate representations of the text. ###Code from convokit.text_processing import TextProcessor ###Output _____no_output_____ ###Markdown simple example: cleaning the text As a simple example, suppose we want to remove hyphens "`--`" from the text as a preprocessing step. To use `TextProcessor` to do this for us, we'd define the following as a `proc_fn`: ###Code def preprocess_text(text): text = text.replace(' -- ', ' ') return text ###Output _____no_output_____ ###Markdown Below, we initialize `prep`, a `TextProcessor` object that will run `preprocess_text` on each utterance.When we call `prep.transform()`, the following will occur:* Because we didn't specify an input field, `prep` will pass `utterance.text` into `preprocess_text`* It will write the output -- the text minus the hyphens -- to a field called `clean_text` that will be stored in the utterance meta and that can be accessed as `utt.meta['clean_text']` or `utt.get_info('clean_text')` ###Code prep = TextProcessor(proc_fn=preprocess_text, output_field='clean_text') corpus = prep.transform(corpus) ###Output _____no_output_____ ###Markdown And as desired, we now have a new field attached to `utt`. ###Code utt.get_info('clean_text') ###Output _____no_output_____ ###Markdown Parsing text with the TextParser class One common utterance-level thing we want to do is parse the text. In practice, in increasing order of (computational) difficulty, this typically entails:* proper tokenizing of words and sentences;* POS-tagging;* dependency-parsing. As such, we provide a `TextParser` class that inherits from `TextProcessor` to do all of this, taking in the following arguments:* `output_field`: defaults to `'parsed'`* `input_field`* `mode`: whether we want to go through all of the above steps (which may be expensive) or stop mid-way through. Supports the following options: `'tokenize'`, `'tag'`, `'parse'` (the default).Under the surface, `TextParser` actually uses two separate models: a `spacy` object that does word tokenization, tagging and parsing _per sentence_, and `nltk`'s sentence tokenizer. The rationale is:* `spacy` doesn't support sentence tokenization without dependency-parsing, and we often want sentence tokenization without having to go through the effort of parsing.* We want to be consistent (as much as possible, given changes to spacy and nltk) in the tokenizations we produce, between runs where we don't want parsing and runs where we do.If we've pre-loaded these models, we can pass them into the constructor too, as:* `spacy_nlp`* `sent_tokenizer` ###Code from convokit.text_processing import TextParser parser = TextParser(input_field='clean_text', verbosity=50) corpus = parser.transform(corpus) ###Output 050/200 utterances processed 100/200 utterances processed 150/200 utterances processed 200/200 utterances processed ###Markdown parse outputA parse produced by `TextParser` is serialized in text form. It is a list consisting of sentences, where each sentence is a dict with* `toks`: a list of tokens (i.e., words) in the sentence;* `rt`: the index of the root of the dependency tree (i.e., `sentence['toks'][sentence['rt']` gives the root)Each token, in turn, contains the following:* `tok`: the text of the token;* `tag`: the tag;* `up`: the index of the parent of the token in the dependency tree (no entry for the root);* `down`: the indices of the children of the token;* `dep`: the dependency of the edge between the token and its parent. ###Code test_parse = utt.get_info('parsed') test_parse[0] ###Output _____no_output_____ ###Markdown If we didn't want to go through the trouble of dependency-parsing (which could be expensive) we could initialize `TextParser` with `mode='tag'`, which only POS-tags tokens: ###Code texttagger = TextParser(output_field='tagged', input_field='clean_text', mode='tag') corpus = texttagger.transform(corpus) utt.get_info('tagged')[0] ###Output _____no_output_____ ###Markdown Storing and loading corpora We've now computed a bunch of utterance-level attributes. ###Code list(utt.meta.keys()) ###Output _____no_output_____ ###Markdown By default, calling `corpus.dump` will write all of these attributes to disk, within the file that stores utterances; later calling `corpus.load` will load all of these attributes back into a new corpus. For big objects like parses, this incurs a high computational burden (especially if in a later use case you might not even need to look at parses). To avoid this, `corpus.dump` takes an optional argument `fields_to_skip`, which is a dict of object type (`'utterance'`, `'conversation'`, `'speaker'`, `'corpus'`) to a list of fields that we do not want to write to disk. The following call will write the corpus to disk, without any of the preprocessing output we generated above: ###Code corpus.dump(os.path.basename(OUT_DIR), base_path=os.path.dirname(OUT_DIR), fields_to_skip={'utterance': ['parsed','tagged','clean_text']}) ###Output _____no_output_____ ###Markdown For attributes we want to keep around, but that we don't want to read and write to disk in a big batch with all the other corpus data, `corpus.dump_info` will dump fields of a Corpus object into separate files. This takes the following arguments as input:* `obj_type`: which type of Corpus object you're dealing with.* `fields`: a list of the fields to write. * `dir_name`: which directory to write to; by default will write to the directory you read the corpus from.This function will write each field in `fields` to a separate file called `info..jsonl` where each line of the file is a json-serialized dict: `{"id": , "value": }`. ###Code corpus.dump_info('utterance',['parsed','tagged'], dir_name = OUT_DIR) ###Output _____no_output_____ ###Markdown As expected, we now have the following files in the output directory: ###Code ls $OUT_DIR ###Output conversations.json index.json info.tagged.jsonl utterances.jsonl corpus.json info.parsed.jsonl speakers.json ###Markdown If we now initialize a new corpus by reading from this directory: ###Code new_corpus = convokit.Corpus(OUT_DIR) new_utt = new_corpus.get_utterance(test_utt_id) ###Output _____no_output_____ ###Markdown We see that things that we've omitted in the `corpus.dump` call will not be read. ###Code new_utt.meta.keys() ###Output _____no_output_____ ###Markdown As a counterpart to `corpus.dump_info` we can also load auxiliary information on-demand. Here, this call will look for `info..jsonl` in the directory of `new_corpus` (or an optionally-specified `dir_name`) and attach the value specified in each line of the file to the utterance with the associated id: ###Code new_corpus.load_info('utterance',['parsed']) new_utt.get_info('parsed') ###Output _____no_output_____ ###Markdown Per-utterance calls `TextProcessor` objects also support calls per-utterance via `TextProcessor.transform_utterance()`. These calls take in raw strings as well as utterances, and will return an utterance: ###Code test_str = "I played -- a tennis match." prep.transform_utterance(test_str) from convokit.model import Utterance adhoc_utt = Utterance(text=test_str) adhoc_utt = prep.transform_utterance(adhoc_utt) adhoc_utt.get_info('clean_text') ###Output _____no_output_____ ###Markdown Pipelines Finally, we can string together multiple transformers, and hence `TextProcessors`, into a pipeline, using a `ConvokitPipeline` object. This is analogous to (and in fact inherits from) scikit-learn's `Pipeline` class. ###Code from convokit.convokitPipeline import ConvokitPipeline ###Output _____no_output_____ ###Markdown As an example, suppose we want to both clean the text and parse it. We can chain the required steps to get there by initializing `ConvokitPipeline` with a list of steps, represented as a tuple of `(, initialized transformer-like object)`:* `'prep'`, our de-hyphenator* `'parse'`, our parser ###Code parse_pipe = ConvokitPipeline([('prep', TextProcessor(preprocess_text, 'clean_text_pipe')), ('parse', TextParser('parsed_pipe', input_field='clean_text_pipe', verbosity=50))]) corpus = parse_pipe.transform(corpus) utt.get_info('parsed_pipe') ###Output _____no_output_____ ###Markdown As promised, the pipeline also works to transform utterances. ###Code test_utt = parse_pipe.transform_utterance(test_str) test_utt.get_info('parsed_pipe') ###Output _____no_output_____ ###Markdown Some advanced usage: playing around with parameters The point of the following is to demonstrate more elaborate calls to `TextProcessor`. As an example, we will count words in an utterance.First, we'll initialize a `TextProcessor` that does wordcounts (i.e., `len(x.split())`) on just the raw text (`utt.text`), writing output to field `wc_raw`. ###Code wc_raw = TextProcessor(proc_fn=lambda x: len(x.split()), output_field='wc_raw') corpus = wc_raw.transform(corpus) utt.get_info('wc_raw') ###Output _____no_output_____ ###Markdown If we instead wanted to wordcount our preprocessed text, with the hyphens removed, we can specify `input_field='clean_text'` -- as such, the `TextProcessor` will read from `utt.get_info('clean_text')` instead. ###Code wc = TextProcessor(proc_fn=lambda x: len(x.split()), output_field='wc', input_field='clean_text') corpus = wc.transform(corpus) ###Output _____no_output_____ ###Markdown Here we see that we are no longer counting the extra hyphen. ###Code utt.get_info('wc') ###Output _____no_output_____ ###Markdown Likewise, we can count characters: ###Code chars = TextProcessor(proc_fn=lambda x: len(x), output_field='ch', input_field='clean_text') corpus = chars.transform(corpus) utt.get_info('ch') ###Output _____no_output_____ ###Markdown Suppose that for some reason we now wanted to calculate:* characters per word* words per character (the reciprocal)This requires:* a `TextProcessor` that takes in multiple input fields, `'ch'` and `'wc'`;* and that writes to multiple output fields, `'char_per_word'` and `'word_per_char'`.Here's how the resultant object, `char_per_word`, handles this:* in `transform()`, we pass `proc_fn` a dict mapping input field name to value, e.g., `{'wc': 22, 'ch': 120}`* `proc_fn` will be written to return a tuple, where each element of that tuple corresponds to each element of the list we've passed to `output_field`, e.g., ```out0, out1 = proc_fn(input)utt.set_info('char_per_word', out0) utt.set_info('word_per_char', out1)``` ###Code char_per_word = TextProcessor(proc_fn=lambda x: (x['ch']/x['wc'], x['wc']/x['ch']), output_field=['char_per_word', 'word_per_char'], input_field=['ch','wc']) corpus = char_per_word.transform(corpus) utt.get_info('char_per_word') utt.get_info('word_per_char') ###Output _____no_output_____ ###Markdown Some advanced usage: input filters Just for the sake of demonstration, suppose we wished to save some computation time and only parse the questions in a corpus. We can do this by specifying `input_filter` (which, recall discussion above, takes as argument an `Utterance` object). ###Code def is_question(utt, aux={}): return utt.meta['is_question'] qparser = TextParser(output_field='qparsed', input_field='clean_text', input_filter=is_question, verbosity=50) corpus = qparser.transform(corpus) ###Output 050/200 utterances processed 100/200 utterances processed 150/200 utterances processed 200/200 utterances processed ###Markdown Since our test utterance is not a question, `qparser.transform()` will skip over it, and hence the utterance won't have the 'qparsed' attribute (and `get_info` returns `None`): ###Code utt.get_info('qparsed') ###Output _____no_output_____ ###Markdown However, if we take an utterance that's a question, we see that it is indeed parsed: ###Code q_utt_id = '1681_14.q' q_utt = corpus.get_utterance(q_utt_id) q_utt.text q_utt.get_info('qparsed') ###Output _____no_output_____
PennyLane/Data Reuploading Classifier/4_QConv2ent_QFC2_Branch (best).ipynb
###Markdown Loading Raw Data ###Code (x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data() x_train = x_train[:, 0:27, 0:27] x_test = x_test[:, 0:27, 0:27] x_train_flatten = x_train.reshape(x_train.shape[0], x_train.shape[1]*x_train.shape[2])/255.0 x_test_flatten = x_test.reshape(x_test.shape[0], x_test.shape[1]*x_test.shape[2])/255.0 print(x_train_flatten.shape, y_train.shape) print(x_test_flatten.shape, y_test.shape) x_train_0 = x_train_flatten[y_train == 0] x_train_1 = x_train_flatten[y_train == 1] x_train_2 = x_train_flatten[y_train == 2] x_train_3 = x_train_flatten[y_train == 3] x_train_4 = x_train_flatten[y_train == 4] x_train_5 = x_train_flatten[y_train == 5] x_train_6 = x_train_flatten[y_train == 6] x_train_7 = x_train_flatten[y_train == 7] x_train_8 = x_train_flatten[y_train == 8] x_train_9 = x_train_flatten[y_train == 9] x_train_list = [x_train_0, x_train_1, x_train_2, x_train_3, x_train_4, x_train_5, x_train_6, x_train_7, x_train_8, x_train_9] print(x_train_0.shape) print(x_train_1.shape) print(x_train_2.shape) print(x_train_3.shape) print(x_train_4.shape) print(x_train_5.shape) print(x_train_6.shape) print(x_train_7.shape) print(x_train_8.shape) print(x_train_9.shape) x_test_0 = x_test_flatten[y_test == 0] x_test_1 = x_test_flatten[y_test == 1] x_test_2 = x_test_flatten[y_test == 2] x_test_3 = x_test_flatten[y_test == 3] x_test_4 = x_test_flatten[y_test == 4] x_test_5 = x_test_flatten[y_test == 5] x_test_6 = x_test_flatten[y_test == 6] x_test_7 = x_test_flatten[y_test == 7] x_test_8 = x_test_flatten[y_test == 8] x_test_9 = x_test_flatten[y_test == 9] x_test_list = [x_test_0, x_test_1, x_test_2, x_test_3, x_test_4, x_test_5, x_test_6, x_test_7, x_test_8, x_test_9] print(x_test_0.shape) print(x_test_1.shape) print(x_test_2.shape) print(x_test_3.shape) print(x_test_4.shape) print(x_test_5.shape) print(x_test_6.shape) print(x_test_7.shape) print(x_test_8.shape) print(x_test_9.shape) ###Output (980, 729) (1135, 729) (1032, 729) (1010, 729) (982, 729) (892, 729) (958, 729) (1028, 729) (974, 729) (1009, 729) ###Markdown Selecting the datasetOutput: X_train, Y_train, X_test, Y_test ###Code n_train_sample_per_class = 200 n_class = 4 X_train = x_train_list[0][:n_train_sample_per_class, :] Y_train = np.zeros((X_train.shape[0]*n_class,), dtype=int) for i in range(n_class-1): X_train = np.concatenate((X_train, x_train_list[i+1][:n_train_sample_per_class, :]), axis=0) Y_train[(i+1)*n_train_sample_per_class:(i+2)*n_train_sample_per_class] = i+1 X_train.shape, Y_train.shape n_test_sample_per_class = int(0.25*n_train_sample_per_class) X_test = x_test_list[0][:n_test_sample_per_class, :] Y_test = np.zeros((X_test.shape[0]*n_class,), dtype=int) for i in range(n_class-1): X_test = np.concatenate((X_test, x_test_list[i+1][:n_test_sample_per_class, :]), axis=0) Y_test[(i+1)*n_test_sample_per_class:(i+2)*n_test_sample_per_class] = i+1 X_test.shape, Y_test.shape ###Output _____no_output_____ ###Markdown Dataset Preprocessing ###Code X_train = X_train.reshape(X_train.shape[0], 27, 27) X_test = X_test.reshape(X_test.shape[0], 27, 27) X_train.shape, X_test.shape Y_train_dict = [] for i in range(np.unique(Y_train).shape[0]): temp_Y = np.zeros(Y_train.shape) temp_Y[Y_train == i] = 0 # positive class temp_Y[Y_train != i] = 1 # negative class temp_Y = to_categorical(temp_Y) Y_train_dict += [('Y' + str(i), temp_Y)] Y_train_dict = dict(Y_train_dict) Y_test_dict = [] for i in range(np.unique(Y_test).shape[0]): temp_Y = np.zeros(Y_test.shape) temp_Y[Y_test == i] = 0 # positive class temp_Y[Y_test != i] = 1 # negative class temp_Y = to_categorical(temp_Y) Y_test_dict += [('Y' + str(i), temp_Y)] Y_test_dict = dict(Y_test_dict) Y_train_dict['Y1'].shape, Y_test_dict['Y0'].shape ###Output _____no_output_____ ###Markdown Quantum ###Code import pennylane as qml from pennylane import numpy as np from pennylane.optimize import AdamOptimizer, GradientDescentOptimizer qml.enable_tape() from tensorflow.keras.utils import to_categorical # Set a random seed np.random.seed(2020) # Define output labels as quantum state vectors def density_matrix(state): """Calculates the density matrix representation of a state. Args: state (array[complex]): array representing a quantum state vector Returns: dm: (array[complex]): array representing the density matrix """ return state * np.conj(state).T label_0 = [[1], [0]] label_1 = [[0], [1]] state_labels = [label_0, label_1] n_qubits = 2 dev_fc = qml.device("default.qubit", wires=n_qubits) @qml.qnode(dev_fc) def q_fc(params, inputs): """A variational quantum circuit representing the DRC. Args: params (array[float]): array of parameters inputs = [x, y] x (array[float]): 1-d input vector y (array[float]): single output state density matrix Returns: float: fidelity between output state and input """ # layer iteration for l in range(len(params[0])): # qubit iteration for q in range(n_qubits): # gate iteration for g in range(int(len(inputs)/3)): qml.Rot(*(params[0][l][3*g:3*(g+1)] * inputs[3*g:3*(g+1)] + params[1][l][3*g:3*(g+1)]), wires=q) return [qml.expval(qml.Hermitian(density_matrix(state_labels[i]), wires=[i])) for i in range(n_qubits)] dev_conv = qml.device("default.qubit", wires=9) @qml.qnode(dev_conv) def q_conv(conv_params, inputs): """A variational quantum circuit representing the Universal classifier + Conv. Args: params (array[float]): array of parameters x (array[float]): 2-d input vector y (array[float]): single output state density matrix Returns: float: fidelity between output state and input """ # layer iteration for l in range(len(conv_params[0])): # RY layer # height iteration for i in range(3): # width iteration for j in range(3): qml.RY((conv_params[0][l][3*i+j] * inputs[i, j] + conv_params[1][l][3*i+j]), wires=(3*i+j)) # entangling layer for i in range(9): if i != (9-1): qml.CNOT(wires=[i, i+1]) return qml.expval(qml.PauliZ(0) @ qml.PauliZ(1) @ qml.PauliZ(2) @ qml.PauliZ(3) @ qml.PauliZ(4) @ qml.PauliZ(5) @ qml.PauliZ(6) @ qml.PauliZ(7) @ qml.PauliZ(8)) a = np.zeros((2, 1, 9)) q_conv(a, X_train[0, 0:3, 0:3]) a = np.zeros((2, 1, 9)) q_fc(a, X_train[0, 0, 0:9]) class class_weights(tf.keras.layers.Layer): def __init__(self): super(class_weights, self).__init__() w_init = tf.random_normal_initializer() self.w = tf.Variable( initial_value=w_init(shape=(1, 2), dtype="float32"), trainable=True, ) def call(self, inputs): return (inputs * self.w) # Input image, size = 27 x 27 X = tf.keras.Input(shape=(27,27), name='Input_Layer') # Specs for Conv c_filter = 3 c_strides = 2 # First Quantum Conv Layer, trainable params = 18*L, output size = 13 x 13 num_conv_layer_1 = 2 q_conv_layer_1 = qml.qnn.KerasLayer(q_conv, {"conv_params": (2, num_conv_layer_1, 9)}, output_dim=(1), name='Quantum_Conv_Layer_1') size_1 = int(1+(X.shape[1]-c_filter)/c_strides) q_conv_layer_1_list = [] # height iteration for i in range(size_1): # width iteration for j in range(size_1): temp = q_conv_layer_1(X[:, 2*i:2*(i+1)+1, 2*j:2*(j+1)+1]) temp = tf.keras.layers.Reshape((1,))(temp) q_conv_layer_1_list += [temp] concat_layer_1 = tf.keras.layers.Concatenate(axis=1)(q_conv_layer_1_list) reshape_layer_1 = tf.keras.layers.Reshape((size_1, size_1))(concat_layer_1) # Second Quantum Conv Layer, trainable params = 18*L, output size = 6 x 6 num_conv_layer_2 = 2 q_conv_layer_2 = qml.qnn.KerasLayer(q_conv, {"conv_params": (2, num_conv_layer_2, 9)}, output_dim=(1), name='Quantum_Conv_Layer_2') size_2 = int(1+(reshape_layer_1.shape[1]-c_filter)/c_strides) q_conv_layer_2_list = [] # height iteration for i in range(size_2): # width iteration for j in range(size_2): temp = q_conv_layer_2(reshape_layer_1[:, 2*i:2*(i+1)+1, 2*j:2*(j+1)+1]) temp = tf.keras.layers.Reshape((1,))(temp) q_conv_layer_2_list += [temp] concat_layer_2 = tf.keras.layers.Concatenate(axis=1)(q_conv_layer_2_list) reshape_layer_2 = tf.keras.layers.Reshape((size_2, size_2, 1))(concat_layer_2) # Max Pooling Layer, output size = 9 max_pool_layer = tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=None, name='Max_Pool_Layer')(reshape_layer_2) reshape_layer_3 = tf.keras.layers.Reshape((9,))(max_pool_layer) # Quantum FC Layer, trainable params = 18*L*n_class + 2, output size = 2 num_fc_layer = 2 q_fc_layer_0 = qml.qnn.KerasLayer(q_fc, {"params": (2, num_fc_layer, 9)}, output_dim=2)(reshape_layer_3) q_fc_layer_1 = qml.qnn.KerasLayer(q_fc, {"params": (2, num_fc_layer, 9)}, output_dim=2)(reshape_layer_3) q_fc_layer_2 = qml.qnn.KerasLayer(q_fc, {"params": (2, num_fc_layer, 9)}, output_dim=2)(reshape_layer_3) q_fc_layer_3 = qml.qnn.KerasLayer(q_fc, {"params": (2, num_fc_layer, 9)}, output_dim=2)(reshape_layer_3) # Alpha Layer alpha_layer_0 = class_weights()(q_fc_layer_0) alpha_layer_1 = class_weights()(q_fc_layer_1) alpha_layer_2 = class_weights()(q_fc_layer_2) alpha_layer_3 = class_weights()(q_fc_layer_3) model = tf.keras.Model(inputs=X, outputs=[alpha_layer_0, alpha_layer_1, alpha_layer_2, alpha_layer_3]) for i in range(len(Y_train_dict)): new_key = model.layers[len(model.layers)-4+i].name old_key = "Y" + str(i) Y_train_dict[new_key] = Y_train_dict.pop(old_key) Y_test_dict[new_key] = Y_test_dict.pop(old_key) Y_train_dict Y_test_dict model(X_train[0:5, :, :]) model.summary() losses = { model.layers[len(model.layers)-4+0].name: "mse", model.layers[len(model.layers)-4+1].name: "mse", model.layers[len(model.layers)-4+2].name: "mse", model.layers[len(model.layers)-4+3].name: "mse" } #lossWeights = {"Y0": 1.0, "Y1": 1.0, "Y2": 1.0, "Y3": 1.0} print(losses) lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay( initial_learning_rate=0.1, decay_steps=int(len(X_train)/32), decay_rate=0.95, staircase=True) opt = tf.keras.optimizers.Adam(learning_rate=lr_schedule) model.compile(opt, loss=losses, metrics=["accuracy"]) cp_val_acc = tf.keras.callbacks.ModelCheckpoint(filepath="./Model/4_QConv2ent_2QFC_valacc.hdf5", monitor='val_accuracy', verbose=1, save_weights_only=True, save_best_only=True, mode='max') cp_val_loss = tf.keras.callbacks.ModelCheckpoint(filepath="./Model/4_QConv2ent_2QFC_valloss.hdf5", monitor='val_loss', verbose=1, save_weights_only=True, save_best_only=True, mode='min') H = model.fit(X_train, Y_train_dict, epochs=10, batch_size=32, validation_data=(X_test, Y_test_dict), verbose=1, initial_epoch=0, callbacks=[cp_val_acc, cp_val_loss]) # model weights with best val loss model.load_weights('./Model/4_QConv2ent_2QFC_valloss.hdf5') model.weights # next 10 epochs after lr decay model.weights # next 10 epochs after lr decay H.history # first 10 epochs before lr decay H.history # first 10 epochs before lr decay model.weights ###Output _____no_output_____ ###Markdown Result Analysis ###Code # model weights with best val loss model.load_weights('./Model/4_QConv2ent_2QFC_valloss.hdf5') model.weights test_res = model.predict(X_test) train_res = model.predict(X_train) test_res[0][0] train_res[0].shape def ave_loss(class_pred): return ((class_pred[0] - 1)**2 + (class_pred[1] - 0)**2) train_pred = np.zeros((len(train_res[0]), )) # samples loop for i in range(len(train_res[0])): temp_max = 0 class_max = None # class loop for j in range(4): # check positive class if temp_max < train_res[j][i][0]: temp_max = train_res[j][i][0] class_max = j train_pred[i] = class_max ((Y_train == train_pred).sum())/(len(train_pred)) train_pred = np.zeros((len(train_res[0]), )) # samples loop for i in range(len(train_res[0])): temp_min = 100 class_min = None # class loop for j in range(4): # check loss value if temp_min > ave_loss(train_res[j][i]): temp_min = ave_loss(train_res[j][i]) class_min = j train_pred[i] = class_min ((Y_train == train_pred).sum())/(len(train_pred)) # best val loss weights # lowest mse # wrong train sample np.where((Y_train == train_pred) == False)[0] # method of determining true class # weights after 10 epochs lr decay # highest positive value: train 0.90125, test 0.83 # lowest mse: train 0.90375, test 0.83 # best val loss weights # highest positive value: train 0.8975, test 0.865 # lowest mse: train 0.9, test 0.865 test_pred = np.zeros((len(test_res[0]), )) # samples loop for i in range(len(test_res[0])): temp_max = 0 class_max = None # class loop for j in range(4): # check positive class if temp_max < test_res[j][i][0]: temp_max = test_res[j][i][0] class_max = j test_pred[i] = class_max ((Y_test == test_pred).sum())/(len(test_pred)) test_pred = np.zeros((len(test_res[0]), )) # samples loop for i in range(len(test_res[0])): temp_min = 100 class_min = None # class loop for j in range(4): # check loss value if temp_min > ave_loss(test_res[j][i]): temp_min = ave_loss(test_res[j][i]) class_min = j test_pred[i] = class_min ((Y_test == test_pred).sum())/(len(test_pred)) # best val loss weights # lowest mse # wrong test sample np.where((Y_test == test_pred) == False)[0] ###Output _____no_output_____ ###Markdown Exploring the results ###Code # model weights with best val loss model.load_weights('./Model/4_QConv2ent_2QFC_valloss.hdf5') model.weights ###Output _____no_output_____ ###Markdown First Layer ###Code qconv_1_weights = np.array([[[-3.5068619e-01, -7.3729032e-01, 4.9220048e-02, -1.3541983e+00, 6.9659483e-01, 2.0142789e+00, -1.1912005e-01, 4.4253272e-01, 8.0796504e-01], [ 2.8853995e-01, 2.5525689e-03, -7.5066173e-01, -5.1612389e-01, -7.6931775e-01, 3.9495945e-02, -2.9847270e-01, -2.9303998e-01, 5.8868647e-01]], [[ 1.7989293e+00, 2.7588477e+00, 1.4450849e+00, -1.1718978e+00, -2.5184264e-02, 1.3628511e+00, -7.9603838e-03, -4.2075574e-01, 5.2138257e-01], [ 1.3797082e+00, -1.3904944e-01, -3.8255316e-01, -8.2376450e-02, -1.5615442e-01, 3.5362953e-01, 2.2989626e-01, 2.2489822e-01, 5.5747521e-01]]]) qconv_1_weights.shape # Input image, size = 27 x 27 X = tf.keras.Input(shape=(27,27), name='Input_Layer') # Specs for Conv c_filter = 3 c_strides = 2 # First Quantum Conv Layer, trainable params = 18*L, output size = 13 x 13 num_conv_layer_1 = 2 q_conv_layer_1 = qml.qnn.KerasLayer(q_conv, {"conv_params": (2, num_conv_layer_1, 9)}, output_dim=(1), name='Quantum_Conv_Layer_1') size_1 = int(1+(X.shape[1]-c_filter)/c_strides) q_conv_layer_1_list = [] # height iteration for i in range(size_1): # width iteration for j in range(size_1): temp = q_conv_layer_1(X[:, 2*i:2*(i+1)+1, 2*j:2*(j+1)+1]) temp = tf.keras.layers.Reshape((1,))(temp) q_conv_layer_1_list += [temp] concat_layer_1 = tf.keras.layers.Concatenate(axis=1)(q_conv_layer_1_list) reshape_layer_1 = tf.keras.layers.Reshape((size_1, size_1))(concat_layer_1) qconv1_model = tf.keras.Model(inputs=X, outputs=reshape_layer_1) qconv1_model(X_train[0:1]) qconv1_model.get_layer('Quantum_Conv_Layer_1').set_weights([qconv_1_weights]) np.isclose(qconv1_model.get_weights()[0], qconv_1_weights).sum() preprocessed_img_train = qconv1_model(X_train) preprocessed_img_test = qconv1_model(X_test) data_train = preprocessed_img_train.numpy().reshape(-1, 13*13) np.savetxt('./4_QConv2ent_QFC2_Branch-Filter1_Image_Train.txt', data_train) data_test = preprocessed_img_test.numpy().reshape(-1, 13*13) np.savetxt('./4_QConv2ent_QFC2_Branch-Filter1_Image_Test.txt', data_test) print(data_train.shape, data_test.shape) ###Output (800, 169) (200, 169) ###Markdown Second Layer ###Code qconv_2_weights = np.array([[[ 2.8364928 , -2.4098628 , -1.5612396 , -1.9017003 , 1.9548664 , -0.37646097, -4.222284 , 0.26775557, 0.18441878], [ 0.7034124 , 0.4393435 , -0.32212317, -0.17706996, 0.2777927 , -0.40236515, -0.33229282, 0.35953867, -1.9918324 ]], [[-1.6619883 , 0.33638576, 0.49042726, 0.6765302 , 0.22028887, -0.72008365, 2.4235497 , 0.13619412, -0.69446284], [-0.54379666, 0.40716565, 0.07379556, -0.01504666, 0.5636293 , 0.11656392, -0.08756571, 0.3454725 , 0.37661582]]]) qconv_2_weights.shape # Input image, size = 27 x 27 X = tf.keras.Input(shape=(27,27), name='Input_Layer') # Specs for Conv c_filter = 3 c_strides = 2 # First Quantum Conv Layer, trainable params = 18*L, output size = 13 x 13 num_conv_layer_1 = 2 q_conv_layer_1 = qml.qnn.KerasLayer(q_conv, {"conv_params": (2, num_conv_layer_1, 9)}, output_dim=(1), name='Quantum_Conv_Layer_1') size_1 = int(1+(X.shape[1]-c_filter)/c_strides) q_conv_layer_1_list = [] # height iteration for i in range(size_1): # width iteration for j in range(size_1): temp = q_conv_layer_1(X[:, 2*i:2*(i+1)+1, 2*j:2*(j+1)+1]) temp = tf.keras.layers.Reshape((1,))(temp) q_conv_layer_1_list += [temp] concat_layer_1 = tf.keras.layers.Concatenate(axis=1)(q_conv_layer_1_list) reshape_layer_1 = tf.keras.layers.Reshape((size_1, size_1))(concat_layer_1) # Second Quantum Conv Layer, trainable params = 18*L, output size = 6 x 6 num_conv_layer_2 = 2 q_conv_layer_2 = qml.qnn.KerasLayer(q_conv, {"conv_params": (2, num_conv_layer_2, 9)}, output_dim=(1), name='Quantum_Conv_Layer_2') size_2 = int(1+(reshape_layer_1.shape[1]-c_filter)/c_strides) q_conv_layer_2_list = [] # height iteration for i in range(size_2): # width iteration for j in range(size_2): temp = q_conv_layer_2(reshape_layer_1[:, 2*i:2*(i+1)+1, 2*j:2*(j+1)+1]) temp = tf.keras.layers.Reshape((1,))(temp) q_conv_layer_2_list += [temp] concat_layer_2 = tf.keras.layers.Concatenate(axis=1)(q_conv_layer_2_list) reshape_layer_2 = tf.keras.layers.Reshape((size_2, size_2, 1))(concat_layer_2) qconv2_model = tf.keras.Model(inputs=X, outputs=reshape_layer_2) qconv2_model(X_train[0:1]) qconv2_model.get_layer('Quantum_Conv_Layer_1').set_weights([qconv_1_weights]) qconv2_model.get_layer('Quantum_Conv_Layer_2').set_weights([qconv_2_weights]) np.isclose(qconv2_model.get_weights()[0], qconv_1_weights).sum() np.isclose(qconv2_model.get_weights()[1], qconv_2_weights).sum() preprocessed_img_train = qconv2_model(X_train) preprocessed_img_test = qconv2_model(X_test) data_train = preprocessed_img_train.numpy().reshape(-1, 6*6) np.savetxt('./4_QConv2ent_QFC2_Branch-Filter2_Image_Train.txt', data_train) data_test = preprocessed_img_test.numpy().reshape(-1, 6*6) np.savetxt('./4_QConv2ent_QFC2_Branch-Filter2_Image_Test.txt', data_test) print(data_train.shape, data_test.shape) ###Output (800, 36) (200, 36) ###Markdown Quantum States ###Code q_fc_weights_0 = np.array([[[ 0.34919307, 1.280577 , -0.40389746, 2.7567825 , -1.8981032 , -0.58490497, -2.6140049 , 0.55854434, -0.14549442], [ 1.8742485 , 1.3923526 , -0.48553988, -4.0282655 , -1.0092568 , -1.726109 , 0.28595045, 0.35788605, 0.13558954]], [[-0.06619656, 0.29138508, 0.34191862, 0.7155059 , -0.20389102, -1.6070857 , -1.5218158 , 1.034849 , -0.06948825], [-0.16024663, 0.61659706, 0.14865518, -0.59474736, 1.3341626 , -0.05620752, 0.3439594 , -0.09109917, -0.01229791]]]) q_fc_weights_1 = np.array([[[ 0.28862742, 0.8386173 , -1.0520895 , -0.76006484, 1.6054868 , -0.8180273 , -1.3015922 , 0.146214 , -2.9870028 ], [-1.1344436 , -1.3247255 , 0.58105224, 0.66553676, 2.252441 , -0.13002443, -1.3606563 , 0.9464437 , -0.31959775]], [[ 0.20303592, 0.5243242 , -0.9218817 , -1.370076 , 0.7210135 , -0.6125907 , -0.33028948, 0.49510303, -0.53149074], [-0.5199091 , -1.8823092 , -0.45752335, -0.5516297 , -1.2591928 , -0.37027845, -0.88656336, -0.14877637, 0.04090607]]]) q_fc_weights_2 = np.array([[[ 0.32965487, -0.48179072, 0.59025586, -3.1451197 , 2.5917895 , -0.71461445, -1.5514388 , -1.2567754 , 0.03566303], [-2.6445682 , 0.18470715, 0.8170568 , -1.2547797 , 1.6798987 , -0.895823 , -2.0204744 , 2.1893585 , 0.38608813]], [[-0.46725035, -0.88657665, 0.08115988, -0.33190268, 0.3567504 , -0.06429264, 0.4678363 , 1.11554 , -0.7310539 ], [-0.2545552 , 0.45082113, -0.31482646, -0.3524591 , 0.19939618, -0.83299035, -1.3128988 , -0.33097702, 0.36383504]]]) q_fc_weights_3 = np.array([[[ 0.43416622, -0.5376355 , -0.48654264, 4.231484 , -0.8790685 , 1.179932 , -1.6252736 , -2.3226252 , 2.8246262 ], [ 0.46730754, 0.44019 , 0.5064762 , -2.5414548 , 0.8346419 , 0.67727995, -1.7355382 , 3.571513 , -0.22530685]], [[-0.21687755, -0.71872264, 1.7950757 , 1.1021243 , -1.156439 , 0.4487198 , 0.40195227, -0.9239927 , 0.26137996], [ 0.30011192, -1.3315674 , -0.7748441 , -1.0567622 , -0.95007855, -2.145618 , -1.6848673 , -0.6859795 , -0.507362 ]]]) q_fc_weights_0.shape, q_fc_weights_1.shape, q_fc_weights_2.shape, q_fc_weights_3.shape # Input image, size = 27 x 27 X = tf.keras.Input(shape=(27,27), name='Input_Layer') # Specs for Conv c_filter = 3 c_strides = 2 # First Quantum Conv Layer, trainable params = 18*L, output size = 13 x 13 num_conv_layer_1 = 2 q_conv_layer_1 = qml.qnn.KerasLayer(q_conv, {"conv_params": (2, num_conv_layer_1, 9)}, output_dim=(1), name='Quantum_Conv_Layer_1') size_1 = int(1+(X.shape[1]-c_filter)/c_strides) q_conv_layer_1_list = [] # height iteration for i in range(size_1): # width iteration for j in range(size_1): temp = q_conv_layer_1(X[:, 2*i:2*(i+1)+1, 2*j:2*(j+1)+1]) temp = tf.keras.layers.Reshape((1,))(temp) q_conv_layer_1_list += [temp] concat_layer_1 = tf.keras.layers.Concatenate(axis=1)(q_conv_layer_1_list) reshape_layer_1 = tf.keras.layers.Reshape((size_1, size_1))(concat_layer_1) # Second Quantum Conv Layer, trainable params = 18*L, output size = 6 x 6 num_conv_layer_2 = 2 q_conv_layer_2 = qml.qnn.KerasLayer(q_conv, {"conv_params": (2, num_conv_layer_2, 9)}, output_dim=(1), name='Quantum_Conv_Layer_2') size_2 = int(1+(reshape_layer_1.shape[1]-c_filter)/c_strides) q_conv_layer_2_list = [] # height iteration for i in range(size_2): # width iteration for j in range(size_2): temp = q_conv_layer_2(reshape_layer_1[:, 2*i:2*(i+1)+1, 2*j:2*(j+1)+1]) temp = tf.keras.layers.Reshape((1,))(temp) q_conv_layer_2_list += [temp] concat_layer_2 = tf.keras.layers.Concatenate(axis=1)(q_conv_layer_2_list) reshape_layer_2 = tf.keras.layers.Reshape((size_2, size_2, 1))(concat_layer_2) # Max Pooling Layer, output size = 9 max_pool_layer = tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=None, name='Max_Pool_Layer')(reshape_layer_2) reshape_layer_3 = tf.keras.layers.Reshape((9,))(max_pool_layer) maxpool_model = tf.keras.Model(inputs=X, outputs=reshape_layer_3) maxpool_model(X_train[0:1]) maxpool_model.get_layer('Quantum_Conv_Layer_1').set_weights([qconv_1_weights]) maxpool_model.get_layer('Quantum_Conv_Layer_2').set_weights([qconv_2_weights]) maxpool_train = maxpool_model(X_train) maxpool_test = maxpool_model(X_test) maxpool_train.shape, maxpool_test.shape n_qubits = 1 # number of class dev_state = qml.device("default.qubit", wires=n_qubits) @qml.qnode(dev_state) def q_fc_state(params, inputs): # layer iteration for l in range(len(params[0])): # qubit iteration for q in range(n_qubits): # gate iteration for g in range(int(len(inputs)/3)): qml.Rot(*(params[0][l][3*g:3*(g+1)] * inputs[3*g:3*(g+1)] + params[1][l][3*g:3*(g+1)]), wires=q) #return [qml.expval(qml.Hermitian(density_matrix(state_labels[i]), wires=[i])) for i in range(n_qubits)] return qml.expval(qml.Hermitian(density_matrix(state_labels[0]), wires=[0])) q_fc_state(np.zeros((2,1,9)), maxpool_train[0]) # branch 0 train_state = np.zeros((len(X_train), 2), dtype=np.complex_) test_state = np.zeros((len(X_test), 2), dtype=np.complex_) for i in range(len(train_state)): q_fc_state(q_fc_weights_0, maxpool_train[i]) temp = np.flip(dev_state._state) train_state[i, :] = temp for i in range(len(test_state)): q_fc_state(q_fc_weights_0, maxpool_test[i]) temp = np.flip(dev_state._state) test_state[i, :] = temp train_state.shape, test_state.shape # sanity check print(((np.conj(train_state) @ density_matrix(state_labels[0])) * train_state)[:, 0] > 0.5) print(((np.conj(test_state) @ density_matrix(state_labels[0])) * test_state)[:, 0] > 0.5) np.savetxt('./4_0_QConv2ent_QFC2_Branch-State_Train.txt', train_state) np.savetxt('./4_0_QConv2ent_QFC2_Branch-State_Test.txt', test_state) # branch 1 train_state = np.zeros((len(X_train), 2), dtype=np.complex_) test_state = np.zeros((len(X_test), 2), dtype=np.complex_) for i in range(len(train_state)): q_fc_state(q_fc_weights_1, maxpool_train[i]) temp = np.flip(dev_state._state) train_state[i, :] = temp for i in range(len(test_state)): q_fc_state(q_fc_weights_1, maxpool_test[i]) temp = np.flip(dev_state._state) test_state[i, :] = temp train_state.shape, test_state.shape # sanity check print(((np.conj(train_state) @ density_matrix(state_labels[0])) * train_state)[:, 0] > 0.5) print(((np.conj(test_state) @ density_matrix(state_labels[0])) * test_state)[:, 0] > 0.5) np.savetxt('./4_1_QConv2ent_QFC2_Branch-State_Train.txt', train_state) np.savetxt('./4_1_QConv2ent_QFC2_Branch-State_Test.txt', test_state) # branch 2 train_state = np.zeros((len(X_train), 2), dtype=np.complex_) test_state = np.zeros((len(X_test), 2), dtype=np.complex_) for i in range(len(train_state)): q_fc_state(q_fc_weights_2, maxpool_train[i]) temp = np.flip(dev_state._state) train_state[i, :] = temp for i in range(len(test_state)): q_fc_state(q_fc_weights_2, maxpool_test[i]) temp = np.flip(dev_state._state) test_state[i, :] = temp train_state.shape, test_state.shape # sanity check print(((np.conj(train_state) @ density_matrix(state_labels[0])) * train_state)[:, 0] > 0.5) print(((np.conj(test_state) @ density_matrix(state_labels[0])) * test_state)[:, 0] > 0.5) np.savetxt('./4_2_QConv2ent_QFC2_Branch-State_Train.txt', train_state) np.savetxt('./4_2_QConv2ent_QFC2_Branch-State_Test.txt', test_state) # branch 3 train_state = np.zeros((len(X_train), 2), dtype=np.complex_) test_state = np.zeros((len(X_test), 2), dtype=np.complex_) for i in range(len(train_state)): q_fc_state(q_fc_weights_3, maxpool_train[i]) temp = np.flip(dev_state._state) train_state[i, :] = temp for i in range(len(test_state)): q_fc_state(q_fc_weights_3, maxpool_test[i]) temp = np.flip(dev_state._state) test_state[i, :] = temp train_state.shape, test_state.shape # sanity check print(((np.conj(train_state) @ density_matrix(state_labels[0])) * train_state)[:, 0] > 0.5) print(((np.conj(test_state) @ density_matrix(state_labels[0])) * test_state)[:, 0] > 0.5) np.savetxt('./4_3_QConv2ent_QFC2_Branch-State_Train.txt', train_state) np.savetxt('./4_3_QConv2ent_QFC2_Branch-State_Test.txt', test_state) ###Output _____no_output_____ ###Markdown Saving trained max pool output ###Code maxpool_train.shape, maxpool_test.shape np.savetxt('./4_QConv2ent_QFC2_Branch-TrainedMaxPool_Train.txt', maxpool_train) np.savetxt('./4_QConv2ent_QFC2_Branch-TrainedMaxPool_Test.txt', maxpool_test) ###Output _____no_output_____ ###Markdown Random Starting State ###Code # Input image, size = 27 x 27 X = tf.keras.Input(shape=(27,27), name='Input_Layer') # Specs for Conv c_filter = 3 c_strides = 2 # First Quantum Conv Layer, trainable params = 18*L, output size = 13 x 13 num_conv_layer_1 = 2 q_conv_layer_1 = qml.qnn.KerasLayer(q_conv, {"conv_params": (2, num_conv_layer_1, 9)}, output_dim=(1), name='Quantum_Conv_Layer_1') size_1 = int(1+(X.shape[1]-c_filter)/c_strides) q_conv_layer_1_list = [] # height iteration for i in range(size_1): # width iteration for j in range(size_1): temp = q_conv_layer_1(X[:, 2*i:2*(i+1)+1, 2*j:2*(j+1)+1]) temp = tf.keras.layers.Reshape((1,))(temp) q_conv_layer_1_list += [temp] concat_layer_1 = tf.keras.layers.Concatenate(axis=1)(q_conv_layer_1_list) reshape_layer_1 = tf.keras.layers.Reshape((size_1, size_1))(concat_layer_1) # Second Quantum Conv Layer, trainable params = 18*L, output size = 6 x 6 num_conv_layer_2 = 2 q_conv_layer_2 = qml.qnn.KerasLayer(q_conv, {"conv_params": (2, num_conv_layer_2, 9)}, output_dim=(1), name='Quantum_Conv_Layer_2') size_2 = int(1+(reshape_layer_1.shape[1]-c_filter)/c_strides) q_conv_layer_2_list = [] # height iteration for i in range(size_2): # width iteration for j in range(size_2): temp = q_conv_layer_2(reshape_layer_1[:, 2*i:2*(i+1)+1, 2*j:2*(j+1)+1]) temp = tf.keras.layers.Reshape((1,))(temp) q_conv_layer_2_list += [temp] concat_layer_2 = tf.keras.layers.Concatenate(axis=1)(q_conv_layer_2_list) reshape_layer_2 = tf.keras.layers.Reshape((size_2, size_2, 1))(concat_layer_2) # Max Pooling Layer, output size = 9 max_pool_layer = tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=None, name='Max_Pool_Layer')(reshape_layer_2) reshape_layer_3 = tf.keras.layers.Reshape((9,))(max_pool_layer) # Quantum FC Layer, trainable params = 18*L*n_class + 2, output size = 2 num_fc_layer = 2 q_fc_layer_0 = qml.qnn.KerasLayer(q_fc, {"params": (2, num_fc_layer, 9)}, output_dim=2)(reshape_layer_3) q_fc_layer_1 = qml.qnn.KerasLayer(q_fc, {"params": (2, num_fc_layer, 9)}, output_dim=2)(reshape_layer_3) q_fc_layer_2 = qml.qnn.KerasLayer(q_fc, {"params": (2, num_fc_layer, 9)}, output_dim=2)(reshape_layer_3) q_fc_layer_3 = qml.qnn.KerasLayer(q_fc, {"params": (2, num_fc_layer, 9)}, output_dim=2)(reshape_layer_3) # Alpha Layer alpha_layer_0 = class_weights()(q_fc_layer_0) alpha_layer_1 = class_weights()(q_fc_layer_1) alpha_layer_2 = class_weights()(q_fc_layer_2) alpha_layer_3 = class_weights()(q_fc_layer_3) model_random = tf.keras.Model(inputs=X, outputs=[alpha_layer_0, alpha_layer_1, alpha_layer_2, alpha_layer_3]) model_maxpool_random = tf.keras.Model(inputs=X, outputs=reshape_layer_3) model_random(X_train[0:1]) model_random.weights random_weights_0 = np.array([[[-0.38205916, -0.32157356, -0.36946476, -0.14519015, -0.1741243 , -0.14436567, 0.41515827, 0.46430767, 0.05232906], [ 0.45858866, -0.27274096, 0.09459215, 0.1331594 , 0.26793003, 0.35317045, -0.25254235, 0.35575753, -0.00269699]], [[ 0.20839894, -0.06481433, -0.389221 , 0.18636137, 0.0322125 , -0.4043268 , -0.23117393, 0.2731933 , -0.33924854], [ 0.00189614, 0.47282887, -0.47041848, -0.2506976 , 0.23154783, 0.5169259 , -0.38120353, -0.29712826, -0.3661686 ]]]) random_weights_1 = np.array([[[-3.8573855e-01, 1.2338161e-04, -3.4994566e-01, 1.6507030e-02, 2.7931094e-02, 1.4965594e-01, 1.9558185e-01, 3.7240016e-01, 4.1224837e-01], [-2.0730710e-01, 1.4665091e-01, 2.2953910e-01, -1.8294707e-01, -2.9422033e-01, -1.0954219e-01, -4.8812094e-01, 2.3804653e-01, 1.2762904e-02]], [[-3.7277770e-01, 4.7162807e-01, 1.7469132e-01, 1.9624650e-01, 6.5971136e-02, -3.0559468e-01, 5.2143711e-01, 2.9053259e-01, -3.3940887e-01], [ 7.6271355e-02, 2.2447646e-02, -1.9267979e-01, -3.3340788e-01, 3.0921632e-01, -8.3895922e-03, -4.2881757e-02, -1.0280296e-01, 1.6796750e-01]]]) random_weights_2 = np.array([[[ 0.3375085 , -0.5039589 , -0.12458649, 0.03081298, -0.3590887 , 0.10382867, 0.40024424, -0.36897716, 0.31312758], [ 0.42523754, -0.03742361, 0.06040829, -0.06957746, 0.30570823, -0.11539704, -0.40476683, -0.23915961, -0.0829832 ]], [[ 0.3559941 , 0.3155442 , 0.08222359, 0.41432273, 0.01732248, -0.26297218, -0.01981091, -0.04592776, 0.39101595], [ 0.3062536 , -0.08849475, -0.20818016, -0.44495705, 0.06605953, -0.13090187, -0.3172878 , -0.5133143 , -0.4394003 ]]]) random_weights_3 = np.array([[[ 0.21720552, -0.46527594, -0.01723516, 0.32298315, -0.17747 , -0.26591384, -0.43713358, 0.08005935, -0.44423178], [-0.37649596, 0.41977262, 0.15621603, -0.3686198 , 0.34089315, -0.07570398, 0.30436516, -0.04764476, -0.3341527 ]], [[-0.19360352, 0.0107705 , 0.05996364, -0.30747455, 0.3622191 , 0.27814162, -0.01553947, 0.0343135 , 0.09682399], [-0.37713268, -0.2690144 , -0.34324157, -0.16356263, 0.24849337, -0.23426789, -0.02752119, 0.22051013, -0.14259636]]]) maxpool_train = model_maxpool_random(X_train) maxpool_test = model_maxpool_random(X_test) maxpool_train.shape, maxpool_test.shape np.savetxt('./4_QConv2ent_QFC2_Branch-RandomMaxPool_Train.txt', maxpool_train) np.savetxt('./4_QConv2ent_QFC2_Branch-RandomMaxPool_Test.txt', maxpool_test) n_qubits = 1 # number of class dev_state = qml.device("default.qubit", wires=n_qubits) @qml.qnode(dev_state) def q_fc_state(params, inputs): # layer iteration for l in range(len(params[0])): # qubit iteration for q in range(n_qubits): # gate iteration for g in range(int(len(inputs)/3)): qml.Rot(*(params[0][l][3*g:3*(g+1)] * inputs[3*g:3*(g+1)] + params[1][l][3*g:3*(g+1)]), wires=q) #return [qml.expval(qml.Hermitian(density_matrix(state_labels[i]), wires=[i])) for i in range(n_qubits)] return qml.expval(qml.Hermitian(density_matrix(state_labels[0]), wires=[0])) q_fc_state(np.zeros((2,1,9)), maxpool_train[0]) # branch 0 train_state = np.zeros((len(X_train), 2), dtype=np.complex_) test_state = np.zeros((len(X_test), 2), dtype=np.complex_) for i in range(len(train_state)): q_fc_state(random_weights_0, maxpool_train[i]) temp = np.flip(dev_state._state) train_state[i, :] = temp for i in range(len(test_state)): q_fc_state(random_weights_0, maxpool_test[i]) temp = np.flip(dev_state._state) test_state[i, :] = temp train_state.shape, test_state.shape # sanity check print(((np.conj(train_state) @ density_matrix(state_labels[0])) * train_state)[:, 0] > 0.5) print(((np.conj(test_state) @ density_matrix(state_labels[0])) * test_state)[:, 0] > 0.5) np.savetxt('./4_0_QConv2ent_QFC2_Branch-RandomState_Train.txt', train_state) np.savetxt('./4_0_QConv2ent_QFC2_Branch-RandomState_Test.txt', test_state) # branch 1 train_state = np.zeros((len(X_train), 2), dtype=np.complex_) test_state = np.zeros((len(X_test), 2), dtype=np.complex_) for i in range(len(train_state)): q_fc_state(random_weights_1, maxpool_train[i]) temp = np.flip(dev_state._state) train_state[i, :] = temp for i in range(len(test_state)): q_fc_state(random_weights_1, maxpool_test[i]) temp = np.flip(dev_state._state) test_state[i, :] = temp train_state.shape, test_state.shape # sanity check print(((np.conj(train_state) @ density_matrix(state_labels[0])) * train_state)[:, 0] > 0.5) print(((np.conj(test_state) @ density_matrix(state_labels[0])) * test_state)[:, 0] > 0.5) np.savetxt('./4_1_QConv2ent_QFC2_Branch-RandomState_Train.txt', train_state) np.savetxt('./4_1_QConv2ent_QFC2_Branch-RandomState_Test.txt', test_state) # branch 2 train_state = np.zeros((len(X_train), 2), dtype=np.complex_) test_state = np.zeros((len(X_test), 2), dtype=np.complex_) for i in range(len(train_state)): q_fc_state(random_weights_2, maxpool_train[i]) temp = np.flip(dev_state._state) train_state[i, :] = temp for i in range(len(test_state)): q_fc_state(random_weights_2, maxpool_test[i]) temp = np.flip(dev_state._state) test_state[i, :] = temp train_state.shape, test_state.shape # sanity check print(((np.conj(train_state) @ density_matrix(state_labels[0])) * train_state)[:, 0] > 0.5) print(((np.conj(test_state) @ density_matrix(state_labels[0])) * test_state)[:, 0] > 0.5) np.savetxt('./4_2_QConv2ent_QFC2_Branch-RandomState_Train.txt', train_state) np.savetxt('./4_2_QConv2ent_QFC2_Branch-RandomState_Test.txt', test_state) # branch 3 train_state = np.zeros((len(X_train), 2), dtype=np.complex_) test_state = np.zeros((len(X_test), 2), dtype=np.complex_) for i in range(len(train_state)): q_fc_state(random_weights_3, maxpool_train[i]) temp = np.flip(dev_state._state) train_state[i, :] = temp for i in range(len(test_state)): q_fc_state(random_weights_3, maxpool_test[i]) temp = np.flip(dev_state._state) test_state[i, :] = temp train_state.shape, test_state.shape # sanity check print(((np.conj(train_state) @ density_matrix(state_labels[0])) * train_state)[:, 0] > 0.5) print(((np.conj(test_state) @ density_matrix(state_labels[0])) * test_state)[:, 0] > 0.5) np.savetxt('./4_3_QConv2ent_QFC2_Branch-RandomState_Train.txt', train_state) np.savetxt('./4_3_QConv2ent_QFC2_Branch-RandomState_Test.txt', test_state) ###Output _____no_output_____
Samples/PythonInterop/tomography-sample.ipynb
###Markdown Quantum Process Tomography with Q and Python Abstract In this sample, we will demonstrate interoperability between Q and Python by using the QInfer and QuTiP libraries for Python to characterize and verify quantum processes implemented in Q.In particular, this sample will use *quantum process tomography* to learn about the behavior of a "noisy" Hadamard operation from the results of random Pauli measurements. Preamble When working with Q from languages other than C, we normally need to separate Q operations and functions into their own project.We can then add the project containing our new operations as a *reference* to our interoperability project in order to run from within Visual Studio.For running from Jupyter, though, we must manually add the other project to `sys.path` so that Python.NET can find the assemblies containing our new operations, as well as the assemblies from the rest of the Quantum Development Kit that get included as dependencies. ###Code import qsharp from qsharp.tomography import single_qubit_process_tomography import warnings; warnings.filterwarnings('ignore') import sys sys.path.append('./bin/Debug/netstandard2.0') ###Output _____no_output_____ ###Markdown With the new assemblies added to `sys.path`, we can reference them using the Python.NET `clr` package. ###Code import clr clr.AddReference("Microsoft.Quantum.Canon") clr.AddReference("PythonInterop") ###Output _____no_output_____ ###Markdown Next, we import plotting support and the QuTiP library, since these will be helpful to us in manipulating the quantum objects returned by the quantum process tomography functionality that we call later. ###Code %matplotlib inline import matplotlib.pyplot as plt import qutip as qt qt.settings.colorblind_safe = True ###Output _____no_output_____ ###Markdown Setting up the Simulator This sample is provided along with a small Python package to help facilitate interoperability.We can import this package like any other Python package, provided that we have set `sys.path` correctly. In particular, the `qsharp` package provides a `QuantumSimulator` class which wraps the `Microsoft.Quantum.Simulation.Simulators.QuantumSimulator` .NET class provided with the Quantum Development Kit.This wrapper provides a few useful convienence features that we will use along the way. ###Code qsim = qsharp.QuantumSimulator() qsim ###Output _____no_output_____ ###Markdown We can use our new simulator instance to run operations and functions defined in Q.To do so, we import the operation and function names as though the Q namespaces were Python packages. ###Code from Microsoft.Quantum.Samples.Python import ( HelloWorld, NoisyHadamardChannel ) ###Output _____no_output_____ ###Markdown Once we've imported the new names, we can then ask our simulator to run each function and operation using the `run` method.Jupyter will denote messages emitted by the simulator with a blue sidebar to separate them from normal Python output. ###Code hello_world = qsim.get(HelloWorld) hello_world qsim.run(hello_world, qsharp.Pauli.Z).Wait() ###Output _____no_output_____ ###Markdown To obtain the output from a Q operation or function, we must use the `result` function, since outputs are wrapped in .NET asynchronous tasks.These tasks are wrapped in a future-like object for convienence. ###Code noisy_h = qsim.run(NoisyHadamardChannel, 0.1).result() noisy_h ###Output _____no_output_____ ###Markdown Tomography The `qsharp` interoperability package also comes with a `single_qubit_process_tomography` function which uses the QInfer library for Python to learn the channels corresponding to single-qubit Q operations.Here, we ask for 10,000 measurements from the noisy Hadamard operation that we defined above. ###Code estimation_results = single_qubit_process_tomography(qsim, noisy_h, n_measurements=10000) ###Output Preparing tomography model... Performing tomography... ###Markdown To visualize the results, it's helpful to compare to the actual channel, which we can find exactly in QuTiP. ###Code depolarizing_channel = sum(map(qt.to_super, [qt.qeye(2), qt.sigmax(), qt.sigmay(), qt.sigmaz()])) / 4.0 actual_noisy_h = 0.1 * qt.to_choi(depolarizing_channel) + 0.9 * qt.to_choi(qt.hadamard_transform()) ###Output _____no_output_____ ###Markdown We then plot the estimated and actual channels as Hinton diagrams, showing how each acts on the Pauli operators $X$, $Y$ and $Z$. ###Code fig, (left, right) = plt.subplots(ncols=2, figsize=(12, 4)) plt.sca(left) plt.xlabel('Estimated', fontsize='x-large') qt.visualization.hinton(estimation_results['est_channel'], ax=left) plt.sca(right) plt.xlabel('Actual', fontsize='x-large') qt.visualization.hinton(actual_noisy_h, ax=right) ###Output _____no_output_____ ###Markdown We also obtain a wealth of other information as well, such as the covariance matrix over each parameter of the resulting channel.This shows us which parameters we are least certain about, as well as how those parameters are correlated with each other. ###Code plt.figure(figsize=(10, 10)) estimation_results['posterior'].plot_covariance() plt.xticks(rotation=90) ###Output _____no_output_____ ###Markdown Diagnostics ###Code import sys print(""" Python version: {} Quantum Development Kit version: {} """.format(sys.version, qsharp.__version__)) ###Output Python version: 3.6.4 | packaged by conda-forge | (default, Dec 24 2017, 10:11:43) [MSC v.1900 64 bit (AMD64)] Quantum Development Kit version: 0.2.1806.3001 ###Markdown Quantum Process Tomography with Q and Python Abstract In this sample, we will demonstrate interoperability between Q and Python by using the QInfer and QuTiP libraries for Python to characterize and verify quantum processes implemented in Q.In particular, this sample will use *quantum process tomography* to learn about the behavior of a "noisy" Hadamard operation from the results of random Pauli measurements. Preamble When working with Q from languages other than C, we normally need to separate Q operations and functions into their own project.We can then add the project containing our new operations as a *reference* to our interoperability project in order to run from within Visual Studio.For running from Jupyter, though, we must manually add the other project to `sys.path` so that Python.NET can find the assemblies containing our new operations, as well as the assemblies from the rest of the Quantum Development Kit that get included as dependencies. ###Code import qsharp from qsharp.tomography import single_qubit_process_tomography import warnings; warnings.filterwarnings('ignore') import sys sys.path.append('./bin/Debug/netstandard2.0') ###Output _____no_output_____ ###Markdown With the new assemblies added to `sys.path`, we can reference them using the Python.NET `clr` package. ###Code import clr clr.AddReference("Microsoft.Quantum.Canon") clr.AddReference("PythonInterop") ###Output _____no_output_____ ###Markdown Next, we import plotting support and the QuTiP library, since these will be helpful to us in manipulating the quantum objects returned by the quantum process tomography functionality that we call later. ###Code %matplotlib inline import matplotlib.pyplot as plt import qutip as qt qt.settings.colorblind_safe = True ###Output _____no_output_____ ###Markdown Setting up the Simulator This sample is provided along with a small Python package to help facilitate interoperability.We can import this package like any other Python package, provided that we have set `sys.path` correctly. In particular, the `qsharp` package provides a `QuantumSimulator` class which wraps the `Microsoft.Quantum.Simulation.Simulators.QuantumSimulator` .NET class provided with the Quantum Development Kit.This wrapper provides a few useful convienence features that we will use along the way. ###Code qsim = qsharp.QuantumSimulator() qsim ###Output _____no_output_____ ###Markdown We can use our new simulator instance to run operations and functions defined in Q.To do so, we import the operation and function names as though the Q namespaces were Python packages. ###Code from Microsoft.Quantum.Samples.Python import ( HelloWorld, NoisyHadamardChannel ) ###Output _____no_output_____ ###Markdown Once we've imported the new names, we can then ask our simulator to run each function and operation using the `run` method.Jupyter will denote messages emitted by the simulator with a blue sidebar to separate them from normal Python output. ###Code hello_world = qsim.get(HelloWorld) hello_world qsim.run(hello_world, qsharp.Pauli.Z).Wait() ###Output _____no_output_____ ###Markdown To obtain the output from a Q operation or function, we must use the `result` function, since outputs are wrapped in .NET asynchronous tasks.These tasks are wrapped in a future-like object for convienence. ###Code noisy_h = qsim.run(NoisyHadamardChannel, 0.1).result() noisy_h ###Output _____no_output_____ ###Markdown Tomography The `qsharp` interoperability package also comes with a `single_qubit_process_tomography` function which uses the QInfer library for Python to learn the channels corresponding to single-qubit Q operations.Here, we ask for 10,000 measurements from the noisy Hadamard operation that we defined above. ###Code estimation_results = single_qubit_process_tomography(qsim, noisy_h, n_measurements=10000) ###Output Preparing tomography model... Performing tomography... ###Markdown To visualize the results, it's helpful to compare to the actual channel, which we can find exactly in QuTiP. ###Code depolarizing_channel = sum(map(qt.to_super, [qt.qeye(2), qt.sigmax(), qt.sigmay(), qt.sigmaz()])) / 4.0 actual_noisy_h = 0.1 * qt.to_choi(depolarizing_channel) + 0.9 * qt.to_choi(qt.hadamard_transform()) ###Output _____no_output_____ ###Markdown We then plot the estimated and actual channels as Hinton diagrams, showing how each acts on the Pauli operators $X$, $Y$ and $Z$. ###Code fig, (left, right) = plt.subplots(ncols=2, figsize=(12, 4)) plt.sca(left) plt.xlabel('Estimated', fontsize='x-large') qt.visualization.hinton(estimation_results['est_channel'], ax=left) plt.sca(right) plt.xlabel('Actual', fontsize='x-large') qt.visualization.hinton(actual_noisy_h, ax=right) ###Output _____no_output_____ ###Markdown We also obtain a wealth of other information as well, such as the covariance matrix over each parameter of the resulting channel.This shows us which parameters we are least certain about, as well as how those parameters are correlated with each other. ###Code plt.figure(figsize=(10, 10)) estimation_results['posterior'].plot_covariance() plt.xticks(rotation=90) ###Output _____no_output_____ ###Markdown Diagnostics ###Code import sys print(""" Python version: {} Quantum Development Kit version: {} """.format(sys.version, qsharp.__version__)) ###Output Python version: 3.6.4 | packaged by conda-forge | (default, Dec 24 2017, 10:11:43) [MSC v.1900 64 bit (AMD64)] Quantum Development Kit version: 0.2.1806.3001 ###Markdown Quantum Process Tomography with Q and Python Abstract In this sample, we will demonstrate interoperability between Q and Python by using the QInfer and QuTiP libraries for Python to characterize and verify quantum processes implemented in Q.In particular, this sample will use *quantum process tomography* to learn about the behavior of a "noisy" Hadamard operation from the results of random Pauli measurements. Preamble When working with Q from languages other than C, we normally need to separate Q operations and functions into their own project.We can then add the project containing our new operations as a *reference* to our interoperability project in order to run from within Visual Studio.For running from Jupyter, though, we must manually add the other project to `sys.path` so that Python.NET can find the assemblies containing our new operations, as well as the assemblies from the rest of the Quantum Development Kit that get included as dependencies. ###Code import qsharp from qsharp.tomography import single_qubit_process_tomography import warnings; warnings.filterwarnings('ignore') import sys sys.path.append('./bin/Debug/netstandard2.0') ###Output _____no_output_____ ###Markdown With the new assemblies added to `sys.path`, we can reference them using the Python.NET `clr` package. ###Code import clr clr.AddReference("Microsoft.Quantum.Canon") clr.AddReference("PythonInterop") ###Output _____no_output_____ ###Markdown Next, we import plotting support and the QuTiP library, since these will be helpful to us in manipulating the quantum objects returned by the quantum process tomography functionality that we call later. ###Code %matplotlib inline import matplotlib.pyplot as plt import qutip as qt qt.settings.colorblind_safe = True ###Output _____no_output_____ ###Markdown Setting up the Simulator This sample is provided along with a small Python package to help facilitate interoperability.We can import this package like any other Python package, provided that we have set `sys.path` correctly. In particular, the `qsharp` package provides a `QuantumSimulator` class which wraps the `Microsoft.Quantum.Simulation.Simulators.QuantumSimulator` .NET class provided with the Quantum Development Kit.This wrapper provides a few useful convenience features that we will use along the way. ###Code qsim = qsharp.QuantumSimulator() qsim ###Output _____no_output_____ ###Markdown We can use our new simulator instance to run operations and functions defined in Q.To do so, we import the operation and function names as though the Q namespaces were Python packages. ###Code from Microsoft.Quantum.Samples.Python import ( HelloWorld, NoisyHadamardChannel ) ###Output _____no_output_____ ###Markdown Once we've imported the new names, we can then ask our simulator to run each function and operation using the `run` method.Jupyter will denote messages emitted by the simulator with a blue sidebar to separate them from normal Python output. ###Code hello_world = qsim.get(HelloWorld) hello_world qsim.run(hello_world, qsharp.Pauli.Z).Wait() ###Output _____no_output_____ ###Markdown To obtain the output from a Q operation or function, we must use the `result` function, since outputs are wrapped in .NET asynchronous tasks.These tasks are wrapped in a future-like object for convenience. ###Code noisy_h = qsim.run(NoisyHadamardChannel, 0.1).result() noisy_h ###Output _____no_output_____ ###Markdown Tomography The `qsharp` interoperability package also comes with a `single_qubit_process_tomography` function which uses the QInfer library for Python to learn the channels corresponding to single-qubit Q operations.Here, we ask for 10,000 measurements from the noisy Hadamard operation that we defined above. ###Code estimation_results = single_qubit_process_tomography(qsim, noisy_h, n_measurements=10000) ###Output Preparing tomography model... Performing tomography... ###Markdown To visualize the results, it's helpful to compare to the actual channel, which we can find exactly in QuTiP. ###Code depolarizing_channel = sum(map(qt.to_super, [qt.qeye(2), qt.sigmax(), qt.sigmay(), qt.sigmaz()])) / 4.0 actual_noisy_h = 0.1 * qt.to_choi(depolarizing_channel) + 0.9 * qt.to_choi(qt.hadamard_transform()) ###Output _____no_output_____ ###Markdown We then plot the estimated and actual channels as Hinton diagrams, showing how each acts on the Pauli operators $X$, $Y$ and $Z$. ###Code fig, (left, right) = plt.subplots(ncols=2, figsize=(12, 4)) plt.sca(left) plt.xlabel('Estimated', fontsize='x-large') qt.visualization.hinton(estimation_results['est_channel'], ax=left) plt.sca(right) plt.xlabel('Actual', fontsize='x-large') qt.visualization.hinton(actual_noisy_h, ax=right) ###Output _____no_output_____ ###Markdown We also obtain a wealth of other information as well, such as the covariance matrix over each parameter of the resulting channel.This shows us which parameters we are least certain about, as well as how those parameters are correlated with each other. ###Code plt.figure(figsize=(10, 10)) estimation_results['posterior'].plot_covariance() plt.xticks(rotation=90) ###Output _____no_output_____ ###Markdown Diagnostics ###Code import sys print(""" Python version: {} Quantum Development Kit version: {} """.format(sys.version, qsharp.__version__)) ###Output Python version: 3.6.4 | packaged by conda-forge | (default, Dec 24 2017, 10:11:43) [MSC v.1900 64 bit (AMD64)] Quantum Development Kit version: 0.2.1806.3001 ###Markdown Quantum Process Tomography with Q and Python Abstract In this sample, we will demonstrate interoperability between Q and Python by using the QInfer and QuTiP libraries for Python to characterize and verify quantum processes implemented in Q.In particular, this sample will use *quantum process tomography* to learn about the behavior of a "noisy" Hadamard operation from the results of random Pauli measurements. Preamble When working with Q from languages other than C, we normally need to separate Q operations and functions into their own project.We can then add the project containing our new operations as a *reference* to our interoperability project in order to run from within Visual Studio.For running from Jupyter, though, we must manually add the other project to `sys.path` so that Python.NET can find the assemblies containing our new operations, as well as the assemblies from the rest of the Quantum Development Kit that get included as dependencies. ###Code import qsharp from qsharp.tomography import single_qubit_process_tomography import warnings; warnings.filterwarnings('ignore') import sys sys.path.append('./bin/Debug/netstandard2.0') ###Output _____no_output_____ ###Markdown With the new assemblies added to `sys.path`, we can reference them using the Python.NET `clr` package. ###Code import clr clr.AddReference("Microsoft.Quantum.Canon") clr.AddReference("PythonInterop") ###Output _____no_output_____ ###Markdown Next, we import plotting support and the QuTiP library, since these will be helpful to us in manipulating the quantum objects returned by the quantum process tomography functionality that we call later. ###Code %matplotlib inline import matplotlib.pyplot as plt import qutip as qt qt.settings.colorblind_safe = True ###Output _____no_output_____ ###Markdown Setting up the Simulator This sample is provided along with a small Python package to help facilitate interoperability.We can import this package like any other Python package, provided that we have set `sys.path` correctly. In particular, the `qsharp` package provides a `QuantumSimulator` class which wraps the `Microsoft.Quantum.Simulation.Simulators.QuantumSimulator` .NET class provided with the Quantum Development Kit.This wrapper provides a few useful convienence features that we will use along the way. ###Code qsim = qsharp.QuantumSimulator() qsim ###Output _____no_output_____ ###Markdown We can use our new simulator instance to run operations and functions defined in Q.To do so, we import the operation and function names as though the Q namespaces were Python packages. ###Code from Microsoft.Quantum.Samples.Python import ( HelloWorld, NoisyHadamardChannel ) ###Output _____no_output_____ ###Markdown Once we've imported the new names, we can then ask our simulator to run each function and operation using the `run` method.Jupyter will denote messages emitted by the simulator with a blue sidebar to separate them from normal Python output. ###Code hello_world = qsim.get(HelloWorld) hello_world qsim.run(hello_world, qsharp.Pauli.Z).Wait() ###Output _____no_output_____ ###Markdown To obtain the output from a Q operation or function, we must use the `result` function, since outputs are wrapped in .NET asynchronous tasks.These tasks are wrapped in a future-like object for convienence. ###Code noisy_h = qsim.run(NoisyHadamardChannel, 0.1).result() noisy_h ###Output _____no_output_____ ###Markdown Tomography The `qsharp` interoperability package also comes with a `single_qubit_process_tomography` function which uses the QInfer library for Python to learn the channels corresponding to single-qubit Q operations.Here, we ask for 10,000 measurements from the noisy Hadamard operation that we defined above. ###Code estimation_results = single_qubit_process_tomography(qsim, noisy_h, n_measurements=10000) ###Output Preparing tomography model... Performing tomography... ###Markdown To visualize the results, it's helpful to compare to the actual channel, which we can find exactly in QuTiP. ###Code depolarizing_channel = sum(map(qt.to_super, [qt.qeye(2), qt.sigmax(), qt.sigmay(), qt.sigmaz()])) / 4.0 actual_noisy_h = 0.1 * qt.to_choi(depolarizing_channel) + 0.9 * qt.to_choi(qt.hadamard_transform()) ###Output _____no_output_____ ###Markdown We then plot the estimated and actual channels as Hinton diagrams, showing how each acts on the Pauli operators $X$, $Y$ and $Z$. ###Code fig, (left, right) = plt.subplots(ncols=2, figsize=(12, 4)) plt.sca(left) plt.xlabel('Estimated', fontsize='x-large') qt.visualization.hinton(estimation_results['est_channel'], ax=left) plt.sca(right) plt.xlabel('Actual', fontsize='x-large') qt.visualization.hinton(actual_noisy_h, ax=right) ###Output _____no_output_____ ###Markdown We also obtain a wealth of other information as well, such as the covariance matrix over each parameter of the resulting channel.This shows us which parameters we are least certain about, as well as how those parameters are correlated with each other. ###Code plt.figure(figsize=(10, 10)) estimation_results['posterior'].plot_covariance() plt.xticks(rotation=90) ###Output _____no_output_____ ###Markdown Diagnostics ###Code import sys print(""" Python version: {} Quantum Development Kit version: {} """.format(sys.version, qsharp.__version__)) ###Output Python version: 3.6.4 | packaged by conda-forge | (default, Dec 24 2017, 10:11:43) [MSC v.1900 64 bit (AMD64)] Quantum Development Kit version: 0.2.1802.2202
numerical_integration_with_python.ipynb
###Markdown Numerical integration with Python **Author:** Simon Mutch **Date:** 2017-08-02 --- Update 2017-08-03* More information about Jupyter notebooks can be found [here](http://jupyter-notebook.readthedocs.io/en/stable/notebook.html).* The notebook used to generate this page can be downloaded [here](https://github.com/smutch/numerical_integration_tut).Good luck with your assignments everyone! 👍---In this notebook we'll very briefly cover how to do simple numerical integration of a function with Python.I'm going to assume that you have some basic knowledge of Python, but don't worry if you don't. This notebook is very simple and will act as a basic introduction in itself. For a proper introduction to Python, the [Software Carpentry course](http://swcarpentry.github.io/python-novice-inflammation/) is a decent place to start. There are a few prerequisite packages that we'll need for doing our simple numerical integration:* [Numpy](http://www.numpy.org) - "the fundamental package for scientific computing with Python"* [Scipy](https://scipy.org/scipylib/index.html) - "many user-friendly and efficient numerical routines such as routines for numerical integration and optimization"* [matplotlib](http://matplotlib.org) - "Matplotlib is a Python 2D plotting library which produces publication quality figures in a variety of hardcopy formats and interactive environments"Many Python environments will have these pre-installed. If you get errors when trying to import them below, then the chances are they aren't installed in your current Python environment. If this is the case, please see the installation instructions for each package by following the links above or, alternatively, consider trying the excellent [Anaconda distribution](https://www.continuum.io/what-is-anaconda) (recommended).For reference, here are the versions of the relevant packages used to create this notebook:> numpy 1.12.1 > scipy 0.19.0 > matplotlib 2.0.2 The first thing we need to do is import our packages... ###Code # unfortunately the Windows machines in this lab only have Python v2 (not v3) # and so there are a couple of things we need to do to get everything to run smoothly... from __future__ import print_function, division # import the necessary packages import numpy as np import matplotlib.pyplot as plt from scipy import integrate # set a few options that will make the plots generated in this notebook look better %matplotlib inline %config InlineBackend.print_figure_kwargs={'bbox_inches': 'tight'} plt.rcParams['figure.dpi'] = 100 ###Output _____no_output_____ ###Markdown Setting up the problemLet's take a contrived example where we can easily calculate an analytic solution to check the validity of our result.Let's consider the area under a $\sin$ wave between $\theta=0$ and $\pi$. ###Code theta = np.linspace(0, np.pi, 50) y = np.sin(theta) fig, ax = plt.subplots() ax.plot(theta, y) ax.fill_between(theta, y, alpha=0.5) ax.set(xlabel=r'$\theta$', ylabel=r'$\sin(\theta)$', ylim=(0, 1.05)); ###Output _____no_output_____ ###Markdown Doing the integralTo numerically integrate this, we first define the function that we want to integrate. In this case it's rather simple, however, in practice this could be an arbitrarily complex function. ###Code def f(theta): return np.sin(theta) ###Output _____no_output_____ ###Markdown Next we can use the [scipy.integrate](https://docs.scipy.org/doc/scipy/reference/integrate.html) module to do a simple numerical integration of this function. Note that we imported this module as `integrate` above. ###Code numerical_result = integrate.quad(f, 0, np.pi) print(numerical_result) ###Output (2.0, 2.220446049250313e-14) ###Markdown The first number here is the result, whilst the second number is an estimate of the absolute error. Let's throw away the latter. ###Code numerical_result = numerical_result[0] ###Output _____no_output_____ ###Markdown Checking the resultLastly, lets compare this with the analytic solution. ###Code analytic_result = -np.cos(np.pi) + np.cos(0) print("The analytic result is {:.2f}".format(analytic_result)) print("Identical to numerical result within available precision? ", np.isclose(analytic_result, numerical_result)) ###Output The analytic result is 2.00 Identical to numerical result within available precision? True
3_2_ Robot_localisation/.ipynb_checkpoints/2. Move Function, solution-checkpoint.ipynb
###Markdown Move FunctionNow that you know how a robot uses sensor measurements to update its idea of its own location, let's see how we can incorporate motion into this location. In this notebook, let's go over the steps a robot takes to help localize itself from an initial, uniform distribution to sensing, moving and updating that distribution.We include the `sense` function that you've seen, which updates an initial distribution based on whether a robot senses a grid color: red or green. Next, you're tasked with writing a function `move` that incorporates motion into the distribution. As seen below, **one motion `U= 1` to the right, causes all values in a distribution to shift one grid cell to the right.** First let's include our usual resource imports and display function. ###Code # importing resources import matplotlib.pyplot as plt import numpy as np ###Output _____no_output_____ ###Markdown A helper function for visualizing a distribution. ###Code def display_map(grid, bar_width=1): if(len(grid) > 0): x_labels = range(len(grid)) plt.bar(x_labels, height=grid, width=bar_width, color='b') plt.xlabel('Grid Cell') plt.ylabel('Probability') plt.ylim(0, 1) # range of 0-1 for probability values plt.title('Probability of the robot being at each cell in the grid') plt.xticks(np.arange(min(x_labels), max(x_labels)+1, 1)) plt.show() else: print('Grid is empty') ###Output _____no_output_____ ###Markdown You are given the initial variables and the complete `sense` function, below. ###Code # given initial variables p=[0, 1, 0, 0, 0] # the color of each grid cell in the 1D world world=['green', 'red', 'red', 'green', 'green'] # Z, the sensor reading ('red' or 'green') Z = 'red' pHit = 0.6 pMiss = 0.2 # You are given the complete sense function def sense(p, Z): ''' Takes in a current probability distribution, p, and a sensor reading, Z. Returns a *normalized* distribution after the sensor measurement has been made, q. This should be accurate whether Z is 'red' or 'green'. ''' q=[] # loop through all grid cells for i in range(len(p)): # check if the sensor reading is equal to the color of the grid cell # if so, hit = 1 # if not, hit = 0 hit = (Z == world[i]) q.append(p[i] * (hit * pHit + (1-hit) * pMiss)) # sum up all the components s = sum(q) # divide all elements of q by the sum to normalize for i in range(len(p)): q[i] = q[i] / s return q # Commented out code for measurements # for k in range(len(measurements)): # p = sense(p, measurements) ###Output _____no_output_____ ###Markdown QUIZ: Program a function that returns a new distribution q, shifted to the right by the motion (U) units. This function should shift a distribution with the motion, U. Keep in mind that this world is cyclic and that if U=0, q should be the same as the given p. You should see all the values in `p` are moved to the right by 1, for U=1. ###Code ## TODO: Complete this move function so that it shifts a probability distribution, p ## by a given motion, U def move(p, U): q=[] # iterate through all values in p for i in range(len(p)): # use the modulo operator to find the new location for a p value # this finds an index that is shifted by the correct amount index = (i-U) % len(p) # append the correct value of p to q q.append(p[index]) return q p = move(p,1) print(p) display_map(p) ###Output [0, 0, 1, 0, 0]
3.4_Multilayer_Perceptron.ipynb
###Markdown Multilayer Perceptron ###Code # Import MINST data from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("tmp/data/", one_hot=True) import tensorflow as tf # Parameters learning_rate = 0.01 training_epochs = 15 batch_size = 100 display_step = 1 # Network Parameters n_hidden_1 = 256 # 1st layer number of features n_hidden_2 = 256 # 2nd layer number of features n_input = 784 # MNIST data input (img shape: 28*28) n_classes = 10 # MNIST total classes (0-9 digits) # tf Graph input x = tf.placeholder("float", [None, n_input]) y = tf.placeholder("float", [None, n_classes]) # Create model def multilayer_perceptron(x, weights, biases): # Hidden layer with RELU activation layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1']) layer_1 = tf.nn.relu(layer_1) # Hidden layer with RELU activation layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2']) layer_2 = tf.nn.relu(layer_2) # Output layer with linear activation out_layer = tf.matmul(layer_2, weights['out']) + biases['out'] return out_layer # Store layers weight & bias weights = { 'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])), 'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])), 'out': tf.Variable(tf.random_normal([n_hidden_2, n_classes])) } biases = { 'b1': tf.Variable(tf.random_normal([n_hidden_1])), 'b2': tf.Variable(tf.random_normal([n_hidden_2])), 'out': tf.Variable(tf.random_normal([n_classes])) } # Construct model pred = multilayer_perceptron(x, weights, biases) # Define loss and optimizer cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y)) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) # Initializing the variables init = tf.global_variables_initializer() # Launch the graph with tf.Session() as sess: sess.run(init) # Training cycle for epoch in range(training_epochs): avg_cost = 0. total_batch = int(mnist.train.num_examples/batch_size) # Loop over all batches for i in range(total_batch): batch_x, batch_y = mnist.train.next_batch(batch_size) # Run optimization op (backprop) and cost op (to get loss value) _, c = sess.run([optimizer, cost], feed_dict={x: batch_x, y: batch_y}) # Compute average loss avg_cost += c / total_batch # Display logs per epoch step if epoch % display_step == 0: print "Epoch:", '%04d' % (epoch+1), "cost=", \ "{:.9f}".format(avg_cost) print "Optimization Finished!" # Test model correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1)) # Calculate accuracy accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) print "Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels}) ###Output Epoch: 0001 cost= 43.282013203 Epoch: 0002 cost= 8.349755084 Epoch: 0003 cost= 4.672669222 Epoch: 0004 cost= 3.394152646 Epoch: 0005 cost= 2.467624623 Epoch: 0006 cost= 2.193587589 Epoch: 0007 cost= 2.039622562 Epoch: 0008 cost= 1.736807735 Epoch: 0009 cost= 1.386611417 Epoch: 0010 cost= 1.591948932 Epoch: 0011 cost= 1.320480854 Epoch: 0012 cost= 1.160013903 Epoch: 0013 cost= 1.042314344 Epoch: 0014 cost= 0.775135798 Epoch: 0015 cost= 0.914223716 Optimization Finished! Accuracy: 0.9594 ###Markdown Exercice 1Modify the architecture of the network. You can add extra hidden layers and/or the number of neurons per layer. How do you obtain the best results? ###Code ###Output _____no_output_____
advanced_functionality/inference_pipeline_sparkml_xgboost_abalone/inference_pipeline_sparkml_xgboost_abalone.ipynb
###Markdown Feature processing with Spark, training with XGBoost and deploying as Inference PipelineTypically a Machine Learning (ML) process consists of few steps: gathering data with various ETL jobs, pre-processing the data, featurizing the dataset by incorporating standard techniques or prior knowledge, and finally training an ML model using an algorithm.In many cases, when the trained model is used for processing real time or batch prediction requests, the model receives data in a format which needs to pre-processed (e.g. featurized) before it can be passed to the algorithm. In the following notebook, we will demonstrate how you can build your ML Pipeline leveraging Spark Feature Transformers and SageMaker XGBoost algorithm & after the model is trained, deploy the Pipeline (Feature Transformer and XGBoost) as an Inference Pipeline behind a single Endpoint for real-time inference and for batch inferences using Amazon SageMaker Batch Transform.In this notebook, we use Amazon Glue to run serverless Spark. Though the notebook demonstrates the end-to-end flow on a small dataset, the setup can be seamlessly used to scale to larger datasets. Objective: predict the age of an Abalone from its physical measurement The dataset is available from [UCI Machine Learning](https://archive.ics.uci.edu/ml/datasets/abalone). The aim for this task is to determine age of an Abalone (a kind of shellfish) from its physical measurements. At the core, it's a regression problem. The dataset contains several features - `sex` (categorical), `length` (continuous), `diameter` (continuous), `height` (continuous), `whole_weight` (continuous), `shucked_weight` (continuous), `viscera_weight` (continuous), `shell_weight` (continuous) and `rings` (integer).Our goal is to predict the variable `rings` which is a good approximation for age (age is `rings` + 1.5). We'll use SparkML to process the dataset (apply one or many feature transformers) and upload the transformed dataset to S3 so that it can be used for training with XGBoost. MethodologiesThe Notebook consists of a few high-level steps:* Using AWS Glue for executing the SparkML feature processing job.* Using SageMaker XGBoost to train on the processed dataset produced by SparkML job.* Building an Inference Pipeline consisting of SparkML & XGBoost models for a realtime inference endpoint.* Building an Inference Pipeline consisting of SparkML & XGBoost models for a single Batch Transform job. Using AWS Glue for executing the SparkML job We'll be running the SparkML job using [AWS Glue](https://aws.amazon.com/glue). AWS Glue is a serverless ETL service which can be used to execute standard Spark/PySpark jobs. Glue currently only supports `Python 2.7`, hence we'll write the script in `Python 2.7`. Permission setup for invoking AWS Glue from this NotebookIn order to enable this Notebook to run AWS Glue jobs, we need to add one additional permission to the default execution role of this notebook. We will be using SageMaker Python SDK to retrieve the default execution role and then you have to go to [IAM Dashboard](https://console.aws.amazon.com/iam/home) to edit the Role to add AWS Glue specific permission. Finding out the current execution role of the NotebookWe are using SageMaker Python SDK to retrieve the current role for this Notebook which needs to be enhanced. ###Code # Import SageMaker Python SDK to get the Session and execution_role import sagemaker from sagemaker import get_execution_role sess = sagemaker.Session() role = get_execution_role() print(role[role.rfind("/") + 1 :]) ###Output _____no_output_____ ###Markdown Adding AWS Glue as an additional trusted entity to this roleThis step is needed if you want to pass the execution role of this Notebook while calling Glue APIs as well without creating an additional **Role**. If you have not used AWS Glue before, then this step is mandatory. If you have used AWS Glue previously, then you should have an already existing role that can be used to invoke Glue APIs. In that case, you can pass that role while calling Glue (later in this notebook) and skip this next step. On the IAM dashboard, please click on **Roles** on the left sidenav and search for this Role. Once the Role appears, click on the Role to go to its **Summary** page. Click on the **Trust relationships** tab on the **Summary** page to add AWS Glue as an additional trusted entity. Click on **Edit trust relationship** and replace the JSON with this JSON.```{ "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Principal": { "Service": [ "sagemaker.amazonaws.com", "glue.amazonaws.com" ] }, "Action": "sts:AssumeRole" } ]}```Once this is complete, click on **Update Trust Policy** and you are done. Downloading dataset and uploading to S3SageMaker team has downloaded the dataset from UCI and uploaded to one of the S3 buckets in our account. In this Notebook, we will download from that bucket and upload to your bucket so that AWS Glue can access the data. The default AWS Glue permissions we just added expects the data to be present in a bucket with the string `aws-glue`. Hence, after we download the dataset, we will create an S3 bucket in your account with a valid name and then upload the data to S3. ###Code !wget https://s3-us-west-2.amazonaws.com/sparkml-mleap/data/abalone/abalone.csv ###Output _____no_output_____ ###Markdown Creating an S3 bucket and uploading this datasetNext we will create an S3 bucket with the `aws-glue` string in the name and upload this data to the S3 bucket. In case you want to use some existing bucket to run your Spark job via AWS Glue, you can use that bucket to upload your data provided the `Role` has access permission to upload and download from that bucket.Once the bucket is created, the following cell would also update the `abalone.csv` file downloaded locally to this bucket under the `input/abalone` prefix. ###Code import boto3 import botocore from botocore.exceptions import ClientError boto_session = sess.boto_session s3 = boto_session.resource("s3") account = boto_session.client("sts").get_caller_identity()["Account"] region = boto_session.region_name default_bucket = "aws-glue-{}-{}".format(account, region) try: if region == "us-east-1": s3.create_bucket(Bucket=default_bucket) else: s3.create_bucket( Bucket=default_bucket, CreateBucketConfiguration={"LocationConstraint": region} ) except ClientError as e: error_code = e.response["Error"]["Code"] message = e.response["Error"]["Message"] if error_code == "BucketAlreadyOwnedByYou": print("A bucket with the same name already exists in your account - using the same bucket.") pass # Uploading the training data to S3 sess.upload_data(path="abalone.csv", bucket=default_bucket, key_prefix="input/abalone") ###Output _____no_output_____ ###Markdown Writing the feature processing script using SparkMLThe code for feature transformation using SparkML can be found in `abalone_processing.py` file written in the same directory. You can go through the code itself to see how it is using standard SparkML constructs to define the Pipeline for featurizing the data.Once the Spark ML Pipeline `fit` and `transform` is done, we are splitting our dataset into 80-20 train & validation as part of the script and uploading to S3 so that it can be used with XGBoost for training. Serializing the trained Spark ML Model with [MLeap](https://github.com/combust/mleap)Apache Spark is best suited batch processing workloads. In order to use the Spark ML model we trained for low latency inference, we need to use the MLeap library to serialize it to an MLeap bundle and later use the [SageMaker SparkML Serving](https://github.com/aws/sagemaker-sparkml-serving-container) to perform realtime and batch inference. By using the `SerializeToBundle()` method from MLeap in the script, we are serializing the ML Pipeline into an MLeap bundle and uploading to S3 in `tar.gz` format as SageMaker expects. Uploading the code and other dependencies to S3 for AWS GlueUnlike SageMaker, in order to run your code in AWS Glue, we do not need to prepare a Docker image. We can upload the code and dependencies directly to S3 and pass those locations while invoking the Glue job. Upload the SparkML script to S3We will be uploading the `abalone_processing.py` script to S3 now so that Glue can use it to run the PySpark job. You can replace it with your own script if needed. If your code has multiple files, you need to zip those files and upload to S3 instead of uploading a single file like it's being done here. ###Code script_location = sess.upload_data( path="abalone_processing.py", bucket=default_bucket, key_prefix="codes" ) ###Output _____no_output_____ ###Markdown Upload MLeap dependencies to S3 For our job, we will also have to pass MLeap dependencies to Glue. MLeap is an additional library we are using which does not come bundled with default Spark.Similar to most of the packages in the Spark ecosystem, MLeap is also implemented as a Scala package with a front-end wrapper written in Python so that it can be used from PySpark. We need to make sure that the MLeap Python library as well as the JAR is available within the Glue job environment. In the following cell, we will download the MLeap Python dependency & JAR from a SageMaker hosted bucket and upload to the S3 bucket we created above in your account. If you are using some other Python libraries like `nltk` in your code, you need to download the wheel file from PyPI and upload to S3 in the same way. At this point, Glue only supports passing pure Python libraries in this way (e.g. you can not pass `Pandas` or `OpenCV`). However you can use `NumPy` & `SciPy` without having to pass these as packages because these are pre-installed in the Glue environment. ###Code !wget https://s3-us-west-2.amazonaws.com/sparkml-mleap/0.9.6/python/python.zip !wget https://s3-us-west-2.amazonaws.com/sparkml-mleap/0.9.6/jar/mleap_spark_assembly.jar python_dep_location = sess.upload_data( path="python.zip", bucket=default_bucket, key_prefix="dependencies/python" ) jar_dep_location = sess.upload_data( path="mleap_spark_assembly.jar", bucket=default_bucket, key_prefix="dependencies/jar" ) ###Output _____no_output_____ ###Markdown Defining output locations for the data and modelNext we define the output location where the transformed dataset should be uploaded. We are also specifying a model location where the MLeap serialized model would be updated. This locations should be consumed as part of the Spark script using `getResolvedOptions` method of AWS Glue library (see `abalone_processing.py` for details).By designing our code in that way, we can re-use these variables as part of other SageMaker operations from this Notebook (details below). ###Code from time import gmtime, strftime import time timestamp_prefix = strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Input location of the data, We uploaded our train.csv file to input key previously s3_input_bucket = default_bucket s3_input_key_prefix = "input/abalone" # Output location of the data. The input data will be split, transformed, and # uploaded to output/train and output/validation s3_output_bucket = default_bucket s3_output_key_prefix = timestamp_prefix + "/abalone" # the MLeap serialized SparkML model will be uploaded to output/mleap s3_model_bucket = default_bucket s3_model_key_prefix = s3_output_key_prefix + "/mleap" ###Output _____no_output_____ ###Markdown Calling Glue APIs Next we'll be creating Glue client via Boto so that we can invoke the `create_job` API of Glue. `create_job` API will create a job definition which can be used to execute your jobs in Glue. The job definition created here is mutable. While creating the job, we are also passing the code location as well as the dependencies location to Glue.`AllocatedCapacity` parameter controls the hardware resources that Glue will use to execute this job. It is measures in units of `DPU`. For more information on `DPU`, please see [here](https://docs.aws.amazon.com/glue/latest/dg/add-job.html). ###Code glue_client = boto_session.client("glue") job_name = "sparkml-abalone-" + timestamp_prefix response = glue_client.create_job( Name=job_name, Description="PySpark job to featurize the Abalone dataset", Role=role, # you can pass your existing AWS Glue role here if you have used Glue before ExecutionProperty={"MaxConcurrentRuns": 1}, Command={"Name": "glueetl", "ScriptLocation": script_location}, DefaultArguments={ "--job-language": "python", "--extra-jars": jar_dep_location, "--extra-py-files": python_dep_location, }, AllocatedCapacity=5, Timeout=60, ) glue_job_name = response["Name"] print(glue_job_name) ###Output _____no_output_____ ###Markdown The aforementioned job will be executed now by calling `start_job_run` API. This API creates an immutable run/execution corresponding to the job definition created above. We will require the `job_run_id` for the particular job execution to check for status. We'll pass the data and model locations as part of the job execution parameters. ###Code job_run_id = glue_client.start_job_run( JobName=job_name, Arguments={ "--S3_INPUT_BUCKET": s3_input_bucket, "--S3_INPUT_KEY_PREFIX": s3_input_key_prefix, "--S3_OUTPUT_BUCKET": s3_output_bucket, "--S3_OUTPUT_KEY_PREFIX": s3_output_key_prefix, "--S3_MODEL_BUCKET": s3_model_bucket, "--S3_MODEL_KEY_PREFIX": s3_model_key_prefix, }, )["JobRunId"] print(job_run_id) ###Output _____no_output_____ ###Markdown Checking Glue job status Now we will check for the job status to see if it has `succeeded`, `failed` or `stopped`. Once the job is succeeded, we have the transformed data into S3 in CSV format which we can use with XGBoost for training. If the job fails, you can go to [AWS Glue console](https://us-west-2.console.aws.amazon.com/glue/home), click on **Jobs** tab on the left, and from the page, click on this particular job and you will be able to find the CloudWatch logs (the link under **Logs**) link for these jobs which can help you to see what exactly went wrong in the job execution. ###Code job_run_status = glue_client.get_job_run(JobName=job_name, RunId=job_run_id)["JobRun"][ "JobRunState" ] while job_run_status not in ("FAILED", "SUCCEEDED", "STOPPED"): job_run_status = glue_client.get_job_run(JobName=job_name, RunId=job_run_id)["JobRun"][ "JobRunState" ] print(job_run_status) time.sleep(30) ###Output _____no_output_____ ###Markdown Using SageMaker XGBoost to train on the processed dataset produced by SparkML job Now we will use SageMaker XGBoost algorithm to train on this dataset. We already know the S3 locationwhere the preprocessed training data was uploaded as part of the Glue job. We need to retrieve the XGBoost algorithm imageWe will retrieve the XGBoost built-in algorithm image so that it can leveraged for the training job. ###Code from sagemaker.amazon.amazon_estimator import get_image_uri training_image = get_image_uri(sess.boto_region_name, "xgboost", repo_version="latest") print(training_image) ###Output _____no_output_____ ###Markdown Next XGBoost model parameters and dataset details will be set properlyWe have parameterized this Notebook so that the same data location which was used in the PySpark script can now be passed to XGBoost Estimator as well. ###Code s3_train_data = "s3://{}/{}/{}".format(s3_output_bucket, s3_output_key_prefix, "train") s3_validation_data = "s3://{}/{}/{}".format(s3_output_bucket, s3_output_key_prefix, "validation") s3_output_location = "s3://{}/{}/{}".format(s3_output_bucket, s3_output_key_prefix, "xgboost_model") xgb_model = sagemaker.estimator.Estimator( training_image, role, train_instance_count=1, train_instance_type="ml.m5.xlarge", train_volume_size=20, train_max_run=3600, input_mode="File", output_path=s3_output_location, sagemaker_session=sess, ) xgb_model.set_hyperparameters( objective="reg:linear", eta=0.2, gamma=4, max_depth=5, num_round=10, subsample=0.7, silent=0, min_child_weight=6, ) train_data = sagemaker.session.s3_input( s3_train_data, distribution="FullyReplicated", content_type="text/csv", s3_data_type="S3Prefix" ) validation_data = sagemaker.session.s3_input( s3_validation_data, distribution="FullyReplicated", content_type="text/csv", s3_data_type="S3Prefix", ) data_channels = {"train": train_data, "validation": validation_data} ###Output _____no_output_____ ###Markdown Finally XGBoost training will be performed. ###Code xgb_model.fit(inputs=data_channels, logs=True) ###Output _____no_output_____ ###Markdown Building an Inference Pipeline consisting of SparkML & XGBoost models for a realtime inference endpoint Next we will proceed with deploying the models in SageMaker to create an Inference Pipeline. You can create an Inference Pipeline with upto five containers.Deploying a model in SageMaker requires two components:* Docker image residing in ECR.* Model artifacts residing in S3.**SparkML**For SparkML, Docker image for MLeap based SparkML serving is provided by SageMaker team. For more information on this, please see [SageMaker SparkML Serving](https://github.com/aws/sagemaker-sparkml-serving-container). MLeap serialized SparkML model was uploaded to S3 as part of the SparkML job we executed in AWS Glue.**XGBoost**For XGBoost, we will use the same Docker image we used for training. The model artifacts for XGBoost was uploaded as part of the training job we just ran. Passing the schema of the payload via environment variableSparkML serving container needs to know the schema of the request that'll be passed to it while calling the `predict` method. In order to alleviate the pain of not having to pass the schema with every request, `sagemaker-sparkml-serving` allows you to pass it via an environment variable while creating the model definitions. This schema definition will be required in our next step for creating a model.We will see later that you can overwrite this schema on a per request basis by passing it as part of the individual request payload as well. ###Code import json schema = { "input": [ {"name": "sex", "type": "string"}, {"name": "length", "type": "double"}, {"name": "diameter", "type": "double"}, {"name": "height", "type": "double"}, {"name": "whole_weight", "type": "double"}, {"name": "shucked_weight", "type": "double"}, {"name": "viscera_weight", "type": "double"}, {"name": "shell_weight", "type": "double"}, ], "output": {"name": "features", "type": "double", "struct": "vector"}, } schema_json = json.dumps(schema) print(schema_json) ###Output _____no_output_____ ###Markdown Creating a `PipelineModel` which comprises of the SparkML and XGBoost model in the right orderNext we'll create a SageMaker `PipelineModel` with SparkML and XGBoost.The `PipelineModel` will ensure that both the containers get deployed behind a single API endpoint in the correct order. The same model would later be used for Batch Transform as well to ensure that a single job is sufficient to do prediction against the Pipeline. Here, during the `Model` creation for SparkML, we will pass the schema definition that we built in the previous cell. ###Code from sagemaker.model import Model from sagemaker.pipeline import PipelineModel from sagemaker.sparkml.model import SparkMLModel sparkml_data = "s3://{}/{}/{}".format(s3_model_bucket, s3_model_key_prefix, "model.tar.gz") # passing the schema defined above by using an environment variable that sagemaker-sparkml-serving understands sparkml_model = SparkMLModel(model_data=sparkml_data, env={"SAGEMAKER_SPARKML_SCHEMA": schema_json}) xgb_model = Model(model_data=xgb_model.model_data, image=training_image) model_name = "inference-pipeline-" + timestamp_prefix sm_model = PipelineModel(name=model_name, role=role, models=[sparkml_model, xgb_model]) ###Output _____no_output_____ ###Markdown Deploying the `PipelineModel` to an endpoint for realtime inferenceNext we will deploy the model we just created with the `deploy()` method to start an inference endpoint and we will send some requests to the endpoint to verify that it works as expected. ###Code endpoint_name = "inference-pipeline-ep-" + timestamp_prefix sm_model.deploy(initial_instance_count=1, instance_type="ml.c4.xlarge", endpoint_name=endpoint_name) ###Output _____no_output_____ ###Markdown Invoking the newly created inference endpoint with a payload to transform the dataNow we will invoke the endpoint with a valid payload that SageMaker SparkML Serving can recognize. There are three ways in which input payload can be passed to the request:* Pass it as a valid CSV string. In this case, the schema passed via the environment variable will be used to determine the schema. For CSV format, every column in the input has to be a basic datatype (e.g. int, double, string) and it can not be a Spark `Array` or `Vector`.* Pass it as a valid JSON string. In this case as well, the schema passed via the environment variable will be used to infer the schema. With JSON format, every column in the input can be a basic datatype or a Spark `Vector` or `Array` provided that the corresponding entry in the schema mentions the correct value.* Pass the request in JSON format along with the schema and the data. In this case, the schema passed in the payload will take precedence over the one passed via the environment variable (if any). Passing the payload in CSV formatWe will first see how the payload can be passed to the endpoint in CSV format. ###Code from sagemaker.predictor import ( json_serializer, csv_serializer, json_deserializer, RealTimePredictor, ) from sagemaker.content_types import CONTENT_TYPE_CSV, CONTENT_TYPE_JSON payload = "F,0.515,0.425,0.14,0.766,0.304,0.1725,0.255" predictor = RealTimePredictor( endpoint=endpoint_name, sagemaker_session=sess, serializer=csv_serializer, content_type=CONTENT_TYPE_CSV, accept=CONTENT_TYPE_CSV, ) print(predictor.predict(payload)) ###Output _____no_output_____ ###Markdown Passing the payload in JSON formatWe will now pass a different payload in JSON format. ###Code payload = {"data": ["F", 0.515, 0.425, 0.14, 0.766, 0.304, 0.1725, 0.255]} predictor = RealTimePredictor( endpoint=endpoint_name, sagemaker_session=sess, serializer=json_serializer, content_type=CONTENT_TYPE_JSON, accept=CONTENT_TYPE_CSV, ) print(predictor.predict(payload)) ###Output _____no_output_____ ###Markdown [Optional] Passing the payload with both schema and the dataNext we will pass the input payload comprising of both the schema and the data. If you notice carefully, this schema will be slightly different than what we have passed via the environment variable. The locations of `length` and `sex` column have been swapped and so the data. The server now parses the payload with this schema and works properly. ###Code payload = { "schema": { "input": [ {"name": "length", "type": "double"}, {"name": "sex", "type": "string"}, {"name": "diameter", "type": "double"}, {"name": "height", "type": "double"}, {"name": "whole_weight", "type": "double"}, {"name": "shucked_weight", "type": "double"}, {"name": "viscera_weight", "type": "double"}, {"name": "shell_weight", "type": "double"}, ], "output": {"name": "features", "type": "double", "struct": "vector"}, }, "data": [0.515, "F", 0.425, 0.14, 0.766, 0.304, 0.1725, 0.255], } predictor = RealTimePredictor( endpoint=endpoint_name, sagemaker_session=sess, serializer=json_serializer, content_type=CONTENT_TYPE_JSON, accept=CONTENT_TYPE_CSV, ) print(predictor.predict(payload)) ###Output _____no_output_____ ###Markdown [Optional] Deleting the EndpointIf you do not plan to use this endpoint, then it is a good practice to delete the endpoint so that you do not incur the cost of running it. ###Code sm_client = boto_session.client("sagemaker") sm_client.delete_endpoint(EndpointName=endpoint_name) ###Output _____no_output_____ ###Markdown Building an Inference Pipeline consisting of SparkML & XGBoost models for a single Batch Transform jobSageMaker Batch Transform also supports chaining multiple containers together when deploying an Inference Pipeline and performing a single batch transform jobs to transform your data for a batch use-case similar to the real-time use-case we have seen above. Preparing data for Batch TransformBatch Transform requires data in the same format described above, with one CSV or JSON being per line. For this Notebook, SageMaker team has created a sample input in CSV format which Batch Transform can process. The input is basically a similar CSV file to the training file with only difference is that it does not contain the label (``rings``) field.Next we will download a sample of this data from one of the SageMaker buckets (named `batch_input_abalone.csv`) and upload to your S3 bucket. We will also inspect first five rows of the data post downloading. ###Code !wget https://s3-us-west-2.amazonaws.com/sparkml-mleap/data/batch_input_abalone.csv !printf "\n\nShowing first five lines\n\n" !head -n 5 batch_input_abalone.csv !printf "\n\nAs we can see, it is identical to the training file apart from the label being absent here.\n\n" batch_input_loc = sess.upload_data( path="batch_input_abalone.csv", bucket=default_bucket, key_prefix="batch" ) ###Output _____no_output_____ ###Markdown Invoking the Transform API to create a Batch Transform jobNext we will create a Batch Transform job using the `Transformer` class from Python SDK to create a Batch Transform job. ###Code input_data_path = "s3://{}/{}/{}".format(default_bucket, "batch", "batch_input_abalone.csv") output_data_path = "s3://{}/{}/{}".format(default_bucket, "batch_output/abalone", timestamp_prefix) job_name = "serial-inference-batch-" + timestamp_prefix transformer = sagemaker.transformer.Transformer( # This was the model created using PipelineModel and it contains feature processing and XGBoost model_name=model_name, instance_count=1, instance_type="ml.m5.xlarge", strategy="SingleRecord", assemble_with="Line", output_path=output_data_path, base_transform_job_name="serial-inference-batch", sagemaker_session=sess, accept=CONTENT_TYPE_CSV, ) transformer.transform( data=input_data_path, job_name=job_name, content_type=CONTENT_TYPE_CSV, split_type="Line" ) transformer.wait() ###Output _____no_output_____ ###Markdown Feature processing with Spark, training with XGBoost and deploying as Inference PipelineTypically a Machine Learning (ML) process consists of few steps: gathering data with various ETL jobs, pre-processing the data, featurizing the dataset by incorporating standard techniques or prior knowledge, and finally training an ML model using an algorithm.In many cases, when the trained model is used for processing real time or batch prediction requests, the model receives data in a format which needs to pre-processed (e.g. featurized) before it can be passed to the algorithm. In the following notebook, we will demonstrate how you can build your ML Pipeline leveraging Spark Feature Transformers and SageMaker XGBoost algorithm & after the model is trained, deploy the Pipeline (Feature Transformer and XGBoost) as an Inference Pipeline behind a single Endpoint for real-time inference and for batch inferences using Amazon SageMaker Batch Transform.In this notebook, we use Amazon Glue to run serverless Spark. Though the notebook demonstrates the end-to-end flow on a small dataset, the setup can be seamlessly used to scale to larger datasets. Objective: predict the age of an Abalone from its physical measurement The dataset is available from [UCI Machine Learning](https://archive.ics.uci.edu/ml/datasets/abalone). The aim for this task is to determine age of an Abalone (a kind of shellfish) from its physical measurements. At the core, it's a regression problem. The dataset contains several features - `sex` (categorical), `length` (continuous), `diameter` (continuous), `height` (continuous), `whole_weight` (continuous), `shucked_weight` (continuous), `viscera_weight` (continuous), `shell_weight` (continuous) and `rings` (integer).Our goal is to predict the variable `rings` which is a good approximation for age (age is `rings` + 1.5). We'll use SparkML to process the dataset (apply one or many feature transformers) and upload the transformed dataset to S3 so that it can be used for training with XGBoost. MethodologiesThe Notebook consists of a few high-level steps:* Using AWS Glue for executing the SparkML feature processing job.* Using SageMaker XGBoost to train on the processed dataset produced by SparkML job.* Building an Inference Pipeline consisting of SparkML & XGBoost models for a realtime inference endpoint.* Building an Inference Pipeline consisting of SparkML & XGBoost models for a single Batch Transform job. Using AWS Glue for executing the SparkML job We'll be running the SparkML job using [AWS Glue](https://aws.amazon.com/glue). AWS Glue is a serverless ETL service which can be used to execute standard Spark/PySpark jobs. Glue currently only supports `Python 2.7`, hence we'll write the script in `Python 2.7`. Permission setup for invoking AWS Glue from this NotebookIn order to enable this Notebook to run AWS Glue jobs, we need to add one additional permission to the default execution role of this notebook. We will be using SageMaker Python SDK to retrieve the default execution role and then you have to go to [IAM Dashboard](https://console.aws.amazon.com/iam/home) to edit the Role to add AWS Glue specific permission. Finding out the current execution role of the NotebookWe are using SageMaker Python SDK to retrieve the current role for this Notebook which needs to be enhanced. ###Code # Import SageMaker Python SDK to get the Session and execution_role import sagemaker from sagemaker import get_execution_role sess = sagemaker.Session() role = get_execution_role() print(role[role.rfind('/') + 1:]) ###Output _____no_output_____ ###Markdown Adding AWS Glue as an additional trusted entity to this roleThis step is needed if you want to pass the execution role of this Notebook while calling Glue APIs as well without creating an additional **Role**. If you have not used AWS Glue before, then this step is mandatory. If you have used AWS Glue previously, then you should have an already existing role that can be used to invoke Glue APIs. In that case, you can pass that role while calling Glue (later in this notebook) and skip this next step. On the IAM dashboard, please click on **Roles** on the left sidenav and search for this Role. Once the Role appears, click on the Role to go to its **Summary** page. Click on the **Trust relationships** tab on the **Summary** page to add AWS Glue as an additional trusted entity. Click on **Edit trust relationship** and replace the JSON with this JSON.```{ "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Principal": { "Service": [ "sagemaker.amazonaws.com", "glue.amazonaws.com" ] }, "Action": "sts:AssumeRole" } ]}```Once this is complete, click on **Update Trust Policy** and you are done. Downloading dataset and uploading to S3SageMaker team has downloaded the dataset from UCI and uploaded to one of the S3 buckets in our account. In this Notebook, we will download from that bucket and upload to your bucket so that AWS Glue can access the data. The default AWS Glue permissions we just added expects the data to be present in a bucket with the string `aws-glue`. Hence, after we download the dataset, we will create an S3 bucket in your account with a valid name and then upload the data to S3. ###Code !wget https://s3-us-west-2.amazonaws.com/sparkml-mleap/data/abalone/abalone.csv ###Output _____no_output_____ ###Markdown Creating an S3 bucket and uploading this datasetNext we will create an S3 bucket with the `aws-glue` string in the name and upload this data to the S3 bucket. In case you want to use some existing bucket to run your Spark job via AWS Glue, you can use that bucket to upload your data provided the `Role` has access permission to upload and download from that bucket.Once the bucket is created, the following cell would also update the `abalone.csv` file downloaded locally to this bucket under the `input/abalone` prefix. ###Code import boto3 import botocore from botocore.exceptions import ClientError boto_session = sess.boto_session s3 = boto_session.resource('s3') account = boto_session.client('sts').get_caller_identity()['Account'] region = boto_session.region_name default_bucket = 'aws-glue-{}-{}'.format(account, region) try: if region == 'us-east-1': s3.create_bucket(Bucket=default_bucket) else: s3.create_bucket(Bucket=default_bucket, CreateBucketConfiguration={'LocationConstraint': region}) except ClientError as e: error_code = e.response['Error']['Code'] message = e.response['Error']['Message'] if error_code == 'BucketAlreadyOwnedByYou': print ('A bucket with the same name already exists in your account - using the same bucket.') pass # Uploading the training data to S3 sess.upload_data(path='abalone.csv', bucket=default_bucket, key_prefix='input/abalone') ###Output _____no_output_____ ###Markdown Writing the feature processing script using SparkMLThe code for feature transformation using SparkML can be found in `abalone_processing.py` file written in the same directory. You can go through the code itself to see how it is using standard SparkML constructs to define the Pipeline for featurizing the data.Once the Spark ML Pipeline `fit` and `transform` is done, we are splitting our dataset into 80-20 train & validation as part of the script and uploading to S3 so that it can be used with XGBoost for training. Serializing the trained Spark ML Model with [MLeap](https://github.com/combust/mleap)Apache Spark is best suited batch processing workloads. In order to use the Spark ML model we trained for low latency inference, we need to use the MLeap library to serialize it to an MLeap bundle and later use the [SageMaker SparkML Serving](https://github.com/aws/sagemaker-sparkml-serving-container) to perform realtime and batch inference. By using the `SerializeToBundle()` method from MLeap in the script, we are serializing the ML Pipeline into an MLeap bundle and uploading to S3 in `tar.gz` format as SageMaker expects. Uploading the code and other dependencies to S3 for AWS GlueUnlike SageMaker, in order to run your code in AWS Glue, we do not need to prepare a Docker image. We can upload the code and dependencies directly to S3 and pass those locations while invoking the Glue job. Upload the SparkML script to S3We will be uploading the `abalone_processing.py` script to S3 now so that Glue can use it to run the PySpark job. You can replace it with your own script if needed. If your code has multiple files, you need to zip those files and upload to S3 instead of uploading a single file like it's being done here. ###Code script_location = sess.upload_data(path='abalone_processing.py', bucket=default_bucket, key_prefix='codes') ###Output _____no_output_____ ###Markdown Upload MLeap dependencies to S3 For our job, we will also have to pass MLeap dependencies to Glue. MLeap is an additional library we are using which does not come bundled with default Spark.Similar to most of the packages in the Spark ecosystem, MLeap is also implemented as a Scala package with a front-end wrapper written in Python so that it can be used from PySpark. We need to make sure that the MLeap Python library as well as the JAR is available within the Glue job environment. In the following cell, we will download the MLeap Python dependency & JAR from a SageMaker hosted bucket and upload to the S3 bucket we created above in your account. If you are using some other Python libraries like `nltk` in your code, you need to download the wheel file from PyPI and upload to S3 in the same way. At this point, Glue only supports passing pure Python libraries in this way (e.g. you can not pass `Pandas` or `OpenCV`). However you can use `NumPy` & `SciPy` without having to pass these as packages because these are pre-installed in the Glue environment. ###Code !wget https://s3-us-west-2.amazonaws.com/sparkml-mleap/0.9.6/python/python.zip !wget https://s3-us-west-2.amazonaws.com/sparkml-mleap/0.9.6/jar/mleap_spark_assembly.jar python_dep_location = sess.upload_data(path='python.zip', bucket=default_bucket, key_prefix='dependencies/python') jar_dep_location = sess.upload_data(path='mleap_spark_assembly.jar', bucket=default_bucket, key_prefix='dependencies/jar') ###Output _____no_output_____ ###Markdown Defining output locations for the data and modelNext we define the output location where the transformed dataset should be uploaded. We are also specifying a model location where the MLeap serialized model would be updated. This locations should be consumed as part of the Spark script using `getResolvedOptions` method of AWS Glue library (see `abalone_processing.py` for details).By designing our code in that way, we can re-use these variables as part of other SageMaker operations from this Notebook (details below). ###Code from time import gmtime, strftime import time timestamp_prefix = strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Input location of the data, We uploaded our train.csv file to input key previously s3_input_bucket = default_bucket s3_input_key_prefix = 'input/abalone' # Output location of the data. The input data will be split, transformed, and # uploaded to output/train and output/validation s3_output_bucket = default_bucket s3_output_key_prefix = timestamp_prefix + '/abalone' # the MLeap serialized SparkML model will be uploaded to output/mleap s3_model_bucket = default_bucket s3_model_key_prefix = s3_output_key_prefix + '/mleap' ###Output _____no_output_____ ###Markdown Calling Glue APIs Next we'll be creating Glue client via Boto so that we can invoke the `create_job` API of Glue. `create_job` API will create a job definition which can be used to execute your jobs in Glue. The job definition created here is mutable. While creating the job, we are also passing the code location as well as the dependencies location to Glue.`AllocatedCapacity` parameter controls the hardware resources that Glue will use to execute this job. It is measures in units of `DPU`. For more information on `DPU`, please see [here](https://docs.aws.amazon.com/glue/latest/dg/add-job.html). ###Code glue_client = boto_session.client('glue') job_name = 'sparkml-abalone-' + timestamp_prefix response = glue_client.create_job( Name=job_name, Description='PySpark job to featurize the Abalone dataset', Role=role, # you can pass your existing AWS Glue role here if you have used Glue before ExecutionProperty={ 'MaxConcurrentRuns': 1 }, Command={ 'Name': 'glueetl', 'ScriptLocation': script_location }, DefaultArguments={ '--job-language': 'python', '--extra-jars' : jar_dep_location, '--extra-py-files': python_dep_location }, AllocatedCapacity=5, Timeout=60, ) glue_job_name = response['Name'] print(glue_job_name) ###Output _____no_output_____ ###Markdown The aforementioned job will be executed now by calling `start_job_run` API. This API creates an immutable run/execution corresponding to the job definition created above. We will require the `job_run_id` for the particular job execution to check for status. We'll pass the data and model locations as part of the job execution parameters. ###Code job_run_id = glue_client.start_job_run(JobName=job_name, Arguments = { '--S3_INPUT_BUCKET': s3_input_bucket, '--S3_INPUT_KEY_PREFIX': s3_input_key_prefix, '--S3_OUTPUT_BUCKET': s3_output_bucket, '--S3_OUTPUT_KEY_PREFIX': s3_output_key_prefix, '--S3_MODEL_BUCKET': s3_model_bucket, '--S3_MODEL_KEY_PREFIX': s3_model_key_prefix })['JobRunId'] print(job_run_id) ###Output _____no_output_____ ###Markdown Checking Glue job status Now we will check for the job status to see if it has `succeeded`, `failed` or `stopped`. Once the job is succeeded, we have the transformed data into S3 in CSV format which we can use with XGBoost for training. If the job fails, you can go to [AWS Glue console](https://us-west-2.console.aws.amazon.com/glue/home), click on **Jobs** tab on the left, and from the page, click on this particular job and you will be able to find the CloudWatch logs (the link under **Logs**) link for these jobs which can help you to see what exactly went wrong in the job execution. ###Code job_run_status = glue_client.get_job_run(JobName=job_name,RunId=job_run_id)['JobRun']['JobRunState'] while job_run_status not in ('FAILED', 'SUCCEEDED', 'STOPPED'): job_run_status = glue_client.get_job_run(JobName=job_name,RunId=job_run_id)['JobRun']['JobRunState'] print (job_run_status) time.sleep(30) ###Output _____no_output_____ ###Markdown Using SageMaker XGBoost to train on the processed dataset produced by SparkML job Now we will use SageMaker XGBoost algorithm to train on this dataset. We already know the S3 locationwhere the preprocessed training data was uploaded as part of the Glue job. We need to retrieve the XGBoost algorithm imageWe will retrieve the XGBoost built-in algorithm image so that it can leveraged for the training job. ###Code from sagemaker.amazon.amazon_estimator import get_image_uri training_image = get_image_uri(sess.boto_region_name, 'xgboost', repo_version="latest") print (training_image) ###Output _____no_output_____ ###Markdown Next XGBoost model parameters and dataset details will be set properlyWe have parameterized this Notebook so that the same data location which was used in the PySpark script can now be passed to XGBoost Estimator as well. ###Code s3_train_data = 's3://{}/{}/{}'.format(s3_output_bucket, s3_output_key_prefix, 'train') s3_validation_data = 's3://{}/{}/{}'.format(s3_output_bucket, s3_output_key_prefix, 'validation') s3_output_location = 's3://{}/{}/{}'.format(s3_output_bucket, s3_output_key_prefix, 'xgboost_model') xgb_model = sagemaker.estimator.Estimator(training_image, role, train_instance_count=1, train_instance_type='ml.m5.xlarge', train_volume_size = 20, train_max_run = 3600, input_mode= 'File', output_path=s3_output_location, sagemaker_session=sess) xgb_model.set_hyperparameters(objective = "reg:linear", eta = .2, gamma = 4, max_depth = 5, num_round = 10, subsample = 0.7, silent = 0, min_child_weight = 6) train_data = sagemaker.session.s3_input(s3_train_data, distribution='FullyReplicated', content_type='text/csv', s3_data_type='S3Prefix') validation_data = sagemaker.session.s3_input(s3_validation_data, distribution='FullyReplicated', content_type='text/csv', s3_data_type='S3Prefix') data_channels = {'train': train_data, 'validation': validation_data} ###Output _____no_output_____ ###Markdown Finally XGBoost training will be performed. ###Code xgb_model.fit(inputs=data_channels, logs=True) ###Output _____no_output_____ ###Markdown Building an Inference Pipeline consisting of SparkML & XGBoost models for a realtime inference endpoint Next we will proceed with deploying the models in SageMaker to create an Inference Pipeline. You can create an Inference Pipeline with upto five containers.Deploying a model in SageMaker requires two components:* Docker image residing in ECR.* Model artifacts residing in S3.**SparkML**For SparkML, Docker image for MLeap based SparkML serving is provided by SageMaker team. For more information on this, please see [SageMaker SparkML Serving](https://github.com/aws/sagemaker-sparkml-serving-container). MLeap serialized SparkML model was uploaded to S3 as part of the SparkML job we executed in AWS Glue.**XGBoost**For XGBoost, we will use the same Docker image we used for training. The model artifacts for XGBoost was uploaded as part of the training job we just ran. Passing the schema of the payload via environment variableSparkML serving container needs to know the schema of the request that'll be passed to it while calling the `predict` method. In order to alleviate the pain of not having to pass the schema with every request, `sagemaker-sparkml-serving` allows you to pass it via an environment variable while creating the model definitions. This schema definition will be required in our next step for creating a model.We will see later that you can overwrite this schema on a per request basis by passing it as part of the individual request payload as well. ###Code import json schema = { "input": [ { "name": "sex", "type": "string" }, { "name": "length", "type": "double" }, { "name": "diameter", "type": "double" }, { "name": "height", "type": "double" }, { "name": "whole_weight", "type": "double" }, { "name": "shucked_weight", "type": "double" }, { "name": "viscera_weight", "type": "double" }, { "name": "shell_weight", "type": "double" }, ], "output": { "name": "features", "type": "double", "struct": "vector" } } schema_json = json.dumps(schema) print(schema_json) ###Output _____no_output_____ ###Markdown Creating a `PipelineModel` which comprises of the SparkML and XGBoost model in the right orderNext we'll create a SageMaker `PipelineModel` with SparkML and XGBoost.The `PipelineModel` will ensure that both the containers get deployed behind a single API endpoint in the correct order. The same model would later be used for Batch Transform as well to ensure that a single job is sufficient to do prediction against the Pipeline. Here, during the `Model` creation for SparkML, we will pass the schema definition that we built in the previous cell. ###Code from sagemaker.model import Model from sagemaker.pipeline import PipelineModel from sagemaker.sparkml.model import SparkMLModel sparkml_data = 's3://{}/{}/{}'.format(s3_model_bucket, s3_model_key_prefix, 'model.tar.gz') # passing the schema defined above by using an environment variable that sagemaker-sparkml-serving understands sparkml_model = SparkMLModel(model_data=sparkml_data, env={'SAGEMAKER_SPARKML_SCHEMA' : schema_json}) xgb_model = Model(model_data=xgb_model.model_data, image=training_image) model_name = 'inference-pipeline-' + timestamp_prefix sm_model = PipelineModel(name=model_name, role=role, models=[sparkml_model, xgb_model]) ###Output _____no_output_____ ###Markdown Deploying the `PipelineModel` to an endpoint for realtime inferenceNext we will deploy the model we just created with the `deploy()` method to start an inference endpoint and we will send some requests to the endpoint to verify that it works as expected. ###Code endpoint_name = 'inference-pipeline-ep-' + timestamp_prefix sm_model.deploy(initial_instance_count=1, instance_type='ml.c4.xlarge', endpoint_name=endpoint_name) ###Output _____no_output_____ ###Markdown Invoking the newly created inference endpoint with a payload to transform the dataNow we will invoke the endpoint with a valid payload that SageMaker SparkML Serving can recognize. There are three ways in which input payload can be passed to the request:* Pass it as a valid CSV string. In this case, the schema passed via the environment variable will be used to determine the schema. For CSV format, every column in the input has to be a basic datatype (e.g. int, double, string) and it can not be a Spark `Array` or `Vector`.* Pass it as a valid JSON string. In this case as well, the schema passed via the environment variable will be used to infer the schema. With JSON format, every column in the input can be a basic datatype or a Spark `Vector` or `Array` provided that the corresponding entry in the schema mentions the correct value.* Pass the request in JSON format along with the schema and the data. In this case, the schema passed in the payload will take precedence over the one passed via the environment variable (if any). Passing the payload in CSV formatWe will first see how the payload can be passed to the endpoint in CSV format. ###Code from sagemaker.predictor import json_serializer, csv_serializer, json_deserializer, RealTimePredictor from sagemaker.content_types import CONTENT_TYPE_CSV, CONTENT_TYPE_JSON payload = "F,0.515,0.425,0.14,0.766,0.304,0.1725,0.255" predictor = RealTimePredictor(endpoint=endpoint_name, sagemaker_session=sess, serializer=csv_serializer, content_type=CONTENT_TYPE_CSV, accept=CONTENT_TYPE_CSV) print(predictor.predict(payload)) ###Output _____no_output_____ ###Markdown Passing the payload in JSON formatWe will now pass a different payload in JSON format. ###Code payload = {"data": ["F",0.515,0.425,0.14,0.766,0.304,0.1725,0.255]} predictor = RealTimePredictor(endpoint=endpoint_name, sagemaker_session=sess, serializer=json_serializer, content_type=CONTENT_TYPE_JSON, accept=CONTENT_TYPE_CSV) print(predictor.predict(payload)) ###Output _____no_output_____ ###Markdown [Optional] Passing the payload with both schema and the dataNext we will pass the input payload comprising of both the schema and the data. If you notice carefully, this schema will be slightly different than what we have passed via the environment variable. The locations of `length` and `sex` column have been swapped and so the data. The server now parses the payload with this schema and works properly. ###Code payload = { "schema": { "input": [ { "name": "length", "type": "double" }, { "name": "sex", "type": "string" }, { "name": "diameter", "type": "double" }, { "name": "height", "type": "double" }, { "name": "whole_weight", "type": "double" }, { "name": "shucked_weight", "type": "double" }, { "name": "viscera_weight", "type": "double" }, { "name": "shell_weight", "type": "double" }, ], "output": { "name": "features", "type": "double", "struct": "vector" } }, "data": [0.515,"F",0.425,0.14,0.766,0.304,0.1725,0.255] } predictor = RealTimePredictor(endpoint=endpoint_name, sagemaker_session=sess, serializer=json_serializer, content_type=CONTENT_TYPE_JSON, accept=CONTENT_TYPE_CSV) print(predictor.predict(payload)) ###Output _____no_output_____ ###Markdown [Optional] Deleting the EndpointIf you do not plan to use this endpoint, then it is a good practice to delete the endpoint so that you do not incur the cost of running it. ###Code sm_client = boto_session.client('sagemaker') sm_client.delete_endpoint(EndpointName=endpoint_name) ###Output _____no_output_____ ###Markdown Building an Inference Pipeline consisting of SparkML & XGBoost models for a single Batch Transform jobSageMaker Batch Transform also supports chaining multiple containers together when deploying an Inference Pipeline and performing a single batch transform jobs to transform your data for a batch use-case similar to the real-time use-case we have seen above. Preparing data for Batch TransformBatch Transform requires data in the same format described above, with one CSV or JSON being per line. For this Notebook, SageMaker team has created a sample input in CSV format which Batch Transform can process. The input is basically a similar CSV file to the training file with only difference is that it does not contain the label (``rings``) field.Next we will download a sample of this data from one of the SageMaker buckets (named `batch_input_abalone.csv`) and upload to your S3 bucket. We will also inspect first five rows of the data post downloading. ###Code !wget https://s3-us-west-2.amazonaws.com/sparkml-mleap/data/batch_input_abalone.csv !printf "\n\nShowing first five lines\n\n" !head -n 5 batch_input_abalone.csv !printf "\n\nAs we can see, it is identical to the training file apart from the label being absent here.\n\n" batch_input_loc = sess.upload_data(path='batch_input_abalone.csv', bucket=default_bucket, key_prefix='batch') ###Output _____no_output_____ ###Markdown Invoking the Transform API to create a Batch Transform jobNext we will create a Batch Transform job using the `Transformer` class from Python SDK to create a Batch Transform job. ###Code input_data_path = 's3://{}/{}/{}'.format(default_bucket, 'batch', 'batch_input_abalone.csv') output_data_path = 's3://{}/{}/{}'.format(default_bucket, 'batch_output/abalone', timestamp_prefix) job_name = 'serial-inference-batch-' + timestamp_prefix transformer = sagemaker.transformer.Transformer( # This was the model created using PipelineModel and it contains feature processing and XGBoost model_name = model_name, instance_count = 1, instance_type = 'ml.m5.xlarge', strategy = 'SingleRecord', assemble_with = 'Line', output_path = output_data_path, base_transform_job_name='serial-inference-batch', sagemaker_session=sess, accept = CONTENT_TYPE_CSV ) transformer.transform(data = input_data_path, job_name = job_name, content_type = CONTENT_TYPE_CSV, split_type = 'Line') transformer.wait() ###Output _____no_output_____ ###Markdown Feature processing with Spark, training with XGBoost and deploying as Inference PipelineTypically a Machine Learning (ML) process consists of few steps: gathering data with various ETL jobs, pre-processing the data, featurizing the dataset by incorporating standard techniques or prior knowledge, and finally training an ML model using an algorithm.In many cases, when the trained model is used for processing real time or batch prediction requests, the model receives data in a format which needs to pre-processed (e.g. featurized) before it can be passed to the algorithm. In the following notebook, we will demonstrate how you can build your ML Pipeline leveraging Spark Feature Transformers and SageMaker XGBoost algorithm & after the model is trained, deploy the Pipeline (Feature Transformer and XGBoost) as an Inference Pipeline behind a single Endpoint for real-time inference and for batch inferences using Amazon SageMaker Batch Transform.In this notebook, we use Amazon Glue to run serverless Spark. Though the notebook demonstrates the end-to-end flow on a small dataset, the setup can be seamlessly used to scale to larger datasets. Objective: predict the age of an Abalone from its physical measurement The dataset is available from [UCI Machine Learning](https://archive.ics.uci.edu/ml/datasets/abalone). The aim for this task is to determine age of an Abalone (a kind of shellfish) from its physical measurements. At the core, it's a regression problem. The dataset contains several features - `sex` (categorical), `length` (continuous), `diameter` (continuous), `height` (continuous), `whole_weight` (continuous), `shucked_weight` (continuous), `viscera_weight` (continuous), `shell_weight` (continuous) and `rings` (integer).Our goal is to predict the variable `rings` which is a good approximation for age (age is `rings` + 1.5). We'll use SparkML to process the dataset (apply one or many feature transformers) and upload the transformed dataset to S3 so that it can be used for training with XGBoost. MethodologiesThe Notebook consists of a few high-level steps:* Using AWS Glue for executing the SparkML feature processing job.* Using SageMaker XGBoost to train on the processed dataset produced by SparkML job.* Building an Inference Pipeline consisting of SparkML & XGBoost models for a realtime inference endpoint.* Building an Inference Pipeline consisting of SparkML & XGBoost models for a single Batch Transform job. Using AWS Glue for executing the SparkML job We'll be running the SparkML job using [AWS Glue](https://aws.amazon.com/glue). AWS Glue is a serverless ETL service which can be used to execute standard Spark/PySpark jobs. Glue currently only supports `Python 2.7`, hence we'll write the script in `Python 2.7`. Permission setup for invoking AWS Glue from this NotebookIn order to enable this Notebook to run AWS Glue jobs, we need to add one additional permission to the default execution role of this notebook. We will be using SageMaker Python SDK to retrieve the default execution role and then you have to go to [IAM Dashboard](https://console.aws.amazon.com/iam/home) to edit the Role to add AWS Glue specific permission. Finding out the current execution role of the NotebookWe are using SageMaker Python SDK to retrieve the current role for this Notebook which needs to be enhanced. ###Code # Import SageMaker Python SDK to get the Session and execution_role import sagemaker from sagemaker import get_execution_role sess = sagemaker.Session() role = get_execution_role() print(role[role.rfind('/') + 1:]) ###Output _____no_output_____ ###Markdown Adding AWS Glue as an additional trusted entity to this roleThis step is needed if you want to pass the execution role of this Notebook while calling Glue APIs as well without creating an additional **Role**. If you have not used AWS Glue before, then this step is mandatory. If you have used AWS Glue previously, then you should have an already existing role that can be used to invoke Glue APIs. In that case, you can pass that role while calling Glue (later in this notebook) and skip this next step. On the IAM dashboard, please click on **Roles** on the left sidenav and search for this Role. Once the Role appears, click on the Role to go to its **Summary** page. Click on the **Trust relationships** tab on the **Summary** page to add AWS Glue as an additional trusted entity. Click on **Edit trust relationship** and replace the JSON with this JSON.```{ "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Principal": { "Service": [ "sagemaker.amazonaws.com", "glue.amazonaws.com" ] }, "Action": "sts:AssumeRole" } ]}```Once this is complete, click on **Update Trust Policy** and you are done. Downloading dataset and uploading to S3SageMaker team has downloaded the dataset from UCI and uploaded to one of the S3 buckets in our account. In this Notebook, we will download from that bucket and upload to your bucket so that AWS Glue can access the data. The default AWS Glue permissions we just added expects the data to be present in a bucket with the string `aws-glue`. Hence, after we download the dataset, we will create an S3 bucket in your account with a valid name and then upload the data to S3. ###Code !wget https://s3-us-west-2.amazonaws.com/sparkml-mleap/data/abalone/abalone.csv ###Output _____no_output_____ ###Markdown Creating an S3 bucket and uploading this datasetNext we will create an S3 bucket with the `aws-glue` string in the name and upload this data to the S3 bucket. In case you want to use some existing bucket to run your Spark job via AWS Glue, you can use that bucket to upload your data provided the `Role` has access permission to upload and download from that bucket.Once the bucket is created, the following cell would also update the `abalone.csv` file downloaded locally to this bucket under the `input/abalone` prefix. ###Code import boto3 import botocore from botocore.exceptions import ClientError boto_session = sess.boto_session s3 = boto_session.resource('s3') account = boto_session.client('sts').get_caller_identity()['Account'] region = boto_session.region_name default_bucket = 'aws-glue-{}-{}'.format(account, region) try: if region == 'us-east-1': s3.create_bucket(Bucket=default_bucket) else: s3.create_bucket(Bucket=default_bucket, CreateBucketConfiguration={'LocationConstraint': region}) except ClientError as e: error_code = e.response['Error']['Code'] message = e.response['Error']['Message'] if error_code == 'BucketAlreadyOwnedByYou': print ('A bucket with the same name already exists in your account - using the same bucket.') pass # Uploading the training data to S3 sess.upload_data(path='abalone.csv', bucket=default_bucket, key_prefix='input/abalone') ###Output _____no_output_____ ###Markdown Writing the feature processing script using SparkMLThe code for feature transformation using SparkML can be found in `abalone_processing.py` file written in the same directory. You can go through the code itself to see how it is using standard SparkML constructs to define the Pipeline for featurizing the data.Once the Spark ML Pipeline `fit` and `transform` is done, we are splitting our dataset into 80-20 train & validation as part of the script and uploading to S3 so that it can be used with XGBoost for training. Serializing the trained Spark ML Model with [MLeap](https://github.com/combust/mleap)Apache Spark is best suited batch processing workloads. In order to use the Spark ML model we trained for low latency inference, we need to use the MLeap library to serialize it to an MLeap bundle and later use the [SageMaker SparkML Serving](https://github.com/aws/sagemaker-sparkml-serving-container) to perform realtime and batch inference. By using the `SerializeToBundle()` method from MLeap in the script, we are serializing the ML Pipeline into an MLeap bundle and uploading to S3 in `tar.gz` format as SageMaker expects. Uploading the code and other dependencies to S3 for AWS GlueUnlike SageMaker, in order to run your code in AWS Glue, we do not need to prepare a Docker image. We can upload the code and dependencies directly to S3 and pass those locations while invoking the Glue job. Upload the SparkML script to S3We will be uploading the `abalone_processing.py` script to S3 now so that Glue can use it to run the PySpark job. You can replace it with your own script if needed. If your code has multiple files, you need to zip those files and upload to S3 instead of uploading a single file like it's being done here. ###Code script_location = sess.upload_data(path='abalone_processing.py', bucket=default_bucket, key_prefix='codes') ###Output _____no_output_____ ###Markdown Upload MLeap dependencies to S3 For our job, we will also have to pass MLeap dependencies to Glue. MLeap is an additional library we are using which does not come bundled with default Spark.Similar to most of the packages in the Spark ecosystem, MLeap is also implemented as a Scala package with a front-end wrapper written in Python so that it can be used from PySpark. We need to make sure that the MLeap Python library as well as the JAR is available within the Glue job environment. In the following cell, we will download the MLeap Python dependency & JAR from a SageMaker hosted bucket and upload to the S3 bucket we created above in your account. If you are using some other Python libraries like `nltk` in your code, you need to download the wheel file from PyPI and upload to S3 in the same way. At this point, Glue only supports passing pure Python libraries in this way (e.g. you can not pass `Pandas` or `OpenCV`). However you can use `NumPy` & `SciPy` without having to pass these as packages because these are pre-installed in the Glue environment. ###Code !wget https://s3-us-west-2.amazonaws.com/sparkml-mleap/0.9.6/python/python.zip !wget https://s3-us-west-2.amazonaws.com/sparkml-mleap/0.9.6/jar/mleap_spark_assembly.jar python_dep_location = sess.upload_data(path='python.zip', bucket=default_bucket, key_prefix='dependencies/python') jar_dep_location = sess.upload_data(path='mleap_spark_assembly.jar', bucket=default_bucket, key_prefix='dependencies/jar') ###Output _____no_output_____ ###Markdown Defining output locations for the data and modelNext we define the output location where the transformed dataset should be uploaded. We are also specifying a model location where the MLeap serialized model would be updated. This locations should be consumed as part of the Spark script using `getResolvedOptions` method of AWS Glue library (see `abalone_processing.py` for details).By designing our code in that way, we can re-use these variables as part of other SageMaker operations from this Notebook (details below). ###Code from time import gmtime, strftime import time timestamp_prefix = strftime("%Y-%m-%d-%H-%M-%S", gmtime()) # Input location of the data, We uploaded our train.csv file to input key previously s3_input_bucket = default_bucket s3_input_key_prefix = 'input/abalone' # Output location of the data. The input data will be split, transformed, and # uploaded to output/train and output/validation s3_output_bucket = default_bucket s3_output_key_prefix = timestamp_prefix + '/abalone' # the MLeap serialized SparkML model will be uploaded to output/mleap s3_model_bucket = default_bucket s3_model_key_prefix = s3_output_key_prefix + '/mleap' ###Output _____no_output_____ ###Markdown Calling Glue APIs Next we'll be creating Glue client via Boto so that we can invoke the `create_job` API of Glue. `create_job` API will create a job definition which can be used to execute your jobs in Glue. The job definition created here is mutable. While creating the job, we are also passing the code location as well as the dependencies location to Glue.`AllocatedCapacity` parameter controls the hardware resources that Glue will use to execute this job. It is measures in units of `DPU`. For more information on `DPU`, please see [here](https://docs.aws.amazon.com/glue/latest/dg/add-job.html). ###Code glue_client = boto_session.client('glue') job_name = 'sparkml-abalone-' + timestamp_prefix response = glue_client.create_job( Name=job_name, Description='PySpark job to featurize the Abalone dataset', Role=role, # you can pass your existing AWS Glue role here if you have used Glue before ExecutionProperty={ 'MaxConcurrentRuns': 1 }, Command={ 'Name': 'glueetl', 'ScriptLocation': script_location }, DefaultArguments={ '--job-language': 'python', '--extra-jars' : jar_dep_location, '--extra-py-files': python_dep_location }, AllocatedCapacity=5, Timeout=60, ) glue_job_name = response['Name'] print(glue_job_name) ###Output _____no_output_____ ###Markdown The aforementioned job will be executed now by calling `start_job_run` API. This API creates an immutable run/execution corresponding to the job definition created above. We will require the `job_run_id` for the particular job execution to check for status. We'll pass the data and model locations as part of the job execution parameters. ###Code job_run_id = glue_client.start_job_run(JobName=job_name, Arguments = { '--S3_INPUT_BUCKET': s3_input_bucket, '--S3_INPUT_KEY_PREFIX': s3_input_key_prefix, '--S3_OUTPUT_BUCKET': s3_output_bucket, '--S3_OUTPUT_KEY_PREFIX': s3_output_key_prefix, '--S3_MODEL_BUCKET': s3_model_bucket, '--S3_MODEL_KEY_PREFIX': s3_model_key_prefix })['JobRunId'] print(job_run_id) ###Output _____no_output_____ ###Markdown Checking Glue job status Now we will check for the job status to see if it has `succeeded`, `failed` or `stopped`. Once the job is succeeded, we have the transformed data into S3 in CSV format which we can use with XGBoost for training. If the job fails, you can go to [AWS Glue console](https://us-west-2.console.aws.amazon.com/glue/home), click on **Jobs** tab on the left, and from the page, click on this particular job and you will be able to find the CloudWatch logs (the link under **Logs**) link for these jobs which can help you to see what exactly went wrong in the job execution. ###Code job_run_status = glue_client.get_job_run(JobName=job_name,RunId=job_run_id)['JobRun']['JobRunState'] while job_run_status not in ('FAILED', 'SUCCEEDED', 'STOPPED'): job_run_status = glue_client.get_job_run(JobName=job_name,RunId=job_run_id)['JobRun']['JobRunState'] print (job_run_status) time.sleep(30) ###Output _____no_output_____ ###Markdown Using SageMaker XGBoost to train on the processed dataset produced by SparkML job Now we will use SageMaker XGBoost algorithm to train on this dataset. We already know the S3 locationwhere the preprocessed training data was uploaded as part of the Glue job. We need to retrieve the XGBoost algorithm imageWe will retrieve the XGBoost built-in algorithm image so that it can leveraged for the training job. ###Code from sagemaker.amazon.amazon_estimator import get_image_uri training_image = get_image_uri(sess.boto_region_name, 'xgboost', repo_version="latest") print (training_image) ###Output _____no_output_____ ###Markdown Next XGBoost model parameters and dataset details will be set properlyWe have parameterized this Notebook so that the same data location which was used in the PySpark script can now be passed to XGBoost Estimator as well. ###Code s3_train_data = 's3://{}/{}/{}'.format(s3_output_bucket, s3_output_key_prefix, 'train') s3_validation_data = 's3://{}/{}/{}'.format(s3_output_bucket, s3_output_key_prefix, 'validation') s3_output_location = 's3://{}/{}/{}'.format(s3_output_bucket, s3_output_key_prefix, 'xgboost_model') xgb_model = sagemaker.estimator.Estimator(training_image, role, train_instance_count=1, train_instance_type='ml.m4.xlarge', train_volume_size = 20, train_max_run = 3600, input_mode= 'File', output_path=s3_output_location, sagemaker_session=sess) xgb_model.set_hyperparameters(objective = "reg:linear", eta = .2, gamma = 4, max_depth = 5, num_round = 10, subsample = 0.7, silent = 0, min_child_weight = 6) train_data = sagemaker.session.s3_input(s3_train_data, distribution='FullyReplicated', content_type='text/csv', s3_data_type='S3Prefix') validation_data = sagemaker.session.s3_input(s3_validation_data, distribution='FullyReplicated', content_type='text/csv', s3_data_type='S3Prefix') data_channels = {'train': train_data, 'validation': validation_data} ###Output _____no_output_____ ###Markdown Finally XGBoost training will be performed. ###Code xgb_model.fit(inputs=data_channels, logs=True) ###Output _____no_output_____ ###Markdown Building an Inference Pipeline consisting of SparkML & XGBoost models for a realtime inference endpoint Next we will proceed with deploying the models in SageMaker to create an Inference Pipeline. You can create an Inference Pipeline with upto five containers.Deploying a model in SageMaker requires two components:* Docker image residing in ECR.* Model artifacts residing in S3.**SparkML**For SparkML, Docker image for MLeap based SparkML serving is provided by SageMaker team. For more information on this, please see [SageMaker SparkML Serving](https://github.com/aws/sagemaker-sparkml-serving-container). MLeap serialized SparkML model was uploaded to S3 as part of the SparkML job we executed in AWS Glue.**XGBoost**For XGBoost, we will use the same Docker image we used for training. The model artifacts for XGBoost was uploaded as part of the training job we just ran. Passing the schema of the payload via environment variableSparkML serving container needs to know the schema of the request that'll be passed to it while calling the `predict` method. In order to alleviate the pain of not having to pass the schema with every request, `sagemaker-sparkml-serving` allows you to pass it via an environment variable while creating the model definitions. This schema definition will be required in our next step for creating a model.We will see later that you can overwrite this schema on a per request basis by passing it as part of the individual request payload as well. ###Code import json schema = { "input": [ { "name": "sex", "type": "string" }, { "name": "length", "type": "double" }, { "name": "diameter", "type": "double" }, { "name": "height", "type": "double" }, { "name": "whole_weight", "type": "double" }, { "name": "shucked_weight", "type": "double" }, { "name": "viscera_weight", "type": "double" }, { "name": "shell_weight", "type": "double" }, ], "output": { "name": "features", "type": "double", "struct": "vector" } } schema_json = json.dumps(schema) print(schema_json) ###Output _____no_output_____ ###Markdown Creating a `PipelineModel` which comprises of the SparkML and XGBoost model in the right orderNext we'll create a SageMaker `PipelineModel` with SparkML and XGBoost.The `PipelineModel` will ensure that both the containers get deployed behind a single API endpoint in the correct order. The same model would later be used for Batch Transform as well to ensure that a single job is sufficient to do prediction against the Pipeline. Here, during the `Model` creation for SparkML, we will pass the schema definition that we built in the previous cell. ###Code from sagemaker.model import Model from sagemaker.pipeline import PipelineModel from sagemaker.sparkml.model import SparkMLModel sparkml_data = 's3://{}/{}/{}'.format(s3_model_bucket, s3_model_key_prefix, 'model.tar.gz') # passing the schema defined above by using an environment variable that sagemaker-sparkml-serving understands sparkml_model = SparkMLModel(model_data=sparkml_data, env={'SAGEMAKER_SPARKML_SCHEMA' : schema_json}) xgb_model = Model(model_data=xgb_model.model_data, image=training_image) model_name = 'inference-pipeline-' + timestamp_prefix sm_model = PipelineModel(name=model_name, role=role, models=[sparkml_model, xgb_model]) ###Output _____no_output_____ ###Markdown Deploying the `PipelineModel` to an endpoint for realtime inferenceNext we will deploy the model we just created with the `deploy()` method to start an inference endpoint and we will send some requests to the endpoint to verify that it works as expected. ###Code endpoint_name = 'inference-pipeline-ep-' + timestamp_prefix sm_model.deploy(initial_instance_count=1, instance_type='ml.c4.xlarge', endpoint_name=endpoint_name) ###Output _____no_output_____ ###Markdown Invoking the newly created inference endpoint with a payload to transform the dataNow we will invoke the endpoint with a valid payload that SageMaker SparkML Serving can recognize. There are three ways in which input payload can be passed to the request:* Pass it as a valid CSV string. In this case, the schema passed via the environment variable will be used to determine the schema. For CSV format, every column in the input has to be a basic datatype (e.g. int, double, string) and it can not be a Spark `Array` or `Vector`.* Pass it as a valid JSON string. In this case as well, the schema passed via the environment variable will be used to infer the schema. With JSON format, every column in the input can be a basic datatype or a Spark `Vector` or `Array` provided that the corresponding entry in the schema mentions the correct value.* Pass the request in JSON format along with the schema and the data. In this case, the schema passed in the payload will take precedence over the one passed via the environment variable (if any). Passing the payload in CSV formatWe will first see how the payload can be passed to the endpoint in CSV format. ###Code from sagemaker.predictor import json_serializer, csv_serializer, json_deserializer, RealTimePredictor from sagemaker.content_types import CONTENT_TYPE_CSV, CONTENT_TYPE_JSON payload = "F,0.515,0.425,0.14,0.766,0.304,0.1725,0.255" predictor = RealTimePredictor(endpoint=endpoint_name, sagemaker_session=sess, serializer=csv_serializer, content_type=CONTENT_TYPE_CSV, accept=CONTENT_TYPE_CSV) print(predictor.predict(payload)) ###Output _____no_output_____ ###Markdown Passing the payload in JSON formatWe will now pass a different payload in JSON format. ###Code payload = {"data": ["F",0.515,0.425,0.14,0.766,0.304,0.1725,0.255]} predictor = RealTimePredictor(endpoint=endpoint_name, sagemaker_session=sess, serializer=json_serializer, content_type=CONTENT_TYPE_JSON, accept=CONTENT_TYPE_CSV) print(predictor.predict(payload)) ###Output _____no_output_____ ###Markdown [Optional] Passing the payload with both schema and the dataNext we will pass the input payload comprising of both the schema and the data. If you notice carefully, this schema will be slightly different than what we have passed via the environment variable. The locations of `length` and `sex` column have been swapped and so the data. The server now parses the payload with this schema and works properly. ###Code payload = { "schema": { "input": [ { "name": "length", "type": "double" }, { "name": "sex", "type": "string" }, { "name": "diameter", "type": "double" }, { "name": "height", "type": "double" }, { "name": "whole_weight", "type": "double" }, { "name": "shucked_weight", "type": "double" }, { "name": "viscera_weight", "type": "double" }, { "name": "shell_weight", "type": "double" }, ], "output": { "name": "features", "type": "double", "struct": "vector" } }, "data": [0.515,"F",0.425,0.14,0.766,0.304,0.1725,0.255] } predictor = RealTimePredictor(endpoint=endpoint_name, sagemaker_session=sess, serializer=json_serializer, content_type=CONTENT_TYPE_JSON, accept=CONTENT_TYPE_CSV) print(predictor.predict(payload)) ###Output _____no_output_____ ###Markdown [Optional] Deleting the EndpointIf you do not plan to use this endpoint, then it is a good practice to delete the endpoint so that you do not incur the cost of running it. ###Code sm_client = boto_session.client('sagemaker') sm_client.delete_endpoint(EndpointName=endpoint_name) ###Output _____no_output_____ ###Markdown Building an Inference Pipeline consisting of SparkML & XGBoost models for a single Batch Transform jobSageMaker Batch Transform also supports chaining multiple containers together when deploying an Inference Pipeline and performing a single batch transform jobs to transform your data for a batch use-case similar to the real-time use-case we have seen above. Preparing data for Batch TransformBatch Transform requires data in the same format described above, with one CSV or JSON being per line. For this Notebook, SageMaker team has created a sample input in CSV format which Batch Transform can process. The input is basically a similar CSV file to the training file with only difference is that it does not contain the label (``rings``) field.Next we will download a sample of this data from one of the SageMaker buckets (named `batch_input_abalone.csv`) and upload to your S3 bucket. We will also inspect first five rows of the data post downloading. ###Code !wget https://s3-us-west-2.amazonaws.com/sparkml-mleap/data/batch_input_abalone.csv !printf "\n\nShowing first five lines\n\n" !head -n 5 batch_input_abalone.csv !printf "\n\nAs we can see, it is identical to the training file apart from the label being absent here.\n\n" batch_input_loc = sess.upload_data(path='batch_input_abalone.csv', bucket=default_bucket, key_prefix='batch') ###Output _____no_output_____ ###Markdown Invoking the Transform API to create a Batch Transform jobNext we will create a Batch Transform job using the `Transformer` class from Python SDK to create a Batch Transform job. ###Code input_data_path = 's3://{}/{}/{}'.format(default_bucket, 'batch', 'batch_input_abalone.csv') output_data_path = 's3://{}/{}/{}'.format(default_bucket, 'batch_output/abalone', timestamp_prefix) job_name = 'serial-inference-batch-' + timestamp_prefix transformer = sagemaker.transformer.Transformer( # This was the model created using PipelineModel and it contains feature processing and XGBoost model_name = model_name, instance_count = 1, instance_type = 'ml.m4.xlarge', strategy = 'SingleRecord', assemble_with = 'Line', output_path = output_data_path, base_transform_job_name='serial-inference-batch', sagemaker_session=sess, accept = CONTENT_TYPE_CSV ) transformer.transform(data = input_data_path, job_name = job_name, content_type = CONTENT_TYPE_CSV, split_type = 'Line') transformer.wait() ###Output _____no_output_____
prediction/RecSys-Part3-New-NegSampling-Predict-Replies-Retweets.ipynb
###Markdown Data Sequence Generators ###Code from transformers import BertTokenizer, TFBertModel from tensorflow.keras.models import Model from spektral.utils import normalized_adjacency import tensorflow as tf from tensorflow.keras.utils import Sequence import random import gridfs import math import functools class TwitterDataset(Sequence): def __init__(self, user_id, users, replies, mentions, retweets, full_graph, graph_test, max_tweets, batch_size, date_limit, db, filename='user_tweets.np'): self.users_id = user_id self.id_users = [None] * len(self.users_id) for u_id, idx in self.users_id.items(): self.id_users[idx] = u_id self.graph_replies = replies self.graph_mentions = mentions self.graph_retweets = retweets self.graph_full = full_graph self.max_tweets = max_tweets self.batch_size = batch_size self.valid_users = list() self.target_users = list(user_id.keys()) self.target_users.sort() for u in self.target_users: if u not in graph_test.nodes: continue if len(list(graph_test.neighbors(u))) > 0: self.valid_users.append(u) self.valid_users.sort() #empty tweet representation #bert_model = TFBertModel.from_pretrained("bert-base-uncased") #tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') #self.empty_tweet = bert_model(**tokenizer('', return_tensors='tf'))['pooler_output'].numpy() self.empty_tweet = None self.date_limit = date_limit self.gridfs = gridfs.GridFS(db, collection='fsProcessedTweets') #del bert_model #del tokenizer self.filename = filename self._init_tweet_cache() self.current_target = -1 self.batch_per_pass = math.ceil(len(self.target_users)/ self.batch_size) pass def create_data(self): self.user_data = [] print('Preprocessing batchs') for i in tqdm(range(0, len(self.valid_users))): self.user_data.append(self._get_instance(self.valid_users[i])) #data = [self._get_instance(self.valid_users[i])] #max_users = max([len(instance[0]) for instance in data]) #self.user_data.append(self._to_batch(data, max_users)) self.internal_get_item = self.internal_get_item_cache pass def _init_tweet_cache(self): if not os.path.exists('training_tweets.npy'): self.tweets = np.zeros((len(self.id_users), 768), dtype=np.float32) for i, t in tqdm(enumerate(self.id_users), total=len(self.id_users)): self.tweets[i, ...] = self._get_tweets_bert_base(t) np.save('training_tweets.npy', self.tweets) return self.tweets = np.load('training_tweets.npy') self.tweets = np.mean(self.tweets, axis=1) pass def __len__(self): return len(self.valid_users) * self.batch_per_pass def _get_graph_for_node(self, node): user = node#self.user_id[node] node_map = {user: 0} #Maps all the 1-level node to create the matrix for neighbor in self.graph_replies.neighbors(node): if neighbor not in node_map: node_map[neighbor] = len(node_map) for neighbor in self.graph_retweets.neighbors(node): if neighbor not in node_map: node_map[neighbor] = len(node_map) #Creates the 3 matrixes replies = np.eye(len(node_map)) retweets = np.eye(len(node_map)) #creates the  matrix for the key node for node, node_id in node_map.items(): for neighbor in self.graph_replies.neighbors(node): if neighbor in node_map: replies[node_id, node_map[neighbor]] = 1 for neighbor in self.graph_retweets.neighbors(node): if neighbor in node_map: retweets[node_id, node_map[neighbor]] = 1 replies = normalized_adjacency(replies) retweets = normalized_adjacency(retweets) #Create the embedding vector embeddings = np.zeros((len(node_map))) for k, v in node_map.items(): #Convert the tweeter user id to the id acording to the nn embeddings[v] = self.users_id[k] return embeddings, replies, retweets def _get_tweets_bert(self, node): idx = int(node) return self.tweets[idx, ...] def _get_tweets_bert_db(self, node): user_id = node query = {'userId': int(user_id)} if self.date_limit is not None: query['created'] = {'$lte': self.date_limit} cursor = ( self.gridfs. find(query). sort([('created', pymongo.DESCENDING)]). limit(self.max_tweets) ) result = np.empty((self.max_tweets, 768)) i = 0 for file in cursor: result[i, :] = np.load(file)['pooler_output'] i += 1 while i < self.max_tweets: result[i, :] = self.empty_tweet i += 1 return result def _get_instance(self, node): embeddings, replies, retweets = self._get_graph_for_node(node) bert_emb = np.empty((embeddings.shape[0], 768)) for i, node in enumerate(embeddings): bert_emb[i, ...] = self._get_tweets_bert(node) return embeddings, replies[:1, :], retweets[:1, :], bert_emb def _to_batch(self, instances, max_users, batch_size): user_i = np.zeros((batch_size, max_users)) user_replies = np.zeros((batch_size, 1, max_users)) user_retweet = np.zeros((batch_size, 1, max_users)) user_bert = np.zeros((batch_size, max_users, 768)) for i, (embeddings, replies, retweets, bert_emb) in enumerate(instances): user_i[i, :embeddings.shape[0]] = embeddings user_replies[i, :replies.shape[0], :replies.shape[1]] = replies user_retweet[i, :retweets.shape[0], :retweets.shape[1]] = retweets user_bert[i, :bert_emb.shape[0], ...] = bert_emb return [user_i, user_replies, user_retweet, user_bert] def _to_batch_single(self, instance, repeat): user_i = instance[0] user_replies = instance[1] user_retweet = instance[2] user_bert = instance[3] user_i = np.expand_dims(user_i, axis=0) user_replies = np.expand_dims(user_replies, axis=0) user_retweet = np.expand_dims(user_retweet, axis=0) user_bert = np.expand_dims(user_bert, axis=0) user_i = np.repeat(user_i, repeat, axis=0) user_replies = np.repeat(user_replies, repeat, axis=0) user_retweet = np.repeat(user_retweet, repeat, axis=0) user_bert = np.repeat(user_bert, repeat, axis=0) return [user_i, user_replies, user_retweet, user_bert] def internal_get_item_cache(self, idx): current_user = idx % len(self.valid_users) current_target = idx // len(self.valid_users) if current_target != self.current_target: target_list = self.target_users[current_target * self.batch_size : (current_target + 1) * self.batch_size] target_list = [self._get_instance(idx) for idx in target_list] max_user = max([len(instance[0]) for instance in target_list]) self.current_target_data = self._to_batch(target_list, max_user, len(target_list)) self.current_target = current_target target_batch = self.current_target_data #Busco los datos y lo hago crecer al tamaño del batch user_data = self._to_batch_single(self.user_data[current_user], target_batch[0].shape[0]) return user_data + target_batch def internal_get_item(self, idx): current_user = self.valid_users[idx % len(self.valid_users)] current_target = idx // len(self.valid_users) if current_target != self.current_target: target_list = self.target_users[current_target * self.batch_size : (current_target + 1) * self.batch_size] target_list = [self._get_instance(idx) for idx in target_list] max_user = max([len(instance[0]) for instance in target_list]) self.current_target_data = self._to_batch(target_list, max_user, len(target_list)) self.current_target = current_target target_batch = self.current_target_data #Busco los datos y lo hago crecer al tamaño del batch user_data = self._to_batch_single(self._get_instance(current_user), target_batch[0].shape[0]) return user_data + target_batch def __getitem__(self, idx): return self.internal_get_item(idx) def gen_users_pairs(self, idx): current_user = idx % len(self.valid_users) current_target = idx // len(self.valid_users) target_list = self.target_users[current_target * self.batch_size : (current_target + 1) * self.batch_size] current_user = self.valid_users[current_user] return [(current_user, d) for d in target_list] max_tweets = 15 batch_size = 50 with open('test_ds.pickle', 'rb') as f: dataset = pickle.load(f) user_id = dataset.users_id for i in dataset[0]: print(i.shape) ###Output (500, 16) (500, 1, 16) (500, 1, 16) (500, 16, 768) (500, 254) (500, 1, 254) (500, 1, 254) (500, 254, 768) ###Markdown Neural Network ###Code from transformers import BertTokenizer, TFBertModel, BertConfig from tensorflow.keras.layers import LSTM, Bidirectional, Input, Embedding, Concatenate, \ TimeDistributed, Lambda, Dot, Attention, GlobalMaxPool1D, Dense from tensorflow.keras.models import Model from spektral.layers.convolutional import GCNConv import tensorflow as tf def loss(y_true, y_pred): #recibe indices con forma 1xvaloresx3 (indices + valor) #trasnforma los indices a valoresx2 y los valores valoresx1 v_true, dist = y_true[:, 0], y_true[:, 1] return K.mean(dist * K.square(y_pred - K.log(2 * v_true) / K.log(2.0))) emb_size = 64 kernels = 32 deep = 1 embedded = Embedding(len(user_id), emb_size, name='user_embeddings') user_i = Input(shape=(None,), name='user_list', dtype=tf.int32) emb_user = embedded(user_i) target_i = Input(shape=(None,), name='target_list', dtype=tf.int32) emb_target = embedded(target_i) replies_user_i = Input(shape=(None, None), name='replies_user', dtype=tf.float32) retweets_user_i = Input(shape=(None, None), name='retweets_user', dtype=tf.float32) replies_target_i = Input(shape=(None, None), name='replies_target', dtype=tf.float32) retweets_target_i = Input(shape=(None, None), name='retweets_target', dtype=tf.float32) user_tweets_bert = Input(shape=(None, 768), name='user_tweets_bert') target_tweets_bert = Input(shape=(None, 768), name='target_tweets_bert') user_bert = Dense(emb_size, name='user_bert_dense')(user_tweets_bert) target_bert = Dense(emb_size, name='target_bert_dense')(target_tweets_bert) user_emb = Concatenate(name='user_emb_plus_bert', axis=-1)([emb_user, user_bert]) target_emb = Concatenate(name='target_emb_plus_bert', axis=-1)([emb_target, target_bert]) emb_rep, emb_men, emb_rt = user_emb, user_emb, user_emb emb_t_rep, emb_t_men, emb_t_rt = target_emb, target_emb, target_emb for i in range(deep): emb_rep = GCNConv(kernels, name='gcn_replies_{}'.format(i))([emb_rep, replies_user_i]) emb_rt = GCNConv(kernels, name='gcn_retweets_{}'.format(i))([emb_rt, retweets_user_i]) emb_t_rep = GCNConv(kernels, name='gcn_t_replies_{}'.format(i))([emb_t_rep, replies_target_i]) emb_t_rt = GCNConv(kernels, name='gcn_t_retweets_{}'.format(i))([emb_t_rt, retweets_target_i]) mat = Concatenate(name='user_gnc')([emb_rep, emb_rt]) mat = Lambda(lambda x: x[:, 0, :], name='user_row')(mat) mat_t = Concatenate(name='target_gnc')([emb_t_rep, emb_t_rt]) mat_t = Lambda(lambda x: x[:, 0, :], name='target_row')(mat_t) #Wide user_wide = Lambda(lambda x: x[:, 0, :], name='user_wide')(emb_user) target_wide = Lambda(lambda x: x[:, 0, :], name='target_wide')(emb_target) wide = Concatenate(name='reps_concat')([user_wide, target_wide]) wide = Dense(1)(wide) #Falta unir con bert mat = Concatenate(name='graph_reps_concat')([mat, mat_t]) mat = Dense(kernels)(mat)#, [0, 2, 1] mat = Dense(1)(mat) mat = mat + wide model = Model([user_i, replies_user_i, retweets_user_i, user_tweets_bert, target_i, replies_target_i, retweets_target_i,target_tweets_bert], mat) model.summary() model.compile(loss=loss, optimizer='adam') model.load_weights('connected-neg-replies-retweets/model_rec-neg.h5') import csv class OffsetLimitedDs(Sequence): def __init__(self, ds, offset, limit): self.ds = ds self.offset = offset self.limit = limit self.len = min(self.limit, len(self.ds) - self.offset) def __len__(self): return self.len def __getitem__(self, idx): return self.ds[idx + self.offset] partial = 100 with open('connected-neg-replies-retweets/predictions-neg.csv', 'w', newline='') as csvfile: csvwriter = csv.writer(csvfile) csvwriter.writerow(['Origin', 'Destiny', 'Prediction']) for offset in tqdm(range(0, len(dataset), partial)): c_ds = OffsetLimitedDs(dataset, offset, partial) pred = model.predict(c_ds, max_queue_size=10) j = 0 for i in range(len(c_ds)): pairs = dataset.gen_users_pairs(offset + i) for o, d in pairs: csvwriter.writerow([o, d, pred[j, 0]]) j = j + 1 print(len(dataset)) ###Output _____no_output_____
DV0101EN-2-2-1-Area-Plots-Histograms-and-Bar-Charts-py-v2.0.ipynb
###Markdown Area Plots, Histograms, and Bar Plots IntroductionIn this lab, we will continue exploring the Matplotlib library and will learn how to create additional plots, namely area plots, histograms, and bar charts. Table of Contents1. [Exploring Datasets with *pandas*](0)2. [Downloading and Prepping Data](2)3. [Visualizing Data using Matplotlib](4) 4. [Area Plots](6) 5. [Histograms](8) 6. [Bar Charts](10) Exploring Datasets with *pandas* and MatplotlibToolkits: The course heavily relies on [*pandas*](http://pandas.pydata.org/) and [**Numpy**](http://www.numpy.org/) for data wrangling, analysis, and visualization. The primary plotting library that we are exploring in the course is [Matplotlib](http://matplotlib.org/).Dataset: Immigration to Canada from 1980 to 2013 - [International migration flows to and from selected countries - The 2015 revision](http://www.un.org/en/development/desa/population/migration/data/empirical2/migrationflows.shtml) from United Nation's website.The dataset contains annual data on the flows of international migrants as recorded by the countries of destination. The data presents both inflows and outflows according to the place of birth, citizenship or place of previous / next residence both for foreigners and nationals. For this lesson, we will focus on the Canadian Immigration data. Downloading and Prepping Data Import Primary Modules. The first thing we'll do is import two key data analysis modules: *pandas* and **Numpy**. ###Code import numpy as np # useful for many scientific computing in Python import pandas as pd # primary data structure library !conda install -c anaconda xlrd --yes ###Output Solving environment: done ==> WARNING: A newer version of conda exists. <== current version: 4.5.11 latest version: 4.7.12 Please update conda by running $ conda update -n base -c defaults conda ## Package Plan ## environment location: /home/jupyterlab/conda/envs/python added / updated specs: - xlrd The following packages will be downloaded: package | build ---------------------------|----------------- numpy-base-1.15.4 | py36h81de0dd_0 4.2 MB anaconda numpy-1.15.4 | py36h1d66e8a_0 35 KB anaconda certifi-2019.9.11 | py36_0 154 KB anaconda openssl-1.1.1 | h7b6447c_0 5.0 MB anaconda mkl_fft-1.0.6 | py36h7dd41cf_0 150 KB anaconda blas-1.0 | mkl 6 KB anaconda scipy-1.1.0 | py36hfa4b5c9_1 18.0 MB anaconda xlrd-1.2.0 | py_0 108 KB anaconda mkl_random-1.0.1 | py36h4414c95_1 373 KB anaconda scikit-learn-0.20.1 | py36h4989274_0 5.7 MB anaconda ------------------------------------------------------------ Total: 33.7 MB The following packages will be UPDATED: certifi: 2019.9.11-py36_0 conda-forge --> 2019.9.11-py36_0 anaconda mkl_fft: 1.0.4-py37h4414c95_1 --> 1.0.6-py36h7dd41cf_0 anaconda mkl_random: 1.0.1-py37h4414c95_1 --> 1.0.1-py36h4414c95_1 anaconda numpy-base: 1.15.1-py37h81de0dd_0 --> 1.15.4-py36h81de0dd_0 anaconda openssl: 1.1.1d-h516909a_0 conda-forge --> 1.1.1-h7b6447c_0 anaconda xlrd: 1.1.0-py37_1 --> 1.2.0-py_0 anaconda The following packages will be DOWNGRADED: blas: 1.1-openblas conda-forge --> 1.0-mkl anaconda numpy: 1.16.2-py36_blas_openblash1522bff_0 conda-forge [blas_openblas] --> 1.15.4-py36h1d66e8a_0 anaconda scikit-learn: 0.20.1-py36_blas_openblashebff5e3_1200 conda-forge [blas_openblas] --> 0.20.1-py36h4989274_0 anaconda scipy: 1.2.1-py36_blas_openblash1522bff_0 conda-forge [blas_openblas] --> 1.1.0-py36hfa4b5c9_1 anaconda Downloading and Extracting Packages numpy-base-1.15.4 | 4.2 MB | ##################################### | 100% numpy-1.15.4 | 35 KB | ##################################### | 100% certifi-2019.9.11 | 154 KB | ##################################### | 100% openssl-1.1.1 | 5.0 MB | ##################################### | 100% mkl_fft-1.0.6 | 150 KB | ##################################### | 100% blas-1.0 | 6 KB | ##################################### | 100% scipy-1.1.0 | 18.0 MB | ##################################### | 100% xlrd-1.2.0 | 108 KB | ##################################### | 100% mkl_random-1.0.1 | 373 KB | ##################################### | 100% scikit-learn-0.20.1 | 5.7 MB | ##################################### | 100% Preparing transaction: done Verifying transaction: done Executing transaction: done ###Markdown Let's download and import our primary Canadian Immigration dataset using *pandas* `read_excel()` method. Normally, before we can do that, we would need to download a module which *pandas* requires to read in excel files. This module is **xlrd**. For your convenience, we have pre-installed this module, so you would not have to worry about that. Otherwise, you would need to run the following line of code to install the **xlrd** module:```!conda install -c anaconda xlrd --yes``` Download the dataset and read it into a *pandas* dataframe. ###Code df_can = pd.read_excel('https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/DV0101EN/labs/Data_Files/Canada.xlsx', sheet_name='Canada by Citizenship', skiprows=range(20), skipfooter=2 ) print('Data downloaded and read into a dataframe!') ###Output Data downloaded and read into a dataframe! ###Markdown Let's take a look at the first five items in our dataset. ###Code df_can.head() ###Output _____no_output_____ ###Markdown Let's find out how many entries there are in our dataset. ###Code # print the dimensions of the dataframe print(df_can.shape) ###Output (195, 43) ###Markdown Clean up data. We will make some modifications to the original dataset to make it easier to create our visualizations. Refer to `Introduction to Matplotlib and Line Plots` lab for the rational and detailed description of the changes. 1. Clean up the dataset to remove columns that are not informative to us for visualization (eg. Type, AREA, REG). ###Code df_can.drop(['AREA', 'REG', 'DEV', 'Type', 'Coverage'], axis=1, inplace=True) # let's view the first five elements and see how the dataframe was changed df_can.head() ###Output _____no_output_____ ###Markdown Notice how the columns Type, Coverage, AREA, REG, and DEV got removed from the dataframe. 2. Rename some of the columns so that they make sense. ###Code df_can.rename(columns={'OdName':'Country', 'AreaName':'Continent','RegName':'Region'}, inplace=True) # let's view the first five elements and see how the dataframe was changed df_can.head() ###Output _____no_output_____ ###Markdown Notice how the column names now make much more sense, even to an outsider. 3. For consistency, ensure that all column labels of type string. ###Code # let's examine the types of the column labels all(isinstance(column, str) for column in df_can.columns) ###Output _____no_output_____ ###Markdown Notice how the above line of code returned *False* when we tested if all the column labels are of type **string**. So let's change them all to **string** type. ###Code df_can.columns = list(map(str, df_can.columns)) # let's check the column labels types now all(isinstance(column, str) for column in df_can.columns) ###Output _____no_output_____ ###Markdown 4. Set the country name as index - useful for quickly looking up countries using .loc method. ###Code df_can.set_index('Country', inplace=True) # let's view the first five elements and see how the dataframe was changed df_can.head() ###Output _____no_output_____ ###Markdown Notice how the country names now serve as indices. 5. Add total column. ###Code df_can['Total'] = df_can.sum(axis=1) # let's view the first five elements and see how the dataframe was changed df_can.head() ###Output _____no_output_____ ###Markdown Now the dataframe has an extra column that presents the total number of immigrants from each country in the dataset from 1980 - 2013. So if we print the dimension of the data, we get: ###Code print ('data dimensions:', df_can.shape) ###Output data dimensions: (195, 38) ###Markdown So now our dataframe has 38 columns instead of 37 columns that we had before. ###Code # finally, let's create a list of years from 1980 - 2013 # this will come in handy when we start plotting the data years = list(map(str, range(1980, 2014))) years ###Output _____no_output_____ ###Markdown Visualizing Data using Matplotlib Import `Matplotlib` and **Numpy**. ###Code # use the inline backend to generate the plots within the browser %matplotlib inline import matplotlib as mpl import matplotlib.pyplot as plt mpl.style.use('ggplot') # optional: for ggplot-like style # check for latest version of Matplotlib print ('Matplotlib version: ', mpl.__version__) # >= 2.0.0 ###Output Matplotlib version: 3.1.1 ###Markdown Area Plots In the last module, we created a line plot that visualized the top 5 countries that contribued the most immigrants to Canada from 1980 to 2013. With a little modification to the code, we can visualize this plot as a cumulative plot, also knows as a **Stacked Line Plot** or **Area plot**. ###Code df_can.sort_values(['Total'], ascending=False, axis=0, inplace=True) # get the top 5 entries df_top5 = df_can.head() # transpose the dataframe df_top5 = df_top5[years].transpose() df_top5.head() ###Output _____no_output_____ ###Markdown Area plots are stacked by default. And to produce a stacked area plot, each column must be either all positive or all negative values (any NaN values will defaulted to 0). To produce an unstacked plot, pass `stacked=False`. ###Code df_top5.index = df_top5.index.map(int) # let's change the index values of df_top5 to type integer for plotting df_top5.plot(kind='area', stacked=False, figsize=(20, 10), # pass a tuple (x, y) size ) plt.title('Immigration Trend of Top 5 Countries') plt.ylabel('Number of Immigrants') plt.xlabel('Years') plt.show() ###Output _____no_output_____ ###Markdown The unstacked plot has a default transparency (alpha value) at 0.5. We can modify this value by passing in the `alpha` parameter. ###Code df_top5.plot(kind='area', alpha=0.25, # 0-1, default value a= 0.5 stacked=False, figsize=(20, 10), ) plt.title('Immigration Trend of Top 5 Countries') plt.ylabel('Number of Immigrants') plt.xlabel('Years') plt.show() ###Output _____no_output_____ ###Markdown Two types of plottingAs we discussed in the video lectures, there are two styles/options of ploting with `matplotlib`. Plotting using the Artist layer and plotting using the scripting layer.**Option 1: Scripting layer (procedural method) - using matplotlib.pyplot as 'plt' **You can use `plt` i.e. `matplotlib.pyplot` and add more elements by calling different methods procedurally; for example, `plt.title(...)` to add title or `plt.xlabel(...)` to add label to the x-axis.```python Option 1: This is what we have been using so far df_top5.plot(kind='area', alpha=0.35, figsize=(20, 10)) plt.title('Immigration trend of top 5 countries') plt.ylabel('Number of immigrants') plt.xlabel('Years')``` **Option 2: Artist layer (Object oriented method) - using an `Axes` instance from Matplotlib (preferred) **You can use an `Axes` instance of your current plot and store it in a variable (eg. `ax`). You can add more elements by calling methods with a little change in syntax (by adding "*set_*" to the previous methods). For example, use `ax.set_title()` instead of `plt.title()` to add title, or `ax.set_xlabel()` instead of `plt.xlabel()` to add label to the x-axis. This option sometimes is more transparent and flexible to use for advanced plots (in particular when having multiple plots, as you will see later). In this course, we will stick to the **scripting layer**, except for some advanced visualizations where we will need to use the **artist layer** to manipulate advanced aspects of the plots. ###Code # option 2: preferred option with more flexibility ax = df_top5.plot(kind='area', alpha=0.35, figsize=(20, 10)) ax.set_title('Immigration Trend of Top 5 Countries') ax.set_ylabel('Number of Immigrants') ax.set_xlabel('Years') ###Output _____no_output_____ ###Markdown **Question**: Use the scripting layer to create a stacked area plot of the 5 countries that contributed the least to immigration to Canada **from** 1980 to 2013. Use a transparency value of 0.45. ###Code ### type your answer here # get the 5 countries with the least contribution df_least5 = df_can.tail(5) # transpose the dataframe df_least5 = df_least5[years].transpose() df_least5.head() df_least5.index = df_least5.index.map(int) # let's change the index values of df_least5 to type integer for plotting df_least5.plot(kind='area', alpha=0.45, figsize=(20, 10)) plt.title('Immigration Trend of 5 Countries with Least Contribution to Immigration') plt.ylabel('Number of Immigrants') plt.xlabel('Years') plt.show() ###Output _____no_output_____ ###Markdown Double-click __here__ for the solution.<!-- The correct answer is:\\ get the 5 countries with the least contributiondf_least5 = df_can.tail(5)--><!--\\ transpose the dataframedf_least5 = df_least5[years].transpose() df_least5.head()--><!--df_least5.index = df_least5.index.map(int) let's change the index values of df_least5 to type integer for plottingdf_least5.plot(kind='area', alpha=0.45, figsize=(20, 10)) --><!--plt.title('Immigration Trend of 5 Countries with Least Contribution to Immigration')plt.ylabel('Number of Immigrants')plt.xlabel('Years')--><!--plt.show()--> **Question**: Use the artist layer to create an unstacked area plot of the 5 countries that contributed the least to immigration to Canada **from** 1980 to 2013. Use a transparency value of 0.55. ###Code ### type your answer here # get the 5 countries with the least contribution df_least5 = df_can.tail(5) # transpose the dataframe df_least5 = df_least5[years].transpose() df_least5.head() df_least5.index = df_least5.index.map(int) # let's change the index values of df_least5 to type integer for plotting ax = df_least5.plot(kind='area', alpha=0.55, stacked=False, figsize=(20, 10)) ax.set_title('Immigration Trend of 5 Countries with Least Contribution to Immigration') ax.set_ylabel('Number of Immigrants') ax.set_xlabel('Years') ###Output _____no_output_____ ###Markdown Double-click __here__ for the solution.<!-- The correct answer is:\\ get the 5 countries with the least contributiondf_least5 = df_can.tail(5)--><!--\\ transpose the dataframedf_least5 = df_least5[years].transpose() df_least5.head()--><!--df_least5.index = df_least5.index.map(int) let's change the index values of df_least5 to type integer for plotting--><!--ax = df_least5.plot(kind='area', alpha=0.55, stacked=False, figsize=(20, 10))--><!--ax.set_title('Immigration Trend of 5 Countries with Least Contribution to Immigration')ax.set_ylabel('Number of Immigrants')ax.set_xlabel('Years')--> HistogramsA histogram is a way of representing the *frequency* distribution of numeric dataset. The way it works is it partitions the x-axis into *bins*, assigns each data point in our dataset to a bin, and then counts the number of data points that have been assigned to each bin. So the y-axis is the frequency or the number of data points in each bin. Note that we can change the bin size and usually one needs to tweak it so that the distribution is displayed nicely. **Question:** What is the frequency distribution of the number (population) of new immigrants from the various countries to Canada in 2013? Before we proceed with creating the histogram plot, let's first examine the data split into intervals. To do this, we will us **Numpy**'s `histrogram` method to get the bin ranges and frequency counts as follows: ###Code # let's quickly view the 2013 data df_can['2013'].head() # np.histogram returns 2 values count, bin_edges = np.histogram(df_can['2013']) print(count) # frequency count print(bin_edges) # bin ranges, default = 10 bins ###Output [178 11 1 2 0 0 0 0 1 2] [ 0. 3412.9 6825.8 10238.7 13651.6 17064.5 20477.4 23890.3 27303.2 30716.1 34129. ] ###Markdown By default, the `histrogram` method breaks up the dataset into 10 bins. The figure below summarizes the bin ranges and the frequency distribution of immigration in 2013. We can see that in 2013:* 178 countries contributed between 0 to 3412.9 immigrants * 11 countries contributed between 3412.9 to 6825.8 immigrants* 1 country contributed between 6285.8 to 10238.7 immigrants, and so on.. We can easily graph this distribution by passing `kind=hist` to `plot()`. ###Code df_can['2013'].plot(kind='hist', figsize=(8, 5)) plt.title('Histogram of Immigration from 195 Countries in 2013') # add a title to the histogram plt.ylabel('Number of Countries') # add y-label plt.xlabel('Number of Immigrants') # add x-label plt.show() ###Output _____no_output_____ ###Markdown In the above plot, the x-axis represents the population range of immigrants in intervals of 3412.9. The y-axis represents the number of countries that contributed to the aforementioned population. Notice that the x-axis labels do not match with the bin size. This can be fixed by passing in a `xticks` keyword that contains the list of the bin sizes, as follows: ###Code # 'bin_edges' is a list of bin intervals count, bin_edges = np.histogram(df_can['2013']) df_can['2013'].plot(kind='hist', figsize=(8, 5), xticks=bin_edges) plt.title('Histogram of Immigration from 195 countries in 2013') # add a title to the histogram plt.ylabel('Number of Countries') # add y-label plt.xlabel('Number of Immigrants') # add x-label plt.show() ###Output _____no_output_____ ###Markdown *Side Note:* We could use `df_can['2013'].plot.hist()`, instead. In fact, throughout this lesson, using `some_data.plot(kind='type_plot', ...)` is equivalent to `some_data.plot.type_plot(...)`. That is, passing the type of the plot as argument or method behaves the same. See the *pandas* documentation for more info http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.plot.html. We can also plot multiple histograms on the same plot. For example, let's try to answer the following questions using a histogram.**Question**: What is the immigration distribution for Denmark, Norway, and Sweden for years 1980 - 2013? ###Code # let's quickly view the dataset df_can.loc[['Denmark', 'Norway', 'Sweden'], years] # generate histogram df_can.loc[['Denmark', 'Norway', 'Sweden'], years].plot.hist() ###Output _____no_output_____ ###Markdown That does not look right! Don't worry, you'll often come across situations like this when creating plots. The solution often lies in how the underlying dataset is structured.Instead of plotting the population frequency distribution of the population for the 3 countries, *pandas* instead plotted the population frequency distribution for the `years`.This can be easily fixed by first transposing the dataset, and then plotting as shown below. ###Code # transpose dataframe df_t = df_can.loc[['Denmark', 'Norway', 'Sweden'], years].transpose() df_t.head() # generate histogram df_t.plot(kind='hist', figsize=(10, 6)) plt.title('Histogram of Immigration from Denmark, Norway, and Sweden from 1980 - 2013') plt.ylabel('Number of Years') plt.xlabel('Number of Immigrants') plt.show() ###Output _____no_output_____ ###Markdown Let's make a few modifications to improve the impact and aesthetics of the previous plot:* increase the bin size to 15 by passing in `bins` parameter* set transparency to 60% by passing in `alpha` paramemter* label the x-axis by passing in `x-label` paramater* change the colors of the plots by passing in `color` parameter ###Code # let's get the x-tick values count, bin_edges = np.histogram(df_t, 15) # un-stacked histogram df_t.plot(kind ='hist', figsize=(10, 6), bins=15, alpha=0.6, xticks=bin_edges, color=['coral', 'darkslateblue', 'mediumseagreen'] ) plt.title('Histogram of Immigration from Denmark, Norway, and Sweden from 1980 - 2013') plt.ylabel('Number of Years') plt.xlabel('Number of Immigrants') plt.show() ###Output _____no_output_____ ###Markdown Tip:For a full listing of colors available in Matplotlib, run the following code in your python shell:```pythonimport matplotlibfor name, hex in matplotlib.colors.cnames.items(): print(name, hex)``` If we do no want the plots to overlap each other, we can stack them using the `stacked` paramemter. Let's also adjust the min and max x-axis labels to remove the extra gap on the edges of the plot. We can pass a tuple (min,max) using the `xlim` paramater, as show below. ###Code count, bin_edges = np.histogram(df_t, 15) xmin = bin_edges[0] - 10 # first bin value is 31.0, adding buffer of 10 for aesthetic purposes xmax = bin_edges[-1] + 10 # last bin value is 308.0, adding buffer of 10 for aesthetic purposes # stacked Histogram df_t.plot(kind='hist', figsize=(10, 6), bins=15, xticks=bin_edges, color=['coral', 'darkslateblue', 'mediumseagreen'], stacked=True, xlim=(xmin, xmax) ) plt.title('Histogram of Immigration from Denmark, Norway, and Sweden from 1980 - 2013') plt.ylabel('Number of Years') plt.xlabel('Number of Immigrants') plt.show() ###Output _____no_output_____ ###Markdown **Question**: Use the scripting layer to display the immigration distribution for Greece, Albania, and Bulgaria for years 1980 - 2013? Use an overlapping plot with 15 bins and a transparency value of 0.35. ###Code ### type your answer here #create a dataframe of the countries of interest (cof) df_cof = df_can.loc[['Greece','Albania', 'Bulgaria'], years] # transpose the dataframe df_cof = df_cof.transpose() # let's get the x-tick values count, bin_edges = np.histogram(df_cof, 15) # Un-stacked Histogram df_cof.plot(kind ='hist', figsize=(10, 6), bins=15, alpha=0.35, xticks=bin_edges, color=['coral', 'darkslateblue', 'mediumseagreen'] ) plt.title('Histogram of Immigration from Greece, Albania, and Bulgaria from 1980 - 2013') plt.ylabel('Number of Years') plt.xlabel('Number of Immigrants') plt.show() ###Output _____no_output_____ ###Markdown Double-click __here__ for the solution.<!-- The correct answer is:\\ create a dataframe of the countries of interest (cof)df_cof = df_can.loc[['Greece', 'Albania', 'Bulgaria'], years]--><!--\\ transpose the dataframedf_cof = df_cof.transpose() --><!--\\ let's get the x-tick valuescount, bin_edges = np.histogram(df_cof, 15)--><!--\\ Un-stacked Histogramdf_cof.plot(kind ='hist', figsize=(10, 6), bins=15, alpha=0.35, xticks=bin_edges, color=['coral', 'darkslateblue', 'mediumseagreen'] )--><!--plt.title('Histogram of Immigration from Greece, Albania, and Bulgaria from 1980 - 2013')plt.ylabel('Number of Years')plt.xlabel('Number of Immigrants')--><!--plt.show()--> Bar Charts (Dataframe) A bar plot is a way of representing data where the *length* of the bars represents the magnitude/size of the feature/variable. Bar graphs usually represent numerical and categorical variables grouped in intervals. To create a bar plot, we can pass one of two arguments via `kind` parameter in `plot()`:* `kind=bar` creates a *vertical* bar plot* `kind=barh` creates a *horizontal* bar plot **Vertical bar plot**In vertical bar graphs, the x-axis is used for labelling, and the length of bars on the y-axis corresponds to the magnitude of the variable being measured. Vertical bar graphs are particuarly useful in analyzing time series data. One disadvantage is that they lack space for text labelling at the foot of each bar. **Let's start off by analyzing the effect of Iceland's Financial Crisis:**The 2008 - 2011 Icelandic Financial Crisis was a major economic and political event in Iceland. Relative to the size of its economy, Iceland's systemic banking collapse was the largest experienced by any country in economic history. The crisis led to a severe economic depression in 2008 - 2011 and significant political unrest.**Question:** Let's compare the number of Icelandic immigrants (country = 'Iceland') to Canada from year 1980 to 2013. ###Code # step 1: get the data df_iceland = df_can.loc['Iceland', years] df_iceland.head() # step 2: plot data df_iceland.plot(kind='bar', figsize=(10, 6)) plt.xlabel('Year') # add to x-label to the plot plt.ylabel('Number of immigrants') # add y-label to the plot plt.title('Icelandic immigrants to Canada from 1980 to 2013') # add title to the plot plt.show() ###Output _____no_output_____ ###Markdown The bar plot above shows the total number of immigrants broken down by each year. We can clearly see the impact of the financial crisis; the number of immigrants to Canada started increasing rapidly after 2008. Let's annotate this on the plot using the `annotate` method of the **scripting layer** or the **pyplot interface**. We will pass in the following parameters:- `s`: str, the text of annotation.- `xy`: Tuple specifying the (x,y) point to annotate (in this case, end point of arrow).- `xytext`: Tuple specifying the (x,y) point to place the text (in this case, start point of arrow).- `xycoords`: The coordinate system that xy is given in - 'data' uses the coordinate system of the object being annotated (default).- `arrowprops`: Takes a dictionary of properties to draw the arrow: - `arrowstyle`: Specifies the arrow style, `'->'` is standard arrow. - `connectionstyle`: Specifies the connection type. `arc3` is a straight line. - `color`: Specifes color of arror. - `lw`: Specifies the line width.I encourage you to read the Matplotlib documentation for more details on annotations: http://matplotlib.org/api/pyplot_api.htmlmatplotlib.pyplot.annotate. ###Code df_iceland.plot(kind='bar', figsize=(10, 6), rot=90) # rotate the bars by 90 degrees plt.xlabel('Year') plt.ylabel('Number of Immigrants') plt.title('Icelandic Immigrants to Canada from 1980 to 2013') # Annotate arrow plt.annotate('', # s: str. Will leave it blank for no text xy=(32, 70), # place head of the arrow at point (year 2012 , pop 70) xytext=(28, 20), # place base of the arrow at point (year 2008 , pop 20) xycoords='data', # will use the coordinate system of the object being annotated arrowprops=dict(arrowstyle='->', connectionstyle='arc3', color='blue', lw=2) ) plt.show() ###Output _____no_output_____ ###Markdown Let's also annotate a text to go over the arrow. We will pass in the following additional parameters:- `rotation`: rotation angle of text in degrees (counter clockwise)- `va`: vertical alignment of text [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]- `ha`: horizontal alignment of text [‘center’ | ‘right’ | ‘left’] ###Code df_iceland.plot(kind='bar', figsize=(10, 6), rot=90) plt.xlabel('Year') plt.ylabel('Number of Immigrants') plt.title('Icelandic Immigrants to Canada from 1980 to 2013') # Annotate arrow plt.annotate('', # s: str. will leave it blank for no text xy=(32, 70), # place head of the arrow at point (year 2012 , pop 70) xytext=(28, 20), # place base of the arrow at point (year 2008 , pop 20) xycoords='data', # will use the coordinate system of the object being annotated arrowprops=dict(arrowstyle='->', connectionstyle='arc3', color='blue', lw=2) ) # Annotate Text plt.annotate('2008 - 2011 Financial Crisis', # text to display xy=(28, 30), # start the text at at point (year 2008 , pop 30) rotation=72.5, # based on trial and error to match the arrow va='bottom', # want the text to be vertically 'bottom' aligned ha='left', # want the text to be horizontally 'left' algned. ) plt.show() ###Output _____no_output_____ ###Markdown **Horizontal Bar Plot**Sometimes it is more practical to represent the data horizontally, especially if you need more room for labelling the bars. In horizontal bar graphs, the y-axis is used for labelling, and the length of bars on the x-axis corresponds to the magnitude of the variable being measured. As you will see, there is more room on the y-axis to label categetorical variables.**Question:** Using the scripting layter and the `df_can` dataset, create a *horizontal* bar plot showing the *total* number of immigrants to Canada from the top 15 countries, for the period 1980 - 2013. Label each country with the total immigrant count. Step 1: Get the data pertaining to the top 15 countries. ###Code ### type your answer here # sort dataframe on 'Total' column (descending) df_can.sort_values(by='Total', ascending=True, inplace=True) # get top 15 countries df_top15 = df_can['Total'].tail(15) df_top15 ###Output _____no_output_____ ###Markdown Double-click __here__ for the solution.<!-- The correct answer is:\\ sort dataframe on 'Total' column (descending)df_can.sort_values(by='Total', ascending=True, inplace=True)--><!--\\ get top 15 countriesdf_top15 = df_can['Total'].tail(15)df_top15--> Step 2: Plot data: 1. Use `kind='barh'` to generate a bar chart with horizontal bars. 2. Make sure to choose a good size for the plot and to label your axes and to give the plot a title. 3. Loop through the countries and annotate the immigrant population using the anotate function of the scripting interface. ###Code ### type your answer here # generate plot df_top15.plot(kind='barh', figsize=(12, 12), color='steelblue') plt.xlabel('Number of Immigrants') plt.title('Top 15 Conuntries Contributing to the Immigration to Canada between 1980 - 2013') # annotate value labels to each country for index, value in enumerate(df_top15): label = format(int(value), ',') # format int with commas # place text at the end of bar (subtracting 47000 from x, and 0.1 from y to make it fit within the bar) plt.annotate(label, xy=(value - 47000, index - 0.10), color='white') plt.show() ###Output _____no_output_____ ###Markdown Area Plots, Histograms, and Bar Plots IntroductionIn this lab, we will continue exploring the Matplotlib library and will learn how to create additional plots, namely area plots, histograms, and bar charts. Table of Contents1. [Exploring Datasets with *pandas*](0)2. [Downloading and Prepping Data](2)3. [Visualizing Data using Matplotlib](4) 4. [Area Plots](6) 5. [Histograms](8) 6. [Bar Charts](10) Exploring Datasets with *pandas* and MatplotlibToolkits: The course heavily relies on [*pandas*](http://pandas.pydata.org/) and [**Numpy**](http://www.numpy.org/) for data wrangling, analysis, and visualization. The primary plotting library that we are exploring in the course is [Matplotlib](http://matplotlib.org/).Dataset: Immigration to Canada from 1980 to 2013 - [International migration flows to and from selected countries - The 2015 revision](http://www.un.org/en/development/desa/population/migration/data/empirical2/migrationflows.shtml) from United Nation's website.The dataset contains annual data on the flows of international migrants as recorded by the countries of destination. The data presents both inflows and outflows according to the place of birth, citizenship or place of previous / next residence both for foreigners and nationals. For this lesson, we will focus on the Canadian Immigration data. Downloading and Prepping Data Import Primary Modules. The first thing we'll do is import two key data analysis modules: *pandas* and **Numpy**. ###Code import numpy as np # useful for many scientific computing in Python import pandas as pd # primary data structure library ###Output _____no_output_____ ###Markdown Let's download and import our primary Canadian Immigration dataset using *pandas* `read_excel()` method. Normally, before we can do that, we would need to download a module which *pandas* requires to read in excel files. This module is **xlrd**. For your convenience, we have pre-installed this module, so you would not have to worry about that. Otherwise, you would need to run the following line of code to install the **xlrd** module:```!conda install -c anaconda xlrd --yes``` Download the dataset and read it into a *pandas* dataframe. ###Code conda install -c anaconda xlrd --yes df_can = pd.read_excel('https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/DV0101EN/labs/Data_Files/Canada.xlsx', sheet_name='Canada by Citizenship', skiprows=range(20), skipfooter=2 ) print('Data downloaded and read into a dataframe!') ###Output Data downloaded and read into a dataframe! ###Markdown Let's take a look at the first five items in our dataset. ###Code df_can.head() ###Output _____no_output_____ ###Markdown Let's find out how many entries there are in our dataset. ###Code # print the dimensions of the dataframe print(df_can.shape) ###Output (195, 43) ###Markdown Clean up data. We will make some modifications to the original dataset to make it easier to create our visualizations. Refer to `Introduction to Matplotlib and Line Plots` lab for the rational and detailed description of the changes. 1. Clean up the dataset to remove columns that are not informative to us for visualization (eg. Type, AREA, REG). ###Code df_can.drop(['AREA', 'REG', 'DEV', 'Type', 'Coverage'], axis=1, inplace=True) # let's view the first five elements and see how the dataframe was changed df_can.head() ###Output _____no_output_____ ###Markdown Notice how the columns Type, Coverage, AREA, REG, and DEV got removed from the dataframe. 2. Rename some of the columns so that they make sense. ###Code df_can.rename(columns={'OdName':'Country', 'AreaName':'Continent','RegName':'Region'}, inplace=True) # let's view the first five elements and see how the dataframe was changed df_can.head() ###Output _____no_output_____ ###Markdown Notice how the column names now make much more sense, even to an outsider. 3. For consistency, ensure that all column labels of type string. ###Code # let's examine the types of the column labels all(isinstance(column, str) for column in df_can.columns) ###Output _____no_output_____ ###Markdown Notice how the above line of code returned *False* when we tested if all the column labels are of type **string**. So let's change them all to **string** type. ###Code df_can.columns = list(map(str, df_can.columns)) # let's check the column labels types now all(isinstance(column, str) for column in df_can.columns) ###Output _____no_output_____ ###Markdown 4. Set the country name as index - useful for quickly looking up countries using .loc method. ###Code df_can.set_index('Country', inplace=True) # let's view the first five elements and see how the dataframe was changed df_can.head() ###Output _____no_output_____ ###Markdown Notice how the country names now serve as indices. 5. Add total column. ###Code df_can['Total'] = df_can.sum(axis=1) # let's view the first five elements and see how the dataframe was changed df_can.head() ###Output _____no_output_____ ###Markdown Now the dataframe has an extra column that presents the total number of immigrants from each country in the dataset from 1980 - 2013. So if we print the dimension of the data, we get: ###Code print ('data dimensions:', df_can.shape) ###Output data dimensions: (195, 38) ###Markdown So now our dataframe has 38 columns instead of 37 columns that we had before. ###Code # finally, let's create a list of years from 1980 - 2013 # this will come in handy when we start plotting the data years = list(map(str, range(1980, 2014))) years ###Output _____no_output_____ ###Markdown Visualizing Data using Matplotlib Import `Matplotlib` and **Numpy**. ###Code # use the inline backend to generate the plots within the browser %matplotlib inline import matplotlib as mpl import matplotlib.pyplot as plt mpl.style.use('ggplot') # optional: for ggplot-like style # check for latest version of Matplotlib print ('Matplotlib version: ', mpl.__version__) # >= 2.0.0 ###Output Matplotlib version: 3.1.0 ###Markdown Area Plots In the last module, we created a line plot that visualized the top 5 countries that contribued the most immigrants to Canada from 1980 to 2013. With a little modification to the code, we can visualize this plot as a cumulative plot, also knows as a **Stacked Line Plot** or **Area plot**. ###Code df_can.sort_values(['Total'], ascending=False, axis=0, inplace=True) # get the top 5 entries df_top5 = df_can.head() # transpose the dataframe df_top5 = df_top5[years].transpose() df_top5.head() ###Output _____no_output_____ ###Markdown Area plots are stacked by default. And to produce a stacked area plot, each column must be either all positive or all negative values (any NaN values will defaulted to 0). To produce an unstacked plot, pass `stacked=False`. ###Code df_top5.index = df_top5.index.map(int) # let's change the index values of df_top5 to type integer for plotting df_top5.plot(kind='area', stacked=False, figsize=(20, 10), # pass a tuple (x, y) size ) plt.title('Immigration Trend of Top 5 Countries') plt.ylabel('Number of Immigrants') plt.xlabel('Years') plt.show() ###Output _____no_output_____ ###Markdown The unstacked plot has a default transparency (alpha value) at 0.5. We can modify this value by passing in the `alpha` parameter. ###Code df_top5.plot(kind='area', alpha=0.25, # 0-1, default value a= 0.5 stacked=False, figsize=(20, 10), ) plt.title('Immigration Trend of Top 5 Countries') plt.ylabel('Number of Immigrants') plt.xlabel('Years') plt.show() ###Output _____no_output_____ ###Markdown Two types of plottingAs we discussed in the video lectures, there are two styles/options of ploting with `matplotlib`. Plotting using the Artist layer and plotting using the scripting layer.**Option 1: Scripting layer (procedural method) - using matplotlib.pyplot as 'plt' **You can use `plt` i.e. `matplotlib.pyplot` and add more elements by calling different methods procedurally; for example, `plt.title(...)` to add title or `plt.xlabel(...)` to add label to the x-axis.```python Option 1: This is what we have been using so far df_top5.plot(kind='area', alpha=0.35, figsize=(20, 10)) plt.title('Immigration trend of top 5 countries') plt.ylabel('Number of immigrants') plt.xlabel('Years')``` **Option 2: Artist layer (Object oriented method) - using an `Axes` instance from Matplotlib (preferred) **You can use an `Axes` instance of your current plot and store it in a variable (eg. `ax`). You can add more elements by calling methods with a little change in syntax (by adding "*set_*" to the previous methods). For example, use `ax.set_title()` instead of `plt.title()` to add title, or `ax.set_xlabel()` instead of `plt.xlabel()` to add label to the x-axis. This option sometimes is more transparent and flexible to use for advanced plots (in particular when having multiple plots, as you will see later). In this course, we will stick to the **scripting layer**, except for some advanced visualizations where we will need to use the **artist layer** to manipulate advanced aspects of the plots. ###Code # option 2: preferred option with more flexibility ax = df_top5.plot(kind='area', alpha=0.35, figsize=(20, 10)) ax.set_title('Immigration Trend of Top 5 Countries') ax.set_ylabel('Number of Immigrants') ax.set_xlabel('Years') ###Output _____no_output_____ ###Markdown **Question**: Use the scripting layer to create a stacked area plot of the 5 countries that contributed the least to immigration to Canada **from** 1980 to 2013. Use a transparency value of 0.45. ###Code # get the 5 countries with the least contribution df_least5 = df_can.tail(5) # transpose the dataframe df_least5 = df_least5[years].transpose() df_least5.head() df_least5.index = df_least5.index.map(int) # let's change the index values of df_least5 to type integer for plotting df_least5.plot(kind='area', alpha=0.45, figsize=(20, 10)) plt.title('Immigration Trend of 5 Countries with Least Contribution to Immigration') plt.ylabel('Number of Immigrants') plt.xlabel('Years') plt.show() ###Output _____no_output_____ ###Markdown Double-click __here__ for the solution.<!-- The correct answer is:\\ get the 5 countries with the least contributiondf_least5 = df_can.tail(5)--><!--\\ transpose the dataframedf_least5 = df_least5[years].transpose() df_least5.head()--><!--df_least5.index = df_least5.index.map(int) let's change the index values of df_least5 to type integer for plottingdf_least5.plot(kind='area', alpha=0.45, figsize=(20, 10)) --><!--plt.title('Immigration Trend of 5 Countries with Least Contribution to Immigration')plt.ylabel('Number of Immigrants')plt.xlabel('Years')--><!--plt.show()--> **Question**: Use the artist layer to create an unstacked area plot of the 5 countries that contributed the least to immigration to Canada **from** 1980 to 2013. Use a transparency value of 0.55. ###Code ### type your answer here df_least5=df_can.tail(5) df_least5=df_least5[years].transpose() df_least5.head() df_least5.plot(kind='area',alpha=0.55,stacked=False,figsize=(20,10)) ax.set_title('Immigration Trend of 5 Countries with Least Contribution to Immigration') ax.set_ylabel('Number of Immigrants') ax.set_xlabel('Years') ###Output _____no_output_____ ###Markdown Double-click __here__ for the solution.<!-- The correct answer is:\\ get the 5 countries with the least contributiondf_least5 = df_can.tail(5)--><!--\\ transpose the dataframedf_least5 = df_least5[years].transpose() df_least5.head()--><!--df_least5.index = df_least5.index.map(int) let's change the index values of df_least5 to type integer for plotting--><!--ax = df_least5.plot(kind='area', alpha=0.55, stacked=False, figsize=(20, 10))--><!--ax.set_title('Immigration Trend of 5 Countries with Least Contribution to Immigration')ax.set_ylabel('Number of Immigrants')ax.set_xlabel('Years')--> HistogramsA histogram is a way of representing the *frequency* distribution of numeric dataset. The way it works is it partitions the x-axis into *bins*, assigns each data point in our dataset to a bin, and then counts the number of data points that have been assigned to each bin. So the y-axis is the frequency or the number of data points in each bin. Note that we can change the bin size and usually one needs to tweak it so that the distribution is displayed nicely. **Question:** What is the frequency distribution of the number (population) of new immigrants from the various countries to Canada in 2013? Before we proceed with creating the histogram plot, let's first examine the data split into intervals. To do this, we will us **Numpy**'s `histrogram` method to get the bin ranges and frequency counts as follows: ###Code # let's quickly view the 2013 data df_can['2013'].head() # np.histogram returns 2 values count, bin_edges = np.histogram(df_can['2013']) print(count) # frequency count print(bin_edges) # bin ranges, default = 10 bins ###Output [178 11 1 2 0 0 0 0 1 2] [ 0. 3412.9 6825.8 10238.7 13651.6 17064.5 20477.4 23890.3 27303.2 30716.1 34129. ] ###Markdown By default, the `histrogram` method breaks up the dataset into 10 bins. The figure below summarizes the bin ranges and the frequency distribution of immigration in 2013. We can see that in 2013:* 178 countries contributed between 0 to 3412.9 immigrants * 11 countries contributed between 3412.9 to 6825.8 immigrants* 1 country contributed between 6285.8 to 10238.7 immigrants, and so on.. We can easily graph this distribution by passing `kind=hist` to `plot()`. ###Code df_can['2013'].plot(kind='hist', figsize=(8, 5)) plt.title('Histogram of Immigration from 195 Countries in 2013') # add a title to the histogram plt.ylabel('Number of Countries') # add y-label plt.xlabel('Number of Immigrants') # add x-label plt.show() ###Output _____no_output_____ ###Markdown In the above plot, the x-axis represents the population range of immigrants in intervals of 3412.9. The y-axis represents the number of countries that contributed to the aforementioned population. Notice that the x-axis labels do not match with the bin size. This can be fixed by passing in a `xticks` keyword that contains the list of the bin sizes, as follows: ###Code # 'bin_edges' is a list of bin intervals count, bin_edges = np.histogram(df_can['2013']) df_can['2013'].plot(kind='hist', figsize=(8, 5), xticks=bin_edges) plt.title('Histogram of Immigration from 195 countries in 2013') # add a title to the histogram plt.ylabel('Number of Countries') # add y-label plt.xlabel('Number of Immigrants') # add x-label plt.show() ###Output _____no_output_____ ###Markdown *Side Note:* We could use `df_can['2013'].plot.hist()`, instead. In fact, throughout this lesson, using `some_data.plot(kind='type_plot', ...)` is equivalent to `some_data.plot.type_plot(...)`. That is, passing the type of the plot as argument or method behaves the same. See the *pandas* documentation for more info http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.plot.html. We can also plot multiple histograms on the same plot. For example, let's try to answer the following questions using a histogram.**Question**: What is the immigration distribution for Denmark, Norway, and Sweden for years 1980 - 2013? ###Code # let's quickly view the dataset df_can.loc[['Denmark', 'Norway', 'Sweden'], years] # generate histogram df_can.loc[['Denmark', 'Norway', 'Sweden'], years].plot.hist() ###Output _____no_output_____ ###Markdown That does not look right! Don't worry, you'll often come across situations like this when creating plots. The solution often lies in how the underlying dataset is structured.Instead of plotting the population frequency distribution of the population for the 3 countries, *pandas* instead plotted the population frequency distribution for the `years`.This can be easily fixed by first transposing the dataset, and then plotting as shown below. ###Code # transpose dataframe df_t = df_can.loc[['Denmark', 'Norway', 'Sweden'], years].transpose() df_t.head() # generate histogram df_t.plot(kind='hist', figsize=(10, 6)) plt.title('Histogram of Immigration from Denmark, Norway, and Sweden from 1980 - 2013') plt.ylabel('Number of Years') plt.xlabel('Number of Immigrants') plt.show() ###Output _____no_output_____ ###Markdown Let's make a few modifications to improve the impact and aesthetics of the previous plot:* increase the bin size to 15 by passing in `bins` parameter* set transparency to 60% by passing in `alpha` paramemter* label the x-axis by passing in `x-label` paramater* change the colors of the plots by passing in `color` parameter ###Code # let's get the x-tick values count, bin_edges = np.histogram(df_t, 15) # un-stacked histogram df_t.plot(kind ='hist', figsize=(10, 6), bins=15, alpha=0.6, xticks=bin_edges, color=['coral', 'darkslateblue', 'mediumseagreen'] ) plt.title('Histogram of Immigration from Denmark, Norway, and Sweden from 1980 - 2013') plt.ylabel('Number of Years') plt.xlabel('Number of Immigrants') plt.show() ###Output _____no_output_____ ###Markdown Tip:For a full listing of colors available in Matplotlib, run the following code in your python shell:```pythonimport matplotlibfor name, hex in matplotlib.colors.cnames.items(): print(name, hex)``` If we do no want the plots to overlap each other, we can stack them using the `stacked` paramemter. Let's also adjust the min and max x-axis labels to remove the extra gap on the edges of the plot. We can pass a tuple (min,max) using the `xlim` paramater, as show below. ###Code count, bin_edges = np.histogram(df_t, 15) xmin = bin_edges[0] - 10 # first bin value is 31.0, adding buffer of 10 for aesthetic purposes xmax = bin_edges[-1] + 10 # last bin value is 308.0, adding buffer of 10 for aesthetic purposes # stacked Histogram df_t.plot(kind='hist', figsize=(10, 6), bins=15, xticks=bin_edges, color=['coral', 'darkslateblue', 'mediumseagreen'], stacked=True, xlim=(xmin, xmax) ) plt.title('Histogram of Immigration from Denmark, Norway, and Sweden from 1980 - 2013') plt.ylabel('Number of Years') plt.xlabel('Number of Immigrants') plt.show() ###Output _____no_output_____ ###Markdown **Question**: Use the scripting layer to display the immigration distribution for Greece, Albania, and Bulgaria for years 1980 - 2013? Use an overlapping plot with 15 bins and a transparency value of 0.35. ###Code # create a dataframe of the countries of interest (cof) df_cof = df_can.loc[['Greece', 'Albania', 'Bulgaria'], years] # transpose the dataframe df_cof = df_cof.transpose() # let's get the x-tick values count, bin_edges = np.histogram(df_cof, 15) # Un-stacked Histogram df_cof.plot(kind ='hist', figsize=(10, 6), bins=15, alpha=0.35, xticks=bin_edges, color=['coral', 'darkslateblue', 'mediumseagreen'] ) plt.title('Histogram of Immigration from Greece, Albania, and Bulgaria from 1980 - 2013') plt.ylabel('Number of Years') plt.xlabel('Number of Immigrants') plt.show() ###Output _____no_output_____ ###Markdown Double-click __here__ for the solution.<!-- The correct answer is:\\ create a dataframe of the countries of interest (cof)df_cof = df_can.loc[['Greece', 'Albania', 'Bulgaria'], years]--><!--\\ transpose the dataframedf_cof = df_cof.transpose() --><!--\\ let's get the x-tick valuescount, bin_edges = np.histogram(df_cof, 15)--><!--\\ Un-stacked Histogramdf_cof.plot(kind ='hist', figsize=(10, 6), bins=15, alpha=0.35, xticks=bin_edges, color=['coral', 'darkslateblue', 'mediumseagreen'] )--><!--plt.title('Histogram of Immigration from Greece, Albania, and Bulgaria from 1980 - 2013')plt.ylabel('Number of Years')plt.xlabel('Number of Immigrants')--><!--plt.show()--> ###Code df_cof.head() ###Output _____no_output_____ ###Markdown Bar Charts (Dataframe) A bar plot is a way of representing data where the *length* of the bars represents the magnitude/size of the feature/variable. Bar graphs usually represent numerical and categorical variables grouped in intervals. To create a bar plot, we can pass one of two arguments via `kind` parameter in `plot()`:* `kind=bar` creates a *vertical* bar plot* `kind=barh` creates a *horizontal* bar plot **Vertical bar plot**In vertical bar graphs, the x-axis is used for labelling, and the length of bars on the y-axis corresponds to the magnitude of the variable being measured. Vertical bar graphs are particuarly useful in analyzing time series data. One disadvantage is that they lack space for text labelling at the foot of each bar. **Let's start off by analyzing the effect of Iceland's Financial Crisis:**The 2008 - 2011 Icelandic Financial Crisis was a major economic and political event in Iceland. Relative to the size of its economy, Iceland's systemic banking collapse was the largest experienced by any country in economic history. The crisis led to a severe economic depression in 2008 - 2011 and significant political unrest.**Question:** Let's compare the number of Icelandic immigrants (country = 'Iceland') to Canada from year 1980 to 2013. ###Code # step 1: get the data df_iceland = df_can.loc['Iceland', years] df_iceland.head() # step 2: plot data df_iceland.plot(kind='bar', figsize=(10, 6)) plt.xlabel('Year') # add to x-label to the plot plt.ylabel('Number of immigrants') # add y-label to the plot plt.title('Icelandic immigrants to Canada from 1980 to 2013') # add title to the plot plt.show() ###Output _____no_output_____ ###Markdown The bar plot above shows the total number of immigrants broken down by each year. We can clearly see the impact of the financial crisis; the number of immigrants to Canada started increasing rapidly after 2008. Let's annotate this on the plot using the `annotate` method of the **scripting layer** or the **pyplot interface**. We will pass in the following parameters:- `s`: str, the text of annotation.- `xy`: Tuple specifying the (x,y) point to annotate (in this case, end point of arrow).- `xytext`: Tuple specifying the (x,y) point to place the text (in this case, start point of arrow).- `xycoords`: The coordinate system that xy is given in - 'data' uses the coordinate system of the object being annotated (default).- `arrowprops`: Takes a dictionary of properties to draw the arrow: - `arrowstyle`: Specifies the arrow style, `'->'` is standard arrow. - `connectionstyle`: Specifies the connection type. `arc3` is a straight line. - `color`: Specifes color of arror. - `lw`: Specifies the line width.I encourage you to read the Matplotlib documentation for more details on annotations: http://matplotlib.org/api/pyplot_api.htmlmatplotlib.pyplot.annotate. ###Code df_iceland.plot(kind='bar', figsize=(10, 6), rot=90) # rotate the bars by 90 degrees plt.xlabel('Year') plt.ylabel('Number of Immigrants') plt.title('Icelandic Immigrants to Canada from 1980 to 2013') # Annotate arrow plt.annotate('', # s: str. Will leave it blank for no text xy=(32, 70), # place head of the arrow at point (year 2012 , pop 70) xytext=(28, 20), # place base of the arrow at point (year 2008 , pop 20) xycoords='data', # will use the coordinate system of the object being annotated arrowprops=dict(arrowstyle='->', connectionstyle='arc3', color='blue', lw=2) ) plt.show() ###Output _____no_output_____ ###Markdown Let's also annotate a text to go over the arrow. We will pass in the following additional parameters:- `rotation`: rotation angle of text in degrees (counter clockwise)- `va`: vertical alignment of text [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]- `ha`: horizontal alignment of text [‘center’ | ‘right’ | ‘left’] ###Code df_iceland.plot(kind='bar', figsize=(10, 6), rot=90) plt.xlabel('Year') plt.ylabel('Number of Immigrants') plt.title('Icelandic Immigrants to Canada from 1980 to 2013') # Annotate arrow plt.annotate('', # s: str. will leave it blank for no text xy=(32, 70), # place head of the arrow at point (year 2012 , pop 70) xytext=(28, 20), # place base of the arrow at point (year 2008 , pop 20) xycoords='data', # will use the coordinate system of the object being annotated arrowprops=dict(arrowstyle='->', connectionstyle='arc3', color='blue', lw=2) ) # Annotate Text plt.annotate('2008 - 2011 Financial Crisis', # text to display xy=(28, 30), # start the text at at point (year 2008 , pop 30) rotation=72.5, # based on trial and error to match the arrow va='bottom', # want the text to be vertically 'bottom' aligned ha='left', # want the text to be horizontally 'left' algned. ) plt.show() ###Output _____no_output_____ ###Markdown **Horizontal Bar Plot**Sometimes it is more practical to represent the data horizontally, especially if you need more room for labelling the bars. In horizontal bar graphs, the y-axis is used for labelling, and the length of bars on the x-axis corresponds to the magnitude of the variable being measured. As you will see, there is more room on the y-axis to label categetorical variables.**Question:** Using the scripting layter and the `df_can` dataset, create a *horizontal* bar plot showing the *total* number of immigrants to Canada from the top 15 countries, for the period 1980 - 2013. Label each country with the total immigrant count. Step 1: Get the data pertaining to the top 15 countries. ###Code ### type your answer here df_can.sort_values(by='Total', ascending=True, inplace=True) df_top15 = df_can['Total'].tail(15) df_top15 ###Output _____no_output_____ ###Markdown Double-click __here__ for the solution.<!-- The correct answer is:\\ sort dataframe on 'Total' column (descending)df_can.sort_values(by='Total', ascending=True, inplace=True)--><!--\\ get top 15 countriesdf_top15 = df_can['Total'].tail(15)df_top15--> Step 2: Plot data: 1. Use `kind='barh'` to generate a bar chart with horizontal bars. 2. Make sure to choose a good size for the plot and to label your axes and to give the plot a title. 3. Loop through the countries and annotate the immigrant population using the anotate function of the scripting interface. ###Code ### type your answer here df_top15.plot(kind='barh', figsize=(12, 12), color='steelblue') plt.xlabel('Number of Immigrants') plt.title('Top 15 Conuntries Contributing to the Immigration to Canada between 1980 - 2013') ###Output _____no_output_____
tutorials/Certification_Trainings/Public/databricks_notebooks/2. Pretrained pipelines for Grammar, NER and Sentiment.ipynb
###Markdown ![JohnSnowLabs](https://nlp.johnsnowlabs.com/assets/images/logo.png) 2. Pretrained pipelines for Grammar, NER and Sentiment ###Code import sparknlp print("Spark NLP version", sparknlp.version()) print("Apache Spark version:", spark.version) spark ###Output _____no_output_____ ###Markdown Using Pretrained Pipelines https://github.com/JohnSnowLabs/spark-nlp-modelshttps://nlp.johnsnowlabs.com/models ###Code from sparknlp.pretrained import PretrainedPipeline testDoc = '''Peter is a very good persn. My life in Russia is very intersting. John and Peter are brthers. However they don't support each other that much. Lucas Nogal Dunbercker is no longer happy. He has a good car though. Europe is very culture rich. There are huge churches! and big houses! ''' testDoc ###Output _____no_output_____ ###Markdown Explain Document DL **Stages**- DocumentAssembler- SentenceDetector- Tokenizer- NER (NER with GloVe 100D embeddings, CoNLL2003 dataset)- Lemmatizer- Stemmer- Part of Speech- SpellChecker (Norvig) ###Code pipeline_dl = PretrainedPipeline('explain_document_dl', lang='en') pipeline_dl.model.stages pipeline_dl.model.stages[-2].getStorageRef() pipeline_dl.model.stages[-2].getClasses() result = pipeline_dl.annotate(testDoc) result.keys() result['entities'] import pandas as pd df = pd.DataFrame({'token':result['token'], 'ner_label':result['ner'], 'spell_corrected':result['checked'], 'POS':result['pos'], 'lemmas':result['lemma'], 'stems':result['stem']}) df ###Output _____no_output_____ ###Markdown Recognize Entities DL ###Code recognize_entities = PretrainedPipeline('recognize_entities_dl', lang='en') testDoc = ''' Peter is a very good persn. My life in Russia is very intersting. John and Peter are brthers. However they don't support each other that much. Lucas Nogal Dunbercker is no longer happy. He has a good car though. Europe is very culture rich. There are huge churches! and big houses! ''' result = recognize_entities.annotate(testDoc) list(zip(result['token'], result['ner'])) ###Output _____no_output_____ ###Markdown Clean Stop Words ###Code clean_stop = PretrainedPipeline('clean_stop', lang='en') result = clean_stop.annotate(testDoc) result.keys() ' '.join(result['cleanTokens']) ###Output _____no_output_____ ###Markdown Spell Checker (Norvig Algo)ref: https://norvig.com/spell-correct.html ###Code spell_checker = PretrainedPipeline('check_spelling', lang='en') testDoc = ''' Peter is a very good persn. My life in Russia is very intersting. John and Peter are brthers. However they don't support each other that much. Lucas Nogal Dunbercker is no longer happy. He has a good car though. Europe is very culture rich. There are huge churches! and big houses! ''' result = spell_checker.annotate(testDoc) result.keys() list(zip(result['token'], result['checked'])) ###Output _____no_output_____ ###Markdown Parsing a list of texts ###Code testDoc_list = ['French author who helped pioner the science-fiction genre.', 'Verne wrate about space, air, and underwater travel before navigable aircrast', 'Practical submarines were invented, and before any means of space travel had been devised.'] testDoc_list pipeline_dl = PretrainedPipeline('explain_document_dl', lang='en') result_list = pipeline_dl.annotate(testDoc_list) len(result_list) result_list[0] ###Output _____no_output_____ ###Markdown Using fullAnnotate to get more details ```annotatorType: String, begin: Int, end: Int, result: String, (this is what annotate returns)metadata: Map[String, String], embeddings: Array[Float]``` ###Code text = 'Peter Parker is a nice guy and lives in New York' # pipeline_dl >> explain_document_dl detailed_result = pipeline_dl.fullAnnotate(text) detailed_result detailed_result[0]['entities'] detailed_result[0]['entities'][0].result import pandas as pd chunks=[] entities=[] for n in detailed_result[0]['entities']: chunks.append(n.result) entities.append(n.metadata['entity']) df = pd.DataFrame({'chunks':chunks, 'entities':entities}) df tuples = [] for x,y,z in zip(detailed_result[0]["token"], detailed_result[0]["pos"], detailed_result[0]["ner"]): tuples.append((int(x.metadata['sentence']), x.result, x.begin, x.end, y.result, z.result)) df = pd.DataFrame(tuples, columns=['sent_id','token','start','end','pos', 'ner']) df ###Output _____no_output_____ ###Markdown Sentiment Analysis Vivek algopaper: `Fast and accurate sentiment classification using an enhanced Naive Bayes model`https://arxiv.org/abs/1305.6143code `https://github.com/vivekn/sentiment` ###Code sentiment = PretrainedPipeline('analyze_sentiment', lang='en') result = sentiment.annotate("The movie I watched today was not a good one") result['sentiment'] ###Output _____no_output_____ ###Markdown DL version (trained on imdb) `analyze_sentimentdl_use_imdb`: A pre-trained pipeline to classify IMDB reviews in neg and pos classes using tfhub_use embeddings.`analyze_sentimentdl_glove_imdb`: A pre-trained pipeline to classify IMDB reviews in neg and pos classes using glove_100d embeddings. ###Code sentiment_imdb_glove = PretrainedPipeline('analyze_sentimentdl_glove_imdb', lang='en') comment = ''' It's a very scary film but what impressed me was how true the film sticks to the original's tricks; it isn't filled with loud in-your-face jump scares, in fact, a lot of what makes this film scary is the slick cinematography and intricate shadow play. The use of lighting and creation of atmosphere is what makes this film so tense, which is why it's perfectly suited for those who like Horror movies but without the obnoxious gore. ''' result = sentiment_imdb_glove.annotate(comment) result['sentiment'] sentiment_imdb_glove.fullAnnotate(comment)[0]['sentiment'] ###Output _____no_output_____ ###Markdown DL version (trained on twitter dataset) ###Code sentiment_twitter = PretrainedPipeline('analyze_sentimentdl_use_twitter', lang='en') result = sentiment_twitter.annotate("The movie I watched today was a good one.") result['sentiment'] sentiment_twitter.fullAnnotate("The movie I watched today was a good one.")[0]['sentiment'] ###Output _____no_output_____ ###Markdown ![JohnSnowLabs](https://nlp.johnsnowlabs.com/assets/images/logo.png) 2. Pretrained pipelines for Grammar, NER and Sentiment ###Code import sparknlp print("Spark NLP version", sparknlp.version()) print("Apache Spark version:", spark.version) spark ###Output _____no_output_____ ###Markdown Using Pretrained Pipelines https://github.com/JohnSnowLabs/spark-nlp-modelshttps://nlp.johnsnowlabs.com/models ###Code from sparknlp.pretrained import PretrainedPipeline testDoc = '''Peter is a very good persn. My life in Russia is very intersting. John and Peter are brthers. However they don't support each other that much. Lucas Nogal Dunbercker is no longer happy. He has a good car though. Europe is very culture rich. There are huge churches! and big houses! ''' testDoc ###Output _____no_output_____ ###Markdown Explain Document ML **Stages**- DocumentAssembler- SentenceDetector- Tokenizer- Lemmatizer- Stemmer- Part of Speech- SpellChecker (Norvig) ###Code pipeline = PretrainedPipeline('explain_document_ml', lang='en') pipeline.model.stages result = pipeline.annotate(testDoc) result.keys() result['sentence'] result['token'] list(zip(result['token'], result['pos'])) list(zip(result['token'], result['lemmas'], result['stems'], result['spell'])) import pandas as pd df = pd.DataFrame({'token':result['token'], 'corrected':result['spell'], 'POS':result['pos'], 'lemmas':result['lemmas'], 'stems':result['stems']}) df ###Output _____no_output_____ ###Markdown Explain Document DL **Stages**- DocumentAssembler- SentenceDetector- Tokenizer- NER (NER with GloVe 100D embeddings, CoNLL2003 dataset)- Lemmatizer- Stemmer- Part of Speech- SpellChecker (Norvig) ###Code pipeline_dl = PretrainedPipeline('explain_document_dl', lang='en') pipeline_dl.model.stages pipeline_dl.model.stages[-2].getStorageRef() pipeline_dl.model.stages[-2].getClasses() result = pipeline_dl.annotate(testDoc) result.keys() result['entities'] df = pd.DataFrame({'token':result['token'], 'ner_label':result['ner'], 'spell_corrected':result['checked'], 'POS':result['pos'], 'lemmas':result['lemma'], 'stems':result['stem']}) df ###Output _____no_output_____ ###Markdown Recognize Entities DL ###Code recognize_entities = PretrainedPipeline('recognize_entities_dl', lang='en') testDoc = ''' Peter is a very good persn. My life in Russia is very intersting. John and Peter are brthers. However they don't support each other that much. Lucas Nogal Dunbercker is no longer happy. He has a good car though. Europe is very culture rich. There are huge churches! and big houses! ''' result = recognize_entities.annotate(testDoc) list(zip(result['token'], result['ner'])) ###Output _____no_output_____ ###Markdown Clean Stop Words ###Code clean_stop = PretrainedPipeline('clean_stop', lang='en') result = clean_stop.annotate(testDoc) result.keys() ' '.join(result['cleanTokens']) ###Output _____no_output_____ ###Markdown Spell Checker (Norvig Algo)ref: https://norvig.com/spell-correct.html ###Code spell_checker = PretrainedPipeline('check_spelling', lang='en') testDoc = ''' Peter is a very good persn. My life in Russia is very intersting. John and Peter are brthers. However they don't support each other that much. Lucas Nogal Dunbercker is no longer happy. He has a good car though. Europe is very culture rich. There are huge churches! and big houses! ''' result = spell_checker.annotate(testDoc) result.keys() list(zip(result['token'], result['checked'])) ###Output _____no_output_____ ###Markdown Parsing a list of texts ###Code testDoc_list = ['French author who helped pioner the science-fiction genre.', 'Verne wrate about space, air, and underwater travel before navigable aircrast', 'Practical submarines were invented, and before any means of space travel had been devised.'] testDoc_list pipeline = PretrainedPipeline('explain_document_ml', lang='en') result_list = pipeline.annotate(testDoc_list) len (result_list) result_list[0] ###Output _____no_output_____ ###Markdown Using fullAnnotate to get more details ```annotatorType: String, begin: Int, end: Int, result: String, (this is what annotate returns)metadata: Map[String, String], embeddings: Array[Float]``` ###Code text = 'Peter Parker is a nice guy and lives in New York' # pipeline_dl >> explain_document_dl detailed_result = pipeline_dl.fullAnnotate(text) detailed_result detailed_result[0]['entities'] detailed_result[0]['entities'][0].result chunks=[] entities=[] for n in detailed_result[0]['entities']: chunks.append(n.result) entities.append(n.metadata['entity']) df = pd.DataFrame({'chunks':chunks, 'entities':entities}) df tuples = [] for x,y,z in zip(detailed_result[0]["token"], detailed_result[0]["pos"], detailed_result[0]["ner"]): tuples.append((int(x.metadata['sentence']), x.result, x.begin, x.end, y.result, z.result)) df = pd.DataFrame(tuples, columns=['sent_id','token','start','end','pos', 'ner']) df ###Output _____no_output_____ ###Markdown Sentiment Analysis Vivek algopaper: `Fast and accurate sentiment classification using an enhanced Naive Bayes model`https://arxiv.org/abs/1305.6143code `https://github.com/vivekn/sentiment` ###Code sentiment = PretrainedPipeline('analyze_sentiment', lang='en') result = sentiment.annotate("The movie I watched today was not a good one") result['sentiment'] ###Output _____no_output_____ ###Markdown DL version (trained on imdb) ###Code sentiment_imdb = PretrainedPipeline('analyze_sentimentdl_use_imdb', lang='en') sentiment_imdb_glove = PretrainedPipeline('analyze_sentimentdl_glove_imdb', lang='en') comment = ''' It's a very scary film but what impressed me was how true the film sticks to the original's tricks; it isn't filled with loud in-your-face jump scares, in fact, a lot of what makes this film scary is the slick cinematography and intricate shadow play. The use of lighting and creation of atmosphere is what makes this film so tense, which is why it's perfectly suited for those who like Horror movies but without the obnoxious gore. ''' result = sentiment_imdb_glove.annotate(comment) result['sentiment'] sentiment_imdb_glove.fullAnnotate(comment)[0]['sentiment'] ###Output _____no_output_____ ###Markdown DL version (trained on twitter dataset) ###Code sentiment_twitter = PretrainedPipeline('analyze_sentimentdl_use_twitter', lang='en') result = sentiment_twitter.annotate("The movie I watched today was a good one.") result['sentiment'] ###Output _____no_output_____
courses/machine_learning/deepdive2/explainable_ai/labs/integrated_gradients.ipynb
###Markdown Copyright 2020 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Integrated gradients This tutorial: Run in Google Colab View source on GitHub Download notebook A shorter version of this notebook is also available as a TensorFlow tutorial: View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook This tutorial demonstrates how to implement **Integrated Gradients (IG)**, an explainable AI technique described in the paper [Axiomatic Attribution for Deep Networks](https://arxiv.org/abs/1703.01365). IG aims to explain the relationship between a model's predictions in terms of its features. It has many use cases including understanding feature importances, identifying data skew, and debugging model performance.IG has become a popular interpretability technique due to its broad applicability to any differentiable model, ease of implementation, theoretical justifications, and computational efficiency relative to alternative approaches that allows it to scale to large networks and feature spaces such as images.You will start by walking through an implementation of IG step-by-step. Next, you will apply IG attributions to understand the pixel feature importances of an image classifier and explore applied machine learning use cases. Lastly, you will conclude with discussion of IG's properties, limitations, and suggestions for next steps in your learning journey.To motivate this tutorial, here is the result of using IG to highlight important pixels that were used to classify this [image](https://commons.wikimedia.org/wiki/File:San_Francisco_fireboat_showing_off.jpg) as a fireboat.![Output Image 1](./images/IG_fireboat.png) Explaining an image classifier ###Code import matplotlib.pylab as plt import numpy as np import math import sys import tensorflow as tf import tensorflow_hub as hub ###Output _____no_output_____ ###Markdown Download Inception V1 from TF-Hub **TensorFlow Hub Module**IG can be applied to any neural network. To mirror the paper's implementation, you will use a pre-trained version of [Inception V1]((https://arxiv.org/abs/1409.4842)) from [TensorFlow Hub](https://tfhub.dev/google/imagenet/inception_v1/classification/4). ###Code inception_v1_url = "https://tfhub.dev/google/imagenet/inception_v1/classification/4" inception_v1_classifier = tf.keras.Sequential([ hub.KerasLayer(name='inception_v1', handle=inception_v1_url, trainable=False), ]) inception_v1_classifier.build([None, 224, 224, 3]) inception_v1_classifier.summary() ###Output _____no_output_____ ###Markdown From the TF Hub module page, you need to keep in mind the following about Inception V1 for image classification:**Inputs**: The expected input shape for the model is `(None, 224, 224, 3,)`. This is a dense 4D tensor of dtype float32 and shape `(batch_size, height, width, RGB channels)` whose elements are RGB color values of pixels normalized to the range [0, 1]. The first element is `None` to indicate that the model can take any integer batch size.**Outputs**: A `tf.Tensor` of logits in the shape of `(n_images, 1001)`. Each row represents the model's predicted score for each of ImageNet's 1,001 classes. For the model's top predicted class index you can use `tf.argmax(predictions, axis=-1)`. Furthmore, you can also covert the model's logit output to predicted probabilities across all classes using `tf.nn.softmax(predictions, axis=-1)` to quantify the model's uncertainty as well as explore similar predicted classes for debugging. ###Code def load_imagenet_labels(file_path): """ Args: file_path(str): A URL download path. Returns: imagenet_label_array(numpy.ndarray): Array of strings with shape (1001,). """ labels_file = tf.keras.utils.get_file('ImageNetLabels.txt', file_path) with open(labels_file, "r") as reader: f = reader.read() labels = f.splitlines() imagenet_label_array = np.array(labels) return imagenet_label_array imagenet_label_vocab = load_imagenet_labels('https://storage.googleapis.com/download.tensorflow.org/data/ImageNetLabels.txt') ###Output _____no_output_____ ###Markdown Load and preprocess images with `tf.image`You will illustrate IG using several images. Links to the original images are as follows ([Fireboat](https://commons.wikimedia.org/wiki/File:San_Francisco_fireboat_showing_off.jpg), [School Bus](https://commons.wikimedia.org/wiki/File:Thomas_School_Bus_Bus.jpg), [Giant Panda](https://commons.wikimedia.org/wiki/File:Giant_Panda_2.JPG), [Black Beetle](https://commons.wikimedia.org/wiki/File:Lucanus.JPG), [Golden Retriever](https://commons.wikimedia.org/wiki/File:Golden_retriever.jpg), [General Ulysses S. Grant](https://commons.wikimedia.org/wiki/Category:Ulysses_S._Grant/media/File:Portrait_of_Maj._Gen._Ulysses_S._Grant,_officer_of_the_Federal_Army_LOC_cwpb.06941.jpg), [Greece Presidential Guard](https://commons.wikimedia.org/wiki/File:Greek_guard_uniforms_1.jpg)). ###Code def parse_image(file_name): """ This function downloads and standardizes input JPEG images for the inception_v1 model. Its applies the following processing: - Reads JPG file. - Decodes JPG file into colored image. - Converts data type to standard tf.float32. - Resizes image to expected Inception V1 input dimension of (224, 224, 3) with preserved aspect ratio. E.g. don't stretch image. - Pad image to (224, 224, 3) shape with black pixels. Args: file_name(str): Direct URL path to the JPG image. Returns: image(Tensor): A Tensor of floats with shape (224, 224, 3). label(str): A text label for display above the image. """ image = tf.io.read_file(file_name) image = tf.image.decode_jpeg(image, channels=3) image = tf.image.convert_image_dtype(image, tf.float32) image = tf.image.resize(image, (224, 224), preserve_aspect_ratio=True) image = tf.image.resize_with_pad(image, target_height=224, target_width=224) return image # img_name_url {image_name: origin_url} img_name_url = { 'Fireboat': 'https://storage.googleapis.com/applied-dl/temp/San_Francisco_fireboat_showing_off.jpg', 'School Bus': 'https://storage.googleapis.com/applied-dl/temp/Thomas_School_Bus_Bus.jpg', 'Giant Panda': 'https://storage.googleapis.com/applied-dl/temp/Giant_Panda_2.jpeg', 'Black Beetle': 'https://storage.googleapis.com/applied-dl/temp/Lucanus.jpeg', 'Golden Retriever': 'https://storage.googleapis.com/applied-dl/temp/Golden_retriever.jpg', 'Yellow Labrador Retriever': 'https://storage.googleapis.com/download.tensorflow.org/example_images/YellowLabradorLooking_new.jpg', 'Military Uniform (Grace Hopper)': 'https://storage.googleapis.com/download.tensorflow.org/example_images/grace_hopper.jpg', 'Military Uniform (General Ulysses S. Grant)': 'https://storage.googleapis.com/applied-dl/temp/General_Ulysses_S._Grant%2C_Union_Army_(6186252896).jpg', 'Military Uniform (Greek Presidential Guard)': 'https://storage.googleapis.com/applied-dl/temp/Greek_guard_uniforms_1.jpg', } # img_name_path {image_name: downloaded_image_local_path} img_name_path = {name: tf.keras.utils.get_file(name, url) for (name, url) in img_name_url.items()} # img_name_tensors {image_name: parsed_image_tensor} img_name_tensors = {name: parse_image(img_path) for (name, img_path) in img_name_path.items()} plt.figure(figsize=(14,14)) for n, (name, img_tensors) in enumerate(img_name_tensors.items()): ax = plt.subplot(3,3,n+1) ax.imshow(img_tensors) ax.set_title(name) ax.axis('off') plt.tight_layout() ###Output _____no_output_____ ###Markdown Applying integrated gradients IG is an elegant and simple idea to explain a model's predictions in relation to its input. The basic intuition is to measure a feature's importance to your model by incrementally increasing a feature's intensity between its absense (baseline) and its input value, compute the change between your model's predictions with respect to the original feature at each step, and average these incremental changes together. To gain a deeper understanding for how IG works, you will walk through its application over the sub-sections below. Step 1: Identify model input and output tensors IG is a post-hoc explanatory method that works with any differentiable model regardless of its implementation. As such, you can pass any input example tensor to a model to generate an output prediction tensor. Note that InceptionV1 outputs a multiclass un-normalized logits prediction tensor. So you will use a softmax operator to turn the logits tensor into an output softmax predicted probabilities tensor for use to compute IG feature attributions. ###Code # stack images into a batch for processing. image_titles = tf.convert_to_tensor(list(img_name_tensors.keys())) image_batch = tf.convert_to_tensor(list(img_name_tensors.values())) image_batch.shape def top_k_predictions_scores_labels(model, img, label_vocab, top_k=3): """ Args: model(tf.keras.Model): Trained Keras model. img(tf.Tensor): A 4D tensor of floats with the shape (img_n, img_height, img_width, 3). label_vocab(numpy.ndarray): An array of strings with shape (1001,). top_k(int): Number of results to return. Returns: k_predictions_idx(tf.Tensor): A tf.Tensor [n_images, top_k] of tf.int32 prediction indicies. k_predictions_proba(tf.Tensor): A tf.Tensor [n_images, top_k] of tf.float32 prediction probabilities. k_predictions_label(tf.Tensor): A tf.Tensor [n_images, top_k] of tf.string prediction labels. """ # These are logits (unnormalized scores). predictions = model(img) # Convert logits into probabilities. predictions_proba = tf.nn.softmax(predictions, axis=-1) # Filter top k prediction probabilities and indices. k_predictions_proba, k_predictions_idx = tf.math.top_k( input=predictions_proba, k=top_k) # Lookup top k prediction labels in label_vocab array. k_predictions_label = tf.convert_to_tensor( label_vocab[k_predictions_idx.numpy()], dtype=tf.string) return k_predictions_idx, k_predictions_label, k_predictions_proba def plot_img_predictions(model, img, img_titles, label_vocab, top_k=3): """Plot images with top_k predictions. Args: model(tf.keras.Model): Trained Keras model. img(Tensor): A 4D Tensor of floats with the shape (img_n, img_height, img_width, 3). img_titles(Tensor): A Tensor of strings with the shape (img_n, img_height, img_width, 3). label_vocab(numpy.ndarray): An array of strings with shape (1001,). top_k(int): Number of results to return. Returns: fig(matplotlib.pyplot.figure): fig object to utilize for displaying, saving plots. """ pred_idx, pred_label, pred_proba = \ top_k_predictions_scores_labels( model=model, img=img, label_vocab=label_vocab, top_k=top_k) img_arr = img.numpy() title_arr = img_titles.numpy() pred_idx_arr = pred_idx.numpy() pred_label_arr = pred_label.numpy() pred_proba_arr = pred_proba.numpy() n_rows = img_arr.shape[0] # Preserve image height by converting pixels to inches based on dpi. size = n_rows * (224 // 48) fig, axs = plt.subplots(nrows=img_arr.shape[0], ncols=1, figsize=(size, size), squeeze=False) for idx, image in enumerate(img_arr): axs[idx, 0].imshow(image) axs[idx, 0].set_title(title_arr[idx].decode('utf-8'), fontweight='bold') axs[idx, 0].axis('off') for k in range(top_k): k_idx = pred_idx_arr[idx][k] k_label = pred_label_arr[idx][k].decode('utf-8') k_proba = pred_proba_arr[idx][k] if k==0: s = 'Prediction {:}: ({:}-{:}) Score: {:.1%}'.format(k+1, k_idx, k_label, k_proba) axs[idx, 0].text(244 + size, 102+(k*40), s, fontsize=12, fontweight='bold') else: s = 'Prediction {:}: ({:}-{:}) Score: {:.1%}'.format(k+1, k_idx, k_label, k_proba) axs[idx, 0].text(244 + size, 102+(k*20), s, fontsize=12) plt.tight_layout() return fig _ = plot_img_predictions( model=inception_v1_classifier, img=image_batch, img_titles=image_titles, label_vocab=imagenet_label_vocab, top_k=5 ) ###Output _____no_output_____ ###Markdown Step 2: establish baseline to compare inputs against Defining missingness or a starting point in feature spaces for comparison is at the core of machine learning interpretability methods. For IG, this concept is encoded as a baseline. A **baseline** is an uniformative input used as a starting point for defining IG attributions in relation to and essential for interpreting IG prediction attributions as a function of individual input features.When selecting a baseline for neural networks, the goal is to choose a baseline such as the prediction at the baseline is near zero to minimize aspects of the baseline impacting interpretation of the prediction attributions.For image classification networks, a baseline image with its pixels set to 0 meets this objective. For text networks, an all zero input embedding vector makes for a good baseline. Models with structured data that typically involve a mix of continuous numeric features will typically use the observed median value as a baseline because 0 is an informative value for these features. Note, however, that this changes the interpretation of the features to their importance in relation to the baseline value as opposed to the input data directly. The paper author's provide additional guidance on baseline selection for different input feature data types and models under a [How to Use Integrated Gradients Guide](https://github.com/ankurtaly/Integrated-Gradients/blob/master/howto.mdsanity-checking-baselines) on Github. ###Code # name_baseline_tensors. Set random seed for reproducibility of random baseline image and associated attributions. tf.random.set_seed(42) name_baseline_tensors = { 'Baseline Image: Black': tf.zeros(shape=(224,224,3)), 'Baseline Image: Random': tf.random.uniform(shape=(224,224,3), minval=0.0, maxval=1.0), 'Baseline Image: White': tf.ones(shape=(224,224,3)), } plt.figure(figsize=(12,12)) for n, (name, baseline_tensor) in enumerate(name_baseline_tensors.items()): ax = plt.subplot(1,3,n+1) ax.imshow(baseline_tensor) ax.set_title(name) ax.axis('off') plt.tight_layout() ###Output _____no_output_____ ###Markdown Step 3: Integrated gradients in TensorFlow 2.x The exact formula for Integrated Gradients from the original paper is the following:$IntegratedGradients_{i}(x) ::= (x_{i} - x'_{i})\times\int_{\alpha=0}^1\frac{\partial F(x'+\alpha \times (x - x'))}{\partial x_i}{d\alpha}$where:$_{i}$ = feature $x$ = input $x'$ = baseline $\alpha$ = interpolation constant to perturbe features by However, in practice, computing a definite integral is not always numerically possible and computationally costly so you compute the following numerical approximation:$IntegratedGrads^{approx}_{i}(x)::=(x_{i}-x'_{i})\times\sum_{k=1}^{m}\frac{\partial F(x' + \frac{k}{m}\times(x - x'))}{\partial x_{i}} \times \frac{1}{m}$where:$_{i}$ = feature (individual pixel) $x$ = input (image tensor) $x'$ = baseline (image tensor) $k$ = scaled feature perturbation constant $m$ = number of steps in the Riemann sum approximation of the integral. This is covered in depth in the section *Compute integral approximation* below. You will walk through the intuition and implementation of the above equation in the sections below. Generate interpolated path inputs $IntegratedGrads^{approx}_{i}(x)::=(x_{i}-x'_{i})\times\sum_{k=1}^{m}\frac{\partial F(\overbrace{x' + \frac{k}{m}\times(x - x')}^\text{generate m interpolated images at k intervals})}{\partial x_{i}} \times \frac{1}{m}$ The first step is to generate a [linear interpolation](https://en.wikipedia.org/wiki/Linear_interpolation) path between your known baseline and input images. You can think of interpolated images as small steps in the feature space between each feature pixel between your baseline and input images. These steps are represented by $\alpha$ in the original equation. You will revisit $\alpha$ in greater depth in the subsequent section *Compute approximate integral* as its values are tied to the your choice of integration approximation method.For now, you can use the handy `tf.linspace` function to generate a `Tensor` with 20 m_steps at k linear intervals between 0 and 1 as an input to the `generate_path_inputs` function below. ###Code m_steps=20 alphas = tf.linspace(start=0.0, stop=1.0, num=m_steps+1) def generate_path_inputs(baseline, input, alphas): """Generate m interpolated inputs between baseline and input features. Args: baseline(Tensor): A 3D image tensor of floats with the shape (img_height, img_width, 3). input(Tensor): A 3D image tensor of floats with the shape (img_height, img_width, 3). alphas(Tensor): A 1D tensor of uniformly spaced floats with the shape (m_steps,). Returns: path_inputs(Tensor): A 4D tensor of floats with the shape (m_steps, img_height, img_width, 3). """ # Expand dimensions for vectorized computation of interpolations. alphas_x = alphas[:, tf.newaxis, tf.newaxis, tf.newaxis] baseline_x = tf.expand_dims(baseline, axis=0) input_x = tf.expand_dims(input, axis=0) delta = input_x - baseline_x path_inputs = baseline_x + alphas_x * delta return path_inputs ###Output _____no_output_____ ###Markdown Generate interpolated images along a linear path at alpha intervals between a black baseline image and the example "Giant Panda" image. ###Code path_inputs = generate_path_inputs( baseline=name_baseline_tensors['Baseline Image: Black'], input=img_name_tensors['Giant Panda'], alphas=alphas) path_inputs.shape ###Output _____no_output_____ ###Markdown The interpolated images are visualized below. Note that another way of thinking about the $\alpha$ constant is that it is monotonically and consistently increasing each interpolated image's intensity. ###Code fig, axs = plt.subplots(nrows=1, ncols=5, squeeze=False, figsize=(24, 24)) axs[0,0].set_title('Baseline \n alpha: {:.2f}'.format(alphas[0])) axs[0,0].imshow(path_inputs[0]) axs[0,0].axis('off') axs[0,1].set_title('=> Interpolated Image # 1 \n alpha: {:.2f}'.format(alphas[1])) axs[0,1].imshow(path_inputs[1]) axs[0,1].axis('off') axs[0,2].set_title('=> Interpolated Image # 2 \n alpha: {:.2f}'.format(alphas[2])) axs[0,2].imshow(path_inputs[2]) axs[0,2].axis('off') axs[0,3].set_title('... => Interpolated Image # 10 \n alpha: {:.2f}'.format(alphas[10])) axs[0,3].imshow(path_inputs[10]) axs[0,3].axis('off') axs[0,4].set_title('... => Input Image \n alpha: {:.2f}'.format(alphas[-1])) axs[0,4].imshow(path_inputs[-1]) axs[0,4].axis('off') plt.tight_layout(); ###Output _____no_output_____ ###Markdown Compute gradients Now that you generated 20 interpolated images between a black baseline and your example "Giant Panda" photo, lets take a look at how to calculate [gradients](https://en.wikipedia.org/wiki/Gradient) to measure the relationship between changes to your feature pixels and changes in your model's predictions.The gradients of F, your Inception V1 model function, represents the direction of maximum increase between your predictions with respect to your input. In the case of images, your gradient tells you which pixels have the steepest local slope between your output model's predicted class probabilities with respect to the original pixels. $IntegratedGrads^{approx}_{i}(x)::=(x_{i}-x'_{i})\times\sum_{k=1}^{m}\frac{\overbrace{\partial F(\text{interpolated images})}^\text{Compute gradients}}{\partial x_{i}} \times \frac{1}{m}$where: $F()$ = your model's prediction function $\frac{\partial{F}}{\partial{x_i}}$ = gradient (vector of partial derivatives $\partial$) of your model F's prediction function relative to each feature $x_i$ TensorFlow 2.x makes computing gradients extremely easy for you with the [`tf.GradientTape`](https://www.tensorflow.org/api_docs/python/tf/GradientTape) object which performantly computes and records gradient operations. ###Code def compute_gradients(model, path_inputs, target_class_idx): """Compute gradients of model predicted probabilties with respect to inputs. Args: mode(tf.keras.Model): Trained Keras model. path_inputs(Tensor): A 4D tensor of floats with the shape (m_steps, img_height, img_width, 3). target_class_idx(Tensor): A 0D tensor of an int corresponding to the correct ImageNet target class index. Returns: gradients(Tensor): A 4D tensor of floats with the shape (m_steps, img_height, img_width, 3). """ with tf.GradientTape() as tape: tape.watch(path_inputs) predictions = model(path_inputs) # Note: IG requires softmax probabilities; converting Inception V1 logits. outputs = tf.nn.softmax(predictions, axis=-1)[:, target_class_idx] gradients = tape.gradient(outputs, path_inputs) return gradients ###Output _____no_output_____ ###Markdown Compute gradients between your model Inception V1's predicted probabilities for the target class on each interpolated image with respect to each interpolated input. Recall that your model returns a `(1, 1001)` shaped `Tensor` with of logits that you will convert to predicted probabilities for every class. You need to pass the correct ImageNet target class index to the `compute_gradients` function below in order to identify the specific output tensor you wish to explain in relation to your input and baseline. ###Code path_gradients = compute_gradients( model=inception_v1_classifier, path_inputs=path_inputs, target_class_idx=389) ###Output _____no_output_____ ###Markdown Note the output shape `(n_interpolated_images, img_height, img_width, RGB)`. Below you can see the local gradients visualized for the first 5 interpolated inputs relative to the input "Giant Panda" image as a series of ghostly shapes. You can think these gradients as measuring the change in your model's predictions for each small step in the feature space. *The largest gradient magnitudes generally occur at the lowest alphas*. ###Code fig, axs = plt.subplots(nrows=1, ncols=5, squeeze=False, figsize=(24, 24)) for i in range(5): axs[0,i].imshow(tf.cast(255 * path_gradients[i], tf.uint8), cmap=plt.cm.inferno) axs[0,i].axis('off') plt.tight_layout() ###Output _____no_output_____ ###Markdown **Why not just use gradients for attribution? Saturation** You may be wondering at this point, why not just compute the gradients of the predictions with respect to the input as feature attributions? Why bother with slowly changing the intensity of the input image at all? The reason why is networks can *saturate*, meaning the magnitude of the local feature gradients can become extremely small and go toward zero resulting in important features having a small gradient. *The implication is that saturation can result in discontinuous feature importances and miss important features.*This concept is visualized in the 2 graphs below: ###Code pred = inception_v1_classifier(path_inputs) pred_proba = tf.nn.softmax(pred, axis=-1)[:, 389] plt.figure(figsize=(10,4)) ax1 = plt.subplot(1,2,1) ax1.plot(alphas, pred_proba) ax1.set_title('Target class predicted probability over alpha') ax1.set_ylabel('model p(target class)') ax1.set_xlabel('alpha') ax1.set_ylim([0,1]) ax2 = plt.subplot(1,2,2) # Average across interpolation steps average_grads = tf.math.reduce_mean(path_gradients, axis=[1,2,3]) # Normalize average gradients to 0 to 1 scale. E.g. (x - min(x))/(max(x)-min(x)) average_grads_norm = (average_grads-tf.math.reduce_min(average_grads))/(tf.math.reduce_max(average_grads)-tf.reduce_min(average_grads)) ax2.plot(alphas, average_grads_norm) ax2.set_title('Average pixel gradients (normalized) over alpha') ax2.set_ylabel('Average pixel gradients') ax2.set_xlabel('alpha') ax2.set_ylim([0,1]); ###Output _____no_output_____ ###Markdown Notice in the left plot above, how the model prediction function quickly learns the correct "Giant Panda" class when alpha is between 0.0 and 0.3 and then largely flattens between 0.3 and 1.0. There could still be features that the model relies on for correct prediction that differ from the baseline but the magnitudes of those feature gradients become really small and bounce around 0 starting from 0.3 to 1.0. Similarly, in the right plot of the average pixel gradients plotted over alpha, you can see the peak "aha" moment where the model learns the target "Giant Panda" but also that the gradient magnitudes quickly minimize toward 0 and even become discontinuous briefly around 0.6. In practice, this can result in gradient attributions to miss important features that differ between input and baseline and to focus on irrelvant features.**The beauty of IG is that is solves the problem of discontinuous gradient feature importances by taking small steps in the feature space to compute local gradients between predictions and inputs across the feature space and then averages these gradients together to produce IG feature attributions.** Compute integral approximation There are many different ways you can go about computing the numeric approximation of an integral for IG with different tradeoffs in accuracy and convergence across varying functions. A popular class of methods is called [Riemann sums](https://en.wikipedia.org/wiki/Riemann_sum). The code below shows the visual geometric interpretation for Left, Right, Midpoint, and Trapezoidal Riemann Sums for intuition below: ###Code def plot_riemann_sums(fn, start_val, end_val, m_steps=10): """ Plot Riemann Sum integral approximations for single variable functions. Args: fn(function): Any single variable function. start_val(int): Minimum function value constraint. end_val(int): Maximum function value constraint. m_steps(int): Linear interpolation steps for approximation. Returns: fig(matplotlib.pyplot.figure): fig object to utilize for displaying, saving plots. """ # fn plot args x = tf.linspace(start_val, end_val, m_steps**2+1) y = fn(x) fig = plt.figure(figsize=(16,4)) # Left Riemann Sum lr_ax = plt.subplot(1,4,1) lr_ax.plot(x, y) lr_x = tf.linspace(0.0, 1.0, m_steps+1) lr_point = lr_x[:-1] lr_height = fn(lr_x[:-1]) lr_ax.plot(lr_point, lr_height, 'b.', markersize=10) lr_ax.bar(lr_point, lr_height, width=(end_val-start_val)/m_steps, alpha=0.2, align='edge', edgecolor='b') lr_ax.set_title('Left Riemann Sum \n m_steps = {}'.format(m_steps)) lr_ax.set_xlabel('alpha') # Right Riemann Sum rr_ax = plt.subplot(1,4,2) rr_ax.plot(x, y) rr_x = tf.linspace(0.0, 1.0, m_steps+1) rr_point = rr_x[1:] rr_height = fn(rr_x[1:]) rr_ax.plot(rr_point, rr_height, 'b.', markersize=10) rr_ax.bar(rr_point, rr_height, width=-(end_val-start_val)/m_steps, alpha=0.2, align='edge', edgecolor='b') rr_ax.set_title('Right Riemann Sum \n m_steps = {}'.format(m_steps)) rr_ax.set_xlabel('alpha') # Midpoint Riemann Sum mr_ax = plt.subplot(1,4,3) mr_ax.plot(x, y) mr_x = tf.linspace(0.0, 1.0, m_steps+1) mr_point = (mr_x[:-1] + mr_x[1:])/2 mr_height = fn(mr_point) mr_ax.plot(mr_point, mr_height, 'b.', markersize=10) mr_ax.bar(mr_point, mr_height, width=(end_val-start_val)/m_steps, alpha=0.2, edgecolor='b') mr_ax.set_title('Midpoint Riemann Sum \n m_steps = {}'.format(m_steps)) mr_ax.set_xlabel('alpha') # Trapezoidal Riemann Sum tp_ax = plt.subplot(1,4,4) tp_ax.plot(x, y) tp_x = tf.linspace(0.0, 1.0, m_steps+1) tp_y = fn(tp_x) for i in range(m_steps): xs = [tp_x[i], tp_x[i], tp_x[i+1], tp_x[i+1]] ys = [0, tp_y[i], tp_y[i+1], 0] tp_ax.plot(tp_x,tp_y,'b.',markersize=10) tp_ax.fill_between(xs, ys, color='C0', edgecolor='blue', alpha=0.2) tp_ax.set_title('Trapezoidal Riemann Sum \n m_steps = {}'.format(m_steps)) tp_ax.set_xlabel('alpha') return fig ###Output _____no_output_____ ###Markdown Recall that a feature's gradient will vary in magnitude over the interpolated images between the baseline and input. You want to choose a method to best approximate the area of difference, also know as the [integral](https://en.wikipedia.org/wiki/Integral) between your baseline and input in the feature space. Lets consider the down facing parabola function $y = sin(x*\pi)$ varying between 0 and 1 as a proxy for how a feature gradient could vary in magnitude and sign over different alphas. To implement IG, you care about approximation accuracy and covergence. Left, Right, and Midpoint Riemann Sums utilize rectangles to approximate areas under the function while Trapezoidal Riemann Sums utilize trapezoids. ###Code _ = plot_riemann_sums(lambda x: tf.math.sin(x*math.pi), 0.0, 1.0, m_steps=5) _ = plot_riemann_sums(lambda x: tf.math.sin(x*math.pi), 0.0, 1.0, m_steps=10) ###Output _____no_output_____ ###Markdown **Which integral approximation method should you choose for IG?**From the Riemann sum plots above you can see that the Trapezoidal Riemann Sum clearly provides a more accurate approximation and coverges more quickly over m_steps than the alternatives e.g. less white space under function not covered by shapes. Consequently, it is presented as the default method in the code below while also showing alternative methods for further study. Additional support for Trapezoidal Riemann approximation for IG is presented in section 4 of ["Computing Linear Restrictions of Neural Networks"](https://arxiv.org/abs/1908.06214). Let us return to the $\alpha$ constant previously introduced in the *Generate interpolated path inputs* section for varying the intensity of the interpolated images between the baseline and input image. In the `generate_alphas` function below, you can see that $\alpha$ changes with each approximation method to reflect different start and end points and underlying geometric shapes of either a rectangle or trapezoid used to approximate the integral area. It takes a `method` parameter and a `m_steps` parameter that controls the accuracy of the integral approximation. ###Code def generate_alphas(m_steps=50, method='riemann_trapezoidal'): """ Args: m_steps(Tensor): A 0D tensor of an int corresponding to the number of linear interpolation steps for computing an approximate integral. Default is 50. method(str): A string representing the integral approximation method. The following methods are implemented: - riemann_trapezoidal(default) - riemann_left - riemann_midpoint - riemann_right Returns: alphas(Tensor): A 1D tensor of uniformly spaced floats with the shape (m_steps,). """ m_steps_float = tf.cast(m_steps, float) # cast to float for division operations. if method == 'riemann_trapezoidal': alphas = tf.linspace(0.0, 1.0, m_steps+1) # needed to make m_steps intervals. elif method == 'riemann_left': alphas = tf.linspace(0.0, 1.0 - (1.0 / m_steps_float), m_steps) elif method == 'riemann_midpoint': alphas = tf.linspace(1.0 / (2.0 * m_steps_float), 1.0 - 1.0 / (2.0 * m_steps_float), m_steps) elif method == 'riemann_right': alphas = tf.linspace(1.0 / m_steps_float, 1.0, m_steps) else: raise AssertionError("Provided Riemann approximation method is not valid.") return alphas alphas = generate_alphas(m_steps=20, method='riemann_trapezoidal') alphas.shape ###Output _____no_output_____ ###Markdown $IntegratedGrads^{approx}_{i}(x)::=(x_{i}-x'_{i})\times \overbrace{\sum_{k=1}^{m}}^\text{4. Sum m local gradients}\text{gradients(interpolated images)} \times \overbrace{\frac{1}{m}}^\text{4. Divide by m steps}$From the equation, you can see you are summing over m gradients and dividing by m steps. You can implement the two operations together for step 4 as an *average of the local gradients of m interpolated predictions and input images*. ###Code def integral_approximation(gradients, method='riemann_trapezoidal'): """Compute numerical approximation of integral from gradients. Args: gradients(Tensor): A 4D tensor of floats with the shape (m_steps, img_height, img_width, 3). method(str): A string representing the integral approximation method. The following methods are implemented: - riemann_trapezoidal(default) - riemann_left - riemann_midpoint - riemann_right Returns: integrated_gradients(Tensor): A 3D tensor of floats with the shape (img_height, img_width, 3). """ if method == 'riemann_trapezoidal': grads = (gradients[:-1] + gradients[1:]) / tf.constant(2.0) elif method == 'riemann_left': grads = gradients elif method == 'riemann_midpoint': grads = gradients elif method == 'riemann_right': grads = gradients else: raise AssertionError("Provided Riemann approximation method is not valid.") # Average integration approximation. integrated_gradients = tf.math.reduce_mean(grads, axis=0) return integrated_gradients ###Output _____no_output_____ ###Markdown The `integral_approximation` function takes the gradients of the predicted probability of the "Giant Panda" class with respect to the interpolated images between the baseline and "Giant Panda" image. ###Code ig = integral_approximation( gradients=path_gradients, method='riemann_trapezoidal') ###Output _____no_output_____ ###Markdown You can confirm averaging across the gradients of m interpolated images returns an integrated gradients tensor with the same shape as the original "Giant Panda" image. ###Code ig.shape ###Output _____no_output_____ ###Markdown Putting it all together Now you will combine the previous steps together into an `IntegratedGradients` function. To recap: $IntegratedGrads^{approx}_{i}(x)::=\overbrace{(x_{i}-x'_{i})}^\text{5.}\times \overbrace{\sum_{k=1}^{m}}^\text{4.} \frac{\partial \overbrace{F(\overbrace{x' + \overbrace{\frac{k}{m}}^\text{1.}\times(x - x'))}^\text{2.}}^\text{3.}}{\partial x_{i}} \times \overbrace{\frac{1}{m}}^\text{4.}$ 1. Generate alphas $\alpha$2. Generate interpolated path inputs = $(x' + \frac{k}{m}\times(x - x'))$3. Compute gradients between model output predictions with respect to input features = $\frac{\partial F(\text{interpolated path inputs})}{\partial x_{i}}$4. Integral approximation through averaging = $\sum_{k=1}^m \text{gradients} \times \frac{1}{m}$5. Scale integrated gradients with respect to original image = $(x_{i}-x'_{i}) \times \text{average gradients}$ ###Code @tf.function def integrated_gradients(model, baseline, input, target_class_idx, m_steps=50, method='riemann_trapezoidal', batch_size=32 ): """ Args: model(keras.Model): A trained model to generate predictions and inspect. baseline(Tensor): A 3D image tensor with the shape (image_height, image_width, 3) with the same shape as the input tensor. input(Tensor): A 3D image tensor with the shape (image_height, image_width, 3). target_class_idx(Tensor): An integer that corresponds to the correct ImageNet class index in the model's output predictions tensor. Default value is 50 steps. m_steps(Tensor): A 0D tensor of an integer corresponding to the number of linear interpolation steps for computing an approximate integral. method(str): A string representing the integral approximation method. The following methods are implemented: - riemann_trapezoidal(default) - riemann_left - riemann_midpoint - riemann_right batch_size(Tensor): A 0D tensor of an integer corresponding to a batch size for alpha to scale computation and prevent OOM errors. Note: needs to be tf.int64 and shoud be < m_steps. Default value is 32. Returns: integrated_gradients(Tensor): A 3D tensor of floats with the same shape as the input tensor (image_height, image_width, 3). """ # 1. Generate alphas. alphas = generate_alphas(m_steps=m_steps, method=method) # Initialize TensorArray outside loop to collect gradients. Note: this data structure # is similar to a Python list but more performant and supports backpropogation. # See https://www.tensorflow.org/api_docs/python/tf/TensorArray for additional details. gradient_batches = tf.TensorArray(tf.float32, size=m_steps+1) # Iterate alphas range and batch computation for speed, memory efficiency, and scaling to larger m_steps. # Note: this implementation opted for lightweight tf.range iteration with @tf.function. # Alternatively, you could also use tf.data, which adds performance overhead for the IG # algorithm but provides more functionality for working with tensors and image data pipelines. for alpha in tf.range(0, len(alphas), batch_size): from_ = alpha to = tf.minimum(from_ + batch_size, len(alphas)) alpha_batch = alphas[from_:to] # 2. Generate interpolated inputs between baseline and input. interpolated_path_input_batch = generate_path_inputs(baseline=baseline, input=input, alphas=alpha_batch) # 3. Compute gradients between model outputs and interpolated inputs. gradient_batch = compute_gradients(model=model, path_inputs=interpolated_path_input_batch, target_class_idx=target_class_idx) # Write batch indices and gradients to TensorArray. Note: writing batch indices with # scatter() allows for uneven batch sizes. Note: this operation is similar to a Python list extend(). # See https://www.tensorflow.org/api_docs/python/tf/TensorArray#scatter for additional details. gradient_batches = gradient_batches.scatter(tf.range(from_, to), gradient_batch) # Stack path gradients together row-wise into single tensor. total_gradients = gradient_batches.stack() # 4. Integral approximation through averaging gradients. avg_gradients = integral_approximation(gradients=total_gradients, method=method) # 5. Scale integrated gradients with respect to input. integrated_gradients = (input - baseline) * avg_gradients return integrated_gradients ig_attributions = integrated_gradients(model=inception_v1_classifier, baseline=name_baseline_tensors['Baseline Image: Black'], input=img_name_tensors['Giant Panda'], target_class_idx=389, m_steps=55, method='riemann_trapezoidal') ig_attributions.shape ###Output _____no_output_____ ###Markdown Again, you can check that the IG feature attributions have the same shape as the input "Giant Panda" image. Step 4: checks to pick number of steps for IG approximation One of IG nice theoretical properties is **completeness**. It is desireable because it holds that IG feature attributions break down the entire model's output prediction. Each feature importance score captures each feature's individual contribution to the prediction, and when added together, you can recover the entire example prediction value itself as tidy book keeping. This provides a principled means to select the `m_steps` hyperparameter for IG.$IntegratedGrads_i(x) = F(x) - F(x')$where:$F(x)$ = model's predictions on input at target class $F(x')$ = model's predictions on baseline at target classYou can translate this formula to return a numeric score, with 0 representing convergance, through the following:$\delta(score) = \sum{(IntegratedGrads_i(x))} - (\sum{F(input)} - \sum{F(x')})$ The original paper suggests the number of steps to range between 20 to 300 depending upon the example and application for the integral approximation. In practice, this can vary up to a few thousand `m_steps` to achieve an integral approximation within 5% error of the actual integral. Visual result convergence can generally be achieved with far few steps. ###Code def convergence_check(model, attributions, baseline, input, target_class_idx): """ Args: model(keras.Model): A trained model to generate predictions and inspect. baseline(Tensor): A 3D image tensor with the shape (image_height, image_width, 3) with the same shape as the input tensor. input(Tensor): A 3D image tensor with the shape (image_height, image_width, 3). target_class_idx(Tensor): An integer that corresponds to the correct ImageNet class index in the model's output predictions tensor. Default value is 50 steps. Returns: (none): Prints scores and convergence delta to sys.stdout. """ # Your model's prediction on the baseline tensor. Ideally, the baseline score # should be close to zero. baseline_prediction = model(tf.expand_dims(baseline, 0)) baseline_score = tf.nn.softmax(tf.squeeze(baseline_prediction))[target_class_idx] # Your model's prediction and score on the input tensor. input_prediction = model(tf.expand_dims(input, 0)) input_score = tf.nn.softmax(tf.squeeze(input_prediction))[target_class_idx] # Sum of your IG prediction attributions. ig_score = tf.math.reduce_sum(attributions) delta = ig_score - (input_score - baseline_score) try: # Test your IG score is <= 5% of the input minus baseline score. tf.debugging.assert_near(ig_score, (input_score - baseline_score), rtol=0.05) tf.print('Approximation accuracy within 5%.', output_stream=sys.stdout) except tf.errors.InvalidArgumentError: tf.print('Increase or decrease m_steps to increase approximation accuracy.', output_stream=sys.stdout) tf.print('Baseline score: {:.3f}'.format(baseline_score)) tf.print('Input score: {:.3f}'.format(input_score)) tf.print('IG score: {:.3f}'.format(ig_score)) tf.print('Convergence delta: {:.3f}'.format(delta)) convergence_check(model=inception_v1_classifier, attributions=ig_attributions, baseline=name_baseline_tensors['Baseline Image: Black'], input=img_name_tensors['Giant Panda'], target_class_idx=389) ###Output _____no_output_____ ###Markdown Through utilizing the completeness axiom and the corresponding `convergence` function above, you were able to identify that you needed about 50 steps to approximate feature importances within 5% error for the "Giant Panda" image. Step 5: visualize IG attributions Finally, you are ready to visualize IG attributions. In order to visualize IG, you will utilize the plotting code below which sums the absolute values of the IG attributions across the color channels for simplicity to return a greyscale attribution mask for standalone visualization and overlaying on the original image. This plotting method captures the relative impact of pixels on the model's predictions well. Note that another visualization option for you to try is to preserve the direction of the gradient sign e.g. + or - for visualization on different channels to more accurately represent how the features might combine. ###Code def plot_img_attributions(model, baseline, img, target_class_idx, m_steps=50, cmap=None, overlay_alpha=0.4): """ Args: model(keras.Model): A trained model to generate predictions and inspect. baseline(Tensor): A 3D image tensor with the shape (image_height, image_width, 3) with the same shape as the input tensor. img(Tensor): A 3D image tensor with the shape (image_height, image_width, 3). target_class_idx(Tensor): An integer that corresponds to the correct ImageNet class index in the model's output predictions tensor. Default value is 50 steps. m_steps(Tensor): A 0D tensor of an integer corresponding to the number of linear interpolation steps for computing an approximate integral. cmap(matplotlib.cm): Defaults to None. Reference for colormap options - https://matplotlib.org/3.2.1/tutorials/colors/colormaps.html. Interesting options to try are None and high contrast 'inferno'. overlay_alpha(float): A float between 0 and 1 that represents the intensity of the original image overlay. Returns: fig(matplotlib.pyplot.figure): fig object to utilize for displaying, saving plots. """ # Attributions ig_attributions = integrated_gradients(model=model, baseline=baseline, input=img, target_class_idx=target_class_idx, m_steps=m_steps) convergence_check(model, ig_attributions, baseline, img, target_class_idx) # Per the original paper, take the absolute sum of the attributions across # color channels for visualization. The attribution mask shape is a greyscale image # with shape (224, 224). attribution_mask = tf.reduce_sum(tf.math.abs(ig_attributions), axis=-1) # Visualization fig, axs = plt.subplots(nrows=2, ncols=2, squeeze=False, figsize=(8, 8)) axs[0,0].set_title('Baseline Image') axs[0,0].imshow(baseline) axs[0,0].axis('off') axs[0,1].set_title('Original Image') axs[0,1].imshow(img) axs[0,1].axis('off') axs[1,0].set_title('IG Attribution Mask') axs[1,0].imshow(attribution_mask, cmap=cmap) axs[1,0].axis('off') axs[1,1].set_title('Original + IG Attribution Mask Overlay') axs[1,1].imshow(attribution_mask, cmap=cmap) axs[1,1].imshow(img, alpha=overlay_alpha) axs[1,1].axis('off') plt.tight_layout() return fig ###Output _____no_output_____ ###Markdown Visual inspection of the IG attributions on the "Fireboat" image, show that Inception V1 identifies the water cannons and spouts as contributing to its correct prediction. ###Code _ = plot_img_attributions(model=inception_v1_classifier, img=img_name_tensors['Fireboat'], baseline=name_baseline_tensors['Baseline Image: Black'], target_class_idx=555, m_steps=240, cmap=plt.cm.inferno, overlay_alpha=0.4) ###Output _____no_output_____ ###Markdown IG attributions on the "School Bus" image highlight the shape, front lighting, and front stop sign. ###Code _ = plot_img_attributions(model=inception_v1_classifier, img=img_name_tensors['School Bus'], baseline=name_baseline_tensors['Baseline Image: Black'], target_class_idx=780, m_steps=100, cmap=None, overlay_alpha=0.2) ###Output _____no_output_____ ###Markdown Returning to the "Giant Panda" image, IG attributions hightlight the texture, nose shape, and white fur of the Panda's face. ###Code _ = plot_img_attributions(model=inception_v1_classifier, img=img_name_tensors['Giant Panda'], baseline=name_baseline_tensors['Baseline Image: Black'], target_class_idx=389, m_steps=55, cmap=None, overlay_alpha=0.5) ###Output _____no_output_____ ###Markdown How do different baselines impact interpretation of IG attributions? In the section **Step 2: Establish baseline to compare against inputs**, the explanation from the original IG paper and discussion recommended a black baseline image to "ignore" and allow for interpretation of the predictions solely as a function of the input pixels. To motivate the choice of a black baseline image for interpretation, lets take a look at how a random baseline influences IG attributions. Recall from above that a black baseline with the fireboat image, the IG attributions were primarily focused on the right water cannon on the fireboat. Now with a random baseline, the interpretation is much less clear. The IG attribution mask below shows a hazy attribution cloud of varying pixel intensity around the entire region of the water cannon streams. Are these truly significant features identified by the model or artifacts of random dark pixels from the random basline? Inconclusive without more investigation. The random baseline has changed interpretation of the pixel intensities from being solely in relation to the input features to input features plus spurious attributions from the baseline. ###Code _ = plot_img_attributions(model=inception_v1_classifier, img=img_name_tensors['Fireboat'], baseline=name_baseline_tensors['Baseline Image: Random'], target_class_idx=555, m_steps=240, cmap=None, overlay_alpha=0.3) ###Output _____no_output_____ ###Markdown Returning to the school bus image, a black baseline really highlighted the school bus shape and stop sign as strongly distingushing features. In contrast, a random noise baseline makes interpretation of the IG attribution mask significantly more difficult. In particular, this attribution mask would wrongly leave you to believe that the model found a small area of pixels along the side of the bus significant. ###Code _ = plot_img_attributions(model=inception_v1_classifier, img=img_name_tensors['School Bus'], baseline=name_baseline_tensors['Baseline Image: Random'], target_class_idx=780, m_steps=100, cmap=None, overlay_alpha=0.3) ###Output _____no_output_____ ###Markdown **Are there any scenarios where you prefer a non-black baseline? Yes.** Consider the photo below of an all black beetle on a white background. The beetle primarily receives 0 pixel attribution with a black baseline and only highlights small bright portions of the beetle caused by glare and some of the spurious background and colored leg pixels. *For this example, black pixels are meaningful and do not provide an uninformative baseline.* ###Code _ = plot_img_attributions(model=inception_v1_classifier, img=img_name_tensors['Black Beetle'], baseline=name_baseline_tensors['Baseline Image: Black'], target_class_idx=307, m_steps=200, cmap=None, overlay_alpha=0.3) ###Output _____no_output_____ ###Markdown A white baseline is a better contrastive choice here to highlight the important pixels on the beetle. ###Code _ = plot_img_attributions(model=inception_v1_classifier, img=img_name_tensors['Black Beetle'], baseline=name_baseline_tensors['Baseline Image: White'], target_class_idx=307, m_steps=200, cmap=None, overlay_alpha=0.3) ###Output _____no_output_____ ###Markdown Ultimately, picking any constant color baseline has potential interpretation problems through just visual inspection alone without consideration of the underlying values and their signs. Baseline selection is still an area of active research with various proposals e.g. averaging multiple random baselines, blurred inputs, etc. discussed in depth in the distill.pub article [Visualizing the Impact of Feature Attribution Baselines](https://distill.pub/2020/attribution-baselines/). Use cases IG is a model-agnostic interpretability method that can be applied to any differentiable model (e.g. neural networks) to understand its predictions in terms of its input features; whether they be images, video, text, or structured data.**At Google, IG has been applied in 20+ product areas to recommender system, classification, and regression models for feature importance and selection, model error analysis, train-test data skew monitoring, and explaining model behavior to stakeholders.**The subsections below present a non-exhaustive list of the most common use cases for IG biased toward production machine learning workflows. Use case: understanding feature importances IG relative feature importances provide better understanding of your model's learned features to both model builders and stakeholders, insight into the underlying data it was trained on, as well as provide a basis for feature selection. Lets take a look at an example of how IG relative feature importances can provide insight into the underlying input data. **What is the difference between a Golden Retriever and Labrador Retriever?** Consider again the example images of the [Golden Retriever](https://en.wikipedia.org/wiki/Golden_Retriever) and the Yellow [Labrador Retriever](https://en.wikipedia.org/wiki/Labrador_Retriever) below. If you are not a domain expert familiar with these breeds, you might reasonably conclude these are 2 images of the same type of dog. They both have similar face and body shapes as well as coloring. Your model, Inception V1, already correctly identifies a Golden Retriever and Labrador Retriever. In fact, it is quite confident about the Golden Retriever in the top image, even though there is a bit of lingering doubt about the Labrador Retriever as seen with its appearance in prediction 4. In comparison, the model is relatively less confident about its correct prediction of the Labrador Retriever in the second image and also sees some shades of similarity with the Golden Retriever which also makes an appearance in the top 5 predictions. ###Code _ = plot_img_predictions( model=inception_v1_classifier, img=tf.stack([img_name_tensors['Golden Retriever'], img_name_tensors['Yellow Labrador Retriever']]), img_titles=tf.stack(['Golden Retriever', 'Yellow Labrador Retriever']), label_vocab=imagenet_label_vocab, top_k=5 ) ###Output _____no_output_____ ###Markdown Without any prior understanding of how to differentiate these dogs or the features to do so, what can you learn from IG's feature importances? Review the Golden Retriever IG attribution mask and IG Overlay of the original image below. Notice how it the pixel intensities are primarily highlighted on the face and shape of the dog but are brightest on the front and back legs and tail in areas of *lengthy and wavy fur*. A quick Google search validates that this is indeed a key distinguishing feature of Golden Retrievers compared to Labrador Retrievers. ###Code _ = plot_img_attributions(model=inception_v1_classifier, img=img_name_tensors['Golden Retriever'], baseline=name_baseline_tensors['Baseline Image: Black'], target_class_idx=208, m_steps=200, cmap=None, overlay_alpha=0.3) ###Output _____no_output_____ ###Markdown Comparatively, IG also highlights the face and body shape of the Labrador Retriever with a density of bright pixels on its *straight and short hair coat*. This provides additional evidence toward the length and texture of the coats being key differentiators between these 2 breeds. ###Code _ = plot_img_attributions(model=inception_v1_classifier, img=img_name_tensors['Yellow Labrador Retriever'], baseline=name_baseline_tensors['Baseline Image: Black'], target_class_idx=209, m_steps=100, cmap=None, overlay_alpha=0.3) ###Output _____no_output_____ ###Markdown From visual inspection of the IG attributions, you now have insight into the underlying causal structure behind distringuishing Golden Retrievers and Yellow Labrador Retrievers without any prior knowledge. Going forward, you can use this insight to improve your model's performance further through refining its learned representations of these 2 breeds by retraining with additional examples of each dog breed and augmenting your training data through random perturbations of each dog's coat textures and colors. Use case: debugging data skew Training-serving data skew, a difference between performance during training and during model serving, is a hard to detect and widely prevalent issue impacting the performance of production machine learning systems. ML systems require dense samplings of input spaces in their training data to learn representations that generalize well to unseen data. To complement existing production ML monitoring of dataset and model performance statistics, tracking IG feature importances across time (e.g. "next day" splits) and data splits (e.g. train/dev/test splits) allows for meaningful monitoring of train-serving feature drift and skew. **Military uniforms change across space and time.** Recall from this tutorial's section on ImageNet that each class (e.g. military uniform) in the ILSVRC-2012-CLS training dataset is represented by an average of 1,000 images that Inception V1 could learn from. At present, there are about 195 countries around the world that have significantly different military uniforms by service branch, climate, and occasion, etc. Additionally, military uniforms have changed significantly over time within the same country. As a result, the potential input space for military uniforms is enormous with many uniforms over-represented (e.g. US military) while others sparsely represented (e.g. US Union Army) or absent from the training data altogether (e.g. Greece Presidential Guard). ###Code _ = plot_img_predictions( model=inception_v1_classifier, img=tf.stack([img_name_tensors['Military Uniform (Grace Hopper)'], img_name_tensors['Military Uniform (General Ulysses S. Grant)'], img_name_tensors['Military Uniform (Greek Presidential Guard)']]), img_titles=tf.stack(['Military Uniform (Grace Hopper)', 'Military Uniform (General Ulysses S. Grant)', 'Military Uniform (Greek Presidential Guard)']), label_vocab=imagenet_label_vocab, top_k=5 ) ###Output _____no_output_____ ###Markdown Inception V1 correctly classifies this image of [United States Rear Admiral and Computer Scientist, Grace Hopper](https://en.wikipedia.org/wiki/Grace_Hopper), under the class "military uniform" above. From visual inspection of the IG feature attributions, you can see that brightest intensity pixels are focused around the shirt colar and tie, military insignia on the jacket and hat, and various pixel areas around her face. Note that there are potentially spurious pixels also highlighted in the background worth investigating empirically to refine the model's learned representation of military uniforms. However, IG does not provide insight into how these pixels were combined into the final prediction so its possible these pixels helped the model distinguish between military uniform and other similar classes such as the windsor tie and suit. ###Code _ = plot_img_attributions(model=inception_v1_classifier, img=img_name_tensors['Military Uniform (Grace Hopper)'], baseline=name_baseline_tensors['Baseline Image: Black'], target_class_idx=653, m_steps=200, cmap=None, overlay_alpha=0.3) ###Output _____no_output_____ ###Markdown Below is an image of the [United States General Ulysses S. Grant](https://en.wikipedia.org/wiki/Ulysses_S._Grant) circa 1865. He is wearing a military uniform for the same country as Rear Admiral Hopper above, but how well can the model identify a military uniform to this image of different coloring and taken 120+ years earlier? From the model predictions above, you can see not very well as the model incorrectly predicts a trench coat and suit above a military uniform.From visual inspection of the IG attribution mask, it is clear the model struggled to identify a military uniform with the faded black and white image lacking the contrastive range of a color image. Since this is a faded black and white image with prominent darker features, a white baseline is a better choice.The IG Overlay of the original image does suggest that the model identified the military insignia patch on the right shoulder, face, collar, jacket buttons, and pixels around the edges of the coat. Using this insight, you can improve model performance by adding data augmentation to your input data pipeline to include additional colorless images and image translations as well as additional example images with military coats. ###Code _ = plot_img_attributions(model=inception_v1_classifier, img=img_name_tensors['Military Uniform (General Ulysses S. Grant)'], baseline=name_baseline_tensors['Baseline Image: White'], target_class_idx=870, m_steps=200, cmap=None, overlay_alpha=0.3) ###Output _____no_output_____ ###Markdown Yikes! Inception V1 incorrectly predicted the image of a [Greek Presidential Guard](https://en.wikipedia.org/wiki/Presidential_Guard_(Greece)) as a vestment with low confidence. The underlying training data does not appear to have sufficient representation and density of Greek military uniforms. In fact, the lack of geo-diversity in large public image datasets, including ImageNet, was studied in the paper S. Shankar, Y. Halpern, E. Breck, J. Atwood, J. Wilson, and D. Sculley. ["No classification without representation: Assessing geodiversity issues in open datasets for the developing world."](https://arxiv.org/abs/1711.08536), 2017. The authors found "observable amerocentric and eurocentric representation bias" and strong differences in relative model performance across geographic areas. ###Code _ = plot_img_attributions(model=inception_v1_classifier, img=img_name_tensors['Military Uniform (Greek Presidential Guard)'], baseline=name_baseline_tensors['Baseline Image: Black'], target_class_idx=653, m_steps=200, cmap=None, overlay_alpha=0.3) ###Output _____no_output_____ ###Markdown Using the IG attributions above, you can see the model focused primarily on the face and high contrast white wavy kilt in the front and vest rather than the military insignia on the red hat or sword hilt. While IG attributions alone will not identify or fix data skew or bias, when combined with model evaluation performance metrics and dataset statistics, IG attributions provide you with a guided path forward to collecting more and diverse data to improve model performance.Re-training the model on this more diverse sampling of the input space of Greece military uniforms, in particular those that emphasize military insignia, as well as utilizing weighting strategies during training can help mitigate biased data and further refine model performance and generalization. Use case: debugging model performance IG feature attributions provide a useful debugging complement to dataset statistics and model performance evaluation metrics to better understand model quality.When using IG feature attributions for debugging, you are looking for insights into the following questions:* Which features are important? * How well does the model's learned features generalize? * Does the model learn "incorrect" or spurious features in the image beyond the true class object?* What features did my model miss?* Comparing correct and incorrect examples of the same class, what is the difference in the feature attributions? IG feature attributions are well suited for counterfactual reasoning to gain insight into your model's performance and limitations. This involves comparing feature attributions for images of the same class that receive different predictions. When combined with model performance metrics and dataset statistics, IG feature attributions give greater insight into model errors during debuggin to understand which features contributed to the incorrect prediction when compared to feature attributions on correct predictions. To go deeper on model debugging, see The Google AI [What-if tool](https://pair-code.github.io/what-if-tool/) to interactively inspect your dataset, and model, and IG feature attributions. In the example below, you will apply 3 transformations to the "Yellow Labrador Retriever" image and constrast correct and incorrect IG feature attributions to gain insight into your model's limitations. ###Code rotate90_labrador_retriever_img = tf.image.rot90(img_name_tensors['Yellow Labrador Retriever']) upsidedown_labrador_retriever_img = tf.image.flip_up_down(img_name_tensors['Yellow Labrador Retriever']) zoom_labrador_retriever_img = tf.keras.preprocessing.image.random_zoom(x=img_name_tensors['Yellow Labrador Retriever'], zoom_range=(0.45,0.45)) _ = plot_img_predictions( model=inception_v1_classifier, img=tf.stack([img_name_tensors['Yellow Labrador Retriever'], rotate90_labrador_retriever_img, upsidedown_labrador_retriever_img, zoom_labrador_retriever_img]), img_titles=tf.stack(['Yellow Labrador Retriever (original)', 'Yellow Labrador Retriever (rotated 90 degrees)', 'Yellow Labrador Retriever (flipped upsidedown)', 'Yellow Labrador Retriever (zoomed in)']), label_vocab=imagenet_label_vocab, top_k=5 ) ###Output _____no_output_____ ###Markdown These rotation and zooming examples serve to highlight an important limitation of convolutional neural networks like Inception V1 - *CNNs are not naturally rotationally or scale invariant.* All of these examples resulted in incorrect predictions. Now you will see an example of how comparing 2 example attributions - one incorrect prediction vs. one known correct prediction - gives a deeper feature-level insight into why the model made an error to take corrective action. ###Code labrador_retriever_attributions = integrated_gradients(model=inception_v1_classifier, baseline=name_baseline_tensors['Baseline Image: Black'], input=img_name_tensors['Yellow Labrador Retriever'], target_class_idx=209, m_steps=200, method='riemann_trapezoidal') zoom_labrador_retriever_attributions = integrated_gradients(model=inception_v1_classifier, baseline=name_baseline_tensors['Baseline Image: Black'], input=zoom_labrador_retriever_img, target_class_idx=209, m_steps=200, method='riemann_trapezoidal') ###Output _____no_output_____ ###Markdown Zooming in on the Labrador Retriever image causes Inception V1 to incorrectly predict a different dog breed, a [Saluki](https://en.wikipedia.org/wiki/Saluki). Compare the IG attributions on the incorrect and correct predictions below. You can see the IG attributions on the zoomed image still focus on the legs but they are now much further apart and the midsection is proportionally narrower. Compared to the IG attributions on the original image, the visible head size is significantly smaller as well. Aimed with deeper feature-level understanding of your model's error, you can improve model performance by pursuing strategies such as training data augmentation to make your model more robust to changes in object proportions or check your image preprocessing code is the same during training and serving to prevent data skew introduced from by zooming or resizing operations. ###Code fig, axs = plt.subplots(nrows=1, ncols=3, squeeze=False, figsize=(16, 12)) axs[0,0].set_title('IG Attributions - Incorrect Prediction: Saluki') axs[0,0].imshow(tf.reduce_sum(tf.abs(zoom_labrador_retriever_attributions), axis=-1), cmap=plt.cm.inferno) axs[0,0].axis('off') axs[0,1].set_title('IG Attributions - Correct Prediction: Labrador Retriever') axs[0,1].imshow(tf.reduce_sum(tf.abs(labrador_retriever_attributions), axis=-1), cmap=None) axs[0,1].axis('off') axs[0,2].set_title('IG Attributions - both predictions overlayed') axs[0,2].imshow(tf.reduce_sum(tf.abs(zoom_labrador_retriever_attributions), axis=-1), cmap=plt.cm.inferno, alpha=0.99) axs[0,2].imshow(tf.reduce_sum(tf.abs(labrador_retriever_attributions), axis=-1), cmap=None, alpha=0.5) axs[0,2].axis('off') plt.tight_layout(); ###Output _____no_output_____ ###Markdown Copyright 2020 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Integrated gradients This tutorial: Run in Google Colab View source on GitHub Download notebook A shorter version of this notebook is also available as a TensorFlow tutorial: View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook This tutorial demonstrates how to implement **Integrated Gradients (IG)**, an explainable AI technique described in the paper [Axiomatic Attribution for Deep Networks](https://arxiv.org/abs/1703.01365). IG aims to explain the relationship between a model's predictions in terms of its features. It has many use cases including understanding feature importances, identifying data skew, and debugging model performance.IG has become a popular interpretability technique due to its broad applicability to any differentiable model, ease of implementation, theoretical justifications, and computational efficiency relative to alternative approaches that allows it to scale to large networks and feature spaces such as images.You will start by walking through an implementation of IG step-by-step. Next, you will apply IG attributions to understand the pixel feature importances of an image classifier and explore applied machine learning use cases. Lastly, you will conclude with discussion of IG's properties, limitations, and suggestions for next steps in your learning journey.To motivate this tutorial, here is the result of using IG to highlight important pixels that were used to classify this [image](https://commons.wikimedia.org/wiki/File:San_Francisco_fireboat_showing_off.jpg) as a fireboat.![Output Image 1](./images/IG_fireboat.png) Explaining an image classifier ###Code import matplotlib.pylab as plt import numpy as np import math import sys import tensorflow as tf import tensorflow_hub as hub ###Output _____no_output_____ ###Markdown Download Inception V1 from TF-Hub **TensorFlow Hub Module**IG can be applied to any neural network. To mirror the paper's implementation, you will use a pre-trained version of [Inception V1]((https://arxiv.org/abs/1409.4842)) from [TensorFlow Hub](https://tfhub.dev/google/imagenet/inception_v1/classification/4). ###Code inception_v1_url = "https://tfhub.dev/google/imagenet/inception_v1/classification/4" inception_v1_classifier = tf.keras.Sequential([ hub.KerasLayer(name='inception_v1', handle=inception_v1_url, trainable=False), ]) inception_v1_classifier.build([None, 224, 224, 3]) inception_v1_classifier.summary() ###Output _____no_output_____ ###Markdown From the TF Hub module page, you need to keep in mind the following about Inception V1 for image classification:**Inputs**: The expected input shape for the model is `(None, 224, 224, 3,)`. This is a dense 4D tensor of dtype float32 and shape `(batch_size, height, width, RGB channels)` whose elements are RGB color values of pixels normalized to the range [0, 1]. The first element is `None` to indicate that the model can take any integer batch size.**Outputs**: A `tf.Tensor` of logits in the shape of `(n_images, 1001)`. Each row represents the model's predicted score for each of ImageNet's 1,001 classes. For the model's top predicted class index you can use `tf.argmax(predictions, axis=-1)`. Furthmore, you can also covert the model's logit output to predicted probabilities across all classes using `tf.nn.softmax(predictions, axis=-1)` to quantify the model's uncertainty as well as explore similar predicted classes for debugging. ###Code def load_imagenet_labels(file_path): """ Args: file_path(str): A URL download path. Returns: imagenet_label_array(numpy.ndarray): Array of strings with shape (1001,). """ labels_file = tf.keras.utils.get_file('ImageNetLabels.txt', file_path) with open(labels_file, "r") as reader: f = reader.read() labels = f.splitlines() imagenet_label_array = np.array(labels) return imagenet_label_array imagenet_label_vocab = load_imagenet_labels('https://storage.googleapis.com/download.tensorflow.org/data/ImageNetLabels.txt') ###Output _____no_output_____ ###Markdown Load and preprocess images with `tf.image`You will illustrate IG using several images. Links to the original images are as follows ([Fireboat](https://commons.wikimedia.org/wiki/File:San_Francisco_fireboat_showing_off.jpg), [School Bus](https://commons.wikimedia.org/wiki/File:Thomas_School_Bus_Bus.jpg), [Giant Panda](https://commons.wikimedia.org/wiki/File:Giant_Panda_2.JPG), [Black Beetle](https://commons.wikimedia.org/wiki/File:Lucanus.JPG), [Golden Retriever](https://commons.wikimedia.org/wiki/File:Golden_retriever.jpg), [General Ulysses S. Grant](https://commons.wikimedia.org/wiki/Category:Ulysses_S._Grant/media/File:Portrait_of_Maj._Gen._Ulysses_S._Grant,_officer_of_the_Federal_Army_LOC_cwpb.06941.jpg), [Greece Presidential Guard](https://commons.wikimedia.org/wiki/File:Greek_guard_uniforms_1.jpg)). ###Code def parse_image(file_name): """ This function downloads and standardizes input JPEG images for the inception_v1 model. Its applies the following processing: - Reads JPG file. - Decodes JPG file into colored image. - Converts data type to standard tf.float32. - Resizes image to expected Inception V1 input dimension of (224, 224, 3) with preserved aspect ratio. E.g. don't stretch image. - Pad image to (224, 224, 3) shape with black pixels. Args: file_name(str): Direct URL path to the JPG image. Returns: image(Tensor): A Tensor of floats with shape (224, 224, 3). label(str): A text label for display above the image. """ image = tf.io.read_file(file_name) image = tf.image.decode_jpeg(image, channels=3) image = tf.image.convert_image_dtype(image, tf.float32) image = tf.image.resize(image, (224, 224), preserve_aspect_ratio=True) image = tf.image.resize_with_pad(image, target_height=224, target_width=224) return image # img_name_url {image_name: origin_url} img_name_url = { 'Fireboat': 'https://storage.googleapis.com/applied-dl/temp/San_Francisco_fireboat_showing_off.jpg', 'School Bus': 'https://storage.googleapis.com/applied-dl/temp/Thomas_School_Bus_Bus.jpg', 'Giant Panda': 'https://storage.googleapis.com/applied-dl/temp/Giant_Panda_2.jpeg', 'Black Beetle': 'https://storage.googleapis.com/applied-dl/temp/Lucanus.jpeg', 'Golden Retriever': 'https://storage.googleapis.com/applied-dl/temp/Golden_retriever.jpg', 'Yellow Labrador Retriever': 'https://storage.googleapis.com/download.tensorflow.org/example_images/YellowLabradorLooking_new.jpg', 'Military Uniform (Grace Hopper)': 'https://storage.googleapis.com/download.tensorflow.org/example_images/grace_hopper.jpg', 'Military Uniform (General Ulysses S. Grant)': 'https://storage.googleapis.com/applied-dl/temp/General_Ulysses_S._Grant%2C_Union_Army_(6186252896).jpg', 'Military Uniform (Greek Presidential Guard)': 'https://storage.googleapis.com/applied-dl/temp/Greek_guard_uniforms_1.jpg', } # img_name_path {image_name: downloaded_image_local_path} img_name_path = {name: tf.keras.utils.get_file(name, url) for (name, url) in img_name_url.items()} # img_name_tensors {image_name: parsed_image_tensor} img_name_tensors = {name: parse_image(img_path) for (name, img_path) in img_name_path.items()} plt.figure(figsize=(14,14)) for n, (name, img_tensors) in enumerate(img_name_tensors.items()): ax = plt.subplot(3,3,n+1) ax.imshow(img_tensors) ax.set_title(name) ax.axis('off') plt.tight_layout() ###Output _____no_output_____ ###Markdown Applying integrated gradients IG is an elegant and simple idea to explain a model's predictions in relation to its input. The basic intuition is to measure a feature's importance to your model by incrementally increasing a feature's intensity between its absense (baseline) and its input value, compute the change between your model's predictions with respect to the original feature at each step, and average these incremental changes together. To gain a deeper understanding for how IG works, you will walk through its application over the sub-sections below. Step 1: Identify model input and output tensors IG is a post-hoc explanatory method that works with any differentiable model regardless of its implementation. As such, you can pass any input example tensor to a model to generate an output prediction tensor. Note that InceptionV1 outputs a multiclass un-normalized logits prediction tensor. So you will use a softmax operator to turn the logits tensor into an output softmax predicted probabilities tensor for use to compute IG feature attributions. ###Code # stack images into a batch for processing. image_titles = tf.convert_to_tensor(list(img_name_tensors.keys())) image_batch = tf.convert_to_tensor(list(img_name_tensors.values())) image_batch.shape def top_k_predictions_scores_labels(model, img, label_vocab, top_k=3): """ Args: model(tf.keras.Model): Trained Keras model. img(tf.Tensor): A 4D tensor of floats with the shape (img_n, img_height, img_width, 3). label_vocab(numpy.ndarray): An array of strings with shape (1001,). top_k(int): Number of results to return. Returns: k_predictions_idx(tf.Tensor): A tf.Tensor [n_images, top_k] of tf.int32 prediction indicies. k_predictions_proba(tf.Tensor): A tf.Tensor [n_images, top_k] of tf.float32 prediction probabilities. k_predictions_label(tf.Tensor): A tf.Tensor [n_images, top_k] of tf.string prediction labels. """ # These are logits (unnormalized scores). predictions = model(img) # Convert logits into probabilities. predictions_proba = tf.nn.softmax(predictions, axis=-1) # Filter top k prediction probabilities and indices. k_predictions_proba, k_predictions_idx = tf.math.top_k( input=predictions_proba, k=top_k) # Lookup top k prediction labels in label_vocab array. k_predictions_label = tf.convert_to_tensor( label_vocab[k_predictions_idx.numpy()], dtype=tf.string) return k_predictions_idx, k_predictions_label, k_predictions_proba def plot_img_predictions(model, img, img_titles, label_vocab, top_k=3): """Plot images with top_k predictions. Args: model(tf.keras.Model): Trained Keras model. img(Tensor): A 4D Tensor of floats with the shape (img_n, img_height, img_width, 3). img_titles(Tensor): A Tensor of strings with the shape (img_n, img_height, img_width, 3). label_vocab(numpy.ndarray): An array of strings with shape (1001,). top_k(int): Number of results to return. Returns: fig(matplotlib.pyplot.figure): fig object to utilize for displaying, saving plots. """ pred_idx, pred_label, pred_proba = \ top_k_predictions_scores_labels( model=model, img=img, label_vocab=label_vocab, top_k=top_k) img_arr = img.numpy() title_arr = img_titles.numpy() pred_idx_arr = pred_idx.numpy() pred_label_arr = pred_label.numpy() pred_proba_arr = pred_proba.numpy() n_rows = img_arr.shape[0] # Preserve image height by converting pixels to inches based on dpi. size = n_rows * (224 // 48) fig, axs = plt.subplots(nrows=img_arr.shape[0], ncols=1, figsize=(size, size), squeeze=False) for idx, image in enumerate(img_arr): axs[idx, 0].imshow(image) axs[idx, 0].set_title(title_arr[idx].decode('utf-8'), fontweight='bold') axs[idx, 0].axis('off') for k in range(top_k): k_idx = pred_idx_arr[idx][k] k_label = pred_label_arr[idx][k].decode('utf-8') k_proba = pred_proba_arr[idx][k] if k==0: s = 'Prediction {:}: ({:}-{:}) Score: {:.1%}'.format(k+1, k_idx, k_label, k_proba) axs[idx, 0].text(244 + size, 102+(k*40), s, fontsize=12, fontweight='bold') else: s = 'Prediction {:}: ({:}-{:}) Score: {:.1%}'.format(k+1, k_idx, k_label, k_proba) axs[idx, 0].text(244 + size, 102+(k*20), s, fontsize=12) plt.tight_layout() return fig _ = plot_img_predictions( model=inception_v1_classifier, img=image_batch, img_titles=image_titles, label_vocab=imagenet_label_vocab, top_k=5 ) ###Output _____no_output_____ ###Markdown Step 2: establish baseline to compare inputs against Defining missingness or a starting point in feature spaces for comparison is at the core of machine learning interpretability methods. For IG, this concept is encoded as a baseline. A **baseline** is an uniformative input used as a starting point for defining IG attributions in relation to and essential for interpreting IG prediction attributions as a function of individual input features.When selecting a baseline for neural networks, the goal is to choose a baseline such as the prediction at the baseline is near zero to minimize aspects of the baseline impacting interpretation of the prediction attributions.For image classification networks, a baseline image with its pixels set to 0 meets this objective. For text networks, an all zero input embedding vector makes for a good baseline. Models with structured data that typically involve a mix of continuous numeric features will typically use the observed median value as a baseline because 0 is an informative value for these features. Note, however, that this changes the interpretation of the features to their importance in relation to the baseline value as opposed to the input data directly. The paper author's provide additional guidance on baseline selection for different input feature data types and models under a [How to Use Integrated Gradients Guide](https://github.com/ankurtaly/Integrated-Gradients/blob/master/howto.mdsanity-checking-baselines) on Github. ###Code # name_baseline_tensors. Set random seed for reproducibility of random baseline image and associated attributions. tf.random.set_seed(42) name_baseline_tensors = { 'Baseline Image: Black': tf.zeros(shape=(224,224,3)), 'Baseline Image: Random': tf.random.uniform(shape=(224,224,3), minval=0.0, maxval=1.0), 'Baseline Image: White': tf.ones(shape=(224,224,3)), } plt.figure(figsize=(12,12)) for n, (name, baseline_tensor) in enumerate(name_baseline_tensors.items()): ax = plt.subplot(1,3,n+1) ax.imshow(baseline_tensor) ax.set_title(name) ax.axis('off') plt.tight_layout() ###Output _____no_output_____ ###Markdown Step 3: Integrated gradients in TensorFlow 2.x The exact formula for Integrated Gradients from the original paper is the following:$IntegratedGradients_{i}(x) ::= (x_{i} - x'_{i})\times\int_{\alpha=0}^1\frac{\partial F(x'+\alpha \times (x - x'))}{\partial x_i}{d\alpha}$where:$_{i}$ = feature $x$ = input $x'$ = baseline $\alpha$ = interpolation constant to perturbe features by However, in practice, computing a definite integral is not always numerically possible and computationally costly so you compute the following numerical approximation:$IntegratedGrads^{approx}_{i}(x)::=(x_{i}-x'_{i})\times\sum_{k=1}^{m}\frac{\partial F(x' + \frac{k}{m}\times(x - x'))}{\partial x_{i}} \times \frac{1}{m}$where:$_{i}$ = feature (individual pixel) $x$ = input (image tensor) $x'$ = baseline (image tensor) $k$ = scaled feature perturbation constant $m$ = number of steps in the Riemann sum approximation of the integral. This is covered in depth in the section *Compute integral approximation* below. You will walk through the intuition and implementation of the above equation in the sections below. Generate interpolated path inputs $IntegratedGrads^{approx}_{i}(x)::=(x_{i}-x'_{i})\times\sum_{k=1}^{m}\frac{\partial F(\overbrace{x' + \frac{k}{m}\times(x - x')}^\text{generate m interpolated images at k intervals})}{\partial x_{i}} \times \frac{1}{m}$ The first step is to generate a [linear interpolation](https://en.wikipedia.org/wiki/Linear_interpolation) path between your known baseline and input images. You can think of interpolated images as small steps in the feature space between each feature pixel between your baseline and input images. These steps are represented by $\alpha$ in the original equation. You will revisit $\alpha$ in greater depth in the subsequent section *Compute approximate integral* as its values are tied to the your choice of integration approximation method.For now, you can use the handy `tf.linspace` function to generate a `Tensor` with 20 m_steps at k linear intervals between 0 and 1 as an input to the `generate_path_inputs` function below. ###Code m_steps=20 alphas = tf.linspace(start=0.0, stop=1.0, num=m_steps+1) def generate_path_inputs(baseline, input, alphas): """Generate m interpolated inputs between baseline and input features. Args: baseline(Tensor): A 3D image tensor of floats with the shape (img_height, img_width, 3). input(Tensor): A 3D image tensor of floats with the shape (img_height, img_width, 3). alphas(Tensor): A 1D tensor of uniformly spaced floats with the shape (m_steps,). Returns: path_inputs(Tensor): A 4D tensor of floats with the shape (m_steps, img_height, img_width, 3). """ # Expand dimensions for vectorized computation of interpolations. alphas_x = alphas[:, tf.newaxis, tf.newaxis, tf.newaxis] baseline_x = tf.expand_dims(baseline, axis=0) input_x = tf.expand_dims(input, axis=0) delta = input_x - baseline_x path_inputs = baseline_x + alphas_x * delta return path_inputs ###Output _____no_output_____ ###Markdown Generate interpolated images along a linear path at alpha intervals between a black baseline image and the example "Giant Panda" image. ###Code path_inputs = generate_path_inputs( baseline=name_baseline_tensors['Baseline Image: Black'], input=img_name_tensors['Giant Panda'], alphas=alphas) path_inputs.shape ###Output _____no_output_____ ###Markdown The interpolated images are visualized below. Note that another way of thinking about the $\alpha$ constant is that it is monotonically and consistently increasing each interpolated image's intensity. ###Code fig, axs = plt.subplots(nrows=1, ncols=5, squeeze=False, figsize=(24, 24)) axs[0,0].set_title('Baseline \n alpha: {:.2f}'.format(alphas[0])) axs[0,0].imshow(path_inputs[0]) axs[0,0].axis('off') axs[0,1].set_title('=> Interpolated Image # 1 \n alpha: {:.2f}'.format(alphas[1])) axs[0,1].imshow(path_inputs[1]) axs[0,1].axis('off') axs[0,2].set_title('=> Interpolated Image # 2 \n alpha: {:.2f}'.format(alphas[2])) axs[0,2].imshow(path_inputs[2]) axs[0,2].axis('off') axs[0,3].set_title('... => Interpolated Image # 10 \n alpha: {:.2f}'.format(alphas[10])) axs[0,3].imshow(path_inputs[10]) axs[0,3].axis('off') axs[0,4].set_title('... => Input Image \n alpha: {:.2f}'.format(alphas[-1])) axs[0,4].imshow(path_inputs[-1]) axs[0,4].axis('off') plt.tight_layout(); ###Output _____no_output_____ ###Markdown Compute gradients Now that you generated 20 interpolated images between a black baseline and your example "Giant Panda" photo, lets take a look at how to calculate [gradients](https://en.wikipedia.org/wiki/Gradient) to measure the relationship between changes to your feature pixels and changes in your model's predictions.The gradients of F, your Inception V1 model function, represents the direction of maximum increase between your predictions with respect to your input. In the case of images, your gradient tells you which pixels have the steepest local slope between your output model's predicted class probabilities with respect to the original pixels. $IntegratedGrads^{approx}_{i}(x)::=(x_{i}-x'_{i})\times\sum_{k=1}^{m}\frac{\overbrace{\partial F(\text{interpolated images})}^\text{Compute gradients}}{\partial x_{i}} \times \frac{1}{m}$where: $F()$ = your model's prediction function $\frac{\partial{F}}{\partial{x_i}}$ = gradient (vector of partial derivatives $\partial$) of your model F's prediction function relative to each feature $x_i$ TensorFlow 2.x makes computing gradients extremely easy for you with the [`tf.GradientTape`](https://www.tensorflow.org/api_docs/python/tf/GradientTape) object which performantly computes and records gradient operations. ###Code def compute_gradients(model, path_inputs, target_class_idx): """Compute gradients of model predicted probabilties with respect to inputs. Args: mode(tf.keras.Model): Trained Keras model. path_inputs(Tensor): A 4D tensor of floats with the shape (m_steps, img_height, img_width, 3). target_class_idx(Tensor): A 0D tensor of an int corresponding to the correct ImageNet target class index. Returns: gradients(Tensor): A 4D tensor of floats with the shape (m_steps, img_height, img_width, 3). """ with tf.GradientTape() as tape: tape.watch(path_inputs) predictions = model(path_inputs) # Note: IG requires softmax probabilities; converting Inception V1 logits. outputs = tf.nn.softmax(predictions, axis=-1)[:, target_class_idx] gradients = tape.gradient(outputs, path_inputs) return gradients ###Output _____no_output_____ ###Markdown Compute gradients between your model Inception V1's predicted probabilities for the target class on each interpolated image with respect to each interpolated input. Recall that your model returns a `(1, 1001)` shaped `Tensor` with of logits that you will convert to predicted probabilities for every class. You need to pass the correct ImageNet target class index to the `compute_gradients` function below in order to identify the specific output tensor you wish to explain in relation to your input and baseline. ###Code path_gradients = compute_gradients( model=inception_v1_classifier, path_inputs=path_inputs, target_class_idx=389) ###Output _____no_output_____ ###Markdown Note the output shape `(n_interpolated_images, img_height, img_width, RGB)`. Below you can see the local gradients visualized for the first 5 interpolated inputs relative to the input "Giant Panda" image as a series of ghostly shapes. You can think these gradients as measuring the change in your model's predictions for each small step in the feature space. *The largest gradient magnitudes generally occur at the lowest alphas*. ###Code fig, axs = plt.subplots(nrows=1, ncols=5, squeeze=False, figsize=(24, 24)) for i in range(5): axs[0,i].imshow(tf.cast(255 * path_gradients[i], tf.uint8), cmap=plt.cm.inferno) axs[0,i].axis('off') plt.tight_layout() ###Output _____no_output_____ ###Markdown **Why not just use gradients for attribution? Saturation** You may be wondering at this point, why not just compute the gradients of the predictions with respect to the input as feature attributions? Why bother with slowly changing the intensity of the input image at all? The reason why is networks can *saturate*, meaning the magnitude of the local feature gradients can become extremely small and go toward zero resulting in important features having a small gradient. *The implication is that saturation can result in discontinuous feature importances and miss important features.*This concept is visualized in the 2 graphs below: ###Code pred = inception_v1_classifier(path_inputs) pred_proba = tf.nn.softmax(pred, axis=-1)[:, 389] plt.figure(figsize=(10,4)) ax1 = plt.subplot(1,2,1) ax1.plot(alphas, pred_proba) ax1.set_title('Target class predicted probability over alpha') ax1.set_ylabel('model p(target class)') ax1.set_xlabel('alpha') ax1.set_ylim([0,1]) ax2 = plt.subplot(1,2,2) # Average across interpolation steps average_grads = tf.math.reduce_mean(path_gradients, axis=[1,2,3]) # Normalize average gradients to 0 to 1 scale. E.g. (x - min(x))/(max(x)-min(x)) average_grads_norm = (average_grads-tf.math.reduce_min(average_grads))/(tf.math.reduce_max(average_grads)-tf.reduce_min(average_grads)) ax2.plot(alphas, average_grads_norm) ax2.set_title('Average pixel gradients (normalized) over alpha') ax2.set_ylabel('Average pixel gradients') ax2.set_xlabel('alpha') ax2.set_ylim([0,1]); ###Output _____no_output_____ ###Markdown Notice in the left plot above, how the model prediction function quickly learns the correct "Giant Panda" class when alpha is between 0.0 and 0.3 and then largely flattens between 0.3 and 1.0. There could still be features that the model relies on for correct prediction that differ from the baseline but the magnitudes of those feature gradients become really small and bounce around 0 starting from 0.3 to 1.0. Similarly, in the right plot of the average pixel gradients plotted over alpha, you can see the peak "aha" moment where the model learns the target "Giant Panda" but also that the gradient magnitudes quickly minimize toward 0 and even become discontinuous briefly around 0.6. In practice, this can result in gradient attributions to miss important features that differ between input and baseline and to focus on irrelvant features.**The beauty of IG is that is solves the problem of discontinuous gradient feature importances by taking small steps in the feature space to compute local gradients between predictions and inputs across the feature space and then averages these gradients together to produce IG feature attributions.** Compute integral approximation There are many different ways you can go about computing the numeric approximation of an integral for IG with different tradeoffs in accuracy and convergence across varying functions. A popular class of methods is called [Riemann sums](https://en.wikipedia.org/wiki/Riemann_sum). The code below shows the visual geometric interpretation for Left, Right, Midpoint, and Trapezoidal Riemann Sums for intuition below: ###Code def plot_riemann_sums(fn, start_val, end_val, m_steps=10): """ Plot Riemann Sum integral approximations for single variable functions. Args: fn(function): Any single variable function. start_val(int): Minimum function value constraint. end_val(int): Maximum function value constraint. m_steps(int): Linear interpolation steps for approximation. Returns: fig(matplotlib.pyplot.figure): fig object to utilize for displaying, saving plots. """ # fn plot args x = tf.linspace(start_val, end_val, m_steps**2+1) y = fn(x) fig = plt.figure(figsize=(16,4)) # Left Riemann Sum lr_ax = plt.subplot(1,4,1) lr_ax.plot(x, y) lr_x = tf.linspace(0.0, 1.0, m_steps+1) lr_point = lr_x[:-1] lr_height = fn(lr_x[:-1]) lr_ax.plot(lr_point, lr_height, 'b.', markersize=10) lr_ax.bar(lr_point, lr_height, width=(end_val-start_val)/m_steps, alpha=0.2, align='edge', edgecolor='b') lr_ax.set_title('Left Riemann Sum \n m_steps = {}'.format(m_steps)) lr_ax.set_xlabel('alpha') # Right Riemann Sum rr_ax = plt.subplot(1,4,2) rr_ax.plot(x, y) rr_x = tf.linspace(0.0, 1.0, m_steps+1) rr_point = rr_x[1:] rr_height = fn(rr_x[1:]) rr_ax.plot(rr_point, rr_height, 'b.', markersize=10) rr_ax.bar(rr_point, rr_height, width=-(end_val-start_val)/m_steps, alpha=0.2, align='edge', edgecolor='b') rr_ax.set_title('Right Riemann Sum \n m_steps = {}'.format(m_steps)) rr_ax.set_xlabel('alpha') # Midpoint Riemann Sum mr_ax = plt.subplot(1,4,3) mr_ax.plot(x, y) mr_x = tf.linspace(0.0, 1.0, m_steps+1) mr_point = (mr_x[:-1] + mr_x[1:])/2 mr_height = fn(mr_point) mr_ax.plot(mr_point, mr_height, 'b.', markersize=10) mr_ax.bar(mr_point, mr_height, width=(end_val-start_val)/m_steps, alpha=0.2, edgecolor='b') mr_ax.set_title('Midpoint Riemann Sum \n m_steps = {}'.format(m_steps)) mr_ax.set_xlabel('alpha') # Trapezoidal Riemann Sum tp_ax = plt.subplot(1,4,4) tp_ax.plot(x, y) tp_x = tf.linspace(0.0, 1.0, m_steps+1) tp_y = fn(tp_x) for i in range(m_steps): xs = [tp_x[i], tp_x[i], tp_x[i+1], tp_x[i+1]] ys = [0, tp_y[i], tp_y[i+1], 0] tp_ax.plot(tp_x,tp_y,'b.',markersize=10) tp_ax.fill_between(xs, ys, color='C0', edgecolor='blue', alpha=0.2) tp_ax.set_title('Trapezoidal Riemann Sum \n m_steps = {}'.format(m_steps)) tp_ax.set_xlabel('alpha') return fig ###Output _____no_output_____ ###Markdown Recall that a feature's gradient will vary in magnitude over the interpolated images between the baseline and input. You want to choose a method to best approximate the area of difference, also know as the [integral](https://en.wikipedia.org/wiki/Integral) between your baseline and input in the feature space. Lets consider the down facing parabola function $y = sin(x*\pi)$ varying between 0 and 1 as a proxy for how a feature gradient could vary in magnitude and sign over different alphas. To implement IG, you care about approximation accuracy and covergence. Left, Right, and Midpoint Riemann Sums utilize rectangles to approximate areas under the function while Trapezoidal Riemann Sums utilize trapezoids. ###Code _ = plot_riemann_sums(lambda x: tf.math.sin(x*math.pi), 0.0, 1.0, m_steps=5) _ = plot_riemann_sums(lambda x: tf.math.sin(x*math.pi), 0.0, 1.0, m_steps=10) ###Output _____no_output_____ ###Markdown **Which integral approximation method should you choose for IG?**From the Riemann sum plots above you can see that the Trapezoidal Riemann Sum clearly provides a more accurate approximation and coverges more quickly over m_steps than the alternatives e.g. less white space under function not covered by shapes. Consequently, it is presented as the default method in the code below while also showing alternative methods for further study. Additional support for Trapezoidal Riemann approximation for IG is presented in section 4 of ["Computing Linear Restrictions of Neural Networks"](https://arxiv.org/abs/1908.06214). Let us return to the $\alpha$ constant previously introduced in the *Generate interpolated path inputs* section for varying the intensity of the interpolated images between the baseline and input image. In the `generate_alphas` function below, you can see that $\alpha$ changes with each approximation method to reflect different start and end points and underlying geometric shapes of either a rectangle or trapezoid used to approximate the integral area. It takes a `method` parameter and a `m_steps` parameter that controls the accuracy of the integral approximation. ###Code def generate_alphas(m_steps=50, method='riemann_trapezoidal'): """ Args: m_steps(Tensor): A 0D tensor of an int corresponding to the number of linear interpolation steps for computing an approximate integral. Default is 50. method(str): A string representing the integral approximation method. The following methods are implemented: - riemann_trapezoidal(default) - riemann_left - riemann_midpoint - riemann_right Returns: alphas(Tensor): A 1D tensor of uniformly spaced floats with the shape (m_steps,). """ m_steps_float = tf.cast(m_steps, float) # cast to float for division operations. if method == 'riemann_trapezoidal': alphas = tf.linspace(0.0, 1.0, m_steps+1) # needed to make m_steps intervals. elif method == 'riemann_left': alphas = tf.linspace(0.0, 1.0 - (1.0 / m_steps_float), m_steps) elif method == 'riemann_midpoint': alphas = tf.linspace(1.0 / (2.0 * m_steps_float), 1.0 - 1.0 / (2.0 * m_steps_float), m_steps) elif method == 'riemann_right': alphas = tf.linspace(1.0 / m_steps_float, 1.0, m_steps) else: raise AssertionError("Provided Riemann approximation method is not valid.") return alphas alphas = generate_alphas(m_steps=20, method='riemann_trapezoidal') alphas.shape ###Output _____no_output_____ ###Markdown $IntegratedGrads^{approx}_{i}(x)::=(x_{i}-x'_{i})\times \overbrace{\sum_{k=1}^{m}}^\text{4. Sum m local gradients}\text{gradients(interpolated images)} \times \overbrace{\frac{1}{m}}^\text{4. Divide by m steps}$From the equation, you can see you are summing over m gradients and dividing by m steps. You can implement the two operations together for step 4 as an *average of the local gradients of m interpolated predictions and input images*. ###Code def integral_approximation(gradients, method='riemann_trapezoidal'): """Compute numerical approximation of integral from gradients. Args: gradients(Tensor): A 4D tensor of floats with the shape (m_steps, img_height, img_width, 3). method(str): A string representing the integral approximation method. The following methods are implemented: - riemann_trapezoidal(default) - riemann_left - riemann_midpoint - riemann_right Returns: integrated_gradients(Tensor): A 3D tensor of floats with the shape (img_height, img_width, 3). """ if method == 'riemann_trapezoidal': grads = (gradients[:-1] + gradients[1:]) / tf.constant(2.0) elif method == 'riemann_left': grads = gradients elif method == 'riemann_midpoint': grads = gradients elif method == 'riemann_right': grads = gradients else: raise AssertionError("Provided Riemann approximation method is not valid.") # Average integration approximation. integrated_gradients = tf.math.reduce_mean(grads, axis=0) return integrated_gradients ###Output _____no_output_____ ###Markdown The `integral_approximation` function takes the gradients of the predicted probability of the "Giant Panda" class with respect to the interpolated images between the baseline and "Giant Panda" image. ###Code ig = integral_approximation( gradients=path_gradients, method='riemann_trapezoidal') ###Output _____no_output_____ ###Markdown You can confirm averaging across the gradients of m interpolated images returns an integrated gradients tensor with the same shape as the original "Giant Panda" image. ###Code ig.shape ###Output _____no_output_____ ###Markdown Putting it all together Now you will combine the previous steps together into an `IntegratedGradients` function. To recap: $IntegratedGrads^{approx}_{i}(x)::=\overbrace{(x_{i}-x'_{i})}^\text{5.}\times \overbrace{\sum_{k=1}^{m}}^\text{4.} \frac{\partial \overbrace{F(\overbrace{x' + \overbrace{\frac{k}{m}}^\text{1.}\times(x - x'))}^\text{2.}}^\text{3.}}{\partial x_{i}} \times \overbrace{\frac{1}{m}}^\text{4.}$ 1. Generate alphas $\alpha$2. Generate interpolated path inputs = $(x' + \frac{k}{m}\times(x - x'))$3. Compute gradients between model output predictions with respect to input features = $\frac{\partial F(\text{interpolated path inputs})}{\partial x_{i}}$4. Integral approximation through averaging = $\sum_{k=1}^m \text{gradients} \times \frac{1}{m}$5. Scale integrated gradients with respect to original image = $(x_{i}-x'_{i}) \times \text{average gradients}$ ###Code @tf.function def integrated_gradients(model, baseline, input, target_class_idx, m_steps=50, method='riemann_trapezoidal', batch_size=32 ): """ Args: model(keras.Model): A trained model to generate predictions and inspect. baseline(Tensor): A 3D image tensor with the shape (image_height, image_width, 3) with the same shape as the input tensor. input(Tensor): A 3D image tensor with the shape (image_height, image_width, 3). target_class_idx(Tensor): An integer that corresponds to the correct ImageNet class index in the model's output predictions tensor. Default value is 50 steps. m_steps(Tensor): A 0D tensor of an integer corresponding to the number of linear interpolation steps for computing an approximate integral. method(str): A string representing the integral approximation method. The following methods are implemented: - riemann_trapezoidal(default) - riemann_left - riemann_midpoint - riemann_right batch_size(Tensor): A 0D tensor of an integer corresponding to a batch size for alpha to scale computation and prevent OOM errors. Note: needs to be tf.int64 and shoud be < m_steps. Default value is 32. Returns: integrated_gradients(Tensor): A 3D tensor of floats with the same shape as the input tensor (image_height, image_width, 3). """ # 1. Generate alphas. alphas = generate_alphas(m_steps=m_steps, method=method) # Initialize TensorArray outside loop to collect gradients. Note: this data structure # is similar to a Python list but more performant and supports backpropogation. # See https://www.tensorflow.org/api_docs/python/tf/TensorArray for additional details. gradient_batches = tf.TensorArray(tf.float32, size=m_steps+1) # Iterate alphas range and batch computation for speed, memory efficiency, and scaling to larger m_steps. # Note: this implementation opted for lightweight tf.range iteration with @tf.function. # Alternatively, you could also use tf.data, which adds performance overhead for the IG # algorithm but provides more functionality for working with tensors and image data pipelines. for alpha in tf.range(0, len(alphas), batch_size): from_ = alpha to = tf.minimum(from_ + batch_size, len(alphas)) alpha_batch = alphas[from_:to] # 2. Generate interpolated inputs between baseline and input. interpolated_path_input_batch = generate_path_inputs(baseline=baseline, input=input, alphas=alpha_batch) # 3. Compute gradients between model outputs and interpolated inputs. gradient_batch = compute_gradients(model=model, path_inputs=interpolated_path_input_batch, target_class_idx=target_class_idx) # Write batch indices and gradients to TensorArray. Note: writing batch indices with # scatter() allows for uneven batch sizes. Note: this operation is similar to a Python list extend(). # See https://www.tensorflow.org/api_docs/python/tf/TensorArray#scatter for additional details. gradient_batches = gradient_batches.scatter(tf.range(from_, to), gradient_batch) # Stack path gradients together row-wise into single tensor. total_gradients = gradient_batches.stack() # 4. Integral approximation through averaging gradients. avg_gradients = integral_approximation(gradients=total_gradients, method=method) # 5. Scale integrated gradients with respect to input. integrated_gradients = (input - baseline) * avg_gradients return integrated_gradients ig_attributions = integrated_gradients(model=inception_v1_classifier, baseline=name_baseline_tensors['Baseline Image: Black'], input=img_name_tensors['Giant Panda'], target_class_idx=389, m_steps=55, method='riemann_trapezoidal') ig_attributions.shape ###Output _____no_output_____ ###Markdown Again, you can check that the IG feature attributions have the same shape as the input "Giant Panda" image. Step 4: checks to pick number of steps for IG approximation One of IG nice theoretical properties is **completeness**. It is desireable because it holds that IG feature attributions break down the entire model's output prediction. Each feature importance score captures each feature's individual contribution to the prediction, and when added together, you can recover the entire example prediction value itself as tidy book keeping. This provides a principled means to select the `m_steps` hyperparameter for IG.$IntegratedGrads_i(x) = F(x) - F(x')$where:$F(x)$ = model's predictions on input at target class $F(x')$ = model's predictions on baseline at target classYou can translate this formula to return a numeric score, with 0 representing convergance, through the following:$\delta(score) = \sum{(IntegratedGrads_i(x))} - (\sum{F(input)} - \sum{F(x')})$ The original paper suggests the number of steps to range between 20 to 300 depending upon the example and application for the integral approximation. In practice, this can vary up to a few thousand `m_steps` to achieve an integral approximation within 5% error of the actual integral. Visual result convergence can generally be achieved with far few steps. ###Code def convergence_check(model, attributions, baseline, input, target_class_idx): """ Args: model(keras.Model): A trained model to generate predictions and inspect. baseline(Tensor): A 3D image tensor with the shape (image_height, image_width, 3) with the same shape as the input tensor. input(Tensor): A 3D image tensor with the shape (image_height, image_width, 3). target_class_idx(Tensor): An integer that corresponds to the correct ImageNet class index in the model's output predictions tensor. Default value is 50 steps. Returns: (none): Prints scores and convergence delta to sys.stdout. """ # Your model's prediction on the baseline tensor. Ideally, the baseline score # should be close to zero. baseline_prediction = model(tf.expand_dims(baseline, 0)) baseline_score = tf.nn.softmax(tf.squeeze(baseline_prediction))[target_class_idx] # Your model's prediction and score on the input tensor. input_prediction = model(tf.expand_dims(input, 0)) input_score = tf.nn.softmax(tf.squeeze(input_prediction))[target_class_idx] # Sum of your IG prediction attributions. ig_score = tf.math.reduce_sum(attributions) delta = ig_score - (input_score - baseline_score) try: # Test your IG score is <= 5% of the input minus baseline score. tf.debugging.assert_near(ig_score, (input_score - baseline_score), rtol=0.05) tf.print('Approximation accuracy within 5%.', output_stream=sys.stdout) except tf.errors.InvalidArgumentError: tf.print('Increase or decrease m_steps to increase approximation accuracy.', output_stream=sys.stdout) tf.print('Baseline score: {:.3f}'.format(baseline_score)) tf.print('Input score: {:.3f}'.format(input_score)) tf.print('IG score: {:.3f}'.format(ig_score)) tf.print('Convergence delta: {:.3f}'.format(delta)) convergence_check(model=inception_v1_classifier, attributions=ig_attributions, baseline=name_baseline_tensors['Baseline Image: Black'], input=img_name_tensors['Giant Panda'], target_class_idx=389) ###Output _____no_output_____ ###Markdown Through utilizing the completeness axiom and the corresponding `convergence` function above, you were able to identify that you needed about 50 steps to approximate feature importances within 5% error for the "Giant Panda" image. Step 5: visualize IG attributions Finally, you are ready to visualize IG attributions. In order to visualize IG, you will utilize the plotting code below which sums the absolute values of the IG attributions across the color channels for simplicity to return a greyscale attribution mask for standalone visualization and overlaying on the original image. This plotting method captures the relative impact of pixels on the model's predictions well. Note that another visualization option for you to try is to preserve the direction of the gradient sign e.g. + or - for visualization on different channels to more accurately represent how the features might combine. ###Code def plot_img_attributions(model, baseline, img, target_class_idx, m_steps=50, cmap=None, overlay_alpha=0.4): """ Args: model(keras.Model): A trained model to generate predictions and inspect. baseline(Tensor): A 3D image tensor with the shape (image_height, image_width, 3) with the same shape as the input tensor. img(Tensor): A 3D image tensor with the shape (image_height, image_width, 3). target_class_idx(Tensor): An integer that corresponds to the correct ImageNet class index in the model's output predictions tensor. Default value is 50 steps. m_steps(Tensor): A 0D tensor of an integer corresponding to the number of linear interpolation steps for computing an approximate integral. cmap(matplotlib.cm): Defaults to None. Reference for colormap options - https://matplotlib.org/3.2.1/tutorials/colors/colormaps.html. Interesting options to try are None and high contrast 'inferno'. overlay_alpha(float): A float between 0 and 1 that represents the intensity of the original image overlay. Returns: fig(matplotlib.pyplot.figure): fig object to utilize for displaying, saving plots. """ # Attributions ig_attributions = integrated_gradients(model=model, baseline=baseline, input=img, target_class_idx=target_class_idx, m_steps=m_steps) convergence_check(model, ig_attributions, baseline, img, target_class_idx) # Per the original paper, take the absolute sum of the attributions across # color channels for visualization. The attribution mask shape is a greyscale image # with shape (224, 224). attribution_mask = tf.reduce_sum(tf.math.abs(ig_attributions), axis=-1) # Visualization fig, axs = plt.subplots(nrows=2, ncols=2, squeeze=False, figsize=(8, 8)) axs[0,0].set_title('Baseline Image') axs[0,0].imshow(baseline) axs[0,0].axis('off') axs[0,1].set_title('Original Image') axs[0,1].imshow(img) axs[0,1].axis('off') axs[1,0].set_title('IG Attribution Mask') axs[1,0].imshow(attribution_mask, cmap=cmap) axs[1,0].axis('off') axs[1,1].set_title('Original + IG Attribution Mask Overlay') axs[1,1].imshow(attribution_mask, cmap=cmap) axs[1,1].imshow(img, alpha=overlay_alpha) axs[1,1].axis('off') plt.tight_layout() return fig ###Output _____no_output_____ ###Markdown Visual inspection of the IG attributions on the "Fireboat" image, show that Inception V1 identifies the water cannons and spouts as contributing to its correct prediction. ###Code _ = plot_img_attributions(model=inception_v1_classifier, img=img_name_tensors['Fireboat'], baseline=name_baseline_tensors['Baseline Image: Black'], target_class_idx=555, m_steps=240, cmap=plt.cm.inferno, overlay_alpha=0.4) ###Output _____no_output_____ ###Markdown IG attributions on the "School Bus" image highlight the shape, front lighting, and front stop sign. ###Code _ = plot_img_attributions(model=inception_v1_classifier, img=img_name_tensors['School Bus'], baseline=name_baseline_tensors['Baseline Image: Black'], target_class_idx=780, m_steps=100, cmap=None, overlay_alpha=0.2) ###Output _____no_output_____ ###Markdown Returning to the "Giant Panda" image, IG attributions hightlight the texture, nose shape, and white fur of the Panda's face. ###Code _ = plot_img_attributions(model=inception_v1_classifier, img=img_name_tensors['Giant Panda'], baseline=name_baseline_tensors['Baseline Image: Black'], target_class_idx=389, m_steps=55, cmap=None, overlay_alpha=0.5) ###Output _____no_output_____ ###Markdown How do different baselines impact interpretation of IG attributions? In the section **Step 2: Establish baseline to compare against inputs**, the explanation from the original IG paper and discussion recommended a black baseline image to "ignore" and allow for interpretation of the predictions solely as a function of the input pixels. To motivate the choice of a black baseline image for interpretation, lets take a look at how a random baseline influences IG attributions. Recall from above that a black baseline with the fireboat image, the IG attributions were primarily focused on the right water cannon on the fireboat. Now with a random baseline, the interpretation is much less clear. The IG attribution mask below shows a hazy attribution cloud of varying pixel intensity around the entire region of the water cannon streams. Are these truly significant features identified by the model or artifacts of random dark pixels from the random basline? Inconclusive without more investigation. The random baseline has changed interpretation of the pixel intensities from being solely in relation to the input features to input features plus spurious attributions from the baseline. ###Code _ = plot_img_attributions(model=inception_v1_classifier, img=img_name_tensors['Fireboat'], baseline=name_baseline_tensors['Baseline Image: Random'], target_class_idx=555, m_steps=240, cmap=None, overlay_alpha=0.3) ###Output _____no_output_____ ###Markdown Returning to the school bus image, a black baseline really highlighted the school bus shape and stop sign as strongly distingushing features. In contrast, a random noise baseline makes interpretation of the IG attribution mask significantly more difficult. In particular, this attribution mask would wrongly leave you to believe that the model found a small area of pixels along the side of the bus significant. ###Code _ = plot_img_attributions(model=inception_v1_classifier, img=img_name_tensors['School Bus'], baseline=name_baseline_tensors['Baseline Image: Random'], target_class_idx=780, m_steps=100, cmap=None, overlay_alpha=0.3) ###Output _____no_output_____ ###Markdown **Are there any scenarios where you prefer a non-black baseline? Yes.** Consider the photo below of an all black beetle on a white background. The beetle primarily receives 0 pixel attribution with a black baseline and only highlights small bright portions of the beetle caused by glare and some of the spurious background and colored leg pixels. *For this example, black pixels are meaningful and do not provide an uninformative baseline.* ###Code _ = plot_img_attributions(model=inception_v1_classifier, img=img_name_tensors['Black Beetle'], baseline=name_baseline_tensors['Baseline Image: Black'], target_class_idx=307, m_steps=200, cmap=None, overlay_alpha=0.3) ###Output _____no_output_____ ###Markdown A white baseline is a better contrastive choice here to highlight the important pixels on the beetle. ###Code _ = plot_img_attributions(model=inception_v1_classifier, img=img_name_tensors['Black Beetle'], baseline=name_baseline_tensors['Baseline Image: White'], target_class_idx=307, m_steps=200, cmap=None, overlay_alpha=0.3) ###Output _____no_output_____ ###Markdown Ultimately, picking any constant color baseline has potential interpretation problems through just visual inspection alone without consideration of the underlying values and their signs. Baseline selection is still an area of active research with various proposals e.g. averaging multiple random baselines, blurred inputs, etc. discussed in depth in the distill.pub article [Visualizing the Impact of Feature Attribution Baselines](https://distill.pub/2020/attribution-baselines/). Use cases IG is a model-agnostic interpretability method that can be applied to any differentiable model (e.g. neural networks) to understand its predictions in terms of its input features; whether they be images, video, text, or structured data.**At Google, IG has been applied in 20+ product areas to recommender system, classification, and regression models for feature importance and selection, model error analysis, train-test data skew monitoring, and explaining model behavior to stakeholders.**The subsections below present a non-exhaustive list of the most common use cases for IG biased toward production machine learning workflows. Use case: understanding feature importances IG relative feature importances provide better understanding of your model's learned features to both model builders and stakeholders, insight into the underlying data it was trained on, as well as provide a basis for feature selection. Lets take a look at an example of how IG relative feature importances can provide insight into the underlying input data. **What is the difference between a Golden Retriever and Labrador Retriever?** Consider again the example images of the [Golden Retriever](https://en.wikipedia.org/wiki/Golden_Retriever) and the Yellow [Labrador Retriever](https://en.wikipedia.org/wiki/Labrador_Retriever) below. If you are not a domain expert familiar with these breeds, you might reasonably conclude these are 2 images of the same type of dog. They both have similar face and body shapes as well as coloring. Your model, Inception V1, already correctly identifies a Golden Retriever and Labrador Retriever. In fact, it is quite confident about the Golden Retriever in the top image, even though there is a bit of lingering doubt about the Labrador Retriever as seen with its appearance in prediction 4. In comparison, the model is relatively less confident about its correct prediction of the Labrador Retriever in the second image and also sees some shades of similarity with the Golden Retriever which also makes an appearance in the top 5 predictions. ###Code _ = plot_img_predictions( model=inception_v1_classifier, img=tf.stack([img_name_tensors['Golden Retriever'], img_name_tensors['Yellow Labrador Retriever']]), img_titles=tf.stack(['Golden Retriever', 'Yellow Labrador Retriever']), label_vocab=imagenet_label_vocab, top_k=5 ) ###Output _____no_output_____ ###Markdown Without any prior understanding of how to differentiate these dogs or the features to do so, what can you learn from IG's feature importances? Review the Golden Retriever IG attribution mask and IG Overlay of the original image below. Notice how it the pixel intensities are primarily highlighted on the face and shape of the dog but are brightest on the front and back legs and tail in areas of *lengthy and wavy fur*. A quick Google search validates that this is indeed a key distinguishing feature of Golden Retrievers compared to Labrador Retrievers. ###Code _ = plot_img_attributions(model=inception_v1_classifier, img=img_name_tensors['Golden Retriever'], baseline=name_baseline_tensors['Baseline Image: Black'], target_class_idx=208, m_steps=200, cmap=None, overlay_alpha=0.3) ###Output _____no_output_____ ###Markdown Comparatively, IG also highlights the face and body shape of the Labrador Retriever with a density of bright pixels on its *straight and short hair coat*. This provides additional evidence toward the length and texture of the coats being key differentiators between these 2 breeds. ###Code _ = plot_img_attributions(model=inception_v1_classifier, img=img_name_tensors['Yellow Labrador Retriever'], baseline=name_baseline_tensors['Baseline Image: Black'], target_class_idx=209, m_steps=100, cmap=None, overlay_alpha=0.3) ###Output _____no_output_____ ###Markdown From visual inspection of the IG attributions, you now have insight into the underlying causal structure behind distringuishing Golden Retrievers and Yellow Labrador Retrievers without any prior knowledge. Going forward, you can use this insight to improve your model's performance further through refining its learned representations of these 2 breeds by retraining with additional examples of each dog breed and augmenting your training data through random perturbations of each dog's coat textures and colors. Use case: debugging data skew Training-serving data skew, a difference between performance during training and during model serving, is a hard to detect and widely prevalent issue impacting the performance of production machine learning systems. ML systems require dense samplings of input spaces in their training data to learn representations that generalize well to unseen data. To complement existing production ML monitoring of dataset and model performance statistics, tracking IG feature importances across time (e.g. "next day" splits) and data splits (e.g. train/dev/test splits) allows for meaningful monitoring of train-serving feature drift and skew. **Military uniforms change across space and time.** Recall from this tutorial's section on ImageNet that each class (e.g. military uniform) in the ILSVRC-2012-CLS training dataset is represented by an average of 1,000 images that Inception V1 could learn from. At present, there are about 195 countries around the world that have significantly different military uniforms by service branch, climate, and occasion, etc. Additionally, military uniforms have changed significantly over time within the same country. As a result, the potential input space for military uniforms is enormous with many uniforms over-represented (e.g. US military) while others sparsely represented (e.g. US Union Army) or absent from the training data altogether (e.g. Greece Presidential Guard). ###Code _ = plot_img_predictions( model=inception_v1_classifier, img=tf.stack([img_name_tensors['Military Uniform (Grace Hopper)'], img_name_tensors['Military Uniform (General Ulysses S. Grant)'], img_name_tensors['Military Uniform (Greek Presidential Guard)']]), img_titles=tf.stack(['Military Uniform (Grace Hopper)', 'Military Uniform (General Ulysses S. Grant)', 'Military Uniform (Greek Presidential Guard)']), label_vocab=imagenet_label_vocab, top_k=5 ) ###Output _____no_output_____ ###Markdown Inception V1 correctly classifies this image of [United States Rear Admiral and Computer Scientist, Grace Hopper](https://en.wikipedia.org/wiki/Grace_Hopper), under the class "military uniform" above. From visual inspection of the IG feature attributions, you can see that brightest intensity pixels are focused around the shirt colar and tie, military insignia on the jacket and hat, and various pixel areas around her face. Note that there are potentially spurious pixels also highlighted in the background worth investigating empirically to refine the model's learned representation of military uniforms. However, IG does not provide insight into how these pixels were combined into the final prediction so its possible these pixels helped the model distinguish between military uniform and other similar classes such as the windsor tie and suit. ###Code _ = plot_img_attributions(model=inception_v1_classifier, img=img_name_tensors['Military Uniform (Grace Hopper)'], baseline=name_baseline_tensors['Baseline Image: Black'], target_class_idx=653, m_steps=200, cmap=None, overlay_alpha=0.3) ###Output _____no_output_____ ###Markdown Below is an image of the [United States General Ulysses S. Grant](https://en.wikipedia.org/wiki/Ulysses_S._Grant) circa 1865. He is wearing a military uniform for the same country as Rear Admiral Hopper above, but how well can the model identify a military uniform to this image of different coloring and taken 120+ years earlier? From the model predictions above, you can see not very well as the model incorrectly predicts a trench coat and suit above a military uniform.From visual inspection of the IG attribution mask, it is clear the model struggled to identify a military uniform with the faded black and white image lacking the contrastive range of a color image. Since this is a faded black and white image with prominent darker features, a white baseline is a better choice.The IG Overlay of the original image does suggest that the model identified the military insignia patch on the right shoulder, face, collar, jacket buttons, and pixels around the edges of the coat. Using this insight, you can improve model performance by adding data augmentation to your input data pipeline to include additional colorless images and image translations as well as additional example images with military coats. ###Code _ = plot_img_attributions(model=inception_v1_classifier, img=img_name_tensors['Military Uniform (General Ulysses S. Grant)'], baseline=name_baseline_tensors['Baseline Image: White'], target_class_idx=870, m_steps=200, cmap=None, overlay_alpha=0.3) ###Output _____no_output_____ ###Markdown Yikes! Inception V1 incorrectly predicted the image of a [Greek Presidential Guard](https://en.wikipedia.org/wiki/Presidential_Guard_(Greece)) as a vestment with low confidence. The underlying training data does not appear to have sufficient representation and density of Greek military uniforms. In fact, the lack of geo-diversity in large public image datasets, including ImageNet, was studied in the paper S. Shankar, Y. Halpern, E. Breck, J. Atwood, J. Wilson, and D. Sculley. ["No classification without representation: Assessing geodiversity issues in open datasets for the developing world."](https://arxiv.org/abs/1711.08536), 2017. The authors found "observable amerocentric and eurocentric representation bias" and strong differences in relative model performance across geographic areas. ###Code _ = plot_img_attributions(model=inception_v1_classifier, img=img_name_tensors['Military Uniform (Greek Presidential Guard)'], baseline=name_baseline_tensors['Baseline Image: Black'], target_class_idx=653, m_steps=200, cmap=None, overlay_alpha=0.3) ###Output _____no_output_____ ###Markdown Using the IG attributions above, you can see the model focused primarily on the face and high contrast white wavy kilt in the front and vest rather than the military insignia on the red hat or sword hilt. While IG attributions alone will not identify or fix data skew or bias, when combined with model evaluation performance metrics and dataset statistics, IG attributions provide you with a guided path forward to collecting more and diverse data to improve model performance.Re-training the model on this more diverse sampling of the input space of Greece military uniforms, in particular those that emphasize military insignia, as well as utilizing weighting strategies during training can help mitigate biased data and further refine model performance and generalization. Use case: debugging model performance IG feature attributions provide a useful debugging complement to dataset statistics and model performance evaluation metrics to better understand model quality.When using IG feature attributions for debugging, you are looking for insights into the following questions:* Which features are important? * How well does the model's learned features generalize? * Does the model learn "incorrect" or spurious features in the image beyond the true class object?* What features did my model miss?* Comparing correct and incorrect examples of the same class, what is the difference in the feature attributions? IG feature attributions are well suited for counterfactual reasoning to gain insight into your model's performance and limitations. This involves comparing feature attributions for images of the same class that receive different predictions. When combined with model performance metrics and dataset statistics, IG feature attributions give greater insight into model errors during debuggin to understand which features contributed to the incorrect prediction when compared to feature attributions on correct predictions. To go deeper on model debugging, see The Google AI [What-if tool](https://pair-code.github.io/what-if-tool/) to interactively inspect your dataset, and model, and IG feature attributions. In the example below, you will apply 3 transformations to the "Yellow Labrador Retriever" image and constrast correct and incorrect IG feature attributions to gain insight into your model's limitations. ###Code rotate90_labrador_retriever_img = tf.image.rot90(img_name_tensors['Yellow Labrador Retriever']) upsidedown_labrador_retriever_img = tf.image.flip_up_down(img_name_tensors['Yellow Labrador Retriever']) zoom_labrador_retriever_img = tf.keras.preprocessing.image.random_zoom(x=img_name_tensors['Yellow Labrador Retriever'], zoom_range=(0.45,0.45)) _ = plot_img_predictions( model=inception_v1_classifier, img=tf.stack([img_name_tensors['Yellow Labrador Retriever'], rotate90_labrador_retriever_img, upsidedown_labrador_retriever_img, zoom_labrador_retriever_img]), img_titles=tf.stack(['Yellow Labrador Retriever (original)', 'Yellow Labrador Retriever (rotated 90 degrees)', 'Yellow Labrador Retriever (flipped upsidedown)', 'Yellow Labrador Retriever (zoomed in)']), label_vocab=imagenet_label_vocab, top_k=5 ) ###Output _____no_output_____ ###Markdown These rotation and zooming examples serve to highlight an important limitation of convolutional neural networks like Inception V1 - *CNNs are not naturally rotationally or scale invariant.* All of these examples resulted in incorrect predictions. Now you will see an example of how comparing 2 example attributions - one incorrect prediction vs. one known correct prediction - gives a deeper feature-level insight into why the model made an error to take corrective action. ###Code labrador_retriever_attributions = integrated_gradients(model=inception_v1_classifier, baseline=name_baseline_tensors['Baseline Image: Black'], input=img_name_tensors['Yellow Labrador Retriever'], target_class_idx=209, m_steps=200, method='riemann_trapezoidal') zoom_labrador_retriever_attributions = integrated_gradients(model=inception_v1_classifier, baseline=name_baseline_tensors['Baseline Image: Black'], input=zoom_labrador_retriever_img, target_class_idx=209, m_steps=200, method='riemann_trapezoidal') ###Output _____no_output_____ ###Markdown Zooming in on the Labrador Retriever image causes Inception V1 to incorrectly predict a different dog breed, a [Saluki](https://en.wikipedia.org/wiki/Saluki). Compare the IG attributions on the incorrect and correct predictions below. You can see the IG attributions on the zoomed image still focus on the legs but they are now much further apart and the midsection is proportionally narrower. Compared to the IG attributions on the original image, the visible head size is significantly smaller as well. Aimed with deeper feature-level understanding of your model's error, you can improve model performance by pursuing strategies such as training data augmentation to make your model more robust to changes in object proportions or check your image preprocessing code is the same during training and serving to prevent data skew introduced from by zooming or resizing operations. ###Code fig, axs = plt.subplots(nrows=1, ncols=3, squeeze=False, figsize=(16, 12)) axs[0,0].set_title('IG Attributions - Incorrect Prediction: Saluki') axs[0,0].imshow(tf.reduce_sum(tf.abs(zoom_labrador_retriever_attributions), axis=-1), cmap=plt.cm.inferno) axs[0,0].axis('off') axs[0,1].set_title('IG Attributions - Correct Prediction: Labrador Retriever') axs[0,1].imshow(tf.reduce_sum(tf.abs(labrador_retriever_attributions), axis=-1), cmap=None) axs[0,1].axis('off') axs[0,2].set_title('IG Attributions - both predictions overlayed') axs[0,2].imshow(tf.reduce_sum(tf.abs(zoom_labrador_retriever_attributions), axis=-1), cmap=plt.cm.inferno, alpha=0.99) axs[0,2].imshow(tf.reduce_sum(tf.abs(labrador_retriever_attributions), axis=-1), cmap=None, alpha=0.5) axs[0,2].axis('off') plt.tight_layout(); ###Output _____no_output_____
doc/source/ray-core/examples/plot_parameter_server.ipynb
###Markdown Parameter ServerThe parameter server is a framework for distributed machine learning training.In the parameter server framework, a centralized server (or group of servernodes) maintains global shared parameters of a machine-learning model(e.g., a neural network) while the data and computation of calculatingupdates (i.e., gradient descent updates) are distributed over worker nodes.```{image} /ray-core/images/param_actor.png:align: center```Parameter servers are a core part of many machine learning applications. Thisdocument walks through how to implement simple synchronous and asynchronousparameter servers using Ray actors.To run the application, first install some dependencies.```bashpip install torch torchvision filelock```Let's first define some helper functions and import some dependencies. ###Code import os import torch import torch.nn as nn import torch.nn.functional as F from torchvision import datasets, transforms from filelock import FileLock import numpy as np import ray def get_data_loader(): """Safely downloads data. Returns training/validation set dataloader.""" mnist_transforms = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))] ) # We add FileLock here because multiple workers will want to # download data, and this may cause overwrites since # DataLoader is not threadsafe. with FileLock(os.path.expanduser("~/data.lock")): train_loader = torch.utils.data.DataLoader( datasets.MNIST( "~/data", train=True, download=True, transform=mnist_transforms ), batch_size=128, shuffle=True, ) test_loader = torch.utils.data.DataLoader( datasets.MNIST("~/data", train=False, transform=mnist_transforms), batch_size=128, shuffle=True, ) return train_loader, test_loader def evaluate(model, test_loader): """Evaluates the accuracy of the model on a validation dataset.""" model.eval() correct = 0 total = 0 with torch.no_grad(): for batch_idx, (data, target) in enumerate(test_loader): # This is only set to finish evaluation faster. if batch_idx * len(data) > 1024: break outputs = model(data) _, predicted = torch.max(outputs.data, 1) total += target.size(0) correct += (predicted == target).sum().item() return 100.0 * correct / total ###Output _____no_output_____ ###Markdown Setup: Defining the Neural NetworkWe define a small neural network to use in training. We providesome helper functions for obtaining data, including getter/settermethods for gradients and weights. ###Code class ConvNet(nn.Module): """Small ConvNet for MNIST.""" def __init__(self): super(ConvNet, self).__init__() self.conv1 = nn.Conv2d(1, 3, kernel_size=3) self.fc = nn.Linear(192, 10) def forward(self, x): x = F.relu(F.max_pool2d(self.conv1(x), 3)) x = x.view(-1, 192) x = self.fc(x) return F.log_softmax(x, dim=1) def get_weights(self): return {k: v.cpu() for k, v in self.state_dict().items()} def set_weights(self, weights): self.load_state_dict(weights) def get_gradients(self): grads = [] for p in self.parameters(): grad = None if p.grad is None else p.grad.data.cpu().numpy() grads.append(grad) return grads def set_gradients(self, gradients): for g, p in zip(gradients, self.parameters()): if g is not None: p.grad = torch.from_numpy(g) ###Output _____no_output_____ ###Markdown Defining the Parameter ServerThe parameter server will hold a copy of the model.During training, it will:1. Receive gradients and apply them to its model.2. Send the updated model back to the workers.The ``@ray.remote`` decorator defines a remote process. It wraps theParameterServer class and allows users to instantiate it as aremote actor. ###Code @ray.remote class ParameterServer(object): def __init__(self, lr): self.model = ConvNet() self.optimizer = torch.optim.SGD(self.model.parameters(), lr=lr) def apply_gradients(self, *gradients): summed_gradients = [ np.stack(gradient_zip).sum(axis=0) for gradient_zip in zip(*gradients) ] self.optimizer.zero_grad() self.model.set_gradients(summed_gradients) self.optimizer.step() return self.model.get_weights() def get_weights(self): return self.model.get_weights() ###Output _____no_output_____ ###Markdown Defining the WorkerThe worker will also hold a copy of the model. During training. it willcontinuously evaluate data and send gradientsto the parameter server. The worker will synchronize its model with theParameter Server model weights. ###Code @ray.remote class DataWorker(object): def __init__(self): self.model = ConvNet() self.data_iterator = iter(get_data_loader()[0]) def compute_gradients(self, weights): self.model.set_weights(weights) try: data, target = next(self.data_iterator) except StopIteration: # When the epoch ends, start a new epoch. self.data_iterator = iter(get_data_loader()[0]) data, target = next(self.data_iterator) self.model.zero_grad() output = self.model(data) loss = F.nll_loss(output, target) loss.backward() return self.model.get_gradients() ###Output _____no_output_____ ###Markdown Synchronous Parameter Server TrainingWe'll now create a synchronous parameter server training scheme. We'll firstinstantiate a process for the parameter server, along with multipleworkers. ###Code iterations = 200 num_workers = 2 ray.init(ignore_reinit_error=True) ps = ParameterServer.remote(1e-2) workers = [DataWorker.remote() for i in range(num_workers)] ###Output _____no_output_____ ###Markdown We'll also instantiate a model on the driver process to evaluate the testaccuracy during training. ###Code model = ConvNet() test_loader = get_data_loader()[1] ###Output _____no_output_____ ###Markdown Training alternates between:1. Computing the gradients given the current weights from the server2. Updating the parameter server's weights with the gradients. ###Code print("Running synchronous parameter server training.") current_weights = ps.get_weights.remote() for i in range(iterations): gradients = [worker.compute_gradients.remote(current_weights) for worker in workers] # Calculate update after all gradients are available. current_weights = ps.apply_gradients.remote(*gradients) if i % 10 == 0: # Evaluate the current model. model.set_weights(ray.get(current_weights)) accuracy = evaluate(model, test_loader) print("Iter {}: \taccuracy is {:.1f}".format(i, accuracy)) print("Final accuracy is {:.1f}.".format(accuracy)) # Clean up Ray resources and processes before the next example. ray.shutdown() ###Output _____no_output_____ ###Markdown Asynchronous Parameter Server TrainingWe'll now create a synchronous parameter server training scheme. We'll firstinstantiate a process for the parameter server, along with multipleworkers. ###Code print("Running Asynchronous Parameter Server Training.") ray.init(ignore_reinit_error=True) ps = ParameterServer.remote(1e-2) workers = [DataWorker.remote() for i in range(num_workers)] ###Output _____no_output_____ ###Markdown Here, workers will asynchronously compute the gradients given itscurrent weights and send these gradients to the parameter server assoon as they are ready. When the Parameter server finishes applying thenew gradient, the server will send back a copy of the current weights to theworker. The worker will then update the weights and repeat. ###Code current_weights = ps.get_weights.remote() gradients = {} for worker in workers: gradients[worker.compute_gradients.remote(current_weights)] = worker for i in range(iterations * num_workers): ready_gradient_list, _ = ray.wait(list(gradients)) ready_gradient_id = ready_gradient_list[0] worker = gradients.pop(ready_gradient_id) # Compute and apply gradients. current_weights = ps.apply_gradients.remote(*[ready_gradient_id]) gradients[worker.compute_gradients.remote(current_weights)] = worker if i % 10 == 0: # Evaluate the current model after every 10 updates. model.set_weights(ray.get(current_weights)) accuracy = evaluate(model, test_loader) print("Iter {}: \taccuracy is {:.1f}".format(i, accuracy)) print("Final accuracy is {:.1f}.".format(accuracy)) ###Output _____no_output_____ ###Markdown Parameter Server```{tip}For a production-grade implementation of distributedtraining, use [Ray Train](https://docs.ray.io/en/master/train/train.html).```The parameter server is a framework for distributed machine learning training.In the parameter server framework, a centralized server (or group of servernodes) maintains global shared parameters of a machine-learning model(e.g., a neural network) while the data and computation of calculatingupdates (i.e., gradient descent updates) are distributed over worker nodes.```{image} /ray-core/images/param_actor.png:align: center```Parameter servers are a core part of many machine learning applications. Thisdocument walks through how to implement simple synchronous and asynchronousparameter servers using Ray actors.To run the application, first install some dependencies.```bashpip install torch torchvision filelock```Let's first define some helper functions and import some dependencies. ###Code import os import torch import torch.nn as nn import torch.nn.functional as F from torchvision import datasets, transforms from filelock import FileLock import numpy as np import ray def get_data_loader(): """Safely downloads data. Returns training/validation set dataloader.""" mnist_transforms = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))] ) # We add FileLock here because multiple workers will want to # download data, and this may cause overwrites since # DataLoader is not threadsafe. with FileLock(os.path.expanduser("~/data.lock")): train_loader = torch.utils.data.DataLoader( datasets.MNIST( "~/data", train=True, download=True, transform=mnist_transforms ), batch_size=128, shuffle=True, ) test_loader = torch.utils.data.DataLoader( datasets.MNIST("~/data", train=False, transform=mnist_transforms), batch_size=128, shuffle=True, ) return train_loader, test_loader def evaluate(model, test_loader): """Evaluates the accuracy of the model on a validation dataset.""" model.eval() correct = 0 total = 0 with torch.no_grad(): for batch_idx, (data, target) in enumerate(test_loader): # This is only set to finish evaluation faster. if batch_idx * len(data) > 1024: break outputs = model(data) _, predicted = torch.max(outputs.data, 1) total += target.size(0) correct += (predicted == target).sum().item() return 100.0 * correct / total ###Output _____no_output_____ ###Markdown Setup: Defining the Neural NetworkWe define a small neural network to use in training. We providesome helper functions for obtaining data, including getter/settermethods for gradients and weights. ###Code class ConvNet(nn.Module): """Small ConvNet for MNIST.""" def __init__(self): super(ConvNet, self).__init__() self.conv1 = nn.Conv2d(1, 3, kernel_size=3) self.fc = nn.Linear(192, 10) def forward(self, x): x = F.relu(F.max_pool2d(self.conv1(x), 3)) x = x.view(-1, 192) x = self.fc(x) return F.log_softmax(x, dim=1) def get_weights(self): return {k: v.cpu() for k, v in self.state_dict().items()} def set_weights(self, weights): self.load_state_dict(weights) def get_gradients(self): grads = [] for p in self.parameters(): grad = None if p.grad is None else p.grad.data.cpu().numpy() grads.append(grad) return grads def set_gradients(self, gradients): for g, p in zip(gradients, self.parameters()): if g is not None: p.grad = torch.from_numpy(g) ###Output _____no_output_____ ###Markdown Defining the Parameter ServerThe parameter server will hold a copy of the model.During training, it will:1. Receive gradients and apply them to its model.2. Send the updated model back to the workers.The ``@ray.remote`` decorator defines a remote process. It wraps theParameterServer class and allows users to instantiate it as aremote actor. ###Code @ray.remote class ParameterServer(object): def __init__(self, lr): self.model = ConvNet() self.optimizer = torch.optim.SGD(self.model.parameters(), lr=lr) def apply_gradients(self, *gradients): summed_gradients = [ np.stack(gradient_zip).sum(axis=0) for gradient_zip in zip(*gradients) ] self.optimizer.zero_grad() self.model.set_gradients(summed_gradients) self.optimizer.step() return self.model.get_weights() def get_weights(self): return self.model.get_weights() ###Output _____no_output_____ ###Markdown Defining the WorkerThe worker will also hold a copy of the model. During training. it willcontinuously evaluate data and send gradientsto the parameter server. The worker will synchronize its model with theParameter Server model weights. ###Code @ray.remote class DataWorker(object): def __init__(self): self.model = ConvNet() self.data_iterator = iter(get_data_loader()[0]) def compute_gradients(self, weights): self.model.set_weights(weights) try: data, target = next(self.data_iterator) except StopIteration: # When the epoch ends, start a new epoch. self.data_iterator = iter(get_data_loader()[0]) data, target = next(self.data_iterator) self.model.zero_grad() output = self.model(data) loss = F.nll_loss(output, target) loss.backward() return self.model.get_gradients() ###Output _____no_output_____ ###Markdown Synchronous Parameter Server TrainingWe'll now create a synchronous parameter server training scheme. We'll firstinstantiate a process for the parameter server, along with multipleworkers. ###Code iterations = 200 num_workers = 2 ray.init(ignore_reinit_error=True) ps = ParameterServer.remote(1e-2) workers = [DataWorker.remote() for i in range(num_workers)] ###Output _____no_output_____ ###Markdown We'll also instantiate a model on the driver process to evaluate the testaccuracy during training. ###Code model = ConvNet() test_loader = get_data_loader()[1] ###Output _____no_output_____ ###Markdown Training alternates between:1. Computing the gradients given the current weights from the server2. Updating the parameter server's weights with the gradients. ###Code print("Running synchronous parameter server training.") current_weights = ps.get_weights.remote() for i in range(iterations): gradients = [worker.compute_gradients.remote(current_weights) for worker in workers] # Calculate update after all gradients are available. current_weights = ps.apply_gradients.remote(*gradients) if i % 10 == 0: # Evaluate the current model. model.set_weights(ray.get(current_weights)) accuracy = evaluate(model, test_loader) print("Iter {}: \taccuracy is {:.1f}".format(i, accuracy)) print("Final accuracy is {:.1f}.".format(accuracy)) # Clean up Ray resources and processes before the next example. ray.shutdown() ###Output _____no_output_____ ###Markdown Asynchronous Parameter Server TrainingWe'll now create a synchronous parameter server training scheme. We'll firstinstantiate a process for the parameter server, along with multipleworkers. ###Code print("Running Asynchronous Parameter Server Training.") ray.init(ignore_reinit_error=True) ps = ParameterServer.remote(1e-2) workers = [DataWorker.remote() for i in range(num_workers)] ###Output _____no_output_____ ###Markdown Here, workers will asynchronously compute the gradients given itscurrent weights and send these gradients to the parameter server assoon as they are ready. When the Parameter server finishes applying thenew gradient, the server will send back a copy of the current weights to theworker. The worker will then update the weights and repeat. ###Code current_weights = ps.get_weights.remote() gradients = {} for worker in workers: gradients[worker.compute_gradients.remote(current_weights)] = worker for i in range(iterations * num_workers): ready_gradient_list, _ = ray.wait(list(gradients)) ready_gradient_id = ready_gradient_list[0] worker = gradients.pop(ready_gradient_id) # Compute and apply gradients. current_weights = ps.apply_gradients.remote(*[ready_gradient_id]) gradients[worker.compute_gradients.remote(current_weights)] = worker if i % 10 == 0: # Evaluate the current model after every 10 updates. model.set_weights(ray.get(current_weights)) accuracy = evaluate(model, test_loader) print("Iter {}: \taccuracy is {:.1f}".format(i, accuracy)) print("Final accuracy is {:.1f}.".format(accuracy)) ###Output _____no_output_____
Kaggle_Panda_Curso.ipynb
###Markdown https://www.kaggle.com/residentmario/creating-reading-and-writing **Pandas Home Page** ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Creating data¶There are two core objects in pandas: the DataFrame and the Series.DataFrameA DataFrame is a table. It contains an array of individual entries, each of which has a certain value. Each entry corresponds to a row (or record) and a column.For example, consider the following simple DataFrame: ###Code pd.DataFrame({'Yes': [50, 21], 'No': [131, 2]}) ###Output _____no_output_____ ###Markdown In this example, the "0, No" entry has the value of 131. The "0, Yes" entry has a value of 50, and so on.DataFrame entries are not limited to integers. For instance, here's a DataFrame whose values are strings: ###Code pd.DataFrame({'Bob': ['I liked it.', 'It was awful.'], 'Sue': ['Pretty good.', 'Bland.']}) ###Output _____no_output_____ ###Markdown The dictionary-list constructor assigns values to the column labels, but just uses an ascending count from 0 (0, 1, 2, 3, ...) for the row labels. Sometimes this is OK, but oftentimes we will want to assign these labels ourselves.The list of row labels used in a DataFrame is known as an Index. We can assign values to it by using an index parameter in our constructor: ###Code pd.DataFrame({'Bob': ['I liked it.', 'It was awful.'], 'Sue': ['Pretty good.', 'Bland.']}, index=['Product A', 'Product B']) ###Output _____no_output_____ ###Markdown SeriesA Series, by contrast, is a sequence of data values. If a DataFrame is a table, a Series is a list. And in fact you can create one with nothing more than a list ###Code pd.Series([1, 2, 3, 4, 5]) ###Output _____no_output_____ ###Markdown A Series is, in essence, a single column of a DataFrame. So you can assign column values to the Series the same way as before, using an index parameter. However, a Series does not have a column name, it only has one overall name: ###Code pd.Series([30, 35, 40], index=['2015 Sales', '2016 Sales', '2017 Sales'], name='Product A') ###Output _____no_output_____ ###Markdown The Series and the DataFrame are intimately related. It's helpful to think of a DataFrame as actually being just a bunch of Series "glued together". We'll see more of this in the next section of this tutorial. **Reading data files**Being able to create a DataFrame or Series by hand is handy. But, most of the time, we won't actually be creating our own data by hand. Instead, we'll be working with data that already exists.Data can be stored in any of a number of different forms and formats. By far the most basic of these is the humble CSV file. When you open a CSV file you get something that looks like this:Product A,Product B,Product C,30,21,9,35,34,1,41,11,11 So a CSV file is a table of values separated by commas. Hence the name: "Comma-Separated Values", or CSV.Let's now set aside our toy datasets and see what a real dataset looks like when we read it into a DataFrame. We'll use the pd.read_csv() function to read the data into a DataFrame. This goes thusly: ###Code # wine_reviews = pd.read_csv("../input/wine-reviews/winemag-data-130k-v2.csv") ###Output _____no_output_____ ###Markdown Para bajar los datos:https://www.kaggle.com/luisrivera/exercise-creating-reading-and-writing/editPara subir los datos a Google Collaborative:D:\kaggle\Cursos\Panda ###Code wine_reviews = pd.read_csv("winemag-data-130k-v2.csv") ###Output _____no_output_____ ###Markdown We can use the shape attribute to check how large the resulting DataFrame is: ###Code wine_reviews.shape ###Output _____no_output_____ ###Markdown So our new DataFrame has 130,000 records split across 14 different columns. That's almost 2 million entries!We can examine the contents of the resultant DataFrame using the head() command, which grabs the first five rows: ###Code wine_reviews.head() ###Output _____no_output_____ ###Markdown The pd.read_csv() function is well-endowed, with over 30 optional parameters you can specify. For example, you can see in this dataset that the CSV file has a built-in index, which pandas did not pick up on automatically. To make pandas use that column for the index (instead of creating a new one from scratch), we can specify an index_col. ###Code # wine_reviews = pd.read_csv("../input/wine-reviews/winemag-data-130k-v2.csv", index_col=0) # wine_reviews.head() wine_reviews = pd.read_csv("winemag-data-130k-v2.csv", index_col=0) wine_reviews.head() ###Output _____no_output_____ ###Markdown Para practicar directo en Kaggle:https://www.kaggle.com/luisrivera/exercise-creating-reading-and-writing/edit ###Code import pandas as pd pd.set_option('max_rows', 5) # from learntools.core import binder; binder.bind(globals()) # from learntools.pandas.creating_reading_and_writing import * # print("Setup complete.") ###Output _____no_output_____ ###Markdown 1.In the cell below, create a DataFrame `fruits` that looks like this:![](https://i.imgur.com/Ax3pp2A.png) ###Code # Your code goes here. Create a dataframe matching the above diagram and assign it to the variable fruits. fruits = pd.DataFrame({'Apples': ['30'], 'Bananas': ['21']}) #q1.check() fruits fruits = pd.DataFrame([[30, 21]], columns=['Apples', 'Bananas']) fruits ###Output _____no_output_____ ###Markdown 2.Create a dataframe `fruit_sales` that matches the diagram below:![](https://i.imgur.com/CHPn7ZF.png) ###Code fruit_sales = pd.DataFrame({'Apples': ['35', '41'], 'Bananas': ['21', '34' ]}, index=['2017 Sales', '2018 Sales']) fruit_sales ###Output _____no_output_____ ###Markdown 3.Create a variable `ingredients` with a Series that looks like:```Flour 4 cupsMilk 1 cupEggs 2 largeSpam 1 canName: Dinner, dtype: object``` ###Code quantities = ['4 cups', '1 cup', '2 large', '1 can'] items = ['Flour', 'Milk', 'Eggs', 'Spam'] recipe = pd.Series(quantities, index=items, name='Dinner') recipe ###Output _____no_output_____ ###Markdown 4.Read the following csv dataset of wine reviews into a DataFrame called `reviews`:![](https://i.imgur.com/74RCZtU.png)The filepath to the csv file is `../input/wine-reviews/winemag-data_first150k.csv`. The first few lines look like:```,country,description,designation,points,price,province,region_1,region_2,variety,winery0,US,"This tremendous 100% varietal wine[...]",Martha's Vineyard,96,235.0,California,Napa Valley,Napa,Cabernet Sauvignon,Heitz1,Spain,"Ripe aromas of fig, blackberry and[...]",Carodorum Selección Especial Reserva,96,110.0,Northern Spain,Toro,,Tinta de Toro,Bodega Carmen Rodríguez``` ###Code #reviews = pd.read_csv("../input/wine-reviews/winemag-data_first150k.csv", index_col=0) reviews = pd.read_csv("winemag-data_first150k.csv", index_col=0) reviews ###Output _____no_output_____ ###Markdown 5.Run the cell below to create and display a DataFrame called `animals`: ###Code animals = pd.DataFrame({'Cows': [12, 20], 'Goats': [22, 19]}, index=['Year 1', 'Year 2']) animals ###Output _____no_output_____ ###Markdown In the cell below, write code to save this DataFrame to disk as a csv file with the name `cows_and_goats.csv`. ###Code animals.to_csv("cows_and_goats.csv") ###Output _____no_output_____ ###Markdown https://www.kaggle.com/residentmario/indexing-selecting-assigning **Naive accessors**Native Python objects provide good ways of indexing data. Pandas carries all of these over, which helps make it easy to start with.Consider this DataFrame: ###Code reviews ###Output _____no_output_____ ###Markdown In Python, we can access the property of an object by accessing it as an attribute. A book object, for example, might have a title property, which we can access by calling book.title. Columns in a pandas DataFrame work in much the same way.Hence to access the country property of reviews we can use: ###Code reviews.country ###Output _____no_output_____ ###Markdown If we have a Python dictionary, we can access its values using the indexing ([]) operator. We can do the same with columns in a DataFrame: ###Code reviews['country'] ###Output _____no_output_____ ###Markdown These are the two ways of selecting a specific Series out of a DataFrame. Neither of them is more or less syntactically valid than the other, but the indexing operator [] does have the advantage that it can handle column names with reserved characters in them (e.g. if we had a country providence column, reviews.country providence wouldn't work).Doesn't a pandas Series look kind of like a fancy dictionary? It pretty much is, so it's no surprise that, to drill down to a single specific value, we need only use the indexing operator [] once more: ###Code reviews['country'][0] ###Output _____no_output_____ ###Markdown **Indexing in pandas**The indexing operator and attribute selection are nice because they work just like they do in the rest of the Python ecosystem. As a novice, this makes them easy to pick up and use. However, pandas has its own accessor operators, loc and iloc. For more advanced operations, these are the ones you're supposed to be using.Index-based selectionPandas indexing works in one of two paradigms. The first is index-based selection: selecting data based on its numerical position in the data. iloc follows this paradigm.To select the first row of data in a DataFrame, we may use the following: ###Code reviews.iloc[0] ###Output _____no_output_____ ###Markdown Both loc and iloc are row-first, column-second. This is the opposite of what we do in native Python, which is column-first, row-second.This means that it's marginally easier to retrieve rows, and marginally harder to get retrieve columns. To get a column with iloc, we can do the following: ###Code reviews.iloc[:, 0] On its own, the : operator, which also comes from native Python, means "everything". When combined with other selectors, however, it can be used to indicate a range of values. For example, to select the country column from just the first, second, and third row, we would do: reviews.iloc[:3, 0] ###Output _____no_output_____ ###Markdown Or, to select just the second and third entries, we would do: ###Code reviews.iloc[1:3, 0] ###Output _____no_output_____ ###Markdown It's also possible to pass a list: ###Code reviews.iloc[[0, 1, 2], 0] ###Output _____no_output_____ ###Markdown Finally, it's worth knowing that negative numbers can be used in selection. This will start counting forwards from the end of the values. So for example here are the last five elements of the dataset. ###Code reviews.iloc[-5:] ###Output _____no_output_____ ###Markdown Label-based selectionThe second paradigm for attribute selection is the one followed by the loc operator: label-based selection. In this paradigm, it's the data index value, not its position, which matters.For example, to get the first entry in reviews, we would now do the following: ###Code reviews.loc[0, 'country'] ###Output _____no_output_____ ###Markdown iloc is conceptually simpler than loc because it ignores the dataset's indices. When we use iloc we treat the dataset like a big matrix (a list of lists), one that we have to index into by position. loc, by contrast, uses the information in the indices to do its work. Since your dataset usually has meaningful indices, it's usually easier to do things using loc instead. For example, here's one operation that's much easier using loc: ###Code reviews.loc[:, ['taster_name', 'taster_twitter_handle', 'points']] ###Output /usr/local/lib/python3.6/dist-packages/pandas/core/indexing.py:1418: FutureWarning: Passing list-likes to .loc or [] with any missing label will raise KeyError in the future, you can use .reindex() as an alternative. See the documentation here: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#deprecate-loc-reindex-listlike return self._getitem_tuple(key) ###Markdown Choosing between loc and ilocWhen choosing or transitioning between loc and iloc, there is one "gotcha" worth keeping in mind, which is that the two methods use slightly different indexing schemes.iloc uses the Python stdlib indexing scheme, where the first element of the range is included and the last one excluded. So 0:10 will select entries 0,...,9. loc, meanwhile, indexes inclusively. So 0:10 will select entries 0,...,10.Why the change? Remember that loc can index any stdlib type: strings, for example. If we have a DataFrame with index values Apples, ..., Potatoes, ..., and we want to select "all the alphabetical fruit choices between Apples and Potatoes", then it's a lot more convenient to index df.loc['Apples':'Potatoes'] than it is to index something like df.loc['Apples', 'Potatoet] (t coming after s in the alphabet).This is particularly confusing when the DataFrame index is a simple numerical list, e.g. 0,...,1000. In this case df.iloc[0:1000] will return 1000 entries, while df.loc[0:1000] return 1001 of them! To get 1000 elements using loc, you will need to go one lower and ask for df.iloc[0:999].Otherwise, the semantics of using loc are the same as those for iloc. **Manipulating the index**Label-based selection derives its power from the labels in the index. Critically, the index we use is not immutable. We can manipulate the index in any way we see fit.The set_index() method can be used to do the job. Here is what happens when we set_index to the title field: ###Code # reviews.set_index("title") # da error, no existe esa columna reviews.set_index("variety") ###Output _____no_output_____ ###Markdown This is useful if you can come up with an index for the dataset which is better than the current one.**Conditional selection**So far we've been indexing various strides of data, using structural properties of the DataFrame itself. To do interesting things with the data, however, we often need to ask questions based on conditions.For example, suppose that we're interested specifically in better-than-average wines produced in Italy.We can start by checking if each wine is Italian or not: ###Code reviews.country == 'Italy' ###Output _____no_output_____ ###Markdown This operation produced a Series of True/False booleans based on the country of each record. This result can then be used inside of loc to select the relevant data: ###Code reviews.loc[reviews.country == 'Italy'] ###Output _____no_output_____ ###Markdown This DataFrame has ~20,000 rows. The original had ~130,000. That means that around 15% of wines originate from Italy.We also wanted to know which ones are better than average. Wines are reviewed on a 80-to-100 point scale, so this could mean wines that accrued at least 90 points.We can use the ampersand (&) to bring the two questions together: ###Code reviews.loc[(reviews.country == 'Italy') & (reviews.points >= 90)] ###Output _____no_output_____ ###Markdown Suppose we'll buy any wine that's made in Italy or which is rated above average. For this we use a pipe (|): ###Code reviews.loc[(reviews.country == 'Italy') | (reviews.points >= 90)] ###Output _____no_output_____ ###Markdown Pandas comes with a few built-in conditional selectors, two of which we will highlight here.The first is isin. isin is lets you select data whose value "is in" a list of values. For example, here's how we can use it to select wines only from Italy or France: ###Code reviews.loc[reviews.country.isin(['Italy', 'France'])] ###Output _____no_output_____ ###Markdown The second is isnull (and its companion notnull). These methods let you highlight values which are (or are not) empty (NaN). For example, to filter out wines lacking a price tag in the dataset, here's what we would do: ###Code reviews.loc[reviews.price.notnull()] ###Output _____no_output_____ ###Markdown **Assigning data**Going the other way, assigning data to a DataFrame is easy. You can assign either a constant value: ###Code reviews['critic'] = 'everyone' reviews['critic'] ###Output _____no_output_____ ###Markdown Or with an iterable of values: ###Code reviews['index_backwards'] = range(len(reviews), 0, -1) reviews['index_backwards'] ###Output _____no_output_____ ###Markdown https://www.kaggle.com/luisrivera/exercise-indexing-selecting-assigning/edit **Ejercicios** Run the following cell to load your data and some utility functions (including code to check your answers). ###Code import pandas as pd # reviews = pd.read_csv("../input/wine-reviews/winemag-data-130k-v2.csv", index_col=0) reviews = pd.read_csv("winemag-data-130k-v2.csv", index_col=0) pd.set_option("display.max_rows", 5) # from learntools.core import binder; binder.bind(globals()) # from learntools.pandas.indexing_selecting_and_assigning import * # print("Setup complete.") ###Output _____no_output_____ ###Markdown Look at an overview of your data by running the following line. ###Code reviews.head() ###Output _____no_output_____ ###Markdown ![](http://) **Exercises** 1.Select the `description` column from `reviews` and assign the result to the variable `desc`. ###Code desc = reviews['description'] desc = reviews.description #or #desc = reviews["description"] # desc is a pandas Series object, with an index matching the reviews DataFrame. In general, when we select a single column from a DataFrame, we'll get a Series. desc.head(10) ###Output _____no_output_____ ###Markdown 2.Select the first value from the description column of `reviews`, assigning it to variable `first_description`. ###Code first_description = reviews["description"][0] # q2.check() first_description # Solution: first_description = reviews.description.iloc[0] # Note that while this is the preferred way to obtain the entry in the DataFrame, many other options will return a valid result, # such as reviews.description.loc[0], reviews.description[0], and more! first_description ###Output _____no_output_____ ###Markdown 3. Select the first row of data (the first record) from `reviews`, assigning it to the variable `first_row`. ###Code first_row = reviews.iloc[0] # q3.check() first_row # Solution: first_row = reviews.iloc[0] ###Output _____no_output_____ ###Markdown 4.Select the first 10 values from the `description` column in `reviews`, assigning the result to variable `first_descriptions`.Hint: format your output as a pandas Series. ###Code first_descriptions = reviews.iloc[:10, 1] # first_descriptions = reviews.description.iloc[0:9] # first_descriptions = reviews.description.loc[0:9,'description'] # q4.check() first_descriptions # Solution: first_descriptions = reviews.description.iloc[:10] # Note that many other options will return a valid result, such as desc.head(10) and reviews.loc[:9, "description"]. first_descriptions ###Output _____no_output_____ ###Markdown 5.Select the records with index labels `1`, `2`, `3`, `5`, and `8`, assigning the result to the variable `sample_reviews`.In other words, generate the following DataFrame:![](https://i.imgur.com/sHZvI1O.png) ###Code sample_reviews = reviews.iloc[[1,2,3,5,8],] # q5.check() sample_reviews # Solution: indices = [1, 2, 3, 5, 8] sample_reviews = reviews.loc[indices] sample_reviews ###Output _____no_output_____ ###Markdown 6.Create a variable `df` containing the `country`, `province`, `region_1`, and `region_2` columns of the records with the index labels `0`, `1`, `10`, and `100`. In other words, generate the following DataFrame:![](https://i.imgur.com/FUCGiKP.png) ###Code df = reviews.loc[[0,1,10,100],['country', 'province', 'region_1', 'region_2']] # q6.check() df # Solution: cols = ['country', 'province', 'region_1', 'region_2'] indices = [0, 1, 10, 100] df = reviews.loc[indices, cols] df ###Output _____no_output_____ ###Markdown 7.Create a variable `df` containing the `country` and `variety` columns of the first 100 records. Hint: you may use `loc` or `iloc`. When working on the answer this question and the several of the ones that follow, keep the following "gotcha" described in the tutorial:> `iloc` uses the Python stdlib indexing scheme, where the first element of the range is included and the last one excluded. `loc`, meanwhile, indexes inclusively. > This is particularly confusing when the DataFrame index is a simple numerical list, e.g. `0,...,1000`. In this case `df.iloc[0:1000]` will return 1000 entries, while `df.loc[0:1000]` return 1001 of them! To get 1000 elements using `loc`, you will need to go one lower and ask for `df.iloc[0:999]`. ###Code df = reviews.loc[0:99,['country', 'variety']] # q7.check() df # # Correct: cols = ['country', 'variety'] df = reviews.loc[:99, cols] # or # cols_idx = [0, 11] # df = reviews.iloc[:100, cols_idx] df ###Output _____no_output_____ ###Markdown 8.Create a DataFrame `italian_wines` containing reviews of wines made in `Italy`. Hint: `reviews.country` equals what? ###Code italian_wines = reviews.loc[reviews.country == 'Italy'] # q8.check() italian_wines # Solution: italian_wines = reviews[reviews.country == 'Italy'] italian_wines ###Output _____no_output_____ ###Markdown 9.Create a DataFrame `top_oceania_wines` containing all reviews with at least 95 points (out of 100) for wines from Australia or New Zealand. ###Code top_oceania_wines = reviews.loc[reviews.country.isin(['Australia', 'New Zealand']) & (reviews.points >= 95)] # q9.check() top_oceania_wines # Solution: top_oceania_wines = reviews.loc[ (reviews.country.isin(['Australia', 'New Zealand'])) & (reviews.points >= 95) ] ###Output _____no_output_____ ###Markdown https://www.kaggle.com/residentmario/summary-functions-and-maps **Funciones y Mapas** ###Code reviews ###Output _____no_output_____ ###Markdown Summary functionsPandas provides many simple "summary functions" (not an official name) which restructure the data in some useful way. For example, consider the describe() method: ###Code reviews.points.describe() ###Output _____no_output_____ ###Markdown This method generates a high-level summary of the attributes of the given column. It is type-aware, meaning that its output changes based on the data type of the input. The output above only makes sense for numerical data; for string data here's what we get: ###Code reviews.taster_name.describe() ###Output _____no_output_____ ###Markdown If you want to get some particular simple summary statistic about a column in a DataFrame or a Series, there is usually a helpful pandas function that makes it happen.For example, to see the mean of the points allotted (e.g. how well an averagely rated wine does), we can use the mean() function: ###Code reviews.points.mean() ###Output _____no_output_____ ###Markdown To see a list of unique values we can use the unique() function: ###Code # reviews.taster_name.unique() # se demora mucho?? ###Output _____no_output_____ ###Markdown To see a list of unique values and how often they occur in the dataset, we can use the value_counts() method: ###Code reviews.taster_name.value_counts() ###Output _____no_output_____ ###Markdown **Maps**A map is a term, borrowed from mathematics, for a function that takes one set of values and "maps" them to another set of values. In data science we often have a need for creating new representations from existing data, or for transforming data from the format it is in now to the format that we want it to be in later. Maps are what handle this work, making them extremely important for getting your work done!There are two mapping methods that you will use often.map() is the first, and slightly simpler one. For example, suppose that we wanted to remean the scores the wines received to 0. We can do this as follows: ###Code review_points_mean = reviews.points.mean() reviews.points.map(lambda p: p - review_points_mean) ###Output _____no_output_____ ###Markdown The function you pass to map() should expect a single value from the Series (a point value, in the above example), and return a transformed version of that value. map() returns a new Series where all the values have been transformed by your function.apply() is the equivalent method if we want to transform a whole DataFrame by calling a custom method on each row. La función que pase a map () debería esperar un único valor de la Serie (un valor de punto, en el ejemplo anterior) y devolver una versión transformada de ese valor. map () devuelve una nueva serie donde todos los valores han sido transformados por su función.apply () es el método equivalente si queremos transformar un DataFrame completo llamando a un método personalizado en cada fila. ###Code def remean_points(row): row.points = row.points - review_points_mean return row reviews.apply(remean_points, axis='columns') ###Output _____no_output_____ ###Markdown If we had called reviews.apply() with axis='index', then instead of passing a function to transform each row, we would need to give a function to transform each column.Note that map() and apply() return new, transformed Series and DataFrames, respectively. They don't modify the original data they're called on. If we look at the first row of reviews, we can see that it still has its original points value. Si hubiéramos llamado reviews.apply () con axis = 'index', entonces, en lugar de pasar una función para transformar cada fila, tendríamos que dar una función para transformar cada columna.Tenga en cuenta que map () y apply () devuelven Series y DataFrames nuevos y transformados, respectivamente. No modifican los datos originales a los que se les solicita. Si miramos la primera fila de revisiones, podemos ver que todavía tiene su valor de puntos original. ###Code reviews.head(1) ###Output _____no_output_____ ###Markdown Pandas provides many common mapping operations as built-ins. For example, here's a faster way of remeaning our points column: ###Code review_points_mean = reviews.points.mean() reviews.points - review_points_mean ###Output _____no_output_____ ###Markdown In this code we are performing an operation between a lot of values on the left-hand side (everything in the Series) and a single value on the right-hand side (the mean value). Pandas looks at this expression and figures out that we must mean to subtract that mean value from every value in the dataset.Pandas will also understand what to do if we perform these operations between Series of equal length. For example, an easy way of combining country and region information in the dataset would be to do the following: ###Code reviews.country + " - " + reviews.region_1 ###Output _____no_output_____ ###Markdown These operators are faster than map() or apply() because they uses speed ups built into pandas. All of the standard Python operators (>, <, ==, and so on) work in this manner.However, they are not as flexible as map() or apply(), which can do more advanced things, like applying conditional logic, which cannot be done with addition and subtraction alone. Estos operadores son más rápidos que map () o apply () porque usan aceleraciones integradas en pandas. Todos los operadores estándar de Python (>, <, ==, etc.) funcionan de esta manera.Sin embargo, no son tan flexibles como map () o apply (), que pueden hacer cosas más avanzadas, como aplicar lógica condicional, que no se puede hacer solo con la suma y la resta. https://www.kaggle.com/residentmario/grouping-and-sorting **Groupwise analysis**One function we've been using heavily thus far is the value_counts() function. We can replicate what value_counts() does by doing the following: ###Code reviews.groupby('points').points.count() reviews.groupby('points').price.min() reviews.groupby('winery').apply(lambda df: df.title.iloc[0]) reviews.groupby(['country', 'province']).apply(lambda df: df.loc[df.points.idxmax()]) reviews.groupby(['country']).price.agg([len, min, max]) ###Output _____no_output_____ ###Markdown **Multi-indexes**In all of the examples we've seen thus far we've been working with DataFrame or Series objects with a single-label index. groupby() is slightly different in the fact that, depending on the operation we run, it will sometimes result in what is called a multi-index.A multi-index differs from a regular index in that it has multiple levels. For example: ###Code countries_reviewed = reviews.groupby(['country', 'province']).description.agg([len]) countries_reviewed mi = countries_reviewed.index type(mi) countries_reviewed.reset_index() ###Output _____no_output_____ ###Markdown **Sorting**Looking again at countries_reviewed we can see that grouping returns data in index order, not in value order. That is to say, when outputting the result of a groupby, the order of the rows is dependent on the values in the index, not in the data.To get data in the order want it in we can sort it ourselves. The sort_values() method is handy for this. ###Code countries_reviewed = countries_reviewed.reset_index() countries_reviewed.sort_values(by='len') countries_reviewed.sort_values(by='len', ascending=False) countries_reviewed.sort_index() countries_reviewed.sort_values(by=['country', 'len']) ###Output _____no_output_____ ###Markdown https://www.kaggle.com/luisrivera/exercise-grouping-and-sorting/edit **Exercise: Grouping and Sorting** ###Code import pandas as pd # reviews = pd.read_csv("../input/wine-reviews/winemag-data-130k-v2.csv", index_col=0) #pd.set_option("display.max_rows", 5) reviews = pd.read_csv("./winemag-data-130k-v2.csv", index_col=0) # from learntools.core import binder; binder.bind(globals()) # from learntools.pandas.grouping_and_sorting import * # print("Setup complete.") ###Output _____no_output_____ ###Markdown 1.Who are the most common wine reviewers in the dataset? Create a `Series` whose index is the `taster_twitter_handle` category from the dataset, and whose values count how many reviews each person wrote. ###Code reviews_written = reviews.groupby('taster_twitter_handle').size() #or reviews_written reviews_written = reviews.groupby('taster_twitter_handle').taster_twitter_handle.count() reviews_written ###Output _____no_output_____ ###Markdown 2.What is the best wine I can buy for a given amount of money? Create a `Series` whose index is wine prices and whose values is the maximum number of points a wine costing that much was given in a review. Sort the values by price, ascending (so that `4.0` dollars is at the top and `3300.0` dollars is at the bottom). ###Code best_rating_per_price = reviews.groupby('price')['points'].max().sort_index() best_rating_per_price ###Output _____no_output_____ ###Markdown 3.What are the minimum and maximum prices for each `variety` of wine? Create a `DataFrame` whose index is the `variety` category from the dataset and whose values are the `min` and `max` values thereof. ###Code price_extremes = reviews.groupby('variety').price.agg([min, max]) price_extremes ###Output _____no_output_____ ###Markdown 4.What are the most expensive wine varieties? Create a variable `sorted_varieties` containing a copy of the dataframe from the previous question where varieties are sorted in descending order based on minimum price, then on maximum price (to break ties). ###Code sorted_varieties = price_extremes.sort_values(by=['min', 'max'], ascending=False) sorted_varieties ###Output _____no_output_____ ###Markdown 5.Create a `Series` whose index is reviewers and whose values is the average review score given out by that reviewer. Hint: you will need the `taster_name` and `points` columns. ###Code reviewer_mean_ratings = reviews.groupby('taster_name').points.mean() reviewer_mean_ratings reviewer_mean_ratings.describe() ###Output _____no_output_____ ###Markdown 6.What combination of countries and varieties are most common? Create a `Series` whose index is a `MultiIndex`of `{country, variety}` pairs. For example, a pinot noir produced in the US should map to `{"US", "Pinot Noir"}`. Sort the values in the `Series` in descending order based on wine count. ###Code country_variety_counts = reviews.groupby(['country', 'variety']).size().sort_values(ascending=False) country_variety_counts ###Output _____no_output_____ ###Markdown https://www.kaggle.com/residentmario/data-types-and-missing-values **data-types-and-missing-values** **Dtypes**The data type for a column in a DataFrame or a Series is known as the dtype.You can use the dtype property to grab the type of a specific column. For instance, we can get the dtype of the price column in the reviews DataFrame: ###Code reviews.price.dtype ###Output _____no_output_____ ###Markdown Alternatively, the dtypes property returns the dtype of every column in the DataFrame: ###Code reviews.dtypes ###Output _____no_output_____ ###Markdown Data types tell us something about how pandas is storing the data internally. float64 means that it's using a 64-bit floating point number; int64 means a similarly sized integer instead, and so on.One peculiarity to keep in mind (and on display very clearly here) is that columns consisting entirely of strings do not get their own type; they are instead given the object type.It's possible to convert a column of one type into another wherever such a conversion makes sense by using the astype() function. For example, we may transform the points column from its existing int64 data type into a float64 data type: ###Code reviews.points.astype('float64') ###Output _____no_output_____ ###Markdown A DataFrame or Series index has its own dtype, too: ###Code reviews.index.dtype ###Output _____no_output_____ ###Markdown Pandas also supports more exotic data types, such as categorical data and timeseries data. Because these data types are more rarely used, we will omit them until a much later section of this tutorial. **Missing data**Entries missing values are given the value NaN, short for "Not a Number". For technical reasons these NaN values are always of the float64 dtype.Pandas provides some methods specific to missing data. To select NaN entries you can use pd.isnull() (or its companion pd.notnull()). This is meant to be used thusly: ###Code reviews[pd.isnull(reviews.country)] ###Output _____no_output_____ ###Markdown Replacing missing values is a common operation. Pandas provides a really handy method for this problem: fillna(). fillna() provides a few different strategies for mitigating such data. For example, we can simply replace each NaN with an "Unknown": ###Code reviews.region_2.fillna("Unknown") ###Output _____no_output_____ ###Markdown Or we could fill each missing value with the first non-null value that appears sometime after the given record in the database. This is known as the backfill strategy.Alternatively, we may have a non-null value that we would like to replace. For example, suppose that since this dataset was published, reviewer Kerin O'Keefe has changed her Twitter handle from @kerinokeefe to @kerino. One way to reflect this in the dataset is using the replace() method: ###Code reviews.taster_twitter_handle.replace("@kerinokeefe", "@kerino") ###Output _____no_output_____ ###Markdown The replace() method is worth mentioning here because it's handy for replacing missing data which is given some kind of sentinel value in the dataset: things like "Unknown", "Undisclosed", "Invalid", and so on. **Exercise: Data Types and Missing Values**https://www.kaggle.com/luisrivera/exercise-data-types-and-missing-values/edit ###Code # import pandas as pd # reviews = pd.read_csv("../input/wine-reviews/winemag-data-130k-v2.csv", index_col=0) # from learntools.core import binder; binder.bind(globals()) # from learntools.pandas.data_types_and_missing_data import * # print("Setup complete.") ###Output _____no_output_____ ###Markdown **Exercises**1.What is the data type of the points column in the dataset? ###Code # Your code here dtype = reviews.points.dtype ###Output _____no_output_____ ###Markdown 2. Create a Series from entries in the `points` column, but convert the entries to strings. Hint: strings are `str` in native Python. ###Code point_strings = reviews.points.astype(str) point_strings ###Output _____no_output_____ ###Markdown 3.Sometimes the price column is null. How many reviews in the dataset are missing a price? ###Code missing_price_reviews = reviews[reviews.price.isnull()] n_missing_prices = len(missing_price_reviews) n_missing_prices # Cute alternative solution: if we sum a boolean series, True is treated as 1 and False as 0 n_missing_prices = reviews.price.isnull().sum() n_missing_prices # or equivalently: n_missing_prices = pd.isnull(reviews.price).sum() n_missing_prices ## 4. What are the most common wine-producing regions? Create a Series counting the number of times each value occurs in the `region_1` field. This field is often missing data, so replace missing values with `Unknown`. Sort in descending order. Your output should look something like this: ``` Unknown 21247 Napa Valley 4480 ... Bardolino Superiore 1 Primitivo del Tarantino 1 Name: region_1, Length: 1230, dtype: int64 reviews_per_region = reviews.region_1.fillna('Unknown').value_counts().sort_values(ascending=False) reviews_per_region ###Output _____no_output_____ ###Markdown **Renaming-and-combining columns**https://www.kaggle.com/residentmario/renaming-and-combining **Introduction**Oftentimes data will come to us with column names, index names, or other naming conventions that we are not satisfied with. In that case, you'll learn how to use pandas functions to change the names of the offending entries to something better.You'll also explore how to combine data from multiple DataFrames and/or Series. **Renaming**The first function we'll introduce here is rename(), which lets you change index names and/or column names. For example, to change the points column in our dataset to score, we would do: ###Code import pandas as pd # reviews = pd.read_csv("../input/wine-reviews/winemag-data-130k-v2.csv", index_col=0) reviews = pd.read_csv("winemag-data-130k-v2.csv", index_col=0) # from learntools.core import binder; binder.bind(globals()) # from learntools.pandas.renaming_and_combining import * # print("Setup complete.") reviews.head() reviews.rename(columns={'points': 'score'}) ###Output _____no_output_____ ###Markdown rename() lets you rename index or column values by specifying a index or column keyword parameter, respectively. It supports a variety of input formats, but usually a Python dictionary is the most convenient. Here is an example using it to rename some elements of the index. ###Code reviews.rename(index={0: 'firstEntry', 1: 'secondEntry'}) ###Output _____no_output_____ ###Markdown You'll probably rename columns very often, but rename index values very rarely. For that, set_index() is usually more convenient.Both the row index and the column index can have their own name attribute. The complimentary rename_axis() method may be used to change these names. For example: ###Code reviews.rename_axis("wines", axis='rows').rename_axis("fields", axis='columns') ###Output _____no_output_____ ###Markdown **Combining**When performing operations on a dataset, we will sometimes need to combine different DataFrames and/or Series in non-trivial ways. Pandas has three core methods for doing this. In order of increasing complexity, these are concat(), join(), and merge(). Most of what merge() can do can also be done more simply with join(), so we will omit it and focus on the first two functions here.The simplest combining method is concat(). Given a list of elements, this function will smush those elements together along an axis.This is useful when we have data in different DataFrame or Series objects but having the same fields (columns). One example: the YouTube Videos dataset, which splits the data up based on country of origin (e.g. Canada and the UK, in this example). If we want to study multiple countries simultaneously, we can use concat() to smush them together:https://www.kaggle.com/datasnaek/youtube-new ; datos ###Code # canadian_youtube = pd.read_csv("../input/youtube-new/CAvideos.csv") # british_youtube = pd.read_csv("../input/youtube-new/GBvideos.csv") canadian_youtube = pd.read_csv("CAvideos.csv") british_youtube = pd.read_csv("GBvideos.csv") pd.concat([canadian_youtube, british_youtube]) ###Output _____no_output_____ ###Markdown The middlemost combiner in terms of complexity is join(). join() lets you combine different DataFrame objects which have an index in common. For example, to pull down videos that happened to be trending on the same day in both Canada and the UK, we could do the following: ###Code left = canadian_youtube.set_index(['title', 'trending_date']) right = british_youtube.set_index(['title', 'trending_date']) left.join(right, lsuffix='_CAN', rsuffix='_UK') ###Output _____no_output_____ ###Markdown The lsuffix and rsuffix parameters are necessary here because the data has the same column names in both British and Canadian datasets. If this wasn't true (because, say, we'd renamed them beforehand) we wouldn't need them. **Exercise: Renaming and Combining**https://www.kaggle.com/luisrivera/exercise-renaming-and-combining/edit ###Code # import pandas as pd # reviews = pd.read_csv("../input/wine-reviews/winemag-data-130k-v2.csv", index_col=0) # from learntools.core import binder; binder.bind(globals()) # from learntools.pandas.renaming_and_combining import * # print("Setup complete.") ###Output _____no_output_____ ###Markdown ExercisesView the first several lines of your data by running the cell below: ###Code reviews.head() ###Output _____no_output_____ ###Markdown 1.`region_1` and `region_2` are pretty uninformative names for locale columns in the dataset. Create a copy of `reviews` with these columns renamed to `region` and `locale`, respectively. ###Code renamed = reviews.rename(columns=dict(region_1='region', region_2='locale')) # q1.check() renamed ###Output _____no_output_____ ###Markdown 2.Set the index name in the dataset to `wines`. ###Code reindexed = reviews.rename_axis('wines', axis='rows') reindexed ###Output _____no_output_____ ###Markdown 3.The [Things on Reddit](https://www.kaggle.com/residentmario/things-on-reddit/data) dataset includes product links from a selection of top-ranked forums ("subreddits") on reddit.com. Run the cell below to load a dataframe of products mentioned on the */r/gaming* subreddit and another dataframe for products mentioned on the *r//movies* subreddit. ###Code # gaming_products = pd.read_csv("../input/things-on-reddit/top-things/top-things/reddits/g/gaming.csv") gaming_products = pd.read_csv("gaming.csv") gaming_products['subreddit'] = "r/gaming" # movie_products = pd.read_csv("../input/things-on-reddit/top-things/top-things/reddits/m/movies.csv") movie_products = pd.read_csv("movies.csv") movie_products['subreddit'] = "r/movies" ###Output _____no_output_____ ###Markdown Create a `DataFrame` of products mentioned on *either* subreddit. ###Code combined_products = pd.concat([gaming_products, movie_products]) # q3.check() combined_products.head() ###Output _____no_output_____ ###Markdown 4.The [Powerlifting Database](https://www.kaggle.com/open-powerlifting/powerlifting-database) dataset on Kaggle includes one CSV table for powerlifting meets and a separate one for powerlifting competitors. Run the cell below to load these datasets into dataframes: ###Code # powerlifting_meets = pd.read_csv("../input/powerlifting-database/meets.csv") # powerlifting_competitors = pd.read_csv("../input/powerlifting-database/openpowerlifting.csv") powerlifting_meets = pd.read_csv("meets.csv") powerlifting_meets.head() powerlifting_competitors = pd.read_csv("openpowerlifting.csv") powerlifting_competitors.head() ###Output _____no_output_____ ###Markdown Both tables include references to a `MeetID`, a unique key for each meet (competition) included in the database. Using this, generate a dataset combining the two tables into one. ###Code powerlifting_combined = powerlifting_meets.set_index("MeetID").join(powerlifting_competitors.set_index("MeetID")) powerlifting_combined.head() ###Output _____no_output_____
Lab_4_Pandas/4/exercise-grouping-and-sorting.ipynb
###Markdown **[Pandas Home Page](https://www.kaggle.com/learn/pandas)**--- IntroductionIn these exercises we'll apply groupwise analysis to our dataset.Run the code cell below to load the data before running the exercises. ###Code import pandas as pd reviews = pd.read_csv("../input/wine-reviews/winemag-data-130k-v2.csv", index_col=0) #pd.set_option("display.max_rows", 5) from learntools.core import binder; binder.bind(globals()) from learntools.pandas.grouping_and_sorting import * print("Setup complete.") ###Output Setup complete. ###Markdown Exercises 1.Who are the most common wine reviewers in the dataset? Create a `Series` whose index is the `taster_twitter_handle` category from the dataset, and whose values count how many reviews each person wrote. ###Code # Your code here reviews_written = reviews.groupby('taster_twitter_handle').taster_twitter_handle.count() # Check your answer q1.check() #q1.hint() #q1.solution() ###Output _____no_output_____ ###Markdown 2.What is the best wine I can buy for a given amount of money? Create a `Series` whose index is wine prices and whose values is the maximum number of points a wine costing that much was given in a review. Sort the values by price, ascending (so that `4.0` dollars is at the top and `3300.0` dollars is at the bottom). ###Code best_rating_per_price = reviews.groupby('price').points.max() # Check your answer q2.check() #q2.hint() #q2.solution() ###Output _____no_output_____ ###Markdown 3.What are the minimum and maximum prices for each `variety` of wine? Create a `DataFrame` whose index is the `variety` category from the dataset and whose values are the `min` and `max` values thereof. ###Code price_extremes = reviews.groupby(['variety']).price.agg([min, max]) # Check your answer q3.check() #q3.hint() #q3.solution() ###Output _____no_output_____ ###Markdown 4.What are the most expensive wine varieties? Create a variable `sorted_varieties` containing a copy of the dataframe from the previous question where varieties are sorted in descending order based on minimum price, then on maximum price (to break ties). ###Code sorted_varieties = price_extremes.sort_values(by=['min', 'max'], ascending=False) # Check your answer q4.check() #q4.hint() #q4.solution() ###Output _____no_output_____ ###Markdown 5.Create a `Series` whose index is reviewers and whose values is the average review score given out by that reviewer. Hint: you will need the `taster_name` and `points` columns. ###Code reviewer_mean_ratings = reviews.groupby(['taster_name']).points.mean() # Check your answer q5.check() #q5.hint() #q5.solution() ###Output _____no_output_____ ###Markdown Are there significant differences in the average scores assigned by the various reviewers? Run the cell below to use the `describe()` method to see a summary of the range of values. ###Code reviewer_mean_ratings.describe() ###Output _____no_output_____ ###Markdown 6.What combination of countries and varieties are most common? Create a `Series` whose index is a `MultiIndex`of `{country, variety}` pairs. For example, a pinot noir produced in the US should map to `{"US", "Pinot Noir"}`. Sort the values in the `Series` in descending order based on wine count. ###Code country_variety_counts = reviews.groupby(['country', 'variety']).size().sort_values(ascending=False) # Check your answer q6.check() #q6.hint() #q6.solution() ###Output _____no_output_____
notebooks/week2_recap.ipynb
###Markdown Assignment1. Write python commands using pandas to learn how to output tables as follows: - Read the dataset `metabric_clinical_and_expression_data.csv` and store its summary statistics into a new variable called `metabric_summary`. - Just like the `.read_csv()` method allows reading data from a file, `pandas` provides a `.to_csv()` method to write `DataFrames` to files. Write your summary statistics object into a file called `metabric_summary.csv`. You can use `help(metabric.to_csv)` to get information on how to use this function. - Use the help information to modify the previous step so that you can generate a Tab Separated Value (TSV) file instead - Similarly, explore the method `to_excel()` to output an excel spreadsheet containing summary statistics ###Code # Load library import pandas as pd # Read metabric dataset metabric = pd.read_csv("../data/metabric_clinical_and_expression_data.csv") # Store summary statistics metabric_summary = metabric.describe() metabric_summary # Write summary statistics in csv and tsv #help(metabric.to_csv) metabric_summary.to_csv("~/Desktop/metabric_summary.csv") metabric_summary.to_csv("~/Desktop/metabric_summary.tsv", sep = '\t') #metabric_summary.to_csv("~/Desktop/metabric_summary.csv", columns = ["Cohort", "Age_at_diagnosis"]) #metabric_summary.to_csv("~/Desktop/metabric_summary.csv", header = False) #metabric_summary.to_csv("~/Desktop/metabric_summary.csv", index = False) # Write an excel spreadsheet #help(metabric.to_excel) metabric_summary.to_excel("~/Desktop/metabric_summary.xlsx") #If: ModuleNotFoundError: No module named 'openpyxl' #pip3 install openpyxl OR conda install openpyxl ###Output _____no_output_____ ###Markdown 2. Write python commands to perform basic statistics in the metabric dataset and answer the following questions: - Read the dataset `metabric_clinical_and_expression_data.csv` into a variable e.g. `metabric`. - Calculate mean tumour size of patients grouped by vital status and tumour stage - Find the cohort of patients and tumour stage where the average expression of genes TP53 and FOXA1 is the highest - Do patients with greater tumour size live longer? How about patients with greater tumour stage? How about greater Nottingham_prognostic_index? ###Code # Calculate the mean tumour size of patients grouped by vital status and tumour stage import pandas as pd metabric = pd.read_csv("../data/metabric_clinical_and_expression_data.csv") #help(metabric.groupby) #metabric.groupby(['Vital_status', 'Tumour_stage']).mean() #metabric.groupby(['Vital_status', 'Tumour_stage']).mean()[['Tumour_size', 'Survival_time']] #metabric.groupby(['Vital_status', 'Tumour_stage']).size() #metabric.groupby(['Vital_status', 'Tumour_stage']).agg(['mean', 'size']) metabric.groupby(['Vital_status', 'Tumour_stage']).agg(['mean', 'size'])['Tumour_size'] # Find the cohort of patients and tumour stage where the average expression of genes TP53 and FOXA1 is highest #metabric[['TP53', 'FOXA1']] #metabric['TP53_FOXA1_mean'] = metabric[['TP53', 'FOXA1']].mean(axis=1) #metabric.groupby(['Cohort', 'Tumour_stage']).agg(['mean', 'size'])['TP53_FOXA1_mean'] #metabric.groupby(['Cohort', 'Tumour_stage']).agg(['mean', 'size'])['TP53_FOXA1_mean'].sort_values('mean', ascending=False) metabric.groupby(['Cohort', 'Tumour_stage']).agg(['mean', 'size'])['TP53_FOXA1_mean'].sort_values('mean', ascending=False).head(1) # Do patients with greater tumour size live longer? metabric_dead = metabric[metabric['Vital_status'] == 'Died of Disease'] #metabric_dead[['Tumour_size', 'Survival_time']] #metabric_dead['Tumour_size'].corr(metabric_dead['Survival_time']) help(metabric_dead['Tumour_size'].corr) # How about patients with greater tumour stage? #metabric_dead[['Tumour_stage', 'Survival_time']] #metabric_dead[['Tumour_stage', 'Survival_time']].groupby('Tumour_stage').agg(['mean', 'std', 'size']) metabric_dead['Tumour_stage'].corr(metabric_dead['Survival_time']) # How about greater Nottingham_prognostic_index? # https://en.wikipedia.org/wiki/Nottingham_Prognostic_Index #metabric_dead[['Nottingham_prognostic_index', 'Survival_time']] metabric_dead['Nottingham_prognostic_index'].corr(metabric_dead['Survival_time']) ###Output _____no_output_____ ###Markdown 3. Review the section on missing data presented in the lecture. Consulting the [user's guide section dedicated to missing data](https://pandas.pydata.org/pandas-docs/stable/user_guide/missing_data.html) and any other materials as necessary use the functionality provided by pandas to answer the following questions: - Which variables (columns) of the metabric dataset have missing data? - Find the patients ids who have missing tumour size and/or missing mutation count data. Which cohorts do they belong to? - For the patients identified to have missing tumour size data for each cohort, calculate the average tumour size of the patients with tumour size data available within the same cohort to fill in the missing data ###Code # Which variables (columns) of the metabric dataset have missing data? metabric.info() # Find the patients ids who have missing tumour size and/or missing mutation count data. Which cohorts do they belong to? #metabric[metabric['Tumour_size'].isna()] metabric[metabric['Tumour_size'].isna()]['Cohort'].unique() #metabric[metabric['Mutation_count'].isna()] #metabric[metabric['Mutation_count'].isna()]['Cohort'].unique() metabric[(metabric['Tumour_size'].isna()) & (metabric['Mutation_count'].isna())] metabric[(metabric['Tumour_size'].isna()) | (metabric['Mutation_count'].isna())] # For the patients identified to have missing tumour size data for each cohort, calculate the average tumour size of the patients with tumour size data available within the same cohort to fill in the missing data # Cohort 1 metabric_c1 = metabric[metabric['Cohort'] == 1] #metabric_c1 #metabric_c1[metabric_c1['Tumour_size'].isna()] #metabric_c1[metabric_c1['Tumour_size'].notna()]['Tumour_size'].mean() mean_c1 = round(metabric_c1[metabric_c1['Tumour_size'].notna()]['Tumour_size'].mean(),1) #mean_c1 metabric_c1 = metabric_c1.fillna(value={'Tumour_size': mean_c1}) metabric_c1[metabric_c1['Patient_ID'].isin(["MB-0259", "MB-0284", "MB-0522"])] # Cohort 3 #metabric_c3 = metabric[metabric['Cohort'] == 3] #metabric_c3[metabric_c3['Tumour_size'].isna()] #mean_c3 = round(metabric_c3[metabric_c3['Tumour_size'].notna()]['Tumour_size'].mean(),1) #metabric_c3 = metabric_c3.fillna(value={'Tumour_size': mean_c3}) # Cohort 5 #metabric_c5 = metabric[metabric['Cohort'] == 5] #metabric_c5[metabric_c5['Tumour_size'].isna()] #mean_c5 = round(metabric_c5[metabric_c5['Tumour_size'].notna()]['Tumour_size'].mean(),1) #metabric_c5 = metabric_c5.fillna(value={'Tumour_size': mean_c5}) ###Output _____no_output_____
python/demo1/scipy-advanced-tutorial-master/Part1/MyFirstExtension.ipynb
###Markdown Reminder of what you should do :- open developper pannel- go to console- enter the following```IPython.notebook.config.update({ "load_extensions": {"hello-scipy":true}})``` ###Code # you will probably need this line to be sure your extension works import datetime as d d.datetime.now() ###Output _____no_output_____
WeatherPy/Resources/WeatherPy_Starter.ipynb
###Markdown WeatherPy---- Note* Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps. ###Code # Dependencies and Setup import matplotlib.pyplot as plt import pandas as pd import numpy as np import requests import time # Import API key from api_keys import api_key # Incorporated citipy to determine city based on latitude and longitude from citipy import citipy # Output File (CSV) output_data_file = "output_data/cities.csv" # Range of latitudes and longitudes lat_range = (-90, 90) lng_range = (-180, 180) ###Output _____no_output_____ ###Markdown Generate Cities List ###Code # List for holding lat_lngs and cities lat_lngs = [] cities = [] # Create a set of random lat and lng combinations lats = np.random.uniform(low=-90.000, high=90.000, size=1500) lngs = np.random.uniform(low=-180.000, high=180.000, size=1500) lat_lngs = zip(lats, lngs) # Identify nearest city for each lat, lng combination for lat_lng in lat_lngs: city = citipy.nearest_city(lat_lng[0], lat_lng[1]).city_name # If the city is unique, then add it to a our cities list if city not in cities: cities.append(city) # Print the city count to confirm sufficient count len(cities) ###Output _____no_output_____
c02_experimentos_textos.ipynb
###Markdown Experimentos para os dados textuais ###Code import datetime import re import json import yaml import sys import os import logging import logging.config import time import multiprocessing from collections import OrderedDict import requests import sqlalchemy import string import unicodedata import yaml import warnings warnings.filterwarnings('ignore') ######################################## # external libs ######################################## import joblib from joblib import delayed, Parallel ######################################## # ml ######################################## from lightgbm import LGBMClassifier import pandas as pd import seaborn as sns import matplotlib import matplotlib.pyplot as plt import numpy as np from scipy.sparse import issparse from sklearn.base import BaseEstimator, TransformerMixin from sklearn.model_selection import train_test_split from sklearn.metrics import ( make_scorer, accuracy_score, balanced_accuracy_score, average_precision_score, brier_score_loss, f1_score, log_loss, precision_score, recall_score, jaccard_score, roc_auc_score, classification_report, confusion_matrix, roc_curve, auc, precision_recall_curve, ) from sklearn.utils import resample from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, BaggingClassifier, GradientBoostingClassifier, ExtraTreesClassifier from sklearn.linear_model import LogisticRegression, SGDClassifier from sklearn.naive_bayes import GaussianNB, BernoulliNB, MultinomialNB from sklearn.discriminant_analysis import LinearDiscriminantAnalysis, QuadraticDiscriminantAnalysis from sklearn.svm import SVC, LinearSVC, NuSVC from sklearn.neural_network import MLPClassifier from sklearn.feature_selection import SelectPercentile, VarianceThreshold, SelectFromModel from sklearn.model_selection import GridSearchCV, cross_val_score, cross_validate, RepeatedStratifiedKFold from sklearn.calibration import CalibratedClassifierCV from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer from sklearn.impute import SimpleImputer from sklearn.preprocessing import RobustScaler, StandardScaler, MinMaxScaler, Binarizer from sklearn.decomposition import LatentDirichletAllocation, TruncatedSVD, PCA from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline, FeatureUnion from lightgbm import LGBMClassifier import xgboost as xgb from xgboost import XGBClassifier ################################# # VARIÁVEIS GLOBAIS ################################# N_JOBS = -1 BASE_DIR = './' DEFAULT_RANDOM_STATE = 42 ################################# # LOGS ################################# with open(os.path.join(BASE_DIR, 'log.conf.yaml'), 'r') as f: config = yaml.safe_load(f.read()) logging.config.dictConfig(config) class TextCleaner(BaseEstimator, TransformerMixin): stop_words = ['de', 'a', 'o', 'que', 'e', 'do', 'da', 'em', 'um', 'para', 'é', 'com', 'não', 'uma', 'os', 'no', 'se', 'na', 'por', 'mais', 'as', 'dos', 'como', 'mas', 'foi', 'ao', 'ele', 'das', 'tem', 'à', 'seu', 'sua', 'ou', 'ser', 'quando', 'muito', 'há', 'nos', 'já', 'está', 'eu', 'também', 'só', 'pelo', 'pela', 'até', 'isso', 'ela', 'entre', 'era', 'depois', 'sem', 'mesmo', 'aos', 'ter', 'seus', 'quem', 'nas', 'me', 'esse', 'eles', 'estão', 'você', 'tinha', 'foram', 'essa', 'num', 'nem', 'suas', 'meu', 'às', 'minha', 'têm', 'numa', 'pelos', 'elas', 'havia', 'seja', 'qual', 'será', 'nós', 'tenho', 'lhe', 'deles', 'essas', 'esses', 'pelas', 'este', 'fosse', 'dele', 'tu', 'te', 'vocês', 'vos', 'lhes', 'meus', 'minhas', 'teu', 'tua', 'teus', 'tuas', 'nosso', 'nossa', 'nossos', 'nossas', 'dela', 'delas', 'esta', 'estes', 'estas', 'aquele', 'aquela', 'aqueles', 'aquelas', 'isto', 'aquilo', 'estou', 'está', 'estamos', 'estão', 'estive', 'esteve', 'estivemos', 'estiveram', 'estava', 'estávamos', 'estavam', 'estivera', 'estivéramos', 'esteja', 'estejamos', 'estejam', 'estivesse', 'estivéssemos', 'estivessem', 'estiver', 'estivermos', 'estiverem', 'hei', 'há', 'havemos', 'hão', 'houve', 'houvemos', 'houveram', 'houvera', 'houvéramos', 'haja', 'hajamos', 'hajam', 'houvesse', 'houvéssemos', 'houvessem', 'houver', 'houvermos', 'houverem', 'houverei', 'houverá', 'houveremos', 'houverão', 'houveria', 'houveríamos', 'houveriam', 'sou', 'somos', 'são', 'era', 'éramos', 'eram', 'fui', 'foi', 'fomos', 'foram', 'fora', 'fôramos', 'seja', 'sejamos', 'sejam', 'fosse', 'fôssemos', 'fossem', 'for', 'formos', 'forem', 'serei', 'será', 'seremos', 'serão', 'seria', 'seríamos', 'seriam', 'tenho', 'tem', 'temos', 'tém', 'tinha', 'tínhamos', 'tinham', 'tive', 'teve', 'tivemos', 'tiveram', 'tivera', 'tivéramos', 'tenha', 'tenhamos', 'tenham', 'tivesse', 'tivéssemos', 'tivessem', 'tiver', 'tivermos', 'tiverem', 'terei', 'terá', 'teremos', 'terão', 'teria', 'teríamos', 'teriam'] def __init__(self, n_jobs=1): self.n_jobs = n_jobs def fit(self, X, y=None): return self def transform(self, X, y=None): sX = pd.Series(X) def tratar_texto(t): if not t: return '' if type(t) != str: t = str(t) t = t.replace('\\n', ' ') t = t.replace('null', ' ') t = t.lower() regex = re.compile('[' + re.escape(string.punctuation) + '\\r\\t\\n]') t = regex.sub(" ", t) lista = t.split() # retira stopwords e sinais de pontuação lista = [palavra for palavra in lista if palavra not in self.stop_words and palavra not in string.punctuation] # retira os dígitos lista = ' '.join([str(elemento) for elemento in lista if not elemento.isdigit()]) lista = lista.replace('\n', ' ').replace('\r', ' ') lista = lista.replace(' o ', ' ').replace(' a ', ' ').replace(' os ', ' ').replace(' as ', ' ') # retira o, a, os, as que ainda permaneceiam no texto lista = re.sub(r" +", ' ', lista) # retira espaços em excesso nfkd = unicodedata.normalize('NFKD', lista) lista = u"".join([c for c in nfkd if not unicodedata.combining(c)]) # retira acento return lista def tratar_serie(s): return s.apply(tratar_texto) split = np.array_split(sX, self.n_jobs) r = Parallel(n_jobs=self.n_jobs, verbose=0)(delayed(tratar_serie)(s) for s in split) return pd.concat(r) class FeatureSelector(BaseEstimator, TransformerMixin): def __init__(self, feature_names, default_value=0): self.feature_names = feature_names self.default_value = default_value def fit(self, X, y=None): return self def transform(self, X, y=None): # incluir teste para colunas ausentes X = X.copy() for c in self.feature_names: if c not in X.columns: X[c] = self.default_value return X[self.feature_names] ###Output _____no_output_____ ###Markdown Dataset Texto ###Code # # manter no dataset apenas manifestacoes até maio # sdp = sqlalchemy.create_engine('mssql+pyodbc://xxxxxxxxxxx') # query = """ # SELECT [IdManifestacao] # FROM [db_denuncias_origem].[eouv].[Manifestacao] # WHERE [DatRegistro] < convert(datetime, '01/06/2021', 103) # ORDER BY [DatRegistro] desc # """ # df_datas = pd.read_sql(query, sdp) # # dataset não anonimizado # # não será disponibilizado com o código # # fonte devido a restrições de sigilo institucional # df = pd.read_parquet('datasets/df_treinamento_faro.parquet') # df = df[df['IdManifestacao'].isin(df_datas['IdManifestacao'])].copy() # df['TextoCompleto'] = df['TxtFatoManifestacao'].str.cat(df['TextoAnexo'], sep=' ').astype(str) # X_txt, y_txt = df[['TextoCompleto']], df['GrauAptidao'].apply(lambda x: 1 if x > 50 else 0) # %%time # # preprocessamento do texto (remoção de stopwords, remoção de acentos, remoção de pontuações, remoção de números, transformação de todos os caracteres em lowercase) # X_txt = TextCleaner(n_jobs=N_JOBS).fit_transform(X_txt['TextoCompleto']).to_frame() # %%time # # separação do dataset em treino e teste # X_txt_train, X_txt_test, y_txt_train, y_txt_test = train_test_split(X_txt, y_txt, test_size=.2, random_state=DEFAULT_RANDOM_STATE, stratify=y_txt) # # utiliza o tf-idf para aprender o vocabulário e pesos a partir dos dados de treinamento # tf_idf = TfidfVectorizer(min_df=5, max_df=.5, max_features=2000) # tf_idf.fit(X_txt_train['TextoCompleto']) # transforma os datasets de treinamento # X_txt_train_idf = tf_idf.transform(X_txt_train['TextoCompleto']) # X_txt_test_idf = tf_idf.transform(X_txt_test['TextoCompleto']) # X_txt_train.index # X_txt_train_idf.todense().shape # df_tmp = pd.DataFrame(X_txt_train_idf.todense(), # index=X_txt_train.index, # columns=[f'{i:>04}' for i in range(0, X_txt_train_idf.shape[1])]) # df_tmp['LABEL'] = y_txt_train # df_tmp.to_parquet('datasets/df_train_txt.parquet') # df_tmp = pd.DataFrame(X_txt_test_idf.todense(), # index=X_txt_test.index, # columns=[f'{i:>04}' for i in range(0, X_txt_test_idf.shape[1])]) # df_tmp['LABEL'] = y_txt_test # df_tmp.to_parquet('datasets/df_test_txt.parquet') df_train = pd.read_parquet('datasets/df_train_txt.parquet') X_txt_train_idf, y_txt_train = df_train.drop(columns=['LABEL']), df_train['LABEL'] df_test = pd.read_parquet('datasets/df_test_txt.parquet') X_txt_test_idf, y_txt_test = df_test.drop(columns=['LABEL']), df_test['LABEL'] %%time pipeline = Pipeline(steps=[ ('model', RandomForestClassifier()) ]) metrics = ['roc_auc','balanced_accuracy', 'average_precision', 'recall', 'accuracy', 'f1_macro','f1_weighted'] results = [ ] model = [ RandomForestClassifier, LogisticRegression, XGBClassifier, KNeighborsClassifier, BaggingClassifier, ExtraTreesClassifier, SGDClassifier, SVC, NuSVC, LinearSVC, BernoulliNB, LGBMClassifier, MLPClassifier, AdaBoostClassifier, ] N_ESTIMATORS_ITERATORS = 200 POS_WEIGHT = pd.Series(y_txt_train).value_counts()[0]/pd.Series(y_txt_train).value_counts()[1] class_weight = {0: 1, 1: POS_WEIGHT} params = [ { 'model__n_estimators': [N_ESTIMATORS_ITERATORS], 'model__max_depth': [5,7,9], 'model__min_samples_split': [2,3], 'model__min_samples_leaf': [1,2], 'model__class_weight': [class_weight], 'model__random_state': [DEFAULT_RANDOM_STATE], 'model__max_samples': [.8, 1], }, { 'model__penalty' : ['l2'], 'model__C' : [1], 'model__solver' : ['liblinear'], 'model__random_state': [DEFAULT_RANDOM_STATE], 'model__class_weight': [class_weight], }, { 'model__learning_rate': [0.01], 'model__n_estimators': [N_ESTIMATORS_ITERATORS], 'model__subsample' : [.8,.45], 'model__min_child_weight': [1], 'model__max_depth': [3,4,7], 'model__random_state': [DEFAULT_RANDOM_STATE], 'model__reg_lambda': [2], 'model__scale_pos_weight': [POS_WEIGHT] }, { 'model__n_neighbors' : [5,7,9,11], }, { 'model__n_estimators': [5], 'model__max_samples': [.8], 'model__random_state': [DEFAULT_RANDOM_STATE], }, { 'model__n_estimators': [N_ESTIMATORS_ITERATORS], 'model__max_samples' : [.8], 'model__max_depth': [6,7], 'model__random_state': [DEFAULT_RANDOM_STATE], 'model__class_weight': [class_weight], }, { 'model__random_state': [DEFAULT_RANDOM_STATE], 'model__class_weight': [class_weight], }, { 'model__gamma': ['auto'], 'model__C': [0.5], 'model__random_state': [DEFAULT_RANDOM_STATE], 'model__class_weight': [class_weight], }, { 'model__gamma': ['auto'], 'model__random_state': [DEFAULT_RANDOM_STATE], 'model__class_weight': [class_weight], }, { 'model__random_state': [DEFAULT_RANDOM_STATE], 'model__class_weight': [class_weight], }, { }, { 'model__n_estimators': [N_ESTIMATORS_ITERATORS], 'model__subsample': [.6,.7,.8,1], 'model__random_state': [DEFAULT_RANDOM_STATE], 'model__class_weight': [class_weight], }, { 'model__alpha': [1], 'model__max_iter': [50], }, { } ] logging.info('Início') for m, p in zip(model, params): logging.info('Modelo: {}'.format(m.__name__)) p['model'] = [m()] rskfcv = RepeatedStratifiedKFold(n_splits=10, n_repeats=1, random_state=DEFAULT_RANDOM_STATE) cv = GridSearchCV(estimator=pipeline,param_grid=p, cv=rskfcv, n_jobs=N_JOBS, error_score=0, refit=True, scoring='roc_auc', verbose=1) cv.fit(X_txt_train_idf, y_txt_train) model = cv.best_estimator_ best_params = cv.best_params_ valores = cross_validate(m(**{k[7:]: v for k,v in best_params.items() if k.startswith('model__')}), X_txt_train_idf, y_txt_train, scoring=metrics, cv=rskfcv, verbose=1) cv_scores = {k[5:]: np.mean(v) for k, v in valores.items() if k not in ['fit_time', 'score_time']} linha = { 'Modelo': m.__name__, 'ScoreTreino': cv.score(X_txt_train_idf, y_txt_train), 'BestParams': best_params, 'RawScores': {k[5:]: v for k, v in valores.items() if k not in ['fit_time', 'score_time']} } linha.update(cv_scores) results.append(linha) logging.info('Fim') df_results_txt = pd.DataFrame(results) df_results_txt = pd.DataFrame(df_results_txt) df_results_txt = df_results_txt.sort_values('roc_auc', ascending=False) df_results_txt metricas = ['roc_auc', 'average_precision', 'balanced_accuracy', 'f1_weighted'] matplotlib.rcParams.update({'font.size': 13}) fig, axis = plt.subplots(2,2, figsize=(14, 10), dpi=80) axis = np.ravel(axis) for i, m in enumerate(metricas): df_score = pd.DataFrame({m: s for m, s in zip(df_results_txt['Modelo'], df_results_txt['RawScores'].apply(lambda x: x[m]))}) df_score = pd.melt(df_score, var_name='Modelo', value_name='Score') sns.boxplot(x='Modelo', y='Score', data=df_score, color='#45B39D', linewidth=1, ax=axis[i]) axis[i].set_xlabel('Modelo') axis[i].set_ylabel(f'Score ({m})') axis[i].set_xticklabels(labels=df_score['Modelo'].drop_duplicates(), rotation=70, ha='right', fontsize=12) axis[i].grid(which='major',linestyle='--', linewidth=0.5, ) plt.tight_layout() # plt.savefig('./docs/tcc/fig_00500_comparacao_score_modelos_texto.png') plt.show() ###Output _____no_output_____ ###Markdown Tunning Hiperparametros ###Code df_results_txt['BestParams'].iloc[0] from skopt import forest_minimize from sklearn.model_selection import RepeatedStratifiedKFold def tune_lgbm(params): logging.info(params) n_estimators = params[0] max_depth = params[1] reg_lambda = params[2] learning_rate = params[3] subsample = params[4] reg_alpha = params[5] gamma = params[6] # min_df = params[7] # max_df = params[8] # max_features = params[9] # ngram_range = (1, params[10]) scale_pos_weight = y_txt_train.value_counts()[0]/y_txt_train.value_counts()[1] model = XGBClassifier(base_score=None, colsample_bylevel=None, colsample_bynode=None, colsample_bytree=None, gamma=gamma, importance_type='gain', interaction_constraints=None, learning_rate=learning_rate, max_delta_step=None, max_depth=max_depth, n_estimators=n_estimators, n_jobs=None, num_parallel_tree=None, random_state=DEFAULT_RANDOM_STATE, reg_alpha=reg_alpha, reg_lambda=reg_lambda, scale_pos_weight=scale_pos_weight, subsample=subsample, validate_parameters=None, verbosity=None) rskfcv = RepeatedStratifiedKFold(n_splits=10, n_repeats=1, random_state=DEFAULT_RANDOM_STATE) score = cross_val_score(model, X_txt_train_idf, y_txt_train, scoring='roc_auc', cv=rskfcv) return -np.mean(score) space = [ (100, 1000), # n_estimators (1, 20), # max_depth (0.01, 5.0), # reg_lambda (0.0001, 0.03), # learning_rate (0.4, 1.), # subsample (0.01, 5.0), # reg_alpha (0.01, 5.0), # gamma # (2, 5), # min_df # (0.5, 1.0), # max_df # (100, 5000), # max_features # (1, 2), # ngram_range ] #alterar qdo colocar no HPC res = forest_minimize(tune_lgbm, space, random_state=DEFAULT_RANDOM_STATE, n_random_starts=20, n_calls=50, verbose=1) res.x params = [759, 4, 4.038900470867496, 0.022685086880347725, 0.7851344045803921, 0.1308550296924623, 0.022216673300650254, 5, 0.6568820361887584, 4358, 1] params = [561, 8, 4.224223904903976, 0.02244487129310769, 0.7238152794334479, 2.937888316662603, 4.82662398324805, 5, 0.7713480415791243, 2162, 1] params = res.x scale_pos_weight = pd.Series(y_txt_train).value_counts()[0]/pd.Series(y_txt_train).value_counts()[1] n_estimators = params[0] max_depth = params[1] reg_lambda = params[2] learning_rate = params[3] subsample = params[4] reg_alpha = params[5] gamma = params[6] # min_df = params[7] # max_df = params[8] # max_features = params[9] # ngram_range = (1, params[10]) # tfidf = TfidfVectorizer(min_df=min_df, max_df=max_df, max_features=max_features, ngram_range=ngram_range) # tfidf.fit(X_txt_train['TextoCompleto']) # X_txt_train_idf = tfidf.transform(X_txt_train['TextoCompleto']) # X_txt_test_idf = tfidf.transform(X_txt_test['TextoCompleto']) scale_pos_weight = y_txt_train.value_counts()[0]/y_txt_train.value_counts()[1] model = XGBClassifier(base_score=None, colsample_bylevel=None, colsample_bynode=None, colsample_bytree=None, gamma=gamma, gpu_id=None, importance_type='gain', interaction_constraints=None, learning_rate=learning_rate, max_delta_step=None, max_depth=max_depth, n_estimators=n_estimators, n_jobs=None, num_parallel_tree=None, random_state=DEFAULT_RANDOM_STATE, reg_alpha=reg_alpha, reg_lambda=reg_lambda, scale_pos_weight=scale_pos_weight, subsample=subsample, tree_method=None, validate_parameters=None, verbosity=None) model.fit(X_txt_train_idf, y_txt_train) p = model.predict(X_txt_test_idf) balanced_accuracy_score(y_txt_test, model.predict(X_txt_test_idf) ) print(classification_report(y_txt_test, model.predict(X_txt_test_idf) )) print(confusion_matrix(y_txt_test, model.predict(X_txt_test_idf) )) balanced_accuracy_score(y_txt_test, p) f1_score(y_txt_test, p) recall_score(y_txt_test, p) precision_score(y_txt_test, p) accuracy_score(y_txt_test, p) roc_auc_score(y_txt_test, model.predict_proba(X_txt_test_idf)[:, 1]) matplotlib.rcParams.update({'font.size': 12.5}) plt.figure(figsize=(14, 6), dpi=80) # plt.title(' Curva Característica de Operação do Receptor (ROC)') lr_fpr, lr_tpr, thresholds = roc_curve(y_txt_test.values, model.predict_proba(X_txt_test_idf)[:,1], drop_intermediate=False, pos_label=1) plt.plot(lr_fpr, lr_tpr, label='XGBClassifier',color='#45B39D') plt.plot([0, 1], [0,1], linestyle='--', label='Aleatório/Chute') plt.xlabel('Taxa de Falsos Positivos (FPR)') plt.ylabel('Taxa de Verdadeiros Positivos (TPR ou Recall)') plt.legend() plt.grid(which='major',linestyle='--', linewidth=0.5) plt.tight_layout() # plt.savefig('./docs/tcc/fig_00600_roc_auc_texto.png') plt.show() matplotlib.rcParams.update({'font.size': 12.5}) plt.figure(figsize=(14, 6), dpi=80) plt.title('Curva Precisão / Revocação') lr_precision, lr_recall, thresholds = precision_recall_curve(y_txt_test.values, model.predict_proba(X_txt_test_idf)[:,1], pos_label=1) plt.plot(lr_recall, lr_precision, label='RandomForest', color='#45B39D') plt.plot([0, 1], [0.5,0.5], linestyle='--', label='Aleatório/Chute') plt.xlabel('Recall') plt.ylabel('Precision') plt.legend() plt.grid(which='major',linestyle='--', linewidth=0.5) plt.tight_layout() # plt.savefig('./docs/tcc/fig_00610_pr_auc_dados_estr.png') plt.show() pr_auc_score = auc(lr_recall, lr_precision) pr_auc_score df_histograma = pd.Series(model.predict_proba(X_txt_test_idf)[:,1]).to_frame().rename(columns={0:'Score'}) df_histograma['Bins'] = pd.cut(df_histograma['Score'], bins=np.arange(0,1.05,0.05)) df_histograma['Y'] = y_txt_test.values df_histograma['Acertos Thr 0.5'] = df_histograma.apply(lambda x: 1 if (1 if x['Score']>=.5 else 0)==x['Y'] else 0,axis=1) df_histograma.head() df_barplot = df_histograma[['Bins','Acertos Thr 0.5']].groupby(['Bins']).apply(lambda x: x['Acertos Thr 0.5'].sum()/x.shape[0]).fillna(0).to_frame().rename(columns={0: 'Acertos (%)'}) df_barplot['Contagem'] = df_histograma[['Bins','Acertos Thr 0.5']].groupby(['Bins']).count() df_barplot = df_barplot.reset_index() df_barplot['left'] = df_barplot['Bins'].apply(lambda x: x.left+0.025) df_barplot from matplotlib.colors import ListedColormap from matplotlib.cm import ScalarMappable N = 20 vals = np.ones((N, 4)) vals[:, 0] = np.linspace(.5,45/256, N) vals[:, 1] = np.linspace(0, 179/256, N) vals[:, 2] = np.linspace(0, 157/256, N) newcmp = ListedColormap(vals) matplotlib.rcParams.update({'font.size': 12.5}) plt.figure(figsize=(14, 6), dpi=80) color='#45B39D' scalarMappable = ScalarMappable(cmap=newcmp) plt.bar(df_barplot['left'], df_barplot['Contagem'], width=0.05, color=scalarMappable.cmap(df_barplot['Acertos (%)']), alpha=1, linewidth=1, edgecolor='white') colorbar = plt.colorbar(scalarMappable) colorbar.set_label('Índice de Acertos na Faixa') plt.xlim(0,1) plt.grid(which='both',linestyle='--', linewidth=0.5) plt.title('Histograma para os Scores dados pelo modelo') plt.xlabel('Score') plt.ylabel('Quantidade de Observações') plt.tight_layout() plt.xticks(ticks=np.arange(0,1.05, 0.05), rotation=90) # plt.savefig('./docs/tcc/fig_00430_pos_prob_dados_estr.png') plt.show() ###Output _____no_output_____
test_scripts/test_cifar10.ipynb
###Markdown --- DkNN ###Code layers = ['layer2'] with torch.no_grad(): dknn = DKNN(net, x_train, y_train, x_valid, y_valid, layers, k=75, num_classes=10) y_pred = dknn.classify(x_test) (y_pred.argmax(1) == y_test.numpy()).sum() / y_test.size(0) cred = dknn.credibility(y_pred) plt.hist(cred) correct = np.argmax(y_pred, 1) == y_test.numpy() num_correct_by_cred = np.zeros((10, )) num_cred = np.zeros((10, )) for i in np.arange(10): ind = (cred > i * 0.1) & (cred <= i* 0.1 + 0.1) num_cred[i] = np.sum(ind) num_correct_by_cred[i] = np.sum(correct[ind]) fig = plt.figure() ax = fig.add_subplot(111) ax.bar(np.arange(10) * 0.1, num_cred, width=0.05) ax.bar(np.arange(10) * 0.1 + 0.05, num_correct_by_cred, width=0.05) num_correct_by_cred / num_cred ###Output /home/user/miniconda/envs/py36/lib/python3.6/site-packages/ipykernel_launcher.py:1: RuntimeWarning: invalid value encountered in true_divide """Entry point for launching an IPython kernel. ###Markdown --- DkNN Attack ###Code attack = DKNNAttack() def attack_batch(x, y, batch_size): x_adv = torch.zeros_like(x) total_num = x.size(0) num_batches = total_num // batch_size for i in range(num_batches): begin = i * batch_size end = (i + 1) * batch_size x_adv[begin:end] = attack( dknn, x[begin:end], y_test[begin:end], guide_layer=layers[0], m=100, binary_search_steps=5, max_iterations=500, learning_rate=1e-1, initial_const=1e2, abort_early=True) return x_adv x_adv = attack_batch(x_test[:1000].cuda(), y_test[:1000], 100) with torch.no_grad(): y_pred = dknn.classify(x_adv) print((y_pred.argmax(1) == y_test[:1000].numpy()).sum() / len(y_pred)) with torch.no_grad(): y_clean = dknn.classify(x_test[:1000]) ind = (y_clean.argmax(1) == y_test[:1000].numpy()) & (y_pred.argmax(1) != y_test[:1000].numpy()) dist = np.mean(np.sqrt(np.sum((x_adv.cpu().detach().numpy()[ind] - x_test.numpy()[:1000][ind])**2, (1, 2, 3)))) print(dist) cred = dknn.credibility(y_pred[ind]) plt.hist(cred) for i in range(5): plt.imshow(x_adv[i].cpu().detach().permute(1, 2, 0).numpy(), cmap='gray') plt.show() ###Output _____no_output_____ ###Markdown --- CW L2 on undefended network ###Code attack = CWL2Attack() def attack_batch(x, y, batch_size): x_adv = torch.zeros_like(x) total_num = x.size(0) num_batches = total_num // batch_size for i in range(num_batches): begin = i * batch_size end = (i + 1) * batch_size x_adv[begin:end] = attack( net, x[begin:end], y[begin:end], targeted=False, binary_search_steps=5, max_iterations=500, confidence=0, learning_rate=1e-1, initial_const=1e-2, abort_early=True) return x_adv x_adv = attack_batch(x_test[:1000].cuda(), y_test[:1000].cuda(), 100) with torch.no_grad(): y_pred = net(x_adv) print((y_pred.argmax(1).cpu() == y_test[:1000]).numpy().sum() / y_pred.size(0)) with torch.no_grad(): y_clean = net(x_test[:1000].cuda()) ind = (y_clean.argmax(1).cpu() == y_test[:1000]).numpy() & (y_pred.argmax(1).cpu() != y_test[:1000]).numpy() dist = np.mean(np.sqrt(np.sum((x_adv.cpu().detach().numpy()[ind] - x_test.numpy()[:1000][ind])**2, (1, 2, 3)))) print(dist) for i in range(5): plt.imshow(x_adv[i].cpu().detach().permute(1, 2, 0).numpy(), cmap='gray') plt.show() with torch.no_grad(): y_pred = dknn.classify(x_adv) print((y_pred.argmax(1) == y_test[:1000].numpy()).sum() / y_test.size(0)) ###Output 0.0143
LinkedInLearning/MachineLearningWithScikitlearn/Pipeline.ipynb
###Markdown Reading the Data ###Code df = pd.read_csv('../data/MNISTonly0_1.csv') df.head() ###Output _____no_output_____ ###Markdown Separating X and y ###Code X = df.iloc[:,:-1] y = df.iloc[:,-1] ###Output _____no_output_____ ###Markdown Standardizing the data ###Code X_train, X_test, y_train, y_test = train_test_split(X,y,random_state=42,test_size=0.2) scaler = StandardScaler() scaler.fit(X_train) X_train = scaler.fit_transform(X_train) X_test = scaler.fit_transform(X_test) ###Output _____no_output_____ ###Markdown Without Pipeline ###Code pca = PCA(n_components=.90, random_state=42) pca.fit(X_train) X_train_pca = pca.transform(X_train) X_test_pca = pca.transform (X_test) clf = LogisticRegression(random_state=42) clf.fit(X_train_pca, y_train) print(classification_report(y_true=y_train, y_pred=clf.predict(X_train_pca))) pipe = Pipeline([('scaler', StandardScaler()), ('PCA', PCA(n_components=.90, random_state=42)), ('Logistic',LogisticRegression(random_state=42))]) pipe.fit(X_train, y_train) print(f'Accuracy of pipeline on test set is {pipe.score(X_test, y_test):.3%}') train_pred_pipe = pipe.predict(X_train) test_pred_pipe = pipe.predict(X_test) print('Classification report for train set using pipeline') print(classification_report(y_true=y_train,y_pred=train_pred_pipe)) print('Classification report for test set using pipeline') print(classification_report(y_true=y_test, y_pred=test_pred_pipe)) from sklearn import set_config set_config(display='diagram') pipe ###Output _____no_output_____
publish/PLOT_QC_ROC.ipynb
###Markdown The ROC evaluation of QC experiments ###Code import sys from glob import glob from datetime import datetime, timedelta import h5py import numpy as np import pandas as pd from scipy import interp from sklearn.utils import resample from sklearn.metrics import classification_report, confusion_matrix, roc_curve, auc save_dir = '/glade/work/ksha/data/Keras/QC_publish/' eval_dir = '/glade/work/ksha/data/evaluation/' sys.path.insert(0, '/glade/u/home/ksha/WORKSPACE/utils/') sys.path.insert(0, '/glade/u/home/ksha/WORKSPACE/QC_OBS/') from namelist import * import data_utils as du import graph_utils as gu import matplotlib.pyplot as plt import matplotlib.patches as mpatches import matplotlib.gridspec as gridspec from mpl_toolkits.axes_grid1.inset_locator import inset_axes, zoomed_inset_axes, mark_inset %matplotlib inline REDs = [] REDs.append(gu.xcolor('light salmon')) REDs.append(gu.xcolor('light coral')) REDs.append(gu.xcolor('indian red')) REDs.append(gu.xcolor('dark red')) BLUEs = [] BLUEs.append(gu.xcolor('light blue')) BLUEs.append(gu.xcolor('sky blue')) BLUEs.append(gu.xcolor('royal blue')) BLUEs.append(gu.xcolor('midnight blue')) JET = [] JET.append(gu.xcolor('indian red')) JET.append(gu.xcolor('gold')) JET.append(gu.xcolor('dark sea green')) JET.append(gu.xcolor('deep sky blue')) JET.append(gu.xcolor('royal blue')) JET = JET[::-1] import warnings warnings.filterwarnings("ignore") need_publish = False # True: publication quality figures # False: low resolution figures in the notebook if need_publish: dpi_ = fig_keys['dpi'] else: dpi_ = 75 ###Output _____no_output_____ ###Markdown ROC and AUC bootstrapping ###Code # bootstrapped ROC curve def ROC_range(FP_boost, TP_boost, N): FP_base = np.linspace(0, 1, N) TP_base = np.empty((TP_boost.shape[0], N)) for i in range(TP_boost.shape[0]): TP_base[i, :] = interp(FP_base, FP_boost[i, :], TP_boost[i, :]) TP_std = np.nanstd(TP_base, axis=0) TP_mean = np.nanmean(TP_base, axis=0) TP_upper = np.minimum(TP_mean + 3*TP_std, 1) TP_lower = np.maximum(TP_mean - 3*TP_std, 0) return FP_base, TP_mean, TP_lower, TP_upper ###Output _____no_output_____ ###Markdown AUC results (no bootstrap) ###Code # # Importing results data_temp = np.load(eval_dir+'EVAL_QC_members.npy', allow_pickle=True) AUC_elev_eval = data_temp[()]['AUC'] # cate_train = data_temp[()]['cate_train'] # cate_valid = data_temp[()]['cate_valid'] # cate_test = data_temp[()]['cate_test'] # REPORT = data_temp[()]['REPORT'] # TP = data_temp[()]['TP'] # FP = data_temp[()]['FP'] # names = list(REPORT.keys()) data_temp = np.load(eval_dir+'EVAL_QC_noelev_members.npy', allow_pickle=True) AUC_noelev_eval = data_temp[()]['AUC'] data_temp = np.load(eval_dir+'EVAL_QC_MLP_members.npy', allow_pickle=True) AUC_mlp_eval = data_temp[()]['AUC'] ###Output _____no_output_____ ###Markdown Bootstrap results ###Code with h5py.File(BACKUP_dir+'HIGH_CAPA_TEST_pack.hdf', 'r') as h5io: cate_out = h5io['cate_out'][...] with h5py.File(eval_dir+'EVAL_QC_MLP_boost.hdf', 'r') as h5io: cate_boost_mlp = h5io['cate_boost'][...] FP_mlp = h5io['FP_boost'][...] TP_mlp = h5io['TP_boost'][...] AUC_mlp = h5io['AUC_boost'][...] with h5py.File(eval_dir+'EVAL_QC_noelev_boost.hdf', 'r') as h5io: FP_noelev = h5io['FP_boost'][...] TP_noelev = h5io['TP_boost'][...] AUC_noelev = h5io['AUC_boost'][...] with h5py.File(eval_dir+'EVAL_QC_boost.hdf', 'r') as h5io: cate_p = h5io['cate_p'][...] cate_boost = h5io['cate_boost'][...] FP_elev = h5io['FP_boost'][...] TP_elev = h5io['TP_boost'][...] AUC_elev = h5io['AUC_boost'][...] temp_data = np.load(eval_dir+'ENS_boost.npy', allow_pickle=True) TP_ens = temp_data[()]['TP'] FP_ens = temp_data[()]['FP'] AUC_ens = temp_data[()]['AUC'] ###Output _____no_output_____ ###Markdown Extra decision tree results ###Code data_temp = np.load(eval_dir+'EVAL_QC_TREE_members.npy', allow_pickle=True) cate_tree = data_temp[()]['cate_test'] auc_tree = data_temp[()]['AUC'] AUC_tree = np.empty(AUC_mlp.shape) FP_tree = np.empty(FP_mlp.shape); FP_tree[...] = np.nan TP_tree = np.empty(TP_mlp.shape); TP_tree[...] = np.nan inds = np.arange(len(cate_out), dtype=np.int) for i in range(5): for j in range(200): inds_ = resample(inds) fpr_, tpr_, _ = roc_curve(cate_out[inds_], cate_tree[inds_, i]) AUC_tree[i, j] = auc(fpr_, tpr_) L = len(fpr_) FP_tree[i, j, :L] = fpr_ TP_tree[i, j, :L] = tpr_ ###Output _____no_output_____ ###Markdown Plot ###Code ens = 5 labels = ['10 km', '15 km', '22 km', '30 km', '38 km'] #BINS = np.linspace(np.min(AUC_mlp), np.max(AUC_elev), 100) BINS1 = np.arange(np.min(AUC_mlp), np.max(AUC_mlp)+0.001, 0.001) BINS2 = np.arange(np.min(AUC_tree), np.max(AUC_tree)+0.001, 0.001) BINS3 = np.arange(np.min(AUC_noelev), np.max(AUC_noelev)+0.001, 0.001) BINS4 = np.arange(np.min(AUC_elev), np.max(AUC_ens)+0.001, 0.001) fig = plt.figure(figsize=(13, 7)) ax1 = plt.subplot2grid((4, 2), (0, 0), rowspan=4) ax2 = plt.subplot2grid((4, 2), (0, 1)) ax3 = plt.subplot2grid((4, 2), (1, 1)) ax4 = plt.subplot2grid((4, 2), (2, 1)) ax5 = plt.subplot2grid((4, 2), (3, 1)) AX_hist = [ax2, ax3, ax4, ax5] ax1 = gu.ax_decorate(ax1, True, True) ax1.spines["bottom"].set_visible(True) ax1.grid(False) for ax in AX_hist: ax = gu.ax_decorate(ax, True, True) ax.grid(False) ax.spines["bottom"].set_visible(True) ax.spines["left"].set_visible(False) ax.spines["right"].set_visible(True) ax.tick_params(axis="both", which="both", bottom=False, top=False, labelbottom=True, left=False, labelleft=False, right=False, labelright=True) ax.set_ylim([0, 45]) ax2.text(0.975, 0.95, 'Bin counts', ha='right', va='center', transform=ax2.transAxes, fontsize=14) ax3.yaxis.set_label_position("right") ax5.set_xticks([0.89, 0.90, 0.91, 0.92, 0.93]) ax5.set_xlabel('AUC', fontsize=14) ax1.set_xlabel('False Positive Rate (FPR)', fontsize=14) ax1.text(0.02, 0.98, 'True Positive Rate (TPR)', ha='left', va='center', transform=ax1.transAxes, fontsize=14) ax1_sub = zoomed_inset_axes(ax1, 1.5, loc=5) ax1_sub = gu.ax_decorate(ax1_sub, False, False) [j.set_linewidth(2.5) for j in ax1_sub.spines.values()] ax1_sub.spines["left"].set_visible(True) ax1_sub.spines["right"].set_visible(True) ax1_sub.spines["bottom"].set_visible(True) ax1_sub.spines["top"].set_visible(True) ax1_sub.set_xlim([0.025, 0.4]) ax1_sub.set_ylim([0.6, 0.975]) ax1_sub.grid(False) ind = 1 FP_base, TP_base, TP_lower, TP_upper = ROC_range(FP_mlp[ind, ...], TP_mlp[ind, ...], 1000) ax1.fill_between(FP_base, TP_lower, TP_upper, color=JET[0], alpha=0.75) ax1.plot(FP_base, TP_base, lw=3, color='k') ax1_sub.fill_between(FP_base, TP_lower, TP_upper, color=JET[0], alpha=0.75) ax1_sub.plot(FP_base, TP_base, lw=3, color='k') ind = 1 FP_base, TP_base, TP_lower, TP_upper = ROC_range(FP_tree[ind, ...], TP_tree[ind, ...], 1000) ax1.fill_between(FP_base, TP_lower, TP_upper, color=JET[1], alpha=0.75) ax1.plot(FP_base, TP_base, lw=3, ls=':', color='k') ax1_sub.fill_between(FP_base, TP_lower, TP_upper, color=JET[1], alpha=0.75) ax1_sub.plot(FP_base, TP_base, lw=3, ls=':', color='k') ind = 2 FP_base, TP_base, TP_lower, TP_upper = ROC_range(FP_noelev[ind, ...], TP_noelev[ind, ...], 1000) ax1.fill_between(FP_base, TP_lower, TP_upper, color=JET[2], alpha=0.75) ax1.plot(FP_base, TP_base, lw=3, color='k') ax1_sub.fill_between(FP_base, TP_lower, TP_upper, color=JET[2], alpha=0.75) ax1_sub.plot(FP_base, TP_base, lw=3, color='k') ind = 0 FP_base, TP_base, TP_lower, TP_upper = ROC_range(FP_elev[ind, ...], TP_elev[ind, ...], 1000) ax1.fill_between(FP_base, TP_lower, TP_upper, color=JET[1], alpha=0.75) ax1.plot(FP_base, TP_base, lw=3, color='k') ax1_sub.fill_between(FP_base, TP_lower, TP_upper, color=JET[1], alpha=0.75) ax1_sub.plot(FP_base, TP_base, lw=3, color='k') FP_base, TP_base, TP_lower, TP_upper = ROC_range(FP_ens, TP_ens, 1000) ax1.fill_between(FP_base, TP_lower, TP_upper, color='0.5', alpha=0.75) ax1.plot(FP_base, TP_base, lw=3, color='k') ax1_sub.fill_between(FP_base, TP_lower, TP_upper, color='0.5', alpha=0.75) ax1_sub.plot(FP_base, TP_base, lw=3, color='k') mark_inset(ax1, ax1_sub, loc1=1, loc2=3, fc='none', ec='k', lw=2.5, ls='--') legend_patch = []; for i in range(ens): std_auc = [] # MLP baseline ax2.hist(AUC_mlp[ens-1-i, :], alpha=0.75, histtype='stepfilled', facecolor=JET[ens-1-i], bins=BINS1) ax2.hist(AUC_mlp[ens-1-i, :], alpha=0.75, histtype='step', linewidth=2.5, edgecolor='k', bins=BINS1) std_auc.append(np.around(1e3*np.std(AUC_mlp[ens-1-i, :]), 2)) # TREE baseline ax3.hist(AUC_tree[ens-1-i, :], alpha=0.75, histtype='stepfilled', facecolor=JET[ens-1-i], bins=BINS2) ax3.hist(AUC_tree[ens-1-i, :], alpha=0.75, histtype='step', linewidth=2.5, edgecolor='k', bins=BINS2) std_auc.append(np.around(1e3*np.std(AUC_tree[ens-1-i, :]), 2)) # CNN baseline ax4.hist(AUC_noelev[ens-1-i, :], alpha=0.75, histtype='stepfilled', facecolor=JET[ens-1-i], bins=BINS3) ax4.hist(AUC_noelev[ens-1-i, :], alpha=0.75, histtype='step', linewidth=2.5, edgecolor='k', bins=BINS3) std_auc.append(np.around(1e3*np.std(AUC_noelev[ens-1-i, :]), 2)) # CNN ours ax5.hist(AUC_elev[ens-1-i, :], alpha=0.75, histtype='stepfilled', facecolor=JET[ens-1-i], bins=BINS4) ax5.hist(AUC_elev[ens-1-i, :], alpha=0.75, histtype='step', linewidth=2.5, edgecolor='k', bins=BINS4) # std_auc.append(np.around(1e3*np.std(AUC_elev[ens-1-i, :]), 2)) # legend_patch.append(mpatches.Patch(facecolor=JET[ens-1-i], edgecolor='k', linewidth=2.5, alpha=0.75, # label='Classifier with {} input, std=({},{},{},{}) 1e-3'.format( # labels[i], std_auc[0], std_auc[1], std_auc[2], std_auc[3]))) legend_patch.append(mpatches.Patch(facecolor=JET[ens-1-i], edgecolor='k', linewidth=2.5, alpha=0.75, label='Classifier with {} grid spacing input'.format(labels[i]))) # (extra) classifier ensemble ax5.hist(AUC_ens, alpha=0.75, histtype='stepfilled', facecolor='0.5', bins=BINS4) ax5.hist(AUC_ens, alpha=0.75, histtype='step', linewidth=2.5, edgecolor='k', bins=BINS4) # std_ens = np.around(1e3*np.std(AUC_ens), 2) # legend_patch.append(mpatches.Patch(facecolor='0.5', edgecolor='k', linewidth=2.5, alpha=0.75, # label='Classifier ensemble, std = {} 1e-3'.format(std_ens))) legend_patch.append(mpatches.Patch(facecolor='0.5', edgecolor='k', linewidth=2.5, alpha=0.75, label='Classifier ensemble')) legend_roc = [] legend_roc.append( mpatches.Patch(facecolor=JET[0], edgecolor='k', linewidth=2.5, alpha=0.75, label='The best MLP baseline (35 km; AUC={0:0.3f})'.format(AUC_mlp_eval['ENS0']))) legend_roc.append( mpatches.Patch(facecolor=JET[1], hatch='.', edgecolor='k', linewidth=2.5, alpha=0.75, label='The best decision tree baseline (35 km; AUC={0:0.3f})'.format(AUC_mlp_eval['ENS0']))) legend_roc.append( mpatches.Patch(facecolor=JET[2], edgecolor='k', linewidth=2.5, alpha=0.75, label='The best CNN baseline (22 km; AUC={0:0.3f})'.format(AUC_noelev_eval['ENS2']))) legend_roc.append( mpatches.Patch(facecolor=JET[1], edgecolor='k', linewidth=2.5, alpha=0.75, label='The best main classifier (30 km; AUC={0:0.3f})'.format(AUC_elev_eval['ENS1']))) legend_roc.append( mpatches.Patch(facecolor='0.5', edgecolor='k', linewidth=2.5, alpha=0.75, label='Main classifier ensemble (AUC={0:0.3f})'.format(AUC_elev_eval['ENS']))) ax_lg = fig.add_axes([0.0675, -0.075, 0.425, 0.1]) ax_lg.set_axis_off() LG = ax_lg.legend(handles=legend_roc, bbox_to_anchor=(1, 1), ncol=1, prop={'size':14}); LG.get_frame().set_facecolor('white') LG.get_frame().set_edgecolor('k') LG.get_frame().set_linewidth(0) ax_lg = fig.add_axes([0.5, -0.075, 0.375, 0.1]) ax_lg.set_axis_off() LG = ax_lg.legend(handles=legend_patch, bbox_to_anchor=(1, 1), ncol=1, prop={'size':14}); LG.get_frame().set_facecolor('white') LG.get_frame().set_edgecolor('k') LG.get_frame().set_linewidth(0) ax1.set_title('(a) ROCs of the best classifiers', fontsize=14) ax2.set_title('(b) MLP baseline classifiers', fontsize=14) ax3.set_title('(c) Decision tree baseline classifiers', fontsize=14) ax4.set_title('(d) CNN baseline classifiers', fontsize=14) ax5.set_title('(e) Main classifiers', fontsize=14) plt.tight_layout() if need_publish: # Save figure fig.savefig(fig_dir+'QC_ROC_Boostrap.png', format='png', **fig_keys) ###Output _____no_output_____
mwdsbe/Notebooks/By Data/Professional_Services/Professional_Servies.ipynb
###Markdown Professional Services ContractsThe entire dataset for Professional Services Contracts by fiscal quarter - from 2013 Q4 to 2019 Q3 ###Code import mwdsbe import schuylkill as skool import pandas as pd import glob import time ###Output _____no_output_____ ###Markdown Functions ###Code def drop_duplicates_by_date(df, date_column): df.sort_values(by=date_column, ascending=False, inplace=True) df = df.loc[~df.index.duplicated(keep="first")] df.sort_index(inplace=True) return df ###Output _____no_output_____ ###Markdown 1. Only read vendor column from Professional ServicesIn order to have a sense of how many matches we get from Professional Services data Data ###Code registry = mwdsbe.load_registry() # geopandas df path = r'C:\Users\dabinlee\Documents\GitHub\mwdsbe\mwdsbe\data\professional_services' ps_vendor = pd.concat([pd.read_csv(file, usecols=['vendor']) for file in glob.glob(path + "/*.csv")], ignore_index = True) ps_vendor ps_vendor = ps_vendor.drop_duplicates() len(ps_vendor) ###Output _____no_output_____ ###Markdown Clean Data ###Code ignore_words = ['inc', 'group', 'llc', 'corp', 'pc', 'incorporated', 'ltd', 'co', 'associates', 'services', 'company', 'enterprises', 'enterprise', 'service', 'corporation'] cleaned_registry = skool.clean_strings(registry, ['company_name', 'dba_name'], True, ignore_words) cleaned_ps_vendor = skool.clean_strings(ps_vendor, ['vendor'], True, ignore_words) cleaned_registry = cleaned_registry.dropna(subset=['company_name']) cleaned_ps_vendor = cleaned_ps_vendor.dropna(subset=['vendor']) cleaned_ps_vendor = cleaned_ps_vendor.drop_duplicates() len(cleaned_ps_vendor) ###Output _____no_output_____ ###Markdown TF-IDF Merge Registry and Professional Serviceson company_name and vendor before full merge ###Code t1 = time.time() merged = ( skool.tf_idf_merge(cleaned_registry, cleaned_ps_vendor, left_on="company_name", right_on="vendor", score_cutoff=85) .pipe(skool.tf_idf_merge, cleaned_registry, cleaned_ps_vendor, left_on="dba_name", right_on="vendor", score_cutoff=85) ) t = time.time() - t1 print('Execution time:', t, 'sec') len(merged) matched_PS = merged.dropna(subset=['vendor']) matched_PS len(matched_PS) ###Output _____no_output_____ ###Markdown New matches ###Code matched_OL = pd.read_excel(r'C:\Users\dabinlee\Desktop\mwdsbe\data\license-opendataphilly\tf-idf\tf-idf-85.xlsx') matched_OL = matched_OL.set_index('left_index') matched_OL = drop_duplicates_by_date(matched_OL, "issue_date") # without duplicates len(matched_OL) new_matches = matched_PS.index.difference(matched_OL.index).tolist() len(new_matches) ###Output _____no_output_____ ###Markdown 2. Load useful columns* vendor* tot_payments* department_name* year* fiscal quarter ###Code all_files = glob.glob(path + "/*.csv") li = [] for file in all_files: # get vendor, tot_payments, and department_name from original data df = pd.read_csv(file, usecols=['vendor', 'tot_payments', 'department_name']) file_name = file.split('\\')[-1] year = file_name.split('-')[1] quarter = file_name.split('-')[2].split('.')[0] df['fy_year'] = year df['fy_quarter'] = quarter li.append(df) ps = pd.concat(li, ignore_index=False) # save cleaned professional services ps.to_excel (r'C:\Users\dabinlee\Desktop\mwdsbe\data\professional_services\cleaned_ps.xlsx', header=True, index=False) ps = pd.read_excel(r'C:\Users\dabinlee\Desktop\mwdsbe\data\professional_services\cleaned_ps.xlsx') ps ###Output _____no_output_____ ###Markdown Full Merge with Registry* TF-IDF 85* on company_name and vendor ###Code # clean ps vendor column ignore_words = ['inc', 'group', 'llc', 'corp', 'pc', 'incorporated', 'ltd', 'co', 'associates', 'services', 'company', 'enterprises', 'enterprise', 'service', 'corporation'] cleaned_ps = skool.clean_strings(ps, ['vendor'], True, ignore_words) cleaned_ps = cleaned_ps.dropna(subset=['vendor']) ###Output _____no_output_____ ###Markdown keep duplicates: one vendor can have multiple payments ###Code t1 = time.time() merged = ( skool.tf_idf_merge(cleaned_registry, cleaned_ps, left_on="company_name", right_on="vendor", score_cutoff=85, max_matches = 100) .pipe(skool.tf_idf_merge, cleaned_registry, cleaned_ps, left_on="dba_name", right_on="vendor", score_cutoff=85, max_matches = 100) ) t = time.time() - t1 print('Execution time:', t, 'sec') len(merged) matched = merged.dropna(subset=['vendor']) len(matched) matched.head() # save cleaned professional services matched.to_excel (r'C:\Users\dabinlee\Desktop\mwdsbe\data\professional_services\matched.xlsx', header=True) matched = pd.read_excel(r'C:\Users\dabinlee\Desktop\mwdsbe\data\professional_services\matched.xlsx') matched.rename(columns={'Unnamed: 0': 'left_index'}, inplace=True) matched.set_index('left_index', inplace=True) matched ###Output _____no_output_____
Assignement.ipynb
###Markdown Copyright 2019 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown CS6421 Final Project: Deep Learning**Implementing Real-World examples**This assignment is the core programming assignment for Deep Learning (CS6421). You will be given a tutorial introduction to the deep autoencoder, and will then need to use this model to solve two real-world problems:- text noise removal- pedestrian safety analysis on footpathsIf you follow the code provided you should be able to score well. To obtain top marks you will need to extend the provided code fragments with high-performing models that show what you have learned in the course.The marks for the project are as follows:- 1: extensions to basic autoencoder [10 marks]- 2: extensions to de-noising autoencoder [10 marks]- 3: text reconstruction model and results [40 marks] Please submit your work ideally in a clear Jupyter notebook, highlighting the code that you have written. Present the comparisons of different model performance results in clear tables. Alternatively, you can creat a pdf document that summarises all of this. In any event, I will need a Jupyter notebook that I can run if I have any queries about your work. If I cannot compile any code submitted then you will get 0 for the results obtained for that code. For each assignment, the following text needs to be attached and agreed to: By submitting this exam, I declare(1) that all work of it is my own;(2) that I did not seek whole or partial solutions for any part of my submission from others; and(3) that I did not and will not discuss, exchange, share, or publish complete or partial solutions for this exam or any part of it. Introduction: Basic AutoencoderIn this assignment, we will create a **simple autoencoder** model using the [TensorFlow subclassing API](https://www.tensorflow.org/guide/kerasmodel_subclassing). We start with the popular [MNIST dataset](http://yann.lecun.com/exdb/mnist/) (Grayscale images of hand-written digits from 0 to 9)._[This first section is based on a notebook orignially contributed by: [afagarap](https://github.com/afagarap)]_"Autoencoding" is a data compression algorithm where the compression and decompression functions are 1) data-specific, 2) lossy, and 3) learned automatically from examples rather than engineered by a human. Additionally, in almost all contexts where the term "autoencoder" is used, the compression and decompression functions are implemented with neural networks. 1) Autoencoders are _data-specific_, which means that they will only be able to compress data similar to what they have been trained on. This is different from, say, the MPEG-2 Audio Layer III (MP3) compression algorithm, which only holds assumptions about "sound" in general, but not about specific types of sounds. An autoencoder trained on pictures of faces would do a rather poor job of compressing pictures of trees, because the features it would learn would be face-specific.2) Autoencoders are _lossy_, which means that the decompressed outputs will be degraded compared to the original inputs (similar to MP3 or JPEG compression). This differs from lossless arithmetic compression.3) Autoencoders are _learned automatically from data examples_, which is a useful property: it means that it is easy to train specialized instances of the algorithm that will perform well on a specific type of input. It doesn't require any new engineering, just appropriate training data.To build an autoencoder, you need three things: an encoding function, a decoding function, and a distance function between the amount of information loss between the compressed representation of your data and the decompressed representation (i.e. a "loss" function). The encoder and decoder will be chosen to be parametric functions (typically neural networks), and to be differentiable with respect to the distance function, so the parameters of the encoding/decoding functions can be optimize to minimize the reconstruction loss, using Stochastic Gradient Descent. In general, a neural network is a computational model that is used for finding a function describing the relationship between data features $x$ and its values or labels $y$, i.e. $y = f(x)$. An autoencoder is specific type of neural network, which consists of encoder and decoder components: (1) the **encoder**, which learns a compressed data representation $z$, and (2) the **decoder**, which reconstructs the data $\hat{x}$ based on its idea $z$ of how it is structured:$$ z = f\big(h_{e}(x)\big)$$$$ \hat{x} = f\big(h_{d}(z)\big),$$where $z$ is the learned data representation by encoder $h_{e}$, and $\hat{x}$ is the reconstructed data by decoder $h_{d}$ based on $z$. SetupWe start by importing the libraries and functions that we will need. ###Code from __future__ import absolute_import, division, print_function, unicode_literals #try: # The %tensorflow_version magic only works in colab. # tensorflow_version 2.x #except Exception: # pass import numpy as np import matplotlib.pyplot as plt import tensorflow as tf from tensorflow.keras.datasets import mnist print('TensorFlow version:', tf.__version__) print('Is Executing Eagerly?', tf.executing_eagerly()) ###Output _____no_output_____ ###Markdown Autoencoder modelThe encoder and decoder are defined as:$$ z = f\big(h_{e}(x)\big)$$$$ \hat{x} = f\big(h_{d}(z)\big),$$where $z$ is the compressed data representation generated by encoder $h_{e}$, and $\hat{x}$ is the reconstructed data generated by decoder $h_{d}$ based on $z$.In this figure, we take as input an image, and compress that image before decompressing it using a Dense network. We further define a simple model for this below. Define an encoder layerThe first component, the **encoder**, is similar to a conventional feed-forward network. However, it's function is not predicting values (a _regression_ task) or categories (a _classification_ task). Instead, it's function is to learn a compressed data structure $z$. We can implement the encoder layer as dense layers, as follows: ###Code class Encoder(tf.keras.layers.Layer): def __init__(self, intermediate_dim): super(Encoder, self).__init__() self.hidden_layer = tf.keras.layers.Dense(units=intermediate_dim, activation=tf.nn.relu) self.output_layer = tf.keras.layers.Dense(units=intermediate_dim, activation=tf.nn.relu) def call(self, input_features): activation = self.hidden_layer(input_features) return self.output_layer(activation) ###Output _____no_output_____ ###Markdown The _encoding_ is done by passing data input $x$ to the encoder's hidden layer $h$ in order to learn the data representation $z = f(h(x))$.We first create an `Encoder` class that inherits the [`tf.keras.layers.Layer`](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) class to define it as a layer. The compressed layer $z$ is a _component_ of the autoencoder model.Analyzing the code, the `Encoder` layer is defined to have a single hidden layer of neurons (`self.hidden_layer`) to learn the input features. Then, we connect the hidden layer to a layer (`self.output_layer`) that encodes the learned activations to the lower dimensional layer for $z$. Define a decoder layerThe second component, the **decoder**, is also similar to a feed-forward network. However, instead of reducing data to lower dimension, it attempts to reverse the process, i.e. reconstruct the data $\hat{x}$ from its lower dimension representation $z$ to its original dimension.The _decoding_ is done by passing the lower dimension representation $z$ to the decoder's hidden layer $h$ in order to reconstruct the data to its original dimension $\hat{x} = f(h(z))$. We can implement the decoder layer as follows, ###Code class Decoder(tf.keras.layers.Layer): def __init__(self, intermediate_dim, original_dim): super(Decoder, self).__init__() self.hidden_layer = tf.keras.layers.Dense(units=intermediate_dim, activation=tf.nn.relu) self.output_layer = tf.keras.layers.Dense(units=original_dim, activation=tf.nn.relu) def call(self, code): activation = self.hidden_layer(code) return self.output_layer(activation) ###Output _____no_output_____ ###Markdown We now create a `Decoder` class that also inherits the `tf.keras.layers.Layer`.The `Decoder` layer is also defined to have a single hidden layer of neurons to reconstruct the input features $\hat{x}$ from the learned representation $z$ by the encoder $f\big(h_{e}(x)\big)$. Then, we connect its hidden layer to a layer that decodes the data representation from lower dimension $z$ to its original dimension $\hat{x}$. Hence, the "output" of the `Decoder` layer is the reconstructed data $\hat{x}$ from the data representation $z$.Ultimately, the output of the decoder is the autoencoder's output.Now that we have defined the components of our autoencoder, we can finally build our model. Build the autoencoder modelWe can now build the autoencoder model by instantiating `Encoder` and `Decoder` layers. ###Code class Autoencoder(tf.keras.Model): def __init__(self, intermediate_dim, original_dim): super(Autoencoder, self).__init__() self.loss = [] self.encoder = Encoder(intermediate_dim=intermediate_dim) self.decoder = Decoder(intermediate_dim=intermediate_dim, original_dim=original_dim) def call(self, input_features): code = self.encoder(input_features) reconstructed = self.decoder(code) return reconstructed ###Output _____no_output_____ ###Markdown As discussed above, the encoder's output is the input to the decoder, as it is written above (`reconstructed = self.decoder(code)`). Reconstruction errorTo learn the compressed layer $z$, we define a loss function over the difference between the input data $x$ and the reconstruction of $x$, which is $\hat{x}$.We call this comparison the reconstruction error function, a given by the following equation:$$ L = \dfrac{1}{n} \sum_{i=0}^{n-1} \big(\hat{x}_{i} - x_{i}\big)^{2}$$where $\hat{x}$ is the reconstructed data while $x$ is the original data. ###Code def loss(preds, real): return tf.reduce_mean(tf.square(tf.subtract(preds, real))) ###Output _____no_output_____ ###Markdown Forward pass and optimizationWe will write a function for computing the forward pass, and applying a chosen optimization function. ###Code def train(loss, model, opt, original): with tf.GradientTape() as tape: preds = model(original) reconstruction_error = loss(preds, original) gradients = tape.gradient(reconstruction_error, model.trainable_variables) gradient_variables = zip(gradients, model.trainable_variables) opt.apply_gradients(gradient_variables) return reconstruction_error ###Output _____no_output_____ ###Markdown The training loopFinally, we will write a function to run the training loop. This function will take arguments for the model, the optimization function, the loss, the dataset, and the training epochs.The training loop itself uses a `GradientTape` context defined in `train` for each batch. ###Code def train_loop(model, opt, loss, dataset, epochs): for epoch in range(epochs): epoch_loss = 0 for step, batch_features in enumerate(dataset): loss_values = train(loss, model, opt, batch_features) epoch_loss += loss_values model.loss.append(epoch_loss) print('Epoch {}/{}. Loss: {}'.format(epoch + 1, epochs, epoch_loss.numpy())) ###Output _____no_output_____ ###Markdown Process the datasetNow that we have defined our `Autoencoder` class, the loss function, and the training loop, let's import the dataset. We will normalize the pixel values for each example through dividing by maximum pixel value. We shall flatten the examples from 28 by 28 arrays to 784-dimensional vectors. ###Code from tensorflow.keras.datasets import mnist (x_train, _), (x_test, _) = mnist.load_data() x_train = x_train / 255. x_train = x_train.astype(np.float32) x_train = np.reshape(x_train, (x_train.shape[0], 784)) x_test = np.reshape(x_test, (x_test.shape[0], 784)) training_dataset = tf.data.Dataset.from_tensor_slices(x_train).batch(256) ###Output _____no_output_____ ###Markdown Train the modelNow all we have to do is instantiate the autoencoder model and choose an optimization function, then pass the intermediate dimension and the original dimension of the images. ###Code model = Autoencoder(intermediate_dim=128, original_dim=784) opt = tf.keras.optimizers.Adam(learning_rate=1e-2) train_loop(model, opt, loss, training_dataset, 20) ###Output _____no_output_____ ###Markdown Plot the in-training performanceLet's take a look at how the model performed during training in a couple of plots. ###Code plt.plot(range(20), model.loss) plt.xlabel('Epochs') plt.ylabel('Loss') plt.show() ###Output _____no_output_____ ###Markdown PredictionsFinally, we will look at some of the predictions. The wrong predictions are labeled in red. ###Code number = 10 # how many digits we will display plt.figure(figsize=(20, 4)) for index in range(number): # display original ax = plt.subplot(2, number, index + 1) plt.imshow(x_test[index].reshape(28, 28)) plt.gray() ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) # display reconstruction ax = plt.subplot(2, number, index + 1 + number) plt.imshow(model(x_test)[index].numpy().reshape(28, 28)) plt.gray() ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) plt.show() ###Output _____no_output_____ ###Markdown 1. Tasks for Basic Autoencoder AssignmentAs you may see after training this model, the reconstructed images are quite blurry. A number of things could be done to move forward from this point, e.g. adding more layers, or using a convolutional neural network architecture as the basis of the autoencoder, or use a different kind of autoencoder.- generate results for 3 different Dense architectures and summarise the impact of architecture on performance- define 2 CNN architectures (similar to as described) and compare their performance to that of the Dense models Since our inputs are images, it makes sense to use convolutional neural networks (CNNs) as encoders and decoders. In practical settings, autoencoders applied to images are always convolutional autoencoders -- they simply perform much better.- implement a CNN model, where the encoder will consist of a stack of Conv2D and MaxPooling2D layers (max pooling being used for spatial down-sampling), while the decoder will consist in a stack of Conv2D and UpSampling2D layers. To improve the quality of the reconstructed image, we use more filters per layer. The model details are: ###Code input_img = tf.keras.layers.Input(shape=(28, 28, 1)) # adapt this if using `channels_first` image data format x = tf.keras.layers.Conv2D(16, (3, 3), activation='relu', padding='same')(input_img) x = tf.keras.layers.MaxPooling2D((2, 2), padding='same')(x) x = tf.keras.layers.Conv2D(8, (3, 3), activation='relu', padding='same')(x) x = tf.keras.layers.MaxPooling2D((2, 2), padding='same')(x) x = tf.keras.layers.Conv2D(8, (3, 3), activation='relu', padding='same')(x) encoded = tf.keras.layers.MaxPooling2D((2, 2), padding='same')(x) # at this point the representation is (4, 4, 8) i.e. 128-dimensional x = tf.keras.layers.Conv2D(8, (3, 3), activation='relu', padding='same')(encoded) x = tf.keras.layers.UpSampling2D((2, 2))(x) x = tf.keras.layers.Conv2D(8, (3, 3), activation='relu', padding='same')(x) x = tf.keras.layers.UpSampling2D((2, 2))(x) x = tf.keras.layers.Conv2D(16, (3, 3), activation='relu')(x) x = tf.keras.layers.UpSampling2D((2, 2))(x) decoded = tf.keras.layers.Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x) autoencoder = tf.keras.models.Model(input_img, decoded) autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy') # to train this model we will with original MNIST digits with shape (samples, 3, 28, 28) and we will just normalize pixel values between 0 and 1 # (x_train, _), (x_test, _) = load_data('../input/mnist.npz') from tensorflow.keras.datasets import mnist (x_train, _), (x_test, _) = mnist.load_data() x_train = x_train.astype('float32') / 255. x_test = x_test.astype('float32') / 255. x_train = np.reshape(x_train, (len(x_train), 28, 28, 1)) x_test = np.reshape(x_test, (len(x_test), 28, 28, 1)) autoencoder.fit(x_train, x_train, epochs=50, batch_size=128, shuffle=True, validation_data=(x_test, x_test), callbacks=[tf.keras.callbacks.TensorBoard(log_dir='./tmp/autoencoder')]) ###Output _____no_output_____ ###Markdown - train the model for 100 epochs and compare the results to the model where you use a dense encoding rather than convolutions.**Scoring**: 10 marks total- models [5 marks]: - Dense, multi-layer model [given]; - CNN basic model [given]; - CNN complex model [5 marks].- results and discussion [5 marks]: present the results in a clear fashion and explain why the results were as obtained. Good experimental design and statistical significance testing will be rewarded. 2. Denoising autoencoderFor this real-world application, we will use an autoencoder to remove noise from an image. To do this, we- learn a more robust representation by forcing the autoencoder to learn an input from a corrupted version of itselfThe first step: generate synthetic noisy digits as follows: apply a gaussian noise matrix and clip the images between 0 and 1. ###Code from keras.datasets import mnist import numpy as np (x_train, _), (x_test, _) = mnist.load_data() x_train = x_train.astype('float32') / 255. x_test = x_test.astype('float32') / 255. x_train = np.reshape(x_train, (len(x_train), 28, 28, 1)) x_test = np.reshape(x_test, (len(x_test), 28, 28, 1)) # Introduce noise with a probability factor of 0.5 noise_factor = 0.5 x_train_noisy = x_train + noise_factor + np.random.normal(loc=0.0, scale=1.0, size=x_train.shape) x_test_noisy = x_test + noise_factor + np.random.normal(loc=0.0, scale=1.0, size=x_test.shape) x_train_noisy = np.clip(x_train_noisy, 0., 1.) x_test_noisy = np.clip(x_test_noisy, 0., 1.) ###Output _____no_output_____ ###Markdown Next, plot some figures to see what the digits look like with noise added. ###Code # Plot figures to show what the noisy digits look like n = 10 plt.figure(figsize=(20, 2)) for i in range(n): ax = plt.subplot(1, n, i + 1) plt.imshow(x_test_noisy[i].reshape(28, 28)) plt.gray() ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) plt.show() ###Output _____no_output_____ ###Markdown - Train the model for 100 epochs and compare the results to the model where you use a dense encoding rather than convolutions. ###Code # This will train for 100 epochs autoencoder.fit(x_train_noisy, x_train, epochs=100, batch_size=128, shuffle=True, validation_data=(x_test_noisy, x_test), callbacks=[tf.keras.callbacks.TensorBoard(log_dir='./tmp/tb', histogram_freq=0, write_graph=False)]) ###Output _____no_output_____ ###Markdown **Scoring**: 10 marks total- models [5 marks]: - Dense, multi-layer model [given]; - CNN basic model [given]; - CNN complex model [5 marks].- results and discussion [5 marks]: present the results in a clear fashion and explain why the results were as obtained. Good experimental design and statistical significance testing will be rewarded. **3. Text Reconstruction Application**You will now use the approach just described to reconstruct corrupted text. We will use a small dataset with grey-scale images of size $420 \times 540$. The steps required are as follows:- Apply this autoencoder approach (as just described) to the text data provided as noted below.- The data has two sets of images, train (https://github.com/gmprovan/CS6421-Assignment1/blob/master/train.zip) and test (https://github.com/gmprovan/CS6421-Assignment1/blob/master/test.zip). These images contain various styles of text, to which synthetic noise has been added to simulate real-world, messy artifacts. The training set includes the test without the noise (train_cleaned: https://github.com/gmprovan/CS6421-Assignment1/blob/master/train_cleaned.zip). - You must create an algorithm to clean the images in the test set, and report the error as RMSE (root-mean-square error).**Scoring**: 40 marks total- models [25 marks]: - Dense, multi-layer model [5 marks]; - CNN basic model [5 marks]; - CNN complex models (at least 2) [15 marks].- results and discussion [15 marks]: present the results in a clear fashion and explain why the results were as obtained. Good experimental design and statistical significance testing will be rewarded.you will get full marks if you achieve RMSE < 0.005. Deductions are as follows:- -1: 0.01 $\leq$ RMSE $\leq$ 0.005- -5: 0.05 $\leq$ RMSE $\leq$ 0.01- -10: RMSE $>$ 0.05 The data should have been properly pre-processed already. If you want to pre-process the image data more, use the code environments below (e.g., skimage, keras.preprocessing.image), and then plot some samples of data. ###Code # This Python 3 environment comes with many helpful analytics libraries installed # It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python # For example, here's several helpful packages to load in import os from pathlib import Path import glob import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt from skimage.io import imread, imshow, imsave from keras.preprocessing.image import load_img, array_to_img, img_to_array from keras.models import Sequential, Model from keras.layers import Dense, Conv2D, MaxPooling2D, UpSampling2D, Flatten, Input from keras.optimizers import SGD, Adam, Adadelta, Adagrad from keras import backend as K from sklearn.model_selection import train_test_split np.random.seed(111) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list the files in the input directory ###Output _____no_output_____ ###Markdown Next you must build the model. I provide the code framework, with the model details left up to you. ###Code # Lets' define our autoencoder now def build_autoenocder(): input_img = Input(shape=(420,540,1), name='image_input') #enoder # enter encoder model here #decoder # enter decoder model model #model autoencoder = Model(inputs=input_img, outputs=x) autoencoder.compile(optimizer='adam', loss='binary_crossentropy') return autoencoder autoencoder = build_autoenocder() autoencoder.summary() ###Output _____no_output_____ ###Markdown Next we have code to compile and run the model. Please modify the code below to fit your purposes. ###Code X = [] Y = [] for img in train_images: img = load_img(train / img, grayscale=True,target_size=(420,540)) img = img_to_array(img).astype('float32')/255. X.append(img) for img in train_labels: img = load_img(train_cleaned / img, grayscale=True,target_size=(420,540)) img = img_to_array(img).astype('float32')/255. Y.append(img) X = np.array(X) Y = np.array(Y) print("Size of X : ", X.shape) print("Size of Y : ", Y.shape) # Split the dataset into training and validation. Always set the random state!! X_train, X_valid, y_train, y_valid = train_test_split(X, Y, test_size=0.1, random_state=111) print("Total number of training samples: ", X_train.shape) print("Total number of validation samples: ", X_valid.shape) # Train your model autoencoder.fit(X_train, y_train, epochs=10, batch_size=8, validation_data=(X_valid, y_valid)) ###Output _____no_output_____ ###Markdown Next we compute the predictions from the trained model. Again, modify the code structure below as necessary. ###Code # Compute the prediction predicted_label = np.squeeze(autoencoder.predict(sample_test_img)) f, ax = plt.subplots(1,2, figsize=(10,8)) ax[0].imshow(np.squeeze(sample_test), cmap='gray') ax[1].imshow(np.squeeze(predicted_label.astype('int8')), cmap='gray') plt.show() ###Output _____no_output_____
notebooks/doc-001-quickstart.ipynb
###Markdown Quickstart ###Code from daskpeeker import Peeker, Metric import dask.dataframe as dd import pandas as pd class MyPeeker(Peeker): def get_shared_figures(self): pass return [] def get_report_elems(self, filtered_ddf): return [Metric(filtered_ddf.loc[:, "n1"].mean().compute(), "Average N1")] df = pd.DataFrame({"n1": [1, 2, 3, 4], "c1": list("ABCD")}) ddf = dd.from_pandas(df, npartitions=4).persist() ###Output _____no_output_____ ###Markdown Quickstart ###Code from erudition import __version__ ###Output _____no_output_____ ###Markdown Quickstart Assign Columns ###Code import pandas as pd from colassigner import ColAssigner class Cols(ColAssigner): def col1(self, df): return df.iloc[:, 0] * 2 def col2(self, df): return "added-another" df = pd.DataFrame({"a": [1, 2, 3]}).pipe(Cols()) df df.loc[:, Cols.col2] ###Output _____no_output_____ ###Markdown Access Columnswhile also documenting datatypes ###Code from colassigner import ColAccessor class Cols(ColAccessor): x = int y = float df = pd.DataFrame({Cols.x: [1, 2, 3], Cols.y: [0.3, 0.1, 0.9]}) df df.loc[:, Cols.y] ###Output _____no_output_____ ###Markdown Quickstart ###Code from aswan import __version__ ###Output _____no_output_____ ###Markdown Quickstart ###Code from parquetranger import __version__ ###Output _____no_output_____ ###Markdown Quickstart ###Code from atqo import __version__ ###Output _____no_output_____ ###Markdown Quickstart ###Code from sscutils import __version__ ###Output _____no_output_____ ###Markdown Quickstart ###Code from sscutils import __version__ ###Output _____no_output_____ ###Markdown Quickstart ###Code from encoref import __version__ ###Output _____no_output_____
Linear_Regression/Univariate_Linear_Regression_Using_Scikit_Learn.ipynb
###Markdown ![Linear_Regression_ScikitLearn_Header.png](https://raw.githubusercontent.com/satishgunjal/images/master/Linear_Regression_ScikitLearn_Header_640x441.png) In this tutorial we are going to use the Linear Models from Sklearn library. We are also going to use the same test data used in [Univariate Linear Regression From Scratch With Python](http://satishgunjal.github.io/univariate_lr/) tutorial **Introduction** Scikit-learn is one of the most popular open source machine learning library for python. It provides range of machine learning models, here we are going to use linear model. Sklearn linear models are used when target value is some kind of linear combination of input value. Sklearn library has multiple types of linear models to choose form. The way we have implemented the 'Batch Gradient Descent' algorithm in [Univariate Linear Regression From Scratch With Python](http://satishgunjal.github.io/univariate_lr/) tutorial, every Sklearn linear model also use specific mathematical model to find the best fit line. **Hypothesis Function Comparison** The hypothesis function used by Linear Models of Sklearn library is as below $\hat{y}$(w, x) = w_0 + w_1 * x_1 Where,* $\hat{y}$(w, x) = Target/output value* x_1 = Dependent/Input value* w_0 = intercept_* w_1 = as coef_ You must have noticed that above hypothesis function is not matching with the hypothesis function used in [Univariate Linear Regression From Scratch With Python](http://satishgunjal.github.io/univariate_lr/) tutorial. Actually both are same, just different notations are used h(θ, x) = θ_0 + θ_1 * x_1 Where, * Both the hypothesis function use 'x' to represent input values or features* $\hat{y}$(w, x) = h(θ, x) = Target or output value* w_0 = θ__0 = intercept_ or Y intercept* w_1 = θ__1 = coef_ or slope/gradient **Python Code** Yes, we are jumping to coding right after hypothesis function, because we are going to use Sklearn library which has multiple algorithms to choose from. **Import the required libraries*** numpy : Numpy is the core library for scientific computing in Python. It is used for working with arrays and matrices.* pandas: Used for data manipulation and analysis* matplotlib : It’s plotting library, and we are going to use it for data visualization* linear_model: Sklearn linear regression model *In case you don't have any experience using these libraries, don't worry I will explain every bit of code for better understanding* ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn import linear_model ###Output _____no_output_____ ###Markdown **Load the data*** We are going to use ‘profits_and_populations_from_the_cities.csv’ CSV file* File contains two columns, the first column is the population of a city and the second column is the profit of a food truck in that city. A negative value for profit indicates a loss. ###Code df =pd.read_csv('https://raw.githubusercontent.com/satishgunjal/datasets/master/univariate_profits_and_populations_from_the_cities.csv') df.head(5) # Show first 5 rows from datset X = df.values[:,0] # Get input values from first column y = df.values[:,1] # Get output values froms econd column m = len(X) # Total number training examples print('X = ', X[: 5]) # Show first 5 records print('y = ', y[: 5]) # Show first 5 records print('m = ', m) ###Output X = [6.1101 5.5277 8.5186 7.0032 5.8598] y = [17.592 9.1302 13.662 11.854 6.8233] m = 97 ###Markdown **Understand The Data*** Population of City in 10,000s and Profit in $10,000s. i.e. 10K is multiplier for each data point* There are total 97 training examples (m= 97 or 97 no of rows)* There is only one feature (one column of feature and one of label/target/y) **Data Visualization**Let's assign the features(independent variables) values to variable X and target(dependent variable) values to variable yFor this dataset, we can use a scatter plot to visualize the data, since it has only two properties to plot (profit and population).Many other problems that you will encounter in real life are multi-dimensional and can’t be plotted on a 2D plot ###Code plt.scatter(X,y, color='red',marker= '+') plt.grid() plt.rcParams["figure.figsize"] = (10,6) plt.xlabel('Population of City in 10,000s') plt.ylabel('Profit in $10,000s') plt.title('Scatter Plot Of Training Data') ###Output _____no_output_____ ###Markdown **Which Sklearn Linear Regression Algorithm To Choose** * Sklearn library have multiple linear regression algorithms* Note: The way we have implemented the cost function and gradient descent algorithm every Sklearn algorithm also have some kind of mathematical model.* Different algorithms are better suited for different types of data and type of problems* The flow chart below will give you brief idea on how to choose right algorithm ![Choosing_Right_Sklearn_Linear_Model.png](https://raw.githubusercontent.com/satishgunjal/images/master/Choosing%20Right%20Sklearn%20Linear%20Model.png) **Ordinary Least Squares Algorithm*** This is one of the most basic linear regression algorithm. * Mathematical formula used by ordinary least square algorithm is as below, ![ordinary_least_squares_formlua.png](https://github.com/satishgunjal/images/blob/master/ordinary_least_squares_formlua_1.png?raw=true)* The objective of Ordinary Least Square Algorithm is to minimize the residual sum of squares. Here the term residual means 'deviation of predicted value(Xw) from actual value(y)'* Problem with ordinary least square model is size of coefficients increase exponentially with increase in model complexity ###Code model_ols = linear_model.LinearRegression() model_ols.fit(X.reshape(m, 1),y) # fit() method is used for training the model # Note the first parameter(feature) is must be 2D array(feature matrix). Using reshape function convert 'X' which is 1D array to 2D array of dimension 97x1 # Remember we don' thave to add column of 1 in X matrix, which is not required for sklearn library and we can avoid all that work ###Output _____no_output_____ ###Markdown **Understanding Training Results*** Note: If training is successful then we get the result like above. Where all the default values used by LinearRgression() model are displayed. If required we can also pass these values in fit method. We are not going to change any of these values for now.* As per our hypothesis function, 'model' object contains the coef and intercept values ###Code coef = model_ols.coef_ intercept = model_ols.intercept_ print('coef= ', coef) print('intercept= ', intercept) ###Output coef= [1.19303364] intercept= -3.89578087831185 ###Markdown You can compare above values with the values from [Univariate Linear Regression From Scratch With Python](http://satishgunjal.github.io/univariate_lr/) tutorial.Remember the notation difference...* coef(1.19303364) = θ_1 (1.16636235)* intercept(-3.89578087831185) = θ_0(-3.63029144) The values from our earlier model and Ordinary Least Squares model are not matching which is fine. Both models using different algorithm. Remember you have to choose the algorithm based on your data and problem type. And besides that this is just simple example with only 97 rows of data. Let's visualize the results.. **Visualization*** model.predict() method will give us the predicted values for our input values* Lets plot the line using predicted values. ###Code plt.scatter(X, y, color='red', marker= '+', label= 'Training Data') plt.plot(X, model_ols.predict(X.reshape(m, 1)), color='green', label='Linear Regression') plt.rcParams["figure.figsize"] = (10,6) plt.grid() plt.xlabel('Population of City in 10,000s') plt.ylabel('Profit in $10,000s') plt.title('Linear Regression Fit') plt.legend() ###Output _____no_output_____ ###Markdown **Testing the model*** **Question: Predict the profit for population 35,000** **Manual Calculations*** Hypothesis function is $\hat{y}$(w, x) = w_0 + w_1 * x_1 * Predicted values from model are, * θ_1(coef) = 1.19303364 * θ_0(intercept) = -3.89578087831185* x_1 = 3.5 (remember all our values are in multiples ok 10,000)* $\hat{y}$(w, x) = (-3.89578087831185) + (1.19303364 * 3.5)* $\hat{y}$(w, x) = 0.27983686168815* Since all our values are in multiples of 10,000 * $\hat{y}$(w, x) = 0.27983686168815 * 10000 * $\hat{y}$(w, x) = 2798.3686168815* For population = 35,000, we predict a profit of 2798.3686168815We can predict the result using our model as below ###Code predict1 = model_ols.predict([[3.5]]) print("For population = 35,000, our prediction of profit is", predict1 * 10000) ###Output For population = 35,000, our prediction of profit is [2798.36876352] ###Markdown So using sklearn library, we can train our model and predict the results with only few lines of code. Lets test our data with few other algorithms **Ridge Regression Algorithm*** Ridge regression addresses some problems of Ordinary Least Squares by imposing a penalty on the size of the coefficients* Ridge model uses complexity parameter alpha to control the size of coefficients* Note: alpha should be more than '0', or else it will perform same as ordinary linear square model* Mathematical formula used by Ridge Regression algorithm is as below, ![ridge_regression_formlua.png](https://github.com/satishgunjal/images/blob/master/ridge_regression_formlua_1.png?raw=true) ###Code model_r = linear_model.Ridge(alpha=35) model_r.fit(X.reshape(m, 1),y) coef = model_r.coef_ intercept = model_r.intercept_ print('coef= ' , coef) print('intercept= ' , intercept) predict1 = model_r.predict([[3.5]]) print("For population = 35,000, our prediction of profit is", predict1 * 10000) ###Output For population = 35,000, our prediction of profit is [4119.58817955] ###Markdown **LASSO Regression Algorithm*** Similar to Ridge regression LASSO also uses regularization parameter alpha but it estimates sparse coefficients i.e. more number of 0 coefficients* That's why its best suited when dataset contains few important features* LASSO model uses regularization parameter alpha to control the size of coefficients* Note: alpha should be more than '0', or else it will perform same as ordinary linear square model* Mathematical formula used by LASSO Regression algorithm is as below, ![lasso_regression_formlua.png](https://github.com/satishgunjal/images/blob/master/lasso_regression_formlua_1.png?raw=true) ###Code model_l = linear_model.Lasso(alpha=0.55) model_l.fit(X.reshape(m, 1),y) coef = model_l.coef_ intercept = model_l.intercept_ print('coef= ' , coef) print('intercept= ' , intercept) predict1 = model_l.predict([[3.5]]) print("For population = 35,000, our prediction of profit is", predict1 * 10000) ###Output For population = 35,000, our prediction of profit is [4527.52676756]
FeatureCollection/minimum_bounding_geometry.ipynb
###Markdown Pydeck Earth Engine IntroductionThis is an introduction to using [Pydeck](https://pydeck.gl) and [Deck.gl](https://deck.gl) with [Google Earth Engine](https://earthengine.google.com/) in Jupyter Notebooks. If you wish to run this locally, you'll need to install some dependencies. Installing into a new Conda environment is recommended. To create and enter the environment, run:```conda create -n pydeck-ee -c conda-forge python jupyter notebook pydeck earthengine-api requests -ysource activate pydeck-eejupyter nbextension install --sys-prefix --symlink --overwrite --py pydeckjupyter nbextension enable --sys-prefix --py pydeck```then open Jupyter Notebook with `jupyter notebook`. Now in a Python Jupyter Notebook, let's first import required packages: ###Code from pydeck_earthengine_layers import EarthEngineLayer import pydeck as pdk import requests import ee ###Output _____no_output_____ ###Markdown AuthenticationUsing Earth Engine requires authentication. If you don't have a Google account approved for use with Earth Engine, you'll need to request access. For more information and to sign up, go to https://signup.earthengine.google.com/. If you haven't used Earth Engine in Python before, you'll need to run the following authentication command. If you've previously authenticated in Python or the command line, you can skip the next line.Note that this creates a prompt which waits for user input. If you don't see a prompt, you may need to authenticate on the command line with `earthengine authenticate` and then return here, skipping the Python authentication. ###Code try: ee.Initialize() except Exception as e: ee.Authenticate() ee.Initialize() ###Output _____no_output_____ ###Markdown Create MapNext it's time to create a map. Here we create an `ee.Image` object ###Code # Initialize objects ee_layers = [] view_state = pdk.ViewState(latitude=37.7749295, longitude=-122.4194155, zoom=10, bearing=0, pitch=45) # %% # Add Earth Engine dataset HUC10 = ee.FeatureCollection("USGS/WBD/2017/HUC10") HUC08 = ee.FeatureCollection('USGS/WBD/2017/HUC08') roi = HUC08.filter(ee.Filter.eq('name', 'Pipestem')) ee_layers.append(EarthEngineLayer(ee_object=ee.Image().paint(roi,0,1), vis_params={})) bound = ee.Geometry(roi.geometry()).bounds() ee_layers.append(EarthEngineLayer(ee_object=ee.Image().paint(bound,0,1), vis_params={'palette':'red'})) ###Output _____no_output_____ ###Markdown Then just pass these layers to a `pydeck.Deck` instance, and call `.show()` to create a map: ###Code r = pdk.Deck(layers=ee_layers, initial_view_state=view_state) r.show() ###Output _____no_output_____ ###Markdown View source on GitHub Notebook Viewer Run in Google Colab Install Earth Engine API and geemapInstall the [Earth Engine Python API](https://developers.google.com/earth-engine/python_install) and [geemap](https://github.com/giswqs/geemap). The **geemap** Python package is built upon the [ipyleaflet](https://github.com/jupyter-widgets/ipyleaflet) and [folium](https://github.com/python-visualization/folium) packages and implements several methods for interacting with Earth Engine data layers, such as `Map.addLayer()`, `Map.setCenter()`, and `Map.centerObject()`.The following script checks if the geemap package has been installed. If not, it will install geemap, which automatically installs its [dependencies](https://github.com/giswqs/geemapdependencies), including earthengine-api, folium, and ipyleaflet.**Important note**: A key difference between folium and ipyleaflet is that ipyleaflet is built upon ipywidgets and allows bidirectional communication between the front-end and the backend enabling the use of the map to capture user input, while folium is meant for displaying static data only ([source](https://blog.jupyter.org/interactive-gis-in-jupyter-with-ipyleaflet-52f9657fa7a)). Note that [Google Colab](https://colab.research.google.com/) currently does not support ipyleaflet ([source](https://github.com/googlecolab/colabtools/issues/60issuecomment-596225619)). Therefore, if you are using geemap with Google Colab, you should use [`import geemap.eefolium`](https://github.com/giswqs/geemap/blob/master/geemap/eefolium.py). If you are using geemap with [binder](https://mybinder.org/) or a local Jupyter notebook server, you can use [`import geemap`](https://github.com/giswqs/geemap/blob/master/geemap/geemap.py), which provides more functionalities for capturing user input (e.g., mouse-clicking and moving). ###Code # Installs geemap package import subprocess try: import geemap except ImportError: print('geemap package not installed. Installing ...') subprocess.check_call(["python", '-m', 'pip', 'install', 'geemap']) # Checks whether this notebook is running on Google Colab try: import google.colab import geemap.eefolium as emap except: import geemap as emap # Authenticates and initializes Earth Engine import ee try: ee.Initialize() except Exception as e: ee.Authenticate() ee.Initialize() ###Output _____no_output_____ ###Markdown Create an interactive map The default basemap is `Google Satellite`. [Additional basemaps](https://github.com/giswqs/geemap/blob/master/geemap/geemap.pyL13) can be added using the `Map.add_basemap()` function. ###Code Map = emap.Map(center=[40,-100], zoom=4) Map.add_basemap('ROADMAP') # Add Google Map Map ###Output _____no_output_____ ###Markdown Add Earth Engine Python script ###Code # Add Earth Engine dataset HUC10 = ee.FeatureCollection("USGS/WBD/2017/HUC10") HUC08 = ee.FeatureCollection('USGS/WBD/2017/HUC08') roi = HUC08.filter(ee.Filter.eq('name', 'Pipestem')) Map.centerObject(roi, 10) Map.addLayer(ee.Image().paint(roi, 0, 1), {}, 'HUC8') bound = ee.Geometry(roi.geometry()).bounds() Map.addLayer(ee.Image().paint(bound, 0, 1), {'palette': 'red'}, "Minimum bounding geometry") ###Output _____no_output_____ ###Markdown Display Earth Engine data layers ###Code Map.addLayerControl() # This line is not needed for ipyleaflet-based Map. Map ###Output _____no_output_____ ###Markdown View source on GitHub Notebook Viewer Run in binder Run in Google Colab Install Earth Engine API and geemapInstall the [Earth Engine Python API](https://developers.google.com/earth-engine/python_install) and [geemap](https://github.com/giswqs/geemap). The **geemap** Python package is built upon the [ipyleaflet](https://github.com/jupyter-widgets/ipyleaflet) and [folium](https://github.com/python-visualization/folium) packages and implements several methods for interacting with Earth Engine data layers, such as `Map.addLayer()`, `Map.setCenter()`, and `Map.centerObject()`.The following script checks if the geemap package has been installed. If not, it will install geemap, which automatically installs its [dependencies](https://github.com/giswqs/geemapdependencies), including earthengine-api, folium, and ipyleaflet.**Important note**: A key difference between folium and ipyleaflet is that ipyleaflet is built upon ipywidgets and allows bidirectional communication between the front-end and the backend enabling the use of the map to capture user input, while folium is meant for displaying static data only ([source](https://blog.jupyter.org/interactive-gis-in-jupyter-with-ipyleaflet-52f9657fa7a)). Note that [Google Colab](https://colab.research.google.com/) currently does not support ipyleaflet ([source](https://github.com/googlecolab/colabtools/issues/60issuecomment-596225619)). Therefore, if you are using geemap with Google Colab, you should use [`import geemap.eefolium`](https://github.com/giswqs/geemap/blob/master/geemap/eefolium.py). If you are using geemap with [binder](https://mybinder.org/) or a local Jupyter notebook server, you can use [`import geemap`](https://github.com/giswqs/geemap/blob/master/geemap/geemap.py), which provides more functionalities for capturing user input (e.g., mouse-clicking and moving). ###Code # Installs geemap package import subprocess try: import geemap except ImportError: print('geemap package not installed. Installing ...') subprocess.check_call(["python", '-m', 'pip', 'install', 'geemap']) # Checks whether this notebook is running on Google Colab try: import google.colab import geemap.eefolium as emap except: import geemap as emap # Authenticates and initializes Earth Engine import ee try: ee.Initialize() except Exception as e: ee.Authenticate() ee.Initialize() ###Output _____no_output_____ ###Markdown Create an interactive map The default basemap is `Google Satellite`. [Additional basemaps](https://github.com/giswqs/geemap/blob/master/geemap/geemap.pyL13) can be added using the `Map.add_basemap()` function. ###Code Map = emap.Map(center=[40,-100], zoom=4) Map.add_basemap('ROADMAP') # Add Google Map Map ###Output _____no_output_____ ###Markdown Add Earth Engine Python script ###Code # Add Earth Engine dataset HUC10 = ee.FeatureCollection("USGS/WBD/2017/HUC10") HUC08 = ee.FeatureCollection('USGS/WBD/2017/HUC08') roi = HUC08.filter(ee.Filter.eq('name', 'Pipestem')) Map.centerObject(roi, 10) Map.addLayer(ee.Image().paint(roi, 0, 1), {}, 'HUC8') bound = ee.Geometry(roi.geometry()).bounds() Map.addLayer(ee.Image().paint(bound, 0, 1), {'palette': 'red'}, "Minimum bounding geometry") ###Output _____no_output_____ ###Markdown Display Earth Engine data layers ###Code Map.addLayerControl() # This line is not needed for ipyleaflet-based Map. Map ###Output _____no_output_____ ###Markdown View source on GitHub Notebook Viewer Run in binder Run in Google Colab Install Earth Engine APIInstall the [Earth Engine Python API](https://developers.google.com/earth-engine/python_install) and [geehydro](https://github.com/giswqs/geehydro). The **geehydro** Python package builds on the [folium](https://github.com/python-visualization/folium) package and implements several methods for displaying Earth Engine data layers, such as `Map.addLayer()`, `Map.setCenter()`, `Map.centerObject()`, and `Map.setOptions()`.The following script checks if the geehydro package has been installed. If not, it will install geehydro, which automatically install its dependencies, including earthengine-api and folium. ###Code import subprocess try: import geehydro except ImportError: print('geehydro package not installed. Installing ...') subprocess.check_call(["python", '-m', 'pip', 'install', 'geehydro']) ###Output _____no_output_____ ###Markdown Import libraries ###Code import ee import folium import geehydro ###Output _____no_output_____ ###Markdown Authenticate and initialize Earth Engine API. You only need to authenticate the Earth Engine API once. ###Code try: ee.Initialize() except Exception as e: ee.Authenticate() ee.Initialize() ###Output _____no_output_____ ###Markdown Create an interactive map This step creates an interactive map using [folium](https://github.com/python-visualization/folium). The default basemap is the OpenStreetMap. Additional basemaps can be added using the `Map.setOptions()` function. The optional basemaps can be `ROADMAP`, `SATELLITE`, `HYBRID`, `TERRAIN`, or `ESRI`. ###Code Map = folium.Map(location=[40, -100], zoom_start=4) Map.setOptions('HYBRID') ###Output _____no_output_____ ###Markdown Add Earth Engine Python script ###Code HUC10 = ee.FeatureCollection("USGS/WBD/2017/HUC10") HUC08 = ee.FeatureCollection('USGS/WBD/2017/HUC08') roi = HUC08.filter(ee.Filter.eq('name', 'Pipestem')) Map.centerObject(roi, 10) Map.addLayer(ee.Image().paint(roi, 0, 1), {}, 'HUC8') bound = ee.Geometry(roi.geometry()).bounds() Map.addLayer(ee.Image().paint(bound, 0, 1), {'palette': 'red'}, "Minimum bounding geometry") ###Output _____no_output_____ ###Markdown Display Earth Engine data layers ###Code Map.setControlVisibility(layerControl=True, fullscreenControl=True, latLngPopup=True) Map ###Output _____no_output_____ ###Markdown View source on GitHub Notebook Viewer Run in binder Run in Google Colab Install Earth Engine APIInstall the [Earth Engine Python API](https://developers.google.com/earth-engine/python_install) and [geehydro](https://github.com/giswqs/geehydro). The **geehydro** Python package builds on the [folium](https://github.com/python-visualization/folium) package and implements several methods for displaying Earth Engine data layers, such as `Map.addLayer()`, `Map.setCenter()`, `Map.centerObject()`, and `Map.setOptions()`.The magic command `%%capture` can be used to hide output from a specific cell. Uncomment these lines if you are running this notebook for the first time. ###Code # %%capture # !pip install earthengine-api # !pip install geehydro ###Output _____no_output_____ ###Markdown Import libraries ###Code import ee import folium import geehydro ###Output _____no_output_____ ###Markdown Authenticate and initialize Earth Engine API. You only need to authenticate the Earth Engine API once. Uncomment the line `ee.Authenticate()` if you are running this notebook for the first time or if you are getting an authentication error. ###Code # ee.Authenticate() ee.Initialize() ###Output _____no_output_____ ###Markdown Create an interactive map This step creates an interactive map using [folium](https://github.com/python-visualization/folium). The default basemap is the OpenStreetMap. Additional basemaps can be added using the `Map.setOptions()` function. The optional basemaps can be `ROADMAP`, `SATELLITE`, `HYBRID`, `TERRAIN`, or `ESRI`. ###Code Map = folium.Map(location=[40, -100], zoom_start=4) Map.setOptions('HYBRID') ###Output _____no_output_____ ###Markdown Add Earth Engine Python script ###Code HUC10 = ee.FeatureCollection("USGS/WBD/2017/HUC10") HUC08 = ee.FeatureCollection('USGS/WBD/2017/HUC08') roi = HUC08.filter(ee.Filter.eq('name', 'Pipestem')) Map.centerObject(roi, 10) Map.addLayer(ee.Image().paint(roi, 0, 1), {}, 'HUC8') bound = ee.Geometry(roi.geometry()).bounds() Map.addLayer(ee.Image().paint(bound, 0, 1), {'palette': 'red'}, "Minimum bounding geometry") ###Output _____no_output_____ ###Markdown Display Earth Engine data layers ###Code Map.setControlVisibility(layerControl=True, fullscreenControl=True, latLngPopup=True) Map ###Output _____no_output_____ ###Markdown View source on GitHub Notebook Viewer Run in binder Run in Google Colab Install Earth Engine APIInstall the [Earth Engine Python API](https://developers.google.com/earth-engine/python_install) and [geehydro](https://github.com/giswqs/geehydro). The **geehydro** Python package builds on the [folium](https://github.com/python-visualization/folium) package and implements several methods for displaying Earth Engine data layers, such as `Map.addLayer()`, `Map.setCenter()`, `Map.centerObject()`, and `Map.setOptions()`.The magic command `%%capture` can be used to hide output from a specific cell. ###Code # %%capture # !pip install earthengine-api # !pip install geehydro ###Output _____no_output_____ ###Markdown Import libraries ###Code import ee import folium import geehydro ###Output _____no_output_____ ###Markdown Authenticate and initialize Earth Engine API. You only need to authenticate the Earth Engine API once. Uncomment the line `ee.Authenticate()` if you are running this notebook for this first time or if you are getting an authentication error. ###Code # ee.Authenticate() ee.Initialize() ###Output _____no_output_____ ###Markdown Create an interactive map This step creates an interactive map using [folium](https://github.com/python-visualization/folium). The default basemap is the OpenStreetMap. Additional basemaps can be added using the `Map.setOptions()` function. The optional basemaps can be `ROADMAP`, `SATELLITE`, `HYBRID`, `TERRAIN`, or `ESRI`. ###Code Map = folium.Map(location=[40, -100], zoom_start=4) Map.setOptions('HYBRID') ###Output _____no_output_____ ###Markdown Add Earth Engine Python script ###Code HUC10 = ee.FeatureCollection("USGS/WBD/2017/HUC10") HUC08 = ee.FeatureCollection('USGS/WBD/2017/HUC08') roi = HUC08.filter(ee.Filter.eq('name', 'Pipestem')) Map.centerObject(roi, 10) Map.addLayer(ee.Image().paint(roi, 0, 1), {}, 'HUC8') bound = ee.Geometry(roi.geometry()).bounds() Map.addLayer(ee.Image().paint(bound, 0, 1), {'palette': 'red'}, "Minimum bounding geometry") ###Output _____no_output_____ ###Markdown Display Earth Engine data layers ###Code Map.setControlVisibility(layerControl=True, fullscreenControl=True, latLngPopup=True) Map ###Output _____no_output_____ ###Markdown View source on GitHub Notebook Viewer Run in Google Colab Install Earth Engine API and geemapInstall the [Earth Engine Python API](https://developers.google.com/earth-engine/python_install) and [geemap](https://github.com/giswqs/geemap). The **geemap** Python package is built upon the [ipyleaflet](https://github.com/jupyter-widgets/ipyleaflet) and [folium](https://github.com/python-visualization/folium) packages and implements several methods for interacting with Earth Engine data layers, such as `Map.addLayer()`, `Map.setCenter()`, and `Map.centerObject()`.The following script checks if the geemap package has been installed. If not, it will install geemap, which automatically installs its [dependencies](https://github.com/giswqs/geemapdependencies), including earthengine-api, folium, and ipyleaflet.**Important note**: A key difference between folium and ipyleaflet is that ipyleaflet is built upon ipywidgets and allows bidirectional communication between the front-end and the backend enabling the use of the map to capture user input, while folium is meant for displaying static data only ([source](https://blog.jupyter.org/interactive-gis-in-jupyter-with-ipyleaflet-52f9657fa7a)). Note that [Google Colab](https://colab.research.google.com/) currently does not support ipyleaflet ([source](https://github.com/googlecolab/colabtools/issues/60issuecomment-596225619)). Therefore, if you are using geemap with Google Colab, you should use [`import geemap.eefolium`](https://github.com/giswqs/geemap/blob/master/geemap/eefolium.py). If you are using geemap with [binder](https://mybinder.org/) or a local Jupyter notebook server, you can use [`import geemap`](https://github.com/giswqs/geemap/blob/master/geemap/geemap.py), which provides more functionalities for capturing user input (e.g., mouse-clicking and moving). ###Code # Installs geemap package import subprocess try: import geemap except ImportError: print('geemap package not installed. Installing ...') subprocess.check_call(["python", '-m', 'pip', 'install', 'geemap']) # Checks whether this notebook is running on Google Colab try: import google.colab import geemap.eefolium as geemap except: import geemap # Authenticates and initializes Earth Engine import ee try: ee.Initialize() except Exception as e: ee.Authenticate() ee.Initialize() ###Output _____no_output_____ ###Markdown Create an interactive map The default basemap is `Google Maps`. [Additional basemaps](https://github.com/giswqs/geemap/blob/master/geemap/basemaps.py) can be added using the `Map.add_basemap()` function. ###Code Map = geemap.Map(center=[40,-100], zoom=4) Map ###Output _____no_output_____ ###Markdown Add Earth Engine Python script ###Code # Add Earth Engine dataset HUC10 = ee.FeatureCollection("USGS/WBD/2017/HUC10") HUC08 = ee.FeatureCollection('USGS/WBD/2017/HUC08') roi = HUC08.filter(ee.Filter.eq('name', 'Pipestem')) Map.centerObject(roi, 10) Map.addLayer(ee.Image().paint(roi, 0, 1), {}, 'HUC8') bound = ee.Geometry(roi.geometry()).bounds() Map.addLayer(ee.Image().paint(bound, 0, 1), {'palette': 'red'}, "Minimum bounding geometry") ###Output _____no_output_____ ###Markdown Display Earth Engine data layers ###Code Map.addLayerControl() # This line is not needed for ipyleaflet-based Map. Map ###Output _____no_output_____ ###Markdown View source on GitHub Notebook Viewer Run in Google Colab Install Earth Engine API and geemapInstall the [Earth Engine Python API](https://developers.google.com/earth-engine/python_install) and [geemap](https://geemap.org). The **geemap** Python package is built upon the [ipyleaflet](https://github.com/jupyter-widgets/ipyleaflet) and [folium](https://github.com/python-visualization/folium) packages and implements several methods for interacting with Earth Engine data layers, such as `Map.addLayer()`, `Map.setCenter()`, and `Map.centerObject()`.The following script checks if the geemap package has been installed. If not, it will install geemap, which automatically installs its [dependencies](https://github.com/giswqs/geemapdependencies), including earthengine-api, folium, and ipyleaflet. ###Code # Installs geemap package import subprocess try: import geemap except ImportError: print('Installing geemap ...') subprocess.check_call(["python", '-m', 'pip', 'install', 'geemap']) import ee import geemap ###Output _____no_output_____ ###Markdown Create an interactive map The default basemap is `Google Maps`. [Additional basemaps](https://github.com/giswqs/geemap/blob/master/geemap/basemaps.py) can be added using the `Map.add_basemap()` function. ###Code Map = geemap.Map(center=[40,-100], zoom=4) Map ###Output _____no_output_____ ###Markdown Add Earth Engine Python script ###Code # Add Earth Engine dataset HUC10 = ee.FeatureCollection("USGS/WBD/2017/HUC10") HUC08 = ee.FeatureCollection('USGS/WBD/2017/HUC08') roi = HUC08.filter(ee.Filter.eq('name', 'Pipestem')) Map.centerObject(roi, 10) Map.addLayer(ee.Image().paint(roi, 0, 1), {}, 'HUC8') bound = ee.Geometry(roi.geometry()).bounds() Map.addLayer(ee.Image().paint(bound, 0, 1), {'palette': 'red'}, "Minimum bounding geometry") ###Output _____no_output_____ ###Markdown Display Earth Engine data layers ###Code Map.addLayerControl() # This line is not needed for ipyleaflet-based Map. Map ###Output _____no_output_____
01.Python for Programmers/01.Python Basics/handson_02.ipynb
###Markdown Programming Assignment 002Below are the problem sets for basics python. ###Code # checking python version !python --version ###Output Python 3.7.12 ###Markdown Question 1Write a Python program to convert kilometers to miles? Solution ###Code # user input (kilometers) kms = float(input("Enter kilometers value\t")) # formula miles = kms * 0.62137 print(f"{kms}Kms is equivalent to {miles:.3f} miles") ###Output Enter kilometers value 20 20.0Kms is equivalent to 12.427 miles ###Markdown Question 2Write a Python program to convert Celsius to Fahrenheit? Solution ###Code # user input (celsius) c = float(input("Enter Celcius degrees\t")) # formula f = c * (9/5) + 32 print(f"{c}C is equivalent to {f:.3f}F") ###Output Enter Celcius degrees 100 100.0C is equivalent to 212.000F ###Markdown Question 3Write a Python program to display calendar? Solution ###Code # using built-in module import calendar # display month year = 2021 month = 12 print(calendar.month(year, month)) # display full year year = 2022 print(calendar.calendar(year)) ###Output 2022 January February March Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su 1 2 1 2 3 4 5 6 1 2 3 4 5 6 3 4 5 6 7 8 9 7 8 9 10 11 12 13 7 8 9 10 11 12 13 10 11 12 13 14 15 16 14 15 16 17 18 19 20 14 15 16 17 18 19 20 17 18 19 20 21 22 23 21 22 23 24 25 26 27 21 22 23 24 25 26 27 24 25 26 27 28 29 30 28 28 29 30 31 31 April May June Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su 1 2 3 1 1 2 3 4 5 4 5 6 7 8 9 10 2 3 4 5 6 7 8 6 7 8 9 10 11 12 11 12 13 14 15 16 17 9 10 11 12 13 14 15 13 14 15 16 17 18 19 18 19 20 21 22 23 24 16 17 18 19 20 21 22 20 21 22 23 24 25 26 25 26 27 28 29 30 23 24 25 26 27 28 29 27 28 29 30 30 31 July August September Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su 1 2 3 1 2 3 4 5 6 7 1 2 3 4 4 5 6 7 8 9 10 8 9 10 11 12 13 14 5 6 7 8 9 10 11 11 12 13 14 15 16 17 15 16 17 18 19 20 21 12 13 14 15 16 17 18 18 19 20 21 22 23 24 22 23 24 25 26 27 28 19 20 21 22 23 24 25 25 26 27 28 29 30 31 29 30 31 26 27 28 29 30 October November December Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su 1 2 1 2 3 4 5 6 1 2 3 4 3 4 5 6 7 8 9 7 8 9 10 11 12 13 5 6 7 8 9 10 11 10 11 12 13 14 15 16 14 15 16 17 18 19 20 12 13 14 15 16 17 18 17 18 19 20 21 22 23 21 22 23 24 25 26 27 19 20 21 22 23 24 25 24 25 26 27 28 29 30 28 29 30 26 27 28 29 30 31 31 ###Markdown Question 4Write a Python program to solve quadratic equation? Solutionthe main aim is to find the roots of the equation which is,$$ax^2 + bx + c$$where,a, b, and c are coefficient and real numbers and also $a ≠ 0$.Using below formula we find the roots of the equation,$$ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} $$ ###Code # user input two variables a = int(input("Input first number, (0 not allowed)\t")) b = int(input("Input second number\t")) c = int(input("Input third number\t")) # calculate discriminant dis = (b**2) - (4*a*c) # finding 2 roots import cmath root1 = (-b + cmath.sqrt(dis))/(2*a) root2 = (-b - cmath.sqrt(dis))/(2*a) print(f"Roots of equation {a}x^2 + {b}x + {c} are,\n{root1}\n{root2}") ###Output Input first number, (0 not allowed) 1 Input second number 1 Input third number 1 Roots of equation 1x^2 + 1x + 1 are, (-0.5+0.8660254037844386j) (-0.5-0.8660254037844386j) ###Markdown Question 5Write a Python program to swap two variables without temp variable? Solution ###Code # user input two variables a = int(input("Input first number\t")) b = int(input("Input second number\t")) print("--------------------") print(f"Value of a = {a}, value of b = {b}") # using tuple swap a, b = b, a print(f"After Swapped Operation\nValue of a = {a}, value of b = {b}") # user input two variables a = int(input("Input first number\t")) b = int(input("Input second number\t")) print("--------------------") print(f"Value of a = {a}, value of b = {b}") # using arthematic operation a = a+b b = a-b a = a-b print(f"After Swapped Operation\nValue of a = {a}, value of b = {b}") ###Output _____no_output_____
5-Sequence-Modelling/week3/Trigger word detection/Trigger+Word+Detection+-+Final+-+learners.ipynb
###Markdown Trigger Word DetectionWelcome to the final programming assignment of this specialization! In this week's videos, you learned about applying deep learning to speech recognition. In this assignment, you will construct a speech dataset and implement an algorithm for trigger word detection (sometimes also called keyword detection, or wakeword detection). Trigger word detection is the technology that allows devices like Amazon Alexa, Google Home, Apple Siri, and Baidu DuerOS to wake up upon hearing a certain word. For this exercise, our trigger word will be "Activate." Every time it hears you say "activate," it will make a "chiming" sound. By the end of this assignment, you will be able to record a clip of yourself talking, and have the algorithm trigger a chime when it detects you saying "activate." After completing this assignment, perhaps you can also extend it to run on your laptop so that every time you say "activate" it starts up your favorite app, or turns on a network connected lamp in your house, or triggers some other event? In this assignment you will learn to: - Structure a speech recognition project- Synthesize and process audio recordings to create train/dev datasets- Train a trigger word detection model and make predictionsLets get started! Run the following cell to load the package you are going to use. ###Code !pip install pydub import numpy as np from pydub import AudioSegment import random import sys import io import os import glob import IPython from td_utils import * %matplotlib inline ###Output _____no_output_____ ###Markdown 1 - Data synthesis: Creating a speech dataset Let's start by building a dataset for your trigger word detection algorithm. A speech dataset should ideally be as close as possible to the application you will want to run it on. In this case, you'd like to detect the word "activate" in working environments (library, home, offices, open-spaces ...). You thus need to create recordings with a mix of positive words ("activate") and negative words (random words other than activate) on different background sounds. Let's see how you can create such a dataset. 1.1 - Listening to the data One of your friends is helping you out on this project, and they've gone to libraries, cafes, restaurants, homes and offices all around the region to record background noises, as well as snippets of audio of people saying positive/negative words. This dataset includes people speaking in a variety of accents. In the raw_data directory, you can find a subset of the raw audio files of the positive words, negative words, and background noise. You will use these audio files to synthesize a dataset to train the model. The "activate" directory contains positive examples of people saying the word "activate". The "negatives" directory contains negative examples of people saying random words other than "activate". There is one word per audio recording. The "backgrounds" directory contains 10 second clips of background noise in different environments.Run the cells below to listen to some examples. ###Code IPython.display.Audio("./raw_data/activates/1.wav") IPython.display.Audio("./raw_data/negatives/4.wav") IPython.display.Audio("./raw_data/backgrounds/1.wav") ###Output _____no_output_____ ###Markdown You will use these three type of recordings (positives/negatives/backgrounds) to create a labelled dataset. 1.2 - From audio recordings to spectrogramsWhat really is an audio recording? A microphone records little variations in air pressure over time, and it is these little variations in air pressure that your ear also perceives as sound. You can think of an audio recording is a long list of numbers measuring the little air pressure changes detected by the microphone. We will use audio sampled at 44100 Hz (or 44100 Hertz). This means the microphone gives us 44100 numbers per second. Thus, a 10 second audio clip is represented by 441000 numbers (= $10 \times 44100$). It is quite difficult to figure out from this "raw" representation of audio whether the word "activate" was said. In order to help your sequence model more easily learn to detect triggerwords, we will compute a *spectrogram* of the audio. The spectrogram tells us how much different frequencies are present in an audio clip at a moment in time. (If you've ever taken an advanced class on signal processing or on Fourier transforms, a spectrogram is computed by sliding a window over the raw audio signal, and calculates the most active frequencies in each window using a Fourier transform. If you don't understand the previous sentence, don't worry about it.) Lets see an example. ###Code IPython.display.Audio("audio_examples/example_train.wav") x = graph_spectrogram("audio_examples/example_train.wav") ###Output _____no_output_____ ###Markdown The graph above represents how active each frequency is (y axis) over a number of time-steps (x axis). **Figure 1**: Spectrogram of an audio recording, where the color shows the degree to which different frequencies are present (loud) in the audio at different points in time. Green squares means a certain frequency is more active or more present in the audio clip (louder); blue squares denote less active frequencies. The dimension of the output spectrogram depends upon the hyperparameters of the spectrogram software and the length of the input. In this notebook, we will be working with 10 second audio clips as the "standard length" for our training examples. The number of timesteps of the spectrogram will be 5511. You'll see later that the spectrogram will be the input $x$ into the network, and so $T_x = 5511$. ###Code _, data = wavfile.read("audio_examples/example_train.wav") print("Time steps in audio recording before spectrogram", data[:,0].shape) print("Time steps in input after spectrogram", x.shape) ###Output _____no_output_____ ###Markdown Now, you can define: ###Code Tx = 5511 # The number of time steps input to the model from the spectrogram n_freq = 101 # Number of frequencies input to the model at each time step of the spectrogram ###Output _____no_output_____ ###Markdown Note that even with 10 seconds being our default training example length, 10 seconds of time can be discretized to different numbers of value. You've seen 441000 (raw audio) and 5511 (spectrogram). In the former case, each step represents $10/441000 \approx 0.000023$ seconds. In the second case, each step represents $10/5511 \approx 0.0018$ seconds. For the 10sec of audio, the key values you will see in this assignment are:- $441000$ (raw audio)- $5511 = T_x$ (spectrogram output, and dimension of input to the neural network). - $10000$ (used by the `pydub` module to synthesize audio) - $1375 = T_y$ (the number of steps in the output of the GRU you'll build). Note that each of these representations correspond to exactly 10 seconds of time. It's just that they are discretizing them to different degrees. All of these are hyperparameters and can be changed (except the 441000, which is a function of the microphone). We have chosen values that are within the standard ranges uses for speech systems. Consider the $T_y = 1375$ number above. This means that for the output of the model, we discretize the 10s into 1375 time-intervals (each one of length $10/1375 \approx 0.0072$s) and try to predict for each of these intervals whether someone recently finished saying "activate." Consider also the 10000 number above. This corresponds to discretizing the 10sec clip into 10/10000 = 0.001 second itervals. 0.001 seconds is also called 1 millisecond, or 1ms. So when we say we are discretizing according to 1ms intervals, it means we are using 10,000 steps. ###Code Ty = 1375 # The number of time steps in the output of our model ###Output _____no_output_____ ###Markdown 1.3 - Generating a single training exampleBecause speech data is hard to acquire and label, you will synthesize your training data using the audio clips of activates, negatives, and backgrounds. It is quite slow to record lots of 10 second audio clips with random "activates" in it. Instead, it is easier to record lots of positives and negative words, and record background noise separately (or download background noise from free online sources). To synthesize a single training example, you will:- Pick a random 10 second background audio clip- Randomly insert 0-4 audio clips of "activate" into this 10sec clip- Randomly insert 0-2 audio clips of negative words into this 10sec clipBecause you had synthesized the word "activate" into the background clip, you know exactly when in the 10sec clip the "activate" makes its appearance. You'll see later that this makes it easier to generate the labels $y^{\langle t \rangle}$ as well. You will use the pydub package to manipulate audio. Pydub converts raw audio files into lists of Pydub data structures (it is not important to know the details here). Pydub uses 1ms as the discretization interval (1ms is 1 millisecond = 1/1000 seconds) which is why a 10sec clip is always represented using 10,000 steps. ###Code # Load audio segments using pydub activates, negatives, backgrounds = load_raw_audio() print("background len: " + str(len(backgrounds[0]))) # Should be 10,000, since it is a 10 sec clip print("activate[0] len: " + str(len(activates[0]))) # Maybe around 1000, since an "activate" audio clip is usually around 1 sec (but varies a lot) print("activate[1] len: " + str(len(activates[1]))) # Different "activate" clips can have different lengths ###Output _____no_output_____ ###Markdown **Overlaying positive/negative words on the background**:Given a 10sec background clip and a short audio clip (positive or negative word), you need to be able to "add" or "insert" the word's short audio clip onto the background. To ensure audio segments inserted onto the background do not overlap, you will keep track of the times of previously inserted audio clips. You will be inserting multiple clips of positive/negative words onto the background, and you don't want to insert an "activate" or a random word somewhere that overlaps with another clip you had previously added. For clarity, when you insert a 1sec "activate" onto a 10sec clip of cafe noise, you end up with a 10sec clip that sounds like someone sayng "activate" in a cafe, with "activate" superimposed on the background cafe noise. You do *not* end up with an 11 sec clip. You'll see later how pydub allows you to do this. **Creating the labels at the same time you overlay**:Recall also that the labels $y^{\langle t \rangle}$ represent whether or not someone has just finished saying "activate." Given a background clip, we can initialize $y^{\langle t \rangle}=0$ for all $t$, since the clip doesn't contain any "activates." When you insert or overlay an "activate" clip, you will also update labels for $y^{\langle t \rangle}$, so that 50 steps of the output now have target label 1. You will train a GRU to detect when someone has *finished* saying "activate". For example, suppose the synthesized "activate" clip ends at the 5sec mark in the 10sec audio---exactly halfway into the clip. Recall that $T_y = 1375$, so timestep $687 = $ `int(1375*0.5)` corresponds to the moment at 5sec into the audio. So, you will set $y^{\langle 688 \rangle} = 1$. Further, you would quite satisfied if the GRU detects "activate" anywhere within a short time-internal after this moment, so we actually set 50 consecutive values of the label $y^{\langle t \rangle}$ to 1. Specifically, we have $y^{\langle 688 \rangle} = y^{\langle 689 \rangle} = \cdots = y^{\langle 737 \rangle} = 1$. This is another reason for synthesizing the training data: It's relatively straightforward to generate these labels $y^{\langle t \rangle}$ as described above. In contrast, if you have 10sec of audio recorded on a microphone, it's quite time consuming for a person to listen to it and mark manually exactly when "activate" finished. Here's a figure illustrating the labels $y^{\langle t \rangle}$, for a clip which we have inserted "activate", "innocent", activate", "baby." Note that the positive labels "1" are associated only with the positive words. **Figure 2** To implement the training set synthesis process, you will use the following helper functions. All of these function will use a 1ms discretization interval, so the 10sec of audio is alwsys discretized into 10,000 steps. 1. `get_random_time_segment(segment_ms)` gets a random time segment in our background audio2. `is_overlapping(segment_time, existing_segments)` checks if a time segment overlaps with existing segments3. `insert_audio_clip(background, audio_clip, existing_times)` inserts an audio segment at a random time in our background audio using `get_random_time_segment` and `is_overlapping`4. `insert_ones(y, segment_end_ms)` inserts 1's into our label vector y after the word "activate" The function `get_random_time_segment(segment_ms)` returns a random time segment onto which we can insert an audio clip of duration `segment_ms`. Read through the code to make sure you understand what it is doing. ###Code def get_random_time_segment(segment_ms): """ Gets a random time segment of duration segment_ms in a 10,000 ms audio clip. Arguments: segment_ms -- the duration of the audio clip in ms ("ms" stands for "milliseconds") Returns: segment_time -- a tuple of (segment_start, segment_end) in ms """ segment_start = np.random.randint(low=0, high=10000-segment_ms) # Make sure segment doesn't run past the 10sec background segment_end = segment_start + segment_ms - 1 return (segment_start, segment_end) ###Output _____no_output_____ ###Markdown Next, suppose you have inserted audio clips at segments (1000,1800) and (3400,4500). I.e., the first segment starts at step 1000, and ends at step 1800. Now, if we are considering inserting a new audio clip at (3000,3600) does this overlap with one of the previously inserted segments? In this case, (3000,3600) and (3400,4500) overlap, so we should decide against inserting a clip here. For the purpose of this function, define (100,200) and (200,250) to be overlapping, since they overlap at timestep 200. However, (100,199) and (200,250) are non-overlapping. **Exercise**: Implement `is_overlapping(segment_time, existing_segments)` to check if a new time segment overlaps with any of the previous segments. You will need to carry out 2 steps:1. Create a "False" flag, that you will later set to "True" if you find that there is an overlap.2. Loop over the previous_segments' start and end times. Compare these times to the segment's start and end times. If there is an overlap, set the flag defined in (1) as True. You can use:```pythonfor ....: if ... = ...: ...```Hint: There is overlap if the segment starts before the previous segment ends, and the segment ends after the previous segment starts. ###Code # GRADED FUNCTION: is_overlapping def is_overlapping(segment_time, previous_segments): """ Checks if the time of a segment overlaps with the times of existing segments. Arguments: segment_time -- a tuple of (segment_start, segment_end) for the new segment previous_segments -- a list of tuples of (segment_start, segment_end) for the existing segments Returns: True if the time segment overlaps with any of the existing segments, False otherwise """ segment_start, segment_end = segment_time ### START CODE HERE ### (≈ 4 line) # Step 1: Initialize overlap as a "False" flag. (≈ 1 line) overlap = None # Step 2: loop over the previous_segments start and end times. # Compare start/end times and set the flag to True if there is an overlap (≈ 3 lines) for previous_start, previous_end in previous_segments: if None: None ### END CODE HERE ### return overlap overlap1 = is_overlapping((950, 1430), [(2000, 2550), (260, 949)]) overlap2 = is_overlapping((2305, 2950), [(824, 1532), (1900, 2305), (3424, 3656)]) print("Overlap 1 = ", overlap1) print("Overlap 2 = ", overlap2) ###Output _____no_output_____ ###Markdown **Expected Output**: **Overlap 1** False **Overlap 2** True Now, lets use the previous helper functions to insert a new audio clip onto the 10sec background at a random time, but making sure that any newly inserted segment doesn't overlap with the previous segments. **Exercise**: Implement `insert_audio_clip()` to overlay an audio clip onto the background 10sec clip. You will need to carry out 4 steps:1. Get a random time segment of the right duration in ms.2. Make sure that the time segment does not overlap with any of the previous time segments. If it is overlapping, then go back to step 1 and pick a new time segment.3. Add the new time segment to the list of existing time segments, so as to keep track of all the segments you've inserted. 4. Overlay the audio clip over the background using pydub. We have implemented this for you. ###Code # GRADED FUNCTION: insert_audio_clip def insert_audio_clip(background, audio_clip, previous_segments): """ Insert a new audio segment over the background noise at a random time step, ensuring that the audio segment does not overlap with existing segments. Arguments: background -- a 10 second background audio recording. audio_clip -- the audio clip to be inserted/overlaid. previous_segments -- times where audio segments have already been placed Returns: new_background -- the updated background audio """ # Get the duration of the audio clip in ms segment_ms = len(audio_clip) ### START CODE HERE ### # Step 1: Use one of the helper functions to pick a random time segment onto which to insert # the new audio clip. (≈ 1 line) segment_time = None # Step 2: Check if the new segment_time overlaps with one of the previous_segments. If so, keep # picking new segment_time at random until it doesn't overlap. (≈ 2 lines) while None: segment_time = None # Step 3: Add the new segment_time to the list of previous_segments (≈ 1 line) None ### END CODE HERE ### # Step 4: Superpose audio segment and background new_background = background.overlay(audio_clip, position = segment_time[0]) return new_background, segment_time np.random.seed(5) audio_clip, segment_time = insert_audio_clip(backgrounds[0], activates[0], [(3790, 4400)]) audio_clip.export("insert_test.wav", format="wav") print("Segment Time: ", segment_time) IPython.display.Audio("insert_test.wav") ###Output _____no_output_____ ###Markdown **Expected Output** **Segment Time** (2254, 3169) ###Code # Expected audio IPython.display.Audio("audio_examples/insert_reference.wav") ###Output _____no_output_____ ###Markdown Finally, implement code to update the labels $y^{\langle t \rangle}$, assuming you just inserted an "activate." In the code below, `y` is a `(1,1375)` dimensional vector, since $T_y = 1375$. If the "activate" ended at time step $t$, then set $y^{\langle t+1 \rangle} = 1$ as well as for up to 49 additional consecutive values. However, make sure you don't run off the end of the array and try to update `y[0][1375]`, since the valid indices are `y[0][0]` through `y[0][1374]` because $T_y = 1375$. So if "activate" ends at step 1370, you would get only `y[0][1371] = y[0][1372] = y[0][1373] = y[0][1374] = 1`**Exercise**: Implement `insert_ones()`. You can use a for loop. (If you are an expert in python's slice operations, feel free also to use slicing to vectorize this.) If a segment ends at `segment_end_ms` (using a 10000 step discretization), to convert it to the indexing for the outputs $y$ (using a $1375$ step discretization), we will use this formula: ``` segment_end_y = int(segment_end_ms * Ty / 10000.0)``` ###Code # GRADED FUNCTION: insert_ones def insert_ones(y, segment_end_ms): """ Update the label vector y. The labels of the 50 output steps after the end of the segment should be set to 1. Arguments: y -- numpy array of shape (1, Ty), the labels of the training example segment_end_ms -- the end time of the segment in ms Returns: y -- updated labels """ # duration of the background (in terms of spectrogram time-steps) segment_end_y = int(segment_end_ms * Ty / 10000.0) # Add 1 to the correct index in the background label (y) ### START CODE HERE ### (≈ 3 lines) for i in None: if None: None ### END CODE HERE ### return y arr1 = insert_ones(np.zeros((1, Ty)), 9700) plt.plot(insert_ones(arr1, 4251)[0,:]) print("sanity checks:", arr1[0][1333], arr1[0][634], arr1[0][635]) ###Output _____no_output_____ ###Markdown **Expected Output** **sanity checks**: 0.0 1.0 0.0 Finally, you can use `insert_audio_clip` and `insert_ones` to create a new training example.**Exercise**: Implement `create_training_example()`. You will need to carry out the following steps:1. Initialize the label vector $y$ as a numpy array of zeros and shape $(1, T_y)$.2. Initialize the set of existing segments to an empty list.3. Randomly select 0 to 4 "activate" audio clips, and insert them onto the 10sec clip. Also insert labels at the correct position in the label vector $y$.4. Randomly select 0 to 2 negative audio clips, and insert them into the 10sec clip. ###Code # GRADED FUNCTION: create_training_example def create_training_example(background, activates, negatives): """ Creates a training example with a given background, activates, and negatives. Arguments: background -- a 10 second background audio recording activates -- a list of audio segments of the word "activate" negatives -- a list of audio segments of random words that are not "activate" Returns: x -- the spectrogram of the training example y -- the label at each time step of the spectrogram """ # Set the random seed np.random.seed(18) # Make background quieter background = background - 20 ### START CODE HERE ### # Step 1: Initialize y (label vector) of zeros (≈ 1 line) y = None # Step 2: Initialize segment times as empty list (≈ 1 line) previous_segments = None ### END CODE HERE ### # Select 0-4 random "activate" audio clips from the entire list of "activates" recordings number_of_activates = np.random.randint(0, 4) random_indices = np.random.randint(len(activates), size=number_of_activates) random_activates = [activates[i] for i in random_indices] ### START CODE HERE ### (≈ 3 lines) # Step 3: Loop over randomly selected "activate" clips and insert in background for random_activate in random_activates: # Insert the audio clip on the background background, segment_time = None # Retrieve segment_start and segment_end from segment_time segment_start, segment_end = None # Insert labels in "y" y = None ### END CODE HERE ### # Select 0-2 random negatives audio recordings from the entire list of "negatives" recordings number_of_negatives = np.random.randint(0, 2) random_indices = np.random.randint(len(negatives), size=number_of_negatives) random_negatives = [negatives[i] for i in random_indices] ### START CODE HERE ### (≈ 2 lines) # Step 4: Loop over randomly selected negative clips and insert in background for random_negative in random_negatives: # Insert the audio clip on the background background, _ = None ### END CODE HERE ### # Standardize the volume of the audio clip background = match_target_amplitude(background, -20.0) # Export new training example file_handle = background.export("train" + ".wav", format="wav") print("File (train.wav) was saved in your directory.") # Get and plot spectrogram of the new recording (background with superposition of positive and negatives) x = graph_spectrogram("train.wav") return x, y x, y = create_training_example(backgrounds[0], activates, negatives) ###Output _____no_output_____ ###Markdown **Expected Output** Now you can listen to the training example you created and compare it to the spectrogram generated above. ###Code IPython.display.Audio("train.wav") ###Output _____no_output_____ ###Markdown **Expected Output** ###Code IPython.display.Audio("audio_examples/train_reference.wav") ###Output _____no_output_____ ###Markdown Finally, you can plot the associated labels for the generated training example. ###Code plt.plot(y[0]) ###Output _____no_output_____ ###Markdown **Expected Output** 1.4 - Full training setYou've now implemented the code needed to generate a single training example. We used this process to generate a large training set. To save time, we've already generated a set of training examples. ###Code # Load preprocessed training examples X = np.load("./XY_train/X.npy") Y = np.load("./XY_train/Y.npy") ###Output _____no_output_____ ###Markdown 1.5 - Development setTo test our model, we recorded a development set of 25 examples. While our training data is synthesized, we want to create a development set using the same distribution as the real inputs. Thus, we recorded 25 10-second audio clips of people saying "activate" and other random words, and labeled them by hand. This follows the principle described in Course 3 that we should create the dev set to be as similar as possible to the test set distribution; that's why our dev set uses real rather than synthesized audio. ###Code # Load preprocessed dev set examples X_dev = np.load("./XY_dev/X_dev.npy") Y_dev = np.load("./XY_dev/Y_dev.npy") ###Output _____no_output_____ ###Markdown 2 - ModelNow that you've built a dataset, lets write and train a trigger word detection model! The model will use 1-D convolutional layers, GRU layers, and dense layers. Let's load the packages that will allow you to use these layers in Keras. This might take a minute to load. ###Code from keras.callbacks import ModelCheckpoint from keras.models import Model, load_model, Sequential from keras.layers import Dense, Activation, Dropout, Input, Masking, TimeDistributed, LSTM, Conv1D from keras.layers import GRU, Bidirectional, BatchNormalization, Reshape from keras.optimizers import Adam ###Output _____no_output_____ ###Markdown 2.1 - Build the modelHere is the architecture we will use. Take some time to look over the model and see if it makes sense. **Figure 3** One key step of this model is the 1D convolutional step (near the bottom of Figure 3). It inputs the 5511 step spectrogram, and outputs a 1375 step output, which is then further processed by multiple layers to get the final $T_y = 1375$ step output. This layer plays a role similar to the 2D convolutions you saw in Course 4, of extracting low-level features and then possibly generating an output of a smaller dimension. Computationally, the 1-D conv layer also helps speed up the model because now the GRU has to process only 1375 timesteps rather than 5511 timesteps. The two GRU layers read the sequence of inputs from left to right, then ultimately uses a dense+sigmoid layer to make a prediction for $y^{\langle t \rangle}$. Because $y$ is binary valued (0 or 1), we use a sigmoid output at the last layer to estimate the chance of the output being 1, corresponding to the user having just said "activate."Note that we use a uni-directional RNN rather than a bi-directional RNN. This is really important for trigger word detection, since we want to be able to detect the trigger word almost immediately after it is said. If we used a bi-directional RNN, we would have to wait for the whole 10sec of audio to be recorded before we could tell if "activate" was said in the first second of the audio clip. Implementing the model can be done in four steps: **Step 1**: CONV layer. Use `Conv1D()` to implement this, with 196 filters, a filter size of 15 (`kernel_size=15`), and stride of 4. [[See documentation.](https://keras.io/layers/convolutional/conv1d)]**Step 2**: First GRU layer. To generate the GRU layer, use:```X = GRU(units = 128, return_sequences = True)(X)```Setting `return_sequences=True` ensures that all the GRU's hidden states are fed to the next layer. Remember to follow this with Dropout and BatchNorm layers. **Step 3**: Second GRU layer. This is similar to the previous GRU layer (remember to use `return_sequences=True`), but has an extra dropout layer. **Step 4**: Create a time-distributed dense layer as follows: ```X = TimeDistributed(Dense(1, activation = "sigmoid"))(X)```This creates a dense layer followed by a sigmoid, so that the parameters used for the dense layer are the same for every time step. [[See documentation](https://keras.io/layers/wrappers/).]**Exercise**: Implement `model()`, the architecture is presented in Figure 3. ###Code # GRADED FUNCTION: model def model(input_shape): """ Function creating the model's graph in Keras. Argument: input_shape -- shape of the model's input data (using Keras conventions) Returns: model -- Keras model instance """ X_input = Input(shape = input_shape) ### START CODE HERE ### # Step 1: CONV layer (≈4 lines) X = None # CONV1D X = None # Batch normalization X = None # ReLu activation X = None # dropout (use 0.8) # Step 2: First GRU Layer (≈4 lines) X = None # GRU (use 128 units and return the sequences) X = None # dropout (use 0.8) X = None # Batch normalization # Step 3: Second GRU Layer (≈4 lines) X = None # GRU (use 128 units and return the sequences) X = None # dropout (use 0.8) X = None # Batch normalization X = None # dropout (use 0.8) # Step 4: Time-distributed dense layer (≈1 line) X = None # time distributed (sigmoid) ### END CODE HERE ### model = Model(inputs = X_input, outputs = X) return model model = model(input_shape = (Tx, n_freq)) ###Output _____no_output_____ ###Markdown Let's print the model summary to keep track of the shapes. ###Code model.summary() ###Output _____no_output_____ ###Markdown **Expected Output**: **Total params** 522,561 **Trainable params** 521,657 **Non-trainable params** 904 The output of the network is of shape (None, 1375, 1) while the input is (None, 5511, 101). The Conv1D has reduced the number of steps from 5511 at spectrogram to 1375. 2.2 - Fit the model Trigger word detection takes a long time to train. To save time, we've already trained a model for about 3 hours on a GPU using the architecture you built above, and a large training set of about 4000 examples. Let's load the model. ###Code model = load_model('./models/tr_model.h5') ###Output _____no_output_____ ###Markdown You can train the model further, using the Adam optimizer and binary cross entropy loss, as follows. This will run quickly because we are training just for one epoch and with a small training set of 26 examples. ###Code opt = Adam(lr=0.0001, beta_1=0.9, beta_2=0.999, decay=0.01) model.compile(loss='binary_crossentropy', optimizer=opt, metrics=["accuracy"]) model.fit(X, Y, batch_size = 5, epochs=1) ###Output _____no_output_____ ###Markdown 2.3 - Test the modelFinally, let's see how your model performs on the dev set. ###Code loss, acc = model.evaluate(X_dev, Y_dev) print("Dev set accuracy = ", acc) ###Output _____no_output_____ ###Markdown This looks pretty good! However, accuracy isn't a great metric for this task, since the labels are heavily skewed to 0's, so a neural network that just outputs 0's would get slightly over 90% accuracy. We could define more useful metrics such as F1 score or Precision/Recall. But let's not bother with that here, and instead just empirically see how the model does. 3 - Making PredictionsNow that you have built a working model for trigger word detection, let's use it to make predictions. This code snippet runs audio (saved in a wav file) through the network. <!--can use your model to make predictions on new audio clips.You will first need to compute the predictions for an input audio clip.**Exercise**: Implement predict_activates(). You will need to do the following:1. Compute the spectrogram for the audio file2. Use `np.swap` and `np.expand_dims` to reshape your input to size (1, Tx, n_freqs)5. Use forward propagation on your model to compute the prediction at each output step!--> ###Code def detect_triggerword(filename): plt.subplot(2, 1, 1) x = graph_spectrogram(filename) # the spectogram outputs (freqs, Tx) and we want (Tx, freqs) to input into the model x = x.swapaxes(0,1) x = np.expand_dims(x, axis=0) predictions = model.predict(x) plt.subplot(2, 1, 2) plt.plot(predictions[0,:,0]) plt.ylabel('probability') plt.show() return predictions ###Output _____no_output_____ ###Markdown Once you've estimated the probability of having detected the word "activate" at each output step, you can trigger a "chiming" sound to play when the probability is above a certain threshold. Further, $y^{\langle t \rangle}$ might be near 1 for many values in a row after "activate" is said, yet we want to chime only once. So we will insert a chime sound at most once every 75 output steps. This will help prevent us from inserting two chimes for a single instance of "activate". (This plays a role similar to non-max suppression from computer vision.) <!-- **Exercise**: Implement chime_on_activate(). You will need to do the following:1. Loop over the predicted probabilities at each output step2. When the prediction is larger than the threshold and more than 75 consecutive time steps have passed, insert a "chime" sound onto the original audio clipUse this code to convert from the 1,375 step discretization to the 10,000 step discretization and insert a "chime" using pydub:` audio_clip = audio_clip.overlay(chime, position = ((i / Ty) * audio.duration_seconds)*1000)`!--> ###Code chime_file = "audio_examples/chime.wav" def chime_on_activate(filename, predictions, threshold): audio_clip = AudioSegment.from_wav(filename) chime = AudioSegment.from_wav(chime_file) Ty = predictions.shape[1] # Step 1: Initialize the number of consecutive output steps to 0 consecutive_timesteps = 0 # Step 2: Loop over the output steps in the y for i in range(Ty): # Step 3: Increment consecutive output steps consecutive_timesteps += 1 # Step 4: If prediction is higher than the threshold and more than 50 consecutive output steps have passed if predictions[0,i,0] > threshold and consecutive_timesteps > 75: # Step 5: Superpose audio and background using pydub audio_clip = audio_clip.overlay(chime, position = ((i / Ty) * audio_clip.duration_seconds)*1000) # Step 6: Reset consecutive output steps to 0 consecutive_timesteps = 0 audio_clip.export("chime_output.wav", format='wav') ###Output _____no_output_____ ###Markdown 3.3 - Test on dev examples Let's explore how our model performs on two unseen audio clips from the development set. Lets first listen to the two dev set clips. ###Code IPython.display.Audio("./raw_data/dev/1.wav") IPython.display.Audio("./raw_data/dev/2.wav") ###Output _____no_output_____ ###Markdown Now lets run the model on these audio clips and see if it adds a chime after "activate"! ###Code filename = "./raw_data/dev/1.wav" prediction = detect_triggerword(filename) chime_on_activate(filename, prediction, 0.5) IPython.display.Audio("./chime_output.wav") filename = "./raw_data/dev/2.wav" prediction = detect_triggerword(filename) chime_on_activate(filename, prediction, 0.5) IPython.display.Audio("./chime_output.wav") ###Output _____no_output_____ ###Markdown Congratulations You've come to the end of this assignment! Here's what you should remember:- Data synthesis is an effective way to create a large training set for speech problems, specifically trigger word detection. - Using a spectrogram and optionally a 1D conv layer is a common pre-processing step prior to passing audio data to an RNN, GRU or LSTM.- An end-to-end deep learning approach can be used to built a very effective trigger word detection system. *Congratulations* on finishing the fimal assignment! Thank you for sticking with us through the end and for all the hard work you've put into learning deep learning. We hope you have enjoyed the course! 4 - Try your own example! (OPTIONAL/UNGRADED)In this optional and ungraded portion of this notebook, you can try your model on your own audio clips! Record a 10 second audio clip of you saying the word "activate" and other random words, and upload it to the Coursera hub as `myaudio.wav`. Be sure to upload the audio as a wav file. If your audio is recorded in a different format (such as mp3) there is free software that you can find online for converting it to wav. If your audio recording is not 10 seconds, the code below will either trim or pad it as needed to make it 10 seconds. ###Code # Preprocess the audio to the correct format def preprocess_audio(filename): # Trim or pad audio segment to 10000ms padding = AudioSegment.silent(duration=10000) segment = AudioSegment.from_wav(filename)[:10000] segment = padding.overlay(segment) # Set frame rate to 44100 segment = segment.set_frame_rate(44100) # Export as wav segment.export(filename, format='wav') ###Output _____no_output_____ ###Markdown Once you've uploaded your audio file to Coursera, put the path to your file in the variable below. ###Code your_filename = "myaudio.wav" preprocess_audio(your_filename) IPython.display.Audio(your_filename) # listen to the audio you uploaded ###Output _____no_output_____ ###Markdown Finally, use the model to predict when you say activate in the 10 second audio clip, and trigger a chime. ###Code prediction = detect_triggerword(your_filename) chime_on_activate(your_filename, prediction, 0.5) IPython.display.Audio("./chime_output.wav") ###Output _____no_output_____
course_4_Convolutional_Neural_Networks/Car detection for Autonomous Driving/Autonomous+driving+application+-+Car+detection+-+v1.ipynb
###Markdown Autonomous driving - Car detectionWelcome to your week 3 programming assignment. You will learn about object detection using the very powerful YOLO model. Many of the ideas in this notebook are described in the two YOLO papers: Redmon et al., 2016 (https://arxiv.org/abs/1506.02640) and Redmon and Farhadi, 2016 (https://arxiv.org/abs/1612.08242). **You will learn to**:- Use object detection on a car detection dataset- Deal with bounding boxesRun the following cell to load the packages and dependencies that are going to be useful for your journey! ###Code import argparse import os import matplotlib.pyplot as plt from matplotlib.pyplot import imshow import scipy.io import scipy.misc import numpy as np import pandas as pd import PIL import tensorflow as tf from keras import backend as K from keras.layers import Input, Lambda, Conv2D from keras.models import load_model, Model from yolo_utils import read_classes, read_anchors, generate_colors, preprocess_image, draw_boxes, scale_boxes from yad2k.models.keras_yolo import yolo_head, yolo_boxes_to_corners, preprocess_true_boxes, yolo_loss, yolo_body %matplotlib inline ###Output _____no_output_____ ###Markdown **Important Note**: As you can see, we import Keras's backend as K. This means that to use a Keras function in this notebook, you will need to write: `K.function(...)`. 1 - Problem StatementYou are working on a self-driving car. As a critical component of this project, you'd like to first build a car detection system. To collect data, you've mounted a camera to the hood (meaning the front) of the car, which takes pictures of the road ahead every few seconds while you drive around. Pictures taken from a car-mounted camera while driving around Silicon Valley. We would like to especially thank [drive.ai](https://www.drive.ai/) for providing this dataset! Drive.ai is a company building the brains of self-driving vehicles.You've gathered all these images into a folder and have labelled them by drawing bounding boxes around every car you found. Here's an example of what your bounding boxes look like. **Figure 1** : **Definition of a box** If you have 80 classes that you want YOLO to recognize, you can represent the class label $c$ either as an integer from 1 to 80, or as an 80-dimensional vector (with 80 numbers) one component of which is 1 and the rest of which are 0. The video lectures had used the latter representation; in this notebook, we will use both representations, depending on which is more convenient for a particular step. In this exercise, you will learn how YOLO works, then apply it to car detection. Because the YOLO model is very computationally expensive to train, we will load pre-trained weights for you to use. 2 - YOLO YOLO ("you only look once") is a popular algoritm because it achieves high accuracy while also being able to run in real-time. This algorithm "only looks once" at the image in the sense that it requires only one forward propagation pass through the network to make predictions. After non-max suppression, it then outputs recognized objects together with the bounding boxes. 2.1 - Model detailsFirst things to know:- The **input** is a batch of images of shape (m, 608, 608, 3)- The **output** is a list of bounding boxes along with the recognized classes. Each bounding box is represented by 6 numbers $(p_c, b_x, b_y, b_h, b_w, c)$ as explained above. If you expand $c$ into an 80-dimensional vector, each bounding box is then represented by 85 numbers. We will use 5 anchor boxes. So you can think of the YOLO architecture as the following: IMAGE (m, 608, 608, 3) -> DEEP CNN -> ENCODING (m, 19, 19, 5, 85).Lets look in greater detail at what this encoding represents. **Figure 2** : **Encoding architecture for YOLO** If the center/midpoint of an object falls into a grid cell, that grid cell is responsible for detecting that object. Since we are using 5 anchor boxes, each of the 19 x19 cells thus encodes information about 5 boxes. Anchor boxes are defined only by their width and height.For simplicity, we will flatten the last two last dimensions of the shape (19, 19, 5, 85) encoding. So the output of the Deep CNN is (19, 19, 425). **Figure 3** : **Flattening the last two last dimensions** Now, for each box (of each cell) we will compute the following elementwise product and extract a probability that the box contains a certain class. **Figure 4** : **Find the class detected by each box** Here's one way to visualize what YOLO is predicting on an image:- For each of the 19x19 grid cells, find the maximum of the probability scores (taking a max across both the 5 anchor boxes and across different classes). - Color that grid cell according to what object that grid cell considers the most likely.Doing this results in this picture: **Figure 5** : Each of the 19x19 grid cells colored according to which class has the largest predicted probability in that cell. Note that this visualization isn't a core part of the YOLO algorithm itself for making predictions; it's just a nice way of visualizing an intermediate result of the algorithm. Another way to visualize YOLO's output is to plot the bounding boxes that it outputs. Doing that results in a visualization like this: **Figure 6** : Each cell gives you 5 boxes. In total, the model predicts: 19x19x5 = 1805 boxes just by looking once at the image (one forward pass through the network)! Different colors denote different classes. In the figure above, we plotted only boxes that the model had assigned a high probability to, but this is still too many boxes. You'd like to filter the algorithm's output down to a much smaller number of detected objects. To do so, you'll use non-max suppression. Specifically, you'll carry out these steps: - Get rid of boxes with a low score (meaning, the box is not very confident about detecting a class)- Select only one box when several boxes overlap with each other and detect the same object. 2.2 - Filtering with a threshold on class scoresYou are going to apply a first filter by thresholding. You would like to get rid of any box for which the class "score" is less than a chosen threshold. The model gives you a total of 19x19x5x85 numbers, with each box described by 85 numbers. It'll be convenient to rearrange the (19,19,5,85) (or (19,19,425)) dimensional tensor into the following variables: - `box_confidence`: tensor of shape $(19 \times 19, 5, 1)$ containing $p_c$ (confidence probability that there's some object) for each of the 5 boxes predicted in each of the 19x19 cells.- `boxes`: tensor of shape $(19 \times 19, 5, 4)$ containing $(b_x, b_y, b_h, b_w)$ for each of the 5 boxes per cell.- `box_class_probs`: tensor of shape $(19 \times 19, 5, 80)$ containing the detection probabilities $(c_1, c_2, ... c_{80})$ for each of the 80 classes for each of the 5 boxes per cell.**Exercise**: Implement `yolo_filter_boxes()`.1. Compute box scores by doing the elementwise product as described in Figure 4. The following code may help you choose the right operator: ```pythona = np.random.randn(19*19, 5, 1)b = np.random.randn(19*19, 5, 80)c = a * b shape of c will be (19*19, 5, 80)```2. For each box, find: - the index of the class with the maximum box score ([Hint](https://keras.io/backend/argmax)) (Be careful with what axis you choose; consider using axis=-1) - the corresponding box score ([Hint](https://keras.io/backend/max)) (Be careful with what axis you choose; consider using axis=-1)3. Create a mask by using a threshold. As a reminder: `([0.9, 0.3, 0.4, 0.5, 0.1] < 0.4)` returns: `[False, True, False, False, True]`. The mask should be True for the boxes you want to keep. 4. Use TensorFlow to apply the mask to box_class_scores, boxes and box_classes to filter out the boxes we don't want. You should be left with just the subset of boxes you want to keep. ([Hint](https://www.tensorflow.org/api_docs/python/tf/boolean_mask))Reminder: to call a Keras function, you should use `K.function(...)`. ###Code # GRADED FUNCTION: yolo_filter_boxes def yolo_filter_boxes(box_confidence, boxes, box_class_probs, threshold = .6): """Filters YOLO boxes by thresholding on object and class confidence. Arguments: box_confidence -- tensor of shape (19, 19, 5, 1) boxes -- tensor of shape (19, 19, 5, 4) box_class_probs -- tensor of shape (19, 19, 5, 80) threshold -- real value, if [ highest class probability score < threshold], then get rid of the corresponding box Returns: scores -- tensor of shape (None,), containing the class probability score for selected boxes boxes -- tensor of shape (None, 4), containing (b_x, b_y, b_h, b_w) coordinates of selected boxes classes -- tensor of shape (None,), containing the index of the class detected by the selected boxes Note: "None" is here because you don't know the exact number of selected boxes, as it depends on the threshold. For example, the actual output size of scores would be (10,) if there are 10 boxes. """ # Step 1: Compute box scores ### START CODE HERE ### (≈ 1 line) box_scores = box_confidence * box_class_probs ### END CODE HERE ### # Step 2: Find the box_classes thanks to the max box_scores, # keep track of the corresponding score ### START CODE HERE ### (≈ 2 lines) box_classes = K.argmax(box_scores, axis = -1) box_class_scores = K.max(box_scores, axis = -1, keepdims = False) ### END CODE HERE ### # Step 3: Create a filtering mask based on "box_class_scores" by using "threshold". # The mask should have the same dimension as box_class_scores, and be True for the # boxes you want to keep (with probability >= threshold) ### START CODE HERE ### (≈ 1 line) filtering_mask = (box_class_scores >= threshold) ### END CODE HERE ### # Step 4: Apply the mask to scores, boxes and classes ### START CODE HERE ### (≈ 3 lines) scores = tf.boolean_mask(box_class_scores, filtering_mask) boxes = tf.boolean_mask(boxes, filtering_mask) classes = tf.boolean_mask(box_classes, filtering_mask) ### END CODE HERE ### return scores, boxes, classes with tf.Session() as test_a: box_confidence = tf.random_normal([19, 19, 5, 1], mean=1, stddev=4, seed = 1) boxes = tf.random_normal([19, 19, 5, 4], mean=1, stddev=4, seed = 1) box_class_probs = tf.random_normal([19, 19, 5, 80], mean=1, stddev=4, seed = 1) scores, boxes, classes = yolo_filter_boxes(box_confidence, boxes, box_class_probs, threshold = 0.5) print("scores[2] = " + str(scores[2].eval())) print("boxes[2] = " + str(boxes[2].eval())) print("classes[2] = " + str(classes[2].eval())) print("scores.shape = " + str(scores.shape)) print("boxes.shape = " + str(boxes.shape)) print("classes.shape = " + str(classes.shape)) ###Output scores[2] = 10.7506 boxes[2] = [ 8.42653275 3.27136683 -0.5313437 -4.94137383] classes[2] = 7 scores.shape = (?,) boxes.shape = (?, 4) classes.shape = (?,) ###Markdown **Expected Output**: **scores[2]** 10.7506 **boxes[2]** [ 8.42653275 3.27136683 -0.5313437 -4.94137383] **classes[2]** 7 **scores.shape** (?,) **boxes.shape** (?, 4) **classes.shape** (?,) 2.3 - Non-max suppression Even after filtering by thresholding over the classes scores, you still end up a lot of overlapping boxes. A second filter for selecting the right boxes is called non-maximum suppression (NMS). **Figure 7** : In this example, the model has predicted 3 cars, but it's actually 3 predictions of the same car. Running non-max suppression (NMS) will select only the most accurate (highest probabiliy) one of the 3 boxes. Non-max suppression uses the very important function called **"Intersection over Union"**, or IoU. **Figure 8** : Definition of "Intersection over Union". **Exercise**: Implement iou(). Some hints:- In this exercise only, we define a box using its two corners (upper left and lower right): (x1, y1, x2, y2) rather than the midpoint and height/width.- To calculate the area of a rectangle you need to multiply its height (y2 - y1) by its width (x2 - x1)- You'll also need to find the coordinates (xi1, yi1, xi2, yi2) of the intersection of two boxes. Remember that: - xi1 = maximum of the x1 coordinates of the two boxes - yi1 = maximum of the y1 coordinates of the two boxes - xi2 = minimum of the x2 coordinates of the two boxes - yi2 = minimum of the y2 coordinates of the two boxes In this code, we use the convention that (0,0) is the top-left corner of an image, (1,0) is the upper-right corner, and (1,1) the lower-right corner. ###Code # GRADED FUNCTION: iou def iou(box1, box2): """Implement the intersection over union (IoU) between box1 and box2 Arguments: box1 -- first box, list object with coordinates (x1, y1, x2, y2) box2 -- second box, list object with coordinates (x1, y1, x2, y2) """ # Calculate the (y1, x1, y2, x2) coordinates of the intersection of box1 and box2. Calculate its Area. ### START CODE HERE ### (≈ 5 lines) xi1 = max(box1[0], box2[0]) yi1 = max(box1[1], box2[1]) xi2 = min(box1[2], box2[2]) yi2 = min(box1[3], box2[3]) inter_area = (yi2 - yi1) * (xi2 - xi1) ### END CODE HERE ### # Calculate the Union area by using Formula: Union(A,B) = A + B - Inter(A,B) ### START CODE HERE ### (≈ 3 lines) box1_area = (box1[3] - box1[1]) * (box1[2] - box1[0]) box2_area = (box2[3] - box2[1]) * (box2[2] - box2[0]) union_area = box1_area + box2_area - inter_area ### END CODE HERE ### # compute the IoU ### START CODE HERE ### (≈ 1 line) iou = inter_area / union_area ### END CODE HERE ### return iou box1 = (2, 1, 4, 3) box2 = (1, 2, 3, 4) print("iou = " + str(iou(box1, box2))) ###Output iou = 0.14285714285714285 ###Markdown **Expected Output**: **iou = ** 0.14285714285714285 You are now ready to implement non-max suppression. The key steps are: 1. Select the box that has the highest score.2. Compute its overlap with all other boxes, and remove boxes that overlap it more than `iou_threshold`.3. Go back to step 1 and iterate until there's no more boxes with a lower score than the current selected box.This will remove all boxes that have a large overlap with the selected boxes. Only the "best" boxes remain.**Exercise**: Implement yolo_non_max_suppression() using TensorFlow. TensorFlow has two built-in functions that are used to implement non-max suppression (so you don't actually need to use your `iou()` implementation):- [tf.image.non_max_suppression()](https://www.tensorflow.org/api_docs/python/tf/image/non_max_suppression)- [K.gather()](https://www.tensorflow.org/api_docs/python/tf/gather) ###Code # GRADED FUNCTION: yolo_non_max_suppression def yolo_non_max_suppression(scores, boxes, classes, max_boxes = 10, iou_threshold = 0.5): """ Applies Non-max suppression (NMS) to set of boxes Arguments: scores -- tensor of shape (None,), output of yolo_filter_boxes() boxes -- tensor of shape (None, 4), output of yolo_filter_boxes() that have been scaled to the image size (see later) classes -- tensor of shape (None,), output of yolo_filter_boxes() max_boxes -- integer, maximum number of predicted boxes you'd like iou_threshold -- real value, "intersection over union" threshold used for NMS filtering Returns: scores -- tensor of shape (, None), predicted score for each box boxes -- tensor of shape (4, None), predicted box coordinates classes -- tensor of shape (, None), predicted class for each box Note: The "None" dimension of the output tensors has obviously to be less than max_boxes. Note also that this function will transpose the shapes of scores, boxes, classes. This is made for convenience. """ max_boxes_tensor = K.variable(max_boxes, dtype='int32') # tensor to be used in tf.image.non_max_suppression() K.get_session().run(tf.variables_initializer([max_boxes_tensor])) # initialize variable max_boxes_tensor # Use tf.image.non_max_suppression() to get the list of indices corresponding to boxes you keep ### START CODE HERE ### (≈ 1 line) nms_indices = tf.image.non_max_suppression( boxes = boxes, scores = scores, max_output_size = max_boxes_tensor, iou_threshold = iou_threshold ) ### END CODE HERE ### # Use K.gather() to select only nms_indices from scores, boxes and classes ### START CODE HERE ### (≈ 3 lines) scores = K.gather(scores, nms_indices) boxes = K.gather(boxes, nms_indices) classes = K.gather(classes, nms_indices) ### END CODE HERE ### return scores, boxes, classes with tf.Session() as test_b: scores = tf.random_normal([54,], mean=1, stddev=4, seed = 1) boxes = tf.random_normal([54, 4], mean=1, stddev=4, seed = 1) classes = tf.random_normal([54,], mean=1, stddev=4, seed = 1) scores, boxes, classes = yolo_non_max_suppression(scores, boxes, classes) print("scores[2] = " + str(scores[2].eval())) print("boxes[2] = " + str(boxes[2].eval())) print("classes[2] = " + str(classes[2].eval())) print("scores.shape = " + str(scores.eval().shape)) print("boxes.shape = " + str(boxes.eval().shape)) print("classes.shape = " + str(classes.eval().shape)) ###Output scores[2] = 6.9384 boxes[2] = [-5.299932 3.13798141 4.45036697 0.95942086] classes[2] = -2.24527 scores.shape = (10,) boxes.shape = (10, 4) classes.shape = (10,) ###Markdown **Expected Output**: **scores[2]** 6.9384 **boxes[2]** [-5.299932 3.13798141 4.45036697 0.95942086] **classes[2]** -2.24527 **scores.shape** (10,) **boxes.shape** (10, 4) **classes.shape** (10,) 2.4 Wrapping up the filteringIt's time to implement a function taking the output of the deep CNN (the 19x19x5x85 dimensional encoding) and filtering through all the boxes using the functions you've just implemented. **Exercise**: Implement `yolo_eval()` which takes the output of the YOLO encoding and filters the boxes using score threshold and NMS. There's just one last implementational detail you have to know. There're a few ways of representing boxes, such as via their corners or via their midpoint and height/width. YOLO converts between a few such formats at different times, using the following functions (which we have provided): ```pythonboxes = yolo_boxes_to_corners(box_xy, box_wh) ```which converts the yolo box coordinates (x,y,w,h) to box corners' coordinates (x1, y1, x2, y2) to fit the input of `yolo_filter_boxes````pythonboxes = scale_boxes(boxes, image_shape)```YOLO's network was trained to run on 608x608 images. If you are testing this data on a different size image--for example, the car detection dataset had 720x1280 images--this step rescales the boxes so that they can be plotted on top of the original 720x1280 image. Don't worry about these two functions; we'll show you where they need to be called. ###Code # GRADED FUNCTION: yolo_eval def yolo_eval(yolo_outputs, image_shape = (720., 1280.), max_boxes=10, score_threshold=.6, iou_threshold=.5): """ Converts the output of YOLO encoding (a lot of boxes) to your predicted boxes along with their scores, box coordinates and classes. Arguments: yolo_outputs -- output of the encoding model (for image_shape of (608, 608, 3)), contains 4 tensors: box_confidence: tensor of shape (None, 19, 19, 5, 1) box_xy: tensor of shape (None, 19, 19, 5, 2) box_wh: tensor of shape (None, 19, 19, 5, 2) box_class_probs: tensor of shape (None, 19, 19, 5, 80) image_shape -- tensor of shape (2,) containing the input shape, in this notebook we use (608., 608.) (has to be float32 dtype) max_boxes -- integer, maximum number of predicted boxes you'd like score_threshold -- real value, if [ highest class probability score < threshold], then get rid of the corresponding box iou_threshold -- real value, "intersection over union" threshold used for NMS filtering Returns: scores -- tensor of shape (None, ), predicted score for each box boxes -- tensor of shape (None, 4), predicted box coordinates classes -- tensor of shape (None,), predicted class for each box """ ### START CODE HERE ### # Retrieve outputs of the YOLO model (≈1 line) box_confidence, box_xy, box_wh, box_class_probs = yolo_outputs # Convert boxes to be ready for filtering functions boxes = yolo_boxes_to_corners(box_xy, box_wh) # Use one of the functions you've implemented to perform Score-filtering with a threshold of score_threshold (≈1 line) scores, boxes, classes = yolo_filter_boxes(box_confidence, boxes, box_class_probs, score_threshold) # Scale boxes back to original image shape. boxes = scale_boxes(boxes, image_shape) # Use one of the functions you've implemented to perform Non-max suppression with a threshold of iou_threshold (≈1 line) scores, boxes, classes = yolo_non_max_suppression(scores, boxes, classes, max_boxes, iou_threshold) ### END CODE HERE ### return scores, boxes, classes with tf.Session() as test_b: yolo_outputs = (tf.random_normal([19, 19, 5, 1], mean=1, stddev=4, seed = 1), tf.random_normal([19, 19, 5, 2], mean=1, stddev=4, seed = 1), tf.random_normal([19, 19, 5, 2], mean=1, stddev=4, seed = 1), tf.random_normal([19, 19, 5, 80], mean=1, stddev=4, seed = 1)) scores, boxes, classes = yolo_eval(yolo_outputs) print("scores[2] = " + str(scores[2].eval())) print("boxes[2] = " + str(boxes[2].eval())) print("classes[2] = " + str(classes[2].eval())) print("scores.shape = " + str(scores.eval().shape)) print("boxes.shape = " + str(boxes.eval().shape)) print("classes.shape = " + str(classes.eval().shape)) ###Output scores[2] = 138.791 boxes[2] = [ 1292.32971191 -278.52166748 3876.98925781 -835.56494141] classes[2] = 54 scores.shape = (10,) boxes.shape = (10, 4) classes.shape = (10,) ###Markdown **Expected Output**: **scores[2]** 138.791 **boxes[2]** [ 1292.32971191 -278.52166748 3876.98925781 -835.56494141] **classes[2]** 54 **scores.shape** (10,) **boxes.shape** (10, 4) **classes.shape** (10,) **Summary for YOLO**:- Input image (608, 608, 3)- The input image goes through a CNN, resulting in a (19,19,5,85) dimensional output. - After flattening the last two dimensions, the output is a volume of shape (19, 19, 425): - Each cell in a 19x19 grid over the input image gives 425 numbers. - 425 = 5 x 85 because each cell contains predictions for 5 boxes, corresponding to 5 anchor boxes, as seen in lecture. - 85 = 5 + 80 where 5 is because $(p_c, b_x, b_y, b_h, b_w)$ has 5 numbers, and and 80 is the number of classes we'd like to detect- You then select only few boxes based on: - Score-thresholding: throw away boxes that have detected a class with a score less than the threshold - Non-max suppression: Compute the Intersection over Union and avoid selecting overlapping boxes- This gives you YOLO's final output. 3 - Test YOLO pretrained model on images In this part, you are going to use a pretrained model and test it on the car detection dataset. As usual, you start by **creating a session to start your graph**. Run the following cell. ###Code sess = K.get_session() ###Output _____no_output_____ ###Markdown 3.1 - Defining classes, anchors and image shape. Recall that we are trying to detect 80 classes, and are using 5 anchor boxes. We have gathered the information about the 80 classes and 5 boxes in two files "coco_classes.txt" and "yolo_anchors.txt". Let's load these quantities into the model by running the next cell. The car detection dataset has 720x1280 images, which we've pre-processed into 608x608 images. ###Code class_names = read_classes("model_data/coco_classes.txt") anchors = read_anchors("model_data/yolo_anchors.txt") image_shape = (720., 1280.) ###Output _____no_output_____ ###Markdown 3.2 - Loading a pretrained modelTraining a YOLO model takes a very long time and requires a fairly large dataset of labelled bounding boxes for a large range of target classes. You are going to load an existing pretrained Keras YOLO model stored in "yolo.h5". (These weights come from the official YOLO website, and were converted using a function written by Allan Zelener. References are at the end of this notebook. Technically, these are the parameters from the "YOLOv2" model, but we will more simply refer to it as "YOLO" in this notebook.) Run the cell below to load the model from this file. ###Code yolo_model = load_model("model_data/yolo.h5") ###Output /opt/conda/lib/python3.6/site-packages/keras/models.py:251: UserWarning: No training configuration found in save file: the model was *not* compiled. Compile it manually. warnings.warn('No training configuration found in save file: ' ###Markdown This loads the weights of a trained YOLO model. Here's a summary of the layers your model contains. ###Code yolo_model.summary() ###Output ____________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to ==================================================================================================== input_1 (InputLayer) (None, 608, 608, 3) 0 ____________________________________________________________________________________________________ conv2d_1 (Conv2D) (None, 608, 608, 32) 864 input_1[0][0] ____________________________________________________________________________________________________ batch_normalization_1 (BatchNorm (None, 608, 608, 32) 128 conv2d_1[0][0] ____________________________________________________________________________________________________ leaky_re_lu_1 (LeakyReLU) (None, 608, 608, 32) 0 batch_normalization_1[0][0] ____________________________________________________________________________________________________ max_pooling2d_1 (MaxPooling2D) (None, 304, 304, 32) 0 leaky_re_lu_1[0][0] ____________________________________________________________________________________________________ conv2d_2 (Conv2D) (None, 304, 304, 64) 18432 max_pooling2d_1[0][0] ____________________________________________________________________________________________________ batch_normalization_2 (BatchNorm (None, 304, 304, 64) 256 conv2d_2[0][0] ____________________________________________________________________________________________________ leaky_re_lu_2 (LeakyReLU) (None, 304, 304, 64) 0 batch_normalization_2[0][0] ____________________________________________________________________________________________________ max_pooling2d_2 (MaxPooling2D) (None, 152, 152, 64) 0 leaky_re_lu_2[0][0] ____________________________________________________________________________________________________ conv2d_3 (Conv2D) (None, 152, 152, 128) 73728 max_pooling2d_2[0][0] ____________________________________________________________________________________________________ batch_normalization_3 (BatchNorm (None, 152, 152, 128) 512 conv2d_3[0][0] ____________________________________________________________________________________________________ leaky_re_lu_3 (LeakyReLU) (None, 152, 152, 128) 0 batch_normalization_3[0][0] ____________________________________________________________________________________________________ conv2d_4 (Conv2D) (None, 152, 152, 64) 8192 leaky_re_lu_3[0][0] ____________________________________________________________________________________________________ batch_normalization_4 (BatchNorm (None, 152, 152, 64) 256 conv2d_4[0][0] ____________________________________________________________________________________________________ leaky_re_lu_4 (LeakyReLU) (None, 152, 152, 64) 0 batch_normalization_4[0][0] ____________________________________________________________________________________________________ conv2d_5 (Conv2D) (None, 152, 152, 128) 73728 leaky_re_lu_4[0][0] ____________________________________________________________________________________________________ batch_normalization_5 (BatchNorm (None, 152, 152, 128) 512 conv2d_5[0][0] ____________________________________________________________________________________________________ leaky_re_lu_5 (LeakyReLU) (None, 152, 152, 128) 0 batch_normalization_5[0][0] ____________________________________________________________________________________________________ max_pooling2d_3 (MaxPooling2D) (None, 76, 76, 128) 0 leaky_re_lu_5[0][0] ____________________________________________________________________________________________________ conv2d_6 (Conv2D) (None, 76, 76, 256) 294912 max_pooling2d_3[0][0] ____________________________________________________________________________________________________ batch_normalization_6 (BatchNorm (None, 76, 76, 256) 1024 conv2d_6[0][0] ____________________________________________________________________________________________________ leaky_re_lu_6 (LeakyReLU) (None, 76, 76, 256) 0 batch_normalization_6[0][0] ____________________________________________________________________________________________________ conv2d_7 (Conv2D) (None, 76, 76, 128) 32768 leaky_re_lu_6[0][0] ____________________________________________________________________________________________________ batch_normalization_7 (BatchNorm (None, 76, 76, 128) 512 conv2d_7[0][0] ____________________________________________________________________________________________________ leaky_re_lu_7 (LeakyReLU) (None, 76, 76, 128) 0 batch_normalization_7[0][0] ____________________________________________________________________________________________________ conv2d_8 (Conv2D) (None, 76, 76, 256) 294912 leaky_re_lu_7[0][0] ____________________________________________________________________________________________________ batch_normalization_8 (BatchNorm (None, 76, 76, 256) 1024 conv2d_8[0][0] ____________________________________________________________________________________________________ leaky_re_lu_8 (LeakyReLU) (None, 76, 76, 256) 0 batch_normalization_8[0][0] ____________________________________________________________________________________________________ max_pooling2d_4 (MaxPooling2D) (None, 38, 38, 256) 0 leaky_re_lu_8[0][0] ____________________________________________________________________________________________________ conv2d_9 (Conv2D) (None, 38, 38, 512) 1179648 max_pooling2d_4[0][0] ____________________________________________________________________________________________________ batch_normalization_9 (BatchNorm (None, 38, 38, 512) 2048 conv2d_9[0][0] ____________________________________________________________________________________________________ leaky_re_lu_9 (LeakyReLU) (None, 38, 38, 512) 0 batch_normalization_9[0][0] ____________________________________________________________________________________________________ conv2d_10 (Conv2D) (None, 38, 38, 256) 131072 leaky_re_lu_9[0][0] ____________________________________________________________________________________________________ batch_normalization_10 (BatchNor (None, 38, 38, 256) 1024 conv2d_10[0][0] ____________________________________________________________________________________________________ leaky_re_lu_10 (LeakyReLU) (None, 38, 38, 256) 0 batch_normalization_10[0][0] ____________________________________________________________________________________________________ conv2d_11 (Conv2D) (None, 38, 38, 512) 1179648 leaky_re_lu_10[0][0] ____________________________________________________________________________________________________ batch_normalization_11 (BatchNor (None, 38, 38, 512) 2048 conv2d_11[0][0] ____________________________________________________________________________________________________ leaky_re_lu_11 (LeakyReLU) (None, 38, 38, 512) 0 batch_normalization_11[0][0] ____________________________________________________________________________________________________ conv2d_12 (Conv2D) (None, 38, 38, 256) 131072 leaky_re_lu_11[0][0] ____________________________________________________________________________________________________ batch_normalization_12 (BatchNor (None, 38, 38, 256) 1024 conv2d_12[0][0] ____________________________________________________________________________________________________ leaky_re_lu_12 (LeakyReLU) (None, 38, 38, 256) 0 batch_normalization_12[0][0] ____________________________________________________________________________________________________ conv2d_13 (Conv2D) (None, 38, 38, 512) 1179648 leaky_re_lu_12[0][0] ____________________________________________________________________________________________________ batch_normalization_13 (BatchNor (None, 38, 38, 512) 2048 conv2d_13[0][0] ____________________________________________________________________________________________________ leaky_re_lu_13 (LeakyReLU) (None, 38, 38, 512) 0 batch_normalization_13[0][0] ____________________________________________________________________________________________________ max_pooling2d_5 (MaxPooling2D) (None, 19, 19, 512) 0 leaky_re_lu_13[0][0] ____________________________________________________________________________________________________ conv2d_14 (Conv2D) (None, 19, 19, 1024) 4718592 max_pooling2d_5[0][0] ____________________________________________________________________________________________________ batch_normalization_14 (BatchNor (None, 19, 19, 1024) 4096 conv2d_14[0][0] ____________________________________________________________________________________________________ leaky_re_lu_14 (LeakyReLU) (None, 19, 19, 1024) 0 batch_normalization_14[0][0] ____________________________________________________________________________________________________ conv2d_15 (Conv2D) (None, 19, 19, 512) 524288 leaky_re_lu_14[0][0] ____________________________________________________________________________________________________ batch_normalization_15 (BatchNor (None, 19, 19, 512) 2048 conv2d_15[0][0] ____________________________________________________________________________________________________ leaky_re_lu_15 (LeakyReLU) (None, 19, 19, 512) 0 batch_normalization_15[0][0] ____________________________________________________________________________________________________ conv2d_16 (Conv2D) (None, 19, 19, 1024) 4718592 leaky_re_lu_15[0][0] ____________________________________________________________________________________________________ batch_normalization_16 (BatchNor (None, 19, 19, 1024) 4096 conv2d_16[0][0] ____________________________________________________________________________________________________ leaky_re_lu_16 (LeakyReLU) (None, 19, 19, 1024) 0 batch_normalization_16[0][0] ____________________________________________________________________________________________________ conv2d_17 (Conv2D) (None, 19, 19, 512) 524288 leaky_re_lu_16[0][0] ____________________________________________________________________________________________________ batch_normalization_17 (BatchNor (None, 19, 19, 512) 2048 conv2d_17[0][0] ____________________________________________________________________________________________________ leaky_re_lu_17 (LeakyReLU) (None, 19, 19, 512) 0 batch_normalization_17[0][0] ____________________________________________________________________________________________________ conv2d_18 (Conv2D) (None, 19, 19, 1024) 4718592 leaky_re_lu_17[0][0] ____________________________________________________________________________________________________ batch_normalization_18 (BatchNor (None, 19, 19, 1024) 4096 conv2d_18[0][0] ____________________________________________________________________________________________________ leaky_re_lu_18 (LeakyReLU) (None, 19, 19, 1024) 0 batch_normalization_18[0][0] ____________________________________________________________________________________________________ conv2d_19 (Conv2D) (None, 19, 19, 1024) 9437184 leaky_re_lu_18[0][0] ____________________________________________________________________________________________________ batch_normalization_19 (BatchNor (None, 19, 19, 1024) 4096 conv2d_19[0][0] ____________________________________________________________________________________________________ conv2d_21 (Conv2D) (None, 38, 38, 64) 32768 leaky_re_lu_13[0][0] ____________________________________________________________________________________________________ leaky_re_lu_19 (LeakyReLU) (None, 19, 19, 1024) 0 batch_normalization_19[0][0] ____________________________________________________________________________________________________ batch_normalization_21 (BatchNor (None, 38, 38, 64) 256 conv2d_21[0][0] ____________________________________________________________________________________________________ conv2d_20 (Conv2D) (None, 19, 19, 1024) 9437184 leaky_re_lu_19[0][0] ____________________________________________________________________________________________________ leaky_re_lu_21 (LeakyReLU) (None, 38, 38, 64) 0 batch_normalization_21[0][0] ____________________________________________________________________________________________________ batch_normalization_20 (BatchNor (None, 19, 19, 1024) 4096 conv2d_20[0][0] ____________________________________________________________________________________________________ space_to_depth_x2 (Lambda) (None, 19, 19, 256) 0 leaky_re_lu_21[0][0] ____________________________________________________________________________________________________ leaky_re_lu_20 (LeakyReLU) (None, 19, 19, 1024) 0 batch_normalization_20[0][0] ____________________________________________________________________________________________________ concatenate_1 (Concatenate) (None, 19, 19, 1280) 0 space_to_depth_x2[0][0] leaky_re_lu_20[0][0] ____________________________________________________________________________________________________ conv2d_22 (Conv2D) (None, 19, 19, 1024) 11796480 concatenate_1[0][0] ____________________________________________________________________________________________________ batch_normalization_22 (BatchNor (None, 19, 19, 1024) 4096 conv2d_22[0][0] ____________________________________________________________________________________________________ leaky_re_lu_22 (LeakyReLU) (None, 19, 19, 1024) 0 batch_normalization_22[0][0] ____________________________________________________________________________________________________ conv2d_23 (Conv2D) (None, 19, 19, 425) 435625 leaky_re_lu_22[0][0] ==================================================================================================== Total params: 50,983,561 Trainable params: 50,962,889 Non-trainable params: 20,672 ____________________________________________________________________________________________________ ###Markdown **Note**: On some computers, you may see a warning message from Keras. Don't worry about it if you do--it is fine.**Reminder**: this model converts a preprocessed batch of input images (shape: (m, 608, 608, 3)) into a tensor of shape (m, 19, 19, 5, 85) as explained in Figure (2). 3.3 - Convert output of the model to usable bounding box tensorsThe output of `yolo_model` is a (m, 19, 19, 5, 85) tensor that needs to pass through non-trivial processing and conversion. The following cell does that for you. ###Code yolo_outputs = yolo_head(yolo_model.output, anchors, len(class_names)) ###Output _____no_output_____ ###Markdown You added `yolo_outputs` to your graph. This set of 4 tensors is ready to be used as input by your `yolo_eval` function. 3.4 - Filtering boxes`yolo_outputs` gave you all the predicted boxes of `yolo_model` in the correct format. You're now ready to perform filtering and select only the best boxes. Lets now call `yolo_eval`, which you had previously implemented, to do this. ###Code scores, boxes, classes = yolo_eval(yolo_outputs, image_shape) ###Output _____no_output_____ ###Markdown 3.5 - Run the graph on an imageLet the fun begin. You have created a (`sess`) graph that can be summarized as follows:1. yolo_model.input is given to `yolo_model`. The model is used to compute the output yolo_model.output 2. yolo_model.output is processed by `yolo_head`. It gives you yolo_outputs 3. yolo_outputs goes through a filtering function, `yolo_eval`. It outputs your predictions: scores, boxes, classes **Exercise**: Implement predict() which runs the graph to test YOLO on an image.You will need to run a TensorFlow session, to have it compute `scores, boxes, classes`.The code below also uses the following function:```pythonimage, image_data = preprocess_image("images/" + image_file, model_image_size = (608, 608))```which outputs:- image: a python (PIL) representation of your image used for drawing boxes. You won't need to use it.- image_data: a numpy-array representing the image. This will be the input to the CNN.**Important note**: when a model uses BatchNorm (as is the case in YOLO), you will need to pass an additional placeholder in the feed_dict {K.learning_phase(): 0}. ###Code def predict(sess, image_file): """ Runs the graph stored in "sess" to predict boxes for "image_file". Prints and plots the preditions. Arguments: sess -- your tensorflow/Keras session containing the YOLO graph image_file -- name of an image stored in the "images" folder. Returns: out_scores -- tensor of shape (None, ), scores of the predicted boxes out_boxes -- tensor of shape (None, 4), coordinates of the predicted boxes out_classes -- tensor of shape (None, ), class index of the predicted boxes Note: "None" actually represents the number of predicted boxes, it varies between 0 and max_boxes. """ # Preprocess your image image, image_data = preprocess_image("images/" + image_file, model_image_size = (608, 608)) # Run the session with the correct tensors and choose the correct placeholders in the feed_dict. # You'll need to use feed_dict={yolo_model.input: ... , K.learning_phase(): 0}) ### START CODE HERE ### (≈ 1 line) out_scores, out_boxes, out_classes = None ### END CODE HERE ### # Print predictions info print('Found {} boxes for {}'.format(len(out_boxes), image_file)) # Generate colors for drawing bounding boxes. colors = generate_colors(class_names) # Draw bounding boxes on the image file draw_boxes(image, out_scores, out_boxes, out_classes, class_names, colors) # Save the predicted bounding box on the image image.save(os.path.join("out", image_file), quality=90) # Display the results in the notebook output_image = scipy.misc.imread(os.path.join("out", image_file)) imshow(output_image) return out_scores, out_boxes, out_classes ###Output _____no_output_____ ###Markdown Run the following cell on the "test.jpg" image to verify that your function is correct. ###Code out_scores, out_boxes, out_classes = predict(sess, "test.jpg") ###Output _____no_output_____
Lectures/08-FeaturePoints.ipynb
###Markdown ETHZ: 227-0966-00L Quantitative Big Imaging April 11, 2019 Dynamic Experiments: Feature Points Anders Kaestner ###Code import matplotlib.pyplot as plt import seaborn as sns %load_ext autoreload %autoreload 2 plt.rcParams["figure.figsize"] = (8, 8) plt.rcParams["figure.dpi"] = 150 plt.rcParams["font.size"] = 14 plt.rcParams['font.family'] = ['sans-serif'] plt.rcParams['font.sans-serif'] = ['DejaVu Sans'] plt.style.use('ggplot') sns.set_style("whitegrid", {'axes.grid': False}) ###Output _____no_output_____ ###Markdown Papers / Sites- Keypoint and Corner Detection - Distinctive Image Features from Scale-Invariant Keypoints - https://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf - https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_sift_intro/py_sift_intro.html Key Points (or feature points)- Registration using the full data set is time demaning.- We can detect feature points in an image and use them to make a registration. Identifying key pointsWe first focus on the detection of points. A [Harris corner detector](https://en.wikipedia.org/wiki/Harris_Corner_Detector) helps us here: ###Code from skimage.feature import corner_peaks, corner_harris, BRIEF from skimage.transform import warp, AffineTransform from skimage import data from skimage.io import imread import matplotlib.pyplot as plt import seaborn as sns import numpy as np %matplotlib inline tform = AffineTransform(scale=(1.3, 1.1), rotation=0, shear=0.1, translation=(0, 0)) image = warp(data.checkerboard(), tform.inverse, output_shape=(200, 200)) fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(15, 5)) ax1.imshow(image); ax1.set_title('Raw Image') ax2.imshow(corner_harris(image)); ax2.set_title('Corner Features') peak_coords = corner_peaks(corner_harris(image)) ax3.imshow(image); ax3.set_title('Raw Image') ax3.plot(peak_coords[:, 1], peak_coords[:, 0], 'rs'); ###Output _____no_output_____ ###Markdown Let's try the corner detection on real data ###Code full_img = imread("ext-figures/bonegfiltslice.png") fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(15, 5)) ax1.imshow(full_img) ax1.set_title('Raw Image') ax2.imshow(corner_harris(full_img)), ax2.set_title('Corner Features') peak_coords = corner_peaks(corner_harris(full_img)) ax3.imshow(full_img), ax3.set_title('Raw Image') ax3.plot(peak_coords[:, 1], peak_coords[:, 0], 'rs'); ###Output _____no_output_____ ###Markdown Tracking with Points__Goal:__ To reducing the tracking effortsWe can use the corner points to track features between multiple frames. In this sample, we see that they are - quite stable - and fixed on the features. We need data - a series transformed images ###Code from matplotlib.animation import FuncAnimation from IPython.display import HTML fig, c_ax = plt.subplots(1, 1, figsize=(5, 5), dpi=100) def update_frame(i): c_ax.cla() tform = AffineTransform(scale=(1.3+i/20, 1.1-i/20), rotation=-i/10, shear=i/20, translation=(0, 0)) image = warp(data.checkerboard(), tform.inverse, output_shape=(200, 200)) c_ax.imshow(image) peak_coords = corner_peaks(corner_harris(image)) c_ax.plot(peak_coords[:, 1], peak_coords[:, 0], 'rs') # write animation frames anim_code = FuncAnimation(fig, update_frame, frames=np.linspace(0, 5, 10), interval=1000, repeat_delay=2000).to_html5_video() plt.close('all') HTML(anim_code) ###Output _____no_output_____ ###Markdown Features and DescriptorsWe can move beyond just key points to keypoints and feature vectors (called descriptors) at those points. A descriptor is a vector that describes a given keypoint uniquely. This will be demonstrated using two methods in the following notebook cells... ###Code from skimage.feature import ORB full_img = imread("ext-figures/bonegfiltslice.png") orb_det = ORB(n_keypoints=10) det_obj = orb_det.detect_and_extract(full_img) fig, (ax3, ax4, ax5) = plt.subplots(1, 3, figsize=(15, 5)) ax3.imshow(full_img, cmap='gray') ax3.set_title('Raw Image') for i in range(orb_det.keypoints.shape[0]): ax3.plot(orb_det.keypoints[i, 1], orb_det.keypoints[i, 0], 's', label='Keypoint {}'.format(i)) ax4.bar(np.arange(10)+i/10.0, orb_det.descriptors[i][:10]+1e-2, width=1/10.0, alpha=0.5, label='Keypoint {}'.format(i)) ax5.imshow(np.stack([x[:20] for x in orb_det.descriptors], 0)) ax5.set_title('Descriptor') ax3.legend(facecolor='white', framealpha=0.5) ax4.legend(); ###Output _____no_output_____ ###Markdown Defining a supporting function to show the matches ###Code from skimage.feature import match_descriptors, plot_matches import matplotlib.pyplot as plt def show_matches(img1, img2, feat1, feat2): matches12 = match_descriptors( feat1['descriptors'], feat2['descriptors'], cross_check=True) fig, (ax3, ax2) = plt.subplots(1, 2, figsize=(15, 5)) c_matches = match_descriptors(feat1['descriptors'], feat2['descriptors'], cross_check=True) plot_matches(ax3, img1, img2, feat1['keypoints'], feat1['keypoints'], matches12) ax2.plot(feat1['keypoints'][:, 1], feat1['keypoints'][:, 0], '.', label='Before') ax2.plot(feat2['keypoints'][:, 1], feat2['keypoints'][:, 0], '.', label='After') for i, (c_idx, n_idx) in enumerate(c_matches): x_vec = [feat1['keypoints'][c_idx, 0], feat2['keypoints'][n_idx, 0]] y_vec = [feat1['keypoints'][c_idx, 1], feat2['keypoints'][n_idx, 1]] dist = np.sqrt(np.square(np.diff(x_vec))+np.square(np.diff(y_vec))) alpha = np.clip(50/dist, 0, 1) ax2.plot( y_vec, x_vec, 'k-', alpha=alpha, label='Match' if i == 0 else '' ) ax2.legend() ax3.set_title(r'{} $\rightarrow$ {}'.format('Before', 'After')); ###Output _____no_output_____ ###Markdown Let's create some data ###Code from skimage.filters import median full_img = imread("ext-figures/bonegfiltslice.png") full_shift_img = median( np.roll(np.roll(full_img, -15, axis=0), 15, axis=1), np.ones((1, 3))) bw_img = full_img shift_img = full_shift_img ###Output _____no_output_____ ###Markdown Features found by the BRIEF descriptor ###Code from skimage.feature import corner_peaks, corner_harris, BRIEF def calc_corners(*imgs): b = BRIEF() for c_img in imgs: corner_img = corner_harris(c_img) coords = corner_peaks(corner_img, min_distance=5) b.extract(c_img, coords) yield {'keypoints': coords, 'descriptors': b.descriptors} feat1, feat2 = calc_corners(bw_img, shift_img) show_matches(bw_img, shift_img, feat1, feat2) ###Output _____no_output_____ ###Markdown Features found by the ORB descriptor ###Code from skimage.feature import ORB, BRIEF, CENSURE def calc_orb(*imgs): descriptor_extractor = ORB(n_keypoints=100) for c_img in imgs: descriptor_extractor.detect_and_extract(c_img) yield {'keypoints': descriptor_extractor.keypoints, 'descriptors': descriptor_extractor.descriptors} feat1, feat2 = calc_orb(bw_img, shift_img) show_matches(bw_img, shift_img, feat1, feat2) ###Output _____no_output_____ ###Markdown ETHZ: 227-0966-00L Quantitative Big Imaging April 11, 2019 Dynamic Experiments: Feature Points ###Code import matplotlib.pyplot as plt import seaborn as sns %load_ext autoreload %autoreload 2 plt.rcParams["figure.figsize"] = (8, 8) plt.rcParams["figure.dpi"] = 150 plt.rcParams["font.size"] = 14 plt.rcParams['font.family'] = ['sans-serif'] plt.rcParams['font.sans-serif'] = ['DejaVu Sans'] plt.style.use('ggplot') sns.set_style("whitegrid", {'axes.grid': False}) ###Output _____no_output_____ ###Markdown Papers / Sites- Keypoint and Corner Detection - Distinctive Image Features from Scale-Invariant Keypoints - https://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf - https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_sift_intro/py_sift_intro.html Key Points (or feature points)We can detect feature points in an image and use them to make a registration. We first focus on detection of points ###Code from skimage.feature import corner_peaks, corner_harris, BRIEF from skimage.transform import warp, AffineTransform from skimage import data from skimage.io import imread import matplotlib.pyplot as plt import seaborn as sns import numpy as np %matplotlib inline tform = AffineTransform(scale=(1.3, 1.1), rotation=0, shear=0.1, translation=(0, 0)) image = warp(data.checkerboard(), tform.inverse, output_shape=(200, 200)) fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(10, 5)) ax1.imshow(image) ax1.set_title('Raw Image') ax2.imshow(corner_harris(image)) ax2.set_title('Corner Features') peak_coords = corner_peaks(corner_harris(image)) ax3.imshow(image) ax3.set_title('Raw Image') ax3.plot(peak_coords[:, 1], peak_coords[:, 0], 'rs') full_img = imread("ext-figures/bonegfiltslice.png") fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(15, 5)) ax1.imshow(full_img) ax1.set_title('Raw Image') ax2.imshow(corner_harris(full_img)) ax2.set_title('Corner Features') peak_coords = corner_peaks(corner_harris(full_img)) ax3.imshow(full_img) ax3.set_title('Raw Image') ax3.plot(peak_coords[:, 1], peak_coords[:, 0], 'rs') ###Output _____no_output_____ ###Markdown Tracking with PointsWe can also uses these points to track between multiple frames. We see that they are quite stable and fixed on the features. ###Code from matplotlib.animation import FuncAnimation from IPython.display import HTML fig, c_ax = plt.subplots(1, 1, figsize=(5, 5), dpi=150) def update_frame(i): c_ax.cla() tform = AffineTransform(scale=(1.3+i/20, 1.1-i/20), rotation=-i/10, shear=i/20, translation=(0, 0)) image = warp(data.checkerboard(), tform.inverse, output_shape=(200, 200)) c_ax.imshow(image) peak_coords = corner_peaks(corner_harris(image)) c_ax.plot(peak_coords[:, 1], peak_coords[:, 0], 'rs') # write animation frames anim_code = FuncAnimation(fig, update_frame, frames=np.linspace(0, 5, 10), interval=1000, repeat_delay=2000).to_html5_video() plt.close('all') HTML(anim_code) ###Output _____no_output_____ ###Markdown Features and DescriptorsWe can move beyond just key points to keypoints and feature vectors (called descriptors) at those points. A descriptor is a vector that describes a given keypoint uniquely. ###Code from skimage.feature import ORB full_img = imread("ext-figures/bonegfiltslice.png") orb_det = ORB(n_keypoints=10) det_obj = orb_det.detect_and_extract(full_img) fig, (ax3, ax4, ax5) = plt.subplots(1, 3, figsize=(15, 5)) ax3.imshow(full_img, cmap='gray') ax3.set_title('Raw Image') for i in range(orb_det.keypoints.shape[0]): ax3.plot(orb_det.keypoints[i, 1], orb_det.keypoints[i, 0], 's', label='Keypoint {}'.format(i)) ax4.bar(np.arange(10)+i/10.0, orb_det.descriptors[i][:10]+1e-2, width=1/10.0, alpha=0.5, label='Keypoint {}'.format(i)) ax5.imshow(np.stack([x[:20] for x in orb_det.descriptors], 0)) ax5.set_title('Descriptor') ax3.legend() ax4.legend() from skimage.feature import match_descriptors, plot_matches import matplotlib.pyplot as plt def show_matches(img1, img2, feat1, feat2): matches12 = match_descriptors( feat1['descriptors'], feat2['descriptors'], cross_check=True) fig, (ax3, ax2) = plt.subplots(1, 2, figsize=(15, 5)) c_matches = match_descriptors(feat1['descriptors'], feat2['descriptors'], cross_check=True) plot_matches(ax3, img1, img2, feat1['keypoints'], feat1['keypoints'], matches12) ax2.plot(feat1['keypoints'][:, 1], feat1['keypoints'][:, 0], '.', label='Before') ax2.plot(feat2['keypoints'][:, 1], feat2['keypoints'][:, 0], '.', label='After') for i, (c_idx, n_idx) in enumerate(c_matches): x_vec = [feat1['keypoints'][c_idx, 0], feat2['keypoints'][n_idx, 0]] y_vec = [feat1['keypoints'][c_idx, 1], feat2['keypoints'][n_idx, 1]] dist = np.sqrt(np.square(np.diff(x_vec))+np.square(np.diff(y_vec))) alpha = np.clip(50/dist, 0, 1) ax2.plot( y_vec, x_vec, 'k-', alpha=alpha, label='Match' if i == 0 else '' ) ax2.legend() ax3.set_title(r'{} $\rightarrow$ {}'.format('Before', 'After')) from skimage.filters import median full_img = imread("ext-figures/bonegfiltslice.png") full_shift_img = median( np.roll(np.roll(full_img, -15, axis=0), 15, axis=1), np.ones((1, 3))) def g_roi(x): return x bw_img = g_roi(full_img) shift_img = g_roi(full_shift_img) from skimage.feature import corner_peaks, corner_harris, BRIEF def calc_corners(*imgs): b = BRIEF() for c_img in imgs: corner_img = corner_harris(c_img) coords = corner_peaks(corner_img, min_distance=5) b.extract(c_img, coords) yield {'keypoints': coords, 'descriptors': b.descriptors} feat1, feat2 = calc_corners(bw_img, shift_img) show_matches(bw_img, shift_img, feat1, feat2) from skimage.feature import ORB, BRIEF, CENSURE def calc_orb(*imgs): descriptor_extractor = ORB(n_keypoints=100) for c_img in imgs: descriptor_extractor.detect_and_extract(c_img) yield {'keypoints': descriptor_extractor.keypoints, 'descriptors': descriptor_extractor.descriptors} feat1, feat2 = calc_orb(bw_img, shift_img) show_matches(bw_img, shift_img, feat1, feat2) ###Output _____no_output_____
src/06_Modulos_Analise_de_Dados/09_Pandas_Dataframes_e_NumPy.ipynb
###Markdown Remember: NumPy isn't an analysis tool, it will work together with Pandas, Matplotlib, etc. ###Code # Import Pandas and NumPy import pandas as pd import numpy as np # Create a dictionary data = {'State': ['Santa Catarina','Paraná','Goiás','Bahia','Minas Gerais'], 'Year': [2002,2003,2004,2005,2006], 'Population': [1.5,1.7,3.6,2.4,2.9]} # Transform the data to DataFrame from above dictionary frame = df(data) # Show DataFrame frame # Create another DataFrame, adding a custom index, defining the column names and add a new column frame2 = df(data, columns=['Year','State','Population','Debit'], index=['one','two','three','four','five']) frame2 # Fill Debit column with a Numpy array # Note that the number 5 is exclusive frame2['Debit'] = np.arange(5.) frame2 # Show values frame2.values # Summary with statistical measures frame2.describe() # Slicing by index name frame2['two':'four'] frame2 < 3 ###Output _____no_output_____ ###Markdown Locating records into a DataFrame ###Code # To locate a value that contais a criteria frame2.loc['four'] # iloc (index location), locate by the index number frame2.iloc[2] ###Output _____no_output_____ ###Markdown Inverting columns and indexes ###Code # Create a dictionary web_stats = {'Days': [1,2,3,4,5,6,7], 'Visitors':[45,23,67,78,23,12,14], 'rate':[11,22,33,44,55,66,77]} df = pd.DataFrame(web_stats) df # As we can see, the column Days are in sequence # Therefore, we can transform this column to an index df.set_index('Days') # The instruction above, doesn't change de Dataframe structure # As we can see bellow, the Dataframe remains original df.head() # Slicing by Visitors column print(df['Visitors']) # Now, slicing by Visitors and Rate # Note that the double bracktes print(df[['Visitors','rate']]) ###Output Visitors rate 0 45 11 1 23 22 2 67 33 3 78 44 4 23 55 5 12 66 6 14 77
docs/source/notebooks/SMC_samplers_tutorial.ipynb
###Markdown SMC samplersThis tutorial gives a basic introduction to SMC samplers, and explains how to run the SMC samplers already implemented in ``particles``. For a more advanced tutorial on how to design new SMC samplers, see the next tutorial. For more background on SMC samplers, check Chapter 17 of the book. SMC samplers: what for? A SMC sampler is a SMC algorithm that samples from a sequence of probability distributions $\pi_t$, $t=0,\ldots,T$ (and compute their normalising constants). Sometimes one is genuinely interested in each $\pi_t$; more often one is interested only in the final distribution $\pi_T$. In the latter case, the sequence is purely instrumental.Examples of SMC sequences are: 1. $\pi_t(\theta) = p(\theta|y_{0:t})$, the Bayesian posterior distribution of parameter $\theta$ given data $y_{0:t}$, for a certain model. 2. A tempering sequence, $\pi_t(\theta) \propto \nu(\theta) L(\theta)^{\gamma_t}$ ,where the $\gamma_t$'s form an increasing sequence of exponents: $0=\gamma_0 < \ldots < \gamma_T=1$. You can think of $\nu$ being the prior, $L$ the likelihood function, and $\pi_T$ the posterior. However, more generally, tempering is a way to interpolate between any two distributions, $\nu$ and $\pi$, with $\pi(\theta) \propto \nu(\theta) L(\theta)$. We discuss first how to specify a sequence of the first type. Defining a Bayesian modelTo define a particular Bayesian model, you must subclass `StaticModel`, and define method `logpyt`, which evaluates the log-likelihood of datapoint $Y_t$ given parameter $\theta$ and past datapoints $Y_{0:t-1}$. Here is a simple example: ###Code %matplotlib inline from matplotlib import pyplot as plt import seaborn as sb import numpy as np from scipy import stats import particles from particles import smc_samplers as ssp from particles import distributions as dists class ToyModel(ssp.StaticModel): def logpyt(self, theta, t): # density of Y_t given theta and Y_{0:t-1} return stats.norm.logpdf(self.data[t], loc=theta['mu'], scale = theta['sigma']) ###Output _____no_output_____ ###Markdown In words, we are considering a model where the observations are $Y_t\sim N(\mu, \sigma^2)$ (independently). The parameter is $\theta=(\mu, \sigma)$. Note the fields notation; more about this later. Class `ToyModel` implicitely defines the likelihood of the considered model for any sample size (since the likelihood at time $t$ is $p^\theta(y_{0:t})=\prod_{s=0}^t p^\theta(y_s|y_{0:s-1})$, and method `logpyt` defines each factor in this product; note that $y_s$ does not depend on the past values in our particular example). We now define the data and the prior: ###Code T = 30 my_data = stats.norm.rvs(loc=3.14, size=T) # simulated data my_prior = dists.StructDist({'mu': dists.Normal(scale=10.), 'sigma': dists.Gamma()}) ###Output _____no_output_____ ###Markdown For more details about to define prior distributions, see the documentation of module `distributions`, or the previous [tutorial on Bayesian estimation of state-space models](Bayes_estimation_ssm.ipynb). Now that we have everything, let's specify our static model: ###Code my_static_model = ToyModel(data=my_data, prior=my_prior) ###Output _____no_output_____ ###Markdown This time, object `my_static_model` entirely defines the posterior. ###Code thetas = my_prior.rvs(size=5) my_static_model.logpost(thetas, t=2) # if t is omitted, gives the full posterior ###Output _____no_output_____ ###Markdown The input of `logpost` and output of `myprior.rvs()` are [structured arrays](https://docs.scipy.org/doc/numpy/user/basics.rec.html), that is, arrays with fields: ###Code thetas['mu'][0] ###Output _____no_output_____ ###Markdown Typically, you won't need to call `logpost` yourself, this will be done by the SMC sampler for you. IBISIBIS (iterated batch importance sampling) is the standard name for a SMC sampler that tracks a sequence of partial posterior distributions; i.e. $\pi_t$ is $p(\theta|y_{0:t})$, for $t=0,1,\ldots$. Module `smc_samplers` defines `IBIS` as a subclass of `FeynmanKac`. ###Code my_ibis = ssp.IBIS(my_static_model, len_chain=50) my_alg = particles.SMC(fk=my_ibis, N=20, store_history=True, verbose=True) my_alg.run() ###Output t=0, ESS=82.04 t=1, Metropolis acc. rate (over 49 steps): 0.254, ESS=464.72 t=2, Metropolis acc. rate (over 49 steps): 0.171, ESS=690.07 t=3, ESS=438.62 t=4, Metropolis acc. rate (over 49 steps): 0.211, ESS=849.38 t=5, ESS=606.35 t=6, ESS=412.14 t=7, Metropolis acc. rate (over 49 steps): 0.289, ESS=732.81 t=8, ESS=680.56 t=9, ESS=411.45 t=10, Metropolis acc. rate (over 49 steps): 0.288, ESS=282.34 t=11, Metropolis acc. rate (over 49 steps): 0.317, ESS=850.79 t=12, ESS=926.82 t=13, ESS=936.24 t=14, ESS=906.07 t=15, ESS=650.82 t=16, ESS=514.22 t=17, ESS=426.00 t=18, Metropolis acc. rate (over 49 steps): 0.325, ESS=878.73 t=19, ESS=842.13 t=20, ESS=826.67 t=21, ESS=769.72 t=22, ESS=865.55 t=23, ESS=773.36 t=24, ESS=690.59 t=25, ESS=619.32 t=26, ESS=645.08 t=27, ESS=594.02 t=28, ESS=510.84 t=29, ESS=695.80 ###Markdown **Note**: we use option `verbose=True` in `SMC` in order to print some information on the intermediate distributions. Since we set `store_history` to `True`, the particles and their weights have been saved at every time (in attribute `hist`, see previous tutorials on smoothing). Let's plot the posterior distributions of $\mu$ and $\sigma$ at various times. ###Code plt.style.use('ggplot') for i, p in enumerate(['mu', 'sigma']): plt.subplot(1, 2, i + 1) for t in [1, 29]: plt.hist(my_alg.hist.X[t].theta[p], weights=my_alg.hist.wgts[t].W, label="t=%i" % t, alpha=0.5, density=True) plt.xlabel(p) plt.legend(); ###Output _____no_output_____ ###Markdown As expected, the posterior distribution concentrates progressively around the true values. As always, once the algorithm is run, `my_smc.X` contains the final particles. However, object `my_smc.X` is no longer a simple numpy array. It is a `ThetaParticles` object, with attributes:* `theta`: a structured array (an array with fields); i.e. `my_smc.X.theta['mu']` is a (N,) array that contains the the $\mu-$component of the $N$ particles; * `lpost`: a 1D numpy array that contains the target (posterior) log-density of each of the particles;* `shared`: a dictionary that contains "meta-data" on the particles; for instance `shared['acc_rates']` is a list of the acceptance rates of the successive Metropolis steps. ###Code print(["%2.f%%" % (100 * np.mean(r)) for r in my_alg.X.shared['acc_rates']]) plt.hist(my_alg.X.lpost, 30); ###Output ['25%', '17%', '21%', '29%', '29%', '32%', '33%'] ###Markdown You do not need to know much more about class `ThetaParticles` in pratice (if you're curious, however, see the next tutorial on SMC samplers or the documention of module `smc_samplers`). Waste-free versus standard SMC samplersThe library now implements by default waste-free SMC ([Dau & Chopin, 2020](https://arxiv.org/abs/2011.02328)), a variant of SMC samplers that keeps all the intermediate Markov steps (rather than "wasting" them). In practice, this means that, in the piece of code above:* at each time $t$, $N=20$ particles are resampled, and used as a starting points of the MCMC chains; * the MCMC chains are run for 49 iterations, hence the chain length is 50 (parameter ``len_chain=50``)* and since we keep all the intermediate steps, we get 50*20 = 1000 particles at each iteration. In particular, we do O(1000) operations at each step. (At time 0, we also generate 1000 particles.) Thus, the number of particles is actually `N * len_chain`; given this number of particles, the performance typically does not depend too much on `N` and `len_chain`, provided the latter is "big enough" (relative to the mixing of the MCMC kernels). See Dau & Chopin (2020) for more details on waste-free SMC. If you wish to run a standard SMC sampler instead, you may set `wastefree=False`, like this: ###Code my_ibis = ssp.IBIS(my_static_model, wastefree=False, len_chain=11) my_alg = particles.SMC(fk=my_ibis, N=100, store_history=True) my_alg.run() ###Output _____no_output_____ ###Markdown This runs a standard SMC sampler which tracks $N=100$ particles; these particles are resampled from time to time, and then moved through 10 MCMC steps. (As explained in Dau & Chopin, 2020, you typically get a better performance vs CPU time trade-off with wastefree SMC.) Regarding the MCMC stepsThe default MCMC kernel used to move the particles is a Gaussian random walk Metropolis kernel, whose covariance matrix is calibrated automatically to $\gamma$ times of the empirical covariance matrix of the particle sample, where $\gamma=2.38 / \sqrt{d}$ (standard choice in the literature). It is possible to specify a different value for $\gamma$, or more generally other types of MCMC moves; for instance the following uses Metropolis kernels based on independent Gaussian proposals: ###Code mcmc = ssp.ArrayIndependentMetropolis(scale=1.1) # Independent Gaussian proposal, with mean and variance determined by # the particle sample (variance inflated by factor scale=1.1) alt_move = ssp.MCMCSequenceWF(mcmc=mcmc) # This object represents a particular way to apply several MCMC steps # in a row. WF = WasteFree alt_ibis = ssp.IBIS(my_static_model, move=alt_move) alt_alg = particles.SMC(fk=alt_ibis, N=100,ESSrmin=0.2, verbose=True) alt_alg.run() ###Output t=0, ESS=56.14 t=1, Metropolis acc. rate (over 9 steps): 0.377, ESS=447.47 t=2, ESS=270.35 t=3, ESS=117.34 t=4, Metropolis acc. rate (over 9 steps): 0.491, ESS=848.91 t=5, ESS=595.25 t=6, ESS=391.41 t=7, ESS=276.38 t=8, ESS=199.79 t=9, Metropolis acc. rate (over 9 steps): 0.660, ESS=765.88 t=10, ESS=314.50 t=11, ESS=278.97 t=12, ESS=315.64 t=13, ESS=270.67 t=14, ESS=313.92 t=15, ESS=179.27 t=16, Metropolis acc. rate (over 9 steps): 0.759, ESS=937.78 t=17, ESS=820.94 t=18, ESS=951.60 t=19, ESS=962.98 t=20, ESS=938.37 t=21, ESS=883.72 t=22, ESS=843.66 t=23, ESS=811.68 t=24, ESS=736.35 t=25, ESS=650.76 t=26, ESS=597.71 t=27, ESS=515.31 t=28, ESS=456.33 t=29, ESS=494.19 ###Markdown In the future, the package may also implement other type of MCMC kernels such as MALA. It is also possible to define your own MCMC kernels, as explained in the next tutorial. For now, note the following practical detail: the algorithm resamples whenever the ESS gets below a certain threshold $\alpha * N$; the default value $\alpha=0.5$, but here we changed it (to $\alpha=0.2$) by setting `ESSrmin=0.2`. ###Code plt.plot(alt_alg.summaries.ESSs) plt.xlabel('t') plt.ylabel('ESS'); ###Output _____no_output_____ ###Markdown As expected, the algorithm waits until the ESS is below 200 to trigger a resample-move step. SMC temperingSMC tempering is a SMC sampler that samples iteratively from the following sequence of distributions:\begin{equation}\pi_t(\theta) \propto \pi(\theta) L(\theta)^\gamma_t\end{equation}with $0=\gamma_0 < \ldots < \gamma_T = 1$. In words, this sequence is a **geometric bridge**, which interpolates between the prior and the posterior. SMC tempering implemented in the same was as IBIS: as a sub-class of `FeynmanKac`, whose `__init__` function takes as argument a `StaticModel` object. ###Code fk_tempering = ssp.AdaptiveTempering(my_static_model) my_temp_alg = particles.SMC(fk=fk_tempering, N=1000, ESSrmin=1., verbose=True) my_temp_alg.run() ###Output t=0, ESS=5000.00, tempering exponent=0.000938 t=1, Metropolis acc. rate (over 9 steps): 0.262, ESS=5000.00, tempering exponent=0.0121 t=2, Metropolis acc. rate (over 9 steps): 0.241, ESS=5000.00, tempering exponent=0.0627 t=3, Metropolis acc. rate (over 9 steps): 0.237, ESS=5000.00, tempering exponent=0.197 t=4, Metropolis acc. rate (over 9 steps): 0.266, ESS=5000.00, tempering exponent=0.629 t=5, Metropolis acc. rate (over 9 steps): 0.343, ESS=8583.28, tempering exponent=1 ###Markdown **Note**: Recall that `SMC` resamples every time the ESS drops below value N times option `ESSrmin`; here we set it to to 1, since we want to resample at every time. This makes sense: Adaptive SMC chooses adaptively the successive values of $\gamma_t$ so that the ESS equals a certain value ($N/2$ by default). We have not saved the intermediate results this time (option `store_history` was not set) since they are not particularly interesting. Let's look at the final results: ###Code for i, p in enumerate(['mu', 'sigma']): plt.subplot(1, 2, i + 1) sb.histplot(my_temp_alg.X.theta[p], stat='density') plt.xlabel(p) ###Output _____no_output_____ ###Markdown This looks reasonable!You can see from the output that the algorithm automatically chooses the tempering exponents $\gamma_1, \gamma_2,\ldots$. In fact, at iteration $t$, the next value for $\gamma$ is set that the ESS drops at most to $N/2$. You can change this particular threshold by passing argument ESSrmin to TemperingSMC. (Warning: do not mistake this with the `ESSrmin` argument of class `SMC`): ###Code lazy_tempering = ssp.AdaptiveTempering(my_static_model, ESSrmin = 0.1) lazy_alg = particles.SMC(fk=lazy_tempering, N=1000, verbose=True) lazy_alg.run() ###Output t=0, ESS=1000.00, tempering exponent=0.0372 t=1, Metropolis acc. rate (over 9 steps): 0.223, ESS=1000.00, tempering exponent=0.699 t=2, Metropolis acc. rate (over 9 steps): 0.341, ESS=9125.17, tempering exponent=1 ###Markdown SMC samplersSMC samplers are SMC algorithms that sample from a sequence of target distributions. In this tutorial, these target distributions will be Bayesian posterior distributions of static models. SMC samplers are covered in Chapter 17 of the book. Defining a static modelA static model is a Python object that represents a Bayesian model with static parameter $\theta$. One may define a static model by subclassing base class `StaticModel`, and defining method `logpyt`, which evaluates the log-likelihood of datapoint $Y_t$ (given $\theta$ and past datapoints $Y_{0:t-1}$). Here is a simple example: ###Code %matplotlib inline import warnings; warnings.simplefilter('ignore') # hide warnings from matplotlib import pyplot as plt import seaborn as sb from scipy import stats import particles from particles import smc_samplers as ssp from particles import distributions as dists class ToyModel(ssp.StaticModel): def logpyt(self, theta, t): # density of Y_t given theta and Y_{0:t-1} return stats.norm.logpdf(self.data[t], loc=theta['mu'], scale = theta['sigma']) ###Output _____no_output_____ ###Markdown In words, we are considering a model where the observations are $Y_t\sim N(\mu, \sigma^2)$. The parameter is $\theta=(\mu, \sigma)$.Class `ToyModel` contains information about the likelihood of the considered model, but not about its prior, or the considered data. First, let's define those: ###Code T = 1000 my_data = stats.norm.rvs(loc=3.14, size=T) # simulated data my_prior = dists.StructDist({'mu': dists.Normal(scale=10.), 'sigma': dists.Gamma()}) ###Output _____no_output_____ ###Markdown For more details about to define prior distributions, see the documentation of module `distributions`, or the previous [tutorial on Bayesian estimation of state-space models](Bayes_estimation_ssm.ipynb). Now that we have everything, let's specify our static model: ###Code my_static_model = ToyModel(data=my_data, prior=my_prior) ###Output _____no_output_____ ###Markdown This time, object `my_static_model` has enough information to define the posterior distribution(s) of the model (given all data, or part of the data). In fact, it inherits from `StaticModel` method `logpost`, which evaluates (for a collection of $\theta$ values) the posterior log-density at any time $t$ (meaning given data $y_{0:t}$). ###Code thetas = my_prior.rvs(size=5) my_static_model.logpost(thetas, t=2) # if t is omitted, gives the full posterior ###Output _____no_output_____ ###Markdown The input of `logpost` (and output of `myprior.rvs()`) is a [structured array](https://docs.scipy.org/doc/numpy/user/basics.rec.html), with the same keys as the prior distribution: ###Code thetas['mu'][0] ###Output _____no_output_____ ###Markdown Typically, you won't need to call `logpost` yourself, this will be done by the SMC sampler for you. IBISThe IBIS (iterated batch importance sampling) algorithm is a SMC sampler that samples iteratively from a sequence of posterior distributions, $p(\theta|y_{0:t})$, for $t=0,1,\ldots$. Module `smc_samplers` defines `IBIS` as a subclass of `FeynmanKac`. ###Code my_ibis = ssp.IBIS(my_static_model) my_alg = particles.SMC(fk=my_ibis, N=1000, store_history=True) my_alg.run() ###Output _____no_output_____ ###Markdown Since we set `store_history` to `True`, the particles and their weights have been saved at every time (in attribute `hist`, see previous tutorials on smoothing). Let's plot the posterior distributions of $\mu$ and $\sigma$ at various times. ###Code plt.style.use('ggplot') for i, p in enumerate(['mu', 'sigma']): plt.subplot(1, 2, i + 1) for t in [100, 300, 900]: plt.hist(my_alg.hist.X[t].theta[p], weights=my_alg.hist.wgt[t].W, label="t=%i" % t, alpha=0.5, density=True) plt.xlabel(p) plt.legend(); ###Output _____no_output_____ ###Markdown As expected, the posterior distribution concentrates progressively around the true values. As before, once the algorithm is run, `my_smc.X` contains the N final particles. However, object `my_smc.X` is no longer a simple (N,) or (N,d) numpy array. It is a `ThetaParticles` object, with attributes:* theta: a structured array: as mentioned above, this is an array with fields; i.e. `my_smc.X.theta['mu']` is a (N,) array that contains the the $\mu-$component of the $N$ particles; * `lpost`: a (N,) numpy array that contains the target (posterior) log-density of each of the N particles;* `acc_rates`: a list of the acceptance rates of the resample-move steps. ###Code print(["%2.2f%%" % (100 * np.mean(r)) for r in my_alg.X.acc_rates]) plt.hist(my_alg.X.lpost, 30); ###Output ['23.33%', '12.70%', '26.07%', '31.82%', '32.75%', '31.90%', '35.50%', '35.98%', '33.75%', '35.28%'] ###Markdown You do not need to know much more about class `ThetaParticles` for most practical purposes (see however the documention of module `smc_samplers` if you do want to know more, e.g. in order to implement other classes of SMC samplers). Regarding the Metropolis stepsAs the text output of `my_alg.run()` suggests, the algorithm "resample-moves" whenever the ESS is below a certain threshold ($N/2$ by default). When this occurs, particles are resampled, and then moved through a certain number of Metropolis-Hastings steps. By default, the proposal is a Gaussian random walk, and both the number of steps and the covariance matrix of the random walk are chosen automatically as follows: * the covariance matrix of the random walk is set to `scale` times the empirical (weighted) covariance matrix of the particles. The default value for `scale` is $2.38 / \sqrt{d}$, where $d$ is the dimension of $\theta$. * the algorithm performs Metropolis steps until the relative increase of the average distance between the starting point and the end point is below a certain threshold $\delta$. Class `IBIS` takes as an optional argument `mh_options`, a dictionary which may contain the following (key, values) pairs: * `'type_prop'`: either `'random walk'` or `'independent`'; in the latter case, an independent Gaussian proposal is used. The mean of the Gaussian is set to the weighted mean of the particles. The variance is set to `scale` times the weighted variance of the particles. * `'scale`': the scale of the proposal (as explained above). * `'nsteps'`: number of steps. If set to `0`, the adaptive strategy described above is used. Let's illustrate all this by calling IBIS again: ###Code alt_ibis = ssp.IBIS(my_static_model, mh_options={'type_prop': 'independent', 'nsteps': 10}) alt_alg = particles.SMC(fk=alt_ibis, N=1000, ESSrmin=0.2) alt_alg.run() ###Output _____no_output_____ ###Markdown Well, apparently the algorithm did what we asked. We have also changed the threshold of Let's see how the ESS evolved: ###Code plt.plot(alt_alg.summaries.ESSs) plt.xlabel('t') plt.ylabel('ESS') ###Output _____no_output_____ ###Markdown As expected, the algorithm waits until the ESS is below 200 to trigger a resample-move step. SMC temperingSMC tempering is a SMC sampler that samples iteratively from the following sequence of distributions:\begin{equation}\pi_t(\theta) \propto \pi(\theta) L(\theta)^\gamma_t\end{equation}with $0=\gamma_0 < \ldots < \gamma_T = 1$. In words, this sequence is a **geometric bridge**, which interpolates between the prior and the posterior. SMC tempering implemented in the same was as IBIS: as a sub-class of `FeynmanKac`, whose `__init__` function takes as argument a `StaticModel` object. ###Code fk_tempering = ssp.AdaptiveTempering(my_static_model) my_temp_alg = particles.SMC(fk=fk_tempering, N=1000, ESSrmin=1., verbose=True) my_temp_alg.run() ###Output t=0, ESS=500.00, tempering exponent=2.94e-05 t=1, Metropolis acc. rate (over 6 steps): 0.275, ESS=500.00, tempering exponent=0.000325 t=2, Metropolis acc. rate (over 6 steps): 0.261, ESS=500.00, tempering exponent=0.0018 t=3, Metropolis acc. rate (over 6 steps): 0.253, ESS=500.00, tempering exponent=0.0061 t=4, Metropolis acc. rate (over 6 steps): 0.287, ESS=500.00, tempering exponent=0.0193 t=5, Metropolis acc. rate (over 6 steps): 0.338, ESS=500.00, tempering exponent=0.0636 t=6, Metropolis acc. rate (over 6 steps): 0.347, ESS=500.00, tempering exponent=0.218 t=7, Metropolis acc. rate (over 5 steps): 0.358, ESS=500.00, tempering exponent=0.765 t=8, Metropolis acc. rate (over 5 steps): 0.366, ESS=941.43, tempering exponent=1 ###Markdown **Note**: Recall that `SMC` resamples every time the ESS drops below value N times option `ESSrmin`; here we set it to to 1, since we want to resample at every time. This makes sense: Adaptive SMC chooses adaptively the successive values of $\gamma_t$ so that the ESS drops to $N/2$ (by default). **Note**: we use option `verbose=True` in `SMC` in order to print some information on the intermediate distributions. We have not saved the intermediate results this time (option `store_history` was not set) since they are not particularly interesting. Let's look at the final results: ###Code for i, p in enumerate(['mu', 'sigma']): plt.subplot(1, 2, i + 1) sb.distplot(my_temp_alg.X.theta[p]) plt.xlabel(p) ###Output _____no_output_____ ###Markdown This looks reasonable!You can see from the output that the algorithm automatically chooses the tempering exponents $\gamma_1, \gamma_2,\ldots$. In fact, at iteration $t$, the next value for $\gamma$ is set that the ESS drops at most to $N/2$. You can change this particular threshold by passing argument ESSrmin to TemperingSMC. (Warning: do not mistake this with the `ESSrmin` argument of class `SMC`): ###Code lazy_tempering = ssp.AdaptiveTempering(my_static_model, ESSrmin = 0.1) lazy_alg = particles.SMC(fk=lazy_tempering, N=1000, verbose=True) lazy_alg.run() ###Output t=0, ESS=100.00, tempering exponent=0.00097 t=1, Metropolis acc. rate (over 5 steps): 0.233, ESS=100.00, tempering exponent=0.0217 t=2, Metropolis acc. rate (over 6 steps): 0.323, ESS=100.00, tempering exponent=0.315 t=3, Metropolis acc. rate (over 5 steps): 0.338, ESS=520.51, tempering exponent=1 ###Markdown SMC samplersSMC samplers are SMC algorithms that sample from a sequence of target distributions. In this tutorial, these target distributions will be Bayesian posterior distributions of static models. SMC samplers are covered in Chapter 17 of the book. Defining a static modelA static model is a Python object that represents a Bayesian model with static parameter $\theta$. One may define a static model by subclassing base class `StaticModel`, and defining method `logpyt`, which evaluates the log-likelihood of datapoint $Y_t$ (given $\theta$ and past datapoints $Y_{0:t-1}$). Here is a simple example: ###Code %matplotlib inline import warnings; warnings.simplefilter('ignore') # hide warnings from matplotlib import pyplot as plt import seaborn as sb from scipy import stats import particles from particles import smc_samplers as ssp from particles import distributions as dists class ToyModel(ssp.StaticModel): def logpyt(self, theta, t): # density of Y_t given theta and Y_{0:t-1} return stats.norm.logpdf(self.data[t], loc=theta['mu'], scale = theta['sigma']) ###Output _____no_output_____ ###Markdown In words, we are considering a model where the observations are $Y_t\sim N(\mu, \sigma^2)$. The parameter is $\theta=(\mu, \sigma)$.Class `ToyModel` contains information about the likelihood of the considered model, but not about its prior, or the considered data. First, let's define those: ###Code T = 1000 my_data = stats.norm.rvs(loc=3.14, size=T) # simulated data my_prior = dists.StructDist({'mu': dists.Normal(scale=10.), 'sigma': dists.Gamma()}) ###Output _____no_output_____ ###Markdown For more details about to define prior distributions, see the documentation of module `distributions`, or the previous [tutorial on Bayesian estimation of state-space models](Bayes_estimation_ssm.ipynb). Now that we have everything, let's specify our static model: ###Code my_static_model = ToyModel(data=my_data, prior=my_prior) ###Output _____no_output_____ ###Markdown This time, object `my_static_model` has enough information to define the posterior distribution(s) of the model (given all data, or part of the data). In fact, it inherits from `StaticModel` method `logpost`, which evaluates (for a collection of $\theta$ values) the posterior log-density at any time $t$ (meaning given data $y_{0:t}$). ###Code thetas = my_prior.rvs(size=5) my_static_model.logpost(thetas, t=2) # if t is omitted, gives the full posterior ###Output _____no_output_____ ###Markdown The input of `logpost` (and output of `myprior.rvs()`) is a [structured array](https://docs.scipy.org/doc/numpy/user/basics.rec.html), with the same keys as the prior distribution: ###Code thetas['mu'][0] ###Output _____no_output_____ ###Markdown Typically, you won't need to call `logpost` yourself, this will be done by the SMC sampler for you. IBISThe IBIS (iterated batch importance sampling) algorithm is a SMC sampler that samples iteratively from a sequence of posterior distributions, $p(\theta|y_{0:t})$, for $t=0,1,\ldots$. Module `smc_samplers` defines `IBIS` as a subclass of `FeynmanKac`. ###Code my_ibis = ssp.IBIS(my_static_model) my_alg = particles.SMC(fk=my_ibis, N=1000, store_history=True) my_alg.run() ###Output _____no_output_____ ###Markdown Since we set `store_history` to `True`, the particles and their weights have been saved at every time (in attribute `hist`, see previous tutorials on smoothing). Let's plot the posterior distributions of $\mu$ and $\sigma$ at various times. ###Code plt.style.use('ggplot') for i, p in enumerate(['mu', 'sigma']): plt.subplot(1, 2, i + 1) for t in [100, 300, 900]: plt.hist(my_alg.hist.X[t].theta[p], weights=my_alg.hist.wgts[t].W, label="t=%i" % t, alpha=0.5, density=True) plt.xlabel(p) plt.legend(); ###Output _____no_output_____ ###Markdown As expected, the posterior distribution concentrates progressively around the true values. As before, once the algorithm is run, `my_smc.X` contains the N final particles. However, object `my_smc.X` is no longer a simple (N,) or (N,d) numpy array. It is a `ThetaParticles` object, with attributes:* theta: a structured array: as mentioned above, this is an array with fields; i.e. `my_smc.X.theta['mu']` is a (N,) array that contains the the $\mu-$component of the $N$ particles; * `lpost`: a (N,) numpy array that contains the target (posterior) log-density of each of the N particles;* `acc_rates`: a list of the acceptance rates of the resample-move steps. ###Code print(["%2.2f%%" % (100 * np.mean(r)) for r in my_alg.X.acc_rates]) plt.hist(my_alg.X.lpost, 30); ###Output ['25.22%', '23.92%', '23.83%', '28.42%', '34.06%', '33.80%', '34.38%', '34.80%', '35.77%', '35.95%'] ###Markdown You do not need to know much more about class `ThetaParticles` for most practical purposes (see however the documention of module `smc_samplers` if you do want to know more, e.g. in order to implement other classes of SMC samplers). Regarding the Metropolis stepsAs the text output of `my_alg.run()` suggests, the algorithm "resample-moves" whenever the ESS is below a certain threshold ($N/2$ by default). When this occurs, particles are resampled, and then moved through a certain number of Metropolis-Hastings steps. By default, the proposal is a Gaussian random walk, and both the number of steps and the covariance matrix of the random walk are chosen automatically as follows: * the covariance matrix of the random walk is set to `scale` times the empirical (weighted) covariance matrix of the particles. The default value for `scale` is $2.38 / \sqrt{d}$, where $d$ is the dimension of $\theta$. * the algorithm performs Metropolis steps until the relative increase of the average distance between the starting point and the end point is below a certain threshold $\delta$. Class `IBIS` takes as an optional argument `mh_options`, a dictionary which may contain the following (key, values) pairs: * `'type_prop'`: either `'random walk'` or `'independent`'; in the latter case, an independent Gaussian proposal is used. The mean of the Gaussian is set to the weighted mean of the particles. The variance is set to `scale` times the weighted variance of the particles. * `'scale`': the scale of the proposal (as explained above). * `'nsteps'`: number of steps. If set to `0`, the adaptive strategy described above is used. Let's illustrate all this by calling IBIS again: ###Code alt_ibis = ssp.IBIS(my_static_model, mh_options={'type_prop': 'independent', 'nsteps': 10}) alt_alg = particles.SMC(fk=alt_ibis, N=1000, ESSrmin=0.2) alt_alg.run() ###Output _____no_output_____ ###Markdown Well, apparently the algorithm did what we asked. We have also changed the threshold of Let's see how the ESS evolved: ###Code plt.plot(alt_alg.summaries.ESSs) plt.xlabel('t') plt.ylabel('ESS') ###Output _____no_output_____ ###Markdown As expected, the algorithm waits until the ESS is below 200 to trigger a resample-move step. SMC temperingSMC tempering is a SMC sampler that samples iteratively from the following sequence of distributions:\begin{equation}\pi_t(\theta) \propto \pi(\theta) L(\theta)^\gamma_t\end{equation}with $0=\gamma_0 < \ldots < \gamma_T = 1$. In words, this sequence is a **geometric bridge**, which interpolates between the prior and the posterior. SMC tempering implemented in the same was as IBIS: as a sub-class of `FeynmanKac`, whose `__init__` function takes as argument a `StaticModel` object. ###Code fk_tempering = ssp.AdaptiveTempering(my_static_model) my_temp_alg = particles.SMC(fk=fk_tempering, N=1000, ESSrmin=1., verbose=True) my_temp_alg.run() ###Output t=0, ESS=500.00, tempering exponent=3.02e-05 t=1, Metropolis acc. rate (over 5 steps): 0.243, ESS=500.00, tempering exponent=0.000328 t=2, Metropolis acc. rate (over 7 steps): 0.245, ESS=500.00, tempering exponent=0.00177 t=3, Metropolis acc. rate (over 7 steps): 0.241, ESS=500.00, tempering exponent=0.00601 t=4, Metropolis acc. rate (over 7 steps): 0.288, ESS=500.00, tempering exponent=0.0193 t=5, Metropolis acc. rate (over 6 steps): 0.333, ESS=500.00, tempering exponent=0.0637 t=6, Metropolis acc. rate (over 5 steps): 0.366, ESS=500.00, tempering exponent=0.231 t=7, Metropolis acc. rate (over 6 steps): 0.357, ESS=500.00, tempering exponent=0.77 t=8, Metropolis acc. rate (over 5 steps): 0.358, ESS=943.23, tempering exponent=1 ###Markdown **Note**: Recall that `SMC` resamples every time the ESS drops below value N times option `ESSrmin`; here we set it to to 1, since we want to resample at every time. This makes sense: Adaptive SMC chooses adaptively the successive values of $\gamma_t$ so that the ESS drops to $N/2$ (by default). **Note**: we use option `verbose=True` in `SMC` in order to print some information on the intermediate distributions. We have not saved the intermediate results this time (option `store_history` was not set) since they are not particularly interesting. Let's look at the final results: ###Code for i, p in enumerate(['mu', 'sigma']): plt.subplot(1, 2, i + 1) sb.distplot(my_temp_alg.X.theta[p]) plt.xlabel(p) ###Output _____no_output_____ ###Markdown This looks reasonable!You can see from the output that the algorithm automatically chooses the tempering exponents $\gamma_1, \gamma_2,\ldots$. In fact, at iteration $t$, the next value for $\gamma$ is set that the ESS drops at most to $N/2$. You can change this particular threshold by passing argument ESSrmin to TemperingSMC. (Warning: do not mistake this with the `ESSrmin` argument of class `SMC`): ###Code lazy_tempering = ssp.AdaptiveTempering(my_static_model, ESSrmin = 0.1) lazy_alg = particles.SMC(fk=lazy_tempering, N=1000, verbose=True) lazy_alg.run() ###Output t=0, ESS=100.00, tempering exponent=0.00104 t=1, Metropolis acc. rate (over 6 steps): 0.247, ESS=100.00, tempering exponent=0.0208 t=2, Metropolis acc. rate (over 6 steps): 0.295, ESS=100.00, tempering exponent=0.514 t=3, Metropolis acc. rate (over 6 steps): 0.370, ESS=760.26, tempering exponent=1
examples/Python/Advanced/global_registration.ipynb
###Markdown Global registrationBoth [ICP registration](../Basic/icp_registration.ipynb) and [Colored point cloud registration](colored_point_cloud_registration.ipynb) are known as local registration methods because they rely on a rough alignment as initialization. This tutorial shows another class of registration methods, known as **global** registration. This family of algorithms do not require an alignment for initialization. They usually produce less tight alignment results and are used as initialization of the local methods. VisualizationThis helper function visualizes the transformed source point cloud together with the target point cloud: ###Code def draw_registration_result(source, target, transformation): source_temp = copy.deepcopy(source) target_temp = copy.deepcopy(target) source_temp.paint_uniform_color([1, 0.706, 0]) target_temp.paint_uniform_color([0, 0.651, 0.929]) source_temp.transform(transformation) o3d.visualization.draw_geometries([source_temp, target_temp], zoom=0.4559, front=[0.6452, -0.3036, -0.7011], lookat=[1.9892, 2.0208, 1.8945], up=[-0.2779, -0.9482 ,0.1556]) ###Output _____no_output_____ ###Markdown Extract geometric featureWe downsample the point cloud, estimate normals, then compute a FPFH feature for each point. The FPFH feature is a 33-dimensional vector that describes the local geometric property of a point. A nearest neighbor query in the 33-dimensinal space can return points with similar local geometric structures. See [\[Rasu2009\]](../reference.htmlrasu2009) for details. ###Code def preprocess_point_cloud(pcd, voxel_size): print(":: Downsample with a voxel size %.3f." % voxel_size) pcd_down = pcd.voxel_down_sample(voxel_size) radius_normal = voxel_size * 2 print(":: Estimate normal with search radius %.3f." % radius_normal) pcd_down.estimate_normals( o3d.geometry.KDTreeSearchParamHybrid(radius=radius_normal, max_nn=30)) radius_feature = voxel_size * 5 print(":: Compute FPFH feature with search radius %.3f." % radius_feature) pcd_fpfh = o3d.registration.compute_fpfh_feature( pcd_down, o3d.geometry.KDTreeSearchParamHybrid(radius=radius_feature, max_nn=100)) return pcd_down, pcd_fpfh ###Output _____no_output_____ ###Markdown InputThis code below reads a source point cloud and a target point cloud from two files. They are misaligned with an identity matrix as transformation. ###Code def prepare_dataset(voxel_size): print(":: Load two point clouds and disturb initial pose.") source = o3d.io.read_point_cloud("../../TestData/ICP/cloud_bin_0.pcd") target = o3d.io.read_point_cloud("../../TestData/ICP/cloud_bin_1.pcd") trans_init = np.asarray([[0.0, 0.0, 1.0, 0.0], [1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0]]) source.transform(trans_init) draw_registration_result(source, target, np.identity(4)) source_down, source_fpfh = preprocess_point_cloud(source, voxel_size) target_down, target_fpfh = preprocess_point_cloud(target, voxel_size) return source, target, source_down, target_down, source_fpfh, target_fpfh voxel_size = 0.05 # means 5cm for this dataset source, target, source_down, target_down, source_fpfh, target_fpfh = prepare_dataset(voxel_size) ###Output _____no_output_____ ###Markdown RANSACWe use RANSAC for global registration. In each RANSAC iteration, `ransac_n` random points are picked from the source point cloud. Their corresponding points in the target point cloud are detected by querying the nearest neighbor in the 33-dimensional FPFH feature space. A pruning step takes fast pruning algorithms to quickly reject false matches early.Open3D provides the following pruning algorithms:- `CorrespondenceCheckerBasedOnDistance` checks if aligned point clouds are close (less than the specified threshold).- `CorrespondenceCheckerBasedOnEdgeLength` checks if the lengths of any two arbitrary edges (line formed by two vertices) individually drawn from source and target correspondences are similar. This tutorial checks that $||edge_{source}|| > 0.9 \cdot ||edge_{target}||$ and $||edge_{target}|| > 0.9 \cdot ||edge_{source}||$ are true.- `CorrespondenceCheckerBasedOnNormal` considers vertex normal affinity of any correspondences. It computes the dot product of two normal vectors. It takes a radian value for the threshold.Only matches that pass the pruning step are used to compute a transformation, which is validated on the entire point cloud. The core function is `registration_ransac_based_on_feature_matching`. The most important hyperparameter of this function is `RANSACConvergenceCriteria`. It defines the maximum number of RANSAC iterations and the maximum number of validation steps. The larger these two numbers are, the more accurate the result is, but also the more time the algorithm takes.We set the RANSAC parameters based on the empirical value provided by [\[Choi2015]\](../reference.htmlchoi2015). ###Code def execute_global_registration(source_down, target_down, source_fpfh, target_fpfh, voxel_size): distance_threshold = voxel_size * 1.5 print(":: RANSAC registration on downsampled point clouds.") print(" Since the downsampling voxel size is %.3f," % voxel_size) print(" we use a liberal distance threshold %.3f." % distance_threshold) result = o3d.registration.registration_ransac_based_on_feature_matching( source_down, target_down, source_fpfh, target_fpfh, distance_threshold, o3d.registration.TransformationEstimationPointToPoint(False), 4, [ o3d.registration.CorrespondenceCheckerBasedOnEdgeLength(0.9), o3d.registration.CorrespondenceCheckerBasedOnDistance( distance_threshold) ], o3d.registration.RANSACConvergenceCriteria(4000000, 500)) return result result_ransac = execute_global_registration(source_down, target_down, source_fpfh, target_fpfh, voxel_size) print(result_ransac) draw_registration_result(source_down, target_down, result_ransac.transformation) ###Output _____no_output_____ ###Markdown **Note:**Open3D provides a faster implementation for global registration. Please refer to [Fast global registration](fast-global-registration). Local refinementFor performance reason, the global registration is only performed on a heavily down-sampled point cloud. The result is also not tight. We use [Point-to-plane ICP](../icp_registration.ipynbpoint-to-plane-ICP) to further refine the alignment. ###Code def refine_registration(source, target, source_fpfh, target_fpfh, voxel_size): distance_threshold = voxel_size * 0.4 print(":: Point-to-plane ICP registration is applied on original point") print(" clouds to refine the alignment. This time we use a strict") print(" distance threshold %.3f." % distance_threshold) result = o3d.registration.registration_icp( source, target, distance_threshold, result_ransac.transformation, o3d.registration.TransformationEstimationPointToPlane()) return result result_icp = refine_registration(source, target, source_fpfh, target_fpfh, voxel_size) print(result_icp) draw_registration_result(source, target, result_icp.transformation) ###Output _____no_output_____ ###Markdown Fast global registrationThe RANSAC based global registration solution may take a long time due to countless model proposals and evaluations. [\[Zhou2016\]](../reference.htmlzhou2016) introduced a faster approach that quickly optimizes line process weights of few correspondences. As there is no model proposal and evaluation involved for each iteration, the approach proposed in [\[Zhou2016\]](../reference.htmlzhou2016) can save a lot of computational time.This tutorial compares the running time of the RANSAC based global registration to the implementation of [\[Zhou2016\]](../reference.htmlzhou2016). InputWe use the same input as in the global registration example above. ###Code voxel_size = 0.05 # means 5cm for the dataset source, target, source_down, target_down, source_fpfh, target_fpfh = \ prepare_dataset(voxel_size) ###Output _____no_output_____ ###Markdown BaselineIn the code below we time the global registration approach. ###Code start = time.time() result_ransac = execute_global_registration(source_down, target_down, source_fpfh, target_fpfh, voxel_size) print("Global registration took %.3f sec.\n" % (time.time() - start)) print(result_ransac) draw_registration_result(source_down, target_down, result_ransac.transformation) ###Output _____no_output_____ ###Markdown Fast global registrationWith the same input used for a baseline, the code below calls the implementation of [\[Zhou2016\]](../reference.htmlzhou2016). ###Code def execute_fast_global_registration(source_down, target_down, source_fpfh, target_fpfh, voxel_size): distance_threshold = voxel_size * 0.5 print(":: Apply fast global registration with distance threshold %.3f" \ % distance_threshold) result = o3d.registration.registration_fast_based_on_feature_matching( source_down, target_down, source_fpfh, target_fpfh, o3d.registration.FastGlobalRegistrationOption( maximum_correspondence_distance=distance_threshold)) return result start = time.time() result_fast = execute_fast_global_registration(source_down, target_down, source_fpfh, target_fpfh, voxel_size) print("Fast global registration took %.3f sec.\n" % (time.time() - start)) print(result_fast) draw_registration_result(source_down, target_down, result_fast.transformation) ###Output _____no_output_____ ###Markdown Global registrationBoth [ICP registration](../Basic/icp_registration.ipynb) and [Colored point cloud registration](colored_point_cloud_registration.ipynb) are known as local registration methods because they rely on a rough alignment as initialization. This tutorial shows another class of registration methods, known as **global** registration. This family of algorithms do not require an alignment for initialization. They usually produce less tight alignment results and are used as initialization of the local methods. VisualizationThe helper function visualizes the transformed source point cloud together with the target point cloud. ###Code def draw_registration_result(source, target, transformation): source_temp = copy.deepcopy(source) target_temp = copy.deepcopy(target) source_temp.paint_uniform_color([1, 0.706, 0]) target_temp.paint_uniform_color([0, 0.651, 0.929]) source_temp.transform(transformation) o3d.visualization.draw_geometries([source_temp, target_temp], zoom=0.4559, front=[0.6452, -0.3036, -0.7011], lookat=[1.9892, 2.0208, 1.8945], up=[-0.2779, -0.9482 ,0.1556]) ###Output _____no_output_____ ###Markdown Extract geometric featureWe down sample the point cloud, estimate normals, then compute a FPFH feature for each point. The FPFH feature is a 33-dimensional vector that describes the local geometric property of a point. A nearest neighbor query in the 33-dimensinal space can return points with similar local geometric structures. See [\[Rasu2009\]](../reference.htmlrasu2009) for details. ###Code def preprocess_point_cloud(pcd, voxel_size): print(":: Downsample with a voxel size %.3f." % voxel_size) pcd_down = pcd.voxel_down_sample(voxel_size) radius_normal = voxel_size * 2 print(":: Estimate normal with search radius %.3f." % radius_normal) pcd_down.estimate_normals( o3d.geometry.KDTreeSearchParamHybrid(radius=radius_normal, max_nn=30)) radius_feature = voxel_size * 5 print(":: Compute FPFH feature with search radius %.3f." % radius_feature) pcd_fpfh = o3d.registration.compute_fpfh_feature( pcd_down, o3d.geometry.KDTreeSearchParamHybrid(radius=radius_feature, max_nn=100)) return pcd_down, pcd_fpfh ###Output _____no_output_____ ###Markdown InputThis code below reads a source point cloud and a target point cloud from two files. They are misaligned with an identity matrix as transformation. ###Code def prepare_dataset(voxel_size): print(":: Load two point clouds and disturb initial pose.") source = o3d.io.read_point_cloud("../../TestData/ICP/cloud_bin_0.pcd") target = o3d.io.read_point_cloud("../../TestData/ICP/cloud_bin_1.pcd") trans_init = np.asarray([[0.0, 0.0, 1.0, 0.0], [1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0]]) source.transform(trans_init) draw_registration_result(source, target, np.identity(4)) source_down, source_fpfh = preprocess_point_cloud(source, voxel_size) target_down, target_fpfh = preprocess_point_cloud(target, voxel_size) return source, target, source_down, target_down, source_fpfh, target_fpfh voxel_size = 0.05 # means 5cm for this dataset source, target, source_down, target_down, source_fpfh, target_fpfh = prepare_dataset(voxel_size) ###Output _____no_output_____ ###Markdown RANSACWe use RANSAC for global registration. In each RANSAC iteration, `ransac_n` random points are picked from the source point cloud. Their corresponding points in the target point cloud are detected by querying the nearest neighbor in the 33-dimensional FPFH feature space. A pruning step takes fast pruning algorithms to quickly reject false matches early.Open3D provides the following pruning algorithms:- `CorrespondenceCheckerBasedOnDistance` checks if aligned point clouds are close (less than specified threshold).- `CorrespondenceCheckerBasedOnEdgeLength` checks if the lengths of any two arbitrary edges (line formed by two vertices) individually drawn from source and target correspondences are similar. This tutorial checks that $||edge_{source}|| > 0.9 \times ||edge_{target}||$ and $||edge_{target}|| > 0.9 \times ||edge_{source}||$ are true.- `CorrespondenceCheckerBasedOnNormal` considers vertex normal affinity of any correspondences. It computes dot product of two normal vectors. It takes radian value for the threshold.Only matches that pass the pruning step are used to compute a transformation, which is validated on the entire point cloud. The core function is `registration_ransac_based_on_feature_matching`. The most important hyperparameter of this function is `RANSACConvergenceCriteria`. It defines the maximum number of RANSAC iterations and the maximum number of validation steps. The larger these two numbers are, the more accurate the result is, but also the more time the algorithm takes.We set the RANSAC parameters based on the empirical value provided by [\[Choi2015]\](../reference.htmlchoi2015). ###Code def execute_global_registration(source_down, target_down, source_fpfh, target_fpfh, voxel_size): distance_threshold = voxel_size * 1.5 print(":: RANSAC registration on downsampled point clouds.") print(" Since the downsampling voxel size is %.3f," % voxel_size) print(" we use a liberal distance threshold %.3f." % distance_threshold) result = o3d.registration.registration_ransac_based_on_feature_matching( source_down, target_down, source_fpfh, target_fpfh, distance_threshold, o3d.registration.TransformationEstimationPointToPoint(False), 4, [ o3d.registration.CorrespondenceCheckerBasedOnEdgeLength(0.9), o3d.registration.CorrespondenceCheckerBasedOnDistance( distance_threshold) ], o3d.registration.RANSACConvergenceCriteria(4000000, 500)) return result result_ransac = execute_global_registration(source_down, target_down, source_fpfh, target_fpfh, voxel_size) print(result_ransac) draw_registration_result(source_down, target_down, result_ransac.transformation) ###Output _____no_output_____ ###Markdown **Note:**Open3D provides faster implementation for global registration. Please refer to [Fast global registration](fast-global-registration). Local refinementFor performance reason, the global registration is only performed on a heavily down-sampled point cloud. The result is also not tight. We use [Point-to-plane ICP](../icp_registration.ipynbpoint-to-plane-ICP) to further refine the alignment. ###Code def refine_registration(source, target, source_fpfh, target_fpfh, voxel_size): distance_threshold = voxel_size * 0.4 print(":: Point-to-plane ICP registration is applied on original point") print(" clouds to refine the alignment. This time we use a strict") print(" distance threshold %.3f." % distance_threshold) result = o3d.registration.registration_icp( source, target, distance_threshold, result_ransac.transformation, o3d.registration.TransformationEstimationPointToPlane()) return result result_icp = refine_registration(source, target, source_fpfh, target_fpfh, voxel_size) print(result_icp) draw_registration_result(source, target, result_icp.transformation) ###Output _____no_output_____ ###Markdown Fast global registrationThe RANSAC based global registration solution may take a long time due to countless model proposals and evaluations. [\[Zhou2016\]](../reference.htmlzhou2016) introduced a faster approach that quickly optimizes line process weights of few correspondences. As there is no model proposal and evaluation involved for each iteration, the approach proposed in [\[Zhou2016\]](../reference.htmlzhou2016) can save a lot of computational time.This tutorial compares the running time of the RANSAC based global registration to the implementation of [\[Zhou2016\]](../reference.htmlzhou2016). InputWe use the same input as in the global registration example above. ###Code voxel_size = 0.05 # means 5cm for the dataset source, target, source_down, target_down, source_fpfh, target_fpfh = \ prepare_dataset(voxel_size) ###Output _____no_output_____ ###Markdown BaselineIn the code below we time the global registration approach. ###Code start = time.time() result_ransac = execute_global_registration(source_down, target_down, source_fpfh, target_fpfh, voxel_size) print("Global registration took %.3f sec.\n" % (time.time() - start)) print(result_ransac) draw_registration_result(source_down, target_down, result_ransac.transformation) ###Output _____no_output_____ ###Markdown Fast global registrationWith the same input used for a baseline, the next code below calls the implementation of [\[Zhou2016\]](../reference.htmlzhou2016). ###Code def execute_fast_global_registration(source_down, target_down, source_fpfh, target_fpfh, voxel_size): distance_threshold = voxel_size * 0.5 print(":: Apply fast global registration with distance threshold %.3f" \ % distance_threshold) result = o3d.registration.registration_fast_based_on_feature_matching( source_down, target_down, source_fpfh, target_fpfh, o3d.registration.FastGlobalRegistrationOption( maximum_correspondence_distance=distance_threshold)) return result start = time.time() result_fast = execute_fast_global_registration(source_down, target_down, source_fpfh, target_fpfh, voxel_size) print("Fast global registration took %.3f sec.\n" % (time.time() - start)) print(result_fast) draw_registration_result(source_down, target_down, result_fast.transformation) ###Output _____no_output_____ ###Markdown Global registrationBoth [ICP registration](../Basic/icp_registration.ipynb) and [Colored point cloud registration](colored_point_cloud_registration.ipynb) are known as local registration methods because they rely on a rough alignment as initialization. This tutorial shows another class of registration methods, known as **global** registration. This family of algorithms do not require an alignment for initialization. They usually produce less tight alignment results and are used as initialization of the local methods. VisualizationThe helper function visualizes the transformed source point cloud together with the target point cloud. ###Code def draw_registration_result(source, target, transformation): source_temp = copy.deepcopy(source) target_temp = copy.deepcopy(target) source_temp.paint_uniform_color([1, 0.706, 0]) target_temp.paint_uniform_color([0, 0.651, 0.929]) source_temp.transform(transformation) o3d.visualization.draw_geometries([source_temp, target_temp], zoom=0.4559, front=[0.6452, -0.3036, -0.7011], lookat=[1.9892, 2.0208, 1.8945], up=[-0.2779, -0.9482 ,0.1556]) ###Output _____no_output_____ ###Markdown Extract geometric featureWe down sample the point cloud, estimate normals, then compute a FPFH feature for each point. The FPFH feature is a 33-dimensional vector that describes the local geometric property of a point. A nearest neighbor query in the 33-dimensinal space can return points with similar local geometric structures. See [\[Rasu2009\]](../reference.htmlrasu2009) for details. ###Code def preprocess_point_cloud(pcd, voxel_size): print(":: Downsample with a voxel size %.3f." % voxel_size) pcd_down = pcd.voxel_down_sample(voxel_size) radius_normal = voxel_size * 2 print(":: Estimate normal with search radius %.3f." % radius_normal) pcd_down.estimate_normals( o3d.geometry.KDTreeSearchParamHybrid(radius=radius_normal, max_nn=30)) radius_feature = voxel_size * 5 print(":: Compute FPFH feature with search radius %.3f." % radius_feature) pcd_fpfh = o3d.registration.compute_fpfh_feature( pcd_down, o3d.geometry.KDTreeSearchParamHybrid(radius=radius_feature, max_nn=100)) return pcd_down, pcd_fpfh ###Output _____no_output_____ ###Markdown InputThis code below reads a source point cloud and a target point cloud from two files. They are misaligned with an identity matrix as transformation. ###Code def prepare_dataset(voxel_size): print(":: Load two point clouds and disturb initial pose.") source = o3d.io.read_point_cloud("../../TestData/ICP/cloud_bin_0.pcd") target = o3d.io.read_point_cloud("../../TestData/ICP/cloud_bin_1.pcd") trans_init = np.asarray([[0.0, 0.0, 1.0, 0.0], [1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0]]) source.transform(trans_init) draw_registration_result(source, target, np.identity(4)) source_down, source_fpfh = preprocess_point_cloud(source, voxel_size) target_down, target_fpfh = preprocess_point_cloud(target, voxel_size) return source, target, source_down, target_down, source_fpfh, target_fpfh voxel_size = 0.05 # means 5cm for this dataset source, target, source_down, target_down, source_fpfh, target_fpfh = prepare_dataset(voxel_size) ###Output _____no_output_____ ###Markdown RANSACWe use RANSAC for global registration. In each RANSAC iteration, `ransac_n` random points are picked from the source point cloud. Their corresponding points in the target point cloud are detected by querying the nearest neighbor in the 33-dimensional FPFH feature space. A pruning step takes fast pruning algorithms to quickly reject false matches early.Open3D provides the following pruning algorithms:- `CorrespondenceCheckerBasedOnDistance` checks if aligned point clouds are close (less than specified threshold).- `CorrespondenceCheckerBasedOnEdgeLength` checks if the lengths of any two arbitrary edges (line formed by two vertices) individually drawn from source and target correspondences are similar. This tutorial checks that $||edge_{source}|| > 0.9 \times ||edge_{target}||$ and $||edge_{target}|| > 0.9 \times ||edge_{source}||$ are true.- `CorrespondenceCheckerBasedOnNormal` considers vertex normal affinity of any correspondences. It computes dot product of two normal vectors. It takes radian value for the threshold.Only matches that pass the pruning step are used to compute a transformation, which is validated on the entire point cloud. The core function is `registration_ransac_based_on_feature_matching`. The most important hyperparameter of this function is `RANSACConvergenceCriteria`. It defines the maximum number of RANSAC iterations and the maximum number of validation steps. The larger these two numbers are, the more accurate the result is, but also the more time the algorithm takes.We set the RANSAC parameters based on the empirical value provided by [\[Choi2015]\](../reference.htmlchoi2015). ###Code def execute_global_registration(source_down, target_down, source_fpfh, target_fpfh, voxel_size): distance_threshold = voxel_size * 1.5 print(":: RANSAC registration on downsampled point clouds.") print(" Since the downsampling voxel size is %.3f," % voxel_size) print(" we use a liberal distance threshold %.3f." % distance_threshold) result = o3d.registration.registration_ransac_based_on_feature_matching( source_down, target_down, source_fpfh, target_fpfh, distance_threshold, o3d.registration.TransformationEstimationPointToPoint(False), 4, [ o3d.registration.CorrespondenceCheckerBasedOnEdgeLength(0.9), o3d.registration.CorrespondenceCheckerBasedOnDistance( distance_threshold) ], o3d.registration.RANSACConvergenceCriteria(4000000, 500)) return result result_ransac = execute_global_registration(source_down, target_down, source_fpfh, target_fpfh, voxel_size) print(result_ransac) draw_registration_result(source_down, target_down, result_ransac.transformation) ###Output _____no_output_____ ###Markdown **Note:**Open3D provides faster implementation for global registration. Please refer to [Fast global registration](fast-global-registration). Local refinementFor performance reason, the global registration is only performed on a heavily down-sampled point cloud. The result is also not tight. We use [Point-to-plane ICP](../icp_registration.ipynbpoint-to-plane-ICP) to further refine the alignment. ###Code def refine_registration(source, target, source_fpfh, target_fpfh, voxel_size): distance_threshold = voxel_size * 0.4 print(":: Point-to-plane ICP registration is applied on original point") print(" clouds to refine the alignment. This time we use a strict") print(" distance threshold %.3f." % distance_threshold) result = o3d.registration.registration_icp( source, target, distance_threshold, result_ransac.transformation, o3d.registration.TransformationEstimationPointToPlane()) return result result_icp = refine_registration(source, target, source_fpfh, target_fpfh, voxel_size) print(result_icp) draw_registration_result(source, target, result_icp.transformation) ###Output _____no_output_____ ###Markdown Fast global registrationThe RANSAC based global registration solution may take a long time due to countless model proposals and evaluations. [\[Zhou2016\]](../reference.htmlzhou2016) introduced a faster approach that quickly optimizes line process weights of few correspondences. As there is no model proposal and evaluation involved for each iteration, the approach proposed in [\[Zhou2016\]](../reference.htmlzhou2016) can save a lot of computational time.This tutorial compares the running time of the RANSAC based global registration to the implementation of [\[Zhou2016\]](../reference.htmlzhou2016). InputWe use the same input as in the global registration example above. ###Code voxel_size = 0.05 # means 5cm for the dataset source, target, source_down, target_down, source_fpfh, target_fpfh = \ prepare_dataset(voxel_size) ###Output _____no_output_____ ###Markdown BaselineIn the code below we time the global registration approach. ###Code start = time.time() result_ransac = execute_global_registration(source_down, target_down, source_fpfh, target_fpfh, voxel_size) print("Global registration took %.3f sec.\n" % (time.time() - start)) print(result_ransac) draw_registration_result(source_down, target_down, result_ransac.transformation) ###Output _____no_output_____ ###Markdown Fast global registrationWith the same input used for a baseline, the next code below calls the implementation of [\[Zhou2016\]](../reference.htmlzhou2016). ###Code def execute_fast_global_registration(source_down, target_down, source_fpfh, target_fpfh, voxel_size): distance_threshold = voxel_size * 0.5 print(":: Apply fast global registration with distance threshold %.3f" \ % distance_threshold) result = o3d.registration.registration_fast_based_on_feature_matching( source_down, target_down, source_fpfh, target_fpfh, o3d.registration.FastGlobalRegistrationOption( maximum_correspondence_distance=distance_threshold)) return result start = time.time() result_fast = execute_fast_global_registration(source_down, target_down, source_fpfh, target_fpfh, voxel_size) print("Fast global registration took %.3f sec.\n" % (time.time() - start)) print(result_fast) draw_registration_result(source_down, target_down, result_fast.transformation) ###Output _____no_output_____
Particle Filter mod.ipynb
###Markdown Particle Filter {-} ###Code from numpy import arange, array, sqrt, random, sin, cos, zeros, pi, exp, cumsum, mean, var import matplotlib.pyplot as plt # System parameters samples = 100 # Number of samples dt = 1 # Time interval [second] n = 100 # Number of particles # Process noise Q = 1 # Measurement noise R = 1 # Initial state x = 0.1 xt = x # Initial particle variance sigmap = 2 # Generate initial n particles xn = zeros(n) for i in range(0, n): xn[i] = x + random.normal(0, sqrt(sigmap)) # Plot initial particles and corresponding histogram plt.subplot(1, 2, 1) plt.title('Initial particle distribution') plt.xlabel('Time step') plt.ylabel('Position') plt.plot(zeros(n), xn, color='orange', marker='o', linestyle='None') plt.grid() plt.subplot(1, 2, 2) plt.title('Histogram') plt.xlabel('Count') plt.hist(xn, align='mid', alpha=0.75) plt.grid() plt.show() # Initialize plot vectors xt_all = []; x_all = []; z_all = [] def proc(x, Q): return x + random.normal(0, sqrt(Q)) def meas(x, R): return x + random.normal(0, sqrt(R)) # Main loop for k in range(0, samples): # Generate dynamic process xt = proc(xt, Q) # Generate measurement z = meas(xt, R) # Time update (loop over n particles) xnp = zeros(n);zp = zeros(n);w = zeros(n) for i in range(0, n): # Predicted state xnp[i] = proc(xt, Q) # Compute measurement zp[i] = meas(xnp[i], R) # Compute weights (normal distributed measurements) w[i] = (1/sqrt(2*pi*R))*exp(-(z - zp[i])**2/(2*R)) # Normalize to form probability distribution w = w/sum(w) # Resampling of cumulative probability distribution for i in range(0, n): ind = [x for x, ind in enumerate(cumsum(w)) if ind <= random.uniform(0, 1)] xn[i] = xnp[ind[-1]] # Find the index of last occurence # State estimation x = mean(xn) var_est = var(xn) # Accumulate plot vectors x_all.append(x) xt_all.append(xt) z_all.append(z) # Plot distributions plt.subplot(1, 2, 1) plt.title('Predicted particle positions') plt.plot(0, x, color='green', marker='o') plt.plot(w, xnp, color='orange', marker='.', linestyle='None') plt.xlabel('Weight') plt.ylabel('Position') plt.grid() plt.subplot(1, 2, 2) plt.title('Predicted measurements') plt.plot(0, z, color='green', marker='o') plt.plot(w, zp, color='red', marker='.', linestyle='None') plt.xlabel('Weight') plt.grid() plt.show() # Time time = arange(0, samples)*dt # Plot estimates plt.title('State estimation') plt.plot(time, xt_all, color='blue') plt.plot(time, x_all, 'g.') plt.grid() plt.show() ###Output _____no_output_____
examples/nlp.ipynb
###Markdown Natural Language Processing---------------------------------------------------This example shows how to use ATOM to quickly go from raw text data to model predictions.Import the 20 newsgroups text dataset from [sklearn.datasets](https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html). The dataset comprises around 18000 articles on 20 topics. The goal is to predict the topic of every article. Load the data ###Code import numpy as np from atom import ATOMClassifier from sklearn.datasets import fetch_20newsgroups # Use only a subset of the available topics for faster processing X_text, y_text = fetch_20newsgroups( return_X_y=True, categories=[ 'alt.atheism', 'sci.med', 'comp.windows.x', 'misc.forsale', 'rec.autos', ], shuffle=True, random_state=1, ) X_text = np.array(X_text).reshape(-1, 1) ###Output _____no_output_____ ###Markdown Run the pipeline ###Code atom = ATOMClassifier(X_text, y_text, index=True, test_size=0.3, verbose=2, warnings=False) atom.dataset # Note that the feature is automatically named 'corpus' # Let's have a look at the first document atom.corpus[0] # Clean the documents from noise (emails, numbers, etc...) atom.textclean() # Have a look at the removed items atom.drops # Check how the first document changed atom.corpus[0] atom.corpus[atom.corpus.str.contains("mips")] # Convert the strings to a sequence of words atom.tokenize() # Print the first few words of the first document atom.corpus[0][:7] # Normalize the text to a predefined standard atom.normalize(stopwords="english", lemmatize=True) atom.corpus[0][:7] # Check changes... # Visualize the most common words with a wordcloud atom.plot_wordcloud() # Have a look at the most frequent bigrams atom.plot_ngrams(2) # Create the bigrams using the tokenizer atom.tokenize(bigram_freq=215) atom.bigrams # As a last step before modelling, convert the words to vectors atom.vectorize(strategy="tfidf") # The dimensionality of the dataset has increased a lot! atom.shape # Note that the data is sparse and the columns are named # after the words they are embedding atom.dtypes # When the dataset is sparse, stats() shows the density atom.stats() # Check which models have support for sparse matrices atom.available_models()[["acronym", "fullname", "accepts_sparse"]] # Train the model atom.run(models="RF", metric="f1_weighted") ###Output Training ========================= >> Models: RF Metric: f1_weighted Results for Random Forest: Fit --------------------------------------------- Train evaluation --> f1_weighted: 1.0 Test evaluation --> f1_weighted: 0.9296 Time elapsed: 32.115s ------------------------------------------------- Total time: 32.115s Final results ==================== >> Duration: 32.115s ------------------------------------- Random Forest --> f1_weighted: 0.9296 ###Markdown Analyze results ###Code atom.evaluate() atom.plot_confusion_matrix(figsize=(10, 10)) atom.decision_plot(index=0, target=atom.predict(0), show=15) atom.beeswarm_plot(target=0, show=15) ###Output 100%|===================| 4252/4265 [04:35<00:00] ###Markdown Interactive NLPThe `seaqube` package provides a simple toolkit for simple usage of pre trained nlp models or fro self trained models like from `gensim`. _Whatever for a NLP model is used. If the model training, saving and loading process is implemented in a class which inherits from `SeaQuBeWordEmbeddingsModel`, the seaqube toolkit can be used for interactive NLP usage_ ###Code from seaqube.nlp.types import SeaQuBeWordEmbeddingsModel # Lets have a look at a contexted based NLP model, called Context2Vec from seaqube.nlp.context2vec.context2vec import Context2Vec # Import some seaqube tools: from seaqube.nlp.tools import word_count_list from seaqube.nlp.types import RawModelTinCan from seaqube.nlp.seaqube_model import SeaQuBeNLPLoader, SeaQuBeCompressLoader from seaqube.nlp.tools import tokenize_corpus ###Output _____no_output_____ ###Markdown To use the seaqube word embedding evaluation OR just to make nlp usage easier, it is neccessary to wrap such a model to a `SeaQuBeWordEmbeddingsModel` like we can see in the following: ###Code class SeaQuBeWordEmbeddingsModelC2V(SeaQuBeWordEmbeddingsModel): def __init__(self, c2v: Context2Vec): self.c2v = c2v def vocabs(self): return self.c2v.wv.vocabs @property def wv(self): return self.c2v.wv def word_vector(self, word): return self.c2v.wv[word] def matrix(self): return self.c2v.wv.matrix ###Output _____no_output_____ ###Markdown We load a corpus which then will be used for model training ###Code star_wars_cites = ["How you get so big eating food of this kind?", "'Spring the trap!'", "Same as always…", "You came in that thing? You’re braver than I thought!", "Who’s scruffy looking?", "Let the Wookiee win.", "The Emperor is not as forgiving as I am", "I don’t know where you get your delusions, laserbrain.", "Shutting up, sir,", "Boring conversation anyway…", ] corpus = tokenize_corpus(star_wars_cites) ###Output _____no_output_____ ###Markdown Traing a Context2Vec instance ###Code c2v = Context2Vec(epoch=3) c2v.train(corpus) ###Output _____no_output_____ ###Markdown This context2Vec model can be completely saved with: ###Code c2v.save("starwars_c2v") ###Output _____no_output_____ ###Markdown Now, it is time to wrap the model to a seaqube understandable format ###Code seaC2V = SeaQuBeWordEmbeddingsModelC2V(c2v) tin_can = RawModelTinCan(seaC2V, word_count_list(corpus)) SeaQuBeCompressLoader.save_model_compressed(tin_can, "c2v_small") ###Output _____no_output_____ ###Markdown The next step transform a nlp model with extra information to a nlp object, which provides interactive usage ###Code nlp = SeaQuBeNLPLoader.load_model_from_tin_can(tin_can, "c2v") ###Output _____no_output_____ ###Markdown This line tansforms a document to a SeaQuBeNLPDoc object which provides some features about similarity and word embeddings ###Code nlp("This is a test") ###Output _____no_output_____ ###Markdown `doc` is a list of tokens ###Code doc = list(nlp("This is a test")); print(doc); type(doc[0]) ###Output _____no_output_____ ###Markdown For every token a embedding vector can be obtained. Here just for the first one: ###Code nlp("This is a test")[0].vector ###Output _____no_output_____ ###Markdown The vector can be merged, using mean or the dif algorithm, if vecor is used from the document contexts. ###Code nlp("This is a test").vector nlp("This is a test").sif_vector ###Output _____no_output_____ ###Markdown Also the similarity between words or documents can be calulated, whereas for document the `sif` method gives a better semantic result. ###Code nlp("Is the Emperor a laserbrain?").similarity("Boring conversation anyway…") nlp("Is the Emperor a laserbrain?").similarity("Boring conversation anyway…", vector="sif") ###Output _____no_output_____ ###Markdown Similarity for words ###Code word = nlp("Is the Emperor a laserbrain?")[2] word word.similarity("Wookiee") ###Output _____no_output_____ ###Markdown Get the vocab of the model ###Code nlp.vocab() ###Output _____no_output_____ ###Markdown Explaining Natural Language Processing (NLP) Models with CXPlainFirst, we load a number of reviews from the Internet Movie Database (IMDB) dataset which we will use as a training dataset to attempt to recognise the sentiment expressed in a given movie review. ###Code import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' from cxplain.util.test_util import TestUtil num_words = 1024 num_samples = 500 (x_train, y_train), (x_test, y_test) = TestUtil.get_imdb(word_dictionary_size=num_words, num_subsamples=num_samples) ###Output _____no_output_____ ###Markdown Next, we fit a review classification pipeline that first transforms the reviews into their term frequency–inverse document frequency (tf-idf) vector representation, and then fits a Random Forest classifier to these vector representationsof the training data. ###Code from sklearn.pipeline import Pipeline from cxplain.util.count_vectoriser import CountVectoriser from sklearn.ensemble.forest import RandomForestClassifier from sklearn.feature_extraction.text import TfidfTransformer explained_model = RandomForestClassifier(n_estimators=64, max_depth=5, random_state=1) counter = CountVectoriser(num_words) tfidf_transformer = TfidfTransformer() explained_model = Pipeline([('counts', counter), ('tfidf', tfidf_transformer), ('model', explained_model)]) explained_model.fit(x_train, y_train); ###Output _____no_output_____ ###Markdown After fitting the review classification pipeline, we wish to explain its decisions, i.e. what input features were most relevantfor a given pipeline prediction. To do so, we train a causal explanation (CXPlain) model that can learn to explain anymachine-learning model using the same training data. In practice, we have to define:- `model_builder`: The type of model we want to use as our CXPlain model. In this case we are using a neural explanation model usinga recurrent neural network (RNN) structure. - `masking_operation`: The masking operaion used to remove a certain input feature from the set of available input features. In this case we are using word drop masking, i.e. removing a word from the input sequence entirely.- `loss`: The loss function that we wish to use to measure the impact of removing a certain input feature from the set of available features. In most common use cases, this will be the mean squared error (MSE) for regression problems and the cross-entropy for classification problems. ###Code from tensorflow.python.keras.losses import binary_crossentropy from cxplain import RNNModelBuilder, WordDropMasking, CXPlain model_builder = RNNModelBuilder(embedding_size=num_words, with_embedding=True, num_layers=2, num_units=32, activation="relu", p_dropout=0.2, verbose=0, batch_size=32, learning_rate=0.001, num_epochs=2, early_stopping_patience=128) masking_operation = WordDropMasking() loss = binary_crossentropy ###Output _____no_output_____ ###Markdown Using this configuration, we now instantiate a CXPlain model and fit it to the same IMDB data that we used to fit the review classification pipeline model that we wish to explain.We also pad the movie reviews to the same length prior to fitting the CXPlain model since variable length inputsare currently not supported in CXPlain. ###Code from tensorflow.python.keras.preprocessing.sequence import pad_sequences explainer = CXPlain(explained_model, model_builder, masking_operation, loss) prior_test_lengths = map(len, x_test) x_train = pad_sequences(x_train, padding="post", truncating="post", dtype=int) x_test = pad_sequences(x_test, padding="post", truncating="post", dtype=int, maxlen=x_train.shape[1]) explainer.fit(x_train, y_train); ###Output WARNING:tensorflow:From /Users/schwabp3/Documents/projects/venv/lib/python2.7/site-packages/tensorflow/python/keras/initializers.py:119: calling __init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version. Instructions for updating: Call initializer instance with the dtype argument instead of passing it to the constructor WARNING:tensorflow:From /Users/schwabp3/Documents/projects/venv/lib/python2.7/site-packages/tensorflow/python/ops/init_ops.py:1251: calling __init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version. Instructions for updating: Call initializer instance with the dtype argument instead of passing it to the constructor WARNING:tensorflow:From /Users/schwabp3/Documents/projects/cxplain/cxplain/backend/model_builders/base_model_builder.py:152: The name tf.train.AdamOptimizer is deprecated. Please use tf.compat.v1.train.AdamOptimizer instead. WARNING:tensorflow:From /Users/schwabp3/Documents/projects/venv/lib/python2.7/site-packages/tensorflow/python/ops/math_grad.py:1250: where (from tensorflow.python.ops.array_ops) is deprecated and will be removed in a future version. Instructions for updating: Use tf.where in 2.0, which has the same broadcast rule as np.where ###Markdown We can then use this fitted CXPlain model to explain the predictions of the explained model on the held-out test samples. Note that the importance scores are normalised to sum to a value of 1 and each score therefore represents the relative importance of each respective input word.(Although it would be possible, we do not request confidence intervals for the provided attributions in this example.) ###Code attributions = explainer.explain(x_test) ###Output _____no_output_____ ###Markdown We can now visualise the per-word attributions for a specific sample review from the test set using the `Plot` toolset available as part of CXPlain.Note that we first have to convert our input data from word indices back to actual word strings using `TestUtils.imdb_dictionary_indidces_to_words()`. ###Code from __future__ import print_function import numpy as np import matplotlib.pyplot as plt from cxplain.visualisation.plot import Plot plt.rcdefaults() np.random.seed(909) selected_index = np.random.randint(len(x_test)) selected_sample = x_test[selected_index] importances = attributions[selected_index] prior_length = prior_test_lengths[selected_index] # Truncate to original review length prior to padding. selected_sample = selected_sample[:prior_length] importances = importances[:prior_length] words = TestUtil.imdb_dictionary_indidces_to_words(selected_sample) print(Plot.plot_attribution_nlp(words, importances)) ###Output <START> {0.000869052892085} <UNK> {0.00101536838338} watched {0.00123076280579} 8 {0.00117500138003} <UNK> {0.000994433648884} <UNK> {0.000954008253757} <UNK> {0.00104214868043} <UNK> {0.00127266219351} <UNK> {0.00109629391227} very {0.000929234724026} thought {0.000997570343316} <UNK> {0.00123121822253} and {0.00102737860288} very {0.0010709624039} well {0.000990054919384} done {0.00147655024193} movie {0.000871025433298} on {0.0014516452793} the {0.00144975376315} subject {0.00096174213104} of {0.00105090788566} the {0.00113586091902} death {0.00114432512783} <UNK> {0.0010641978588} <UNK> {0.000870429503266} more {0.00124163366854} <UNK> {0.000883863598574} and {0.00128600851167} <UNK> {0.00138137256727} than {0.000877433281858} it {0.00111598963849} <UNK> {0.00113100279123} ###Markdown Natural Language Processing---------------------------------------------------This example shows how to use ATOM to quickly go from raw text data to model predictions.Import the 20 newsgroups text dataset from [sklearn.datasets](https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html). The dataset comprises around 18000 articles on 20 topics. The goal is to predict the topic of every article. Load the data ###Code import numpy as np from atom import ATOMClassifier from sklearn.datasets import fetch_20newsgroups # Use only a subset of the available topics for faster processing X_text, y_text = fetch_20newsgroups( return_X_y=True, categories=[ 'alt.atheism', 'sci.med', 'comp.windows.x', 'misc.forsale', 'rec.autos', ], shuffle=True, random_state=1, ) X_text = np.array(X_text).reshape(-1, 1) ###Output _____no_output_____ ###Markdown Run the pipeline ###Code atom = ATOMClassifier(X_text, y_text, test_size=0.3, verbose=2, warnings=False) atom.dataset # Note that the feature is automatically named 'Corpus' # Let's have a look at the first document atom.Corpus[0] # Clean the documents from noise (emails, numbers, etc...) atom.textclean() # Have a look at the removed items atom.drops # Check how the first document changed atom.Corpus[0] # Convert the strings to a sequence of words atom.tokenize() # Print the first few words of the first document atom.Corpus[0][:7] # Normalize the text to a predefined standard atom.normalize(stopwords="english", lemmatize=True) atom.Corpus[0][:7] # Check changes... # Visualize the most common words with a wordcloud atom.plot_wordcloud() # Have a look at the most frequent bigrams atom.plot_ngrams(2) # Create the bigrams using the tokenizer atom.tokenize(bigram_freq=215) atom.bigrams # As a last step before modelling, convert the words to vectors atom.vectorize(strategy="tf-idf") # The dimensionality of the dataset has increased a lot! atom.shape # Train the model atom.run(models="MLP", metric="f1_weighted") ###Output Training ========================= >> Models: MLP Metric: f1_weighted Results for Multi-layer Perceptron: Fit --------------------------------------------- Train evaluation --> f1_weighted: 1.0 Test evaluation --> f1_weighted: 0.8701 Time elapsed: 1m:02s ------------------------------------------------- Total time: 1m:02s Final results ==================== >> Duration: 1m:02s ------------------------------------- Multi-layer Perceptron --> f1_weighted: 0.8701 ###Markdown Analyze results ###Code atom.evaluate() atom.plot_confusion_matrix(figsize=(10, 10)) ###Output _____no_output_____
docs/source/examples/Natural and artificial perturbations.ipynb
###Markdown Natural and artificial perturbations ###Code import numpy as np import matplotlib.pyplot as plt plt.ion() from astropy import units as u from astropy.time import Time, TimeDelta from astropy.coordinates import solar_system_ephemeris from poliastro.twobody.propagation import propagate, cowell from poliastro.ephem import build_ephem_interpolant from poliastro.core.elements import rv2coe from poliastro.core.util import norm from poliastro.core.perturbations import atmospheric_drag, third_body, J2_perturbation from poliastro.bodies import Earth, Moon from poliastro.twobody import Orbit from poliastro.plotting import OrbitPlotter2D, OrbitPlotter3D ###Output _____no_output_____ ###Markdown Atmospheric drag The poliastro package now has several commonly used natural perturbations. One of them is atmospheric drag! See how one can monitor decay of the near-Earth orbit over time using our new module poliastro.twobody.perturbations! ###Code R = Earth.R.to(u.km).value k = Earth.k.to(u.km ** 3 / u.s ** 2).value orbit = Orbit.circular(Earth, 250 * u.km, epoch=Time(0.0, format="jd", scale="tdb")) # parameters of a body C_D = 2.2 # dimentionless (any value would do) A = ((np.pi / 4.0) * (u.m ** 2)).to(u.km ** 2).value # km^2 m = 100 # kg B = C_D * A / m # parameters of the atmosphere rho0 = Earth.rho0.to(u.kg / u.km ** 3).value # kg/km^3 H0 = Earth.H0.to(u.km).value tofs = TimeDelta(np.linspace(0 * u.h, 100000 * u.s, num=2000)) rr = propagate( orbit, tofs, method=cowell, ad=atmospheric_drag, R=R, C_D=C_D, A=A, m=m, H0=H0, rho0=rho0, ) plt.ylabel("h(t)") plt.xlabel("t, days") plt.plot(tofs.value, rr.data.norm() - Earth.R); ###Output _____no_output_____ ###Markdown Evolution of RAAN due to the J2 perturbation We can also see how the J2 perturbation changes RAAN over time! ###Code r0 = np.array([-2384.46, 5729.01, 3050.46]) * u.km v0 = np.array([-7.36138, -2.98997, 1.64354]) * u.km / u.s orbit = Orbit.from_vectors(Earth, r0, v0) tofs = TimeDelta(np.linspace(0, 48.0 * u.h, num=2000)) coords = propagate( orbit, tofs, method=cowell, ad=J2_perturbation, J2=Earth.J2.value, R=Earth.R.to(u.km).value ) rr = coords.data.xyz.T.to(u.km).value vv = coords.data.differentials["s"].d_xyz.T.to(u.km / u.s).value # This will be easier to compute when this is solved: # https://github.com/poliastro/poliastro/issues/257 raans = [rv2coe(k, r, v)[3] for r, v in zip(rr, vv)] plt.ylabel("RAAN(t)") plt.xlabel("t, h") plt.plot(tofs.value, raans); ###Output _____no_output_____ ###Markdown 3rd body Apart from time-independent perturbations such as atmospheric drag, J2/J3, we have time-dependend perturbations. Lets's see how Moon changes the orbit of GEO satellite over time! ###Code # database keeping positions of bodies in Solar system over time solar_system_ephemeris.set("de432s") epoch = Time(2454283.0, format="jd", scale="tdb") # setting the exact event date is important # create interpolant of 3rd body coordinates (calling in on every iteration will be just too slow) body_r = build_ephem_interpolant( Moon, 28 * u.day, (epoch.value * u.day, epoch.value * u.day + 60 * u.day), rtol=1e-2 ) initial = Orbit.from_classical( Earth, 42164.0 * u.km, 0.0001 * u.one, 1 * u.deg, 0.0 * u.deg, 0.0 * u.deg, 0.0 * u.rad, epoch=epoch, ) tofs = TimeDelta(np.linspace(0, 60 * u.day, num=1000)) # multiply Moon gravity by 400 so that effect is visible :) rr = propagate( initial, tofs, method=cowell, rtol=1e-6, ad=third_body, k_third=400 * Moon.k.to(u.km ** 3 / u.s ** 2).value, third_body=body_r, ) frame = OrbitPlotter3D() frame.set_attractor(Earth) frame.plot_trajectory(rr, label="orbit influenced by Moon") ###Output _____no_output_____ ###Markdown Thrusts Apart from natural perturbations, there are artificial thrusts aimed at intentional change of orbit parameters. One of such changes is simultaineous change of eccenricy and inclination. ###Code from poliastro.twobody.thrust import change_inc_ecc ecc_0, ecc_f = 0.4, 0.0 a = 42164 # km inc_0 = 0.0 # rad, baseline inc_f = (20.0 * u.deg).to(u.rad).value # rad argp = 0.0 # rad, the method is efficient for 0 and 180 f = 2.4e-6 # km / s2 k = Earth.k.to(u.km ** 3 / u.s ** 2).value s0 = Orbit.from_classical( Earth, a * u.km, ecc_0 * u.one, inc_0 * u.deg, 0 * u.deg, argp * u.deg, 0 * u.deg, epoch=Time(0, format="jd", scale="tdb"), ) a_d, _, _, t_f = change_inc_ecc(s0, ecc_f, inc_f, f) tofs = TimeDelta(np.linspace(0, t_f * u.s, num=1000)) rr2 = propagate(s0, tofs, method=cowell, rtol=1e-6, ad=a_d) frame = OrbitPlotter3D() frame.set_attractor(Earth) frame.plot_trajectory(rr2, label='orbit with artificial thrust') ###Output _____no_output_____ ###Markdown Natural and artificial perturbations ###Code import numpy as np import matplotlib.pyplot as plt from astropy import units as u from astropy.time import Time, TimeDelta from astropy.coordinates import solar_system_ephemeris from poliastro.twobody.propagation import propagate, cowell from poliastro.ephem import build_ephem_interpolant from poliastro.core.elements import rv2coe from poliastro.core.util import norm from poliastro.core.perturbations import atmospheric_drag, third_body, J2_perturbation from poliastro.bodies import Earth, Moon from poliastro.twobody import Orbit from poliastro.plotting import OrbitPlotter3D ###Output _____no_output_____ ###Markdown Atmospheric drag The poliastro package now has several commonly used natural perturbations. One of them is atmospheric drag! See how one can monitor decay of the near-Earth orbit over time using our new module poliastro.twobody.perturbations! ###Code R = Earth.R.to(u.km).value k = Earth.k.to(u.km ** 3 / u.s ** 2).value orbit = Orbit.circular(Earth, 250 * u.km, epoch=Time(0.0, format="jd", scale="tdb")) # parameters of a body C_D = 2.2 # dimentionless (any value would do) A = ((np.pi / 4.0) * (u.m ** 2)).to(u.km ** 2).value # km^2 m = 100 # kg B = C_D * A / m # parameters of the atmosphere rho0 = Earth.rho0.to(u.kg / u.km ** 3).value # kg/km^3 H0 = Earth.H0.to(u.km).value tofs = TimeDelta(np.linspace(0 * u.h, 100000 * u.s, num=2000)) rr = propagate( orbit, tofs, method=cowell, ad=atmospheric_drag, R=R, C_D=C_D, A=A, m=m, H0=H0, rho0=rho0, ) plt.ylabel("h(t)") plt.xlabel("t, days") plt.plot(tofs.value, rr.norm() - Earth.R) ###Output _____no_output_____ ###Markdown Evolution of RAAN due to the J2 perturbationWe can also see how the J2 perturbation changes RAAN over time! ###Code r0 = np.array([-2384.46, 5729.01, 3050.46]) * u.km v0 = np.array([-7.36138, -2.98997, 1.64354]) * u.km / u.s orbit = Orbit.from_vectors(Earth, r0, v0) tofs = TimeDelta(np.linspace(0, 48.0 * u.h, num=2000)) coords = propagate( orbit, tofs, method=cowell, ad=J2_perturbation, J2=Earth.J2.value, R=Earth.R.to(u.km).value ) rr = coords.xyz.T.to(u.km).value vv = coords.differentials["s"].d_xyz.T.to(u.km / u.s).value # This will be easier to compute when this is solved: # https://github.com/poliastro/poliastro/issues/380 raans = [rv2coe(k, r, v)[3] for r, v in zip(rr, vv)] plt.ylabel("RAAN(t)") plt.xlabel("t, h") plt.plot(tofs.value, raans) ###Output _____no_output_____ ###Markdown 3rd bodyApart from time-independent perturbations such as atmospheric drag, J2/J3, we have time-dependend perturbations. Lets's see how Moon changes the orbit of GEO satellite over time! ###Code # database keeping positions of bodies in Solar system over time solar_system_ephemeris.set("de432s") epoch = Time( 2454283.0, format="jd", scale="tdb" ) # setting the exact event date is important # create interpolant of 3rd body coordinates (calling in on every iteration will be just too slow) body_r = build_ephem_interpolant( Moon, 28 * u.day, (epoch.value * u.day, epoch.value * u.day + 60 * u.day), rtol=1e-2 ) initial = Orbit.from_classical( Earth, 42164.0 * u.km, 0.0001 * u.one, 1 * u.deg, 0.0 * u.deg, 0.0 * u.deg, 0.0 * u.rad, epoch=epoch, ) tofs = TimeDelta(np.linspace(0, 60 * u.day, num=1000)) # multiply Moon gravity by 400 so that effect is visible :) rr = propagate( initial, tofs, method=cowell, rtol=1e-6, ad=third_body, k_third=400 * Moon.k.to(u.km ** 3 / u.s ** 2).value, third_body=body_r, ) frame = OrbitPlotter3D() frame.set_attractor(Earth) frame.plot_trajectory(rr, label="orbit influenced by Moon") ###Output _____no_output_____ ###Markdown Applying thrustApart from natural perturbations, there are artificial thrusts aimed at intentional change of orbit parameters. One of such changes is simultaineous change of eccentricity and inclination. ###Code from poliastro.twobody.thrust import change_inc_ecc ecc_0, ecc_f = 0.4, 0.0 a = 42164 # km inc_0 = 0.0 # rad, baseline inc_f = (20.0 * u.deg).to(u.rad).value # rad argp = 0.0 # rad, the method is efficient for 0 and 180 f = 2.4e-6 # km / s2 k = Earth.k.to(u.km ** 3 / u.s ** 2).value s0 = Orbit.from_classical( Earth, a * u.km, ecc_0 * u.one, inc_0 * u.deg, 0 * u.deg, argp * u.deg, 0 * u.deg, epoch=Time(0, format="jd", scale="tdb"), ) a_d, _, _, t_f = change_inc_ecc(s0, ecc_f, inc_f, f) tofs = TimeDelta(np.linspace(0, t_f * u.s, num=1000)) rr2 = propagate(s0, tofs, method=cowell, rtol=1e-6, ad=a_d) frame = OrbitPlotter3D() frame.set_attractor(Earth) frame.plot_trajectory(rr2, label="orbit with artificial thrust") ###Output _____no_output_____ ###Markdown Combining multiple perturbationsIt might be of interest to determine what effect multiple perturbations have on a single object. In order to add multiple perturbations we can create a custom function that adds them up: ###Code from poliastro.core.util import jit # Add @jit for speed! @jit def a_d(t0, state, k, J2, R, C_D, A, m, H0, rho0): return J2_perturbation(t0, state, k, J2, R) + atmospheric_drag( t0, state, k, R, C_D, A, m, H0, rho0 ) # propagation times of flight and orbit tofs = TimeDelta(np.linspace(0, 10 * u.day, num=10 * 500)) orbit = Orbit.circular(Earth, 250 * u.km) # recall orbit from drag example # propagate with J2 and atmospheric drag rr3 = propagate( orbit, tofs, method=cowell, ad=a_d, R=R, C_D=C_D, A=A, m=m, H0=H0, rho0=rho0, J2=Earth.J2.value, ) # propagate with only atmospheric drag rr4 = propagate( orbit, tofs, method=cowell, ad=atmospheric_drag, R=R, C_D=C_D, A=A, m=m, H0=H0, rho0=rho0, ) fig, (axes1, axes2) = plt.subplots(nrows=2, sharex=True, figsize=(15, 6)) axes1.plot(tofs.value, rr3.norm() - Earth.R) axes1.set_ylabel("h(t)") axes1.set_xlabel("t, days") axes1.set_ylim([225, 251]) axes2.plot(tofs.value, rr4.norm() - Earth.R) axes2.set_ylabel("h(t)") axes2.set_xlabel("t, days") axes2.set_ylim([225, 251]) ###Output _____no_output_____ ###Markdown Natural and artificial perturbations ###Code import functools import numpy as np import matplotlib.pyplot as plt plt.ion() from astropy import units as u from astropy.time import Time from astropy.coordinates import solar_system_ephemeris from poliastro.twobody.propagation import cowell from poliastro.ephem import build_ephem_interpolant from poliastro.core.elements import rv2coe from poliastro.core.util import norm from poliastro.util import time_range from poliastro.core.perturbations import ( atmospheric_drag, third_body, J2_perturbation ) from poliastro.bodies import Earth, Moon from poliastro.twobody import Orbit from poliastro.plotting import OrbitPlotter2D, OrbitPlotter3D ###Output _____no_output_____ ###Markdown Atmospheric drag The poliastro package now has several commonly used natural perturbations. One of them is atmospheric drag! See how one can monitor decay of the near-Earth orbit over time using our new module poliastro.twobody.perturbations! ###Code R = Earth.R.to(u.km).value k = Earth.k.to(u.km**3 / u.s**2).value orbit = Orbit.circular(Earth, 250 * u.km, epoch=Time(0.0, format='jd', scale='tdb')) # parameters of a body C_D = 2.2 # dimentionless (any value would do) A = ((np.pi / 4.0) * (u.m**2)).to(u.km**2).value # km^2 m = 100 # kg B = C_D * A / m # parameters of the atmosphere rho0 = Earth.rho0.to(u.kg / u.km**3).value # kg/km^3 H0 = Earth.H0.to(u.km).value tof = (100000 * u.s).to(u.day).value tr = time_range(0.0, periods=2000, end=tof, format='jd', scale='tdb') cowell_with_ad = functools.partial(cowell, ad=atmospheric_drag, R=R, C_D=C_D, A=A, m=m, H0=H0, rho0=rho0) rr = orbit.sample(tr, method=cowell_with_ad) plt.ylabel('h(t)') plt.xlabel('t, days') plt.plot(tr.value, rr.data.norm() - Earth.R); ###Output _____no_output_____ ###Markdown Evolution of RAAN due to the J2 perturbation We can also see how the J2 perturbation changes RAAN over time! ###Code r0 = np.array([-2384.46, 5729.01, 3050.46]) # km v0 = np.array([-7.36138, -2.98997, 1.64354]) # km/s k = Earth.k.to(u.km**3 / u.s**2).value orbit = Orbit.from_vectors(Earth, r0 * u.km, v0 * u.km / u.s) tof = (48.0 * u.h).to(u.s).value rr, vv = cowell(orbit, np.linspace(0, tof, 2000), ad=J2_perturbation, J2=Earth.J2.value, R=Earth.R.to(u.km).value) raans = [rv2coe(k, r, v)[3] for r, v in zip(rr, vv)] plt.ylabel('RAAN(t)') plt.xlabel('t, s') plt.plot(np.linspace(0, tof, 2000), raans); ###Output _____no_output_____ ###Markdown 3rd body Apart from time-independent perturbations such as atmospheric drag, J2/J3, we have time-dependend perturbations. Lets's see how Moon changes the orbit of GEO satellite over time! ###Code # database keeping positions of bodies in Solar system over time solar_system_ephemeris.set('de432s') j_date = 2454283.0 * u.day # setting the exact event date is important tof = (60 * u.day).to(u.s).value # create interpolant of 3rd body coordinates (calling in on every iteration will be just too slow) body_r = build_ephem_interpolant(Moon, 28 * u.day, (j_date, j_date + 60 * u.day), rtol=1e-2) epoch = Time(j_date, format='jd', scale='tdb') initial = Orbit.from_classical(Earth, 42164.0 * u.km, 0.0001 * u.one, 1 * u.deg, 0.0 * u.deg, 0.0 * u.deg, 0.0 * u.rad, epoch=epoch) # multiply Moon gravity by 400 so that effect is visible :) cowell_with_3rdbody = functools.partial(cowell, rtol=1e-6, ad=third_body, k_third=400 * Moon.k.to(u.km**3 / u.s**2).value, third_body=body_r) tr = time_range(j_date.value, periods=1000, end=j_date.value + 60, format='jd', scale='tdb') rr = initial.sample(tr, method=cowell_with_3rdbody) frame = OrbitPlotter3D() frame.set_attractor(Earth) frame.plot_trajectory(rr, label='orbit influenced by Moon') ###Output _____no_output_____ ###Markdown Thrusts Apart from natural perturbations, there are artificial thrusts aimed at intentional change of orbit parameters. One of such changes is simultaineous change of eccenricy and inclination. ###Code from poliastro.twobody.thrust import change_inc_ecc ecc_0, ecc_f = 0.4, 0.0 a = 42164 # km inc_0 = 0.0 # rad, baseline inc_f = (20.0 * u.deg).to(u.rad).value # rad argp = 0.0 # rad, the method is efficient for 0 and 180 f = 2.4e-6 # km / s2 k = Earth.k.to(u.km**3 / u.s**2).value s0 = Orbit.from_classical( Earth, a * u.km, ecc_0 * u.one, inc_0 * u.deg, 0 * u.deg, argp * u.deg, 0 * u.deg, epoch=Time(0, format='jd', scale='tdb') ) a_d, _, _, t_f = change_inc_ecc(s0, ecc_f, inc_f, f) cowell_with_ad = functools.partial(cowell, rtol=1e-6, ad=a_d) tr = time_range(0.0, periods=1000, end=(t_f * u.s).to(u.day).value, format='jd', scale='tdb') rr2 = s0.sample(tr, method=cowell_with_ad) frame = OrbitPlotter3D() frame.set_attractor(Earth) frame.plot_trajectory(rr2, label='orbit with artificial thrust') ###Output _____no_output_____ ###Markdown Natural and artificial perturbations ###Code import numpy as np import matplotlib.pyplot as plt plt.ion() from astropy import units as u from astropy.time import Time, TimeDelta from astropy.coordinates import solar_system_ephemeris from poliastro.twobody.propagation import propagate, cowell from poliastro.ephem import build_ephem_interpolant from poliastro.core.elements import rv2coe from poliastro.core.util import norm from poliastro.core.perturbations import atmospheric_drag, third_body, J2_perturbation from poliastro.bodies import Earth, Moon from poliastro.twobody import Orbit from poliastro.plotting import OrbitPlotter2D, OrbitPlotter3D ###Output _____no_output_____ ###Markdown Atmospheric drag The poliastro package now has several commonly used natural perturbations. One of them is atmospheric drag! See how one can monitor decay of the near-Earth orbit over time using our new module poliastro.twobody.perturbations! ###Code R = Earth.R.to(u.km).value k = Earth.k.to(u.km ** 3 / u.s ** 2).value orbit = Orbit.circular(Earth, 250 * u.km, epoch=Time(0.0, format="jd", scale="tdb")) # parameters of a body C_D = 2.2 # dimentionless (any value would do) A = ((np.pi / 4.0) * (u.m ** 2)).to(u.km ** 2).value # km^2 m = 100 # kg B = C_D * A / m # parameters of the atmosphere rho0 = Earth.rho0.to(u.kg / u.km ** 3).value # kg/km^3 H0 = Earth.H0.to(u.km).value tofs = TimeDelta(np.linspace(0 * u.h, 100000 * u.s, num=2000)) rr = propagate( orbit, tofs, method=cowell, ad=atmospheric_drag, R=R, C_D=C_D, A=A, m=m, H0=H0, rho0=rho0, ) plt.ylabel("h(t)") plt.xlabel("t, days") plt.plot(tofs.value, rr.norm() - Earth.R); ###Output _____no_output_____ ###Markdown Evolution of RAAN due to the J2 perturbation We can also see how the J2 perturbation changes RAAN over time! ###Code r0 = np.array([-2384.46, 5729.01, 3050.46]) * u.km v0 = np.array([-7.36138, -2.98997, 1.64354]) * u.km / u.s orbit = Orbit.from_vectors(Earth, r0, v0) tofs = TimeDelta(np.linspace(0, 48.0 * u.h, num=2000)) coords = propagate( orbit, tofs, method=cowell, ad=J2_perturbation, J2=Earth.J2.value, R=Earth.R.to(u.km).value ) rr = coords.xyz.T.to(u.km).value vv = coords.differentials["s"].d_xyz.T.to(u.km / u.s).value # This will be easier to compute when this is solved: # https://github.com/poliastro/poliastro/issues/380 raans = [rv2coe(k, r, v)[3] for r, v in zip(rr, vv)] plt.ylabel("RAAN(t)") plt.xlabel("t, h") plt.plot(tofs.value, raans); ###Output _____no_output_____ ###Markdown 3rd body Apart from time-independent perturbations such as atmospheric drag, J2/J3, we have time-dependend perturbations. Lets's see how Moon changes the orbit of GEO satellite over time! ###Code # database keeping positions of bodies in Solar system over time solar_system_ephemeris.set("de432s") epoch = Time(2454283.0, format="jd", scale="tdb") # setting the exact event date is important # create interpolant of 3rd body coordinates (calling in on every iteration will be just too slow) body_r = build_ephem_interpolant( Moon, 28 * u.day, (epoch.value * u.day, epoch.value * u.day + 60 * u.day), rtol=1e-2 ) initial = Orbit.from_classical( Earth, 42164.0 * u.km, 0.0001 * u.one, 1 * u.deg, 0.0 * u.deg, 0.0 * u.deg, 0.0 * u.rad, epoch=epoch, ) tofs = TimeDelta(np.linspace(0, 60 * u.day, num=1000)) # multiply Moon gravity by 400 so that effect is visible :) rr = propagate( initial, tofs, method=cowell, rtol=1e-6, ad=third_body, k_third=400 * Moon.k.to(u.km ** 3 / u.s ** 2).value, third_body=body_r, ) frame = OrbitPlotter3D() frame.set_attractor(Earth) frame.plot_trajectory(rr, label="orbit influenced by Moon") ###Output _____no_output_____ ###Markdown Thrusts Apart from natural perturbations, there are artificial thrusts aimed at intentional change of orbit parameters. One of such changes is simultaineous change of eccenricy and inclination. ###Code from poliastro.twobody.thrust import change_inc_ecc ecc_0, ecc_f = 0.4, 0.0 a = 42164 # km inc_0 = 0.0 # rad, baseline inc_f = (20.0 * u.deg).to(u.rad).value # rad argp = 0.0 # rad, the method is efficient for 0 and 180 f = 2.4e-6 # km / s2 k = Earth.k.to(u.km ** 3 / u.s ** 2).value s0 = Orbit.from_classical( Earth, a * u.km, ecc_0 * u.one, inc_0 * u.deg, 0 * u.deg, argp * u.deg, 0 * u.deg, epoch=Time(0, format="jd", scale="tdb"), ) a_d, _, _, t_f = change_inc_ecc(s0, ecc_f, inc_f, f) tofs = TimeDelta(np.linspace(0, t_f * u.s, num=1000)) rr2 = propagate(s0, tofs, method=cowell, rtol=1e-6, ad=a_d) frame = OrbitPlotter3D() frame.set_attractor(Earth) frame.plot_trajectory(rr2, label='orbit with artificial thrust') ###Output _____no_output_____ ###Markdown Natural and artificial perturbations ###Code import functools import numpy as np import matplotlib.pyplot as plt plt.ion() from astropy import units as u from astropy.time import Time from astropy.coordinates import solar_system_ephemeris from poliastro.twobody.propagation import propagate, cowell from poliastro.ephem import build_ephem_interpolant from poliastro.core.elements import rv2coe from poliastro.core.util import norm from poliastro.util import time_range from poliastro.core.perturbations import ( atmospheric_drag, third_body, J2_perturbation ) from poliastro.bodies import Earth, Moon from poliastro.twobody import Orbit from poliastro.plotting import OrbitPlotter2D, OrbitPlotter3D ###Output _____no_output_____ ###Markdown Atmospheric drag The poliastro package now has several commonly used natural perturbations. One of them is atmospheric drag! See how one can monitor decay of the near-Earth orbit over time using our new module poliastro.twobody.perturbations! ###Code R = Earth.R.to(u.km).value k = Earth.k.to(u.km**3 / u.s**2).value orbit = Orbit.circular(Earth, 250 * u.km, epoch=Time(0.0, format='jd', scale='tdb')) # parameters of a body C_D = 2.2 # dimentionless (any value would do) A = ((np.pi / 4.0) * (u.m**2)).to(u.km**2).value # km^2 m = 100 # kg B = C_D * A / m # parameters of the atmosphere rho0 = Earth.rho0.to(u.kg / u.km**3).value # kg/km^3 H0 = Earth.H0.to(u.km).value tof = (100000 * u.s).to(u.day).value tr = time_range(0.0, periods=2000, end=tof, format='jd', scale='tdb') cowell_with_ad = functools.partial(cowell, ad=atmospheric_drag, R=R, C_D=C_D, A=A, m=m, H0=H0, rho0=rho0) rr = propagate( orbit, (tr - orbit.epoch).to(u.s), method=cowell_with_ad ) plt.ylabel('h(t)') plt.xlabel('t, days') plt.plot(tr.value, rr.data.norm() - Earth.R); ###Output _____no_output_____ ###Markdown Evolution of RAAN due to the J2 perturbation We can also see how the J2 perturbation changes RAAN over time! ###Code r0 = np.array([-2384.46, 5729.01, 3050.46]) * u.km v0 = np.array([-7.36138, -2.98997, 1.64354]) * u.km / u.s orbit = Orbit.from_vectors(Earth, r0, v0) tof = 48.0 * u.h # This will be easier with propagate # when this is solved: # https://github.com/poliastro/poliastro/issues/257 rr, vv = cowell( Earth.k, orbit.r, orbit.v, np.linspace(0, tof, 2000), ad=J2_perturbation, J2=Earth.J2.value, R=Earth.R.to(u.km).value ) k = Earth.k.to(u.km**3 / u.s**2).value rr = rr.to(u.km).value vv = vv.to(u.km / u.s).value raans = [rv2coe(k, r, v)[3] for r, v in zip(rr, vv)] plt.ylabel('RAAN(t)') plt.xlabel('t, h') plt.plot(np.linspace(0, tof, 2000), raans); ###Output _____no_output_____ ###Markdown 3rd body Apart from time-independent perturbations such as atmospheric drag, J2/J3, we have time-dependend perturbations. Lets's see how Moon changes the orbit of GEO satellite over time! ###Code # database keeping positions of bodies in Solar system over time solar_system_ephemeris.set('de432s') j_date = 2454283.0 * u.day # setting the exact event date is important tof = (60 * u.day).to(u.s).value # create interpolant of 3rd body coordinates (calling in on every iteration will be just too slow) body_r = build_ephem_interpolant(Moon, 28 * u.day, (j_date, j_date + 60 * u.day), rtol=1e-2) epoch = Time(j_date, format='jd', scale='tdb') initial = Orbit.from_classical(Earth, 42164.0 * u.km, 0.0001 * u.one, 1 * u.deg, 0.0 * u.deg, 0.0 * u.deg, 0.0 * u.rad, epoch=epoch) # multiply Moon gravity by 400 so that effect is visible :) cowell_with_3rdbody = functools.partial(cowell, rtol=1e-6, ad=third_body, k_third=400 * Moon.k.to(u.km**3 / u.s**2).value, third_body=body_r) tr = time_range(j_date.value, periods=1000, end=j_date.value + 60, format='jd', scale='tdb') rr = propagate( initial, (tr - initial.epoch).to(u.s), method=cowell_with_3rdbody ) frame = OrbitPlotter3D() frame.set_attractor(Earth) frame.plot_trajectory(rr, label='orbit influenced by Moon') ###Output _____no_output_____ ###Markdown Thrusts Apart from natural perturbations, there are artificial thrusts aimed at intentional change of orbit parameters. One of such changes is simultaineous change of eccenricy and inclination. ###Code from poliastro.twobody.thrust import change_inc_ecc ecc_0, ecc_f = 0.4, 0.0 a = 42164 # km inc_0 = 0.0 # rad, baseline inc_f = (20.0 * u.deg).to(u.rad).value # rad argp = 0.0 # rad, the method is efficient for 0 and 180 f = 2.4e-6 # km / s2 k = Earth.k.to(u.km**3 / u.s**2).value s0 = Orbit.from_classical( Earth, a * u.km, ecc_0 * u.one, inc_0 * u.deg, 0 * u.deg, argp * u.deg, 0 * u.deg, epoch=Time(0, format='jd', scale='tdb') ) a_d, _, _, t_f = change_inc_ecc(s0, ecc_f, inc_f, f) cowell_with_ad = functools.partial(cowell, rtol=1e-6, ad=a_d) tr = time_range(0.0, periods=1000, end=(t_f * u.s).to(u.day).value, format='jd', scale='tdb') rr2 = propagate( s0, (tr - s0.epoch).to(u.s), method=cowell_with_ad ) frame = OrbitPlotter3D() frame.set_attractor(Earth) frame.plot_trajectory(rr2, label='orbit with artificial thrust') ###Output _____no_output_____ ###Markdown Natural and artificial perturbations ###Code # Temporary hack, see https://github.com/poliastro/poliastro/issues/281 from IPython.display import HTML HTML('<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script>') import numpy as np from plotly.offline import init_notebook_mode init_notebook_mode(connected=True) %matplotlib inline import matplotlib.pyplot as plt import functools import numpy as np from astropy import units as u from astropy.time import Time from astropy.coordinates import solar_system_ephemeris from poliastro.twobody.propagation import cowell from poliastro.ephem import build_ephem_interpolant from poliastro.core.elements import rv2coe from poliastro.core.util import norm from poliastro.util import time_range from poliastro.core.perturbations import ( atmospheric_drag, third_body, J2_perturbation ) from poliastro.bodies import Earth, Moon from poliastro.twobody import Orbit from poliastro.plotting import OrbitPlotter, plot, OrbitPlotter3D ###Output _____no_output_____ ###Markdown Atmospheric drag The poliastro package now has several commonly used natural perturbations. One of them is atmospheric drag! See how one can monitor decay of the near-Earth orbit over time using our new module poliastro.twobody.perturbations! ###Code R = Earth.R.to(u.km).value k = Earth.k.to(u.km**3 / u.s**2).value orbit = Orbit.circular(Earth, 250 * u.km, epoch=Time(0.0, format='jd', scale='tdb')) # parameters of a body C_D = 2.2 # dimentionless (any value would do) A = ((np.pi / 4.0) * (u.m**2)).to(u.km**2).value # km^2 m = 100 # kg B = C_D * A / m # parameters of the atmosphere rho0 = Earth.rho0.to(u.kg / u.km**3).value # kg/km^3 H0 = Earth.H0.to(u.km).value tof = (100000 * u.s).to(u.day).value tr = time_range(0.0, periods=2000, end=tof, format='jd', scale='tdb') cowell_with_ad = functools.partial(cowell, ad=atmospheric_drag, R=R, C_D=C_D, A=A, m=m, H0=H0, rho0=rho0) rr = orbit.sample(tr, method=cowell_with_ad) plt.ylabel('h(t)') plt.xlabel('t, days') plt.plot(tr.value, rr.data.norm() - Earth.R) ###Output _____no_output_____ ###Markdown Evolution of RAAN due to the J2 perturbation We can also see how the J2 perturbation changes RAAN over time! ###Code r0 = np.array([-2384.46, 5729.01, 3050.46]) # km v0 = np.array([-7.36138, -2.98997, 1.64354]) # km/s k = Earth.k.to(u.km**3 / u.s**2).value orbit = Orbit.from_vectors(Earth, r0 * u.km, v0 * u.km / u.s) tof = (48.0 * u.h).to(u.s).value rr, vv = cowell(orbit, np.linspace(0, tof, 2000), ad=J2_perturbation, J2=Earth.J2.value, R=Earth.R.to(u.km).value) raans = [rv2coe(k, r, v)[3] for r, v in zip(rr, vv)] plt.ylabel('RAAN(t)') plt.xlabel('t, s') plt.plot(np.linspace(0, tof, 2000), raans) ###Output _____no_output_____ ###Markdown 3rd body Apart from time-independent perturbations such as atmospheric drag, J2/J3, we have time-dependend perturbations. Lets's see how Moon changes the orbit of GEO satellite over time! ###Code # database keeping positions of bodies in Solar system over time solar_system_ephemeris.set('de432s') j_date = 2454283.0 * u.day # setting the exact event date is important tof = (60 * u.day).to(u.s).value # create interpolant of 3rd body coordinates (calling in on every iteration will be just too slow) body_r = build_ephem_interpolant(Moon, 28 * u.day, (j_date, j_date + 60 * u.day), rtol=1e-2) epoch = Time(j_date, format='jd', scale='tdb') initial = Orbit.from_classical(Earth, 42164.0 * u.km, 0.0001 * u.one, 1 * u.deg, 0.0 * u.deg, 0.0 * u.deg, 0.0 * u.rad, epoch=epoch) # multiply Moon gravity by 400 so that effect is visible :) cowell_with_3rdbody = functools.partial(cowell, rtol=1e-6, ad=third_body, k_third=400 * Moon.k.to(u.km**3 / u.s**2).value, third_body=body_r) tr = time_range(j_date.value, periods=1000, end=j_date.value + 60, format='jd', scale='tdb') rr = initial.sample(tr, method=cowell_with_3rdbody) frame = OrbitPlotter3D() frame.set_attractor(Earth) frame.plot_trajectory(rr, label='orbit influenced by Moon') frame.show() ###Output _____no_output_____ ###Markdown Thrusts Apart from natural perturbations, there are artificial thrusts aimed at intentional change of orbit parameters. One of such changes is simultaineous change of eccenricy and inclination. ###Code from poliastro.twobody.thrust import change_inc_ecc ecc_0, ecc_f = 0.4, 0.0 a = 42164 # km inc_0 = 0.0 # rad, baseline inc_f = (20.0 * u.deg).to(u.rad).value # rad argp = 0.0 # rad, the method is efficient for 0 and 180 f = 2.4e-6 # km / s2 k = Earth.k.to(u.km**3 / u.s**2).value s0 = Orbit.from_classical( Earth, a * u.km, ecc_0 * u.one, inc_0 * u.deg, 0 * u.deg, argp * u.deg, 0 * u.deg, epoch=Time(0, format='jd', scale='tdb') ) a_d, _, _, t_f = change_inc_ecc(s0, ecc_f, inc_f, f) cowell_with_ad = functools.partial(cowell, rtol=1e-6, ad=a_d) tr = time_range(0.0, periods=1000, end=(t_f * u.s).to(u.day).value, format='jd', scale='tdb') rr = s0.sample(tr, method=cowell_with_ad) frame = OrbitPlotter3D() frame.set_attractor(Earth) frame.plot_trajectory(rr, label='orbit with artificial thrust') frame.show() ###Output _____no_output_____
cv-basics/5_opencv_overview.ipynb
###Markdown **Introduction to OpenCV** *OpenCV* is a cross-platform library using which we can develop real-time computer vision applications. It mainly focuses on image processing, video capture and analysis including features like face detection and object detection. 1. Open CV is an Open Source, C++ based API(Application Programming Interface) Library for Computer Vision2. It includes several computer vision algorithms3. It is a library written in C++, but has also its binding in Python. This means that C++ code is executed behind the scene in Python.4. Why in Python? It's a bit easy to implement for beginning5. Explore more of OpenCV [here](https://opencv.org/) - **Computer Vision** : Computer Vision can be defined as a discipline that explains how to reconstruct, interrupt, and understand a 3D scene from its 2D images, in terms of the properties of the structure present in the scene. It deals with modeling and replicating human vision using computer software and hardware.- Computer Vision overlaps significantly with the following fields − 1. **Image Processing** − It focuses on image manipulation. 2. **Pattern Recognition** − It explains various techniques to classify patterns. 3. **Photogrammetry** − It is concerned with obtaining accurate measurements from images. **Computer Vision Vs Image Processing :** 1. Image processing deals with image-to-image transformation. The input and output of image processing are both images.2. Computer vision is the construction of explicit, meaningful descriptions of physical objects from their image. The output of computer vision is a description or an interpretation of structures in 3D scene. **Applications of Computer Vision :**1. **Medicine Application** : - Classification and detection (e.g. lesion or cells classification and tumor detection) - 3D human organ reconstruction (MRI or ultrasound) - Vision-guided robotics surgery_____________________2. **Industrial Automation Application** - Defect detection - Assembly - Barcode and package label reading - Object sorting_____________________3. **Security Application** - Biometrics (iris, finger print, face recognition)_____________________4. **Surveillance**: - Detecting certain suspicious activities or behaviors_____________________5. **Transportation Application** - Autonomous vehicle - Safety, e.g., driver vigilance monitoring Function DescriptionsRefer this from **google** and [OpenCv Docs](https://docs.opencv.org/master/index.html)| Sr. No. | FunctionName | Parameters | Description ||:------------|:-----------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|| 1 | cv2.imread(filename, [flags]) | filename: Name of file to be loaded.flags: Flag that can take values ofcv::ImreadModes | The function imread loads an image from the specified file and returns it. || 2 | cv2.imshow(window_name, image) | window_name: A string representing the name of the window in which image to be displayed.image: It is the image that is to be displayed. | cv2.imshow() method is used to display an image in a window. The window automatically fits to the image size.It doesn’t return anything. || 3 | cv2.cvtColor(src, code[, dst[, dstCn]]) | src: It is the image whose color space is to be changed.code: It is the color space conversion code.dst: It is the output image of the same size and depth as src image. It is an optional parameter.dstCn: It is the number of channels in the destination image. If the parameter is 0 then the number of the channels is derived automatically from src and code. It is an optional parameter. | cv2.cvtColor() method is used to convert an image from one color space to another. There are more than 150 color-space conversion methods available in OpenCV.It returns an image. || 4 | cv2.resize(src, dsize[, dst[, fx[, fy[, interpolation]]]]) | src: source/input imagedsize: desired size for the output imagefx: scale factor along the horizontal axisfy: scale factor along the vertical axis | To resize an image, OpenCV provides cv2.resize() function. || 5 | cv2.addWeighted(src1, alpha, src2, beta, gamma[,dst[, dtype]]) | src1: first input arrayalpha: weight of the first array elementssrc2: second input array of the same size and channel number as src1beta: weight of the second array elementsdst: output array that has the same size and number of channels as the input arraysgamma: scalar added to each sumdtype: optional depth of the output array | This function is used to output the weighted sum of overlapping/blending of two images. || 6 | cv2.threshold(source, thresholdValue, maxVal, thresholdingTechnique) | source: Input Image array (must be in Grayscale). thresholdValue: Value of Threshold below and above which pixel values will change accordingly.maxVal: Maximum value that can be assigned to a pixel.thresholdingTechnique: The type of thresholding to be applied. eg. simple, binary etc | This function is used for thresholding. The basic Thresholding technique is Binary Thresholding. For every pixel, the same threshold value is applied. If the pixel value is smaller than the threshold, it is set to 0, otherwise, it is set to a maximum value. || 7 | cv2.bitwise_and(src1, src2[, dst[, mask]]) | src1: first input array or a scalar.src2: second input array or a scalar.dst: output array that has the same size and type as the input arrays.mask: optional operation mask, 8-bit single channel array, that specifies elements of the output array to be changed. | This function computes bitwise conjunction/AND of the two arrays (dst = src1 & src2) Calculates the per-element bit-wise conjunction of two arrays or an array and a scalar. || 8 | cv2.bitwise_not(src[, dst[, mask]]) | src: input array.dst: output array that has the same size and type as the input array.mask: optional operation mask, 8-bit single channel array, that specifies elements of the output array to be changed. | This function Inverts every bit of an array . || 9 | cv2.bitwise_or(src1, src2[, dst[, mask]]) | src1: first input array or a scalar.src2: second input array or a scalar.dst: output array that has the same size and type as the input arrays.mask: optional operation mask, 8-bit single channel array, that specifies elements of the output array to be changed. | This function Calculates the per-element bit-wise disjunction/OR of two arrays or an array and a scalar. || 10 | bitwise_xor(src1, src2[, dst[, mask]]) | src1: first input array or a scalar.src2: second input array or a scalar.dst: output array that has the same size and type as the input arrays.mask: optional operation mask, 8-bit single channel array, that specifies elements of the output array to be changed. | This function Calculates the per-element bit-wise "exclusive or" operation on two arrays or an array and a scalar. || 11 | cv2.inRange(src, lowerb, upperb[, dst]) | src: first input array.lowerb: inclusive lower boundary array or a scalar.upperb: inclusive upper boundary array or a scalar.dst: output array of the same size as src and CV_8U type. | This function Checks if array elements lie between the elements of two other arrays. || 12 | cv2.Canny(image, threshold1, threshold2[, edges[, apertureSize[, L2gradient]]]) | image: 8-bit input image.edges: output edge map; single channels 8-bit image, which has the same size as image .threshold1: first threshold for the hysteresis procedure.threshold2: second threshold for the hysteresis procedure.apertureSize: aperture size for the Sobel operator.L2gradient: a flag, indicating whether a more accurate L2 norm. | This function Finds edges in an image using the Canny algorithm || 13 | cv2.findContours(image, mode, method[, contours[, hierarchy[, offset]]]) | image: Source, an 8-bit single-channel image. Non-zero pixels are treated as 1's. Zero pixels remain 0's, so the image is treated as binary. contours: Detected contours. Each contour is stored as a vector of pointshierarchy: Optional output vectormode: Contour retrieval modemethod: Contour approximation methodoffset: Optional offset by which every contour point is shifted. | This function Finds contours in a binary image. The contours are a useful tool for shape analysis and object detection and recognition. || 14 | cv2.drawContours(image, contours, contourIdx, color[, thickness[, lineType[, hierarchy[, maxLevel[, offset]]]]]) | image: Destination image.contours: All the input contours. Each contour is stored as a point vector.contourIdx: Parameter indicating a contour to draw. If it is negative, all the contours are drawn.color: Color of the contours.thickness: Thickness of lines the contours are drawn with. If it is negative (for example, thickness=FILLED), the contour interiors are drawn.lineType: Line connectivity. hierarchy: Optional information about hierarchy. It is only needed if you want to draw only some of the contours (see maxLevel ).maxLevel: Maximal level for drawn contours. If it is 0, only the specified contour is drawn. If it is 1, the function draws the contour(s) and all the nested contours. If it is 2, the function draws the contours, all the nested contours, all the nested-to-nested contours, and so on. . | This function Draws contours outlines or filled contours.The function draws contour outlines in the image if thickness ≥0or fills the area bounded by the contours if thickness<0 | Reading and Ploting(Writing) Images using OpenCV- By default OpenCV reads and acquires the image's channels in BGR format order(Blue Green Red). ###Code # Importing the OpenCV library import cv2 # Reading the image using imread() function img = cv2.imread('images/DK.jpeg') # Here the path of the image to be read is written # Extracting the height and width of an image h, w = img.shape[:2] # or # h, w, c = img.shape[:] # c indicates number of channels # Displaying the height and width of the image (pixels) print("Height = {}, Width = {}".format(h, w)) # imshow - arguments : window_name, image_name cv2.imshow('1', img) # wait to execute next operation until a key is pressed, keep showing the image windows cv2.waitKey(0) cv2.destroyAllWindows() ###Output _____no_output_____ ###Markdown Matplotlib:1. Matplotlib is a cross-platform, data visualization and graphical plotting library for Python.2. Its numerical extension NumPy. As such, it offers a viable open source alternative to MATLAB(mathematics library). 3. Developers can also use matplotlib’s APIs (Application Programming Interfaces) to embed plots in GUI applications. i.e can be used in other applications as well.4. OpenCV understands, processes and reads an image by default in BGR channel format (Blue - Green - Red).5. Whereas Matplotlib understands, processes and reads an image by default in RGB channel format (Red - Green - Blue).6. Hence while using OpenCV and matplotlib together, one needs to take care about conversion of image between BGR and RGB format. Plotting the OpenCV read image with matplotlib ###Code # import matplotlib for using plotting functionalities import matplotlib.pyplot as plt # plotting image using matplotlib plt.imshow(img) ###Output _____no_output_____ ###Markdown Plotting and reading image using Matplotlib ###Code # Both Reading and Plotting Image using Matplotlib img2 = plt.imread('images/DK.jpeg') plt.imshow(img2) plt.show() ###Output _____no_output_____ ###Markdown Conversion from BGR to RGB format using cvtColor() function of OpenCV ###Code # Converting OpenCV read image (BGR format) to RGB format and ploting using matplotlib # Here cvtColor function accepts the image and the colour conversion code img3 = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) plt.imshow(img3) # Any image is made up of arrays and numbers -> each pixel's color value is represented in terms of pixels img3 # images -> these are NUMPY arrays print(type(img)) print(type(img2)) print(type(img3)) ###Output <class 'numpy.ndarray'> <class 'numpy.ndarray'> <class 'numpy.ndarray'> ###Markdown 1. Here each image object i.e. the images are numpy arrays.2. ndarray means a n dimensional array ###Code # Data type of elements in numpy array which represents an image print(img.dtype) print(img2.dtype) ###Output uint8 uint8 ###Markdown Combining two imageseg. **Image1** = Windows Logo; **Image2** = Linux Logo; **Image3 = Image1 + Image2** Illustrations ###Code img4 = cv2.imread('images/purple_night.jpg') img4 = cv2.resize(img4, (img.shape[1],img.shape[0])) img_res = img + img4 cv2.imshow("purple_night",img4) cv2.imshow("result",img_res) cv2.waitKey(0) cv2.destroyAllWindows() plt.imshow(img_res) ###Output _____no_output_____ ###Markdown Converting Image to Grayscale Illustrations ###Code # Converting image to grayscale (black and white/ monocolor) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) cv2.imshow("Grayscale",gray) cv2.waitKey(0) cv2.destroyAllWindows() ###Output _____no_output_____ ###Markdown Resizing an Image Illustrations ###Code # Initializing Height and Width h = 200 w = 200 # Resizing using resize() function resizeImg = cv2.resize(img, (h,w)) cv2.imshow("resized", resizeImg) cv2.waitKey(0) cv2.destroyAllWindows() # Checking the shape h, w, c = resizeImg.shape print(h,w,c) ###Output 200 200 3 ###Markdown Other Properties of Image ###Code # Total number of pixels using size pix = img.size print("Number of Pixels: {}".format(pix)) # Image Datatype dType = img.dtype print("Datatype: {}".format(dType)) ###Output Number of Pixels: 2580480 Datatype: uint8 ###Markdown Creating a Black Background using zeros() function in Numpy Library ###Code import cv2 import numpy as np blImg = np.zeros((800,800,3)) print(blImg.shape) cv2.imshow("black",blImg) cv2.waitKey(0) cv2.destroyAllWindows() ###Output (800, 800, 3) ###Markdown Changing value of ROI (Region of Interest)- ROI is a part/subset of the image i.e a set of pixels- Example of ROI Extraction Illustrations ###Code # bgr format im2 = blImg.copy() # green im2[45:400,35:300] = (0,255,0) cv2.imshow("im2",im2) # blue im2[450:500,350:590] = (255,0,0) cv2.imshow("im2_1",im2) # red im2[700:840,650:] = (0,0,255) cv2.imshow("im2_2",im2) # pink = red + blue im2[500:570,550:600] = (71,0,170) cv2.imshow("im2_3",im2) # yellow = green + blue im2[:170,550:] = (0,255,255) cv2.imshow("im2_4",im2) roi = im2[100:700, 340:780] cv2.imshow("roi", roi) cv2.waitKey(0) cv2.destroyAllWindows() ###Output _____no_output_____ ###Markdown Image BlendingThis is also image addition, but different weights are given to images in order to give a feeling of blending or transparency. Images are added as per the equation below: g(x)=(1−α)f0(x)+αf1(x)By varying α from 0→1, you can perform a cool transition between one image to another.Here I took two images to blend together. The first image is given a weight of 0.7 and the second image is given 0.3. cv.addWeighted() applies the following equation to the image: dst=α⋅img1+β⋅img2+γHere γ is taken as zero.**Note** : Image combination is a subset of Image Blending. In image blendign we can specify the amont/percentage of effect that we want form either of the input images. Illustrations ###Code import cv2 img1 = cv2.imread('images/dummy1.jpg') # img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2RGB) cv2.imshow("1mg1",img1) print(img1.shape) img2 = cv2.imread('images/purple_night.jpg') # img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2RGB) cv2.imshow("img2",img2) print(img2.shape) alpha = 0.4 beta = 1 - alpha # Blending using addWeighted() function which accepts: # g(x)=(1−α)f0(x)+αf1(x) # Source of 1st image # Alpha # Source of 2nd image # Beta # Gamma dst = cv2.addWeighted(img1,alpha,img2,beta,0.0) cv2.imshow("weighted",dst) cv2.waitKey(0) cv2.destroyAllWindows() ###Output (1080, 1920, 3) (1080, 1920, 3) ###Markdown Bitwise Operations1. Lower pixel values are close to BLACK2. Higher pixel values are close to WHITE3. These operations are done bitwise i.e. Pixel wise. 4. The logic of operation remains same as that of seen in logical/ bitwise operations Illustrations Input Images Bitwise AND Bitwise OR Bitwise XOR Bitwise NOT1. Image1 - Bitwise NOT/inversion of Input Image 1 2. Image2 - Bitwise NOT/inversion of Input Image 2 ###Code # Load two images img1 = cv2.imread('images/DK.jpeg') img2 = cv2.imread('images/opencv.png') # I want to put logo on top-left corner, So I create a ROI rows,cols,channels = img2.shape print(img2.shape) roi = img1[0:rows, 0:cols] # Now create a mask of logo and create its inverse mask also img2gray = cv2.cvtColor(img2,cv2.COLOR_BGR2GRAY) # each pixel having value more than 10 will be set to white(255) for a mask ret, mask = cv2.threshold(img2gray, 10, 255, cv2.THRESH_BINARY) # inverting colors mask_inv = cv2.bitwise_not(mask) # Now black-out the area of logo in ROI img1_bg = cv2.bitwise_and(roi,roi,mask = mask_inv) # # Take only region of logo from logo image. img2_fg = cv2.bitwise_and(img2,img2,mask = mask) # # Put logo in ROI and modify the main image dst = cv2.add(img1_bg,img2_fg) img1[0:rows, 0:cols ] = dst cv2.imshow('img1',img1) cv2.imshow('img2',img2) cv2.imshow('roi',roi) cv2.imshow('img2gray',img2gray) cv2.imshow('mask',mask) cv2.imshow('mask_inv',mask_inv) cv2.imshow('img1_bg',img1_bg) cv2.imshow('img2_fg',img2_fg) cv2.imshow('dst',dst) cv2.waitKey(0) cv2.destroyAllWindows() ###Output (249, 202, 3) ###Markdown Detecting an object based on the range of pixel values in the HSV colorspace using inRange() HSV colorspace1. HSV (hue, saturation, value) colorspace is a model to represent the colorspace similar to the RGB color model. 2. Since the hue channel models the color type, it is very useful in image processing tasks that need to segment objects based on its color. 3. Variation of the saturation goes from unsaturated to represent shades of gray and fully saturated (no white component). 4. Value channel describes the brightness or the intensity of the color. Object Detection Illustration ###Code import cv2 ## Read img = cv2.imread("images/DK.jpeg") ## convert to hsv hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) cv2.imshow("hsv", hsv) ## mask of red (36,0,0) ~ (70, 255,255) mask1 = cv2.inRange(hsv, (0, 33, 40), (38,150 ,255)) cv2.imshow("mask1", mask1) ## mask o yellow (15,0,0) ~ (36, 255, 255) # mask2 = cv2.inRange(hsv, (15,0,0), (36, 255, 255)) ## mask of blue mask2 = cv2.inRange(hsv, (33,52,80), (150, 200, 255)) cv2.imshow("mask2", mask2) ## final mask and masked mask = cv2.bitwise_or(mask1, mask2) cv2.imshow("mask", mask) target = cv2.bitwise_and(img,img, mask=mask) cv2.imshow("target",target) cv2.waitKey(0) cv2.destroyAllWindows() ###Output _____no_output_____ ###Markdown CountoursContours can be explained simply as a curve joining all the continuous points (along the boundary), having same color or intensity. The contours are a useful tool for shape analysis and object detection and recognition.Illustration: ###Code image = cv2.imread('images/DK.jpeg') # Grayscale gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) cv2.imshow("gray", gray) # Find Canny edges edged = cv2.Canny(gray, 30, 250) # Finding Contours # Use a copy of the image e.g. edged.copy() # since findContours alters the image contours, hierarchy = cv2.findContours(edged, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) cv2.imshow('Canny Edges After Contouring', edged) print("Number of Contours found = " + str(len(contours))) # Draw all contours # -1 signifies drawing all contours cv2.drawContours(image, contours, -1, (0, 255, 0), 2) cv2.imshow('Contours', image) cv2.waitKey(0) cv2.destroyAllWindows() ###Output _____no_output_____
docs/source/tutorials/1-getting-started/using-target-pixel-file-products.ipynb
###Markdown Using Target Pixel Files with Lightkurve Learning GoalsBy the end of this tutorial, you will:- Be able to download and plot target pixel files from the data archive using [Lightkurve](https://docs.lightkurve.org).- Be able to access target pixel file metadata.- Understand where to find more details about *Kepler* target pixel files. Introduction The [*Kepler*](https://www.nasa.gov/mission_pages/kepler/main/index.html), [*K2*](https://www.nasa.gov/mission_pages/kepler/main/index.html), and [*TESS*](https://tess.mit.edu/) telescopes observe stars for long periods of time, from just under a month to four years. By doing so they observe how the brightnesses of stars change over time.*Kepler* selected certain pixels around targeted stars to be downloaded from the spacecraft. These were stored as *target pixel files* that contain data for each observed cadence. In this tutorial, we will learn how to use Lightkurve to download these raw data, plot them, and understand their properties and units.It is recommended that you first read the tutorial on how to use *Kepler* light curve products with Lightkurve. That tutorial will introduce you to some specifics of how *Kepler*, *K2*, and *TESS* make observations, and how these are displayed as light curves. It also introduces some important terms and concepts that are referred to in this tutorial.*Kepler* observed a single field in the sky, although not all stars in this field were recorded. Instead, pixels were selected around certain targeted stars. This series of cutouts were downloaded and stored as an array of images in target pixel files, or TPFs. By summing up the amount of light (the *flux*) captured by the pixels in which the star appears, you can make a measurement of the brightness of a star over time.TPFs are an important resource when studying an astronomical object with *Kepler*, *K2*, or *TESS*. The files allow us to understand the original images that were collected, and identify potential sources of noise or instrument-induced trends which may be less obvious in derived light curves. In this tutorial, we will use the *Kepler* mission as the main example, but these tools equally work for *TESS* and *K2*. ImportsThis tutorial requires **[Lightkurve](https://docs.lightkurve.org)**, which in turn uses `matplotlib` for plotting. ###Code import lightkurve as lk %matplotlib inline ###Output _____no_output_____ ###Markdown 1. What is a Target Pixel File?The target pixel file (TPF) of a star contains an image for each observing cadence, either a 30-minute Long Cadence or one-minute Short Cadence exposure in the case of *Kepler*. The files also include metadata detailing how the observation was made, as well as post-processing information such as the estimated intensity of the astronomical background in each image. (Read the [*Kepler* Archive Manual](https://archive.stsci.edu/files/live/sites/mast/files/home/missions-and-data/kepler/_documents/archive_manual.pdf), Section 2.3.2 for more information.)TPFs are stored in a [FITS file format](https://fits.gsfc.nasa.gov/fits_primer.html). The Lightkurve package allows us to work with these binary files without having to worry about the details of the file structure. For examples on how to work with FITS files directly, read this tutorial on [Plotting Images from *Kepler* Target Pixel Files](https://github.com/spacetelescope/notebooks/blob/master/notebooks/MAST/Kepler/Kepler_TPF/kepler_tpf.ipynb). 2. Downloading a Target Pixel File The TPFs of stars observed by the *Kepler* mission are stored on the [Mikulksi Archive for Space Telescopes](https://archive.stsci.edu/kepler/) (MAST) archive, along with metadata about the observations, such as which charge-coupled device (CCD) was used at each time. Lightkurve's built-in tools allow us to search and download TPFs from the archive. As we did in the accompanying tutorial on light curves, we will start by downloading one quarter (a *Kepler* observing period approximately 90 days in duration) of *Kepler* data for the star named [Kepler-8](http://www.openexoplanetcatalogue.com/planet/Kepler-8%20b/), a star somewhat larger than the Sun, and the host of a [hot Jupiter planet](https://en.wikipedia.org/wiki/Hot_Jupiter). Using the [`search_targetpixelfile`](https://docs.lightkurve.org/api/lightkurve.search.search_targetpixelfile.html) function, we can find an itemized list of different TPFs available for Kepler-8. ###Code search_result = lk.search_targetpixelfile("Kepler-8", mission="Kepler") search_result ###Output _____no_output_____ ###Markdown In this list, each row represents a different observing period. We find that *Kepler* recorded 18 quarters of data for this target across four years. The `search_targetpixelfile()` function takes several additional arguments, such as the `quarter` number or the `mission` name. You can find examples of its use in the [online documentation](http://docs.lightkurve.org/api/lightkurve.search.search_targetpixelfile.html) for this function.The search function returns a [`SearchResult`](https://docs.lightkurve.org/api/lightkurve.search.SearchResult.html) object which has several convenient operations. For example, we can select the fourth data product in the list as follows: ###Code search_result[4] ###Output _____no_output_____ ###Markdown We can download this data product using the `download()` method. ###Code tpf = search_result[4].download() ###Output _____no_output_____ ###Markdown This instruction is identical to the following line: ###Code tpf = lk.search_targetpixelfile("Kepler-8", mission="Kepler", quarter=4).download() ###Output _____no_output_____ ###Markdown The `tpf_file` variable we have obtained in this way is a [`KeplerTargetPixelFile`](https://docs.lightkurve.org/api/lightkurve.targetpixelfile.KeplerTargetPixelFile.html) object. ###Code tpf ###Output _____no_output_____ ###Markdown This file object provides a convenient way to interact with the data file that has been returned by the archive, which contains both the TPF as well as metadata about the observations.Before diving into the properties of the `KeplerTargetPixelFile`, we can plot the data, also using Lightkurve. ###Code %matplotlib inline tpf.plot(); ###Output _____no_output_____ ###Markdown What you are seeing in this figure are pixels on the CCD camera, with which Kepler-8 was observed. The color indicates the amount of flux in each pixel, in electrons per second. The y-axis shows the pixel row, and the x-axis shows the pixel column. The title tells us the *Kepler* Input Catalogue (KIC) identification number of the target, and the observing cadence of this image. By default, `plot()` shows the first observation cadence in the quarter, but this can be changed by passing optional keyword arguments. You can type `help(tpf.plot)` to see a full list of those options. NoteYou can also download TPF FITS files from the archive by hand, store them on your local disk, and open them using the `lk.read()` function. This function will return a [`KeplerTargetPixelFile`](https://docs.lightkurve.org/api/lightkurve.targetpixelfile.KeplerTargetPixelFile.html) object just as in the above example. You can find out where Lightkurve stored a given TPF by typing `tpf.path`: ###Code tpf.path ###Output _____no_output_____ ###Markdown 3. Accessing the Metadata Our [`KeplerTargetPixelFile`](https://docs.lightkurve.org/api/lightkurve.targetpixelfile.KeplerTargetPixelFile.html) includes the observation's metadata, loaded from the header of the TPF files downloaded from MAST. Many of these are similar to the metadata stored in the [`KeplerLightCurve`](http://docs.lightkurve.org/api/lightkurve.lightcurve.KeplerLightCurve.html), which are discussed in the accompanying tutorial. The headers containing the metadata can be accessed from the [`KeplerTargetPixelFile`](https://docs.lightkurve.org/api/lightkurve.targetpixelfile.KeplerTargetPixelFile.html) through the `get_header()` method.For example, the first extension ("extension 0") of the file provides metadata related to the star, such as its magnitude in different passbands, its movement and position on the sky, and its location on *Kepler*'s CCD detector: ###Code tpf.get_header(ext=0) ###Output _____no_output_____ ###Markdown This is an Astropy [`astropy.io.fits.Header`](https://docs.astropy.org/en/stable/io/fits/api/headers.html) object, which has many convenient features. For example, you can retrieve the value of an individual keyword as follows: ###Code tpf.get_header(ext=0).get('QUARTER') ###Output _____no_output_____ ###Markdown When constructing a [`KeplerTargetPixelFile`](https://docs.lightkurve.org/api/lightkurve.targetpixelfile.KeplerTargetPixelFile.html) from a FITS file, Lightkurve carries a subset of the metadata through into user-friendly object properties for convenience, which are available through shorthands (for example, `tpf.quarter`). You can view these properties with the the [`show_properties()`](https://docs.lightkurve.org/api/lightkurve.targetpixelfile.KeplerTargetPixelFile.htmllightkurve.targetpixelfile.KeplerTargetPixelFile.show_properties) method: ###Code tpf.show_properties() ###Output _____no_output_____ ###Markdown A new piece of metadata not included in the [`KeplerLightCurve`](http://docs.lightkurve.org/api/lightkurve.lightcurvefile.KeplerLightCurve.html) objects is the [World Coordinate System](https://fits.gsfc.nasa.gov/fits_wcs.html) (WCS). The WCS contains information about how pixel positions map to celestial sky coordinates. This is important when comparing a TPF from a *Kepler*, *K2*, or *TESS* observation to an observation of the same star with a different telescope.You can access the WCS using `tpf.wcs`, which is an Astropy WCS object: ###Code type(tpf.wcs) ###Output _____no_output_____ ###Markdown For example, you can obtain the sky coordinates for the bottom left corner of the TPF as follows: ###Code tpf.wcs.pixel_to_world(0, 0) ###Output _____no_output_____ ###Markdown Altogether, the metadata contains a lot of information, and you will rarely use it all, but it is important to know that it is available if you need it. For more details and a better overview of all of the metadata stored in a TPF, read the [*Kepler* Archive Manual](http://archive.stsci.edu/files/live/sites/mast/files/home/missions-and-data/kepler/_documents/archive_manual.pdf), specifically: - Section 2.3.2 Target Pixel Data - Appendix A.1: Target Pixel File Headers 4. Time, Flux, and Background Finally, we have the most important properties of the TPF: the time and flux information. Just like a `KeplerLightCurve` object, we can access the time information as an Astropy `Time` object as follows: ###Code tpf.time ###Output _____no_output_____ ###Markdown The pixel brightness data is available as an Astropy `Quantity` object named `tpf.flux`: ###Code tpf.flux ###Output _____no_output_____ ###Markdown This object is a three-dimensional array, where each entry in the array represents one observing cadence. In our example, the flux array is composed of 4116 images, which are 5x5 pixels in size each: ###Code tpf.flux.shape ###Output _____no_output_____ ###Markdown We can access the values of the first 5x5 pixel image as a NumPy array as follows: ###Code tpf.flux[0].value ###Output _____no_output_____ ###Markdown At each cadence the TPF has four different flux-related data properties:- `tpf.flux`: the stellar brightness after the background is removed.- `tpf.flux_err`: the statistical uncertainty on the stellar flux after background removal.- `tpf.flux_bkg`: the astronomical background brightness of the image.- `tpf.flux_bkg_err`: the statistical uncertainty on the background flux.All four of these data arrays are in units of electrons per second.**Note**: for *Kepler*, the flux background isn't a measurement made using the local TPF data. Instead, at each cadence, the *Kepler* pipeline fits a model to thousands of empty pixels across each CCD in order to estimate a continuum background across the the CCD. For more details read the [*Kepler* Instrument Handbook](https://archive.stsci.edu/files/live/sites/mast/files/home/missions-and-data/kepler/_documents/KSCI-19033-002-instrument-hb.pdf), Section 2.6.2.4. In the case of *TESS*, local background pixels contained within a TPF are used instead. **Note**: The `tpf.flux` values seen above have been quality-masked. This means that cadences of observations that violated the `quality_bitmask` parameter are removed, and so `tpf.flux` represents the data that you probably want to use to do your science. The `quality_bitmask` can also be accessed as a property of a [`KeplerTargetPixelFile`](https://docs.lightkurve.org/api/lightkurve.targetpixelfile.KeplerTargetPixelFile.html). For specific details on the `quality` flags, read the [*Kepler* Archive Manual](https://archive.stsci.edu/files/live/sites/mast/files/home/missions-and-data/k2/_documents/MAST_Kepler_Archive_Manual_2020.pdf), Section 2.3.1.1.If you want to access flux and background flux measurements that *have not* been quality masked, you can pass a custom `quality_bitmask` parameter to the `download()` or `read()` method as follows: ###Code search = lk.search_targetpixelfile("Kepler-8", mission="Kepler", quarter=4) tpf = search.download(quality_bitmask=0) ###Output _____no_output_____ ###Markdown You can see that the flux array of this object now has more cadences (4397) than the original one above (4116): ###Code tpf.flux.shape ###Output _____no_output_____ ###Markdown Alternatively, we can access the unmasked contents of the original TPF FITS file at any time using the `hdu` property: ###Code tpf.hdu[1].data['FLUX'].shape ###Output _____no_output_____ ###Markdown About this Notebook **Authors:** Oliver Hall ([email protected]), Geert Barentsen**Updated On**: 2020-09-15 Citing Lightkurve and AstropyIf you use `lightkurve` or `astropy` for published research, please cite the authors. Click the buttons below to copy BibTeX entries to your clipboard. ###Code lk.show_citation_instructions() ###Output _____no_output_____ ###Markdown Using Target Pixel Files with Lightkurve Learning GoalsBy the end of this tutorial, you will:- Be able to download and plot target pixel files from the data archive using [Lightkurve](https://docs.lightkurve.org).- Be able to access target pixel file metadata.- Understand where to find more details about *Kepler* target pixel files. Introduction The [*Kepler*](https://www.nasa.gov/mission_pages/kepler/main/index.html), [*K2*](https://www.nasa.gov/mission_pages/kepler/main/index.html), and [*TESS*](https://tess.mit.edu/) telescopes observe stars for long periods of time, from just under a month to four years. By doing so they observe how the brightnesses of stars change over time.*Kepler* selected certain pixels around targeted stars to be downloaded from the spacecraft. These were stored as *target pixel files* that contain data for each observed cadence. In this tutorial, we will learn how to use Lightkurve to download these raw data, plot them, and understand their properties and units.It is recommended that you first read the tutorial on how to use *Kepler* light curve products with Lightkurve. That tutorial will introduce you to some specifics of how *Kepler*, *K2*, and *TESS* make observations, and how these are displayed as light curves. It also introduces some important terms and concepts that are referred to in this tutorial.*Kepler* observed a single field in the sky, although not all stars in this field were recorded. Instead, pixels were selected around certain targeted stars. This series of cutouts were downloaded and stored as an array of images in target pixel files, or TPFs. By summing up the amount of light (the *flux*) captured by the pixels in which the star appears, you can make a measurement of the brightness of a star over time.TPFs are an important resource when studying an astronomical object with *Kepler*, *K2*, or *TESS*. The files allow us to understand the original images that were collected, and identify potential sources of noise or instrument-induced trends which may be less obvious in derived light curves. In this tutorial, we will use the *Kepler* mission as the main example, but these tools equally work for *TESS* and *K2*. ImportsThis tutorial requires **[Lightkurve](https://docs.lightkurve.org)**, which in turn uses `matplotlib` for plotting. ###Code import lightkurve as lk %matplotlib inline ###Output _____no_output_____ ###Markdown 1. What is a Target Pixel File?The target pixel file (TPF) of a star contains an image for each observing cadence, either a 30-minute Long Cadence or one-minute Short Cadence exposure in the case of *Kepler*. The files also include metadata detailing how the observation was made, as well as post-processing information such as the estimated intensity of the astronomical background in each image. (Read the [*Kepler* Archive Manual](https://archive.stsci.edu/files/live/sites/mast/files/home/missions-and-data/kepler/_documents/archive_manual.pdf), Section 2.3.2 for more information.)TPFs are stored in a [FITS file format](https://fits.gsfc.nasa.gov/fits_primer.html). The Lightkurve package allows us to work with these binary files without having to worry about the details of the file structure. For examples on how to work with FITS files directly, read this tutorial on [Plotting Images from *Kepler* Target Pixel Files](https://github.com/spacetelescope/notebooks/blob/master/notebooks/MAST/Kepler/Kepler_TPF/kepler_tpf.ipynb). 2. Downloading a Target Pixel File The TPFs of stars observed by the *Kepler* mission are stored on the [Mikulksi Archive for Space Telescopes](https://archive.stsci.edu/kepler/) (MAST) archive, along with metadata about the observations, such as which charge-coupled device (CCD) was used at each time. Lightkurve's built-in tools allow us to search and download TPFs from the archive. As we did in the accompanying tutorial on light curves, we will start by downloading one quarter (a *Kepler* observing period approximately 90 days in duration) of *Kepler* data for the star named [Kepler-8](http://www.openexoplanetcatalogue.com/planet/Kepler-8%20b/), a star somewhat larger than the Sun, and the host of a [hot Jupiter planet](https://en.wikipedia.org/wiki/Hot_Jupiter). Using the [`search_targetpixelfile`](https://docs.lightkurve.org/api/lightkurve.search.search_targetpixelfile.html) function, we can find an itemized list of different TPFs available for Kepler-8. ###Code search_result = lk.search_targetpixelfile("Kepler-8", author="Kepler", cadence="long") search_result ###Output _____no_output_____ ###Markdown In this list, each row represents a different observing period. We find that *Kepler* recorded 18 quarters of data for this target across four years. The `search_targetpixelfile()` function takes several additional arguments, such as the `quarter` number or the `mission` name. You can find examples of its use in the [online documentation](http://docs.lightkurve.org/api/lightkurve.search.search_targetpixelfile.html) for this function.The search function returns a [`SearchResult`](https://docs.lightkurve.org/api/lightkurve.search.SearchResult.html) object which has several convenient operations. For example, we can select the fourth data product in the list as follows: ###Code search_result[4] ###Output _____no_output_____ ###Markdown We can download this data product using the `download()` method. ###Code tpf = search_result[4].download() ###Output _____no_output_____ ###Markdown This instruction is identical to the following line: ###Code tpf = lk.search_targetpixelfile("Kepler-8", author="Kepler", cadence="long", quarter=4).download() ###Output _____no_output_____ ###Markdown The `tpf_file` variable we have obtained in this way is a [`KeplerTargetPixelFile`](https://docs.lightkurve.org/api/lightkurve.targetpixelfile.KeplerTargetPixelFile.html) object. ###Code tpf ###Output _____no_output_____ ###Markdown This file object provides a convenient way to interact with the data file that has been returned by the archive, which contains both the TPF as well as metadata about the observations.Before diving into the properties of the `KeplerTargetPixelFile`, we can plot the data, also using Lightkurve. ###Code %matplotlib inline tpf.plot(); ###Output _____no_output_____ ###Markdown What you are seeing in this figure are pixels on the CCD camera, with which Kepler-8 was observed. The color indicates the amount of flux in each pixel, in electrons per second. The y-axis shows the pixel row, and the x-axis shows the pixel column. The title tells us the *Kepler* Input Catalogue (KIC) identification number of the target, and the observing cadence of this image. By default, `plot()` shows the first observation cadence in the quarter, but this can be changed by passing optional keyword arguments. You can type `help(tpf.plot)` to see a full list of those options. NoteYou can also download TPF FITS files from the archive by hand, store them on your local disk, and open them using the `lk.read()` function. This function will return a [`KeplerTargetPixelFile`](https://docs.lightkurve.org/api/lightkurve.targetpixelfile.KeplerTargetPixelFile.html) object just as in the above example. You can find out where Lightkurve stored a given TPF by typing `tpf.path`: ###Code tpf.path ###Output _____no_output_____ ###Markdown 3. Accessing the Metadata Our [`KeplerTargetPixelFile`](https://docs.lightkurve.org/api/lightkurve.targetpixelfile.KeplerTargetPixelFile.html) includes the observation's metadata, loaded from the header of the TPF files downloaded from MAST. Many of these are similar to the metadata stored in the [`KeplerLightCurve`](http://docs.lightkurve.org/api/lightkurve.lightcurve.KeplerLightCurve.html), which are discussed in the accompanying tutorial. The headers containing the metadata can be accessed from the [`KeplerTargetPixelFile`](https://docs.lightkurve.org/api/lightkurve.targetpixelfile.KeplerTargetPixelFile.html) through the `get_header()` method.For example, the first extension ("extension 0") of the file provides metadata related to the star, such as its magnitude in different passbands, its movement and position on the sky, and its location on *Kepler*'s CCD detector: ###Code tpf.get_header(ext=0) ###Output _____no_output_____ ###Markdown This is an Astropy [`astropy.io.fits.Header`](https://docs.astropy.org/en/stable/io/fits/api/headers.html) object, which has many convenient features. For example, you can retrieve the value of an individual keyword as follows: ###Code tpf.get_header(ext=0).get('QUARTER') ###Output _____no_output_____ ###Markdown When constructing a [`KeplerTargetPixelFile`](https://docs.lightkurve.org/api/lightkurve.targetpixelfile.KeplerTargetPixelFile.html) from a FITS file, Lightkurve carries a subset of the metadata through into user-friendly object properties for convenience, which are available through shorthands (for example, `tpf.quarter`). You can view these properties with the the [`show_properties()`](https://docs.lightkurve.org/api/lightkurve.targetpixelfile.KeplerTargetPixelFile.htmllightkurve.targetpixelfile.KeplerTargetPixelFile.show_properties) method: ###Code tpf.show_properties() ###Output _____no_output_____ ###Markdown A new piece of metadata not included in the [`KeplerLightCurve`](http://docs.lightkurve.org/api/lightkurve.lightcurvefile.KeplerLightCurve.html) objects is the [World Coordinate System](https://fits.gsfc.nasa.gov/fits_wcs.html) (WCS). The WCS contains information about how pixel positions map to celestial sky coordinates. This is important when comparing a TPF from a *Kepler*, *K2*, or *TESS* observation to an observation of the same star with a different telescope.You can access the WCS using `tpf.wcs`, which is an Astropy WCS object: ###Code type(tpf.wcs) ###Output _____no_output_____ ###Markdown For example, you can obtain the sky coordinates for the bottom left corner of the TPF as follows: ###Code tpf.wcs.pixel_to_world(0, 0) ###Output _____no_output_____ ###Markdown Altogether, the metadata contains a lot of information, and you will rarely use it all, but it is important to know that it is available if you need it. For more details and a better overview of all of the metadata stored in a TPF, read the [*Kepler* Archive Manual](http://archive.stsci.edu/files/live/sites/mast/files/home/missions-and-data/kepler/_documents/archive_manual.pdf), specifically: - Section 2.3.2 Target Pixel Data - Appendix A.1: Target Pixel File Headers 4. Time, Flux, and Background Finally, we have the most important properties of the TPF: the time and flux information. Just like a `KeplerLightCurve` object, we can access the time information as an Astropy `Time` object as follows: ###Code tpf.time ###Output _____no_output_____ ###Markdown The pixel brightness data is available as an Astropy `Quantity` object named `tpf.flux`: ###Code tpf.flux ###Output _____no_output_____ ###Markdown This object is a three-dimensional array, where each entry in the array represents one observing cadence. In our example, the flux array is composed of 4116 images, which are 5x5 pixels in size each: ###Code tpf.flux.shape ###Output _____no_output_____ ###Markdown We can access the values of the first 5x5 pixel image as a NumPy array as follows: ###Code tpf.flux[0].value ###Output _____no_output_____ ###Markdown At each cadence the TPF has four different flux-related data properties:- `tpf.flux`: the stellar brightness after the background is removed.- `tpf.flux_err`: the statistical uncertainty on the stellar flux after background removal.- `tpf.flux_bkg`: the astronomical background brightness of the image.- `tpf.flux_bkg_err`: the statistical uncertainty on the background flux.All four of these data arrays are in units of electrons per second.**Note**: for *Kepler*, the flux background isn't a measurement made using the local TPF data. Instead, at each cadence, the *Kepler* pipeline fits a model to thousands of empty pixels across each CCD in order to estimate a continuum background across the the CCD. For more details read the [*Kepler* Instrument Handbook](https://archive.stsci.edu/files/live/sites/mast/files/home/missions-and-data/kepler/_documents/KSCI-19033-002-instrument-hb.pdf), Section 2.6.2.4. In the case of *TESS*, local background pixels contained within a TPF are used instead. **Note**: The `tpf.flux` values seen above have been quality-masked. This means that cadences of observations that violated the `quality_bitmask` parameter are removed, and so `tpf.flux` represents the data that you probably want to use to do your science. The `quality_bitmask` can also be accessed as a property of a [`KeplerTargetPixelFile`](https://docs.lightkurve.org/api/lightkurve.targetpixelfile.KeplerTargetPixelFile.html). For specific details on the `quality` flags, read the [*Kepler* Archive Manual](https://archive.stsci.edu/files/live/sites/mast/files/home/missions-and-data/k2/_documents/MAST_Kepler_Archive_Manual_2020.pdf), Section 2.3.1.1.If you want to access flux and background flux measurements that *have not* been quality masked, you can pass a custom `quality_bitmask` parameter to the `download()` or `read()` method as follows: ###Code search = lk.search_targetpixelfile("Kepler-8", author="Kepler", cadence="long", quarter=4) tpf = search.download(quality_bitmask=0) ###Output _____no_output_____ ###Markdown You can see that the flux array of this object now has more cadences (4397) than the original one above (4116): ###Code tpf.flux.shape ###Output _____no_output_____ ###Markdown Alternatively, we can access the unmasked contents of the original TPF FITS file at any time using the `hdu` property: ###Code tpf.hdu[1].data['FLUX'].shape ###Output _____no_output_____ ###Markdown About this Notebook **Authors:** Oliver Hall ([email protected]), Geert Barentsen**Updated On**: 2020-09-15 Citing Lightkurve and AstropyIf you use `lightkurve` or `astropy` for published research, please cite the authors. Click the buttons below to copy BibTeX entries to your clipboard. ###Code lk.show_citation_instructions() ###Output _____no_output_____ ###Markdown Using Target Pixel Files with Lightkurve Learning GoalsBy the end of this tutorial, you will:- Be able to download and plot target pixel files from the data archive using [Lightkurve](https://docs.lightkurve.org).- Be able to access target pixel file metadata.- Understand where to find more details about *Kepler* target pixel files. Introduction The [*Kepler*](https://www.nasa.gov/mission_pages/kepler/main/index.html), [*K2*](https://www.nasa.gov/mission_pages/kepler/main/index.html), and [*TESS*](https://tess.mit.edu/) telescopes observe stars for long periods of time, from just under a month to four years. By doing so they observe how the brightnesses of stars change over time.*Kepler* selected certain pixels around targeted stars to be downloaded from the spacecraft. These were stored as *target pixel files* that contain data for each observed cadence. In this tutorial, we will learn how to use Lightkurve to download these raw data, plot them, and understand their properties and units.It is recommended that you first read the tutorial on how to use *Kepler* light curve products with Lightkurve. That tutorial will introduce you to some specifics of how *Kepler*, *K2*, and *TESS* make observations, and how these are displayed as light curves. It also introduces some important terms and concepts that are referred to in this tutorial.*Kepler* observed a single field in the sky, although not all stars in this field were recorded. Instead, pixels were selected around certain targeted stars. This series of cutouts were downloaded and stored as an array of images in target pixel files, or TPFs. By summing up the amount of light (the *flux*) captured by the pixels in which the star appears, you can make a measurement of the brightness of a star over time.TPFs are an important resource when studying an astronomical object with *Kepler*, *K2*, or *TESS*. The files allow us to understand the original images that were collected, and identify potential sources of noise or instrument-induced trends which may be less obvious in derived light curves. In this tutorial, we will use the *Kepler* mission as the main example, but these tools equally work for *TESS* and *K2*. ImportsThis tutorial requires **[Lightkurve](https://docs.lightkurve.org)**, which in turn uses `matplotlib` for plotting. ###Code import lightkurve as lk %matplotlib inline ###Output _____no_output_____ ###Markdown 1. What is a Target Pixel File?The target pixel file (TPF) of a star contains an image for each observing cadence, either a 30-minute Long Cadence or one-minute Short Cadence exposure in the case of *Kepler*. The files also include metadata detailing how the observation was made, as well as post-processing information such as the estimated intensity of the astronomical background in each image. (Read the [*Kepler* Archive Manual](https://archive.stsci.edu/files/live/sites/mast/files/home/missions-and-data/kepler/_documents/archive_manual.pdf), Section 2.3.2 for more information.)TPFs are stored in a [FITS file format](https://fits.gsfc.nasa.gov/fits_primer.html). The Lightkurve package allows us to work with these binary files without having to worry about the details of the file structure. For examples on how to work with FITS files directly, read this tutorial on [Plotting Images from *Kepler* Target Pixel Files](https://github.com/spacetelescope/notebooks/blob/master/notebooks/MAST/Kepler/Kepler_TPF/kepler_tpf.ipynb). 2. Downloading a Target Pixel File The TPFs of stars observed by the *Kepler* mission are stored on the [Mikulksi Archive for Space Telescopes](https://archive.stsci.edu/kepler/) (MAST) archive, along with metadata about the observations, such as which charge-coupled device (CCD) was used at each time. Lightkurve's built-in tools allow us to search and download TPFs from the archive. As we did in the accompanying tutorial on light curves, we will start by downloading one quarter (a *Kepler* observing period approximately 90 days in duration) of *Kepler* data for the star named [Kepler-8](http://www.openexoplanetcatalogue.com/planet/Kepler-8%20b/), a star somewhat larger than the Sun, and the host of a [hot Jupiter planet](https://en.wikipedia.org/wiki/Hot_Jupiter). Using the [search_targetpixelfile](https://docs.lightkurve.org/reference/api/lightkurve.search_targetpixelfile.html?highlight=search_targetpixelfile) function, we can find an itemized list of different TPFs available for Kepler-8. ###Code search_result = lk.search_targetpixelfile("Kepler-8", author="Kepler", cadence="long") search_result ###Output _____no_output_____ ###Markdown In this list, each row represents a different observing period. We find that *Kepler* recorded 18 quarters of data for this target across four years. The `search_targetpixelfile()` function takes several additional arguments, such as the `quarter` number or the `mission` name. You can find examples of its use in the [online documentation](https://docs.lightkurve.org/reference/api/lightkurve.search_targetpixelfile.html?highlight=search_targetpixelfile) for this function.The search function returns a `SearchResult` object which has several convenient operations. For example, we can select the fourth data product in the list as follows: ###Code search_result[4] ###Output _____no_output_____ ###Markdown We can download this data product using the [download()](https://docs.lightkurve.org/reference/api/lightkurve.SearchResult.download.html?highlight=downloadlightkurve.SearchResult.download) method. ###Code tpf = search_result[4].download() ###Output _____no_output_____ ###Markdown This instruction is identical to the following line: ###Code tpf = lk.search_targetpixelfile("Kepler-8", author="Kepler", cadence="long", quarter=4).download() ###Output _____no_output_____ ###Markdown The `tpf_file` variable we have obtained in this way is a [KeplerTargetPixelFile](https://docs.lightkurve.org/reference/api/lightkurve.KeplerTargetPixelFile.html?highlight=keplertargetpixelfile) object. ###Code tpf ###Output _____no_output_____ ###Markdown This file object provides a convenient way to interact with the data file that has been returned by the archive, which contains both the TPF as well as metadata about the observations.Before diving into the properties of the `KeplerTargetPixelFile`, we can plot the data, also using Lightkurve. ###Code %matplotlib inline tpf.plot(); ###Output _____no_output_____ ###Markdown What you are seeing in this figure are pixels on the CCD camera, with which Kepler-8 was observed. The color indicates the amount of flux in each pixel, in electrons per second. The y-axis shows the pixel row, and the x-axis shows the pixel column. The title tells us the *Kepler* Input Catalogue (KIC) identification number of the target, and the observing cadence of this image. By default, `plot()` shows the first observation cadence in the quarter, but this can be changed by passing optional keyword arguments. You can type `help(tpf.plot)` to see a full list of those options. NoteYou can also download TPF FITS files from the archive by hand, store them on your local disk, and open them using the `lk.read()` function. This function will return a [KeplerTargetPixelFile](https://docs.lightkurve.org/reference/api/lightkurve.KeplerTargetPixelFile.html?highlight=keplertargetpixelfile) object just as in the above example. You can find out where Lightkurve stored a given TPF by typing `tpf.path`: ###Code tpf.path ###Output _____no_output_____ ###Markdown 3. Accessing the Metadata Our [KeplerTargetPixelFile](https://docs.lightkurve.org/reference/api/lightkurve.KeplerTargetPixelFile.html?highlight=keplertargetpixelfile) includes the observation's metadata, loaded from the header of the TPF files downloaded from MAST. Many of these are similar to the metadata stored in the `KeplerLightCurve`, which are discussed in the accompanying tutorial. The headers containing the metadata can be accessed from the [KeplerTargetPixelFile](https://docs.lightkurve.org/reference/api/lightkurve.KeplerTargetPixelFile.html?highlight=keplertargetpixelfile) through the [get_header()](https://docs.lightkurve.org/reference/api/lightkurve.KeplerTargetPixelFile.get_header.html?highlight=get_header) method.For example, the first extension ("extension 0") of the file provides metadata related to the star, such as its magnitude in different passbands, its movement and position on the sky, and its location on *Kepler*'s CCD detector: ###Code tpf.get_header(ext=0) ###Output _____no_output_____ ###Markdown This is an Astropy [`astropy.io.fits.Header`](https://docs.astropy.org/en/stable/io/fits/api/headers.html) object, which has many convenient features. For example, you can retrieve the value of an individual keyword as follows: ###Code tpf.get_header(ext=0).get('QUARTER') ###Output _____no_output_____ ###Markdown When constructing a [KeplerTargetPixelFile](https://docs.lightkurve.org/reference/api/lightkurve.KeplerTargetPixelFile.html?highlight=keplertargetpixelfile) from a FITS file, Lightkurve carries a subset of the metadata through into user-friendly object properties for convenience, which are available through shorthands (for example, `tpf.quarter`). You can view these properties with the the `show_properties()` method: ###Code tpf.show_properties() ###Output _____no_output_____ ###Markdown A new piece of metadata not included in the `KeplerLightCurve` objects is the [World Coordinate System](https://fits.gsfc.nasa.gov/fits_wcs.html) (WCS). The WCS contains information about how pixel positions map to celestial sky coordinates. This is important when comparing a TPF from a *Kepler*, *K2*, or *TESS* observation to an observation of the same star with a different telescope.You can access the WCS using [tpf.wcs](https://docs.lightkurve.org/reference/api/lightkurve.KeplerTargetPixelFile.wcs.html?highlight=wcs), which is an Astropy WCS object: ###Code type(tpf.wcs) ###Output _____no_output_____ ###Markdown For example, you can obtain the sky coordinates for the bottom left corner of the TPF as follows: ###Code tpf.wcs.pixel_to_world(0, 0) ###Output _____no_output_____ ###Markdown Altogether, the metadata contains a lot of information, and you will rarely use it all, but it is important to know that it is available if you need it. For more details and a better overview of all of the metadata stored in a TPF, read the [*Kepler* Archive Manual](http://archive.stsci.edu/files/live/sites/mast/files/home/missions-and-data/kepler/_documents/archive_manual.pdf), specifically: - Section 2.3.2 Target Pixel Data - Appendix A.1: Target Pixel File Headers 4. Time, Flux, and Background Finally, we have the most important properties of the TPF: the time and flux information. Just like a `KeplerLightCurve` object, we can access the time information as an Astropy `Time` object as follows: ###Code tpf.time ###Output _____no_output_____ ###Markdown The pixel brightness data is available as an Astropy `Quantity` object named `tpf.flux`: ###Code tpf.flux ###Output _____no_output_____ ###Markdown This object is a three-dimensional array, where each entry in the array represents one observing cadence. In our example, the flux array is composed of 4116 images, which are 5x5 pixels in size each: ###Code tpf.flux.shape ###Output _____no_output_____ ###Markdown We can access the values of the first 5x5 pixel image as a NumPy array as follows: ###Code tpf.flux[0].value ###Output _____no_output_____ ###Markdown At each cadence the TPF has four different flux-related data properties:- `tpf.flux`: the stellar brightness after the background is removed.- `tpf.flux_err`: the statistical uncertainty on the stellar flux after background removal.- `tpf.flux_bkg`: the astronomical background brightness of the image.- `tpf.flux_bkg_err`: the statistical uncertainty on the background flux.All four of these data arrays are in units of electrons per second.**Note**: for *Kepler*, the flux background isn't a measurement made using the local TPF data. Instead, at each cadence, the *Kepler* pipeline fits a model to thousands of empty pixels across each CCD in order to estimate a continuum background across the the CCD. For more details read the [*Kepler* Instrument Handbook](https://archive.stsci.edu/files/live/sites/mast/files/home/missions-and-data/kepler/_documents/KSCI-19033-002-instrument-hb.pdf), Section 2.6.2.4. In the case of *TESS*, local background pixels contained within a TPF are used instead. **Note**: The `tpf.flux` values seen above have been quality-masked. This means that cadences of observations that violated the `quality_bitmask` parameter are removed, and so `tpf.flux` represents the data that you probably want to use to do your science. The `quality_bitmask` can also be accessed as a property of a [`KeplerTargetPixelFile`](https://docs.lightkurve.org/reference/api/lightkurve.KeplerTargetPixelFile.html?highlight=keplertargetpixelfile). For specific details on the `quality` flags, read the [*Kepler* Archive Manual](https://archive.stsci.edu/files/live/sites/mast/files/home/missions-and-data/k2/_documents/MAST_Kepler_Archive_Manual_2020.pdf), Section 2.3.1.1.If you want to access flux and background flux measurements that *have not* been quality masked, you can pass a custom `quality_bitmask` parameter to the `download()` or `read()` method as follows: ###Code search = lk.search_targetpixelfile("Kepler-8", author="Kepler", cadence="long", quarter=4) tpf = search.download(quality_bitmask=0) ###Output _____no_output_____ ###Markdown You can see that the flux array of this object now has more cadences (4397) than the original one above (4116): ###Code tpf.flux.shape ###Output _____no_output_____ ###Markdown Alternatively, we can access the unmasked contents of the original TPF FITS file at any time using the `hdu` property: ###Code tpf.hdu[1].data['FLUX'].shape ###Output _____no_output_____ ###Markdown About this Notebook **Authors:** Oliver Hall ([email protected]), Geert Barentsen**Updated On**: 2020-09-15 Citing Lightkurve and AstropyIf you use `lightkurve` or `astropy` for published research, please cite the authors. Click the buttons below to copy BibTeX entries to your clipboard. ###Code lk.show_citation_instructions() ###Output _____no_output_____
Rectangle Circumference.ipynb
###Markdown Rectangle Circumference ###Code length = float(input("Enter Length: ")) width = float(input("Enter Width: ")) circumference = 2 * (length+width) print(f"The Circumference of Rectangle with Length {length} & Width {width} = {circumference}") ###Output Enter Length: 2 Enter Width: 3 The Circumference of Rectangle with Length 2.0 & Width 3.0 = 10.0
tutorials/source_zh_cn/autograd.ipynb
###Markdown 自动微分[![](https://gitee.com/mindspore/docs/raw/master/resource/_static/logo_source.png)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/autograd.ipynb)&emsp;[![](https://gitee.com/mindspore/docs/raw/master/resource/_static/logo_notebook.png)](https://obs.dualstack.cn-north-4.myhuaweicloud.com/mindspore-website/notebook/master/quick_start/mindspore_autograd.ipynb)&emsp;[![](https://gitee.com/mindspore/docs/raw/master/resource/_static/logo_modelarts.png)](https://authoring-modelarts-cnnorth4.huaweicloud.com/console/lab?share-url-b64=aHR0cHM6Ly9vYnMuZHVhbHN0YWNrLmNuLW5vcnRoLTQubXlodWF3ZWljbG91ZC5jb20vbWluZHNwb3JlLXdlYnNpdGUvbm90ZWJvb2svbW9kZWxhcnRzL3F1aWNrX3N0YXJ0L21pbmRzcG9yZV9hdXRvZ3JhZC5pcHluYg==&imagename=MindSpore1.1.1) 在训练神经网络时,最常用的算法是反向传播,在该算法中,根据损失函数对于给定参数的梯度来调整参数(模型权重)。MindSpore计算一阶导数方法`mindspore.ops.GradOperation (get_all=False, get_by_list=False, sens_param=False)`,其中`get_all`为`False`时,只会对第一个输入求导,为`True`时,会对所有输入求导;`get_by_list`为`False`时,不会对权重求导,为`True`时,会对权重求导;`sens_param`对网络的输出值做缩放以改变最终梯度。下面用MatMul算子的求导做深入分析。首先导入本文档需要的模块和接口,如下所示: ###Code import numpy as np import mindspore.nn as nn import mindspore.ops as ops from mindspore import Tensor from mindspore import ParameterTuple, Parameter from mindspore import dtype as mstype ###Output _____no_output_____ ###Markdown 对输入求一阶导如果需要对输入进行求导,首先需要定义一个需要求导的网络,以一个由MatMul算子构成的网络$f(x,y)=z * x * y$为例。定义网络结构如下: ###Code class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.matmul = ops.MatMul() self.z = Parameter(Tensor(np.array([1.0], np.float32)), name='z') def construct(self, x, y): x = x * self.z out = self.matmul(x, y) return out ###Output _____no_output_____ ###Markdown 接着定义求导网络,`__init__`函数中定义需要求导的网络`self.net`和`ops.GradOperation`操作,`construct`函数中对`self.net`进行求导。求导网络结构如下: ###Code class GradNetWrtX(nn.Cell): def __init__(self, net): super(GradNetWrtX, self).__init__() self.net = net self.grad_op = ops.GradOperation() def construct(self, x, y): gradient_function = self.grad_op(self.net) return gradient_function(x, y) ###Output _____no_output_____ ###Markdown 定义输入并且打印输出: ###Code x = Tensor([[0.8, 0.6, 0.2], [1.8, 1.3, 1.1]], dtype=mstype.float32) y = Tensor([[0.11, 3.3, 1.1], [1.1, 0.2, 1.4], [1.1, 2.2, 0.3]], dtype=mstype.float32) output = GradNetWrtX(Net())(x, y) print(output) ###Output [[4.5099998 2.7 3.6000001] [4.5099998 2.7 3.6000001]] ###Markdown 若考虑对`x`、`y`输入求导,只需在`GradNetWrtX`中设置`self.grad_op = GradOperation(get_all=True)`。 对权重求一阶导若需要对权重的求导,将`ops.GradOperation`中的`get_by_list`设置为`True`:则`GradNetWrtX`结构为: ###Code class GradNetWrtX(nn.Cell): def __init__(self, net): super(GradNetWrtX, self).__init__() self.net = net self.params = ParameterTuple(net.trainable_params()) self.grad_op = ops.GradOperation(get_by_list=True) def construct(self, x, y): gradient_function = self.grad_op(self.net, self.params) return gradient_function(x, y) ###Output _____no_output_____ ###Markdown 运行并打印输出: ###Code output = GradNetWrtX(Net())(x, y) print(output) ###Output (Tensor(shape=[1], dtype=Float32, value= [ 2.15359993e+01]),) ###Markdown 若需要对某些权重不进行求导,则在定义求导网络时,对相应的权重中`requires_grad`设置为`False`。```Pythonself.z = Parameter(Tensor(np.array([1.0], np.float32)), name='z', requires_grad=False)``` 梯度值缩放可以通过`sens_param`参数对网络的输出值做缩放以改变最终梯度。首先将`ops.GradOperation`中的`sens_param`设置为`True`,并确定缩放指数,其维度与输出维度保持一致。缩放指数`self.grad_wrt_output`可以记作如下形式:```pythonself.grad_wrt_output = Tensor([[s1, s2, s3], [s4, s5, s6]])```则`GradNetWrtX`结构为: ###Code class GradNetWrtX(nn.Cell): def __init__(self, net): super(GradNetWrtX, self).__init__() self.net = net self.grad_op = ops.GradOperation(sens_param=True) self.grad_wrt_output = Tensor([[0.1, 0.6, 0.2], [0.8, 1.3, 1.1]], dtype=mstype.float32) def construct(self, x, y): gradient_function = self.grad_op(self.net) return gradient_function(x, y, self.grad_wrt_output) output = GradNetWrtX(Net())(x, y) print(output) ###Output [[2.211 0.51 1.49 ] [5.588 2.68 4.07 ]] ###Markdown 停止计算梯度我们可以使用`stop_gradient`来禁止网络内的算子对梯度的影响,例如: ###Code import numpy as np import mindspore.nn as nn import mindspore.ops as ops from mindspore import Tensor from mindspore import ParameterTuple, Parameter from mindspore import dtype as mstype from mindspore.ops.functional import stop_gradient class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.matmul = ops.MatMul() def construct(self, x, y): out1 = self.matmul(x, y) out2 = self.matmul(x, y) out2 = stop_gradient(out2) out = out1 + out2 return out class GradNetWrtX(nn.Cell): def __init__(self, net): super(GradNetWrtX, self).__init__() self.net = net self.grad_op = ops.GradOperation() def construct(self, x, y): gradient_function = self.grad_op(self.net) return gradient_function(x, y) x = Tensor([[0.8, 0.6, 0.2], [1.8, 1.3, 1.1]], dtype=mstype.float32) y = Tensor([[0.11, 3.3, 1.1], [1.1, 0.2, 1.4], [1.1, 2.2, 0.3]], dtype=mstype.float32) output = GradNetWrtX(Net())(x, y) print(output) ###Output [[4.5 2.7 3.6] [4.5 2.7 3.6]] ###Markdown 在这里我们对`out2`设置了`stop_gradient`, 所以`out2`没有对梯度计算有任何的贡献。 如果我们删除`out2 = stop_gradient(out2)`,那么输出值会变为: ###Code output = GradNetWrtX(Net())(x, y) print(output) ###Output [[9.0 5.4 7.2] [9.0 5.4 7.2]] ###Markdown 自动微分`Ascend` `GPU` `CPU` `入门` `模型开发`[![在线运行](https://gitee.com/mindspore/docs/raw/master/resource/_static/logo_modelarts.png)](https://authoring-modelarts-cnnorth4.huaweicloud.com/console/lab?share-url-b64=aHR0cHM6Ly9taW5kc3BvcmUtd2Vic2l0ZS5vYnMuY24tbm9ydGgtNC5teWh1YXdlaWNsb3VkLmNvbS9ub3RlYm9vay9tb2RlbGFydHMvcXVpY2tfc3RhcnQvbWluZHNwb3JlX2F1dG9ncmFkLmlweW5i&imageid=65f636a0-56cf-49df-b941-7d2a07ba8c8c)&emsp;[![下载Notebook](https://gitee.com/mindspore/docs/raw/master/resource/_static/logo_notebook.png)](https://obs.dualstack.cn-north-4.myhuaweicloud.com/mindspore-website/notebook/master/tutorials/zh_cn/mindspore_autograd.ipynb)&emsp;[![下载样例代码](https://gitee.com/mindspore/docs/raw/master/resource/_static/logo_download_code.png)](https://obs.dualstack.cn-north-4.myhuaweicloud.com/mindspore-website/notebook/master/tutorials/zh_cn/mindspore_autograd.py)&emsp;[![查看源文件](https://gitee.com/mindspore/docs/raw/master/resource/_static/logo_source.png)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/autograd.ipynb) 自动微分是网络训练中常用的反向传播算法的一般化,利用该算法用户可以将多层复合函数分解为一系列简单的基本运算,该功能让用户可以跳过复杂的求导过程的编程,从而大大降低框架的使用门槛。MindSpore计算一阶导数方法`mindspore.ops.GradOperation (get_all=False, get_by_list=False, sens_param=False)`,其中`get_all`为`False`时,只会对第一个输入求导,为`True`时,会对所有输入求导;`get_by_list`为`False`时,不会对权重求导,为`True`时,会对权重求导;`sens_param`对网络的输出值做缩放以改变最终梯度。下面用MatMul算子的求导做深入分析。首先导入本文档需要的模块和接口,如下所示: ###Code import numpy as np import mindspore.nn as nn import mindspore.ops as ops from mindspore import Tensor from mindspore import ParameterTuple, Parameter from mindspore import dtype as mstype ###Output _____no_output_____ ###Markdown 对输入求一阶导如果需要对输入进行求导,首先需要定义一个需要求导的网络,以一个由MatMul算子构成的网络$f(x,y)=z*x*y$为例。定义网络结构如下: ###Code class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.matmul = ops.MatMul() self.z = Parameter(Tensor(np.array([1.0], np.float32)), name='z') def construct(self, x, y): x = x * self.z out = self.matmul(x, y) return out ###Output _____no_output_____ ###Markdown 接着定义求导网络,`__init__`函数中定义需要求导的网络`self.net`和`ops.GradOperation`操作,`construct`函数中对`self.net`进行求导。求导网络结构如下: ###Code class GradNetWrtX(nn.Cell): def __init__(self, net): super(GradNetWrtX, self).__init__() self.net = net self.grad_op = ops.GradOperation() def construct(self, x, y): gradient_function = self.grad_op(self.net) return gradient_function(x, y) ###Output _____no_output_____ ###Markdown 定义输入并且打印输出: ###Code x = Tensor([[0.8, 0.6, 0.2], [1.8, 1.3, 1.1]], dtype=mstype.float32) y = Tensor([[0.11, 3.3, 1.1], [1.1, 0.2, 1.4], [1.1, 2.2, 0.3]], dtype=mstype.float32) output = GradNetWrtX(Net())(x, y) print(output) ###Output [[4.5099998 2.7 3.6000001] [4.5099998 2.7 3.6000001]] ###Markdown 若考虑对`x`、`y`输入求导,只需在`GradNetWrtX`中设置`self.grad_op = GradOperation(get_all=True)`。 对权重求一阶导若需要对权重的求导,将`ops.GradOperation`中的`get_by_list`设置为`True`:则`GradNetWrtX`结构为: ###Code class GradNetWrtX(nn.Cell): def __init__(self, net): super(GradNetWrtX, self).__init__() self.net = net self.params = ParameterTuple(net.trainable_params()) self.grad_op = ops.GradOperation(get_by_list=True) def construct(self, x, y): gradient_function = self.grad_op(self.net, self.params) return gradient_function(x, y) ###Output _____no_output_____ ###Markdown 运行并打印输出: ###Code output = GradNetWrtX(Net())(x, y) print(output) ###Output (Tensor(shape=[1], dtype=Float32, value= [ 2.15359993e+01]),) ###Markdown 若需要对某些权重不进行求导,则在定义求导网络时,对相应的权重中`requires_grad`设置为`False`。```Pythonself.z = Parameter(Tensor(np.array([1.0], np.float32)), name='z', requires_grad=False)``` 梯度值缩放可以通过`sens_param`参数对网络的输出值做缩放以改变最终梯度。首先将`ops.GradOperation`中的`sens_param`设置为`True`,并确定缩放指数,其维度与输出维度保持一致。缩放指数`self.grad_wrt_output`可以记作如下形式:```pythonself.grad_wrt_output = Tensor([[s1, s2, s3], [s4, s5, s6]])```则`GradNetWrtX`结构为: ###Code class GradNetWrtX(nn.Cell): def __init__(self, net): super(GradNetWrtX, self).__init__() self.net = net self.grad_op = ops.GradOperation(sens_param=True) self.grad_wrt_output = Tensor([[0.1, 0.6, 0.2], [0.8, 1.3, 1.1]], dtype=mstype.float32) def construct(self, x, y): gradient_function = self.grad_op(self.net) return gradient_function(x, y, self.grad_wrt_output) output = GradNetWrtX(Net())(x, y) print(output) ###Output [[2.211 0.51 1.49 ] [5.588 2.68 4.07 ]] ###Markdown 停止计算梯度我们可以使用`stop_gradient`来禁止网络内的算子对梯度的影响,例如: ###Code import numpy as np import mindspore.nn as nn import mindspore.ops as ops from mindspore import Tensor from mindspore import ParameterTuple, Parameter from mindspore import dtype as mstype from mindspore.ops import stop_gradient class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.matmul = ops.MatMul() def construct(self, x, y): out1 = self.matmul(x, y) out2 = self.matmul(x, y) out2 = stop_gradient(out2) out = out1 + out2 return out class GradNetWrtX(nn.Cell): def __init__(self, net): super(GradNetWrtX, self).__init__() self.net = net self.grad_op = ops.GradOperation() def construct(self, x, y): gradient_function = self.grad_op(self.net) return gradient_function(x, y) x = Tensor([[0.8, 0.6, 0.2], [1.8, 1.3, 1.1]], dtype=mstype.float32) y = Tensor([[0.11, 3.3, 1.1], [1.1, 0.2, 1.4], [1.1, 2.2, 0.3]], dtype=mstype.float32) output = GradNetWrtX(Net())(x, y) print(output) ###Output [[4.5 2.7 3.6] [4.5 2.7 3.6]] ###Markdown 在这里我们对`out2`设置了`stop_gradient`, 所以`out2`没有对梯度计算有任何的贡献。 如果我们删除`out2 = stop_gradient(out2)`,那么输出值会变为: ###Code output = GradNetWrtX(Net())(x, y) print(output) ###Output [[9.0 5.4 7.2] [9.0 5.4 7.2]] ###Markdown 自动微分[![](https://gitee.com/mindspore/docs/raw/master/resource/_static/logo_source.png)](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/autograd.ipynb)&emsp;[![](https://gitee.com/mindspore/docs/raw/master/resource/_static/logo_notebook.png)](https://obs.dualstack.cn-north-4.myhuaweicloud.com/mindspore-website/notebook/master/tutorials/zh_cn/mindspore_autograd.ipynb)&emsp;[![](https://gitee.com/mindspore/docs/raw/master/resource/_static/logo_modelarts.png)](https://authoring-modelarts-cnnorth4.huaweicloud.com/console/lab?share-url-b64=aHR0cHM6Ly9vYnMuZHVhbHN0YWNrLmNuLW5vcnRoLTQubXlodWF3ZWljbG91ZC5jb20vbWluZHNwb3JlLXdlYnNpdGUvbm90ZWJvb2svbW9kZWxhcnRzL3F1aWNrX3N0YXJ0L21pbmRzcG9yZV9hdXRvZ3JhZC5pcHluYg==&imageid=65f636a0-56cf-49df-b941-7d2a07ba8c8c) 在训练神经网络时,最常用的算法是反向传播,在该算法中,根据损失函数对于给定参数的梯度来调整参数(模型权重)。MindSpore计算一阶导数方法`mindspore.ops.GradOperation (get_all=False, get_by_list=False, sens_param=False)`,其中`get_all`为`False`时,只会对第一个输入求导,为`True`时,会对所有输入求导;`get_by_list`为`False`时,不会对权重求导,为`True`时,会对权重求导;`sens_param`对网络的输出值做缩放以改变最终梯度。下面用MatMul算子的求导做深入分析。首先导入本文档需要的模块和接口,如下所示: ###Code import numpy as np import mindspore.nn as nn import mindspore.ops as ops from mindspore import Tensor from mindspore import ParameterTuple, Parameter from mindspore import dtype as mstype ###Output _____no_output_____ ###Markdown 对输入求一阶导如果需要对输入进行求导,首先需要定义一个需要求导的网络,以一个由MatMul算子构成的网络$f(x,y)=z * x * y$为例。定义网络结构如下: ###Code class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.matmul = ops.MatMul() self.z = Parameter(Tensor(np.array([1.0], np.float32)), name='z') def construct(self, x, y): x = x * self.z out = self.matmul(x, y) return out ###Output _____no_output_____ ###Markdown 接着定义求导网络,`__init__`函数中定义需要求导的网络`self.net`和`ops.GradOperation`操作,`construct`函数中对`self.net`进行求导。求导网络结构如下: ###Code class GradNetWrtX(nn.Cell): def __init__(self, net): super(GradNetWrtX, self).__init__() self.net = net self.grad_op = ops.GradOperation() def construct(self, x, y): gradient_function = self.grad_op(self.net) return gradient_function(x, y) ###Output _____no_output_____ ###Markdown 定义输入并且打印输出: ###Code x = Tensor([[0.8, 0.6, 0.2], [1.8, 1.3, 1.1]], dtype=mstype.float32) y = Tensor([[0.11, 3.3, 1.1], [1.1, 0.2, 1.4], [1.1, 2.2, 0.3]], dtype=mstype.float32) output = GradNetWrtX(Net())(x, y) print(output) ###Output [[4.5099998 2.7 3.6000001] [4.5099998 2.7 3.6000001]] ###Markdown 若考虑对`x`、`y`输入求导,只需在`GradNetWrtX`中设置`self.grad_op = GradOperation(get_all=True)`。 对权重求一阶导若需要对权重的求导,将`ops.GradOperation`中的`get_by_list`设置为`True`:则`GradNetWrtX`结构为: ###Code class GradNetWrtX(nn.Cell): def __init__(self, net): super(GradNetWrtX, self).__init__() self.net = net self.params = ParameterTuple(net.trainable_params()) self.grad_op = ops.GradOperation(get_by_list=True) def construct(self, x, y): gradient_function = self.grad_op(self.net, self.params) return gradient_function(x, y) ###Output _____no_output_____ ###Markdown 运行并打印输出: ###Code output = GradNetWrtX(Net())(x, y) print(output) ###Output (Tensor(shape=[1], dtype=Float32, value= [ 2.15359993e+01]),) ###Markdown 若需要对某些权重不进行求导,则在定义求导网络时,对相应的权重中`requires_grad`设置为`False`。```Pythonself.z = Parameter(Tensor(np.array([1.0], np.float32)), name='z', requires_grad=False)``` 梯度值缩放可以通过`sens_param`参数对网络的输出值做缩放以改变最终梯度。首先将`ops.GradOperation`中的`sens_param`设置为`True`,并确定缩放指数,其维度与输出维度保持一致。缩放指数`self.grad_wrt_output`可以记作如下形式:```pythonself.grad_wrt_output = Tensor([[s1, s2, s3], [s4, s5, s6]])```则`GradNetWrtX`结构为: ###Code class GradNetWrtX(nn.Cell): def __init__(self, net): super(GradNetWrtX, self).__init__() self.net = net self.grad_op = ops.GradOperation(sens_param=True) self.grad_wrt_output = Tensor([[0.1, 0.6, 0.2], [0.8, 1.3, 1.1]], dtype=mstype.float32) def construct(self, x, y): gradient_function = self.grad_op(self.net) return gradient_function(x, y, self.grad_wrt_output) output = GradNetWrtX(Net())(x, y) print(output) ###Output [[2.211 0.51 1.49 ] [5.588 2.68 4.07 ]] ###Markdown 停止计算梯度我们可以使用`stop_gradient`来禁止网络内的算子对梯度的影响,例如: ###Code import numpy as np import mindspore.nn as nn import mindspore.ops as ops from mindspore import Tensor from mindspore import ParameterTuple, Parameter from mindspore import dtype as mstype from mindspore.ops.functional import stop_gradient class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.matmul = ops.MatMul() def construct(self, x, y): out1 = self.matmul(x, y) out2 = self.matmul(x, y) out2 = stop_gradient(out2) out = out1 + out2 return out class GradNetWrtX(nn.Cell): def __init__(self, net): super(GradNetWrtX, self).__init__() self.net = net self.grad_op = ops.GradOperation() def construct(self, x, y): gradient_function = self.grad_op(self.net) return gradient_function(x, y) x = Tensor([[0.8, 0.6, 0.2], [1.8, 1.3, 1.1]], dtype=mstype.float32) y = Tensor([[0.11, 3.3, 1.1], [1.1, 0.2, 1.4], [1.1, 2.2, 0.3]], dtype=mstype.float32) output = GradNetWrtX(Net())(x, y) print(output) ###Output [[4.5 2.7 3.6] [4.5 2.7 3.6]] ###Markdown 在这里我们对`out2`设置了`stop_gradient`, 所以`out2`没有对梯度计算有任何的贡献。 如果我们删除`out2 = stop_gradient(out2)`,那么输出值会变为: ###Code output = GradNetWrtX(Net())(x, y) print(output) ###Output [[9.0 5.4 7.2] [9.0 5.4 7.2]]
Notebooks/Linear_System.ipynb
###Markdown solving linear systemsThis is a basic demo of using angler to solve simple linear electromagnetic systems.For optimization & inverse design problems, check out the other notebooks as well. ###Code import numpy as np from angler import Simulation %load_ext autoreload %autoreload 2 %matplotlib inline ###Output The autoreload extension is already loaded. To reload it, use: %reload_ext autoreload ###Markdown Electric point dipole This example demonstrates solving for the fields of a radiating electric point dipole (out of plane electric current). ###Code omega = 2*np.pi*200e12 dl = 0.02 # grid size (units of L0, which defaults to 1e-6) eps_r = np.ones((200, 200)) # relative permittivity NPML = [15, 15] # number of pml grid points on x and y borders simulation = Simulation(omega, eps_r, dl, NPML, 'Ez') simulation.src[100, 100] = 1 simulation.solve_fields() simulation.plt_abs(outline=False, cbar=True); simulation.plt_re(outline=False, cbar=True); ###Output _____no_output_____ ###Markdown Ridge waveguide This example demonstrates solving for the fields of a waveguide excited by a modal source. ###Code omega = 2*np.pi*200e12 dl = 0.01 # grid size (units of L0, which defaults to 1e-6) eps_r = np.ones((600, 200)) # relative permittivity eps_r[:,90:110] = 12.25 # set waveguide region NPML = [15, 15] # number of pml grid points on x and y borders simulation = Simulation(omega, eps_r, dl, NPML, 'Ez') simulation.add_mode(3.5, 'x', [20, 100], 60, scale=10) simulation.setup_modes() simulation.solve_fields() print('input power of {} in W/L0'.format(simulation.W_in)) simulation.plt_re(outline=True, cbar=False); simulation.plt_abs(outline=True, cbar=False); ###Output input power of 0.0016689050319357358 in W/L0 ###Markdown Making an animation This demonstrates how one can generate an animation of the field, which is saved to 'fields.gif' ###Code from matplotlib import animation, rc from IPython.display import HTML from angler.plot import plt_base_ani animation = plt_base_ani(simulation.fields["Ez"], cbar=True, Nframes=40, interval=80) HTML(animation.to_html5_video()) animation.save('fields.gif', dpi=80, writer='imagemagick') ###Output _____no_output_____
resource_allocation.ipynb
###Markdown The optimization problem to model the resource allocation tasks is as follows$$\begin{alignedat}{3}& \min_{x_{c,s}, \delta_s, \gamma_s, \iota_c, t_s} & \quad & \sum_{s \in \mathcal{S}} \delta_s + \sum_{c \in \mathcal{C}} \iota_c + 2 \sum_{s \in \mathcal{S}} \gamma_s \\& \text{subject to} &&& t_s &= \sum_{c \in \mathcal{C}_s} x_{c,s} & \quad & \forall s \in \mathcal{S}, \\&&&& t_s + \gamma_s &\geq \mathrm{PA}_{\min,s} && \forall s \in \mathcal{S}, \\&&&& t_s + \gamma_s + \delta_s &= \mathrm{PA}_{\mathrm{est},s} && \forall s \in \mathcal{S}, \\&&&& \sum_{s \in \mathcal{S}_c} x_{c,s} + \iota_c &= \mathrm{DCC}_c && \forall c \in \mathcal{C}, \\&&&& x_{c, s} & \geq 0.5 && \forall s \in \mathcal{S}_c, \quad \forall c \in \mathcal{C}, \\&&&& x_{c, s} & \in \mathcal{J}_{c,s} && \forall s \in \mathcal{S}_c, \quad \forall c \in \mathcal{C}, \\&&&& \gamma_s, \delta_s, \iota_c & \geq 0 && \forall s \in \mathcal{S}, c \in \mathcal{C}. \end{alignedat}$$The sets $\mathcal{C}$ and $\mathcal{S}$ are the sets of all consultants and all specialities respectively. Their subscripted counterparts $\mathcal{C}_s$ and $\mathcal{S}_c$ are all the consultants that are able to work on Speciality $s$ and its counterpart, all specialities that the Consultant $c$ can work on respectively. The $\iota_s$ are the missing PAs that are necessary to cover the minimum workload and emergencies in Speciality $s$. Any non-zero $\iota_s$ is critical and impedes patient safety as minimal coverage _cannot_ be guaranteed.$\delta_s$ is the difference between the estimated workload in Speciality $s$ and the resources that were allocated. Finally, the variable $\iota_c$ captures the eventual time a particular Consultant $c$ is idle.The main optimization variables are the $x_{c,s}$s, the allocated PAs for Consultant $c$ in Speciality $s$. The auxiliary variable $t_s$ is introduced for better legibiliy and contains the PAs covered in Speciality $s$ by all available consultants.The constraint $x_{c,s} \geq 0.5$ ensures that if a consutant is working in a speciality, this consultant keeps a minimum workload to not loose practice. The constraint-sets $\mathcal{J}_{c,s}$ capture particular requirements stemming from individual jobplans, such as minimum or maximum contributions of a consultant to a particular speciality, if applicable. ###Code consultants = data.iloc[:-2] consultants specialities = data.iloc[-2:, :-1] specialities reqs = pd.melt(consultants.iloc[:,:-1].reset_index(), id_vars='index').dropna() reqs.reset_index(drop=True, inplace=True) reqs.columns = ['consultant', 'speciality', 'availability'] reqs.consultant = reqs.consultant.astype('category') reqs.availability = reqs.availability.astype('str') reqs.loc[:, 'consultant_id'] = reqs.consultant.cat.codes reqs.speciality = reqs.speciality.astype('category') reqs.loc[:, 'speciality_id'] = reqs.speciality.cat.codes reqs.head() num_specialities = specialities.shape[1] t_s = cp.Variable(num_specialities) γ_s = cp.Variable(num_specialities, nonneg=True) δ_s = cp.Variable(num_specialities, nonneg=True) num_consultants = len(consultants) ι_c = cp.Variable(num_consultants, nonneg=True) x_cs = cp.Variable(len(reqs)) constr = [x_cs >= .5] for (speciality_name, speciality_id), rows in reqs.groupby(['speciality', 'speciality_id']): min_cover = specialities.loc['Emergency cover', speciality_name] est_demand = specialities.loc['Estimated demand', speciality_name] print( speciality_name, ':', [x for x in rows.consultant], '=', est_demand, f'(min: {min_cover})' ) t = t_s[speciality_id] constr.append(t == cp.sum(x_cs[rows.index])) constr.append(t + γ_s[speciality_id] >= min_cover) constr.append(t + γ_s[speciality_id] + δ_s[speciality_id] == est_demand) print() for (consultant_name, consultant_id), rows in reqs.groupby(['consultant', 'consultant_id']): DCCs = consultants.loc[consultant_name, 'DCC PAs'] print(consultant_name, ':', [x for x in rows.speciality], '=', DCCs) constr.append( cp.sum(x_cs[rows.index]) + ι_c[consultant_id] == DCCs) # flexible assignments --> do nothing idx = reqs.availability == 'x' # min value idx = reqs.availability.str.startswith('>') if idx.sum(): min_pa = reqs.loc[idx, 'availability'].str[1:].astype('float') constr.append( x_cs[min_pa.index] >= min_pa.values ) # max value idx = reqs.availability.str.startswith('<') if idx.sum(): max_pa = reqs.loc[idx, 'availability'].str[1:].astype('float') constr.append( x_cs[max_pa.index] <= max_pa.values ) # exact value idx = reqs.availability.str.isnumeric() if idx.sum(): exact_pa = reqs.loc[idx, 'availability'].astype('float') constr.append( x_cs[exact_pa.index] == exact_pa.values ) obj = cp.Minimize( 2 * cp.sum(γ_s) + cp.sum(δ_s) + cp.sum(ι_c) ) prob = cp.Problem(obj, constr) prob.solve(solver=cp.SCS) df = pd.DataFrame() for s, c, v in zip(reqs.speciality, reqs.consultant, np.round(x_cs.value, 2)): df.loc[c, s] = v Cs = consultants.index Ss = specialities.columns df = df.loc[Cs, Ss] df.loc[Cs, 'Idle'] = np.round(ι_c.value, 2) df.loc[Cs, 'DCC PAs'] = consultants.loc[:, 'DCC PAs'] df.loc['sum', :] = df.loc[Cs, :].sum() df.fillna(0, inplace=True) df.loc['min cover gap', Ss] = np.round(γ_s.value, 2) df.loc['demand gap', Ss] = np.round(δ_s.value, 2) df.loc['Emergency cover', Ss] = specialities.loc['Emergency cover', :] df.loc['Estimated demand', Ss] = specialities.loc['Estimated demand', :] df.loc['min cover gap':, 'DCC PAs'] = df.loc['min cover gap':, Ss].sum('columns') fn = Path(FILE_NAME) df.to_excel(fn.with_suffix('.result' + fn.suffix)) df ###Output _____no_output_____
concept.ipynb
###Markdown *One world*By modeling the relationship between services, trade, and consumption patterns across countries over time that should provide me enough insights to further develop the questions below into actual hypotheses:* what are the limitations of using money as the principal measure of economic activity (some will be obvious of course, others - hopefully - not so much)?* how does the (mis-/non-)valuation of services and the informal economy determine into the economic worldview? and consequently, how to deal with missing data and accurate estimates and/ or valuations of intangible economic activity? and labour pricing in general?* what is the impact of the growing share of services (intangibles) in global economic activity on the world economy?* what part of the cycle of supply and demand is endogeneous, and what part is exogeneous? this question is closely related to the role of technological development, information diffusion, knowledge / knowhow transfer (education), and the exceedingly dominant role of services in the global economy.* could the working models of the **real** economy be improved in the light of the questions posed above?* could any of the resulting insights be used to improve the valuation of firms and (e)valuation and remuneration of firm employees?* how would the automation of service work through cognitive computing affect the macroeconomic outlook?* what is the consumer exposure to macroeconomic policy decisions?The goal being to build a functioning predictive model of global human economic activity.*Reminder: continuously perform sanity checks on the completeness and sufficieny of the developed models and systems.* Research outlineCurrent technological advances make possible both unprecented economies of scale and scope and the exact matching of supply and demand for labour and skills. These advances would in theory allow firms to significantly reduce overhead on non-productive employees, at the same time creating more meaningful work opportunities for workers. However, given difficulties involved in building up buffers for workers specializing in less in-demand activities, the gig economy currently disproportionally benefits highly skilled workers. Unfortunately, these workers only constitute a small percentage of the total workforce of a country. As a result, the same technologies that enable unprecented economies of scale and scope at the level of the individual worker therefore also work to aggravate existing economic inequalities across the workforce, perpetuating a cycle of privilege and access to education inherent in the socio-economic fabric of our early 21st-century world. Solutions such as universal basic income (UBI) fail to take into account the positive psychological, social, societal and health benifits of individuals participating in and contributing to a community. In the inverse sense, increasing the economic value of the population provides a buffer and leverage against any exclusivist tendencies or policies developed by the most powerful economic and political actors. Where in the last three hundred-fifty years (roughly 1650 CE to 1990 CE) the nation-state had a powerful military incentive to improve the education levels of the workforce and national economy, at the beginning of the 21st century these incentives appear of limited value given the global challenges mankind faces. In fact, the incentivization schemes being maintained at the national level are counterproductive or even damaging when it come to tackling issues such as climate change, epidemic diseases, resource scarcity, poverty reduction, economic development, and the protection of the earth ecosystem. What I argue in this paper is that break is needed from economic the paradigm put forward in it's most clear form in Adam Smith's *The Wealth of Nations* (1776 CE), and the construction of a new social contract, which - in contrast to the nation state - I will refer to as *the human state*. People-----------Of course merely changing the political and economic discourse won't change the world economic outlook. However, framing the political discourse and greater good along global lines rather than national borders and national interests should - over time - help force politicians and the general public away from the currents of misplaced large-scale bigotry, tribalism, and nepotism still all too common in today's world. Progress as a rallying cry has of course been used and abused throughout history, so a clear definition of what is meant by human development is merited. ... Technology--------------(innovation, adaptation, education, transference)... Trade----------(including any means of exchange, viz markets, currencies, labour)... Policy----------(roughly speaking, institutions in the broadest sense).. ###Code import ipywidgets as widgets from IPython.display import YouTubeVideo out = widgets.Output(layout={'border': '1px solid black'}) out.append_stdout('Amartya Sen on demonetization in India') out.append_display_data(YouTubeVideo('OknuVaSW4M0')) out out.clear_output() ###Output _____no_output_____ ###Markdown [PHOENIX model ftp address](ftp://phoenix.astro.physik.uni-goettingen.de//v1.0/SpecIntFITS/PHOENIX-ACES-AGSS-COND-SPECINT-2011/Z-0.0/)[Some results on alkali metals in hot Jupiters](http://www.exoclimes.com/news/recent-results/a-survey-of-alkali-line-absorption-in-exoplanetary-atmospheres/) ###Code %matplotlib inline %config InlineBackend.figure_format = 'retina' import matplotlib.pyplot as plt import numpy as np import batman from astropy.utils.data import download_file wavelength_url = ('ftp://phoenix.astro.physik.uni-goettingen.de/v2.0/HiResFITS/' 'WAVE_PHOENIX-ACES-AGSS-COND-2011.fits') wavelength_path = download_file(wavelength_url, cache=True, timeout=30) wavelengths_vacuum = fits.getdata(wavelength_path) from astropy.io import fits mu = fits.open("data/lte04800-4.50-0.0.PHOENIX-ACES-AGSS-COND-SPECINT-2011.fits")[1].data mu_vs_lam = fits.getdata("data/lte05800-4.50-0.0.PHOENIX-ACES-AGSS-COND-SPECINT-2011.fits") mu_vs_lam /= mu_vs_lam.max(axis=0) header = fits.getheader("data/lte05800-4.50-0.0.PHOENIX-ACES-AGSS-COND-SPECINT-2011.fits") wavelengths = header['CRVAL1'] + np.arange(0, mu_vs_lam.shape[1]) * header['CDELT1'] one_minus_mu = 1 - mu extent = [wavelengths.min(), wavelengths.max(), one_minus_mu.max(), one_minus_mu.min()] fig, ax = plt.subplots(figsize=(14, 10)) ax.imshow(np.log(mu_vs_lam), extent=extent, origin='lower', interpolation='nearest') ax.set_xlim([3000, 9000]) # ax.set_xlim([6560, 6570]) ax.set_aspect(1000) # ax.set_aspect(10) ax.set(xlabel='Wavelength [Angstrom]', ylabel='$1 - \mu$'); plt.hist(np.mean(np.diff(mu_vs_lam, axis=0), axis=0)); na_D = [5896, 5890] ca_HK = [3968, 3934] k_1 = 7664.8991 ref_lambda = 5010 ca_1 = 6122.219 fe_E = 5270 wl_names = ['continuum', 'Na D1', 'Na D2', 'Ca H', 'Ca K', 'K I', "Ca I"]#, 'Fe E'] test_wavelengths = [ref_lambda, na_D[0], na_D[1], ca_HK[0], ca_HK[1], k_1, ca_1]#, fe_E] index_ref = np.argmin(np.abs(wavelengths - ref_lambda)) index_d1 = np.argmin(np.abs(wavelengths - na_d[0])) index_d2 = np.argmin(np.abs(wavelengths - na_d[1])) def wavelength_to_quadratic(wavelength): mu_lower_limit = 0.05 limit_mu = mu > mu_lower_limit quad_params = np.polyfit(mu[limit_mu], mu_vs_lam[limit_mu, ind], 2) return quad_params[::-1] from scipy.optimize import fmin_powell, fmin_slsqp, fmin_l_bfgs_b mu_lower_limit = 0.06 def nonlinear(p, mu): c_1, c_2, c_3, c_4 = p return (1 - c_1*(1 - mu**0.5) - c_2 * (1-mu) - c_3 * (1 - mu**1.5) - c_4 * (1 - mu**2)) def chi2_nl(p, mu, wl): limit_mu = mu > mu_lower_limit ind = np.argmin(np.abs(wavelengths - wl)) intensity = mu_vs_lam[limit_mu, ind] return np.sum((nonlinear(p, mu[limit_mu]) - intensity)**2 / 0.01**2) def wavelength_to_nonlinear(wavelength): return fmin_slsqp(chi2_nl, [0.5, -0.1, 0.1, -0.1], args=(mu, wavelength), disp=0) def chi2_optical(p, mu): limit_mu = mu > mu_lower_limit intensity = mu_vs_lam.mean(1) chi = np.sum((nonlinear(p, mu[limit_mu]) - intensity[limit_mu])**2 / 0.01**2) return chi def optical_to_nonlinear(): return fmin_slsqp(chi2_optical, [0.5, -0.1, 0.1, -0.1], args=(mu, ), disp=0) def logarithmic(p, mu): c_1, c_2 = p return (1 - c_1*(1-mu) - c_2 * mu * np.log(mu)) def chi2_log(p, mu, wl): limit_mu = mu > mu_lower_limit ind = np.argmin(np.abs(wavelengths - wl)) intensity = mu_vs_lam[limit_mu, ind] return np.sum((logarithmic(p, mu[limit_mu]) - intensity)**2 /0.01**2) def wavelength_to_log(wavelength): return fmin_l_bfgs_b(chi2_log, [1, 1], args=(mu, wavelength), approx_grad=True, bounds=[[-1, 2], [-1, 2]], disp=0)[0] fig, ax = plt.subplots(len(test_wavelengths), 2, figsize=(8, 8), sharex=True) for i, wl, label in zip(range(len(test_wavelengths)), test_wavelengths, wl_names): ind = np.argmin(np.abs(wavelengths - wl)) for j in range(2): ax[i, j].plot(mu, mu_vs_lam[:, ind], 'k') ax[i, j].axvline(mu_lower_limit, ls=':', color='k') u_nl = wavelength_to_nonlinear(wl) ax[i, 0].plot(mu, nonlinear(u_nl, mu), 'r--') u_log = wavelength_to_log(wl) ax[i, 1].plot(mu, logarithmic(u_log, mu), 'r--') ax[i, 0].set_ylabel('$I(\mu)/I(1)$') ax[i, 0].set_title(label + ', nonlinear') ax[i, 1].set_title(label + ', logarithmic') for j in range(2): ax[-1, j].set_xlabel('$\mu$') #ax[-1, 0].set(xlabel='$\mu$', ylabel='$I(\mu)/I(1)$') fig.tight_layout() from astropy.constants import R_jup, R_sun def hd189_wavelength_nl(u): hd189_params = batman.TransitParams() hd189_params.per = 2.21857567 hd189_params.t0 = 2454279.436714 hd189_params.inc = 85.7100 hd189_params.a = 8.84 hd189_params.rp = float((1.138 * R_jup)/(0.805 * R_sun)) hd189_params.limb_dark = 'nonlinear' hd189_params.u = u hd189_params.ecc = 0 hd189_params.w = 90 return hd189_params def wavelength_to_transit(times, wavelength): params = hd189_wavelength_nl(wavelength_to_nonlinear(wavelength)) model = batman.TransitModel(params, times) f = model.light_curve(params) return f def nl_to_transit(times, params): params = hd189_wavelength_nl(wavelength_to_nonlinear(wavelength)) model = batman.TransitModel(params, times) f = model.light_curve(params) return f def optical_to_transit(times): params = hd189_wavelength_nl(optical_to_nonlinear()) model = batman.TransitModel(params, times) f = model.light_curve(params) return f import astropy.units as u times = params.t0 + np.linspace(-1.5/24, 1.5/24, 200) for i, wl, label in zip(range(len(test_wavelengths)), test_wavelengths, wl_names): if label != 'continuum': f = wavelength_to_transit(times, wl) else: f = optical_to_transit(times) plt.plot(times, f, label=label) plt.xlabel('Time') plt.ylabel('Flux') plt.legend() plt.savefig('plots/transit.png') f_continuum = optical_to_transit(times) for i, wl, label in zip(range(len(test_wavelengths)-1), test_wavelengths[1:], wl_names[1:]): f = wavelength_to_transit(times, wl) plt.plot(times, f - f_continuum, label=label) plt.xlabel('Time') plt.ylabel('Residual') plt.legend(); plt.savefig('plots/residuals.png', bbox_inches='tight', dpi=200) ###Output _____no_output_____ ###Markdown *** ###Code mu = fits.open("data/lte04800-4.50-0.0.PHOENIX-ACES-AGSS-COND-SPECINT-2011.fits")[1].data mu_vs_lam = fits.getdata("data/lte05800-4.50-0.0.PHOENIX-ACES-AGSS-COND-SPECINT-2011.fits") mu_vs_lam /= mu_vs_lam.max(axis=0) header = fits.getheader("data/lte05800-4.50-0.0.PHOENIX-ACES-AGSS-COND-SPECINT-2011.fits") wavelengths = header['CRVAL1'] + np.arange(0, mu_vs_lam.shape[1]) * header['CDELT1'] one_minus_mu = 1 - mu ###Output _____no_output_____ ###Markdown $R_{sim} = \frac{\lambda}{\Delta \lambda_{sim}}$ ###Code index_5000 = np.argmin(np.abs(wavelengths - 5000)) sim_dlam = (wavelengths[index_5000+1] - wavelengths[index_5000]) simulation_R = wavelengths[index_5000]/sim_dlam goal_R = 50 def rebin_pixels(image, wavelength_grid, binning_factor=4): # Courtesy of J.F. Sebastian: http://stackoverflow.com/a/8090605 if binning_factor == 1: return image new_shape = (image.shape[0], image.shape[1]/binning_factor) sh = (new_shape[0], image.shape[0]//new_shape[0], new_shape[1], image.shape[1]//new_shape[1]) binned_image = image.reshape(sh).mean(-1).mean(1) binned_wavelengths = wavelength_grid.reshape(new_shape[1], image.shape[1]//new_shape[1]).mean(-1) return binned_image, binned_wavelengths bin_factor = int(simulation_R/goal_R) binned_mu_vs_lam, binned_wavelengths = rebin_pixels(mu_vs_lam, wavelengths, bin_factor) index_5000 = np.argmin(np.abs(binned_wavelengths - 5000)) binned_dlam = (binned_wavelengths[index_5000+1] - binned_wavelengths[index_5000]) binned_R = binned_wavelengths[index_5000]/binned_dlam binned_R na_D = np.mean([5896, 5890]) ca_HK = np.mean([3968, 3934]) k_1 = np.mean([7664.8991, 7698.9645]) ca_1 = 6122.219 wl_names = ["Na D", "CaII HK", "K I", "Ca I", r"$H\alpha$"] test_wavelengths = [na_D, ca_HK, k_1, ca_1, 6562.8] extent = [binned_wavelengths.min(), binned_wavelengths.max(), mu.min(), mu.max()] #one_minus_mu.max(), one_minus_mu.min()] fig, ax = plt.subplots(figsize=(8, 6)) ax.imshow(np.log(binned_mu_vs_lam), extent=extent, origin='lower', # ax.imshow(binned_mu_vs_lam, extent=extent, origin='lower', interpolation='nearest', cmap=plt.cm.Greys_r) ax.set_xlim([3000, 8000]) ax.set_aspect(2000) ax2 = fig.add_axes(ax.get_position(), frameon=False) ax2.tick_params(labelbottom='off',labeltop='on', labelleft="off", labelright='off', bottom='off', left='off', right='off') ax2.set_xlim(ax.get_xlim()) ax2.set_xticks(test_wavelengths) ax2.set_xticklabels(wl_names) ax2.grid(axis='x', ls='--') plt.setp(ax2.get_xticklabels(), rotation=45, ha='left') plt.draw() ax2.set_position(ax.get_position()) ax.set(xlabel='Wavelength [Angstrom]', ylabel='$\mu$'); ax2.set_title("$I(\mu) \,/\, I(1)$") fig.savefig('plots/intensity.png', bbox_inches='tight', dpi=200) def hd189_vary_rp(rp, u): hd189_params = batman.TransitParams() hd189_params.per = 2.21857567 hd189_params.t0 = 2454279.436714 hd189_params.inc = 85.7100 hd189_params.a = 8.84 hd189_params.rp = rp #float((1.138 * R_jup)/(0.805 * R_sun)) hd189_params.limb_dark = 'nonlinear' hd189_params.u = u hd189_params.ecc = 0 hd189_params.w = 90 return hd189_params def transit_model(rp, times): params = hd189_vary_rp(rp, optical_mean_params) model = batman.TransitModel(params, times) f = model.light_curve(params) return f def transit_chi2(p, times, data): rp = p[0] return np.sum((transit_model(rp, times) - data)**2/0.01**2) def fit_transit(times, data, initp): return fmin_l_bfgs_b(transit_chi2, initp, args=(times, data), disp=0, approx_grad=True, bounds=[[0.05, 0.2]]) def chi2_nl_binned(p, mu, wl): limit_mu = mu > mu_lower_limit ind = np.argmin(np.abs(binned_wavelengths - wl)) intensity = binned_mu_vs_lam[limit_mu, ind] return np.sum((nonlinear(p, mu[limit_mu]) - intensity)**2 / 0.01**2) def wavelength_to_nonlinear_binned(wavelength): return fmin_slsqp(chi2_nl_binned, [0.5, -0.1, 0.1, -0.1], args=(mu, wavelength), disp=0) def wavelength_to_transit_binned(times, wavelength): params = hd189_wavelength_nl(wavelength_to_nonlinear_binned(wavelength)) model = batman.TransitModel(params, times) f = model.light_curve(params) return f from astropy.utils.console import ProgressBar fit_wavelengths = binned_wavelengths[((binned_wavelengths < 8500) & (binned_wavelengths > 3000))] initp = [float((1.138 * R_jup)/(0.805 * R_sun))] radii = np.zeros_like(fit_wavelengths) with ProgressBar(len(fit_wavelengths), ipython_widget=True) as bar: for i, wl in enumerate(fit_wavelengths): data = wavelength_to_transit_binned(times, wl) bestrp = fit_transit(times, data, initp) radii[i] = bestrp[0] bar.update() #model = transit_model(bestrp, times) #plt.plot(times, data) fig, ax = plt.subplots() ax.plot(fit_wavelengths, radii, 'o') ax.axhline(initp[0]) ax2 = fig.add_axes(ax.get_position(), frameon=False) ax2.tick_params(labelbottom='off',labeltop='on', labelleft="off", labelright='off', bottom='off', left='off', right='off') ax2.set_xlim(ax.get_xlim()) ax2.set_xticks(test_wavelengths) ax2.set_xticklabels(wl_names) ax2.grid(axis='x', ls='--') plt.setp(ax2.get_xticklabels(), rotation=45, ha='left') ax.set_xlabel('Wavelength [Angstrom]') ax.set_ylabel(r'$R_p/R_\star$') ax.set_title('Nonlinear LD params fixed to their mean in the optical\n\n\n\n') plt.savefig('plots/false_spectrum.png', bbox_inches='tight', dpi=200) ###Output _____no_output_____
arrays_strings/reverse_string/reverse_string_challenge.ipynb
###Markdown This notebook was prepared by [Donne Martin](http://donnemartin.com). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges). Challenge Notebook Problem: Implement a function to reverse a string (a list of characters), in-place.* [Constraints](Constraints)* [Test Cases](Test-Cases)* [Algorithm](Algorithm)* [Code](Code)* [Unit Test](Unit-Test)* [Solution Notebook](Solution-Notebook) Constraints* Can I assume the string is ASCII? * Yes * Note: Unicode strings could require special handling depending on your language* Since we need to do this in-place, it seems we cannot use the slice operator or the reversed function? * Correct* Since Python string are immutable, can I use a list of characters instead? * Yes Test Cases* None -> None* [''] -> ['']* ['f', 'o', 'o', ' ', 'b', 'a', 'r'] -> ['r', 'a', 'b', ' ', 'o', 'o', 'f'] AlgorithmRefer to the [Solution Notebook](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/arrays_strings/reverse_string/reverse_string_solution.ipynb). If you are stuck and need a hint, the solution notebook's algorithm discussion might be a good place to start. Code ###Code def reverse_string(list_chars): # TODO: Implement me pass ###Output _____no_output_____ ###Markdown Unit Test **The following unit test is expected to fail until you solve the challenge.** ###Code # %load test_reverse_string.py from nose.tools import assert_equal class TestReverse(object): def test_reverse(self): assert_equal(reverse_string(None), None) assert_equal(reverse_string(['']), ['']) assert_equal(reverse_string( ['f', 'o', 'o', ' ', 'b', 'a', 'r']), ['r', 'a', 'b', ' ', 'o', 'o', 'f']) print('Success: test_reverse') def test_reverse_inplace(self): target_list = ['f', 'o', 'o', ' ', 'b', 'a', 'r'] reverse_string(target_list) assert_equal(target_list, ['r', 'a', 'b', ' ', 'o', 'o', 'f']) print('Success: test_reverse_inplace') def main(): test = TestReverse() test.test_reverse() test.test_reverse_inplace() if __name__ == '__main__': main() ###Output _____no_output_____ ###Markdown This notebook was prepared by [Donne Martin](http://donnemartin.com). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges). Challenge Notebook Problem: Implement a function to reverse a string (a list of characters), in-place.* [Constraints](Constraints)* [Test Cases](Test-Cases)* [Algorithm](Algorithm)* [Code](Code)* [Unit Test](Unit-Test)* [Solution Notebook](Solution-Notebook) Constraints* Can we assume the string is ASCII? * Yes * Note: Unicode strings could require special handling depending on your language* Since we need to do this in-place, it seems we cannot use the slice operator or the reversed function? * Correct* Since Python string are immutable, can we use a list of characters instead? * Yes Test Cases* None -> None* [''] -> ['']* ['f', 'o', 'o', ' ', 'b', 'a', 'r'] -> ['r', 'a', 'b', ' ', 'o', 'o', 'f'] AlgorithmRefer to the [Solution Notebook](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/arrays_strings/reverse_string/reverse_string_solution.ipynb). If you are stuck and need a hint, the solution notebook's algorithm discussion might be a good place to start. Code ###Code class ReverseString(object): def reverse(self, chars): if chars is None: return None if len(chars) <= 1: return chars result = [] for i in range(len(chars) // 2): chars[i], chars[len(chars) - i - 1] = chars[len(chars) - i - 1], chars[i] return chars # TODO: Implement me pass ###Output _____no_output_____ ###Markdown Unit Test **The following unit test is expected to fail until you solve the challenge.** ###Code # %load test_reverse_string.py import unittest class TestReverse(unittest.TestCase): def test_reverse(self, func): self.assertEqual(func(None), None) self.assertEqual(func(['']), ['']) self.assertEqual(func( ['f', 'o', 'o', ' ', 'b', 'a', 'r']), ['r', 'a', 'b', ' ', 'o', 'o', 'f']) print('Success: test_reverse') def test_reverse_inplace(self, func): target_list = ['f', 'o', 'o', ' ', 'b', 'a', 'r'] func(target_list) self.assertEqual(target_list, ['r', 'a', 'b', ' ', 'o', 'o', 'f']) print('Success: test_reverse_inplace') def main(): test = TestReverse() reverse_string = ReverseString() test.test_reverse(reverse_string.reverse) test.test_reverse_inplace(reverse_string.reverse) if __name__ == '__main__': main() ###Output Success: test_reverse Success: test_reverse_inplace ###Markdown This notebook was prepared by [Donne Martin](http://donnemartin.com). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges). Challenge Notebook Problem: Implement a function to reverse a string (a list of characters), in-place.* [Constraints](Constraints)* [Test Cases](Test-Cases)* [Algorithm](Algorithm)* [Code](Code)* [Unit Test](Unit-Test)* [Solution Notebook](Solution-Notebook) Constraints* Can we assume the string is ASCII? * Yes * Note: Unicode strings could require special handling depending on your language* Since we need to do this in-place, it seems we cannot use the slice operator or the reversed function? * Correct* Since Python string are immutable, can we use a list of characters instead? * Yes Test Cases* None -> None* [''] -> ['']* ['f', 'o', 'o', ' ', 'b', 'a', 'r'] -> ['r', 'a', 'b', ' ', 'o', 'o', 'f'] AlgorithmRefer to the [Solution Notebook](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/arrays_strings/reverse_string/reverse_string_solution.ipynb). If you are stuck and need a hint, the solution notebook's algorithm discussion might be a good place to start. Code ###Code class ReverseString(object): def reverse(self, chars): if chars is None: return None l = len(chars) for i in range(l // 2): tmp = chars[i] chars[i] = chars[l - 1 - i] chars[l - 1 - i] = tmp return chars ###Output _____no_output_____ ###Markdown Unit Test **The following unit test is expected to fail until you solve the challenge.** ###Code # %load test_reverse_string.py from nose.tools import assert_equal class TestReverse(object): def test_reverse(self, func): assert_equal(func(None), None) assert_equal(func(['']), ['']) assert_equal(func( ['f', 'o', 'o', ' ', 'b', 'a', 'r']), ['r', 'a', 'b', ' ', 'o', 'o', 'f']) print('Success: test_reverse') def test_reverse_inplace(self, func): target_list = ['f', 'o', 'o', ' ', 'b', 'a', 'r'] func(target_list) assert_equal(target_list, ['r', 'a', 'b', ' ', 'o', 'o', 'f']) print('Success: test_reverse_inplace') def main(): test = TestReverse() reverse_string = ReverseString() test.test_reverse(reverse_string.reverse) test.test_reverse_inplace(reverse_string.reverse) if __name__ == '__main__': main() ###Output Success: test_reverse Success: test_reverse_inplace ###Markdown This notebook was prepared by [Donne Martin](http://donnemartin.com). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges). Challenge Notebook Problem: Implement a function to reverse a string (a list of characters), in-place.* [Constraints](Constraints)* [Test Cases](Test-Cases)* [Algorithm](Algorithm)* [Code](Code)* [Unit Test](Unit-Test)* [Solution Notebook](Solution-Notebook) Constraints* Can we assume the string is ASCII? * Yes * Note: Unicode strings could require special handling depending on your language* Since we need to do this in-place, it seems we cannot use the slice operator or the reversed function? * Correct* Since Python string are immutable, can we use a list of characters instead? * Yes Test Cases* None -> None* [''] -> ['']* ['f', 'o', 'o', ' ', 'b', 'a', 'r'] -> ['r', 'a', 'b', ' ', 'o', 'o', 'f'] AlgorithmRefer to the [Solution Notebook](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/arrays_strings/reverse_string/reverse_string_solution.ipynb). If you are stuck and need a hint, the solution notebook's algorithm discussion might be a good place to start. Code ###Code class ReverseString(object): def reverse(self, chars): if chars is None: return None for i in range(round(len(chars)/2)): chars[i], chars[-(i+1)] = chars[-(i+1)], chars[i] return chars ###Output _____no_output_____ ###Markdown Unit Test **The following unit test is expected to fail until you solve the challenge.** ###Code # %load test_reverse_string.py from nose.tools import assert_equal class TestReverse(object): def test_reverse(self, func): assert_equal(func(None), None) assert_equal(func(['']), ['']) assert_equal(func( ['f', 'o', 'o', ' ', 'b', 'a', 'r']), ['r', 'a', 'b', ' ', 'o', 'o', 'f']) print('Success: test_reverse') def test_reverse_inplace(self, func): target_list = ['f', 'o', 'o', ' ', 'b', 'a', 'r'] func(target_list) assert_equal(target_list, ['r', 'a', 'b', ' ', 'o', 'o', 'f']) print('Success: test_reverse_inplace') def main(): test = TestReverse() reverse_string = ReverseString() test.test_reverse(reverse_string.reverse) test.test_reverse_inplace(reverse_string.reverse) if __name__ == '__main__': main() ###Output Success: test_reverse Success: test_reverse_inplace ###Markdown This notebook was prepared by [Donne Martin](http://donnemartin.com). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges). Challenge Notebook Problem: Implement a function to reverse a string (a list of characters), in-place.* [Constraints](Constraints)* [Test Cases](Test-Cases)* [Algorithm](Algorithm)* [Code](Code)* [Unit Test](Unit-Test)* [Solution Notebook](Solution-Notebook) Constraints* Can we assume the string is ASCII? * Yes * Note: Unicode strings could require special handling depending on your language* Since we need to do this in-place, it seems we cannot use the slice operator or the reversed function? * Correct* Since Python string are immutable, can we use a list of characters instead? * Yes Test Cases* None -> None* [''] -> ['']* ['f', 'o', 'o', ' ', 'b', 'a', 'r'] -> ['r', 'a', 'b', ' ', 'o', 'o', 'f'] AlgorithmRefer to the [Solution Notebook](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/arrays_strings/reverse_string/reverse_string_solution.ipynb). If you are stuck and need a hint, the solution notebook's algorithm discussion might be a good place to start. Code ###Code class ReverseString(object): def reverse(self, chars): # TODO: Implement me pass ###Output _____no_output_____ ###Markdown Unit Test **The following unit test is expected to fail until you solve the challenge.** ###Code # %load test_reverse_string.py import unittest class TestReverse(unittest.TestCase): def test_reverse(self, func): self.assertEqual(func(None), None) self.assertEqual(func(['']), ['']) self.assertEqual(func( ['f', 'o', 'o', ' ', 'b', 'a', 'r']), ['r', 'a', 'b', ' ', 'o', 'o', 'f']) print('Success: test_reverse') def test_reverse_inplace(self, func): target_list = ['f', 'o', 'o', ' ', 'b', 'a', 'r'] func(target_list) self.assertEqual(target_list, ['r', 'a', 'b', ' ', 'o', 'o', 'f']) print('Success: test_reverse_inplace') def main(): test = TestReverse() reverse_string = ReverseString() test.test_reverse(reverse_string.reverse) test.test_reverse_inplace(reverse_string.reverse) if __name__ == '__main__': main() ###Output _____no_output_____ ###Markdown This notebook was prepared by [Donne Martin](http://donnemartin.com). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges). Challenge Notebook Problem: Implement a function to reverse a string (a list of characters), in-place.* [Constraints](Constraints)* [Test Cases](Test-Cases)* [Algorithm](Algorithm)* [Code](Code)* [Unit Test](Unit-Test)* [Solution Notebook](Solution-Notebook) Constraints* Can I assume the string is ASCII? * Yes * Note: Unicode strings could require special handling depending on your language* Since we need to do this in-place, it seems we cannot use the slice operator or the reversed function? * Correct* Since Python string are immutable, can I use a list of characters instead? * Yes Test Cases* None -> None* [''] -> ['']* ['f', 'o', 'o', ' ', 'b', 'a', 'r'] -> ['r', 'a', 'b', ' ', 'o', 'o', 'f'] AlgorithmRefer to the [Solution Notebook](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/arrays_strings/reverse_string/reverse_string_solution.ipynb). If you are stuck and need a hint, the solution notebook's algorithm discussion might be a good place to start. Code ###Code def list_of_chars(list_chars): # TODO: Implement me pass ###Output _____no_output_____ ###Markdown Unit Test **The following unit test is expected to fail until you solve the challenge.** ###Code # %load test_reverse_string.py from nose.tools import assert_equal class TestReverse(object): def test_reverse(self): assert_equal(list_of_chars(None), None) assert_equal(list_of_chars(['']), ['']) assert_equal(list_of_chars( ['f', 'o', 'o', ' ', 'b', 'a', 'r']), ['r', 'a', 'b', ' ', 'o', 'o', 'f']) print('Success: test_reverse') def main(): test = TestReverse() test.test_reverse() if __name__ == '__main__': main() ###Output _____no_output_____ ###Markdown This notebook was prepared by [Donne Martin](http://donnemartin.com). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges). Challenge Notebook Problem: Implement a function to reverse a string (a list of characters), in-place.* [Constraints](Constraints)* [Test Cases](Test-Cases)* [Algorithm](Algorithm)* [Code](Code)* [Unit Test](Unit-Test)* [Solution Notebook](Solution-Notebook) Constraints* Can we assume the string is ASCII? * Yes * Note: Unicode strings could require special handling depending on your language* Since we need to do this in-place, it seems we cannot use the slice operator or the reversed function? * Correct* Since Python string are immutable, can we use a list of characters instead? * Yes Test Cases* None -> None* [''] -> ['']* ['f', 'o', 'o', ' ', 'b', 'a', 'r'] -> ['r', 'a', 'b', ' ', 'o', 'o', 'f'] AlgorithmRefer to the [Solution Notebook](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/arrays_strings/reverse_string/reverse_string_solution.ipynb). If you are stuck and need a hint, the solution notebook's algorithm discussion might be a good place to start. Code ###Code class ReverseString(object): def reverse(self, chars): # TODO: Implement me if chars is None or not chars: return chars return chars[::-1] ###Output _____no_output_____ ###Markdown Unit Test **The following unit test is expected to fail until you solve the challenge.** ###Code # %load test_reverse_string.py from nose.tools import assert_equal class TestReverse(object): def test_reverse(self, func): assert_equal(func(None), None) assert_equal(func(['']), ['']) assert_equal(func( ['f', 'o', 'o', ' ', 'b', 'a', 'r']), ['r', 'a', 'b', ' ', 'o', 'o', 'f']) print('Success: test_reverse') def test_reverse_inplace(self, func): target_list = ['f', 'o', 'o', ' ', 'b', 'a', 'r'] func(target_list) assert_equal(target_list, ['r', 'a', 'b', ' ', 'o', 'o', 'f']) print('Success: test_reverse_inplace') def main(): test = TestReverse() reverse_string = ReverseString() test.test_reverse(reverse_string.reverse) test.test_reverse_inplace(reverse_string.reverse) if __name__ == '__main__': main() ###Output Success: test_reverse ###Markdown This notebook was prepared by [Donne Martin](http://donnemartin.com). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges). Challenge Notebook Problem: Implement a function to reverse a string (a list of characters), in-place.* [Constraints](Constraints)* [Test Cases](Test-Cases)* [Algorithm](Algorithm)* [Code](Code)* [Unit Test](Unit-Test)* [Solution Notebook](Solution-Notebook) Constraints* Can I assume the string is ASCII? * Yes * Note: Unicode strings could require special handling depending on your language* Since we need to do this in-place, it seems we cannot use the slice operator or the reversed function? * Correct* Since Python string are immutable, can I use a list of characters instead? * Yes Test Cases* None -> None* [''] -> ['']* ['f', 'o', 'o', ' ', 'b', 'a', 'r'] -> ['r', 'a', 'b', ' ', 'o', 'o', 'f'] AlgorithmRefer to the [Solution Notebook](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/arrays_strings/reverse_string/reverse_string_solution.ipynb). If you are stuck and need a hint, the solution notebook's algorithm discussion might be a good place to start. Code ###Code def list_of_chars(list_chars): if list_chars is None: return None return list_chars[::-1] ###Output _____no_output_____ ###Markdown Unit Test **The following unit test is expected to fail until you solve the challenge.** ###Code # %load test_reverse_string.py from nose.tools import assert_equal class TestReverse(object): def test_reverse(self): assert_equal(list_of_chars(None), None) assert_equal(list_of_chars(['']), ['']) assert_equal(list_of_chars( ['f', 'o', 'o', ' ', 'b', 'a', 'r']), ['r', 'a', 'b', ' ', 'o', 'o', 'f']) print('Success: test_reverse') def main(): test = TestReverse() test.test_reverse() if __name__ == '__main__': main() ###Output Success: test_reverse ###Markdown This notebook was prepared by [Donne Martin](http://donnemartin.com). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges). Challenge Notebook Problem: Implement a function to reverse a string (a list of characters), in-place.* [Constraints](Constraints)* [Test Cases](Test-Cases)* [Algorithm](Algorithm)* [Code](Code)* [Unit Test](Unit-Test)* [Solution Notebook](Solution-Notebook) Constraints* Can we assume the string is ASCII? * Yes * Note: Unicode strings could require special handling depending on your language* Since we need to do this in-place, it seems we cannot use the slice operator or the reversed function? * Correct* Since Python string are immutable, can we use a list of characters instead? * Yes Test Cases* None -> None* [''] -> ['']* ['f', 'o', 'o', ' ', 'b', 'a', 'r'] -> ['r', 'a', 'b', ' ', 'o', 'o', 'f'] AlgorithmRefer to the [Solution Notebook](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/arrays_strings/reverse_string/reverse_string_solution.ipynb). If you are stuck and need a hint, the solution notebook's algorithm discussion might be a good place to start. Code ###Code class ReverseString(object): def reverse(self, chars): if chars: mid = len(chars) // 2 for idx in range(mid): # if a[0] is 1st item then a[-1] is last item chars[idx], chars[-idx - 1] = chars[-idx - 1], chars[idx] return chars ###Output _____no_output_____ ###Markdown Unit Test **The following unit test is expected to fail until you solve the challenge.** ###Code # %load test_reverse_string.py from nose.tools import assert_equal class TestReverse(object): def test_reverse(self, func): assert_equal(func(None), None) assert_equal(func(['']), ['']) assert_equal(func( ['f', 'o', 'o', ' ', 'b', 'a', 'r']), ['r', 'a', 'b', ' ', 'o', 'o', 'f']) print('Success: test_reverse') def test_reverse_inplace(self, func): target_list = ['f', 'o', 'o', ' ', 'b', 'a', 'r'] func(target_list) assert_equal(target_list, ['r', 'a', 'b', ' ', 'o', 'o', 'f']) print('Success: test_reverse_inplace') def main(): test = TestReverse() reverse_string = ReverseString() test.test_reverse(reverse_string.reverse) test.test_reverse_inplace(reverse_string.reverse) if __name__ == '__main__': main() ###Output _____no_output_____ ###Markdown This notebook was prepared by [Donne Martin](http://donnemartin.com). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges). Challenge Notebook Problem: Implement a function to reverse a string (a list of characters), in-place.* [Constraints](Constraints)* [Test Cases](Test-Cases)* [Algorithm](Algorithm)* [Code](Code)* [Unit Test](Unit-Test)* [Solution Notebook](Solution-Notebook) Constraints* Can we assume the string is ASCII? * Yes * Note: Unicode strings could require special handling depending on your language* Since we need to do this in-place, it seems we cannot use the slice operator or the reversed function? * Correct* Since Python string are immutable, can we use a list of characters instead? * Yes Test Cases* None -> None* [''] -> ['']* ['f', 'o', 'o', ' ', 'b', 'a', 'r'] -> ['r', 'a', 'b', ' ', 'o', 'o', 'f'] AlgorithmRefer to the [Solution Notebook](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/arrays_strings/reverse_string/reverse_string_solution.ipynb). If you are stuck and need a hint, the solution notebook's algorithm discussion might be a good place to start. Code ###Code class ReverseString(object): def reverse(self, chars): # TODO: Implement me pass ###Output _____no_output_____ ###Markdown Unit Test **The following unit test is expected to fail until you solve the challenge.** ###Code # %load test_reverse_string.py from nose.tools import assert_equal class TestReverse(object): def test_reverse(self, func): assert_equal(func(None), None) assert_equal(func(['']), ['']) assert_equal(func( ['f', 'o', 'o', ' ', 'b', 'a', 'r']), ['r', 'a', 'b', ' ', 'o', 'o', 'f']) print('Success: test_reverse') def test_reverse_inplace(self, func): target_list = ['f', 'o', 'o', ' ', 'b', 'a', 'r'] func(target_list) assert_equal(target_list, ['r', 'a', 'b', ' ', 'o', 'o', 'f']) print('Success: test_reverse_inplace') def main(): test = TestReverse() reverse_string = ReverseString() test.test_reverse(reverse_string.reverse) test.test_reverse_inplace(reverse_string.reverse) if __name__ == '__main__': main() ###Output _____no_output_____ ###Markdown This notebook was prepared by [Donne Martin](http://donnemartin.com). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges). Challenge Notebook Problem: Implement a function to reverse a string (a list of characters), in-place.* [Constraints](Constraints)* [Test Cases](Test-Cases)* [Algorithm](Algorithm)* [Code](Code)* [Unit Test](Unit-Test)* [Solution Notebook](Solution-Notebook) Constraints* Can we assume the string is ASCII? * Yes * Note: Unicode strings could require special handling depending on your language* Since we need to do this in-place, it seems we cannot use the slice operator or the reversed function? * Correct* Since Python string are immutable, can we use a list of characters instead? * Yes Test Cases* None -> None* [''] -> ['']* ['f', 'o', 'o', ' ', 'b', 'a', 'r'] -> ['r', 'a', 'b', ' ', 'o', 'o', 'f'] AlgorithmRefer to the [Solution Notebook](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/arrays_strings/reverse_string/reverse_string_solution.ipynb). If you are stuck and need a hint, the solution notebook's algorithm discussion might be a good place to start. Code ###Code class ReverseString(object): def reverse(self, chars): if chars is None or not chars: return chars res = chars left = 0 right = len(chars)-1 while left<right: chars[left], chars[right] = chars[right], chars[left] left +=1 right -= 1 return res ###Output _____no_output_____ ###Markdown Unit Test **The following unit test is expected to fail until you solve the challenge.** ###Code # %load test_reverse_string.py import unittest class TestReverse(unittest.TestCase): def test_reverse(self, func): self.assertEqual(func(None), None) self.assertEqual(func(['']), ['']) self.assertEqual(func( ['f', 'o', 'o', ' ', 'b', 'a', 'r']), ['r', 'a', 'b', ' ', 'o', 'o', 'f']) print('Success: test_reverse') def test_reverse_inplace(self, func): target_list = ['f', 'o', 'o', ' ', 'b', 'a', 'r'] func(target_list) self.assertEqual(target_list, ['r', 'a', 'b', ' ', 'o', 'o', 'f']) print('Success: test_reverse_inplace') def main(): test = TestReverse() reverse_string = ReverseString() test.test_reverse(reverse_string.reverse) test.test_reverse_inplace(reverse_string.reverse) if __name__ == '__main__': main() ###Output Success: test_reverse Success: test_reverse_inplace ###Markdown This notebook was prepared by [Donne Martin](http://donnemartin.com). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges). Challenge Notebook Problem: Implement a function to reverse a string (a list of characters), in-place.* [Constraints](Constraints)* [Test Cases](Test-Cases)* [Algorithm](Algorithm)* [Code](Code)* [Unit Test](Unit-Test)* [Solution Notebook](Solution-Notebook) Constraints* Can we assume the string is ASCII? * Yes * Note: Unicode strings could require special handling depending on your language* Since we need to do this in-place, it seems we cannot use the slice operator or the reversed function? * Correct* Since Python string are immutable, can we use a list of characters instead? * Yes Test Cases* None -> None* [''] -> ['']* ['f', 'o', 'o', ' ', 'b', 'a', 'r'] -> ['r', 'a', 'b', ' ', 'o', 'o', 'f'] AlgorithmRefer to the [Solution Notebook](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/arrays_strings/reverse_string/reverse_string_solution.ipynb). If you are stuck and need a hint, the solution notebook's algorithm discussion might be a good place to start. Code ###Code class ReverseString(object): def reverse(self, chars): if not chars: return chars lenght = len(chars) for i in range(lenght // 2): chars[i], chars[-(i + 1)] = chars[-(i + 1)], chars[i] return chars ###Output _____no_output_____ ###Markdown Unit Test **The following unit test is expected to fail until you solve the challenge.** ###Code # %load test_reverse_string.py from nose.tools import assert_equal class TestReverse(object): def test_reverse(self, func): assert_equal(func(None), None) assert_equal(func(['']), ['']) assert_equal(func( ['f', 'o', 'o', ' ', 'b', 'a', 'r']), ['r', 'a', 'b', ' ', 'o', 'o', 'f']) print('Success: test_reverse') def test_reverse_inplace(self, func): target_list = ['f', 'o', 'o', ' ', 'b', 'a', 'r'] func(target_list) assert_equal(target_list, ['r', 'a', 'b', ' ', 'o', 'o', 'f']) print('Success: test_reverse_inplace') def main(): test = TestReverse() reverse_string = ReverseString() test.test_reverse(reverse_string.reverse) test.test_reverse_inplace(reverse_string.reverse) if __name__ == '__main__': main() ###Output _____no_output_____ ###Markdown This notebook was prepared by [Donne Martin](http://donnemartin.com). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges). Challenge Notebook Problem: Implement a function to reverse a string (a list of characters), in-place.* [Constraints](Constraints)* [Test Cases](Test-Cases)* [Algorithm](Algorithm)* [Code](Code)* [Unit Test](Unit-Test)* [Solution Notebook](Solution-Notebook) Constraints* Can we assume the string is ASCII? * Yes * Note: Unicode strings could require special handling depending on your language* Since we need to do this in-place, it seems we cannot use the slice operator or the reversed function? * Correct* Since Python string are immutable, can we use a list of characters instead? * Yes Test Cases* None -> None* [''] -> ['']* ['f', 'o', 'o', ' ', 'b', 'a', 'r'] -> ['r', 'a', 'b', ' ', 'o', 'o', 'f'] AlgorithmRefer to the [Solution Notebook](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/arrays_strings/reverse_string/reverse_string_solution.ipynb). If you are stuck and need a hint, the solution notebook's algorithm discussion might be a good place to start. Code ###Code class ReverseString(object): def reverse(self, chars): if chars is None: return None size = len(chars) for i in range(size//2): chars[i],chars[size-i-1] = chars[size-i-1], chars[i] return chars ###Output _____no_output_____ ###Markdown Unit Test **The following unit test is expected to fail until you solve the challenge.** ###Code # %load test_reverse_string.py import unittest class TestReverse(unittest.TestCase): def test_reverse(self, func): self.assertEqual(func(None), None) self.assertEqual(func(['']), ['']) self.assertEqual(func( ['f', 'o', 'o', ' ', 'b', 'a', 'r']), ['r', 'a', 'b', ' ', 'o', 'o', 'f']) print('Success: test_reverse') def test_reverse_inplace(self, func): target_list = ['f', 'o', 'o', ' ', 'b', 'a', 'r'] func(target_list) self.assertEqual(target_list, ['r', 'a', 'b', ' ', 'o', 'o', 'f']) print('Success: test_reverse_inplace') def main(): test = TestReverse() reverse_string = ReverseString() test.test_reverse(reverse_string.reverse) test.test_reverse_inplace(reverse_string.reverse) if __name__ == '__main__': main() ###Output Success: test_reverse Success: test_reverse_inplace ###Markdown This notebook was prepared by [Donne Martin](http://donnemartin.com). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges). Challenge Notebook Problem: Implement a function to reverse a string (a list of characters), in-place.* [Constraints](Constraints)* [Test Cases](Test-Cases)* [Algorithm](Algorithm)* [Code](Code)* [Unit Test](Unit-Test)* [Solution Notebook](Solution-Notebook) Constraints* Can we assume the string is ASCII? * Yes * Note: Unicode strings could require special handling depending on your language* Since we need to do this in-place, it seems we cannot use the slice operator or the reversed function? * Correct* Since Python string are immutable, can we use a list of characters instead? * Yes Test Cases* None -> None* [''] -> ['']* ['f', 'o', 'o', ' ', 'b', 'a', 'r'] -> ['r', 'a', 'b', ' ', 'o', 'o', 'f'] AlgorithmRefer to the [Solution Notebook](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/arrays_strings/reverse_string/reverse_string_solution.ipynb). If you are stuck and need a hint, the solution notebook's algorithm discussion might be a good place to start. Code ###Code class ReverseString(object): def reverse(self, chars): if chars: for i in range(len(chars) // 2): temp = chars[i] chars[i] = chars[len(chars) - i - 1] chars[len(chars) - i - 1] = temp return chars return chars ###Output _____no_output_____ ###Markdown Unit Test **The following unit test is expected to fail until you solve the challenge.** ###Code # %load test_reverse_string.py from nose.tools import assert_equal class TestReverse(object): def test_reverse(self, func): assert_equal(func(None), None) assert_equal(func(['']), ['']) assert_equal(func( ['f', 'o', 'o', ' ', 'b', 'a', 'r']), ['r', 'a', 'b', ' ', 'o', 'o', 'f']) print('Success: test_reverse') def test_reverse_inplace(self, func): target_list = ['f', 'o', 'o', ' ', 'b', 'a', 'r'] func(target_list) assert_equal(target_list, ['r', 'a', 'b', ' ', 'o', 'o', 'f']) print('Success: test_reverse_inplace') def main(): test = TestReverse() reverse_string = ReverseString() test.test_reverse(reverse_string.reverse) test.test_reverse_inplace(reverse_string.reverse) if __name__ == '__main__': main() ###Output Success: test_reverse Success: test_reverse_inplace
Experiments_FashionMNIST.ipynb
###Markdown ExperimentsWe'll go through learning feature embeddings using different loss functions on MNIST dataset. This is just for visualization purposes, thus we'll be using 2-dimensional embeddings which isn't the best choice in practice.For every experiment the same embedding network is used (32 conv 5x5 -> PReLU -> MaxPool 2x2 -> 64 conv 5x5 -> PReLU -> MaxPool 2x2 -> Dense 256 -> PReLU -> Dense 256 -> PReLU -> Dense 2) and we don't do any hyperparameter search. Prepare datasetWe'll be working on MNIST dataset ###Code import torch from torchvision.datasets import FashionMNIST from torchvision import transforms mean, std = 0.28604059698879553, 0.35302424451492237 batch_size = 256 train_dataset = FashionMNIST('../data/FashionMNIST', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((mean,), (std,)) ])) test_dataset = FashionMNIST('../data/FashionMNIST', train=False, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((mean,), (std,)) ])) cuda = torch.cuda.is_available() kwargs = {'num_workers': 1, 'pin_memory': True} if cuda else {} train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, **kwargs) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False, **kwargs) n_classes = 10 ###Output _____no_output_____ ###Markdown Common setup ###Code import torch from torch.optim import lr_scheduler import torch.optim as optim from torch.autograd import Variable from trainer import fit import numpy as np cuda = torch.cuda.is_available() %matplotlib inline import matplotlib import matplotlib.pyplot as plt fashion_mnist_classes = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'] mnist_classes = fashion_mnist_classes def plot_embeddings(embeddings, targets, xlim=None, ylim=None): plt.figure(figsize=(10,10)) for i in range(10): inds = np.where(targets==i)[0] plt.scatter(embeddings[inds,0], embeddings[inds,1], alpha=0.5, color=colors[i]) if xlim: plt.xlim(xlim[0], xlim[1]) if ylim: plt.ylim(ylim[0], ylim[1]) plt.legend(mnist_classes) def extract_embeddings(dataloader, model): with torch.no_grad(): model.eval() embeddings = np.zeros((len(dataloader.dataset), 2)) labels = np.zeros(len(dataloader.dataset)) k = 0 for images, target in dataloader: if cuda: images = images.cuda() embeddings[k:k+len(images)] = model.get_embedding(images).data.cpu().numpy() labels[k:k+len(images)] = target.numpy() k += len(images) return embeddings, labels ###Output _____no_output_____ ###Markdown Baseline: Classification with softmaxWe'll train the model for classification and use outputs of penultimate layer as embeddings ###Code # Set up data loaders batch_size = 256 kwargs = {'num_workers': 1, 'pin_memory': True} if cuda else {} train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, **kwargs) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False, **kwargs) # Set up the network and training parameters from networks import EmbeddingNet, ClassificationNet from metrics import AccumulatedAccuracyMetric embedding_net = EmbeddingNet() model = ClassificationNet(embedding_net, n_classes=n_classes) if cuda: model.cuda() loss_fn = torch.nn.NLLLoss() lr = 1e-2 optimizer = optim.Adam(model.parameters(), lr=lr) scheduler = lr_scheduler.StepLR(optimizer, 8, gamma=0.1, last_epoch=-1) n_epochs = 20 log_interval = 50 fit(train_loader, test_loader, model, loss_fn, optimizer, scheduler, n_epochs, cuda, log_interval, metrics=[AccumulatedAccuracyMetric()]) train_embeddings_baseline, train_labels_baseline = extract_embeddings(train_loader, model) plot_embeddings(train_embeddings_baseline, train_labels_baseline) val_embeddings_baseline, val_labels_baseline = extract_embeddings(test_loader, model) plot_embeddings(val_embeddings_baseline, val_labels_baseline) ###Output _____no_output_____ ###Markdown Siamese networkWe'll train a siamese network that takes a pair of images and trains the embeddings so that the distance between them is minimized if their from the same class or greater than some margin value if they represent different classes.We'll minimize a contrastive loss function*:$$L_{contrastive}(x_0, x_1, y) = \frac{1}{2} y \lVert f(x_0)-f(x_1)\rVert_2^2 + \frac{1}{2}(1-y)\{max(0, m-\lVert f(x_0)-f(x_1)\rVert_2)\}^2$$*Raia Hadsell, Sumit Chopra, Yann LeCun, [Dimensionality reduction by learning an invariant mapping](http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf), CVPR 2006* Steps1. Create a dataset returning pairs - **SiameseMNIST** class from *datasets.py*, wrapper for MNIST-like classes.2. Define **embedding** *(mapping)* network $f(x)$ - **EmbeddingNet** from *networks.py*3. Define **siamese** network processing pairs of inputs - **SiameseNet** wrapping *EmbeddingNet*4. Train the network with **ContrastiveLoss** - *losses.py* ###Code # Set up data loaders from datasets import SiameseMNIST # Step 1 siamese_train_dataset = SiameseMNIST(train_dataset) # Returns pairs of images and target same/different siamese_test_dataset = SiameseMNIST(test_dataset) batch_size = 128 kwargs = {'num_workers': 1, 'pin_memory': True} if cuda else {} siamese_train_loader = torch.utils.data.DataLoader(siamese_train_dataset, batch_size=batch_size, shuffle=True, **kwargs) siamese_test_loader = torch.utils.data.DataLoader(siamese_test_dataset, batch_size=batch_size, shuffle=False, **kwargs) # Set up the network and training parameters from networks import EmbeddingNet, SiameseNet from losses import ContrastiveLoss # Step 2 embedding_net = EmbeddingNet() # Step 3 model = SiameseNet(embedding_net) if cuda: model.cuda() # Step 4 margin = 1. loss_fn = ContrastiveLoss(margin) lr = 1e-3 optimizer = optim.Adam(model.parameters(), lr=lr) scheduler = lr_scheduler.StepLR(optimizer, 8, gamma=0.1, last_epoch=-1) n_epochs = 20 log_interval = 500 fit(siamese_train_loader, siamese_test_loader, model, loss_fn, optimizer, scheduler, n_epochs, cuda, log_interval) train_embeddings_cl, train_labels_cl = extract_embeddings(train_loader, model) plot_embeddings(train_embeddings_cl, train_labels_cl) val_embeddings_cl, val_labels_cl = extract_embeddings(test_loader, model) plot_embeddings(val_embeddings_cl, val_labels_cl) ###Output _____no_output_____ ###Markdown Triplet networkWe'll train a triplet network, that takes an anchor, positive (same class as anchor) and negative (different class than anchor) examples. The objective is to learn embeddings such that the anchor is closer to the positive example than it is to the negative example by some margin value.![alt text](images/anchor_negative_positive.png "Source: FaceNet")Source: [2] *Schroff, Florian, Dmitry Kalenichenko, and James Philbin. [Facenet: A unified embedding for face recognition and clustering.](https://arxiv.org/abs/1503.03832) CVPR 2015.***Triplet loss**: $L_{triplet}(x_a, x_p, x_n) = max(0, m + \lVert f(x_a)-f(x_p)\rVert_2^2 - \lVert f(x_a)-f(x_n)\rVert_2^2$\) Steps1. Create a dataset returning triplets - **TripletMNIST** class from *datasets.py*, wrapper for MNIST-like classes2. Define **embedding** *(mapping)* network $f(x)$ - **EmbeddingNet** from *networks.py*3. Define **triplet** network processing triplets - **TripletNet** wrapping *EmbeddingNet*4. Train the network with **TripletLoss** - *losses.py* ###Code # Set up data loaders from datasets import TripletMNIST triplet_train_dataset = TripletMNIST(train_dataset) # Returns triplets of images triplet_test_dataset = TripletMNIST(test_dataset) batch_size = 128 kwargs = {'num_workers': 1, 'pin_memory': True} if cuda else {} triplet_train_loader = torch.utils.data.DataLoader(triplet_train_dataset, batch_size=batch_size, shuffle=True, **kwargs) triplet_test_loader = torch.utils.data.DataLoader(triplet_test_dataset, batch_size=batch_size, shuffle=False, **kwargs) # Set up the network and training parameters from networks import EmbeddingNet, TripletNet from losses import TripletLoss margin = 1. embedding_net = EmbeddingNet() model = TripletNet(embedding_net) if cuda: model.cuda() loss_fn = TripletLoss(margin) lr = 1e-3 optimizer = optim.Adam(model.parameters(), lr=lr) scheduler = lr_scheduler.StepLR(optimizer, 8, gamma=0.1, last_epoch=-1) n_epochs = 20 log_interval = 500 fit(triplet_train_loader, triplet_test_loader, model, loss_fn, optimizer, scheduler, n_epochs, cuda, log_interval) train_embeddings_tl, train_labels_tl = extract_embeddings(train_loader, model) plot_embeddings(train_embeddings_tl, train_labels_tl) val_embeddings_tl, val_labels_tl = extract_embeddings(test_loader, model) plot_embeddings(val_embeddings_tl, val_labels_tl) ###Output _____no_output_____ ###Markdown Online pair/triplet selection - negative miningThere are couple of problems with siamese and triplet networks.1. The number of possible pairs/triplets grows **quadratically/cubically** with the number of examples. It's infeasible to process them all2. We generate pairs/triplets randomly. As the training continues, more and more pairs/triplets are easy to deal with (their loss value is very small or even 0), preventing the network from training. We need to provide the network with **hard examples**.3. Each image that is fed to the network is used only for computation of contrastive/triplet loss for only one pair/triplet. The computation is somewhat wasted; once the embedding is computed, it could be reused for many pairs/triplets.To deal with that efficiently, we'll feed a network with standard mini-batches as we did for classification. The loss function will be responsible for selection of hard pairs and triplets within mini-batch. In these case, if we feed the network with 16 images per 10 classes, we can process up to $159*160/2 = 12720$ pairs and $10*16*15/2*(9*16) = 172800$ triplets, compared to 80 pairs and 53 triplets in previous implementation.We can find some strategies on how to select triplets in [2] and [3] *Alexander Hermans, Lucas Beyer, Bastian Leibe, [In Defense of the Triplet Loss for Person Re-Identification](https://arxiv.org/pdf/1703.07737), 2017* Online pair selection Steps1. Create **BalancedBatchSampler** - samples $N$ classes and $M$ samples *datasets.py*2. Create data loaders with the batch sampler3. Define **embedding** *(mapping)* network $f(x)$ - **EmbeddingNet** from *networks.py*4. Define a **PairSelector** that takes embeddings and original labels and returns valid pairs within a minibatch5. Define **OnlineContrastiveLoss** that will use a *PairSelector* and compute *ContrastiveLoss* on such pairs6. Train the network! ###Code from datasets import BalancedBatchSampler # We'll create mini batches by sampling labels that will be present in the mini batch and number of examples from each class train_batch_sampler = BalancedBatchSampler(train_dataset.train_labels, n_classes=10, n_samples=25) test_batch_sampler = BalancedBatchSampler(test_dataset.test_labels, n_classes=10, n_samples=25) kwargs = {'num_workers': 1, 'pin_memory': True} if cuda else {} online_train_loader = torch.utils.data.DataLoader(train_dataset, batch_sampler=train_batch_sampler, **kwargs) online_test_loader = torch.utils.data.DataLoader(test_dataset, batch_sampler=test_batch_sampler, **kwargs) # Set up the network and training parameters from networks import EmbeddingNet from losses import OnlineContrastiveLoss from utils import AllPositivePairSelector, HardNegativePairSelector # Strategies for selecting pairs within a minibatch margin = 1. embedding_net = EmbeddingNet() model = embedding_net if cuda: model.cuda() loss_fn = OnlineContrastiveLoss(margin, HardNegativePairSelector()) lr = 1e-3 optimizer = optim.Adam(model.parameters(), lr=lr) scheduler = lr_scheduler.StepLR(optimizer, 8, gamma=0.1, last_epoch=-1) n_epochs = 20 log_interval = 250 all_embeddings = fit(online_train_loader, online_test_loader, model, loss_fn, optimizer, scheduler, n_epochs, cuda, log_interval) train_embeddings_ocl, train_labels_ocl = extract_embeddings(train_loader, model) plot_embeddings(train_embeddings_ocl, train_labels_ocl) val_embeddings_ocl, val_labels_ocl = extract_embeddings(test_loader, model) plot_embeddings(val_embeddings_ocl, val_labels_ocl) ###Output _____no_output_____ ###Markdown Online triplet selection Steps1. Create **BalancedBatchSampler** - samples $N$ classes and $M$ samples *datasets.py*2. Create data loaders with the batch sampler3. Define **embedding** *(mapping)* network $f(x)$ - **EmbeddingNet** from *networks.py*4. Define a **TripletSelector** that takes embeddings and original labels and returns valid triplets within a minibatch5. Define **OnlineTripletLoss** that will use a *TripletSelector* and compute *TripletLoss* on such pairs6. Train the network! ###Code from datasets import BalancedBatchSampler # We'll create mini batches by sampling labels that will be present in the mini batch and number of examples from each class train_batch_sampler = BalancedBatchSampler(train_dataset.train_labels, n_classes=10, n_samples=25) test_batch_sampler = BalancedBatchSampler(test_dataset.test_labels, n_classes=10, n_samples=25) kwargs = {'num_workers': 1, 'pin_memory': True} if cuda else {} online_train_loader = torch.utils.data.DataLoader(train_dataset, batch_sampler=train_batch_sampler, **kwargs) online_test_loader = torch.utils.data.DataLoader(test_dataset, batch_sampler=test_batch_sampler, **kwargs) # Set up the network and training parameters from networks import EmbeddingNet from losses import OnlineTripletLoss from utils import AllTripletSelector,HardestNegativeTripletSelector, RandomNegativeTripletSelector, SemihardNegativeTripletSelector # Strategies for selecting triplets within a minibatch from metrics import AverageNonzeroTripletsMetric margin = 1. embedding_net = EmbeddingNet() model = embedding_net if cuda: model.cuda() loss_fn = OnlineTripletLoss(margin, RandomNegativeTripletSelector(margin)) lr = 1e-3 optimizer = optim.Adam(model.parameters(), lr=lr, weight_decay=1e-4) scheduler = lr_scheduler.StepLR(optimizer, 8, gamma=0.1, last_epoch=-1) n_epochs = 20 log_interval = 150 fit(online_train_loader, online_test_loader, model, loss_fn, optimizer, scheduler, n_epochs, cuda, log_interval, metrics=[AverageNonzeroTripletsMetric()]) train_embeddings_otl, train_labels_otl = extract_embeddings(train_loader, model) plot_embeddings(train_embeddings_otl, train_labels_otl) val_embeddings_otl, val_labels_otl = extract_embeddings(test_loader, model) plot_embeddings(val_embeddings_otl, val_labels_otl) display_emb_online, display_emb, display_label_online, display_label = train_embeddings_ocl, train_embeddings_cl, train_labels_ocl, train_labels_cl # display_emb_online, display_emb, display_label_online, display_label = val_embeddings_ocl, val_embeddings_cl, val_labels_ocl, val_labels_cl x_lim = (np.min(display_emb_online[:,0]), np.max(display_emb_online[:,0])) y_lim = (np.min(display_emb_online[:,1]), np.max(display_emb_online[:,1])) x_lim = (min(x_lim[0], np.min(display_emb[:,0])), max(x_lim[1], np.max(display_emb[:,0]))) y_lim = (min(y_lim[0], np.min(display_emb[:,1])), max(y_lim[1], np.max(display_emb[:,1]))) plot_embeddings(display_emb, display_label, x_lim, y_lim) plot_embeddings(display_emb_online, display_label_online, x_lim, y_lim) display_emb_online, display_emb, display_label_online, display_label = train_embeddings_otl, train_embeddings_tl, train_labels_otl, train_labels_tl # display_emb_online, display_emb, display_label_online, display_label = val_embeddings_otl, val_embeddings_tl, val_labels_otl, val_labels_tl x_lim = (np.min(display_emb_online[:,0]), np.max(display_emb_online[:,0])) y_lim = (np.min(display_emb_online[:,1]), np.max(display_emb_online[:,1])) x_lim = (min(x_lim[0], np.min(display_emb[:,0])), max(x_lim[1], np.max(display_emb[:,0]))) y_lim = (min(y_lim[0], np.min(display_emb[:,1])), max(y_lim[1], np.max(display_emb[:,1]))) plot_embeddings(display_emb, display_label, x_lim, y_lim) plot_embeddings(display_emb_online, display_label_online, x_lim, y_lim) ###Output _____no_output_____ ###Markdown ExperimentsWe'll go through learning feature embeddings using different loss functions on MNIST dataset. This is just for visualization purposes, thus we'll be using 2-dimensional embeddings which isn't the best choice in practice.For every experiment the same embedding network is used (32 conv 5x5 -> PReLU -> MaxPool 2x2 -> 64 conv 5x5 -> PReLU -> MaxPool 2x2 -> Dense 256 -> PReLU -> Dense 256 -> PReLU -> Dense 2) and we don't do any hyperparameter search. Prepare datasetWe'll be working on MNIST dataset ###Code import torch from torchvision.datasets import FashionMNIST from torchvision import transforms mean, std = 0.28604059698879553, 0.35302424451492237 batch_size = 256 train_dataset = FashionMNIST('../data/FashionMNIST', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((mean,), (std,)) ])) test_dataset = FashionMNIST('../data/FashionMNIST', train=False, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((mean,), (std,)) ])) cuda = torch.cuda.is_available() kwargs = {'num_workers': 1, 'pin_memory': True} if cuda else {} train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, **kwargs) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False, **kwargs) n_classes = 10 ###Output _____no_output_____ ###Markdown Common setup ###Code import torch from torch.optim import lr_scheduler import torch.optim as optim from torch.autograd import Variable from trainer import fit import numpy as np cuda = torch.cuda.is_available() %matplotlib inline import matplotlib import matplotlib.pyplot as plt fashion_mnist_classes = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'] mnist_classes = fashion_mnist_classes def plot_embeddings(embeddings, targets, xlim=None, ylim=None): plt.figure(figsize=(10,10)) for i in range(10): inds = np.where(targets==i)[0] plt.scatter(embeddings[inds,0], embeddings[inds,1], alpha=0.5, color=colors[i]) if xlim: plt.xlim(xlim[0], xlim[1]) if ylim: plt.ylim(ylim[0], ylim[1]) plt.legend(mnist_classes) def extract_embeddings(dataloader, model): with torch.no_grad(): model.eval() embeddings = np.zeros((len(dataloader.dataset), 2)) labels = np.zeros(len(dataloader.dataset)) k = 0 for images, target in dataloader: if cuda: images = images.cuda() embeddings[k:k+len(images)] = model.get_embedding(images).data.cpu().numpy() labels[k:k+len(images)] = target.numpy() k += len(images) return embeddings, labels ###Output _____no_output_____ ###Markdown Triplet networkWe'll train a triplet network, that takes an anchor, positive (same class as anchor) and negative (different class than anchor) examples. The objective is to learn embeddings such that the anchor is closer to the positive example than it is to the negative example by some margin value.![alt text](images/anchor_negative_positive.png "Source: FaceNet")Source: [2] *Schroff, Florian, Dmitry Kalenichenko, and James Philbin. [Facenet: A unified embedding for face recognition and clustering.](https://arxiv.org/abs/1503.03832) CVPR 2015.***Triplet loss**: $L_{triplet}(x_a, x_p, x_n) = max(0, m + \lVert f(x_a)-f(x_p)\rVert_2^2 - \lVert f(x_a)-f(x_n)\rVert_2^2$\) Steps1. Create a dataset returning triplets - **TripletMNIST** class from *datasets.py*, wrapper for MNIST-like classes2. Define **embedding** *(mapping)* network $f(x)$ - **EmbeddingNet** from *networks.py*3. Define **triplet** network processing triplets - **TripletNet** wrapping *EmbeddingNet*4. Train the network with **TripletLoss** - *losses.py* ###Code # Set up data loaders from datasets import TripletMNIST triplet_train_dataset = TripletMNIST(train_dataset) # Returns triplets of images triplet_test_dataset = TripletMNIST(test_dataset) batch_size = 128 kwargs = {'num_workers': 1, 'pin_memory': True} if cuda else {} triplet_train_loader = torch.utils.data.DataLoader(triplet_train_dataset, batch_size=batch_size, shuffle=True, **kwargs) triplet_test_loader = torch.utils.data.DataLoader(triplet_test_dataset, batch_size=batch_size, shuffle=False, **kwargs) # Set up the network and training parameters from networks import EmbeddingNet, TripletNet from losses import TripletLoss margin = 1. embedding_net = EmbeddingNet() model = TripletNet(embedding_net) if cuda: model.cuda() loss_fn = TripletLoss(margin) lr = 1e-3 optimizer = optim.Adam(model.parameters(), lr=lr) scheduler = lr_scheduler.StepLR(optimizer, 8, gamma=0.1, last_epoch=-1) n_epochs = 20 log_interval = 500 fit(triplet_train_loader, triplet_test_loader, model, loss_fn, optimizer, scheduler, n_epochs, cuda, log_interval) train_embeddings_tl, train_labels_tl = extract_embeddings(train_loader, model) plot_embeddings(train_embeddings_tl, train_labels_tl) val_embeddings_tl, val_labels_tl = extract_embeddings(test_loader, model) plot_embeddings(val_embeddings_tl, val_labels_tl) ###Output _____no_output_____
pgm/scatter.ipynb
###Markdown testing graph ###Code import numpy as np x = np.linspace(0,1,100) y = np.linspace(0,5,100) np.random.shuffle(x) plt.scatter(x,y) plt.bar(x,y) ###Output _____no_output_____
gantry-jupyterhub/time_series/pd_arima/pd_arima.ipynb
###Markdown Time Series Forecasting reference site : [Time Series Forecasting](https://h3imdallr.github.io/2017-08-19/arima/) Analysis Gantry CPU using time Series with ARIMA ###Code %matplotlib inline import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns # EDA: 시계열 데이터 확인하기 import datetime from dateutil.relativedelta import relativedelta import statsmodels import statsmodels.api as sm from statsmodels.tsa.stattools import acf from statsmodels.tsa.stattools import pacf from statsmodels.tsa.seasonal import seasonal_decompose df = pd.read_csv('../csv_data/datasets_20066_26008_portland-oregon-average-monthly-.csv', index_col='Month') #df = pd.read_csv('../../../csv_data/prophet_data.csv', index_col='date') df.head() df.dropna(axis=0, inplace=True) df.columns = ['ridership'] print(df.head(), '\n...\n', df.tail()) df = df.iloc[:-1] print(df.tail()) df.index = pd.to_datetime(df.index) type(df.index); print(df.head(), '\n...\n', df.tail()) time_window_l = datetime.datetime(2020, 6, 29) time_window_r = datetime.datetime(2020, 7, 10) temp_df = df[ (df.index >= time_window_l) & (df.index <= time_window_r) ] print(temp_df) temp_df = df[:time_window_l] print(temp_df) df['ridership'] = df['ridership'].astype(float) print(df.dtypes) df.plot() decomposition = seasonal_decompose(df['ridership'], period=12) plt.rcParams['figure.figsize'] = [10,10] fig = plt.figure() fig = decomposition.plot() from statsmodels.tsa.stattools import adfuller def test_stationarity(timeseries): rolmean = timeseries.rolling(12).mean() rolstd = timeseries.rolling(12).std() fig = plt.figure(figsize=(10, 6 )) orig = plt.plot(timeseries, color='blue', label='Original') mean = plt.plot(rolmean, color='red', label='Rolling Mean') std = plt.plot(rolstd, color='black', label = 'Rolling Std') plt.legend(loc='best'); plt.title('Rolling Mean & Standard Deviation') plt.show() print('<Results of Dickey-Fuller Test>') dftest = adfuller(timeseries, autolag='AIC') dfoutput = pd.Series(dftest[0:4], index = ['Test Statistic', 'p-value', '#Lags Used', 'Number of Observations Used']) for key,value in dftest[4].items(): dfoutput['Critical Value (%s)'%key] = value print(dfoutput) test_stationarity(df['ridership']) df['first_difference'] = df['ridership'] - df['ridership'].shift(1) test_stationarity(df.first_difference.dropna(inplace=False)) df['seasonal_first_difference'] = df['first_difference'] - df['first_difference'].shift(12) test_stationarity(df.seasonal_first_difference.dropna(inplace=False)) fig = plt.figure(figsize=(12,8)) ax1 = fig.add_subplot(211) fig = sm.graphics.tsa.plot_acf(df.seasonal_first_difference.iloc[13:], lags=40, ax=ax1) ax2 = fig.add_subplot(212) fig = sm.graphics.tsa.plot_pacf(df.seasonal_first_difference.iloc[13:],lags=40,ax=ax2) mod = sm.tsa.SARIMAX(df['ridership'],order=(0,1,0), seasonal_order=(1,1,1,12)) results = mod.fit() print (results.summary()) plt.rcParams['figure.figsize'] = [10,5] results.plot_diagnostics(); plt.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0); # 시계열 예측 df['forecast'] = results.predict(start = len(df)-12, end= len(df), dynamic= True) df[['ridership', 'forecast']].plot() df[-24:] # 24개월 예측 df['forecast'] = results.predict(start = len(df)-24, end= len(df), dynamic= True) df[['ridership', 'forecast']].plot() #start = datetime.datetime.strptime("2020-07-01", "%Y-%m-%d") ## >2020-07-01 00:00:00 #date_list = [start + relativedelta(months=x) for x in range(0,12)] ##> 1982/7/1,8/1, ... 1983/6/1 #future_df = pd.DataFrame(index=date_list, columns= df.columns) #new_df = pd.concat([df, future_df]) #concatenated dataframe ## print(new_df.head(),'\n...\n',new_df.tail()) #new_df['forecast'] = results.predict(start = len(df), end = len(df)+11, dynamic= True) #new_df[['ridership', 'forecast']].ix[-48:].plot() #print(df.forecast[-12:]) ###Output _____no_output_____
codes/labs_lecture03/lab01_python/python_introduction.ipynb
###Markdown Lab 01: Introduction to Python Strings ###Code s1='hello' print(s1) type(s1) s2='world' print(s1,s2) print(s1,'\t',s2) print(s1.upper()) ###Output HELLO ###Markdown Numbers ###Code x=5 y=-0.3 print(x) print(y) type(x) type(y) z=x+y print(z) print('x+y =' , z) x=2.35789202950400 print('x={:2.5f}, x={:.1f}'.format(x,x)) ###Output x=2.35789, x=2.4 ###Markdown Boolean ###Code b1=True b2=False print(b1) print(b2) type(b1) ###Output _____no_output_____ ###Markdown Loops ###Code for i in range(0,10): print(i) for i in range(1,10): print('i=', i , '\t i^2=', i**2) ###Output i= 1 i^2= 1 i= 2 i^2= 4 i= 3 i^2= 9 i= 4 i^2= 16 i= 5 i^2= 25 i= 6 i^2= 36 i= 7 i^2= 49 i= 8 i^2= 64 i= 9 i^2= 81 ###Markdown Loops with step size ###Code for i in range(0,10,2): print(i) ###Output 0 2 4 6 8 ###Markdown If statement ###Code x=5 if x == 0: print('x equal zero') else: print('x is non zero') loud=False mystring='hello' if loud: print(mystring.upper()) else: print(mystring) ###Output hello ###Markdown Intendation ###Code for i in range(-3,3): if i<0: print(i , ' is negative') elif i>0: print(i,' is positive' ) else: print(i,' is equal to zero') print('out of the loop') for i in range(-3,3): if i<0: print(i , ' is negative') elif i>0: print(i,' is positive' ) else: print(i,' is equal to zero') print('in the loop') for i in range(-3,3): if i<0: print(i , ' is negative') elif i>0: print(i,' is positive' ) else: print(i,' is equal to zero') print('in the else statement') ###Output -3 is negative -2 is negative -1 is negative 0 is equal to zero in the else statement 1 is positive 2 is positive ###Markdown Load libraries List all libraries modudels: lib. + tabList properties of the module: lib.abs + shit + tab ###Code import numpy as np np.abs ###Output _____no_output_____ ###Markdown Functions ###Code def myfun(x,y): z = x**2 + y return z z=myfun(3,1) print(z) ###Output 10 ###Markdown Functions are just another type of object, like strings, floats, or boolean ###Code type(myfun) ###Output _____no_output_____ ###Markdown The sign function ###Code def sign(x): if x > 0: mystring='positive' elif x < 0: mystring= 'negative' else: mystring= 'zero' return mystring string= sign(0.5) print(string) ###Output positive ###Markdown The greeting function ###Code def hello(name, loud): if loud: print('HELLO', name.upper(), '!') else: print('Hello', name) hello('Bob', False) hello('Fred', True) # Prints "HELLO, FRED!" ###Output Hello Bob HELLO FRED ! ###Markdown Classes A simple class for complex numbers : real + i imag ###Code class Complex: # constructor: def __init__( self, real_part, imaginary_part ): self.re = real_part self.im = imaginary_part # methods/functions: def display(self): print( self.re,'+',self.im,'i') def compute_modulus(self): modulus = ( self.re**2 + self.im**2 )**(1/2) return modulus def multiply_by(self,scalar): self.re = self.re * scalar self.im = self.im * scalar # Create an instance z=Complex(4,3) print(z) # Access the attributes print(z.re) print(z.im) # Use the display() method z.display() # Compute the modulus m=z.compute_modulus() print(m) # Change the attributes z.multiply_by(5) z.display() print(z.re) ###Output 20 + 15 i 20 ###Markdown Optional Load and save data ###Code pwd ls -al cd .. pwd cd lab01_python data = np.loadtxt('../data/misc/profit_population.txt', delimiter=',') print(data) new_data = 2* data np.savetxt('../data/misc/profit_population_new.txt', new_data, delimiter=',', fmt='%2.5f') %whos ###Output Variable Type Data/Info -------------------------------- Complex type <class '__main__.Complex'> b1 bool True b2 bool False data ndarray 97x2: 194 elems, type `float64`, 1552 bytes hello function <function hello at 0x10544b400> i int 2 loud bool False m float 5.0 myfun function <function myfun at 0x105447c80> mystring str hello new_data ndarray 97x2: 194 elems, type `float64`, 1552 bytes np module <module 'numpy' from '/Us<...>kages/numpy/__init__.py'> s1 str hello s2 str world sign function <function sign at 0x10544b268> string str positive x int 5 y float -0.3 z Complex <__main__.Complex object at 0x10544a710> ###Markdown Plotting data ###Code # Visualization library %matplotlib inline from IPython.display import set_matplotlib_formats set_matplotlib_formats('png2x','pdf') import matplotlib.pyplot as plt x = np.linspace(0,6*np.pi,100) #print(x) y = np.sin(x) plt.figure(1) plt.plot(x, y,label='sin'.format(i=1)) plt.legend(loc='best') plt.title('Sin plotting') plt.xlabel('x') plt.ylabel('y') plt.show() ###Output _____no_output_____ ###Markdown Vectorization and efficient linear algebra computations No vectorization ###Code import time n = 10**7 x = np.linspace(0,1,n) y = np.linspace(0,2,n) start = time.time() z = 0 for i in range(len(x)): z += x[i]*y[i] end = time.time() - start print(z) print('Time=',end) ###Output 6666666.999999491 Time= 3.809494733810425 ###Markdown Vectorization ###Code start = time.time() z = x.T.dot(y) end = time.time() - start print(z) print('Time=',end) ###Output 6666667.000000033 Time= 0.010256052017211914 ###Markdown Lab 03.01: Introduction to Python Strings ###Code s1='hello' print(s1) type(s1) s2='world' print(s1,s2) print(s1,'\t',s2) print(s1.upper()) ###Output HELLO ###Markdown Numbers ###Code x=5 y=-0.3 print(x) print(y) type(x) type(y) z=x+y print(z) print('x+y =' , z) x=2.35789202950400 print('x={:2.5f}, x={:.1f}'.format(x,x)) ###Output x=2.35789, x=2.4 ###Markdown Boolean ###Code b1=True b2=False print(b1) print(b2) type(b1) ###Output _____no_output_____ ###Markdown Loops ###Code for i in range(0,10): print(i) for i in range(1,10): print('i=', i , '\t i^2=', i**2) ###Output i= 1 i^2= 1 i= 2 i^2= 4 i= 3 i^2= 9 i= 4 i^2= 16 i= 5 i^2= 25 i= 6 i^2= 36 i= 7 i^2= 49 i= 8 i^2= 64 i= 9 i^2= 81 ###Markdown Loops with step size ###Code for i in range(0,10,2): print(i) ###Output 0 2 4 6 8 ###Markdown If statement ###Code x=5 if x == 0: print('x equal zero') else: print('x is non zero') loud=False mystring='hello' if loud: print(mystring.upper()) else: print(mystring) ###Output hello ###Markdown Intendation ###Code for i in range(-3,3): if i<0: print(i , ' is negative') elif i>0: print(i,' is positive' ) else: print(i,' is equal to zero') print('out of the loop') for i in range(-3,3): if i<0: print(i , ' is negative') elif i>0: print(i,' is positive' ) else: print(i,' is equal to zero') print('in the loop') for i in range(-3,3): if i<0: print(i , ' is negative') elif i>0: print(i,' is positive' ) else: print(i,' is equal to zero') print('in the else statement') ###Output -3 is negative -2 is negative -1 is negative 0 is equal to zero in the else statement 1 is positive 2 is positive ###Markdown Load libraries List all libraries modudels: lib. + tabList properties of the module: lib.abs + shit + tab ###Code import numpy as np np.abs ###Output _____no_output_____ ###Markdown Functions ###Code def myfun(x,y): z = x**2 + y return z z=myfun(3,1) print(z) ###Output 10 ###Markdown Functions are just another type of object, like strings, floats, or boolean ###Code type(myfun) ###Output _____no_output_____ ###Markdown The sign function ###Code def sign(x): if x > 0: mystring='positive' elif x < 0: mystring= 'negative' else: mystring= 'zero' return mystring string= sign(0.5) print(string) ###Output positive ###Markdown The greeting function ###Code def hello(name, loud): if loud: print('HELLO', name.upper(), '!') else: print('Hello', name) hello('Bob', False) hello('Fred', True) # Prints "HELLO, FRED!" ###Output Hello Bob HELLO FRED ! ###Markdown Classes A simple class for complex numbers : real + i imag ###Code class Complex: # constructor: def __init__( self, real_part, imaginary_part ): self.re = real_part self.im = imaginary_part # methods/functions: def display(self): print( self.re,'+',self.im,'i') def compute_modulus(self): modulus = ( self.re**2 + self.im**2 )**(1/2) return modulus def multiply_by(self,scalar): self.re = self.re * scalar self.im = self.im * scalar # Create an instance z=Complex(4,3) print(z) # Access the attributes print(z.re) print(z.im) # Use the display() method z.display() # Compute the modulus m=z.compute_modulus() print(m) # Change the attributes z.multiply_by(5) z.display() print(z.re) ###Output 20 + 15 i 20 ###Markdown Optional Load and save data ###Code pwd ls -al cd .. pwd cd lab01_python data = np.loadtxt('../data/misc/profit_population.txt', delimiter=',') print(data) new_data = 2* data np.savetxt('../data/misc/profit_population_new.txt', new_data, delimiter=',', fmt='%2.5f') %whos ###Output Variable Type Data/Info -------------------------------- Complex type <class '__main__.Complex'> b1 bool True b2 bool False data ndarray 97x2: 194 elems, type `float64`, 1552 bytes hello function <function hello at 0x109e14620> i int 2 loud bool False m float 5.0 myfun function <function myfun at 0x109e0ee18> mystring str hello new_data ndarray 97x2: 194 elems, type `float64`, 1552 bytes np module <module 'numpy' from '/Us<...>kages/numpy/__init__.py'> s1 str hello s2 str world sign function <function sign at 0x109e14158> string str positive x int 5 y float -0.3 z Complex <__main__.Complex object at 0x109e11710> ###Markdown Plotting data ###Code # Visualization library %matplotlib inline from IPython.display import set_matplotlib_formats set_matplotlib_formats('png2x','pdf') import matplotlib.pyplot as plt x = np.linspace(0,6*np.pi,100) #print(x) y = np.sin(x) plt.figure(1) plt.plot(x, y,label='sin'.format(i=1)) plt.legend(loc='best') plt.title('Sin plotting') plt.xlabel('x') plt.ylabel('y') plt.show() ###Output _____no_output_____ ###Markdown Vectorization and efficient linear algebra computations No vectorization ###Code import time n = 10**7 x = np.linspace(0,1,n) y = np.linspace(0,2,n) start = time.time() z = 0 for i in range(len(x)): z += x[i]*y[i] end = time.time() - start print(z) print('Time=',end) ###Output 6666667.0 Time= 3.323513984680176 ###Markdown Vectorization ###Code start = time.time() z = x.T.dot(y) end = time.time() - start print(z) print('Time=',end) ###Output 6666667.0 Time= 0.015230894088745117
cleaning data in python/Exploring your data/.ipynb_checkpoints/05. Visualizing multiple variables with boxplots-checkpoint.ipynb
###Markdown Visualizing multiple variables with boxplotsHistograms are great ways of visualizing single variables. To visualize multiple variables, boxplots are useful, especially when one of the variables is categorical.In this exercise, your job is to use a boxplot to compare the 'initial_cost' across the different values of the 'Borough' column. The pandas .boxplot() method is a quick way to do this, in which you have to specify the column and by parameters. Here, you want to visualize how 'initial_cost' varies by 'Borough'.pandas and matplotlib.pyplot have been imported for you as pd and plt, respectively, and the DataFrame has been pre-loaded as df. Instructions- Using the .boxplot() method of df, create a boxplot of 'initial_cost' across the different values of 'Borough'.- Display the plot. ###Code # Import pandas import pandas as pd # Read the file into a DataFrame: df df = pd.read_csv('dob_job_application_filings_subset.csv') # Import necessary modules import pandas as pd import matplotlib.pyplot as plt # Create the boxplot df.boxplot(column='Doc #', by='Lot', rot=90) # Display the plot plt.show() ###Output _____no_output_____
mini-projects/aic-5_1_10-api/api_data_wrangling_mini_project.ipynb
###Markdown This exercise will require you to pull some data from the Qunadl API. Qaundl is currently the most widely used aggregator of financial market data. As a first step, you will need to register a free account on the http://www.quandl.com website. After you register, you will be provided with a unique API key, that you should store: ###Code # Store the API key as a string - according to PEP8, constants are always named in all upper case API_KEY = 'VHstzZDzTg_hokZ4xq4J' ###Output _____no_output_____ ###Markdown Qaundl has a large number of data sources, but, unfortunately, most of them require a Premium subscription. Still, there are also a good number of free datasets. For this mini project, we will focus on equities data from the Frankfurt Stock Exhange (FSE), which is available for free. We'll try and analyze the stock prices of a company called Carl Zeiss Meditec, which manufactures tools for eye examinations, as well as medical lasers for laser eye surgery: https://www.zeiss.com/meditec/int/home.html. The company is listed under the stock ticker AFX_X. You can find the detailed Quandl API instructions here: https://docs.quandl.com/docs/time-series While there is a dedicated Python package for connecting to the Quandl API, we would prefer that you use the *requests* package, which can be easily downloaded using *pip* or *conda*. You can find the documentation for the package here: http://docs.python-requests.org/en/master/ Finally, apart from the *requests* package, you are encouraged to not use any third party Python packages, such as *pandas*, and instead focus on what's available in the Python Standard Library (the *collections* module might come in handy: https://pymotw.com/3/collections/).Also, since you won't have access to DataFrames, you are encouraged to us Python's native data structures - preferably dictionaries, though some questions can also be answered using lists.You can read more on these data structures here: https://docs.python.org/3/tutorial/datastructures.html Keep in mind that the JSON responses you will be getting from the API map almost one-to-one to Python's dictionaries. Unfortunately, they can be very nested, so make sure you read up on indexing dictionaries in the documentation provided above. ###Code # First, import the relevant modules import requests import pprint import json # Now, call the Quandl API and pull out a small sample of the data (only one day) to get a glimpse # into the JSON structure that will be returned # Detailed info: https://www.quandl.com/data/FSE/AFX_X-Carl-Zeiss-Meditec-AFX_X response = requests.get(f'https://www.quandl.com/api/v3/datasets/FSE/AFX_X.json?api_key={API_KEY}&start_date=2017-01-01&end_date=2017-12-31') # Detect the object type of the returned 'response' variable type(response) # Inspect available attributes and methods offered by 'response' dir(response) # Inspect the JSON structure of the object you created, and take note of how nested it is, # as well as the overall structure json_response = response.json() pprint.pprint(json_response) # Obtain the whole dataset dataset = json_response.get('dataset') # Obtain column names column_names = dataset.get('column_names') print(column_names) # Store json response' data as ordered dictionary with the date is the key table = [] for row in dataset.get('data'): table.append(dict(zip(column_names, row))) pprint.pprint(table) highest = table[0].get(column_names[2]) # High lowest = table[0].get(column_names[3]) # Low largest_1day = highest - lowest largest_2days = 0 average = table[0].get('Traded Volume') volumes = [average] table_len = len(table) for i in range(1, table_len): # skip the first one # Calculate what the highest and lowest opening prices were for the stock in this period high = table[i].get('High') if highest < high: highest = high low = table[i].get('Low') if lowest > low: lowest = low # What was the largest change in any one day (based on High and Low price)? large_1day = high - low if largest_1day < large_1day: largest_1day = large_1day # Largest change between any two days (based on Closing Price)? prev_close = table[i - 1].get('Close') close = table[i].get('Close') large_2days = abs(close - prev_close) if largest_2days < large_2days: largest_2days = large_2days # Construct volumes list volume = table[i].get('Traded Volume') volumes.append(volume) # Sum daily trading volume average += volume print('Highest:', highest) # 53.54 print('Lowest:', lowest) # 33.62 print('Largest change in a day:', '%.2f' % largest_1day) print('Largest change between two days:', '%.2f' % largest_2days) print('Average daily trading volume:', '%.2f' % (average / table_len)) # What was the median trading volume during the year volumes.sort() middle = (table_len - 1) // 2 if table_len % 2 == 1: # odd size median = volumes[middle] else: # even size median = (volumes[middle] + volumes[middle + 1]) / 2.0 print('Median trading volume during the year:', '%.2f' % median) ###Output Median trading volume during the year: 76286.00 ###Markdown These are your tasks for this mini project:1. Collect data from the Franfurt Stock Exchange, for the ticker AFX_X, for the whole year 2017 (keep in mind that the date format is YYYY-MM-DD).2. Convert the returned JSON object into a Python dictionary.3. Calculate what the highest and lowest opening prices were for the stock in this period.4. What was the largest change in any one day (based on High and Low price)?5. What was the largest change between any two days (based on Closing Price)?6. What was the average daily trading volume during this year?7. (Optional) What was the median trading volume during this year. (Note: you may need to implement your own function for calculating the median.) Verify the result using 3rd party libraries ###Code # List installed packages # help('modules') # Domino failed to run this command # Run once for new environment # ! pip install quandl import pandas as pd import quandl # quandl returns a Pandas DataFrame data = quandl.get("FSE/AFX_X", authtoken="VHstzZDzTg_hokZ4xq4J", start_date='2017-01-01', end_date='2017-12-31') data.head() # Highest opening price: max data['High'].describe() # Lowest closing price: min data['Low'].describe() # What was the largest change in any one day: top row change_1day = data['High'] - data['Low'] change_1day.sort_values(ascending=False, inplace=True) change_1day.head() # What was the largest change between any two days: data['Close'].diff().abs().max() # What was the average (mean) and median (50%) of the trading volume during this year? data['Traded Volume'].describe() ###Output _____no_output_____
HeroesOfPymoli/HeroesOfPymoli_Pandas_Final.ipynb
###Markdown Note* Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps. ###Code # Dependencies and Setup import pandas as pd # File to Load (Remember to Change These) file_to_load = "purchase_data.csv" # Read Purchasing File and store into Pandas data frame purchase_data = pd.read_csv(file_to_load) purchase_data.head() ###Output _____no_output_____ ###Markdown Player Count * Display the total number of players ###Code #Finding the unique count of players using nunique function unique_count = purchase_data["SN"].nunique(dropna = True) #Creating a DataFrame for the unique value count of players Total_players = pd.DataFrame([{"Total Players": unique_count }]) #Printing the DataFrame Total_players ###Output _____no_output_____ ###Markdown Purchasing Analysis (Total) * Run basic calculations to obtain number of unique items, average price, etc.* Create a summary data frame to hold the results* Optional: give the displayed data cleaner formatting* Display the summary data frame ###Code #Calculating unique count of Items unique_item = purchase_data["Item Name"].nunique(dropna = True) # Calculating average price of the items from the given data and rounding it by 2 decimals average_price = round(purchase_data["Price"].mean() , 2) # Calculating the total number of unique purchases purchase_count = purchase_data["Purchase ID"].nunique(dropna = True) #Calculating the total revinue Total_rev = purchase_data["Price"].sum() #Defining the DataFrame purchasing_analysis = pd.DataFrame ( { "Number of Unique Items" : [unique_item], "Average Price" : "$" + str(average_price), "Number of Purchases": [purchase_count], "Total Revenue" : "$" + str(Total_rev) }) #Printing the DataFrame for summary purchasing_analysis ###Output _____no_output_____ ###Markdown Gender Demographics * Percentage and Count of Male Players* Percentage and Count of Female Players* Percentage and Count of Other / Non-Disclosed ###Code #Finding the count of unique Players by doing Group by Gender unique_gender = purchase_data.groupby("Gender") ["SN"].nunique(dropna = True) #Creating a DataFrame count_players = pd.DataFrame(unique_gender) #Renaming the columns of DataFrame count_players = count_players.rename(columns={"SN" : "Total Count"}) #Calculating the sum of Total unique players sum = count_players["Total Count"].sum() #Calculating the percentage of players by Gender player_percent = count_players["Total Count"] / sum * 100 #Rounding the percentage of players to 2 decimals count_players["Percentage of Players"] = round(player_percent, 2) #Formating the percentage column to add " % " at the end count_players.style.format({"Percentage of Players" : "{:,.2f}%"} ) ###Output _____no_output_____ ###Markdown Purchasing Analysis (Gender) * Run basic calculations to obtain purchase count, avg. purchase price, avg. purchase total per person etc. by gender* Create a summary data frame to hold the results* Optional: give the displayed data cleaner formatting* Display the summary data frame ###Code #Calculating the total purchases purchase_sum = purchase_data.groupby("Gender") ["Price"].sum() purchase_sum #Calculating the purchase average price by Gender and rounding it to 2 Decimals purchase_avg = round(purchase_data.groupby("Gender") ["Price"].mean() , 2) purchase_avg #Counting the unique purchase ID's by Gender purchase_count = purchase_data.groupby("Gender") ["Purchase ID"].nunique(dropna = True) purchase_count count = purchase_data.groupby("Gender") ["Price"].mean() #Calculating and Rounding the Average Purchase per person to 2 decimal avg_purchase_per_person = round(purchase_sum/unique_gender, 2) #Defining the dataframe and adding columns for Purchase avg, purchase count and avg purchase per person df1 = pd.DataFrame(purchase_sum) df1 ["Average Purchase Price"] = purchase_avg df1 ["Purchase count"] = purchase_count df1 ["Avg Total Purchase per Person"] = avg_purchase_per_person #Renaming columns and creating a new DataFrame for final output Pur_analysis_gender = df1.rename(columns={"Price": "Total Purchase Value", }) #Formating the percentage column to add " $" at the front of Values Pur_analysis_gender.style.format({"Total Purchase Value": "${:,.2f}", "Average Purchase Price": "${:,.2f}", "Avg Total Purchase per Person": "${:,.2f}" }) ###Output _____no_output_____ ###Markdown Age Demographics * Establish bins for ages* Categorize the existing players using the age bins. Hint: use pd.cut()* Calculate the numbers and percentages by age group* Create a summary data frame to hold the results* Optional: round the percentage column to two decimal points* Display Age Demographics Table ###Code #Define the bins for age groups bins_age = [0, 9.99, 14, 19, 24, 29, 34, 39, 100] #Define the lables group names grouped_name = ["< 10", "10-14", "15-19", "20-24", "25-29", "30-34", "35-39", "40+"] #Adding Age group classification column and cut it to group into buckets purchase_data["Age Group"] = pd.cut(purchase_data["Age"],bins_age, labels=grouped_name) #Aggregating all the data sets by using group by on Age Group age_group = purchase_data.groupby("Age Group") #Calculating the unique Total age by name total_age = age_group["SN"].nunique() #Calculating the percentage of age group percentage_age = (total_age/sum ) * 100 #Defining the Data Frame age_demographics = pd.DataFrame({"Total Count":total_age,"Percentage of Players": percentage_age}) #Index set to none for siaplaying the final summary age_demographics.index.name = None #Formating the percentage column to add " %" at the end age_demographics.style.format({"Percentage of Players":"{:,.2f}%"}) ###Output _____no_output_____ ###Markdown Purchasing Analysis (Age) * Bin the purchase_data data frame by age* Run basic calculations to obtain purchase count, avg. purchase price, avg. purchase total per person etc. in the table below* Create a summary data frame to hold the results* Optional: give the displayed data cleaner formatting* Display the summary data frame ###Code #Define the bins for age groups bins_age = [0, 9.99, 14, 19, 24, 29, 34, 39, 100] #Define the lables group names grouped_name = [">10", "10-14", "15-19", "20-24", "25-29", "30-34", "35-39", "40+"] #Aggregating all the data sets by using group by on Age Group age_group = purchase_data.groupby("Age Group") #Calculating the count of purchase ID by age group. pur_age_count = age_group["Purchase ID"].count() #Calculating the Avg Purchase Price i.e mean on Price by age Avg_pur_price_age = age_group["Price"].mean() #Calculating the total purchase value total_purchase_value = age_group["Price"].sum() #Calculating the avg purchase price age total Avg_pur_price_age_tot = total_purchase_value/total_age #Defining the DataFrame for Final output age_pur_analysis = pd.DataFrame({"Purchase Count": pur_age_count, "Average Purchase Price": Avg_pur_price_age, "Total Purchase Value":total_purchase_value, "Average Purchase Total per Person": Avg_pur_price_age_tot}) #Index set to none for siaplaying the final summary age_pur_analysis.index.name = None #Formating the percentage column to add " %" at the end age_pur_analysis.style.format({"Average Purchase Price":"${:,.2f}","Total Purchase Value":"${:,.2f}", "Average Purchase Total per Person":"${:,.2f}"}) ###Output _____no_output_____ ###Markdown Top Spenders * Run basic calculations to obtain the results in the table below* Create a summary data frame to hold the results* Sort the total purchase value column in descending order* Optional: give the displayed data cleaner formatting* Display a preview of the summary data frame ###Code #Aggregating the Data by SN top_spenders = purchase_data.groupby("SN") #Counting the Spenders by purchase ID pur_spender = top_spenders["Purchase ID"].count() #Calculating the avg price mean avg_price_spender = top_spenders["Price"].mean() #Calculating the total spenders purchase_total_spender = top_spenders["Price"].sum() #Defining the data frame and assigning values top_spenders = pd.DataFrame({"Purchase Count": pur_spender, "Average Purchase Price": avg_price_spender, "Total Purchase Value":purchase_total_spender}) #Displaying the sorted value ( top 5 ) top_spenders_summary = top_spenders.sort_values(["Total Purchase Value"], ascending=False).head() #Formating the percentage column to add " $" at the front of the values top_spenders_summary.style.format({"Average Purchase Total":"${:,.2f}","Average Purchase Price":"${:,.2f}","Total Purchase Value":"${:,.2f}"}) ###Output _____no_output_____ ###Markdown Most Popular Items * Retrieve the Item ID, Item Name, and Item Price columns* Group by Item ID and Item Name. Perform calculations to obtain purchase count, item price, and total purchase value* Create a summary data frame to hold the results* Sort the purchase count column in descending order* Optional: give the displayed data cleaner formatting* Display a preview of the summary data frame ###Code #Retrieving the Item ID, Item Name, and Item Price columns in a data Frame item_name = purchase_data[["Item ID", "Item Name", "Price"]] #Aggregating and grouping by Item ID and Item Name item_group = item_name.groupby(["Item ID","Item Name"]) #Calculating the count of items on the aggregated data purchasing_item = item_group["Price"].count() #Calculating the total sum of purchases on the aggregated data purchasing_value = (item_group["Price"].sum()) # Calculating the Price per item price = purchasing_value/purchasing_item #Creating a Data Frame and adding values to display the final summary popular_items = pd.DataFrame({"Purchase Count": purchasing_item, "Item Price": price, "Total Purchase Value":purchasing_value}) #Sorting the output by Purchase count and displaying the top 5 most_popular_item = popular_items.sort_values(["Purchase Count"], ascending=False).head() #Formating the percentage column to add " $" at the front of the values most_popular_item.style.format({"Item Price":"${:,.2f}","Total Purchase Value":"${:,.2f}"}) ###Output _____no_output_____ ###Markdown Most Profitable Items * Sort the above table by total purchase value in descending order* Optional: give the displayed data cleaner formatting* Display a preview of the data frame ###Code #Sort the above Data Frame by total purchase value in descending order most_profitable_item = popular_items.sort_values(["Total Purchase Value"],ascending=False).head() #Formating the percentage column to add " $" at the front of the values most_profitable_item.style.format({"Item Price":"${:,.2f}","Total Purchase Value":"${:,.2f}"}) ###Output _____no_output_____
501-EVAL-1dCNN.ipynb
###Markdown Functions ###Code def transform_target(target): return (np.log(target + EPS) - MEAN) / STD def inverse_target(target): return np.exp(MEAN + STD * target) - EPS def np_rmspe(y_true, y_pred): y_true = inverse_target(y_true) y_pred = inverse_target(y_pred) return np.sqrt(np.mean(np.square((y_true - y_pred) / y_true))) def mspe_loss(y_true, y_pred): y_true = K.exp(MEAN + STD * y_true) - EPS y_pred = K.exp(MEAN + STD * y_pred) - EPS return K.sqrt(K.mean(K.square((y_true - y_pred) / y_true))) def rmspe_keras(y_true, y_pred): return K.sqrt(K.mean(K.square((y_true - y_pred) / y_true))) def create_1dcnn(num_columns, num_labels, learning_rate): # input inp = tf.keras.layers.Input(shape=(num_columns,)) x = tf.keras.layers.BatchNormalization()(inp) # 1dcnn x = tf.keras.layers.Dense(256, activation='relu')(x) x = tf.keras.layers.Reshape((16, 16))(x) x = tf.keras.layers.Conv1D(filters=12, kernel_size=2, strides=1, activation='swish')(x) x = tf.keras.layers.MaxPooling1D(pool_size=2)(x) x = tf.keras.layers.Flatten()(x) # ffn for i in range(3): x = tf.keras.layers.Dense(64 // (2 ** i), activation='swish')(x) x = tf.keras.layers.BatchNormalization()(x) x = tf.keras.layers.GaussianNoise(0.01)(x) x = tf.keras.layers.Dropout(0.20)(x) x = tf.keras.layers.Dense(num_labels)(x) model = tf.keras.models.Model(inputs=inp, outputs=x) model.compile( optimizer=tf.keras.optimizers.Adam(learning_rate=learning_rate), loss=mspe_loss, ) return model ###Output _____no_output_____ ###Markdown Loading data ###Code # train df_train = dt.fread(f'./dataset/train_{DATA_NAME}_NN.csv').to_pandas() fea_cols = [f for f in df_train.columns if f.startswith('B_') or f.startswith('T_') or f.startswith('Z_')] # result df_result = dt.fread('./dataset/train.csv').to_pandas() df_result = gen_row_id(df_result) fea_cols_TA = [f for f in fea_cols if 'min_' not in f] df_time_mean = df_train.groupby('time_id')[fea_cols_TA].mean() df_time_mean.columns = [f'{c}_TA_mean' for c in df_time_mean.columns] df_time_mean = df_time_mean.reset_index() df_train = df_train.merge(df_time_mean, on='time_id', how='left') del df_time_mean gc.collect() df_train['target'] = transform_target(df_train['target']) df_train = gen_row_id(df_train) df_train = add_time_fold(df_train, N_FOLD) ###Output _____no_output_____ ###Markdown Evaluation ###Code def add_time_stats(df_train): time_cols = [f for f in df_train.columns if f.endswith('_time')] df_gp_stock = df_train.groupby('stock_id') # df_stats = df_gp_stock[time_cols].mean().reset_index() df_stats.columns = ['stock_id'] + [f'{f}_mean' for f in time_cols] df_train = df_train.merge(df_stats, on=['stock_id'], how='left') # df_stats = df_gp_stock[time_cols].std().reset_index() df_stats.columns = ['stock_id'] + [f'{f}_std' for f in time_cols] df_train = df_train.merge(df_stats, on=['stock_id'], how='left') # df_stats = df_gp_stock[time_cols].skew().reset_index() df_stats.columns = ['stock_id'] + [f'{f}_skew' for f in time_cols] df_train = df_train.merge(df_stats, on=['stock_id'], how='left') # df_stats = df_gp_stock[time_cols].min().reset_index() df_stats.columns = ['stock_id'] + [f'{f}_min' for f in time_cols] df_train = df_train.merge(df_stats, on=['stock_id'], how='left') # df_stats = df_gp_stock[time_cols].max().reset_index() df_stats.columns = ['stock_id'] + [f'{f}_max' for f in time_cols] df_train = df_train.merge(df_stats, on=['stock_id'], how='left') # df_stats = df_gp_stock[time_cols].quantile(0.25).reset_index() df_stats.columns = ['stock_id'] + [f'{f}_q1' for f in time_cols] df_train = df_train.merge(df_stats, on=['stock_id'], how='left') # df_stats = df_gp_stock[time_cols].quantile(0.50).reset_index() df_stats.columns = ['stock_id'] + [f'{f}_q2' for f in time_cols] df_train = df_train.merge(df_stats, on=['stock_id'], how='left') # df_stats = df_gp_stock[time_cols].quantile(0.75).reset_index() df_stats.columns = ['stock_id'] + [f'{f}_q3' for f in time_cols] df_train = df_train.merge(df_stats, on=['stock_id'], how='left') return df_train batch_size = 1024 learning_rate = 6e-3 epochs = 1000 list_seeds = [0, 11, 42, 777, 2045] list_rmspe = [] for i_seed, seed in enumerate(list_seeds): df_train = add_time_fold(df_train, N_FOLD, seed=seed) list_rmspe += [[]] for i_fold in range(N_FOLD): gc.collect() df_tr = df_train.loc[df_train.fold!=i_fold] df_te = df_train.loc[df_train.fold==i_fold] df_tr = add_time_stats(df_tr) df_te = add_time_stats(df_te) fea_cols = [f for f in df_tr if f.startswith('B_') or f.startswith('T_') or f.startswith('Z_')] X_train = df_tr[fea_cols].values y_train = df_tr[['target']].values X_test = df_te[fea_cols].values y_test = df_te[['target']].values idx_test = df_train.loc[df_train.fold==i_fold].index print(f'Fold {i_seed+1}/{len(list_seeds)} | {i_fold+1}/{N_FOLD}', X_train.shape, X_test.shape) # Callbacks ckp_path = f'./models/{SOL_NAME}/model_{i_seed}_{i_fold}.hdf5' rlr = ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=5, min_delta=1e-5, verbose=2) es = EarlyStopping(monitor='val_loss', min_delta=1e-5, patience=31, restore_best_weights=True, verbose=2) model = create_1dcnn(X_train.shape[1], 1, learning_rate) history = model.fit(X_train, y_train, epochs=epochs, validation_data=(X_test, y_test), validation_batch_size=len(y_test), batch_size=batch_size, verbose=2, callbacks=[rlr, es] ) # model = tf.keras.models.load_model(ckp_path, custom_objects={'mspe_loss': mspe_loss}) y_pred = model.predict(X_test, batch_size=len(y_test)) curr_rmspe = np_rmspe(y_test, y_pred) list_rmspe[-1] += [curr_rmspe] model.save(ckp_path) # generate and save preds df_result.loc[idx_test, f'pred_{i_seed}'] = inverse_target(y_pred) clear_output() print(list_rmspe) df_result.to_csv(f'./results/{SOL_NAME}.csv', index=False) for i in range(len(list_seeds)): print(i, rmspe(df_result['target'], df_result[f'pred_{i}'])) print('All: ', rmspe(df_result['target'], df_result[[f'pred_{i}' for i in range(len(list_seeds))]].mean(axis=1))) ###Output 0 0.21369911137011632 1 0.21460543478949706 2 0.21438267580899686 3 0.2146666805788994 4 0.21427824604107953 All: 0.21010537596822407
code/CNN/.ipynb_checkpoints/CrossValidation_final_marjolein-checkpoint.ipynb
###Markdown Le-Net 1 based architecture We start with 41X41 (I) after first convolution (9x9)we have 33X33 (L1). The next pooling layer reduces dimension with 3 to an output image of 11X11 with 4x4 pooling kernels (L2). Then we apply different types of convolution 4x4 kernels on the L2 layer resulting in 8x8 (L3) . Then followed by pooling 2X2 resulting in 4x4 output map (L4). So we have 16 connection for each element in layer L4 (which depend on the amount of different Covolutions in L3) \begin{equation}f(x)=\frac{1}{1+e^{-x}} \\F_{k}= f( \sum_{i} \mathbf{W^{k}_{i} \cdot y_{i}}-b_{k})\end{equation}\begin{equation}E=\sum_{k} \frac{1}{2}|t_k-F_{k}|^{2} \\\Delta W_{ij}= - \eta \frac{dE}{d W_{ij}}\end{equation}\begin{equation}\Delta W_{ij}= \sum_{k} - \eta \frac{dE}{d F_{k}} \frac{dF_{k}}{dx_{k}} \frac{dx_{k}}{dW_{ij}}=\sum_{k} \eta (t_{k}-F_{k})\frac{e^{-x_{k}}}{(1+e^{-x_{k}})^{2}} \frac{dx_{k}}{dW_{ij}} \\= \eta (t_{k}-F_{k})\frac{e^{-x_{k}}}{(1+e^{-x_{k}})^{2}} y_{ij}\end{equation}\begin{equation}\Delta b_{k}= - \eta \frac{dE}{d F_{k}} \frac{dF_{k}}{dx_{k}} \frac{dx_{k}}{b_{k}}=\eta (t_{k}-F_{k})\frac{e^{-x_{k}}}{(1+e^{-x_{k}})^{2}} \cdot-1\end{equation}Since $\frac{e^{-x_{k}}}{(1+e^{-x_{k}})^{2}}$ is always positive we can neglect this term in our programme\begin{equation}x_{k}=\sum_{ij} W^{k}[i,j] \; y^{4rb}[i,j] - b_{k}\end{equation}\begin{equation}y^{4rb}[i,j]= \sum_{u,v} W^{3rb}[u,v] \; y^{3rb} [2i+u,2j+v]\end{equation}\begin{equation}y^{3rb} [2i+u,2j+v]= f\left (x^{3rb}[2i+u,2j+v] \right)\end{equation}\begin{equation}x^{3rb}[2i+u,2j+v]=\sum_{nm} W^{2rb}[n,m] \; y^{2rb}[n+(2i+u),m+(2j+v)] -b^{3rb}[2i+u,2j+v]\end{equation}\begin{equation}\begin{split}\Delta W^{2rb}[n,m] =\sum_{k} - \eta \frac{dE}{dF_{k}} \frac{dF_{k}}{dx_{k}} \sum_{ij} \frac{dx_{k}}{dy^{4rb}[i,j]} \sum_{uv}\frac{dy^{4rb}[i,j]}{d y^{3rb} [2i+u,2j+v]} \frac{d y^{3rb} [2i+u,2j+v]}{d x^{3rb}[2i+u,2j+v]}\sum_{nm}\frac{d x^{3rb}[2i+u,2j+v]}{d W^{2rb}[n,m]}\end{split}\end{equation}\begin{equation}\begin{split}\Delta b^{3rb}[2i+u,2j+v] =\sum_{k} - \eta \frac{dE}{dF_{k}} \frac{dF_{k}}{dx_{k}} \sum_{ij} \frac{dx_{k}}{dy^{4rb}[i,j]} \sum_{uv}\frac{dy^{4rb}[i,j]}{d y^{3rb} [2i+u,2j+v]} \frac{d y^{3rb} [2i+u,2j+v]}{d x^{3rb}[2i+u,2j+v]}\frac{d x^{3rb}[2i+u,2j+v]}{d b^{3rb}[2i+u,2j+v]}\end{split}\end{equation}\begin{equation} \frac{dx_{k}}{dy^{4rb}[i,j]} = W^{4rbk}[i,j]\\\end{equation}\begin{equation} \frac{dy^{4rb}[i,j]}{d y^{3rb} [2i+u,2j+v]} = W^{3rb}[u,v] \\ \end{equation} \begin{equation}\frac{d y^{3rb} [2i+u,2j+v]}{d x^{3rb}[2i+u,2j+v]}=\frac{e^{-x^{3rb}[2i+u,2j+v]}}{(1+e^{-x^{3rb}[2i+u,2j+v]})^2}\end{equation}This term is first not included since it is always positive. If the training will not converge it might be possible to include this term \begin{equation} \frac{d y^{3rb} [2i+u,2j+v]}{d W^{2rb}[n,m]}= y^{2rb} [n+(2i+u),m+(2j+v)] \\\end{equation}\begin{equation}\frac{d x^{3rb}[2i+u,2j+v]}{d b^{3rb}[2i+u,2j+v]}=-1\end{equation} ###Code %matplotlib inline import matplotlib.pyplot as plt import numpy as np from numpy import linalg as lin import scipy.signal as sig from PIL import Image import glob import matplotlib.cm as cm import itertools ########### Load Input ############################################################################################################################ # In this script I used the brightness to determine structures, instead of one RGB color: # this is determined by: 0.2126*R + 0.7152*G + 0.0722*B # Source: https://en.wikipedia.org/wiki/Relative_luminance patchSize=40 # patchsize this must be 48 since our network can only handle this value # Open forest Amount_data= len(glob.glob('Forest/F*')) Patches_F=np.empty([1,patchSize,patchSize]) Patches_F_RGB=np.empty([1,patchSize,patchSize,3]) Patches_t=np.empty([3]) for k in range (0, Amount_data): name="Forest/F%d.png" % (k+1) img = Image.open(name) data=img.convert('RGB') data= np.asarray( data, dtype="int32" ) data=0.2126*data[:,:,0]+0.7152*data[:,:,1]+0.0722*data[:,:,2] data2=img.convert('RGB') data2= np.asarray( data2, dtype="int32" ) Yamount=data.shape[0]/patchSize # Counts how many times the windowsize fits in the picture Xamount=data.shape[1]/patchSize # Counts how many times the windowsize fits in the picture # Create patches for structure data_t=np.array([[data[j*patchSize:(j+1)*patchSize,i*patchSize:(i+1)*patchSize] for i in range(0,Xamount)] for j in range(0,Yamount)]) data_t=np.reshape(data_t, [data_t.shape[0]*data_t.shape[1], patchSize, patchSize]) Patches_F=np.append(Patches_F,data_t,axis=0) #Create patches for colour data_t=np.array([[data2[j*patchSize:(j+1)*patchSize,i*patchSize:(i+1)*patchSize,:] for i in range(0,Xamount)] for j in range(0,Yamount)]) data_t=np.reshape(data_t, [data_t.shape[0]*data_t.shape[1], patchSize, patchSize, 3]) Patches_F_RGB=np.append(Patches_F_RGB, data_t,axis=0) Patches_F=np.delete(Patches_F, 0,0) Patches_F_RGB=np.delete(Patches_F_RGB, 0,0) # Open city Amount_data= len(glob.glob('City/C*')) Patches_C=np.empty([1,patchSize,patchSize]) Patches_C_RGB=np.empty([1,patchSize,patchSize,3]) Patches_t=np.empty([3]) for k in range (0, Amount_data): name="City/C%d.png" % (k+1) img = Image.open(name) data=img.convert('RGB') data = np.asarray( data, dtype="int32" ) data=0.2126*data[:,:,0]+0.7152*data[:,:,1]+0.0722*data[:,:,2] data2=img.convert('RGB') data2= np.asarray( data2, dtype="int32" ) Yamount=data.shape[0]/patchSize # Counts how many times the windowsize fits in the picture Xamount=data.shape[1]/patchSize # Counts how many times the windowsize fits in the picture # Create patches for structure data_t=np.array([[data[j*patchSize:(j+1)*patchSize,i*patchSize:(i+1)*patchSize] for i in range(0,Xamount)] for j in range(0,Yamount)]) data_t=np.reshape(data_t, [data_t.shape[0]*data_t.shape[1], patchSize, patchSize]) Patches_C=np.append(Patches_C,data_t,axis=0) #Create patches for colour data_t=np.array([[data2[j*patchSize:(j+1)*patchSize,i*patchSize:(i+1)*patchSize,:] for i in range(0,Xamount)] for j in range(0,Yamount)]) data_t=np.reshape(data_t, [data_t.shape[0]*data_t.shape[1], patchSize, patchSize, 3]) Patches_C_RGB=np.append(Patches_C_RGB, data_t,axis=0) Patches_C=np.delete(Patches_C, 0,0) Patches_C_RGB=np.delete(Patches_C_RGB, 0,0) # Open water Amount_data= len(glob.glob('Water/W*')) Patches_W=np.empty([1,patchSize,patchSize]) Patches_W_RGB=np.empty([1,patchSize,patchSize,3]) Patches_t=np.empty([3]) for k in range (0, Amount_data): name="Water/W%d.png" % (k+1) img = Image.open(name) data=img.convert('RGB') data = np.asarray( data, dtype="int32" ) data=0.2126*data[:,:,0]+0.7152*data[:,:,1]+0.0722*data[:,:,2] data2 = img.convert('RGB') data2 = np.asarray( data2, dtype="int32" ) Yamount=data.shape[0]/patchSize # Counts how many times the windowsize fits in the picture Xamount=data.shape[1]/patchSize # Counts how many times the windowsize fits in the picture # Create patches for structure data_t=np.array([[data[j*patchSize:(j+1)*patchSize,i*patchSize:(i+1)*patchSize] for i in range(0,Xamount)] for j in range(0,Yamount)]) data_t=np.reshape(data_t, [data_t.shape[0]*data_t.shape[1], patchSize, patchSize]) Patches_W=np.append(Patches_W,data_t,axis=0) #Create patches for colour data_t=np.array([[data2[j*patchSize:(j+1)*patchSize,i*patchSize:(i+1)*patchSize,:] for i in range(0,Xamount)] for j in range(0,Yamount)]) data_t=np.reshape(data_t, [data_t.shape[0]*data_t.shape[1], patchSize, patchSize, 3]) Patches_W_RGB=np.append(Patches_W_RGB, data_t,axis=0) Patches_W=np.delete(Patches_W, 0,0) Patches_W_RGB=np.delete(Patches_W_RGB, 0,0) ########### Functions ############################################################################################################################ # Define Activitation functions, pooling and convolution functions (the rules) def Sigmoid(x): return (1/(1+np.exp(-x))) def Sigmoid_dx(x): return np.exp(-x)/((1+np.exp(-x))**2) def TanH(x): return (1-np.exp(-x))/(1+np.exp(-x)) def Pool(I,W): PoolImg=np.zeros((len(I)/len(W),len(I)/len(W))) # W must fit an integer times into I. for i in range(0,len(PoolImg)): for j in range(0,len(PoolImg)): SelAr=I[i*len(W):(i+1)*len(W),j*len(W):(j+1)*len(W)] PoolImg[i,j]=np.inner(SelAr.flatten(),W.flatten()) # Now this is just an inner product since we have vectors return PoolImg # To automatically make Gaussian kernels def makeGaussian(size, fwhm = 3, center=None): x = np.arange(0, size, 1, float) y = x[:,np.newaxis] if center is None: x0 = y0 = size // 2 else: x0 = center[0] y0 = center[1] return np.exp(-4*np.log(2) * ((x-x0)**2 + (y-y0)**2) / fwhm**2) # To automatically define pooling nodes def Pool_node(N): s=(N,N) a=float(N)*float(N) return (1.0/a)*np.ones(s) #################### Define pooling layers ########################################################################### P12=Pool_node(4)*(1.0/100.0) #factor 1000 added to lower values more P34=Pool_node(1)*(1.0/10) #################### Define Convolution layers ####################################################################### ######### First C layer ######### C1=[] ## First Kernel # Inspiration: http://en.wikipedia.org/wiki/Sobel_operator # http://stackoverflow.com/questions/9567882/sobel-filter-kernel-of-large-size Kernel=np.array([[4,3,2,1,0,-1,-2,-3,-4], [5,4,3,2,0,-2,-3,-4,-5], [6,5,4,3,0,-3,-4,-5,-6], [7,6,5,4,0,-4,-5,-6,-7], [8,7,6,5,0,-5,-6,-7,-8], [7,6,5,4,0,-4,-5,-6,-7], [6,5,4,3,0,-3,-4,-5,-6], [5,4,3,2,0,-2,-3,-4,-5], [4,3,2,1,0,-1,-2,-3,-4]]) C1.append(Kernel) ## Second Kernel Kernel=np.matrix.transpose(Kernel) C1.append(Kernel) ######### Initialize output weights and biases ######### # Define the number of branches in one row N_branches= 3 ClassAmount=3 # Forest, City, Water Size_C2=5 S_H3=((patchSize-C1[0].shape[0]+1)/P12.shape[1])-Size_C2+1 S_H4=S_H3/P34.shape[1] C2INIT=np.random.rand(len(C1),N_branches, Size_C2, Size_C2) # second convolution weigths WINIT=np.random.rand(ClassAmount, len(C1), N_branches, S_H3, S_H3) # end-weight from output to classifier-neurons W2INIT=np.random.rand(3,3) H3_bias=np.random.rand(len(C1),N_branches) # bias in activation function from C2 to H3 Output_bias=np.random.rand(ClassAmount) # bias on the three classes #learning rates n_bias=1*10**-2 n_W=1*10**-2 n_C2=1*10**-2 n_H3_bias=1*10**-2 #Labda=5*10**-3 np.random.rand? N_plts=len(C1) for i in range(0,N_plts): plt.subplot(4,3,i+1) plt.imshow(C1[i]) ###Output _____no_output_____ ###Markdown For the extra information regarding the code in the following cella random patch is chosen in the following way: the program counts how many files and patches there are in total, then it permutes the sequence so that a random patch is chosen every iteration (forest, city, water). After selecting the number the file has to be found back. ###Code N_F=Patches_F.shape[0] N_C=Patches_C.shape[0] N_W=Patches_W.shape[0] N_total=N_F+N_C+N_W Sequence = np.arange(N_total) Sequence = np.random.permutation(Sequence) ##### TRAINING ON ALL DATA TO FIND FINAL WEIGHTS FOR IMPLEMENTATION ##### C2=np.copy(C2INIT) W=np.copy(WINIT) W2=np.copy(W2INIT) Sample_iterations=0 n_W=10 for PP in range(0,N_total): SS=Sequence[PP] if SS<N_F: Class_label=np.array([1,0,0]) inputPatch=Patches_F[SS] Int_RGB=np.mean(np.mean(Patches_F_RGB[SS,:,:,:], axis=0), axis=0)/255 elif(SS>=N_F) and (SS<(N_F+N_C)): Class_label=np.array([0,1,0]) inputPatch=Patches_C[SS-N_F] Int_RGB=np.mean(np.mean(Patches_C_RGB[SS-N_F,:,:,:], axis=0), axis=0)/255 else: Class_label=np.array([0,0,1]) inputPatch=Patches_W[SS-N_F-N_C] Int_RGB=np.mean(np.mean(Patches_W_RGB[SS-N_F-N_C,:,:,:], axis=0), axis=0)/255 ### Layer 1 ### H1=[] H2=[] H3=np.zeros((len(C1), N_branches, S_H3,S_H3)) H4=np.zeros((len(C1), N_branches, S_H4,S_H4)) x=np.zeros(ClassAmount) f=np.zeros(ClassAmount) for r in range (0, len(C1)): H1.append(sig.convolve(inputPatch, C1[r], 'valid')) H2.append(Pool(H1[r], P12)) for b in range(0,N_branches): H3[r][b]=Sigmoid(sig.convolve(H2[r], C2[r][b],'valid')-H3_bias[r][b]) H4[r][b]=Pool(H3[r][b],P34) #Now we have 3x3x4x4 inputs, connected to the 3 output nodes y=np.append([H4.flatten()], [Int_RGB]) for k in range(0,ClassAmount): W_t=np.append([W[k].flatten()], [W2[k]]) x[k]=np.inner(y, W_t) f[k]=Sigmoid(x[k]-Output_bias[k]) ###### Back-propagation ##### # First learning the delta's e_k=f-Class_label delta_k=e_k*Sigmoid_dx(x) for k in range(0, ClassAmount): #update weights output layer W[k]=W[k]-n_W*delta_k[k]*H4 W2[k]=W2[k]-n_W*delta_k[k]*Int_RGB Sample_iterations=Sample_iterations+1 if Sample_iterations==5000: n_W=5 print Sample_iterations if Sample_iterations==10000: n_W=1 print Sample_iterations if Sample_iterations==15000: n_W=0.1 print Sample_iterations print "Training completed" CV_RGB=np.zeros([10]) ##### CROSS VALIDATION, INFORMATION FROM RGB COLOURS INCLUDED, NO BACKPROPAGATION UNTIL C2 ##### for CROSSES in range(0,10): # TRAINING PHASE W=np.copy(WINIT) W2=np.copy(W2INIT) C2=np.copy(C2INIT) n_W=10 Sample_iterations=0 ###### Chooses patch and defines label ##### for PP in range(0,int(np.ceil(0.9*N_total))): SS=Sequence[PP] if SS<N_F: Class_label=np.array([1,0,0]) inputPatch=Patches_F[SS] Int_RGB=np.mean(np.mean(Patches_F_RGB[SS,:,:,:], axis=0), axis=0)/255 elif(SS>=N_F) and (SS<(N_F+N_C)): Class_label=np.array([0,1,0]) inputPatch=Patches_C[SS-N_F] Int_RGB=np.mean(np.mean(Patches_C_RGB[SS-N_F,:,:,:], axis=0), axis=0)/255 else: Class_label=np.array([0,0,1]) inputPatch=Patches_W[SS-N_F-N_C] Int_RGB=np.mean(np.mean(Patches_W_RGB[SS-N_F-N_C,:,:,:], axis=0), axis=0)/255 ### Layer 1 ### H1=[] H2=[] H3=np.zeros((len(C1), N_branches, S_H3,S_H3)) H4=np.zeros((len(C1), N_branches, S_H4,S_H4)) x=np.zeros(ClassAmount) f=np.zeros(ClassAmount) for r in range (0, len(C1)): H1.append(sig.convolve(inputPatch, C1[r], 'valid')) H2.append(Pool(H1[r], P12)) #From here on BP trakes place! for b in range(0,N_branches): H3[r][b]=Sigmoid(sig.convolve(H2[r], C2[r][b],'valid')-H3_bias[r][b]) H4[r][b]=Pool(H3[r][b],P34) #Now we have 3x3x4x4 inputs, connected to the 3 output nodes y=np.append([H4.flatten()], [Int_RGB]) for k in range(0,ClassAmount): W_t=np.append([W[k].flatten()], [W2[k]]) x[k]=np.inner(y, W_t) f[k]=Sigmoid(x[k]-Output_bias[k]) ###### Back-propagation ##### # First learning the delta's e_k=f-Class_label delta_k=e_k*Sigmoid_dx(x) for k in range(0, ClassAmount): #update weights output layer W[k]=W[k]-n_W*delta_k[k]*H4 W2[k]=W2[k]-n_W*delta_k[k]*Int_RGB Sample_iterations=Sample_iterations+1 if Sample_iterations==5000: n_W=5 print Sample_iterations if Sample_iterations==10000: n_W=1 print Sample_iterations if Sample_iterations==15000: n_W=0.1 print Sample_iterations print "Training completed" ####### Test phase ####### N_correct=0 ###### Chooses patch and defines label ##### for PP in range(int(np.ceil(0.9*N_total)),N_total): SS=Sequence[PP] if SS<N_F: Class_label=np.array([1,0,0]) inputPatch=Patches_F[SS] Int_RGB=np.mean(np.mean(Patches_F_RGB[SS,:,:,:], axis=0), axis=0)/255 elif(SS>=N_F) and (SS<(N_F+N_C)): Class_label=np.array([0,1,0]) inputPatch=Patches_C[SS-N_F] Int_RGB=np.mean(np.mean(Patches_C_RGB[SS-N_F,:,:,:], axis=0), axis=0)/255 else: Class_label=np.array([0,0,1]) inputPatch=Patches_W[SS-N_F-N_C] Int_RGB=np.mean(np.mean(Patches_W_RGB[SS-N_F-N_C,:,:,:], axis=0), axis=0)/255 ### Layer 1 ### H1=[] H2=[] H3=np.zeros((len(C1), N_branches, S_H3,S_H3)) #H4=np.zeros((len(C1), N_branches, S_H4,S_H4)) x=np.zeros(ClassAmount) f=np.zeros(ClassAmount) for r in range (0, len(C1)): H1.append(sig.convolve(inputPatch, C1[r], 'valid')) H2.append(Pool(H1[r], P12)) for b in range(0,N_branches): H3[r][b]=Sigmoid(sig.convolve(H2[r], C2[r][b],'valid')-H3_bias[r][b]) H4[r][b]=Pool(H3[r][b],P34) y=np.append([H4.flatten()], [Int_RGB]) #Now we have 3x3x4x4 inputs, connected to the 3 output nodes for k in range(0,ClassAmount): W_t=np.append([W[k].flatten()], [W2[k]]) x[k]=np.inner(y, W_t) f[k]=Sigmoid(x[k]-Output_bias[k]) if np.argmax(f)==np.argmax(Class_label): N_correct=N_correct+1 Perc_corr=float(N_correct)/(N_total-int(np.ceil(0.9*N_total))) print Perc_corr CV_RGB[CROSSES]=Perc_corr Sequence=np.roll(Sequence,(N_total-int(np.ceil(0.9*N_total)))) # Save calculated parameters CV1_withRGB=np.mean(CV_RGB) Std_CV1_withRGB=np.std(CV_RGB) with open("CV1_withRGB.txt", 'w') as f: f.write(str(CV1_withRGB)) with open("Std_CV1_withRGB.txt", 'w') as f: f.write(str(Std_CV1_withRGB)) ##### CROSS VALIDATION, INFORMATION FROM RGB COLOURS NOT INCLUDED, NO BACKPROPAGATION UNTIL C2 ##### CV_noRGB=np.zeros([10]) for CROSSES in range(0,10): # TRAINING PHASE W=np.copy(WINIT) W2=np.copy(W2INIT) C2=np.copy(C2INIT) n_W=25 Sample_iterations=0 ###### Chooses patch and defines label ##### for PP in range(0,int(np.ceil(0.9*N_total))): SS=Sequence[PP] #SS=14000 if SS<N_F: Class_label=np.array([1,0,0]) inputPatch=Patches_F[SS] elif(SS>=N_F) and (SS<(N_F+N_C)): Class_label=np.array([0,1,0]) inputPatch=Patches_C[SS-N_F] else: Class_label=np.array([0,0,1]) inputPatch=Patches_W[SS-N_F-N_C] ### Layer 1 ### H1=[] H2=[] H3=np.zeros((len(C1), N_branches, S_H3,S_H3)) H4=np.zeros((len(C1), N_branches, S_H4,S_H4)) x=np.zeros(ClassAmount) f=np.zeros(ClassAmount) for r in range (0, len(C1)): H1.append(sig.convolve(inputPatch, C1[r], 'valid')) H2.append(Pool(H1[r], P12)) #From here on BP trakes place! for b in range(0,N_branches): H3[r][b]=Sigmoid(sig.convolve(H2[r], C2[r][b],'valid')-H3_bias[r][b]) H4[r][b]=Pool(H3[r][b],P34) #Now we have 3x3x4x4 inputs, connected to the 3 output nodes y=H4.flatten() for k in range(0,ClassAmount): W_t=W[k].flatten() x[k]=np.inner(y, W_t) f[k]=Sigmoid(x[k]-Output_bias[k]) ###### Back-propagation ##### # First learning the delta's e_k=f-Class_label delta_k=e_k*Sigmoid_dx(x) for k in range(0, ClassAmount): #update weights output layer W[k]=W[k]-n_W*delta_k[k]*H4 Sample_iterations=Sample_iterations+1 if Sample_iterations==5000: n_W=10 print Sample_iterations if Sample_iterations==10000: n_W=2.5 print Sample_iterations if Sample_iterations==15000: n_W=0.5 print Sample_iterations print "Training completed" ####### Test phase ####### N_correct=0 ###### Chooses patch and defines label ##### for PP in range(int(np.ceil(0.9*N_total)),N_total): SS=Sequence[PP] if SS<N_F: Class_label=np.array([1,0,0]) inputPatch=Patches_F[SS] elif(SS>=N_F) and (SS<(N_F+N_C)): Class_label=np.array([0,1,0]) inputPatch=Patches_C[SS-N_F] else: Class_label=np.array([0,0,1]) inputPatch=Patches_W[SS-N_F-N_C] ### Layer 1 ### H1=[] H2=[] H3=np.zeros((len(C1), N_branches, S_H3,S_H3)) #H4=np.zeros((len(C1), N_branches, S_H4,S_H4)) x=np.zeros(ClassAmount) f=np.zeros(ClassAmount) for r in range (0, len(C1)): H1.append(sig.convolve(inputPatch, C1[r], 'valid')) H2.append(Pool(H1[r], P12)) for b in range(0,N_branches): H3[r][b]=Sigmoid(sig.convolve(H2[r], C2[r][b],'valid')-H3_bias[r][b]) H4[r][b]=Pool(H3[r][b],P34) y=H4.flatten() #Now we have 3x3x4x4 inputs, connected to the 3 output nodes for k in range(0,ClassAmount): W_t=W[k].flatten() x[k]=np.inner(y, W_t) f[k]=Sigmoid(x[k]-Output_bias[k]) if np.argmax(f)==np.argmax(Class_label): N_correct=N_correct+1 Perc_corr=float(N_correct)/(N_total-int(np.ceil(0.9*N_total))) print Perc_corr CV_noRGB[CROSSES]=Perc_corr Sequence=np.roll(Sequence,(N_total-int(np.ceil(0.9*N_total)))) # Save calculated parameters CV1_withoutRGB=np.mean(CV_noRGB) Std_CV1_withoutRGB=np.std(CV_noRGB) with open("CV1_withoutRGB.txt", 'w') as f: f.write(str(CV1_withoutRGB)) with open("Std_CV1_withoutRGB.txt", 'w') as f: f.write(str(Std_CV1_withoutRGB)) ##### CROSS VALIDATION, INFORMATION FROM RGB COLOURS INCLUDED, BACKPROPAGATION UNTIL C2 ##### # TRAINING PHASE ERROR_cv=np.zeros([10]) for CROSSES in range(0,10): W=np.copy(WINIT) W2=np.copy(W2INIT) C2=np.copy(C2INIT) n_W=10 n_C2=1*10**-2 Sample_iterations=0 ###### Chooses patch and defines label ##### #for PP in range(0,len(Sequence)): for PP in range(0,int(np.ceil(0.9*N_total))): SS=Sequence[PP] if SS<N_F: Class_label=np.array([1,0,0]) inputPatch=Patches_F[SS] Int_RGB=np.mean(np.mean(Patches_F_RGB[SS,:,:,:], axis=0), axis=0)/255 elif(SS>=N_F) and (SS<(N_F+N_C)): Class_label=np.array([0,1,0]) inputPatch=Patches_C[SS-N_F] Int_RGB=np.mean(np.mean(Patches_C_RGB[SS-N_F,:,:,:], axis=0), axis=0)/255 else: Class_label=np.array([0,0,1]) inputPatch=Patches_W[SS-N_F-N_C] Int_RGB=np.mean(np.mean(Patches_W_RGB[SS-N_F-N_C,:,:,:], axis=0), axis=0)/255 ### Layer 1 ### H1=[] H2=[] H3=np.zeros((len(C1), N_branches, S_H3,S_H3)) H4=np.zeros((len(C1), N_branches, S_H4,S_H4)) x=np.zeros(ClassAmount) f=np.zeros(ClassAmount) for r in range (0, len(C1)): H1.append(sig.convolve(inputPatch, C1[r], 'valid')) H2.append(Pool(H1[r], P12)) #From here on BP trakes place! for b in range(0,N_branches): H3[r][b]=Sigmoid(sig.convolve(H2[r], C2[r][b],'valid')-H3_bias[r][b]) H4[r][b]=Pool(H3[r][b],P34) #Now we have 3x3x4x4 inputs, connected to the 3 output nodes y=np.append([H4.flatten()], [Int_RGB]) for k in range(0,ClassAmount): W_t=np.append([W[k].flatten()], [W2[k]]) x[k]=np.inner(y, W_t) f[k]=Sigmoid(x[k]-Output_bias[k]) ###### Back-propagation ##### # First learning the delta's delta_H4=np.zeros([ClassAmount,len(C1),N_branches,S_H4,S_H4]) e_k=f-Class_label delta_k=e_k*Sigmoid_dx(x) for k in range(0, ClassAmount): #update weights output layer W[k]=W[k]-n_W*delta_k[k]*H4 W2[k]=W2[k]-n_W*delta_k[k]*Int_RGB delta_H4[i]=delta_k[i]*W[i] delta_H4=np.sum(delta_H4, axis=0) delta_H3=(float(1)/10)*delta_H4 C2_diff=np.zeros([len(C1),N_branches, Size_C2, Size_C2]) for r in range(0, len(C1)): C2_t=np.array([[delta_H3[r][:]*H2[r][(0+u):(4+u),(0+v):(4+v)] for u in range(0,Size_C2)] for v in range (0,Size_C2)]) C2_t=np.sum(np.sum(C2_t, axis=4),axis=3) C2_t=np.rollaxis(C2_t,2) C2_diff[r]=-n_C2*C2_t C2=C2+C2_diff Normalization_factor=np.sum(np.sum(np.abs(C2),axis=3),axis=2)/np.sum(np.sum(np.abs(C2_INIT),axis=3),axis=2) for r in range(0,len(C1)): for b in range(0, N_branches): C2[r][b]=C2[r][b]/Normalization_factor[r][b] Sample_iterations=Sample_iterations+1 if Sample_iterations==5000: n_W=5 n_C2=5*10**-2 print Sample_iterations if Sample_iterations==10000: n_W=1 n_C2=1*10**-2 print Sample_iterations if Sample_iterations==15000: n_W=0.1 n_C2=0.75*10**-2 print Sample_iterations print "Training completed" ###### test phase! N_correct=0 for PP in range(int(np.ceil(0.9*N_total)),N_total): SS=Sequence[PP] if SS<N_F: Class_label=np.array([1,0,0]) inputPatch=Patches_F[SS] Int_RGB=np.mean(np.mean(Patches_F_RGB[SS,:,:,:], axis=0), axis=0)/255 elif(SS>=N_F) and (SS<(N_F+N_C)): Class_label=np.array([0,1,0]) inputPatch=Patches_C[SS-N_F] Int_RGB=np.mean(np.mean(Patches_C_RGB[SS-N_F,:,:,:], axis=0), axis=0)/255 elif(SS>=(N_F+N_C)) and (SS<N_F+N_C+N_W): Class_label=np.array([0,0,1]) inputPatch=Patches_W[SS-N_F-N_C] Int_RGB=np.mean(np.mean(Patches_W_RGB[SS-N_F-N_C,:,:,:], axis=0), axis=0)/255 ### Layer 1 ### H1=[] H2=[] H3=np.zeros((len(C1), N_branches, S_H3,S_H3)) H4=np.zeros((len(C1), N_branches, S_H4,S_H4)) x=np.zeros(ClassAmount) f=np.zeros(ClassAmount) for r in range (0, len(C1)): H1.append(sig.convolve(inputPatch, C1[r], 'valid')) H2.append(Pool(H1[r], P12)) for b in range(0,N_branches): H3[r][b]=Sigmoid(sig.convolve(H2[r], C2[r][b],'valid')-H3_bias[r][b]) H4[r][b]=Pool(H3[r][b],P34) y=np.append([H4.flatten()], [Int_RGB]) #Now we have 3x3x4x4 inputs, connected to the 3 output nodes for k in range(0,ClassAmount): W_t=np.append([W[k].flatten()], [W2[k]]) x[k]=np.inner(y, W_t) f[k]=Sigmoid(x[k]-Output_bias[k]) if np.argmax(f)==np.argmax(Class_label): #print True N_correct=N_correct+1 Perc_corr=float(N_correct)/(N_total-int(np.ceil(0.9*N_total))) print Perc_corr ERROR_cv[CROSSES]=Perc_corr Sequence=np.roll(Sequence,(N_total-int(np.ceil(0.9*N_total)))) ##### CROSS VALIDATION, INFORMATION FROM RGB COLOURS NOT INCLUDED, BACKPROPAGATION UNTIL C2 ##### # TRAINING PHASE ERROR_cv_without=np.zeros([10]) for CROSSES in range(0,10): W=np.copy(WINIT) W2=np.copy(W2INIT) C2=np.copy(C2INIT) n_W=25 n_C2=12.5*10**-2 Sample_iterations=0 ###### Chooses patch and defines label ##### #for PP in range(0,len(Sequence)): for PP in range(0,int(np.ceil(0.9*N_total))): SS=Sequence[PP] if SS<N_F: Class_label=np.array([1,0,0]) inputPatch=Patches_F[SS] elif(SS>=N_F) and (SS<(N_F+N_C)): Class_label=np.array([0,1,0]) inputPatch=Patches_C[SS-N_F] else: Class_label=np.array([0,0,1]) inputPatch=Patches_W[SS-N_F-N_C] ### Layer 1 ### H1=[] H2=[] H3=np.zeros((len(C1), N_branches, S_H3,S_H3)) H4=np.zeros((len(C1), N_branches, S_H4,S_H4)) x=np.zeros(ClassAmount) f=np.zeros(ClassAmount) for r in range (0, len(C1)): H1.append(sig.convolve(inputPatch, C1[r], 'valid')) H2.append(Pool(H1[r], P12)) #From here on BP trakes place! for b in range(0,N_branches): H3[r][b]=Sigmoid(sig.convolve(H2[r], C2[r][b],'valid')-H3_bias[r][b]) H4[r][b]=Pool(H3[r][b],P34) #Now we have 3x3x4x4 inputs, connected to the 3 output nodes y=H4.flatten() for k in range(0,ClassAmount): W_t=W[k].flatten() x[k]=np.inner(y, W_t) f[k]=Sigmoid(x[k]-Output_bias[k]) ###### Back-propagation ##### # First learning the delta's delta_H4=np.zeros([ClassAmount,len(C1),N_branches,S_H4,S_H4]) e_k=f-Class_label delta_k=e_k*Sigmoid_dx(x) for k in range(0, ClassAmount): #update weights output layer W[k]=W[k]-n_W*delta_k[k]*H4 W2[k]=W2[k]-n_W*delta_k[k]*Int_RGB delta_H4[i]=delta_k[i]*W[i] delta_H4=np.sum(delta_H4, axis=0) delta_H3=(float(1)/10)*delta_H4 C2_diff=np.zeros([len(C1),N_branches, Size_C2, Size_C2]) for r in range(0, len(C1)): C2_t=np.array([[delta_H3[r][:]*H2[r][(0+u):(4+u),(0+v):(4+v)] for u in range(0,Size_C2)] for v in range (0,Size_C2)]) C2_t=np.sum(np.sum(C2_t, axis=4),axis=3) C2_t=np.rollaxis(C2_t,2) C2_diff[r]=-n_C2*C2_t C2=C2+C2_diff Normalization_factor=np.sum(np.sum(np.abs(C2),axis=3),axis=2)/np.sum(np.sum(np.abs(C2_INIT),axis=3),axis=2) for r in range(0,len(C1)): for b in range(0, N_branches): C2[r][b]=C2[r][b]/Normalization_factor[r][b] Sample_iterations=Sample_iterations+1 if Sample_iterations==5000: n_W=10 n_C2=5*10**-2 print Sample_iterations if Sample_iterations==10000: n_W=2.5 n_C2=1*10**-2 print Sample_iterations if Sample_iterations==15000: n_W=0.5 n_C2=0.1*10**-2 print Sample_iterations print "Training completed" ###### test phase! N_correct=0 for PP in range(int(np.ceil(0.9*N_total)),N_total): SS=Sequence[PP] if SS<N_F: Class_label=np.array([1,0,0]) inputPatch=Patches_F[SS] elif(SS>=N_F) and (SS<(N_F+N_C)): Class_label=np.array([0,1,0]) inputPatch=Patches_C[SS-N_F] elif(SS>=(N_F+N_C)) and (SS<N_F+N_C+N_W): Class_label=np.array([0,0,1]) inputPatch=Patches_W[SS-N_F-N_C] ### Layer 1 ### H1=[] H2=[] H3=np.zeros((len(C1), N_branches, S_H3,S_H3)) H4=np.zeros((len(C1), N_branches, S_H4,S_H4)) x=np.zeros(ClassAmount) f=np.zeros(ClassAmount) for r in range (0, len(C1)): H1.append(sig.convolve(inputPatch, C1[r], 'valid')) H2.append(Pool(H1[r], P12)) for b in range(0,N_branches): H3[r][b]=Sigmoid(sig.convolve(H2[r], C2[r][b],'valid')-H3_bias[r][b]) H4[r][b]=Pool(H3[r][b],P34) y=H4.flatten() #Now we have 3x3x4x4 inputs, connected to the 3 output nodes for k in range(0,ClassAmount): W_t=W[k].flatten() x[k]=np.inner(y, W_t) f[k]=Sigmoid(x[k]-Output_bias[k]) if np.argmax(f)==np.argmax(Class_label): #print True N_correct=N_correct+1 Perc_corr=float(N_correct)/(N_total-int(np.ceil(0.9*N_total))) print Perc_corr ERROR_cv_without[CROSSES]=Perc_corr Sequence=np.roll(Sequence,(N_total-int(np.ceil(0.9*N_total)))) ###Output _____no_output_____
Convolutional Neural Networks.ipynb
###Markdown Diferent types of layers- **Convolutional layer**: several kernels of size `kernel_size` (these are called *filters*) are passed across the image and a scalar matrix product is applied. This has the effect of transforming (filtering). After the convolution, you may apply a non-linear function.- **Pooling layer:** Pass a window across the transformed layers and choose a representative (max pixel value / average pixel value). This has the effect of reducing image size.- **Flatten layer:** Bring everything to a flat vector. - Once we have flat vector (through a flattening layer) we can apply dense layers to get to the desired output size (e.g. a vector of size number of classes). - A popular pattern is (Conv, Conv, Pool) followed by (Flatten, Dense, Dense for output) Example ###Code from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Flatten, Conv2D, MaxPool2D model = Sequential([ Conv2D(filters=32, kernel_size=3, activation='relu', input_shape=(28, 28, 1)), # (9 weights + 1 bias per layer) * filter Conv2D(filters=32, kernel_size=3, activation='relu'), # (32*(9 weights) + 1 bias per layer)*32 MaxPool2D(pool_size=2), Flatten(), Dense(128, activation='relu'), Dense(10, activation='softmax') ]) model.summary() 128*4608+128 # weights + bias 128*10+10 ###Output _____no_output_____ ###Markdown Reshape the data to fit it into the model ###Code X_train = X_train.reshape(-1, 28, 28, 1) # (number of samples, height, width, number of channels) X_test = X_test.reshape(-1, 28, 28, 1) X_train = X_train/255. # Note: This rescaling is suitable for this problem, (assuming range of 0-255) X_test = X_test/255. model.compile(loss="sparse_categorical_crossentropy", # loss function for integer-valued categories metrics=["accuracy", "mse"] ) history = model.fit(X_train, y_train, epochs=10, validation_split=0.1) plt.imshow(model.variables[0][:,:,:,0].numpy().reshape(3,3), cmap='gray') loss = history.history['loss'] val_loss = history.history['val_loss'] plt.plot(loss, label='Training loss') plt.plot(val_loss, label='Validation loss') plt.legend() plt.xlabel("Number of epochs") X.shape model.variables[1].shape model.variables[1] model.variables[3] ###Output _____no_output_____ ###Markdown COVID-19 Classification using 4-layer Convolutional Neural Networks. ###Code ! pip install opencv-python import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import os import cv2 import numpy as np import shutil from sklearn import preprocessing from keras.preprocessing import image from sklearn.model_selection import train_test_split from keras.applications.vgg16 import VGG16 from keras.applications import xception from keras.applications import inception_v3 from keras.applications.vgg16 import preprocess_input from sklearn.linear_model import LogisticRegression from sklearn.metrics import log_loss, accuracy_score from sklearn.metrics import precision_score, \ recall_score, confusion_matrix, classification_report, \ accuracy_score, f1_score from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score from sklearn.metrics import f1_score %matplotlib inline import matplotlib.image as mpimg import matplotlib.pyplot as plt from glob import glob base_dir = './data/' train_dir = os.path.join(base_dir, 'train') validation_dir = os.path.join(base_dir, 'test') import tensorflow as tf model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(16, (3,3), activation='relu', input_shape=(150, 150, 3)), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Conv2D(32, (3,3), activation='relu'), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Conv2D(64, (3,3), activation='relu'), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Flatten(), tf.keras.layers.Dense(512, activation='relu'), tf.keras.layers.Dense(3, activation='softmax') ]) model.summary() model.compile(optimizer='adam', loss= 'categorical_crossentropy', metrics=['accuracy']) from tensorflow.keras.preprocessing.image import ImageDataGenerator # All images will be rescaled by 1./255. train_datagen = ImageDataGenerator( rescale = 1.0/255. ) test_datagen = ImageDataGenerator( rescale = 1.0/255. ) # -------------------- # Flow training images in batches of 20 using train_datagen generator # -------------------- train_generator = train_datagen.flow_from_directory(train_dir, batch_size=20, class_mode='categorical', target_size=(150, 150)) # -------------------- # Flow validation images in batches of 20 using test_datagen generator # -------------------- validation_generator = test_datagen.flow_from_directory(validation_dir, batch_size=20, class_mode = 'categorical', target_size = (150, 150), shuffle=False) history = model.fit(train_generator, validation_data=validation_generator, steps_per_epoch=10, epochs=20, validation_steps = 3, verbose=2) from sklearn.metrics import classification_report from sklearn import preprocessing y_pred = model.predict(validation_generator, verbose=1) y_pred_bool = np.argmax(y_pred, axis=1) print(classification_report(validation_generator.classes, y_pred_bool)) ###Output 4/4 [==============================] - 1s 318ms/step precision recall f1-score support 0 1.00 1.00 1.00 26 1 1.00 0.70 0.82 20 2 0.77 1.00 0.87 20 accuracy 0.91 66 macro avg 0.92 0.90 0.90 66 weighted avg 0.93 0.91 0.91 66 ###Markdown One Hot Encoding with 100 -> [1,0,0,0,0,0,0,0,0,0]1 -> [0,1,0,0,0,0,0,0,0,0]2 -> [0,0,1,0,0,0,0,0,0,0]3 -> [0,0,0,1,0,0,0,0,0,0]4 -> [0,0,0,0,1,0,0,0,0,0]5 -> [0,0,0,0,0,1,0,0,0,0]6 -> [0,0,0,0,0,0,1,0,0,0]7 -> [0,0,0,0,0,0,0,1,0,0]8 -> [0,0,0,0,0,0,0,0,1,0]9 -> [0,0,0,0,0,0,0,0,0,1] ###Code image1 = x[10] image2 = x[4] image1 = np.array(image1) image2 = np.array(image2) image1 = image1.reshape(28,28) image2 = image2.reshape(28,28) plt.subplot(121) plt.title('{label}'.format(label=y[10])) plt.imshow(image1, cmap='gray') plt.subplot(122) plt.title('{label}'.format(label=y[4])) plt.imshow(image2, cmap='gray') plt.tight_layout() plt.show() print(x.shape[0]) x = x.reshape([-1, 28, 28, 1]) test_x = test_x.reshape([-1, 28, 28, 1]) print(x.shape) ###Output (55000, 28, 28, 1) ###Markdown Architecture ###Code # Building the convolutional neural network network = input_data(shape=[None, 28, 28, 1],name='input') #input layer network = conv_2d(network, nb_filter=4, filter_size=5, activation='relu') #conv layer with 4 5x5 conv kernels and rectifier activiation network = max_pool_2d(network, 2) #max pool subsampling layer with 2x2 sampling window network = conv_2d(network, nb_filter=4, filter_size=5, activation='relu') #conv layer with 4 5x5 conv kernels and rectifier activiation network = max_pool_2d(network, 2) #max pool subsampling layer with 2x2 sampling window network = fully_connected(network, 128, activation='tanh') #fully connected layer with 128 neurons and tanh activation function network = fully_connected(network, 10, activation='softmax') #output layer with 10 neurons and softmax activation function network = regression(network, optimizer='adam', learning_rate=0.01, loss='categorical_crossentropy', name='target') #regression layer with adam optimizer and crossentropy loss function model = tflearn.DNN(network, tensorboard_verbose=0) ###Output _____no_output_____ ###Markdown Training ###Code model.fit({'input': x}, {'target': y}, n_epoch=5, validation_set=({'input': test_x}, {'target': test_y}), show_metric=True, run_id='convnet_mnist') ###Output Training Step: 4299 | total loss: 0.23708 | time: 20.230s | Adam | epoch: 005 | loss: 0.23708 - acc: 0.9455 -- iter: 54976/55000 Training Step: 4300 | total loss: 0.22711 | time: 21.798s | Adam | epoch: 005 | loss: 0.22711 - acc: 0.9478 | val_loss: 0.10935 - val_acc: 0.9657 -- iter: 55000/55000 -- ###Markdown TestingCreate a test image: http://www.onemotion.com/flash/sketch-paint/ ###Code from scipy import misc image = misc.imread("test2.png", flatten=True) print(image.shape) print(image.dtype) #image = 1 - image image = image.reshape(28,28) plt.imshow(image, cmap='gray') plt.show() image = image.reshape([-1,28,28,1]) predict = model.predict({'input': image}) print(np.round_(predict, decimals=3)) print("prediction: " + str(np.argmax(predict))) ###Output _____no_output_____
2. Numpy.ipynb
###Markdown Numpy Basics ###Code array_1 = np.array([1,5,656]) array_1 array_1.shape arr2 = np.array([[1,2,3], [4,5,6]], dtype = 'int8') arr2 ###Output _____no_output_____ ###Markdown ###Code arr2.ndim arr2.shape arr2.dtype arr2[0, 1] = 100 arr2 arr2[0, 1] ###Output _____no_output_____ ###Markdown Changng Specific raws, clolumns, specific elements ###Code arr2[:, 1:-1:1] arr2[:,2] = [5] arr2 ###Output _____no_output_____ ###Markdown 3D numpy arrays ###Code arr3 = np.array([[[1, 2, 3, 10], [4, 5, 6, 11], [7, 8, 9, 12]]]) arr3 arr3.dtype type(arr3) arr3.ndim arr3.shape arr3 arr3[0, 0] arr3 ###Output _____no_output_____ ###Markdown Get specific elements (inside out) ###Code arr3[0,0,3] arr3[0][1] ###Output _____no_output_____ ###Markdown Initailising Different types of arrays ###Code arr4 = np.zeros((3, 4), dtype = 'int32') arr4 arr5 = np.ones((4,5), dtype = 'int32') arr5 arr6 = np.full((3,2,8), 9) arr6 arr7 = np.full_like(arr6, 5) arr7 arr8 = np.random.randint(4, 7, size = (4, 4)) arr8 np.identity(4) ###Output _____no_output_____ ###Markdown problem statememnt ###Code output = np.ones((5, 5)) output inside = np.zeros((3, 3)) print(inside) inside[1, 1] = 9 print(inside) output[1:-1, 1:-1] = inside print(output) ###Output [[1. 1. 1. 1. 1.] [1. 0. 0. 0. 1.] [1. 0. 9. 0. 1.] [1. 0. 0. 0. 1.] [1. 1. 1. 1. 1.]] ###Markdown be careful while copying arrays ###Code a = np.array([10,34,45]) b = np.copy(a) b[0] = 9999 print(a) print(b) ###Output [10 34 45] [9999 34 45] ###Markdown Mathematics ###Code a = np.array([1,2,3,4,5,6]) a += 2 print(a) a - 1 a * 2 a * 2 a np.sin(a) ###Output _____no_output_____ ###Markdown Linear algebra ###Code a = np.ones((4,5)) print(a) b = np.full((5, 4), 3) print(b) c = np.matmul(a, b) print(c) d = np.linalg.det(c) print(d) ###Output 0.0 ###Markdown Statistics ###Code a = np.array([[[1, 2, 3, 10], [4, 5, 6, 11], [7, 8, 9, 12]]]) np.max(a) np.min(a) np.sum(a) ###Output _____no_output_____ ###Markdown Rearranging Arrays ###Code a = np.array([[[1, 2, 3, 10], [4, 5, 6, 11], [7, 8, 9, 12]]]) a.shape a = a.reshape((4, 3)) a.shape ###Output _____no_output_____ ###Markdown Stacks -- vertical and horizontal ###Code s1 = np.array([1, 2, 3, 4]) s2 = np.array([6, 7, 8, 9]) p = np.vstack([s1, s2, s2, s1]) p p = np.hstack([s1, s2, s2, s1]) p ###Output _____no_output_____ ###Markdown Krishna Naik ###Code q = np.random.randint(4, size = (4, 4)) q a = np.arange(0, stop = 10, step = 1) a b = np.linspace(2, 10, 10, True) c = b.reshape(5, 2) c c.shape ###Output _____no_output_____
models/Ethan_Models.ipynb
###Markdown Ethan's Modeling ###Code import numpy as np import pandas as pd from sklearn.linear_model import Lasso, Ridge, LinearRegression, ElasticNet from sklearn.pipeline import Pipeline from sklearn.preprocessing import OneHotEncoder, LabelEncoder from sklearn.impute import KNNImputer from sklearn.metrics import mean_squared_error, accuracy_score, mean_absolute_error from sklearn.model_selection import GridSearchCV from matplotlib import pyplot as plt from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor plt.rcParams['figure.figsize'] = [12, 8] plt.rcParams['figure.dpi'] = 100 ###Output _____no_output_____ ###Markdown Get the Data Cleaning The DataMost of the cleaning was done outside of this file. The cleaned data is in the `men_lead_no_drop.csv` file. ###Code def impute(df): countries = df.country.unique() #dataset averages global_h = np.mean(df.height) global_w = np.mean(df.weight) global_a = np.mean(df.age) heights = [] weights = [] ages = [] #steps through each country for co in countries: group = df[df['country'] == co] # counting datapoints within country count_h = np.count_nonzero(~np.isnan(group.height)) count_w = np.count_nonzero(~np.isnan(group.weight)) count_a = np.count_nonzero(~np.isnan(group.age)) # sets thresholds between accepting the countries average or using dataset average to fill in NaN's if count_h >= 5: avg_h = np.mean(group.height) else: avg_h = global_h if count_w >= 5: avg_w = np.mean(group.weight) else: avg_w = global_w if count_a >= 10: avg_a = np.mean(group.age) else: avg_a = global_a # steps through each person creating lists to replace current columns in dataframe for i in range(len(group)): if np.isnan(group.iloc[i].height): heights.append(avg_h) else: heights.append(group.iloc[i].height) if np.isnan(group.iloc[i].weight): weights.append(avg_w) else: weights.append(group.iloc[i].weight) if np.isnan(group.iloc[i].age) or group.iloc[i].age==0: ages.append(avg_a) else: ages.append(group.iloc[i].age) #replacing columns of dataframe imputed = df.copy() imputed['height'] = heights imputed['weight'] = weights imputed['age'] = ages return imputed.fillna(0) df = pd.read_csv('../data/women_lead_no_drop.csv') df = impute(df) df = df.drop(['id', 'last_name', 'first_name', 'points', 'rank', 'event_count'], axis=1) df = pd.get_dummies(df) df = df.drop(['Unnamed: 0'], axis=1) test = df[df['year'] >= 2019] X_test = test.drop(['avg_points', 'year'], axis=1) y_test = test['avg_points'] train = df[df['year'] <= 2018] X_train = train.drop(['avg_points', 'year'], axis=1) y_train = train['avg_points'] # df.loc[:,['height', 'weight', 'age', 'career_len', 'avg_points', 't-1', 't-2', 't-3', 'country_CZE', 'country_ESP', 'country_CAN']].head().to_markdown(index=False) df ###Output _____no_output_____ ###Markdown Regression ModelsThese perform a number of regression models on the data with the training data taken from before 2019 and then predicting the 2019 numbers. The number we're using is the `avg_score` that year. And the way we look at how well the model predicted is using the `mean_squared_error` scoring function. Naive Baseline Model ###Code pred = X_test['t-1'] print("MSE Value:", mean_squared_error(pred, y_test)) print("MAE Value:", mean_absolute_error(pred, y_test)) plt.scatter(range(len(pred)), pred, label='Prediction') plt.scatter(range(len(pred)), y_test, label='Actual AVG Points') plt.title('Naive Baseline Model') plt.legend() plt.show() # plt.bar(range(len(pred)), np.abs(pred - y_test)) # plt.title ###Output MSE Value: 362.0169801875552 MAE Value: 12.358878127522194 ###Markdown Boilerplate code for following ModelsTesting the modesl below follows a lot of the same patterns, so let's just implement it in a simple function ###Code def run_regression_model(model, param_grid, model_name): grid = GridSearchCV(model, param_grid, n_jobs=-1, scoring='neg_mean_squared_error').fit(X_train, y_train) pred = grid.predict(X_test) print("MSE Value:", mean_squared_error(pred, y_test)) print("MAE Value:", mean_absolute_error(pred, y_test)) print("Best Params:", grid.best_params_) plt.scatter(range(len(pred)), pred, label='Prediction') plt.scatter(range(len(pred)), y_test, label='Actual AVG Points') plt.title(f'{model_name} - GridSearchCV') plt.xlabel('Rank') plt.ylabel('Average Score') plt.legend() plt.show() plt.bar(range(len(pred)), np.abs(pred - y_test)) plt.title(f'{model_name} - Absolute Errors') plt.xlabel('Rank') plt.ylabel('Absolute Error - `np.abs(pred - y_test)`') plt.show() ###Output _____no_output_____ ###Markdown Linear Regression ###Code param_grid = { 'fit_intercept': [True, False], 'normalize': [True, False] } model = LinearRegression(n_jobs=-1) run_regression_model(model, param_grid, 'Linear Regression') ###Output MSE Value: 249.3605326941072 MAE Value: 10.858999816690613 Best Params: {'fit_intercept': True, 'normalize': False} ###Markdown Lasso ###Code param_grid = { 'alpha': [1e-4, 1e-3, 1e-2, 1e-1, 1e0, 1e1, 1e2, 1e3, 1e4], 'fit_intercept': [True, False], 'normalize': [True, False] } model = Lasso() run_regression_model(model, param_grid, 'Linear Regression (Lasso)') ###Output MSE Value: 159.64927661478197 MAE Value: 9.315498326989573 Best Params: {'alpha': 1.0, 'fit_intercept': True, 'normalize': False} ###Markdown Ridge ###Code param_grid = { 'alpha': [1e-4, 1e-3, 1e-2, 1e-1, 1e0, 1e1, 1e2, 1e3, 1e4], 'fit_intercept': [True, False], 'normalize': [True, False] } model = Ridge(max_iter=100000) run_regression_model(model, param_grid, 'Linear Regression (Ridge)') ###Output MSE Value: 155.149902694903 MAE Value: 9.076325199731976 Best Params: {'alpha': 1000.0, 'fit_intercept': False, 'normalize': True} ###Markdown Elastic Net ###Code param_grid = { 'alpha': [1e-3, 1e-1, 1e0, 1e2, 1e4], 'l1_ratio': [1e-3, 1e-1, 1e0, 1e2, 1e4], 'fit_intercept': [True, False], 'normalize': [True, False] } model = ElasticNet(max_iter=100000) run_regression_model(model, param_grid, 'Linear Regression (Elastic Net)') ###Output MSE Value: 159.64927661478197 MAE Value: 9.315498326989573 Best Params: {'alpha': 1.0, 'fit_intercept': True, 'l1_ratio': 1.0, 'normalize': False} ###Markdown Decision Tree Regressor ###Code param_grid = { 'max_depth': [1, 2, 5, 10, None], 'max_leaf_nodes': [2, 5, 10, None], 'min_samples_leaf': [1, 2, 5, 10], 'min_samples_split': [2, 5, 10] } model = DecisionTreeRegressor() run_regression_model(model, param_grid, 'Decision Tree Regressor') ###Output MSE Value: 168.46543912879326 MAE Value: 9.543745800916518 Best Params: {'max_depth': 10, 'max_leaf_nodes': 10, 'min_samples_leaf': 1, 'min_samples_split': 2} ###Markdown Random Forest Regressor ###Code param_grid = { 'n_estimators': [10, 50, 100, 200], 'max_depth': [1, 2, 5, 10, None], 'min_samples_leaf': [1, 2, 5, 10], 'max_features': ['auto', 'sqrt'] } model = RandomForestRegressor() best_params_ = run_regression_model(model, param_grid, 'Random Forest Regressor') model.set_params(**best_params_) model.fit(X_train, y_train) features = pd.Series(model.feature_importances_, index=X_train.columns) print(features.sort_values(ascending=False)) ###Output MSE Value: 169.7604041763395 MAE Value: 9.66181708060917 Best Params: {'max_depth': 5, 'max_features': 'auto', 'min_samples_leaf': 10, 'n_estimators': 50} ###Markdown Gradient Boosted Regressor ###Code param_grid = { 'n_estimators': [10, 50, 100, 200], 'learning_rate': [0.01, 0.1, 0.5], 'max_depth': [2, 5, 10, None], 'min_samples_leaf': [1, 2, 5, 10], 'max_features': ['auto', 'sqrt'] } model = GradientBoostingRegressor() run_regression_model(model, param_grid, 'Gradient Boosting Regressor') ###Output MSE Value: 170.11196507004445 MAE Value: 9.645725743590715 Best Params: {'learning_rate': 0.1, 'max_depth': 2, 'max_features': 'auto', 'min_samples_leaf': 10, 'n_estimators': 50} ###Markdown Classification Methods ###Code df = pd.read_csv('../data/men_lead_no_drop.csv') df = impute(df) df = df.drop(['id', 'last_name', 'first_name', 'points', 'rank'], axis=1) le = LabelEncoder() le.fit(df.country) test = df[df['year'] >= 2019] X_test = test.drop(['country'], axis=1).to_numpy() y_test = le.transform(test['country']) train = df[df['year'] <= 2018] X_train = train.drop(['country'], axis=1).to_numpy() y_train = le.transform(train['country']) ###Output _____no_output_____ ###Markdown Decision Tree Classifier ###Code param_grid = { 'criterion': ['gini', 'entropy'], 'max_depth': [1, 3, 5, 6, None], 'max_leaf_nodes': [2, 3, 4, 5, 6, 10], 'min_samples_leaf': [1, 2, 3, 5, 10] } model = DecisionTreeClassifier() grid = GridSearchCV(model, param_grid, n_jobs=-1, scoring='accuracy').fit(X_train, y_train) pred = grid.predict(X_test) print("Accuracy Score:", accuracy_score(pred, y_test)) print("Best Params:", grid.best_params_) # plt.scatter(range(len(pred)), pred, label='Prediction') # plt.scatter(range(len(pred)), y_test, label='Actual AVG Points') # plt.title('Decision Tree Classifier - GridSearchCV') # plt.legend() # plt.show() ###Output /home/ebrouwerdev/.virtualenvs/ACME/lib/python3.8/site-packages/sklearn/model_selection/_split.py:670: UserWarning: The least populated class in y has only 1 members, which is less than n_splits=5. warnings.warn(("The least populated class in y has only %d"
Day 4.ipynb
###Markdown Day 4 Part 1 ###Code import pandas as pd from copy import deepcopy # Function that checks if a card is winning def check_card_is_winning(card, nums): bool_card = card.isin(nums) result_df = pd.DataFrame({"columns": bool_card.all(axis=0), "rows": bool_card.all(axis=1)}) return result_df.any().any() # Function that calculate the score of the winning card def card_calc_score(card, nums): bool_card = card.isin(nums) bool_card = bool_card.astype(int) bool_card = bool_card.applymap(lambda x: 1 if x == 0 else 0) return (bool_card * card).sum().sum() # Load the inputs input_list = [] with open("inputs/day4.txt") as input_file: input_list = [x for x in input_file.read().splitlines()] # Separate the draw order (first line) and the bingo cards numbers_list = list(map(int, input_list[0].split(","))) bingo_lines = [list(map(int, x.split())) for x in input_list[1:]] # Format the bingo cards as a list of list bingo_cards = [] for line in bingo_lines: if len(line) == 0: bingo_cards.append(line) else: bingo_cards[len(bingo_cards)-1].append(line) # Format the bingo cards as a list of Pandas DataFrames for i in range(len(bingo_cards)): bingo_cards[i] = pd.DataFrame(bingo_cards[i]) # Find the winning card and the winning number number_drawned = [] winning_card = 0 winning_number = 0 for num in numbers_list: number_drawned.append(num) for card in bingo_cards: if check_card_is_winning(card, number_drawned): winning_card = card winning_number = num break if winning_number != 0: break print("Winning bingo card :\n", winning_card) print("Winning number :", winning_number) print("Winning score :", card_calc_score(winning_card, number_drawned) * winning_number) ###Output Winning score : 44088 ###Markdown Part 2 ###Code # Find the losing card bingo_cards_copy = deepcopy(bingo_cards) number_to_draw = 0 number_drawned = [] while len(bingo_cards_copy) > 1: number_drawned.append(numbers_list[number_to_draw]) new_bingo_card_list = [] for card in bingo_cards_copy: if not check_card_is_winning(card, number_drawned): new_bingo_card_list.append(card) bingo_cards_copy = new_bingo_card_list number_to_draw += 1 losing_card = bingo_cards_copy[0] print("Losing card :\n", losing_card) # Find the winning number for the losing card losing_number = 0 number_drawned = [] for num in numbers_list: number_drawned.append(num) if check_card_is_winning(losing_card, number_drawned): losing_number = num break print("Winning number for the losing card :", losing_number) # Find the score for the losing card print("Winning score :", card_calc_score(losing_card, number_drawned) * losing_number) ###Output Winning score : 23670 ###Markdown Armstrong Number ###Code i = 1042000 while i<=702648265: r=0 s=str(i) l=len(s) for j in range(l): r+=int(s[j])**l if r==i: print("The first armstrong number is",r) break i+=1 ###Output The first armstrong number is 1741725 ###Markdown Day 4 String Concatenation To concatenate, or combine, two strings you can use the + operator. ###Code a = "Hello" b = "World" c = a + " " + b print(c) ###Output Hello World ###Markdown String FormatAs we learned in the Python Variables chapter, we cannot combine strings and numbers like this: ###Code age = 36 txt = "My name is John, I am " + age print(txt) ###Output _____no_output_____ ###Markdown But we can combine strings and numbers by using the `format()` method!The `format()` method takes the passed arguments, formats them, and places them in the string where the placeholders` {}` are: ###Code age = 36 txt = "My name is John, and I am {}" print(txt.format(age)) ###Output My name is John, and I am 36 ###Markdown The format() method takes unlimited number of arguments, and are placed into the respective placeholders: ###Code quantity = 3 itemno = 567 price = 49.95 myorder = "I want {} pieces of item {} for {} dollars." print(myorder.format(quantity, itemno, price)) quantity = 3 itemno = 567 price = 49.95 myorder = "I want to pay {2} dollars for {0} pieces of item {1}." print(myorder.format(quantity, itemno, price)) ###Output I want to pay 49.95 dollars for 3 pieces of item 567. ###Markdown Escape Characters To insert characters that are illegal in a string, use an escape character.An escape character is a backslash `\` followed by the character you want to insert.An example of an illegal character is a double quote inside a string that is surrounded by double quotes: ###Code # You will get an error if you use double quotes inside a string that is surrounded by double quotes: txt = "We are the so-called "Vikings" from the north." txt = "We are the so-called \"Vikings\" from the north." txt ###Output _____no_output_____ ###Markdown Deleting/Updating from a String In Python, `Updation or deletion` of characters from a String is not allowed. This will cause an error because item assignment or item deletion from a String is not supported. Although deletion of entire String is possible with the use of a `built-in del` keyword. This is because Strings are `immutable`, hence elements of a String cannot be changed once it has been assigned. Only new strings can be reassigned to the same name. Updation of a character: ###Code # Python Program to Update # character of a String String1 = "Hello, I'm a Geek" print("Initial String: ") print(String1) # Updating a character # of the String String1[2] = 'p' print("\nUpdating character at 2nd Index: ") print(String1) ###Output Initial String: Hello, I'm a Geek ###Markdown Updating Entire String: ###Code # Python Program to Update # entire String String1 = "Hello, I'm a Geek" print("Initial String: ") print(String1) # Updating a String String1 = "Welcome to the Geek World" print("\nUpdated String: ") print(String1) ###Output Initial String: Hello, I'm a Geek Updated String: Welcome to the Geek World ###Markdown Deletion of a character: ###Code # Python Program to Delete # characters from a String String1 = "Hello, I'm a Geek" print("Initial String: ") print(String1) # Deleting a character # of the String del String1[2] print("\nDeleting character at 2nd Index: ") print(String1) ###Output Initial String: Hello, I'm a Geek ###Markdown Deleting Entire String:Deletion of entire string is possible with the use of del keyword. Further, if we try to print the string, this will produce an error because String is deleted and is unavailable to be printed.` ###Code # Python Program to Delete # entire String String1 = "Hello, I'm a Geek" print("Initial String: ") print(String1) # Deleting a String # with the use of del del String1 print("\nDeleting entire String: ") print(String1) ###Output Initial String: Hello, I'm a Geek Deleting entire String: ###Markdown q)Importing the numpy package ###Code import numpy as np myarr = np.array([1,2,3,4,5]) print(myarr) ###Output _____no_output_____ ###Markdown Note : Arrays can store elemements of the same type Advantages of array in numpy Uses less space and its faster in computation q)Lets check the size of an integer type in Python ###Code import sys b = 10 sys.getsizeof(b) ###Output _____no_output_____ ###Markdown q) Lets check the size of an empty list in Python ###Code myl = [] sys.getsizeof(myl) ###Output _____no_output_____ ###Markdown q Lets add an item to the list and check the size ###Code myl = [1] sys.getsizeof(myl) ###Output _____no_output_____ ###Markdown Note : Every item in the list would occupy 8 bytes q)Lets create a list of 100 elements ###Code myl=list(range(1,100)) print(myl) type(myl) ###Output [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99] ###Markdown q)Lets now check the size of the entire list ###Code size_l = sys.getsizeof(myl[1])*len(myl) print(size_l) ###Output 2772 ###Markdown Note : getsizeof(myl[1]) would give the size of one element of the list in bytes q)Now lets create an array of 100 elements and check the size of the array ###Code import numpy as np myar = np.arange(100) print(myar) ###Output [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99] ###Markdown q)How to find out the count of number of elements in an array ###Code myar.size ###Output _____no_output_____ ###Markdown q)How to find the size (memory occupied) by every item in an array ###Code print(myar.itemsize) ###Output 4 ###Markdown Now we need to multiple the lenght of the array with the memory occupied by each array element to get the total memory occupied by the entire array elements. ###Code size_a = (myar.size)*(myar.itemsize) print(size_a) ###Output 400 ###Markdown Now compare how much memory does an array and list occupy (scroll up and compare with that of the list) q)How to verify that numpy arrays are faster than the python lists ###Code import sys import time import numpy as np def list_add(l1,l2): i=0 for a in l2: l1[i]=l1[i]+a i=i+1 count = 10000000 l1=list(range(count)) l2=list(range(count)) start=time.time() list_add(l1,l2) end=time.time() elapsed = 1000*(end-start) print("List addition time is ",elapsed) a1 = np.arange(count) a2 = np.arange(count) start=time.time() a3=a1+a2 end=time.time() elapsed = 1000*(end-start) print("Array addition time is ",elapsed) ###Output List addition time is 2515.1050090789795 Array addition time is 36.522626876831055 ###Markdown WAP - In class exe : Modify the above program to perform a slightly complex operation on a larger data set to observe the time difference. q)Demonstration of arithmatic operations on arrays Adding 2 arrays, Subrtacting 2 arrays Mul Div q)Creating a 2 dimensional array ###Code import numpy as np a = np.array([[1,2],[3,4]]) print(a) a.ndim #The ndim will print the dimensionality of the array i.e 1 dimentional or 2 dimensional ###Output [[1 2] [3 4]] ###Markdown q)How to count the number of elements in any array ###Code print(a.size) print("shape =",a.shape) # would print how many rows and cols are there in the array ###Output 4 shape = (2, 2) ###Markdown q) Lets see another example of using the shape function ###Code a=np.array([[1,2],[3,4],[5,6]]) a.shape print(a) ###Output [[1 2] [3 4] [5 6]] ###Markdown q)Reshaping an array ###Code b = a.reshape((2,3)) b.shape print(b) ###Output [[1 2 3] [4 5 6]] ###Markdown q)Creating a zero value array ###Code a = np.zeros( (2,3) ) #will result in creating a 2 row and 3 col array, filled with zeroes print(a) b = np.ones((2,3)) #This will create an array with value 1's print(b) ###Output [[0. 0. 0.] [0. 0. 0.]] [[1. 1. 1.] [1. 1. 1.]] ###Markdown q)Using the arange function to create arrays ###Code a = np.arange(5) print(a) ###Output [0 1 2 3 4] ###Markdown q) Understanding the ravel function,its used to convert an N dimensional array into a 1 dimensional array ###Code a = b.ravel() print(a) type(a) ###Output [1. 1. 1. 1. 1. 1.] ###Markdown q)Finding out the min and max element from an array ###Code b.min() b.max() b.sum() # Note: try the built in function b.sum() ###Output _____no_output_____ ###Markdown WAP In-class exe : To develop a custom user defined function to find out the min and max element from an 2 by 3 array or elements as shown below 1 23 45 6 Hint : U may use the ravel function to flatten it out and then work on finding the min and max elements from the array Note : U are not supposed to use the min or max built in function ###Code a = np.arange(6) print(a) def min_max(a): results_list = sorted(a) return results_list[0], results_list[-1] r = min_max(a) print(r) ###Output [0 1 2 3 4 5] (0, 5) ###Markdown q)Operations on arrays (Addition, subtraction and multiplication is possible) ###Code a=np.ones((2,2)) b=np.ones((2,2)) print(a) print(b) c = a+b d = a-b e = a*b print("addition result follows\n\n:",c) print("subtraction result follows\n \n :",d) print("multiplication result follows\n \n :",e) ###Output _____no_output_____ ###Markdown Slicing python lists ###Code l = [1,2,3,4,5] l[2:4] ###Output _____no_output_____ ###Markdown Similar kind of slicing is possible on Python arrays ###Code d2 = np.array([[1,2,3],[4,5,6],[7,8,9]]) print(d2) print(d2[0,0]) #This would print the element from 0th row and 0th column i.e 1 print(d2[1,1]) #This would print the element from 0th row and 0th column i.e 5 ###Output _____no_output_____ ###Markdown 1 2 3 4 5 6 7 8 9 q)How to interpret the below statement with respect to the above 3 by 3 array ###Code print(d2[0:2,2]) #would print [3 6] # [0:2,2] would translate to [(0,1),2] i.e to print the row 0 and row 1 elements of column 2 which is 3,6 print(d2[:,0:2]) # Print all the row elements from col 0 and col 1 ###Output _____no_output_____ ###Markdown q)Iterating the array using for loops 1 2 34 5 67 8 9The array d2 contains the above elements ###Code for row in d2: print(row) ###Output _____no_output_____ ###Markdown q)Conditional statements on arrays ###Code ca = np.arange(9).reshape(3,3) print("The original array is \n" ,ca) con = ca > 5 print(" \nThe boolean array after the conditional statement is applied \n") print(con) ca[con] # The boolean TRUE/FALSE array is now the index and print only the numbers satisfying the the > 5 condition ###Output _____no_output_____ ###Markdown In class - exe WAP : To create an array with 100 elements (M,N is 5,10) anf filter only those elements between than 75 and 100 and create a new array with 5 rows and 5 cols q)Replacing all the elements of an array which is greater than 4 with zero ###Code ca = np.arange(9).reshape(3,3) print("The original array is : \n", ca) con = ca > 4 ca[con]=0 print("\n",ca) ###Output _____no_output_____ ###Markdown q)Taking a 1 dimensional array and reshaping it to a 2 dimensional array ###Code newa = np.arange(10).reshape(2,5) newb = np.arange(10,20).reshape(2,5) print(newa) print(newb) ###Output _____no_output_____ ###Markdown understanding stacking operations on an array ###Code newc=np.vstack((newa,newb)) # vstack is for vertical stacking and similarly hstack can be used too print(newc) type(newc) ###Output _____no_output_____ ###Markdown q)We can split a large arrays into smaller arrays ###Code biga = np.arange(60).reshape(6,10) print(biga) biga.shape sma = np.hsplit(biga,2) # sma is a list consisting of 3 smaller arrays print(sma[0]) print(sma[1]) ###Output _____no_output_____ ###Markdown Day 4 of 15PetroNumpyDays Using inbuilt methods for generating arrays Arange: Return an array with evenly spaced elements in the given interval. - np.arange(start,stop,step) ###Code #Make an array of pressures ranging from 0 to 5000 psi with a step size of 500 psi pressures = np.arange(0,5500,500) pressures pressures.ndim ###Output _____no_output_____ ###Markdown Linspace: Creates lineraly spaced array- Evenly spaced numbers over a specified interval- Creating n datapoints between two points ###Code # Create saturation array from 0 to 1 having 100 points saturations = np.linspace(0,1,100) saturations saturations.shape ###Output _____no_output_____ ###Markdown List Widget ###Code from PyQt5 import QtCore, QtGui, QtWidgets class Ui_Form(object): def setupUi(self, Form): Form.setObjectName("Form") Form.resize(539, 401) font = QtGui.QFont() font.setPointSize(14) font.setBold(True) font.setWeight(75) Form.setFont(font) self.verticalLayout_2 = QtWidgets.QVBoxLayout(Form) self.verticalLayout_2.setObjectName("verticalLayout_2") self.verticalLayout = QtWidgets.QVBoxLayout() self.verticalLayout.setObjectName("verticalLayout") self.listWidget = QtWidgets.QListWidget(Form) self.listWidget.setStyleSheet("QListWidget{\n" "font: 75 14pt \"MS Shell Dlg 2\";\n" "background-color:rgb(255, 0, 0)\n" "}") self.listWidget.setObjectName("listWidget") item = QtWidgets.QListWidgetItem() self.listWidget.addItem(item) item = QtWidgets.QListWidgetItem() self.listWidget.addItem(item) item = QtWidgets.QListWidgetItem() self.listWidget.addItem(item) item = QtWidgets.QListWidgetItem() self.listWidget.addItem(item) item = QtWidgets.QListWidgetItem() self.listWidget.addItem(item) item = QtWidgets.QListWidgetItem() self.listWidget.addItem(item) self.listWidget.clicked.connect(self.item_clicked) self.verticalLayout.addWidget(self.listWidget) self.label = QtWidgets.QLabel(Form) font = QtGui.QFont() font.setPointSize(14) font.setBold(True) font.setWeight(75) self.label.setFont(font) self.label.setStyleSheet("QLabel{\n" "color:red;\n" "}") self.label.setText("") self.label.setObjectName("label") self.verticalLayout.addWidget(self.label) self.verticalLayout_2.addLayout(self.verticalLayout) self.retranslateUi(Form) QtCore.QMetaObject.connectSlotsByName(Form) def item_clicked(self): item = self.listWidget.currentItem() self.label.setText("You have selected : " + str(item.text())) def retranslateUi(self, Form): _translate = QtCore.QCoreApplication.translate Form.setWindowTitle(_translate("Form", "Form")) __sortingEnabled = self.listWidget.isSortingEnabled() self.listWidget.setSortingEnabled(False) item = self.listWidget.item(0) item.setText(_translate("Form", "Python")) item = self.listWidget.item(1) item.setText(_translate("Form", "Java")) item = self.listWidget.item(2) item.setText(_translate("Form", "C++")) item = self.listWidget.item(3) item.setText(_translate("Form", "C#")) item = self.listWidget.item(4) item.setText(_translate("Form", "JavaScript")) item = self.listWidget.item(5) item.setText(_translate("Form", "Kotlin")) self.listWidget.setSortingEnabled(__sortingEnabled) if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) Form = QtWidgets.QWidget() ui = Ui_Form() ui.setupUi(Form) Form.show() sys.exit(app.exec_()) from PyQt5.QtWidgets import QApplication, QWidget,QLabel,QVBoxLayout, QListWidget import sys from PyQt5.QtGui import QIcon, QFont class Window(QWidget): def __init__(self): super().__init__() #window requirements like title,icon self.setGeometry(200,200,400,300) self.setWindowTitle("PyQt5 QListWidget") self.setWindowIcon(QIcon("python.png")) self.create_list() def create_list(self): #create vbox layout object vbox = QVBoxLayout() #create object of list_widget self.list_widget = QListWidget() #add items to the listwidget self.list_widget.insertItem(0, "Python") self.list_widget.insertItem(1, "Java") self.list_widget.insertItem(2, "C++") self.list_widget.insertItem(3, "C#") self.list_widget.insertItem(4, "Kotlin") self.list_widget.setStyleSheet('background-color:red') self.list_widget.setFont(QFont("Sanserif", 15)) self.list_widget.clicked.connect(self.item_clicked) #create label self.label = QLabel("") self.setFont(QFont("Sanserif", 13)) self.setStyleSheet('color:green') #add widgets to the vboxlyaout vbox.addWidget(self.list_widget) vbox.addWidget(self.label) #set the layout for the main window self.setLayout(vbox) def item_clicked(self): item = self.list_widget.currentItem() self.label.setText("You have selected: " + str(item.text())) App = QApplication(sys.argv) window = Window() window.show() sys.exit(App.exec()) ###Output _____no_output_____ ###Markdown QDial ###Code from PyQt5 import QtCore, QtGui, QtWidgets class Ui_Form(object): def setupUi(self, Form): Form.setObjectName("Form") Form.resize(532, 398) self.verticalLayout_2 = QtWidgets.QVBoxLayout(Form) self.verticalLayout_2.setObjectName("verticalLayout_2") self.verticalLayout = QtWidgets.QVBoxLayout() self.verticalLayout.setObjectName("verticalLayout") self.dial = QtWidgets.QDial(Form) self.dial.valueChanged.connect(self.dial_changed) self.dial.setMaximum(360) self.dial.setStyleSheet("QDial{\n" "background-color:rgb(255, 0, 0);\n" "}") self.dial.setObjectName("dial") self.verticalLayout.addWidget(self.dial) self.label = QtWidgets.QLabel(Form) font = QtGui.QFont() font.setPointSize(14) font.setBold(True) font.setWeight(75) self.label.setFont(font) self.label.setText("") self.label.setObjectName("label") self.verticalLayout.addWidget(self.label) self.verticalLayout_2.addLayout(self.verticalLayout) self.retranslateUi(Form) QtCore.QMetaObject.connectSlotsByName(Form) def dial_changed(self): getValue = self.dial.value() self.label.setText("Dial is changing : "+ str(getValue)) def retranslateUi(self, Form): _translate = QtCore.QCoreApplication.translate Form.setWindowTitle(_translate("Form", "Form")) if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) Form = QtWidgets.QWidget() ui = Ui_Form() ui.setupUi(Form) Form.show() sys.exit(app.exec_()) from PyQt5.QtWidgets import QApplication, QWidget,QVBoxLayout, QDial, QLabel import sys from PyQt5.QtGui import QIcon, QFont class Window(QWidget): def __init__(self): super().__init__() self.setGeometry(200,200,400,300) self.setWindowTitle("PyQt5 QDial Application") self.setWindowIcon(QIcon("python.png")) self.create_dial() def create_dial(self): vbox = QVBoxLayout() self.dial = QDial() self.dial.setMinimum(0) self.dial.setMaximum(360) self.dial.setValue(30) self.dial.setStyleSheet('background-color:green') self.dial.valueChanged.connect(self.dial_changed) self.label = QLabel("") self.label.setFont(QFont("Sanserif", 15)) self.label.setStyleSheet('color:red') vbox.addWidget(self.dial) vbox.addWidget(self.label) self.setLayout(vbox) def dial_changed(self): getValue = self.dial.value() self.label.setText("Dial is changing : "+ str(getValue)) App = QApplication(sys.argv) window = Window() window.show() sys.exit(App.exec()) ###Output _____no_output_____ ###Markdown ComboBox ###Code from PyQt5.QtWidgets import QApplication,\ QWidget, QComboBox, QLabel from PyQt5 import uic class UI(QWidget): def __init__(self): super().__init__() # loading the ui file with uic module uic.loadUi('combobox.ui', self) #find widgets in the ui file self.combo = self.findChild(QComboBox, "comboBox") self.combo.currentTextChanged.connect(self.combo_selected) self.label = self.findChild(QLabel, "label") def combo_selected(self): item = self.combo.currentText() self.label.setText("You selected : " + item) app = QApplication([]) window = UI() window.show() app.exec_() from PyQt5.QtWidgets import QApplication, QWidget, \ QVBoxLayout, QComboBox, QLabel import sys from PyQt5.QtGui import QIcon, QFont class Window(QWidget): def __init__(self): super().__init__() #window requrements like geometry,icon and title self.setGeometry(200,200,400,200) self.setWindowTitle("PyQt5 QComboBox") self.setWindowIcon(QIcon("python.png")) #our vboxlayout vbox = QVBoxLayout() #create the object of combobox self.combo = QComboBox() #add items to the combobox self.combo.addItem("Python") self.combo.addItem("Java") self.combo.addItem("C++") self.combo.addItem("C#") self.combo.addItem("JavaScript") #connected combobox signal self.combo.currentTextChanged.connect(self.combo_selected) #create label self.label = QLabel("") self.label.setFont(QFont("Sanserif", 15)) self.label.setStyleSheet('color:red') #added widgets in the vbox layout vbox.addWidget(self.combo) vbox.addWidget(self.label) self.setLayout(vbox) def combo_selected(self): item = self.combo.currentText() self.label.setText("You selected : " + item) App = QApplication(sys.argv) window = Window() window.show() sys.exit(App.exec()) ###Output _____no_output_____ ###Markdown Slider ###Code from PyQt5.QtWidgets import QApplication, QWidget,QSlider, QLabel from PyQt5 import uic class UI(QWidget): def __init__(self): super().__init__() # loading the ui file with uic module uic.loadUi('slider.ui', self) #finding the widgets self.slider = self.findChild(QSlider, "horizontalSlider") self.slider.valueChanged.connect(self.changed_slider) self.label = self.findChild(QLabel, "label") def changed_slider(self): value = self.slider.value() self.label.setText(str(value)) app = QApplication([]) window = UI() window.show() app.exec_() from PyQt5.QtWidgets import QApplication, QWidget, QSlider, QLabel, QHBoxLayout import sys from PyQt5.QtGui import QIcon, QFont from PyQt5.QtCore import Qt class Window(QWidget): def __init__(self): super().__init__() #window requrements like geometry,icon and title self.setGeometry(200,200,400,200) self.setWindowTitle("PyQt5 Slider") self.setWindowIcon(QIcon("python.png")) hbox = QHBoxLayout() self.slider = QSlider() self.slider.setOrientation(Qt.Horizontal) self.slider.setTickPosition(QSlider.TicksBelow) self.slider.setTickInterval(10) self.slider.setMinimum(0) self.slider.setMaximum(100) self.slider.valueChanged.connect(self.changed_slider) self.label =QLabel("") self.label.setFont(QFont("Sanserif", 15)) hbox.addWidget(self.slider) hbox.addWidget(self.label) self.setLayout(hbox) def changed_slider(self): value = self.slider.value() self.label.setText(str(value)) App = QApplication(sys.argv) window = Window() window.show() ###Output _____no_output_____ ###Markdown Menu ###Code from PyQt5 import QtCore, QtGui, QtWidgets class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(800, 600) self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") MainWindow.setCentralWidget(self.centralwidget) self.menubar = QtWidgets.QMenuBar(MainWindow) self.menubar.setGeometry(QtCore.QRect(0, 0, 800, 26)) self.menubar.setObjectName("menubar") self.menuFile = QtWidgets.QMenu(self.menubar) self.menuFile.setObjectName("menuFile") MainWindow.setMenuBar(self.menubar) self.statusbar = QtWidgets.QStatusBar(MainWindow) self.statusbar.setObjectName("statusbar") MainWindow.setStatusBar(self.statusbar) self.actionName = QtWidgets.QAction(MainWindow) icon = QtGui.QIcon() icon.addPixmap(QtGui.QPixmap(":/image/new.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.actionName.setIcon(icon) self.actionName.setObjectName("actionName") self.actionSave = QtWidgets.QAction(MainWindow) icon1 = QtGui.QIcon() icon1.addPixmap(QtGui.QPixmap(":/image/save.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.actionSave.setIcon(icon1) self.actionSave.setObjectName("actionSave") self.actionCopy = QtWidgets.QAction(MainWindow) icon2 = QtGui.QIcon() icon2.addPixmap(QtGui.QPixmap(":/image/copy.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.actionCopy.setIcon(icon2) self.actionCopy.setObjectName("actionCopy") self.actionPaste = QtWidgets.QAction(MainWindow) icon3 = QtGui.QIcon() icon3.addPixmap(QtGui.QPixmap(":/image/paste.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.actionPaste.setIcon(icon3) self.actionPaste.setObjectName("actionPaste") self.actionExit = QtWidgets.QAction(MainWindow) icon4 = QtGui.QIcon() icon4.addPixmap(QtGui.QPixmap(":/image/exit.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.actionExit.setIcon(icon4) self.actionExit.setObjectName("actionExit") self.menuFile.addAction(self.actionName) self.menuFile.addAction(self.actionSave) self.menuFile.addAction(self.actionCopy) self.menuFile.addAction(self.actionPaste) self.menuFile.addAction(self.actionExit) self.menubar.addAction(self.menuFile.menuAction()) self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "MainWindow")) self.menuFile.setTitle(_translate("MainWindow", "File")) self.actionName.setText(_translate("MainWindow", "New")) self.actionSave.setText(_translate("MainWindow", "Save")) self.actionCopy.setText(_translate("MainWindow", "Copy")) self.actionPaste.setText(_translate("MainWindow", "Paste")) self.actionExit.setText(_translate("MainWindow", "Exit")) import images_rc if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) MainWindow = QtWidgets.QMainWindow() ui = Ui_MainWindow() ui.setupUi(MainWindow) MainWindow.show() sys.exit(app.exec_()) from PyQt5.QtWidgets import QApplication, QMainWindow,\ QAction import sys from PyQt5.QtGui import QIcon class Window(QMainWindow): def __init__(self): super().__init__() #window requrements like geometry,icon and title self.setGeometry(200,200,400,200) self.setWindowTitle("PyQt5 Menu") self.setWindowIcon(QIcon("python.png")) self.create_menu() def create_menu(self): main_menu = self.menuBar() fileMenu = main_menu.addMenu("File") newAction = QAction(QIcon('image/new.png'), "New", self) newAction.setShortcut("Ctrl+N") fileMenu.addAction(newAction) saveAction = QAction(QIcon('image/save.png'), "Save", self) saveAction.setShortcut("Ctrl+S") fileMenu.addAction(saveAction) fileMenu.addSeparator() copyAction = QAction(QIcon('image/copy.png'), "Copy", self) copyAction.setShortcut("Ctrl+C") fileMenu.addAction(copyAction) pasteAction = QAction(QIcon('image/paste.png'), "Paste", self) pasteAction.setShortcut("Ctrl+P") fileMenu.addAction(pasteAction) exitAction = QAction(QIcon('image/exit.png'), "Exit", self) exitAction.triggered.connect(self.close_window) fileMenu.addAction(exitAction) def close_window(self): self.close() App = QApplication(sys.argv) window = Window() window.show() sys.exit(App.exec()) ###Output _____no_output_____ ###Markdown QPainter Rectangle ###Code from PyQt5.QtWidgets import QApplication, QWidget import sys from PyQt5.QtGui import QIcon from PyQt5.QtGui import QPainter, QPen, QBrush from PyQt5.QtCore import Qt class Window(QWidget): def __init__(self): super().__init__() self.setGeometry(200,200,400,300) self.setWindowTitle("PyQt5 Drawing") self.setWindowIcon(QIcon("python.png")) def paintEvent(self, e): painter = QPainter(self) painter.setPen(QPen(Qt.black, 5, Qt.SolidLine)) painter.setBrush(QBrush(Qt.red, Qt.SolidPattern)) # painter.setBrush(QBrush(Qt.green, Qt.DiagCrossPattern)) painter.drawRect(100, 15, 300, 100) App = QApplication(sys.argv) window = Window() window.show() sys.exit(App.exec()) ###Output _____no_output_____ ###Markdown Eclipse ###Code from PyQt5.QtWidgets import QApplication, QWidget import sys from PyQt5.QtGui import QIcon from PyQt5.QtGui import QPainter, QPen, QBrush from PyQt5.QtCore import Qt class Window(QWidget): def __init__(self): super().__init__() self.setGeometry(200, 200, 700, 400) self.setWindowTitle("PyQt5 Ellipse ") self.setWindowIcon(QIcon("python.png")) def paintEvent(self, e): painter = QPainter(self) painter.setPen(QPen(Qt.black, 5, Qt.SolidLine)) painter.setBrush(QBrush(Qt.red, Qt.SolidPattern)) painter.setBrush(QBrush(Qt.green, Qt.DiagCrossPattern)) painter.drawEllipse(100, 100, 400, 200) App = QApplication(sys.argv) window = Window() window.show() sys.exit(App.exec()) ###Output _____no_output_____ ###Markdown Polygon ###Code 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 from PyQt5.QtWidgets import QApplication, QWidget import sys from PyQt5.QtGui import QIcon, QPolygon from PyQt5.QtGui import QPainter, QPen, QBrush from PyQt5.QtCore import Qt, QPoint class Window(QWidget): def __init__(self): super().__init__() self.setGeometry(200, 200, 700, 400) self.setWindowTitle("PyQt5 Drawing") self.setWindowIcon(QIcon("python.png")) def paintEvent(self, e): painter = QPainter(self) painter.setPen(QPen(Qt.black, 5, Qt.SolidLine)) painter.setBrush(QBrush(Qt.red, Qt.SolidPattern)) painter.setBrush(QBrush(Qt.green, Qt.VerPattern)) points = QPolygon([ QPoint(10, 10), QPoint(10, 100), QPoint(100, 10), QPoint(100, 100) ]) painter.drawPolygon(points) App = QApplication(sys.argv) window = Window() window.show() sys.exit(App.exec()) ###Output _____no_output_____
5_student_performance_prediction.ipynb
###Markdown Higher Education Students Performance Evaluation ###Code # Dataset - https://www.kaggle.com/csafrit2/higher-education-students-performance-evaluation/code from google.colab import drive drive.mount('/content/drive') import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import matplotlib.style df=pd.read_csv('/content/drive/MyDrive/28 feb/student_prediction.csv') df.head(3) df.tail(3) df.shape df.isnull().sum() df.drop('STUDENTID',axis=1,inplace=True) df.shape figure = plt.figure(figsize=(28, 26)) sns.heatmap(df.corr(), annot=True,cmap=plt.cm.cool) cols = ['AGE','GENDER', 'HS_TYPE', 'SCHOLARSHIP', 'ACTIVITY', 'PARTNER','SALARY' ] #--->>> column of which you want to see outlier, include them for i in cols: sns.boxplot(df[i]) plt.show(); #df.drop(['MOTHER_JOB','FATHER_JOB'],axis=1,inplace=True) df.shape #df.drop(['#_SIBLINGS','PARTNER'],axis=1,inplace=True) df.shape df.info() #df.drop(['AGE','GENDER','HS_TYPE','SCHOLARSHIP'],axis=1,inplace=True) df.info() #df.drop(['WORK','ACTIVITY','SALARY','TRANSPORT','LIVING','MOTHER_EDU','FATHER_EDU','KIDS','READ_FREQ'],axis=1,inplace=True) df.info() #df.drop(['CLASSROOM','CUML_GPA','COURSE ID'],axis=1,inplace=True) df.shape #df.drop(['READ_FREQ_SCI','ATTEND_DEPT','IMPACT','ATTEND','PREP_STUDY','NOTES','LISTENS','LIKES_DISCUSS','EXP_GPA'],axis=1,inplace=True) df.shape df['GRADE'].value_counts() # Copy all the predictor variables into X dataframe X = df.drop('GRADE', axis=1) # Copy target into the y dataframe.This is the dependent variable y = df[['GRADE']] X.head() X.shape #Let us break the X and y dataframes into training set and test set. For this we will use #Sklearn package's data splitting function which is based on random function from sklearn.model_selection import train_test_split # Split X and y into training and test set in 65:35 ratio X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.15 , random_state=10) # Feature Scaling from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) X_train # now all value in same range import tensorflow as tf # Importing the Keras libraries and packages import keras from keras.models import Sequential from keras.layers import Dense from keras.layers import LeakyReLU,PReLU,ELU from keras.layers import Dropout # Initialising the ANN ann = Sequential() ann.add(Dense(units=15,kernel_initializer='he_normal', activation = 'relu')) ann.add(Dropout(0.2)) #ann.add(Dense(units=13,kernel_initializer='he_normal', activation = 'relu')) #ann.add(Dense(units=26,kernel_initializer='he_normal', activation = 'relu')) ann.add(Dense(8,kernel_initializer='glorot_uniform', activation = 'softmax')) input_shape = X.shape ann.build(input_shape) ann.summary() # ,input_dim = 31 >>> (31+1)=32*16=512 ann.compile(optimizer = 'adam', loss = 'sparse_categorical_crossentropy', metrics = ['accuracy']) model_history = ann.fit(X_train, y_train,validation_split = 0.15, batch_size = 12, epochs = 92) from sklearn.linear_model import LogisticRegression classifier = LogisticRegression(random_state = 10) classifier.fit(X_train, y_train) y_pred = classifier.predict(X_test) from sklearn.metrics import classification_report, confusion_matrix cm = confusion_matrix(y_test, y_pred) print ("Confusion Matrix : \n", cm) print (classification_report(y_test, y_pred)) from sklearn.metrics import accuracy_score print ("Accuracy : ", accuracy_score(y_test, y_pred)) # Import necessary modules from sklearn.neighbors import KNeighborsClassifier # Split into training and test set X_train, X_test, y_train, y_test = train_test_split( X, y, test_size = 0.1, random_state=32) knn = KNeighborsClassifier(n_neighbors=3) knn.fit(X_train, y_train) # Calculate the accuracy of the model print(knn.score(X_test, y_test)) from sklearn.tree import DecisionTreeClassifier # Splitting the dataset into train and test X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 100) # Function to perform training with giniIndex. def train_using_gini(X_train, X_test, y_train): # Creating the classifier object clf_gini = DecisionTreeClassifier(criterion = "gini", random_state = 100,max_depth=3, min_samples_leaf=5) # Performing training clf_gini.fit(X_train, y_train) return clf_gini # Function to perform training with entropy. def tarin_using_entropy(X_train, X_test, y_train): # Decision tree with entropy clf_entropy = DecisionTreeClassifier( criterion = "entropy", random_state = 100, max_depth = 3, min_samples_leaf = 5) # Performing training clf_entropy.fit(X_train, y_train) return clf_entropy # Function to make predictions def prediction(X_test, clf_object): # Predicton on test with giniIndex y_pred = clf_object.predict(X_test) print("Predicted values:") print(y_pred) return y_pred # Function to calculate accuracy def cal_accuracy(y_test, y_pred): print("Confusion Matrix: ", confusion_matrix(y_test, y_pred)) print ("Accuracy : ", accuracy_score(y_test,y_pred)*100) print("Report : ", classification_report(y_test, y_pred)) clf_gini = train_using_gini(X_train, X_test, y_train) clf_entropy = tarin_using_entropy(X_train, X_test, y_train) # Operational Phase print("Results Using Gini Index:") # Prediction using gini y_pred_gini = prediction(X_test, clf_gini) cal_accuracy(y_test, y_pred_gini) print("Results Using Entropy:") # Prediction using entropy y_pred_entropy = prediction(X_test, clf_entropy) cal_accuracy(y_test, y_pred_entropy) from sklearn.ensemble import RandomForestClassifier # creating a RF classifier clf = RandomForestClassifier(n_estimators = 100) # Training the model on the training dataset # fit function is used to train the model using the training sets as parameters clf.fit(X_train, y_train) # performing predictions on the test dataset y_pred = clf.predict(X_test) # metrics are used to find accuracy or error from sklearn import metrics print() # using metrics module for accuracy calculation print("ACCURACY OF THE MODEL: ", metrics.accuracy_score(y_test, y_pred)) rfc = RandomForestClassifier() rfc.fit(X_train, y_train) rfc_pred = rfc.predict(X_test) rfc_acc = rfc.score(X_test, y_test) print("The training accuracy for Random Forest is:", rfc.score(X_train, y_train)*100, "%") print("The testing accuracy for Random Forest is:", rfc_acc * 100, "%") from xgboost import XGBClassifier xgb = XGBClassifier(verbosity=0) xgb.fit(X_train, y_train) xgb_pred = xgb.predict(X_test) xgb_acc = xgb.score(X_test, y_test) print("The training accuracy for XGB is:", xgb.score(X_train, y_train)*100, "%") print("The testing accuracy for XGB is:", xgb_acc * 100, "%") from sklearn.linear_model import LinearRegression regression_model = LinearRegression() regression_model.fit(X_train, y_train) regression_model.score(X_train, y_train) regression_model.score(X_test, y_test) ###Output _____no_output_____
01_copy_get_flights_data.ipynb
###Markdown How to download flights csv file from transtats website **In this notebook, we will**1. Download a csv file for your chosen year(s) and month(s)2. Prepare the data for further processing3. Push the prepared data to a table in the database ###Code # Import all necessary libraries import pandas as pd import numpy as np import psycopg2 import requests #package for getting data from the web from zipfile import * #package for unzipping zip files from sql import get_engine #adjust this as necessary to match your sql.py connection methods ###Output _____no_output_____ ###Markdown 1. Download csv file with flight data for your specific year/month In the following, you are going to download a csv file containing flight data from [this website](https://transtats.bts.gov). You can specify, which data you want to download. Choose a month/year that you want to explore further.With the following command lines, you will download a csv file on public flight data from [this website](https://transtats.bts.gov) containing data of your chosen month/year. The file will be stored in a data folder. ###Code # Specifies path for saving file path ='data/' # Create the data folder !mkdir {path} years = [2012] # list of years you want to look at, specify one year months = [10, 11] # list of months you want to look at, specify one month # Here: October 2012 # Loop through months for year in years: for month in months: # Get the file from the website https://transtats.bts.gov zip_file = f'On_Time_Reporting_Carrier_On_Time_Performance_1987_present_{year}_{month}.zip' csv_file = f'On_Time_Reporting_Carrier_On_Time_Performance_(1987_present)_{year}_{month}.csv' url = (f'https://transtats.bts.gov/PREZIP/{zip_file}') # Download the database r = requests.get(f'{url}', verify=False) # Save database to local file storage with open(path+zip_file, 'wb') as f: f.write(r.content) # Unzip your file for month in months: z_file = f'On_Time_Reporting_Carrier_On_Time_Performance_1987_present_2012_{month}.zip' with ZipFile(path+z_file, 'r') as zip_ref: zip_ref.extractall(path) # Read in your data csv_file = f'On_Time_Reporting_Carrier_On_Time_Performance_(1987_present)_2012_10.csv' df_10 = pd.read_csv(path+csv_file, low_memory = False) csv_file = f'On_Time_Reporting_Carrier_On_Time_Performance_(1987_present)_2012_11.csv' df_11 = pd.read_csv(path+csv_file, low_memory = False) csv_file = f'On_Time_Reporting_Carrier_On_Time_Performance_(1987_present)_2012_12.csv' df_12 = pd.read_csv(path+csv_file, low_memory = False) # df_names = ['df_10', 'df_11'] # for i, month in enumerate(months): # csv_file = f'On_Time_Reporting_Carrier_On_Time_Performance_(1987_present)_2012_{month}.csv' # df_names[i] = pd.read_csv(path+csv_file, low_memory = False) print(df_10.shape) print(df_11.shape) pd.set_option('display.max_columns', None) display(df_10.head()) df_10[df_10['OriginState'] == 'NJ'] df_10[df_10['OriginState'] == 'NJ'] # Combine your date df = df_10.append(df_11) display(df.shape) display(df.head()) # Read in your data # df = pd.read_csv(path+csv_file, low_memory = False) # display(df.shape) # display(df.head()) df.info() ###Output <class 'pandas.core.frame.DataFrame'> Int64Index: 1003260 entries, 0 to 488005 Columns: 110 entries, Year to Unnamed: 109 dtypes: float64(70), int64(21), object(19) memory usage: 849.6+ MB ###Markdown 2. Prepare the csv file for further processing In the next step, we clean and prepare our dataset. a) Since the dataset consists of a lot of columns, we we define which ones to keep. ###Code # Columns from downloaded file that are to be kept columns_to_keep = [ 'FlightDate', 'DepTime', 'CRSDepTime', 'DepDelay', 'ArrTime', 'CRSArrTime', 'ArrDelay', 'Reporting_Airline', 'Tail_Number', 'Flight_Number_Reporting_Airline', 'Origin', 'Dest', 'AirTime', 'Distance', 'Cancelled', 'Diverted' ] df[columns_to_keep].info() # set up your database connection engine = get_engine() # The columns in the DB have different naming as in the source csv files. Lets get the names from the DB table_name_sql = '''SELECT COLUMN_NAME FROM INFORMATION_SCHEMA.COLUMNS WHERE TABLE_NAME = 'flights' AND TABLE_SCHEMA ='public' ORDER BY ordinal_position''' c_names = engine.execute(table_name_sql).fetchall() c_names # we can clean up the results into a clean list new_column_names=[] for name in c_names: new_column_names.append(name[0]) new_column_names # Just in case the above fails here are the results new_column_names_alternate = ['flight_date', 'dep_time', 'sched_dep_time', 'dep_delay', 'arr_time', 'sched_arr_time', 'arr_delay', 'airline', 'tail_number', 'flight_number', 'origin', 'dest', 'air_time', 'distance', 'cancelled', 'diverted' ] ###Output _____no_output_____ ###Markdown b) With the next function, we make our csv file ready to be uploaded to SQL. We only keep to above specified columns and convert the datatypes. ###Code def clean_airline_df(df): ''' Transforms a df made from BTS csv file into a df that is ready to be uploaded to SQL Set rows=0 for no filtering ''' # Build dataframe including only the columns you want to keep df_airline = df.loc[:,columns_to_keep] # Clean data types and NULLs df_airline['FlightDate']= pd.to_datetime(df_airline['FlightDate'], yearfirst=True) df_airline['CRSArrTime']= pd.to_numeric(df_airline['CRSArrTime'], downcast='integer', errors='coerce') df_airline['Cancelled']= pd.to_numeric(df_airline['Cancelled'], downcast='integer') df_airline['Diverted']= pd.to_numeric(df_airline['Diverted'], downcast='integer') # Rename columns df_airline.columns = new_column_names return df_airline # Call function and check resulting dataframe df_clean = clean_airline_df(df) df_clean.head() ###Output _____no_output_____ ###Markdown If you decide to only look at specific airports, it is a good decision to filter for them in advance. This function does the filtering. ###Code # Specify the airports you are interested in and put them as a list in the function. def select_airport(df, airports): ''' Helper function for filtering airline df for a subset of airports''' df_out = df.loc[(df.origin.isin(airports)) | (df.dest.isin(airports))] return df_out # Execute function, filtering for New York area airports airports=['BOS', 'EWR', 'JFK', 'MIA', 'PHI', 'SJU'] if len(airports) > 0: df_selected_airports = select_airport(df_clean, airports) else: df_selected_airports = df_clean df_selected_airports.head() ###Output _____no_output_____ ###Markdown 3. Push the prepared data to a table in the database ###Code # Specify which table within your database you want to push your data to. Give your table an unambiguous name. # Example: flights_sp for Sina's flights table table_name = 'flight_api_proj_gr4_raw' # If the specified table doesn't exist yet, it will be created # With 'replace', your data will be replaced if the table already exists. # This will take a minute or two... # Write records stored in a dataframe to SQL database if engine!=None: try: df_selected_airports.to_sql(name=table_name, # Name of SQL table con=engine, # Engine or connection if_exists='replace', # Drop the table before inserting new values index=False, # Write DataFrame index as a column chunksize=5000, # Specify the number of rows in each batch to be written at a time method='multi') # Pass multiple values in a single INSERT clause print(f"The {table_name} table was imported successfully.") # Error handling except (Exception, psycopg2.DatabaseError) as error: print(error) engine = None # Check the number of rows match table_name_sql = f'''SELECT count(*) FROM {table_name} ''' engine.execute(table_name_sql).fetchall()[0][0] == df_selected_airports.shape[0] ###Output _____no_output_____
notebooks/quantum-machine-learning/qbm.ipynb
###Markdown Quantum Boltzmann Machine In this section we will introduce a probabilistic model such as the Boltzmann Machine in its quantum version, which generates a distribution, $P(\vec{x})$, from a set of between-samples and can generate new samples. Introduction One focus of machine learning is probabilistic modelling, in which a probability distribution is obtained from a finite set of samples. If the training process is successful, the learned distribution $P(\vec{x})$ has sufficient similarity to the actual distribution of the data that it can make correct predictions about unknown situations. Depending on the details of the distributions and the approximation technique, machine learning can be used to perform classification, clustering, compression, denoising, inpainting, or other tasks 1. In recent years the popularity of different applications using quantum computing has increased, this tutorial is based on generating one of the machine learning models in order to facilitate training. The purpose of this tutorial is to explain a probabilistic model based on the Boltzmann distribution, i.e. a Quantum Boltzmann Machine (QBM). Classical Boltzmann Machines Boltzmann Machines (BMs) offer a powerful framework for modelling probability distributions. These types of neural networks use an undirected graph structure to encode relevant information. More precisely,the respective information is stored in bias coefficients and connection weights of network nodes, which are typically related to binary spin-systems and grouped into those that determine the output, the visible nodes, and those that act as latent variables, the hidden nodes [1], [2]. ApplicationsApplications have been studied in a large variety of domains such as the analysis of quantum many-body systems, statistics, biochemistry, social networks, signal processing and finance [2]. Quantum Boltzmann Machine ![Image outlining the general structure of a quantum Boltzmann machine](images/qbm/qbm-scheme.svg)Figure 1. General structure of a QBM.Quantum Boltzmann Machines (QBMs) are a natural adaption of BMs to the quantum computing framework. Instead of an energy function with nodes being represented by binary spin values, QBMs define the underlying network using a Hermitian operator, a parameterized Hamiltonian.1. Initialize circuit with random parameters $\vec{\theta} = (\theta^1, \dots, \theta^n)$2. Measurements3. Estimate mismatch between data and quantum outcomes4. Update $\vec{\theta}$, and repeat 2 through 4 until covergenceThe image below outlines the processes in a quantum Boltzmann machine:![Image outlining the process of a quantum Boltzmann machine](images/qbm/qbm-2.svg) Implementation This example is based on the following article : *Benedetti, M., Garcia-Pintos, D., Perdomo, O. et al. A generative modeling approach for benchmarking and training shallow quantum circuits. npj Quantum Inf 5, 45 (2019). https://doi.org/10.1038/s41534-019-0157-8*To begin this Tutorial we must call the necessary methods to generate circuits and that can be variational as is the case of the class [ParameterVector](https://qiskit.org/documentation/stubs/qiskit.circuit.ParameterVector.html). ###Code import numpy as np from qiskit import QuantumCircuit, Aer, execute from qiskit.circuit import ParameterVector from qiskit.quantum_info import Statevector # Classes to work with three optimizers from qiskit.algorithms.optimizers import NELDER_MEAD, SPSA, COBYLA # For visualizations import matplotlib.pyplot as plt from qiskit.visualization import plot_histogram ###Output _____no_output_____ ###Markdown DatasetConsidering the Bars and Stripes (or BAS) dataset, which is composed of binary images of size 2x2, for this tutorial only a subset that is enclosed in a circle is used, as follows![dataset](images/qbm/dataset.svg)Figure 3. BAS dataset. Mapping image to qubitsThere are various ways of mapping values to qubits as we saw in the Data Encoding section, as these are binary images, i.e. they can only take 2 values, black-white, 0-255, 0-1. To work on the quantum computer, the Basis Encoding method will be used to convert images into states, i.e. each pixel is represented as a qubit, being as described in the following figure![image to qubit mapping](images/qbm/data-mapping-key.svg)Figure 4. Image to quantum state.now consider the next conditions:- if the pixel is white, then the qubit value state is 0,- if the pixel is Black, then the qubit value state is 1.For example in Figure 4, the image of size $2 \times 2$ can be rewritten into a matrix$$\begin{pmatrix} c_0r_0 & c_0r_1\\ c_1r_0 & x_1r_1\end{pmatrix}. (1)$$Based on the conditions, it can be seen that for the pixel at position $c_0r_0$ is white, and this is equivalent to the qubit $|q_0\rangle$, then its state value is $|0\rangle$; this logic is performed with pixels $c_0r_1$,$c_1r_0$,$c_1r_1$ which are the qubits $|q_1\rangle,|q_2\rangle,|q_3\rangle$ respectively, as they are all white color their state would be $|0\rangle$ for all of them. The result is the quantum state $|0000\rangle$ of the 4 qubits.Performing this process for each of the images of the subset would look like this ![Each image in the dataset, mapping to computational basis states](images/qbm/dataset-mapping-examples.svg)Figura 5. Mapping the size in qubits.in total are six quantum states, this can be rewritten as the linear combination, for this purpose it is necessary to consider the characteristic that $$\sum_{i=0}^{2^n} | \alpha_i |^2 = 1 \text{ (2)}$$ where $n$ is the number of the qubits and $\alpha_i \in \mathbb{C}$ are the scalar values of each state, for this case we consider them purely real, and as each state has the same probability of being measured the following quantum state remains $|\psi\rangle$,$$|\psi \rangle = \frac{1}{\sqrt{6}} (|0000\rangle+|0011\rangle+|0101\rangle+|1010\rangle+|1100\rangle+|1111\rangle)$$ which represents a probability distribution $P(x)$. Note: Check that each quantum state representate a binary number and that in a decimal value, i.e.:- $|0000 \rangle \rightarrow 0$- $|0011 \rangle \rightarrow 3$ - $|0101 \rangle \rightarrow 5$ - $|1010 \rangle \rightarrow 10$ - $|1100 \rangle \rightarrow 12$ - $|1111 \rangle \rightarrow 15$ Question What happens if we use other state of interes with image of size 3x3? Starting $P(x)$ with the variablepx_output to generate the equivalent state it is necessary that ###Code num_qubits = 4 init_list = [0,3,5,10,12,15] # indices of interest # create all-zeros array of size num_qubits^2 px_output = Statevector.from_label('0'*num_qubits) for init_value in init_list: px_output.data[init_value] = 1 px_output /= np.sqrt(len(init_list)) # normalize the statevector px_output = Statevector(px_output) print(px_output) # print to check it's correct # px_output = [1,0,0,1,0,1,0,0,0,0,1,0,1,0,0,1]/16 expected output ###Output Statevector([0.40824829+0.j, 0. +0.j, 0. +0.j, 0.40824829+0.j, 0. +0.j, 0.40824829+0.j, 0. +0.j, 0. +0.j, 0. +0.j, 0. +0.j, 0.40824829+0.j, 0. +0.j, 0.40824829+0.j, 0. +0.j, 0. +0.j, 0.40824829+0.j], dims=(2, 2, 2, 2)) ###Markdown it is important to prove that the state vector satisfies the characteristics of eq(2), this is possible if we use the next line ###Code np.sum(px_output.data**2) ###Output _____no_output_____ ###Markdown The result must be a uniform distribution for the 6 states:0000, 0011, 0101, 1010, 1100, 1111 otherwise it is 0, the probability can be obtained from the following expression $|\frac{1}{6}|^2 = \frac{1}{6} =0.167 $. ###Code dict_px_output = px_output.probabilities_dict() plot_histogram(dict_px_output, title='p(x) of the QBM') ###Output _____no_output_____ ###Markdown Design a Variational Quantum Circuit (Layer)The QBM design based on [3] requires a Variational Quantum Circuit or [ansatz](https://qiskit.org/documentation/tutorials/circuits_advanced/01_advanced_circuits.html) that we can name as a layer and this can be repeated L times in order to obtain the desired distribution, in our case ofpx_outputQiskit has some ansatz already implemented as is the case of [RealAmplitudes](https://qiskit.org/documentation/stubs/qiskit.circuit.library.RealAmplitudes.html), for this method requires the parameters number of qubits and the number of repetitions or *L* number of layers. ###Code # import for the ansatz is in circuit.library from qiskit from qiskit.circuit.library import RealAmplitudes # this ansatz only needs the number of the qubits and the repetitions ansatz_example = RealAmplitudes(num_qubits, reps=1) ansatz_example.draw() ###Output /usr/local/lib/python3.9/site-packages/sympy/core/expr.py:3949: SymPyDeprecationWarning: expr_free_symbols method has been deprecated since SymPy 1.9. See https://github.com/sympy/sympy/issues/21494 for more info. SymPyDeprecationWarning(feature="expr_free_symbols method", ###Markdown It is important to know that there are other ansatz other than RealAmplitudes in Qiskit [here](https://qiskit.org/documentation/apidoc/circuit_library.htmln-local-circuits), except for this tutorial it will be based on an ansatz that follows the idea of the paper [3],"in this work, we use arbitrary single qubit rotations for the odd layers, and Mølmer-Sørensen XX gates for the even layers", we need remark the paper works in a trapped ion architecture. Design the ansatzes must use [ParameterVector](https://qiskit.org/documentation/stubs/qiskit.circuit.ParameterVector.html) class, in order to generate gates that can vary their values.Question What happens if we use a predefined ansatz for this problem? ###Code ## Design any ansatz # Here, we use arbitrary single qubit rotations for the odd layers, # and Mølmer-Sørensen XX gates for the even layers def ansatz_odd(n,parameters): # arbitrary single qubit rotations for the odd layer qc = QuantumCircuit(n) for i in range(n): # Use variable value for ry with the values parameters[i] qc.u(parameters[3*i],parameters[1+(3*i)],parameters[2+(3*i)],i) return qc def ansatz_even(n,parameters): # Mølmer-Sørensen XX gates for the even layer qc = QuantumCircuit(n) k = n//2 for i in range(k): qc.rxx(parameters[i],i*2,(2*i)+1) for i in range(k): qc.rxx(parameters[i+k],k-i-1,k) for i in range(k): qc.rxx(parameters[i+k*2],k-i-1,k+1) return qc ###Output _____no_output_____ ###Markdown The odd layer is possible consider the arbitrary single qubit rotation has the form $U\left(\theta_{l}^{j}\right)=R_{z}\left(\theta_{l}^{j, 1}\right) R_{x}\left(\theta_{l}^{j, 2}\right) R_{z}\left(\theta_{l}^{j, 3}\right)$. This is possible if we use the [U gate](https://qiskit.org/documentation/stubs/qiskit.circuit.library.UGate.html), with a list of parameters. ###Code # depending on design, we can change the num_params value num_params_odd = 12 # for 4 qubits we need 12 parameters parameters_odd = ParameterVector('θ', num_params_odd) ansatz_odd(num_qubits,parameters_odd).draw() ###Output _____no_output_____ ###Markdown For the case of the even layer, MGS XX can be represented in [4], it tells us that from the gate summation ${RXX}(\theta)$ in all qubits of the quantum circuit we can obtain such a circuit. ###Code num_params_even = 6 # for 4 qubits we need 6 parameters parameters_even = ParameterVector('θ', num_params_even) ansatz_even(num_qubits,parameters_even).draw() ###Output _____no_output_____ ###Markdown Applying n layersDue to a Qiskit method in the QuantumCircuit object our both ansatz can be converted into a quantum gate and we can indicate the number of repeats with the variablenum_layersthat are required to fit the expected output distribution. ###Code # ansatz to quantum gate def gate_layer(n, params,flag): if flag == 1: parameters = ParameterVector('θ', num_params_odd) qc = ansatz_odd(n,parameters) # call the odd layer else: parameters = ParameterVector('θ', num_params_even) qc = ansatz_even(n,parameters) # call the even layer params_dict = {} j = 0 for p in parameters: # The name of the value will be the string identifier and an # integer specifying the vector length params_dict[p] = params[j] j += 1 # Assign parameters using the assign_parameters method qc = qc.assign_parameters(parameters = params_dict) qc_gate = qc.to_gate() qc_gate.name = "layer" # To show when we display the circuit return qc_gate # return a quantum gate ###Output _____no_output_____ ###Markdown We are going to make a quantum circuit with 3 layers, at the same time it is important to consider that there are two gates that are interleaved for each layer and these have different amount of parameters, so we look for the one that has more of these, i.e. ```max(paremers_odd,parameters_even)```, and that only the necessary ones are read per layer. ###Code # example of a quantum circuit num_layers = 3 list_n = range(num_qubits) num_params = max(num_params_odd, num_params_even) params = np.random.random([num_layers*num_params]) # all parameters qc_gate = QuantumCircuit(num_qubits) for i in range(len(params)//num_params): # apply a function to consider m layers qc_gate.append(gate_layer(num_qubits, params[num_params*i:num_params*(i+1)], (i+1)%2), list_n) qc_gate.barrier() qc_gate.draw() ###Output _____no_output_____ ###Markdown In order to verify that they are interleaving we use the decompose() method, to see that the same circuit is repeated in layer 1 and layer 3, using the odd layer, and the second circuit is the even layer. ###Code qc_gate.decompose().draw(fold=-1, ) ###Output _____no_output_____ ###Markdown Suggestion play with the number of layers and see how is the draw output Build all the algorithmAt this point we have the data mapping process and the quantum circuit that represents the QBM, for this we need the optimization section and the cost function to be evaluated, for this we use the advantages of quantum computing in the model and the classical one in the optimization, as shown in Figure 6.![High-level outline of a variational quantum algorithm](images/qbm/vqc.svg)Figure 6. Hybrid algorithm process. Cost FunctionConsider the data set BAS, our goal is obtain an approximation to the target probability distributionpx_outputor $P(\vec{x})$ . This is possible with a quantum circuit with gates parameterized by a vector $\vec{\theta}$,where the layer index $l$ runs from 0 to $d$, with $d$ the maximum depth of the quantum circuit [5], prepares a wave function $|\psi(\vec{\theta})\rangle$ from which probabilities are obtained to $P(\vec{x})=|\langle\vec{x} \mid \psi(\vec{\theta})\rangle|^{2}$.Minimization of this quantity is directly related to the minimization of a well known cost function: the negative [log-likelihood](https://en.wikipedia.org/wiki/Likelihood_function) $\mathcal{C}(\vec{\theta})=-\frac{1}{D} \sum_{d=1}^{D} \ln \left(P\left(\vec{x}^{(d)}\right)\right) .$ Is important consider that all the probabilities are estimated from a finite number of measurements and a way to avoid singularities in the cost function [3], we use a simple variant$\mathcal{C}(\vec{\theta})=-\frac{1}{D} \sum_{d=1}^{D} \ln \left(\max \left(\varepsilon, P_{\vec{\theta}}\left(\vec{x}^{(d)}\right)\right)\right)$ (3) where $\epsilon>0 $ is a small number to be chosen. Following this equation we have a method calledboltzman_machine(params) which is the function that integrates all the quantum process and the cost function required to perform the optimization. ###Code def boltzman_machine(params): n = 4 D = int(n**2) cost = 0 list_n = range(n) qc = QuantumCircuit(n) for i in range(len(params)//num_params): qc.append(gate_layer(n, params[num_params*i:num_params*(i+1)], (i+1)%2), list_n) shots = 8192 sv_sim = Aer.get_backend('statevector_simulator') result = execute(qc, sv_sim).result() statevector = result.get_statevector(qc) for j in range(D): cost += np.log10(max(0.001, statevector[j].real*px_output.data[j].real +(statevector[j].imag*px_output.data[j].imag) ) ) cost = -cost/D return cost num_layers = 6 params = np.random.random([num_layers*num_params]) boltzman_machine(params) ###Output _____no_output_____ ###Markdown Having the quantum process that returns the cost, we use the classical process implemented in Qiskit, which has a series of classical [optimizers](https://qiskit.org/documentation/stubs/qiskit.algorithms.optimizers.html).Consider 10 epoch with 500 iterations. ###Code cost_cobyla = [] cost_nm = [] cost_spsa = [] params_cobyla = params params_nm = params params_spsa = params epoch = 10 maxiter = 500 for i in range(epoch): optimizer_cobyla = COBYLA(maxiter=maxiter) ret = optimizer_cobyla.optimize(num_vars=len(params), objective_function=boltzman_machine, initial_point=params_cobyla) params_cobyla = ret[0] cost_cobyla.append(ret[1]) optimizer_nm = NELDER_MEAD(maxiter=maxiter) ret = optimizer_nm.optimize(num_vars=len(params), objective_function=boltzman_machine, initial_point=params_nm) params_nm = ret[0] cost_nm.append(ret[1]) optimizer_spsa = SPSA(maxiter=maxiter) ret = optimizer_spsa.optimize(num_vars=len(params), objective_function=boltzman_machine, initial_point=params_spsa) params_spsa = ret[0] cost_spsa.append(ret[1]) ###Output _____no_output_____ ###Markdown From the plot of each result we can see that the best optimizer is COBYLA for this algorithm. ###Code xfit = range(epoch) plt.plot(xfit, cost_cobyla, label='COBYLA') plt.plot(xfit, cost_nm, label='Nelder-Mead') plt.plot(xfit, cost_spsa, label='SPSA') plt.legend() plt.title("C(x) ") plt.xlabel("epoch") plt.ylabel("cost"); ###Output _____no_output_____ ###Markdown Qiskit has the opportunity to be able to work with more optimisers that are [here](https://qiskit.org/documentation/stubs/qiskit.algorithms.optimizers.html) . Suggestion Try changing the value of themaxitervariable and the optimisers in order to identify the best case. the boltzman_machine_valid method is performed to give us $P(\vec{x})=|\langle\vec{x} \mid \psi(\vec{\theta})\rangle|^{2}$ ###Code def boltzman_machine_valid(params): n = 4 list_n = range(n) qc = QuantumCircuit(n) for i in range(len(params)//num_params): qc.append(gate_layer(n, params[num_params*i:num_params*(i+1)], (i+1)%2), list_n) shots = 8192 simulator = Aer.get_backend('statevector_simulator') result = execute(qc, simulator).result() return result ###Output _____no_output_____ ###Markdown VisualizationWe obtain the output of the three different optimizers ###Code psi_vqc_spsa = boltzman_machine_valid(params_spsa) psi_spsa = psi_vqc_spsa.get_statevector() psi_vqc_nm = boltzman_machine_valid(params_nm) psi_nm = psi_vqc_nm.get_statevector() psi_vqc_cobyla = boltzman_machine_valid(params_cobyla) psi_cobyla = psi_vqc_cobyla.get_statevector() ###Output _____no_output_____ ###Markdown In order to compare all the results of each optimizer with the expected output, the plot_histogram method is used and we can see at a glance the similarities of each distribution. ###Code psi_dict_cobyla = psi_vqc_cobyla.get_counts() psi_dict_spsa = psi_vqc_spsa.get_counts() psi_dict_nm = psi_vqc_nm.get_counts() plot_histogram([dict_px_output, psi_dict_cobyla, psi_dict_spsa, psi_dict_nm], title='p(x) of the QBM', legend=['correct distribution', 'simulation cobyla', 'simulation spsa', 'simulation nm']) ###Output _____no_output_____ ###Markdown It can be seen that of all the visualization methods, the closest is the one used with COBYLA, which will be considered to generate new samples from this dataset. But you are still invited to look for other optimizers and change the number of the maxiter variable. Using our QBM To apply this circuit we use the final parameters and see what kind of results they produce as images. This is shown below. ###Code def boltzman_machine_valid_random(params): n = 4 list_n = range(n) qc = QuantumCircuit(n,n) for i in range(len(params)//num_params): qc.append( gate_layer(n, params[num_params*i:num_params*(i+1)],(i+1)%2), list_n) qc.measure(list_n,list_n) shots = 1 job = execute( qc, Aer.get_backend('qasm_simulator'),shots=shots ) counts = job.result().get_counts() return counts.keys() # Plot results as 2x2 images matrix = np.zeros((2,2)) for i in range(0,16): img = list(boltzman_machine_valid_random(params))[0] matrix[0][0] = int(img[0]) matrix[0][1] = int(img[1]) matrix[1][0] = int(img[2]) matrix[1][1] = int(img[3]) plt.subplot(4, 4, 1+i) plt.imshow(matrix) plt.tight_layout(); ###Output _____no_output_____ ###Markdown Check how many images do not follow the expected distribution. Depending on the Dial distributor we expect with higher probability the desired states, but if there is a percentage of an incorrect state it may sometimes appear with its respective probability. Noise modelWe managed to realize a quantum circuit that is a QBM and to see its effectiveness in a more complex environment than the simulation we will perform the process in a noise model, for this we must consider having our paltaform key in our system.For this example we will use the real `ibmq_lima` gate, but you can choose from the ones found [here](https://quantum-computing.ibm.com/services?services=systems). ###Code from qiskit.test.mock import FakeLima backend = FakeLima() # Uncomment the code below to use the real device: # from qiskit import IBMQ# provider = IBMQ.load_account() # backend = provider.get_backend('ibmq_lima') ###Output _____no_output_____ ###Markdown We can use the ibmq_lima features for our simulator and it can perform at the same characteristics of this one. To know more about the features of the NoiseModel method [here](https://qiskit.org/documentation/stubs/qiskit.providers.aer.noise.NoiseModel.html?highlight=noisemodel) ###Code from qiskit.providers.aer.noise import NoiseModel noise_model = NoiseModel.from_backend(backend) # Get coupling map from backend coupling_map = backend.configuration().coupling_map # Get basis gates from noise model basis_gates = noise_model.basis_gates ###Output _____no_output_____ ###Markdown We performed the same process that we did previously in simulation but adapted it with the noise model variables. ###Code def noise_boltzman_machine(params): n = 4 D = int(n**2) cost = 0 list_n = range(n) qc = QuantumCircuit(n) for i in range(len(params)//num_params): qc.append(gate_layer(n, params[num_params*i:num_params*(i+1)], (i+1)%2), list_n) shots = 8192 simulator = Aer.get_backend('statevector_simulator') result = execute(qc, simulator, shots = 8192, # These parameters are for our noise model: coupling_map=coupling_map, basis_gates=basis_gates, noise_model=noise_model, cals_matrix_refresh_period=30).result() statevector = result.get_statevector(qc) for j in range(D): cost += np.log10(max(0.001, statevector[j].real*px_output.data[j].real +(statevector[j].imag*px_output.data[j].imag) ) ) cost = -cost/D return cost num_layers = 6 noise_params = np.random.random([num_layers*num_params]) noise_boltzman_machine(noise_params) ###Output _____no_output_____ ###Markdown Consider run but using a new variable callnoise_params and we can consider the best optimizer,COBYLAin stead of using the others one. ###Code print("cost:") print(noise_boltzman_machine(noise_params)) for i in range(10): optimizer = COBYLA(maxiter=500) ret = optimizer.optimize(num_vars=len(noise_params), objective_function=noise_boltzman_machine, initial_point=noise_params) noise_params = ret[0] print(ret[1]) ###Output cost: 2.860379448430914 2.2843559495106893 2.2876193723013847 2.370747462669242 2.4158515841223926 2.3237948329775584 2.288052241158968 2.3179851856821525 2.3626775056067344 2.3128664509231 2.260656287576424 ###Markdown At this point we have the distribution $P(x)$ result of the Noise model ###Code noise_psi_vqc = boltzman_machine_valid(noise_params) noise_psi_vqc.get_statevector() ###Output _____no_output_____ ###Markdown The expected output, the best simulated result and the best simulated result using a NoiseModel are compared. ###Code noise_model_psi = noise_psi_vqc.get_counts() plot_histogram([dict_px_output, psi_dict_cobyla, noise_model_psi], title='p(x) of the QBM', legend=['correct distribution', 'simulation', 'noise model']) ###Output _____no_output_____ ###Markdown Having each result follow the trend of the expected output, but with certain errors, we can see that our circuit is working, and we can continue this by trying to obtain new samples from the circuit with noise. ###Code matrix = np.zeros((2,2)) for i in range(0,16): img = list(boltzman_machine_valid_random(noise_params))[0] matrix[0][0] = int(img[0]) matrix[0][1] = int(img[1]) matrix[1][0] = int(img[2]) matrix[1][1] = int(img[3]) plt.subplot(4 , 4 , 1+i) plt.imshow(matrix) plt.tight_layout(); ###Output _____no_output_____ ###Markdown Check how many images do not follow the expected distribution. Real quantum computerThe quantum instance for real free quantum computer (try to change the value for provider.get_backend( )), in this tutorial we use the ibmq_lima the same that i nthe noise model. More information about this quantum computer you can find [here](https://quantum-computing.ibm.com/services?services=systems&system=ibmq_lima). ###Code real_backend = FakeLima() # Uncomment the code below to use a real backend:# from qiskit import IBMQ# provider = IBMQ.load_account()# real_backend = provider.get_backend('ibmq_lima') ###Output _____no_output_____ ###Markdown We follow the same processing of the simulation, but in this case we use the backend which is the real computer. ###Code def real_boltzman_machine(params): n = 4 D = int(n**2) cost = 0 list_n = range(n) qc = QuantumCircuit(n,n) for i in range(len(params)//num_params): qc.append(gate_layer(n, params[num_params*i:num_params*(i+1)], (i+1)%2), list_n) qc.measure(list_n,list_n) shots= 8192 result = execute(qc, real_backend, shots = 8192).result() counts = result.get_counts(qc) for j in range(D): bin_index = bin(j)[2:] while len(bin_index) < 4: bin_index = '0' + bin_index statevector_index = counts[bin_index]/8192 cost += np.log10(max(0.001, statevector_index*px_output.data[j].real)) cost = -cost/D return cost num_layers = 6 real_params = np.random.random([num_layers*num_params]) real_boltzman_machine(real_params) ###Output _____no_output_____ ###Markdown For this process being a real free computer, anyone with their IBM account can use any of the free computers, so the process can take some time, for this tutorial we will only use10 iterations ###Code print("cost:") print(real_boltzman_machine(real_params)) for i in range(1): optimizer = COBYLA(maxiter=10) ret = optimizer.optimize(num_vars=len(real_params), objective_function=real_boltzman_machine, initial_point=real_params) real_params = ret[0] print(ret[1]) ###Output cost: 2.4908683878403566 2.48536011404098 ###Markdown In this point we have the result of the real quantum computer for our QBM. ###Code real_psi_vqc = boltzman_machine_valid(real_params) real_psi_vqc.get_statevector() ###Output _____no_output_____ ###Markdown We can compare all the result in a same plot_histogram, and check the worst case is the result of the quantum real computer, that could be solve, using more iteration, mitigate the error, modified the ansatz or both. ###Code real_model_psi = real_psi_vqc.get_counts() plot_histogram([dict_px_output, psi_dict_cobyla, noise_model_psi, real_model_psi], title='p(x) of the QBM', legend=['correct distribution', 'simulation', 'noise model', 'real quantum computer']) ###Output _____no_output_____ ###Markdown Just to confirm what are the possible outputs of our circuit using the real computer, this is given by the type of distribution obtained from the computer. ###Code matrix = np.zeros((2,2)) for i in range(0,16): img = list(boltzman_machine_valid_random(real_params))[0] matrix[0][0] = int(img[0]) matrix[0][1] = int(img[1]) matrix[1][0] = int(img[2]) matrix[1][1] = int(img[3]) plt.subplot(4 , 4 , 1+i) plt.imshow(matrix) plt.tight_layout(); ###Output _____no_output_____ ###Markdown Check how many images do not follow the expected distribution. Another perspectiveFor this part we can do the same procces and using the reference [5] with the proposal to design another Ansatz model, the characteristics are:- Using the same layer arbitrary rotation gate, - And employ CNOT gates with no parameters for the entangle layers.The new ansatz it could be ###Code ## Design any ansatz # Here, we use arbitrary single qubit rotations for the odd layers, # and Mølmer-Sørensen XX gates for the even layers def ansatz_layer(n,parameters): # this ansatz is equivalent a layer qc = QuantumCircuit(n) for i in range(n): # use variable value for ry with the values parameters[i] qc.u(parameters[i*3],parameters[(i*3)+1],parameters[(i*3)+2],i) for i in range(n-1): qc.cx(i,i+1) return qc # depents of own design we can change the num_params value num_params_v2 = 12# how is 4 qubits we required 12 parametrs parameters_v2 = ParameterVector('θ', num_params_v2) ansatz_layer(num_qubits,parameters_v2).draw() ###Output /usr/local/lib/python3.9/site-packages/sympy/core/expr.py:3949: SymPyDeprecationWarning: expr_free_symbols method has been deprecated since SymPy 1.9. See https://github.com/sympy/sympy/issues/21494 for more info. SymPyDeprecationWarning(feature="expr_free_symbols method", ###Markdown We apply this ansatz how an gate like the previous part, how is only a gate we don't now use the parameter flag ###Code # ansatz to quantum gate def gate_layer_v2(n, params): parameters = ParameterVector('θ', num_params_v2) qc = ansatz_layer(n,parameters) params_dict = {} j = 0 for p in parameters: # The name of the value will be the string identifier, # and an integer specifying the vector length params_dict[p] = params[j] j += 1 # Assign parameters using the assign_parameters method qc = qc.assign_parameters(parameters = params_dict) qc_gate = qc.to_gate() qc_gate.name = "layer" # To show when we display the circuit return qc_gate # return a quantum gate ###Output _____no_output_____ ###Markdown We are going to make a quantum circuit with 3 layers, where each gate are the same structure. ###Code # example of a quantum circuit num_layers = 3 list_n = range(num_qubits) params = np.random.random([num_layers*num_params_v2]) # all parameters qc_gate = QuantumCircuit(num_qubits) for i in range(len(params)//num_params): # apply a function to consider m layers qc_gate.append(gate_layer_v2(num_qubits, params[num_params_v2*i:num_params_v2*(i+1)]), list_n) qc_gate.barrier() qc_gate.draw() ###Output _____no_output_____ ###Markdown Now we are using decompose(), it is observed that if the new structure consists of the same circuit for each layer. ###Code qc_gate.decompose().draw(fold=-1) ###Output _____no_output_____ ###Markdown ExperimentsAs in the previous section, we will train with simulation. In this ansatz we are using only 3 layers ###Code def boltzman_machine_v2(params): n = 4 D = int(n**2) cost = 0 list_n = range(n) qc = QuantumCircuit(n) for i in range(len(params)//num_params): qc.append(gate_layer_v2(n,params[num_params*i:num_params*(i+1)]), list_n) shots= 8192 simulator = Aer.get_backend('statevector_simulator') result = execute(qc, simulator).result() statevector = result.get_statevector(qc) for j in range(D): cost += np.log10(max(0.001, statevector[j].real*px_output.data[j].real +(statevector[j].imag*px_output.data[j].imag) ) ) cost = -cost/D return cost num_layers = 3 params = np.random.random([num_layers*num_params]) boltzman_machine_v2(params) cost_cobyla = [] cost_nm = [] cost_spsa = [] params_cobyla = params params_nm = params params_spsa = params epoch = 10 maxiter = 500 for i in range(epoch): optimizer_cobyla = COBYLA(maxiter=maxiter) ret = optimizer_cobyla.optimize(num_vars=len(params), objective_function=boltzman_machine_v2, initial_point=params_cobyla) params_cobyla = ret[0] cost_cobyla.append(ret[1]) optimizer_nm = NELDER_MEAD(maxiter=maxiter) ret = optimizer_nm.optimize(num_vars=len(params), objective_function=boltzman_machine_v2, initial_point=params_nm) params_nm = ret[0] cost_nm.append(ret[1]) optimizer_spsa = SPSA(maxiter=maxiter) ret = optimizer_spsa.optimize(num_vars=len(params), objective_function=boltzman_machine_v2, initial_point=params_spsa) params_spsa = ret[0] cost_spsa.append(ret[1]) ###Output _____no_output_____ ###Markdown The process is repeated to confirm the best optimizer using this new ansatz ###Code xfit = range(epoch) plt.plot(xfit, cost_cobyla, label='COBYLA') plt.plot(xfit, cost_nm, label='Nelder-Mead') plt.plot(xfit, cost_spsa, label='SPSA') plt.legend() plt.title("C(x) ") plt.xlabel("epoch") plt.ylabel("cost") plt.show() def boltzman_machine_valid_v2(params): n = 4 list_n = range(n) qc = QuantumCircuit(n) for i in range(len(params)//num_params): qc.append(gate_layer_v2(n, params[num_params*i:num_params*(i+1)]), list_n) shots= 8192 simulator = Aer.get_backend('statevector_simulator') result = execute(qc, simulator).result() return result ###Output _____no_output_____ ###Markdown Obtain the $P(x)$ for each optimizer ###Code psi_vqc_spsa = boltzman_machine_valid_v2(params_spsa) psi_spsa = psi_vqc_spsa.get_statevector() psi_vqc_nm = boltzman_machine_valid_v2(params_nm) psi_nm = psi_vqc_nm.get_statevector() psi_vqc_cobyla = boltzman_machine_valid_v2(params_cobyla) psi_cobyla = psi_vqc_cobyla.get_statevector() ###Output _____no_output_____ ###Markdown It is reconfirmed that the best case is using COBYLA ###Code psi_dict_cobyla = psi_vqc_cobyla.get_counts() psi_dict_spsa = psi_vqc_spsa.get_counts() psi_dict_nm = psi_vqc_nm.get_counts() plot_histogram([dict_px_output, psi_dict_cobyla, psi_dict_spsa, psi_dict_nm], title='p(x) of the QBM', legend=['correct distribution', 'simulation cobyla', 'simulation spsa', 'simulation nm']) ###Output _____no_output_____ ###Markdown Applying now the distribution obtained from the simulation result ###Code def boltzman_machine_valid_random_v2(params): n = 4 list_n = range(n) qc = QuantumCircuit(n,n) for i in range(len(params)//num_params): qc.append(gate_layer_v2(n, params[num_params*i:num_params*(i+1)]), list_n) qc.measure(list_n,list_n) shots= 1 job = execute( qc, Aer.get_backend('qasm_simulator'), shots=shots) counts = job.result().get_counts() return counts.keys() matrix = np.zeros((2,2)) for i in range(0,16): img = list(boltzman_machine_valid_random_v2(params_cobyla))[0] matrix[0][0] = int(img[0]) matrix[0][1] = int(img[1]) matrix[1][0] = int(img[2]) matrix[1][1] = int(img[3]) plt.subplot(4 , 4 , 1+i) plt.imshow(matrix) plt.tight_layout(); ###Output _____no_output_____ ###Markdown Check how many images do not follow the expected distribution. Exercise Redesign the methods for the noise model and the real computer and see what the results are. Suggestion Modify the ansatz or use a new ansatz and apply with a simulation, noise model and real quantum computer. You can use a 3x3 or 4x4 image for that consider reference [5]. Extending the problemFor this section consider this next set of images of size $3\times 3$ and generate the $|\psi\rangle$ state representing this distribution:![dataset of 3x3 images](images/qbm/dataset-2.svg)We'll use the mapping:![dataset-2-mapping](images/qbm/dataset-2-mapping.svg)You can use the "Mapping image to qubits" section above to help.Use the next code to representate, only you need to identify the init_list values that represents our set of images. And consider for this problem 9 qubits. ###Code num_qubits_3x3 = 9 # list of indices of interest init_list = [] # create all-zeros array of size num_qubits^2 px_3x3 = Statevector.from_label('0'*num_qubits) for init_value in init_list: px_3x3.data[init_value] = 1 px_3x3 /= np.sqrt(len(init_list)) # normalize the statevector px_3x3 = Statevector(px_3x3) # use Qiskit's Statevector object print(px_3x3) # print to check it's correct ###Output _____no_output_____ ###Markdown Now we can plot the distribution $P_{3x3}(x)$ using plot_histogram method. ###Code dict_px_3x3 = px_3x3.probabilities_dict() plot_histogram(dict_px_3x3) ###Output _____no_output_____ ###Markdown Now you are going to design an ansatz, it is important to keep in mind with 9 qubits. ###Code ## Design your own ansatz for 9 qubits def ansatz_layer_3x3(n,parameters): # this ansatz is equivalent a layer qc = QuantumCircuit(n) # Your code goes here return qc ###Output _____no_output_____ ###Markdown Validate with the following code that a quantum gate is being developed from your proposed ansatz. ###Code num_params_3x3 = # check the parameters that you need in your ansatz num_layers = # check the number of layers list_n = range(num_qubits_3x3) parameters_3x3 = ParameterVector('θ', num_params_3x3) params = np.random.random([num_layers*num_params_3x3]) # all parameters qc_gate_3x3 = QuantumCircuit(num_qubits_3x3) for i in range(len(params)//num_params_3x3): qc_gate_3x3.append( ansatz_layer_3x3(num_qubits_3x3, params[num_params_3x3*i:num_params_3x3*(i+1)]), list_n) qc_gate_3x3.barrier() qc_gate_3x3.draw() ###Output _____no_output_____ ###Markdown of each gate we check that it is equivalent to our ansatz using decompose() ###Code qc_gate_3x3.decompose().draw() ###Output _____no_output_____ ###Markdown Based on the above examples, fill in what we are missing ###Code def boltzman_machine_3x3(params): D = int(num_qubits_3x3**2) cost = 0 list_n = range(num_qubits_3x3) qc = QuantumCircuit(num_qubits_3x3) for i in range(len(params)//num_params_3x3): qc.append( ansatz_layer_3x3(num_qubits_3x3, params[num_params_3x3*i:num_params_3x3*(i+1)]), list_n) shots= 8192 simulator = Aer.get_backend('statevector_simulator') result = execute(qc, simulator).result() statevector = result.get_statevector(qc) # how do we check the cost? return cost ###Output _____no_output_____ ###Markdown Complete the code you have to run our QBM, for this consider an optimizer and the number of iterations to use, remember in the optimizer you have the variable maxiter ###Code params = np.random.random([num_layers*num_params_3x3]) print("cost:") for i in range(): # number of iterations optimizer = # which iterations and steps? ret = optimizer.optimize(num_vars=len(params), objective_function=boltzman_machine_3x3, initial_point=params) noise_params = ret[0] print(ret[1]) ###Output _____no_output_____ ###Markdown Now, we obtain the result in a distribution $P_{3\times 3}(x)$ ###Code def boltzman_machine_valid_3x3(params): n=4 list_n = range(n) qc = QuantumCircuit(n) for i in range(len(params)//num_params): qc.append( ansatz_layer_3x3(n, params[num_params*i:num_params*(i+1)], (i+1)%2), list_n) shots= 8192 simulator = Aer.get_backend('statevector_simulator') result = execute(qc, simulator).result() return result psi_sv_3x3 = boltzman_machine_valid_3x3(params) psi_3x3 = psi_sv_3x3.get_statevector() ###Output _____no_output_____ ###Markdown Finally, we plot the results ###Code psi_3x3_dict = psi_3x3.get_counts() plot_histogram([dict_px_3x3,psi_3x3_dict], title='p(x) of the QBM', legend=['correct distribution', 'simulation']) ###Output _____no_output_____ ###Markdown If there is no problem up to this point, you will have a distribution similar to the one we have designed,congratulations!But for the end we leave the following question, can we decrease the number of qubits? References1. Amin, Mohammad & Andriyash, Evgeny & Rolfe, Jason & Kulchytskyy, Bohdan & Melko, Roger. (2016). Quantum Boltzmann Machine. Physical Review X. 8. 10.1103/PhysRevX.8.021050 [https://arxiv.org/pdf/1601.02036.pdf](https://arxiv.org/pdf/1601.02036.pdf) .2. Zoufal, Christa & Lucchi, Aurelien & Woerner, Stefan. (2021). Variational quantum Boltzmann machines. Quantum Machine Intelligence. 3. 10.1007/s42484-020-00033-7 [https://arxiv.org/pdf/2006.06004.pdf](https://arxiv.org/pdf/2006.06004.pdf). 3. Benedetti, Marcello & Garcia-Pintos, Delfina & Nam, Yunseong & Perdomo-Ortiz, Alejandro. (2018). A generative modeling approach for benchmarking and training shallow quantum circuits. npj Quantum Information. 5. 10.1038/s41534-019-0157-8. [https://arxiv.org/pdf/1801.07686.pdf](https://arxiv.org/pdf/1801.07686.pdf) [paper](https://www.nature.com/articles/s41534-019-0157-8)4. Rudolph, Manuel & Bashige, Ntwali & Katabarwa, Amara & Johr, Sonika & Peropadre, Borja & Perdomo-Ortiz, Alejandro. (2020). Generation of High Resolution Handwritten Digits with an Ion-Trap Quantum Computer. [https://arxiv.org/pdf/2012.03924.pdf](https://arxiv.org/pdf/2012.03924.pdf)5. Jinguo, Liu & Wang, Lei. (2018). Differentiable Learning of Quantum Circuit Born Machine. Physical Review A. 98. 10.1103/PhysRevA.98.062324. [https://arxiv.org/pdf/1804.04168.pdf](https://arxiv.org/pdf/1804.04168.pdf) ###Code import qiskit.tools.jupyter %qiskit_version_table ###Output _____no_output_____
Day_044_HW.ipynb
###Markdown 作業1. 試著調整 RandomForestClassifier(...) 中的參數,並觀察是否會改變結果?2. 改用其他資料集 (boston, wine),並與回歸模型與決策樹的結果進行比較 ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston, load_wine from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.model_selection import GridSearchCV from sklearn.metrics import mean_squared_error, r2_score, classification_report ###Output _____no_output_____ ###Markdown Bsoton Data ###Code boston = load_boston() X, y = boston.data, boston.target x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3) grid_para = {'n_estimators': np.arange(10, 20), 'max_depth': np.arange(10, 20)} randfroest_reg = RandomForestRegressor() grid_randforest_reg = GridSearchCV(randfroest_reg, grid_para, cv=5) grid_randforest_reg.fit(x_train, y_train) print('best parameters: {}'.format(grid_randforest_reg.best_params_)) y_pred = grid_randforest_reg.predict(x_test) r_square = r2_score(y_test, y_pred) mse = mean_squared_error(y_test, y_pred) print('R-square: {}, MSE: {}'.format(r_square, mse)) feature_importance_dict = {'feature': boston.feature_names, 'importance': grid_randforest_reg.best_estimator_.feature_importances_} feature_importance_df = pd.DataFrame(feature_importance_dict).sort_values(by='importance', ascending=False) plt.figure(figsize=(10, 2)) plt.bar(x=feature_importance_df['feature'], height=feature_importance_df['importance'], align='center') plt.xlabel('feature name') plt.ylabel('importance') plt.show() ###Output _____no_output_____ ###Markdown Wine Data ###Code wine = load_wine() X, y = wine.data, wine.target x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3) grid_param = {'n_estimators': np.arange(12, 20), 'max_depth': np.arange(2, 10)} randforest_cls = RandomForestClassifier() grid_randforest_cls = GridSearchCV(randforest_cls, grid_param, cv=5) grid_randforest_cls.fit(x_train, y_train) print('Best Parameters: {}'.format(grid_randforest_cls.best_params_)) print('-' * 50) y_pred = grid_randforest_cls.predict(x_test) report = classification_report(y_test, y_pred, labels=np.unique(wine.target), target_names=wine.target_names) print(report) feature_importance_dict = {'feature': wine.feature_names, 'importance': grid_randforest_cls.best_estimator_.feature_importances_} feature_importance_df = pd.DataFrame(feature_importance_dict).sort_values(by='importance', ascending=False) plt.figure(figsize=(20, 6)) plt.bar(x=feature_importance_df['feature'], height=feature_importance_df['importance'], align='center', color='brown') plt.xlabel('feature name') plt.xticks(rotation=40) plt.ylabel('importance') plt.show() ###Output _____no_output_____ ###Markdown 作業Q1. 試著調整 RandomForestClassifier(...) 中的參數,並觀察是否會改變結果? ###Code from sklearn import datasets, metrics from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error # 讀取鳶尾花資料集 iris = datasets.load_iris() # 切分訓練集/測試集 x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.25, random_state=4) # 建立模型 for x in range(1,100,10): clf = RandomForestClassifier(n_estimators=x) clf.fit(x_train, y_train) y_pred = clf.predict(x_test) acc = metrics.accuracy_score(y_test, y_pred) print('n_estimator = %d' % x) print("Acuuracy: ", acc) print('-'*30) ###Output n_estimator = 1 Acuuracy: 0.9736842105263158 ------------------------------ n_estimator = 11 Acuuracy: 0.9473684210526315 ------------------------------ n_estimator = 21 Acuuracy: 0.9736842105263158 ------------------------------ n_estimator = 31 Acuuracy: 0.9736842105263158 ------------------------------ n_estimator = 41 Acuuracy: 0.9473684210526315 ------------------------------ n_estimator = 51 Acuuracy: 0.9473684210526315 ------------------------------ n_estimator = 61 Acuuracy: 0.9736842105263158 ------------------------------ n_estimator = 71 Acuuracy: 0.9736842105263158 ------------------------------ n_estimator = 81 Acuuracy: 0.9736842105263158 ------------------------------ n_estimator = 91 Acuuracy: 0.9736842105263158 ------------------------------ ###Markdown Q2. 改用其他資料集 (boston, wine),並與回歸模型與決策樹的結果進行比較 ###Code # 讀取波士頓資料集 boston = datasets.load_boston() # 切分訓練集/測試集 x_train, x_test, y_train, y_test = train_test_split(boston.data, boston.target, test_size=0.1, random_state=4) # 建立模型 for x in range(1,100,10): clf = RandomForestRegressor(n_estimators=x) clf.fit(x_train, y_train) y_pred = clf.predict(x_test) print('n_estimator = %d' % x) print("Mean squared error: %.2f" % mean_squared_error(y_test, y_pred)) print('-'*30) ###Output n_estimator = 1 Mean squared error: 28.68 ------------------------------ n_estimator = 11 Mean squared error: 11.48 ------------------------------ n_estimator = 21 Mean squared error: 10.40 ------------------------------ n_estimator = 31 Mean squared error: 9.74 ------------------------------ n_estimator = 41 Mean squared error: 9.58 ------------------------------ n_estimator = 51 Mean squared error: 11.15 ------------------------------ n_estimator = 61 Mean squared error: 10.07 ------------------------------ n_estimator = 71 Mean squared error: 9.65 ------------------------------ n_estimator = 81 Mean squared error: 10.06 ------------------------------ n_estimator = 91 Mean squared error: 10.20 ------------------------------ ###Markdown [作業重點]確保你了解隨機森林模型中每個超參數的意義,並觀察調整超參數對結果的影響 作業1. 試著調整 RandomForestClassifier(...) 中的參數,並觀察是否會改變結果?2. 改用其他資料集 (boston, wine),並與回歸模型與決策樹的結果進行比較 ###Code from sklearn import datasets, metrics from sklearn.linear_model import LogisticRegression, LinearRegression from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.model_selection import train_test_split wine = datasets.load_wine() x = wine.data y = wine.target print('x sahpe: ', x.shape) print('y sample: ', y[: 6]) # classification from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=4) # baseline logistic regression logreg = LogisticRegression(solver='newton-cg') logreg.fit(x_train, y_train) print('params: ', logreg.coef_) print('acc: ', logreg.score(x_test, y_test)) clf = RandomForestClassifier(n_estimators=10, max_depth=4) clf.fit(x_train, y_train) print('acc: ', clf.score(x_test, y_test)) print('feature importances: ', {name:value for (name, value) in zip(wine.feature_names, clf.feature_importances_)}) # boston boston = datasets.load_boston() x = boston.data y = boston.target print('x sahpe: ', x.shape) print('y sample: ', y[: 6]) # linear regression x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=5) # baseline linear regression linear = LinearRegression() linear.fit(x_train, y_train) print('params: ', linear.coef_) print('R2: ', linear.score(x_test, y_test)) clf2 = RandomForestRegressor(n_estimators=10, max_depth=4) clf2.fit(x_train, y_train) print('R2: ', clf2.score(x_test, y_test)) print('feature importances: ', {name:value for (name, value) in zip(boston.feature_names, clf2.feature_importances_)}) ###Output R2: 0.837963895356755 feature importances: {'CRIM': 0.03946751128402972, 'ZN': 0.0, 'INDUS': 0.002276176307010874, 'CHAS': 0.0, 'NOX': 0.009136104068026727, 'RM': 0.3577398862093797, 'AGE': 0.0029516843209303235, 'DIS': 0.08636260460188355, 'RAD': 0.002480758878488432, 'TAX': 0.00436853956189145, 'PTRATIO': 0.0034113614528555186, 'B': 0.0033432546939453226, 'LSTAT': 0.4884621186215584}
Data Analyst with Python/11_Cleaning_Data_in_Python/11_2_Text and categorical data problems.ipynb
###Markdown 2. Text and categorical data problems**Categorical and text data can often be some of the messiest parts of a dataset due to their unstructured nature. In this chapter, you’ll learn how to fix whitespace and capitalization inconsistencies in category labels, collapse multiple categories into one, and reformat strings for consistency.** Membership constraints Categories and membership constraints**Predifined finite set of categories**Type of data | Example values | Numeric representation:---|:---|:---Marriage Status | `unmarried`, `married` | `0`, `1`Household Income Category | `0-20k`, `20-40k`, ... | `0`, `1`, ...Loan Status | `default`, `payed`, `no_loan` | `0`, `1`, `2`*Marriage status can **only** be `unmarried` _or_ `married`*To run machine learning models on categorical data, they are often coded as numbers. Since categorical data represent a predefined set of categories, they can't have values that go beyond these predefined categories. Why could we have these problems?We can have inconsistencies in our categorical data for a variety of reasons. This could be due to data entry issues with free text vs dropdown fields, *data parsing errors* and *other types of errors*. How do we treat these problems?There's a variety of ways we can treat these, with increasingly specific solutions for different types of inconsistencies. Most simply, we can drop the rows with incorrect categories. We can attempt remapping incorrect categories to correct ones, and more. An exampleHere's a DataFrame named `study_data` containing a list of first names, birth dates, and blood types. Additionally, a DataFrame named categories, containing the correct possible categories for the blood type column has been created as well.```python Read study data and print itstudy_data = pd.read_csv('study.csv')study_data`````` name birthday blood_type1 Beth 2019-10-20 B-2 Ignatius 2020-07-08 A-3 Paul 2019-08-12 O+4 Helen 2019-03-17 O-5 Jennifer 2019-12-17 Z+ <--6 Kennedy 2020-04-27 A+7 Keith 2018-04-19 AB+```There's definitely no blood type named `Z+`. Luckily, the `categories` DataFrame will help us systematically spot all rows with these inconsistencies. ```python Correct possible blood typescategories`````` blood_type1 O-2 O+3 A-4 A+5 B+6 B-7 AB+8 AB-```It's always good practice to keep a log of all possible values of your categorical data, as it will make dealing with these types of inconsistencies way easier. A note on joins- Anti Joins: What is **in A and not in B**- Inner Joins: What is **in *both* A and B** Finding inconsistent categoriesWe first get all inconsistent categories in the `blood_type` column of the `study_data` DataFrame. We do that by creating a set out of the `blood_type` column which stores its unique values, and use the `difference` method which takes in as argument the `blood_type` column from the `categories` DataFrame. ```pythoninconsistent_categories = set(study_data['blood_type']).difference(categories['blood_type'])print(inconsistent_categories)```This returns all the categories in `blood_type` that are not in categories. ```{'Z+'}```We then find the inconsistent rows by finding all the rows of the `blood_type` columns that are equal to inconsistent categories by using the `isin` method, this returns a series of boolean values that are `True` for inconsistent rows and `False` for consistent ones. We then subset the `study_data` DataFrame based on these boolean values, ```python Get and print rows with incinsistent categoriesinconsistent_rows = study_data['blood_type'].isin(inconsistent_categories)study_data[inconsistent_rows]```and we have our inconsistent data.``` name birthday blood_type5 Jennifer 2019-12-17 Z+``` Dropping inconsistent categoriesTo drop inconsistent rows and keep ones that are only consistent. We just use the tilde(`~`) symbol while subsetting which returns everything except inconsistent rows.```pythoninconsistent_categories = set(study_data['blood_type']).difference(categories['blood_type'])inconsistent_rows = study_data['blood_type'].isin(inconsistent_categories)inconsistent_data = study_data[inconsistent_rows] Drop inconsistent categories and get consistent data onlyconsistent_data = study_data[~inconsistent_rows]``` Finding consistencyIn this exercise and throughout this chapter, you'll be working with the `airlines` DataFrame which contains survey responses on the San Francisco Airport from airline customers.The DataFrame contains flight metadata such as the airline, the destination, waiting times as well as answers to key questions regarding cleanliness, safety, and satisfaction. Another DataFrame named `categories` was created, containing all correct possible values for the survey columns.In this exercise, you will use both of these DataFrames to find survey answers with inconsistent values, and drop them, effectively performing an outer and inner join on both these DataFrames as seen in the video exercise. ###Code import pandas as pd airlines = pd.read_csv('airlines.csv', index_col=0) airlines.head(3) ###Output _____no_output_____ ###Markdown - Print the `categories` DataFrame and take a close look at all possible correct categories of the survey columns. ###Code # Print categories DataFrame categories = pd.read_csv('categories.csv') print(categories) ###Output cleanliness safety satisfaction 0 Clean Neutral Very satisfied 1 Average Very safe Neutral 2 Somewhat clean Somewhat safe Somewhat satisfied 3 Somewhat dirty Very unsafe Somewhat unsatisfied 4 Dirty Somewhat unsafe Very unsatisfied ###Markdown - Print the unique values of the survey columns in `airlines` using the `.unique()` method. ###Code # Print unique values of survey columns in airlines print('Cleanliness: ', airlines['cleanliness'].unique(), "\n") print('Safety: ', airlines['safety'].unique(), "\n") print('Satisfaction: ', airlines['satisfaction'].unique(), "\n") ###Output Cleanliness: ['Clean' 'Average' 'Unacceptable' 'Somewhat clean' 'Somewhat dirty' 'Dirty'] Safety: ['Neutral' 'Very safe' 'Somewhat safe' 'Very unsafe' 'Somewhat unsafe'] Satisfaction: ['Very satisfied' 'Neutral' 'Somewhat satsified' 'Somewhat unsatisfied' 'Very unsatisfied'] ###Markdown - Create a set out of the `cleanliness` column in `airlines` using `set()` and find the inconsistent category by finding the **difference** in the `cleanliness` column of `categories`.- Find rows of `airlines` with a `cleanliness` value not in `categories` and print the output. ###Code # Find the cleanliness category in airlines not in categories cat_clean = set(airlines['cleanliness']).difference(categories['cleanliness']) # Find rows with that category cat_clean_rows = airlines['cleanliness'].isin(cat_clean) # View rows with inconsistent category display(airlines[cat_clean_rows]) ###Output _____no_output_____ ###Markdown - Print the rows with the consistent categories of `cleanliness` only. ###Code # View rows with consistent categories only display(airlines[~cat_clean_rows]) ###Output _____no_output_____ ###Markdown --- Categorical variables What type of errors could we have?1. **Value Inconsistency** - *Inconsistent fields*: `'married'`, `'Maried'`, `'UNMARRIED'`, `'not married'`... - _Trailling white spaces: _`'married '`, `' married '` ...2. **Collapsing too many categories to few** - *Creating new groups*: `0-20k`, `20-40k` categories ... from continuous household income data - *Mapping groups to new ones*: Mapping household income categories to 2 `'rich'`, `'poor'`3. **Making sure data is of type `category`** Value consistencyA common categorical data problem is having values that slightly differ because of capitalization. Not treating this could lead to misleading results when we decide to analyze our data, for example, let's assume we're working with a demographics dataset, and we have a marriage status column with inconsistent capitalization. ***Capitalization***: `'married'`, `'Married'`, `'UNMARRIED'`, `'unmarried'` ...Here's what counting the number of married people in the `marriage_status` Series would look like. Note that the `.value_counts()` methods works on Series only.```python Get marriage status columnmarriage_status = demographics['marriage_status']marriage_status.value_counts()``````unmarried 352married 268MARRIED 204UNMARRIED 176dtype: int64```For a DataFrame, we can `groupby` the column and use the `.count()` method.```python Get value counts on DataFramemarriage_status.groupby('marriage_status').count()`````` household_income gendermarriage_status MARRIED 204 204UNMARRIED 176 176married 268 268unmarried 352 352```To deal with this, we can either capitalize or lowercase the marriage_status column. This can be done with the `str.upper()` or `str.lower()` functions respectively.```python Caplitalizemarriage_status['marriage_status'] = marriage_status['marriage_status'].str.upper()marriage_status['marriage_status'].value.count()``````UNMARRIED 528MARRIED 472``````python Lowercasemarriage_status['marriage_status'] = marriage_status['marriage_status'].str.lower()marriage_status['marriage_status'].value.count()``````unmarried 528married 472``` Another common problem with categorical values are leading or trailing spaces. ***Trailling spaces***: `'married '`, `'married'`, `'unmarried'`, `' unmarried'` ...For example, imagine the same demographics DataFrame containing values with leading spaces. Here's what the counts of married vs unmarried people would look like.```python Get marriage status columnmarriage_status = demographics['marriage_status']marriage_status.value_counts()`````` unmarried 352unmarried 268married 204married 176dtype: int64```Note that there is a married category with a trailing space on the right, which makes it hard to spot on the output, as opposed to unmarried.To remove leading spaces, we can use the `str.strip()` method which when given no input, strips all leading and trailing white spaces.```python Strip all spacesmarriage_status = demographics['marriage_status'].str.strip()demographics['marriage_status'].value_counts()``````unmarried 528married 472``` Collapsing data into categories***Create categories out of data***: `income_group` column from `income` columnTo create categories out of data, let's use the example of creating an income group column in the demographics DataFrame. We can do this in 2 ways. The first method utilizes the `qcut` function from `pandas`, which automatically divides our data based on its distribution into the number of categories we set in the `q` argument, we created the category names in the group_names list and fed it to the labels argument, returning the following. ```python Using qcut()import padnas as pdgroup_names = ['0-200k', '200-500k', '500k+']demographics['income_group'] = pd.qcut(demographics['household_income'], q = 3, labels = group_names) Print income_group columndemographics[['income_group', 'household_income']]`````` category household_income0 200k-500k 1892431 500K+ 778533...```Notice that the first row actually misrepresents the actual income of the income group, as we didn't instruct qcut where our ranges actually lie.We can do this with the `cut` function instead, which lets us define category cutoff ranges with the `bins` argument. It takes in a list of cutoff points for each category, with the final one being infinity represented with `np.inf()`. From the output, we can see this is much more correct.```python Using cut() - create category ranges and namesranges = [0, 200000, 500000, np.inf]group_names = ['0-200k', '200-500k', '500k+'] Create income group columndemographics['income_group'] = pd.cut(demographics['household_income'], bins=ranges, labels = group_names) Print income_group columndemographics[['income_group', 'household_income']]`````` category Income0 200k-500k 1892431 500K+ 778533``` Collapsing data into categoriesSometimes, we may want to reduce the amount of categories we have in our data. Let's move on to mapping categories to fewer ones. For example, assume we have a column containing the operating system of different devices, and contains these unique values. Say we want to collapse these categories into 2, `DesktopOS`, and `MobileOS`. We can do this using the replace method. It takes in a dictionary that maps each existing category to the category name you desire. ***Map categories to fewer ones***: reducing categories in categorical column`operating_system` column is: `'Microsoft'`, `'MacOS'`, `'IOS'`, `'Android'`, `'Linux'``operating_system` column should become: `'DesktopOS'`, `'MobileOS'````python Create mapping dictionary and replacemapping = {'Microsoft':'DesktopOS', 'MacOS':'DesktopOS' , 'Linux':'DesktopOS' , 'IOS':'MobileOS' , 'Android':'MobileOS'}device['operating_system'] = devices['operating_system'].replace(mapping)device['operating_system'].unique()``````array(['DesktopOS', 'MobileOS'], dtype=object)```In this case, this is the mapping dictionary. A quick print of the unique values of operating system shows the mapping has been complete. Inconsistent categoriesIn this exercise, you'll be revisiting the `airlines` DataFrame from the previous lesson.As a reminder, the DataFrame contains flight metadata such as the airline, the destination, waiting times as well as answers to key questions regarding cleanliness, safety, and satisfaction on the San Francisco Airport.In this exercise, you will examine two categorical columns from this DataFrame, `dest_region` and `dest_size` respectively, assess how to address them and make sure that they are cleaned and ready for analysis. - Print the unique values in `dest_region` and `dest_size` respectively. ###Code # Print unique values of both columns print(airlines['dest_region'].unique()) print(airlines['dest_size'].unique()) ###Output ['Asia' 'Canada/Mexico' 'West US' 'East US' 'Midwest US' 'EAST US' 'Middle East' 'Europe' 'eur' 'Central/South America' 'Australia/New Zealand' 'middle east'] ['Hub' 'Small' 'Medium' 'Large' ' Hub' 'Hub ' ' Small' 'Medium ' ' Medium' ' Large' 'Small ' 'Large '] ###Markdown QuestionFrom looking at the output, what do you think is the problem with these columns?1. ~~The `dest_region` column has only inconsistent values due to capitalization.~~2. The `dest_region` column has inconsistent values due to capitalization and has one value that needs to be remapped.3. The `dest_size` column has only inconsistent values due to leading and trailing spaces.**Answer: 2,3** - Change the capitalization of all values of `dest_region` to lowercase.- Replace the `'eur'` with `'europe'` in `dest_region` using the `.replace()` method. ###Code # Lower dest_region column and then replace "eur" with "europe" airlines['dest_region'] = airlines['dest_region'].str.lower() airlines['dest_region'] = airlines['dest_region'].replace({'eur':'europe'}) ###Output _____no_output_____ ###Markdown - Strip white spaces from the `dest_size` column using the `.strip()` method. ###Code # Remove white spaces from `dest_size` airlines['dest_size'] = airlines['dest_size'].str.strip() ###Output _____no_output_____ ###Markdown - Verify that the changes have been into effect by printing the unique values of the columns using `.unique()`. ###Code # Verify changes have been effected print(airlines['dest_region'].unique()) print(airlines['dest_size'].unique()) ###Output ['asia' 'canada/mexico' 'west us' 'east us' 'midwest us' 'middle east' 'europe' 'central/south america' 'australia/new zealand'] ['Hub' 'Small' 'Medium' 'Large'] ###Markdown Remapping categoriesTo better understand survey respondents from `airlines`, you want to find out if there is a relationship between certain responses and the day of the week and wait time at the gate.The `airlines` DataFrame contains the `day` and `wait_min` columns, which are categorical and numerical respectively. The `day` column contains the exact day a flight took place, and `wait_min` contains the amount of minutes it took travelers to wait at the gate. To make your analysis easier, you want to create two new categorical variables:`wait_type`: `'short'` for 0-60 min, `'medium'` for 60-180 and `long` for 180+`day_week`: `'weekday'` if day is in the weekday, `'weekend'` if day is in the weekend. - Create the ranges and labels for the `wait_type` column mentioned in the description above.- Create the `wait_type` column by from `wait_min` by using `pd.cut()`, while inputting `label_ranges` and `label_names` in the correct arguments.- Create the `mapping` dictionary mapping weekdays to `'weekday'` and weekend days to `'weekend'`.- Create the `day_week` column by using `.replace()`. ###Code import numpy as np # Create ranges for categories label_ranges = [0, 60, 180, np.inf] label_names = ['short', 'medium', 'long'] # Create wait_type column airlines['wait_type'] = pd.cut(airlines['wait_min'], bins = label_ranges, labels = label_names) # Create mappings and replace mappings = {'Monday':'weekday', 'Tuesday':'weekday', 'Wednesday': 'weekday', 'Thursday': 'weekday', 'Friday': 'weekday', 'Saturday': 'weekend', 'Sunday': 'weekend'} airlines['day_week'] = airlines['day'].replace(mappings) ###Output _____no_output_____ ###Markdown *You just created two new categorical variables, that when combined with other columns, could produce really interesting analysis. Don't forget, you can always use an* `assert` *statement to check your changes passed.* ###Code print(airlines[['wait_type', 'wait_min', 'day_week']]) import matplotlib.pyplot as plt import seaborn as sns sns.barplot(data=airlines, x='wait_min', y='satisfaction', hue='day_week') plt.show() ###Output _____no_output_____