path
stringlengths
7
265
concatenated_notebook
stringlengths
46
17M
ds/kb/courses/deep-learning-v2-pytorch/intro-neural-networks/student-admissions/StudentAdmissions.ipynb
###Markdown Predicting Student Admissions with Neural NetworksIn this notebook, we predict student admissions to graduate school at UCLA based on three pieces of data:- GRE Scores (Test)- GPA Scores (Grades)- Class rank (1-4)The dataset originally came from here: http://www.ats.ucla.edu/ Loading the dataTo load the data and format it nicely, we will use two very useful packages called Pandas and Numpy. You can read on the documentation here:- https://pandas.pydata.org/pandas-docs/stable/- https://docs.scipy.org/ ###Code # Import pandas and numpy import pandas as pd import numpy as np # Reading the csv file into a pandas DataFrame data = pd.read_csv('student_data.csv') # Printing out the first 10 rows of our data data.head(10) ###Output _____no_output_____ ###Markdown Plotting the dataFirst let's make a plot of our data to see how it looks. In order to have a 2D plot, let's ingore the rank. ###Code # Importing matplotlib import matplotlib.pyplot as plt %matplotlib inline # Function to help us plot def plot_points(data): X = np.array(data[["gre","gpa"]]) y = np.array(data["admit"]) admitted = X[np.argwhere(y==1)] rejected = X[np.argwhere(y==0)] plt.scatter([s[0][0] for s in rejected], [s[0][1] for s in rejected], s = 25, color = 'red', edgecolor = 'k') plt.scatter([s[0][0] for s in admitted], [s[0][1] for s in admitted], s = 25, color = 'cyan', edgecolor = 'k') plt.xlabel('Test (GRE)') plt.ylabel('Grades (GPA)') # Plotting the points plot_points(data) plt.show() ###Output _____no_output_____ ###Markdown Roughly, it looks like the students with high scores in the grades and test passed, while the ones with low scores didn't, but the data is not as nicely separable as we hoped it would. Maybe it would help to take the rank into account? Let's make 4 plots, each one for each rank. ###Code # Separating the ranks data_rank1 = data[data["rank"]==1] data_rank2 = data[data["rank"]==2] data_rank3 = data[data["rank"]==3] data_rank4 = data[data["rank"]==4] # Plotting the graphs plot_points(data_rank1) plt.title("Rank 1") plt.show() plot_points(data_rank2) plt.title("Rank 2") plt.show() plot_points(data_rank3) plt.title("Rank 3") plt.show() plot_points(data_rank4) plt.title("Rank 4") plt.show() ###Output _____no_output_____ ###Markdown This looks more promising, as it seems that the lower the rank, the higher the acceptance rate. Let's use the rank as one of our inputs. In order to do this, we should one-hot encode it. TODO: One-hot encoding the rankUse the `get_dummies` function in pandas in order to one-hot encode the data.Hint: To drop a column, it's suggested that you use `one_hot_data`[.drop( )](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.drop.html). ###Code # TODO: Make dummy variables for rank and concat existing columns one_hot_data = pd.get_dummies(data, columns=["rank"]) # TODO: Drop the previous rank column # one_hot_data = one_hot_data.drop(columns=["rank"]) # Print the first 10 rows of our data one_hot_data.head() ###Output _____no_output_____ ###Markdown TODO: Scaling the dataThe next step is to scale the data. We notice that the range for grades is 1.0-4.0, whereas the range for test scores is roughly 200-800, which is much larger. This means our data is skewed, and that makes it hard for a neural network to handle. Let's fit our two features into a range of 0-1, by dividing the grades by 4.0, and the test score by 800. ###Code # Making a copy of our data processed_data = one_hot_data[:] # TODO: Scale the columns processed_data["gpa"] = processed_data["gpa"] / 4 processed_data["gre"] = processed_data["gre"] / 800 # Printing the first 10 rows of our procesed data processed_data.head(10) ###Output _____no_output_____ ###Markdown Splitting the data into Training and Testing In order to test our algorithm, we'll split the data into a Training and a Testing set. The size of the testing set will be 10% of the total data. ###Code sample = np.random.choice(processed_data.index, size=int(len(processed_data)*0.9), replace=False) train_data, test_data = processed_data.iloc[sample], processed_data.drop(sample) print("Number of training samples is", len(train_data)) print("Number of testing samples is", len(test_data)) print(train_data[:10]) print(test_data[:10]) ###Output Number of training samples is 360 Number of testing samples is 40 admit gre gpa rank_1 rank_2 rank_3 rank_4 285 0 0.750 0.8275 0 0 0 1 186 0 0.700 0.9025 0 0 1 0 180 0 0.775 0.9450 0 0 1 0 191 0 1.000 0.8850 0 0 1 0 167 0 0.900 0.9425 0 0 1 0 387 0 0.725 0.8400 0 1 0 0 351 0 0.775 0.8575 0 0 1 0 121 1 0.600 0.6675 0 1 0 0 326 0 0.850 0.8275 0 1 0 0 283 0 0.650 0.7750 0 0 0 1 admit gre gpa rank_1 rank_2 rank_3 rank_4 12 1 0.950 1.0000 1 0 0 0 47 0 0.625 0.7425 0 0 0 1 56 0 0.700 0.7975 0 0 1 0 68 0 0.725 0.9225 1 0 0 0 70 0 0.800 1.0000 0 0 1 0 90 0 0.875 0.9575 0 1 0 0 124 0 0.900 0.9700 0 0 1 0 137 0 0.875 1.0000 0 0 1 0 148 1 0.600 0.7275 1 0 0 0 161 0 0.800 0.8750 0 1 0 0 ###Markdown Splitting the data into features and targets (labels)Now, as a final step before the training, we'll split the data into features (X) and targets (y). ###Code features = train_data.drop('admit', axis=1) targets = train_data['admit'] features_test = test_data.drop('admit', axis=1) targets_test = test_data['admit'] print(features[:10]) print(targets[:10]) ###Output gre gpa rank_1 rank_2 rank_3 rank_4 285 0.750 0.8275 0 0 0 1 186 0.700 0.9025 0 0 1 0 180 0.775 0.9450 0 0 1 0 191 1.000 0.8850 0 0 1 0 167 0.900 0.9425 0 0 1 0 387 0.725 0.8400 0 1 0 0 351 0.775 0.8575 0 0 1 0 121 0.600 0.6675 0 1 0 0 326 0.850 0.8275 0 1 0 0 283 0.650 0.7750 0 0 0 1 285 0 186 0 180 0 191 0 167 0 387 0 351 0 121 1 326 0 283 0 Name: admit, dtype: int64 ###Markdown Training the 2-layer Neural NetworkThe following function trains the 2-layer neural network. First, we'll write some helper functions. ###Code # Activation (sigmoid) function def sigmoid(x): return 1 / (1 + np.exp(-x)) def sigmoid_prime(x): return sigmoid(x) * (1-sigmoid(x)) def error_formula(y, output): return - y*np.log(output) - (1 - y) * np.log(1-output) ###Output _____no_output_____ ###Markdown TODO: Backpropagate the errorNow it's your turn to shine. Write the error term. Remember that this is given by the equation $$ (y-\hat{y}) \sigma'(x) $$ ###Code # TODO: Write the error term formula def error_term_formula(x, y, output): return (y - output) * sigmoid_prime(x) ## Alternative solution ## # you could also *only* use y and the output # and calculate sigmoid_prime directly from the activated output! # below is an equally valid solution (it doesn't utilize x) def error_term_formula(x, y, output): return (y-output) * output * (1 - output) # Neural Network hyperparameters epochs = 1000 learnrate = 0.5 # Training function def train_nn(features, targets, epochs, learnrate): # Use to same seed to make debugging easier np.random.seed(92) n_records, n_features = features.shape last_loss = None # Initialize weights weights = np.random.normal(scale=1 / n_features**.5, size=n_features) for e in range(epochs): del_w = np.zeros(weights.shape) for x, y in zip(features.values, targets): # Loop through all records, x is the input, y is the target # Activation of the output unit # Notice we multiply the inputs and the weights here # rather than storing h as a separate variable output = sigmoid(np.dot(x, weights)) # The error, the target minus the network output error = error_formula(y, output) # The error term error_term = error_term_formula(x, y, output) # The gradient descent step, the error times the gradient times the inputs del_w += error_term * x # Update the weights here. The learning rate times the # change in weights, divided by the number of records to average weights += learnrate * del_w / n_records # Printing out the mean square error on the training set if e % (epochs / 10) == 0: out = sigmoid(np.dot(features, weights)) loss = np.mean((out - targets) ** 2) print("Epoch:", e) if last_loss and last_loss < loss: print("Train loss: ", loss, " WARNING - Loss Increasing") else: print("Train loss: ", loss) last_loss = loss print("=========") print("Finished training!") return weights weights = train_nn(features, targets, epochs, learnrate) ###Output Epoch: 0 Train loss: 0.23661253786889236 ========= Epoch: 100 Train loss: 0.21368242400220366 ========= Epoch: 200 Train loss: 0.20873343981515768 ========= Epoch: 300 Train loss: 0.20722500667278487 ========= Epoch: 400 Train loss: 0.206651045371236 ========= Epoch: 500 Train loss: 0.20637355389328985 ========= Epoch: 600 Train loss: 0.20620507892978857 ========= Epoch: 700 Train loss: 0.2060815927241979 ========= Epoch: 800 Train loss: 0.2059783951151709 ========= Epoch: 900 Train loss: 0.20588510773012408 ========= Finished training! ###Markdown Calculating the Accuracy on the Test Data ###Code # Calculate accuracy on test data test_out = sigmoid(np.dot(features_test, weights)) predictions = test_out > 0.5 accuracy = np.mean(predictions == targets_test) print("Prediction accuracy: {:.3f}".format(accuracy)) ###Output Prediction accuracy: 0.775
data_visualization_collection/bike_trend_per_day.ipynb
###Markdown Load trip data ###Code %%time def _convert_to_dateobject(x): return datetime.datetime.strptime(x, "%Y-%m-%d %H:%M:%S") if not os.path.exists('../data/raw_trip_datetime_2018_Q3.pk'): trip_df = pd.read_csv('../data/Divvy_Trips_2018_Q3.csv') trip_df['start_time_dtoj'] = trip_df.apply(lambda row: _convert_to_dateobject(row.start_time), axis=1) trip_df['end_time_dtoj'] = trip_df.apply(lambda row: _convert_to_dateobject(row.end_time), axis=1) trip_df.to_pickle('../data/raw_trip_datetime_2018_Q3.pk') else: trip_df = pd.read_pickle('../data/raw_trip_datetime_2018_Q3.pk') trip_df.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 1513570 entries, 0 to 1513569 Data columns (total 14 columns): trip_id 1513570 non-null int64 start_time 1513570 non-null object end_time 1513570 non-null object bikeid 1513570 non-null int64 tripduration 1513570 non-null object from_station_id 1513570 non-null int64 from_station_name 1513570 non-null object to_station_id 1513570 non-null int64 to_station_name 1513570 non-null object usertype 1513570 non-null object gender 1218574 non-null object birthyear 1221990 non-null float64 start_time_dtoj 1513570 non-null datetime64[ns] end_time_dtoj 1513570 non-null datetime64[ns] dtypes: datetime64[ns](2), float64(1), int64(4), object(7) memory usage: 161.7+ MB ###Markdown Load station info ###Code %%time # Load from preprocessed data sd = pd.read_csv('../data/Divvy_Stations_2017_Q3Q4.csv') sd.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 585 entries, 0 to 584 Data columns (total 8 columns): id 585 non-null int64 name 585 non-null object city 585 non-null object latitude 585 non-null float64 longitude 585 non-null float64 dpcapacity 585 non-null int64 online_date 585 non-null object Unnamed: 7 0 non-null float64 dtypes: float64(3), int64(2), object(3) memory usage: 36.6+ KB ###Markdown Select station and date ###Code # Select a date DAY_RANDOM_FLAG = False if DAY_RANDOM_FLAG: dd = np.random.choice(range(1, 32), 1)[0] mm = np.random.choice([7, 8, 9], 1)[0] if dd == 31 and mm == 9: dd = np.random.choice(range(1, 31), 1)[0] else: dd = 2 mm = 7 print('Month: {}, day: {}'.format(mm, dd)) # Get the heavy demand station list for this day SHOW_hot_station_list = True def _get_hd_stn_lst(df): top_station_df = df[ (df.start_time_dtoj.dt.day == dd) & (df.start_time_dtoj.dt.month == mm) ].groupby(['from_station_id'])[['trip_id']]\ .count().sort_values(by='trip_id', ascending=False)\ .reset_index().head(100) if SHOW_hot_station_list: display(top_station_df) return top_station_df STN_RANDOM_FLAG = True if STN_RANDOM_FLAG: top_station_df = _get_hd_stn_lst(trip_df) st_id = np.random.choice(top_station_df.from_station_id.unique(), 1)[0] else: st_id = 100 print('Station id: {}'.format(st_id)) ###Output _____no_output_____ ###Markdown Trip collection for a single day and a single location ###Code ## Helper functions # Get net change for each trip def _get_net(row): if row.incoming: return 1 elif row.outgoing: return -1 else: return 0 # Get exact time for bike rental/return for this station and then sort def _get_time(row): if row.incoming: return row.end_time_dtoj elif row.outgoing: return row.start_time_dtoj else: return # Filter trip day that meet this condition def get_trip_trips(trip_df, dd, mm, st_id): daily_trip_details = trip_df[ (trip_df.start_time_dtoj.dt.day == dd) & (trip_df.start_time_dtoj.dt.month == mm) & ( (trip_df.from_station_id == st_id) | (trip_df.to_station_id == st_id) ) ][['trip_id', 'tripduration', 'from_station_id', 'to_station_id', 'usertype', 'gender', 'birthyear', 'start_time_dtoj', 'end_time_dtoj']] # Check if incoming or outgoing daily_trip_details['outgoing'] = daily_trip_details.from_station_id == st_id daily_trip_details['incoming'] = daily_trip_details.to_station_id == st_id daily_trip_details['net'] = daily_trip_details.apply(lambda x: _get_net(x), axis=1) daily_trip_details['time'] = daily_trip_details.apply(lambda x: _get_time(x), axis=1) daily_trip_details.sort_values(by='time', inplace=True) daily_trip_details['in_cum'] = -daily_trip_details['incoming'].cumsum() daily_trip_details['out_cum'] = daily_trip_details['outgoing'].cumsum() daily_trip_details['net_cum'] = -daily_trip_details['net'].cumsum() station_info = sd[sd.id == st_id] return daily_trip_details, station_info ###Output _____no_output_____ ###Markdown Plot as function of time[Great example of make multi-type subplots](https://plot.ly/~empet/15130/mixed-2d-and-3d-subplots-forum//) ###Code from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot from ipywidgets import widgets import plotly.graph_objs as go from plotly import tools init_notebook_mode(connected=True) import plotly plotly.__version__ ## Global setup for plotting # API key mapbox_access_token = 'pk.eyJ1IjoibWVydnluMTUyIiwiYSI6ImNqeHpkNWZmdjAxczUzY29hbHVoandyMnUifQ.D-botzm1Hr6Gjs8jqwD5VA' # style dict style_dict = {} style_dict['color'] = {'in':'red', 'out':'orange', 'net':'blue'} style_dict['name'] = {'in':'Return', 'out':'Rental', 'net':'Net Demand'} ## Function to get trip trend data def _get_trip_trend_date(df, conf, vis=False): return go.Scatter( x=df.time, y=df[conf+'_cum'], name = style_dict['name'][conf], mode = 'lines+markers', line = dict( color = style_dict['color'][conf], ), visible=vis ) ## Function to get map data def _get_map_data(df, vis=False): return go.Scattermapbox( lat=[float(df.latitude)], lon=[float(df.longitude)], text=["<b>Station id</b>: {}\ <br> <b>Latitude</b>: {:.4f} \ <br> <b>Longitude</b>: {:.4f} \ <br> <b>Station capacity</b>: {}\ <br> <b>Station name</b>: <br> {}\ ".format( int(df.id), float(df.latitude), float(df.longitude), int(df.dpcapacity), str(df.name.to_string()), )], mode='markers', hoverinfo = 'text', marker=go.scattermapbox.Marker( size=10, color='yellow', ), subplot='mapbox', visible=vis, name='Station '+str(int(df.id)), showlegend=False, ) ## Style of mixed plot layout = { 'title': { 'text': 'Trend of bike rental and net demand', 'font': dict( family='Droid Serif, serif', size=30, color='Black' ), }, 'yaxis': { 'zeroline': False, # 'showgrid': True, 'title': "Number of bikes", 'titlefont': dict( family='Arial, sans-serif', size=25, color='grey' ), # 'range': [-100, 420], 'domain': [0, 0.95], 'tickangle': -45, 'tickfont': dict( family='Old Standard TT, serif', size=14, color='black' ), }, 'xaxis': { 'zeroline': True, # 'showgrid': True, 'domain': [0., 0.99], 'tickangle': 0, 'tickfont': dict( family='Old Standard TT, serif', size=14, color='black' ), }, 'mapbox': go.layout.Mapbox( accesstoken=mapbox_access_token, bearing=0, domain={'x': [0.05, 0.4], 'y': [0.55, 1]}, center=go.layout.mapbox.Center( lat=41.89, lon=-87.625 ), pitch=60, zoom=11.5, style='dark', # style='mapbox://styles/mervyn152/cjy2i8m1y1s5s1cnxcto3gppa', # style = 'mapbox://styles/mervyn152/cjy2i8m1y1s5s1cnxcto3gppa' ), # 'paper_bgcolor': 'black', 'showlegend': True, 'autosize': True, 'legend': dict( orientation="v", x=0.5, y=1, font=dict( size=16, ), ), 'margin': go.layout.Margin(l=60, r=10, b=10, t=50, pad=6), 'shapes': [ go.layout.Shape( type="rect", xref="paper", yref="y", x0="0", y0=-35, x1="1", y1=35, fillcolor="lightgrey", opacity=0.5, layer="below", line_width=0, ), go.layout.Shape( type="line", xref="paper", yref="y", x0=0, y0=0, x1=1, y1=0, line=dict( color="black", width=0.5, dash='dot', ), ), ], } # Set date and station list pm = 7 pd = 2 station_list = [192, 100, 35, 91, 56] station_list = [192, 177, 100, 143] ## Get data data = [] vis_flag = True for st_id in station_list: daily_trip_details, station_info = get_trip_trips(trip_df, pd, pm, st_id) data.append(_get_map_data(station_info, vis=vis_flag)) data.append(_get_trip_trend_date(daily_trip_details, 'out', vis=vis_flag)) data.append(_get_trip_trend_date(daily_trip_details, 'net', vis=vis_flag)) vis_flag = False # Create button list button_list = [] n_st = len(station_list) blank = [False] * n_st *3 for i in range(n_st): vis_lst = blank.copy() vis_lst[i*3:i*3+3] = [True] * 3 label_ = 'Station '+str(station_list[i]) tmp_d = dict( args = [{'visible': vis_lst}], label = label_, method ='update' ) button_list.append(tmp_d) updatemenus=list([ dict( buttons=button_list, direction = 'up', x = 0.82, xanchor = 'left', y = -0.18, yanchor = 'bottom', bgcolor = 'lightgrey', bordercolor = 'black', font = dict(size=11, color='black'), showactive=False, ), ]) layout['updatemenus'] = updatemenus figure = {} figure['data'] = data figure['layout'] = layout SHOW = True if SHOW: iplot(figure, config={'displayModeBar': False}) else: plot(figure, config={'displayModeBar': False}, filename="bike_trip_trend.html") ###Output _____no_output_____
StallurDox2.ipynb
###Markdown EE 617 Project: Sensor Fault Diagnosis Part 2 ATC sensor fault diagnoseWe build a state space model for an airplane circling an airport with its distance, azimuth and elevation angle measurements. Since computational resources are not constrained at an airport, we shall use Support Vector Machine to classify a sensor as faulty. We simulate both healthy and faulty sensor measurements for a given time. Then on this measurement signal we extract some features (like mean, std deviation etc) and then use it to train an SVM and also validate it. State Space modelLet $x_1, x_3, x_5$ denote position of aircraft in cartesian coordinates respectively and $x_2, x_4, x_6$ denote velocities in these respective directions. $x_7$ denotes the turn rateThen $\frac{dX}{dt}=\begin{bmatrix} x_2 \\ -x_4x_7 \\ x_4 \\ x_2x_7 \\ x_6 \\ 0 \\ 0\end{bmatrix}+Q_d$Here, $Q_d$ is $diag([0, \sigma_1^2, 0, \sigma_1^2, 0, \sigma_1^2, \sigma_2^2])$ (zero mean noise)The sensor measurement equations are as follows$y_1=\sqrt{x_1^2+x_3^2+x_5^2}$ (range)$y_2=\tan^{-1}(x_3/x_1)$ (azimuth angle)$y_3=\tan^{-1}\left( \frac{x_5}{\sqrt{x_1^2+x_3^2}} \right)$ (elevation angle)Also measurement noise is added which is $R=diag([\sigma_r^2, \sigma_{\theta}^2, \sigma_{\phi}^2])$ (zero mean noise)Initial Condition used for simulation is $x(0)=[1000, 0, 2650, 150, 200, 0, 3]$(Give reference) ###Code #Importing the librairies import numpy as np import matplotlib.pyplot as plt from math import * import random import scipy.linalg as sp from sklearn import datasets from sklearn import svm from sklearn.model_selection import train_test_split as tts from sklearn.metrics import accuracy_score from sklearn.metrics import accuracy_score class Radar(object): #State Space model of Radar def __init__(self): #States self.x1=1000 self.x2=0 self.x3=2650 self.x4=150 self.x5=200 self.x6=0 self.x7=3 def y1(self): #Measure range/distance return sqrt(self.x1**2+self.x3**2+self.x5**2) def y2(self): #Measure azimuth return atan(self.x3/self.x1) def y3(self): #measure elevation return atan(self.x5/(sqrt(self.x1**2+self.x3**2))) def dxdt(self): #The model dx1dt=self.x2 dx2dt=-self.x4*self.x7 dx3dt=self.x4 dx4dt=self.x2*self.x7 dx5dt=self.x6 dx6dt=0 dx7dt=0 a=np.array([dx1dt, dx2dt, dx3dt, dx4dt, dx5dt, dx6dt, dx7dt]) return a def setState(self, X): #Set the current state to X self.x1=X[0] self.x2=X[1] self.x3=X[2] self.x4=X[3] self.x5=X[4] self.x6=X[5] self.x7=X[6] def getState(self): #Return the states return np.array([self.x1, self.x2, self.x3, self.x4, self.x5, self.x6, self.x7]) def update(self, delt, noise=False): #Use RK4 method to integrate #Initialise h=delt X0=self.getState() #K1 terms K1=h*self.dxdt() X1=X0+K1/2 self.setState(X1) #K2 terms K2=h*self.dxdt() X2=X0+K2/2 self.setState(X2) #K3 terms K3=h*self.dxdt() X3=X0+K3 self.setState(X3) #K4 terms K4=h*self.dxdt() X=X0+K1/6+K2/3+K3/3+K4/6 #If noise bool is true we want noise to be added so add it if noise==True: s1=0.2 s2=7e-3 Qd=np.diag([0, s1**2, 0, s1**2, 0, s1**2, s2**2]) X+=np.random.multivariate_normal([0, 0, 0, 0, 0, 0, 0], Qd) self.setState(X) def meas(self, noise=False): #Measurement x=self.getState() Y=np.array([self.y1(), self.y2(), self.y3()]) if noise: #If noise bool is True then add nboise sr=50 st=0.1 sphi=0.1 R=np.diag([sr**2, st**2, sphi**2]) Y+=np.random.multivariate_normal([0, 0, 0], R) return Y ###Output _____no_output_____ ###Markdown SimulationWe simulate the aircraft for $N=500$ time instants with time step $0.1 second$ and plot its $x$ and $y$ coordinates. The plane circles around the airport since the turn rate doesn't change ###Code a=Radar() Data=[] Ys=[] T=0.1 N=500 for i in range(0, N): a.update(0.1, True) Data.append(a.getState()) Ys.append(a.meas(True)) Data=np.array(Data) Ys=np.array(Ys) plt.plot(Data[:, 0], Data[:, 2]) class Sensor(object): #Sensor object its the same as from before in Part 1 of EE 617 Project def __init__(self): self.offset=0 self.drift=0 self.Fault=False self.model=None self.R=0 self.t=0 def setOffset(self, d): self.offset=d self.Fault=True def setDrift(self, m): self.drift=m self.t=0 self.Fault=True def setModel(self, g, R): self.model=g self.R=R def meas(self, X): n, m=self.R.shape a=self.model(X)+self.offset+self.drift*self.t+np.random.multivariate_normal(np.zeros(n), self.R) self.t+=1 return a def erraticScale(self, m): self.R=m*self.R self.Fault=True def clear(self): self.fault=False self.drift=0*self.drift self.t=0 self.offset=0*self.offset def smoother(E, N): #Smoothing function as as was used in EE 617 Part 1 L=len(E) A=[] s=sum(E[:N]) for i in range(N, L): A.append(s/N) s+=E[i] s-=E[i-N] return A def Gx(X, Noisier=True): #The measurement function x1=X[0] x2=X[1] x3=X[2] x4=X[3] x5=X[4] y1=sqrt(x1**2+x3**2+x5**2) #Range y2=atan(x3/x1) #Azimuth angle y3=atan(x5/(sqrt(x1**2+x3**2))) #Elevation anlge Y=np.array([y1, y2, y3]) #Return the measurements as an array return Y ###Output _____no_output_____ ###Markdown Fault simulation-OffsetNow we simulate an offset fault in range sensor at some time instant. We also run in parallel a noiseless model and its measurement simulation. This basically represents actual measurements and simulated measurements (though here both are simulations, the former being noisy and latter being clean!) ###Code Rsens=Sensor() #Sensor Object #Train the sensor sr=50 st=0.1 sphi=0.1 R=np.diag([sr**2, st**2, sphi**2]) #Noise matrice Rsens.setModel(Gx, R) #Set the sensor to the particular noise level and measurement function of interest a=Radar() #Radar object that represents actual aircraft and its measuremnts a2=Radar() #Radar object thats supposed to be a simulation Data=[] #Here we shall store states data Ys=[] #Store measurements E=[] #Store actual - simulated measurements T=0.1 #Time step N=500 #total number of time steps t=250 #time when fault occurs for i in range(0, N): a.update(0.1, True) #update actual aircraft with noise a2.update(0.1, False) #update the dummy aircraft without noise Data.append(a.getState()) #get states data y=Rsens.meas(a.getState()) #get actual measurement y2=a2.meas(False) #get simulated measurement without noise Ys.append(y) #Store the measurement #Compute and store error e=y2-y E.append(e) if i==t: #If now is the time, induce fault Rsens.setOffset([100, 0, 0]) E=np.array(E) Data=np.array(Data) Ys=np.array(Ys) plt.plot(E[:, 0]) plt.xlabel('Time instant') plt.ylabel('Error') plt.show() ###Output _____no_output_____ ###Markdown Feature Extraction and SVM for diagnosisOn this error signal, we extract 10 features ($\mu_x$ is mean and $\sigma$ is std deviation on error signal)$Y_{RMS}=\sqrt{\frac{1}{N}\sum_{i=1}^{N} x_i^2}$$Y_{RMS}=\left( \frac{1}{N} \sum_{i=1}^{N} |x_i| \right)^2$$Y_{KV}=1/N \sum_{i=1}^{N} \left( \frac{x_i-\mu_x}{\sigma} \right)^4$$Y_{SV}=1/N \sum_{i=1}^{N} \left( \frac{x_i-\mu_x}{\sigma} \right)^3$$Y_{PPV}= max(x)-min(x)$$Y_{CF}=\frac{max(|x_i|)}{Y_{RMS}}$$Y_{IF}=\frac{max(|x_i|)}{\frac{1}{N}\sum_{i=1}^{N}|x_i|}$$Y_{MF}=\frac{max(|x_i|)}{Y_{SRA}}$$Y_{SF}=\frac{max(|x|}{\sqrt {\frac{1}{N}\sum_{i=1}^{N}x_i^2}}$$Y_{KF}=\frac{1/N \sum_{i=1}^{N} \left( \frac{x_i-\mu_x}{\sigma} \right)^4}{\left( 1/N\sum_{i=1}^{N}x_i^2 \right)^2}$For a given simulation for 500 time instants, we extract these features on the error signal. The idea is to perform this simulation many times, with fault induction in some cases and not in others. This data of these 10 features will be used to train an SVM that will classify a sensor error signal as faulty or okay. Using SVM, lot of process is automated i.e. we dont have to tweak and look for thresholds as was done in the induction motor case ###Code def ExtractFeatures(E): #Based on the above formulae extract the features and return as numpy array Yrms=0 absSum=0 Ykv=0 Ysv=0 Ypv=0 Ycf=0 Yif=0 Ymf=0 Ysf=0 Ykf=0 N=len(E) M=sum(E)/N d=0 for i in E: Yrms+=i**2 d+=(i-M)**2 Yrms=sqrt(Yrms/N) sigma=sqrt(d/N) for i in E: absSum+=(abs(i)) Ykv+=((i-M)/sigma)**4 Ysv+=((i-M)/sigma)**3 Ysra=(absSum/N)**2 Ykv=Ykv/N Ysv=Ysv/N Emax=max(E) Emin=min(E) Ypv=Emax-Emin Emaxabs=max(abs(Emax), abs(Emin)) Ycf=Emaxabs/Yrms Yif=Emaxabs/(absSum/N) Ymf=Emaxabs/Ysra Ysf=Emax/Yrms Ykf=Ykv/(Yrms**4) return np.array([Yrms, Ysra, Ykv, Ysv, Ypv, Ycf, Yif, Ymf, Ysf, Ykf]) def normalise(F): #normalise the data, since we are going to be using SVM s=0 for i in F: s+=abs(i) S=s return F/S def simulate(Offset=0, N=500): #A simple function to perform the simulation with Offset Fault #at some random time instant #If Offset=0 it automatically implies healthy simultions a=Radar() a2=Radar() Data=[] Ys=[] E=[] T=0.1 E=[] t=int(random.uniform(N/10, N)) #The random time instant to generate fault for i in range(0, N): a.update(0.1, True) a2.update(0.1, False) Data.append(a.getState()) y=Rsens.meas(a.getState()) y2=a2.meas(False) Ys.append(y) E.append(y-y2) if i==t: Rsens.setOffset([Offset, 0, 0]) Data=np.array(Data) E=np.array(E) Y1f=ExtractFeatures(E[:, 0]) #Extract features from error signal of range sensor Y2f=ExtractFeatures(E[:, 1]) #Extract features from error signal of azimuth sensor Y3f=ExtractFeatures(E[:, 2]) #Extract features from error signal of elevation sensor return Y1f, Y2f, Y3f def genData(M=5, Offset=0): #Now lets do the rigorous long simulations, :( #We shall do M simulations with healthy sensor and M with faulty sensor #These shall store the extracted normalised features on the error signals Y1=[] #Range sensor Y2=[] #Azimuth sensor Y3=[] #elevation sensor for i in range(0, M): #healthy simulations Y1f, Y2f, Y3f=simulate(0) Y1.append(Y1f) Y2.append(Y2f) Y3.append(Y3f) for i in range(0, M): #Perform the faulty simulations Y1f, Y2f, Y3f=simulate(Offset) Y1.append(Y1f) Y2.append(Y2f) Y3.append(Y3f) #Convert to numpy array it just makes life easier Y1=np.array(Y1) Y2=np.array(Y2) Y3=np.array(Y3) for i in range(0, 2*M): #normalise all the data Y1[i]=normalise(Y1[i]) Y2[i]=normalise(Y2[i]) Y3[i]=normalise(Y3[i]) return Y1, Y2, Y3 ###Output _____no_output_____ ###Markdown Example simulationNow lets do the simulation of ATC 100 times with no fault in range sensor and then 100 times with sensor having an Offset fault of 60. Then we extract the features on each. Then we split the data in 60:40 ratio of train, test in 1000 different combinations. For each combination we train an SVM and calculate the accuracy, we print the average accuracy of these 1000 test-train combinations. This was how data was generated for the report ###Code Y1, Y2, Y3=genData(100, 60) #100 healthy and 100 faulty simulations with Offset 60 X=Y1 y=np.ones(200) #Target Variable for i in range(0, 100): y[i]=0 #First 100 sims are healthy and rest are faulty Merit=[] #Store accuracies for i in range(0, 1000): X_train, X_test, y_train, y_test=tts(X, y, test_size=0.4, random_state=i) #Test train splitting #Train SVM model=svm.SVC(kernel='rbf') model.fit(X_train, y_train) #Compute accuracy for this particular combination y_pred=model.predict(X_test) Merit.append(accuracy_score(y_test, y_pred)) #Print average accuracy print(sum(Merit)/len(Merit)) ###Output 0.9329374999999991 ###Markdown Drift Fault in Range sensorThis is very similar to the offset fault, except that its drift, else everything is almost entirely same!!Lets see an example simulation of the error signal ###Code Rsens=Sensor() sr=50 st=0.1 sphi=0.1 R=np.diag([sr**2, st**2, sphi**2]) Rsens.setModel(Gx, R) a=Radar() a2=Radar() Data=[] Ys=[] E=[] T=0.1 N=500 t=250 for i in range(0, N): a.update(0.1, True) a2.update(0.1, False) Data.append(a.getState()) y=Rsens.meas(a.getState()) y2=a2.meas(False) Ys.append(y) e=y2-y E.append(e) if i==t: Rsens.setDrift(np.array([1, 0, 0])) E=np.array(E) Data=np.array(Data) Ys=np.array(Ys) plt.plot(E[:, 0]) ###Output _____no_output_____ ###Markdown Similar functions defined below ###Code def simulateDrift(drift=0, N=500): #automate the above process a=Radar() a2=Radar() Data=[] Ys=[] E=[] T=0.1 E=[] t=int(random.uniform(N/10, N)) #At random time induce fault for i in range(0, N): a.update(0.1, True) a2.update(0.1, False) Data.append(a.getState()) y=Rsens.meas(a.getState()) y2=a2.meas(False) Ys.append(y) E.append(y-y2) if i==t: Rsens.setDrift(np.array([drift, 0, 0])) Data=np.array(Data) E=np.array(E) #Extract features and return Y1f=ExtractFeatures(E[:, 0]) Y2f=ExtractFeatures(E[:, 1]) Y3f=ExtractFeatures(E[:, 2]) return Y1f, Y2f, Y3f def genDataDrift(M=5, Drift=0): #M healthy, M faulty simulations same as offset except of course its drifting !! Y1=[] Y2=[] Y3=[] for i in range(0, M): Y1f, Y2f, Y3f=simulateDrift(0) Y1.append(Y1f) Y2.append(Y2f) Y3.append(Y3f) for i in range(0, M): Y1f, Y2f, Y3f=simulateDrift(Drift) Y1.append(Y1f) Y2.append(Y2f) Y3.append(Y3f) Y1=np.array(Y1) Y2=np.array(Y2) Y3=np.array(Y3) for i in range(0, 2*M): Y1[i]=normalise(Y1[i]) Y2[i]=normalise(Y2[i]) Y3[i]=normalise(Y3[i]) return Y1, Y2, Y3 ###Output _____no_output_____ ###Markdown Example simulationPerforming 100 healthy and 100 faulty simulations (drift -> 0.2). For 1000 combinations of train test splitting in ration of 60:40, train SVM and calculate accuracy and report finally the average accuracy. ###Code Y1, Y2, Y3=genDataDrift(100, 0.2) #100 healthy and 100 faulty simulations with drift 0.2 X=Y1 #Generate the target variable as before y=np.ones(200) for i in range(0, 100): y[i]=0 Merit=[] for i in range(0, 1000): X_train, X_test, y_train, y_test=tts(X, y, test_size=0.4, random_state=i) #Split 60-40 #Train SVM model=svm.SVC(kernel='rbf') model.fit(X_train, y_train) #Calcuate accuracy y_pred=model.predict(X_test) Merit.append(accuracy_score(y_test, y_pred)) #Print average accuracy print(sum(Merit)/len(Merit)) ###Output 0.8726000000000008
Data_analysis/SNP-indel-calling/ANGSD/BOOTSTRAP_CONTIGS/minInd9_overlapping/DADI/adj_error.ipynb
###Markdown Table of Contents 1&nbsp;&nbsp;Preparation2&nbsp;&nbsp;Model definition3&nbsp;&nbsp;LRT3.1&nbsp;&nbsp;get optimal parameter values3.2&nbsp;&nbsp;get bootstrap replicates3.3&nbsp;&nbsp;calculate adjustment for D Preparation ###Code from ipyparallel import Client cl = Client() cl.ids %%px --local # run whole cell on all engines a well as in the local IPython session import numpy as np import sys sys.path.insert(0, '/home/claudius/Downloads/dadi') import dadi from glob import glob import dill import pandas as pd # turn on floating point division by default, old behaviour via '//' from __future__ import division from itertools import repeat def flatten(array): import numpy as np res = [] for el in array: if isinstance(el, (list, tuple, np.ndarray)): res.extend(flatten(el)) continue res.append(el) return list(res) %matplotlib inline import pylab pylab.rcParams['figure.figsize'] = [10, 8] pylab.rcParams['font.size'] = 12 %%px --local # load spectrum sfs2d = dadi.Spectrum.from_file("EryPar.unfolded.sfs.dadi") sfs2d = sfs2d.transpose() sfs2d.pop_ids = ['ery', 'par'] sfs2d = sfs2d.fold() ns = sfs2d.sample_sizes # both populations have the same sample size # setting the smallest grid size slightly larger than the largest population sample size (36) pts_l = [40, 50, 60] dadi.Plotting.plot_single_2d_sfs(sfs2d, vmin=1, cmap='jet') pylab.savefig("2DSFS_folded.png") # get number of segregating sites from SFS sfs2d.S() ###Output _____no_output_____ ###Markdown Model definition ###Code def split_asym_mig_2epoch(params, ns, pts): """ params = (nu1_1,nu2_1,T1,nu1_2,nu2_2,T2,m1,m2) ns = (n1,n2) Split into two populations of specified size, with potentially asymmetric migration. The split coincides with a stepwise size change in the daughter populations. Then, have a second stepwise size change at some point in time after the split. This is enforced to happen at the same time for both populations. Migration is assumed to be the same during both epochs. nu1_1: pop size ratio of pop 1 after split (with respect to Na) nu2_1: pop size ratio of pop 2 after split (with respect to Na) T1: Time from split to second size change (in units of 2*Na generations) nu1_2: pop size ratio of pop 1 after second size change (with respect to Na) nu2_2: pop size ratio of pop 2 after second size change (with respect to Na) T2: time in past of second size change (in units of 2*Na generations) m1: Migration rate from ery into par (in units of 2*Na ind per generation) m2: Migration rate from par into ery (in units of 2*Na ind per generation) n1,n2: Sample sizes of resulting Spectrum pts: Number of grid points to use in integration. """ nu1_1,nu2_1,T1,nu1_2,nu2_2,T2,m1,m2 = params xx = dadi.Numerics.default_grid(pts) phi = dadi.PhiManip.phi_1D(xx) # split phi = dadi.PhiManip.phi_1D_to_2D(xx, phi) # divergence with potentially asymmetric migration for time T1 phi = dadi.Integration.two_pops(phi, xx, T1, nu1_1, nu2_1, m12=m2, m21=m1) # divergence with potentially asymmetric migration and different pop size for time T2 phi = dadi.Integration.two_pops(phi, xx, T2, nu1_2, nu2_2, m12=m2, m21=m1) fs = dadi.Spectrum.from_phi(phi, ns, (xx,xx)) return fs cl[:].push(dict(split_asym_mig_2epoch=split_asym_mig_2epoch)) %%px --local func_ex = dadi.Numerics.make_extrap_log_func(split_asym_mig_2epoch) ###Output _____no_output_____ ###Markdown LRT get optimal parameter values ###Code ar_split_asym_mig_2epoch = [] for filename in glob("OUT_2D_models/split_asym_mig_2epoch_[0-9]*dill"): ar_split_asym_mig_2epoch.append(dill.load(open(filename))) l = 2*8+1 returned = [flatten(out)[:l] for out in ar_split_asym_mig_2epoch] df = pd.DataFrame(data=returned, \ columns=['ery_1_0','par_1_0','T1_0','ery_2_0','par_2_0','T2_0','m1_0','m2_0', 'Nery_1_opt','Npar_1_opt','T1_opt','Nery_2_opt','Npar_2_opt','T2_opt','m1_opt','m2_opt','-logL']) df.sort_values(by='-logL', ascending=True).iloc[:10,8:17] # optimal parameter values for complex model popt_c = np.array(df.sort_values(by='-logL', ascending=True).iloc[0, 8:16]) # take the 8th best parameter combination popt_c ###Output _____no_output_____ ###Markdown This two-epoch model can be reduced to one-epoch model by either setting $Nery_2 = Nery_1$ and $Npar_2 = Npar_1$ or by setting $T_2 = 0$. ###Code # optimal paramter values for simple model (1 epoch) # note: Nery_2=Nery_1, Npar_2=Npar_1 and T2=0 popt_s = [1.24966921, 3.19164623, 1.42043464, 1.24966921, 3.19164623, 0.0, 0.08489757, 0.39827944] ###Output _____no_output_____ ###Markdown get bootstrap replicates ###Code # load bootstrapped 2D SFS all_boot = [dadi.Spectrum.from_file("../SFS/bootstrap/2DSFS/{0:03d}.unfolded.2dsfs.dadi".format(i)).fold() for i in range(200)] ###Output _____no_output_____ ###Markdown calculate adjustment for D ###Code # calculate adjustment for D evaluating at the *simple* model parameterisation # specifying only T2 as fixed adj_s = dadi.Godambe.LRT_adjust(func_ex, pts_l, all_boot, popt_s, sfs2d, nested_indices=[5], multinom=True) adj_s # calculate adjustment for D evaluating at the *complex* model parameterisation # specifying only T2 as fixed adj_c = dadi.Godambe.LRT_adjust(func_ex, pts_l, all_boot, popt_c, sfs2d, nested_indices=[5], multinom=True) adj_c ###Output _____no_output_____ ###Markdown From Coffman2016, suppl. mat.:> The two-epoch model can be marginalized down to the SNM model for an LRT by either setting η = 1 or T = 0. We found that the LRT adjustment performed well when _treating both parameters as nested_, so μ(θ) was evaluated with T = 0 and η = 1. ###Code # calculate adjustment for D evaluating at the *simple* model parameterisation # treating Nery_2, Npar_2 and T2 as nested adj_s = dadi.Godambe.LRT_adjust(func_ex, pts_l, all_boot, popt_s, sfs2d, nested_indices=[3,4,5], multinom=True) adj_s # calculate adjustment for D evaluating at the *complex* model parameterisation # treating Nery_2, Npar_2 and T2 as nested adj_c = dadi.Godambe.LRT_adjust(func_ex, pts_l, all_boot, popt_c, sfs2d, nested_indices=[3,4,5], multinom=True) adj_c ###Output _____no_output_____
stats_planetoid.ipynb
###Markdown f1 = open('./data/'+"trans.citeseer.graph",'rb') ###Code def comp_accu(tpy, ty): import numpy as np return (np.argmax(tpy, axis = 1) == np.argmax(ty, axis = 1)).sum() * 1.0 / tpy.shape[0] from utils import simple_classify_f1 simple_classify_f1('cora') simple_classify_f1('citeseer') simple_classify_f1('pubmed') def get_stats(dataset_name): simple_classify_f1(dataset_name) modified_classify_f1(dataset_name) classify_analysis(dataset_name) from IPython.core.display import display, HTML display(HTML("<style>.container { width:100% !important; }</style>")) ###Output _____no_output_____ ###Markdown Check for transductive and Inductive files ###Code #for get_stats('cora') get_stats('pubmed') get_stats('citeseer') ###Output Name: Type: Graph Number of nodes: 3327 Number of edges: 4676 Average degree: 2.8109 Simple classification results Train ratio: Default with planetoid micro: 0.647 macro: 0.6264761005126618 samples: 0.647 weighted: 0.6389512022765614 Accuracy: 0.647 Propagating neighbor labels for degree 1 nodes. Name: Type: Graph Number of nodes: 3327 Number of edges: 4676 Average degree: 2.8109 Modified classification results Train ratio: Default with planetoid micro: 0.514 macro: 0.49915888464910246 samples: 0.514 weighted: 0.509911170279925 Accuracy: 0.514 +------------+----------+---------------+-----------------+--------+---------------------------+----------------+ | Serial No. | Node no. | True Label | Predicted Label | Degree | Neighbor label | Neighbor Match | +------------+----------+---------------+-----------------+--------+---------------------------+----------------+ | 1 | 2317 | (array([1]),) | (array([0]),) | 1 | (array([2]),) | False | | 2 | 2327 | (array([5]),) | (array([2]),) | 1 | (array([2]),) | False | | 3 | 2331 | (array([1]),) | (array([5]),) | 1 | (array([4]),) | False | | 4 | 2333 | (array([0]),) | (array([1]),) | 1 | (array([0]),) | True | | 5 | 2359 | (array([2]),) | (array([3]),) | 1 | (array([5]),) | False | | 6 | 2374 | (array([3]),) | (array([5]),) | 1 | (array([5]),) | False | | 7 | 2381 | (array([2]),) | (array([3]),) | 1 | (array([3]),) | False | | 8 | 2394 | (array([5]),) | (array([4]),) | 1 | (array([3]),) | False | | 9 | 2397 | (array([2]),) | (array([3]),) | 1 | (array([2]),) | True | | 10 | 2402 | (array([2]),) | (array([3]),) | 1 | (array([3]),) | False | | 11 | 2407 | (array([3]),) | (array([1]),) | 1 | (array([4]),) | False | | 12 | 2408 | (array([1]),) | (array([5]),) | 1 | (array([], dtype=int64),) | False | | 13 | 2410 | (array([5]),) | (array([4]),) | 1 | (array([3]),) | False | | 14 | 2414 | (array([5]),) | (array([2]),) | 1 | (array([5]),) | True | | 15 | 2417 | (array([1]),) | (array([0]),) | 1 | (array([2]),) | False | | 16 | 2421 | (array([4]),) | (array([0]),) | 1 | (array([5]),) | False | | 17 | 2425 | (array([1]),) | (array([5]),) | 1 | (array([2]),) | False | | 18 | 2434 | (array([2]),) | (array([3]),) | 1 | (array([2]),) | True | | 19 | 2435 | (array([5]),) | (array([3]),) | 1 | (array([3]),) | False | | 20 | 2439 | (array([1]),) | (array([4]),) | 1 | (array([1]),) | True | | 21 | 2440 | (array([1]),) | (array([0]),) | 1 | (array([3]),) | False | | 22 | 2444 | (array([2]),) | (array([5]),) | 1 | (array([3]),) | False | | 23 | 2446 | (array([0]),) | (array([4]),) | 1 | (array([1]),) | False | | 24 | 2455 | (array([1]),) | (array([2]),) | 1 | (array([2]),) | False | | 25 | 2463 | (array([5]),) | (array([1]),) | 1 | (array([3]),) | False | | 26 | 2469 | (array([4]),) | (array([5]),) | 1 | (array([3]),) | False | | 27 | 2471 | (array([4]),) | (array([0]),) | 1 | (array([1]),) | False | | 28 | 2476 | (array([1]),) | (array([3]),) | 1 | (array([5]),) | False | | 29 | 2483 | (array([3]),) | (array([5]),) | 1 | (array([1]),) | False | | 30 | 2486 | (array([5]),) | (array([4]),) | 1 | (array([2]),) | False | | 31 | 2499 | (array([2]),) | (array([1]),) | 1 | (array([1]),) | False | | 32 | 2504 | (array([0]),) | (array([5]),) | 1 | (array([0]),) | True | | 33 | 2507 | (array([2]),) | (array([3]),) | 1 | (array([2]),) | True | | 34 | 2509 | (array([1]),) | (array([0]),) | 1 | (array([5]),) | False | | 35 | 2514 | (array([2]),) | (array([3]),) | 1 | (array([3]),) | False | | 36 | 2515 | (array([4]),) | (array([5]),) | 1 | (array([4]),) | True | | 37 | 2516 | (array([1]),) | (array([0]),) | 1 | (array([4]),) | False | | 38 | 2521 | (array([1]),) | (array([4]),) | 1 | (array([2]),) | False | | 39 | 2524 | (array([1]),) | (array([0]),) | 1 | (array([5]),) | False | | 40 | 2526 | (array([4]),) | (array([3]),) | 1 | (array([3]),) | False | | 41 | 2542 | (array([1]),) | (array([5]),) | 1 | (array([3]),) | False | | 42 | 2546 | (array([5]),) | (array([4]),) | 1 | (array([3]),) | False | | 43 | 2553 | (array([4]),) | (array([5]),) | 1 | (array([2]),) | False | | 44 | 2554 | (array([2]),) | (array([1]),) | 1 | (array([3]),) | False | | 45 | 2556 | (array([3]),) | (array([1]),) | 1 | (array([3]),) | True | | 46 | 2557 | (array([3]),) | (array([0]),) | 1 | (array([0]),) | False | | 47 | 2580 | (array([1]),) | (array([0]),) | 1 | (array([4]),) | False | | 48 | 2581 | (array([1]),) | (array([0]),) | 1 | (array([1]),) | True | | 49 | 2584 | (array([2]),) | (array([5]),) | 1 | (array([5]),) | False | | 50 | 2590 | (array([3]),) | (array([0]),) | 1 | (array([1]),) | False | | 51 | 2594 | (array([2]),) | (array([1]),) | 1 | (array([1]),) | False | | 52 | 2595 | (array([5]),) | (array([2]),) | 1 | (array([2]),) | False | | 53 | 2598 | (array([2]),) | (array([1]),) | 1 | (array([5]),) | False | | 54 | 2603 | (array([2]),) | (array([4]),) | 1 | (array([5]),) | False | | 55 | 2613 | (array([3]),) | (array([4]),) | 1 | (array([4]),) | False | | 56 | 2615 | (array([0]),) | (array([3]),) | 1 | (array([4]),) | False | | 57 | 2622 | (array([2]),) | (array([3]),) | 1 | (array([3]),) | False | | 58 | 2630 | (array([2]),) | (array([5]),) | 1 | (array([3]),) | False | | 59 | 2632 | (array([4]),) | (array([5]),) | 1 | (array([4]),) | True | | 60 | 2639 | (array([5]),) | (array([2]),) | 1 | (array([4]),) | False | | 61 | 2648 | (array([5]),) | (array([3]),) | 1 | (array([1]),) | False | | 62 | 2655 | (array([5]),) | (array([2]),) | 1 | (array([3]),) | False | | 63 | 2659 | (array([2]),) | (array([0]),) | 1 | (array([0]),) | False | | 64 | 2663 | (array([3]),) | (array([0]),) | 1 | (array([4]),) | False | | 65 | 2667 | (array([1]),) | (array([5]),) | 1 | (array([5]),) | False | | 66 | 2681 | (array([3]),) | (array([4]),) | 1 | (array([3]),) | True | | 67 | 2683 | (array([3]),) | (array([0]),) | 1 | (array([3]),) | True | | 68 | 2690 | (array([2]),) | (array([1]),) | 1 | (array([5]),) | False | | 69 | 2696 | (array([5]),) | (array([3]),) | 1 | (array([1]),) | False | | 70 | 2700 | (array([4]),) | (array([1]),) | 1 | (array([3]),) | False | | 71 | 2702 | (array([5]),) | (array([2]),) | 1 | (array([1]),) | False | | 72 | 2712 | (array([2]),) | (array([1]),) | 1 | (array([2]),) | True | | 73 | 2713 | (array([2]),) | (array([3]),) | 1 | (array([1]),) | False | | 74 | 2718 | (array([2]),) | (array([3]),) | 1 | (array([1]),) | False | | 75 | 2735 | (array([1]),) | (array([4]),) | 1 | (array([4]),) | False | | 76 | 2740 | (array([5]),) | (array([4]),) | 1 | (array([2]),) | False | | 77 | 2746 | (array([1]),) | (array([0]),) | 1 | (array([4]),) | False | | 78 | 2749 | (array([1]),) | (array([3]),) | 1 | (array([2]),) | False | | 79 | 2754 | (array([3]),) | (array([1]),) | 1 | (array([5]),) | False | | 80 | 2755 | (array([3]),) | (array([1]),) | 1 | (array([5]),) | False | | 81 | 2760 | (array([1]),) | (array([0]),) | 1 | (array([5]),) | False | | 82 | 2769 | (array([1]),) | (array([0]),) | 1 | (array([1]),) | True | | 83 | 2774 | (array([1]),) | (array([0]),) | 1 | (array([5]),) | False | | 84 | 2783 | (array([5]),) | (array([0]),) | 1 | (array([2]),) | False | | 85 | 2785 | (array([3]),) | (array([0]),) | 1 | (array([1]),) | False | | 86 | 2786 | (array([1]),) | (array([0]),) | 1 | (array([2]),) | False | | 87 | 2798 | (array([1]),) | (array([0]),) | 1 | (array([2]),) | False | | 88 | 2803 | (array([3]),) | (array([5]),) | 1 | (array([1]),) | False | | 89 | 2804 | (array([1]),) | (array([0]),) | 1 | (array([2]),) | False | | 90 | 2813 | (array([5]),) | (array([0]),) | 1 | (array([4]),) | False | | 91 | 2816 | (array([0]),) | (array([3]),) | 1 | (array([4]),) | False | | 92 | 2817 | (array([2]),) | (array([5]),) | 1 | (array([0]),) | False | | 93 | 2820 | (array([0]),) | (array([3]),) | 1 | (array([2]),) | False | | 94 | 2822 | (array([1]),) | (array([0]),) | 1 | (array([5]),) | False | | 95 | 2823 | (array([3]),) | (array([1]),) | 1 | (array([0]),) | False | | 96 | 2824 | (array([3]),) | (array([2]),) | 1 | (array([0]),) | False | | 97 | 2826 | (array([1]),) | (array([0]),) | 1 | (array([5]),) | False | | 98 | 2827 | (array([5]),) | (array([0]),) | 1 | (array([2]),) | False | | 99 | 2838 | (array([5]),) | (array([2]),) | 1 | (array([4]),) | False | | 100 | 2839 | (array([2]),) | (array([5]),) | 1 | (array([4]),) | False | | 101 | 2849 | (array([3]),) | (array([5]),) | 1 | (array([4]),) | False | | 102 | 2851 | (array([2]),) | (array([1]),) | 1 | (array([4]),) | False | | 103 | 2853 | (array([3]),) | (array([5]),) | 1 | (array([3]),) | True | | 104 | 2855 | (array([5]),) | (array([0]),) | 1 | (array([1]),) | False | | 105 | 2870 | (array([2]),) | (array([1]),) | 1 | (array([2]),) | True | | 106 | 2885 | (array([1]),) | (array([0]),) | 1 | (array([3]),) | False | | 107 | 2896 | (array([1]),) | (array([0]),) | 1 | (array([4]),) | False | | 108 | 2900 | (array([4]),) | (array([1]),) | 1 | (array([0]),) | False | | 109 | 2901 | (array([1]),) | (array([2]),) | 1 | (array([1]),) | True | | 110 | 2906 | (array([5]),) | (array([0]),) | 1 | (array([3]),) | False | | 111 | 2912 | (array([5]),) | (array([2]),) | 1 | (array([3]),) | False | | 112 | 2918 | (array([0]),) | (array([4]),) | 1 | (array([2]),) | False | | 113 | 2930 | (array([3]),) | (array([5]),) | 1 | (array([5]),) | False | | 114 | 2931 | (array([0]),) | (array([5]),) | 1 | (array([2]),) | False | | 115 | 2938 | (array([0]),) | (array([4]),) | 1 | (array([5]),) | False | | 116 | 2939 | (array([2]),) | (array([3]),) | 1 | (array([3]),) | False | | 117 | 2945 | (array([1]),) | (array([4]),) | 1 | (array([3]),) | False | | 118 | 2946 | (array([3]),) | (array([2]),) | 1 | (array([5]),) | False | | 119 | 2952 | (array([4]),) | (array([5]),) | 1 | (array([2]),) | False | | 120 | 2960 | (array([4]),) | (array([2]),) | 1 | (array([3]),) | False | | 121 | 2969 | (array([5]),) | (array([0]),) | 1 | (array([1]),) | False | | 122 | 2977 | (array([2]),) | (array([5]),) | 1 | (array([2]),) | True | | 123 | 2979 | (array([4]),) | (array([1]),) | 1 | (array([5]),) | False | | 124 | 2981 | (array([5]),) | (array([2]),) | 1 | (array([4]),) | False | | 125 | 2987 | (array([2]),) | (array([5]),) | 1 | (array([2]),) | True | | 126 | 2994 | (array([1]),) | (array([3]),) | 1 | (array([2]),) | False | | 127 | 2996 | (array([3]),) | (array([0]),) | 1 | (array([4]),) | False | | 128 | 2998 | (array([2]),) | (array([1]),) | 1 | (array([2]),) | True | | 129 | 3005 | (array([2]),) | (array([5]),) | 1 | (array([2]),) | True | | 130 | 3012 | (array([0]),) | (array([4]),) | 1 | (array([1]),) | False | | 131 | 3014 | (array([1]),) | (array([3]),) | 1 | (array([3]),) | False | | 132 | 3015 | (array([5]),) | (array([2]),) | 1 | (array([3]),) | False | | 133 | 3032 | (array([2]),) | (array([3]),) | 1 | (array([4]),) | False | | 134 | 3038 | (array([2]),) | (array([4]),) | 1 | (array([3]),) | False | | 135 | 3040 | (array([3]),) | (array([5]),) | 1 | (array([2]),) | False | | 136 | 3055 | (array([4]),) | (array([5]),) | 1 | (array([1]),) | False | | 137 | 3061 | (array([5]),) | (array([1]),) | 1 | (array([1]),) | False | | 138 | 3062 | (array([1]),) | (array([4]),) | 1 | (array([1]),) | True | | 139 | 3063 | (array([1]),) | (array([0]),) | 1 | (array([1]),) | True | | 140 | 3065 | (array([0]),) | (array([3]),) | 1 | (array([1]),) | False | | 141 | 3066 | (array([0]),) | (array([1]),) | 1 | (array([1]),) | False | | 142 | 3068 | (array([4]),) | (array([0]),) | 1 | (array([1]),) | False | | 143 | 3070 | (array([1]),) | (array([0]),) | 1 | (array([1]),) | True | | 144 | 3080 | (array([0]),) | (array([2]),) | 1 | (array([2]),) | False | | 145 | 3100 | (array([1]),) | (array([5]),) | 1 | (array([2]),) | False | | 146 | 3101 | (array([2]),) | (array([4]),) | 1 | (array([3]),) | False | | 147 | 3104 | (array([5]),) | (array([1]),) | 1 | (array([5]),) | True | | 148 | 3118 | (array([1]),) | (array([0]),) | 1 | (array([2]),) | False | | 149 | 3121 | (array([2]),) | (array([5]),) | 1 | (array([2]),) | True | | 150 | 3129 | (array([1]),) | (array([0]),) | 1 | (array([2]),) | False | | 151 | 3130 | (array([4]),) | (array([1]),) | 1 | (array([1]),) | False | | 152 | 3132 | (array([4]),) | (array([1]),) | 1 | (array([2]),) | False | | 153 | 3139 | (array([3]),) | (array([0]),) | 1 | (array([4]),) | False | | 154 | 3144 | (array([4]),) | (array([0]),) | 1 | (array([1]),) | False | | 155 | 3151 | (array([1]),) | (array([0]),) | 1 | (array([2]),) | False | | 156 | 3152 | (array([0]),) | (array([5]),) | 1 | (array([3]),) | False | | 157 | 3160 | (array([4]),) | (array([5]),) | 1 | (array([2]),) | False | | 158 | 3163 | (array([3]),) | (array([1]),) | 1 | (array([3]),) | True | | 159 | 3169 | (array([2]),) | (array([1]),) | 1 | (array([3]),) | False | | 160 | 3170 | (array([2]),) | (array([1]),) | 1 | (array([3]),) | False | | 161 | 3182 | (array([1]),) | (array([0]),) | 1 | (array([0]),) | False | | 162 | 3185 | (array([0]),) | (array([5]),) | 1 | (array([1]),) | False | | 163 | 3187 | (array([1]),) | (array([0]),) | 1 | (array([1]),) | True | | 164 | 3191 | (array([3]),) | (array([0]),) | 1 | (array([3]),) | True | | 165 | 3192 | (array([3]),) | (array([2]),) | 1 | (array([1]),) | False | | 166 | 3195 | (array([1]),) | (array([4]),) | 1 | (array([5]),) | False | | 167 | 3202 | (array([3]),) | (array([0]),) | 1 | (array([5]),) | False | | 168 | 3212 | (array([5]),) | (array([3]),) | 1 | (array([3]),) | False | | 169 | 3214 | (array([0]),) | (array([1]),) | 1 | (array([4]),) | False | | 170 | 3215 | (array([1]),) | (array([0]),) | 1 | (array([], dtype=int64),) | False | | 171 | 3217 | (array([2]),) | (array([1]),) | 1 | (array([2]),) | True | | 172 | 3229 | (array([5]),) | (array([3]),) | 1 | (array([1]),) | False | | 173 | 3240 | (array([3]),) | (array([2]),) | 1 | (array([4]),) | False | | 174 | 3244 | (array([5]),) | (array([1]),) | 1 | (array([4]),) | False | | 175 | 3245 | (array([0]),) | (array([1]),) | 1 | (array([4]),) | False | | 176 | 3246 | (array([2]),) | (array([4]),) | 1 | (array([5]),) | False | | 177 | 3248 | (array([3]),) | (array([5]),) | 1 | (array([3]),) | True | | 178 | 3251 | (array([1]),) | (array([0]),) | 1 | (array([4]),) | False | | 179 | 3260 | (array([1]),) | (array([0]),) | 1 | (array([3]),) | False | | 180 | 3261 | (array([3]),) | (array([1]),) | 1 | (array([3]),) | True | | 181 | 3262 | (array([5]),) | (array([0]),) | 1 | (array([0]),) | False | | 182 | 3266 | (array([2]),) | (array([3]),) | 1 | (array([1]),) | False | | 183 | 3277 | (array([4]),) | (array([0]),) | 1 | (array([1]),) | False | | 184 | 3285 | (array([2]),) | (array([1]),) | 1 | (array([5]),) | False | | 185 | 3288 | (array([4]),) | (array([2]),) | 1 | (array([5]),) | False | | 186 | 3289 | (array([0]),) | (array([1]),) | 1 | (array([2]),) | False | | 187 | 3290 | (array([5]),) | (array([2]),) | 1 | (array([5]),) | True | | 188 | 3292 | (array([4]),) | (array([1]),) | 1 | (array([5]),) | False | | 189 | 3297 | (array([1]),) | (array([0]),) | 1 | (array([3]),) | False | | 190 | 3299 | (array([4]),) | (array([0]),) | 1 | (array([1]),) | False | | 191 | 3306 | (array([2]),) | (array([0]),) | 1 | (array([2]),) | True | | 192 | 3307 | (array([4]),) | (array([5]),) | 1 | (array([], dtype=int64),) | False | +------------+----------+---------------+-----------------+--------+---------------------------+----------------+ Total cases of neighbor label matches are: 35 For test set label classification prediction results Statistics for dataset: citeseer --------------------------------- For degree 1 total: 553 (0%) and wrong prediction: 192(0%) For degree 2 total: 240 (0%) and wrong prediction: 89(0%) For degree 3 total: 97 (0%) and wrong prediction: 35(0%) For degree 4 total: 41 (0%) and wrong prediction: 14(0%) For degree 5 total: 22 (0%) and wrong prediction: 10(0%) For degree 6 total: 16 (0%) and wrong prediction: 6(0%) For degree 7 total: 7 (0%) and wrong prediction: 2(0%) For degree 11 total: 7 (0%) and wrong prediction: 1(0%) For degree 15 total: 2 (0%) and wrong prediction: 2(100%) For degree 17 total: 2 (0%) and wrong prediction: 2(100%) ###Markdown Now to check for inductive graph setting ###Code def get_stats(dataset_name): simple_classify_f1(dataset_name) modified_classify_f1(dataset_name) classify_analysis(dataset_name) get_stats('citeseer') get_stats('pubmed') get_stats('cora') ###Output Name: Type: Graph Number of nodes: 2708 Number of edges: 5278 Average degree: 3.8981 Simple classification results Train ratio: Default with planetoid micro: 0.673 macro: 0.6544921937255024 samples: 0.673 weighted: 0.670689628322458 Accuracy: 0.673 Propagating neighbor labels for degree 1 nodes. Name: Type: Graph Number of nodes: 2708 Number of edges: 5278 Average degree: 3.8981 Modified classification results Train ratio: Default with planetoid micro: 0.617 macro: 0.5960743936478071 samples: 0.617 weighted: 0.6149304116552744 Accuracy: 0.617 +------------+----------+---------------+-----------------+--------+----------------+----------------+ | Serial No. | Node no. | True Label | Predicted Label | Degree | Neighbor label | Neighbor Match | +------------+----------+---------------+-----------------+--------+----------------+----------------+ | 1 | 1854 | (array([3]),) | (array([0]),) | 1 | (array([3]),) | True | | 2 | 1872 | (array([6]),) | (array([0]),) | 1 | (array([3]),) | False | | 3 | 1883 | (array([1]),) | (array([4]),) | 1 | (array([5]),) | False | | 4 | 1990 | (array([5]),) | (array([0]),) | 1 | (array([3]),) | False | | 5 | 2005 | (array([2]),) | (array([6]),) | 1 | (array([3]),) | False | | 6 | 2032 | (array([2]),) | (array([4]),) | 1 | (array([4]),) | False | | 7 | 2061 | (array([4]),) | (array([3]),) | 1 | (array([5]),) | False | | 8 | 2092 | (array([5]),) | (array([0]),) | 1 | (array([1]),) | False | | 9 | 2098 | (array([3]),) | (array([2]),) | 1 | (array([0]),) | False | | 10 | 2104 | (array([4]),) | (array([0]),) | 1 | (array([5]),) | False | | 11 | 2179 | (array([2]),) | (array([3]),) | 1 | (array([0]),) | False | | 12 | 2191 | (array([0]),) | (array([6]),) | 1 | (array([3]),) | False | | 13 | 2234 | (array([4]),) | (array([3]),) | 1 | (array([0]),) | False | | 14 | 2255 | (array([3]),) | (array([6]),) | 1 | (array([1]),) | False | | 15 | 2258 | (array([3]),) | (array([6]),) | 1 | (array([3]),) | True | | 16 | 2272 | (array([0]),) | (array([4]),) | 1 | (array([5]),) | False | | 17 | 2298 | (array([3]),) | (array([1]),) | 1 | (array([4]),) | False | | 18 | 2300 | (array([3]),) | (array([2]),) | 1 | (array([4]),) | False | | 19 | 2316 | (array([3]),) | (array([0]),) | 1 | (array([4]),) | False | | 20 | 2322 | (array([3]),) | (array([4]),) | 1 | (array([1]),) | False | | 21 | 2328 | (array([5]),) | (array([1]),) | 1 | (array([1]),) | False | | 22 | 2373 | (array([3]),) | (array([2]),) | 1 | (array([3]),) | True | | 23 | 2377 | (array([3]),) | (array([0]),) | 1 | (array([1]),) | False | | 24 | 2410 | (array([0]),) | (array([3]),) | 1 | (array([3]),) | False | | 25 | 2426 | (array([3]),) | (array([2]),) | 1 | (array([3]),) | True | | 26 | 2428 | (array([4]),) | (array([3]),) | 1 | (array([3]),) | False | | 27 | 2432 | (array([4]),) | (array([5]),) | 1 | (array([4]),) | True | | 28 | 2468 | (array([2]),) | (array([1]),) | 1 | (array([6]),) | False | | 29 | 2477 | (array([0]),) | (array([1]),) | 1 | (array([3]),) | False | | 30 | 2487 | (array([4]),) | (array([6]),) | 1 | (array([1]),) | False | | 31 | 2505 | (array([6]),) | (array([1]),) | 1 | (array([1]),) | False | | 32 | 2506 | (array([3]),) | (array([0]),) | 1 | (array([5]),) | False | | 33 | 2513 | (array([5]),) | (array([1]),) | 1 | (array([3]),) | False | | 34 | 2521 | (array([6]),) | (array([5]),) | 1 | (array([3]),) | False | | 35 | 2527 | (array([0]),) | (array([5]),) | 1 | (array([5]),) | False | | 36 | 2529 | (array([3]),) | (array([4]),) | 1 | (array([3]),) | True | | 37 | 2531 | (array([0]),) | (array([6]),) | 1 | (array([3]),) | False | | 38 | 2544 | (array([3]),) | (array([4]),) | 1 | (array([0]),) | False | | 39 | 2550 | (array([5]),) | (array([0]),) | 1 | (array([3]),) | False | | 40 | 2557 | (array([0]),) | (array([1]),) | 1 | (array([2]),) | False | | 41 | 2583 | (array([0]),) | (array([3]),) | 1 | (array([4]),) | False | | 42 | 2598 | (array([0]),) | (array([1]),) | 1 | (array([1]),) | False | | 43 | 2603 | (array([2]),) | (array([1]),) | 1 | (array([3]),) | False | | 44 | 2606 | (array([1]),) | (array([5]),) | 1 | (array([3]),) | False | | 45 | 2610 | (array([0]),) | (array([3]),) | 1 | (array([3]),) | False | | 46 | 2619 | (array([5]),) | (array([3]),) | 1 | (array([2]),) | False | | 47 | 2620 | (array([4]),) | (array([1]),) | 1 | (array([0]),) | False | | 48 | 2622 | (array([0]),) | (array([5]),) | 1 | (array([6]),) | False | | 49 | 2626 | (array([3]),) | (array([5]),) | 1 | (array([3]),) | True | | 50 | 2646 | (array([3]),) | (array([2]),) | 1 | (array([4]),) | False | | 51 | 2650 | (array([1]),) | (array([5]),) | 1 | (array([3]),) | False | | 52 | 2658 | (array([0]),) | (array([3]),) | 1 | (array([2]),) | False | | 53 | 2660 | (array([3]),) | (array([4]),) | 1 | (array([3]),) | True | | 54 | 2672 | (array([4]),) | (array([3]),) | 1 | (array([4]),) | True | | 55 | 2692 | (array([3]),) | (array([4]),) | 1 | (array([3]),) | True | | 56 | 2696 | (array([5]),) | (array([0]),) | 1 | (array([4]),) | False | | 57 | 2699 | (array([3]),) | (array([6]),) | 1 | (array([3]),) | True | | 58 | 2700 | (array([4]),) | (array([3]),) | 1 | (array([3]),) | False | | 59 | 2704 | (array([3]),) | (array([6]),) | 1 | (array([3]),) | True | +------------+----------+---------------+-----------------+--------+----------------+----------------+ Total cases of neighbor label matches are: 12 For test set label classification prediction results Statistics for dataset: cora --------------------------------- For degree 1 total: 178 (0%) and wrong prediction: 59(0%) For degree 2 total: 222 (0%) and wrong prediction: 65(0%) For degree 3 total: 214 (0%) and wrong prediction: 69(0%) For degree 4 total: 134 (0%) and wrong prediction: 48(0%) For degree 5 total: 104 (0%) and wrong prediction: 35(0%) For degree 6 total: 54 (0%) and wrong prediction: 24(0%) For degree 7 total: 25 (0%) and wrong prediction: 11(0%) For degree 8 total: 23 (0%) and wrong prediction: 6(0%) For degree 9 total: 7 (0%) and wrong prediction: 1(0%) For degree 10 total: 10 (0%) and wrong prediction: 3(0%) For degree 12 total: 6 (0%) and wrong prediction: 1(0%) For degree 15 total: 3 (0%) and wrong prediction: 1(0%) For degree 16 total: 3 (0%) and wrong prediction: 1(0%) For degree 31 total: 1 (0%) and wrong prediction: 1(100%) For degree 44 total: 1 (0%) and wrong prediction: 1(100%) For degree 65 total: 1 (0%) and wrong prediction: 1(100%)
Math/1028/1017. Convert to Base -2.ipynb
###Markdown 说明: 给出数字 N,返回由若干 "0" 和 "1"组成的字符串,该字符串为 N 的负二进制(base -2)表示。 除非字符串就是 "0",否则返回的字符串中不能含有前导零。示例 1: 输入:2 输出:"110" 解释:(-2) ^ 2 + (-2) ^ 1 = 2示例 2: 输入:3 输出:"111" 解释:(-2) ^ 2 + (-2) ^ 1 + (-2) ^ 0 = 3示例 3: 输入:4 输出:"100" 解释:(-2) ^ 2 = 4提示: 1、0 <= N <= 10^9 ###Code class Solution: def baseNeg2(self, N: int) -> str: if N == 0: return '0' base, res, carry = -2, [], 0 while N != 0: r = N % base d = N // (base) if r < 0: d += 1 r += 2 res.append(str(r)) N = d res.reverse() return ''.join(res) class Solution: def baseNeg2(self, N: int) -> str: if N == 0: return '0' base, res, carry = 2, [], 0 while N != 0: r = N % base d = N // base if r < 0: d += 1 r += abs(base) res.append(str(r)) N = d res.reverse() return ''.join(res) solution = Solution() solution.baseNeg2(4) -5 // -3 -5 % -3 ###Output _____no_output_____
dic-0-2-model-30ca37.ipynb
###Markdown Denoising DIC data using Unet **INDEX**1. DIC Image DATA generator2. Data Visualization3. Resnet50 Architecture4. U-net Architecture5. Prediction 6. Result plots Import libraries ###Code import tensorflow.keras as keras import os import copy import json import numpy as np from matplotlib import pyplot as plt import tensorflow as tf from scipy.interpolate import interp2d import numpy as np import numpy.random as random import matplotlib.pyplot as plt from tensorflow.keras.layers import Input from tensorflow.keras.layers import Conv2D from tensorflow.keras.layers import MaxPooling2D from tensorflow.keras.layers import Conv2DTranspose from tensorflow.keras.layers import concatenate from tensorflow.keras.models import Model from tensorflow.keras.layers import Add, Conv2D, MaxPooling2D from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten, BatchNormalization from tensorflow.keras.optimizers import Adam ###Output _____no_output_____ ###Markdown Data Generator ###Code def dispgen(batch_size=32): SubsetSize = 256 count = 1 total=1000 batch = np.zeros((n_batch,SubsetSize,SubsetSize)) while True: for i in range(total): for l in range(batch_size): if (l <6): s = 128 elif (l<11): s = 64 elif (l<16): s = 32 elif (l<21): s = 16 elif (l<26): s = 8 else: s = 4 xp0=np.arange(1,SubsetSize/s+1,1/s)+2 yp0=np.arange(1,SubsetSize/s+1,1/s)+2 xxp0=np.arange(1,(SubsetSize/s)+4,1) yyp0=np.arange(1,(SubsetSize/s)+4,1) u=random.randint(-100, 100, [int(SubsetSize/s+3),int(SubsetSize/s+3)])/115 disp_u = interp2d(xxp0,yyp0,u,kind='cubic') disp_u_=disp_u(xp0,yp0) batch[count-1] = disp_u_ count += 1 if count == batch_size: retX = tf.convert_to_tensor(batch) batch = np.zeros((n_batch,SubsetSize,SubsetSize)) count = 1 Noise= retX+np.random.normal(0,0.2,batch.shape) yield Noise,retX n_batch = 32 # call funtion to return generator object for displacement matrix #def getImage(gen): # j = random.randint(0,n_batch-1) # batch = next(gen) # batch=tf.convert_to_tensor(batch) # return batch[0],batch[0]+np.random.normal(0,0.2,batch[0].shape) Ugen = dispgen(n_batch) ###Output _____no_output_____ ###Markdown Data VisualizationData Visualization is very important. When you know how your data looks then and then only you can process it in the way you want. ###Code x,y=next(Ugen) #X are the noisy images wit Mean 0 and SD 0.2 and Y are the original images. for index in range(0,4): #ploting Noising Data plt.subplot(220 + 1 + index) plt.imshow(x[index+10]) plt.show() for index in range(0,4): # ploting Orignal Images plt.subplot(220 + 1 + index) plt.imshow(y[index+10]) plt.show() ###Output _____no_output_____ ###Markdown Building A Resnet50 Architecture ###Code def resBlock(input_tensor, num_channels=1): conv1 = Conv2D(num_channels,(3,3),padding='same')(input_tensor) relu = Activation('relu')(conv1) conv2 = Conv2D(num_channels,(3,3),padding='same')(relu) add = Add()([input_tensor, conv2]) output_tensor = Activation('relu')(add) return output_tensor def build_resnet_model(height,width,num_channels,num_res_blocks): inp = Input(shape=(height,width,1)) conv = Conv2D (num_channels,(3,3),padding='same')(inp) block_out = Activation('relu')(conv) for i in np.arange(0,num_res_blocks): block_out = resBlock(block_out, num_channels) conv_m2 = Conv2D (1,(3,3),padding='same')(block_out) add_m2 = Add()([inp, conv_m2]) model = Model(inputs =inp,outputs = add_m2) return model model = build_resnet_model(256,256,32,5) model.summary() ###Output _____no_output_____ ###Markdown U-net Architecture ###Code def conv_block(inputs=None, n_filters=32, dropout_prob=0, max_pooling=True): """ Convolutional downsampling block Arguments: inputs -- Input tensor n_filters -- Number of filters for the convolutional layers dropout_prob -- Dropout probability max_pooling -- Use MaxPooling2D to reduce the spatial dimensions of the output volume Returns: next_layer, skip_connection -- Next layer and skip connection outputs """ conv = Conv2D(n_filters, # Number of filters 3, # Kernel size activation='relu', padding='same', kernel_initializer='he_normal')(inputs) conv = Conv2D(n_filters, # Number of filters 3, # Kernel size activation='relu', padding='same', kernel_initializer='he_normal')(conv) # if dropout_prob > 0 add a dropout layer, with the variable dropout_prob as parameter if dropout_prob > 0: conv = Dropout(dropout_prob)(conv) # if max_pooling is True add a MaxPooling2D with 2x2 pool_size if max_pooling: next_layer = MaxPooling2D(pool_size=(2,2))(conv) else: next_layer = conv skip_connection = conv return next_layer, skip_connection def upsampling_block(expansive_input, contractive_input, n_filters=32): """ Convolutional upsampling block Arguments: expansive_input -- Input tensor from previous layer contractive_input -- Input tensor from previous skip layer n_filters -- Number of filters for the convolutional layers Returns: conv -- Tensor output """ up = Conv2DTranspose( n_filters, # number of filters (3,3), # Kernel size strides=(2,2), padding='same')(expansive_input) # Merge the previous output and the contractive_input merge = concatenate([up, contractive_input], axis=3) conv = Conv2D(n_filters, # Number of filters 3, # Kernel size activation='relu', padding='same', kernel_initializer='he_normal')(merge) conv = Conv2D(n_filters, # Number of filters 3, # Kernel size activation='relu', padding='same', kernel_initializer='he_normal')(conv) return conv def unet_model(input_size=(256,256,1), n_filters=32, n_classes=1): """ Unet model Arguments: input_size -- Input shape n_filters -- Number of filters for the convolutional layers n_classes -- Number of output classes Returns: model -- tf.keras.Model """ inputs = Input(input_size) # Contracting Path (encoding) # Add a conv_block with the inputs of the unet_ model and n_filters cblock1 = conv_block(inputs,n_filters) # Chain the first element of the output of each block to be the input of the next conv_block. # Double the number of filters at each new step cblock2 = conv_block(cblock1[0],2*n_filters) cblock3 = conv_block(cblock2[0], 4*n_filters) cblock4 = conv_block(cblock3[0], 8*n_filters, 0.3) # Include a dropout of 0.3 for this layer # Include a dropout of 0.3 for this layer, and avoid the max_pooling layer cblock5 = conv_block(cblock4[0],16*n_filters, 0.3, max_pooling=False) # Expanding Path (decoding) # Add the first upsampling_block. # Use the cblock5[0] as expansive_input and cblock4[1] as contractive_input and n_filters * 8 ublock6 = upsampling_block(cblock5[0], cblock4[1], 8*n_filters) # Chain the output of the previous block as expansive_input and the corresponding contractive block output. # Note that you must use the second element of the contractive block i.e before the maxpooling layer. # At each step, use half the number of filters of the previous block ublock7 = upsampling_block(ublock6, cblock3[1],4*n_filters) ublock8 = upsampling_block(ublock7, cblock2[1],2*n_filters) ublock9 = upsampling_block(ublock8, cblock1[1], n_filters) conv9 = Conv2D(n_filters, 3, activation='relu', padding='same', kernel_initializer='he_normal')(ublock9) conv10 = Conv2D(n_classes, 1, padding='same')(conv9) model = tf.keras.Model(inputs=inputs, outputs=conv10) return model ###Output _____no_output_____ ###Markdown Training ###Code model=unet_model((256,256,1)) model.compile(optimizer= Adam(beta_2 = 0.9),loss='mean_squared_error',metrics=['mse']) model.summary() ###Output _____no_output_____ ###Markdown Creating a checkpoint for every epoch ###Code checkpoint_path = "./" checkpoint_dir = os.path.dirname(checkpoint_path) # Create a callback that saves the model's weights cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_path, save_weights_only=True, verbose=1) with tf.device('/device:GPU:0'): history=model.fit(Ugen,steps_per_epoch=1250,epochs=10) filepath='./Pbmodel1' model.save( filepath, overwrite=True, include_optimizer=True, signatures=None, options=None, save_traces=True ) ###Output _____no_output_____ ###Markdown Prediction ###Code x_test_noisy,x=next(Ugen) response = model.predict(x_test_noisy) response=np.squeeze(response,axis=-1) ###Output _____no_output_____ ###Markdown Show some of the denoised examples.Images from left to right are - Noisy image, original image, denoised image ###Code for index in range(24,30): plt.subplot(330 + 1) plt.imshow(x_test_noisy[index]) plt.subplot(330 + 2) plt.imshow(x[index]) plt.subplot(330 + 3) plt.imshow(response[index]) plt.show() ###Output _____no_output_____ ###Markdown Result plots ###Code from tensorflow.keras.preprocessing import image img_path ='../input/dic-measurements/img2.jpg' img = image.load_img(img_path, target_size=(256,256)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x=tf.image.rgb_to_grayscale(x) x1=model.predict(x) plt.imshow(x[0]) plt.show() print("Noisy Image Data") plt.imshow(x1[0]) plt.show() print("Denosed Image Data") from tensorflow.keras.preprocessing import image img_path ='../input/dic-measurements/img1.jpg' img = image.load_img(img_path, target_size=(256,256)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x=tf.image.rgb_to_grayscale(x) x1=model.predict(x) plt.imshow(x[0]) plt.show() print("Noisy Image Data") plt.imshow(x1[0]) plt.show() print("Denosed Image Data") avg_mse = [] avg_mean = [] avg_sd = [] for index in range(0,3): avg_mean.append(np.mean(x[index] - response[index])) avg_mse.append(np.mean((x[index] - response[index])**2)) avg_sd.append(np.std(x[index] - response[index])) print("Mean:", np.sum(avg_mean)/11) print("MSE:", np.sum(avg_mse)/11) print("SD:", np.sum(avg_sd)/11) model.save("model.h5") ###Output _____no_output_____
Tensorflow/notebook/lstm.ipynb
###Markdown Deep Learning=============Assignment 6------------After training a skip-gram model in `5_word2vec.ipynb`, the goal of this notebook is to train a LSTM character model over [Text8](http://mattmahoney.net/dc/textdata) data. ###Code # These are all the modules we'll be using later. Make sure you can import them # before proceeding further. from __future__ import print_function import os import numpy as np import random import string import tensorflow as tf import zipfile from six.moves import range from six.moves.urllib.request import urlretrieve url = 'http://mattmahoney.net/dc/' def maybe_download(filename, expected_bytes): """Download a file if not present, and make sure it's the right size.""" if not os.path.exists(filename): filename, _ = urlretrieve(url + filename, filename) statinfo = os.stat(filename) if statinfo.st_size == expected_bytes: print('Found and verified %s' % filename) else: print(statinfo.st_size) raise Exception( 'Failed to verify ' + filename + '. Can you get to it with a browser?') return filename filename = maybe_download('text8.zip', 31344016) def read_data(filename): with zipfile.ZipFile(filename) as f: name = f.namelist()[0] data = tf.compat.as_str(f.read(name)) return data text = read_data(filename) print('Data size %d' % len(text)) print(text[0:10000]) ###Output anarchism originated as a term of abuse first used against early working class radicals including the diggers of the english revolution and the sans culottes of the french revolution whilst the term is still used in a pejorative way to describe any act that used violent means to destroy the organization of society it has also been taken up as a positive label by self defined anarchists the word anarchism is derived from the greek without archons ruler chief king anarchism as a political philosophy is the belief that rulers are unnecessary and should be abolished although there are differing interpretations of what this means anarchism also refers to related social movements that advocate the elimination of authoritarian institutions particularly the state the word anarchy as most anarchists use it does not imply chaos nihilism or anomie but rather a harmonious anti authoritarian society in place of what are regarded as authoritarian political structures and coercive economic institutions anarchists advocate social relations based upon voluntary association of autonomous individuals mutual aid and self governance while anarchism is most easily defined by what it is against anarchists also offer positive visions of what they believe to be a truly free society however ideas about how an anarchist society might work vary considerably especially with respect to economics there is also disagreement about how a free society might be brought about origins and predecessors kropotkin and others argue that before recorded history human society was organized on anarchist principles most anthropologists follow kropotkin and engels in believing that hunter gatherer bands were egalitarian and lacked division of labour accumulated wealth or decreed law and had equal access to resources william godwin anarchists including the the anarchy organisation and rothbard find anarchist attitudes in taoism from ancient china kropotkin found similar ideas in stoic zeno of citium according to kropotkin zeno repudiated the omnipotence of the state its intervention and regimentation and proclaimed the sovereignty of the moral law of the individual the anabaptists of one six th century europe are sometimes considered to be religious forerunners of modern anarchism bertrand russell in his history of western philosophy writes that the anabaptists repudiated all law since they held that the good man will be guided at every moment by the holy spirit from this premise they arrive at communism the diggers or true levellers were an early communistic movement during the time of the english civil war and are considered by some as forerunners of modern anarchism in the modern era the first to use the term to mean something other than chaos was louis armand baron de lahontan in his nouveaux voyages dans l am rique septentrionale one seven zero three where he described the indigenous american society which had no state laws prisons priests or private property as being in anarchy russell means a libertarian and leader in the american indian movement has repeatedly stated that he is an anarchist and so are all his ancestors in one seven nine three in the thick of the french revolution william godwin published an enquiry concerning political justice although godwin did not use the word anarchism many later anarchists have regarded this book as the first major anarchist text and godwin as the founder of philosophical anarchism but at this point no anarchist movement yet existed and the term anarchiste was known mainly as an insult hurled by the bourgeois girondins at more radical elements in the french revolution the first self labelled anarchist pierre joseph proudhon it is commonly held that it wasn t until pierre joseph proudhon published what is property in one eight four zero that the term anarchist was adopted as a self description it is for this reason that some claim proudhon as the founder of modern anarchist theory in what is property proudhon answers with the famous accusation property is theft in this work he opposed the institution of decreed property propri t where owners have complete rights to use and abuse their property as they wish such as exploiting workers for profit in its place proudhon supported what he called possession individuals can have limited rights to use resources capital and goods in accordance with principles of equality and justice proudhon s vision of anarchy which he called mutualism mutuellisme involved an exchange economy where individuals and groups could trade the products of their labor using labor notes which represented the amount of working time involved in production this would ensure that no one would profit from the labor of others workers could freely join together in co operative workshops an interest free bank would be set up to provide everyone with access to the means of production proudhon s ideas were influential within french working class movements and his followers were active in the revolution of one eight four eight in france proudhon s philosophy of property is complex it was developed in a number of works over his lifetime and there are differing interpretations of some of his ideas for more detailed discussion see here max stirner s egoism in his the ego and its own stirner argued that most commonly accepted social institutions including the notion of state property as a right natural rights in general and the very notion of society were mere illusions or ghosts in the mind saying of society that the individuals are its reality he advocated egoism and a form of amoralism in which individuals would unite in associations of egoists only when it was in their self interest to do so for him property simply comes about through might whoever knows how to take to defend the thing to him belongs property and what i have in my power that is my own so long as i assert myself as holder i am the proprietor of the thing stirner never called himself an anarchist he accepted only the label egoist nevertheless his ideas were influential on many individualistically inclined anarchists although interpretations of his thought are diverse american individualist anarchism benjamin tucker in one eight two five josiah warren had participated in a communitarian experiment headed by robert owen called new harmony which failed in a few years amidst much internal conflict warren blamed the community s failure on a lack of individual sovereignty and a lack of private property warren proceeded to organise experimenal anarchist communities which respected what he called the sovereignty of the individual at utopia and modern times in one eight three three warren wrote and published the peaceful revolutionist which some have noted to be the first anarchist periodical ever published benjamin tucker says that warren was the first man to expound and formulate the doctrine now known as anarchism liberty xiv december one nine zero zero one benjamin tucker became interested in anarchism through meeting josiah warren and william b greene he edited and published liberty from august one eight eight one to april one nine zero eight it is widely considered to be the finest individualist anarchist periodical ever issued in the english language tucker s conception of individualist anarchism incorporated the ideas of a variety of theorists greene s ideas on mutual banking warren s ideas on cost as the limit of price a heterodox variety of labour theory of value proudhon s market anarchism max stirner s egoism and herbert spencer s law of equal freedom tucker strongly supported the individual s right to own the product of his or her labour as private property and believed in a market economy for trading this property he argued that in a truly free market system without the state the abundance of competition would eliminate profits and ensure that all workers received the full value of their labor other one nine th century individualists included lysander spooner stephen pearl andrews and victor yarros the first international mikhail bakunin one eight one four one eight seven six in europe harsh reaction followed the revolutions of one eight four eight twenty years later in one eight six four the international workingmen s association sometimes called the first international united some diverse european revolutionary currents including anarchism due to its genuine links to active workers movements the international became signficiant from the start karl marx was a leading figure in the international he was elected to every succeeding general council of the association the first objections to marx came from the mutualists who opposed communism and statism shortly after mikhail bakunin and his followers joined in one eight six eight the first international became polarised into two camps with marx and bakunin as their respective figureheads the clearest difference between the camps was over strategy the anarchists around bakunin favoured in kropotkin s words direct economical struggle against capitalism without interfering in the political parliamentary agitation at that time marx and his followers focused on parliamentary activity bakunin characterised marx s ideas as authoritarian and predicted that if a marxist party gained to power its leaders would end up as bad as the ruling class they had fought against in one eight seven two the conflict climaxed with a final split between the two groups at the hague congress this is often cited as the origin of the conflict between anarchists and marxists from this moment the social democratic and libertarian currents of socialism had distinct organisations including rival internationals anarchist communism peter kropotkin proudhon and bakunin both opposed communism associating it with statism however in the one eight seven zero s many anarchists moved away from bakunin s economic thinking called collectivism and embraced communist concepts communists believed the means of production should be owned ###Markdown Create a small validation set. ###Code valid_size = 1000 valid_text = text[:valid_size] train_text = text[valid_size:] train_size = len(train_text) print(train_size, train_text[:100]) print(valid_size, valid_text[:100]) ###Output 99999000 ons anarchists advocate social relations based upon voluntary association of autonomous individuals 1000 anarchism originated as a term of abuse first used against early working class radicals including t ###Markdown Utility functions to map characters to vocabulary IDs and back. ###Code vocabulary_size = len(string.ascii_lowercase) + 1 # [a-z] + ' ' first_letter = ord(string.ascii_lowercase[0]) def char2id(char): if char in string.ascii_lowercase: return ord(char) - first_letter + 1 elif char == ' ': return 0 else: print('Unexpected character: %s' % char) return 0 def id2char(dictid): if dictid > 0: return chr(dictid + first_letter - 1) else: return ' ' print(char2id('a'), char2id('z'), char2id(' '), char2id('ï')) print(id2char(1), id2char(26), id2char(0)) ###Output Unexpected character: ï 1 26 0 0 a z ###Markdown Function to generate a traich for thning bate LSTM model. ###Code batch_size=64 num_unrollings=10 class BatchGenerator(object): def __init__(self, text, batch_size, num_unrollings): self._text = text self._text_size = len(text) self._batch_size = batch_size self._num_unrollings = num_unrollings segment = self._text_size // batch_size #print(segment) self._cursor = [ offset * segment for offset in range(batch_size)] #print(self._cursor ) self._last_batch = self._next_batch() #print(self._last_batch.shape) #print(self._last_batch) def _next_batch(self): """Generate a single batch from the current cursor position in the data.""" batch = np.zeros(shape=(self._batch_size, vocabulary_size), dtype=np.float) for b in range(self._batch_size): batch[b, char2id(self._text[self._cursor[b]])] = 1.0 self._cursor[b] = (self._cursor[b] + 1) % self._text_size return batch def next(self): """Generate the next array of batches from the data. The array consists of the last batch of the previous array, followed by num_unrollings new ones. """ batches = [self._last_batch] for step in range(self._num_unrollings): batches.append(self._next_batch()) self._last_batch = batches[-1] return batches def characters(probabilities): """Turn a 1-hot encoding or a probability distribution over the possible characters back into its (most likely) character representation.""" return [id2char(c) for c in np.argmax(probabilities, 1)] def batches2string(batches): """Convert a sequence of batches back into their (most likely) string representation.""" s = [''] * batches[0].shape[0] for b in batches: s = [''.join(x) for x in zip(s, characters(b))] return s train_batches = BatchGenerator(train_text, batch_size, num_unrollings) valid_batches = BatchGenerator(valid_text, 1, 1) print(batches2string(train_batches.next())) print(batches2string(train_batches.next())) print(batches2string(valid_batches.next())) print(batches2string(valid_batches.next())) print(batches2string(valid_batches.next())) print(batches2string(valid_batches.next())) print(batches2string(valid_batches.next())) print(batches2string(valid_batches.next())) print(batches2string(valid_batches.next())) print(batches2string(valid_batches.next())) print(batches2string(valid_batches.next())) print(batches2string(valid_batches.next())) print(batches2string(valid_batches.next())) def logprob(predictions, labels): """Log-probability of the true labels in a predicted batch.""" predictions[predictions < 1e-10] = 1e-10 return np.sum(np.multiply(labels, -np.log(predictions))) / labels.shape[0] def sample_distribution(distribution): """Sample one element from a distribution assumed to be an array of normalized probabilities. """ r = random.uniform(0, 1) s = 0 for i in range(len(distribution)): s += distribution[i] if s >= r: return i return len(distribution) - 1 def sample(prediction): """Turn a (column) prediction into 1-hot encoded samples.""" p = np.zeros(shape=[1, vocabulary_size], dtype=np.float) p[0, sample_distribution(prediction[0])] = 1.0 return p def random_distribution(): """Generate a random column of probabilities.""" b = np.random.uniform(0.0, 1.0, size=[1, vocabulary_size]) return b/np.sum(b, 1)[:,None] ###Output _____no_output_____ ###Markdown Simple LSTM Model. ###Code num_nodes = 64 graph = tf.Graph() with graph.as_default(): # Parameters: # Input gate: input, previous output, and bias. ix = tf.Variable(tf.truncated_normal([vocabulary_size, num_nodes], -0.1, 0.1)) im = tf.Variable(tf.truncated_normal([num_nodes, num_nodes], -0.1, 0.1)) ib = tf.Variable(tf.zeros([1, num_nodes])) # Forget gate: input, previous output, and bias. fx = tf.Variable(tf.truncated_normal([vocabulary_size, num_nodes], -0.1, 0.1)) fm = tf.Variable(tf.truncated_normal([num_nodes, num_nodes], -0.1, 0.1)) fb = tf.Variable(tf.zeros([1, num_nodes])) # Memory cell: input, state and bias. cx = tf.Variable(tf.truncated_normal([vocabulary_size, num_nodes], -0.1, 0.1)) cm = tf.Variable(tf.truncated_normal([num_nodes, num_nodes], -0.1, 0.1)) cb = tf.Variable(tf.zeros([1, num_nodes])) # Output gate: input, previous output, and bias. ox = tf.Variable(tf.truncated_normal([vocabulary_size, num_nodes], -0.1, 0.1)) om = tf.Variable(tf.truncated_normal([num_nodes, num_nodes], -0.1, 0.1)) ob = tf.Variable(tf.zeros([1, num_nodes])) # Variables saving state across unrollings. saved_output = tf.Variable(tf.zeros([batch_size, num_nodes]), trainable=False) saved_state = tf.Variable(tf.zeros([batch_size, num_nodes]), trainable=False) # Classifier weights and biases. w = tf.Variable(tf.truncated_normal([num_nodes, vocabulary_size], -0.1, 0.1)) b = tf.Variable(tf.zeros([vocabulary_size])) # Definition of the cell computation. def lstm_cell(i, o, state): """Create a LSTM cell. See e.g.: http://arxiv.org/pdf/1402.1128v1.pdf Note that in this formulation, we omit the various connections between the previous state and the gates.""" input_gate = tf.sigmoid(tf.matmul(i, ix) + tf.matmul(o, im) + ib) forget_gate = tf.sigmoid(tf.matmul(i, fx) + tf.matmul(o, fm) + fb) update = tf.matmul(i, cx) + tf.matmul(o, cm) + cb state = forget_gate * state + input_gate * tf.tanh(update) output_gate = tf.sigmoid(tf.matmul(i, ox) + tf.matmul(o, om) + ob) return output_gate * tf.tanh(state), state # Input data. train_data = list() for _ in range(num_unrollings + 1): train_data.append( tf.placeholder(tf.float32, shape=[batch_size,vocabulary_size])) train_inputs = train_data[:num_unrollings] train_labels = train_data[1:] # labels are inputs shifted by one time step. # Unrolled LSTM loop. outputs = list() output = saved_output state = saved_state for i in train_inputs: output, state = lstm_cell(i, output, state) outputs.append(output) # State saving across unrollings. with tf.control_dependencies([saved_output.assign(output), saved_state.assign(state)]): # Classifier. logits = tf.nn.xw_plus_b(tf.concat(outputs, 0), w, b) loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits( labels=tf.concat(train_labels, 0), logits=logits)) # Optimizer. global_step = tf.Variable(0) learning_rate = tf.train.exponential_decay( 10.0, global_step, 5000, 0.1, staircase=True) optimizer = tf.train.GradientDescentOptimizer(learning_rate) gradients, v = zip(*optimizer.compute_gradients(loss)) gradients, _ = tf.clip_by_global_norm(gradients, 1.25) optimizer = optimizer.apply_gradients( zip(gradients, v), global_step=global_step) # Predictions. train_prediction = tf.nn.softmax(logits) # Sampling and validation eval: batch 1, no unrolling. sample_input = tf.placeholder(tf.float32, shape=[1, vocabulary_size]) saved_sample_output = tf.Variable(tf.zeros([1, num_nodes])) saved_sample_state = tf.Variable(tf.zeros([1, num_nodes])) reset_sample_state = tf.group( saved_sample_output.assign(tf.zeros([1, num_nodes])), saved_sample_state.assign(tf.zeros([1, num_nodes]))) sample_output, sample_state = lstm_cell( sample_input, saved_sample_output, saved_sample_state) with tf.control_dependencies([saved_sample_output.assign(sample_output), saved_sample_state.assign(sample_state)]): sample_prediction = tf.nn.softmax(tf.nn.xw_plus_b(sample_output, w, b)) num_steps = 7001 summary_frequency = 100 with tf.Session(graph=graph) as session: tf.global_variables_initializer().run() print('Initialized') mean_loss = 0 for step in range(num_steps): batches = train_batches.next() feed_dict = dict() for i in range(num_unrollings + 1): feed_dict[train_data[i]] = batches[i] _, l, predictions, lr = session.run( [optimizer, loss, train_prediction, learning_rate], feed_dict=feed_dict) mean_loss += l if step % summary_frequency == 0: if step > 0: mean_loss = mean_loss / summary_frequency # The mean loss is an estimate of the loss over the last few batches. print( 'Average loss at step %d: %f learning rate: %f' % (step, mean_loss, lr)) mean_loss = 0 labels = np.concatenate(list(batches)[1:]) print('Minibatch perplexity: %.2f' % float( np.exp(logprob(predictions, labels)))) if step % (summary_frequency * 10) == 0: # Generate some samples. print('=' * 80) for _ in range(5): feed = sample(random_distribution()) sentence = characters(feed)[0] reset_sample_state.run() for _ in range(79): prediction = sample_prediction.eval({sample_input: feed}) feed = sample(prediction) sentence += characters(feed)[0] print(sentence) print('=' * 80) # Measure validation set perplexity. reset_sample_state.run() valid_logprob = 0 for _ in range(valid_size): b = valid_batches.next() predictions = sample_prediction.eval({sample_input: b[0]}) valid_logprob = valid_logprob + logprob(predictions, b[1]) print('Validation set perplexity: %.2f' % float(np.exp( valid_logprob / valid_size))) ###Output Initialized Average loss at step 0: 3.294314 learning rate: 10.000000 Minibatch perplexity: 26.96 ================================================================================ lnnvhv hczs rnt jfrklectay ts i j ofme wcog kbvhwgrheajcmhs qjawtjz etselzsg g crrv aedoo ozjflghwmtxldsee en n bmpdanacki wkiharg wtg vnesmima slwgwrsatiuneen oreyjivy nydnxgaaoxzfne yofifbeotnws lplgt ge erjtihqeinrmg xekbuszrzub pfmp j dgp jtt mga rfhaqr ohpuo ontpuaanyyzoolochkrmtb xne poswutu nhs ia dslcsgfim woe egqr fxc edemeisfnep caoiefltmtotqj a jaribhwzcmgz zshyjnkbqt lk sveqyolevw ================================================================================ Validation set perplexity: 20.24 Average loss at step 100: 2.623005 learning rate: 10.000000 Minibatch perplexity: 11.01 Validation set perplexity: 10.54 Average loss at step 200: 2.254879 learning rate: 10.000000 Minibatch perplexity: 8.64 Validation set perplexity: 8.75 Average loss at step 300: 2.099661 learning rate: 10.000000 Minibatch perplexity: 7.60 Validation set perplexity: 8.16 Average loss at step 400: 2.000877 learning rate: 10.000000 Minibatch perplexity: 7.43 Validation set perplexity: 7.80 Average loss at step 500: 1.937333 learning rate: 10.000000 Minibatch perplexity: 6.49 Validation set perplexity: 7.00 Average loss at step 600: 1.909437 learning rate: 10.000000 Minibatch perplexity: 6.23 Validation set perplexity: 7.03 Average loss at step 700: 1.856690 learning rate: 10.000000 Minibatch perplexity: 6.57 Validation set perplexity: 6.66 Average loss at step 800: 1.814716 learning rate: 10.000000 Minibatch perplexity: 5.83 Validation set perplexity: 6.23 Average loss at step 900: 1.826778 learning rate: 10.000000 Minibatch perplexity: 6.74 Validation set perplexity: 6.20 Average loss at step 1000: 1.820805 learning rate: 10.000000 Minibatch perplexity: 5.55 ================================================================================ w ruch newrol caplicar have in te fimmulic of stanbed the y his have inti on a c verment that warotd movert the winse and mniling welden male enganution treary i ing unhod at quecianied comery exiamedrets stailwiog filmer houd stace in of the s earate maridite in also by the from chict the chilly poselos for four yerome a er in mules fow buare centry the scanum comorizal defise the iminds of centripta ================================================================================ Validation set perplexity: 6.05 Average loss at step 1100: 1.775186 learning rate: 10.000000 Minibatch perplexity: 5.44 Validation set perplexity: 5.80 Average loss at step 1200: 1.748487 learning rate: 10.000000 Minibatch perplexity: 5.04 Validation set perplexity: 5.65 Average loss at step 1300: 1.732639 learning rate: 10.000000 Minibatch perplexity: 5.74 Validation set perplexity: 5.62 Average loss at step 1400: 1.742479 learning rate: 10.000000 Minibatch perplexity: 6.00 Validation set perplexity: 5.48 Average loss at step 1500: 1.729836 learning rate: 10.000000 Minibatch perplexity: 4.78 Validation set perplexity: 5.44 Average loss at step 1600: 1.744872 learning rate: 10.000000 Minibatch perplexity: 5.50 Validation set perplexity: 5.43 Average loss at step 1700: 1.707732 learning rate: 10.000000 Minibatch perplexity: 5.46 Validation set perplexity: 5.24 Average loss at step 1800: 1.672056 learning rate: 10.000000 Minibatch perplexity: 5.35 Validation set perplexity: 5.24 Average loss at step 1900: 1.643194 learning rate: 10.000000 Minibatch perplexity: 5.05 Validation set perplexity: 5.21 Average loss at step 2000: 1.692570 learning rate: 10.000000 Minibatch perplexity: 5.63 ================================================================================ ope came on precoant to ligne butdles s light come winning is s onaxt one free h ing nandles the unitiation ospennies after gener in in pain the coud and inlodet ds and mefdustak the secing d pessent weidable rappate of buyder hes time witwom jan of empross im auboments for nebsent standers zero zero basid both is nohle w x histast the modah hl wing the daxents iss one nine eiven seven futea consts sh ================================================================================ Validation set perplexity: 5.20 Average loss at step 2100: 1.682833 learning rate: 10.000000 Minibatch perplexity: 5.12 Validation set perplexity: 4.88 Average loss at step 2200: 1.679279 learning rate: 10.000000 Minibatch perplexity: 6.58 Validation set perplexity: 4.95 Average loss at step 2300: 1.639969 learning rate: 10.000000 Minibatch perplexity: 5.06 Validation set perplexity: 4.76 Average loss at step 2400: 1.659329 learning rate: 10.000000 Minibatch perplexity: 5.01 Validation set perplexity: 4.80 Average loss at step 2500: 1.675587 learning rate: 10.000000 Minibatch perplexity: 5.23 Validation set perplexity: 4.56 Average loss at step 2600: 1.649104 learning rate: 10.000000 Minibatch perplexity: 5.68 Validation set perplexity: 4.55 Average loss at step 2700: 1.651925 learning rate: 10.000000 Minibatch perplexity: 4.58 Validation set perplexity: 4.68 Average loss at step 2800: 1.651363 learning rate: 10.000000 Minibatch perplexity: 5.58 Validation set perplexity: 4.58 Average loss at step 2900: 1.646795 learning rate: 10.000000 Minibatch perplexity: 5.62 Validation set perplexity: 4.62 Average loss at step 3000: 1.647693 learning rate: 10.000000 Minibatch perplexity: 4.98 ================================================================================ winnes of indians alumon one nibbly putch atter desidenty farmide protocy of oer f gengo uncleested dease but could ruls alp ivelbism of all ba cambinnong a cont ver bother doundenved undersider kihneant to arms day churtar and parto reservan varian s in of the eight four nemation from be detem tyle in the normal part and k impalle hegaghame accurtity that founding marring are bay dendently syace enco ================================================================================ Validation set perplexity: 4.70 Average loss at step 3100: 1.621529 learning rate: 10.000000 Minibatch perplexity: 5.68 Validation set perplexity: 4.62 Average loss at step 3200: 1.639812 learning rate: 10.000000 Minibatch perplexity: 5.38 Validation set perplexity: 4.65 Average loss at step 3300: 1.632859 learning rate: 10.000000 Minibatch perplexity: 5.00 Validation set perplexity: 4.58 Average loss at step 3400: 1.668599 learning rate: 10.000000 Minibatch perplexity: 5.54 Validation set perplexity: 4.64 Average loss at step 3500: 1.653692 learning rate: 10.000000 Minibatch perplexity: 5.52 Validation set perplexity: 4.69 Average loss at step 3600: 1.665889 learning rate: 10.000000 Minibatch perplexity: 4.35 Validation set perplexity: 4.52 Average loss at step 3700: 1.644094 learning rate: 10.000000 Minibatch perplexity: 5.02 Validation set perplexity: 4.58 Average loss at step 3800: 1.640882 learning rate: 10.000000 Minibatch perplexity: 5.70 Validation set perplexity: 4.69 Average loss at step 3900: 1.636125 learning rate: 10.000000 Minibatch perplexity: 5.05 Validation set perplexity: 4.68 Average loss at step 4000: 1.653151 learning rate: 10.000000 Minibatch perplexity: 4.56 ================================================================================ versce central chlensure ruml shorrevies the nine brolding the hervely previeu t lelitical king revical stania sourgel an in iprograms directions seasionity is o fathia c canuecally jerong of to be opeball of three merch for maver with bill i s bradiods the during the quastions can his wave in mudicial usez approhes el co helecies rif one two zero zero zero zero also payric usophep popular for eight s ================================================================================ Validation set perplexity: 4.66 Average loss at step 4100: 1.631490 learning rate: 10.000000 Minibatch perplexity: 5.10 Validation set perplexity: 4.81 Average loss at step 4200: 1.632502 learning rate: 10.000000 Minibatch perplexity: 5.20 Validation set perplexity: 4.55 Average loss at step 4300: 1.614347 learning rate: 10.000000 Minibatch perplexity: 5.08 Validation set perplexity: 4.58 Average loss at step 4400: 1.611879 learning rate: 10.000000 Minibatch perplexity: 4.82 Validation set perplexity: 4.50 Average loss at step 4500: 1.617748 learning rate: 10.000000 Minibatch perplexity: 5.24 Validation set perplexity: 4.62 Average loss at step 4600: 1.614927 learning rate: 10.000000 Minibatch perplexity: 5.11 Validation set perplexity: 4.61 Average loss at step 4700: 1.623387 learning rate: 10.000000 Minibatch perplexity: 5.14 Validation set perplexity: 4.55 Average loss at step 4800: 1.629507 learning rate: 10.000000 Minibatch perplexity: 4.35 Validation set perplexity: 4.59 Average loss at step 4900: 1.630408 learning rate: 10.000000 Minibatch perplexity: 5.13 Validation set perplexity: 4.74 Average loss at step 5000: 1.606152 learning rate: 1.000000 Minibatch perplexity: 4.41 ================================================================================ x who toth expare one eight one two zero years of the preoniniay or in offender on one nine vanustries pamial cellurally work with generaty is sudararded midite thirusary a latent indic recordd batgara is one five wish parating electiveid th x beath york and as foctivity it fembles molivis to groutt by and terpans onlore by some the lontala elizal eftemuled hitter all socitality dosternd dy would a ================================================================================ Validation set perplexity: 4.67 Average loss at step 5100: 1.602420 learning rate: 1.000000 Minibatch perplexity: 4.91 Validation set perplexity: 4.49 Average loss at step 5200: 1.581252 learning rate: 1.000000 Minibatch perplexity: 4.71 Validation set perplexity: 4.44 Average loss at step 5300: 1.575382 learning rate: 1.000000 Minibatch perplexity: 4.55 Validation set perplexity: 4.44 Average loss at step 5400: 1.575437 learning rate: 1.000000 Minibatch perplexity: 5.07 Validation set perplexity: 4.42 Average loss at step 5500: 1.565138 learning rate: 1.000000 Minibatch perplexity: 4.95 Validation set perplexity: 4.38 Average loss at step 5600: 1.577481 learning rate: 1.000000 Minibatch perplexity: 4.79 Validation set perplexity: 4.38 Average loss at step 5700: 1.564546 learning rate: 1.000000 Minibatch perplexity: 4.47 Validation set perplexity: 4.37 Average loss at step 5800: 1.574814 learning rate: 1.000000 Minibatch perplexity: 4.91 Validation set perplexity: 4.36 Average loss at step 5900: 1.570832 learning rate: 1.000000 Minibatch perplexity: 5.02 Validation set perplexity: 4.37 Average loss at step 6000: 1.543420 learning rate: 1.000000 Minibatch perplexity: 5.02 ================================================================================ zs to wings onrelated storks coloned by instrugki of occurity one one one two se opy dissivert important for information on at the proport levaince in offect wat geans and or four zero zero zero three and its fuel six dispiract of it as have shoning that technothing s and the seemento detrical ruth of the pricted for the onson the indepision one eight bomenish islaids it by fiblis visive yougaway bur ================================================================================ Validation set perplexity: 4.36 Average loss at step 6100: 1.564224 learning rate: 1.000000 Minibatch perplexity: 5.14 Validation set perplexity: 4.34 Average loss at step 6200: 1.532666 learning rate: 1.000000 Minibatch perplexity: 4.87 Validation set perplexity: 4.35 Average loss at step 6300: 1.541885 learning rate: 1.000000 Minibatch perplexity: 5.02 Validation set perplexity: 4.31 Average loss at step 6400: 1.538702 learning rate: 1.000000 Minibatch perplexity: 4.63 Validation set perplexity: 4.31 Average loss at step 6500: 1.554115 learning rate: 1.000000 Minibatch perplexity: 4.70 Validation set perplexity: 4.31 Average loss at step 6600: 1.591587 learning rate: 1.000000 Minibatch perplexity: 4.73 Validation set perplexity: 4.32 Average loss at step 6700: 1.575701 learning rate: 1.000000 Minibatch perplexity: 5.17 Validation set perplexity: 4.32 Average loss at step 6800: 1.600245 learning rate: 1.000000 Minibatch perplexity: 4.68 Validation set perplexity: 4.33 Average loss at step 6900: 1.579958 learning rate: 1.000000 Minibatch perplexity: 4.58 Validation set perplexity: 4.34 Average loss at step 7000: 1.574352 learning rate: 1.000000 Minibatch perplexity: 5.07 ================================================================================ ing elomry cornicaten which of johd who paration of the maj the cornifoted trady ver dober dienans the eight offer american thewe of the udern adving american th ours partes interimption compodictic skandaummoof to time prevaces of been b tho weres endive byt to musica betendly conceinties were work regody peestandiations mo atonte the werab defensive the program regerative nom structor searical one n ================================================================================ Validation set perplexity: 4.31
GitHub Workshop.ipynb
###Markdown Temperature and humidity workbookThis workbook will print variables of temp ###Code temperature = 55 humidity = 0.7 print('temp is', temperature, 'and humidity is', humidity) ###Output temp is 55 and humidity is 0.7
matrix_one/day4.ipynb
###Markdown idziemy do naszych danych ###Code cd "/content/drive/My Drive/Colab Notebooks/dw_matrix" ###Output /content/drive/My Drive/Colab Notebooks/dw_matrix ###Markdown Wczytujemy baze danych ###Code df = pd.read_csv('data/men_shoes.csv', low_memory=False) df.shape df.columns ###Output _____no_output_____ ###Markdown Znajdujemy wartość srednią z ceny 18280 butów ###Code mean_price = np.mean( df['prices_amountmin']) mean_price ###Output _____no_output_____ ###Markdown Do brand (marki) przypisujemy nr ID ###Code df['brand'].factorize() ###Output _____no_output_____ ###Markdown Powstaje nam nowa kolumna gdzie zamiast 'brand' występują numery ID ###Code df['brand_cat'] = df['brand'].factorize()[0] ###Output _____no_output_____ ###Markdown ###Code feats = ['brand_cat'] X = df[feats].values y = df['prices_amountmin'].values model = DecisionTreeRegressor(max_depth=5) scores = cross_val_score(model, X, y, scoring='neg_mean_absolute_error') np.mean(scores), np.std(scores) ###Output _____no_output_____ ###Markdown Definiujemy funkcję ###Code def run_model(feats): X = df[feats].values y = df['prices_amountmin'].values model = DecisionTreeRegressor(max_depth=5) scores = cross_val_score(model, X, y, scoring='neg_mean_absolute_error') return np.mean(scores), np.std(scores) run_model(['brand_cat']) ###Output _____no_output_____ ###Markdown Powstaje nowa kolumna z ID ###Code df['manufacturer_cat'] = df['manufacturer'].factorize()[0] run_model(['manufacturer_cat']) ###Output _____no_output_____ ###Markdown Model z dwoma cechami ###Code run_model(['brand_cat', 'manufacturer_cat']) ###Output _____no_output_____ ###Markdown Załadować do Gita ###Code ls matrix_one/day4.ipynb ###Output matrix_one/day4.ipynb ###Markdown ###Code feats = ['brand_cat'] x = df[feats].values y = df['prices_amountmin'] model = DecisionTreeRegressor(max_depth=5) scores = cross_val_score(model, x, y, scoring='neg_mean_absolute_error') np.mean(scores), np.std(scores) import pandas as pd import numpy as np from sklearn.tree import DecisionTreeRegressor from sklearn.metrics import mean_absolute_error from sklearn.model_selection import cross_val_score cd '/content/drive/My Drive/Colab Notebooks/Matrix' df = pd.read_csv('data/men_shoes.csv', low_memory=False) df.shape df.columns mean_price = np.mean(df['prices_amountmin']) mean_price y_true = df['prices_amountmin'] y_pred = [np.median(y_true)] * y_true.shape[0] mean_absolute_error(y_true, y_pred) np.log1p(df['prices_amountmin']).hist(bins=100) y_true = df['prices_amountmin'] price_log_mean = np.expm1( np.mean( np.log1p(y_true ))) y_pred = [price_log_mean] * y_true.shape[0] mean_absolute_error(y_true, y_pred) np.exp( np.mean( np.log1p(y_true ))) - 1 df.brand.value_counts() df['brand_cat'] = df['brand'].factorize()[0] feats = ['brand_cat'] x = df[feats].values y = df['prices_amountmin'] model = DecisionTreeRegressor(max_depth=5) scores = cross_val_score(model, x, y, scoring='neg_mean_absolute_error') np.mean(scores), np.std(scores) def run_model(feats): x = df[feats].values y = df['prices_amountmin'] model = DecisionTreeRegressor(max_depth=5) scores = cross_val_score(model, x, y, scoring='neg_mean_absolute_error') return np.mean(scores), np.std(scores) run_model(['brand_cat']) df['flavors_cat'] = df['flavors'].factorize()[0] def run_model(feats): x = df[feats].values y = df['prices_amountmin'] model = DecisionTreeRegressor(max_depth=5) scores = cross_val_score(model, x, y, scoring='neg_mean_absolute_error') return np.mean(scores), np.std(scores) run_model(['flavors_cat']) run_model(['brand_cat', 'flavors_cat']) ###Output _____no_output_____ ###Markdown najpierw klikamy Unmonunt Drive żeby połączyć z My Drive ###Code import pandas as pd import numpy as np from sklearn.tree import DecisionTreeRegressor from sklearn.metrics import mean_absolute_error from sklearn.model_selection import cross_val_score cd "/content/drive/My Drive/Colab Notebooks/dw_matrix" df = pd.read_csv('data/men_shoes.csv', low_memory=False) df.shape df.columns mean_price = np.mean(df['prices_amountmin']) mean_price [3]*5 y_true = df['prices_amountmin'] # wartość prawidłowa do prognozwania mamy 18 tysiecy #y_true.shape[0] # teraz powtarzamy mean_price * każdy wierwsz >18000 żeby wyliczyć y_pred # y_pred wartość którą chcemy zprognozować y_pred = [mean_price] * y_true.shape[0] mean_absolute_error(y_true,y_pred) ###Output _____no_output_____ ###Markdown żeby znormalizować - trzeba zlogarytmować ###Code y_true = df['prices_amountmin'].hist(bins=100) np.log1p(df['prices_amountmax']).hist(bins=100) # np.log( df[prices_amountmin'] +1).hist(bins=100) # bo np.log(0) minus nieskończoność # np.log(0+1) wynosi 0 # funkcja np.log1p robi to samo ###Output _____no_output_____ ###Markdown drugi eksperyment - zamiast średniej będzie Mediana ###Code y_true = df['prices_amountmin'] y_pred = [np.median(y_true)] * y_true.shape[0] mean_absolute_error(y_true,y_pred) y_true = df['prices_amountmin'] price_log_mean = np.expm1(np.mean(np.log1p(y_true))) y_pred = [price_log_mean] * y_true.shape[0] mean_absolute_error(y_true,y_pred) df.columns df.brand.value_counts() df['brand'].factorize() #faktoryzacja - dostajmy numer dla każdego unikata df['brand_cat'] = df['brand'].factorize()[0] feats = ['brand_cat'] X = df[ feats ].values y = df['prices_amountmin'].values model = DecisionTreeRegressor(max_depth=5) scores = cross_val_score(model, X, y, scoring='neg_mean_absolute_error') np.mean(scores), np.std(scores) import sklearn sklearn.metrics.SCORERS.keys() def run_model(feats): X = df[ feats ].values y = df['prices_amountmin'].values model = DecisionTreeRegressor(max_depth=5) scores = cross_val_score(model, X, y, scoring='neg_mean_absolute_error') return np.mean(scores), np.std(scores) run_model(['brand_cat']) ###Output _____no_output_____ ###Markdown nowa cecha df.manufacture.value_counts() + colors df.color.value_counts() ###Code df.manufacturer.value_counts() df['manufacturer'].factorize() df['manufacturer_cat'] = df['manufacturer'].factorize()[0] df.colors.value_counts() df['colors'].factorize() df['colors_cat'] = df['colors'].factorize()[0] run_model(['brand_cat','manufacturer_cat','colors_cat']) !git add matrix_one/day4.ipynb !git config --global user.email "[email protected]" !git config --global user.name "Grzegorz" !git commit -m "day4 - Read Men's Shoe Prices dataset from data.world" !git status cd .. ###Output /content/drive/My Drive/Colab Notebooks/dw_matrix ###Markdown prices_amountmin ###Code df_usd = df[ df.prices_currency == 'USD'].copy() df_usd['prices_amountmin'] = df_usd.prices_amountmin.astype(np.float) filter_max = np.percentile(df_usd['prices_amountmin'],99) df = df_usd[ df_usd['prices_amountmin'] < filter_max ] mean_price = np.mean(df['prices_amountmin']) y_true = df['prices_amountmin'] y_pred = [mean_price] * y_true.shape[0] mean_absolute_error(y_true, y_pred) df['prices_amountmin'].hist(bins=100) np.log1p(df['prices_amountmin']).hist(bins=100) y_true = df['prices_amountmin'] y_pred = [np.median(y_true)] * y_true.shape[0] mean_absolute_error(y_true, y_pred) y_true = df['prices_amountmin'] price_log_mean = np.expm1( np.mean( np.log1p(y_true) ) ) y_pred = [price_log_mean] * y_true.shape[0] mean_absolute_error(y_true, y_pred) df.columns df.brand.value_counts() df['brand'].factorize() df['brand_cat'] = df['brand'].factorize()[0] feats = ['brand_cat'] X = df[ feats ].values y = df['prices_amountmin'].values model = DecisionTreeRegressor(max_depth=5) scors = cross_val_score(model, X, y, scoring='neg_mean_absolute_error') np.mean(scors), np.std(scors) df['manufacturer_cat'] = df['manufacturer'].factorize()[0] df['categories_cat'] = df['categories'].factorize()[0] feats = ['brand_cat'] def run_model(feats): X = df[ feats ].values y = df['prices_amountmin'].values model = DecisionTreeRegressor(max_depth=5) scors = cross_val_score(model, X, y, scoring='neg_mean_absolute_error') return np.mean(scors), np.std(scors) run_model(feats) run_model(['manufacturer_cat']) run_model(['categories_cat']) run_model(['manufacturer_cat','brand_cat']) run_model(['brand_cat', 'categories_cat']) run_model(['manufacturer_cat','brand_cat', 'categories_cat']) !git status ###Output On branch master Your branch is up to date with 'origin/master'. Changes not staged for commit: (use "git add <file>..." to update what will be committed) (use "git checkout -- <file>..." to discard changes in working directory) modified: matrix_one/day3.ipynb Untracked files: (use "git add <file>..." to include in what will be committed) matrix_one/day4.ipynb no changes added to commit (use "git add" and/or "git commit -a") ###Markdown ###Code import pandas as pd import numpy as np from sklearn.tree import DecisionTreeRegressor from sklearn.metrics import mean_absolute_error from sklearn.model_selection import cross_val_score cd 'drive/My Drive/Colab Notebooks/dw_matrix' ls data df = pd.read_csv('data/men_shoes_prices.csv', low_memory=False) df.shape df.columns mean_price = np.mean( df['prices_amountmin']) mean_price y_true = df[ 'prices_amountmin' ] y_pred = [mean_price] * y_true.shape[0] mean_absolute_error(y_true, y_pred) np.log1p( df[ 'prices_amountmin' ]) .hist(bins=100) y_true = df[ 'prices_amountmin' ] y_pred = [np.median(y_true)] * y_true.shape[0] mean_absolute_error(y_true, y_pred) y_true = df[ 'prices_amountmin' ] price_log_mean = np.expm1( np.mean(np.log1p(y_true) ) ) y_pred = [np.median(y_true)] * y_true.shape[0] mean_absolute_error(y_true, y_pred) df.columns df.brand.value_counts() df['brand_cat'] = df['brand'].factorize()[0] df['manufacturer_cat'] = df['manufacturer'].factorize()[0] feats = ['brand_cat'] x = df[ feats ].values y = df['prices_amountmin'].values model = DecisionTreeRegressor(max_depth=5) scores = cross_val_score(model, x, y, scoring='neg_mean_absolute_error') np.mean(scores), np.std(scores) def run_model(feats): x = df[ feats ].values y = df['prices_amountmin'].values model = DecisionTreeRegressor(max_depth=5) scores = cross_val_score(model, x, y, scoring='neg_mean_absolute_error') return np.mean(scores), np.std(scores) run_model(['brand_cat']) run_model(['manufacturer_cat']) run_model(['manufacturer_cat', 'brand_cat']) !git add matrix_one/day4.ipynb ls ###Output _____no_output_____ ###Markdown Cel: Prognozowanie kolumny 'prices_amountmin' Model base line - średnia ###Code # base line - prognozowanie zawsze średniej z całego zestawu danych mean_price = np.mean( df['prices_amountmin'] ) # wartosc prawidłowa y_true = df['prices_amountmin'] # predykcja y_pred = [mean_price] * y_true.shape[0] # mnożymy wektor aby miał długość zestawu danych # sprawdzamy skutecznosc modelu - MAE mean_absolute_error(y_true, y_pred) ###Output _____no_output_____ ###Markdown ____________________ ###Code df['prices_amountmin'].hist(bins=100); # logarytmizujemy dane np.log( df['prices_amountmin'] + 1) .hist(bins=100); # dodajemy 1 ponieważ log(0) -> inf # to samo możemy zrealizować inną funkcją np.log1p( df['prices_amountmin']) .hist(bins=100); ###Output _____no_output_____ ###Markdown Model base line 2 - mediana ###Code # base line - prognozowanie zawsze średniej z całego zestawu danych median_price = np.median( df['prices_amountmin'] ) # wartosc prawidłowa y_true = df['prices_amountmin'] # predykcja y_pred = [median_price] * y_true.shape[0] # mnożymy wektor aby miał długość zestawu danych # sprawdzamy skutecznosc modelu - MAE mean_absolute_error(y_true, y_pred) ###Output _____no_output_____ ###Markdown Model - średnia z transformacji logarytmicznej ###Code y_true = df['prices_amountmin'] # średnia z transformacji logarytmicznej price_log_mean = np.expm1( np.mean( np.log1p( y_true ))) # odkrecamy logarytm przez np.exp y_pred = [price_log_mean] * y_true.shape[0] mean_absolute_error(y_true, y_pred) ###Output _____no_output_____ ###Markdown Model - mediana z transformacji logarytmicznej ###Code y_true = df['prices_amountmin'] # średnia z transformacji logarytmicznej price_log_median = np.expm1( np.median( np.log1p( y_true ))) # odkrecamy logarytm przez np.exp y_pred = [price_log_median] * y_true.shape[0] mean_absolute_error(y_true, y_pred) ###Output _____no_output_____ ###Markdown Podejście do ML ###Code # jakie brandy df['brand'].value_counts() # mamy dane kategorialne, które przepisujemy na liczby df['brand'].factorize() df['brand_cat'] = df['brand'].factorize()[0] ### tworzymy macierz z cechami do modelu # lista cech feats = ['brand_cat'] X = df [ feats ].values y = df['prices_amountmin'].values # tworzę model model = DecisionTreeRegressor(max_depth=5) scores = cross_val_score(model, X, y, scoring='neg_mean_absolute_error') np.mean(scores), np.std(scores) ### dodajemy nowe cechy, aby nie kopiować kodu robimy funkcję def run_model(feats): X = df [ feats ].values y = df['prices_amountmin'].values # tworzę model model = DecisionTreeRegressor(max_depth=5) scores = cross_val_score(model, X, y, scoring='neg_mean_absolute_error') return np.mean(scores), np.std(scores) feats = ['brand_cat'] run_model(feats) df.columns # nowa cecha df['manufacturer_cat'] = df['manufacturer'].factorize()[0] run_model( ['manufacturer_cat']) feats = ['brand_cat', 'manufacturer_cat'] run_model(feats) !git add day4.ipynb !git commit -m 'Men`s Shoe Price - base model with 2 features - misspelling fix' !git push -u origin master ###Output _____no_output_____ ###Markdown ###Code df.brand.value_counts() df['brand_cat'] = df['brand'].factorize()[0] feats1 = ['brand_cat'] x = df[ feats1 ].values y = df[ 'prices_amountmin' ].values model = DecisionTreeRegressor(max_depth=5) scores = cross_val_score(model, x, y, scoring='neg_mean_absolute_error') np.mean(scores), np.std(scores) import sklearn sklearn.metrics.SCORERS.keys() def run_model(feats1): x = df[ feats1 ].values y = df[ 'prices_amountmin' ].values model = DecisionTreeRegressor(max_depth=5) scores = cross_val_score(model, x, y, scoring='neg_mean_absolute_error') return np.mean(scores), np.std(scores) run_model (['brand_cat']) df['manufacturer_cat'] = df['manufacturer'].factorize()[0] df.manufacturer.value_counts() feats2 = ['manufacturer_cat'] x = df[ feats2 ].values y = df[ 'prices_amountmin' ].values model = DecisionTreeRegressor(max_depth=5) scores = cross_val_score(model, x, y, scoring='neg_mean_absolute_error') np.mean(scores), np.std(scores) def run_model(feats2): x = df[ feats2 ].values y = df[ 'prices_amountmin' ].values model = DecisionTreeRegressor(max_depth=5) scores = cross_val_score(model, x, y, scoring='neg_mean_absolute_error') return np.mean(scores), np.std(scores) run_model(['manufacturer_cat']) run_model(['manufacturer_cat', 'brand_cat']) ls ls ls matrix_one/ ###Output _____no_output_____ ###Markdown Base Line ###Code mean_price =np.mean( df['prices_amountmin']) mean_price ###Output _____no_output_____ ###Markdown Zwraca zawsze wartość średnią ###Code [3] * 5 y_true = df['prices_amountmin'] y_pred = [mean_price] * y_true.shape[0] mean_absolute_error(y_true, y_pred) df['prices_amountmin'].hist(bins=100) np.log( df['prices_amountmin'] + 1 ).hist(bins=100) np.log1p( df['prices_amountmin'] ).hist(bins=100) y_true = df['prices_amountmin'] y_pred = [np.median(y_true)] * y_true.shape[0] mean_absolute_error(y_true, y_pred) ###Output _____no_output_____ ###Markdown Transformacja logarytmiczna ###Code y_true = df['prices_amountmin'] price_log_mean = np.expm1 (np.mean ( np.log1p(y_true) ) ) y_pred = [price_log_mean] * y_true.shape[0] mean_absolute_error(y_true, y_pred) ###Output _____no_output_____ ###Markdown Decision Tree ###Code df.columns df.brand.value_counts() ###Output _____no_output_____ ###Markdown Zamiana nazw na ID ###Code # {'Nike' : 1, 'PUMA' : 2 ...} df.brand.factorize()[0] df['brand_cat'] = df.brand.factorize()[0] feats = ['brand_cat'] X = df[ feats ].values y = df.prices_amountmin model = DecisionTreeRegressor(max_depth=5) scores = cross_val_score(model, X, y, scoring='neg_mean_absolute_error') np.mean(scores), np.std(scores) ###Output _____no_output_____ ###Markdown Funkcja do modelu ###Code def run_model(feats): X = df[ feats ].values y = df.prices_amountmin model = DecisionTreeRegressor(max_depth=5) scores = cross_val_score(model, X, y, scoring='neg_mean_absolute_error') return np.mean(scores), np.std(scores) df.columns df.manufacturer.value_counts() df['manufacturer_cat'] = df.manufacturer.factorize()[0] run_model( ['manufacturer_cat', 'brand_cat'] ) !git add matrix_one/day4.ipynb !git config --global user.email "[email protected]" !git config --global user.name "kozolex" !git commit -m "day 4 done" token = '' repo = 'https://{0}@github.com/kozolex/dwmatrix.git'.format(token) !git push -u {repo} --force ###Output _____no_output_____ ###Markdown Prognozuję tą kolumnę 'prices_amountmin' ###Code mean_price = np.mean( df['prices_amountmin'] ) mean_price ###Output _____no_output_____ ###Markdown Bardzo prosty model ###Code y_true = df[ 'prices_amountmin' ] y_pred = [mean_price] * y_true.shape[0] mean_absolute_error(y_true, y_pred) df[ 'prices_amountmin' ].hist(bins=100) np.log1p(df[ 'prices_amountmin' ]).hist(bins=100) y_true = df[ 'prices_amountmin' ] y_pred = [np.median(y_true)] * y_true.shape[0] mean_absolute_error(y_true, y_pred) y_true = df[ 'prices_amountmin' ] price_log_mean = np.expm1( np.mean( np.log1p(y_true) ) ) y_pred = [price_log_mean] * y_true.shape[0] mean_absolute_error(y_true, y_pred) df.columns df['brand_cat'] = df['brand'].factorize()[0] df['manufacturer_cat'] = df['manufacturer'].factorize()[0] df['colors_cat'] = df['colors'].factorize()[0] feats = ['brand_cat'] X = df[ feats ].values y = df['prices_amountmin'].values model = DecisionTreeRegressor(max_depth=5) scores = cross_val_score(model, X, y, scoring='neg_mean_absolute_error') np.mean(scores), np.std(scores) def run_model(feats): X = df[ feats ].values y = df['prices_amountmin'].values model = DecisionTreeRegressor(max_depth=5) scores = cross_val_score(model, X, y, scoring='neg_mean_absolute_error') return np.mean(scores), np.std(scores) run_model(['brand_cat']) run_model(['brand_cat', 'manufacturer_cat']) run_model(['brand_cat', 'manufacturer_cat', 'colors_cat']) ls cd matrix_one/ ls !git status !git commit -m "Add day4 with first simple model" ###Output _____no_output_____
problem generation/workflow_generating instances.ipynb
###Markdown generate client coordinates ###Code x, y = generate_points(math.sqrt(2), num_clients) draw_instance(radius, x, y) ###Output _____no_output_____ ###Markdown generate dataframes to export as excel files ###Code all_points = np.vstack((np.zeros(2),np.vstack((x, y)).T)) #all_points travel_times_df = get_travel_times(all_points) clients_df = generate_service_times(travel_times_df, all_points, l) # probability vector for provider start time (at hour 0, 1, 2, 3) # p = [0.5, 0.2, 0.15, 0.15] providers_df = generate_providers(num_providers) general_df = generate_general(l, providers_df, clients_df) general_df.iloc[:,1] = general_df.iloc[:,1].astype(int) travel_times_df clients_df providers_df general_df import openpyxl import xlsxwriter import xlwt from datetime import datetime now = datetime.now().strftime("%d_%m_%M:%S") with pd.ExcelWriter(f'data_numP{num_providers}_numC{num_clients}_{now}.xlsx') as writer: general_df.to_excel(writer, sheet_name='General', header=False, index=False) providers_df.to_excel(writer, sheet_name='Providers', index=False) clients_df.to_excel(writer, sheet_name='Clients', index=False) travel_times_df.to_excel(writer, sheet_name='Distances', header=False, index=False) ###Output _____no_output_____
Hello,_Colaboratory.ipynb
###Markdown Welcome to Colaboratory!Colaboratory is a free Jupyter notebook environment that requires no setup and runs entirely in the cloud. See our [FAQ](https://research.google.com/colaboratory/faq.html) for more info. Getting Started- [Overview of Colaboratory](/notebooks/basic_features_overview.ipynb)- [Loading and saving data: Local files, Drive, Sheets, Google Cloud Storage](/notebooks/io.ipynb)- [Importing libraries and installing dependencies](/notebooks/snippets/importing_libraries.ipynb)- [Using Google Cloud BigQuery](/notebooks/bigquery.ipynb)- [Forms](/notebooks/forms.ipynb), [Charts](/notebooks/charts.ipynb), [Markdown](/notebooks/markdown_guide.ipynb), & [Widgets](/notebooks/widgets.ipynb)- [TensorFlow with GPU](/notebooks/gpu.ipynb)- [TensorFlow with TPU](/notebooks/tpu.ipynb)- [Machine Learning Crash Course](https://developers.google.com/machine-learning/crash-course/): [Intro to Pandas](/notebooks/mlcc/intro_to_pandas.ipynb) & [First Steps with TensorFlow](/notebooks/mlcc/first_steps_with_tensor_flow.ipynb)- [Using Colab with GitHub](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb) Highlighted Features SeedbankLooking for Colab notebooks to learn from? Check out [Seedbank](https://tools.google.com/seedbank/), a place to discover interactive machine learning examples. TensorFlow execution Colaboratory allows you to execute TensorFlow code in your browser with a single click. The example below adds two matrices.$\begin{bmatrix} 1. & 1. & 1. \\ 1. & 1. & 1. \\\end{bmatrix} +\begin{bmatrix} 1. & 2. & 3. \\ 4. & 5. & 6. \\\end{bmatrix} =\begin{bmatrix} 2. & 3. & 4. \\ 5. & 6. & 7. \\\end{bmatrix}$ ###Code import tensorflow as tf input1 = tf.ones((2, 3)) input2 = tf.reshape(tf.range(1, 7, dtype=tf.float32), (2, 3)) output = input1 + input2 with tf.Session(): result = output.eval() result ###Output _____no_output_____ ###Markdown GitHubFor a full discussion of interactions between Colab and GitHub, see [Using Colab with GitHub](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb). As a brief summary:To save a copy of your Colab notebook to Github, select *File → Save a copy to GitHub…*To load a specific notebook from github, append the github path to http://colab.research.google.com/github/.For example to load this notebook in Colab: [https://github.com/tensorflow/docs/blob/master/site/en/tutorials/_index.ipynb](https://github.com/tensorflow/docs/blob/master/site/en/tutorials/_index.ipynb) use the following Colab URL: [https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/_index.ipynb](https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/_index.ipynb) Visualization Colaboratory includes widely used libraries like [matplotlib](https://matplotlib.org/), simplifying visualization. ###Code import matplotlib.pyplot as plt import numpy as np x = np.arange(20) y = [x_i + np.random.randn(1) for x_i in x] a, b = np.polyfit(x, y, 1) _ = plt.plot(x, y, 'o', np.arange(20), a*np.arange(20)+b, '-') ###Output _____no_output_____ ###Markdown Want to use a new library? `pip install` it at the top of the notebook. Then that library can be used anywhere else in the notebook. For recipes to import commonly used libraries, refer to the [importing libraries example notebook](/notebooks/snippets/importing_libraries.ipynb). ###Code !pip install -q matplotlib-venn from matplotlib_venn import venn2 _ = venn2(subsets = (3, 2, 1)) ###Output _____no_output_____ ###Markdown FormsForms can be used to parameterize code. See the [forms example notebook](/notebooks/forms.ipynb) for more details. ###Code #@title Examples text = 'value' #@param date_input = '2018-03-22' #@param {type:"date"} number_slider = 0 #@param {type:"slider", min:-1, max:1, step:0.1} dropdown = '1st option' #@param ["1st option", "2nd option", "3rd option"] ###Output _____no_output_____ ###Markdown [View in Colaboratory](https://colab.research.google.com/github/sochachai/decart-data-visualization/blob/master/Hello,_Colaboratory.ipynb) Welcome to Colaboratory!Colaboratory is a free Jupyter notebook environment that requires no setup and runs entirely in the cloud. See our [FAQ](https://research.google.com/colaboratory/faq.html) for more info. Getting Started- [Overview of Colaboratory](/notebooks/basic_features_overview.ipynb)- [Loading and saving data: Local files, Drive, Sheets, Google Cloud Storage](/notebooks/io.ipynb)- [Importing libraries and installing dependencies](/notebooks/snippets/importing_libraries.ipynb)- [Using Google Cloud BigQuery](/notebooks/bigquery.ipynb)- [Forms](/notebooks/forms.ipynb), [Charts](/notebooks/charts.ipynb), [Markdown](/notebooks/markdown_guide.ipynb), & [Widgets](/notebooks/widgets.ipynb)- [TensorFlow with GPU](/notebooks/gpu.ipynb)- [Machine Learning Crash Course](https://developers.google.com/machine-learning/crash-course/): [Intro to Pandas](/notebooks/mlcc/intro_to_pandas.ipynb) & [First Steps with TensorFlow](/notebooks/mlcc/first_steps_with_tensor_flow.ipynb) Highlighted Features SeedbankLooking for Colab notebooks to learn from? Check out [Seedbank](https://tools.google.com/seedbank/), a place to discover interactive machine learning examples. TensorFlow execution Colaboratory allows you to execute TensorFlow code in your browser with a single click. The example below adds two matrices.$\begin{bmatrix} 1. & 1. & 1. \\ 1. & 1. & 1. \\\end{bmatrix} +\begin{bmatrix} 1. & 2. & 3. \\ 4. & 5. & 6. \\\end{bmatrix} =\begin{bmatrix} 2. & 3. & 4. \\ 5. & 6. & 7. \\\end{bmatrix}$ ###Code import tensorflow as tf input1 = tf.ones((2, 3)) input2 = tf.reshape(tf.range(1, 7, dtype=tf.float32), (2, 3)) output = input1 + input2 with tf.Session(): result = output.eval() result import tensorflow as tf from tensorflow import keras from tensorflow.python.client import device_lib def get_available_gpus(): local_device_protos = device_lib.list_local_devices() return [x.name for x in local_device_protos] print("Devices available:", get_available_gpus()) print("Tensorflow version:", tf.__version__) print("Keras version:", keras.__version__) ###Output Devices available: ['/device:CPU:0', '/device:GPU:0'] Tensorflow version: 1.10.0 Keras version: 2.1.6-tf ###Markdown GitHubYou can save a copy of your Colab notebook to Github by using File > Save a copy to GitHub…You can load any .ipynb on GitHub by just adding the path to colab.research.google.com/github/ . For example, [colab.research.google.com/github/tensorflow/models/blob/master/samples/core/get_started/_index.ipynb](https://colab.research.google.com/github/tensorflow/models/blob/master/samples/core/get_started/_index.ipynb) will load [this .ipynb](https://github.com/tensorflow/models/blob/master/samples/core/get_started/_index.ipynb) on GitHub. Visualization Colaboratory includes widely used libraries like [matplotlib](https://matplotlib.org/), simplifying visualization. ###Code import matplotlib.pyplot as plt import numpy as np x = np.arange(20) y = [x_i + np.random.randn(1) for x_i in x] a, b = np.polyfit(x, y, 1) _ = plt.plot(x, y, 'o', np.arange(20), a*np.arange(20)+b, '-') ###Output _____no_output_____ ###Markdown Want to use a new library? `pip install` it at the top of the notebook. Then that library can be used anywhere else in the notebook. For recipes to import commonly used libraries, refer to the [importing libraries example notebook](/notebooks/snippets/importing_libraries.ipynb). ###Code !pip install -q matplotlib-venn from matplotlib_venn import venn2 _ = venn2(subsets = (3, 2, 1)) ###Output _____no_output_____ ###Markdown FormsForms can be used to parameterize code. See the [forms example notebook](/notebooks/forms.ipynb) for more details. ###Code #@title Examples text = 'value' #@param date_input = '2018-03-22' #@param {type:"date"} number_slider = 0 #@param {type:"slider", min:-1, max:1, step:0.1} dropdown = '1st option' #@param ["1st option", "2nd option", "3rd option"] ###Output _____no_output_____ ###Markdown Welcome to Colaboratory!Colaboratory is a free Jupyter notebook environment that requires no setup and runs entirely in the cloud. See our [FAQ](https://research.google.com/colaboratory/faq.html) for more info. Getting Started- [Overview of Colaboratory](/notebooks/basic_features_overview.ipynb)- [Loading and saving data: Local files, Drive, Sheets, Google Cloud Storage](/notebooks/io.ipynb)- [Importing libraries and installing dependencies](/notebooks/snippets/importing_libraries.ipynb)- [Using Google Cloud BigQuery](/notebooks/bigquery.ipynb)- [Forms](/notebooks/forms.ipynb), [Charts](/notebooks/charts.ipynb), [Markdown](/notebooks/markdown_guide.ipynb), & [Widgets](/notebooks/widgets.ipynb)- [TensorFlow with GPU](/notebooks/gpu.ipynb)- [TensorFlow with TPU](/notebooks/tpu.ipynb)- [Machine Learning Crash Course](https://developers.google.com/machine-learning/crash-course/): [Intro to Pandas](/notebooks/mlcc/intro_to_pandas.ipynb) & [First Steps with TensorFlow](/notebooks/mlcc/first_steps_with_tensor_flow.ipynb)- [Using Colab with GitHub](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb) Highlighted Features SeedbankLooking for Colab notebooks to learn from? Check out [Seedbank](https://tools.google.com/seedbank/), a place to discover interactive machine learning examples. TensorFlow execution Colaboratory allows you to execute TensorFlow code in your browser with a single click. The example below adds two matrices.$\begin{bmatrix} 1. & 1. & 1. \\ 1. & 1. & 1. \\\end{bmatrix} +\begin{bmatrix} 1. & 2. & 3. \\ 4. & 5. & 6. \\\end{bmatrix} =\begin{bmatrix} 2. & 3. & 4. \\ 5. & 6. & 7. \\\end{bmatrix}$ ###Code import tensorflow as tf input1 = tf.ones((2, 3)) input2 = tf.reshape(tf.range(1, 7, dtype=tf.float32), (2, 3)) output = input1 + input2 with tf.Session(): result = output.eval() result ###Output _____no_output_____ ###Markdown GitHubFor a full discussion of interactions between Colab and GitHub, see [Using Colab with GitHub](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb). As a brief summary:To save a copy of your Colab notebook to Github, select *File → Save a copy to GitHub…*To load a specific notebook from github, append the github path to http://colab.research.google.com/github/.For example to load this notebook in Colab: [https://github.com/tensorflow/docs/blob/master/site/en/tutorials/_index.ipynb](https://github.com/tensorflow/docs/blob/master/site/en/tutorials/_index.ipynb) use the following Colab URL: [https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/_index.ipynb](https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/_index.ipynb)To open a github notebook in one click, we recommend installing the [Open in Colab Chrome Extension](https://chrome.google.com/webstore/detail/open-in-colab/iogfkhleblhcpcekbiedikdehleodpjo). Visualization Colaboratory includes widely used libraries like [matplotlib](https://matplotlib.org/), simplifying visualization. ###Code from __future__ import print_function import keras from keras.datasets import mnist from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras.layers import Conv2D, MaxPooling2D from keras import backend as K batch_size = 128 num_classes = 10 epochs = 12 # input image dimensions img_rows, img_cols = 28, 28 # the data, split between train and test sets (x_train, y_train), (x_test, y_test) = mnist.load_data() if K.image_data_format() == 'channels_first': x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols) x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols) input_shape = (1, img_rows, img_cols) else: x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1) x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1) input_shape = (img_rows, img_cols, 1) x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 # convert class vectors to binary class matrices y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) model = Sequential() model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape)) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(10, activation='sigmoid')) model.compile(loss=keras.losses.categorical_crossentropy, optimizer='adam', metrics=['accuracy']) model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(x_test, y_test)) score = model.evaluate(x_test, y_test, verbose=0) print('Test loss:', score[0]) print('Test accuracy:', score[1]) ###Output Train on 60000 samples, validate on 10000 samples Epoch 1/12 60000/60000 [==============================] - 176s 3ms/step - loss: 0.2377 - acc: 0.9318 - val_loss: 0.0490 - val_acc: 0.9844 Epoch 2/12 60000/60000 [==============================] - 176s 3ms/step - loss: 0.0666 - acc: 0.9803 - val_loss: 0.0431 - val_acc: 0.9852 Epoch 3/12 60000/60000 [==============================] - 176s 3ms/step - loss: 0.0446 - acc: 0.9859 - val_loss: 0.0339 - val_acc: 0.9892 Epoch 4/12 60000/60000 [==============================] - 174s 3ms/step - loss: 0.0353 - acc: 0.9887 - val_loss: 0.0279 - val_acc: 0.9904 Epoch 5/12 60000/60000 [==============================] - 175s 3ms/step - loss: 0.0280 - acc: 0.9908 - val_loss: 0.0319 - val_acc: 0.9905 Epoch 6/12 60000/60000 [==============================] - 174s 3ms/step - loss: 0.0236 - acc: 0.9927 - val_loss: 0.0315 - val_acc: 0.9897 Epoch 7/12 60000/60000 [==============================] - 176s 3ms/step - loss: 0.0215 - acc: 0.9925 - val_loss: 0.0268 - val_acc: 0.9926 Epoch 8/12 60000/60000 [==============================] - 175s 3ms/step - loss: 0.0166 - acc: 0.9948 - val_loss: 0.0319 - val_acc: 0.9911 Epoch 9/12 60000/60000 [==============================] - 175s 3ms/step - loss: 0.0141 - acc: 0.9953 - val_loss: 0.0356 - val_acc: 0.9892 Epoch 10/12 60000/60000 [==============================] - 175s 3ms/step - loss: 0.0130 - acc: 0.9956 - val_loss: 0.0315 - val_acc: 0.9914 Epoch 11/12 60000/60000 [==============================] - 174s 3ms/step - loss: 0.0113 - acc: 0.9963 - val_loss: 0.0340 - val_acc: 0.9909 Epoch 12/12 60000/60000 [==============================] - 174s 3ms/step - loss: 0.0110 - acc: 0.9963 - val_loss: 0.0347 - val_acc: 0.9906 Test loss: 0.03467182823866224 Test accuracy: 0.9906 ###Markdown Want to use a new library? `pip install` it at the top of the notebook. Then that library can be used anywhere else in the notebook. For recipes to import commonly used libraries, refer to the [importing libraries example notebook](/notebooks/snippets/importing_libraries.ipynb). ###Code !pip install -q matplotlib-venn from matplotlib_venn import venn2 _ = venn2(subsets = (3, 2, 1)) ###Output _____no_output_____ ###Markdown FormsForms can be used to parameterize code. See the [forms example notebook](/notebooks/forms.ipynb) for more details. ###Code #@title Examples text = 'value' #@param date_input = '2018-03-22' #@param {type:"date"} number_slider = 0 #@param {type:"slider", min:-1, max:1, step:0.1} dropdown = '1st option' #@param ["1st option", "2nd option", "3rd option"] ###Output _____no_output_____ ###Markdown [View in Colaboratory](https://colab.research.google.com/github/Denny143/CSV-converter/blob/master/Hello,_Colaboratory.ipynb) Welcome to Colaboratory!Colaboratory is a free Jupyter notebook environment that requires no setup and runs entirely in the cloud. See our [FAQ](https://research.google.com/colaboratory/faq.html) for more info. ###Code import numpy as np import pandas as pd import tensorflow as tf from sklearn.preprocessing import MultiLabelBinarizer !wget 'https://storage.googleapis.com/movies_data/movies_metadata.csv' data = pd.read_csv('movies_metadata.csv') descriptions=data['overview'] genres=data['genres'] print(descriptions) top_genres = ['Comedy', 'Thriller', 'Romance', 'Action', 'Horror', 'Crime', 'Documentary', 'Adventure', 'Science Fiction'] train_size = int(len(descriptions) * .8) print(train_size) train_descriptions = descriptions[:train_size] train_genres = genres[:train_size] test_descriptions = descriptions[train_size:] test_genres = genres[train_size:] ###Output _____no_output_____ ###Markdown Getting Started- [Overview of Colaboratory](/notebooks/basic_features_overview.ipynb)- [Loading and saving data: Local files, Drive, Sheets, Google Cloud Storage](/notebooks/io.ipynb)- [Importing libraries and installing dependencies](/notebooks/snippets/importing_libraries.ipynb)- [Using Google Cloud BigQuery](/notebooks/bigquery.ipynb)- [Forms](/notebooks/forms.ipynb), [Charts](/notebooks/charts.ipynb), [Markdown](/notebooks/markdown_guide.ipynb), & [Widgets](/notebooks/widgets.ipynb)- [TensorFlow with GPU](/notebooks/gpu.ipynb)- [Machine Learning Crash Course](https://developers.google.com/machine-learning/crash-course/): [Intro to Pandas](/notebooks/mlcc/intro_to_pandas.ipynb) & [First Steps with TensorFlow](/notebooks/mlcc/first_steps_with_tensor_flow.ipynb) Highlighted Features SeedbankLooking for Colab notebooks to learn from? Check out [Seedbank](https://tools.google.com/seedbank/), a place to discover interactive machine learning examples. TensorFlow execution Colaboratory allows you to execute TensorFlow code in your browser with a single click. The example below adds two matrices.$\begin{bmatrix} 1. & 1. & 1. \\ 1. & 1. & 1. \\\end{bmatrix} +\begin{bmatrix} 1. & 2. & 3. \\ 4. & 5. & 6. \\\end{bmatrix} =\begin{bmatrix} 2. & 3. & 4. \\ 5. & 6. & 7. \\\end{bmatrix}$ ###Code import tensorflow as tf input1 = tf.ones((2, 3)) input2 = tf.reshape(tf.range(1, 7, dtype=tf.float32), (2, 3)) output = input1 + input2 with tf.Session(): result = output.eval() result ###Output _____no_output_____ ###Markdown GitHubYou can save a copy of your Colab notebook to Github by using File > Save a copy to GitHub…You can load any .ipynb on GitHub by just adding the path to colab.research.google.com/github/ . For example, [colab.research.google.com/github/tensorflow/models/blob/master/samples/core/get_started/_index.ipynb](https://colab.research.google.com/github/tensorflow/models/blob/master/samples/core/get_started/_index.ipynb) will load [this .ipynb](https://github.com/tensorflow/models/blob/master/samples/core/get_started/_index.ipynb) on GitHub. Visualization Colaboratory includes widely used libraries like [matplotlib](https://matplotlib.org/), simplifying visualization. ###Code import matplotlib.pyplot as plt import numpy as np x = np.arange(20) y = [x_i + np.random.randn(1) for x_i in x] a, b = np.polyfit(x, y, 1) _ = plt.plot(x, y, 'o', np.arange(20), a*np.arange(20)+b, '-') ###Output _____no_output_____ ###Markdown Want to use a new library? `pip install` it at the top of the notebook. Then that library can be used anywhere else in the notebook. For recipes to import commonly used libraries, refer to the [importing libraries example notebook](/notebooks/snippets/importing_libraries.ipynb). ###Code !pip install -q matplotlib-venn from matplotlib_venn import venn2 _ = venn2(subsets = (3, 2, 1)) ###Output _____no_output_____ ###Markdown FormsForms can be used to parameterize code. See the [forms example notebook](/notebooks/forms.ipynb) for more details. ###Code #@title Examples text = 'value' #@param date_input = '2018-03-22' #@param {type:"date"} number_slider = 0 #@param {type:"slider", min:-1, max:1, step:0.1} dropdown = '1st option' #@param ["1st option", "2nd option", "3rd option"] ###Output _____no_output_____ ###Markdown [View in Colaboratory](https://colab.research.google.com/github/txemis/txemis.github.io/blob/master/Hello,_Colaboratory.ipynb) Welcome to Colaboratory!Colaboratory is a free Jupyter notebook environment that requires no setup and runs entirely in the cloud. See our [FAQ](https://research.google.com/colaboratory/faq.html) for more info. Getting Started- [Overview of Colaboratory](/notebooks/basic_features_overview.ipynb)- [Loading and saving data: Local files, Drive, Sheets, Google Cloud Storage](/notebooks/io.ipynb)- [Importing libraries and installing dependencies](/notebooks/snippets/importing_libraries.ipynb)- [Using Google Cloud BigQuery](/notebooks/bigquery.ipynb)- [Forms](/notebooks/forms.ipynb), [Charts](/notebooks/charts.ipynb), [Markdown](/notebooks/markdown_guide.ipynb), & [Widgets](/notebooks/widgets.ipynb)- [TensorFlow with GPU](/notebooks/gpu.ipynb)- [Machine Learning Crash Course](https://developers.google.com/machine-learning/crash-course/): [Intro to Pandas](/notebooks/mlcc/intro_to_pandas.ipynb) & [First Steps with TensorFlow](/notebooks/mlcc/first_steps_with_tensor_flow.ipynb) Highlighted Features SeedbankLooking for Colab notebooks to learn from? Check out [Seedbank](https://tools.google.com/seedbank/), a place to discover interactive machine learning examples. TensorFlow execution Colaboratory allows you to execute TensorFlow code in your browser with a single click. The example below adds two matrices.$\begin{bmatrix} 1. & 1. & 1. \\ 1. & 1. & 1. \\\end{bmatrix} +\begin{bmatrix} 1. & 2. & 3. \\ 4. & 5. & 6. \\\end{bmatrix} =\begin{bmatrix} 2. & 3. & 4. \\ 5. & 6. & 7. \\\end{bmatrix}$ ###Code import tensorflow as tf input1 = tf.ones((2, 3)) input2 = tf.reshape(tf.range(1, 7, dtype=tf.float32), (2, 3)) output = input1 + input2 with tf.Session(): result = output.eval() result ###Output _____no_output_____ ###Markdown GitHubYou can save a copy of your Colab notebook to Github by using File > Save a copy to GitHub…You can load any .ipynb on GitHub by just adding the path to colab.research.google.com/github/ . For example, [colab.research.google.com/github/tensorflow/models/blob/master/samples/core/get_started/_index.ipynb](https://colab.research.google.com/github/tensorflow/models/blob/master/samples/core/get_started/_index.ipynb) will load [this .ipynb](https://github.com/tensorflow/models/blob/master/samples/core/get_started/_index.ipynb) on GitHub. Visualization Colaboratory includes widely used libraries like [matplotlib](https://matplotlib.org/), simplifying visualization. ###Code import matplotlib.pyplot as plt import numpy as np x = np.arange(20) y = [x_i + np.random.randn(1) for x_i in x] a, b = np.polyfit(x, y, 1) _ = plt.plot(x, y, 'o', np.arange(20), a*np.arange(20)+b, '-') ###Output _____no_output_____ ###Markdown Want to use a new library? `pip install` it at the top of the notebook. Then that library can be used anywhere else in the notebook. For recipes to import commonly used libraries, refer to the [importing libraries example notebook](/notebooks/snippets/importing_libraries.ipynb). ###Code !pip install -q matplotlib-venn from matplotlib_venn import venn2 _ = venn2(subsets = (3, 2, 1)) ###Output _____no_output_____ ###Markdown FormsForms can be used to parameterize code. See the [forms example notebook](/notebooks/forms.ipynb) for more details. ###Code #@title Examples text = 'value' #@param date_input = '2018-03-22' #@param {type:"date"} number_slider = 0 #@param {type:"slider", min:-1, max:1, step:0.1} dropdown = '1st option' #@param ["1st option", "2nd option", "3rd option"] ###Output _____no_output_____ ###Markdown Welcome to Colaboratory!Colaboratory is a free Jupyter notebook environment that requires no setup and runs entirely in the cloud. See our [FAQ](https://research.google.com/colaboratory/faq.html) for more info. Highlighted Features SeedbankLooking for Colab notebooks to learn from? Check out [Seedbank](https://tools.google.com/seedbank/), a place to discover interactive machine learning examples. Getting Started- [Overview of Colaboratory](/notebooks/basic_features_overview.ipynb)- [Loading and saving data: Local files, Drive, Sheets, Google Cloud Storage](/notebooks/io.ipynb)- [Importing libraries and installing dependencies](/notebooks/snippets/importing_libraries.ipynb)- [Using Google Cloud BigQuery](/notebooks/bigquery.ipynb)- [Forms](/notebooks/forms.ipynb), [Charts](/notebooks/charts.ipynb), [Markdown](/notebooks/markdown_guide.ipynb), & [Widgets](/notebooks/widgets.ipynb)- [TensorFlow with GPU](/notebooks/gpu.ipynb)- [TensorFlow with TPU](/notebooks/tpu.ipynb)- [Machine Learning Crash Course](https://developers.google.com/machine-learning/crash-course/): [Intro to Pandas](/notebooks/mlcc/intro_to_pandas.ipynb) & [First Steps with TensorFlow](/notebooks/mlcc/first_steps_with_tensor_flow.ipynb)- [Using Colab with GitHub](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb) TensorFlow execution Colaboratory allows you to execute TensorFlow code in your browser with a single click. The example below adds two matrices.$\begin{bmatrix} 1. & 1. & 1. \\ 1. & 1. & 1. \\\end{bmatrix} +\begin{bmatrix} 1. & 2. & 3. \\ 4. & 5. & 6. \\\end{bmatrix} =\begin{bmatrix} 2. & 3. & 4. \\ 5. & 6. & 7. \\\end{bmatrix}$ ###Code import tensorflow as tf input1 = tf.ones((2, 3)) input2 = tf.reshape(tf.range(1, 7, dtype=tf.float32), (2, 3)) output = input1 + input2 with tf.Session(): result = output.eval() result print(type(result)) ###Output <class 'numpy.ndarray'> ###Markdown GitHubFor a full discussion of interactions between Colab and GitHub, see [Using Colab with GitHub](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb). As a brief summary:To save a copy of your Colab notebook to Github, select *File → Save a copy to GitHub…*To load a specific notebook from github, append the github path to http://colab.research.google.com/github/.For example to load this notebook in Colab: [https://github.com/tensorflow/docs/blob/master/site/en/tutorials/_index.ipynb](https://github.com/tensorflow/docs/blob/master/site/en/tutorials/_index.ipynb) use the following Colab URL: [https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/_index.ipynb](https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/_index.ipynb)To open a github notebook in one click, we recommend installing the [Open in Colab Chrome Extension](https://chrome.google.com/webstore/detail/open-in-colab/iogfkhleblhcpcekbiedikdehleodpjo). Visualization Colaboratory includes widely used libraries like [matplotlib](https://matplotlib.org/), simplifying visualization. ###Code import matplotlib.pyplot as plt import numpy as np x = np.arange(20) y = [x_i + np.random.randn(1) for x_i in x] a, b = np.polyfit(x, y, 1) _ = plt.plot(x, y, 'o', np.arange(20), a*np.arange(20)+b, '-') ###Output _____no_output_____ ###Markdown Want to use a new library? `pip install` it at the top of the notebook. Then that library can be used anywhere else in the notebook. For recipes to import commonly used libraries, refer to the [importing libraries example notebook](/notebooks/snippets/importing_libraries.ipynb). ###Code !pip install -q matplotlib-venn from matplotlib_venn import venn2 _ = venn2(subsets = (3, 2, 1)) ###Output _____no_output_____ ###Markdown FormsForms can be used to parameterize code. See the [forms example notebook](/notebooks/forms.ipynb) for more details. ###Code #@title Examples text = 'value' #@param date_input = '2018-03-22' #@param {type:"date"} number_slider = 0 #@param {type:"slider", min:-1, max:1, step:0.1} dropdown = '1st option' #@param ["1st option", "2nd option", "3rd option"] ###Output _____no_output_____ ###Markdown [View in Colaboratory](https://colab.research.google.com/github/LibbyFender/playground/blob/master/Hello,_Colaboratory.ipynb) Welcome to Colaboratory!Colaboratory is a free Jupyter notebook environment that requires no setup and runs entirely in the cloud. See our [FAQ](https://research.google.com/colaboratory/faq.html) for more info. Getting Started- [Overview of Colaboratory](/notebooks/basic_features_overview.ipynb)- [Loading and saving data: Local files, Drive, Sheets, Google Cloud Storage](/notebooks/io.ipynb)- [Importing libraries and installing dependencies](/notebooks/snippets/importing_libraries.ipynb)- [Using Google Cloud BigQuery](/notebooks/bigquery.ipynb)- [Forms](/notebooks/forms.ipynb), [Charts](/notebooks/charts.ipynb), [Markdown](/notebooks/markdown_guide.ipynb), & [Widgets](/notebooks/widgets.ipynb)- [TensorFlow with GPU](/notebooks/gpu.ipynb)- [Machine Learning Crash Course](https://developers.google.com/machine-learning/crash-course/): [Intro to Pandas](/notebooks/mlcc/intro_to_pandas.ipynb) & [First Steps with TensorFlow](/notebooks/mlcc/first_steps_with_tensor_flow.ipynb) Highlighted Features SeedbankLooking for Colab notebooks to learn from? Check out [Seedbank](https://tools.google.com/seedbank/), a place to discover interactive machine learning examples. TensorFlow execution Colaboratory allows you to execute TensorFlow code in your browser with a single click. The example below adds two matrices.$\begin{bmatrix} 1. & 1. & 1. \\ 1. & 1. & 1. \\\end{bmatrix} +\begin{bmatrix} 1. & 2. & 3. \\ 4. & 5. & 6. \\\end{bmatrix} =\begin{bmatrix} 2. & 3. & 4. \\ 5. & 6. & 7. \\\end{bmatrix}$ ###Code import tensorflow as tf input1 = tf.ones((2, 3)) input2 = tf.reshape(tf.range(1, 7, dtype=tf.float32), (2, 3)) output = input1 + input2 with tf.Session(): result = output.eval() result ###Output _____no_output_____ ###Markdown GitHubYou can save a copy of your Colab notebook to Github by using File > Save a copy to GitHub…You can load any .ipynb on GitHub by just adding the path to colab.research.google.com/github/ . For example, [colab.research.google.com/github/tensorflow/models/blob/master/samples/core/get_started/_index.ipynb](https://colab.research.google.com/github/tensorflow/models/blob/master/samples/core/get_started/_index.ipynb) will load [this .ipynb](https://github.com/tensorflow/models/blob/master/samples/core/get_started/_index.ipynb) on GitHub. Visualization Colaboratory includes widely used libraries like [matplotlib](https://matplotlib.org/), simplifying visualization. ###Code import matplotlib.pyplot as plt import numpy as np x = np.arange(20) y = [x_i + np.random.randn(1) for x_i in x] a, b = np.polyfit(x, y, 1) _ = plt.plot(x, y, 'o', np.arange(20), a*np.arange(20)+b, '-') ###Output _____no_output_____ ###Markdown Want to use a new library? `pip install` it at the top of the notebook. Then that library can be used anywhere else in the notebook. For recipes to import commonly used libraries, refer to the [importing libraries example notebook](/notebooks/snippets/importing_libraries.ipynb). ###Code !pip install -q matplotlib-venn from matplotlib_venn import venn2 _ = venn2(subsets = (3, 2, 1)) ###Output _____no_output_____ ###Markdown FormsForms can be used to parameterize code. See the [forms example notebook](/notebooks/forms.ipynb) for more details. ###Code #@title Examples text = 'value' #@param date_input = '2018-03-22' #@param {type:"date"} number_slider = 0 #@param {type:"slider", min:-1, max:1, step:0.1} dropdown = '1st option' #@param ["1st option", "2nd option", "3rd option"] ###Output _____no_output_____ ###Markdown Welcome to Colaboratory!Colaboratory is a free Jupyter notebook environment that requires no setup and runs entirely in the cloud. See our [FAQ](https://research.google.com/colaboratory/faq.html) for more info. Getting Started- [Overview of Colaboratory](/notebooks/basic_features_overview.ipynb)- [Loading and saving data: Local files, Drive, Sheets, Google Cloud Storage](/notebooks/io.ipynb)- [Importing libraries and installing dependencies](/notebooks/snippets/importing_libraries.ipynb)- [Using Google Cloud BigQuery](/notebooks/bigquery.ipynb)- [Forms](/notebooks/forms.ipynb), [Charts](/notebooks/charts.ipynb), [Markdown](/notebooks/markdown_guide.ipynb), & [Widgets](/notebooks/widgets.ipynb)- [TensorFlow with GPU](/notebooks/gpu.ipynb)- [TensorFlow with TPU](/notebooks/tpu.ipynb)- [Machine Learning Crash Course](https://developers.google.com/machine-learning/crash-course/): [Intro to Pandas](/notebooks/mlcc/intro_to_pandas.ipynb) & [First Steps with TensorFlow](/notebooks/mlcc/first_steps_with_tensor_flow.ipynb)- [Using Colab with GitHub](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb) Highlighted Features SeedbankLooking for Colab notebooks to learn from? Check out [Seedbank](https://tools.google.com/seedbank/), a place to discover interactive machine learning examples. TensorFlow execution Colaboratory allows you to execute TensorFlow code in your browser with a single click. The example below adds two matrices.$\begin{bmatrix} 1. & 1. & 1. \\ 1. & 1. & 1. \\\end{bmatrix} +\begin{bmatrix} 1. & 2. & 3. \\ 4. & 5. & 6. \\\end{bmatrix} =\begin{bmatrix} 2. & 3. & 4. \\ 5. & 6. & 7. \\\end{bmatrix}$ ###Code import tensorflow as tf input1 = tf.ones((2, 3)) input2 = tf.reshape(tf.range(1, 7, dtype=tf.float32), (2, 3)) output = input1 + input2 with tf.Session(): result = output.eval() result ###Output _____no_output_____ ###Markdown GitHubFor a full discussion of interactions between Colab and GitHub, see [Using Colab with GitHub](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb). As a brief summary:To save a copy of your Colab notebook to Github, select *File → Save a copy to GitHub…*To load a specific notebook from github, append the github path to http://colab.research.google.com/github/.For example to load this notebook in Colab: [https://github.com/tensorflow/docs/blob/master/site/en/tutorials/_index.ipynb](https://github.com/tensorflow/docs/blob/master/site/en/tutorials/_index.ipynb) use the following Colab URL: [https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/_index.ipynb](https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/_index.ipynb)To open a github notebook in one click, we recommend installing the [Open in Colab Chrome Extension](https://chrome.google.com/webstore/detail/open-in-colab/iogfkhleblhcpcekbiedikdehleodpjo). Visualization Colaboratory includes widely used libraries like [matplotlib](https://matplotlib.org/), simplifying visualization. ###Code import matplotlib.pyplot as plt import numpy as np x = np.arange(20) y = [x_i + np.random.randn(1) for x_i in x] a, b = np.polyfit(x, y, 1) _ = plt.plot(x, y, 'o', np.arange(20), a*np.arange(20)+b, '-') ###Output _____no_output_____ ###Markdown Want to use a new library? `pip install` it at the top of the notebook. Then that library can be used anywhere else in the notebook. For recipes to import commonly used libraries, refer to the [importing libraries example notebook](/notebooks/snippets/importing_libraries.ipynb). ###Code !pip install -q matplotlib-venn from matplotlib_venn import venn2 _ = venn2(subsets = (3, 2, 1)) ###Output _____no_output_____ ###Markdown FormsForms can be used to parameterize code. See the [forms example notebook](/notebooks/forms.ipynb) for more details. ###Code #@title Examples text = 'value' #@param date_input = '2018-03-22' #@param {type:"date"} number_slider = 0 #@param {type:"slider", min:-1, max:1, step:0.1} dropdown = '1st option' #@param ["1st option", "2nd option", "3rd option"] ###Output _____no_output_____ ###Markdown Welcome to Colaboratory!Colaboratory is a free Jupyter notebook environment that requires no setup and runs entirely in the cloud. See our [FAQ](https://research.google.com/colaboratory/faq.html) for more info. Getting Started- [Overview of Colaboratory](/notebooks/basic_features_overview.ipynb)- [Loading and saving data: Local files, Drive, Sheets, Google Cloud Storage](/notebooks/io.ipynb)- [Importing libraries and installing dependencies](/notebooks/snippets/importing_libraries.ipynb)- [Using Google Cloud BigQuery](/notebooks/bigquery.ipynb)- [Forms](/notebooks/forms.ipynb), [Charts](/notebooks/charts.ipynb), [Markdown](/notebooks/markdown_guide.ipynb), & [Widgets](/notebooks/widgets.ipynb)- [TensorFlow with GPU](/notebooks/gpu.ipynb)- [TensorFlow with TPU](/notebooks/tpu.ipynb)- [Machine Learning Crash Course](https://developers.google.com/machine-learning/crash-course/): [Intro to Pandas](/notebooks/mlcc/intro_to_pandas.ipynb) & [First Steps with TensorFlow](/notebooks/mlcc/first_steps_with_tensor_flow.ipynb)- [Using Colab with GitHub](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb) Highlighted Features SeedbankLooking for Colab notebooks to learn from? Check out [Seedbank](https://tools.google.com/seedbank/), a place to discover interactive machine learning examples. TensorFlow execution Colaboratory allows you to execute TensorFlow code in your browser with a single click. The example below adds two matrices.$\begin{bmatrix} 1. & 1. & 1. \\ 1. & 1. & 1. \\\end{bmatrix} +\begin{bmatrix} 1. & 2. & 3. \\ 4. & 5. & 6. \\\end{bmatrix} =\begin{bmatrix} 2. & 3. & 4. \\ 5. & 6. & 7. \\\end{bmatrix}$ ###Code import tensorflow as tf input1 = tf.ones((2, 3)) input2 = tf.reshape(tf.range(1, 7, dtype=tf.float32), (2, 3)) output = input1 + input2 with tf.Session(): result = output.eval() result ###Output _____no_output_____ ###Markdown GitHubFor a full discussion of interactions between Colab and GitHub, see [Using Colab with GitHub](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb). As a brief summary:To save a copy of your Colab notebook to Github, select *File → Save a copy to GitHub…*To load a specific notebook from github, append the github path to http://colab.research.google.com/github/.For example to load this notebook in Colab: [https://github.com/tensorflow/docs/blob/master/site/en/tutorials/_index.ipynb](https://github.com/tensorflow/docs/blob/master/site/en/tutorials/_index.ipynb) use the following Colab URL: [https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/_index.ipynb](https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/_index.ipynb)To open a github notebook in one click, we recommend installing the [Open in Colab Chrome Extension](https://chrome.google.com/webstore/detail/open-in-colab/iogfkhleblhcpcekbiedikdehleodpjo). Visualization Colaboratory includes widely used libraries like [matplotlib](https://matplotlib.org/), simplifying visualization. ###Code import matplotlib.pyplot as plt import numpy as np x = np.arange(20) y = [x_i + np.random.randn(1) for x_i in x] a, b = np.polyfit(x, y, 1) _ = plt.plot(x, y, 'o', np.arange(20), a*np.arange(20)+b, '-') ###Output _____no_output_____ ###Markdown Want to use a new library? `pip install` it at the top of the notebook. Then that library can be used anywhere else in the notebook. For recipes to import commonly used libraries, refer to the [importing libraries example notebook](/notebooks/snippets/importing_libraries.ipynb). ###Code !pip install -q matplotlib-venn from matplotlib_venn import venn2 _ = venn2(subsets = (3, 2, 1)) ###Output _____no_output_____ ###Markdown FormsForms can be used to parameterize code. See the [forms example notebook](/notebooks/forms.ipynb) for more details. ###Code #@title Examples text = 'value' #@param date_input = '2018-12-09' #@param {type:"date"} number_slider = 0.5 #@param {type:"slider", min:-1, max:1, step:0.1} dropdown = '3rd option' #@param ["1st option", "2nd option", "3rd option"] ###Output _____no_output_____ ###Markdown Local runtime supportColab supports connecting to a Jupyter runtime on your local machine. For more information, see our [documentation](https://research.google.com/colaboratory/local-runtimes.html). ###Code ###Output _____no_output_____ ###Markdown [View in Colaboratory](https://colab.research.google.com/github/abhijit-gupta/LearnML/blob/master/Hello,_Colaboratory.ipynb) Welcome to Colaboratory!Colaboratory is a free Jupyter notebook environment that requires no setup and runs entirely in the cloud. See our [FAQ](https://research.google.com/colaboratory/faq.html) for more info. Getting Started- [Overview of Colaboratory](/notebooks/basic_features_overview.ipynb)- [Loading and saving data: Local files, Drive, Sheets, Google Cloud Storage](/notebooks/io.ipynb)- [Importing libraries and installing dependencies](/notebooks/snippets/importing_libraries.ipynb)- [Using Google Cloud BigQuery](/notebooks/bigquery.ipynb)- [Forms](/notebooks/forms.ipynb), [Charts](/notebooks/charts.ipynb), [Markdown](/notebooks/markdown_guide.ipynb), & [Widgets](/notebooks/widgets.ipynb)- [TensorFlow with GPU](/notebooks/gpu.ipynb)- [Machine Learning Crash Course](https://developers.google.com/machine-learning/crash-course/): [Intro to Pandas](/notebooks/mlcc/intro_to_pandas.ipynb) & [First Steps with TensorFlow](/notebooks/mlcc/first_steps_with_tensor_flow.ipynb) Highlighted Features SeedbankLooking for Colab notebooks to learn from? Check out [Seedbank](https://tools.google.com/seedbank/), a place to discover interactive machine learning examples. TensorFlow execution Colaboratory allows you to execute TensorFlow code in your browser with a single click. The example below adds two matrices.$\begin{bmatrix} 1. & 1. & 1. \\ 1. & 1. & 1. \\\end{bmatrix} +\begin{bmatrix} 1. & 2. & 3. \\ 4. & 5. & 6. \\\end{bmatrix} =\begin{bmatrix} 2. & 3. & 4. \\ 5. & 6. & 7. \\\end{bmatrix}$ ###Code import tensorflow as tf input1 = tf.ones((2, 3)) input2 = tf.reshape(tf.range(1, 7, dtype=tf.float32), (2, 3)) output = input1 + input2 with tf.Session(): result = output.eval() result ###Output _____no_output_____ ###Markdown GitHubYou can save a copy of your Colab notebook to Github by using File > Save a copy to GitHub…You can load any .ipynb on GitHub by just adding the path to colab.research.google.com/github/ . For example, [colab.research.google.com/github/tensorflow/models/blob/master/samples/core/get_started/_index.ipynb](https://colab.research.google.com/github/tensorflow/models/blob/master/samples/core/get_started/_index.ipynb) will load [this .ipynb](https://github.com/tensorflow/models/blob/master/samples/core/get_started/_index.ipynb) on GitHub. Visualization Colaboratory includes widely used libraries like [matplotlib](https://matplotlib.org/), simplifying visualization. ###Code import matplotlib.pyplot as plt import numpy as np x = np.arange(20) y = [x_i + np.random.randn(1) for x_i in x] a, b = np.polyfit(x, y, 1) _ = plt.plot(x, y, 'o', np.arange(20), a*np.arange(20)+b, '-') ###Output _____no_output_____ ###Markdown Want to use a new library? `pip install` it at the top of the notebook. Then that library can be used anywhere else in the notebook. For recipes to import commonly used libraries, refer to the [importing libraries example notebook](/notebooks/snippets/importing_libraries.ipynb). ###Code !pip install -q matplotlib-venn from matplotlib_venn import venn2 _ = venn2(subsets = (3, 2, 1)) ###Output _____no_output_____ ###Markdown FormsForms can be used to parameterize code. See the [forms example notebook](/notebooks/forms.ipynb) for more details. ###Code #@title Examples text = 'value' #@param date_input = '2018-03-22' #@param {type:"date"} number_slider = 0 #@param {type:"slider", min:-1, max:1, step:0.1} dropdown = '1st option' #@param ["1st option", "2nd option", "3rd option"] ###Output _____no_output_____ ###Markdown Welcome to Colaboratory!Colaboratory is a free Jupyter notebook environment that requires no setup and runs entirely in the cloud. See our [FAQ](https://research.google.com/colaboratory/faq.html) for more info. Getting Started- [Overview of Colaboratory](/notebooks/basic_features_overview.ipynb)- [Loading and saving data: Local files, Drive, Sheets, Google Cloud Storage](/notebooks/io.ipynb)- [Importing libraries and installing dependencies](/notebooks/snippets/importing_libraries.ipynb)- [Using Google Cloud BigQuery](/notebooks/bigquery.ipynb)- [Forms](/notebooks/forms.ipynb), [Charts](/notebooks/charts.ipynb), [Markdown](/notebooks/markdown_guide.ipynb), & [Widgets](/notebooks/widgets.ipynb)- [TensorFlow with GPU](/notebooks/gpu.ipynb)- [TensorFlow with TPU](/notebooks/tpu.ipynb)- [Machine Learning Crash Course](https://developers.google.com/machine-learning/crash-course/): [Intro to Pandas](/notebooks/mlcc/intro_to_pandas.ipynb) & [First Steps with TensorFlow](/notebooks/mlcc/first_steps_with_tensor_flow.ipynb)- [Using Colab with GitHub](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb) Highlighted Features SeedbankLooking for Colab notebooks to learn from? Check out [Seedbank](https://tools.google.com/seedbank/), a place to discover interactive machine learning examples. TensorFlow execution Colaboratory allows you to execute TensorFlow code in your browser with a single click. The example below adds two matrices.$\begin{bmatrix} 1. & 1. & 1. \\ 1. & 1. & 1. \\\end{bmatrix} +\begin{bmatrix} 1. & 2. & 3. \\ 4. & 5. & 6. \\\end{bmatrix} =\begin{bmatrix} 2. & 3. & 4. \\ 5. & 6. & 7. \\\end{bmatrix}$ ###Code import tensorflow as tf input1 = tf.ones((2, 3)) input2 = tf.reshape(tf.range(1, 7, dtype=tf.float32), (2, 3)) output = input1 + input2 with tf.Session(): result = output.eval() result ###Output _____no_output_____ ###Markdown GitHubFor a full discussion of interactions between Colab and GitHub, see [Using Colab with GitHub](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb). As a brief summary:To save a copy of your Colab notebook to Github, select *File → Save a copy to GitHub…*To load a specific notebook from github, append the github path to http://colab.research.google.com/github/.For example to load this notebook in Colab: [https://github.com/tensorflow/docs/blob/master/site/en/tutorials/_index.ipynb](https://github.com/tensorflow/docs/blob/master/site/en/tutorials/_index.ipynb) use the following Colab URL: [https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/_index.ipynb](https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/_index.ipynb)To open a github notebook in one click, we recommend installing the [Open in Colab Chrome Extension](https://chrome.google.com/webstore/detail/open-in-colab/iogfkhleblhcpcekbiedikdehleodpjo). Visualization Colaboratory includes widely used libraries like [matplotlib](https://matplotlib.org/), simplifying visualization. ###Code import matplotlib.pyplot as plt import numpy as np x = np.arange(20) y = [x_i + np.random.randn(1) for x_i in x] a, b = np.polyfit(x, y, 1) _ = plt.plot(x, y, 'o', np.arange(20), a*np.arange(20)+b, '-') ###Output _____no_output_____ ###Markdown Want to use a new library? `pip install` it at the top of the notebook. Then that library can be used anywhere else in the notebook. For recipes to import commonly used libraries, refer to the [importing libraries example notebook](/notebooks/snippets/importing_libraries.ipynb). ###Code !pip install -q matplotlib-venn from matplotlib_venn import venn2 _ = venn2(subsets = (3, 2, 1)) ###Output _____no_output_____ ###Markdown FormsForms can be used to parameterize code. See the [forms example notebook](/notebooks/forms.ipynb) for more details. ###Code #@title Examples text = 'value' #@param date_input = '2018-03-22' #@param {type:"date"} number_slider = 0 #@param {type:"slider", min:-1, max:1, step:0.1} dropdown = '1st option' #@param ["1st option", "2nd option", "3rd option"] ###Output _____no_output_____ ###Markdown Welcome to Colaboratory!Colaboratory is a free Jupyter notebook environment that requires no setup and runs entirely in the cloud. See our [FAQ](https://research.google.com/colaboratory/faq.html) for more info. Getting Started- [Overview of Colaboratory](/notebooks/basic_features_overview.ipynb)- [Loading and saving data: Local files, Drive, Sheets, Google Cloud Storage](/notebooks/io.ipynb)- [Importing libraries and installing dependencies](/notebooks/snippets/importing_libraries.ipynb)- [Using Google Cloud BigQuery](/notebooks/bigquery.ipynb)- [Forms](/notebooks/forms.ipynb), [Charts](/notebooks/charts.ipynb), [Markdown](/notebooks/markdown_guide.ipynb), & [Widgets](/notebooks/widgets.ipynb)- [TensorFlow with GPU](/notebooks/gpu.ipynb)- [TensorFlow with TPU](/notebooks/tpu.ipynb)- [Machine Learning Crash Course](https://developers.google.com/machine-learning/crash-course/): [Intro to Pandas](/notebooks/mlcc/intro_to_pandas.ipynb) & [First Steps with TensorFlow](/notebooks/mlcc/first_steps_with_tensor_flow.ipynb)- [Using Colab with GitHub](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb) Highlighted Features SeedbankLooking for Colab notebooks to learn from? Check out [Seedbank](https://tools.google.com/seedbank/), a place to discover interactive machine learning examples. TensorFlow execution Colaboratory allows you to execute TensorFlow code in your browser with a single click. The example below adds two matrices.$\begin{bmatrix} 1. & 1. & 1. \\ 1. & 1. & 1. \\\end{bmatrix} +\begin{bmatrix} 1. & 2. & 3. \\ 4. & 5. & 6. \\\end{bmatrix} =\begin{bmatrix} 2. & 3. & 4. \\ 5. & 6. & 7. \\\end{bmatrix}$ ###Code import tensorflow as tf input1 = tf.ones((2, 3)) input2 = tf.reshape(tf.range(1, 7, dtype=tf.float32), (2, 3)) output = input1 + input2 with tf.Session(): result = output.eval() result ###Output _____no_output_____ ###Markdown GitHubFor a full discussion of interactions between Colab and GitHub, see [Using Colab with GitHub](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb). As a brief summary:To save a copy of your Colab notebook to Github, select *File → Save a copy to GitHub…*To load a specific notebook from github, append the github path to http://colab.research.google.com/github/.For example to load this notebook in Colab: [https://github.com/tensorflow/docs/blob/master/site/en/tutorials/_index.ipynb](https://github.com/tensorflow/docs/blob/master/site/en/tutorials/_index.ipynb) use the following Colab URL: [https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/_index.ipynb](https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/_index.ipynb)To open a github notebook in one click, we recommend installing the [Open in Colab Chrome Extension](https://chrome.google.com/webstore/detail/open-in-colab/iogfkhleblhcpcekbiedikdehleodpjo). Visualization Colaboratory includes widely used libraries like [matplotlib](https://matplotlib.org/), simplifying visualization. ###Code import matplotlib.pyplot as plt import numpy as np x = np.arange(20) y = [x_i + np.random.randn(1) for x_i in x] a, b = np.polyfit(x, y, 1) _ = plt.plot(x, y, 'o', np.arange(20), a*np.arange(20)+b, '-') ###Output _____no_output_____ ###Markdown Want to use a new library? `pip install` it at the top of the notebook. Then that library can be used anywhere else in the notebook. For recipes to import commonly used libraries, refer to the [importing libraries example notebook](/notebooks/snippets/importing_libraries.ipynb). ###Code !pip install -q matplotlib-venn from matplotlib_venn import venn2 _ = venn2(subsets = (3, 2, 1)) ###Output _____no_output_____ ###Markdown FormsForms can be used to parameterize code. See the [forms example notebook](/notebooks/forms.ipynb) for more details. ###Code #@title Examples text = 'value' #@param date_input = '2018-03-22' #@param {type:"date"} number_slider = 0 #@param {type:"slider", min:-1, max:1, step:0.1} dropdown = '1st option' #@param ["1st option", "2nd option", "3rd option"] ###Output _____no_output_____ ###Markdown [View in Colaboratory](https://colab.research.google.com/github/rainu1729/data-analysis/blob/master/Hello,_Colaboratory.ipynb) Welcome to Colaboratory!Colaboratory is a Google research project created to help disseminate machine learning education and research. It's a Jupyter notebook environment that requires no setup to use and runs entirely in the cloud.Colaboratory notebooks are stored in [Google Drive](https://drive.google.com) and can be shared just as you would with Google Docs or Sheets. Colaboratory is free to use.For more information, see our [FAQ](https://research.google.com/colaboratory/faq.html). Local runtime supportColab also supports connecting to a Jupyter runtime on your local machine. For more information, see our [documentation](https://research.google.com/colaboratory/local-runtimes.html). Python 3Colaboratory supports both Python2 and Python3 for code execution. * When creating a new notebook, you'll have the choice between Python 2 and Python 3.* You can also change the language associated with a notebook; this information will be written into the `.ipynb` file itself, and thus will be preserved for future sessions. ###Code import sys print('Hello, Colaboratory from Python {}!'.format(sys.version_info[0])) ###Output Hello, Colaboratory from Python 3! ###Markdown TensorFlow execution Colaboratory allows you to execute TensorFlow code in your browser with a single click. The example below adds two matrices.$\begin{bmatrix} 1. & 1. & 1. \\ 1. & 1. & 1. \\\end{bmatrix} +\begin{bmatrix} 1. & 2. & 3. \\ 4. & 5. & 6. \\\end{bmatrix} =\begin{bmatrix} 2. & 3. & 4. \\ 5. & 6. & 7. \\\end{bmatrix}$ ###Code import tensorflow as tf import numpy as np with tf.Session(): input1 = tf.constant(1.0, shape=[2, 3]) input2 = tf.constant(np.reshape(np.arange(1.0, 7.0, dtype=np.float32), (2, 3))) output = tf.add(input1, input2) result = output.eval() result ###Output _____no_output_____ ###Markdown Visualization Colaboratory includes widely used libraries like [matplotlib](https://matplotlib.org/), simplifying visualization. ###Code import matplotlib.pyplot as plt import numpy as np x = np.arange(20) y = [x_i + np.random.randn(1) for x_i in x] a, b = np.polyfit(x, y, 1) _ = plt.plot(x, y, 'o', np.arange(20), a*np.arange(20)+b, '-') ###Output _____no_output_____ ###Markdown Want to use a new library? `pip install` it. For recipes to import commonly used libraries, refer to the [importing libraries example notebook](/notebooks/snippets/importing_libraries.ipynb) ###Code # Only needs to be run once at the top of the notebook. !pip install -q matplotlib-venn # Now the newly-installed library can be used anywhere else in the notebook. from matplotlib_venn import venn2 _ = venn2(subsets = (3, 2, 1)) ###Output _____no_output_____ ###Markdown FormsForms can be used to parameterize code. See the [forms example notebook](/notebooks/forms.ipynb) for more details. ###Code #@title Examples text = 'value' #@param date_input = '2018-03-22' #@param {type:"date"} number_slider = 0 #@param {type:"slider", min:-1, max:1, step:0.1} dropdown = '1st option' #@param ["1st option", "2nd option", "3rd option"] ###Output _____no_output_____ ###Markdown [View in Colaboratory](https://colab.research.google.com/github/popin0/colab/blob/master/Hello,_Colaboratory.ipynb) Welcome to Colaboratory!Colaboratory is a free Jupyter notebook environment that requires no setup and runs entirely in the cloud. See our [FAQ](https://research.google.com/colaboratory/faq.html) for more info. Getting Started- [Overview of Colaboratory](/notebooks/basic_features_overview.ipynb)- [Loading and saving data: Local files, Drive, Sheets, Google Cloud Storage](/notebooks/io.ipynb)- [Importing libraries and installing dependencies](/notebooks/snippets/importing_libraries.ipynb)- [Using Google Cloud BigQuery](/notebooks/bigquery.ipynb)- [Forms](/notebooks/forms.ipynb), [Charts](/notebooks/charts.ipynb), [Markdown](/notebooks/markdown_guide.ipynb), & [Widgets](/notebooks/widgets.ipynb)- [TensorFlow with GPU](/notebooks/gpu.ipynb)- [Machine Learning Crash Course](https://developers.google.com/machine-learning/crash-course/): [Intro to Pandas](/notebooks/mlcc/intro_to_pandas.ipynb) & [First Steps with TensorFlow](/notebooks/mlcc/first_steps_with_tensor_flow.ipynb) Highlighted Features SeedbankLooking for Colab notebooks to learn from? Check out [Seedbank](https://tools.google.com/seedbank/), a place to discover interactive machine learning examples. TensorFlow execution Colaboratory allows you to execute TensorFlow code in your browser with a single click. The example below adds two matrices.$\begin{bmatrix} 1. & 1. & 1. \\ 1. & 1. & 1. \\\end{bmatrix} +\begin{bmatrix} 1. & 2. & 3. \\ 4. & 5. & 6. \\\end{bmatrix} =\begin{bmatrix} 2. & 3. & 4. \\ 5. & 6. & 7. \\\end{bmatrix}$ ###Code import tensorflow as tf input1 = tf.ones((2, 3)) input2 = tf.reshape(tf.range(1, 7, dtype=tf.float32), (2, 3)) output = input1 + input2 with tf.Session(): result = output.eval() result ###Output _____no_output_____ ###Markdown GitHubYou can save a copy of your Colab notebook to Github by using File > Save a copy to GitHub…You can load any .ipynb on GitHub by just adding the path to colab.research.google.com/github/ . For example, [colab.research.google.com/github/tensorflow/models/blob/master/samples/core/get_started/_index.ipynb](https://colab.research.google.com/github/tensorflow/models/blob/master/samples/core/get_started/_index.ipynb) will load [this .ipynb](https://github.com/tensorflow/models/blob/master/samples/core/get_started/_index.ipynb) on GitHub. Visualization Colaboratory includes widely used libraries like [matplotlib](https://matplotlib.org/), simplifying visualization. ###Code import matplotlib.pyplot as plt import numpy as np x = np.arange(20) y = [x_i + np.random.randn(1) for x_i in x] a, b = np.polyfit(x, y, 1) _ = plt.plot(x, y, 'o', np.arange(20), a*np.arange(20)+b, '-') ###Output _____no_output_____ ###Markdown Want to use a new library? `pip install` it at the top of the notebook. Then that library can be used anywhere else in the notebook. For recipes to import commonly used libraries, refer to the [importing libraries example notebook](/notebooks/snippets/importing_libraries.ipynb). ###Code !pip install -q matplotlib-venn from matplotlib_venn import venn2 _ = venn2(subsets = (3, 2, 1)) ###Output _____no_output_____ ###Markdown FormsForms can be used to parameterize code. See the [forms example notebook](/notebooks/forms.ipynb) for more details. ###Code #@title Examples text = 'value' #@param date_input = '2018-03-22' #@param {type:"date"} number_slider = 0 #@param {type:"slider", min:-1, max:1, step:0.1} dropdown = '1st option' #@param ["1st option", "2nd option", "3rd option"] ###Output _____no_output_____ ###Markdown [View in Colaboratory](https://colab.research.google.com/github/ehughes29/courses/blob/master/Hello,_Colaboratory.ipynb) Welcome to Colaboratory!Colaboratory is a free Jupyter notebook environment that requires no setup and runs entirely in the cloud. See our [FAQ](https://research.google.com/colaboratory/faq.html) for more info. Getting Started- [Overview of Colaboratory](/notebooks/basic_features_overview.ipynb)- [Loading and saving data: Local files, Drive, Sheets, Google Cloud Storage](/notebooks/io.ipynb)- [Importing libraries and installing dependencies](/notebooks/snippets/importing_libraries.ipynb)- [Using Google Cloud BigQuery](/notebooks/bigquery.ipynb)- [Forms](/notebooks/forms.ipynb), [Charts](/notebooks/charts.ipynb), [Markdown](/notebooks/markdown_guide.ipynb), & [Widgets](/notebooks/widgets.ipynb)- [TensorFlow with GPU](/notebooks/gpu.ipynb)- [Machine Learning Crash Course](https://developers.google.com/machine-learning/crash-course/): [Intro to Pandas](/notebooks/mlcc/intro_to_pandas.ipynb) & [First Steps with TensorFlow](/notebooks/mlcc/first_steps_with_tensor_flow.ipynb) Highlighted Features SeedbankLooking for Colab notebooks to learn from? Check out [Seedbank](https://tools.google.com/seedbank/), a place to discover interactive machine learning examples. TensorFlow execution Colaboratory allows you to execute TensorFlow code in your browser with a single click. The example below adds two matrices.$\begin{bmatrix} 1. & 1. & 1. \\ 1. & 1. & 1. \\\end{bmatrix} +\begin{bmatrix} 1. & 2. & 3. \\ 4. & 5. & 6. \\\end{bmatrix} =\begin{bmatrix} 2. & 3. & 4. \\ 5. & 6. & 7. \\\end{bmatrix}$ ###Code import tensorflow as tf input1 = tf.ones((2, 3)) input2 = tf.reshape(tf.range(1, 7, dtype=tf.float32), (2, 3)) output = input1 + input2 with tf.Session(): result = output.eval() result ###Output _____no_output_____ ###Markdown GitHubYou can save a copy of your Colab notebook to Github by using File > Save a copy to GitHub…You can load any .ipynb on GitHub by just adding the path to colab.research.google.com/github/ . For example, [colab.research.google.com/github/tensorflow/models/blob/master/samples/core/get_started/_index.ipynb](https://colab.research.google.com/github/tensorflow/models/blob/master/samples/core/get_started/_index.ipynb) will load [this .ipynb](https://github.com/tensorflow/models/blob/master/samples/core/get_started/_index.ipynb) on GitHub. Visualization Colaboratory includes widely used libraries like [matplotlib](https://matplotlib.org/), simplifying visualization. ###Code import matplotlib.pyplot as plt import numpy as np x = np.arange(20) y = [x_i + np.random.randn(1) for x_i in x] a, b = np.polyfit(x, y, 1) _ = plt.plot(x, y, 'o', np.arange(20), a*np.arange(20)+b, '-') ###Output _____no_output_____ ###Markdown Want to use a new library? `pip install` it at the top of the notebook. Then that library can be used anywhere else in the notebook. For recipes to import commonly used libraries, refer to the [importing libraries example notebook](/notebooks/snippets/importing_libraries.ipynb). ###Code !pip install -q matplotlib-venn from matplotlib_venn import venn2 _ = venn2(subsets = (3, 2, 1)) ###Output _____no_output_____ ###Markdown FormsForms can be used to parameterize code. See the [forms example notebook](/notebooks/forms.ipynb) for more details. ###Code #@title Examples text = 'value' #@param date_input = '2018-03-22' #@param {type:"date"} number_slider = 0 #@param {type:"slider", min:-1, max:1, step:0.1} dropdown = '1st option' #@param ["1st option", "2nd option", "3rd option"] ###Output _____no_output_____
day3_solutions_notebook_part2.ipynb
###Markdown Object Detection Model (Faster R-CNN) Classification vs. Detection![image.png](attachment:image.png) Faster R-CNN Object Detector Overview![image-2.png](attachment:image-2.png) The Faster R-CNN works as follows:* The RPN generates region proposals.* For all region proposals in the image, a fixed-length feature vector is extracted from each region using the ROI Pooling layer * The extracted feature vectors are then classified using the Fast R-CNN.* The class scores of the detected objects in addition to their bounding-boxes are returned. Object Detection using FasterRCNN Model (Pre-trained) Importing required python librariesMissing python libraries can be installed using the following syntax: !pip install [packagename]This code also uses reference functions that do not belong to any specific python library. They are present in the files:* transforms.py (different from the transforms function from torchvision library)* utils.py* Both these can be download from here --> https://github.com/pytorch/vision/tree/main/references/detection* Download these files and place them in the same location as this jupyter notebook ###Code import torchvision.transforms as transforms import cv2 import numpy import numpy as np import torchvision import torch torch.cuda.empty_cache() import argparse import cv2 from PIL import Image import json import random import math import sys import os from pycocotools.coco import COCO import torchvision from torchvision.models.detection.faster_rcnn import FastRCNNPredictor from matplotlib import pyplot as plt import os import utils import transforms as T ###Output _____no_output_____ ###Markdown Getting Images and Annotations FIFTYONE: The open-source tool for building high-quality datasets and computer vision models.FiftyOne provides the building blocks for optimizing your dataset analysis pipeline. Use it to get hands-on with your data, including visualizing complex labels, evaluating your models, exploring scenarios of interest, identifying failure modes, finding annotation mistakes, and much more! COCO dataset can now be downloaded from FiftyOne Dataset Zoo:Additional information can be found here: https://voxel51.com/docs/fiftyone/api/fiftyone.zoo.datasets.html CoCo dataset output classes:* Coco dataset set contains the following 91 classes as output.* Certain classes have been removed from the 2017 version of the CoCo dataset and hence the "N/A" class.* Additional information can be found here: https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/ ###Code coco_names = [ '__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A', 'N/A', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table', 'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush' ] ###Output _____no_output_____ ###Markdown Defining Required functions* predict(): This function uses a trained object detection model to generate bounding boxes, class labels and their confidence scores for a given input image. Values of the detection_treshold can be changed from 0 to 1. A 0.8 threshold value will result in bounding box predictions with greater than 80% confidence* draw_boxes(): This function will overlay the bounding box prediction over an input image. ###Code def predict(image, model, device, detection_threshold): # transform the image to tensor image = transform(image).to(device) image = image.unsqueeze(0) # add a batch dimension outputs = model(image) # get the predictions on the image # print the results individually # print(f"BOXES: {outputs[0]['boxes']}") # print(f"LABELS: {outputs[0]['labels']}") # print(f"SCORES: {outputs[0]['scores']}") # get all the predicited class names pred_classes = [coco_names[i] for i in outputs[0]['labels'].cpu().numpy()] # get score for all the predicted objects pred_scores = outputs[0]['scores'].detach().cpu().numpy() # get all the predicted bounding boxes pred_bboxes = outputs[0]['boxes'].detach().cpu().numpy() # get boxes above the threshold score boxes = pred_bboxes[pred_scores >= detection_threshold].astype(np.int32) return boxes, pred_classes, outputs[0]['labels'] def draw_boxes(boxes, classes, labels, image): # read the image with OpenCV image = cv2.cvtColor(np.asarray(image), cv2.COLOR_BGR2RGB) for i, box in enumerate(boxes): color = COLORS[labels[i]] cv2.rectangle( image, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])), color, 2 ) cv2.putText(image, classes[i], (int(box[0]), int(box[1]-5)), cv2.FONT_HERSHEY_SIMPLEX, 0.8, color, 2, lineType=cv2.LINE_AA) return image # Create a different color for each class for efficient visualization COLORS = np.random.uniform(0, 255, size=(len(coco_names), 3)) # Define the torchvision image transforms transform = transforms.Compose([ transforms.ToTensor(), ]) ###Output _____no_output_____ ###Markdown Generating results using a pre-trained model ###Code # Providing required directory details inputDir = "./input/" outputDir = "./output/" FinalModelLoc = "./model/" inputImgs = os.listdir(inputDir) # Selecting G.P.U device for faster execution device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Download pre-trained model minInputSize = 512 model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True, min_size=minInputSize) model.eval().to(device) # Save the model for future use torch.save(model,FinalModelLoc+"Pre-Trained_FasterRCNN.pth") #Generate object detection results and save them in an output folder for inputImg in inputImgs[:]: image = Image.open(inputDir+inputImg) boxes, classes, labels = predict(image, model, device, 0.8) outputImage = draw_boxes(boxes, classes, labels, image) #cv2.imshow('Image', image) cv2.imwrite(outputDir+inputImg+".jpg", outputImage) ###Output c:\users\ambek\appdata\local\programs\python\python36\lib\site-packages\torch\functional.py:445: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ..\aten\src\ATen\native\TensorShape.cpp:2157.) return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined] ###Markdown Object Detection using FasterRCNN Model (Non Pre-trained) Here we will train a Faster R-CNN model using custom images dowloaded from 'fiftyone.zoo.load_zoo_dataset' ###Code # Function to convert list of lists to a sinlge list. #Eg: [[1,2,3], [4,5], [6]] --> [1,2,3,4,5,6] def flattenList(inputList): flatList = [] # Iterate over all the elements in the given list for elem in inputList: # Check if type of element is list if isinstance(elem, list): # Extend the flat list by adding contents of this element (list) flatList.extend(flattenList(elem)) else: # Append the elemengt to the list flatList.append(elem) return flatList # Setting up the root directory for the training data root = "./coco-2017/" # Input directory containing the annotation file annFile = root+"train/labels.json" # Loading annotation into memory using the COCO library function coco=COCO(annFile) # Get the category id from label.json file categorySelect = ['person'] cat_ids = coco.getCatIds(catNms=categorySelect) # Get details of all images with the specific catgory in the cat_ids variable imgIds = coco.getImgIds(catIds=cat_ids); allimgMetadata = coco.loadImgs(imgIds) if len(categorySelect) > 1: for i in range(len(cat_ids)): imgIds.append(coco.getImgIds(catIds=cat_ids[i])); oneCatimgId = coco.getImgIds(catIds=cat_ids[i]) print("Total images for the Category --> "+coco_names[cat_ids[i]]+" : "+ str(len(oneCatimgId))) imgIds = flattenList(imgIds) print("Total images for all Categories --> "+coco_names[cat_ids[i]]+" : "+ str(len(imgIds))) else: for i in range(len(cat_ids)): imgIds = coco.getImgIds(catIds=cat_ids[i]); print("Total images for the Category --> "+coco_names[cat_ids[i]]+" : "+ str(len(imgIds))) ###Output loading annotations into memory... Done (t=0.01s) creating index... index created! Total images for the Category --> person : 51 ###Markdown Setting up our CoCo dataset classes and functionsThe functions defined in the CoCoDataset() class does the following:* Imports images that will be used in the model.* Imports annotation.json (ground truth) file which contain the bounding box coordinates, class labels.* Applies appropriate tranformations to the training set with the help of the RandomHorizontalFlip class and get_augmentation function, these augmentation usually helps prevent overfitting of the model.* Returns transformed training images along with their ground truth. ###Code class CoCoDataset(torch.utils.data.Dataset): def __init__(self, root, transforms): self.root = root self.transforms = transforms self.imgs = list(sorted(os.listdir(os.path.join(root, "data\\")))) def __getitem__(self, idx): # load images and get bbox details # load images based on their image_id from labels.json global imgIds allimgMetadata = coco.loadImgs(imgIds) boxes = [] labels = [] oneImgMetadata = allimgMetadata[idx] anns_ids = coco.getAnnIds(imgIds=oneImgMetadata['id'], catIds=cat_ids, iscrowd=None) anns = coco.loadAnns(anns_ids) bbox = anns[0]['bbox'] xmin = np.float(bbox[0]) ymin = np.float(bbox[1]) xmax = np.float(bbox[0] + bbox[2]) ymax = np.float(bbox[1] + bbox[3]) boxes.append([xmin, ymin, xmax, ymax]) imagename = oneImgMetadata["file_name"] labels.append(anns[0]['category_id']) img_path = self.root+"data/"+imagename img = Image.open(img_path).convert("RGB") """ # Code snippet to extract bounding box ROIs from images boxedimg = numpy.array(img) singleBOX = boxes[idx] x,y,x_w,y_h = int(singleBOX[0]), int(singleBOX[1]), int(singleBOX[2]), int(singleBOX[3]) boxedimg = boxedimg[y:y_h, x:x_w] cv2.imwrite("./roi/"+str([idx])+".png",boxedimg) """ boxes = torch.as_tensor(boxes, dtype=torch.float32) labels = torch.as_tensor(labels, dtype=torch.int64) im2tarIndex = torch.as_tensor(idx, dtype=torch.int64) target = {} target["boxes"] = boxes target["labels"] = labels if self.transforms is not None: # Note that target (including bbox) is also transformed\enhanced here, which is different from transforms from torchvision img, target = self.transforms(img, target) return img, target def __len__(self): return len(self.imgs) class RandomHorizontalFlip(object): def __init__(self, prob): self.prob = prob def __call__(self, image, target): if random.random() < self.prob: height, width = image.shape[-2:] image = image.flip(-1) bbox = target["boxes"] bbox[:, [0, 2]] = width - bbox[:, [2, 0]] target["boxes"] = bbox return image, target def get_transform(train): transforms = [] # converts the image, a PIL image, into a PyTorch Tensor transforms.append(T.ToTensor()) if train: # during training, randomly flip the training images # and ground-truth for data augmentation # 50% chance of flipping horizontally transforms.append(T.RandomHorizontalFlip(0.5)) return T.Compose(transforms) # Defining additional functions to help with the training process def get_object_detection_model(num_classes): # load an object detection model pre-trained on COCO model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True) # replace the classifier with a new one, that has num_classes which is user-defined num_classes = 3 # get the number of input features for the classifier in_features = model.roi_heads.box_predictor.cls_score.in_features # replace the pre-trained head with a new one model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes) return model def train_one_epoch(model, optimizer, data_loader, device, epoch, print_freq, scaler=None): model.train() metric_logger = utils.MetricLogger(delimiter=" ") metric_logger.add_meter("lr", utils.SmoothedValue(window_size=1, fmt="{value:.6f}")) header = f"Epoch: [{epoch}]" lr_scheduler = None if epoch == 0: warmup_factor = 1.0 / 1000 warmup_iters = min(1000, len(data_loader) - 1) lr_scheduler = torch.optim.lr_scheduler.LinearLR( optimizer, start_factor=warmup_factor, total_iters=warmup_iters ) for images, targets in metric_logger.log_every(data_loader, print_freq, header): images = list(image.to(device) for image in images) targets = [{k: v.to(device) for k, v in t.items()} for t in targets] #print(images[0].shape, targets[0]) with torch.cuda.amp.autocast(enabled=scaler is not None): loss_dict = model(images, targets) losses = sum(loss for loss in loss_dict.values()) # reduce losses over all GPUs for logging purposes loss_dict_reduced = utils.reduce_dict(loss_dict) losses_reduced = sum(loss for loss in loss_dict_reduced.values()) loss_value = losses_reduced.item() if not math.isfinite(loss_value): print(f"Loss is {loss_value}, stopping training") print(loss_dict_reduced) sys.exit(1) optimizer.zero_grad() if scaler is not None: scaler.scale(losses).backward() scaler.step(optimizer) scaler.update() else: losses.backward() optimizer.step() if lr_scheduler is not None: lr_scheduler.step() metric_logger.update(loss=losses_reduced, **loss_dict_reduced) metric_logger.update(lr=optimizer.param_groups[0]["lr"]) return metric_logger ###Output _____no_output_____ ###Markdown Training a Faster R-CNN Model ###Code # Project directiry containing training images and ground truth files root = "./coco-2017/" FinalModelLoc = "./model/" # train on the GPU or on the CPU, if a GPU is not available device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') #device = torch.device('cpu') num_classes = 2 # use our dataset and defined transformations dataset = CoCoDataset(root+"train/", get_transform(train=False)) dataset_test = CoCoDataset(root+"train/", get_transform(train=False)) # Split the dataset in train and test set. indices = torch.randperm(len(dataset)).tolist() dataset = torch.utils.data.Subset(dataset, indices[:-15]) dataset_test = torch.utils.data.Subset(dataset_test, indices[-15:]) # Define training and test data loaders data_loader = torch.utils.data.DataLoader( dataset, batch_size=1, shuffle=True, # num_workers=4, collate_fn=utils.collate_fn) data_loader_test = torch.utils.data.DataLoader( dataset_test, batch_size=1, shuffle=False, # num_workers=4, collate_fn=utils.collate_fn) # get the model using our helper function model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=False, progress=True, num_classes=num_classes, pretrained_backbone=True) # Or get_object_detection_model(num_classes) # move model to the right device model.to(device) # construct an optimizer params = [p for p in model.parameters() if p.requires_grad] # SGD optimizer = torch.optim.SGD(params, lr=0.0003, momentum=0.9, weight_decay=0.0005) # and a learning rate scheduler # cos learning rate lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=1, T_mult=2) # let's train it for epochs num_epochs = 100 for epoch in range(num_epochs): # train for one epoch, printing every 10 iterations # Engine.pyTrain_ofOne_The epoch function takes both images and targets. to(device) train_one_epoch(model, optimizer, data_loader, device, epoch, print_freq=50) # update the learning rate lr_scheduler.step() # evaluate on the test dataset #evaluate(model, data_loader_test, device=device) print('') print('==================================================') print('Model saved') print('==================================================') torch.save(model,FinalModelLoc+"FasterRCNN.pth") print("All Done!") ###Output Epoch: [0] [ 0/36] eta: 0:00:23 lr: 0.000009 loss: 1.3919 (1.3919) loss_classifier: 0.6978 (0.6978) loss_box_reg: 0.0001 (0.0001) loss_objectness: 0.6914 (0.6914) loss_rpn_box_reg: 0.0026 (0.0026) time: 0.6393 data: 0.0000 max mem: 1176 Epoch: [0] [35/36] eta: 0:00:00 lr: 0.000300 loss: 1.0759 (1.2245) loss_classifier: 0.3819 (0.5119) loss_box_reg: 0.0006 (0.0116) loss_objectness: 0.6779 (0.6828) loss_rpn_box_reg: 0.0059 (0.0182) time: 0.2338 data: 0.0047 max mem: 1660 Epoch: [0] Total time: 0:00:08 (0.2430 s / it) Epoch: [1] [ 0/36] eta: 0:00:09 lr: 0.000300 loss: 0.9166 (0.9166) loss_classifier: 0.2359 (0.2359) loss_box_reg: 0.0176 (0.0176) loss_objectness: 0.6617 (0.6617) loss_rpn_box_reg: 0.0015 (0.0015) time: 0.2525 data: 0.0156 max mem: 1660 Epoch: [1] [35/36] eta: 0:00:00 lr: 0.000300 loss: 0.6239 (0.7477) loss_classifier: 0.0790 (0.1435) loss_box_reg: 0.0014 (0.0204) loss_objectness: 0.5168 (0.5657) loss_rpn_box_reg: 0.0068 (0.0181) time: 0.2368 data: 0.0062 max mem: 1660 Epoch: [1] Total time: 0:00:08 (0.2350 s / it) Epoch: [2] [ 0/36] eta: 0:00:08 lr: 0.000150 loss: 0.3633 (0.3633) loss_classifier: 0.0228 (0.0228) loss_box_reg: 0.0014 (0.0014) loss_objectness: 0.3340 (0.3340) loss_rpn_box_reg: 0.0051 (0.0051) time: 0.2397 data: 0.0156 max mem: 1660 Epoch: [2] [35/36] eta: 0:00:00 lr: 0.000150 loss: 0.2713 (0.3088) loss_classifier: 0.0551 (0.0550) loss_box_reg: 0.0562 (0.0405) loss_objectness: 0.1391 (0.1962) loss_rpn_box_reg: 0.0055 (0.0171) time: 0.2364 data: 0.0047 max mem: 1660 Epoch: [2] Total time: 0:00:08 (0.2360 s / it) Epoch: [3] [ 0/36] eta: 0:00:08 lr: 0.000300 loss: 0.3475 (0.3475) loss_classifier: 0.1172 (0.1172) loss_box_reg: 0.0762 (0.0762) loss_objectness: 0.1150 (0.1150) loss_rpn_box_reg: 0.0392 (0.0392) time: 0.2285 data: 0.0000 max mem: 1660 Epoch: [3] [35/36] eta: 0:00:00 lr: 0.000300 loss: 0.1956 (0.2204) loss_classifier: 0.0612 (0.0756) loss_box_reg: 0.0529 (0.0646) loss_objectness: 0.0427 (0.0654) loss_rpn_box_reg: 0.0073 (0.0147) time: 0.2391 data: 0.0062 max mem: 1660 Epoch: [3] Total time: 0:00:08 (0.2368 s / it) Epoch: [4] [ 0/36] eta: 0:00:08 lr: 0.000256 loss: 0.1889 (0.1889) loss_classifier: 0.0827 (0.0827) loss_box_reg: 0.0009 (0.0009) loss_objectness: 0.0957 (0.0957) loss_rpn_box_reg: 0.0096 (0.0096) time: 0.2426 data: 0.0000 max mem: 1660 Epoch: [4] [35/36] eta: 0:00:00 lr: 0.000256 loss: 0.1775 (0.1985) loss_classifier: 0.0564 (0.0732) loss_box_reg: 0.0491 (0.0660) loss_objectness: 0.0399 (0.0478) loss_rpn_box_reg: 0.0060 (0.0115) time: 0.2330 data: 0.0047 max mem: 1661 Epoch: [4] Total time: 0:00:08 (0.2378 s / it) Epoch: [5] [ 0/36] eta: 0:00:08 lr: 0.000150 loss: 0.1730 (0.1730) loss_classifier: 0.0441 (0.0441) loss_box_reg: 0.0996 (0.0996) loss_objectness: 0.0243 (0.0243) loss_rpn_box_reg: 0.0051 (0.0051) time: 0.2401 data: 0.0000 max mem: 1661 Epoch: [5] [35/36] eta: 0:00:00 lr: 0.000150 loss: 0.1568 (0.1914) loss_classifier: 0.0494 (0.0721) loss_box_reg: 0.0479 (0.0668) loss_objectness: 0.0404 (0.0424) loss_rpn_box_reg: 0.0066 (0.0101) time: 0.2407 data: 0.0063 max mem: 1661 Epoch: [5] Total time: 0:00:08 (0.2388 s / it) Epoch: [6] [ 0/36] eta: 0:00:08 lr: 0.000044 loss: 0.3177 (0.3177) loss_classifier: 0.1209 (0.1209) loss_box_reg: 0.1497 (0.1497) loss_objectness: 0.0350 (0.0350) loss_rpn_box_reg: 0.0122 (0.0122) time: 0.2342 data: 0.0000 max mem: 1661 Epoch: [6] [35/36] eta: 0:00:00 lr: 0.000044 loss: 0.1710 (0.1904) loss_classifier: 0.0524 (0.0729) loss_box_reg: 0.0675 (0.0683) loss_objectness: 0.0331 (0.0398) loss_rpn_box_reg: 0.0051 (0.0094) time: 0.2397 data: 0.0055 max mem: 1661 Epoch: [6] Total time: 0:00:08 (0.2396 s / it) Epoch: [7] [ 0/36] eta: 0:00:08 lr: 0.000300 loss: 0.1596 (0.1596) loss_classifier: 0.0706 (0.0706) loss_box_reg: 0.0581 (0.0581) loss_objectness: 0.0289 (0.0289) loss_rpn_box_reg: 0.0020 (0.0020) time: 0.2412 data: 0.0000 max mem: 1661 Epoch: [7] [35/36] eta: 0:00:00 lr: 0.000300 loss: 0.1662 (0.1790) loss_classifier: 0.0449 (0.0670) loss_box_reg: 0.0610 (0.0641) loss_objectness: 0.0325 (0.0380) loss_rpn_box_reg: 0.0057 (0.0099) time: 0.2430 data: 0.0062 max mem: 1661 Epoch: [7] Total time: 0:00:08 (0.2400 s / it) Epoch: [8] [ 0/36] eta: 0:00:07 lr: 0.000289 loss: 0.1578 (0.1578) loss_classifier: 0.0369 (0.0369) loss_box_reg: 0.0956 (0.0956) loss_objectness: 0.0232 (0.0232) loss_rpn_box_reg: 0.0021 (0.0021) time: 0.2188 data: 0.0000 max mem: 1661 Epoch: [8] [35/36] eta: 0:00:00 lr: 0.000289 loss: 0.1888 (0.1990) loss_classifier: 0.0647 (0.0768) loss_box_reg: 0.0727 (0.0767) loss_objectness: 0.0310 (0.0365) loss_rpn_box_reg: 0.0055 (0.0090) time: 0.2390 data: 0.0055 max mem: 1661 Epoch: [8] Total time: 0:00:08 (0.2408 s / it) Epoch: [9] [ 0/36] eta: 0:00:09 lr: 0.000256 loss: 0.1834 (0.1834) loss_classifier: 0.0850 (0.0850) loss_box_reg: 0.0506 (0.0506) loss_objectness: 0.0385 (0.0385) loss_rpn_box_reg: 0.0094 (0.0094) time: 0.2556 data: 0.0000 max mem: 1661 Epoch: [9] [35/36] eta: 0:00:00 lr: 0.000256 loss: 0.1691 (0.1728) loss_classifier: 0.0510 (0.0625) loss_box_reg: 0.0718 (0.0694) loss_objectness: 0.0276 (0.0316) loss_rpn_box_reg: 0.0051 (0.0093) time: 0.2420 data: 0.0075 max mem: 1661 Epoch: [9] Total time: 0:00:08 (0.2410 s / it) Epoch: [10] [ 0/36] eta: 0:00:08 lr: 0.000207 loss: 0.1545 (0.1545) loss_classifier: 0.0666 (0.0666) loss_box_reg: 0.0477 (0.0477) loss_objectness: 0.0346 (0.0346) loss_rpn_box_reg: 0.0056 (0.0056) time: 0.2258 data: 0.0000 max mem: 1661 Epoch: [10] [35/36] eta: 0:00:00 lr: 0.000207 loss: 0.1580 (0.1757) loss_classifier: 0.0608 (0.0638) loss_box_reg: 0.0592 (0.0738) loss_objectness: 0.0224 (0.0297) loss_rpn_box_reg: 0.0060 (0.0084) time: 0.2383 data: 0.0031 max mem: 1661 Epoch: [10] Total time: 0:00:08 (0.2412 s / it) Epoch: [11] [ 0/36] eta: 0:00:08 lr: 0.000150 loss: 0.1028 (0.1028) loss_classifier: 0.0481 (0.0481) loss_box_reg: 0.0349 (0.0349) loss_objectness: 0.0182 (0.0182) loss_rpn_box_reg: 0.0015 (0.0015) time: 0.2449 data: 0.0000 max mem: 1661 Epoch: [11] [35/36] eta: 0:00:00 lr: 0.000150 loss: 0.1482 (0.1548) loss_classifier: 0.0431 (0.0535) loss_box_reg: 0.0615 (0.0656) loss_objectness: 0.0287 (0.0283) loss_rpn_box_reg: 0.0038 (0.0074) time: 0.2408 data: 0.0023 max mem: 1661 Epoch: [11] Total time: 0:00:08 (0.2415 s / it) Epoch: [12] [ 0/36] eta: 0:00:08 lr: 0.000093 loss: 0.1846 (0.1846) loss_classifier: 0.0732 (0.0732) loss_box_reg: 0.0552 (0.0552) loss_objectness: 0.0471 (0.0471) loss_rpn_box_reg: 0.0092 (0.0092) time: 0.2442 data: 0.0000 max mem: 1661 Epoch: [12] [35/36] eta: 0:00:00 lr: 0.000093 loss: 0.1423 (0.1592) loss_classifier: 0.0444 (0.0550) loss_box_reg: 0.0641 (0.0691) loss_objectness: 0.0280 (0.0278) loss_rpn_box_reg: 0.0055 (0.0073) time: 0.2430 data: 0.0070 max mem: 1661 Epoch: [12] Total time: 0:00:08 (0.2414 s / it) Epoch: [13] [ 0/36] eta: 0:00:08 lr: 0.000044 loss: 0.1975 (0.1975) loss_classifier: 0.0546 (0.0546) loss_box_reg: 0.1175 (0.1175) loss_objectness: 0.0203 (0.0203) loss_rpn_box_reg: 0.0051 (0.0051) time: 0.2446 data: 0.0156 max mem: 1661 Epoch: [13] [35/36] eta: 0:00:00 lr: 0.000044 loss: 0.1332 (0.1529) loss_classifier: 0.0435 (0.0525) loss_box_reg: 0.0592 (0.0661) loss_objectness: 0.0225 (0.0277) loss_rpn_box_reg: 0.0055 (0.0065) time: 0.2461 data: 0.0039 max mem: 1661 Epoch: [13] Total time: 0:00:08 (0.2423 s / it) Epoch: [14] [ 0/36] eta: 0:00:08 lr: 0.000011 loss: 0.1183 (0.1183) loss_classifier: 0.0462 (0.0462) loss_box_reg: 0.0230 (0.0230) loss_objectness: 0.0441 (0.0441) loss_rpn_box_reg: 0.0050 (0.0050) time: 0.2287 data: 0.0000 max mem: 1661 Epoch: [14] [35/36] eta: 0:00:00 lr: 0.000011 loss: 0.1517 (0.1488) loss_classifier: 0.0503 (0.0504) loss_box_reg: 0.0648 (0.0659) loss_objectness: 0.0231 (0.0262) loss_rpn_box_reg: 0.0041 (0.0064) time: 0.2415 data: 0.0055 max mem: 1661 Epoch: [14] Total time: 0:00:08 (0.2415 s / it) Epoch: [15] [ 0/36] eta: 0:00:09 lr: 0.000300 loss: 0.1617 (0.1617) loss_classifier: 0.0817 (0.0817) loss_box_reg: 0.0463 (0.0463) loss_objectness: 0.0299 (0.0299) loss_rpn_box_reg: 0.0038 (0.0038) time: 0.2583 data: 0.0156 max mem: 1661 ###Markdown Testing Faster R-CNN Model ###Code # Use the trained model, generate results and save them in an output folder outputDir = "./output/" model = torch.load(FinalModelLoc+'FasterRCNN_100epoch.pth') device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') model.eval().to(device) for i in range(len(dataset_test)): img, _ = dataset_test[i] tran = transforms.ToPILImage() PILimg = tran(img) boxes, classes, labels = predict(PILimg, model, device, 0.8) outputImage = draw_boxes(boxes, classes, labels, PILimg) #cv2.imshow('Image', image) cv2.imwrite(outputDir+"/ObjectDetect_"+str(i)+".jpg", outputImage) ###Output _____no_output_____
lijin-THU:notes-python/05-advanced-python/05.09-iterators.ipynb
###Markdown 迭代器 简介 迭代器对象可以在 `for` 循环中使用: ###Code x = [2, 4, 6] for n in x: print n ###Output 2 4 6 ###Markdown 其好处是不需要对下标进行迭代,但是有些情况下,我们既希望获得下标,也希望获得对应的值,那么可以将迭代器传给 `enumerate` 函数,这样每次迭代都会返回一组 `(index, value)` 组成的元组: ###Code x = [2, 4, 6] for i, n in enumerate(x): print 'pos', i, 'is', n ###Output pos 0 is 2 pos 1 is 4 pos 2 is 6 ###Markdown 迭代器对象必须实现 `__iter__` 方法: ###Code x = [2, 4, 6] i = x.__iter__() print i ###Output <listiterator object at 0x0000000003CAE630> ###Markdown `__iter__()` 返回的对象支持 `next` 方法,返回迭代器中的下一个元素: ###Code print i.next() ###Output 2 ###Markdown 当下一个元素不存在时,会 `raise` 一个 `StopIteration` 错误: ###Code print i.next() print i.next() i.next() ###Output _____no_output_____ ###Markdown 很多标准库函数返回的是迭代器: ###Code r = reversed(x) print r ###Output <listreverseiterator object at 0x0000000003D615F8> ###Markdown 调用它的 `next()` 方法: ###Code print r.next() print r.next() print r.next() ###Output 6 4 2 ###Markdown 字典对象的 `iterkeys, itervalues, iteritems` 方法返回的都是迭代器: ###Code x = {'a':1, 'b':2, 'c':3} i = x.iteritems() print i ###Output <dictionary-itemiterator object at 0x0000000003D51B88> ###Markdown 迭代器的 `__iter__` 方法返回它本身: ###Code print i.__iter__() print i.next() ###Output ('a', 1) ###Markdown 自定义迭代器 自定义一个 list 的取反迭代器: ###Code class ReverseListIterator(object): def __init__(self, list): self.list = list self.index = len(list) def __iter__(self): return self def next(self): self.index -= 1 if self.index >= 0: return self.list[self.index] else: raise StopIteration x = range(10) for i in ReverseListIterator(x): print i, ###Output 9 8 7 6 5 4 3 2 1 0 ###Markdown 只要我们定义了这三个方法,我们可以返回任意迭代值: ###Code class Collatz(object): def __init__(self, start): self.value = start def __iter__(self): return self def next(self): if self.value == 1: raise StopIteration elif self.value % 2 == 0: self.value = self.value / 2 else: self.value = 3 * self.value + 1 return self.value ###Output _____no_output_____ ###Markdown 这里我们实现 [Collatz 猜想](http://baike.baidu.com/view/736196.htm):- 奇数 n:返回 3n + 1- 偶数 n:返回 n / 2直到 n 为 1 为止: ###Code for x in Collatz(7): print x, ###Output 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1 ###Markdown 不过迭代器对象存在状态,会出现这样的问题: ###Code i = Collatz(7) for x, y in zip(i, i): print x, y ###Output 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1 ###Markdown 一个比较好的解决方法是将迭代器和可迭代对象分开处理,这里提供了一个二分树的中序遍历实现: ###Code class BinaryTree(object): def __init__(self, value, left=None, right=None): self.value = value self.left = left self.right = right def __iter__(self): return InorderIterator(self) class InorderIterator(object): def __init__(self, node): self.node = node self.stack = [] def next(self): if len(self.stack) > 0 or self.node is not None: while self.node is not None: self.stack.append(self.node) self.node = self.node.left node = self.stack.pop() self.node = node.right return node.value else: raise StopIteration() tree = BinaryTree( left=BinaryTree( left=BinaryTree(1), value=2, right=BinaryTree( left=BinaryTree(3), value=4, right=BinaryTree(5) ), ), value=6, right=BinaryTree( value=7, right=BinaryTree(8) ) ) for value in tree: print value, ###Output 1 2 3 4 5 6 7 8 ###Markdown 不会出现之前的问题: ###Code for x,y in zip(tree, tree): print x, y ###Output 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8
branches/1st-edition/ch12.ipynb
###Markdown Advanced NumPy ###Code from __future__ import division from numpy.random import randn from pandas import Series import numpy as np np.set_printoptions(precision=4) import sys ###Output _____no_output_____ ###Markdown ndarray object internals NumPy dtype hierarchy ###Code ints = np.ones(10, dtype=np.uint16) floats = np.ones(10, dtype=np.float32) np.issubdtype(ints.dtype, np.integer) np.issubdtype(floats.dtype, np.floating) np.float64.mro() ###Output _____no_output_____ ###Markdown Advanced array manipulation Reshaping arrays ###Code arr = np.arange(8) arr arr.reshape((4, 2)) arr.reshape((4, 2)).reshape((2, 4)) arr = np.arange(15) arr.reshape((5, -1)) other_arr = np.ones((3, 5)) other_arr.shape arr.reshape(other_arr.shape) arr = np.arange(15).reshape((5, 3)) arr arr.ravel() arr.flatten() ###Output _____no_output_____ ###Markdown C vs. Fortran order ###Code arr = np.arange(12).reshape((3, 4)) arr arr.ravel() arr.ravel('F') ###Output _____no_output_____ ###Markdown Concatenating and splitting arrays ###Code arr1 = np.array([[1, 2, 3], [4, 5, 6]]) arr2 = np.array([[7, 8, 9], [10, 11, 12]]) np.concatenate([arr1, arr2], axis=0) np.concatenate([arr1, arr2], axis=1) np.vstack((arr1, arr2)) np.hstack((arr1, arr2)) from numpy.random import randn arr = randn(5, 2) arr first, second, third = np.split(arr, [1, 3]) first second third ###Output _____no_output_____ ###Markdown Stacking helpers: ###Code arr = np.arange(6) arr1 = arr.reshape((3, 2)) arr2 = randn(3, 2) np.r_[arr1, arr2] np.c_[np.r_[arr1, arr2], arr] np.c_[1:6, -10:-5] ###Output _____no_output_____ ###Markdown Repeating elements: tile and repeat ###Code arr = np.arange(3) arr.repeat(3) arr.repeat([2, 3, 4]) arr = randn(2, 2) arr arr.repeat(2, axis=0) arr.repeat([2, 3], axis=0) arr.repeat([2, 3], axis=1) arr np.tile(arr, 2) arr np.tile(arr, (2, 1)) np.tile(arr, (3, 2)) ###Output _____no_output_____ ###Markdown Fancy indexing equivalents: take and put ###Code arr = np.arange(10) * 100 inds = [7, 1, 2, 6] arr[inds] arr.take(inds) arr.put(inds, 42) arr arr.put(inds, [40, 41, 42, 43]) arr inds = [2, 0, 2, 1] arr = randn(2, 4) arr arr.take(inds, axis=1) ###Output _____no_output_____ ###Markdown Broadcasting ###Code arr = np.arange(5) arr arr * 4 arr = randn(4, 3) arr.mean(0) demeaned = arr - arr.mean(0) demeaned demeaned.mean(0) arr row_means = arr.mean(1) row_means.reshape((4, 1)) demeaned = arr - row_means.reshape((4, 1)) demeaned.mean(1) ###Output _____no_output_____ ###Markdown Broadcasting over other axes ###Code arr - arr.mean(1) arr - arr.mean(1).reshape((4, 1)) arr = np.zeros((4, 4)) arr_3d = arr[:, np.newaxis, :] arr_3d.shape arr_1d = np.random.normal(size=3) arr_1d[:, np.newaxis] arr_1d[np.newaxis, :] arr = randn(3, 4, 5) depth_means = arr.mean(2) depth_means demeaned = arr - depth_means[:, :, np.newaxis] demeaned.mean(2) def demean_axis(arr, axis=0): means = arr.mean(axis) # This generalized things like [:, :, np.newaxis] to N dimensions indexer = [slice(None)] * arr.ndim indexer[axis] = np.newaxis return arr - means[indexer] ###Output _____no_output_____ ###Markdown Setting array values by broadcasting ###Code arr = np.zeros((4, 3)) arr[:] = 5 arr col = np.array([1.28, -0.42, 0.44, 1.6]) arr[:] = col[:, np.newaxis] arr arr[:2] = [[-1.37], [0.509]] arr ###Output _____no_output_____ ###Markdown Advanced ufunc usage Ufunc instance methods ###Code arr = np.arange(10) np.add.reduce(arr) arr.sum() np.random.seed(12346) arr = randn(5, 5) arr[::2].sort(1) # sort a few rows arr[:, :-1] < arr[:, 1:] np.logical_and.reduce(arr[:, :-1] < arr[:, 1:], axis=1) arr = np.arange(15).reshape((3, 5)) np.add.accumulate(arr, axis=1) arr = np.arange(3).repeat([1, 2, 2]) arr np.multiply.outer(arr, np.arange(5)) result = np.subtract.outer(randn(3, 4), randn(5)) result.shape arr = np.arange(10) np.add.reduceat(arr, [0, 5, 8]) arr = np.multiply.outer(np.arange(4), np.arange(5)) arr np.add.reduceat(arr, [0, 2, 4], axis=1) ###Output _____no_output_____ ###Markdown Custom ufuncs ###Code def add_elements(x, y): return x + y add_them = np.frompyfunc(add_elements, 2, 1) add_them(np.arange(8), np.arange(8)) add_them = np.vectorize(add_elements, otypes=[np.float64]) add_them(np.arange(8), np.arange(8)) arr = randn(10000) %timeit add_them(arr, arr) %timeit np.add(arr, arr) ###Output _____no_output_____ ###Markdown Structured and record arrays ###Code dtype = [('x', np.float64), ('y', np.int32)] sarr = np.array([(1.5, 6), (np.pi, -2)], dtype=dtype) sarr sarr[0] sarr[0]['y'] sarr['x'] ###Output _____no_output_____ ###Markdown Nested dtypes and multidimensional fields ###Code dtype = [('x', np.int64, 3), ('y', np.int32)] arr = np.zeros(4, dtype=dtype) arr arr[0]['x'] arr['x'] dtype = [('x', [('a', 'f8'), ('b', 'f4')]), ('y', np.int32)] data = np.array([((1, 2), 5), ((3, 4), 6)], dtype=dtype) data['x'] data['y'] data['x']['a'] ###Output _____no_output_____ ###Markdown Why use structured arrays? Structured array manipulations: numpy.lib.recfunctions More about sorting ###Code arr = randn(6) arr.sort() arr arr = randn(3, 5) arr arr[:, 0].sort() # Sort first column values in-place arr arr = randn(5) arr np.sort(arr) arr arr = randn(3, 5) arr arr.sort(axis=1) arr arr[:, ::-1] ###Output _____no_output_____ ###Markdown Indirect sorts: argsort and lexsort ###Code values = np.array([5, 0, 1, 3, 2]) indexer = values.argsort() indexer values[indexer] arr = randn(3, 5) arr[0] = values arr arr[:, arr[0].argsort()] first_name = np.array(['Bob', 'Jane', 'Steve', 'Bill', 'Barbara']) last_name = np.array(['Jones', 'Arnold', 'Arnold', 'Jones', 'Walters']) sorter = np.lexsort((first_name, last_name)) zip(last_name[sorter], first_name[sorter]) ###Output _____no_output_____ ###Markdown Alternate sort algorithms ###Code values = np.array(['2:first', '2:second', '1:first', '1:second', '1:third']) key = np.array([2, 2, 1, 1, 1]) indexer = key.argsort(kind='mergesort') indexer values.take(indexer) ###Output _____no_output_____ ###Markdown numpy.searchsorted: Finding elements in a sorted array ###Code arr = np.array([0, 1, 7, 12, 15]) arr.searchsorted(9) arr.searchsorted([0, 8, 11, 16]) arr = np.array([0, 0, 0, 1, 1, 1, 1]) arr.searchsorted([0, 1]) arr.searchsorted([0, 1], side='right') data = np.floor(np.random.uniform(0, 10000, size=50)) bins = np.array([0, 100, 1000, 5000, 10000]) data labels = bins.searchsorted(data) labels Series(data).groupby(labels).mean() np.digitize(data, bins) ###Output _____no_output_____ ###Markdown NumPy matrix class ###Code X = np.array([[ 8.82768214, 3.82222409, -1.14276475, 2.04411587], [ 3.82222409, 6.75272284, 0.83909108, 2.08293758], [-1.14276475, 0.83909108, 5.01690521, 0.79573241], [ 2.04411587, 2.08293758, 0.79573241, 6.24095859]]) X[:, 0] # one-dimensional y = X[:, :1] # two-dimensional by slicing X y np.dot(y.T, np.dot(X, y)) Xm = np.matrix(X) ym = Xm[:, 0] Xm ym ym.T * Xm * ym Xm.I * X ###Output _____no_output_____ ###Markdown Advanced array input and output Memory-mapped files ###Code mmap = np.memmap('mymmap', dtype='float64', mode='w+', shape=(10000, 10000)) mmap section = mmap[:5] section[:] = np.random.randn(5, 10000) mmap.flush() mmap del mmap mmap = np.memmap('mymmap', dtype='float64', shape=(10000, 10000)) mmap %xdel mmap !rm mymmap ###Output _____no_output_____ ###Markdown HDF5 and other array storage options Performance tips The importance of contiguous memory ###Code arr_c = np.ones((1000, 1000), order='C') arr_f = np.ones((1000, 1000), order='F') arr_c.flags arr_f.flags arr_f.flags.f_contiguous %timeit arr_c.sum(1) %timeit arr_f.sum(1) arr_f.copy('C').flags arr_c[:50].flags.contiguous arr_c[:, :50].flags %xdel arr_c %xdel arr_f %cd .. ###Output _____no_output_____
Natural Language Processing with Probabilistic Models/Week 4 - Word Embeddings with Neural Networks/NLP_C2_W4_lecture_nb_01.ipynb
###Markdown Word Embeddings: Ungraded Practice NotebookIn this ungraded notebook, you'll try out all the individual techniques that you learned about in the lecture. Practicing on small examples will prepare you for the graded assignment, where you will combine the techniques in more advanced ways to create word embeddings from a real-life corpus.This notebook is made of two main parts: data preparation, and the continuous bag-of-words (CBOW) model.To get started, import and initialize all the libraries you will need. ###Code import sys !{sys.executable} -m pip install emoji import re import nltk from nltk.tokenize import word_tokenize import emoji import numpy as np from utils2 import get_dict nltk.download('punkt') # download pre-trained Punkt tokenizer for English ###Output _____no_output_____ ###Markdown Data preparation In the data preparation phase, starting with a corpus of text, you will:- Clean and tokenize the corpus.- Extract the pairs of context words and center word that will make up the training data set for the CBOW model. The context words are the features that will be fed into the model, and the center words are the target values that the model will learn to predict.- Create simple vector representations of the context words (features) and center words (targets) that can be used by the neural network of the CBOW model. Cleaning and tokenizationTo demonstrate the cleaning and tokenization process, consider a corpus that contains emojis and various punctuation signs. ###Code corpus = 'Who ❤️ "word embeddings" in 2020? I do!!!' ###Output _____no_output_____ ###Markdown First, replace all interrupting punctuation signs — such as commas and exclamation marks — with periods. ###Code print(f'Corpus: {corpus}') data = re.sub(r'[,!?;-]+', '.', corpus) print(f'After cleaning punctuation: {data}') ###Output _____no_output_____ ###Markdown Next, use NLTK's tokenization engine to split the corpus into individual tokens. ###Code print(f'Initial string: {data}') data = nltk.word_tokenize(data) print(f'After tokenization: {data}') ###Output _____no_output_____ ###Markdown Finally, as you saw in the lecture, get rid of numbers and punctuation other than periods, and convert all the remaining tokens to lowercase. ###Code print(f'Initial list of tokens: {data}') data = [ ch.lower() for ch in data if ch.isalpha() or ch == '.' or emoji.get_emoji_regexp().search(ch) ] print(f'After cleaning: {data}') ###Output _____no_output_____ ###Markdown Note that the heart emoji is considered as a token just like any normal word.Now let's streamline the cleaning and tokenization process by wrapping the previous steps in a function. ###Code def tokenize(corpus): data = re.sub(r'[,!?;-]+', '.', corpus) data = nltk.word_tokenize(data) # tokenize string to words data = [ ch.lower() for ch in data if ch.isalpha() or ch == '.' or emoji.get_emoji_regexp().search(ch) ] return data ###Output _____no_output_____ ###Markdown Apply this function to the corpus that you'll be working on in the rest of this notebook: "I am happy because I am learning" ###Code corpus = 'I am happy because I am learning' print(f'Corpus: {corpus}') words = tokenize(corpus) print(f'Words (tokens): {words}') ###Output _____no_output_____ ###Markdown **Now try it out yourself with your own sentence.** ###Code tokenize("Now it's your turn: try with your own sentence!") ###Output _____no_output_____ ###Markdown Sliding window of words Now that you have transformed the corpus into a list of clean tokens, you can slide a window of words across this list. For each window you can extract a center word and the context words.The `get_windows` function in the next cell was introduced in the lecture. ###Code def get_windows(words, C): i = C while i < len(words) - C: center_word = words[i] context_words = words[(i - C):i] + words[(i+1):(i+C+1)] yield context_words, center_word i += 1 ###Output _____no_output_____ ###Markdown The first argument of this function is a list of words (or tokens). The second argument, `C`, is the context half-size. Recall that for a given center word, the context words are made of `C` words to the left and `C` words to the right of the center word.Here is how you can use this function to extract context words and center words from a list of tokens. These context and center words will make up the training set that you will use to train the CBOW model. ###Code for x, y in get_windows( ['i', 'am', 'happy', 'because', 'i', 'am', 'learning'], 2 ): print(f'{x}\t{y}') ###Output _____no_output_____ ###Markdown The first example of the training set is made of:- the context words "i", "am", "because", "i",- and the center word to be predicted: "happy".**Now try it out yourself. In the next cell, you can change both the sentence and the context half-size.** ###Code for x, y in get_windows(tokenize("Now it's your turn: try with your own sentence!"), 1): print(f'{x}\t{y}') ###Output _____no_output_____ ###Markdown Transforming words into vectors for the training set To finish preparing the training set, you need to transform the context words and center words into vectors. Mapping words to indices and indices to wordsThe center words will be represented as one-hot vectors, and the vectors that represent context words are also based on one-hot vectors.To create one-hot word vectors, you can start by mapping each unique word to a unique integer (or index). We have provided a helper function, `get_dict`, that creates a Python dictionary that maps words to integers and back. ###Code word2Ind, Ind2word = get_dict(words) ###Output _____no_output_____ ###Markdown Here's the dictionary that maps words to numeric indices. ###Code word2Ind ###Output _____no_output_____ ###Markdown You can use this dictionary to get the index of a word. ###Code print("Index of the word 'i': ",word2Ind['i']) ###Output _____no_output_____ ###Markdown And conversely, here's the dictionary that maps indices to words. ###Code Ind2word print("Word which has index 2: ",Ind2word[2] ) ###Output _____no_output_____ ###Markdown Finally, get the length of either of these dictionaries to get the size of the vocabulary of your corpus, in other words the number of different words making up the corpus. ###Code V = len(word2Ind) print("Size of vocabulary: ", V) ###Output _____no_output_____ ###Markdown Getting one-hot word vectorsRecall from the lecture that you can easily convert an integer, $n$, into a one-hot vector.Consider the word "happy". First, retrieve its numeric index. ###Code n = word2Ind['happy'] n ###Output _____no_output_____ ###Markdown Now create a vector with the size of the vocabulary, and fill it with zeros. ###Code center_word_vector = np.zeros(V) center_word_vector ###Output _____no_output_____ ###Markdown You can confirm that the vector has the right size. ###Code len(center_word_vector) == V ###Output _____no_output_____ ###Markdown Next, replace the 0 of the $n$-th element with a 1. ###Code center_word_vector[n] = 1 ###Output _____no_output_____ ###Markdown And you have your one-hot word vector. ###Code center_word_vector ###Output _____no_output_____ ###Markdown **You can now group all of these steps in a convenient function, which takes as parameters: a word to be encoded, a dictionary that maps words to indices, and the size of the vocabulary.** ###Code def word_to_one_hot_vector(word, word2Ind, V): # BEGIN your code here one_hot_vector = np.zeros(V) one_hot_vector[word2Ind[word]] = 1 # END your code here return one_hot_vector ###Output _____no_output_____ ###Markdown Check that it works as intended. ###Code word_to_one_hot_vector('happy', word2Ind, V) ###Output _____no_output_____ ###Markdown **What is the word vector for "learning"?** ###Code # BEGIN your code here word_to_one_hot_vector('learning', word2Ind, V) # END your code here ###Output _____no_output_____ ###Markdown Expected output: array([0., 0., 0., 0., 1.]) Getting context word vectors To create the vectors that represent context words, you will calculate the average of the one-hot vectors representing the individual words.Let's start with a list of context words. ###Code context_words = ['i', 'am', 'because', 'i'] ###Output _____no_output_____ ###Markdown Using Python's list comprehension construct and the `word_to_one_hot_vector` function that you created in the previous section, you can create a list of one-hot vectors representing each of the context words. ###Code context_words_vectors = [word_to_one_hot_vector(w, word2Ind, V) for w in context_words] context_words_vectors ###Output _____no_output_____ ###Markdown And you can now simply get the average of these vectors using numpy's `mean` function, to get the vector representation of the context words. ###Code np.mean(context_words_vectors, axis=0) ###Output _____no_output_____ ###Markdown Note the `axis=0` parameter that tells `mean` to calculate the average of the rows (if you had wanted the average of the columns, you would have used `axis=1`).**Now create the `context_words_to_vector` function that takes in a list of context words, a word-to-index dictionary, and a vocabulary size, and outputs the vector representation of the context words.** ###Code def context_words_to_vector(context_words, word2Ind, V): # BEGIN your code here context_words_vectors = [word_to_one_hot_vector(w, word2Ind, V) for w in context_words] context_words_vectors = np.mean(context_words_vectors, axis=0) # END your code here return context_words_vectors ###Output _____no_output_____ ###Markdown And check that you obtain the same output as the manual approach above. ###Code context_words_to_vector(['i', 'am', 'because', 'i'], word2Ind, V) ###Output _____no_output_____ ###Markdown **What is the vector representation of the context words "am happy i am"?** ###Code # BEGIN your code here context_words_to_vector(['am', 'happy', 'i', 'am'], word2Ind, V) # END your code here ###Output _____no_output_____ ###Markdown Expected output: array([0.5 , 0. , 0.25, 0.25, 0. ]) Building the training set You can now combine the functions that you created in the previous sections, to build a training set for the CBOW model, starting from the following tokenized corpus. ###Code words ###Output _____no_output_____ ###Markdown To do this you need to use the sliding window function (`get_windows`) to extract the context words and center words, and you then convert these sets of words into a basic vector representation using `word_to_one_hot_vector` and `context_words_to_vector`. ###Code for context_words, center_word in get_windows(words, 2): # reminder: 2 is the context half-size print(f'Context words: {context_words} -> {context_words_to_vector(context_words, word2Ind, V)}') print(f'Center word: {center_word} -> {word_to_one_hot_vector(center_word, word2Ind, V)}') print() ###Output _____no_output_____ ###Markdown In this practice notebook you'll be performing a single iteration of training using a single example, but in this week's assignment you'll train the CBOW model using several iterations and batches of example.Here is how you would use a Python generator function (remember the `yield` keyword from the lecture?) to make it easier to iterate over a set of examples. ###Code def get_training_example(words, C, word2Ind, V): for context_words, center_word in get_windows(words, C): yield context_words_to_vector(context_words, word2Ind, V), word_to_one_hot_vector(center_word, word2Ind, V) ###Output _____no_output_____ ###Markdown The output of this function can be iterated on to get successive context word vectors and center word vectors, as demonstrated in the next cell. ###Code for context_words_vector, center_word_vector in get_training_example(words, 2, word2Ind, V): print(f'Context words vector: {context_words_vector}') print(f'Center word vector: {center_word_vector}') print() ###Output _____no_output_____ ###Markdown Your training set is ready, you can now move on to the CBOW model itself. The continuous bag-of-words model The CBOW model is based on a neural network, the architecture of which looks like the figure below, as you'll recall from the lecture. Figure 1 This part of the notebook will walk you through:- The two activation functions used in the neural network.- Forward propagation.- Cross-entropy loss.- Backpropagation.- Gradient descent.- Extracting the word embedding vectors from the weight matrices once the neural network has been trained. Activation functions Let's start by implementing the activation functions, ReLU and softmax. ReLU ReLU is used to calculate the values of the hidden layer, in the following formulas:\begin{align} \mathbf{z_1} &= \mathbf{W_1}\mathbf{x} + \mathbf{b_1} \tag{1} \\ \mathbf{h} &= \mathrm{ReLU}(\mathbf{z_1}) \tag{2} \\\end{align} Let's fix a value for $\mathbf{z_1}$ as a working example. ###Code np.random.seed(10) z_1 = 10*np.random.rand(5, 1)-5 z_1 ###Output _____no_output_____ ###Markdown To get the ReLU of this vector, you want all the negative values to become zeros.First create a copy of this vector. ###Code h = z_1.copy() ###Output _____no_output_____ ###Markdown Now determine which of its values are negative. ###Code h < 0 ###Output _____no_output_____ ###Markdown You can now simply set all of the values which are negative to 0. ###Code h[h < 0] = 0 ###Output _____no_output_____ ###Markdown And that's it: you have the ReLU of $\mathbf{z_1}$! ###Code h ###Output _____no_output_____ ###Markdown **Now implement ReLU as a function.** ###Code def relu(z): # BEGIN your code here result = z.copy() result[result < 0] = 0 # END your code here return result ###Output _____no_output_____ ###Markdown **And check that it's working.** ###Code z = np.array([[-1.25459881], [ 4.50714306], [ 2.31993942], [ 0.98658484], [-3.4398136 ]]) relu(z) ###Output _____no_output_____ ###Markdown Expected output: array([[0. ], [4.50714306], [2.31993942], [0.98658484], [0. ]]) Softmax The second activation function that you need is softmax. This function is used to calculate the values of the output layer of the neural network, using the following formulas:\begin{align} \mathbf{z_2} &= \mathbf{W_2}\mathbf{h} + \mathbf{b_2} \tag{3} \\ \mathbf{\hat y} &= \mathrm{softmax}(\mathbf{z_2}) \tag{4} \\\end{align}To calculate softmax of a vector $\mathbf{z}$, the $i$-th component of the resulting vector is given by:$$ \textrm{softmax}(\textbf{z})_i = \frac{e^{z_i} }{\sum\limits_{j=1}^{V} e^{z_j} } \tag{5} $$Let's work through an example. ###Code z = np.array([9, 8, 11, 10, 8.5]) z ###Output _____no_output_____ ###Markdown You'll need to calculate the exponentials of each element, both for the numerator and for the denominator. ###Code e_z = np.exp(z) e_z ###Output _____no_output_____ ###Markdown The denominator is equal to the sum of these exponentials. ###Code sum_e_z = np.sum(e_z) sum_e_z ###Output _____no_output_____ ###Markdown And the value of the first element of $\textrm{softmax}(\textbf{z})$ is given by: ###Code e_z[0]/sum_e_z ###Output _____no_output_____ ###Markdown This is for one element. You can use numpy's vectorized operations to calculate the values of all the elements of the $\textrm{softmax}(\textbf{z})$ vector in one go.**Implement the softmax function.** ###Code def softmax(z): # BEGIN your code here e_z = np.exp(z) sum_e_z = np.sum(e_z) return e_z / sum_e_z # END your code here ###Output _____no_output_____ ###Markdown **Now check that it works.** ###Code softmax([9, 8, 11, 10, 8.5]) ###Output _____no_output_____ ###Markdown Expected output: array([0.08276948, 0.03044919, 0.61158833, 0.22499077, 0.05020223]) Dimensions: 1-D arrays vs 2-D column vectorsBefore moving on to implement forward propagation, backpropagation, and gradient descent, let's have a look at the dimensions of the vectors you've been handling until now.Create a vector of length $V$ filled with zeros. ###Code x_array = np.zeros(V) x_array ###Output _____no_output_____ ###Markdown This is a 1-dimensional array, as revealed by the `.shape` property of the array. ###Code x_array.shape ###Output _____no_output_____ ###Markdown To perform matrix multiplication in the next steps, you actually need your column vectors to be represented as a matrix with one column. In numpy, this matrix is represented as a 2-dimensional array.The easiest way to convert a 1D vector to a 2D column matrix is to set its `.shape` property to the number of rows and one column, as shown in the next cell. ###Code x_column_vector = x_array.copy() x_column_vector.shape = (V, 1) # alternatively ... = (x_array.shape[0], 1) x_column_vector ###Output _____no_output_____ ###Markdown The shape of the resulting "vector" is: ###Code x_column_vector.shape ###Output _____no_output_____ ###Markdown So you now have a 5x1 matrix that you can use to perform standard matrix multiplication. Forward propagation Let's dive into the neural network itself, which is shown below with all the dimensions and formulas you'll need. Figure 2 Set $N$ equal to 3. Remember that $N$ is a hyperparameter of the CBOW model that represents the size of the word embedding vectors, as well as the size of the hidden layer. ###Code N = 3 ###Output _____no_output_____ ###Markdown Initialization of the weights and biases Before you start training the neural network, you need to initialize the weight matrices and bias vectors with random values.In the assignment you will implement a function to do this yourself using `numpy.random.rand`. In this notebook, we've pre-populated these matrices and vectors for you. ###Code W1 = np.array([[ 0.41687358, 0.08854191, -0.23495225, 0.28320538, 0.41800106], [ 0.32735501, 0.22795148, -0.23951958, 0.4117634 , -0.23924344], [ 0.26637602, -0.23846886, -0.37770863, -0.11399446, 0.34008124]]) W2 = np.array([[-0.22182064, -0.43008631, 0.13310965], [ 0.08476603, 0.08123194, 0.1772054 ], [ 0.1871551 , -0.06107263, -0.1790735 ], [ 0.07055222, -0.02015138, 0.36107434], [ 0.33480474, -0.39423389, -0.43959196]]) b1 = np.array([[ 0.09688219], [ 0.29239497], [-0.27364426]]) b2 = np.array([[ 0.0352008 ], [-0.36393384], [-0.12775555], [-0.34802326], [-0.07017815]]) ###Output _____no_output_____ ###Markdown **Check that the dimensions of these matrices match those shown in the figure above.** ###Code # BEGIN your code here print(f'V (vocabulary size): {V}') print(f'N (embedding size / size of the hidden layer): {N}') print(f'size of W1: {W1.shape} (NxV)') print(f'size of b1: {b1.shape} (Nx1)') print(f'size of W2: {W1.shape} (VxN)') print(f'size of b2: {b2.shape} (Vx1)') # END your code here ###Output _____no_output_____ ###Markdown Training example Run the next cells to get the first training example, made of the vector representing the context words "i am because i", and the target which is the one-hot vector representing the center word "happy".> You don't need to worry about the Python syntax, but there are some explanations below if you want to know what's happening behind the scenes. ###Code training_examples = get_training_example(words, 2, word2Ind, V) ###Output _____no_output_____ ###Markdown > `get_training_examples`, which uses the `yield` keyword, is known as a generator. When run, it builds an iterator, which is a special type of object that... you can iterate on (using a `for` loop for instance), to retrieve the successive values that the function generates.>> In this case `get_training_examples` `yield`s training examples, and iterating on `training_examples` will return the successive training examples. ###Code x_array, y_array = next(training_examples) ###Output _____no_output_____ ###Markdown > `next` is another special keyword, which gets the next available value from an iterator. Here, you'll get the very first value, which is the first training example. If you run this cell again, you'll get the next value, and so on until the iterator runs out of values to return.>> In this notebook `next` is used because you will only be performing one iteration of training. In this week's assignment with the full training over several iterations you'll use regular `for` loops with the iterator that supplies the training examples. The vector representing the context words, which will be fed into the neural network, is: ###Code x_array ###Output _____no_output_____ ###Markdown The one-hot vector representing the center word to be predicted is: ###Code y_array ###Output _____no_output_____ ###Markdown Now convert these vectors into matrices (or 2D arrays) to be able to perform matrix multiplication on the right types of objects, as explained above. ###Code x = x_array.copy() x.shape = (V, 1) print('x') print(x) print() y = y_array.copy() y.shape = (V, 1) print('y') print(y) ###Output _____no_output_____ ###Markdown Values of the hidden layerNow that you have initialized all the variables that you need for forward propagation, you can calculate the values of the hidden layer using the following formulas:\begin{align} \mathbf{z_1} = \mathbf{W_1}\mathbf{x} + \mathbf{b_1} \tag{1} \\ \mathbf{h} = \mathrm{ReLU}(\mathbf{z_1}) \tag{2} \\\end{align}First, you can calculate the value of $\mathbf{z_1}$. ###Code z1 = np.dot(W1, x) + b1 ###Output _____no_output_____ ###Markdown > `np.dot` is numpy's function for matrix multiplication.As expected you get an $N$ by 1 matrix, or column vector with $N$ elements, where $N$ is equal to the embedding size, which is 3 in this example. ###Code z1 ###Output _____no_output_____ ###Markdown You can now take the ReLU of $\mathbf{z_1}$ to get $\mathbf{h}$, the vector with the values of the hidden layer. ###Code h = relu(z1) h ###Output _____no_output_____ ###Markdown Applying ReLU means that the negative element of $\mathbf{z_1}$ has been replaced with a zero. Values of the output layerHere are the formulas you need to calculate the values of the output layer, represented by the vector $\mathbf{\hat y}$:\begin{align} \mathbf{z_2} &= \mathbf{W_2}\mathbf{h} + \mathbf{b_2} \tag{3} \\ \mathbf{\hat y} &= \mathrm{softmax}(\mathbf{z_2}) \tag{4} \\\end{align}**First, calculate $\mathbf{z_2}$.** ###Code # BEGIN your code here z2 = np.dot(W2, h) + b2 # END your code here z2 ###Output _____no_output_____ ###Markdown Expected output: array([[-0.31973737], [-0.28125477], [-0.09838369], [-0.33512159], [-0.19919612]]) This is a $V$ by 1 matrix, where $V$ is the size of the vocabulary, which is 5 in this example. **Now calculate the value of $\mathbf{\hat y}$.** ###Code # BEGIN your code here y_hat = softmax(z2) # END your code here y_hat ###Output _____no_output_____ ###Markdown Expected output: array([[0.18519074], [0.19245626], [0.23107446], [0.18236353], [0.20891502]]) As you've performed the calculations with random matrices and vectors (apart from the input vector), the output of the neural network is essentially random at this point. The learning process will adjust the weights and biases to match the actual targets better.**That being said, what word did the neural network predict?** SolutionThe neural network predicted the word "happy": the largest element of $\mathbf{\hat y}$ is the third one, and the third word of the vocabulary is "happy".Here's how you could implement this in Python:print(Ind2word[np.argmax(y_hat)]) Well done, you've completed the forward propagation phase! Cross-entropy lossNow that you have the network's prediction, you can calculate the cross-entropy loss to determine how accurate the prediction was compared to the actual target.> Remember that you are working on a single training example, not on a batch of examples, which is why you are using *loss* and not *cost*, which is the generalized form of loss.First let's recall what the prediction was. ###Code y_hat ###Output _____no_output_____ ###Markdown And the actual target value is: ###Code y ###Output _____no_output_____ ###Markdown The formula for cross-entropy loss is:$$ J=-\sum\limits_{k=1}^{V}y_k\log{\hat{y}_k} \tag{6}$$**Implement the cross-entropy loss function.**Here are a some hints if you're stuck. Hint 1 To multiply two numpy matrices (such as y and y_hat) element-wise, you can simply use the * operator. Hint 2Once you have a vector equal to the element-wise multiplication of y and y_hat, you can use np.sum to calculate the sum of the elements of this vector. ###Code def cross_entropy_loss(y_predicted, y_actual): # BEGIN your code here loss = np.sum(-np.log(y_hat)*y) # END your code here return loss ###Output _____no_output_____ ###Markdown **Now use this function to calculate the loss with the actual values of $\mathbf{y}$ and $\mathbf{\hat y}$.** ###Code cross_entropy_loss(y_hat, y) ###Output _____no_output_____ ###Markdown Expected output: 1.4650152923611106 This value is neither good nor bad, which is expected as the neural network hasn't learned anything yet.The actual learning will start during the next phase: backpropagation. BackpropagationThe formulas that you will implement for backpropagation are the following.\begin{align} \frac{\partial J}{\partial \mathbf{W_1}} &= \rm{ReLU}\left ( \mathbf{W_2^\top} (\mathbf{\hat{y}} - \mathbf{y})\right )\mathbf{x}^\top \tag{7}\\ \frac{\partial J}{\partial \mathbf{W_2}} &= (\mathbf{\hat{y}} - \mathbf{y})\mathbf{h^\top} \tag{8}\\ \frac{\partial J}{\partial \mathbf{b_1}} &= \rm{ReLU}\left ( \mathbf{W_2^\top} (\mathbf{\hat{y}} - \mathbf{y})\right ) \tag{9}\\ \frac{\partial J}{\partial \mathbf{b_2}} &= \mathbf{\hat{y}} - \mathbf{y} \tag{10}\end{align}> Note: these formulas are slightly simplified compared to the ones in the lecture as you're working on a single training example, whereas the lecture provided the formulas for a batch of examples. In the assignment you'll be implementing the latter.Let's start with an easy one.**Calculate the partial derivative of the loss function with respect to $\mathbf{b_2}$, and store the result in `grad_b2`.**$$\frac{\partial J}{\partial \mathbf{b_2}} = \mathbf{\hat{y}} - \mathbf{y} \tag{10}$$ ###Code # BEGIN your code here grad_b2 = y_hat - y # END your code here grad_b2 ###Output _____no_output_____ ###Markdown Expected output: array([[ 0.18519074], [ 0.19245626], [-0.76892554], [ 0.18236353], [ 0.20891502]]) **Next, calculate the partial derivative of the loss function with respect to $\mathbf{W_2}$, and store the result in `grad_W2`.**$$\frac{\partial J}{\partial \mathbf{W_2}} = (\mathbf{\hat{y}} - \mathbf{y})\mathbf{h^\top} \tag{8}$$> Hint: use `.T` to get a transposed matrix, e.g. `h.T` returns $\mathbf{h^\top}$. ###Code # BEGIN your code here grad_W2 = np.dot(y_hat - y, h.T) # END your code here grad_W2 ###Output _____no_output_____ ###Markdown Expected output: array([[ 0.06756476, 0.11798563, 0. ], [ 0.0702155 , 0.12261452, 0. ], [-0.28053384, -0.48988499, 0. ], [ 0.06653328, 0.1161844 , 0. ], [ 0.07622029, 0.13310045, 0. ]]) **Now calculate the partial derivative with respect to $\mathbf{b_1}$ and store the result in `grad_b1`.**$$\frac{\partial J}{\partial \mathbf{b_1}} = \rm{ReLU}\left ( \mathbf{W_2^\top} (\mathbf{\hat{y}} - \mathbf{y})\right ) \tag{9}$$ ###Code # BEGIN your code here grad_b1 = relu(np.dot(W2.T, y_hat - y)) # END your code here grad_b1 ###Output _____no_output_____ ###Markdown Expected output: array([[0. ], [0. ], [0.17045858]]) **Finally, calculate the partial derivative of the loss with respect to $\mathbf{W_1}$, and store it in `grad_W1`.**$$\frac{\partial J}{\partial \mathbf{W_1}} = \rm{ReLU}\left ( \mathbf{W_2^\top} (\mathbf{\hat{y}} - \mathbf{y})\right )\mathbf{x}^\top \tag{7}$$ ###Code # BEGIN your code here grad_W1 = np.dot(relu(np.dot(W2.T, y_hat - y)), x.T) # END your code here grad_W1 ###Output _____no_output_____ ###Markdown Expected output: array([[0. , 0. , 0. , 0. , 0. ], [0. , 0. , 0. , 0. , 0. ], [0.04261464, 0.04261464, 0. , 0.08522929, 0. ]]) Before moving on to gradient descent, double-check that all the matrices have the expected dimensions. ###Code # BEGIN your code here print(f'V (vocabulary size): {V}') print(f'N (embedding size / size of the hidden layer): {N}') print(f'size of grad_W1: {grad_W1.shape} (NxV)') print(f'size of grad_b1: {grad_b1.shape} (Nx1)') print(f'size of grad_W2: {grad_W1.shape} (VxN)') print(f'size of grad_b2: {grad_b2.shape} (Vx1)') # END your code here ###Output _____no_output_____ ###Markdown Gradient descentDuring the gradient descent phase, you will update the weights and biases by subtracting $\alpha$ times the gradient from the original matrices and vectors, using the following formulas.\begin{align} \mathbf{W_1} &:= \mathbf{W_1} - \alpha \frac{\partial J}{\partial \mathbf{W_1}} \tag{11}\\ \mathbf{W_2} &:= \mathbf{W_2} - \alpha \frac{\partial J}{\partial \mathbf{W_2}} \tag{12}\\ \mathbf{b_1} &:= \mathbf{b_1} - \alpha \frac{\partial J}{\partial \mathbf{b_1}} \tag{13}\\ \mathbf{b_2} &:= \mathbf{b_2} - \alpha \frac{\partial J}{\partial \mathbf{b_2}} \tag{14}\\\end{align}First, let set a value for $\alpha$. ###Code alpha = 0.03 ###Output _____no_output_____ ###Markdown The updated weight matrix $\mathbf{W_1}$ will be: ###Code W1_new = W1 - alpha * grad_W1 ###Output _____no_output_____ ###Markdown Let's compare the previous and new values of $\mathbf{W_1}$: ###Code print('old value of W1:') print(W1) print() print('new value of W1:') print(W1_new) ###Output _____no_output_____ ###Markdown The difference is very subtle (hint: take a closer look at the last row), which is why it takes a fair amount of iterations to train the neural network until it reaches optimal weights and biases starting from random values.**Now calculate the new values of $\mathbf{W_2}$ (to be stored in `W2_new`), $\mathbf{b_1}$ (in `b1_new`), and $\mathbf{b_2}$ (in `b2_new`).**\begin{align} \mathbf{W_2} &:= \mathbf{W_2} - \alpha \frac{\partial J}{\partial \mathbf{W_2}} \tag{12}\\ \mathbf{b_1} &:= \mathbf{b_1} - \alpha \frac{\partial J}{\partial \mathbf{b_1}} \tag{13}\\ \mathbf{b_2} &:= \mathbf{b_2} - \alpha \frac{\partial J}{\partial \mathbf{b_2}} \tag{14}\\\end{align} ###Code # BEGIN your code here W2_new = W2 - alpha * grad_W2 b1_new = b1 - alpha * grad_b1 b2_new = b2 - alpha * grad_b2 # END your code here print('W2_new') print(W2_new) print() print('b1_new') print(b1_new) print() print('b2_new') print(b2_new) ###Output _____no_output_____ ###Markdown Expected output: W2_new [[-0.22384758 -0.43362588 0.13310965] [ 0.08265956 0.0775535 0.1772054 ] [ 0.19557112 -0.04637608 -0.1790735 ] [ 0.06855622 -0.02363691 0.36107434] [ 0.33251813 -0.3982269 -0.43959196]] b1_new [[ 0.09688219] [ 0.29239497] [-0.27875802]] b2_new [[ 0.02964508] [-0.36970753] [-0.10468778] [-0.35349417] [-0.0764456 ]] Congratulations, you have completed one iteration of training using one training example!You'll need many more iterations to fully train the neural network, and you can optimize the learning process by training on batches of examples, as described in the lecture. You will get to do this during this week's assignment. Extracting word embedding vectorsOnce you have finished training the neural network, you have three options to get word embedding vectors for the words of your vocabulary, based on the weight matrices $\mathbf{W_1}$ and/or $\mathbf{W_2}$. Option 1: extract embedding vectors from $\mathbf{W_1}$The first option is to take the columns of $\mathbf{W_1}$ as the embedding vectors of the words of the vocabulary, using the same order of the words as for the input and output vectors.> Note: in this practice notebook the values of the word embedding vectors are meaningless after a single iteration with just one training example, but here's how you would proceed after the training process is complete.For example $\mathbf{W_1}$ is this matrix: ###Code W1 ###Output _____no_output_____ ###Markdown The first column, which is a 3-element vector, is the embedding vector of the first word of your vocabulary. The second column is the word embedding vector for the second word, and so on.The first, second, etc. words are ordered as follows. ###Code for i in range(V): print(Ind2word[i]) ###Output _____no_output_____ ###Markdown So the word embedding vectors corresponding to each word are: ###Code # loop through each word of the vocabulary for word in word2Ind: # extract the column corresponding to the index of the word in the vocabulary word_embedding_vector = W1[:, word2Ind[word]] print(f'{word}: {word_embedding_vector}') ###Output _____no_output_____ ###Markdown Option 2: extract embedding vectors from $\mathbf{W_2}$ The second option is to take $\mathbf{W_2}$ transposed, and take its columns as the word embedding vectors just like you did for $\mathbf{W_1}$. ###Code W2.T # loop through each word of the vocabulary for word in word2Ind: # extract the column corresponding to the index of the word in the vocabulary word_embedding_vector = W2.T[:, word2Ind[word]] print(f'{word}: {word_embedding_vector}') ###Output _____no_output_____ ###Markdown Option 3: extract embedding vectors from $\mathbf{W_1}$ and $\mathbf{W_2}$ The third option, which is the one you will use in this week's assignment, uses the average of $\mathbf{W_1}$ and $\mathbf{W_2^\top}$. **Calculate the average of $\mathbf{W_1}$ and $\mathbf{W_2^\top}$, and store the result in `W3`.** ###Code # BEGIN your code here W3 = (W1+W2.T)/2 # END your code here W3 ###Output _____no_output_____ ###Markdown Expected output: array([[ 0.09752647, 0.08665397, -0.02389858, 0.1768788 , 0.3764029 ], [-0.05136565, 0.15459171, -0.15029611, 0.19580601, -0.31673866], [ 0.19974284, -0.03063173, -0.27839106, 0.12353994, -0.04975536]]) Extracting the word embedding vectors works just like the two previous options, by taking the columns of the matrix you've just created. ###Code # loop through each word of the vocabulary for word in word2Ind: # extract the column corresponding to the index of the word in the vocabulary word_embedding_vector = W3[:, word2Ind[word]] print(f'{word}: {word_embedding_vector}') ###Output _____no_output_____
InstaBot 1.ipynb
###Markdown Answer 1.1 ###Code #logging_in from selenium import webdriver driver=webdriver.Chrome("/Users/User/Web drivers/chromedriver") driver.get("https://www.instagram.com/") wait = WebDriverWait(driver, 10) user= wait.until(EC.presence_of_element_located((By.NAME,"username"))) password=driver.find_element_by_name("password") #fill up username and password user.send_keys("SAMPLE USERNAME") password.send_keys("SAMPLE PASSWORD") login=driver.find_element_by_xpath('//button[@type="submit"]/div') login.submit() #turning off notification pop up which comes on logging in notificatn_off=driver.find_element_by_class_name("HoLwm") notificatn_off.click() driver.maximize_window() ###Output _____no_output_____ ###Markdown Answer 2.1 ###Code #fetching names of the Instagram Handles that are displayed in list after typing “food” search=driver.find_element_by_xpath('//input[contains(@class,"XTCLo")]') search.send_keys("food") time.sleep(3) l=driver.find_elements_by_class_name("Ap253") print("The names of the Instagram Handles that are displayed in list after typing “food” are :--->") for i in l: print(i.get_attribute('innerHTML').strip('#')) ###Output The names of the Instagram Handles that are displayed in list after typing “food” are :---> foodtalkindia food_happened __journey__with__food__ dilsefoodie your_scrolling_stopper _foodfiestaa_ food delhifoodguide food_lunatic uzbek_food food_belly11 1_colours_1 delhieater foodinsider food_and_makeup_lover buzzfeedfood indian_food_freak indianfood_lovers foodofchennai pune_food_blogger foodiesdelhite lefoodtour dillifoodjunkie fityetfoodie hungrypixel mumbaifoodie foodnetwork foodlovers96 food foodtalkprivilege foodelhi mumbaifoodjunkie foodieveggie Food Station thehungrymumbaikar yum_crunch Food Square food_travel_etc foodporn food.creative foodallday365 what.blue.eats foodsnobtv foodiliciousmoments foodiesofguwahati foodiediana delhi_foodaholic salonikukreja karanfoodfanatic foodtalkbangalore the_foodies_journal foodisnirvana foodphotography bangalore_foodjunkies eatagii concentrate_on_food ###Markdown Answer 3.1 ###Code #searching and opening so_delhi page search=driver.find_element_by_xpath('//input[contains(@class,"XTCLo")]') search.clear() search.send_keys("So Delhi") time.sleep(3) so_delhi=driver.find_element_by_class_name("Ap253") so_delhi.click() ###Output _____no_output_____ ###Markdown Answer 4.1 ###Code #going back to homepage driver.back() #searching and opening so_delhi page search=driver.find_element_by_xpath('//input[contains(@class,"XTCLo")]') search.send_keys("So Delhi") time.sleep(3) so_delhi=driver.find_element_by_class_name("Ap253") so_delhi.click() ###Output _____no_output_____ ###Markdown Answer 4.2 ###Code #following so_delhi page follow_so_delhi=driver.find_element_by_xpath('//button[contains(@class,"_5f5mN")]') follow_so_delhi.click() print("Followed So_Delhi") ###Output Followed So_Delhi ###Markdown Answer 4.3 ###Code #unfollowing so_delhi page unfollow_so_delhi=driver.find_element_by_xpath('//button[contains(@class,"_5f5mN")]') unfollow_so_delhi.click() unfollow=driver.find_element_by_xpath('//button[contains(@class,"aOOlW")]') unfollow.click() print("Unfollowed So_Delhi") ###Output Unfollowed So_Delhi ###Markdown Answer 5.1 ###Code #going back to homepage driver.back() #searching and opening dilsefoodie page search=driver.find_element_by_xpath('//input[contains(@class,"XTCLo")]') search.send_keys("dilsefoodie") time.sleep(2) wait = WebDriverWait(driver, 10) dilsefoodie= wait.until(EC.presence_of_element_located((By.CLASS_NAME,"Ap253"))) dilsefoodie.click() #opening recent post wait = WebDriverWait(driver, 10) to_be_liked_dilsefoodie=wait.until(EC.element_to_be_clickable((By.XPATH,'//div[contains(@class,"v1Nh3 kIKUG")]/a'))) to_be_liked_dilsefoodie.click() #clicking like and repeating it for first 30 posts for i in range(30): wait = WebDriverWait(driver, 10) like= wait.until(EC.presence_of_element_located((By.XPATH,'//div[@class="QBdPU "]/span'))) like.click() next=driver.find_element_by_class_name('coreSpriteRightPaginationArrow') next.click() print("Liked the first 30 posts of dilsefoodie") ###Output Liked the first 30 posts of dilsefoodie ###Markdown Answer 5.2 ###Code #going back to dilsefoodie page driver.get("https://www.instagram.com/dilsefoodie/") #opening recent post wait = WebDriverWait(driver, 10) to_be_unliked_dilsefoodie=wait.until(EC.element_to_be_clickable((By.XPATH,'//div[contains(@class,"v1Nh3 kIKUG")]/a'))) to_be_unliked_dilsefoodie.click() #clicking unlike and repeating it for first 30 posts for i in range(30): wait = WebDriverWait(driver, 10) unlike= wait.until(EC.presence_of_element_located((By.XPATH,'//div[@class="QBdPU "]/span'))) unlike.click() next=driver.find_element_by_class_name('coreSpriteRightPaginationArrow') next.click() print("UnLiked the first 30 posts of dilsefoodie") ###Output UnLiked the first 30 posts of dilsefoodie ###Markdown Answer 6.1 ###Code #going back to homepage driver.get("https://www.instagram.com/") #searching and opening the profile def search_and_open(profile): search=driver.find_element_by_xpath('//input[contains(@class,"XTCLo")]') search.clear() search.send_keys(profile) wait = WebDriverWait(driver, 20) open_page= wait.until(EC.presence_of_element_located((By.CLASS_NAME,"Ap253"))) open_page.click() #getting top 500 follower's username def get_username(profile): search_and_open(profile) #clicking on followers button wait = WebDriverWait(driver, 20) followers_button = wait.until(EC.presence_of_element_located((By.PARTIAL_LINK_TEXT,"followers"))) followers_button.click() time.sleep(4) userlist = [] #finding element for the followers popup fBody = driver.find_element_by_xpath("//div[@class='isgrP']") #getting 500 usernames while len(userlist) < 500: #extracting names using BeautifulSoup data = driver.page_source html_data = BeautifulSoup(data, 'html.parser') ul = html_data.find_all(class_ = 'd7ByH') for u in ul[len(userlist):]: if u.a.string not in userlist: userlist.append(u.a.string) #scrolling driver.execute_script('arguments[0].scrollTop = arguments[0].scrollTop + arguments[0].offsetHeight;', fBody) return userlist users = get_username('foodtalkindia') print('The usernames of the first 500 followers of foodtalkindia are:') for i in range(500): print(i+1, users[i]) #going back to homepage driver.get("https://www.instagram.com/") #so_delhi users_sodelhi = get_username('sodelhi') print('The usernames of the first 500 followers of sodelhi are:') for i in range(500): print(i+1, users_sodelhi[i]) ###Output The usernames of the first 500 followers of sodelhi are: 1 fatimaaaaa_kh 2 pragsjosh 3 aslamba13 4 jack_your_thoughts 5 afzal5430 6 itsmfahad 7 niks1320 8 mii_tube_ 9 talkaboutdelicious 10 pr_rupa_mishra 11 ridhiisehgal 12 vaibhavgar97 13 chillr05 14 nailzonebykanika 15 hxnia_khxn 16 lkanma 17 vikaschauhan_7 18 kirtigoyall 19 sharnehaa 20 quotesby0u 21 that.brown.girl__ 22 sami.akhtar786 23 fooodgrams 24 sourabhsharma2048 25 rohanjeenwal_0111 26 morganr44 27 sparkling_gurlll 28 heyniharika 29 arushi__narang 30 shemingleshermind 31 rachi_goel 32 himanshutibre 33 null5216 34 the_odd_bud 35 souledcraft 36 nehagandhilatika 37 veer_ji_malai_chaap_wale_ 38 baani.gupta2324 39 royal_banna_abhi 40 naturelover2731 41 sadhkarishma 42 aanandi17 43 sushantarora19 44 s.h.u.b.h9 45 amri.ta7118 46 ritugosain 47 m.ashfaq05 48 koushikkumarray9 49 adityazsupertramp 50 dr_naved 51 rathore.shweta_ 52 _faiza_abbasi_ 53 prachi1kiara 54 fun_and_foodstation 55 cute_arru988 56 shubhsood 57 _manvi_saini_ 58 dr.sarimulhoque 59 loving_raj_13.9 60 theraastar 61 upcycling_fashion_thinker 62 yatayat_seva 63 sonu7947sonu 64 play_boy_raju_royal 65 salz_saloni 66 muditagrawal_07 67 k_salonii 68 be_like_100rb 69 vicky_vibhav 70 deadmauw5 71 _whims_n_craze_ 72 vrindaaaaa17 73 rchawla258 74 sunnypanwar269 75 funaphor 76 kapoor2ranbir 77 chhavi0810 78 ajju786ajju786ajju 79 farmersfamily_market 80 shreesha___pande 81 reenaya_27 82 sabrinamargetic 83 thetotos7 84 raheja_jaya 85 slayerr_singh 86 08.03.2020_____ 87 pictureclassics 88 theprint_company 89 iamrammaurya 90 manimie 91 ro.hit4576 92 farhadfarhad920 93 1212jayesh 94 caterersshubh.kanpur 95 kamboj7117 96 trueliving1444 97 thedescanttypewriter 98 thejatinpopli 99 shobhit_mehrotra_01 100 shilpyrauniyar 101 makeoversbysaum_14 102 zivya__noor__shah 103 sehaj_chabba 104 latikasingh92107 105 shefaliarora1996 106 keshavkapur_ 107 teena_8395 108 divya_111111 109 abhishek03g 110 b_a_i_s_a 111 winnie__june 112 theeverywhereist_v 113 real_pujasharma09 114 himanshu_kohlii_ 115 tanmayswagger 116 cookbook.india 117 vermamohit11 118 chaitraveller 119 prakhar_pd 120 bhatia_mohit2210 121 abhishekbhati1111 122 insta_tyagi 123 sameersaifi645 124 llx_wakil_xll 125 apoorvasharma99 126 jahnvi_sahni 127 annuverma130 128 soul_journey_1302 129 manhasasaf3 130 tarpanaggarwal 131 neha_ha_ha3 132 harshsuhane 133 queendanny0035 134 _sinha_saurabh_ 135 talesbymales_ 136 ayushsingh.10 137 meht.a3908 138 nanzie23 139 mudita_lakhanpal 140 rohan_helpus_ 141 krisi.sawhney 142 _chetna_prajapat 143 zaid_farooqui45 144 gato.grrl 145 _aahna_singh 146 vishal_kr.singh_ 147 _anzika 148 saiyam_1501 149 __tannu18__ 150 birafit 151 karanthakor3432 152 prateek06_ 153 mr_man_on_wheel__ 154 himani_sen 155 phemoushwor 156 afreenshakeel2 157 infiniteshadesofpatriarchy 158 chetan.2828 159 goutamradhika 160 contenuum.in 161 tejashmishra25 162 bb2332020 163 ayushipurbey 164 sinfultreats2013 165 _ankita_333_ 166 travel.marble 167 furtasticindia 168 sg5482 169 mtenterprises_ 170 yadav_babina 171 im_rafiyat 172 nikisareen 173 julme6108 174 jaisairam_004 175 chodry_nikhil 176 rachnaj_84 177 mydogsultan 178 simranjeetsgill 179 rahulthekkel 180 foodie_crush26 181 abhaygupta229 182 kahkashan950 183 _mr_vaibhav__ 184 ritesh.lohat.988 185 tanya.sharma1233 186 iam_ankurgupta 187 meenarani917 188 colins_book_shelf 189 sheoran_tamanna 190 nitinbharara 191 kreafurnitureofficial 192 ititrishla 193 kamal_mudgal 194 hpal90455 195 azzykhan30 196 jepis_cake_bakery_shop 197 divya13.07 198 aakash_01garg 199 nikita.sharma98 200 preeti_gautam 201 kanishq_basoya_dellhii0001 202 divyanshumehta_ 203 ifam_roy7465 204 ritubhatiain 205 aryanofficialid 206 parshavvv 207 lyf_phase 208 gangseytrash 209 aashbeautyshop 210 tanmaytripathi 211 aashika674 212 ch.sanskaar_singh_nirbaan 213 the_professorrr_ 214 asadriz 215 romanticboy_sam 216 imashishgoswami 217 mannishaa_ 218 tusharr._.r 219 unique_purnima 220 iamsamriddhi_ 221 bong_discover 222 tiamettato 223 o_thatguy_ 224 sameen_hussain19 225 harleen59 226 craftisfaction 227 ishita.naskar 228 deepti_0708 229 karmvir9412342926 230 jyotilall 231 nilangsonii 232 urvishsambre 233 the_heart_of_iron 234 ayushrma 235 faisalabbasi99112516 236 mridula_vats 237 himanshuon 238 allurisriram 239 chattrapalsingh_worldaroundme 240 fatherofmongrels 241 sanyam_aggarwal169 242 devil_of_angel1 243 socoimbatoreofficial 244 viraj_25_08 245 so.nagpur 246 muskanrathore001 247 shubhamprasadd 248 bakenetic 249 rokysantu 250 laijou_brahma 251 rohit03_09 252 tikki_singh 253 daformoment.x 254 divyanshaasachdevaa 255 gouravkishor_ 256 _.ppriyankaa._ 257 kharsheen 258 jjprateeksha 259 kshitijmishra_ 260 rahuldogra7 261 rakkshet 262 purvi_rastogi 263 ridhi.virmani 264 aryanx.xd 265 yamu_sharma_ 266 d_acharya1610 267 cxndystuff._ 268 rishabhmajumdar 269 the__pluviophile 270 ann.iykara 271 kamalaggarwal92 272 goelaayushi 273 adiseth 274 rhinitis.gal 275 rajatbhallaofficial 276 nishuudubeyy 277 kunaljain_63 278 arya.anik 279 _anand_pallavi_1219 280 palakgupta862 281 martabaan_madhumodi 282 dbhoriya 283 ehsaanqureshi798 284 aruba944 285 nishchayjain_ 286 pulsemedicalcentregk2 287 juhi__verma 288 riyasid1312 289 21stpuneet 290 jinsonraju 291 anam_siddiqui971 292 akskhurana_ 293 sparsh973 294 prapya__ 295 mycityunnao2020 296 pardeep_bishnoi_29029 297 2022pramodsingh 298 theshantanutyagi 299 anjalisaxena124 300 nishthaaseth 301 vvipchorabaadshah 302 ambragk2 303 variety1430 304 solo_gil 305 none_of_your_friends_ 306 aastharora1603 307 akashkawatra04 308 the__karma__ 309 jhanvikalra 310 hitours 311 ishaaayayyaa 312 jahnvigupta1_ 313 aakashyadav_2004 314 himanipandey27 315 i_am_yash_pandey 316 givni.in 317 solofall17 318 mallikasjewellery 319 foodandflamenco 320 sanjana__30__ 321 preea1983 322 shubham.shukla69 323 jhilik__mondal 324 ___rafique_ 325 __theblogger_ 326 umesh.suri.11 327 v.a.n.s.h.i_12 328 _bhavyaxoxo_ 329 aashu1102 330 n.das.73113 331 abhi_yaduvanshi_rao 332 harmonyinnmeerut 333 _iamronny__ 334 himanshu_agrawal_ 335 the.whitewolff 336 aggarwal.ayushi24 337 kavi1109____ 338 surya_rajawat_1 339 hashimraza388 340 _sheena.bhatia_ 341 ishi_2504 342 vipulmaru47 343 __pverma__ 344 parveengehl 345 aarti_swarnakar 346 _aashi_1297 347 sun.jay_j 348 nausheen_mirza04 349 sarah.kayum 350 _avinash_pathak_10 351 imsupersingha 352 rahulkansal9 353 md_arshu04 354 official_piyalidey 355 aalok_shastri10 356 wtfaanchal 357 photographyidea4 358 skiny_as_hell 359 akakumar6449 360 explorer.chiru 361 shalini3549 362 yummoments 363 minimalmusafir 364 aged___wine 365 _hamiltonborah_ 366 thep.erfectguy 367 lipsamulia 368 consciously_yours_john 369 abhishek._bidhuri 370 ra_fun_ 371 manav_._makkar 372 vr_vibe_ 373 mangopeople123 374 kaur6_officiall 375 enrichlifespan 376 priyam_khandelwal 377 dabas_manju 378 yashdahiya21 379 kaavinisoni 380 ziyanhoney 381 _bibliophilist_ 382 lazeez16 383 reetrathore 384 palak_bh 385 anmol._.saluja 386 dhaba_by_mummy 387 tempting_thali 388 aausaey 389 vibha.anand30 390 harshit_27_10 391 fabricon2020 392 sara.singh.in.india 393 jordan.jordee 394 amanescaping 395 bake_wine 396 muskan_chadha 397 justrameeza1 398 rashi_theblogger 399 aviralllllll 400 ishitachauhann_ 401 so.kanpur 402 pranitaa_1010 403 unify.times 404 __mansiie 405 perks.with.prince 406 the_._free_soul 407 manasvik10 408 syedhassan.ahmed 409 avantikamiishra 410 payal_malethia 411 siayushh 412 riyaa.raghav 413 lvlivlaff 414 welcometoagworld 415 mr_ritwik 416 shalini6577 417 kara_vaan 418 ritusharma5115 419 ak028king 420 kuldeep_ydv01 421 wandering.singh 422 amitverma4978 423 anil_official_12 424 laubongolotika 425 abhinav_kanaujia 426 __riyaaaaa__ 427 _.sona__ 428 __asmitaaaa__ 429 prince.kalra5 430 lakshaysharma462 431 thedesistuffs 432 babumoshai69 433 salmannahmadd 434 avichal_16 435 ancient___mariner 436 satakshigarg21 437 world_without_wants 438 vinayak0432 439 miss.chauhan18 440 nikhil93 441 kawall__ 442 tanyahuja 443 shagunkhanna_ 444 abimani285 445 puja_09samanta 446 saitano_ka_godfather 447 sanjanasagwekar 448 __ajmaj_khan__ 449 suhaschef 450 reswalchanchal 451 mihirtyagi007 452 amritlikesdecency 453 delhilad 454 shiva.wadhwani11 455 arorak10 456 vishalsharma.7200 457 avinash_75 458 ojha3481 459 houseeofstoriess 460 niveditakhandare7 461 stoked.kombucha 462 imgursahib 463 rai__archana 464 nobita.hu.me_ 465 ishika_0330 466 chetanoberoi13 467 _niteshgupta7835_ 468 jilanifaiza 469 satender3699 470 king_mahmoudy_video 471 deepak11_06 472 priya.k.mehrotra 473 theyogi_gang 474 monug_singh 475 vivek_patel_001 476 scan.dal49 477 homedaily.in 478 niranjan_m._42 479 ratika.wadhwa 480 wajeehamemon30 481 __s_h_a_i_k____ 482 rajash185 483 lavi__arora__ 484 apurvanand_ 485 chalantika_s_food_journey 486 iamjeoncharu 487 shikhaa__14 488 numangolden 489 arjitaneja_forever 490 parinieta_ahuja 491 travel_buffs_pm 492 greenearthjaipur 493 dance_is_life_444 494 xx.logophile.xx 495 amazingxperience_india 496 maheshkumar272 497 lilac55_ 498 mad_picasso95 499 homeco2020 500 usmankhan379 ###Markdown Answer 6.2 ###Code #going back to homepage driver.get("https://www.instagram.com/") def not_follow_me(profile): search_and_open(profile) wait = WebDriverWait(driver, 10) # Finding followers of “foodtalkindia” that I am following followed_by = wait.until(EC.element_to_be_clickable((By.XPATH, '//span[contains(@class, "tc8A9")]'))) followed_by.click() fl = wait.until(EC.presence_of_all_elements_located((By.XPATH, '//a[contains(@class, "FPmhX")]'))) data = driver.page_source html_data = BeautifulSoup(data, 'html.parser') followers_list = [] fll = html_data.find_all(class_ = 'FPmhX') for f in fll: followers_list.append(f.string) #Finding all my followers driver.back() my_profile = wait.until(EC.element_to_be_clickable((By.XPATH, '//span[contains(@class, "_2dbep qNELH")]'))) my_profile.click() profile = wait.until(EC.element_to_be_clickable((By.XPATH, '//a[contains(@class, "-qQT3")]'))) profile.click() time.sleep(5) no_of_followers = wait.until(EC.presence_of_element_located((By.XPATH, '//a[contains(@class, "-nal3 ")]'))) data = driver.page_source html_data = BeautifulSoup(data, 'html.parser') n = html_data.find_all(class_ = '-nal3') num = int(n[1].span.string) my_followers = wait.until(EC.element_to_be_clickable((By.XPATH, '//a[contains(@class, "-nal3 ")]'))) my_followers.click() userlist = [] #finding element for the followers name popup fBody = driver.find_element_by_xpath("//div[@class='isgrP']") while len(userlist) < num: #extracting names using BeautifulSoup data = driver.page_source html_data = BeautifulSoup(data, 'html.parser') ul = html_data.find_all(class_ = 'd7ByH') for u in ul[len(userlist):]: if u.a.string not in userlist: userlist.append(u.a.string) #scrolling driver.execute_script('arguments[0].scrollTop = arguments[0].scrollTop + arguments[0].offsetHeight;', fBody) followers_list = set(followers_list) userlist = set(userlist) #Finding All the followers of “foodtalkindia” that I am following but those who don’t follow me ans = followers_list - userlist print('All the followers of “foodtalkindia” that I am following but those who don’t follow me are:') for user in ans: print(user) not_follow_me('foodtalkindia') ###Output All the followers of “foodtalkindia” that I am following but those who don’t follow me are: your_scrolling_stopper shreya241990 ###Markdown Answer 7.1 ###Code #going back to homepage driver.get("https://www.instagram.com/") from selenium.common.exceptions import TimeoutException def get_story(profile): search_and_open(profile) wait = WebDriverWait(driver, 10) time.sleep(5) try: #finding element for the story story = wait.until(EC.element_to_be_clickable((By.XPATH, '//div[contains(@class, "RR-M- h5uC0")]'))) data = driver.page_source html_data = BeautifulSoup(data, 'html.parser') c = html_data.find(class_ = 'CfWVH') h = int(c['height']) w = int(c['width']) #height and width different for the story viewed and not viewed if h == 208 and w == 208: print("You have already seen the story") elif h == 210 and w == 210: print("You have not seen the story") story.click() print("You are now seening the story") except TimeoutException: print("The user has no story") driver.get("https://www.instagram.com/") time.sleep(2) find_story=get_story("coding.ninjas") ###Output You have already seen the story
fitting_spectral_line_minimize.ipynb
###Markdown Fitting an "artificial" spectral lineWe want to fit an artificial absorption line. We construct a simple model composed of a line representing the continuum and a Gaussian dip representing the feature itself that (locally) fits the spectrum. Our model therefore has 5 parameters: slope ($m$), intercept ($b$), central wavelength ($\lambda_0$), width ($\sigma$), and strength ($C$).This model is a *generative* model, which means it can (artifically) generate observations. We want to compare the model's spectrum with the observed spectrum. Our likelihood function then looks like this:$$ P(\{x_i\}\ |\ m, b, \lambda_0, {\rm EW}) = m*\lambda + b - C * \exp\left[- \frac{(\lambda-\lambda_0)^2}{\sigma^2} \right] $$ ###Code # Importing Libraries import numpy as np import matplotlib.pyplot as plt from matplotlib import gridspec from scipy import stats from scipy.optimize import minimize, brent from decimal import Decimal import warnings warnings.filterwarnings('ignore') %matplotlib inline # CREATING THE ARTIFICIAL LINE # Input model values m = -0.2 b = 2000.0 lamb_0 = 6563. sigma = 1.5 C = 5.0 param = [m,b,lamb_0,sigma,C] # The "theoretical" spectrum lamb = np.linspace(6550, 6570, 100) flux = m*lamb + b - C*np.exp(-(lamb-lamb_0)**2 / sigma**2) plt.plot(lamb,flux, label="Input Model") # The "real" data with noise x_i = flux + stats.norm.rvs(0.0, 0.5, len(flux)) plt.scatter(lamb, x_i, marker='.', color='k',label='Observations') plt.axes().set_xticks(np.linspace(6550, 6570, 6)) plt.xlabel(r"$\lambda$") plt.ylabel("Flux") plt.legend() plt.show() ###Output ('Real parameters ', [-0.2, 2000.0, 6563.0, 1.5, 5.0]) ###Markdown Now the fitting process. We want to find the best fit model parameters for this spectrum. We provide the code for the model and the minimization routine. ###Code # Instead of maximizing the likelihood (L) we minimize -L def neg_likelihood(M, lamb, x_i): m, b, lamb_0, sigma, C = M x_model = m*lamb + b - C*np.exp(-(lamb-lamb_0)**2 / sigma**2) # Loss function likelihood = (x_model - x_i)**2 return np.sum(likelihood) x0 = np.array([-0.05, 1000, 6563, 2.5, 10.0]) # some random parameters res = minimize(neg_likelihood, x0, args=(lamb, x_i)) # it will find the solution of the above # function, given some initial guesses by minimizing print('Best model parameters =',res.x) # these are the best model parameters print('Real parameters =',param) # Input model plt.plot(lamb, flux, label="Input Model") # Observations plt.scatter(lamb, x_i, marker='.', color='k') # Best-fit model m, b, lamb_0, sigma, C = res.x x_model = m*lamb + b - C*np.exp(-(lamb-lamb_0)**2 / sigma**2) plt.plot(lamb, x_model, color='r', alpha=0.5, label="Best fit Model") plt.legend() plt.axes().set_xticks(np.linspace(6550, 6570, 6)) plt.xlabel(r"$\lambda$") plt.ylabel("Flux") plt.show() ###Output ('Best model parameters =', array([ -1.99938673e-01, 1.99963003e+03, 6.56302073e+03, 1.65977094e+00, 4.79921873e+00])) ('Real parameters =', [-0.2, 2000.0, 6563.0, 1.5, 5.0])
notebooks/_Group4-Final_Notebook1-Logistic_Regression.ipynb
###Markdown InstructionsPlease refer to [README file details]Here's the docker cmd to run from /notebooks:docker run -dit --rm --name notebook -p 8888:8888 -e JUPYTER_ENABLE_LAB=yes -v "$PWD"/..:/home/jovyan/work ajduncanson/nba-modelling Introduction This notebook is an experiment of building a model that will predict if a rookie player will last at least 5 years in the league based on his stats.In the National Basketball Association (NBA), a rookie is any player who has never played a game in the NBA until that year. At the end of the season the NBA awards the best rookie with the NBA Rookie of the Year Award.Moving to the NBA league is a big deal for any basketball player. Sport commentators and fans are very excited to follow the start of their careers and guess how they will perform in the future.In this experiment, LogisticRegression model is used. Import the libraries ###Code import pandas as pd import numpy as np import imblearn from sklearn.preprocessing import StandardScaler, PolynomialFeatures import os import sys sys.path.append(os.path.abspath('..')) from src.common_lib import DataReader, NBARawData from src.common_lib import confusion_matrix, plot_roc, eval_report from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, roc_curve, auc import matplotlib.pyplot as plt from joblib import dump from collections import Counter import warnings warnings.simplefilter(action='ignore', category=FutureWarning) %load_ext autoreload %autoreload 2 ###Output _____no_output_____ ###Markdown Load the data ###Code # Instantiate the custom data reader class data_reader = DataReader() # Load Raw Train Data train_df = data_reader.read_data(NBARawData.TRAIN) # Load Test Raw Data test_df = data_reader.read_data(NBARawData.TEST) ###Output _____no_output_____ ###Markdown Class Balance Check on Raw Data ###Code target_count = train_df["TARGET_5Yrs"].value_counts() print('Propotion: ', round(target_count[0]/ target_count[1], 2), ":1") print( Counter(target_count)) data_reader.plot_class_balance(train_df["TARGET_5Yrs"]) ###Output Propotion: 0.2 :1 Counter({6669: 1, 1331: 1}) ###Markdown Scaling with Standard Scaler ###Code ## Scaling df_cleaned = train_df.copy() target = df_cleaned.pop('TARGET_5Yrs') train_df_scaled = data_reader.scale_features_by_standard_scaler(df_cleaned) train_df_scaled ###Output _____no_output_____ ###Markdown Select Features ###Code train_df_scaled['TARGET_5Yrs'] = target selected_features = data_reader.select_feature_by_correlation(train_df_scaled, ['Id', 'Id_old']) selected_features train_df_scaled = train_df_scaled[selected_features] train_df_scaled.head() ###Output _____no_output_____ ###Markdown Split Train and Test on Scaled Data with Selected Features ###Code X_train, X_val, y_train, y_val = data_reader.split_data(train_df_scaled) ### Visualisation Before Sampling Classification Count print( Counter(y_train)) data_reader.plot_class_balance(y_train) print(Counter(y_val)) data_reader.plot_class_balance(y_val) ###Output Counter({1: 1343, 0: 257}) ###Markdown Re-sampling - Over Sampling ###Code # Resample Train Data X_train_res, y_train_res = data_reader.resample_data_upsample_smote(X_train, y_train) X_val_res, y_val_res = data_reader.resample_data_upsample_smote(X_val, y_val) # Re-plot the target data_reader.plot_class_balance(y_train_res) ###Output _____no_output_____ ###Markdown Build The Model - Logistic Regression ###Code log_reg = LogisticRegression().fit(X_train_res, y_train_res) ###Output _____no_output_____ ###Markdown Accuracy Test on Train Set ###Code y_train_prob = log_reg.predict_proba(X_train_res)[:,1] ## Check Accuracy Score y_pred_train=log_reg.predict(X_train_res) ## Confusion matrix, metrics and AUC plot eval_report(y_train_res, y_pred_train) ###Output Confusion Matrix: pred:0 pred:1 true:0 3610 1716 true:1 1891 3435 Classification Report: precision recall f1-score support 0 0.66 0.68 0.67 5326 1 0.67 0.64 0.66 5326 accuracy 0.66 10652 macro avg 0.66 0.66 0.66 10652 weighted avg 0.66 0.66 0.66 10652 ROC Curve: AUC = 0.661 ###Markdown Accuracy Check on Validation Set ###Code y_prob_val=log_reg.predict_proba(X_val_res)[:,1] ## Check Accuracy Score y_pred_val=log_reg.predict(X_val_res) ## Confusion matrix, metrics and AUC plot eval_report(y_val_res, y_pred_val) ###Output Confusion Matrix: pred:0 pred:1 true:0 890 453 true:1 491 852 Classification Report: precision recall f1-score support 0 0.64 0.66 0.65 1343 1 0.65 0.63 0.64 1343 accuracy 0.65 2686 macro avg 0.65 0.65 0.65 2686 weighted avg 0.65 0.65 0.65 2686 ROC Curve: AUC = 0.649 ###Markdown Prediction on Test Set ###Code # Remove the target column, because the raw test set does not contain it features_without_target = np.delete(selected_features, 13) test_df = test_df[features_without_target] # apply scaling test_df_scaled = data_reader.scale_features_by_standard_scaler(test_df) # predictions y_test_proba =log_reg.predict_proba(test_df_scaled)[:,1] final_prediction_test = pd.DataFrame({'Id': range(0,3799), 'TARGET_5Yrs': [p for p in y_test_proba]}) final_prediction_test.head(10) ###Output _____no_output_____ ###Markdown Coefficients ###Code coef_table = pd.DataFrame({'Feature': features_without_target, 'Coefficient': log_reg.coef_[0]}) coef_table ###Output _____no_output_____ ###Markdown Variable importance by permutation ###Code from sklearn.inspection import permutation_importance r = permutation_importance( log_reg, X_train_res, y_train_res, n_repeats=30, random_state=8 ) table = pd.DataFrame(r.importances_mean) table.index = X_train.columns importances = pd.DataFrame({'Feature': features_without_target, 'importance': r.importances_mean}) importances ###Output _____no_output_____ ###Markdown Examine features by class ###Code import matplotlib.pyplot as plt import seaborn as sns #sns.pairplot(train_df_scaled, hue="TARGET_5Yrs") #chart_cols = selected_features[0:-1] chart_cols = importances.sort_values(by=['importance'], ascending = False, inplace=False)['Feature'] for c in chart_cols: length_fig, length_ax = plt.subplots() sns.kdeplot(data=train_df, x=c, hue="TARGET_5Yrs", fill=True, common_norm=False, palette="coolwarm", alpha=.5, linewidth=0) plt.savefig('../reports/figures/density_by_class_' + c + '.png') ###Output _____no_output_____
linear-regression/Surface and contour plot.ipynb
###Markdown Surfacr Plots |Data visualisationSurface plots are used to- Visualise loss function in Machine learning and deep learning- visualise state or state value function in reinforcement learning ###Code import matplotlib.pyplot as plt import numpy as np # a = np.array([1,2,3]) # b = np.array([4,5,6,7]) a = np.arange(-1,1,0.02) b=a a,b = np.meshgrid(a,b) print(a) print(b) from mpl_toolkits.mplot3d import Axes3D fig = plt.figure() axes = fig.gca(projection='3d') axes.plot_surface(a,b,a**2+b**2,cmap="rainbow")# color difference depicts high and low value plt.show() ###Output _____no_output_____ ###Markdown contour plot ###Code fig = plt.figure() axes = fig.gca(projection='3d') axes.contour(a,b,a**2+b**2,cmap = 'rainbow') plt.title("contour plot") plt.show() ###Output _____no_output_____
_notebooks/2021-11-22-vpp-seq.ipynb
###Markdown Notes about Sequence Modelling> Predicting Ventilator Pressure Time Series- hide: false- toc: true- badges: false- comments: true- author: Johannes Tomasoni- image: images/logo_vpp_seq.png- categories: [TimeSeries, Transformer, LSTM] ###Code #hide import numpy as np from matplotlib import pyplot as plt import seaborn as sns from pathlib import Path import fastai from fastai.data.all import * import torch from fastai.basics import * from fastai.callback.all import * from sklearn.model_selection import GroupKFold from sklearn.preprocessing import RobustScaler from torch.nn import functional as F import pandas as pd ###Output _____no_output_____ ###Markdown Notes about Sequence ModellingI lately participated in the [Google Brain - Ventilator Pressure Prediction](https://www.kaggle.com/c/ventilator-pressure-prediction) competition. I didn't score decent, but I still learned a lot. And some of it is worth to sum up, so I can easily look it up later.The goal of the competition was to predict airway pressure of lungs that are ventilated in a clinician-intensive procedure. Given values of the input pressure (`u_in`) we had to predict the output `pressure` for a time frame of a few seconds. ###Code #hide BS = 64 WORKERS = 4 EPOCHS = 5 #100 #hide in_path = Path('../input') train = pd.read_csv(in_path/'train.csv') #hide_input sample = train[train.breath_id==1][['time_step', 'u_in', 'pressure']].melt(id_vars= 'time_step', var_name = 'Typ', value_name = 'Pressure') sns.lineplot(x = 'time_step', y = 'Pressure', hue ='Typ', data=sample) ###Output _____no_output_____ ###Markdown Since all `u_in` values for a time frame were given we can build a bidirectional sequence model. Unless in a typical time-series problem where the future points are unknown at a certain time step, we know the future and past input values. Therefore I decided not to *mask* the sequences while training.A good model choice for sequencing tasks are LSTMs and Transformers. I built a model that combines both architectures. I also tried XGBoost with a lot of features (especially windowing, rolling, lead, lag features) engineering, But neural nets (NN) performed better, here. Though I kept some of the engineered features as embeddings for the NN model.The competition metric was mean average error (MAE). Only those pressures were evaluated, that appear while filling the lungs with oxygen. Feature engineeringBesides the given features, *u_in*, *u_out*, *R*, *C* and *time_step* I defined several features. They can by categorized as:- area (accumulation of u_in over time) from [this notebook](https://www.kaggle.com/cdeotte/ensemble-folds-with-median-0-153)- one hot encoding of ventilator parameters R and C- statistical (mean, max, skewness, quartiles, rolling mean, ...)- shifted input pressure- input pressure performance over window- inverse featuresTo reduce memory consumption I used a function from [this notebook](https://www.kaggle.com/konradb/tabnet-end-to-end-starter). ###Code def gen_features(df, norm=False): # area feature from https://www.kaggle.com/cdeotte/ensemble-folds-with-median-0-153 df['area'] = df['time_step'] * df['u_in'] df['area_crv'] = (1.5-df['time_step']) * df['u_in'] df['area'] = df.groupby('breath_id')['area'].cumsum() df['area_crv'] = df.groupby('breath_id')['area_crv'].cumsum() df['area_inv'] = df.groupby('breath_id')['area'].transform('max') - df['area'] df['ts'] = df.groupby('breath_id')['id'].rank().astype('int') df['R4'] = 1/df['R']**4 df['R'] = df['R'].astype('str') df['C'] = df['C'].astype('str') df = pd.get_dummies(df) for in_out in [0,1]: #,1 for qs in [0.2, 0.25, 0.5, 0.9, 0.95]: df.loc[:, f'u_in_{in_out}_q{str(qs*100)}'] = 0 df.loc[df.u_out==in_out, f'u_in_{in_out}_q{str(qs*100)}'] = df[df.u_out==in_out].groupby('breath_id')['u_in'].transform('quantile', q=0.2) for agg_type in ['count', 'std', 'skew','mean', 'min', 'max', 'median', 'last', 'first']: df.loc[:,f'u_out_{in_out}_{agg_type}'] = 0 df.loc[df.u_out==in_out, f'u_out_{in_out}_{agg_type}'] = df[df.u_out==in_out].groupby('breath_id')['u_in'].transform(agg_type) if norm: df.loc[:,f'u_in'] = (df.u_in - df[f'u_out_{in_out}_mean']) / (df[f'u_out_{in_out}_std']+1e-6) for s in range(1,8): df.loc[:,f'shift_u_in_{s}'] = 0 df.loc[:,f'shift_u_in_{s}'] = df.groupby('breath_id')['u_in'].shift(s) df.loc[:,f'shift_u_in_m{s}'] = 0 df.loc[:,f'shift_u_in_m{s}'] = df.groupby('breath_id')['u_in'].shift(-s) df.loc[:,'perf1'] = (df.u_in / df.shift_u_in_1).clip(-2,2) df.loc[:,'perf3'] = (df.u_in / df.shift_u_in_3).clip(-2,2) df.loc[:,'perf5'] = (df.u_in / df.shift_u_in_5).clip(-2,2) df.loc[:,'perf7'] = (df.u_in / df.shift_u_in_7).clip(-2,2) df.loc[:,'perf1'] = df.perf1-1 df.loc[:,'perf3'] = df.perf3-1 df.loc[:,'perf5'] = df.perf5-1 df.loc[:,'perf7'] = df.perf7-1 df.loc[:,'perf1inv'] = (df.u_in / df.shift_u_in_m1).clip(-2,2) df.loc[:,'perf3inv'] = (df.u_in / df.shift_u_in_m3).clip(-2,2) df.loc[:,'perf5inv'] = (df.u_in / df.shift_u_in_m5).clip(-2,2) df.loc[:,'perf7inv'] = (df.u_in / df.shift_u_in_m7).clip(-2,2) df.loc[:,'perf1inv'] = df.perf1inv-1 df.loc[:,'perf3inv'] = df.perf3inv-1 df.loc[:,'perf5inv'] = df.perf5inv-1 df.loc[:,'perf7inv'] = df.perf7inv-1 df.loc[:,'rol_mean5'] = df.u_in.rolling(5).mean() return df #hide # from https://www.kaggle.com/konradb/tabnet-end-to-end-starter def reduce_memory_usage(df): start_memory = np.round(df.memory_usage().sum() / 1024**2,2) print(f"Memory usage of dataframe is {start_memory} MB") for col in df.columns: col_type = df[col].dtype if col_type != 'object': c_min = df[col].min() c_max = df[col].max() if str(col_type)[:3] == 'int': if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max: df[col] = df[col].astype(np.int8) elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max: df[col] = df[col].astype(np.int16) elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max: df[col] = df[col].astype(np.int32) elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max: df[col] = df[col].astype(np.int64) else: if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max: df[col] = df[col].astype(np.float16) elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max: df[col] = df[col].astype(np.float32) else: pass else: df[col] = df[col].astype('category') end_memory = np.round(df.memory_usage().sum() / 1024**2,2) print(f"Memory usage of dataframe after reduction {end_memory} MB") print(f"Reduced by { np.round(100 * (start_memory - end_memory) / start_memory,2) } % ") return df #hide train = gen_features(train,False).fillna(0) train = reduce_memory_usage(train) ###Output Memory usage of dataframe is 2889.7 MB Memory usage of dataframe after reduction 782.87 MB Reduced by 72.91 % ###Markdown ScalerThe data was transformed with *scikit's RobustScaler* to reduce influence of outliers. ###Code features = list(set(train.columns)-set(['id','breath_id','pressure','kfold_2021','kfold'])) features.sort() rs = RobustScaler().fit(train[features]) ###Output _____no_output_____ ###Markdown FoldsI didn't do cross validation here, but instead trained the final model on the entire dataset. Nevertheless it's helpful to build kfolds for model evaluation. I build GroupKFold over `breath_id` to keep the entire time frame in the same fold. ###Code #hide # Kfold train['kfold'] = -1 n_splits = 5 #skf = StratifiedKFold(n_splits=n_split, shuffle=True, random_state=2020) skf = GroupKFold(n_splits = n_splits) for fold, (trn, vld) in enumerate(skf.split(X = train, y = train['kfold'], groups = train['breath_id'])): train.loc[vld, 'kfold'] = fold # train.head() ###Output _____no_output_____ ###Markdown DataloaderSince the data is quite small (ca. 800 MB after memory reduction) I decided to load the entire train set in the `Dataset` object during construction (calling `__init__()`). In a first attempt I loaded the data as *Pandas Dataframe*. Then I figured out (from [this notebook](https://www.kaggle.com/junkoda/pytorch-lstm-with-tensorflow-like-initialization)) that converting the Dataframe into an numpy array speeds up training significantly. The Dataframe is converted to an numpy array by the scaler.Since the competition metric only evaluates the pressures where `u_out==0` I also provide a mask tensor, which can later on be used feeding the loss and metric functions. ###Code class VPPDataset(torch.utils.data.Dataset): def __init__(self,df, scaler, is_train = True, kfolds = [0], features = ['R','C', 'time_step', 'u_in', 'u_out']): if is_train: # build a mask for metric and loss function self.mask = torch.FloatTensor(1 - df[df['kfold'].isin(kfolds)].u_out.values.reshape(-1,80)) self.target = torch.FloatTensor(df[df['kfold'].isin(kfolds)].pressure.values.reshape(-1,80)) # calling scaler also converts the dataframe in an numpy array, which results in speed up while training feature_values = scaler.transform(df[df['kfold'].isin(kfolds)][features]) self.df = torch.FloatTensor(feature_values.reshape(-1,80,len(features))) else: self.mask = torch.FloatTensor(1 - df.u_out.values.reshape(-1,80)) feature_values = scaler.transform(df[features]) self.df = torch.FloatTensor(feature_values.reshape(-1,80,len(features))) self.target = None self.features = features self.is_train = is_train def __len__(self): return self.df.shape[0] def __getitem__(self, item): sample = self.df[item] mask = self.mask[item] if self.is_train: targets = self.target[item] else: targets = torch.zeros((1)) return torch.cat([sample, mask.view(80,1)],dim=1), targets #.float() #hide train_ds = VPPDataset(df = train, scaler = rs, is_train = True, kfolds = [1,2,3,4], features =features) valid_ds = VPPDataset(df = train, scaler = rs, is_train = True, kfolds = [0], features =features) train_dl = DataLoader(train_ds, batch_size= BS, shuffle = True, num_workers = WORKERS) valid_dl = DataLoader(valid_ds, batch_size= BS, shuffle = False, num_workers = WORKERS) data = DataLoaders(train_dl, valid_dl).cuda() ###Output _____no_output_____ ###Markdown ModelMy model combines a multi layered LSTM and a Transformer Encoder. Additionally I build an AutoEncoder by placing a Transformer Decoder on top of the Transformer encoder. The AutoEncoder predictions are used as auxiliary variables.![](images/logo_vpp_seq.png)Some further considerations:- I did not use drop out. The reason why it performence worse is discussed [here](https://www.kaggle.com/c/ventilator-pressure-prediction/discussion/276719).- LayerNorm can be used in sequential models but didn't improve my score.The model is influenced by these notebooks:- [Transformer part](https://pytorch.org/tutorials/beginner/transformer_tutorial.html)- [LSTM part](https://www.kaggle.com/theoviel/deep-learning-starter-simple-lstm)- [Parameter initialization](https://www.kaggle.com/junkoda/pytorch-lstm-with-tensorflow-like-initialization) ###Code # Influenced by: # Transformer: https://pytorch.org/tutorials/beginner/transformer_tutorial.html # LSTM: https://www.kaggle.com/theoviel/deep-learning-starter-simple-lstm # Parameter init from: https://www.kaggle.com/junkoda/pytorch-lstm-with-tensorflow-like-initialization class VPPEncoder(nn.Module): def __init__(self, fin = 5, nhead = 8, nhid = 2048, nlayers = 6, seq_len=80, use_decoder = True): super(VPPEncoder, self).__init__() self.seq_len = seq_len self.use_decoder = use_decoder # number of input features self.fin = fin #self.tail = nn.Sequential( # nn.Linear(self.fin, nhid), # #nn.LayerNorm(nhid), # nn.SELU(), # nn.Linear(nhid, fin), # #nn.LayerNorm(nhid), # nn.SELU(), # #nn.Dropout(0.05), #) encoder_layers = nn.TransformerEncoderLayer(self.fin, nhead, nhid , activation= 'gelu') self.transformer_encoder = nn.TransformerEncoder(encoder_layers, nlayers) decoder_layers = nn.TransformerDecoderLayer(self.fin, nhead, nhid, activation= 'gelu') self.transformer_decoder = nn.TransformerDecoder(decoder_layers, nlayers) self.lstm_layer = nn.LSTM(fin, nhid, num_layers=3, bidirectional=True) # Head self.linear1 = nn.Linear(nhid*2+fin , seq_len*2) self.linear3 = nn.Linear(seq_len*2, 1) self._reinitialize() # from https://www.kaggle.com/junkoda/pytorch-lstm-with-tensorflow-like-initialization def _reinitialize(self): """ Tensorflow/Keras-like initialization """ for name, p in self.named_parameters(): if 'lstm' in name: if 'weight_ih' in name: nn.init.xavier_uniform_(p.data) elif 'weight_hh' in name: nn.init.orthogonal_(p.data) elif 'bias_ih' in name: p.data.fill_(0) # Set forget-gate bias to 1 n = p.size(0) p.data[(n // 4):(n // 2)].fill_(1) elif 'bias_hh' in name: p.data.fill_(0) elif 'fc' in name: if 'weight' in name: nn.init.xavier_uniform_(p.data,gain=3/4) elif 'bias' in name: p.data.fill_(0) def forward(self, x): out = x[:,:,:-1] out = out.permute(1,0,2) out = self.transformer_encoder( out) out_l,_ = self.lstm_layer(out) if self.use_decoder: out = self.transformer_decoder(out, out) out_dec_diff = (out - x[:,:,:-1].permute(1,0,2)).abs().mean(dim=2) else: out_dec_diff = out*0 out = torch.cat([out, out_l], dim=2) # Head out = F.gelu(self.linear1(out.permute(1,0,2))) out = self.linear3(out) return out.view(-1, self.seq_len) , x[:,:,-1], out_dec_diff.view(-1, self.seq_len) ###Output _____no_output_____ ###Markdown Metric and Loss Function Masked MAE metricThe competition metric was Mean Absolute Error (MAE), but only for the time-steps where air flows into the lunge (approx. half of the timesteps).Hence, I masked the predictions (using the flag introduced in the Dataset) ignoring the unnecessary time-steps. The flags are passed through the model (`val[1]`) and is an output along with the predictions. ###Code def vppMetric(val, target): flag = val[1] preds = val[0] loss = (preds*flag-target*flag).abs() loss= loss.sum()/flag.sum() return loss ###Output _____no_output_____ ###Markdown Thee values produced by the AutoGenerater are additionally measured by the `vppGenMetric`. It uses MAE to evaluate how good the reconstruction of the input features values evolves. ###Code def vppGenMetric(val, target): gen =val[2] flag = val[1] loss = (gen*flag).abs() loss= loss.sum()/flag.sum() return loss ###Output _____no_output_____ ###Markdown Combined Loss functionThe loss function is a combination of L1-derived-Loss (`vppAutoLoss`) for the predictions and the AutoEncoder-predictions.Due to [this discussion](https://www.kaggle.com/c/ventilator-pressure-prediction/discussion/277690) I did some experiments with variations of Huber and SmoothL1Loss. The later (`vppAutoSmoothL1Loss`) performed better. ###Code def vppAutoLoss(val, target): gen =val[2] flag = val[1] preds = val[0] loss = (preds*flag-target*flag).abs() + (gen*flag).abs()*0.2 # loss= loss.sum()/flag.sum() return loss # Adapting https://pytorch.org/docs/stable/generated/torch.nn.SmoothL1Loss.html#torch.nn.SmoothL1Loss def vppAutoSmoothL1Loss(val, target): beta = 2 fct = 0.5 gen =val[2] flag = val[1] preds = val[0] loss = (preds*flag-target*flag).abs() + (gen*flag).abs()*0.2 loss = torch.where(loss < beta, (fct*(loss**2))/beta, loss)#-fct*beta) # reduction mean**0.5 loss = loss.sum()/flag.sum() #()**0.5 return loss ###Output _____no_output_____ ###Markdown TrainingThe training was done in mixed precision mode (`to_fp16()`) to speed up training. As optimizer I used *QHAdam*.The best single score I achieved with a 100 epoch `fit_one_cycle` (*CosineAnnealing* with warmup). I also tried more epochs with restart schedules `fit_sgdr` and changing loss functions. But the didn't do better. ###Code learn = Learner(data, VPPEncoder(fin = len(features), nhead = 5, nhid = 128, nlayers = 6, seq_len=80, use_decoder = True), opt_func= QHAdam, loss_func = vppAutoLoss, #vppAutoSmoothL1Loss metrics=[vppMetric, vppGenMetric], cbs=[ShowGraphCallback()]).to_fp16() learn.fit_one_cycle(EPOCHS, 2e-3) ###Output _____no_output_____
Week9_Dropout.ipynb
###Markdown ###Code !pip install d2l==0.17.0 import tensorflow as tf from d2l import tensorflow as d2l def dropout_layer(X, dropout): assert 0 <= dropout <= 1 # In this case, all elements are dropped out if dropout == 1: return tf.zeros_like(X) # In this case, all elements are kept if dropout == 0: return X mask = tf.random.uniform( shape=tf.shape(X), minval=0, maxval=1) < 1 - dropout return tf.cast(mask, dtype=tf.float32) * X / (1.0 - dropout) X = tf.reshape(tf.range(16, dtype=tf.float32), (2, 8)) print(X) print(dropout_layer(X, 0.)) print(dropout_layer(X, 0.5)) print(dropout_layer(X, 1.)) num_outputs, num_hiddens1, num_hiddens2 = 10, 256, 256 dropout1, dropout2 = 0.2, 0.5 class Net(tf.keras.Model): def __init__(self, num_outputs, num_hiddens1, num_hiddens2): super().__init__() self.input_layer = tf.keras.layers.Flatten() self.hidden1 = tf.keras.layers.Dense(num_hiddens1, activation='relu') self.hidden2 = tf.keras.layers.Dense(num_hiddens2, activation='relu') self.output_layer = tf.keras.layers.Dense(num_outputs) def call(self, inputs, training=None): x = self.input_layer(inputs) x = self.hidden1(x) if training: x = dropout_layer(x, dropout1) x = self.hidden2(x) if training: x = dropout_layer(x, dropout2) x = self.output_layer(x) return x net = Net(num_outputs, num_hiddens1, num_hiddens2) num_epochs, lr, batch_size = 10, 0.5, 256 loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size) trainer = tf.keras.optimizers.SGD(learning_rate=lr) d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer) net = tf.keras.models.Sequential([ tf.keras.layers.Flatten(), tf.keras.layers.Dense(256, activation=tf.nn.relu), # Add a dropout layer after the first fully connected layer tf.keras.layers.Dropout(dropout1), tf.keras.layers.Dense(256, activation=tf.nn.relu), # Add a dropout layer after the second fully connected layer tf.keras.layers.Dropout(dropout2), tf.keras.layers.Dense(10), ]) trainer = tf.keras.optimizers.SGD(learning_rate=lr) d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer) ###Output _____no_output_____ ###Markdown ###Code !pip install d2l pip install matplotlib==3.0.2 import torch from torch import nn from d2l import torch as d2l def dropout_layer(X, dropout): assert 0 <= dropout <= 1 # In this case, all elements are dropped out if dropout == 1: return torch.zeros_like(X) # In this case, all elements are kept if dropout == 0: return X mask = (torch.rand(X.shape) > dropout).float() return mask * X / (1.0 - dropout) X= torch.arange(16, dtype = torch.float32).reshape((2, 8)) print(X) print(dropout_layer(X, 0.)) print(dropout_layer(X, 0.5)) print(dropout_layer(X, 1.)) num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256 dropout1, dropout2 = 0.2, 0.5 class Net(nn.Module): def __init__(self, num_inputs, num_outputs, num_hiddens1, num_hiddens2, is_training = True): super(Net, self).__init__() self.num_inputs = num_inputs self.training = is_training self.lin1 = nn.Linear(num_inputs, num_hiddens1) self.lin2 = nn.Linear(num_hiddens1, num_hiddens2) self.lin3 = nn.Linear(num_hiddens2, num_outputs) self.relu = nn.ReLU() def forward(self, X): H1 = self.relu(self.lin1(X.reshape((-1, self.num_inputs)))) # Use dropout only when training the model if self.training == True: # Add a dropout layer after the first fully connected layer H1 = dropout_layer(H1, dropout1) H2 = self.relu(self.lin2(H1)) if self.training == True: # Add a dropout layer after the second fully connected layer H2 = dropout_layer(H2, dropout2) out = self.lin3(H2) return out net = Net(num_inputs, num_outputs, num_hiddens1, num_hiddens2) num_epochs, lr, batch_size = 10, 0.5, 256 loss = nn.CrossEntropyLoss(reduction='none') train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size) trainer = torch.optim.SGD(net.parameters(), lr=lr) d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer) net = nn.Sequential(nn.Flatten(), nn.Linear(784, 256), nn.ReLU(), # Add a dropout layer after the first fully connected layer nn.Dropout(dropout1), nn.Linear(256, 256), nn.ReLU(), # Add a dropout layer after the second fully connected layer nn.Dropout(dropout2), nn.Linear(256, 10)) def init_weights(m): if type(m) == nn.Linear: nn.init.normal_(m.weight, std=0.01) net.apply(init_weights); trainer = torch.optim.SGD(net.parameters(), lr=lr) d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer) ###Output _____no_output_____
examples/reference/elements/matplotlib/Box.ipynb
###Markdown Title Box Element Dependencies Matplotlib Backends Matplotlib Bokeh ###Code import numpy as np import holoviews as hv from holoviews import opts hv.extension('matplotlib') ###Output _____no_output_____ ###Markdown A ``Box`` is an annotation that takes a center x-position, a center y-position and a size: ###Code data = np.sin(np.mgrid[0:100,0:100][1]/10.0) data[np.arange(40, 60), np.arange(20, 40)] = -1 data[np.arange(40, 50), np.arange(70, 80)] = -3 (hv.Image(data) * hv.Box(-0.2, 0, 0.25 ) * hv.Box(-0, 0, (0.4,0.9))).opts( opts.Box(color='red', linewidth=5), opts.Image(cmap='gray')) ###Output _____no_output_____ ###Markdown In addition to these arguments, it supports an optional ``aspect ratio``:By default, the size argument results in a square such as the small square shown above. Alternatively, the size can be given as the tuple ``(width, height)`` resulting in a rectangle. If you only supply a size value, you can still specify a rectangle by specifying an optional aspect value. In addition, you can also set the orientation (in radians, rotating anticlockwise): ###Code data = np.sin(np.mgrid[0:100,0:100][1]/10.0) data[np.arange(30, 70), np.arange(30, 70)] = -3 box = hv.Box(-0, 0, 0.25, aspect=3, orientation=-np.pi/4) (hv.Image(data) * box).opts( opts.Box(color='purple', linewidth=5), opts.Image(cmap='gray')) ###Output _____no_output_____ ###Markdown Title Box Element Dependencies Matplotlib Backends Matplotlib Bokeh ###Code import numpy as np import holoviews as hv hv.extension('matplotlib') ###Output _____no_output_____ ###Markdown A ``Box`` is an annotation that takes a center x-position, a center y-position and a size: ###Code %%opts Box (linewidth=5 color='red') Image (cmap='gray') data = np.sin(np.mgrid[0:100,0:100][1]/10.0) data[np.arange(40, 60), np.arange(20, 40)] = -1 data[np.arange(40, 50), np.arange(70, 80)] = -3 hv.Image(data) * hv.Box(-0.2, 0, 0.25 ) * hv.Box(-0, 0, (0.4,0.9) ) ###Output _____no_output_____ ###Markdown In addition to these arguments, it supports an optional ``aspect ratio``:By default, the size argument results in a square such as the small square shown above. Alternatively, the size can be given as the tuple ``(width, height)`` resulting in a rectangle. If you only supply a size value, you can still specify a rectangle by specifying an optional aspect value. In addition, you can also set the orientation (in radians, rotating anticlockwise): ###Code %%opts Box (linewidth=5 color='purple') Image (cmap='gray') data = np.sin(np.mgrid[0:100,0:100][1]/10.0) data[np.arange(30, 70), np.arange(30, 70)] = -3 hv.Image(data) * hv.Box(-0, 0, 0.25, aspect=3, orientation=-np.pi/4) ###Output _____no_output_____ ###Markdown Title Box Element Dependencies Matplotlib Backends Matplotlib Bokeh ###Code import numpy as np import holoviews as hv hv.extension('matplotlib') ###Output _____no_output_____ ###Markdown A ``Box`` is an annotation that takes a center x-position, a center y-position and a size: ###Code %%opts Box (linewidth=5 color='red') Image (cmap='gray') data = np.sin(np.mgrid[0:100,0:100][1]/10.0) data[np.arange(40, 60), np.arange(20, 40)] = -1 data[np.arange(40, 50), np.arange(70, 80)] = -3 hv.Image(data) * hv.Box(-0.2, 0, 0.25 ) * hv.Box(-0, 0, (0.4,0.9) ) ###Output _____no_output_____ ###Markdown In addition to these arguments, it supports an optional ``aspect ratio``:By default, the size argument results in a square such as the small square shown above. Alternatively, the size can be given as the tuple ``(width, height)`` resulting in a rectangle. If you only supply a size value, you can still specify a rectangle by specifying an optional aspect value. In addition, you can also set the orientation (in radians, rotating anticlockwise): ###Code %%opts Box (linewidth=5 color='purple') Image (cmap='gray') data = np.sin(np.mgrid[0:100,0:100][1]/10.0) data[np.arange(30, 70), np.arange(30, 70)] = -3 hv.Image(data) * hv.Box(-0, 0, 0.25, aspect=3, orientation=-np.pi/4) ###Output _____no_output_____ ###Markdown Title Box Element Dependencies Matplotlib Backends Matplotlib Bokeh Plotly ###Code import numpy as np import holoviews as hv from holoviews import opts hv.extension('matplotlib') ###Output _____no_output_____ ###Markdown A ``Box`` is an annotation that takes a center x-position, a center y-position and a size: ###Code data = np.sin(np.mgrid[0:100,0:100][1]/10.0) data[np.arange(40, 60), np.arange(20, 40)] = -1 data[np.arange(40, 50), np.arange(70, 80)] = -3 (hv.Image(data) * hv.Box(-0.2, 0, 0.25 ) * hv.Box(-0, 0, (0.4,0.9))).opts( opts.Box(color='red', linewidth=5), opts.Image(cmap='gray')) ###Output _____no_output_____ ###Markdown In addition to these arguments, it supports an optional ``aspect ratio``:By default, the size argument results in a square such as the small square shown above. Alternatively, the size can be given as the tuple ``(width, height)`` resulting in a rectangle. If you only supply a size value, you can still specify a rectangle by specifying an optional aspect value. In addition, you can also set the orientation (in radians, rotating anticlockwise): ###Code data = np.sin(np.mgrid[0:100,0:100][1]/10.0) data[np.arange(30, 70), np.arange(30, 70)] = -3 box = hv.Box(-0, 0, 0.25, aspect=3, orientation=-np.pi/4) (hv.Image(data) * box).opts( opts.Box(color='purple', linewidth=5), opts.Image(cmap='gray')) ###Output _____no_output_____
EHR_Only/GBT/Comp_FAMD.ipynb
###Markdown FAMD Transformation ###Code from prince import FAMD famd = FAMD(n_components = 15, n_iter = 3, random_state = 101) for (colName, colData) in co_train_gpop.iteritems(): if (colName != 'Co_N_Drugs_R0' and colName!= 'Co_N_Hosp_R0' and colName != 'Co_Total_HospLOS_R0' and colName != 'Co_N_MDVisit_R0'): co_train_gpop[colName].replace((1,0) ,('yes','no'), inplace = True) co_train_low[colName].replace((1,0) ,('yes','no'), inplace = True) co_train_high[colName].replace((1,0) ,('yes','no'), inplace = True) co_validation_gpop[colName].replace((1,0), ('yes','no'), inplace = True) co_validation_high[colName].replace((1,0), ('yes','no'), inplace = True) co_validation_low[colName].replace((1,0), ('yes','no'), inplace = True) famd.fit(co_train_gpop) co_train_gpop_FAMD = famd.transform(co_train_gpop) famd.fit(co_train_high) co_train_high_FAMD = famd.transform(co_train_high) famd.fit(co_train_low) co_train_low_FAMD = famd.transform(co_train_low) famd.fit(co_validation_gpop) co_validation_gpop_FAMD = famd.transform(co_validation_gpop) famd.fit(co_validation_high) co_validation_high_FAMD = famd.transform(co_validation_high) famd.fit(co_validation_low) co_validation_low_FAMD = famd.transform(co_validation_low) ###Output /PHShome/se197/anaconda3/lib/python3.8/site-packages/pandas/core/series.py:4509: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy return super().replace( ###Markdown General Population ###Code best_clf = xgBoost(co_train_gpop_FAMD, out_train_cardio_gpop) cross_val(co_train_gpop_FAMD, out_train_cardio_gpop) print() scores(co_validation_gpop_FAMD, out_validation_cardio_gpop) ###Output Fitting 5 folds for each of 4 candidates, totalling 20 fits ###Markdown High Continuity ###Code best_clf = xgBoost(co_train_high_FAMD, out_train_cardio_high) cross_val(co_train_high_FAMD, out_train_cardio_high) print() scores(co_validation_high_FAMD, out_validation_cardio_high) ###Output Fitting 5 folds for each of 4 candidates, totalling 20 fits ###Markdown Low Continuity ###Code best_clf = xgBoost(co_train_low_FAMD, out_train_cardio_low) cross_val(co_train_low_FAMD, out_train_cardio_low) print() scores(co_validation_low_FAMD, out_validation_cardio_low) ###Output Fitting 5 folds for each of 4 candidates, totalling 20 fits
jupyter-notebooks/forest-monitoring/drc_roads_mosaic.ipynb
###Markdown DRC Change Detection Using MosaicsThis notebook performs forest change (in the form of creation of new roads) using Planet mosaics as the data source. This notebook follows the workflow, uses the labeled data, and pulls code from the following notebooks, which perform forest change detection using PSOrthoTiles as the data source:* [DRC Roads Classification](drc_roads_classification.ipynb)* [DRC Roads Temporal Analysis](drc_roads_temporal_analysis.ipynb)**NOTE**: This notebook uses the gdal PLMosaic driver to access and download Planet mosaics. Use of the gdal PLMosaic driver requires specification of the Planet API key. This can either be specified in the command-line options, or gdal will try to pull this from the environmental variable `PL_API_KEY`. This notebook assumes that the environmental variable `PL_API_KEY` is set. See the [gdal PLMosaic driver](https://www.gdal.org/frmt_plmosaic.html) for more information. ###Code from functools import reduce import os import subprocess import tempfile import numpy as np from planet import api from planet.api import downloader, filters import rasterio from skimage import feature, filters from sklearn.ensemble import RandomForestClassifier # load local modules from utils import Timer import visual #uncomment if visual is in development # import importlib # importlib.reload(visual) # Import functionality from local notebooks from ipynb.fs.defs.drc_roads_classification import get_label_mask, get_unmasked_count \ load_4band, get_feature_bands, combine_masks, num_valid, perc_masked, bands_to_X, \ make_same_size_samples, classify_forest, y_to_band, classified_band_to_rgb ###Output _____no_output_____ ###Markdown Download Mosaics ###Code # uncomment to see what mosaics are available and to make sure the PLMosaic driver is working # !gdalinfo "PLMosaic:" # get mosaic names for July 2017 to March 2018 mosaic_dates = [('2017', '{0:02d}'.format(m)) for m in range(7, 13)] + \ [('2018', '{0:02d}'.format(m)) for m in range(1, 4)] mosaic_names = ['global_monthly_{}_{}_mosaic'.format(yr, mo) for (yr, mo) in mosaic_dates] def get_mosaic_filename(mosaic_name): return os.path.join('data', mosaic_name + '.tif') for name in mosaic_names: print('{} -> {}'.format(name, get_mosaic_filename(name))) aoi_filename = 'pre-data/aoi.geojson' def _gdalwarp(input_filename, output_filename, options): commands = ['gdalwarp'] + options + \ ['-overwrite', input_filename, output_filename] print(' '.join(commands)) subprocess.check_call(commands) # lossless compression of an image def _compress(input_filename, output_filename): commands = ['gdal_translate', '-co', 'compress=LZW', '-co', 'predictor=2', input_filename, output_filename] print(' '.join(commands)) subprocess.check_call(commands) def download_mosaic(mosaic_name, output_filename, crop_filename, overwrite=False, compress=True): # typically gdalwarp would require `-oo API_KEY={PL_API_KEY}` # but if the environmental variable PL_API_KEY is set, gdal will use that options = ['-cutline', crop_filename, '-crop_to_cutline', '-oo', 'use_tiles=YES'] # use PLMosaic driver input_name = 'PLMosaic:mosaic={}'.format(mosaic_name) # check to see if output file exists, if it does, do not warp if os.path.isfile(output_filename) and not overwrite: print('{} already exists. Aborting download of {}.'.format(output_filename, mosaic_name)) elif compress: with tempfile.NamedTemporaryFile(suffix='.vrt') as vrt_file: options += ['-of', 'vrt'] _gdalwarp(input_name, vrt_file.name, options) _compress(vrt_file.name, output_filename) else: _gdalwarp(input_name, output_filename, options) for name in mosaic_names: download_mosaic(name, get_mosaic_filename(name), aoi_filename) ###Output data/global_monthly_2017_07_mosaic.tif already exists. Aborting download of global_monthly_2017_07_mosaic. data/global_monthly_2017_08_mosaic.tif already exists. Aborting download of global_monthly_2017_08_mosaic. data/global_monthly_2017_09_mosaic.tif already exists. Aborting download of global_monthly_2017_09_mosaic. data/global_monthly_2017_10_mosaic.tif already exists. Aborting download of global_monthly_2017_10_mosaic. data/global_monthly_2017_11_mosaic.tif already exists. Aborting download of global_monthly_2017_11_mosaic. data/global_monthly_2017_12_mosaic.tif already exists. Aborting download of global_monthly_2017_12_mosaic. data/global_monthly_2018_01_mosaic.tif already exists. Aborting download of global_monthly_2018_01_mosaic. data/global_monthly_2018_02_mosaic.tif already exists. Aborting download of global_monthly_2018_02_mosaic. data/global_monthly_2018_03_mosaic.tif already exists. Aborting download of global_monthly_2018_03_mosaic. ###Markdown Classify Mosaics into Forest and Non-ForestTo classify the mosaics into forest and non-forest, we use the Random Forests classifier. This is a supervised classification technique, so we need to create a training dataset. The training dataset will be created from one mosaic image and then the trained classifier will classify all mosaic images.Although we have already performed classification of a 4-band Orthotile into forest and non-forest in [drc_roads_classification](drc_roads_classification.ipnb), the format of the data is different in mosaics, so we need to re-create our training dataset. However, we will use the same label images that were created as a part of that notebook. Additionally, we will pull a lot of code from that notebook. Create Label Masks ###Code forest_img = os.path.join('pre-data', 'forestroad_forest.tif') road_img = os.path.join('pre-data', 'forestroad_road.tif') forest_mask = get_label_mask(forest_img) print(get_unmasked_count(forest_mask)) road_mask = get_label_mask(road_img) print(get_unmasked_count(road_mask)) forest_mask.shape ###Output /opt/conda/lib/python3.6/site-packages/rasterio/__init__.py:240: NotGeoreferencedWarning: Dataset has no geotransform set. Default transform will be applied (Affine.identity()) s = DatasetReader(fp, driver=driver, **kwargs) ###Markdown Warp Mosaic to Match Label MasksThe label images used to create the label masks were created from the PSOrthoTiles. Therefore, they are in a different projection, have a different transform, and have a different pixel size than the mosaic images. To create the training dataset, we must first match the label and mosaic images so that the pixel dimensions and locations line up. To do this, we warp the mosaic image to match the label image coordinate reference system, bounds, and pixel dimensions. The forest/non-forest labeled images were created in GIMP, which doesn't save georeference information. Therefore, we will pull georeference information from the source image used to create the labeled images, `roads.tif`. ###Code # specify the training dataset mosaic image file image_file = get_mosaic_filename(mosaic_names[0]) image_file # this is the georeferenced image that was used to create the forest and non-forest label images label_image = 'pre-data/roads.tif' # get label image crs, bounds, and pixel dimensions with rasterio.open(label_image, 'r') as ref: dst_crs = ref.crs['init'] (xmin, ymin, xmax, ymax) = ref.bounds width = ref.width height = ref.height print(dst_crs) print((xmin, ymin, xmax, ymax)) print((width, height)) # this is the warped training mosaic image we will create with gdal training_file = os.path.join('data', 'mosaic_training.tif') # use gdalwarp to warp mosaic image to match label image !gdalwarp -t_srs $dst_crs \ -te $xmin $ymin $xmax $ymax \ -ts $width $height \ -overwrite $image_file $training_file ###Output Using band 4 of source image as alpha. Creating output file that is 6008P x 3333L. Processing data/global_monthly_2017_07_mosaic.tif [1/1] : 0...10...20...30...40...50...60...70...80...90...100 - done. ###Markdown Create Training DatasetsNow that the images match, we create the training datasets from the labels and the training mosaic image. ###Code feature_bands = get_feature_bands(training_file) print(feature_bands[0].shape) total_mask = combine_masks(feature_bands) print(total_mask.shape) # combine the label masks with the valid data mask and then create X dataset for each label total_forest_mask = np.logical_or(total_mask, forest_mask) print('{} valid pixels ({}% masked)'.format(num_valid(total_forest_mask), round(perc_masked(total_forest_mask), 2))) X_forest = bands_to_X(feature_bands, total_forest_mask) total_road_mask = np.logical_or(total_mask, road_mask) print('{} valid pixels ({}% masked)'.format(num_valid(total_road_mask), round(perc_masked(total_road_mask), 2))) X_road = bands_to_X(feature_bands, total_road_mask) [X_forest_sample, X_road_sample] = \ make_same_size_samples([X_forest, X_road], size_percent=100) print(X_forest_sample.shape) print(X_road_sample.shape) forest_label_value = 0 road_label_value = 1 X_training = np.concatenate((X_forest_sample, X_road_sample), axis=0) y_training = np.array(X_forest_sample.shape[0] * [forest_label_value] + \ X_road_sample.shape[0] * [road_label_value]) print(X_training.shape) print(y_training.shape) ###Output (34438, 6) (34438,) ###Markdown Classify Training ImageNow we will train the classifier to detect forest/non-forest classes from the training data and will run this on the original training mosaic image to see how well it works. ###Code with Timer(): y_band_rf = classify_forest(image_file, X_training, y_training) visual.plot_image(classified_band_to_rgb(y_band_rf), title='Classified Training Image (Random Forests)', figsize=(15, 15)) ###Output /opt/conda/lib/python3.6/site-packages/sklearn/ensemble/forest.py:246: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22. "10 in version 0.20 to 100 in 0.22.", FutureWarning) ###Markdown Classification on All Mosaic ImagesNow that the classifier is trained, run it on all of the mosaic images. This process takes a while so in this section, if classification has already been run and the classification results have been saved, we will load the cached results instead of rerunning classification. This behavior can be altered by setting `use_cache` to `False`. ###Code classified_bands_file = os.path.join('data', 'classified_mosaic_bands.npz') def save_to_cache(classified_bands, mosaic_names): save_bands = dict((s, classified_bands[s]) for s in mosaic_names) # masked arrays are saved as just arrays, so save mask for later save_bands.update(dict((s+'_msk', classified_bands[s].mask) for s in mosaic_names)) np.savez_compressed(classified_bands_file, **save_bands) def load_from_cache(): classified_bands = np.load(classified_bands_file) scene_ids = [k for k in classified_bands.keys() if not k.endswith('_msk')] # reform masked array from saved array and saved mask classified_bands = dict((s, np.ma.array(classified_bands[s], mask=classified_bands[s+'_msk'])) for s in scene_ids) return classified_bands use_cache = True if use_cache and os.path.isfile(classified_bands_file): print('using cached classified bands') classified_bands = load_from_cache() else: with Timer(): def classify(mosaic_name): img = get_mosaic_filename(mosaic_name) # we only have two values, 0 and 1. Convert to uint8 for memory band = (classify_forest(img, X_training, y_training)).astype(np.uint8) return band classified_bands = dict((s, classify(s)) for s in mosaic_names) # save to cache save_to_cache(classified_bands, mosaic_names) # Decimate classified arrays for memory conservation def decimate(arry, num=8): return arry[::num, ::num].copy() do_visualize = True # set to True to view images if do_visualize: for mosaic_name, classified_band in classified_bands.items(): visual.plot_image(classified_band_to_rgb(decimate(classified_band)), title='Classified Image ({})'.format(mosaic_name), figsize=(8, 8)) ###Output _____no_output_____ ###Markdown These classified mosaics look a lot better than the classified PSOrthoTile strips. This bodes well for the quality of our change detection results! Identify ChangeIn this section, we use Random Forest classification once again to detect change in the forest in the form of new roads being built. Once again we need to train the classifier, this time to detect change/no-change. And once again we use hand-labeled images created in the [Temporal Analysis Notebook](drc_roads_temporal_analysis.ipynb) to train the classifier. Create Label MasksThe change/no-change label images were created in the [Temporal Analysis Notebook](drc_roads_temporal_analysis.ipynb). The images were created from an image that was created for use with the PSOrthoTiles. Therefore, they are in a different projection, have a different affine transformation, and have different resolution than the classified mosaic bands. Further, the images were created with GIMP, which does not save the georeference information. We already have the classified mosaic bands in memory and so, instead of saving them out and warping each one, we will warp the label images to match the mosaic bands (this is the opposite of what we did in forest/non-forest classification). Therefore, the label images need to be georeferenced and then warped to match the classified mosaic images. Once this is done, the change/no-change label masks can be created. Georeference Labeled ImagesThe labeled images are prepared in GIMP, so georeference information has not been preserved. First, we will restore georeference information to the labeled images using `rasterio`. ###Code # labeled change images, not georeferenced change_img_orig = os.path.join('pre-data', 'difference_change.tif') nochange_img_orig = os.path.join('pre-data', 'difference_nochange.tif') # georeferenced source image src_img = os.path.join('pre-data', 'difference.tif') # destination georeferened label images change_img_geo = os.path.join('data', 'difference_change.tif') nochange_img_geo = os.path.join('data', 'difference_nochange.tif') # get crs and transform from the georeferenced source image with rasterio.open(src_img, 'r') as src: src_crs = src.crs src_transform = src.transform # create the georeferenced label images for (label_img, geo_img) in ((change_img_orig, change_img_geo), (nochange_img_orig, nochange_img_geo)): with rasterio.open(label_img, 'r') as src: profile = { 'width': src.width, 'height': src.height, 'driver': 'GTiff', 'count': src.count, 'compress': 'lzw', 'dtype': rasterio.uint8, 'crs': src_crs, 'transform': src_transform } with rasterio.open(geo_img, 'w', **profile) as dst: dst.write(src.read()) ###Output _____no_output_____ ###Markdown Match Georeferenced Label Images to Mosaic ImagesNow that the label images are georeferenced, we warp them to match the mosaic images. ###Code # get dest crs, bounds, and shape from mosaic image image_file = get_mosaic_filename(mosaic_names[0]) with rasterio.open(image_file, 'r') as ref: dst_crs = ref.crs['init'] (xmin, ymin, xmax, ymax) = ref.bounds width = ref.width height = ref.height print(dst_crs) print((xmin, ymin, xmax, ymax)) print((width, height)) # destination matched images change_img = os.path.join('data', 'mosaic_difference_change.tif') nochange_img = os.path.join('data', 'mosaic_difference_nochange.tif') # resample and resize to match mosaic !gdalwarp -t_srs $dst_crs \ -te $xmin $ymin $xmax $ymax \ -ts $width $height \ -overwrite $change_img_geo $change_img !gdalwarp -t_srs $dst_crs \ -te $xmin $ymin $xmax $ymax \ -ts $width $height \ -overwrite $nochange_img_geo $nochange_img ###Output Creating output file that is 3930P x 2194L. Processing data/difference_change.tif [1/1] : 0...10...20...30...40...50...60...70...80...90...100 - done. Creating output file that is 3930P x 2194L. Processing data/difference_nochange.tif [1/1] : 0...10...20...30...40...50...60...70...80...90...100 - done. ###Markdown Load Label MasksNow that the label images match the mosaic images, we can load the label masks. ###Code change_mask = get_label_mask(change_img) print(get_unmasked_count(change_mask)) nochange_mask = get_label_mask(nochange_img) print(get_unmasked_count(nochange_mask)) ###Output 97356 3347608 ###Markdown Get Features from LabelsCreate our training dataset from the label masks and the classified mosaic bands. ###Code # combine the label masks with the valid data mask and then create X dataset for each label classified_bands_arrays = classified_bands.values() total_mask = combine_masks(classified_bands_arrays) total_change_mask = np.logical_or(total_mask, change_mask) print('Change: {} valid pixels ({}% masked)'.format(num_valid(total_change_mask), round(perc_masked(total_change_mask), 2))) X_change = bands_to_X(classified_bands_arrays, total_change_mask) total_nochange_mask = np.logical_or(total_mask, nochange_mask) print('No Change: {} valid pixels ({}% masked)'.format(num_valid(total_nochange_mask), round(perc_masked(total_nochange_mask), 2))) X_nochange = bands_to_X(classified_bands_arrays, total_nochange_mask) # create a training sample set that is equal in size for all categories # and uses 10% of the labeled change pixels [X_change_sample, X_nochange_sample] = \ make_same_size_samples([X_change, X_nochange], size_percent=10) print(X_change_sample.shape) print(X_nochange_sample.shape) change_label_value = 0 nochange_label_value = 1 X_rf = np.concatenate((X_change_sample, X_nochange_sample), axis=0) y_rf = np.array(X_change_sample.shape[0] * [change_label_value] + \ X_nochange_sample.shape[0] * [nochange_label_value]) print(X_rf.shape) print(y_rf.shape) ###Output (19242, 9) (19242,) ###Markdown Classify Change ###Code # NOTE: This relative import isn't working so the following code is directly # copied from the temporal analysis notebook # from ipynb.fs.defs.drc_roads_temporal_analysis import classify_change def classify_change(classified_bands, mask, X_training, y_training): clf = RandomForestClassifier() with Timer(): clf.fit(X_training, y_training) X = bands_to_X(classified_bands, total_mask) with Timer(): y_pred = clf.predict(X) y_band = y_to_band(y_pred, total_mask) return y_band with Timer(): y_band_rf = classify_change(classified_bands_arrays, total_mask, X_rf, y_rf) visual.plot_image(classified_band_to_rgb(y_band_rf), title='RF Classified Image', figsize=(25, 25)) ###Output _____no_output_____
Navigation-v2.ipynb
###Markdown Navigation---Implement Deep Q Network for the Banana Collector environment using the Unity ML-Agents toolkit The program has 3 parts :- Part 1 Defines the classes, initiates the environment and so forth. It sets up all the scaffolding needed- Part 2 Explore and Learn - it performs the DQN Reinforcement Learning. It also saves the best model- Part 3 Run saved model- I have captured portion of the runs in the file p1_nav-02.m4v. So one can run the mp4 file to see how the agent behaves.So one can either :- Run the cells in Part 1 and then Part 2 -> to train a model, explore hyperparameters and so forth- `Or` - Run cells in Part 1 and then Part 3 -> to run a stored model Part 1 - Definitions & Setup 1.1. Install the required packagesThe required setup is detailed in the README.mdI am running this on a MacBookPro 14,3 1.2. Define importspython 3, numpy, matplotlib, torch ###Code # General imports import numpy as np import random from collections import namedtuple, deque import time from datetime import datetime, timedelta import matplotlib.pyplot as plt %matplotlib inline # torch imports import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim # Constants Definitions BUFFER_SIZE = int(1e5) # replay buffer size BATCH_SIZE = 64 # minibatch size GAMMA = 0.99 # discount factor TAU = 1e-3 # for soft update of target parameters LR = 5e-4 # learning rate UPDATE_EVERY = 4 # how often to update the network # Number of neurons in the layers of the Q Network FC1_UNITS = 16 FC2_UNITS = 8 FC3_UNITS = 4 # Store models flag. Store during calibration runs and do not store during hyperparameter search STORE_MODELS = False ###Output _____no_output_____ ###Markdown The unity environments contain **_brains_** which are responsible for deciding the actions of their associated agents. Here we check for the first brain available, and set it as the default brain we will be controlling from Python.`Note : The file_name might be different for different OS. As mentioned earlier, I am running OSX on a MAcBookPro` ###Code from unityagents import UnityEnvironment env = UnityEnvironment(file_name="Banana.app") #, no_graphics=True) # get the default brain brain_name = env.brain_names[0] brain = env.brains[brain_name] ###Output INFO:unityagents: 'Academy' started successfully! Unity Academy name: Academy Number of Brains: 1 Number of External Brains : 1 Lesson number : 0 Reset Parameters : Unity brain name: BananaBrain Number of Visual Observations (per agent): 0 Vector Observation space type: continuous Vector Observation space size (per agent): 37 Number of stacked Vector Observation: 1 Vector Action space type: discrete Vector Action space size (per agent): 4 Vector Action descriptions: , , , ###Markdown 1.3. Examine the State and Action SpacesThe simulation contains a single agent that navigates a large environment. At each time step, it has four actions at its disposal:- `0` - walk forward - `1` - walk backward- `2` - turn left- `3` - turn rightThe state space has `37` dimensions and contains the agent's velocity, along with ray-based perception of objects around agent's forward direction. A reward of `+1` is provided for collecting a yellow banana, and a reward of `-1` is provided for collecting a blue banana. - The cell below tests to make sure the environment is up and running by printing some information about the environment.- It also acquires the dimensions of the state and action space ###Code # reset the environment for training agents via external python API env_info = env.reset(train_mode=True)[brain_name] # number of agents in the environment print('Number of agents:', len(env_info.agents)) # number of actions action_size = brain.vector_action_space_size print('Number of actions:', action_size) # examine the state space state = env_info.vector_observations[0] print('States look like:', state) state_size = len(state) print('States have length:', state_size) ###Output Number of agents: 1 Number of actions: 4 States look like: [1. 0. 0. 0. 0.84408134 0. 0. 1. 0. 0.0748472 0. 1. 0. 0. 0.25755 1. 0. 0. 0. 0.74177343 0. 1. 0. 0. 0.25854847 0. 0. 1. 0. 0.09355672 0. 1. 0. 0. 0.31969345 0. 0. ] States have length: 37 ###Markdown 1.4. Define classes and setupThe device declaration enables the program leverage GPUs if they are available ###Code # device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Not used as we are using only the CPU for this project ###Output _____no_output_____ ###Markdown 1.5. Learning AlgorithmWe are using the Deep Q Network Algorithm. The major components of the algorithm are:1. `A function approximator` implemented as a Deep Neural Network whih consists of fully connected layers. The function approximator learns the Q values for all the actions for a state space. The banana environment has a state space of 37 and an action space of 4. So out network has an inputsize of 37 and an output size of 4. The accompanying Report.pdf has details on the network architecture.2. `Experience replay buffer` - in order to train the network we take actions and then store the results in the replay buffer. The replay buffer is a circular buffer and it has methods to sample a random batch3. `The Agent` brings all of the above together. It interacts with the environment by taking actions based on a policy, collects rewards and the observation feedback, then stores the experience in the replay buffer and also initiates a learning step on the Q Network. The accompanying Report.pdf has more details on the agent. ###Code class QNetwork(nn.Module): """Actor (Policy) Model.""" def __init__(self, state_size, action_size, seed, fc1_units = FC1_UNITS, fc2_units = FC2_UNITS, fc3_units = FC3_UNITS): """Initialize parameters and build model. Params ====== state_size (int): Dimension of each state action_size (int): Dimension of each action seed (int): Random seed fcx_units : Number of units in each layer ToDo : It is a little klugy, as the network is built manually layer-by-layer. Should take in a list fc_units and then dynamically build the network """ super(QNetwork, self).__init__() self.seed = torch.manual_seed(seed) self.fc1 = nn.Linear(state_size,fc1_units) self.fc2 = nn.Linear(fc1_units,fc2_units) self.fc3 = nn.Linear(fc2_units,fc3_units) self.fc4 = nn.Linear(fc3_units,action_size) def forward(self, state): """Build a network that maps state -> action values.""" x = F.relu(self.fc1(state)) x = F.relu(self.fc2(x)) x = F.relu(self.fc3(x)) x = self.fc4(x) return x class ReplayBuffer: """Fixed-size buffer to store experience tuples.""" def __init__(self, action_size, buffer_size, batch_size, seed): """Initialize a ReplayBuffer object. Params ====== action_size (int): dimension of each action buffer_size (int): maximum size of buffer batch_size (int): size of each training batch seed (int): random seed """ self.action_size = action_size self.memory = deque(maxlen=buffer_size) self.batch_size = batch_size self.experience = namedtuple("Experience", field_names=["state", "action", "reward", "next_state", "done"]) self.seed = random.seed(seed) def add(self, state, action, reward, next_state, done): """Add a new experience to memory.""" e = self.experience(state, action, reward, next_state, done) self.memory.append(e) def sample(self): """Randomly sample a batch of experiences from memory.""" experiences = random.sample(self.memory, k=self.batch_size) states = torch.from_numpy(np.vstack([e.state for e in experiences if e is not None])).float() actions = torch.from_numpy(np.vstack([e.action for e in experiences if e is not None])).long() rewards = torch.from_numpy(np.vstack([e.reward for e in experiences if e is not None])).float() next_states = torch.from_numpy(np.vstack([e.next_state for e in experiences if e is not None])).float() dones = torch.from_numpy(np.vstack([e.done for e in experiences if e is not None]).astype(np.uint8)).float() return (states, actions, rewards, next_states, dones) def __len__(self): """Return the current size of internal memory.""" return len(self.memory) class Agent(): """Interacts with and learns from the environment.""" def __init__(self, state_size, action_size, seed): """Initialize an Agent object. Params ====== state_size (int): dimension of each state action_size (int): dimension of each action seed (int): random seed """ self.state_size = state_size self.action_size = action_size self.seed = random.seed(seed) # Q-Network self.qnetwork_local = QNetwork(state_size, action_size, seed) self.qnetwork_target = QNetwork(state_size, action_size, seed) self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR) # Replay memory self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, seed) # Initialize time step (for updating every UPDATE_EVERY steps) self.t_step = 0 def step(self, state, action, reward, next_state, done): # Save experience in replay memory self.memory.add(state, action, reward, next_state, done) # Learn every UPDATE_EVERY time steps. self.t_step = (self.t_step + 1) % UPDATE_EVERY if self.t_step == 0: # If enough samples are available in memory, get random subset and learn if len(self.memory) > BATCH_SIZE: experiences = self.memory.sample() self.learn(experiences, GAMMA) def act(self, state, eps=0.): """Returns actions for given state as per current policy. Params ====== state (array_like): current state eps (float): epsilon, for epsilon-greedy action selection """ state = torch.from_numpy(state).float().unsqueeze(0) self.qnetwork_local.eval() with torch.no_grad(): action_values = self.qnetwork_local(state) self.qnetwork_local.train() # Epsilon-greedy action selection if random.random() > eps: return np.argmax(action_values.cpu().data.numpy()) else: return random.choice(np.arange(self.action_size)) def learn(self, experiences, gamma): """Update value parameters using given batch of experience tuples. Params ====== experiences (Tuple[torch.Variable]): tuple of (s, a, r, s', done) tuples gamma (float): discount factor """ states, actions, rewards, next_states, dones = experiences # compute and minimize the loss # Get max predicted Q values (for next states) from target model Q_targets_next = self.qnetwork_target(next_states).detach().max(1)[0].unsqueeze(1) # Compute Q targets for current states Q_targets = rewards + gamma * Q_targets_next * (1 - dones) # Get expected Q values from local model Q_expected = self.qnetwork_local(states).gather(1,actions) # Compute Loss loss = F.mse_loss(Q_expected,Q_targets) #Minimize Loss self.optimizer.zero_grad() loss.backward() self.optimizer.step() # ------------------- update target network ------------------- # self.soft_update(self.qnetwork_local, self.qnetwork_target, TAU) def soft_update(self, local_model, target_model, tau): """Soft update model parameters. θ_target = τ*θ_local + (1 - τ)*θ_target Params ====== local_model (PyTorch model): weights will be copied from target_model (PyTorch model): weights will be copied to tau (float): interpolation parameter """ for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): target_param.data.copy_(tau*local_param.data + (1.0-tau)*target_param.data) ###Output _____no_output_____ ###Markdown 1.6. Instantiate an agentThe state space and the action space dimensions come from the environment ###Code agent = Agent(state_size=state_size, action_size=action_size, seed=42) print(agent.qnetwork_local) ###Output QNetwork( (fc1): Linear(in_features=37, out_features=16, bias=True) (fc2): Linear(in_features=16, out_features=8, bias=True) (fc3): Linear(in_features=8, out_features=4, bias=True) (fc4): Linear(in_features=4, out_features=4, bias=True) ) ###Markdown Part 2 - Learn & Train----- `Note : If you want to run a stored model, skip Part 2 and run the cells in Part 3 below` 2.1. DQN AlgorithmDefine the DQN Algorithm. Once we have defined the foundations (network, buffer, agent and so forth), the DQN is relatively easy. It has a few responsibilities:1. Orchastrate the episodes calling the appropriate methods2. Display a running commentry of the scores and episode count3. Check the success criterion for solving the environment i.e. if running average is > 13 and print the episode count4. Store the model with the maximum score5. Keep track of the scores for analytics at the end of the run ###Code def dqn(n_episodes=2000, max_t=1000, eps_start=1.0, eps_end=0.01, eps_decay=0.995): """Deep Q-Learning. Params ====== n_episodes (int): maximum number of training episodes max_t (int): maximum number of timesteps per episode eps_start (float): starting value of epsilon, for epsilon-greedy action selection eps_end (float): minimum value of epsilon eps_decay (float): multiplicative factor (per episode) for decreasing epsilon """ scores = [] # list containing scores from each episode scores_window = deque(maxlen=100) # last 100 scores eps = eps_start # initialize epsilon has_seen_13 = False max_score = 0 for i_episode in range(1, n_episodes+1): env_info = env.reset(train_mode=True)[brain_name] # reset the environment state = env_info.vector_observations[0] # get the current state score = 0 max_steps = 0 for t in range(max_t): action = agent.act(state, eps) # next_state, reward, done, _ = env.step(action) env_info = env.step(action)[brain_name] # send the action to the environment next_state = env_info.vector_observations[0] # get the next state reward = env_info.rewards[0] # get the reward done = env_info.local_done[0] agent.step(state, action, reward, next_state, done) state = next_state score += reward max_steps += 1 if done: break scores_window.append(score) # save most recent score scores.append(score) # save most recent score eps = max(eps_end, eps_decay*eps) # decrease epsilon print('\rEpisode : {}\tAverage Score : {:5.2f}\tMax_steps : {}\teps : {:5.3f}\tMax.Score : {:5.3f}'.\ format(i_episode, np.mean(scores_window),max_steps,eps,max_score), end="") if i_episode % 100 == 0: print('\rEpisode : {}\tAverage Score : {:5.2f}\tMax_steps : {}\teps : {:5.3f}\tMax.Score : {:5.3f}'.\ format(i_episode, np.mean(scores_window),max_steps,eps,max_score)) if (np.mean(scores_window)>=13.0) and (not has_seen_13): print('\nEnvironment solved in {:d} episodes!\tAverage Score: {:5.2f}'.\ format(i_episode-100, np.mean(scores_window))) # torch.save(agent.qnetwork_local.state_dict(), 'checkpoint.pth') has_seen_13 = True # break # To see how far it can go # Store the best model if desired if STORE_MODELS: if np.mean(scores_window) > max_score: max_score = np.mean(scores_window) torch.save(agent.qnetwork_local.state_dict(), 'checkpoint.pth') # print(' .. Storing with score {}'.format(max_score)) return scores ###Output _____no_output_____ ###Markdown 2.2. The actual training Run1. Run the DQN2. Calculate and display end-of-run analytics viz. descriptive statistics and a plot of the scores ###Code start_time = time.time() scores = dqn(n_episodes=1000,eps_end=0.005, eps_decay=0.85) # The env ends at 300 steps. Tried max_t > 1K. Didn't see any complex adaptive temporal behavior env.close() # Close the environment print('Elapsed : {}'.format(timedelta(seconds=time.time() - start_time))) print(datetime.now()) # plot the scores fig = plt.figure() ax = fig.add_subplot(111) plt.plot(np.arange(len(scores)), scores) plt.ylabel('Score') plt.xlabel('Episode #') plt.show() print(agent.qnetwork_local) print('Max Score {:2f} at {}'.format(np.max(scores), np.argmax(scores))) print('Percentile [25,50,75] : {}'.format(np.percentile(scores,[25,50,75]))) print('Variance : {:.3f}'.format(np.var(scores))) ### Run Logs and notes as we tweak the parameters #### A place to keep the statistics and qualitative observations ''' Max = 2000 episodes, GAMMA = 0.99 # discount factor TAU = 1e-3 # for soft update of target parameters LR = 5e-4 # learning rate UPDATE_EVERY = 4 # how often to update the network fc1:64-fc2:64-fc3:4 -> 510 episodes, Max 26 @ 1183 episodes, Runnimg 100 mean 16.25 @1200, @1800 Elapsed : 1:19:28.997291 fc1:32-fc2:16-fc3:4 -> 449 episodes, Max 28 @ 1991 episodes, Runnimg 100 mean 16.41 @1300, 16.66 @1600, 17.65 @2000 Elapsed : 1:20:27.390989 Less Variance ? Overall learns better & steady; keeps high scores onc it learned them - match impedence percentile[25,50,75] = [11. 15. 18.]; var = 30.469993749999997 fc1:16-fc2:8-fc3:4 -> 502 episodes, Max 28 @ 1568 episodes, Runnimg 100 mean 16.41 @1400, 16.23 @1500, 16.32 @1600 Elapsed : 1:18:33.396898 percentile[25,50,75] = [10. 14. 17.]; var = 30.15840975 Very calm CPU ! Embed in TX2 or raspberry Pi environment - definitely this network Doesn't reach the highs of a larger network fc1:32-fc2:16-fc3:8-fc4:4 -> 405 episodes, Max 28 @ 1281 episodes, Runnimg 100 mean 17.05 @1500, 16.69 @1700 Elapsed : 1:24:07.507518 percentile[25,50,75] = [11. 15. 18.]; var = 34.83351975 Back to heavy CPU usage. Reaches solution faster, so definitely more fidelity. Depth gives early advantage fc1:64-fc2:32-fc3:16-fc4:8-fc5:4 -> 392 episodes, Max 27 @ 631 episodes, Runnimg 100 mean 16.94 @1500 Elapsed : 1:17:21.398181 percentile[25,50,75] = [11. 15. 18.]; var = 31.014 Higher CPU usage. Reaches solution more faster, so definitely more fidelity. Depth gives early advantage But takes longer to train ie get to the same point as the less deep networks. Didn't get to the max score as others ie > 17 Monstrous atrocity w.r.t the problem we are solving! fc1:32-fc2:4-> 492 episodes, Max 27 @ 1580 episodes, Runnimg 100 mean 16.73 @1900 Elapsed : 1:14:06.276599 percentile[25,50,75] = [10. 14. 17.]; var = 33.485 Minimalist Final Model: fc1:16-fc2:8-fc3:4 -> 567 episodes, Max 27 @ 1535 episodes, Runnimg 100 mean 16.41 @1400, 16.1 @1500 Elapsed : 1:21:45.714247 percentile[25,50,75] = [ 9. 14. 17.]; var = 31.137 Very calm CPU ! I like this, based on my autonomous car and drone background !! Occam's Razor and law of parsimony applies here - Optimum Model Discount Factor = 0.85, Episodes = 1000 (for faster iteration) 10/1/18 : Solved in 852 episodes. It needs a larger discount rate smaller and faster eps eps_end=0.001, eps_decay=0.85 reaches 0.001 in ~50 episodes the eps_end is more important solved in 203 episodes ! Much faster to solve, might not be good for larger action spaces as well as probabilistic spaces same again ! eps_end = 0.005 solved in 209 episodes. 0.005 is good Max Score 25.000000 at 599 Percentile [25,50,75] : [10. 14. 17.] Variance : 31.983 ''' ###Output _____no_output_____ ###Markdown 2.3. Test Area ###Code print(np.percentile(scores,[25,50,75])) print(np.var(scores)) print(agent.qnetwork_local) print('Max Score {:2f} at {}'.format(np.max(scores), np.argmax(scores))) len(scores) np.median(scores) # Work area to quickly test utility functions import time from datetime import datetime, timedelta start_time = time.time() time.sleep(10) print('Elapsed : {}'.format(timedelta(seconds=time.time() - start_time))) print(datetime.now()) env.close() ###Output _____no_output_____ ###Markdown Part 3 : Run a stored Model NoteHere we are saving and loading the state dict, because wee have access to the code.The best way to save and load model, to be used by 2 distinct and separate entities is to :- `torch.save(model, filepath)`; - Then later, `model = torch.load(filepath)`But, for now, this is not recommended since pytorch is still undergoing a lot of changes. Once Torch 1.0 is released, this might be the best option ###Code agent.qnetwork_local.load_state_dict(torch.load('checkpoint.pth')) scores=[] for i in range(10): # 10 episodes env_info = env.reset(train_mode=False)[brain_name] # reset the environment state = env_info.vector_observations[0] # get the current state score = 0 # initialize the score while True: action = agent.act(state) # select an action env_info = env.step(action)[brain_name] # send the action to the environment next_state = env_info.vector_observations[0] # get the next state reward = env_info.rewards[0] # get the reward done = env_info.local_done[0] # see if episode has finished score += reward # update the score state = next_state # roll over the state to next time step if done: # exit loop if episode finished break scores.append(score) print("Episode {:2d} Score {:5.2f}".format(i+1,score)) print('Mean of {} episodes = {}'.format(i+1,np.mean(scores))) print(datetime.now()) env.close() ###Output Episode 1 Score 12.00 Episode 2 Score 11.00 Episode 3 Score 15.00 Episode 4 Score 15.00 Episode 5 Score 18.00 Episode 6 Score 16.00 Episode 7 Score 18.00 Episode 8 Score 18.00 Episode 9 Score 16.00 Episode 10 Score 11.00 Mean of 10 episodes = 15.0 2018-10-01 21:15:43.115171
tutorials/an-introduction/1.hello-world.ipynb
###Markdown Tutorial: "hello world!" (Part 1 of 3)--- IntroductionIn **part 1 of this get started series**, you will submit a trivial "hello world" python script to the cloud by:- Running Python code in the cloud with Azure Machine Learning SDK- Switching between debugging locally on a compute instance- Submitting remote runs in the cloud- Monitoring and recording runs in the Azure Machine Learning studio Test in your development environmentYou can test your code works on a compute instance or locally (for example, a laptop), which has the benefit of interactive debugging of code: ###Code !python src/hello.py ###Output _____no_output_____ ###Markdown Submit your code to Azure Machine LearningBelow you create a __*control script*__ this is where you specify _how_ your code is submitted to Azure Machine Learning. The code you submit to Azure Machine Learning (in this case `hello.py`) does not need anything specific to Azure Machine Learning - it can be any valid Python code. It is only the control script that is Azure Machine Learning specific.The code below will show a Jupyter widget that tracks the progress of your run, and displays logs.> ! NOTE > The very first run will take 5-10 minutes to complete. This is because in the background a docker image is built in the cloud, the compute cluster is resized from 0 to 1 node, and the docker image is downloaded to the compute. Subsequent runs are much quicker (~15 seconds) as the docker image is cached on the compute - you can test this by resubmitting the code below after the first run has completed. ###Code from azureml.core import Workspace, Experiment, ScriptRunConfig from azureml.widgets import RunDetails ws = Workspace.from_config() exp = Experiment(workspace=ws, name="an-introduction-hello-world-tutorial") src = ScriptRunConfig( source_directory="src", script="hello.py", compute_target="cpu-cluster" ) run = exp.submit(src) RunDetails(run).show() ###Output _____no_output_____ ###Markdown Understanding the control code| Code |Description | |---|---|| `ws = Workspace.from_config()` | [Workspace](https://docs.microsoft.com/python/api/azureml-core/azureml.core.workspace.workspace?view=azure-ml-py&preserve-view=true) connects to your Azure Machine Learning workspace, so that you can communicate with your Azure Machine Learning resources. || `exp = Experiment( ... )` | [Experiment](https://docs.microsoft.com/python/api/azureml-core/azureml.core.experiment.experiment?view=azure-ml-py&preserve-view=true) provides a simple way to organize multiple runs under a single name. Later you can see how experiments make it easy to compare metrics between dozens of runs. || `src = ScriptRunConfig( ... )` | [ScriptRunConfig](https://docs.microsoft.com/python/api/azureml-core/azureml.core.scriptrunconfig?view=azure-ml-py&preserve-view=true) wraps your `hello.py` code and passes it to your workspace. As the name suggests, you can use this class to _configure_ how you want your _script_ to _run_ in Azure Machine Learning. Also specifies what compute target the script will run on. In this code, the target is the compute cluster you created in the [setup tutorial](tutorial-1st-experiment-sdk-setup-local.md). || `run = exp.submit(config)` | Submits your script. This submission is called a [Run](https://docs.microsoft.com/python/api/azureml-core/azureml.core.run(class)?view=azure-ml-py&preserve-view=true). A run encapsulates a single execution of your code. Use a run to monitor the script progress, capture the output, analyze the results, visualize metrics and more. ||`RunDetails(run).show()` | There is an Azure Machine Learning widget that shows the progress of your job along with streaming the log files. View the logsThe widget has a dropdown box titled **Output logs** select `70_driver_log.txt`, which shows the following standard output: ``` 1: [2020-08-04T22:15:44.407305] Entering context manager injector. 2: [context_manager_injector.py] Command line Options: Namespace(inject=['ProjectPythonPath:context_managers.ProjectPythonPath', 'RunHistory:context_managers.RunHistory', 'TrackUserError:context_managers.TrackUserError', 'UserExceptions:context_managers.UserExceptions'], invocation=['hello.py']) 3: Starting the daemon thread to refresh tokens in background for process with pid = 31263 4: Entering Run History Context Manager. 5: Preparing to call script [ hello.py ] with arguments: [] 6: After variable expansion, calling script [ hello.py ] with arguments: [] 7: 8: hello world! 9: Starting the daemon thread to refresh tokens in background for process with pid = 3126310:11:12: The experiment completed successfully. Finalizing run...13: Logging experiment finalizing status in history service.14: [2020-08-04T22:15:46.541334] TimeoutHandler __init__15: [2020-08-04T22:15:46.541396] TimeoutHandler __enter__16: Cleaning up all outstanding Run operations, waiting 300.0 seconds17: 1 items cleaning up...18: Cleanup took 0.1812913417816162 seconds19: [2020-08-04T22:15:47.040203] TimeoutHandler __exit__```On line 8 above, you see the "Hello world!" output. The 70_driver_log.txt file contains the standard output from run and can be useful when debugging remote runs in the cloud. You can also view the run by clicking on the **Click here to see the run in Azure Machine Learning studio** link in the widget. Next stepsIn this tutorial, you took a simple "hello world" script and ran it on Azure. You saw how to connect to your Azure Machine Learning workspace, create an Experiment, and submit your `hello.py` code to the cloud.In the [next tutorial](2.pytorch-model.ipynb), you build on these learnings by running something more interesting than `print("hello world!")`. ###Code run.wait_for_completion(show_output=True) ###Output _____no_output_____ ###Markdown Tutorial: "hello world!" (Part 1 of 3)--- IntroductionIn **part 1 of this get started series**, you will submit a trivial "hello world" python script to the cloud by:- Running Python code in the cloud with Azure Machine Learning SDK- Switching between debugging locally on a compute instance- Submitting remote runs in the cloud- Monitoring and recording runs in the Azure Machine Learning studio Write files ###Code %%writefile hello.py print("hello world!") ###Output _____no_output_____ ###Markdown Test in your development environmentYou can test your code works on a compute instance or locally (for example, a laptop), which has the benefit of interactive debugging of code: ###Code !python hello.py ###Output _____no_output_____ ###Markdown Submit your code to Azure Machine LearningBelow you create a __*control script*__ this is where you specify _how_ your code is submitted to Azure Machine Learning. The code you submit to Azure Machine Learning (in this case `hello.py`) does not need anything specific to Azure Machine Learning - it can be any valid Python code. It is only the control script that is Azure Machine Learning specific.The code below will show a Jupyter widget that tracks the progress of your run, and displays logs.> ! NOTE > The very first run will take 5-10 minutes to complete. This is because in the background a docker image is built in the cloud, the compute cluster is resized from 0 to 1 node, and the docker image is downloaded to the compute. Subsequent runs are much quicker (~15 seconds) as the docker image is cached on the compute - you can test this by resubmitting the code below after the first run has completed. ###Code from azureml.core import Workspace, Experiment, ScriptRunConfig from azureml.widgets import RunDetails ws = Workspace.from_config() exp = Experiment(workspace=ws, name="an-introduction-hello-world-tutorial") src = ScriptRunConfig( source_directory=".", script="hello.py", compute_target="cpu-cluster" ) run = exp.submit(src) RunDetails(run).show() ###Output _____no_output_____ ###Markdown Understanding the control code| Code |Description | |---|---|| `ws = Workspace.from_config()` | [Workspace](https://docs.microsoft.com/python/api/azureml-core/azureml.core.workspace.workspace?view=azure-ml-py&preserve-view=true) connects to your Azure Machine Learning workspace, so that you can communicate with your Azure Machine Learning resources. || `exp = Experiment( ... )` | [Experiment](https://docs.microsoft.com/python/api/azureml-core/azureml.core.experiment.experiment?view=azure-ml-py&preserve-view=true) provides a simple way to organize multiple runs under a single name. Later you can see how experiments make it easy to compare metrics between dozens of runs. || `src = ScriptRunConfig( ... )` | [ScriptRunConfig](https://docs.microsoft.com/python/api/azureml-core/azureml.core.scriptrunconfig?view=azure-ml-py&preserve-view=true) wraps your `hello.py` code and passes it to your workspace. As the name suggests, you can use this class to _configure_ how you want your _script_ to _run_ in Azure Machine Learning. Also specifies what compute target the script will run on. In this code, the target is the compute cluster you created in the [setup tutorial](tutorial-1st-experiment-sdk-setup-local.md). || `run = exp.submit(config)` | Submits your script. This submission is called a [Run](https://docs.microsoft.com/python/api/azureml-core/azureml.core.run(class)?view=azure-ml-py&preserve-view=true). A run encapsulates a single execution of your code. Use a run to monitor the script progress, capture the output, analyze the results, visualize metrics and more. ||`RunDetails(run).show()` | There is an Azure Machine Learning widget that shows the progress of your job along with streaming the log files. View the logsThe widget has a dropdown box titled **Output logs** select `70_driver_log.txt`, which shows the following standard output: ``` 1: [2020-08-04T22:15:44.407305] Entering context manager injector. 2: [context_manager_injector.py] Command line Options: Namespace(inject=['ProjectPythonPath:context_managers.ProjectPythonPath', 'RunHistory:context_managers.RunHistory', 'TrackUserError:context_managers.TrackUserError', 'UserExceptions:context_managers.UserExceptions'], invocation=['hello.py']) 3: Starting the daemon thread to refresh tokens in background for process with pid = 31263 4: Entering Run History Context Manager. 5: Preparing to call script [ hello.py ] with arguments: [] 6: After variable expansion, calling script [ hello.py ] with arguments: [] 7: 8: hello world! 9: Starting the daemon thread to refresh tokens in background for process with pid = 3126310:11:12: The experiment completed successfully. Finalizing run...13: Logging experiment finalizing status in history service.14: [2020-08-04T22:15:46.541334] TimeoutHandler __init__15: [2020-08-04T22:15:46.541396] TimeoutHandler __enter__16: Cleaning up all outstanding Run operations, waiting 300.0 seconds17: 1 items cleaning up...18: Cleanup took 0.1812913417816162 seconds19: [2020-08-04T22:15:47.040203] TimeoutHandler __exit__```On line 8 above, you see the "Hello world!" output. The 70_driver_log.txt file contains the standard output from run and can be useful when debugging remote runs in the cloud. You can also view the run by clicking on the **Click here to see the run in Azure Machine Learning studio** link in the widget. Next stepsIn this tutorial, you took a simple "hello world" script and ran it on Azure. You saw how to connect to your Azure Machine Learning workspace, create an Experiment, and submit your `hello.py` code to the cloud.In the [next tutorial](2.pytorch-model.ipynb), you build on these learnings by running something more interesting than `print("hello world!")`. ###Code run.wait_for_completion(show_output=True) ###Output _____no_output_____ ###Markdown Tutorial: "hello world!" (Part 1 of 3)--- IntroductionIn **part 1 of this get started series**, you will submit a trivial "hello world" python script to the cloud by:- Running Python code in the cloud with Azure Machine Learning SDK- Switching between debugging locally on a compute instance- Submitting remote runs in the cloud- Monitoring and recording runs in the Azure Machine Learning studio Your codeIn the `code` subdirectory you will write a trivial python script `hello.py` that has the following code:```Pythonprint("hello world!")```In this tutorial you are going to submit this trivial python script to an Azure Machine Learning Compute Cluster. ###Code import os os.makedirs("code", exist_ok=True) %%writefile code/hello.py print("hello world!") ###Output _____no_output_____ ###Markdown Test in your development environmentYou can test your code works on a compute instance or locally (for example, a laptop), which has the benefit of interactive debugging of code: ###Code !python code/hello.py ###Output _____no_output_____ ###Markdown Submit your code to Azure Machine LearningBelow you create a __*control script*__ this is where you specify _how_ your code is submitted to Azure Machine Learning. The code you submit to Azure Machine Learning (in this case `hello.py`) does not need anything specific to Azure Machine Learning - it can be any valid Python code. It is only the control script that is Azure Machine Learning specific.The code below will show a Jupyter widget that tracks the progress of your run, and displays logs.> ! NOTE > The very first run will take 5-10 minutes to complete. This is because in the background a docker image is built in the cloud, the compute cluster is resized from 0 to 1 node, and the docker image is downloaded to the compute. Subsequent runs are much quicker (~15 seconds) as the docker image is cached on the compute - you can test this by resubmitting the code below after the first run has completed. ###Code from azureml.core import Workspace, Experiment, ScriptRunConfig from azureml.widgets import RunDetails ws = Workspace.from_config() exp = Experiment(workspace=ws, name="getting-started-hello-world-tutorial") src = ScriptRunConfig( source_directory="code", script="hello.py", compute_target="cpu-cluster" ) run = exp.submit(src) RunDetails(run).show() ###Output _____no_output_____ ###Markdown Understanding the control code| Code |Description | |---|---|| `ws = Workspace.from_config()` | [Workspace](https://docs.microsoft.com/python/api/azureml-core/azureml.core.workspace.workspace?view=azure-ml-py&preserve-view=true) connects to your Azure Machine Learning workspace, so that you can communicate with your Azure Machine Learning resources. || `exp = Experiment( ... )` | [Experiment](https://docs.microsoft.com/python/api/azureml-core/azureml.core.experiment.experiment?view=azure-ml-py&preserve-view=true) provides a simple way to organize multiple runs under a single name. Later you can see how experiments make it easy to compare metrics between dozens of runs. || `src = ScriptRunConfig( ... )` | [ScriptRunConfig](https://docs.microsoft.com/python/api/azureml-core/azureml.core.scriptrunconfig?view=azure-ml-py&preserve-view=true) wraps your `hello.py` code and passes it to your workspace. As the name suggests, you can use this class to _configure_ how you want your _script_ to _run_ in Azure Machine Learning. Also specifies what compute target the script will run on. In this code, the target is the compute cluster you created in the [setup tutorial](tutorial-1st-experiment-sdk-setup-local.md). || `run = exp.submit(config)` | Submits your script. This submission is called a [Run](https://docs.microsoft.com/python/api/azureml-core/azureml.core.run(class)?view=azure-ml-py&preserve-view=true). A run encapsulates a single execution of your code. Use a run to monitor the script progress, capture the output, analyze the results, visualize metrics and more. ||`RunDetails(run).show()` | There is an Azure Machine Learning widget that shows the progress of your job along with streaming the log files. View the logsThe widget has a dropdown box titled **Output logs** select `70_driver_log.txt`, which shows the following standard output: ``` 1: [2020-08-04T22:15:44.407305] Entering context manager injector. 2: [context_manager_injector.py] Command line Options: Namespace(inject=['ProjectPythonPath:context_managers.ProjectPythonPath', 'RunHistory:context_managers.RunHistory', 'TrackUserError:context_managers.TrackUserError', 'UserExceptions:context_managers.UserExceptions'], invocation=['hello.py']) 3: Starting the daemon thread to refresh tokens in background for process with pid = 31263 4: Entering Run History Context Manager. 5: Preparing to call script [ hello.py ] with arguments: [] 6: After variable expansion, calling script [ hello.py ] with arguments: [] 7: 8: hello world! 9: Starting the daemon thread to refresh tokens in background for process with pid = 3126310:11:12: The experiment completed successfully. Finalizing run...13: Logging experiment finalizing status in history service.14: [2020-08-04T22:15:46.541334] TimeoutHandler __init__15: [2020-08-04T22:15:46.541396] TimeoutHandler __enter__16: Cleaning up all outstanding Run operations, waiting 300.0 seconds17: 1 items cleaning up...18: Cleanup took 0.1812913417816162 seconds19: [2020-08-04T22:15:47.040203] TimeoutHandler __exit__```On line 8 above, you see the "Hello world!" output. The 70_driver_log.txt file contains the standard output from run and can be useful when debugging remote runs in the cloud. You can also view the run by clicking on the **Click here to see the run in Azure Machine Learning studio** link in the widget. Next stepsIn this tutorial, you took a simple "hello world" script and ran it on Azure. You saw how to connect to your Azure Machine Learning workspace, create an Experiment, and submit your `hello.py` code to the cloud.In the [next tutorial](2.pytorch-model.ipynb), you build on these learnings by running something more interesting than `print("hello world!")`. ###Code run.wait_for_completion(show_output=True) ###Output _____no_output_____
TextSummarization_bertsum.ipynb
###Markdown ###Code !git clone https://github.com/nlpyang/BertSum.git cd BertSum !git clone https://github.com/thangarani/raw_stories.git !wget http://nlp.stanford.edu/software/stanford-corenlp-latest.zip !wget http://nlp.stanford.edu/software/stanford-corenlp-full-2016-10-31.zip mv stanford-corenlp-full-2016-10-31.zip /BertSum !wget http://nlp.stanford.edu/software/stanford-corenlp-full-2017-06-09.zip !sudo apt install unzip !unzip stanford-corenlp-full-2017-06-09.zip pwd import os os.environ['CLASSSPATH']="/content/BertSum/stanford-corenlp-full-2017-06-09/stanford-corenlp-3.8.0.jar" env !pip3 install pytorch_pretrained_bert !pip install tensorboardX !pip install multiprocess !git clone https://github.com/andersjo/pyrouge.git cd pyrouge/tools/ROUGE-1.5.5 pip install perl env !export ROUGE_EVAL_HOME="/content/BertSum/pyrouge/tools/ROUGE-1.5.5/data/" cd data/WordNet-2.0-Exceptions/ !apt-get install synaptic !./buildExeptionDB.pl . exc WordNet-2.0.exc.db cd ../ !ln -s WordNet-2.0-Exceptions/WordNet-2.0.exc.db WordNet-2.0.exc.db ls rm WordNet-2.0.exc.db !ln -s WordNet-2.0-Exceptions/WordNet-2.0.exc.db WordNet-2.0.exc.db !apt-get install libxml-dom-perl !git clone https://github.com/bheinzerling/pyrouge.git cd pyrouge !python setup.py install !pyrouge_set_rouge_path /content/BertSum/pyrouge/tools/ROUGE-1.5.5/ !python -m pyrouge.test cd /content/BertSum/ ###Output _____no_output_____ ###Markdown File "/content/BertSum/src/models/data_loader.py", line 31, in __init__ mask = 1 - (src == 0) -> change -> mask = ~ ( src == 0 ) ###Code mkdir merged_stories_tokenized cd src ls /content/BertSum/stanford-corenlp-4.0.0/stanford-corenlp-4.0.0.jar !python preprocess.py -mode tokenize -raw_path ../raw_stories -save_path ../merged_stories_tokenized -log_file ../logs/cnndm.log !python train.py -mode train -encoder rnn -dropout 0.1 -bert_data_path ../bert_data/cnndm -model_path ../models/bert_rnn -lr 2e-3 -visible_gpus 0,1,2 -gpu_ranks 0,1,2 -world_size 1 -report_every 1000 -save_checkpoint_steps 1000 -batch_size 3000 -decay_method noam -train_steps 5000 -accum_count 2 -log_file ../logs/bert_rnn -use_interval true -warmup_steps 10000 -rnn_size 768 -dropout 0.1 !python train.py -mode validate -bert_data_path ../bert_data/cnndm -model_path ../models/bert_rnn -visible_gpus 0 -gpu_ranks 0 -batch_size 30000 -log_file ../logs/model_bert_rnn -result_path ../results/cnndm -test_all -block_trigram true ###Output _____no_output_____
1_week_2_independent_work.ipynb
###Markdown Важность признаков 1. Загрузите выборку из файла titanic.csv с помощью пакета Pandas. ###Code import pandas import numpy as np data = pandas.read_csv('./data/titanic.csv', index_col='PassengerId') print(len(data)) data.head() ###Output 891 ###Markdown 2. Оставьте в выборке четыре признака: класс пассажира (Pclass), цену билета (Fare), возраст пассажира (Age) и его пол (Sex).В данных есть пропущенные значения — например, для некоторых пассажиров неизвестен их возраст. Такие записи при чтении их в pandas принимают значение nan. Найдите все объекты, у которых есть пропущенные признаки, и удалите их из выборки. ###Code data = data[['Pclass', 'Fare', 'Age', 'Sex', 'Survived']].dropna() features = data[['Pclass', 'Fare', 'Age', 'Sex']] features = features.replace('male', 0) features = features.replace('female', 1) features.head() ###Output _____no_output_____ ###Markdown ---`Примечание: обратите внимание, что признак Sex имеет строковые значения.`--- 4. Выделите целевую переменную — она записана в столбце Survived. ###Code y = data['Survived'] y.head() ###Output _____no_output_____ ###Markdown 6. Обучите решающее дерево с параметром random_state=241 и остальными параметрами по умолчанию (речь идет о параметрах конструктора DecisionTreeСlassifier). ###Code from sklearn.tree import DecisionTreeClassifier X = features clf = DecisionTreeClassifier(random_state=241) clf.fit(X, y) X.head() ###Output _____no_output_____ ###Markdown 7. Вычислите важности признаков и найдите два признака с наибольшей важностью. Их названия будут ответами для данной задачи (в качестве ответа укажите названия признаков через запятую или пробел, порядок не важен). ###Code importances = clf.feature_importances_ for i in importances: print(f"{i}") ###Output 0.14751816099515025 0.2953846784065746 0.25658494964003575 0.3005122109582393
03-Numpy Operations.ipynb
###Markdown NumPy Operations ArithmeticYou can easily perform array with array arithmetic, or scalar with array arithmetic. Let's see some examples: ###Code import numpy as np arr = np.arange(0,10) arr arr + arr arr * arr arr - arr # Warning on division by zero, but not an error! # Just replaced with nan arr/arr # Also warning, but not an error instead infinity 1/arr arr**arr ###Output _____no_output_____ ###Markdown Universal Array FunctionsNumpy comes with many [universal array functions](http://docs.scipy.org/doc/numpy/reference/ufuncs.html), which are essentially just mathematical operations you can use to perform the operation across the array. Let's show some common ones: ###Code #Taking Square Roots np.sqrt(arr) #Calcualting exponential (e^) np.exp(arr) np.max(arr) #same as arr.max() np.sin(arr) np.log(arr) ###Output /Users/marci/anaconda/lib/python3.5/site-packages/ipykernel/__main__.py:1: RuntimeWarning: divide by zero encountered in log if __name__ == '__main__': ###Markdown NumPy Operations ArithmeticYou can easily perform array with array arithmetic, or scalar with array arithmetic. Let's see some examples: ###Code import numpy as np arr = np.arange(0,10) arr arr + arr arr * arr arr - arr # Warning on division by zero, but not an error! # Just replaced with nan arr/arr # Also warning, but not an error instead infinity 1/arr arr**arr ###Output _____no_output_____ ###Markdown Universal Array FunctionsNumpy comes with many [universal array functions](http://docs.scipy.org/doc/numpy/reference/ufuncs.html), which are essentially just mathematical operations you can use to perform the operation across the array. Let's show some common ones: ###Code #Taking Square Roots np.sqrt(arr) #Calcualting exponential (e^) np.exp(arr) np.max(arr) #same as arr.max() np.sin(arr) np.log(arr) ###Output /Users/marci/anaconda/lib/python3.5/site-packages/ipykernel/__main__.py:1: RuntimeWarning: divide by zero encountered in log if __name__ == '__main__':
.ipynb_checkpoints/Job A Thon Analytics VIdya Hackathon-checkpoint.ipynb
###Markdown Variable Definition ID Unique Identifier for a rowCity_Code Code for the City of the customersRegion_Code Code for the Region of the customersAccomodation_Type Customer Owns or Rents the houseReco_Insurance_Type Joint or Individual type for the recommended insurance Upper_Age Maximum age of the customer Lower _Age Minimum age of the customerIs_Spouse If the customers are married to each other(in case of joint insurance) Health_IndicatorEncoded values for health of the customerHolding_Policy_Duration Duration (in years) of holding policy (a policy that customer has already subscribed to with the company)Holding_Policy_TypeType of holding policyReco_Policy_Cat Encoded value for recommended health insuranceReco_Policy_Premium Annual Premium (INR) for the recommended health insuranceResponse (Target) 0 : Customer did not show interest in the recommended policy, 1 : Customer showed interest in the recommended policy ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline import warnings warnings.filterwarnings("ignore") train_df = pd.read_csv('input/train.csv') test_df = pd.read_csv('input/test.csv') train_df.head(5) train_df.shape train_df.describe().T train_df.isnull().sum() test_df.isnull().sum() ###Output _____no_output_____ ###Markdown Our test also contains null values ###Code train_df['Response'].value_counts() train_df['Reco_Insurance_Type'].value_counts() train_df['Accomodation_Type'].value_counts() train_df['City_Code'].value_counts() train_df['Health Indicator'].isnull().sum() train_df['Holding_Policy_Type'].value_counts() train_df['Holding_Policy_Duration'].value_counts() train_df.info() plt.figure(figsize=(14,7)) sns.heatmap(train_df.corr(),cmap='gist_gray',fmt='0.2%', annot=True) ###Output _____no_output_____ ###Markdown First we predict the missing values of health Indicator </h5 ###Code from sklearn.impute import KNNImputer knn = KNNImputer(n_neighbors=5) train_df.columns num = [col for col in train_df.columns if train_df[col].dtypes != 'O'] num num.remove('ID') num train_df[num].head() knn.fit(train_df[num]) train_df[num] = knn.transform(train_df[num]) pd.DataFrame(knn.transform(train_df[num])).head() train_df ###Output _____no_output_____
scripts/publication/SupplementaryTable6.ipynb
###Markdown scRFE results for supplementary table 6 ###Code # facsGlobalobjects-Age # one vs all for 3m, 18m, 24m adata = read_h5ad('/data/madeline/src3/01_figure_1/tabula-muris-senis-facs-processed-official-annotations.h5ad') from anndata import read_h5ad import numpy as np import pandas as pd from scRFE.scRFE import scRFE from scRFE.scRFE import makeOneForest from scRFE.scRFE import resultWrite # 3m forest3m = makeOneForest(dataMatrix=adata, classOfInterest='age', labelOfInterest='3m', nEstimators=1000, randomState=0, min_cells=15, keep_small_categories=True, nJobs=-1, oobScore=True, Step=0.2, Cv=5, verbosity=True) column_headings = ['3m','3m_gini'] resultsdf = pd.DataFrame(columns = column_headings) resultsdf['3m'] = forest3m[0] resultsdf['3m_gini'] = forest3m[1] resultsdf = resultsdf.sort_values(by = ['3m_gini'], ascending = False) resultsdf.reset_index(drop = True, inplace = True) resultsdf.to_csv('facsAllGenes3m.csv') # 18m forest18m = makeOneForest(dataMatrix=adata, classOfInterest='age', labelOfInterest='18m', nEstimators=1000, randomState=0, min_cells=15, keep_small_categories=True, nJobs=-1, oobScore=True, Step=0.2, Cv=5, verbosity=True) column_headings = ['18m','18m_gini'] resultsdf = pd.DataFrame(columns = column_headings) resultsdf['18m'] = forest18m[0] resultsdf['18m_gini'] = forest18m[1] resultsdf = resultsdf.sort_values(by = ['18m_gini'], ascending = False) resultsdf.reset_index(drop = True, inplace = True) resultsdf.to_csv('facsAllGenes18m.csv') # 24 forest24m = makeOneForest(dataMatrix=adata, classOfInterest='age', labelOfInterest='24m', nEstimators=1000, randomState=0, min_cells=15, keep_small_categories=True, nJobs=-1, oobScore=True, Step=0.2, Cv=5, verbosity=True) column_headings = ['24m','24m_gini'] resultsdf = pd.DataFrame(columns = column_headings) resultsdf['24m'] = forest24m[0] resultsdf['24m_gini'] = forest24m[1] resultsdf = resultsdf.sort_values(by = ['24m_gini'], ascending = False) resultsdf.reset_index(drop = True, inplace = True) resultsdf.to_csv('facsAllGenes24m.csv') ###Output _____no_output_____
tests/notebooks/DDM_fitting.ipynb
###Markdown Fit the DDM on individual data ###Code import rlssm import pandas as pd import os ###Output _____no_output_____ ###Markdown Import the data ###Code par_path = os.path.abspath(os.path.join(os.getcwd(), os.pardir, os.pardir)) data_path = os.path.join(par_path, 'data/data_experiment.csv') data = pd.read_csv(data_path, index_col=0) data = data[data.participant == 20].reset_index(drop=True) # Only select 1 participant data.head() ###Output _____no_output_____ ###Markdown Initialize the model ###Code model = rlssm.DDModel(hierarchical_levels = 1) ###Output Using cached StanModel ###Markdown Fit ###Code # sampling parameters n_iter = 1000 n_chains = 2 n_thin = 1 model_fit = model.fit( data, thin = n_thin, iter = n_iter, chains = n_chains, pointwise_waic=False, verbose = False) ###Output WARNING:pystan:Maximum (flat) parameter count (1000) exceeded: skipping diagnostic tests for n_eff and Rhat. To run all diagnostics call pystan.check_hmc_diagnostics(fit) ###Markdown get Rhat ###Code model_fit.rhat ###Output _____no_output_____ ###Markdown get wAIC ###Code model_fit.waic ###Output _____no_output_____ ###Markdown Posteriors ###Code model_fit.samples.describe() import seaborn as sns sns.set(context = "talk", style = "white", palette = "husl", rc={'figure.figsize':(15, 8)}) model_fit.plot_posteriors(height=5, show_intervals="HDI", alpha_intervals=.05); ###Output _____no_output_____ ###Markdown Posterior predictives Ungrouped ###Code pp = model_fit.get_posterior_predictives_df(n_posterior_predictives=100) pp pp_summary = model_fit.get_posterior_predictives_summary(n_posterior_predictives=100) pp_summary model_fit.plot_mean_posterior_predictives(n_posterior_predictives=100, figsize=(20,8), show_intervals='HDI'); model_fit.plot_quantiles_posterior_predictives(n_posterior_predictives=100, kind='shades'); ###Output _____no_output_____ ###Markdown Grouped ###Code import numpy as np # Define new grouping variables, in this case, for the different choice pairs, but any grouping var can do data['choice_pair'] = 'AB' data.loc[(data.cor_option == 3) & (data.inc_option == 1), 'choice_pair'] = 'AC' data.loc[(data.cor_option == 4) & (data.inc_option == 2), 'choice_pair'] = 'BD' data.loc[(data.cor_option == 4) & (data.inc_option == 3), 'choice_pair'] = 'CD' data['block_bins'] = pd.cut(data.trial_block, 8, labels=np.arange(1, 9)) model_fit.get_grouped_posterior_predictives_summary( grouping_vars=['block_label', 'choice_pair'], quantiles=[.3, .5, .7], n_posterior_predictives=100) model_fit.get_grouped_posterior_predictives_summary( grouping_vars=['block_bins'], quantiles=[.3, .5, .7], n_posterior_predictives=100) model_fit.plot_mean_grouped_posterior_predictives(grouping_vars=['block_bins'], n_posterior_predictives=100, figsize=(20,8)); model_fit.plot_quantiles_grouped_posterior_predictives( n_posterior_predictives=100, grouping_var='choice_pair', kind='shades', quantiles=[.1, .3, .5, .7, .9]); ###Output _____no_output_____
docs/source/notebooks/09-ilustrative_example.ipynb
###Markdown Illustrative exampleIn this example we will create an [acquisition server](https://openbci-stream.readthedocs.io/en/latest/notebooks/A3-server-based_acquisition.html) on a Raspberry Pi and stream EEG data in real-time from them through [Kafka](https://openbci-stream.readthedocs.io/en/latest/notebooks/02-kafka_configuration.html) using the [OpenBCI-Stream library](https://openbci-stream.readthedocs.io/en/latest/index.html).Devices used: * Raspberry Pi 4 Model B 4GB RAM * Cyton Biosensing Board (8-channels) * OpenBCI WiFi Shield * Computer (with WiFi) Conventions used: * The **red window frames** indicate that this window is "owned" by Raspberry through remote connection using SSH. * The **IP** for the **Raspberry** is **192.168.1.1** * The **IP** for the **OpenBCI WiFi Shield** is **192.168.1.113** Acquisition serverThe [guide to create an acquisition server](https://openbci-stream.readthedocs.io/en/latest/notebooks/A3-server-based_acquisition.html) explain the process to set up the server over a Raspberry Pi, after finish and reboot the system the Raspberry will be an **Acces Point**, we must connect the **OpenBCI WiFi Shield** to this network as well as the main computer (where BCI Framework will be executed).We must verify that the respective daemons are running correctly on Raspberry: $ sudo systemctl status kafka zookeeper@kafka $ sudo systemctl status stream_eeg stream_rpycThe system uses the NTP to synchronize clocks, so the Rasberry **must have a wired connection** to the internet to synchronize their own clock, to ensure this we can verify the connection and restart the daemon: $ sudo systemctl restart ntpd$ nptq -pnAfter a while, the clock will be synchronized (notice the * in the server **186.30.58.181**)We can verify the status of the **WiFi Shield** with the command: $ curl -s http:/192.168.1.113/board | jqThe above commands being executed through a SSH connection, also can be done by connecting a monitor and a keyboard to the Raspberry. Configure montageA simple montage 8 channels: Configuration and connection with OpenBCI and then start the stream Connect with the Raspberry that is running under the IP **192.168.1.1** and the **WiFi Shield** on **192.168.1.113**. The sample frequency of **1000 samples per second** with a transmission of packages of **100 samples**. ImpedancesOnce the streamming is started the impedances can be displayed from the **Montages tab** Raw EEG and topoplot P300 speller EEG records reading ###Code from openbci_stream.utils.hdf5 import HDF5Reader filename = "record-04_20_21-13_58_25.h5" file = HDF5Reader(filename) print(file) file.close() with HDF5Reader(filename) as file: data, classes = file.get_data(tmin=0, duration=0.125) data.shape, classes.shape ###Output _____no_output_____
step_A.ipynb
###Markdown Step A ###Code import warnings warnings.filterwarnings('ignore') import numpy as np import cv2 from matplotlib import pyplot as plt import collections import os ###Output _____no_output_____ ###Markdown The ```compute_all_keypoints``` function calculates all keypoints of all query and train images and stores them in a dictionary, in order to easily access them later. ###Code def compute_all_keypoints(query_imgs, train_imgs, sift): img_dict = {} for img in query_imgs: file = 'models/' + img + '.jpg' query = cv2.imread(file, 0) kp, des = sift.detectAndCompute(query, None) img_dict[img] = {'kp': kp, 'des': des, 'shape': query.shape} for img in train_imgs: file = 'scenes/' + img + '.png' train = cv2.imread(file, 0) kp, des = sift.detectAndCompute(train, None) img_dict[img] = {'kp': kp, 'des': des, 'shape': train.shape} return img_dict ###Output _____no_output_____ ###Markdown The ```apply_ratio_test``` function takes all the matches found between the query and the train image, it chooses the good ones with the usual ratio test and it stores them in a dictionary using the indexes of the query keypoints as keys and the indexes of the train keypoints as values. ###Code def apply_ratio_test(all_matches): # map of matches kp_query_idx -> kp_train_idx good_matches = {} for m, n in all_matches: if m.distance < LOWE_COEFF * n.distance: good_matches[m.queryIdx] = m.trainIdx return good_matches ###Output _____no_output_____ ###Markdown The ```check_matches``` function orders the good matches in decreasing number of keypoints and it runs a series of tests on them, checking the geometric arrangement and the color consistency. ###Code def check_matches(global_matches, train_img, img_dict): sorted_global_matches = collections.OrderedDict(sorted(global_matches.items(), key=lambda item: item[1][0], reverse=True)) recognised = {} train_file = 'scenes/' + train_img + '.png' train_bgr = cv2.imread(train_file) for k, v in sorted_global_matches.items(): if v[0] > MIN_MATCH_COUNT: query_file = 'models/' + k + '.jpg' query_bgr = cv2.imread(query_file) src_pts = np.float32([img_dict[k]['kp'][p].pt for p in v[1].keys()]).reshape(-1, 1, 2) dst_pts = np.float32([img_dict[train_img]['kp'][p].pt for p in v[1].values()]).reshape(-1, 1, 2) M, _ = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0) h, w, d = query_bgr.shape pts = np.float32([[0, 0], [0, h - 1], [w - 1, h - 1], [w - 1, 0]]).reshape(-1, 1, 2) dst = cv2.perspectiveTransform(pts, M) center = tuple((dst[0, 0, i] + dst[1, 0, i] + dst[2, 0, i] + dst[3, 0, i]) / 4 for i in (0, 1)) x_min = int(max((dst[0, 0, 0] + dst[1, 0, 0]) / 2, 0)) y_min = int(max((dst[0, 0, 1] + dst[3, 0, 1]) / 2, 0)) x_max = int(min((dst[2, 0, 0] + dst[3, 0, 0]) / 2, img_dict[train_img]['shape'][1])) y_max = int(min((dst[1, 0, 1] + dst[2, 0, 1]) / 2, img_dict[train_img]['shape'][0])) query_color = query_bgr.mean(axis=0).mean(axis=0) train_crop = train_bgr[y_min:y_max,x_min:x_max] train_color = train_crop.mean(axis=0).mean(axis=0) color_diff = np.sqrt(np.sum([value ** 2 for value in abs(query_color - train_color)])) temp = True if color_diff < COLOR_T : for r, corners in recognised.items(): r_center = tuple((corners[0, 0, i] + corners[1, 0, i] + corners[2, 0, i] + corners[3, 0, i]) / 4 for i in (0, 1)) if (center[0] > min(corners[0, 0, 0], corners[1, 0, 0]) and center[0] < max(corners[2, 0, 0], corners[3, 0, 0])\ and center[1] > min(corners[0, 0, 1], corners[3, 0, 1]) and center[1] < max(corners[1, 0, 1], corners[2, 0, 1]))\ or (r_center[0] > x_min and r_center[0] < x_max\ and r_center[1] > y_min and r_center[1] < y_max): temp = False break if temp: recognised[k] = dst return recognised ###Output _____no_output_____ ###Markdown The ```print_matches``` function takes all the recognised images and prints their details, i.e. their position, width, and height. ###Code def print_matches(train_img, query_imgs, recognised, true_imgs, verbose): print('Scene: ' + train_img + '\n') for query_img in query_imgs: total = int(query_img in recognised.keys()) true_total = int(query_img in true_imgs[train_img]) if total != true_total: print('\033[1m' + 'Product ' + query_img + ' – ' + str(total) + '/' + str(true_total) + ' instances found' + '\033[0m') elif total > 0 or verbose == True: print('Product ' + query_img + ' – ' + str(total) + '/' + str(true_total) + ' instances found') if total == 1: dst = recognised[query_img] center = tuple(int((dst[0, 0, i] + dst[1, 0, i] + dst[2, 0, i] + dst[3, 0, i]) / 4) for i in (0, 1)) w = int(((dst[3, 0, 0] - dst[0, 0, 0]) + (dst[2, 0, 0] - dst[1, 0, 0])) /2) h = int(((dst[1, 0, 1] - dst[0, 0, 1]) + (dst[2, 0, 1] - dst[3, 0, 1])) /2) print('\t' + 'Position: ' + str(center)\ + '\t' + 'Width: ' + str(w)\ + '\t' + 'Height: ' + str(h)) ###Output _____no_output_____ ###Markdown The ```draw_matches``` function draws on the train image the boxes' homographies and the numbers corresponding to the query images. ###Code def draw_matches(recognised, train_img, color): train_file = 'scenes/' + train_img + '.png' if color == True: train_bgr = cv2.imread(train_file) train_temp = cv2.cvtColor(train_bgr, cv2.COLOR_BGR2RGB) train_rgb = np.zeros(train_bgr.shape, train_bgr.dtype) for y in range(train_temp.shape[0]): for x in range(train_temp.shape[1]): for c in range(train_temp.shape[2]): train_rgb[y, x, c] = np.clip(0.5 * train_temp[y, x, c], 0, 255) else: train_gray = cv2.imread(train_file, 0) train_rgb = cv2.cvtColor(train_gray // 2, cv2.COLOR_GRAY2RGB) for k, v in recognised.items(): train_rgb = cv2.polylines(train_rgb, [np.int32(v)], True, (0, 255, 0), 3, cv2.LINE_AA) font = cv2.FONT_HERSHEY_SIMPLEX cv2.putText(train_rgb, k,\ (int((v[3, 0, 0] - v[0, 0, 0]) * 0.25 + v[0, 0, 0]), int((v[1, 0, 1] - v[0, 0, 1]) * 0.67 + v[0, 0, 1])),\ font, 5, (0, 255, 0), 10, cv2.LINE_AA) plt.imshow(train_rgb),plt.show(); if color == True: if not os.path.exists('output/step_A/'): os.mkdir('output/step_A/') cv2.imwrite('output/step_A/' + train_img + '.png', cv2.cvtColor(train_rgb, cv2.COLOR_RGB2BGR)) ###Output _____no_output_____ ###Markdown The ```step_A``` function takes the lists of query and train images and performs the product recognition. ###Code def step_A(query_imgs, train_imgs, true_imgs, verbose, color): sift = cv2.xfeatures2d.SIFT_create() bf = cv2.BFMatcher() img_dict = compute_all_keypoints(query_imgs, train_imgs, sift) for train_img in train_imgs: kp_train, des_train = img_dict[train_img]['kp'], img_dict[train_img]['des'] global_matches = {} for query_img in query_imgs: kp_query, des_query = img_dict[query_img]['kp'], img_dict[query_img]['des'] all_matches = bf.knnMatch(des_query, des_train, k=2) good_matches = apply_ratio_test(all_matches) global_matches[query_img] = (len(good_matches), good_matches) recognised = check_matches(global_matches, train_img, img_dict) print_matches(train_img, query_imgs, recognised, true_imgs, verbose) draw_matches(recognised, train_img, color) print('\n') ###Output _____no_output_____ ###Markdown Parameters: ###Code LOWE_COEFF = 0.5 MIN_MATCH_COUNT = 30 COLOR_T = 50 query_imgs = ['0', '1', '11', '19', '24', '25', '26'] train_imgs = ['e1', 'e2', 'e3', 'e4', 'e5'] true_imgs = { 'e1': {'0', '11'}, 'e2': {'24', '25', '26'}, 'e3': {'0', '1', '11'}, 'e4': {'0', '11', '25', '26'}, 'e5': {'19', '25'}, } # verbose=False does not print the true negative instances # color=True outputs all the scenes in color instead of grayscale and saves them, but the process is quite slow step_A(query_imgs, train_imgs, true_imgs, verbose=False, color=False) ###Output _____no_output_____ ###Markdown Step A ###Code import warnings warnings.filterwarnings('ignore') import numpy as np import cv2 from matplotlib import pyplot as plt import collections ###Output _____no_output_____ ###Markdown The ```compute_all_keypoints``` function calculates all keypoints of all query and train images and stores them in a dictionary, in order to easily access them later. ###Code def compute_all_keypoints(query_imgs, train_imgs, sift): img_dict = {} for img in query_imgs: file = 'models/' + img + '.jpg' query = cv2.imread(file, 0) kp, des = sift.detectAndCompute(query, None) img_dict[img] = {'kp': kp, 'des': des, 'shape': query.shape} for img in train_imgs: file = 'scenes/' + img + '.png' train = cv2.imread(file, 0) kp, des = sift.detectAndCompute(train, None) img_dict[img] = {'kp': kp, 'des': des, 'shape': train.shape} return img_dict ###Output _____no_output_____ ###Markdown The ```apply_ratio_test``` function takes all the matches found between the query and the train image, it chooses the good ones with the usual ratio test and it stores them in a dictionary using the indexes of the query keypoints as keys and the indexes of the train keypoints as values. ###Code def apply_ratio_test(all_matches): # map of matches kp_query_idx -> kp_train_idx good_matches = {} for m, n in all_matches: if m.distance < LOWE_COEFF * n.distance: good_matches[m.queryIdx] = m.trainIdx return good_matches ###Output _____no_output_____ ###Markdown The ```check_matches``` function orders the good matches in decreasing number of keypoints and it runs a series of tests on them, checking the geometric arrangement and the color consistency. ###Code def check_matches(global_matches, train_img, img_dict): sorted_global_matches = collections.OrderedDict(sorted(global_matches.items(), key=lambda item: item[1][0], reverse=True)) recognised = {} train_file = 'scenes/' + train_img + '.png' train_bgr = cv2.imread(train_file) for k, v in sorted_global_matches.items(): if v[0] > MIN_MATCH_COUNT: query_file = 'models/' + k + '.jpg' query_bgr = cv2.imread(query_file) src_pts = np.float32([img_dict[k]['kp'][p].pt for p in v[1].keys()]).reshape(-1, 1, 2) dst_pts = np.float32([img_dict[train_img]['kp'][p].pt for p in v[1].values()]).reshape(-1, 1, 2) M, _ = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0) h, w, d = query_bgr.shape pts = np.float32([[0, 0], [0, h - 1], [w - 1, h - 1], [w - 1, 0]]).reshape(-1, 1, 2) dst = cv2.perspectiveTransform(pts, M) center = tuple((dst[0, 0, i] + dst[1, 0, i] + dst[2, 0, i] + dst[3, 0, i]) / 4 for i in (0, 1)) x_min = int(max((dst[0, 0, 0] + dst[1, 0, 0]) / 2, 0)) y_min = int(max((dst[0, 0, 1] + dst[3, 0, 1]) / 2, 0)) x_max = int(min((dst[2, 0, 0] + dst[3, 0, 0]) / 2, img_dict[train_img]['shape'][1])) y_max = int(min((dst[1, 0, 1] + dst[2, 0, 1]) / 2, img_dict[train_img]['shape'][0])) query_color = query_bgr.mean(axis=0).mean(axis=0) train_crop = train_bgr[y_min:y_max,x_min:x_max] train_color = train_crop.mean(axis=0).mean(axis=0) color_diff = np.sqrt(np.sum([value ** 2 for value in abs(query_color - train_color)])) temp = True if color_diff < COLOR_T : for r, corners in recognised.items(): r_center = tuple((corners[0, 0, i] + corners[1, 0, i] + corners[2, 0, i] + corners[3, 0, i]) / 4 for i in (0, 1)) if (center[0] > min(corners[0, 0, 0], corners[1, 0, 0]) and center[0] < max(corners[2, 0, 0], corners[3, 0, 0])\ and center[1] > min(corners[0, 0, 1], corners[3, 0, 1]) and center[1] < max(corners[1, 0, 1], corners[2, 0, 1]))\ or (r_center[0] > x_min and r_center[0] < x_max\ and r_center[1] > y_min and r_center[1] < y_max): temp = False break if temp: recognised[k] = dst return recognised ###Output _____no_output_____ ###Markdown The ```print_matches``` function takes all the recognised images and prints their details, i.e. their position, width, and height. ###Code def print_matches(train_img, query_imgs, recognised, true_imgs, verbose): print('Scene: ' + train_img + '\n') for query_img in query_imgs: total = int(query_img in recognised.keys()) true_total = int(query_img in true_imgs[train_img]) if total != true_total: print('\033[1m' + 'Product ' + query_img + ' – ' + str(total) + '/' + str(true_total) + ' instances found' + '\033[0m') elif total > 0 or verbose == True: print('Product ' + query_img + ' – ' + str(total) + '/' + str(true_total) + ' instances found') if total == 1: dst = recognised[query_img] center = tuple(int((dst[0, 0, i] + dst[1, 0, i] + dst[2, 0, i] + dst[3, 0, i]) / 4) for i in (0, 1)) w = int(((dst[3, 0, 0] - dst[0, 0, 0]) + (dst[2, 0, 0] - dst[1, 0, 0])) /2) h = int(((dst[1, 0, 1] - dst[0, 0, 1]) + (dst[2, 0, 1] - dst[3, 0, 1])) /2) print('\t' + 'Position: ' + str(center)\ + '\t' + 'Width: ' + str(w)\ + '\t' + 'Height: ' + str(h)) ###Output _____no_output_____ ###Markdown The ```draw_matches``` function draws on the train image the boxes' homographies and the numbers corresponding to the query images. ###Code def draw_matches(recognised, train_img, color): train_file = 'scenes/' + train_img + '.png' if color == True: train_bgr = cv2.imread(train_file) train_temp = cv2.cvtColor(train_bgr, cv2.COLOR_BGR2RGB) train_rgb = np.zeros(train_bgr.shape, train_bgr.dtype) for y in range(train_temp.shape[0]): for x in range(train_temp.shape[1]): for c in range(train_temp.shape[2]): train_rgb[y, x, c] = np.clip(0.5 * train_temp[y, x, c], 0, 255) else: train_gray = cv2.imread(train_file, 0) train_rgb = cv2.cvtColor(train_gray // 2, cv2.COLOR_GRAY2RGB) for k, v in recognised.items(): train_rgb = cv2.polylines(train_rgb, [np.int32(v)], True, (0, 255, 0), 3, cv2.LINE_AA) font = cv2.FONT_HERSHEY_SIMPLEX cv2.putText(train_rgb, k,\ (int((v[3, 0, 0] - v[0, 0, 0]) * 0.25 + v[0, 0, 0]), int((v[1, 0, 1] - v[0, 0, 1]) * 0.67 + v[0, 0, 1])),\ font, 5, (0, 255, 0), 10, cv2.LINE_AA) plt.imshow(train_rgb),plt.show(); if color == True: cv2.imwrite('output/step_A/' + train_img + '.png', cv2.cvtColor(train_rgb, cv2.COLOR_RGB2BGR)) ###Output _____no_output_____ ###Markdown The ```step_A``` function takes the lists of query and train images and performs the product recognition. ###Code def step_A(query_imgs, train_imgs, true_imgs, verbose, color): sift = cv2.xfeatures2d.SIFT_create() bf = cv2.BFMatcher() img_dict = compute_all_keypoints(query_imgs, train_imgs, sift) for train_img in train_imgs: kp_train, des_train = img_dict[train_img]['kp'], img_dict[train_img]['des'] global_matches = {} for query_img in query_imgs: kp_query, des_query = img_dict[query_img]['kp'], img_dict[query_img]['des'] all_matches = bf.knnMatch(des_query, des_train, k=2) good_matches = apply_ratio_test(all_matches) global_matches[query_img] = (len(good_matches), good_matches) recognised = check_matches(global_matches, train_img, img_dict) print_matches(train_img, query_imgs, recognised, true_imgs, verbose) draw_matches(recognised, train_img, color) print('\n') ###Output _____no_output_____ ###Markdown Parameters: ###Code LOWE_COEFF = 0.5 MIN_MATCH_COUNT = 30 COLOR_T = 50 query_imgs = ['0', '1', '11', '19', '24', '25', '26'] train_imgs = ['e1', 'e2', 'e3', 'e4', 'e5'] true_imgs = { 'e1': {'0', '11'}, 'e2': {'24', '25', '26'}, 'e3': {'0', '1', '11'}, 'e4': {'0', '11', '25', '26'}, 'e5': {'19', '25'}, } # verbose=False does not print the true negative instances # color=True outputs all the scenes in color insted of grayscale, but the process is quite slow, therefore it is False by default step_A(query_imgs, train_imgs, true_imgs, verbose=False, color=False) ###Output _____no_output_____
01 python/lect 6 materials/Разбор задач семинар 2.ipynb
###Markdown Разбор задач после семинара 2 A. Максимум из двух ###Code a = int(input()) b = int(input()) print((a>b)*a + (a<=b)*b) ###Output _____no_output_____ ###Markdown B. Какое число больше? (Вариант 1) ###Code a = int(input()) b = int(input()) print((a>b) + (a<b)*2) ###Output _____no_output_____ ###Markdown B. Какое число больше? (Вариант 2) ###Code a = int(input()) b = int(input()) if a > b: print(1) elif a < b: print(2) else: print(0) ###Output _____no_output_____ ###Markdown C. Знак числа (Вариант 1) ###Code a = int(input()) print(-(a<0) + (a>0)) ###Output _____no_output_____ ###Markdown C. Знак числа (Вариант 2) ###Code a = int(input()) if a > 0: print(1) elif a < b: print(-1) else: print(0) ###Output _____no_output_____ ###Markdown D. Максимум трех чисел ###Code a = int(input()) b = int(input()) c = int(input()) print(max([a, b, c])) ###Output _____no_output_____ ###Markdown E. Координатные четверти ###Code x1 = int(input()) y1 = int(input()) x2 = int(input()) y2 = int(input()) if x1*x2 > 0 and y1*y2 > 0: print('YES') else: print('NO') ###Output _____no_output_____ ###Markdown F. Високосный год ###Code a = int(input()) if (a % 4 == 0 and a % 100 != 0) or a % 400 == 0: print('YES') else: print('NO') ###Output _____no_output_____ ###Markdown G. Ход короля ###Code a = int(input()) b = int(input()) c = int(input()) d = int(input()) if abs(a-c) <= 1 and abs(b-d) <= 1: print('YES') else: print('NO') ###Output _____no_output_____ ###Markdown H. Четные и нечетные ###Code a = int(input()) b = int(input()) c = int(input()) S = (a % 2 == 0) + (b % 2 == 0) + (c % 2 == 0) if 1 <= S <= 2: print('YES') else: print('NO') ###Output _____no_output_____ ###Markdown I. Квартиры ###Code a = int(input()) b = int(input()) if (a - 1) % (b - a + 1) == 0: print('YES') else: print('NO') ###Output _____no_output_____ ###Markdown J. Цвет клеток шахматной доски ###Code a = int(input()) b = int(input()) c = int(input()) d = int(input()) if (abs(a-c) + abs(b-d)) % 2 == 0: print('YES') else: print('NO') ###Output _____no_output_____ ###Markdown K. Шоколадка ###Code n = int(input()) m = int(input()) k = int(input()) if k <= n*m and (k % n == 0 or k % m == 0): print('YES') else: print('NO') ###Output _____no_output_____ ###Markdown L. Шашки ###Code a = int(input()) b = int(input()) c = int(input()) d = int(input()) if (abs(a-c) + abs(d-b)) % 2 == 0 and abs(c-a) <= d-b: print('YES') else: print('NO') ###Output _____no_output_____ ###Markdown M. Упорядочить три числа ###Code a = int(input()) b = int(input()) c = int(input()) if a > b: (a, b) = (b, a) if b > c: (c, b) = (b, c) if a > b: (a, b) = (b, a) print(a, b, c) ###Output _____no_output_____ ###Markdown N. Сколько совпадает чисел ###Code a = int(input()) b = int(input()) c = int(input()) k = 0 if a == b: k += 1 if b == c: k += 1 if a == c: k += 1 print(k + (k == 1)) ###Output _____no_output_____ ###Markdown O. Тип треугольника ###Code a = int(input()) b = int(input()) c = int(input()) if a > b: (a, b) = (b, a) if b > c: (c, b) = (b, c) if a > b: (a, b) = (b, a) D = (a**2 + b**2) ** 0.5 if c < D: print('acute') elif c == D: print('rectangular') elif D < c < a + b: print('obtuse') else: print('impossible') ###Output _____no_output_____ ###Markdown P. Узник замка Иф ###Code a = int(input()) b = int(input()) c = int(input()) d = int(input()) e = int(input()) if a <= d and b <= e or a <= e and b <= d: print("YES") elif c <= d and b <= e or c <= e and b <= d: print("YES") elif a <= d and c <= e or a <= e and c <= d: print("YES") else: print("NO") ###Output _____no_output_____ ###Markdown Q. Коробки ###Code A1 = int(input()) B1 = int(input()) C1 = int(input()) A2 = int(input()) B2 = int(input()) C2 = int(input()) if ((A1 == A2 and B1 == B2 and C1 == C2) or (A1 == A2 and B1 == C2 and C1 == B2) or (A1 == C2 and B1 == A2 and C1 == B2) or (A1 == B2 and B1 == A2 and C1 == C2) or (A1 == B2 and B1 == C2 and C1 == A2) or (A1 == C2 and B1 == B2 and C1 == A2)): print('Boxes are equal') elif ((A1 <= A2 and B1 <= B2 and C1 <= C2) or (A1 <= A2 and B1 <= C2 and C1 <= B2) or (A1 <= C2 and B1 <= A2 and C1 <= B2) or (A1 <= B2 and B1 <= A2 and C1 <= C2) or (A1 <= B2 and B1 <= C2 and C1 <= A2) or (A1 <= C2 and B1 <= B2 and C1 <= A2)): print('The first box is smaller than the second one') elif ((A1 >= A2 and B1 >= B2 and C1 >= C2) or (A1 >= A2 and B1 >= C2 and C1 >= B2) or (A1 >= C2 and B1 >= A2 and C1 >= B2) or (A1 >= B2 and B1 >= A2 and C1 >= C2) or (A1 >= B2 and B1 >= C2 and C1 >= A2) or (A1 >= C2 and B1 >= B2 and C1 >= A2)): print('The first box is larger than the second one') else: print('Boxes are incomparable') ###Output _____no_output_____ ###Markdown S. Коровы ###Code n = int(input()) if n >= 11 and n <= 14: print(n, 'korov') else: temp = n % 10 if temp == 0 or (temp >= 5 and temp <= 9): print(n, 'korov') if temp == 1: print(n, 'korova') if temp >=2 and temp <=4: print(n, 'korovy') ###Output _____no_output_____ ###Markdown T. Мороженое ###Code a = int(input()) if a != 1 and a != 2 and a != 4 and a != 7: print('YES') else: print('NO') ###Output _____no_output_____
QOSF_Task.ipynb
###Markdown As the `binary_vector` contains binary strings of given array. We will add the ccx gates according to the binary data given. The adding of binary data into the QRAM is clearly specified in `qram_function` Importing Necessary libraries and tools for visualization ###Code #Using Qiskit for this project from qiskit import * #Importing Histogram Plot for visualization of results from qiskit.visualization import plot_histogram #Import OR gate for the oracle working in program. from qiskit.circuit.library import OR #[0001] [0101] [0111] [1010] ###Output _____no_output_____ ###Markdown Using [Diffuser function](https://qiskit.org/textbook/ch-algorithms/grover.html3.1-Qiskit-Implementation-) for data in address registers ###Code def diffuser(nqubits): qc = QuantumCircuit(nqubits) # Apply transformation |s> -> |00..0> (H-gates) for qubit in range(nqubits): qc.h(qubit) # Apply transformation |00..0> -> |11..1> (X-gates) for qubit in range(nqubits): qc.x(qubit) # Do multi-controlled-Z gate qc.h(nqubits-1) qc.mct(list(range(nqubits-1)), nqubits-1) # multi-controlled-toffoli qc.h(nqubits-1) # Apply transformation |11..1> -> |00..0> for qubit in range(nqubits): qc.x(qubit) # Apply transformation |00..0> -> |s> for qubit in range(nqubits): qc.h(qubit) # We will return the diffuser as a gate U_s = qc.to_gate() U_s.name = "U$_s$" return U_s ###Output _____no_output_____ ###Markdown Using a standard Counter function which increase the value when it finds valid solution in the array. ###Code def counter(qc, flip,auxiliary): for i in range(len(flip)): qc.ccx(flip[i],auxiliary[0],auxiliary[1]) qc.cx(flip[i],auxiliary[0]) ###Output _____no_output_____ ###Markdown Using a Qram function specially made for the given input data. It comprises of ccx gates and x gates. The x gates are placed according to the position of data and The ccx gates are placed according to the bit string given in the array as input. ###Code def qram(qc,add,flip): # Address 0 = 00 -> Data = 1 (0001) qc.x(add) qc.ccx(add[0],add[1],flip[3]) qc.x(add) qc.barrier() # Address 1 = 01 -> Data = 5 (0101) qc.x(add[0]) qc.ccx(add[0],add[1],flip[1]) qc.ccx(add[0],add[1],flip[3]) qc.x(add[0]) qc.barrier() # Address 2 = 10 -> Data = 7 (0111) qc.x(add[1]) qc.ccx(add[0],add[1],flip[1]) qc.ccx(add[0],add[1],flip[2]) qc.ccx(add[0],add[1],flip[3]) qc.x(add[1]) qc.barrier() # Address 3 = 11-> Data = 10 (1010) qc.ccx(add[0],add[1],flip[0]) qc.ccx(add[0],add[1],flip[2]) qc.barrier() ###Output _____no_output_____ ###Markdown Initialization of the necessary Quantum and Classical registers ###Code # Address are used to get the position of valid solutions in the given array add=QuantumRegister(2,name='address') # Input will be used for entering the data given by QRAM in the bit string form. flip=QuantumRegister(4,name='input') # Auxiliary qubits are used to store and transfer the solution in output qubit by oracle aux=QuantumRegister(2,name='auxiliary') # Output qubit flips the phase of the valid solution and return rest the of the inputs for computation out=QuantumRegister(1,name='output') # Classical registers are used for address qubits for measurement cbits=ClassicalRegister(2,name='cbits') # Finally plugging all things in Quantum circuit qc=QuantumCircuit(add,flip,aux,out,cbits) ###Output _____no_output_____ ###Markdown Adding necceary gates initially ###Code ## Initialization # Adding H gate and X gate in address qubits for making them in superposition qc.x(add) qc.h(add) # Doing same thing with output qubit as it will flip the valid solution qc.x(out) qc.h(out) qc.barrier() ###Output _____no_output_____ ###Markdown Oracle which returns 0101 and 1010 as valid solution ###Code # Calling QRAM function with neccary argument qram(qc,add,flip) # Using Multi control toffoli gate for checking 1010 as the valid solution qc.mct([flip[0],flip[2]],aux[0]) qc.barrier() # Using Multi control toffoli gate for checking 0101 as the valid solution qc.mct([flip[1],flip[3]],aux[0]) qc.barrier() # Using Counter for counting the valid solutions counter(qc,flip,aux) qc.barrier() # Using OR gate for adding both MCT gate output and adding them and transfering then to Output qubit qc.append(OR(2),[6,7,8]) qc.barrier() # Performing Uncomputation for returing rest of the incorrect solutions qc.mct([flip[1],flip[3]],aux[0]) qc.barrier() qc.mct([flip[0],flip[2]],aux[0]) qc.barrier() # Applying QRAM for Uncomputation. As QRAM is commutative in nature so no need to take care of reverse gates qram(qc,add,flip) ###Output _____no_output_____ ###Markdown Diffuser and Measurement on Adderess qubits ###Code ## Applying Diffuser on address bits for getting the positons of valid solutions in the given array qc.append(diffuser(2),[0,1]) qc.barrier() ## Applying the measure to measure the address qubits and returing them to classical bits qc.measure(add,cbits) ## Using Draw function for drawing circuit qc.draw(); ###Output _____no_output_____ ###Markdown Visualization of Results ###Code # Reversing Quantum Circuit for getting expected results qc=qc.reverse_bits() # Transpiling the circuit for more clarity in results qc = transpile(qc, basis_gates=['cx', 'u'], optimization_level=3) # Using the QASM simulator for visualization aer_sim = Aer.get_backend('qasm_simulator') # Defining Shots shots = 1024 # Assembling the circut to run on qasm_simulator qobj = assemble(qc, aer_sim) # Extracting Results out of it results = aer_sim.run(qobj).result() # Getting counts of shots of results answer = results.get_counts() # Using plot_histogram for plotting the shots count and representing it in probabilities plot_histogram(answer); ###Output _____no_output_____
examples/gallery/demos/bokeh/measles_example.ipynb
###Markdown This notebook reproduces a [visualization by the Wall Street Journal](http://graphics.wsj.com/infectious-diseases-and-vaccines/b02g20t20w15) about the incidence of measles over time, which the brilliant [Brian Granger](https://github.com/ellisonbg) adapted into an [example for the Altair library](http://nbviewer.jupyter.org/github/ellisonbg/altair/blob/master/altair/notebooks/12-Measles.ipynb).Most examples work across multiple plotting backends, this example is also available for:* [Matplotlib measles_example](../matplotlib/measles_example.ipynb) ###Code import numpy as np import holoviews as hv from holoviews import opts import pandas as pd hv.extension('bokeh') ###Output _____no_output_____ ###Markdown Declaring data ###Code url = 'https://raw.githubusercontent.com/blmoore/blogR/master/data/measles_incidence.csv' data = pd.read_csv(url, skiprows=2, na_values='-') yearly_data = data.drop('WEEK', axis=1).groupby('YEAR').sum().reset_index() measles = pd.melt(yearly_data, id_vars=['YEAR'], var_name='State', value_name='Incidence') heatmap = hv.HeatMap(measles, label='Measles Incidence') aggregate = hv.Dataset(heatmap).aggregate('YEAR', np.mean, np.std) vline = hv.VLine(1963) marker = hv.Text(1964, 800, 'Vaccine introduction', halign='left') agg = hv.ErrorBars(aggregate) * hv.Curve(aggregate) ###Output _____no_output_____ ###Markdown Plot ###Code overlay = (heatmap + agg * vline * marker).cols(1) overlay.options( opts.HeatMap(width=900, height=500, tools=['hover'], logz=True, invert_yaxis=True, labelled=[], toolbar='above', xaxis=None), opts.VLine(line_color='black'), opts.Overlay(width=900, height=200, show_title=False, xrotation=90)) ###Output _____no_output_____ ###Markdown This notebook reproduces a [visualization by the Wall Street Journal](http://graphics.wsj.com/infectious-diseases-and-vaccines/b02g20t20w15) about the incidence of measles over time, which the brilliant [Brian Granger](https://github.com/ellisonbg) adapted into an [example for the Altair library](http://nbviewer.jupyter.org/github/ellisonbg/altair/blob/master/altair/notebooks/12-Measles.ipynb).Most examples work across multiple plotting backends, this example is also available for:* [Matplotlib measles_example](../matplotlib/measles_example.ipynb) ###Code import numpy as np import holoviews as hv from holoviews import opts import pandas as pd hv.extension('bokeh') ###Output _____no_output_____ ###Markdown Declaring data ###Code url = 'https://raw.githubusercontent.com/blmoore/blogR/master/data/measles_incidence.csv' data = pd.read_csv(url, skiprows=2, na_values='-') yearly_data = data.drop('WEEK', axis=1).groupby('YEAR').sum().reset_index() measles = pd.melt(yearly_data, id_vars=['YEAR'], var_name='State', value_name='Incidence') heatmap = hv.HeatMap(measles, label='Measles Incidence') aggregate = hv.Dataset(heatmap).aggregate('YEAR', np.mean, np.std) vline = hv.VLine(1963) marker = hv.Text(1964, 800, 'Vaccine introduction', halign='left') agg = hv.ErrorBars(aggregate) * hv.Curve(aggregate) ###Output _____no_output_____ ###Markdown Plot ###Code overlay = (heatmap + agg * vline * marker).cols(1) overlay.opts( opts.HeatMap(width=900, height=500, tools=['hover'], logz=True, invert_yaxis=True, labelled=[], toolbar='above', xaxis=None, colorbar=True, clim=(1, np.nan)), opts.VLine(line_color='black'), opts.Overlay(width=900, height=200, show_title=False, xrotation=90)) ###Output _____no_output_____ ###Markdown This notebook reproduces a [visualization by the Wall Street Journal](http://graphics.wsj.com/infectious-diseases-and-vaccines/b02g20t20w15) about the incidence of measles over time, which the brilliant [Brian Granger](https://github.com/ellisonbg) adapted into an [example for the Altair library](http://nbviewer.jupyter.org/github/ellisonbg/altair/blob/master/altair/notebooks/12-Measles.ipynb).Most examples work across multiple plotting backends, this example is also available for:* [Matplotlib measles_example](../matplotlib/measles_example.ipynb) ###Code import numpy as np import holoviews as hv import pandas as pd hv.extension('bokeh') ###Output _____no_output_____ ###Markdown Declaring data ###Code url = 'https://raw.githubusercontent.com/blmoore/blogR/master/data/measles_incidence.csv' data = pd.read_csv(url, skiprows=2, na_values='-') yearly_data = data.drop('WEEK', axis=1).groupby('YEAR').sum().reset_index() measles = pd.melt(yearly_data, id_vars=['YEAR'], var_name='State', value_name='Incidence') heatmap = hv.HeatMap(measles, label='Measles Incidence') aggregate = hv.Dataset(heatmap).aggregate('YEAR', np.mean, np.std) vline = hv.VLine(1963) marker = hv.Text(1964, 800, 'Vaccine introduction', halign='left') agg = hv.ErrorBars(aggregate) * hv.Curve(aggregate) ###Output _____no_output_____ ###Markdown Plot ###Code options = {'HeatMap': dict(width=900, height=500, tools=['hover'], logz=True, invert_yaxis=True, labelled=[], toolbar='above', xaxis=None), 'Overlay': dict(width=900, height=200, show_title=False, xrotation=90), 'VLine': dict(line_color='black')} (heatmap + agg * vline * marker).options(options).cols(1) ###Output _____no_output_____ ###Markdown This notebook reproduces a [visualization by the Wall Street Journal](http://graphics.wsj.com/infectious-diseases-and-vaccines/b02g20t20w15) about the incidence of measles over time, which the brilliant [Brian Granger](https://github.com/ellisonbg) adapted into an [example for the Altair library](http://nbviewer.jupyter.org/github/ellisonbg/altair/blob/master/altair/notebooks/12-Measles.ipynb).Most examples work across multiple plotting backends, this example is also available for:* [Matplotlib measles_example](../matplotlib/measles_example.ipynb) ###Code import numpy as np import holoviews as hv import pandas as pd hv.extension('bokeh') ###Output _____no_output_____ ###Markdown Declaring data ###Code url = 'https://raw.githubusercontent.com/blmoore/blogR/master/data/measles_incidence.csv' data = pd.read_csv(url, skiprows=2, na_values='-') yearly_data = data.drop('WEEK', axis=1).groupby('YEAR').sum().reset_index() measles = pd.melt(yearly_data, id_vars=['YEAR'], var_name='State', value_name='Incidence') heatmap = hv.HeatMap(measles, label='Measles Incidence') aggregate = hv.Dataset(heatmap).aggregate('YEAR', np.mean, np.std) vline = hv.VLine(1963) marker = hv.Text(1964, 800, 'Vaccine introduction', halign='left') agg = hv.ErrorBars(aggregate) * hv.Curve(aggregate) ###Output _____no_output_____ ###Markdown Plot ###Code hm_opts = dict(width=900, height=500, tools=['hover'], logz=True, invert_yaxis=True, xrotation=90, labelled=[], toolbar='above', xaxis=None) overlay_opts = dict(width=900, height=200, show_title=False) vline_opts = dict(line_color='black') opts = {'HeatMap': {'plot': hm_opts}, 'Overlay': {'plot': overlay_opts}, 'VLine': {'style': vline_opts}} (heatmap + agg * vline * marker).opts(opts).cols(1) ###Output _____no_output_____ ###Markdown This notebook reproduces a [visualization by the Wall Street Journal](http://graphics.wsj.com/infectious-diseases-and-vaccines/b02g20t20w15) about the incidence of measles over time, which the brilliant [Brian Granger](https://github.com/ellisonbg) adapted into an [example for the Altair library](http://nbviewer.jupyter.org/github/ellisonbg/altair/blob/master/altair/notebooks/12-Measles.ipynb).Most examples work across multiple plotting backends, this example is also available for:* [Matplotlib measles_example](../matplotlib/measles_example.ipynb) ###Code import numpy as np import holoviews as hv from holoviews import opts import pandas as pd hv.extension('bokeh') ###Output _____no_output_____ ###Markdown Declaring data ###Code url = 'https://raw.githubusercontent.com/blmoore/blogR/master/data/measles_incidence.csv' data = pd.read_csv(url, skiprows=2, na_values='-') yearly_data = data.drop('WEEK', axis=1).groupby('YEAR').sum().reset_index() measles = pd.melt(yearly_data, id_vars=['YEAR'], var_name='State', value_name='Incidence') heatmap = hv.HeatMap(measles, label='Measles Incidence') aggregate = hv.Dataset(heatmap).aggregate('YEAR', np.mean, np.std) vline = hv.VLine(1963) marker = hv.Text(1964, 800, 'Vaccine introduction', halign='left') agg = hv.ErrorBars(aggregate) * hv.Curve(aggregate) ###Output _____no_output_____ ###Markdown Plot ###Code overlay = (heatmap + agg * vline * marker).cols(1) overlay.opts( opts.HeatMap(width=900, height=500, tools=['hover'], logz=True, invert_yaxis=True, labelled=[], toolbar='above', xaxis=None), opts.VLine(line_color='black'), opts.Overlay(width=900, height=200, show_title=False, xrotation=90)) ###Output _____no_output_____
Starter_Files/challenge.ipynb
###Markdown Challenge Identifying Outliers using Standard Deviation ###Code # initial imports import pandas as pd import numpy as np import random from sqlalchemy import create_engine # create a connection to the database engine = create_engine("postgresql://postgres:postgres@localhost:5432/fraud_detection") # code a function to identify outliers based on standard deviation # find anomalous transactions for 3 random card holders ###Output _____no_output_____ ###Markdown Identifying Outliers Using Interquartile Range ###Code # code a function to identify outliers based on interquartile range # find anomalous transactions for 3 random card holders ###Output _____no_output_____ ###Markdown Challenge Identifying Outliers using Standard Deviation ###Code # initial imports import pandas as pd import numpy as np import random from sqlalchemy import create_engine # create a connection to the database engine = create_engine("postgresql://postgres:postgres@localhost:5432/fraud_detection") # code a function to identify outliers based on standard deviation # find anomalous transactions for 3 random card holders ###Output _____no_output_____ ###Markdown Identifying Outliers Using Interquartile Range ###Code # code a function to identify outliers based on interquartile range # find anomalous transactions for 3 random card holders ###Output _____no_output_____ ###Markdown ChallengeAnother approach to identifying fraudulent transactions is to look for outliers in the data. Standard deviation or quartiles are often used to detect outliers. Using this starter notebook, code two Python functions:* One that uses standard deviation to identify anomalies for any cardholder.* Another that uses interquartile range to identify anomalies for any cardholder. Identifying Outliers using Standard Deviation ###Code # Initial imports import pandas as pd import numpy as np import random from sqlalchemy import create_engine # Create a connection to the database engine = create_engine("postgresql://postgres:postgres@localhost:5432/Unit 7 HW") # Write function that locates outliers using standard deviation query = "SELECT * FROM transaction" transactions = pd.read_sql(query, engine) # Find anomalous transactions for 3 random card holders query =''' SELECT CH.id, TR.date, TR.amount, TR.card, tr.id_merchant, MC.name FROM card_holder CH JOIN credit_card CC ON CH.id = CC.cardholder_id JOIN transaction TR ON TR.card = CC.card JOIN merchant ME ON TR.id_merchant = ME.id_merchant_category JOIN merchant_category MC ON TR.id_merchant = MC.id WHERE CH.id IN ('2', '18', '25') ''' pd.read_sql(query, engine).head() ccholder_df = pd.read_sql(query, engine) ccholder_df.head() ccholder_df['amount'] = ccholder_df['amount'].astype(str).astype(float) ccholder2_data = ccholder_df.loc[ccholder_df['id'] == "2"].set_index('date') ccholder2_data.index = pd.to_datetime(ccholder2_data.index) ccholder2_data.head() ccholder_df.hvplot.line( x="date", y="amount", xlabel="Date", ylabel="Amount", title="Transactions by Id Holder 2", rot = 90 ) ###Output _____no_output_____ ###Markdown Identifying Outliers Using Interquartile Range ###Code # Write a function that locates outliers using interquartile range # Find anomalous transactions for 3 random card holders ###Output _____no_output_____ ###Markdown Challenge Identifying Outliers using Standard Deviation ###Code # initial imports import pandas as pd import numpy as np import random from sqlalchemy import create_engine import os POSTGRES_KEY= os.getenv('POSTGRES_KEY') # create a connection to the database engine = create_engine(f"postgresql://postgres:{POSTGRES_KEY}@localhost:5432/Credit_Card_Transactions") query = "SELECT t.id, t.date, t.amount, t.card, t.id_merchant, cc.cardholder_id FROM transaction t JOIN credit_card cc ON (t.card = cc.card)" transactions_df = pd.read_sql(query, engine) transactions_df.head() # code a function to identify outliers based on standard deviation def outliners_std (client_id): # outliners_std function receives cardholder id as parameter and returns # all the transactions_df rows with amounts > (mean + 1std) and amounts < (mean - 1std) transactions_client_df = transactions_df[transactions_df['cardholder_id'] == int(client_id)] client_std = transactions_client_df['amount'].std() client_mean = transactions_client_df['amount'].mean() outliners_df = transactions_client_df[(transactions_client_df['amount'] > (client_mean+client_std)) + (transactions_client_df['amount'] < (client_mean-client_std))] return outliners_df # find anomalous transactions for 3 random card holders outliners_2 = outliners_std(2) outliners_25 = outliners_std(25) outliners_18 = outliners_std(18) print("========================================") print("Example of Outliners for Card Holder #2:") print(outliners_2[['id', 'date', 'amount','card','id_merchant']].head()) print(f"Total Outliners : {outliners_2['amount'].count()}") print("========================================") print("Example of Outliners for Card Holder #25:") print(outliners_25[['id', 'date', 'amount','card','id_merchant']].head()) print(f"Total Outliners : {outliners_25['amount'].count()}") print("========================================") print("Example of Outliners for Card Holder #18:") print(outliners_18[['id', 'date', 'amount','card','id_merchant']].head()) print(f"Total Outliners : {outliners_18['amount'].count()}") print("========================================") ###Output ======================================== Example of Outliners for Card Holder #2: id date amount card id_merchant 44 2439 2018-01-06 02:16:41 1.33 4866761290278198714 127 57 3028 2018-01-07 15:10:27 17.29 4866761290278198714 126 141 2655 2018-01-16 06:29:35 17.64 675911140852 136 333 3395 2018-02-03 18:05:39 1.41 4866761290278198714 65 369 2878 2018-02-08 05:12:18 18.32 4866761290278198714 57 Total Outliners : 45 ======================================== Example of Outliners for Card Holder #25: id date amount card id_merchant 296 1415 2018-01-30 18:31:00 1177.0 4319653513507 64 636 2840 2018-03-06 07:18:09 1334.0 4319653513507 87 960 1341 2018-04-08 06:03:50 1063.0 4319653513507 16 1306 1377 2018-05-13 06:31:20 1046.0 4319653513507 48 1510 1790 2018-06-04 03:46:15 1162.0 4319653513507 96 Total Outliners : 9 ======================================== Example of Outliners for Card Holder #18: id date amount card id_merchant 487 3098 2018-02-19 22:48:25 1839.0 344119623920892 95 925 1359 2018-04-03 03:23:37 1077.0 344119623920892 100 1508 3139 2018-06-03 20:02:28 1814.0 344119623920892 123 1956 136 2018-07-18 09:19:08 974.0 344119623920892 19 2363 2103 2018-09-02 11:20:42 458.0 344119623920892 10 Total Outliners : 8 ======================================== ###Markdown Identifying Outliers Using Interquartile Range ###Code # code a function to identify outliers based on interquartile range def outliners_iqr (client_id): # outliners_iqr function receives cardholder id as parameter and returns # all the transactions_df rows with amounts > (percentile 75) and amounts < (percentile 25) transactions_client_df = transactions_df[transactions_df['cardholder_id'] == int(client_id)] #client_std = transactions_client_df['amount'].std() #client_mean = transactions_client_df['amount'].mean() client_q75, client_q25 = np.percentile(transactions_client_df['amount'], [75 ,25]) outliners_df = transactions_client_df[(transactions_client_df['amount'] > client_q75) + (transactions_client_df['amount'] < client_q25)] return outliners_df # find anomalous transactions for 3 random card holders outliners_2 = outliners_iqr(2) outliners_25 = outliners_iqr(25) outliners_18 = outliners_iqr(18) print("========================================") print("Example of Outliners for Card Holder #2:") print(outliners_2[['id', 'date', 'amount','card','id_merchant']].head()) print(f"Total Outliners : {outliners_2['amount'].count()}") print("========================================") print("Example of Outliners for Card Holder #25:") print(outliners_25[['id', 'date', 'amount','card','id_merchant']].head()) print(f"Total Outliners : {outliners_25['amount'].count()}") print("========================================") print("Example of Outliners for Card Holder #18:") print(outliners_18[['id', 'date', 'amount','card','id_merchant']].head()) print(f"Total Outliners : {outliners_18['amount'].count()}") print("========================================") ###Output ======================================== Example of Outliners for Card Holder #2: id date amount card id_merchant 44 2439 2018-01-06 02:16:41 1.33 4866761290278198714 127 57 3028 2018-01-07 15:10:27 17.29 4866761290278198714 126 141 2655 2018-01-16 06:29:35 17.64 675911140852 136 333 3395 2018-02-03 18:05:39 1.41 4866761290278198714 65 369 2878 2018-02-08 05:12:18 18.32 4866761290278198714 57 Total Outliners : 50 ======================================== Example of Outliners for Card Holder #25: id date amount card id_merchant 6 2083 2018-01-02 02:06:21 1.46 4319653513507 93 56 2108 2018-01-07 14:57:23 2.93 4319653513507 137 79 754 2018-01-10 00:25:40 1.39 372414832802279 50 120 3023 2018-01-14 05:02:22 17.84 372414832802279 52 138 3333 2018-01-16 02:26:16 1.65 372414832802279 31 Total Outliners : 62 ======================================== Example of Outliners for Card Holder #18: id date amount card id_merchant 4 567 2018-01-01 23:15:10 2.95 4498002758300 64 40 2077 2018-01-05 07:19:27 1.36 344119623920892 30 53 3457 2018-01-07 01:10:54 175.00 344119623920892 12 67 812 2018-01-08 11:15:36 333.00 344119623920892 95 146 665 2018-01-16 19:19:48 2.55 344119623920892 99 Total Outliners : 66 ======================================== ###Markdown Challenge Identifying Outliers using Standard Deviation ###Code # initial imports import pandas as pd import numpy as np import random from sqlalchemy import create_engine # create a connection to the database engine = create_engine("postgresql://postgres:postgres@localhost:5432/fraud_detection") # code a function to identify outliers based on standard deviation # find anomalous transactions for 3 random card holders ###Output _____no_output_____ ###Markdown Identifying Outliers Using Interquartile Range ###Code # code a function to identify outliers based on interquartile range # find anomalous transactions for 3 random card holders ###Output _____no_output_____ ###Markdown ChallengeAnother approach to identifying fraudulent transactions is to look for outliers in the data. Standard deviation or quartiles are often used to detect outliers. Using this starter notebook, code two Python functions:* One that uses standard deviation to identify anomalies for any cardholder.* Another that uses interquartile range to identify anomalies for any cardholder. Identifying Outliers using Standard Deviation ###Code # Initial imports import pandas as pd import numpy as np import random from sqlalchemy import create_engine # Create a connection to the database engine = create_engine("postgresql://postgres:MJU&nhy6bgt5@localhost:5432/fraud_detection") # Create Query for Dataset query = """ SELECT card_holder.id AS "id", transaction.date AS "date", transaction.amount AS "amount" FROM transaction JOIN credit_card on credit_card.card = transaction.card JOIN card_holder on card_holder.id = credit_card.cardholder_id; """ # Create a DataFrame from the query result transaction_df = pd.read_sql(query, engine) # Show the data of the the new dataframe transaction_df.head() # code a function to identify outliers based on standard deviation def outliers_std(card_id): # get transaction amounts for card id transaction_amounts_df = transaction_df.loc[transaction_df['id']==card_id, 'amount'] return pd.DataFrame(transaction_amounts_df[transaction_amounts_df> transaction_amounts_df.mean()+3*transaction_amounts_df.std()]) # Find anomalous transactions for 3 random card holders rand_card_id = np.random.randint(1,25,3) for id in rand_card_id: if len(outliers_std(id)) == 0: print(f"Card holder {id} has no outlier transactions.") else: print(f"Card holder {id} has the following outlier transactions.:\n{outliers_std(id)}.") ###Output Card holder 24 has the following outlier transactions.: amount 797 1011.0 1260 1901.0 3405 1301.0 3433 1035.0. Card holder 13 has no outlier transactions. Card holder 18 has the following outlier transactions.: amount 487 1839.0 925 1077.0 1508 1814.0 2425 1176.0 3095 1769.0 3324 1154.0. ###Markdown Identifying Outliers Using Interquartile Range ###Code # Write a function that locates outliers using interquartile range def outliers_iqr(card_id): # get transaction amounts for card id transaction_amounts_df = transaction_df.loc[transaction_df['id']==card_id, 'amount'] iqr_threshold = np.quantile(transaction_amounts_df, .75)+(np.quantile(transaction_amounts_df, .75)-np.quantile(transaction_amounts_df, .25))*1.5 # return values above the iqr threshold return pd.DataFrame(transaction_amounts_df[transaction_amounts_df> iqr_threshold]) # find anomalous transactions for 3 random card holders #Use the 3 random card as above for comparison for id in rand_card_id: if len(outliers_iqr(id)) == 0: print(f"Card holder {id} has no outlier transactions.") else: print(f"Card holder {id} has the following outlier transactions:\n{outliers_iqr(id)}.") ###Output Card holder 24 has the following outlier transactions: amount 797 1011.0 1107 525.0 1260 1901.0 1652 258.0 1984 291.0 3064 466.0 3405 1301.0 3433 1035.0. Card holder 13 has no outlier transactions. Card holder 18 has the following outlier transactions: amount 53 175.0 67 333.0 487 1839.0 925 1077.0 1508 1814.0 1763 121.0 1832 117.0 1956 974.0 2363 458.0 2425 1176.0 3095 1769.0 3324 1154.0. ###Markdown Challenge Identifying Outliers using Standard Deviation ###Code # initial imports import pandas as pd import numpy as np import random from sqlalchemy import create_engine # create a connection to the database engine = create_engine("postgresql://postgres:postgres@localhost:5432/fraud_detection") query = """ SELECT * FROM transactions t JOIN credit_card c ON t.card = c.card JOIN card_holder a ON a.card_holder_id = c.card_holder_id """ # Load data into the DataFrame using the read_sql() method from pandas trans_df = pd.read_sql(query, engine) # Show the data of the new DataFrame trans_df.head() df = trans_df.loc[:, ~trans_df.columns.duplicated()] df.head() df['date'] = df['trans_date'].dt.date df.head() df_2 = df.pivot_table(values="amount", index='trans_date', columns='card_holder_id') df_2.dropna() df_2.head() # code a function to identify outliers based on standard deviation std_s = df_2.std().sort_values(ascending=False) std_s # find anomalous transactions for 3 random card holders anoma_s = std_s[:3] anoma_s # create the dataframe anoma_df = pd.DataFrame(anoma_s, columns=['std']) anoma_df # dataframe of the names names_df = df[['card_holder_id', 'card_holder_name']] names_df.set_index('card_holder_id', inplace=True) names_df names_2_df = names_df.loc[anoma_df.index].drop_duplicates() names_2_df ###Output _____no_output_____ ###Markdown Names of the top 3 outliers based on standard deviation ###Code # final_df = names_2_df.join(anoma_df) final_df ###Output _____no_output_____ ###Markdown Identifying Outliers Using Interquartile Range ###Code # code a function to identify outliers based on interquartile range df['amount'].describe() df.dtypes min_amount_s = df.groupby('card_holder_id')['amount'].min() min_amount_df = pd.DataFrame(min_amount_s) cutoff_val = min_amount_s.quantile(q=[0.1]).tolist()[0] cutoff_val anoma_2_df = min_amount_df[min_amount_df['amount']<cutoff_val] anoma_2_df names_anoma_2_df = names_df.loc[anoma_2_df.index].drop_duplicates() names_anoma_2_df ###Output _____no_output_____ ###Markdown Names of the top3 outliers based on small payments ###Code final_2_df = names_anoma_2_df.join(anoma_2_df) final_2_df outlier_small_payments_df = final_2_df.reset_index() outlier_small_payments_df # find anomalous transactions for 3 random card holders max_amount_s = df.groupby('card_holder_id')['amount'].max() max_amount_df = pd.DataFrame(max_amount_s) cutoff_val = max_amount_s.quantile(q=[0.6]).tolist()[0] cutoff_val anoma_3_df = max_amount_df[max_amount_df['amount']>cutoff_val] anoma_3_df anoma_3_df = anoma_3_df.nlargest(3, 'amount') anoma_3_df names_anoma_3_df = names_df.loc[anoma_3_df.index].drop_duplicates() names_anoma_3_df ###Output _____no_output_____ ###Markdown Names of the top3 outliers based on large payments ###Code final_3_df = names_anoma_3_df.join(anoma_3_df) final_3_df outlier_larege_payments_df=final_3_df.reset_index() outlier_larege_payments_df ###Output _____no_output_____ ###Markdown The Outlier based on samll and large payments ###Code pd.merge(outlier_larege_payments_df, outlier_small_payments_df, on='card_holder_id') ###Output _____no_output_____ ###Markdown Challenge Identifying Outliers using Standard Deviation ###Code # initial imports import pandas as pd import numpy as np import random from sqlalchemy import create_engine # create a connection to the database engine = create_engine("postgresql://postgres:postgres@localhost:5432/fraud_detection") def outlier_based_on_stdev(df,card_holder_ids): """This function identifies outliers from the dataframe for the ids in the list based on standard deviation method Args: df (Datafarme): dataframe which the ourliers need to be identified. card_holder_ids (list): a list of card_holder_ids. Returns: Nothing """ print(f'WE ONLY CONSIDER A VALUE TO BE A MAJOR OUTLIER IF IT IS 3 STANDARD DEVIATIONS FROM THE MEAN' '\n--------------------------------------------------------------------------------------------\n') #sort the dataframe just incase its not already sorted sorted_df = df.sort_values(['card_holder_id','amount']) #If there are n card_holders_ids sent as a list for id in card_holder_ids: amount_col = sorted_df['amount'][sorted_df['card_holder_id'] == id] print(f'Card Holder Id: {id}') # calculate mean and std deviation mean = amount_col.mean() stdev = amount_col.std() # identify outliers as major outliers if its 3 std dev away cut_off = stdev * 3 lower, upper = mean - cut_off, mean + cut_off # identify outliers outliers = [x for x in amount_col if x < lower or x > upper] if len(outliers) == 0: print(f'OUTLIERS: NONE\n' '----------------------------------------------------------------') else: print(f'OUTLIERS:\n{outliers} \n' '----------------------------------------------------------------') def random_id_selection(list_of_card_holders, num_of_card_holders): """This function picks a random list of ids from given list. Args: list_of_card_holders (list): List from the sample has to be chosen. num_of_card_holders (int): Number of ids to be choosen from the list Returns: transactions_df(Dataframe): Read the dataframe from database once """ card_holder_ids = random.sample(list_of_card_holders, num_of_card_holders) return card_holder_ids def read_data_from_db(): """This function reads from db only once, we don't want too many I/Os Args: None Returns: transactions_df(Dataframe): Read the dataframe from database once """ #get the entire data for the query = "SELECT * FROM transactions_bunched_by_card_holder" # Read the SQL query into a DataFrame transactions_df = pd.read_sql(query, engine) return transactions_df # get the transaction and store it transactions_df = read_data_from_db() #generate random number based on a list card holder ids list_of_card_holders = transactions_df['card_holder_id'].drop_duplicates().tolist() # find anomalous transactions for 3 random card holders # we need three random card holders num_of_card_holders = 3 # call the random id selector function card_holder_ids = random_id_selection(list_of_card_holders, num_of_card_holders) # df only with the selected card_holder_ids card_holder_df = transactions_df[transactions_df['card_holder_id'].isin(card_holder_ids)] print(f'RANDOMLY GENERATED card_holder_ids: {card_holder_ids}' '\n-----------------------------------------------\n') card_holder_df.head() outlier_based_on_stdev(card_holder_df,card_holder_ids) ###Output RANDOMLY GENERATED card_holder_ids: [23, 6, 21] ----------------------------------------------- WE ONLY CONSIDER A VALUE TO BE A MAJOR OUTLIER IF IT IS 3 STANDARD DEVIATIONS FROM THE MEAN -------------------------------------------------------------------------------------------- Card Holder Id: 23 OUTLIERS: NONE ---------------------------------------------------------------- Card Holder Id: 6 OUTLIERS: [1379.0, 1398.0, 1855.9999999999998, 2001.0000000000002, 2108.0] ---------------------------------------------------------------- Card Holder Id: 21 OUTLIERS: NONE ---------------------------------------------------------------- ###Markdown Identifying Outliers Using Interquartile Range ###Code # code a function to identify outliers based on interquartile range def outlier_based_on_iqr(df,card_holder_ids): """This function identifies outliers from the dataframe for the ids in the list based on IQR method Args: df (Datafarme): dataframe which the ourliers need to be identified. card_holder_ids (list): a list of card_holder_ids. Returns: Nothing """ print(f"A LIST OF BOTH MILD OUTLIERS (1.5 * IQR) AND MAJOR OUTLIERS (3 * IQR)" '\n---------------------------------------------------------------------\n') #sort the dataframe just incase its not already sorted sorted_df = df.sort_values(['card_holder_id','amount']) #If there are n card_holders_ids sent as a list for id in card_holder_ids: amount_col = sorted_df['amount'][sorted_df['card_holder_id'] == id] print(f'Card Holder Id: {id}') # calculate interquartile range q25, q75 = percentile(amount_col, 25), percentile(amount_col, 75) iqr = q75 - q25 # print('Percentiles: 25th=%.3f, 75th=%.3f, IQR=%.3f \n' % (q25, q75, iqr)) # calculate the outlier cutoff cut_off = iqr * 1.5 lower, upper = q25 - cut_off, q75 + cut_off print('Inner fence lower boundry=%.3f, upper boundry=%.3f' % (lower, upper)) major_outlier_cut_off = iqr * 3 maj_lower, maj_upper = q25 - major_outlier_cut_off, q75 + major_outlier_cut_off print('Outter fence lower boundry=%.3f, upper boundry=%.3f' % (maj_lower, maj_upper)) # identify outliers outliers = [x for x in amount_col if x < lower or x > upper] if len(outliers) == 0: print(f'MILD & MAJOR OUTLIERS:\nNONE\n' '----------------------------------------------------------------') else: print(f'\nMILD Outliers:\n{outliers} \n') maj_outliers = [x for x in amount_col if x < maj_lower or x > maj_upper] urlsIwant = [x for x in outliers if x in maj_outliers] if len (urlsIwant) == 0: print(f'MAJOR OUTLIERS:\nNONE\n') else: print(f"MAJOR OUTLIERS:\n{urlsIwant}") print('----------------------------------------------------------------\n') # find anomalous transactions for 3 random card holders # we need three random card holders num_of_card_holders = 3 # call the random id selector function card_holder_ids = random_id_selection(list_of_card_holders, num_of_card_holders) # df only with the selected card_holder_ids card_holder_df = transactions_df[transactions_df['card_holder_id'].isin(card_holder_ids)] print(f'RANDOMLY GENERATED card_holder_ids: {card_holder_ids}' '\n-----------------------------------------------\n') card_holder_df.head() outlier_based_on_iqr(card_holder_df,card_holder_ids) # TEST # call the random id selector function card_holder_ids = [25] # df only with the selected card_holder_ids card_holder_df = transactions_df[transactions_df['card_holder_id'].isin(card_holder_ids)] print(f'RANDOMLY GENERATED card_holder_ids: {card_holder_ids}' '\n-----------------------------------------------\n') card_holder_df.head() outlier_based_on_iqr(card_holder_df,card_holder_ids) ###Output RANDOMLY GENERATED card_holder_ids: [25] ----------------------------------------------- A LIST OF BOTH MILD OUTLIERS (1.5 * IQR) AND MAJOR OUTLIERS (3 * IQR) --------------------------------------------------------------------- Card Holder Id: 25 Inner fence lower boundry=-14.151, upper boundry=31.579 Outter fence lower boundry=-31.300, upper boundry=48.727 MILD Outliers: [100.0, 137.0, 269.0, 749.0, 1001.0, 1046.0, 1063.0, 1074.0, 1162.0, 1177.0, 1334.0, 1813.0] MAJOR OUTLIERS: [100.0, 137.0, 269.0, 749.0, 1001.0, 1046.0, 1063.0, 1074.0, 1162.0, 1177.0, 1334.0, 1813.0] ---------------------------------------------------------------- ###Markdown ChallengeAnother approach to identifying fraudulent transactions is to look for outliers in the data. Standard deviation or quartiles are often used to detect outliers. Using this starter notebook, code two Python functions:* One that uses standard deviation to identify anomalies for any cardholder.* Another that uses interquartile range to identify anomalies for any cardholder. Identifying Outliers using Standard Deviation ###Code # Initial imports import pandas as pd import numpy as np import random import os from sqlalchemy import create_engine username = "Randolph" password = "s0grycfkrbz6bjlz" host = "pg-335df34c-rpatronage-18ac.aivencloud.com" port = 19786 database = "Randolph" connection_str = f"postgresql://{username}:{password}@{host}:{port}/{database}" print(connection_str) # Create a connection to the database engine = create_engine("postgresql://Randolph:[email protected]:19786/Randolph") query = "select a.id, c.date, c.amount \ from card_holder a \ inner join credit_card b \ on a.id = b.cardholder_id \ inner join transaction c \ on b.card = c.card" df = pd.read_sql(query, engine) df.head() # Write function that locates outliers using standard deviation def card_transaction(input_id): return df.loc[df['id']==input_id, 'amount'] def outliers(input_id): df1 =card_transaction(input_id) return pd.DataFrame(df1[df1> df1.mean()+3*df1.std()]) # Find anomalous transactions for 3 random card holders rand_card_holders = np.random.randint(1,25,3) for id in rand_card_holders: if len(outliers(id)) == 0: print(f"Card holder {id} has no outlier transactions.") else: print(f"Card holder {id} has outlier transactions as below:\n{outliers(id)}.") ###Output Card holder 9 has outlier transactions as below: amount 613 1534.0 1578 1795.0 3389 1724.0. Card holder 10 has no outlier transactions. Card holder 19 has no outlier transactions. ###Markdown Identifying Outliers Using Interquartile Range ###Code # Write a function that locates outliers using interquartile range def outliers_iqr(input_id): df1 =card_transaction(input_id) IQR_threshold = np.quantile(df1, .75)+(np.quantile(df1, .75)-np.quantile(df1, .25))*1.5 return pd.DataFrame(df1[df1> IQR_threshold]) # Find anomalous transactions for 3 random card holders for id in rand_card_holders: if len(outliers_iqr(id)) == 0: print(f"Card holder {id} has no outlier transactions.") else: print(f"Card holder {id} has outlier transactions as below:\n{outliers_iqr(id)}.") ###Output Card holder 9 has outlier transactions as below: amount 613 1534.0 852 1009.0 1001 325.0 1466 245.0 1578 1795.0 1632 691.0 1909 267.0 2575 1095.0 2703 1179.0 3251 57.0 3389 1724.0. Card holder 10 has no outlier transactions. Card holder 19 has no outlier transactions.
Library_design/CTP-10_Aire/generate_codebook/Generate_codebook_CTP10-Aire.ipynb
###Markdown 0.1 load required packages ###Code %run "..\..\..\Startup_py3.py" sys.path.append(r"..\..\..\..\..\Documents") import ImageAnalysis3 as ia %matplotlib notebook from ImageAnalysis3 import * print(os.getpid()) # library design specific tools from ImageAnalysis3.library_tools import LibraryDesigner as ld from ImageAnalysis3.library_tools import LibraryTools as lt # biopython imports from Bio import SeqIO from Bio.Seq import Seq from Bio.SeqRecord import SeqRecord from Bio.Blast.Applications import NcbiblastnCommandline from Bio.Blast import NCBIXML ## Some folders # human genome reference_folder = r'\\10.245.74.212\Chromatin_NAS_2\Chromatin_Libraries\Genomes\mouse\GRCm38_ensembl' genome_folder = os.path.join(reference_folder, 'Genome') # Library directories pool_folder = r'\\10.245.74.212\Chromatin_NAS_2\Chromatin_Libraries\CTP-10_Aire' resolution = 0 flanking = 10000 # folder for sub-pool library_folder = os.path.join(pool_folder, f'Genes_TSS_DNA') if not os.path.exists(library_folder): print(f"create library folder: {library_folder}") os.makedirs(library_folder) # folder for fasta sequences sequence_folder = os.path.join(library_folder, 'sequences') if not os.path.exists(sequence_folder): print(f"create sequence folder: {sequence_folder}") os.makedirs(sequence_folder) # folder to save result probes report_folder = os.path.join(library_folder, 'reports') if not os.path.exists(report_folder): print(f"create report folder: {report_folder}") os.makedirs(report_folder) print(f"-- library_folder: {library_folder}") print(f"-- sequence_folder: {sequence_folder}") print(f"-- report_folder: {report_folder}") ###Output -- library_folder: \\10.245.74.212\Chromatin_NAS_2\Chromatin_Libraries\CTP-10_Aire\Genes_TSS_DNA -- sequence_folder: \\10.245.74.212\Chromatin_NAS_2\Chromatin_Libraries\CTP-10_Aire\Genes_TSS_DNA\sequences -- report_folder: \\10.245.74.212\Chromatin_NAS_2\Chromatin_Libraries\CTP-10_Aire\Genes_TSS_DNA\reports ###Markdown 1.1 load gene list ###Code gene_list_folder = os.path.join(pool_folder, 'Gene_list') gene_list_filename = os.path.join(gene_list_folder, 'uniqued_clustered_genes_for_yuan_2021-04-22.txt') import pandas as pd gene_df = pd.read_csv(gene_list_filename, delimiter = "\t", header=None) gene_df.columns = ['Cluster', 'Gene'] gene_df np.unique(gene_df['Gene']) # laod encoding # summarize total readout usage encoding_folder = os.path.join(pool_folder, f'Genes_intronic_RNA') gene_2_readout_dict = pickle.load(open(os.path.join(encoding_folder, 'gene_2_readout.pkl'), 'rb')) gene_2_readout_dict # load used readouts readout_usage_file = os.path.join(library_folder, 'readout_usage.pkl') readout_dict = pickle.load(open(readout_usage_file, 'rb')) readout_dict # generate the codebook codebook = pd.DataFrame(columns=['name','id']+[_r.id for _r in readout_dict['c']]) #codebook.add(['name', 'id'], axis=1) codebook['name'] = list(gene_2_readout_dict.keys()) codebook.loc[codebook['name']=='Ccl21a'] for _gname, _bits in gene_2_readout_dict.items(): binary_code = [] for _i in range(50): if f"c{_i}" in _bits: binary_code.append(1) else: binary_code.append(0) codebook.loc[codebook['name']==_gname, codebook.columns[2:]] = binary_code codebook.loc[codebook['name']==_gname,'id'] = int(_bits[0].split('u')[1]) chr_2_region_num = pickle.load(open(os.path.join(r'\\10.245.74.212\Chromatin_NAS_2\Chromatin_Libraries\CTP-10_Aire\Genes_intronic_RNA', 'chr_2_region_num.pkl'), 'rb')) chr_2_region_num chr_2_gene_names = pickle.load(open(os.path.join(r'\\10.245.74.212\Chromatin_NAS_2\Chromatin_Libraries\CTP-10_Aire\Genes_intronic_RNA', 'chr_2_gene_names.pkl'), 'rb')) chr_2_gene_names # generate gene_to_chr_id gene_2_chr = {} gene_2_chr_order = {} for _chr, _genes in chr_2_gene_names.items(): for _i, _gene in enumerate(_genes): gene_2_chr[_gene] = _chr gene_2_chr_order[_gene] = _i codebook['chr'] = [gene_2_chr[_g] for _g in codebook['name']] codebook['chr_order'] = [gene_2_chr_order[_g] for _g in codebook['name']] codebook codebook.to_csv(r'\\10.245.74.212\Chromatin_NAS_2\Chromatin_Libraries\CTP-10_Aire\Summary_tables\CTP10-Aire_codebook.csv', index=None) ###Output _____no_output_____
Rafay notes/Samsung Course/Chapter 7/Lecture/Lecture 3/.ipynb_checkpoints/ex_0609-checkpoint.ipynb
###Markdown Coding Exercise 0609 ###Code import nltk from numpy.random import randint, seed from sklearn.feature_extraction.text import CountVectorizer ###Output _____no_output_____ ###Markdown 1. n-Gram based autofill: ###Code # Text data for training. my_text = """Machine learning is the scientific study of algorithms and statistical models that computer systems use to effectively perform a specific task without using explicit instructions, relying on patterns and inference instead. It is seen as a subset of artificial intelligence. Machine learning algorithms build a mathematical model of sample data, known as "training data", in order to make predictions or decisions without being explicitly programmed to perform the task.[1][2]:2 Machine learning algorithms are used in the applications of email filtering, detection of network intruders, and computer vision, where it is infeasible to develop an algorithm of specific instructions for performing the task. Machine learning is closely related to computational statistics, which focuses on making predictions using computers. The study of mathematical optimization delivers methods, theory and application domains to the field of machine learning. Data mining is a field of study within machine learning, and focuses on exploratory data analysis through unsupervised learning In its application across business problems, machine learning is also referred to as predictive analytics.""" my_text = [my_text.lower()] # Convert to lowercase and make a list. => Required by the CountVectorizer(). ###Output _____no_output_____ ###Markdown 1.1. n-Gram trial run: ###Code n = 3 # Can be changed to a number equal or larger than 2. n_min = n n_max = n n_gram_type = 'word' # n-Gram with words. vectorizer = CountVectorizer(ngram_range=(n_min,n_max), analyzer = n_gram_type) n_grams = vectorizer.fit(my_text).get_feature_names() # Get the n-Grams as a list. n_gram_cts = vectorizer.transform(my_text).toarray() # The output is an array of array. n_gram_cts = list(n_gram_cts[0]) # Convert into a simple list. list(zip(n_grams,n_gram_cts)) # Make a list of tuples and show. ###Output _____no_output_____ ###Markdown 1.2. Train by making a dictionary based on n-Grams: ###Code n = 3 # Can be changed to a number equal or larger than 2. n_min = n n_max = n n_gram_type = 'word' vectorizer = CountVectorizer(ngram_range=(n_min,n_max), analyzer = n_gram_type) n_grams = vectorizer.fit(my_text).get_feature_names() # A list of n-Grams. my_dict = {} for a_gram in n_grams: words = nltk.word_tokenize(a_gram) a_nm1_gram = ' '.join(words[0:n-1]) # (n-1)-Gram. next_word = words[-1] # Word after the a_nm1_gram. if a_nm1_gram not in my_dict.keys(): my_dict[a_nm1_gram] = [next_word] # a_nm1_gram is a new key. So, initialize the dictionary entry. else: my_dict[a_nm1_gram] += [next_word] # an_nm1_gram is already in the dictionary. # View the dictionary. my_dict ###Output _____no_output_____ ###Markdown 1.3. Predict the next word: ###Code # Helper function that picks the following word. def predict_next(a_nm1_gram): value_list_size = len(my_dict[a_nm1_gram]) # length of the value corresponding to the key = a_nm1_gram. i_pick = randint(0, value_list_size) # A random number from the range 0 ~ value_list_size. return(my_dict[a_nm1_gram][i_pick]) # Return the randomly chosen next word. # Test. input_str = 'order to' # Has to be a VALID (n-1)-Gram! predict_next(input_str) # Another test. # Repeat for 10 times and see that the next word is chosen randomly with a probability proportional to the occurrence. input_str = 'machine learning' # Has to be a VALID (n-1)-Gram! for i in range(10): print(predict_next(input_str)) ###Output _____no_output_____ ###Markdown 1.4. Predict a sequence: ###Code # Initialize the random seed. seed(123) # A seed string has to be input by the user. my_seed_str = 'machine learning' # Has to be a VALID (n-1)-Gram! # my_seed_str = 'in order' # Has to be a VALID (n-1)-Gram! a_nm1_gram = my_seed_str output_string = my_seed_str # Initialize the output string. while a_nm1_gram in my_dict: output_string += " " + predict_next(a_nm1_gram) words = nltk.word_tokenize(output_string) a_nm1_gram = ' '.join(words[-n+1:]) # Update a_nm1_gram. # Output the predicted sequence. output_string ###Output _____no_output_____
Datasets/Data Cleaning(18-19,17-18).ipynb
###Markdown Year : 2017-18 ###Code import pandas as pd import numpy as np import random from random import randint from datetime import timedelta from datetime import datetime from random import uniform ###Output _____no_output_____ ###Markdown Leads(2018-19) ###Code Ld = pd.read_csv("C:/Users/Jaswinder Singh/Downloads/BIBA/Datasets/Mockaroo/2018-19/Leads(2018-19).csv") def product_id(row): if row["Product_Name"] == "Proxima-C": return "PRO-23-0493" elif row["Product_Name"] == "Kits Dragon": return "KTD-32-3231" elif row["Product_Name"] == "Phoenix": return "PHO-52-1928" elif row["Product_Name"] == "Sirius": return "SIR-10-0293" elif row["Product_Name"] == "Aurora": return "AUR-67-4989" elif row["Product_Name"] == "Apollo": return "APO-09-8723" elif row["Product_Name"] == "Agyrap-S": return "AGY-90-2818" else: return "ANH-02-0987" Ld = Ld.assign(Product_ID = Ld.apply(product_id, axis = 1)) def random_dates(start, end, n=1000): start_u = start.value//10**9 end_u = end.value//10**9 return pd.to_datetime(np.random.randint(start_u, end_u, n), unit='s') start = pd.to_datetime('31-10-2018') end = pd.to_datetime('01-11-2019') Ld['Lead_Created_on'] = random_dates(start, end) Ld.head(10) Ld.to_excel("Leads_final(2018-19).xlsx", index = False) ###Output _____no_output_____ ###Markdown Leads(2017-18) ###Code Ld2 = pd.read_csv("C:/Users/Jaswinder Singh/Downloads/BIBA/Datasets/Mockaroo/2017-18/Leads(2017-18).csv") def product_id(row): if row["Product_Name"] == "Proxima-C": return "PRO-23-0493" elif row["Product_Name"] == "Kits Dragon": return "KTD-32-3231" elif row["Product_Name"] == "Phoenix": return "PHO-52-1928" elif row["Product_Name"] == "Sirius": return "SIR-10-0293" elif row["Product_Name"] == "Aurora": return "AUR-67-4989" elif row["Product_Name"] == "Apollo": return "APO-09-8723" elif row["Product_Name"] == "Agyrap-S": return "AGY-90-2818" else: return "ANH-02-0987" Ld2 = Ld2.assign(Product_ID = Ld2.apply(product_id, axis = 1)) def random_dates(start, end, n=1000): start_u = start.value//10**9 end_u = end.value//10**9 return pd.to_datetime(np.random.randint(start_u, end_u, n), unit='s') start = pd.to_datetime('31-10-2017') end = pd.to_datetime('01-11-2018') Ld2['Lead_Created_on'] = random_dates(start, end) Ld2.head(10) Ld2.to_excel("Leads_final(2017-18).xlsx", index = False) ###Output _____no_output_____ ###Markdown Opportunities(2018-19) ###Code Op = pd.read_csv("C:/Users/Jaswinder Singh/Downloads/BIBA/Datasets/Mockaroo/2018-19/Opportunities(2018-19).csv") Op.head(10) Op['Lead_ID'] = Ld['Lead_ID'] Op['Product_Name'] = Ld['Product_Name'] Op['Product_ID'] = Ld['Product_ID'] Op['Email_address'] = Ld['Email_address'] Op['Opportunity_Created_on'] = Ld['Lead_Created_on'].map(lambda a: a + pd.DateOffset(days=randint(5,20), hours=randint(0,12), minutes=randint(0,60), seconds=randint(0,60))) Op['Opportunity_Close_Date'] = Op['Created_on'].map(lambda a: a + pd.DateOffset(days=randint(5,10), hours=randint(0,12), minutes=randint(0,60), seconds=randint(0,60))) Op.drop(['Created_on', 'Close_Date'], axis = 1, inplace = True) Op.head(10) Op['Revenue'] = randint(1,100) Proxima_C = 70 Kits_Dragon = 30 Phoenix = 42 Sirius = 55 Aurora = 40 Apollo = 50 Agyrap_S = 65 Anhee_C = 60 Op['Revenue'] = Op['Revenue'].map(lambda a: (Proxima_C*randint(0,5))+(Kits_Dragon*randint(0,5))+(Phoenix*randint(0,5))+(Sirius*randint(0,5))+(Aurora*randint(0,2))+(Apollo*randint(0,2))+(Agyrap_S*randint(0,5))+(Anhee_C*randint(0,5))) Op.head(10) Op.to_excel("Opportunities_final(2018-19).xlsx", index = False) ###Output _____no_output_____ ###Markdown Opportunities(2017-18) ###Code Op2 = pd.read_csv("C:/Users/Jaswinder Singh/Downloads/BIBA/Datasets/Mockaroo/2017-18/Opportunities(2017-18).csv") Op2.head(10) Op2['Lead_ID'] = Ld2['Lead_ID'] Op2['Product_Name'] = Ld2['Product_Name'] Op2['Product_ID'] = Ld2['Product_ID'] Op2['Email_address'] = Ld2['Email_address'] Op2['Opportunity_Created_on'] = Ld2['Lead_Created_on'].map(lambda a: a + pd.DateOffset(days=randint(5,20), hours=randint(0,12), minutes=randint(0,60), seconds=randint(0,60))) Op2['Opportunity_Close_Date'] = Op2['Opportunity_Created_on'].map(lambda a: a + pd.DateOffset(days=randint(5,10), hours=randint(0,12), minutes=randint(0,60), seconds=randint(0,60))) Op2.head(10) Op2['Revenue'] = randint(1,100) Proxima_C = 60 Kits_Dragon = 30 Phoenix = 35 Sirius = 55 Aurora = 40 Apollo = 40 Agyrap_S = 60 Anhee_C = 55 Op2['Revenue'] = Op2['Revenue'].map(lambda a: (Proxima_C*randint(0,5))+(Kits_Dragon*randint(0,5))+(Phoenix*randint(0,5))+(Sirius*randint(0,5))+(Aurora*randint(0,2))+(Apollo*randint(0,2))+(Agyrap_S*randint(0,5))+(Anhee_C*randint(0,5))) Op2.head(10) Op2.to_excel("Opportunities_final(2017-18).xlsx", index = False) ###Output _____no_output_____ ###Markdown Accounts(2018-19) ###Code Ac = pd.read_csv('C:/Users/Jaswinder Singh/Downloads/BIBA/Datasets/Mockaroo/2018-19/Accounts(2018-19).csv', delimiter = ',') # Acc['City'].unique() Ac['Lead_ID'] = Op['Lead_ID'] Ac['Opportunity_ID'] = Op['Opportunity_ID'] Ac['Full_Name'] = Ld['Full_Name'] Ac['Email_address'] = Op['Email_address'] Ac.head(10) Ac = Ac[['Lead_ID', 'Opportunity_ID', 'Account_ID', 'Full_Name', 'City', 'Phone', 'Email_address']] Ac.head(10) Ac.to_excel("Accounts_final(2018-19).xlsx", index = False) ###Output _____no_output_____ ###Markdown Accounts(2017-18) ###Code Ac2 = pd.read_csv("C:/Users/Jaswinder Singh/Downloads/BIBA/Datasets/Mockaroo/2017-18/Accounts(2017-18).csv", delimiter = ',') Ac2['Lead_ID'] = Op2['Lead_ID'] Ac2['Opportunity_ID'] = Op2['Opportunity_ID'] Ac2['Full_Name'] = Ld2['Full_Name'] Ac2['Email_address'] = Op2['Email_address'] Ac2.head(10) Ac2 = Ac2[['Lead_ID', 'Opportunity_ID', 'Account_ID', 'Full_Name', 'City', 'Phone', 'Email_address']] Ac2.head(10) Ac2.to_excel("Accounts_final(2017-18).xlsx", index = False) ###Output _____no_output_____ ###Markdown Quotes(2018-19) ###Code Qu = pd.read_csv('C:/Users/Jaswinder Singh/Downloads/BIBA/Datasets/Mockaroo/2018-19/Quotes(2018-19).csv') Qu['Lead_ID'] = Ac['Lead_ID'] Qu['Opportunity_ID'] = Ac['Opportunity_ID'] Qu['Account_ID'] = Ac['Account_ID'] Qu['Product_Name'] = Op['Product_Name'] Qu['Product_ID'] = Op['Product_ID'] Qu['Product_Category'] = Ld['Product_Category'] Qu['Revenue'] = Op['Revenue'] Qu['Email_address'] = Ac['Email_address'] Qu['Quote_Created_On'] = Op['Opportunity_Close_Date'].map(lambda a: a + pd.DateOffset(days=randint(10,25), hours=randint(0,12), minutes=randint(0,60), seconds=randint(0,60))) Qu.head(10) ###Output _____no_output_____ ###Markdown Quotes(2017-18) ###Code Qu2 = pd.read_csv('C:/Users/Jaswinder Singh/Downloads/BIBA/Datasets/Mockaroo/2017-18/Quotes(2017-18).csv') Qu2['Lead_ID'] = Ac2['Lead_ID'] Qu2['Opportunity_ID'] = Ac2['Opportunity_ID'] Qu2['Account_ID'] = Ac2['Account_ID'] Qu2['Product_Name'] = Op2['Product_Name'] Qu2['Product_ID'] = Op2['Product_ID'] Qu2['Product_Category'] = Ld2['Product_Category'] Qu2['Revenue'] = Op2['Revenue'] Qu2['Email_address'] = Ac2['Email_address'] Qu2['Quote_Created_On'] = Op2['Opportunity_Close_Date'].map(lambda a: a + pd.DateOffset(days=randint(10,25), hours=randint(0,12), minutes=randint(0,60), seconds=randint(0,60))) Qu2.head(10) Qu.to_excel("Quotes(2018-19).xlsx", index = False) Qu2.to_excel("Quotes(2017-18).xlsx", index = False) ###Output _____no_output_____ ###Markdown Orders(2018-19) ###Code Ord = pd.read_csv('C:/Users/Jaswinder Singh/Downloads/BIBA/Datasets/Mockaroo/2018-19/Orders(2018-19).csv') Ord['Lead_ID'] = Qu['Lead_ID'] Ord['Opportunity_ID'] = Qu['Opportunity_ID'] Ord['Account_ID'] = Qu['Account_ID'] Ord['Quote_ID'] = Qu['Quote_ID'] Ord['Product_Name'] = Qu['Product_Name'] Ord['Product_Category'] = Qu['Product_Category'] Ord['Revenue'] = Qu['Revenue'] Ord['Email_address'] = Qu['Email_address'] Ord.head(10) ###Output _____no_output_____ ###Markdown Orders(2017-18) ###Code Ord2 = pd.read_csv('C:/Users/Jaswinder Singh/Downloads/BIBA/Datasets/Mockaroo/2017-18/Orders(2017-18).csv') Ord2['Lead_ID'] = Qu2['Lead_ID'] Ord2['Opportunity_ID'] = Qu2['Opportunity_ID'] Ord2['Account_ID'] = Qu2['Account_ID'] Ord2['Quote_ID'] = Qu2['Quote_ID'] Ord2['Product_Name'] = Qu2['Product_Name'] Ord2['Product_Category'] = Qu2['Product_Category'] Ord2['Revenue'] = Qu2['Revenue'] Ord2['Email_address'] = Qu2['Email_address'] Ord2.head(10) Ord.to_excel("Orders(2018-19).xlsx", index = False) Ord2.to_excel("Orders(2017-18).xlsx", index = False) ###Output _____no_output_____ ###Markdown Invoices(2018-19) ###Code Iv = pd.read_csv("C:/Users/Jaswinder Singh/Downloads/BIBA/Datasets/Mockaroo/2018-19/Invoice(2018-19).csv") Iv['Lead_ID'] = Ord['Lead_ID'] Iv['Opportunity_ID'] = Ord['Opportunity_ID'] Iv['Account_ID'] = Ord['Account_ID'] Iv['Quote_ID'] = Ord['Quote_ID'] Iv['Order_ID'] = Ord['Order_ID'] Iv['Product_Name'] = Ord['Product_Name'] Iv['Product_ID'] = Op['Product_ID'] Iv['Revenue'] = Ord['Revenue'] Iv['Email_address'] = Ord['Email_address'] Iv['Phone'] = Ac['Phone'] Iv.head(10) ###Output _____no_output_____ ###Markdown Invoices(2017-18) ###Code Iv2 = pd.read_csv("C:/Users/Jaswinder Singh/Downloads/BIBA/Datasets/Mockaroo/2017-18/Invoice(2017-18).csv") Iv2['Lead_ID'] = Ord2['Lead_ID'] Iv2['Opportunity_ID'] = Ord2['Opportunity_ID'] Iv2['Account_ID'] = Ord2['Account_ID'] Iv2['Quote_ID'] = Ord2['Quote_ID'] Iv2['Order_ID'] = Ord2['Order_ID'] Iv2['Product_Name'] = Ord2['Product_Name'] Iv2['Product_ID'] = Op2['Product_ID'] Iv2['Revenue'] = Ord2['Revenue'] Iv2['Email_address'] = Ord2['Email_address'] Iv2['Phone'] = Ac2['Phone'] Iv2.head(10) Iv.to_excel("Invoices(2018-19).xlsx", index = False) Iv2.to_excel("Invoices(2017-18).xlsx", index = False) ###Output _____no_output_____
02-fundamentals/mathbackground.ipynb
###Markdown [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/machinelearningmindset/probability-for-machine-learning/blob/master/02-fundamentals/mathbackground.ipynb) Mathmatical Backgrounds in Probability TheoryThis code is associated with the [mathematical backgrounds](https://www.machinelearningmindset.com/course/mathematical-background/) in probability theory.Check the original blog post for details: https://www.machinelearningmindset.com/course/mathematical-background/.The direct colab link to this notebook is [here](https://colab.research.google.com/github/machinelearningmindset/probability-for-machine-learning/blob/master/02-fundamentals/mathbackground.ipynb). n factorial! ###Code ## First Approach ## # Input n for calculating n! n = int(input("n: ")) factorial = 1 for i in range (1,n+1): factorial = factorial * i print("n! is:",factorial) ## Second Approach ## import math # Input number n = int(input("n: ")) # Create factorial object fac = math.factorial # Print output print("n! is:",fac(n)) ###Output _____no_output_____ ###Markdown Combination ###Code ## Calculate combination(n,r) ## import math # Input numbers n = int(input("n: ")) r = int(input("r: ")) assert (r<=n),"We should always have r<=n!" # Create factorial object fac = math.factorial # Print output comb = int(fac(n) / (fac(r)*fac(n-r))) print("comb({},{}) is: {}".format(n,r,comb)) ###Output _____no_output_____
flax_bert_demo_neurips_2020.ipynb
###Markdown Fine-tuning BERT in Flax on GLUEThis notebook fine-tunes a BERT model one of the [GLUE tasks](https://gluebenchmark.com/). It has the following features:* Uses the [HuggingFace](https://github.com/huggingface/) datasets and tokenizers libraries.* Loads the pre-trained BERT weights from HuggingFace.* Model and training code is written in [Flax](http://www.github.com/google/flax).* Can be configured to fine-tune on COLA, MRPC, SST2, STSB, QNLI, and RTE.Run-times on MRPC:* Cloud TPU v3-8: 40s ###Code # General imports. import os import jax import jax.numpy as jnp import flax # Huggingface datasets and transformers libraries. import datasets from transformers import BertTokenizerFast # flax_bert-specific imports. from flax import optim import data import modeling as flax_models import training from demo_lib import get_config, get_validation_splits, get_prefix, import_pretrained_params, create_model, create_optimizer, get_num_train_steps, get_learning_rate_fn os.environ['TOKENIZERS_PARALLELISM'] = 'true' ###Output _____no_output_____ ###Markdown Set your Training Settings ###Code train_settings = { 'train_batch_size': 32, 'eval_batch_size': 8, 'learning_rate': 5e-5, 'num_train_epochs': 3, 'dataset_path': 'glue', 'dataset_name': 'mrpc' # ['cola', 'mrpc', 'sst2', 'stsb', 'qnli', 'rte'] } ###Output _____no_output_____ ###Markdown Load dataset, tokenizers, and model. ###Code # Load the GLUE task. dataset = datasets.load_dataset('glue', train_settings['dataset_name']) # Get pre-trained config and update it with the train configuration. config = get_config('bert-base-uncased', dataset) config.update(train_settings) # Load HuggingFace tokenizer and data pipeline. tokenizer = BertTokenizerFast.from_pretrained(config.tokenizer) data_pipeline = data.ClassificationDataPipeline(dataset, tokenizer) # Create Flax model and optimizer. pretrained_params = import_pretrained_params(config) model = create_model(config, pretrained_params) optimizer = create_optimizer(config, model, pretrained_params) # Setup tokenizer, train step function and train iterator. tokenizer.model_max_length = config.max_seq_length num_train_steps = get_num_train_steps(config, data_pipeline) learning_rate_fn = get_learning_rate_fn(config, num_train_steps) train_history = training.TrainStateHistory(learning_rate_fn) train_state = train_history.initial_state() train_step_fn = training.create_train_step(clip_grad_norm=1.0) train_iter = data_pipeline.get_inputs( split='train', batch_size=config.train_batch_size, training=True) ###Output Reusing dataset glue (/home/marcvanzee/.cache/huggingface/datasets/glue/mrpc/1.0.0/7c99657241149a24692c402a5c3f34d4c9f1df5ac2e4c3759fadea38f6cb29c4) Loading cached processed dataset at /home/marcvanzee/.cache/huggingface/datasets/glue/mrpc/1.0.0/7c99657241149a24692c402a5c3f34d4c9f1df5ac2e4c3759fadea38f6cb29c4/cache-6ebbe5cc20e1150b.arrow Loading cached processed dataset at /home/marcvanzee/.cache/huggingface/datasets/glue/mrpc/1.0.0/7c99657241149a24692c402a5c3f34d4c9f1df5ac2e4c3759fadea38f6cb29c4/cache-ddcb7009256661ae.arrow Loading cached processed dataset at /home/marcvanzee/.cache/huggingface/datasets/glue/mrpc/1.0.0/7c99657241149a24692c402a5c3f34d4c9f1df5ac2e4c3759fadea38f6cb29c4/cache-51f953271952eb23.arrow ###Markdown Run Training ###Code print(f'\nStarting training on {config.dataset_name} for {num_train_steps} ' f'steps ({config.num_train_epochs:.0f} epochs)...\n') for step, batch in zip(range(0, num_train_steps), train_iter): optimizer, train_state = train_step_fn(optimizer, batch, train_state) if step % 10 == 0: print(f'step {step}/{num_train_steps}') print('\nTraining finished!') ###Output Starting training on mrpc for 343 steps (3 epochs)... Compiling train (takes about 20s) Step 0 grad_norm = 43.7472038269043 loss = 0.6523172855377197 step 0/343 step 10/343 step 20/343 step 30/343 step 40/343 step 50/343 step 60/343 step 70/343 step 80/343 step 90/343 step 100/343 step 110/343 step 120/343 step 130/343 step 140/343 step 150/343 step 160/343 step 170/343 step 180/343 step 190/343 Step 200 grad_norm = 155.39651489257812 loss = 1.4091753959655762 seconds_per_step = 0.051291774958372116 step 200/343 step 210/343 step 220/343 step 230/343 step 240/343 step 250/343 step 260/343 step 270/343 step 280/343 step 290/343 step 300/343 step 310/343 step 320/343 step 330/343 step 340/343 Training finished! Running eval... ###Markdown Run EvaluationThe target eval_f1 for MRPC is 88.9 (variance of about 1.0). ###Code eval_step = training.create_eval_fn() for split in get_validation_splits(config.dataset_name): eval_iter = data_pipeline.get_inputs( split='validation', batch_size=config.eval_batch_size, training=False) eval_stats = eval_step(optimizer, eval_iter) eval_metric = datasets.load_metric(config.dataset_path, config.dataset_name) eval_metric.add_batch( predictions=eval_stats['prediction'], references=eval_stats['label']) eval_metrics = eval_metric.compute() for name, val in sorted(eval_metrics.items()): print(f'{get_prefix(split)}_{name} = {val:.06f}', flush=True) ###Output eval_accuracy = 0.877451 eval_f1 = 0.914384
Image segmentation using VGG16 (1).ipynb
###Markdown Retrieve Images ###Code from urllib import urlopen from urllib import urlretrieve from bs4 import BeautifulSoup link = "http://www.cs.toronto.edu/~vmnih/data/mass_roads/train/map/" L = len("10378780_15.tif") root = '/datasets/home/92/992/tal089/Labels/' html = link + "index.html" page = urlopen(html).read() source = BeautifulSoup(page, 'lxml') for text in source.find_all(['script', 'style']): text.decompose() T = source.get_text(strip=True) List = [] for i in range(len(T)//L): S = "" for j in range(L): S += T[i*L+j] List.append(S) #print(List) t = 0 for name in List: t += 1 print(str(t)+'/'+str(len(List))) urlretrieve(link+name, root+name) ###Output 1/1108 2/1108 3/1108 4/1108 5/1108 6/1108 7/1108 8/1108 9/1108 10/1108 11/1108 12/1108 13/1108 14/1108 15/1108 16/1108 17/1108 18/1108 19/1108 20/1108 21/1108 22/1108 23/1108 24/1108 25/1108 26/1108 27/1108 28/1108 29/1108 30/1108 31/1108 32/1108 33/1108 34/1108 35/1108 36/1108 37/1108 38/1108 39/1108 40/1108 41/1108 42/1108 43/1108 44/1108 45/1108 46/1108 47/1108 48/1108 49/1108 50/1108 51/1108 52/1108 53/1108 54/1108 55/1108 56/1108 57/1108 58/1108 59/1108 60/1108 61/1108 62/1108 63/1108 64/1108 65/1108 66/1108 67/1108 68/1108 69/1108 70/1108 71/1108 72/1108 73/1108 74/1108 75/1108 76/1108 77/1108 78/1108 79/1108 80/1108 81/1108 82/1108 83/1108 84/1108 85/1108 86/1108 87/1108 88/1108 89/1108 90/1108 91/1108 92/1108 93/1108 94/1108 95/1108 96/1108 97/1108 98/1108 99/1108 100/1108 101/1108 102/1108 103/1108 104/1108 105/1108 106/1108 107/1108 108/1108 109/1108 110/1108 111/1108 112/1108 113/1108 114/1108 115/1108 116/1108 117/1108 118/1108 119/1108 120/1108 121/1108 122/1108 123/1108 124/1108 125/1108 126/1108 127/1108 128/1108 129/1108 130/1108 131/1108 132/1108 133/1108 134/1108 135/1108 136/1108 137/1108 138/1108 139/1108 140/1108 141/1108 142/1108 143/1108 144/1108 145/1108 146/1108 147/1108 148/1108 149/1108 150/1108 151/1108 152/1108 153/1108 154/1108 155/1108 156/1108 157/1108 158/1108 159/1108 160/1108 161/1108 162/1108 163/1108 164/1108 165/1108 166/1108 167/1108 168/1108 169/1108 170/1108 171/1108 172/1108 173/1108 174/1108 175/1108 176/1108 177/1108 178/1108 179/1108 180/1108 181/1108 182/1108 183/1108 184/1108 185/1108 186/1108 187/1108 188/1108 189/1108 190/1108 191/1108 192/1108 193/1108 194/1108 195/1108 196/1108 197/1108 198/1108 199/1108 200/1108 201/1108 202/1108 203/1108 204/1108 205/1108 206/1108 207/1108 208/1108 209/1108 210/1108 211/1108 212/1108 213/1108 214/1108 215/1108 216/1108 217/1108 218/1108 219/1108 220/1108 221/1108 222/1108 223/1108 224/1108 225/1108 226/1108 227/1108 228/1108 229/1108 230/1108 231/1108 232/1108 233/1108 234/1108 235/1108 236/1108 237/1108 238/1108 239/1108 240/1108 241/1108 242/1108 243/1108 244/1108 245/1108 246/1108 247/1108 248/1108 249/1108 250/1108 251/1108 252/1108 253/1108 254/1108 255/1108 256/1108 257/1108 258/1108 259/1108 260/1108 261/1108 262/1108 263/1108 264/1108 265/1108 266/1108 267/1108 268/1108 269/1108 270/1108 271/1108 272/1108 273/1108 274/1108 275/1108 276/1108 277/1108 278/1108 279/1108 280/1108 281/1108 282/1108 283/1108 284/1108 285/1108 286/1108 287/1108 288/1108 289/1108 290/1108 291/1108 292/1108 293/1108 294/1108 295/1108 296/1108 297/1108 298/1108 299/1108 300/1108 301/1108 302/1108 303/1108 304/1108 305/1108 306/1108 307/1108 308/1108 309/1108 310/1108 311/1108 312/1108 313/1108 314/1108 315/1108 316/1108 317/1108 318/1108 319/1108 320/1108 321/1108 322/1108 323/1108 324/1108 325/1108 326/1108 327/1108 328/1108 329/1108 330/1108 331/1108 332/1108 333/1108 334/1108 335/1108 336/1108 337/1108 338/1108 339/1108 340/1108 341/1108 342/1108 343/1108 344/1108 345/1108 346/1108 347/1108 348/1108 349/1108 350/1108 351/1108 352/1108 353/1108 354/1108 355/1108 356/1108 357/1108 358/1108 359/1108 360/1108 361/1108 362/1108 363/1108 364/1108 365/1108 366/1108 367/1108 368/1108 369/1108 370/1108 371/1108 372/1108 373/1108 374/1108 375/1108 376/1108 377/1108 378/1108 379/1108 380/1108 381/1108 382/1108 383/1108 384/1108 385/1108 386/1108 387/1108 388/1108 389/1108 390/1108 391/1108 392/1108 393/1108 394/1108 395/1108 396/1108 397/1108 398/1108 399/1108 400/1108 401/1108 402/1108 403/1108 404/1108 405/1108 406/1108 407/1108 408/1108 409/1108 410/1108 411/1108 412/1108 413/1108 414/1108 415/1108 416/1108 417/1108 418/1108 419/1108 420/1108 421/1108 422/1108 423/1108 424/1108 425/1108 426/1108 427/1108 428/1108 429/1108 430/1108 431/1108 432/1108 433/1108 434/1108 435/1108 436/1108 437/1108 438/1108 439/1108 440/1108 441/1108 442/1108 443/1108 444/1108 445/1108 446/1108 447/1108 448/1108 449/1108 450/1108 451/1108 452/1108 453/1108 454/1108 455/1108 456/1108 457/1108 458/1108 459/1108 460/1108 461/1108 462/1108 463/1108 464/1108 465/1108 466/1108 467/1108 468/1108 469/1108 470/1108 471/1108 472/1108 473/1108 474/1108 475/1108 476/1108 477/1108 478/1108 479/1108 480/1108 481/1108 482/1108 483/1108 484/1108 485/1108 486/1108 487/1108 488/1108 489/1108 490/1108 491/1108 492/1108 493/1108 494/1108 495/1108 496/1108 497/1108 498/1108 499/1108 500/1108 501/1108 502/1108 503/1108 504/1108 505/1108 506/1108 507/1108 508/1108 509/1108 510/1108 511/1108 512/1108 513/1108 514/1108 515/1108 516/1108 517/1108 518/1108 519/1108 520/1108 521/1108 522/1108 523/1108 524/1108 525/1108 526/1108 527/1108 528/1108 529/1108 530/1108 531/1108 532/1108 533/1108 534/1108 535/1108 536/1108 537/1108 538/1108 539/1108 540/1108 541/1108 542/1108 543/1108 544/1108 545/1108 546/1108 547/1108 548/1108 549/1108 550/1108 551/1108 552/1108 553/1108 554/1108 555/1108 556/1108 557/1108 558/1108 559/1108 560/1108 561/1108 562/1108 563/1108 564/1108 565/1108 566/1108 567/1108 568/1108 569/1108 570/1108 571/1108 572/1108 573/1108 574/1108 575/1108 576/1108 577/1108 578/1108 579/1108 580/1108 581/1108 582/1108 583/1108 584/1108 585/1108 586/1108 587/1108 588/1108 589/1108 590/1108 591/1108 592/1108 593/1108 594/1108 595/1108 596/1108 597/1108 598/1108 599/1108 600/1108 601/1108 602/1108 603/1108 604/1108 605/1108 606/1108 607/1108 608/1108 609/1108 610/1108 611/1108 612/1108 613/1108 614/1108 615/1108 616/1108 617/1108 618/1108 619/1108 620/1108 621/1108 622/1108 623/1108 624/1108 625/1108 626/1108 627/1108 628/1108 629/1108 630/1108 631/1108 632/1108 633/1108 634/1108 635/1108 636/1108 637/1108 638/1108 639/1108 640/1108 641/1108 642/1108 643/1108 644/1108 645/1108 646/1108 647/1108 648/1108 649/1108 650/1108 651/1108 652/1108 653/1108 654/1108 655/1108 656/1108 657/1108 658/1108 659/1108 660/1108 661/1108 662/1108 663/1108 664/1108 665/1108 666/1108 667/1108 668/1108 669/1108 670/1108 671/1108 672/1108 673/1108 674/1108 675/1108 676/1108 677/1108 678/1108 679/1108 680/1108 681/1108 682/1108 683/1108 684/1108 685/1108 686/1108 687/1108 688/1108 689/1108 690/1108 691/1108 692/1108 693/1108 694/1108 695/1108 696/1108 697/1108 698/1108 699/1108 700/1108 701/1108 702/1108 703/1108 704/1108 705/1108 706/1108 707/1108 708/1108 709/1108 710/1108 711/1108 712/1108 713/1108 714/1108 715/1108 716/1108 717/1108 718/1108 719/1108 720/1108 721/1108 722/1108 723/1108 724/1108 725/1108 726/1108 727/1108 728/1108 729/1108 730/1108 731/1108 732/1108 733/1108 734/1108 735/1108 736/1108 737/1108 738/1108 739/1108 740/1108 741/1108 742/1108 743/1108 744/1108 745/1108 746/1108 747/1108 748/1108 749/1108 750/1108 751/1108 752/1108 753/1108 754/1108 755/1108 756/1108 757/1108 758/1108 759/1108 760/1108 761/1108 762/1108 763/1108 764/1108 765/1108 766/1108 767/1108 768/1108 769/1108 770/1108 771/1108 772/1108 773/1108 774/1108 775/1108 776/1108 777/1108 778/1108 779/1108 780/1108 781/1108 782/1108 783/1108 784/1108 785/1108 786/1108 787/1108 788/1108 789/1108 790/1108 791/1108 792/1108 793/1108 794/1108 795/1108 796/1108 797/1108 798/1108 799/1108 800/1108 801/1108 802/1108 803/1108 804/1108 805/1108 806/1108 807/1108 808/1108 809/1108 810/1108 811/1108 812/1108 813/1108 814/1108 815/1108 816/1108 817/1108 818/1108 819/1108 820/1108 821/1108 822/1108 823/1108 824/1108 825/1108 826/1108 827/1108 828/1108 829/1108 830/1108 831/1108 832/1108 833/1108 834/1108 835/1108 836/1108 837/1108 838/1108 839/1108 840/1108 841/1108 842/1108 843/1108 844/1108 845/1108 846/1108 847/1108 848/1108 849/1108 850/1108 851/1108 852/1108 853/1108 854/1108 855/1108 856/1108 857/1108 858/1108 859/1108 860/1108 861/1108 862/1108 863/1108 864/1108 865/1108 866/1108 867/1108 868/1108 869/1108 870/1108 871/1108 872/1108 873/1108 874/1108 875/1108 876/1108 877/1108 878/1108 879/1108 880/1108 881/1108 882/1108 883/1108 884/1108 885/1108 886/1108 887/1108 888/1108 889/1108 890/1108 891/1108 892/1108 893/1108 894/1108 895/1108 896/1108 897/1108 898/1108 899/1108 900/1108 901/1108 902/1108 903/1108 904/1108 905/1108 906/1108 907/1108 908/1108 909/1108 910/1108 911/1108 912/1108 913/1108 914/1108 915/1108 916/1108 917/1108 918/1108 919/1108 920/1108 921/1108 922/1108 923/1108 ###Markdown Initiate the environment ###Code import numpy as np import cv2 import matplotlib.pyplot as plt from random import randint from glob import glob import os import os.path import scipy import math %matplotlib inline import tensorflow as tf print('Default GPU Device: {}'.format(tf.test.gpu_device_name())) print('TensorFlow Version: {}'.format(tf.__version__)) #useful variables num_classes = 3 # none and 12 options, 0-12 image_shape = (160, 576) # image_shape = (576, 160) weights_initializer_stddev = 0.01 weights_regularized_l2 = 1e-3 ###Output _____no_output_____ ###Markdown Download VGG16 ###Code from urllib import urlretrieve import zipfile if not os.path.exists("vgg16.zip"): urlretrieve( 'https://s3-us-west-1.amazonaws.com/udacity-selfdrivingcar/vgg.zip', "./vgg16.zip") print("Downloaded VGG16 model weights") else: print("Already exists, skipping download") import zipfile with zipfile.ZipFile('/datasets/home/92/992/tal089/vgg16.zip', 'r') as zip_ref: #type your won path here zip_ref.extractall('/datasets/home/92/992/tal089/vgg16') ###Output _____no_output_____ ###Markdown Helper Function ###Code # Unfortunately We did not figure out a way to succesfully get the truthmap we desired for trianing with those functions that # which cause corrpution of our training results we wish we would have more knowledge of semantic image segementation def imageToTruth(img): return [list(map(pixelToTruth, row)) for row in img] def truthToImage(truth): return [list(map(truthToPixel, row)) for row in truth] def truthToPixel(value): tmp = value.tolist() return (tmp.index(max(tmp)), 0, 0) # This function is supposed to do the truth map generating def pixelToTruth(value): if value<85: return (0, 1, 0) elif value>85 & value<170: return (0, 0, 1) else: return (1, 0, 0) ###Output _____no_output_____ ###Markdown Get the image files ###Code # This function grab data from local folder and feed them into truth map generating function. Then generate batches for training def get_training_data(batch_size): image_paths = glob(os.path.join("./Images", "*.tiff")) label_paths = glob(os.path.join("./Labels", "*.tif")) for batch in range(0, len(image_paths), batch_size): images = [] maps = [] for batch in range(0, len(image_paths), batch_size): images = [] maps = [] for index, image_file in enumerate(image_paths[batch:batch + batch_size]): map_file = os.path.join(label_paths[index]) image = scipy.misc.imread(image_file) image = scipy.misc.imresize(image, image_shape) map_image = scipy.misc.imread(map_file) map_image = scipy.misc.imresize(map_image, image_shape) map_image = imageToTruth(map_image) images.append(image) maps.append(map_image) yield np.array(images), np.array(maps) model = {} def get_placeholders(model): model['placeholders'] = {} #Those are Placeholders model['placeholders']['label'] = tf.placeholder(tf.int32, (None, image_shape[0], image_shape[1], model['settings']['num_classes']), name='label') model['placeholders']['learning_rate'] = tf.placeholder(tf.float32, name='learning_rate') ###Output _____no_output_____ ###Markdown Load VGG ###Code def load_vgg(model): #Grab layers from pretrained VGG tf.saved_model.loader.load(sess, ["vgg16"], '/datasets/home/92/992/tal089/vgg16/vgg' #type your own path here ) model['graph'] = tf.get_default_graph() #define key layers to take infromation from VGG model['input_layer'] = model['graph'].get_tensor_by_name("image_input:0") model['keep_prob'] = model['graph'].get_tensor_by_name("keep_prob:0") #Dropout settings #grab more layers from vgg to backfeed into our fcn model['layer_3'] = model['graph'].get_tensor_by_name("layer3_out:0") model['layer_4'] = model['graph'].get_tensor_by_name("layer4_out:0") model['layer_7'] = model['graph'].get_tensor_by_name("layer7_out:0") def vgg_fcn(model): # Skip connections for later model['skip_conv_3'] = tf.layers.conv2d(model['layer_3'], model['settings']['num_classes'], 1, padding='same', kernel_initializer = tf.random_normal_initializer(stddev=weights_initializer_stddev), kernel_regularizer= tf.contrib.layers.l2_regularizer(weights_regularized_l2), name='skip_conv_3') model['skip_conv_4'] = tf.layers.conv2d(model['layer_4'], model['settings']['num_classes'], 1, padding='same', kernel_initializer = tf.random_normal_initializer(stddev=weights_initializer_stddev), kernel_regularizer= tf.contrib.layers.l2_regularizer(weights_regularized_l2), name='skip_conv_4') #Layer 7 isn't skipped, it's passed right to transpose model['fully_connected_convs'] = tf.layers.conv2d(model['layer_7'], model['settings']['num_classes'], 1, padding='same', kernel_initializer = tf.random_normal_initializer(stddev=weights_initializer_stddev), kernel_regularizer= tf.contrib.layers.l2_regularizer(weights_regularized_l2), name='fully_connected_convs') #From layer 7 we need to transpose up model['transpose_1'] = tf.layers.conv2d_transpose(model['fully_connected_convs'], model['settings']['num_classes'], 4, 2, padding='same', kernel_initializer = tf.random_normal_initializer(stddev=weights_initializer_stddev), kernel_regularizer= tf.contrib.layers.l2_regularizer(weights_regularized_l2), name='transpose_1') # Add the skip layer from layer 4 model['skip_1'] = tf.add(model['transpose_1'], model['skip_conv_4'], name='skip_1') #Tranpose up from resultant layer model['transpose_2'] = tf.layers.conv2d_transpose(model['skip_1'], model['settings']['num_classes'], 4, 2, padding='same', kernel_initializer = tf.random_normal_initializer(stddev=weights_initializer_stddev), kernel_regularizer= tf.contrib.layers.l2_regularizer(weights_regularized_l2), name='transpose_2') #Create skip layer from layer 3 model['skip_2'] = tf.add(model['skip_conv_3'], model['transpose_2'], name='skip_2') #Final output layer model['output_layer'] = tf.layers.conv2d_transpose(model['skip_2'], model['settings']['num_classes'], 16, 8, padding='same', kernel_initializer = tf.random_normal_initializer(stddev=weights_initializer_stddev), kernel_regularizer= tf.contrib.layers.l2_regularizer(weights_regularized_l2), activation=tf.sigmoid, name='output_layer') return model['output_layer'] def get_logits(model): model['logits'] = {} #optimzer model['logits']['logits'] = tf.reshape(model['output_layer'], (-1, model['settings']['num_classes'])) model['logits']['correct_label'] = tf.reshape(model['placeholders']['label'], (-1, model['settings']['num_classes'])) def get_loss(model): model['loss'] = {} model['loss']['softmax'] = tf.nn.softmax_cross_entropy_with_logits(logits=model['logits']['logits'], labels=model['logits']['correct_label']) model['loss']['cross_entropy_loss'] = tf.reduce_mean(model['loss']['softmax']) model['loss']['optimizer'] = tf.train.AdamOptimizer(learning_rate=model['placeholders']['learning_rate']) model['loss']['train_op'] = model['loss']['optimizer'].minimize(model['loss']['cross_entropy_loss']) def train(sess, model, epochs=1, batch_size=10, keep_probability=0.5, learning_rate_alpha=0.001): sess.run(tf.global_variables_initializer()) print("launching training") for epoch in range(epochs): print("Launching Epoch {}".format(epoch)) loss_log = [] batch_count = 0 for image, truth in get_training_data(batch_size): print("") batch_count += 1 loss = sess.run( [model['loss']['train_op'], model['loss']['cross_entropy_loss']], feed_dict = { model['input_layer']: image, model['placeholders']['label']: truth, model['keep_prob']: keep_probability, model['placeholders']['learning_rate']: learning_rate_alpha }, ) print("loss is ",loss) loss_log.append('{:3f}'.format(loss[1])) if(batch_count % 10 == 0): print("Batch {} - loss of {}".format(batch_count, loss)) print("Training for epoch finished - ", loss_log) chkpt_path = "check_point/fcn_model".format(epoch) saver.save(sess, chkpt_path) print("Model saved as {}".format(chkpt_path)) print() print("Training finished") saver = None tf.reset_default_graph() with tf.Session() as sess: model = {} model['settings'] = { "num_classes": 3 } get_placeholders(model) load_vgg(model) vgg_fcn(model) get_logits(model) get_loss(model) saver = tf.train.Saver() train(sess, model, 10, 10, 0.5, 0.002) def execute_on_image(sess, model): image_file = "10078660_15-Copy1.tiff" truth_file = "10078660_15-Copy1.tif" image = scipy.misc.imread(image_file) image = scipy.misc.imresize(image, image_shape) plt.figure(figsize=(20,15)) plt.imshow(image) truth = scipy.misc.imread(truth_file) truth = scipy.misc.imresize(truth, image_shape) plt.figure(figsize=(20,15)) plt.imshow(colorizeMap(truth)) truth = imageToTruth(truth) output = sess.run(model["output_layer"], feed_dict={ model["input_layer"]: [image], model['placeholders']['label'] : [truth], "keep_prob:0": 1.0, model["placeholders"]["learning_rate"] : 0.01 }) output = output[0] plt.figure(figsize=(20,15)) outputImage = truthToImage(output) colorizedOutput = colorizeMap(outputImage) plt.imshow(outputImage) return output ###Output _____no_output_____ ###Markdown Execute on image ###Code tf.reset_default_graph() with tf.Session() as sess: model = {} model['settings'] = { "num_classes": 3 } get_placeholders(model) load_vgg(model) vgg_fcn(model) get_logits(model) get_loss(model) saver = tf.train.Saver() saver.restore(sess, "check_point/fcn_model") results = execute_on_image(sess, model) ###Output INFO:tensorflow:Restoring parameters from /datasets/home/92/992/tal089/vgg16/vgg/variables/variables INFO:tensorflow:Restoring parameters from check_point/fcn_model
chapter5/05_03_missing.ipynb
###Markdown 05_03: Filling Missing Values ###Code import math import collections import urllib import numpy as np import pandas as pd import matplotlib.pyplot as pp %matplotlib inline import getweather pasadena = getweather.getyear('PASADENA', ['TMIN', 'TMAX'], 2001) np.mean(pasadena['TMIN']), np.min(pasadena['TMIN']), np.max(pasadena['TMIN']) pasadena['TMIN'] np.nan + 1 np.isnan(pasadena['TMIN']) False + True + True np.sum(np.isnan(pasadena['TMIN'])) np.nanmin(pasadena['TMIN']), np.nanmax(pasadena['TMAX']) pasadena['TMIN'][np.isnan(pasadena['TMIN'])] = np.nanmean(pasadena['TMIN']) pasadena['TMAX'][np.isnan(pasadena['TMAX'])] = np.nanmean(pasadena['TMAX']) pasadena['TMIN'] pp.plot(pasadena['TMIN']) xdata = np.array([0,1,4,5,7,8], 'd') ydata = np.array([10,5,2,7,7.5,10], 'd') pp.plot(xdata, ydata, '--o') # interpolate x/y data with missing values to continuous x values xnew = np.linspace(0, 8, 9) ynew = np.interp(xnew, xdata, ydata) pp.plot(xdata, ydata, '--o', ms=10) pp.plot(xnew, ynew, 's') # interpolate x/y data with missing values to denser, continuous x values xnew = np.linspace(0, 8, 30) ynew = np.interp(xnew, xdata, ydata) pp.plot(xdata, ydata, '--o', ms=10) pp.plot(xnew, ynew, 's') pasadena = getweather.getyear('PASADENA', ['TMIN', 'TMAX'], 2001) # build a Boolean mask of "good" (non-NaN) TMIN values; # interpolate "good" days/TMIN to full range of days good = ~np.isnan(pasadena['TMIN']) x = np.arange(0, 365) np.interp(x, x[good], pasadena['TMIN'][good]) # fill NaNs in any array by interpolation def fillnans(array): good = ~np.isnan(array) x = np.arange(len(array)) return np.interp(x, x[good], array[good]) pp.plot(fillnans(pasadena['TMIN'])) pp.plot(fillnans(pasadena['TMAX'])) ###Output _____no_output_____
notebooks/ERDDAP-Access.ipynb
###Markdown Demo Accessing ERDDAP Grid & Table DatasetsThis is a demo of accessing `griddap` and `tabledap`datasets from the SalishSeaCast ERDDAP server(https://salishsea.eos.ubc.ca/erddap/). ###Code %matplotlib inline import cmocean import pandas import xarray ###Output _____no_output_____ ###Markdown About ERDDAPThe SalishSeaCast ERDDAP server (https://salishsea.eos.ubc.ca/erddap/)is one of a growing herd of ERDDAP servers around the world;see the **Easier Access to Scientific Data** section on its front pagefor information and links about the ERDDAP project,and https://coastwatch.pfeg.noaa.gov/erddap/download/setup.htmlorganizationsfor a list of many of the ERDDAP instances.ERDDAP provides [2 types of datasets](https://coastwatch.pfeg.noaa.gov/erddap/download/setupDatasetsXml.htmldatasetTypes):* `griddap` for gridded data such as model results fields* `tabledap` for tabular data field-deploy instruments like CTDs, ADCPs, buoys, etc.It also has a special-case of the tablular dataset type that allows it to provide avirtual file system interface to facilitate downloading files.Datasets are accessible via a web app interface that provides some basic data visualization capabilities,and file downloads in various formats of hyperslabs from the datasets.They are also accessible via a RESTful web service interface.Key features of ERDDAP is that:* It provides rich metadata for the datasets. That metadata is generally richer and more complete than the metadata contained in the underlying files (depending on how committed to good metadata the particular ERDDAP's administrators are :-)* It abstracts away the storage details of the underlying files. Users don't have to know about how to slice or concatenate a dataset's files in order to get a 43 day long time series of variable values at a particular depth in a sub-region of a model domain.The SalishSeaCast ERDDAP serves results from Susan Allen's UBC-MOAD group Salish Sea domain NEMO model,and Johannes Gemmrich's uVic/IOS Strait of Georgia domain WaveWatch III® model as `griddap` datasets(https://salishsea.eos.ubc.ca/erddap/griddap/).It serves results from Michael Dunphy's IOS Vancouver Harbour and Fraser River FVCOM domain model,and the Strait of Georgia domain WaveWatch III® model via the virtual file system interface(https://salishsea.eos.ubc.ca/erddap/files/).A small selection of aggregated datasets from Ocean Networks Canada real-time instruments,and an IOS horizontal ADCP are served at `tabledap` datasets(https://salishsea.eos.ubc.ca/erddap/tabledap/).Links on the `griddap` and `tabledap` pages connect to the `data` request,`graph` visualization,and `M`etadata views for each of the datasets(and the `files` views for the virtual file system interface). `griddap` DatasetsWhile you can use the OPeNDAP protocol to request hyperslabs from datasetsin various file formats the Python `netCDF4` and `xarray` package provide higher levelinterfaces with lazy loading.The code below uses `xarray`.To make the `%%time` measurements a little more consistentI've used a context manager to open the dataset in each cell.Of course that only limits client-side carry-over from one cell to anotherand doesn't get rid caching that the ERDDAP server does.`xarray` and `netCDF4` both access `griddap` datasets using a URL of the form: server-address/griddap/dataset-id An easy way to get the correct URL is to take the URL of the dataset's[data access page](https://salishsea.eos.ubc.ca/erddap/griddap/ubcSSg3DTracerFields1hV18-12.html)and drop the `.html` from the end.Opening the dataset is quite fast because it just loads metadata: ###Code %%time with xarray.open_dataset("https://salishsea.eos.ubc.ca/erddap/griddap/ubcSSg3DTracerFields1hV18-12") as ds: print(ds) ###Output <xarray.Dataset> Dimensions: (depth: 40, gridX: 398, gridY: 898, time: 43968) Coordinates: * time (time) datetime64[ns] 2015-01-01T00:30:00 ... 2020-01-12T23:30:00 * depth (depth) float32 0.5000003 1.5000031 ... 414.5341 441.4661 * gridY (gridY) int16 0 1 2 3 4 5 6 7 ... 891 892 893 894 895 896 897 * gridX (gridX) int16 0 1 2 3 4 5 6 7 ... 391 392 393 394 395 396 397 Data variables: salinity (time, depth, gridY, gridX) float32 ... temperature (time, depth, gridY, gridX) float32 ... Attributes: acknowledgement: MEOPAR, ONC, Compute Canada cdm_data_type: Grid comment: If you use this dataset in your research,\nple... Conventions: CF-1.6, COARDS, ACDD-1.3 creator_email: [email protected] creator_name: Salish Sea MEOPAR Project Contributors creator_url: https://salishsea-meopar-docs.readthedocs.io/ description: ocean T grid variables drawLandMask: over history: 2020-01-13T00:51:57Z (local files)\n2020-01-13... infoUrl: https://salishsea-meopar-docs.readthedocs.io/e... institution: UBC EOAS institution_fullname: Earth, Ocean & Atmospheric Sciences, Universit... keywords: conservative temperature, deptht, Earth Scienc... license: The Salish Sea MEOPAR NEMO model results are c... project: Salish Sea MEOPAR NEMO Model sourceUrl: (local files) standard_name_vocabulary: CF Standard Name Table v29 summary: Green, Salish Sea, 3d Tracer Fields, Hourly, v... testOutOfDate: now-16hours time_coverage_end: 2020-01-12T23:30:00Z time_coverage_start: 2015-01-01T00:30:00Z timeStamp: 2020-Jan-12 17:24:39 GMT title: Green, Salish Sea, 3d Tracer Fields, Hourly, v... uuid: ad937476-6a0f-4beb-b9e4-2982c1fa9aa8 CPU times: user 37.3 ms, sys: 12.4 ms, total: 49.8 ms Wall time: 139 ms ###Markdown Specifying a hyperslab from the dataset does not trigger data access: ###Code %%time with xarray.open_dataset("https://salishsea.eos.ubc.ca/erddap/griddap/ubcSSg3DTracerFields1hV18-12") as ds: salinity = ds.salinity.isel(depth=0).sel(time="2020-01-09 12:30") ###Output CPU times: user 41.7 ms, sys: 4.94 ms, total: 46.6 ms Wall time: 130 ms ###Markdown Data is accessed only when it is operated on: ###Code %%time with xarray.open_dataset("https://salishsea.eos.ubc.ca/erddap/griddap/ubcSSg3DTracerFields1hV18-12") as ds: (ds.salinity.isel(depth=0).sel(time="2020-01-09 12:30") .plot(cmap=cmocean.cm.haline)) ###Output CPU times: user 115 ms, sys: 11.6 ms, total: 127 ms Wall time: 628 ms ###Markdown Or when it is loaded explicitly: ###Code %%time with xarray.open_dataset("https://salishsea.eos.ubc.ca/erddap/griddap/ubcSSg3DTracerFields1hV18-12") as ds: salinity = ds.salinity.isel(depth=0).sel(time="2020-01-09 12:30").load() ###Output CPU times: user 69.2 ms, sys: 9.16 ms, total: 78.3 ms Wall time: 588 ms ###Markdown Depth LayersFocussing here on depth layer (i.e. horizontal slice) hyperslabs,and switching to use the `.sel(..., method="nearest")` methodto avoid having to be too explicit depth and time. ###Code %%time with xarray.open_dataset("https://salishsea.eos.ubc.ca/erddap/griddap/ubcSSg3DTracerFields1hV18-12") as ds: (ds.salinity.sel(depth=0, time="2020-01-09 11:00", method="nearest") .plot(cmap=cmocean.cm.haline)) ###Output CPU times: user 210 ms, sys: 35.3 ms, total: 245 ms Wall time: 759 ms ###Markdown There are at least 2 really ugly issues with the renderings above:1. The dataset coordinates on the horizontal plane are the x/y grid indices, not longitude/latitude. What is more, the dataset *does not even include longitude/latitude* as variables.2. The coastline is an odd, blocky mixture of `NaN`s (white) and zero salinity (dark blue). The second is the easier to deal with.* The white `NaN`s are due to the land processor elmination that is used in the SalishSeaCast NEMO runs to avoid spending computational effort in MPI sub-domains that contain no water.* The dark blue zero salinity "fringe" is the land in the MPI sub-domains that contain both land and water.Both of those artifacts can be eliminated by masking the salinity field withthe appropriate field from the model mesh mask.The mesh mask is stored in 2 datasets on the SalishSeaCast ERDDAP server:* https://salishsea.eos.ubc.ca/erddap/griddap/ubcSSn2DMeshMaskV17-02* https://salishsea.eos.ubc.ca/erddap/griddap/ubcSSn3DMeshMaskV17-02It is split like that because one of ERDDAP's rules is that all of the variablesin a dataset must have the same shape.So, the 2D mesh mask dataset contains NEMO mesh mask variables with coordinates`(t, y, x)`,and the 3D dataset contains variables with coordinates `(t, z, y, x)`.The inclusion of a rather pointless `t` coordinate in the mesh mask variablesis a NEMO idiosyncrasy.For salinity, we use the `tmask` variable from the 3D mesh mask dataset.Its values are 0/1 integer flags indicating whether the T-grid point is land/water. ###Code %%time with xarray.open_dataset("https://salishsea.eos.ubc.ca/erddap/griddap/ubcSSn3DMeshMaskV17-02") as mesh: with xarray.open_dataset("https://salishsea.eos.ubc.ca/erddap/griddap/ubcSSg3DTracerFields1hV18-12") as ds: depth=0 salinity = ds.salinity.sel(depth=depth, time="2020-01-09 11:00", method="nearest") mask = mesh.tmask.isel(time=0).sel(gridZ=depth, method="nearest") salinity.where(mask).plot(cmap=cmocean.cm.haline) ###Output CPU times: user 306 ms, sys: 26 ms, total: 332 ms Wall time: 944 ms ###Markdown The solution to the longitude/latitude issue is to use the SalishSeaCast NEMOmodel grid geo-reference dataset https://salishsea.eos.ubc.ca/erddap/griddap/ubcSSnBathymetryV17-02.It provides 2D `longitude` and `latitude` variables with `(gridY, gridX)` coordinates.Since those are the same coordinates as our salinity depth layer has,we can construct a new `xarray.DataArray` from the masked salinity valuesand the longitude/latitude coordinate that we want to plot them on. ###Code %%time with xarray.open_dataset("https://salishsea.eos.ubc.ca/erddap/griddap/ubcSSnBathymetryV17-02") as geo: with xarray.open_dataset("https://salishsea.eos.ubc.ca/erddap/griddap/ubcSSn3DMeshMaskV17-02") as mesh: with xarray.open_dataset("https://salishsea.eos.ubc.ca/erddap/griddap/ubcSSg3DTracerFields1hV18-12") as ds: depth=0 salinity = ds.salinity.sel(depth=depth, time="2020-01-09 11:00", method="nearest") mask = mesh.tmask.isel(time=0).sel(gridZ=depth, method="nearest") geo_salinity = xarray.DataArray( salinity.where(mask), coords={ "longitude": geo.longitude, "latitude": geo.latitude, } ) geo_salinity.plot.pcolormesh("longitude", "latitude", cmap=cmocean.cm.haline) ###Output CPU times: user 374 ms, sys: 64.5 ms, total: 438 ms Wall time: 1.36 s ###Markdown Time SeriesWhile ERDDAP allows us to ignore the storage details of the underlying files,knowing that the files are chunked as `(1, 40, 898, 398)`(which we can learn by looking at the metadata for one of the variables in the dataset),explains why getting 12 values for a time series at a single point in the domaintakes significantly longer than getting the thousands of values in the depth layers above. ###Code %%time with xarray.open_dataset("https://salishsea.eos.ubc.ca/erddap/griddap/ubcSSg3DTracerFields1hV18-12") as ds: (ds.salinity .sel(depth=0, method="nearest") .sel(gridX=250, gridY=500, time=slice("2020-01-09 00:00", "2020-01-09 12:00")) .plot()) ###Output CPU times: user 62.2 ms, sys: 3.69 ms, total: 65.9 ms Wall time: 3.67 s ###Markdown And knowing that the model results are stored in daily files containing24 hourly average values means that we shouldn't be surprised that gettinga time series that spans more than one day takes even longer becauseERDDAP has to open more than one underlying file. ###Code %%time with xarray.open_dataset("https://salishsea.eos.ubc.ca/erddap/griddap/ubcSSg3DTracerFields1hV18-12") as ds: (ds.salinity .sel(depth=0, method="nearest") .sel(gridX=250, gridY=500, time=slice("2020-01-08 00:00", "2020-01-10 00:00")) .plot()) ###Output CPU times: user 66.3 ms, sys: 4.36 ms, total: 70.6 ms Wall time: 13 s ###Markdown Profiles and Vertical SlicesThe `(1, 40, 898, 398)` chunking means that getting the values forprofiles and vertical slices are comparable in speed to getting them fordepth layers. ###Code %%time with xarray.open_dataset("https://salishsea.eos.ubc.ca/erddap/griddap/ubcSSg3DTracerFields1hV18-12") as ds: (ds.salinity .sel(gridX=250, gridY=500, time="2020-01-09 00:00", method="nearest") .plot(y="depth", yincrease=False)) %%time with xarray.open_dataset("https://salishsea.eos.ubc.ca/erddap/griddap/ubcSSg3DTracerFields1hV18-12") as ds: (ds.salinity .sel(gridY=500, time="2020-01-09 00:00", method="nearest") .plot(y="depth", yincrease=False, cmap=cmocean.cm.haline)) ###Output CPU times: user 202 ms, sys: 12.8 ms, total: 215 ms Wall time: 689 ms ###Markdown Unfortunately,the depth coordinate of the mesh mask dataset is called `gridZ` not `depth`(as is the case in the 3D tracer fields and other model fields datasets).That causes problems when we try to mask a profile or vertical slice.The issue is most easily(if not elegantly)resolved by using the underlying `numpy` array of mask values in the `.where()` method;i.e. `.where(mask.values)` ###Code %%time with xarray.open_dataset("https://salishsea.eos.ubc.ca/erddap/griddap/ubcSSn3DMeshMaskV17-02") as mesh: with xarray.open_dataset("https://salishsea.eos.ubc.ca/erddap/griddap/ubcSSg3DTracerFields1hV18-12") as ds: gridX, gridY = 250, 500 salinity = ds.salinity.sel(gridX=gridX, gridY=gridY, time="2020-01-09 00:00", method="nearest") mask = mesh.tmask.isel(time=0).sel(gridX=gridX, gridY=gridY) salinity.where(mask.values).plot(y="depth", yincrease=False) %%time with xarray.open_dataset("https://salishsea.eos.ubc.ca/erddap/griddap/ubcSSn3DMeshMaskV17-02") as mesh: with xarray.open_dataset("https://salishsea.eos.ubc.ca/erddap/griddap/ubcSSg3DTracerFields1hV18-12") as ds: gridX = slice(150, 375) gridY = 500 salinity = ds.salinity.sel(gridX=gridX, gridY=gridY).sel(time="2020-01-09 00:00", method="nearest") mask = mesh.tmask.isel(time=0).sel(gridX=gridX, gridY=gridY) salinity.where(mask.values).plot(y="depth", yincrease=False, cmap=cmocean.cm.haline) ###Output CPU times: user 241 ms, sys: 14.2 ms, total: 255 ms Wall time: 835 ms
v0.12.2/examples/notebooks/generated/glm_weights.ipynb
###Markdown Weighted Generalized Linear Models ###Code import numpy as np import pandas as pd import statsmodels.formula.api as smf import statsmodels.api as sm ###Output _____no_output_____ ###Markdown Weighted GLM: Poisson response data Load dataIn this example, we'll use the affair dataset using a handful of exogenous variables to predict the extra-marital affair rate. Weights will be generated to show that `freq_weights` are equivalent to repeating records of data. On the other hand, `var_weights` is equivalent to aggregating data. ###Code print(sm.datasets.fair.NOTE) ###Output :: Number of observations: 6366 Number of variables: 9 Variable name definitions: rate_marriage : How rate marriage, 1 = very poor, 2 = poor, 3 = fair, 4 = good, 5 = very good age : Age yrs_married : No. years married. Interval approximations. See original paper for detailed explanation. children : No. children religious : How relgious, 1 = not, 2 = mildly, 3 = fairly, 4 = strongly educ : Level of education, 9 = grade school, 12 = high school, 14 = some college, 16 = college graduate, 17 = some graduate school, 20 = advanced degree occupation : 1 = student, 2 = farming, agriculture; semi-skilled, or unskilled worker; 3 = white-colloar; 4 = teacher counselor social worker, nurse; artist, writers; technician, skilled worker, 5 = managerial, administrative, business, 6 = professional with advanced degree occupation_husb : Husband's occupation. Same as occupation. affairs : measure of time spent in extramarital affairs See the original paper for more details. ###Markdown Load the data into a pandas dataframe. ###Code data = sm.datasets.fair.load_pandas().data ###Output _____no_output_____ ###Markdown The dependent (endogenous) variable is ``affairs`` ###Code data.describe() data[:3] ###Output _____no_output_____ ###Markdown In the following we will work mostly with Poisson. While using decimal affairs works, we convert them to integers to have a count distribution. ###Code data["affairs"] = np.ceil(data["affairs"]) data[:3] (data["affairs"] == 0).mean() np.bincount(data["affairs"].astype(int)) ###Output _____no_output_____ ###Markdown Condensing and Aggregating observationsWe have 6366 observations in our original dataset. When we consider only some selected variables, then we have fewer unique observations. In the following we combine observations in two ways, first we combine observations that have values for all variables identical, and secondly we combine observations that have the same explanatory variables. Dataset with unique observationsWe use pandas's groupby to combine identical observations and create a new variable `freq` that count how many observation have the values in the corresponding row. ###Code data2 = data.copy() data2['const'] = 1 dc = data2['affairs rate_marriage age yrs_married const'.split()].groupby('affairs rate_marriage age yrs_married'.split()).count() dc.reset_index(inplace=True) dc.rename(columns={'const': 'freq'}, inplace=True) print(dc.shape) dc.head() ###Output (476, 5) ###Markdown Dataset with unique explanatory variables (exog)For the next dataset we combine observations that have the same values of the explanatory variables. However, because the response variable can differ among combined observations, we compute the mean and the sum of the response variable for all combined observations.We use again pandas ``groupby`` to combine observations and to create the new variables. We also flatten the ``MultiIndex`` into a simple index. ###Code gr = data['affairs rate_marriage age yrs_married'.split()].groupby('rate_marriage age yrs_married'.split()) df_a = gr.agg(['mean', 'sum','count']) def merge_tuple(tpl): if isinstance(tpl, tuple) and len(tpl) > 1: return "_".join(map(str, tpl)) else: return tpl df_a.columns = df_a.columns.map(merge_tuple) df_a.reset_index(inplace=True) print(df_a.shape) df_a.head() ###Output (130, 6) ###Markdown After combining observations with have a dataframe `dc` with 467 unique observations, and a dataframe `df_a` with 130 observations with unique values of the explanatory variables. ###Code print('number of rows: \noriginal, with unique observations, with unique exog') data.shape[0], dc.shape[0], df_a.shape[0] ###Output number of rows: original, with unique observations, with unique exog ###Markdown AnalysisIn the following, we compare the GLM-Poisson results of the original data with models of the combined observations where the multiplicity or aggregation is given by weights or exposure. original data ###Code glm = smf.glm('affairs ~ rate_marriage + age + yrs_married', data=data, family=sm.families.Poisson()) res_o = glm.fit() print(res_o.summary()) res_o.pearson_chi2 / res_o.df_resid ###Output _____no_output_____ ###Markdown condensed data (unique observations with frequencies)Combining identical observations and using frequency weights to take into account the multiplicity of observations produces exactly the same results. Some results attribute will differ when we want to have information about the observation and not about the aggregate of all identical observations. For example, residuals do not take ``freq_weights`` into account. ###Code glm = smf.glm('affairs ~ rate_marriage + age + yrs_married', data=dc, family=sm.families.Poisson(), freq_weights=np.asarray(dc['freq'])) res_f = glm.fit() print(res_f.summary()) res_f.pearson_chi2 / res_f.df_resid ###Output _____no_output_____ ###Markdown condensed using ``var_weights`` instead of ``freq_weights``Next, we compare ``var_weights`` to ``freq_weights``. It is a common practice to incorporate ``var_weights`` when the endogenous variable reflects averages and not identical observations.I do not see a theoretical reason why it produces the same results (in general).This produces the same results but ``df_resid`` differs the ``freq_weights`` example because ``var_weights`` do not change the number of effective observations. ###Code glm = smf.glm('affairs ~ rate_marriage + age + yrs_married', data=dc, family=sm.families.Poisson(), var_weights=np.asarray(dc['freq'])) res_fv = glm.fit() print(res_fv.summary()) ###Output Generalized Linear Model Regression Results ============================================================================== Dep. Variable: affairs No. Observations: 476 Model: GLM Df Residuals: 472 Model Family: Poisson Df Model: 3 Link Function: log Scale: 1.0000 Method: IRLS Log-Likelihood: -10351. Date: Tue, 02 Feb 2021 Deviance: 15375. Time: 06:51:25 Pearson chi2: 3.23e+04 No. Iterations: 6 Covariance Type: nonrobust ================================================================================= coef std err z P>|z| [0.025 0.975] --------------------------------------------------------------------------------- Intercept 2.7155 0.107 25.294 0.000 2.505 2.926 rate_marriage -0.4952 0.012 -41.702 0.000 -0.518 -0.472 age -0.0299 0.004 -6.691 0.000 -0.039 -0.021 yrs_married -0.0108 0.004 -2.507 0.012 -0.019 -0.002 ================================================================================= ###Markdown Dispersion computed from the results is incorrect because of wrong ``df_resid``. It is correct if we use the original ``df_resid``. ###Code res_fv.pearson_chi2 / res_fv.df_resid, res_f.pearson_chi2 / res_f.df_resid ###Output _____no_output_____ ###Markdown aggregated or averaged data (unique values of explanatory variables)For these cases we combine observations that have the same values of the explanatory variables. The corresponding response variable is either a sum or an average. using ``exposure``If our dependent variable is the sum of the responses of all combined observations, then under the Poisson assumption the distribution remains the same but we have varying `exposure` given by the number of individuals that are represented by one aggregated observation.The parameter estimates and covariance of parameters are the same with the original data, but log-likelihood, deviance and Pearson chi-squared differ ###Code glm = smf.glm('affairs_sum ~ rate_marriage + age + yrs_married', data=df_a, family=sm.families.Poisson(), exposure=np.asarray(df_a['affairs_count'])) res_e = glm.fit() print(res_e.summary()) res_e.pearson_chi2 / res_e.df_resid ###Output _____no_output_____ ###Markdown using var_weightsWe can also use the mean of all combined values of the dependent variable. In this case the variance will be related to the inverse of the total exposure reflected by one combined observation. ###Code glm = smf.glm('affairs_mean ~ rate_marriage + age + yrs_married', data=df_a, family=sm.families.Poisson(), var_weights=np.asarray(df_a['affairs_count'])) res_a = glm.fit() print(res_a.summary()) ###Output Generalized Linear Model Regression Results ============================================================================== Dep. Variable: affairs_mean No. Observations: 130 Model: GLM Df Residuals: 126 Model Family: Poisson Df Model: 3 Link Function: log Scale: 1.0000 Method: IRLS Log-Likelihood: -5954.2 Date: Tue, 02 Feb 2021 Deviance: 967.46 Time: 06:51:25 Pearson chi2: 926. No. Iterations: 5 Covariance Type: nonrobust ================================================================================= coef std err z P>|z| [0.025 0.975] --------------------------------------------------------------------------------- Intercept 2.7155 0.107 25.294 0.000 2.505 2.926 rate_marriage -0.4952 0.012 -41.702 0.000 -0.518 -0.472 age -0.0299 0.004 -6.691 0.000 -0.039 -0.021 yrs_married -0.0108 0.004 -2.507 0.012 -0.019 -0.002 ================================================================================= ###Markdown ComparisonWe saw in the summary prints above that ``params`` and ``cov_params`` with associated Wald inference agree across versions. We summarize this in the following comparing individual results attributes across versions.Parameter estimates `params`, standard errors of the parameters `bse` and `pvalues` of the parameters for the tests that the parameters are zeros all agree. However, the likelihood and goodness-of-fit statistics, `llf`, `deviance` and `pearson_chi2` only partially agree. Specifically, the aggregated version do not agree with the results using the original data.**Warning**: The behavior of `llf`, `deviance` and `pearson_chi2` might still change in future versions.Both the sum and average of the response variable for unique values of the explanatory variables have a proper likelihood interpretation. However, this interpretation is not reflected in these three statistics. Computationally this might be due to missing adjustments when aggregated data is used. However, theoretically we can think in these cases, especially for `var_weights` of the misspecified case when likelihood analysis is inappropriate and the results should be interpreted as quasi-likelihood estimates. There is an ambiguity in the definition of ``var_weights`` because they can be used for averages with correctly specified likelihood as well as for variance adjustments in the quasi-likelihood case. We are currently not trying to match the likelihood specification. However, in the next section we show that likelihood ratio type tests still produce the same result for all aggregation versions when we assume that the underlying model is correctly specified. ###Code results_all = [res_o, res_f, res_e, res_a] names = 'res_o res_f res_e res_a'.split() pd.concat([r.params for r in results_all], axis=1, keys=names) pd.concat([r.bse for r in results_all], axis=1, keys=names) pd.concat([r.pvalues for r in results_all], axis=1, keys=names) pd.DataFrame(np.column_stack([[r.llf, r.deviance, r.pearson_chi2] for r in results_all]), columns=names, index=['llf', 'deviance', 'pearson chi2']) ###Output _____no_output_____ ###Markdown Likelihood Ratio type testsWe saw above that likelihood and related statistics do not agree between the aggregated and original, individual data. We illustrate in the following that likelihood ratio test and difference in deviance agree across versions, however Pearson chi-squared does not.As before: This is not sufficiently clear yet and could change.As a test case we drop the `age` variable and compute the likelihood ratio type statistics as difference between reduced or constrained and full or unconstrained model. original observations and frequency weights ###Code glm = smf.glm('affairs ~ rate_marriage + yrs_married', data=data, family=sm.families.Poisson()) res_o2 = glm.fit() #print(res_f2.summary()) res_o2.pearson_chi2 - res_o.pearson_chi2, res_o2.deviance - res_o.deviance, res_o2.llf - res_o.llf glm = smf.glm('affairs ~ rate_marriage + yrs_married', data=dc, family=sm.families.Poisson(), freq_weights=np.asarray(dc['freq'])) res_f2 = glm.fit() #print(res_f2.summary()) res_f2.pearson_chi2 - res_f.pearson_chi2, res_f2.deviance - res_f.deviance, res_f2.llf - res_f.llf ###Output _____no_output_____ ###Markdown aggregated data: ``exposure`` and ``var_weights``Note: LR test agrees with original observations, ``pearson_chi2`` differs and has the wrong sign. ###Code glm = smf.glm('affairs_sum ~ rate_marriage + yrs_married', data=df_a, family=sm.families.Poisson(), exposure=np.asarray(df_a['affairs_count'])) res_e2 = glm.fit() res_e2.pearson_chi2 - res_e.pearson_chi2, res_e2.deviance - res_e.deviance, res_e2.llf - res_e.llf glm = smf.glm('affairs_mean ~ rate_marriage + yrs_married', data=df_a, family=sm.families.Poisson(), var_weights=np.asarray(df_a['affairs_count'])) res_a2 = glm.fit() res_a2.pearson_chi2 - res_a.pearson_chi2, res_a2.deviance - res_a.deviance, res_a2.llf - res_a.llf ###Output _____no_output_____ ###Markdown Investigating Pearson chi-square statisticFirst, we do some sanity checks that there are no basic bugs in the computation of `pearson_chi2` and `resid_pearson`. ###Code res_e2.pearson_chi2, res_e.pearson_chi2, (res_e2.resid_pearson**2).sum(), (res_e.resid_pearson**2).sum() res_e._results.resid_response.mean(), res_e.model.family.variance(res_e.mu)[:5], res_e.mu[:5] (res_e._results.resid_response**2 / res_e.model.family.variance(res_e.mu)).sum() res_e2._results.resid_response.mean(), res_e2.model.family.variance(res_e2.mu)[:5], res_e2.mu[:5] (res_e2._results.resid_response**2 / res_e2.model.family.variance(res_e2.mu)).sum() (res_e2._results.resid_response**2).sum(), (res_e._results.resid_response**2).sum() ###Output _____no_output_____ ###Markdown One possible reason for the incorrect sign is that we are subtracting quadratic terms that are divided by different denominators. In some related cases, the recommendation in the literature is to use a common denominator. We can compare pearson chi-squared statistic using the same variance assumption in the full and reduced model. In this case we obtain the same pearson chi2 scaled difference between reduced and full model across all versions. (Issue [3616](https://github.com/statsmodels/statsmodels/issues/3616) is intended to track this further.) ###Code ((res_e2._results.resid_response**2 - res_e._results.resid_response**2) / res_e2.model.family.variance(res_e2.mu)).sum() ((res_a2._results.resid_response**2 - res_a._results.resid_response**2) / res_a2.model.family.variance(res_a2.mu) * res_a2.model.var_weights).sum() ((res_f2._results.resid_response**2 - res_f._results.resid_response**2) / res_f2.model.family.variance(res_f2.mu) * res_f2.model.freq_weights).sum() ((res_o2._results.resid_response**2 - res_o._results.resid_response**2) / res_o2.model.family.variance(res_o2.mu)).sum() ###Output _____no_output_____ ###Markdown RemainderThe remainder of the notebook just contains some additional checks and can be ignored. ###Code np.exp(res_e2.model.exposure)[:5], np.asarray(df_a['affairs_count'])[:5] res_e2.resid_pearson.sum() - res_e.resid_pearson.sum() res_e2.mu[:5] res_a2.pearson_chi2, res_a.pearson_chi2, res_a2.resid_pearson.sum(), res_a.resid_pearson.sum() ((res_a2._results.resid_response**2) / res_a2.model.family.variance(res_a2.mu) * res_a2.model.var_weights).sum() ((res_a._results.resid_response**2) / res_a.model.family.variance(res_a.mu) * res_a.model.var_weights).sum() ((res_a._results.resid_response**2) / res_a.model.family.variance(res_a2.mu) * res_a.model.var_weights).sum() res_e.model.endog[:5], res_e2.model.endog[:5] res_a.model.endog[:5], res_a2.model.endog[:5] res_a2.model.endog[:5] * np.exp(res_e2.model.exposure)[:5] res_a2.model.endog[:5] * res_a2.model.var_weights[:5] from scipy import stats stats.chi2.sf(27.19530754604785, 1), stats.chi2.sf(29.083798806764687, 1) res_o.pvalues print(res_e2.summary()) print(res_e.summary()) print(res_f2.summary()) print(res_f.summary()) ###Output Generalized Linear Model Regression Results ============================================================================== Dep. Variable: affairs No. Observations: 476 Model: GLM Df Residuals: 6363 Model Family: Poisson Df Model: 2 Link Function: log Scale: 1.0000 Method: IRLS Log-Likelihood: -10374. Date: Tue, 02 Feb 2021 Deviance: 15420. Time: 06:51:26 Pearson chi2: 3.24e+04 No. Iterations: 6 Covariance Type: nonrobust ================================================================================= coef std err z P>|z| [0.025 0.975] --------------------------------------------------------------------------------- Intercept 2.0754 0.050 41.512 0.000 1.977 2.173 rate_marriage -0.4947 0.012 -41.743 0.000 -0.518 -0.471 yrs_married -0.0360 0.002 -17.542 0.000 -0.040 -0.032 ================================================================================= Generalized Linear Model Regression Results ============================================================================== Dep. Variable: affairs No. Observations: 476 Model: GLM Df Residuals: 6362 Model Family: Poisson Df Model: 3 Link Function: log Scale: 1.0000 Method: IRLS Log-Likelihood: -10351. Date: Tue, 02 Feb 2021 Deviance: 15375. Time: 06:51:26 Pearson chi2: 3.23e+04 No. Iterations: 6 Covariance Type: nonrobust ================================================================================= coef std err z P>|z| [0.025 0.975] --------------------------------------------------------------------------------- Intercept 2.7155 0.107 25.294 0.000 2.505 2.926 rate_marriage -0.4952 0.012 -41.702 0.000 -0.518 -0.472 age -0.0299 0.004 -6.691 0.000 -0.039 -0.021 yrs_married -0.0108 0.004 -2.507 0.012 -0.019 -0.002 =================================================================================
code/rainfallSimulator_FinancialAnalysis.ipynb
###Markdown Weather Derivatites Rainfall Simulator -- Final Modelling + Pricing Developed by [Jesus Solano](mailto:[email protected]) 16 November 2018 ###Code # Import needed libraries. import numpy as np import pandas as pd import random as rand import matplotlib.pyplot as plt from scipy.stats import bernoulli from scipy.stats import gamma import pickle import time import datetime from scipy import stats ###Output _____no_output_____ ###Markdown Generate artificial Data ###Code ### ENSO probabilistic forecast. # Open saved data. ensoForecast = pickle.load(open('../datasets/ensoForecastProb/ensoForecastProbabilities.pickle','rb')) # Print an example .. ( Format needed) ensoForecast['2017-01'] ### Create total dataframe. def createTotalDataFrame(daysNumber, startDate , initialState , initialPrep , ensoForecast, optionMonthTerm ): # Set variables names. totalDataframeColumns = ['state','Prep','Month','probNina','probNino', 'nextState'] # Create dataframe. allDataDataframe = pd.DataFrame(columns=totalDataframeColumns) # Number of simulation days(i.e 30, 60) daysNumber = daysNumber # Simulation start date ('1995-04-22') startDate = startDate # State of rainfall last day before start date --> Remember 0 means dry and 1 means wet. initialState = initialState initialPrep = initialPrep # Only fill when initialState == 1 dates = pd.date_range(startDate, periods = daysNumber + 2 , freq='D') for date in dates: # Fill precipitation amount. allDataDataframe.loc[date.strftime('%Y-%m-%d'),'Prep'] = np.nan # Fill month of date allDataDataframe.loc[date.strftime('%Y-%m-%d'),'Month'] = date.month tempDate = None if optionMonthTerm==1: tempDate = date else: tempDate = date - pd.DateOffset(months=optionMonthTerm-1) # Fill El Nino ENSO forecast probability. allDataDataframe.loc[date.strftime('%Y-%m-%d'),'probNino'] = float(ensoForecast[tempDate.strftime('%Y-%m')].loc[optionMonthTerm-1,'El Niño'].strip('%').strip('~'))/100 # Fill La Nina ENSO forecast probability. allDataDataframe.loc[date.strftime('%Y-%m-%d'),'probNina'] = float(ensoForecast[tempDate.strftime('%Y-%m')].loc[optionMonthTerm-1,'La Niña'].strip('%').strip('~'))/100 # Fill State. allDataDataframe.loc[date.strftime('%Y-%m-%d'),'state'] = np.nan simulationDataFrame = allDataDataframe[:-1] # Fill initial conditions. simulationDataFrame['state'][0] = initialState if initialState == 1: simulationDataFrame['Prep'][0] = initialPrep else: simulationDataFrame['Prep'][0] = 0.0 return simulationDataFrame simulationDataFrame = createTotalDataFrame(daysNumber= 30, startDate = '2005-01-01', initialState = 1 , initialPrep = 0.4, ensoForecast = ensoForecast, optionMonthTerm=6) simulationDataFrame ### Load transitions and amount parameters. # Transitions probabilites. transitionsParametersDry = pd.read_csv('../results/visibleMarkov/transitionsParametersDry.csv', sep = ' ', header=None, names = ['variable', 'value']) transitionsParametersDry.index += 1 transitionsParametersDry transitionsParametersWet = pd.read_csv('../results/visibleMarkov/transitionsParametersWet.csv', sep = ' ', header=None, names = ['variable', 'value']) transitionsParametersWet.index += 1 transitionsParametersWet amountParametersGamma = pd.read_csv('../results/visibleMarkov/amountGammaPro.csv', sep = ' ', header=None, names = ['variable', 'mu', 'shape']) amountParametersGamma.index += 1 print(transitionsParametersDry) print('\n * Intercept means firts month (January) ') ###Output variable value 1 (Intercept) -1.168017 2 Month2 0.346713 3 Month3 0.848934 4 Month4 1.563185 5 Month5 1.567584 6 Month6 1.132592 7 Month7 1.311161 8 Month8 1.432857 9 Month9 0.924944 10 Month10 1.587704 11 Month11 1.356612 12 Month12 0.518480 13 probNino -0.453497 14 probNina 0.176919 * Intercept means firts month (January) ###Markdown Simulation Function Core ###Code ### Build the simulation core. # Updates the state of the day based on yesterday state. def updateState(yesterdayIndex, simulationDataFrame, transitionsParametersDry, transitionsParametersWet): # Additional data of day. yesterdayState = simulationDataFrame['state'][yesterdayIndex] yesterdayPrep = simulationDataFrame['Prep'][yesterdayIndex] yesterdayProbNino = simulationDataFrame['probNino'][yesterdayIndex] yesterdayProbNina = simulationDataFrame['probNina'][yesterdayIndex] yesterdayMonth = simulationDataFrame['Month'][yesterdayIndex] # Calculate transition probability. if yesterdayState == 0: # Includes month factor + probNino value + probNino value. successProbabilityLogit = transitionsParametersDry['value'][1]+transitionsParametersDry['value'][yesterdayMonth] + yesterdayProbNino*transitionsParametersDry['value'][13] + yesterdayProbNina*transitionsParametersDry['value'][14] if yesterdayMonth==1: # Includes month factor + probNino value + probNino value. successProbabilityLogit = transitionsParametersDry['value'][yesterdayMonth] + yesterdayProbNino*transitionsParametersDry['value'][13] + yesterdayProbNina*transitionsParametersDry['value'][14] successProbability = (np.exp(successProbabilityLogit))/(1+np.exp(successProbabilityLogit)) elif yesterdayState == 1: # Includes month factor + probNino value + probNino value + prep value . successProbabilityLogit = transitionsParametersDry['value'][1]+ transitionsParametersDry['value'][yesterdayMonth] + yesterdayProbNino*transitionsParametersWet['value'][14] + yesterdayProbNina*transitionsParametersWet['value'][15] + yesterdayPrep*transitionsParametersWet['value'][13] if yesterdayMonth==1: # Includes month factor + probNino value + probNino value + prep value . successProbabilityLogit = transitionsParametersDry['value'][yesterdayMonth] + yesterdayProbNino*transitionsParametersWet['value'][14] + yesterdayProbNina*transitionsParametersWet['value'][15] + yesterdayPrep*transitionsParametersWet['value'][13] successProbability = (np.exp(successProbabilityLogit))/(1+np.exp(successProbabilityLogit)) else: print('State of date: ', simulationDataFrame.index[yesterdayIndex],' not found.') #print(successProbability) #successProbability = monthTransitions['p'+str(yesterdayState)+'1'][yesterdayMonth] todayState = bernoulli.rvs(successProbability) return todayState # Simulates one run of simulation. def oneRun(simulationDataFrame, transitionsParametersDry, transitionsParametersWet, amountParametersGamma): # Define the total rainfall amount over the simulation. rainfall = 0 # Total rainfall days. wetDays = 0 # Loop over days in simulation to calculate rainfall ammount. for day in range(1,len(simulationDataFrame)): # Get today date. dateOfDay = datetime.datetime.strptime(simulationDataFrame.index[day],'%Y-%m-%d') # Update today state based on the yesterday state. todayState = updateState(day-1, simulationDataFrame, transitionsParametersDry, transitionsParametersWet) # Write new day information. simulationDataFrame['state'][day] = todayState simulationDataFrame['nextState'][day-1] = todayState # Computes total accumulated rainfall. if todayState == 1: # Sum wet day. wetDays+=1 # Additional data of day. todayProbNino = simulationDataFrame['probNino'][day] todayProbNina = simulationDataFrame['probNina'][day] todayMonth = simulationDataFrame['Month'][day] # Calculates gamma log(mu). gammaLogMu = amountParametersGamma['mu'][1] + amountParametersGamma['mu'][todayMonth]+ todayProbNino*amountParametersGamma['mu'][13]+todayProbNino*amountParametersGamma['mu'][13] #print(gammaMu) # Calculates gamma scale gammaLogShape = amountParametersGamma['shape'][1] + amountParametersGamma['shape'][todayMonth]+ todayProbNino*amountParametersGamma['shape'][13]+todayProbNino*amountParametersGamma['shape'][13] #print(gammaShape) if todayMonth==1: # Calculates gamma log(mu). gammaLogMu = amountParametersGamma['mu'][todayMonth]+ todayProbNino*amountParametersGamma['mu'][13]+todayProbNino*amountParametersGamma['mu'][13] #print(gammaMu) # Calculates gamma scale gammaLogShape = amountParametersGamma['shape'][todayMonth]+ todayProbNino*amountParametersGamma['shape'][13]+todayProbNino*amountParametersGamma['shape'][13] #print(gammaShape) # Update mu gammaMu = np.exp(gammaLogMu) # Update shape gammaShape = np.exp(gammaLogShape) # Calculate gamma scale. gammaScale = gammaMu / gammaShape # Generate random rainfall. todayRainfall = gamma.rvs(a = gammaShape, scale = gammaScale) # Write new day information. simulationDataFrame['Prep'][day] = todayRainfall # Updates rainfall amount. rainfall += todayRainfall else: # Write new day information. simulationDataFrame['Prep'][day] = 0 yesterdayState = todayState return rainfall,wetDays ###Output _____no_output_____ ###Markdown Complete Simulation ###Code # Run total iterations. def totalRun(simulationDataFrame, transitionsParametersDry, transitionsParametersWet, amountParametersGamma,iterations): # Initialize time startTime = time.time() # Array to store all precipitations. rainfallPerIteration = [None]*iterations wetDaysPerIteration = [None]*iterations # Loop over each iteration(simulation) for i in range(iterations): simulationDataFrameC = simulationDataFrame.copy() iterationRainfall,wetDays = oneRun(simulationDataFrameC, transitionsParametersDry, transitionsParametersWet, amountParametersGamma) rainfallPerIteration[i] = iterationRainfall wetDaysPerIteration[i] = wetDays # Calculate time currentTime = time.time() - startTime # Print mean of wet days. #print('The mean of wet days is: ', np.mean(wetDaysPerIteration)) # Logging time. #print('The elapsed time over simulation is: ', currentTime, ' seconds.') return rainfallPerIteration ###Output _____no_output_____ ###Markdown Financial Analysis ###Code def calculatePrice(strikePrice, interestRate, finalSimulationData): presentValueArray = [0]*len(finalSimulationData) for i in range(len(finalSimulationData)): tempDiff = finalSimulationData[i]-strikePrice realDiff = max(0,tempDiff) presentValue = realDiff*np.exp(-interestRate/12) presentValueArray[i] = presentValue #print('The option price should be: \n ' , np.mean(presentValueArray)) return np.mean(presentValueArray) ###Output _____no_output_____ ###Markdown Final Results ###Code def plotRainfallDistribution(rainfallSimulated): # Create Figure. fig = plt.figure(figsize=(20, 10)) # Plot histogram. plt.hist(rainfallSimulated,facecolor='steelblue',bins=100, density=True, histtype='stepfilled', edgecolor = 'black' , hatch = '+') # Add axis names. plt.title('Rainfall Simulation') plt.xlabel('Rainfall Amount [mm]') plt.ylabel('Probability ') plt.grid() plt.show() def optionRainfallCalculator(iterations, startDate, transitionsParametersDry, transitionsParametersWet, amountParametersGamma, optionMonthTerm): ## Generates initial conditions. # Defines initial state based on proportions. successProbability = 0.5 initialState = bernoulli.rvs(successProbability) # Calculates initial prepicipitation. if initialState == 1: initialPrep = 1.0 else: initialPrep = 0.0 ## Create dataframe to simulate. simulationDataFrame = createTotalDataFrame(daysNumber= 30, startDate = startDate, initialState = initialState , initialPrep = initialPrep, ensoForecast = ensoForecast, optionMonthTerm = optionMonthTerm) ## Run all iterations. rainfallPerIteration = totalRun(simulationDataFrame, transitionsParametersDry, transitionsParametersWet, amountParametersGamma,iterations) ## Plot histogram. #plotRainfallDistribution(rainfallPerIteration) ## Print Statistics. #print(stats.describe(rainfallPerIteration)) return rainfallPerIteration ###Output _____no_output_____ ###Markdown Basic Simulation Simulation Function Core ###Code ### Build the simulation core. # Updates the state of the day based on yesterday state. def updateState_S(yesterdayDate, yesterdayState, monthTransitions): yesterdayMonth = yesterdayDate.month successProbability = monthTransitions['p'+str(yesterdayState)+'1'][yesterdayMonth] todayState = bernoulli.rvs(successProbability) return todayState # Simulates one run of simulation. def oneRun_S(daysNumber, startDate, initialState, monthTransitions,fittedGamma): # Create a variable to store the last day state. yesterdayState = initialState # Generate a timestamp with all days in simulation. dates = pd.date_range(startDate, periods=daysNumber, freq='D') # Define the total rainfall amount over the simulation. rainfall = 0 # Loop over days in simulation to calculate rainfall ammount. for day in dates: # Update today state based on the yesterday state. todayState = updateState_S(day-1, yesterdayState, monthTransitions) # Computes total accumulated rainfall. if todayState == 1: todayRainfall = gamma.rvs(fittedGamma['Shape'][0],fittedGamma['Loc'][0],fittedGamma['Scale'][0]) # Updates rainfall amount. rainfall += todayRainfall yesterdayState = todayState return rainfall ###Output _____no_output_____ ###Markdown Complete Simulation ###Code # Run total iterations. def totalRun_S(daysNumber,startDate,initialState, monthTransitionsProb,fittedGamma,iterations): # Initialize time startTime = time.time() # Array to store all precipitations. rainfallPerIteration = [None]*iterations # Loop over each iteration(simulation) for i in range(iterations): iterationRainfall = oneRun_S(daysNumber,startDate,initialState, monthTransitionsProb,fittedGamma) rainfallPerIteration[i] = iterationRainfall # Calculate time currentTime = time.time() - startTime # Logging time. print('The elapsed time over simulation is: ', currentTime, ' seconds.') return rainfallPerIteration #### Define parameters simulation. # Simulations iterations. iterations = 1000 # Transitions probabilites. monthTransitionsProb = pd.read_csv('../results/visibleMarkov/monthTransitions.csv', index_col=0) # Rainfall amount parameters( Gamma parameters) fittedGamma = pd.read_csv('../results/visibleMarkov/fittedGamma.csv', index_col=0) # Number of simulation days(i.e 30, 60) daysNumber = 30 # Simulation start date ('1995-04-22') startDate = '2018-08-18' # State of rainfall last day before start date --> Remember 0 means dry and 1 means wet. initialState = 1 def optionRainfallCalculator_S(iterations, startDate,initialState, monthTransitionsProb,fittedGamma, optionMonthTerm): ## Generates initial conditions. # Defines initial state based on proportions. successProbability = 0.5 initialState = bernoulli.rvs(successProbability) # Calculates initial prepicipitation. if initialState == 1: initialPrep = 1.0 else: initialPrep = 0.0 ## Create dataframe to simulate. simulationDataFrame = createTotalDataFrame(daysNumber= 30, startDate = startDate, initialState = initialState , initialPrep = initialPrep, ensoForecast = ensoForecast, optionMonthTerm = optionMonthTerm) daysNumber = 30 ## Run all iterations. rainfallPerIteration = totalRun_S(daysNumber,startDate,initialState, monthTransitionsProb,fittedGamma,iterations) ## Plot histogram. #plotRainfallDistribution(rainfallPerIteration) ## Print Statistics. #print(stats.describe(rainfallPerIteration)) return rainfallPerIteration ###Output _____no_output_____ ###Markdown Get USD Libor ###Code liborUSD2017 = [0.77333, 0.82000, 0.99872, 1.3176] # [1m, 3m, 6m, 12m ] ###Output _____no_output_____ ###Markdown Plotting final results ###Code def finalComparison(iterations, startDate, transitionsParametersDry, transitionsParametersWet, amountParametersGamma, strikePrices, interestRates): fig = plt.figure(figsize=(20, 10)) for strikePrice in strikePrices: rainfallOptionTo={} pricePerOption = {} for optionMonthTerm in range(1,8): rainfallOptionTo[optionMonthTerm] = optionRainfallCalculator(iterations, startDate, transitionsParametersDry, transitionsParametersWet, amountParametersGamma, optionMonthTerm) interestRate = interestRates pricePerOption[optionMonthTerm] = calculatePrice(strikePrice, interestRate, rainfallOptionTo[optionMonthTerm]) plotList = list(pricePerOption.values()) # Create Figure. ''' # Plot histogram. plt.hist(rainfallSimulated,facecolor='steelblue',bins=100, density=True, histtype='stepfilled', edgecolor = 'black' , hatch = '+') ''' x = range(1,8) plt.plot(x,plotList, label='Strike Price ='+ str(strikePrice)) # Add axis names. plt.title('Rainfall Option Simulation') plt.xlabel('Month') plt.ylabel('Price') plt.legend() plt.grid() plt.show() from mpl_toolkits.axes_grid1 import host_subplot import mpl_toolkits.axisartist as AA import matplotlib.pyplot as plt def finalComparisonGraph(iterations, startDate, transitionsParametersDry, transitionsParametersWet, amountParametersGamma, strikePrices, interestRates): plt.figure(figsize=(20, 10)) host = host_subplot(111, axes_class=AA.Axes) plt.subplots_adjust(right=0.75) count =1 for strikePrice in strikePrices: rainfallOptionTo={} pricePerOption = {} for optionMonthTerm in range(1,8): rainfallOptionTo[optionMonthTerm] = optionRainfallCalculator(iterations, startDate, transitionsParametersDry, transitionsParametersWet, amountParametersGamma, optionMonthTerm) interestRate = interestRates pricePerOption[optionMonthTerm] = calculatePrice(strikePrice, interestRate, rainfallOptionTo[optionMonthTerm]) plotList = list(pricePerOption.values()) # Create Figure. par = host.twinx() offset = 45 new_fixed_axis = par.get_grid_helper().new_fixed_axis par.axis["right"] = new_fixed_axis(loc="right", axes=par, offset=(offset*count, 0)) par.axis["right"].toggle(all=True) par.set_ylabel('Price') ''' # Plot histogram. plt.hist(rainfallSimulated,facecolor='steelblue',bins=100, density=True, histtype='stepfilled', edgecolor = 'black' , hatch = '+') ''' x = range(1,8) p, =par.plot(x,plotList, label='Strike Price ='+ str(strikePrice)) par.axis['right'].label.set_color(p.get_color()) count+=1 # Add axis names. plt.title('Rainfall Option Simulation') plt.xlabel('Month') plt.ylabel('Price') plt.legend() plt.grid() plt.show() from mpl_toolkits.axes_grid1 import host_subplot import mpl_toolkits.axisartist as AA import matplotlib.pyplot as plt def finalComparisonGraph_S(iterations, startDate,initialState, monthTransitionsProb,fittedGamma, strikePrices, interestRates): plt.figure(figsize=(20, 10)) host = host_subplot(111, axes_class=AA.Axes) plt.subplots_adjust(right=0.75) count =1 for strikePrice in strikePrices: rainfallOptionTo={} pricePerOption = {} for optionMonthTerm in range(1,8): rainfallOptionTo[optionMonthTerm] = optionRainfallCalculator_S(iterations, startDate, transitionsParametersDry, transitionsParametersWet, amountParametersGamma, optionMonthTerm) interestRate = interestRates pricePerOption[optionMonthTerm] = calculatePrice(strikePrice, interestRate, rainfallOptionTo[optionMonthTerm]) plotList = list(pricePerOption.values()) # Create Figure. par = host.twinx() offset = 45 new_fixed_axis = par.get_grid_helper().new_fixed_axis par.axis["right"] = new_fixed_axis(loc="right", axes=par, offset=(offset*count, 0)) par.axis["right"].toggle(all=True) par.set_ylabel('Price') ''' # Plot histogram. plt.hist(rainfallSimulated,facecolor='steelblue',bins=100, density=True, histtype='stepfilled', edgecolor = 'black' , hatch = '+') ''' x = range(1,8) p, =par.plot(x,plotList, label='Strike Price ='+ str(strikePrice)) par.axis['right'].label.set_color(p.get_color()) count+=1 # Add axis names. plt.title('Rainfall Option Simulation') plt.xlabel('Month') plt.ylabel('Price') plt.legend() plt.grid() plt.show() strikePrices = [25,50,75,100,125] finalComparison(iterations=500, startDate='2017-01-01', transitionsParametersDry= transitionsParametersDry , transitionsParametersWet = transitionsParametersWet, amountParametersGamma = amountParametersGamma, strikePrices=strikePrices, interestRates= 0.0235 ) strikePrices = [25,50,75,100,125] finalComparisonGraph(iterations=100, startDate='2017-01-01', transitionsParametersDry= transitionsParametersDry , transitionsParametersWet = transitionsParametersWet, amountParametersGamma = amountParametersGamma, strikePrices=strikePrices, interestRates= 0.0235 ) strikePrices = [50,100,150] finalComparisonGraph(iterations=200, startDate='2017-01-01', transitionsParametersDry= transitionsParametersDry , transitionsParametersWet = transitionsParametersWet, amountParametersGamma = amountParametersGamma, strikePrices=strikePrices, interestRates= 0.0235 ) strikePrices = [25,50,75,100,125] finalComparisonGraph_S(iterations=100, startDate='2017-01-01', transitionsParametersDry= transitionsParametersDry , transitionsParametersWet = transitionsParametersWet, amountParametersGamma = amountParametersGamma, strikePrices=strikePrices, interestRates= 0.0235 ) strikePrices = [50,100,150] finalComparisonGraph(iterations=200, startDate='2017-04-01', transitionsParametersDry= transitionsParametersDry , transitionsParametersWet = transitionsParametersWet, amountParametersGamma = amountParametersGamma, strikePrices=strikePrices, interestRates= 0.0235 ) ###Output _____no_output_____
Assignment9_Plotting Vector using NumPy and MatPlotLib.ipynb
###Markdown Plotting Vector using NumPy and MatPlotLib In this laboratory we will be discussing the basics of numerical and scientific programming by working with Vectors using NumPy and MatPlotLib. ObjectivesAt the end of this activity you will be able to:1. Be familiar with the libraries in Python for numerical and scientific programming.2. Visualize vectors through Python programming.3. Perform simple vector operations through code. **NumPy** * Numpy executes a massive variety of array-based mathematical operations.It enriches Python with advanced analytical structures that provide systematic calculations with arrays and matrices and a vast collection of elevated mathematical operations that function on these arrays and matrices. In lieu, the Numpy (np. array) class is represented by matrices and vectors. Whereas a vector is a single-dimensional array that represents magnitude with directions. Scalars \\Represent magnitude or a single valueVectors \\Represent magnitude with directions ***Representing Vectors*** Now that you know how to represent vectors using their component and matrix form we can now hard-code them in Python. Let's say that you have the vectors: $$ P = 13\hat{x} + 4\hat{y} \\J = 2\hat{x} + 8\hat{y}\\K = -3ax + 6ay - 3az \\D = 5\hat{i} + 2\hat{j} - 9\hat{k}$$ In which it's matrix equivalent is: $$ P = \begin{bmatrix} 13 \\ 4\end{bmatrix} , J = \begin{bmatrix} 2 \\ 8\end{bmatrix} , K = \begin{bmatrix} -3 \\ 6 \\ -3 \end{bmatrix}, D = \begin{bmatrix} 5 \\ 2 \\ -9\end{bmatrix}$$$$ P = \begin{bmatrix} 13 & 4\end{bmatrix} , J = \begin{bmatrix} 2 & 8\end{bmatrix} , K = \begin{bmatrix} -3 & 6 & -3\end{bmatrix} , D = \begin{bmatrix} 5 & 2 & -9\end{bmatrix} $$ We can then start doing numpy code with this by: ###Code ## Importing necessary libraries import numpy as np ## 'np' here is short-hand name of the library (numpy) or a nickname. P = np.array([0, 2]) A = np.array([-1, 2]) T = np.array([ [5], [5], [5] ]) Y = np.array ([[-2], [0], [-3]]) print('Vector P is ', P) print('Vector A is ', A) print('Vector T is ', T) print('Vector Y is ', Y) ###Output Vector P is [0 2] Vector A is [-1 2] Vector T is [[5] [5] [5]] Vector Y is [[-2] [ 0] [-3]] ###Markdown ***Describing Vectors in NumPy*** * Describing vectors is a fundamental step for the user in order to conduct basic to complex operations. It entails describing the shape, size, and dimensions of vectors which are the vital techniques used to describe them. ###Code ### Checking shapes ### Shapes declare how many elements are there on each row and column P.shape A = np.array([2, 1, -4, 2, -1.5, 3]) A.shape T.shape ### Checking size ### Array/Vector sizes declare the total number of elements are there in the vector Y.size ### Checking dimensions ### The dimensions or rank of a vector declare how many dimensions are there for the vector. T.ndim ###Output _____no_output_____ ###Markdown Good job! ✅ We are done checking shapes, sizes, and dimensions the next step is to explore performing operations with these vectors **ADDITION** * The operation of addition is straightforward; the users should simply add the elements of the matrices depending on their index. *For instance, adding vector $P$ and vector $B$ we will have a resulting vector:* $$R = 10\hat{x} -3\hat{y} \\ \\or \\ \\ R = \begin{bmatrix} 10 \\ -3\end{bmatrix} $$ Creating that in NumPy in various ways: ###Code R1 = np.add(T, Y) ## this is the functional method using the numpy library R2= np.add(T, A) R1,R2 R = P + Y ## this is the explicit method, since Python does a value-reference so it can ## know that these variables would need to do array operations. R R = np.add(T,A) R R = np.subtract(T,Y) R R = np.multiply(P,T) R R = np.divide(T,A) R pos1 = np.array([1,0,1]) pos2 = np.array([1,2,3]) pos3 = np.array([24,22,13]) pos4 = np.array([2,4,2]) R = pos1 + pos2 + pos3 + pos4 R pos1 = np.array([1,0,1]) pos2 = np.array([1,2,3]) pos3 = np.array([24,22,13]) pos4 = np.array([2,4,2]) R = np.multiply(pos3, pos4) R pos1 = np.array([1,0,1]) pos2 = np.array([1,2,3]) pos3 = np.array([24,22,13]) pos4 = np.array([2,4,2]) R = pos3 / pos4 R ###Output _____no_output_____ ###Markdown Try for yourself! Try to implement subtraction, multiplication, and division with vectors $V$ and $K$! ###Code ### Try out your code here! V = np.array([12, 28, 20]) K = np.array([2, 4, 6]) R = np.divide(V,K) R R = V - K R R = np.multiply(V,K) R ###Output _____no_output_____ ###Markdown **Scaling** * Scaling, also known as scalar multiplication, takes a scalar value and multiplies it with a vector. Let's take the example below: $$S = 13 \cdot P$$ We can do this in numpy through: ###Code #S = 13 * P S = np.multiply(13,P) S ###Output _____no_output_____ ###Markdown Try to implement scaling with two vectors. $$S = 12 \cdot T$$ ###Code #S = 12 * T S = np.multiply(12,T) S ###Output _____no_output_____ ###Markdown $$S = 3 \cdot A\cdot P$$ ###Code #S = 3 * A * P S = np.multiply(3,A,P) S ###Output _____no_output_____ ###Markdown $$S = A \cdot T$$ ###Code #S = A * T S = np.multiply(A, T) S S1 = np.multiply(2,A) S2 = np.multiply(P , Y) S1,S2 S = np.multiply(A,Y) S ###Output _____no_output_____ ###Markdown **MatPlotLib** * Matplotlib is a Python library that allows users to build static, animated, and collaborative plots. Numpy is a prerequisite for matplotlib, which employs numpy functions for numerical data and multi-dimensional arrays. ***Visualizing Data*** It may be useful to visualize these vectors in addition to solving them. For that, we'll employ MatPlotLib. Initially, we'll need to import it. ###Code import matplotlib.pyplot as plt import matplotlib %matplotlib inline A = [7, 8] B = [9, -4] plt.scatter(A[0], A[1], label='M', c='purple') plt.scatter(B[0], B[1], label='L', c='pink') plt.grid() plt.legend() plt.show() A = np.array([2, -1]) B = np.array([-1, 2]) R = A + B Magnitude = np.sqrt(np.sum(R**2)) print(Magnitude) plt.title("Resultant Vector\nMagnitude:{}" .format(Magnitude)) plt.xlim(-2, 3) plt.ylim(-3, 2) plt.quiver(0, 0, A[0], A[1], angles='xy', scale_units='xy', scale=1, color='orange') plt.quiver(A[0], A[1], B[0], B[1], angles='xy', scale_units='xy', scale=1, color='yellow') P = A + B plt.quiver(0, 0, R[0], R[1], angles='xy', scale_units='xy', scale=1, color='blue') plt.grid() plt.show() print(P) print(Magnitude) Slope = P[1]/P[0] print(Slope) Angle = (np.arctan(Slope))*(180/np.pi) print(Angle) n = P.shape[0] plt.xlim(-7, 7) plt.ylim(-7, 7) plt.quiver(0,0, A[0], A[1], angles='xy', scale_units='xy',scale=1, color='pink') plt.quiver(A[0],A[1], B[0], B[1], angles='xy', scale_units='xy',scale=1, color='gray') plt.quiver(0,0, R[0], R[1], angles='xy', scale_units='xy',scale=1, color='brown') plt.show() ###Output _____no_output_____ ###Markdown Try plotting Three Vectors and show the Resultant Vector as a result.Use Head to Tail Method. ###Code K = np.array([13, 1]) D = np.array([10, 5]) P = np.array ([7, 13]) B = K + D R = K + D + P Magnitude = np.sqrt(np.sum(R**2)) plt.title("Resultant Vector\nMagnitude:{}" .format(Magnitude)) plt.xlim(-35, 35) plt.ylim(-35, 35) plt.quiver(0, 0, K[0], K[1], angles='xy', scale_units='xy', scale=1, color='brown') plt.quiver(K[0], K[1], D[0], D[1], angles='xy', scale_units='xy', scale=1, color='violet') plt.quiver( B[0], B[1], P[0], P[1], angles='xy', scale_units='xy', scale=1, color='grey') plt.quiver(0, 0, R[0], R[1], angles='xy', scale_units='xy', scale=1, color='black') plt.grid() plt.show() print(R) print(Magnitude) Slope = R[1]/R[0] print(Slope) Angle = (np.arctan(Slope))*(180/np.pi) print(Angle) ###Output _____no_output_____
ESS_algorithm.ipynb
###Markdown Estimation of Stationary Sleep-segments (ESS) Algorithm Implementation It is described in this paper https://ieeexplore.ieee.org/abstract/document/7052479 ###Code import os import numpy as np from sklearn import metrics from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA from sklearn.model_selection import KFold #from google.colab import files ###Output _____no_output_____ ###Markdown Prepare data ###Code #data_path = os.path.join("/content/gdrive/My Drive/", "DRU-MAWI-project/ICHI14_dataset/data") data_path = os.path.join("ICHI14_dataset/data") patient_list = ['002','003','005','007','08a','08b','09a','09b', '10a','011',"012", '013','014','15a','15b','016', '017','018','019','020','021','022','023','025','026','027','028','029','030','031','032', '033','034','035','036','037','038','040','042','043','044','045','047','048','049', '050','051'] train_patient_list, test_patient_list = train_test_split(patient_list, random_state=152, test_size=0.3) test_patient_list, valid_patient_list = train_test_split(test_patient_list, random_state=151, test_size=0.5) print(len(patient_list)) print(len(train_patient_list)) print(len(valid_patient_list)) print(len(test_patient_list)) print(train_patient_list) print(valid_patient_list) print(test_patient_list) def change_labels(sample): """ Returns: sample - contains only label 1(awake) and 0(sleep) for polisomnography """ sample.gt[sample.gt==0] = 8 sample.gt[np.logical_or.reduce((sample.gt==1, sample.gt==2, sample.gt==3, sample.gt==5))] = 0 sample.gt[np.logical_or.reduce((sample.gt==6, sample.gt==7, sample.gt==8))] = 1 return sample #------------------------------------------------------------------------- def decoder(sample): ''' Returns: decoded_sample - contains accelerometer and ps data for each sensor record, ndarray of shape (n_records, 4) ''' sample = np.repeat(sample, sample.d, axis=0) n_records = sample.shape[0] decoded_sample = np.zeros((n_records, 4)) decoded_sample[:, 0] = sample.x decoded_sample[:, 1] = sample.y decoded_sample[:, 2] = sample.z decoded_sample[:, 3] = sample.gt return decoded_sample #------------------------------------------------------------------------- def divide_by_windows(decoded_sample, window_len=60): """ Parameters: wondow_len - length of each window in seconds, int Returns: X - accelerometer data, ndarray of shape (n_windows, window_len, 3) y - polisomnography data, ndarray of shape (n_windows, ) """ window_len *= 100 n_windows = decoded_sample.shape[0] // window_len X = np.zeros((n_windows, window_len, 3)) y = np.zeros(n_windows) for i in range(n_windows): X[i] = decoded_sample[window_len * i: window_len * i + window_len, 0: 3] ones = np.count_nonzero(decoded_sample[window_len*i: window_len*i+window_len, 3]) if ones >= (window_len / 2): y[i] = 1 else: y[i] = 0 return X, y #------------------------------------------------------------------------- def get_one_patient_data(data_path, patient, window_len=60): """ Returns: X, y - for one patient """ sample = np.load("%s/p%s.npy"%(data_path, patient)).view(np.recarray) sample = change_labels(sample) sample = decoder(sample) X, y = divide_by_windows(sample, window_len) return X, y #------------------------------------------------------------------------- def get_data_for_model(data_path, patient_list, window_len=60): """ Returns: X, y - for all patient list, ndarray of shape (n_records, n_features, n_channels=3) """ X_all_data = [] y_all_data = [] for patient in patient_list: X, y = get_one_patient_data(data_path, patient, window_len) X_all_data.append(X) y_all_data.append(y) X_all_data = np.concatenate(X_all_data, axis=0) y_all_data = np.concatenate(y_all_data, axis=0) return X_all_data, y_all_data #------------------------------------------------------------------------- def get_dawnsampled_data(data_path, patient_list, window_len=60, dawnsample="pca", n_components=10, n_windows=10): """ Parameters: dawnsample - "pca", "mean", "max", "mode", None - determine the type of data reducing Returns: X, y - reduced data for all patient list and combine several windows data, ndarray of shape (n_records, n_components * n_windows, n_channels=3) """ X_all_data = [] y_all_data = [] for patient in patient_list: X, y = get_one_patient_data(data_path, patient, window_len) if dawnsample.lower() == "pca": X = reduce_data_pca(X, n_components=n_components) elif dawnsample.lower() == "mean": X = reduce_data_mean(X, n_components=n_components) elif dawnsample.lower() == "max": X = reduce_data_max(X, n_components=n_components) elif dawnsample.lower() == "mode": X = reduce_data_mode(X, n_components=n_components) elif dawnsample.lower() == "simple": X = reduce_data_simple(X, n_components=n_components) elif dawnsample.lower() == "statistic": X = reduce_data_statistic(X, n_components=n_components) elif dawnsample.lower() == "ess": X = reduce_data_ess(X, n_components=n_components) X_new = np.zeros((X.shape[0] - n_windows, X.shape[1] * (n_windows + 1), X.shape[2])) for i in range(0, X.shape[0] - n_windows): X_buff = X[i] for j in range(1, n_windows + 1): X_buff = np.concatenate([X_buff, X[i+j]], axis=0) X_new[i] = X_buff if n_windows != 0: y = y[(n_windows//2): -(n_windows//2)] X_all_data.append(X_new) y_all_data.append(y) #np.save(("X_p%s.npy"%(patient)), X_new) #np.save(("y_p%s.npy"%(patient)), y) X_all_data = np.concatenate(X_all_data, axis=0) y_all_data = np.concatenate(y_all_data, axis=0) return X_all_data, y_all_data def reduce_data_pca(X, n_components=300): """ Parameters: X - ndarray of shape (n_samples, n_features) Returns: X, y - reduced data, ndarray of shape (n_records, n_features, n_channels=3) """ pca1 = PCA(n_components) pca2 = PCA(n_components) pca3 = PCA(n_components) pca1.fit(X[:, :, 0]) pca2.fit(X[:, :, 1]) pca3.fit(X[:, :, 2]) X1 = pca1.transform(X[:, :, 0]) X2 = pca2.transform(X[:, :, 1]) X3 = pca3.transform(X[:, :, 2]) X_reduced = np.concatenate([X1, X2, X3], axis=1).reshape(X.shape[0], n_components, 3) return X_reduced def reduce_data_max(X, n_components=600): """ Parameters: X - ndarray of shape (n_samples, n_features) Returns: X, y - reduced data, ndarray of shape (n_records, n_components, n_channels=3) """ X_reduced = np.zeros((X.shape[0], n_components, 3)) window_len = X.shape[1] // n_components for i in range(n_components): X_reduced[:, i, :] = np.amax(X[:, i * window_len: (i + 1) * window_len, :], axis=1) X_reduced = X_reduced.reshape(X.shape[0], n_components, 3) return X_reduced def reduce_data_mean(X, n_components=600): """ Parameters: X - ndarray of shape (n_samples, n_features) Returns: X, y - reduced data, ndarray of shape (n_records, n_components, n_channels=3) """ X_reduced = np.zeros((X.shape[0], n_components, 3)) window_len = X.shape[1] // n_components for i in range(n_components): X_reduced[:, i, :] = np.mean(X[:, i * window_len: (i + 1) * window_len, :], axis=1) X_reduced = X_reduced.reshape(X.shape[0], n_components, 3) return X_reduced def reduce_data_mode(X, n_components=600): """ Parameters: X - ndarray of shape (n_samples, n_features) Returns: X, y - reduced data, ndarray of shape (n_records, n_components, n_channels=3) """ from scipy.stats import mode X_reduced = np.zeros((X.shape[0], n_components, 3)) window_len = X.shape[1] // n_components for i in range(n_components): X_reduced[:, i, :] = mode(X[:, i * window_len: (i + 1) * window_len, :], axis=1) X_reduced = X_reduced.reshape(X.shape[0], n_components, 3) return X_reduced def reduce_data_simple(X, n_components=600): """ Parameters: X - ndarray of shape (n_samples, n_features) Returns: X, y - reduced data, ndarray of shape (n_records, n_components, n_channels=3) """ X_reduced = np.zeros((X.shape[0], n_components, 3)) window_len = X.shape[1] // n_components for i in range(n_components): X_reduced[:, i, :] = X[:, i * window_len, :] X_reduced = X_reduced.reshape(X.shape[0], n_components, 3) return X_reduced def reduce_data_statistics(X, n_components=600): """ Parameters: X - ndarray of shape (n_samples, n_features) Returns: X, y - reduced data, ndarray of shape (n_records, n_components, n_channels=3) """ X_reduced = np.zeros((X.shape[0], n_components, 3)) window_len = X.shape[1] // n_components for i in range(n_components): X_reduced[:, i, :] = np.std(X[:, i * window_len: (i + 1) * window_len, :], axis=1) X_reduced = X_reduced.reshape(X.shape[0], n_components, 3) return X_reduced def reduce_data_ess(X, n_components=1): """ Parameters: X - ndarray of shape (n_samples, n_features) Returns: X, y - reduced data, ndarray of shape (n_records, n_components, n_channels=1) """ X_reduced = np.zeros((X.shape[0], n_components, 1)) window_len = X.shape[1] // n_components for i in range(n_components): X_reduced[:, i, 0] = np.std(X[:, i * window_len: (i + 1) * window_len, 2], axis=1) X_reduced = X_reduced.reshape(X.shape[0], n_components, 1) return X_reduced %%time X_train, y_train = get_dawnsampled_data(data_path, train_patient_list, window_len=1, dawnsample="ess", n_components=1, n_windows=0) X_valid, y_valid = get_dawnsampled_data(data_path, valid_patient_list, window_len=1, dawnsample="ess", n_components=1, n_windows=0) X_test, y_test = get_dawnsampled_data(data_path, test_patient_list, window_len=1, dawnsample="ess", n_components=1, n_windows=0) print(X_train.shape) print(y_train.shape) print(X_valid.shape) print(X_test.shape) ###Output (987195, 1, 1) (987195,) (230140, 1, 1) (219281, 1, 1) ###Markdown ESS algorithm ###Code def compare_std_with_threshold(X_std, std_threshold=6): X = np.zeros(X_std.shape) X[X_std > std_threshold] = 1 return np.squeeze(X) def ess_divide_res_for_windows(y, window_len=60): """ 1 -awake, 0 - sleep Parameters: windows_len - int, in seconds - for comparison with same windows in other algorithms """ n_windows = y.shape[0] // window_len y_new = np.zeros(n_windows) for i in range(n_windows): ones = np.count_nonzero(y[window_len * i: window_len * i + window_len]) if ones >= (window_len / 2): y_new[i] = 1 else: y_new[i] = 0 return np.squeeze(y_new) def ess_predict(X, std_threshold=6, interval=600, window_len=1): """ Parameters: windows_len - int, in seconds - for comparison with same windows in other algorithms """ X = compare_std_with_threshold(X, std_threshold=std_threshold) count = 0 y = np.ones(X.shape[0]) for i in range(X.shape[0]): if X[i] == 0: count += 1 if count >= interval: y[i - interval + 1: i + 1] = 0 else: count = 0 if window_len > 1: y = ess_divide_res_for_windows(y, window_len=window_len) return y y_train = ess_divide_res_for_windows(y_train, window_len=60) y_valid = ess_divide_res_for_windows(y_valid, window_len=60) y_test = ess_divide_res_for_windows(y_test, window_len=60) print(y_train.shape) print(y_valid.shape) print(y_test.shape) y_predict = ess_predict(X_test, window_len=60) y_predict.shape from sklearn import metrics print("\nTrain set result: ") print(metrics.classification_report(y_test, y_predict)) print("Confussion matrix: \n", metrics.confusion_matrix(y_test, y_predict)) accuracy = metrics.accuracy_score(y_test, y_predict) print("\nAccuracy on train set: ", accuracy) y_predict = ess_predict(X_train, window_len=60) print("\nTrain set result: ") print(metrics.classification_report(y_train, y_predict)) print("Confussion matrix: \n", metrics.confusion_matrix(y_train, y_predict)) accuracy = metrics.accuracy_score(y_train, y_predict) print("\nAccuracy on train set: ", accuracy) y_predict = ess_predict(X_valid, window_len=60) print("\nValid set result: ") print(metrics.classification_report(y_valid, y_predict)) print("Confussion matrix: \n", metrics.confusion_matrix(y_valid, y_predict)) accuracy = metrics.accuracy_score(y_valid, y_predict) print("\nAccuracy on valid set: ", accuracy) y_predict = ess_predict(X_test, window_len=60) print("\nTest set result: ") print(metrics.classification_report(y_test, y_predict)) print("Confussion matrix: \n", metrics.confusion_matrix(y_test, y_predict)) accuracy = metrics.accuracy_score(y_test, y_predict) print("\nAccuracy on test set: ", accuracy) X_all, y_all = get_dawnsampled_data(data_path, patient_list, window_len=1, dawnsample="ess", n_components=1, n_windows=0) print(X_all.shape) print(y_all.shape) y_predict = ess_predict(X_all, window_len=60) y_all = ess_divide_res_for_windows(y_all, window_len=60) print(y_all.shape) print(y_predict.shape) print("\nAll set result: ") print(metrics.classification_report(y_all, y_predict)) print("Confussion matrix: \n", metrics.confusion_matrix(y_all, y_predict)) accuracy = metrics.accuracy_score(y_all, y_predict) print("\nAccuracy on all set: ", accuracy) X_all, y_all = get_dawnsampled_data(data_path, ["033"], window_len=1, dawnsample="ess", n_components=1, n_windows=0) print(X_all.shape) print(y_all.shape) y_predict = ess_predict(X_all, window_len=60) y_all = ess_divide_res_for_windows(y_all, window_len=60) print(y_all.shape) print(y_predict.shape) print("\nAll set result: ") print(metrics.classification_report(y_all, y_predict)) print("Confussion matrix: \n", metrics.confusion_matrix(y_all, y_predict)) accuracy = metrics.accuracy_score(y_all, y_predict) print("\nAccuracy on all set: ", accuracy) import seaborn as sns import matplotlib.pyplot as plt plt.rc('figure', figsize=(20, 5), dpi=90, facecolor='w', edgecolor='k') ax1 = plt.subplot() ax1.plot(y_predict) ax1.set_ylim([0, 1.1]) plt.rc('figure', figsize=(20, 5), dpi=90, facecolor='w', edgecolor='k') ax1 = plt.subplot() ax1.plot(y_all) ax1.set_ylim([0, 1.1]) ###Output _____no_output_____ ###Markdown Calculate median accuracy: ###Code accuracy_list = [] for patient in patient_list: X, y = get_dawnsampled_data(data_path, [patient], window_len=1, dawnsample="ess", n_components=1, n_windows=0) y_predict = ess_predict(X, window_len=1) y = ess_divide_res_for_windows(y, window_len=1) accuracy = metrics.accuracy_score(y, y_predict) accuracy_list.append(accuracy) np.median(accuracy_list) np.mean(accuracy_list) max(accuracy_list) len(accuracy_list) kf = KFold(n_splits=5, random_state=5, shuffle=True) # Define the split - into 3 folds kf.get_n_splits(patient_list) # returns the number of splitting iterations in the cross-validator n_others_windows = 30 %%time accuracy_list = [] f1_score_list = [] for train_index, test_index in kf.split(patient_list): train_patient_list = [patient_list[i] for i in train_index] test_patient_list = [patient_list[i] for i in test_index] X_train, y_train = get_dawnsampled_data(data_path, train_patient_list, window_len=1, dawnsample="ess", n_components=1, n_windows=0) X_test, y_test = get_dawnsampled_data(data_path, test_patient_list, window_len=1, dawnsample="ess", n_components=1, n_windows=0) y_predict = ess_predict(X_train, window_len=60) y_train = ess_divide_res_for_windows(y_train, window_len=60) print("/Train set results:") accuracy_train = metrics.accuracy_score(y_train, y_predict) f1_train = metrics.f1_score(y_train, y_predict) print("Accuracy on train set: ", accuracy_train) print("F1-score on train set: ", f1_train) y_predict = ess_predict(X_test, window_len=60) y_test = ess_divide_res_for_windows(y_test, window_len=60) print("/Test set results:") f1_test = metrics.f1_score(y_test, y_predict) accuracy_list.append(accuracy) f1_score_list.append(f1_test) print("Accuracy on test set: ", accuracy) print("F1-score on test set: ", f1_test) print(metrics.classification_report(y_test, y_predict, target_names=["sleep", "awake"])) print("Confussion matrix: \n", metrics.confusion_matrix(y_test, y_predict)) print("\n-------------------------------------------------------") print("\nMean accuracy =", np.mean(accuracy_list)) print("\nMean f1-score =", np.mean(f1_score_list)) ###Output /Train set results: Accuracy on train set: 0.731198808637379 F1-score on train set: 0.6560500884714849 /Test set results: Accuracy on test set: 0.7309417040358744 F1-score on test set: 0.6312308055752421 precision recall f1-score support sleep 0.64 0.88 0.74 2545 awake 0.82 0.51 0.63 2596 avg / total 0.73 0.70 0.69 5141 Confussion matrix: [[2244 301] [1260 1336]] ------------------------------------------------------- /Train set results: Accuracy on train set: 0.7222222222222222 F1-score on train set: 0.647145144076841 /Test set results: Accuracy on test set: 0.7309417040358744 F1-score on test set: 0.664289353031075 precision recall f1-score support sleep 0.68 0.91 0.78 2503 awake 0.85 0.54 0.66 2395 avg / total 0.76 0.73 0.72 4898 Confussion matrix: [[2276 227] [1091 1304]] ------------------------------------------------------- /Train set results: Accuracy on train set: 0.7116985845129059 F1-score on train set: 0.6406331084587442 /Test set results: Accuracy on test set: 0.7309417040358744 F1-score on test set: 0.6939007092198581 precision recall f1-score support sleep 0.74 0.92 0.82 2631 awake 0.86 0.58 0.69 2096 avg / total 0.79 0.77 0.76 4727 Confussion matrix: [[2425 206] [ 873 1223]] ------------------------------------------------------- /Train set results: Accuracy on train set: 0.7323035314921724 F1-score on train set: 0.6585737976782753 /Test set results: Accuracy on test set: 0.7309417040358744 F1-score on test set: 0.6190228690228691 precision recall f1-score support sleep 0.67 0.82 0.74 2519 awake 0.72 0.54 0.62 2197 avg / total 0.69 0.69 0.68 4716 Confussion matrix: [[2059 460] [1006 1191]] ------------------------------------------------------- /Train set results: Accuracy on train set: 0.7210388543858749 F1-score on train set: 0.6498292635783777 /Test set results: Accuracy on test set: 0.7309417040358744 F1-score on test set: 0.6495327102803738 precision recall f1-score support sleep 0.71 0.87 0.78 2466 awake 0.78 0.56 0.65 1994 avg / total 0.74 0.73 0.72 4460 Confussion matrix: [[2148 318] [ 882 1112]] ------------------------------------------------------- Mean accuracy = 0.7309417040358744 Mean f1-score = 0.6515952894258836 Wall time: 1min 36s
site/en-snapshot/federated/tutorials/simulations.ipynb
###Markdown High-performance simulations with TFFThis tutorial will describe how to setup high-performance simulations with TFFin a variety of common scenarios.TODO(b/134543154): Populate the content, some of the things to cover here:- using GPUs in a single-machine setup,- multi-machine setup on GCP/GKE, with and without TPUs,- interfacing MapReduce-like backends,- current limitations and when/how they will be relaxed. View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook Before we beginFirst, make sure your notebook is connected to a backend that has the relevantcomponents (including gRPC dependencies for multi-machine scenarios) compiled. Now, let's start by loading the MNIST example from the TFF website, anddeclaring the Python function that will run a small experiment loop overa group of 10 clients. ###Code #@test {"skip": true} !pip install --quiet --upgrade tensorflow-federated-nightly !pip install --quiet --upgrade nest-asyncio import nest_asyncio nest_asyncio.apply() import collections import time import tensorflow as tf import tensorflow_federated as tff source, _ = tff.simulation.datasets.emnist.load_data() def map_fn(example): return collections.OrderedDict( x=tf.reshape(example['pixels'], [-1, 784]), y=example['label']) def client_data(n): ds = source.create_tf_dataset_for_client(source.client_ids[n]) return ds.repeat(10).shuffle(500).batch(20).map(map_fn) train_data = [client_data(n) for n in range(10)] element_spec = train_data[0].element_spec def model_fn(): model = tf.keras.models.Sequential([ tf.keras.layers.Input(shape=(784,)), tf.keras.layers.Dense(units=10, kernel_initializer='zeros'), tf.keras.layers.Softmax(), ]) return tff.learning.from_keras_model( model, input_spec=element_spec, loss=tf.keras.losses.SparseCategoricalCrossentropy(), metrics=[tf.keras.metrics.SparseCategoricalAccuracy()]) trainer = tff.learning.build_federated_averaging_process( model_fn, client_optimizer_fn=lambda: tf.keras.optimizers.SGD(0.02)) def evaluate(num_rounds=10): state = trainer.initialize() for _ in range(num_rounds): t1 = time.time() state, metrics = trainer.next(state, train_data) t2 = time.time() print('metrics {m}, round time {t:.2f} seconds'.format( m=metrics, t=t2 - t1)) ###Output _____no_output_____ ###Markdown Single-machine simulationsNow on by default. ###Code evaluate() ###Output metrics <sparse_categorical_accuracy=0.13858024775981903,loss=3.0073554515838623>, round time 3.59 seconds metrics <sparse_categorical_accuracy=0.1796296238899231,loss=2.749046802520752>, round time 2.29 seconds metrics <sparse_categorical_accuracy=0.21656379103660583,loss=2.514779567718506>, round time 2.33 seconds metrics <sparse_categorical_accuracy=0.2637860178947449,loss=2.312587261199951>, round time 2.06 seconds metrics <sparse_categorical_accuracy=0.3334362208843231,loss=2.068122386932373>, round time 2.00 seconds metrics <sparse_categorical_accuracy=0.3737654387950897,loss=1.9268712997436523>, round time 2.42 seconds metrics <sparse_categorical_accuracy=0.4296296238899231,loss=1.7216310501098633>, round time 2.20 seconds metrics <sparse_categorical_accuracy=0.4655349850654602,loss=1.6489890813827515>, round time 2.18 seconds metrics <sparse_categorical_accuracy=0.5048353672027588,loss=1.5485210418701172>, round time 2.16 seconds metrics <sparse_categorical_accuracy=0.5564814805984497,loss=1.4140453338623047>, round time 2.41 seconds ###Markdown High-performance simulations with TFFThis tutorial will describe how to setup high-performance simulations with TFFin a variety of common scenarios.TODO(b/134543154): Populate the content, some of the things to cover here:- using GPUs in a single-machine setup,- multi-machine setup on GCP/GKE, with and without TPUs,- interfacing MapReduce-like backends,- current limitations and when/how they will be relaxed. Before we beginFirst, make sure your notebook is connected to a backend that has the relevantcomponents (including gRPC dependencies for multi-machine scenarios) compiled. Now, let's start by loading the MNIST example from the TFF website, anddeclaring the Python function that will run a small experiment loop overa group of 10 clients. ###Code #@test {"skip": true} !pip install --quiet --upgrade tensorflow_federated_nightly !pip install --quiet --upgrade nest_asyncio import nest_asyncio nest_asyncio.apply() import collections import time import tensorflow as tf import tensorflow_federated as tff source, _ = tff.simulation.datasets.emnist.load_data() def map_fn(example): return collections.OrderedDict( x=tf.reshape(example['pixels'], [-1, 784]), y=example['label']) def client_data(n): ds = source.create_tf_dataset_for_client(source.client_ids[n]) return ds.repeat(10).shuffle(500).batch(20).map(map_fn) train_data = [client_data(n) for n in range(10)] element_spec = train_data[0].element_spec def model_fn(): model = tf.keras.models.Sequential([ tf.keras.layers.Input(shape=(784,)), tf.keras.layers.Dense(units=10, kernel_initializer='zeros'), tf.keras.layers.Softmax(), ]) return tff.learning.from_keras_model( model, input_spec=element_spec, loss=tf.keras.losses.SparseCategoricalCrossentropy(), metrics=[tf.keras.metrics.SparseCategoricalAccuracy()]) trainer = tff.learning.build_federated_averaging_process( model_fn, client_optimizer_fn=lambda: tf.keras.optimizers.SGD(0.02)) def evaluate(num_rounds=10): state = trainer.initialize() for _ in range(num_rounds): t1 = time.time() state, metrics = trainer.next(state, train_data) t2 = time.time() print('metrics {m}, round time {t:.2f} seconds'.format( m=metrics, t=t2 - t1)) ###Output _____no_output_____ ###Markdown Single-machine simulationsNow on by default. ###Code evaluate() ###Output metrics <sparse_categorical_accuracy=0.13858024775981903,loss=3.0073554515838623>, round time 3.59 seconds metrics <sparse_categorical_accuracy=0.1796296238899231,loss=2.749046802520752>, round time 2.29 seconds metrics <sparse_categorical_accuracy=0.21656379103660583,loss=2.514779567718506>, round time 2.33 seconds metrics <sparse_categorical_accuracy=0.2637860178947449,loss=2.312587261199951>, round time 2.06 seconds metrics <sparse_categorical_accuracy=0.3334362208843231,loss=2.068122386932373>, round time 2.00 seconds metrics <sparse_categorical_accuracy=0.3737654387950897,loss=1.9268712997436523>, round time 2.42 seconds metrics <sparse_categorical_accuracy=0.4296296238899231,loss=1.7216310501098633>, round time 2.20 seconds metrics <sparse_categorical_accuracy=0.4655349850654602,loss=1.6489890813827515>, round time 2.18 seconds metrics <sparse_categorical_accuracy=0.5048353672027588,loss=1.5485210418701172>, round time 2.16 seconds metrics <sparse_categorical_accuracy=0.5564814805984497,loss=1.4140453338623047>, round time 2.41 seconds ###Markdown High-performance simulations with TFFThis tutorial will describe how to setup high-performance simulations with TFFin a variety of common scenarios.TODO(b/134543154): Populate the content, some of the things to cover here:- using GPUs in a single-machine setup,- multi-machine setup on GCP/GKE, with and without TPUs,- interfacing MapReduce-like backends,- current limitations and when/how they will be relaxed. Before we beginFirst, make sure your notebook is connected to a backend that has the relevantcomponents (including gRPC dependencies for multi-machine scenarios) compiled. Now, let's start by loading the MNIST example from the TFF website, anddeclaring the Python function that will run a small experiment loop overa group of 10 clients. ###Code #@test {"skip": true} !pip install --quiet --upgrade tensorflow_federated_nightly !pip install --quiet --upgrade nest_asyncio import nest_asyncio nest_asyncio.apply() import collections import time import tensorflow as tf import tensorflow_federated as tff source, _ = tff.simulation.datasets.emnist.load_data() def map_fn(example): return collections.OrderedDict( x=tf.reshape(example['pixels'], [-1, 784]), y=example['label']) def client_data(n): ds = source.create_tf_dataset_for_client(source.client_ids[n]) return ds.repeat(10).shuffle(500).batch(20).map(map_fn) train_data = [client_data(n) for n in range(10)] element_spec = train_data[0].element_spec def model_fn(): model = tf.keras.models.Sequential([ tf.keras.layers.Input(shape=(784,)), tf.keras.layers.Dense(units=10, kernel_initializer='zeros'), tf.keras.layers.Softmax(), ]) return tff.learning.from_keras_model( model, input_spec=element_spec, loss=tf.keras.losses.SparseCategoricalCrossentropy(), metrics=[tf.keras.metrics.SparseCategoricalAccuracy()]) trainer = tff.learning.build_federated_averaging_process( model_fn, client_optimizer_fn=lambda: tf.keras.optimizers.SGD(0.02)) def evaluate(num_rounds=10): state = trainer.initialize() for _ in range(num_rounds): t1 = time.time() state, metrics = trainer.next(state, train_data) t2 = time.time() print('metrics {m}, round time {t:.2f} seconds'.format( m=metrics, t=t2 - t1)) ###Output _____no_output_____ ###Markdown Single-machine simulationsNow on by default. ###Code evaluate() ###Output metrics <sparse_categorical_accuracy=0.13858024775981903,loss=3.0073554515838623>, round time 3.59 seconds metrics <sparse_categorical_accuracy=0.1796296238899231,loss=2.749046802520752>, round time 2.29 seconds metrics <sparse_categorical_accuracy=0.21656379103660583,loss=2.514779567718506>, round time 2.33 seconds metrics <sparse_categorical_accuracy=0.2637860178947449,loss=2.312587261199951>, round time 2.06 seconds metrics <sparse_categorical_accuracy=0.3334362208843231,loss=2.068122386932373>, round time 2.00 seconds metrics <sparse_categorical_accuracy=0.3737654387950897,loss=1.9268712997436523>, round time 2.42 seconds metrics <sparse_categorical_accuracy=0.4296296238899231,loss=1.7216310501098633>, round time 2.20 seconds metrics <sparse_categorical_accuracy=0.4655349850654602,loss=1.6489890813827515>, round time 2.18 seconds metrics <sparse_categorical_accuracy=0.5048353672027588,loss=1.5485210418701172>, round time 2.16 seconds metrics <sparse_categorical_accuracy=0.5564814805984497,loss=1.4140453338623047>, round time 2.41 seconds ###Markdown High-performance simulations with TFFThis tutorial will describe how to setup high-performance simulations with TFFin a variety of common scenarios.TODO(b/134543154): Populate the content, some of the things to cover here:- using GPUs in a single-machine setup,- multi-machine setup on GCP/GKE, with and without TPUs,- interfacing MapReduce-like backends,- current limitations and when/how they will be relaxed. View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook Before we beginFirst, make sure your notebook is connected to a backend that has the relevantcomponents (including gRPC dependencies for multi-machine scenarios) compiled. Now, let's start by loading the MNIST example from the TFF website, anddeclaring the Python function that will run a small experiment loop overa group of 10 clients. ###Code #@test {"skip": true} !pip install --quiet --upgrade tensorflow-federated-nightly !pip install --quiet --upgrade nest-asyncio import nest_asyncio nest_asyncio.apply() import collections import time import tensorflow as tf import tensorflow_federated as tff source, _ = tff.simulation.datasets.emnist.load_data() def map_fn(example): return collections.OrderedDict( x=tf.reshape(example['pixels'], [-1, 784]), y=example['label']) def client_data(n): ds = source.create_tf_dataset_for_client(source.client_ids[n]) return ds.repeat(10).shuffle(500).batch(20).map(map_fn) train_data = [client_data(n) for n in range(10)] element_spec = train_data[0].element_spec def model_fn(): model = tf.keras.models.Sequential([ tf.keras.layers.InputLayer(input_shape=(784,)), tf.keras.layers.Dense(units=10, kernel_initializer='zeros'), tf.keras.layers.Softmax(), ]) return tff.learning.from_keras_model( model, input_spec=element_spec, loss=tf.keras.losses.SparseCategoricalCrossentropy(), metrics=[tf.keras.metrics.SparseCategoricalAccuracy()]) trainer = tff.learning.build_federated_averaging_process( model_fn, client_optimizer_fn=lambda: tf.keras.optimizers.SGD(0.02)) def evaluate(num_rounds=10): state = trainer.initialize() for _ in range(num_rounds): t1 = time.time() state, metrics = trainer.next(state, train_data) t2 = time.time() print('metrics {m}, round time {t:.2f} seconds'.format( m=metrics, t=t2 - t1)) ###Output _____no_output_____ ###Markdown Single-machine simulationsNow on by default. ###Code evaluate() ###Output metrics <sparse_categorical_accuracy=0.13858024775981903,loss=3.0073554515838623>, round time 3.59 seconds metrics <sparse_categorical_accuracy=0.1796296238899231,loss=2.749046802520752>, round time 2.29 seconds metrics <sparse_categorical_accuracy=0.21656379103660583,loss=2.514779567718506>, round time 2.33 seconds metrics <sparse_categorical_accuracy=0.2637860178947449,loss=2.312587261199951>, round time 2.06 seconds metrics <sparse_categorical_accuracy=0.3334362208843231,loss=2.068122386932373>, round time 2.00 seconds metrics <sparse_categorical_accuracy=0.3737654387950897,loss=1.9268712997436523>, round time 2.42 seconds metrics <sparse_categorical_accuracy=0.4296296238899231,loss=1.7216310501098633>, round time 2.20 seconds metrics <sparse_categorical_accuracy=0.4655349850654602,loss=1.6489890813827515>, round time 2.18 seconds metrics <sparse_categorical_accuracy=0.5048353672027588,loss=1.5485210418701172>, round time 2.16 seconds metrics <sparse_categorical_accuracy=0.5564814805984497,loss=1.4140453338623047>, round time 2.41 seconds ###Markdown High-performance simulations with TFFThis tutorial will describe how to setup high-performance simulations with TFFin a variety of common scenarios.TODO(b/134543154): Populate the content, some of the things to cover here:- using GPUs in a single-machine setup,- multi-machine setup on GCP/GKE, with and without TPUs,- interfacing MapReduce-like backends,- current limitations and when/how they will be relaxed. View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook Before we beginFirst, make sure your notebook is connected to a backend that has the relevantcomponents (including gRPC dependencies for multi-machine scenarios) compiled. Now, let's start by loading the MNIST example from the TFF website, anddeclaring the Python function that will run a small experiment loop overa group of 10 clients. ###Code #@test {"skip": true} !pip install --quiet --upgrade tensorflow-federated !pip install --quiet --upgrade nest-asyncio import nest_asyncio nest_asyncio.apply() import collections import time import tensorflow as tf import tensorflow_federated as tff source, _ = tff.simulation.datasets.emnist.load_data() def map_fn(example): return collections.OrderedDict( x=tf.reshape(example['pixels'], [-1, 784]), y=example['label']) def client_data(n): ds = source.create_tf_dataset_for_client(source.client_ids[n]) return ds.repeat(10).shuffle(500).batch(20).map(map_fn) train_data = [client_data(n) for n in range(10)] element_spec = train_data[0].element_spec def model_fn(): model = tf.keras.models.Sequential([ tf.keras.layers.InputLayer(input_shape=(784,)), tf.keras.layers.Dense(units=10, kernel_initializer='zeros'), tf.keras.layers.Softmax(), ]) return tff.learning.from_keras_model( model, input_spec=element_spec, loss=tf.keras.losses.SparseCategoricalCrossentropy(), metrics=[tf.keras.metrics.SparseCategoricalAccuracy()]) trainer = tff.learning.build_federated_averaging_process( model_fn, client_optimizer_fn=lambda: tf.keras.optimizers.SGD(0.02)) def evaluate(num_rounds=10): state = trainer.initialize() for _ in range(num_rounds): t1 = time.time() state, metrics = trainer.next(state, train_data) t2 = time.time() print('metrics {m}, round time {t:.2f} seconds'.format( m=metrics, t=t2 - t1)) ###Output _____no_output_____ ###Markdown Single-machine simulationsNow on by default. ###Code evaluate() ###Output metrics <sparse_categorical_accuracy=0.13858024775981903,loss=3.0073554515838623>, round time 3.59 seconds metrics <sparse_categorical_accuracy=0.1796296238899231,loss=2.749046802520752>, round time 2.29 seconds metrics <sparse_categorical_accuracy=0.21656379103660583,loss=2.514779567718506>, round time 2.33 seconds metrics <sparse_categorical_accuracy=0.2637860178947449,loss=2.312587261199951>, round time 2.06 seconds metrics <sparse_categorical_accuracy=0.3334362208843231,loss=2.068122386932373>, round time 2.00 seconds metrics <sparse_categorical_accuracy=0.3737654387950897,loss=1.9268712997436523>, round time 2.42 seconds metrics <sparse_categorical_accuracy=0.4296296238899231,loss=1.7216310501098633>, round time 2.20 seconds metrics <sparse_categorical_accuracy=0.4655349850654602,loss=1.6489890813827515>, round time 2.18 seconds metrics <sparse_categorical_accuracy=0.5048353672027588,loss=1.5485210418701172>, round time 2.16 seconds metrics <sparse_categorical_accuracy=0.5564814805984497,loss=1.4140453338623047>, round time 2.41 seconds ###Markdown High-performance simulations with TFFThis tutorial will describe how to setup high-performance simulations with TFFin a variety of common scenarios.TODO(b/134543154): Populate the content, some of the things to cover here:- using GPUs in a single-machine setup,- multi-machine setup on GCP/GKE, with and without TPUs,- interfacing MapReduce-like backends,- current limitations and when/how they will be relaxed. View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook Before we beginFirst, make sure your notebook is connected to a backend that has the relevantcomponents (including gRPC dependencies for multi-machine scenarios) compiled. Now, let's start by loading the MNIST example from the TFF website, anddeclaring the Python function that will run a small experiment loop overa group of 10 clients. ###Code #@test {"skip": true} !pip install --quiet --upgrade tensorflow-federated-nightly !pip install --quiet --upgrade nest-asyncio import nest_asyncio nest_asyncio.apply() import collections import time import tensorflow as tf import tensorflow_federated as tff source, _ = tff.simulation.datasets.emnist.load_data() def map_fn(example): return collections.OrderedDict( x=tf.reshape(example['pixels'], [-1, 784]), y=example['label']) def client_data(n): ds = source.create_tf_dataset_for_client(source.client_ids[n]) return ds.repeat(10).shuffle(500).batch(20).map(map_fn) train_data = [client_data(n) for n in range(10)] element_spec = train_data[0].element_spec def model_fn(): model = tf.keras.models.Sequential([ tf.keras.layers.InputLayer(input_shape=(784,)), tf.keras.layers.Dense(units=10, kernel_initializer='zeros'), tf.keras.layers.Softmax(), ]) return tff.learning.from_keras_model( model, input_spec=element_spec, loss=tf.keras.losses.SparseCategoricalCrossentropy(), metrics=[tf.keras.metrics.SparseCategoricalAccuracy()]) trainer = tff.learning.build_federated_averaging_process( model_fn, client_optimizer_fn=lambda: tf.keras.optimizers.SGD(0.02)) def evaluate(num_rounds=10): state = trainer.initialize() for _ in range(num_rounds): t1 = time.time() state, metrics = trainer.next(state, train_data) t2 = time.time() print('metrics {m}, round time {t:.2f} seconds'.format( m=metrics, t=t2 - t1)) ###Output _____no_output_____ ###Markdown Single-machine simulationsNow on by default. ###Code evaluate() ###Output metrics <sparse_categorical_accuracy=0.13858024775981903,loss=3.0073554515838623>, round time 3.59 seconds metrics <sparse_categorical_accuracy=0.1796296238899231,loss=2.749046802520752>, round time 2.29 seconds metrics <sparse_categorical_accuracy=0.21656379103660583,loss=2.514779567718506>, round time 2.33 seconds metrics <sparse_categorical_accuracy=0.2637860178947449,loss=2.312587261199951>, round time 2.06 seconds metrics <sparse_categorical_accuracy=0.3334362208843231,loss=2.068122386932373>, round time 2.00 seconds metrics <sparse_categorical_accuracy=0.3737654387950897,loss=1.9268712997436523>, round time 2.42 seconds metrics <sparse_categorical_accuracy=0.4296296238899231,loss=1.7216310501098633>, round time 2.20 seconds metrics <sparse_categorical_accuracy=0.4655349850654602,loss=1.6489890813827515>, round time 2.18 seconds metrics <sparse_categorical_accuracy=0.5048353672027588,loss=1.5485210418701172>, round time 2.16 seconds metrics <sparse_categorical_accuracy=0.5564814805984497,loss=1.4140453338623047>, round time 2.41 seconds
tests/test-model.ipynb
###Markdown Methods Condensed sparse column matrices ###Code data = np.array([1, 2, 3, 4, 5, 6]) row = np.array([0, 2, 2, 0, 1, 2]) col = np.array([0, 0, 1, 2, 2, 2]) sp.sparse.csc_matrix((data, (row, col)), shape=(3, 3)).toarray() # topics = ['anatomy', 'biochemistry', 'cognitive science', 'evolutionary biology', # 'genetics', 'immunology', 'molecular biology', 'chemistry', 'biophysics', # 'energy', 'optics', 'earth science', 'geology', 'meteorology'] topics = ['earth science'] path_saved = '/Users/harangju/Developer/data/wiki/graphs/dated/' networks = {} for topic in topics: print(topic, end=' ') networks[topic] = wiki.Net() networks[topic].load_graph(path_saved + topic + '.pickle') graph = networks[topic].graph len(networks[topic].graph.nodes) v = networks[topic].graph.graph['tfidf'] v v.sum() v[:,0].indices[:5] v[4,0] networks[topic].graph.name networks[topic].graph.nodes['Biology'] core = [n for n in networks[topic].graph.nodes if networks[topic].graph.nodes[n]['core_rb']>.9] core [(i,n) for i,n in enumerate(networks[topic].graph.nodes) if networks[topic].graph.nodes[n]['year']<-1800] vi = v[:,9] vi ###Output _____no_output_____ ###Markdown CSC & networkx operations ###Code graph = networks[topic].graph core = [n for n in networks[topic].graph.nodes if networks[topic].graph.nodes[n]['year']<-2000] subgraph = graph.subgraph(core).copy() import scipy.sparse as ss tfidf = ss.hstack([v[:,list(graph.nodes).index(n)] for n in subgraph.nodes]) tfidf subgraph.nodes subgraph.add_node('Hello') subgraph.nodes ###Output _____no_output_____ ###Markdown AlgorithmInitialize with core set of nodes.\For each year,\initialize an "baby" node for each existing node that doesn't already have a baby node,\mutate tf-idf for each "baby" node (including the name),\and if the "baby" node gets a probability drawn from the distribution of similarities (to what?),the "baby" node is born. ###Code import sklearn.metrics.pairwise as smp import scipy.sparse as ss from scipy.stats import norm import seaborn as sn ###Output _____no_output_____ ###Markdown Mutation Prior: power law distributions of weights ###Code graph = networks[topic].graph tfidf = graph.graph['tfidf'].copy() import powerlaw fit = powerlaw.Fit(tfidf[:,0].data, xmax=np.max(tfidf[:,0].data)) fit.plot_pdf() fit.power_law.plot_pdf(); plt.title(f"xmin={fit.xmin:.1e}, α={fit.alpha:.1f}"); max_val = np.max(tfidf[:,0].data) np.max(np.vectorize(lambda x: max_val if x>max_val else x)(fit.power_law.generate_random(10000))) ###Output _____no_output_____ ###Markdown Prior: new words / year between neighbors[gist](https://gist.github.com/ptocca/e18a9e4e35930c0958fdaa62958bdf82) ###Code def year_diffs(graph): return [graph.nodes[node]['year'] - graph.nodes[neighbor]['year'] for node in graph.nodes for neighbor in list(graph.successors(node))] yd = year_diffs(graph) sns.distplot(yd) plt.title(topic) plt.xlabel('year difference'); %reload_ext cython %%cython -f import numpy as np cimport numpy as np from cython cimport floating,boundscheck,wraparound from cython.parallel import prange from libc.math cimport fabs np.import_array() @boundscheck(False) # Deactivate bounds checking @wraparound(False) def cython_manhattan(floating[::1] X_data, int[:] X_indices, int[:] X_indptr, floating[::1] Y_data, int[:] Y_indices, int[:] Y_indptr, double[:, ::1] D): """Pairwise L1 distances for CSR matrices. Usage: >>> D = np.zeros(X.shape[0], Y.shape[0]) >>> cython_manhattan(X.data, X.indices, X.indptr, ... Y.data, Y.indices, Y.indptr, ... D) """ cdef np.npy_intp px, py, i, j, ix, iy cdef double d = 0.0 cdef int m = D.shape[0] cdef int n = D.shape[1] with nogil: for px in prange(m): for py in range(n): i = X_indptr[px] j = Y_indptr[py] d = 0.0 while i < X_indptr[px+1] and j < Y_indptr[py+1]: if i < X_indptr[px+1]: ix = X_indices[i] if j < Y_indptr[py+1]: iy = Y_indices[j] if ix==iy: d = d+fabs(X_data[i]-Y_data[j]) i = i+1 j = j+1 elif ix<iy: d = d+fabs(X_data[i]) i = i+1 else: d = d+fabs(Y_data[j]) j = j+1 if i== X_indptr[px+1]: while j < Y_indptr[py+1]: iy = Y_indices[j] d = d+fabs(Y_data[j]) j = j+1 else: while i < X_indptr[px+1]: ix = X_indices[i] d = d+fabs(X_data[i]) i = i+1 D[px,py] = d import sklearn.preprocessing as skp import sklearn.metrics.pairwise as smp from scipy.sparse import csr_matrix,random from sklearn.metrics.pairwise import check_pairwise_arrays def sparse_manhattan(X,Y=None): X, Y = check_pairwise_arrays(X, Y) X = csr_matrix(X, copy=False) Y = csr_matrix(Y, copy=False) res = np.empty(shape=(X.shape[0],Y.shape[0])) cython_manhattan(X.data,X.indices,X.indptr, Y.data,Y.indices,Y.indptr, res) return res def word_diffs(graph, tfidf): dists = sparse_manhattan(X=skp.binarize(tfidf).transpose()) nodes = list(graph.nodes) return [dists[nodes.index(node), nodes.index(neighbor)] for node in nodes for neighbor in list(graph.successors(node))] plt.figure(figsize=(14,5)) plt.subplot(121) wd = word_diffs(graph, tfidf) sns.scatterplot(x=np.abs(yd), y=wd) slope, intercept, r, p, stderr = sp.stats.linregress(np.abs(yd), wd) x = np.linspace(0, max(yd), 100) sns.lineplot(x, np.multiply(slope, x) + intercept) plt.title(f"slope={slope:.2f}; r={r:.2f}; p={p:.1e}") plt.xlabel('year') plt.ylabel('manhattan distance'); plt.subplot(122) sns.distplot(wd) mu, std = sp.stats.norm.fit(wd) x = np.linspace(min(wd), max(wd), 100) plt.plot(x, sp.stats.norm.pdf(x, mu, std)) plt.xlabel('manhattan distance') plt.ylabel('probability distribution'); ###Output _____no_output_____ ###Markdown Prior: similarity / year between neighbors ###Code def neighbor_similarity(graph, tfidf): nodes = list(graph.nodes) return [smp.cosine_similarity(tfidf[:,nodes.index(node)].transpose(), tfidf[:,nodes.index(neighbor)].transpose())[0,0] for node in nodes for neighbor in list(graph.successors(node))] neighbors = neighbor_similarity(graph, tfidf) plt.figure(figsize=(6,4)) sns.scatterplot(x=np.abs(yd), y=neighbors) slope, intercept, r, p, stderr = sp.stats.linregress(np.abs(yd), neighbors) x = np.linspace(0, max(yd), 100) sns.lineplot(x, np.multiply(slope, x) + intercept) plt.title(f"slope={slope:.2f}; r={r:.2f}; p={p:.1e}") plt.xlabel('Δyear') plt.ylabel('cosine similarity'); ###Output _____no_output_____ ###Markdown Prior: weight distributions of nodes ###Code import numpy as np import matplotlib.pyplot as plt def plot_distribution(data): bins = np.logspace(np.log10(min(data)), np.log10(max(data)), 30) hist, edges = np.histogram(data, bins=bins) # hist_norm = hist/(bins[1:] - bins[:-1]) sns.scatterplot(bins[:-1], hist/len(data)) plt.yscale('log') plt.xscale('log') plt.xlim(bins[0]/2, bins[-1]*2) plt.ylim(min(hist[hist>0])/len(data)/2, 1) plt.xlabel('x') plt.ylabel('P(x)') plt.figure(figsize=(14,6)) plt.subplot(121) sns.scatterplot(x='index', y='weight', data=pd.DataFrame({'index': tfidf.indices, 'weight': tfidf.data})) sns.scatterplot(x='index', y='weight', data=pd.DataFrame({'index': tfidf.indices, 'weight': tfidf.data})\ .groupby('index').mean()\ .reset_index()) plt.ylim([-.2,1.2]); plt.subplot(122) plot_distribution(tfidf.data) ###Output _____no_output_____ ###Markdown Prior: year distribution ###Code sns.distplot([graph.nodes[node]['year'] for node in graph.nodes], rug=True) plt.xlabel('year'); ###Output _____no_output_____ ###Markdown Method ###Code import numpy.random as npr def mutate(x, rvs, point=(0,0), insert=(0,0,None), delete=(0,0)): """ Mutates vector ``x`` with point mutations, insertions, and deletions. Insertions and point mutations draw from a random process ``rvs``. Parameters ---------- x: spipy.sparse.csc_matrix rvs: lambda (n)-> float returns ``n`` random weights in [0,1] point: tuple (int n, float p) n = number of elements to insert p = probability of insertion for each trial insert: tuple (n, p, iterable s) s = set of elements from which to select if None, select from all zero elements delete: tuple (n, p) max_weight: float """ data = x.data idx = x.indices n_point = npr.binomial(point[0], point[1]) i_point = npr.choice(x.size, size=n_point, replace=False) data[i_point] = rvs(n_point) # insertion n_insert = npr.binomial(insert[0], insert[1]) for _ in range(n_insert): while True: insert_idx = npr.choice(insert[2]) if insert[2]\ else npr.choice(x.shape[0]) if insert_idx not in idx: break idx = np.append(idx, insert_idx) data = np.append(data, rvs(1)) # deletion n_delete = npr.binomial(delete[0], delete[1]) i_delete = npr.choice(idx.size, size=n_delete, replace=False) idx = np.delete(idx, i_delete) data = np.delete(data, i_delete) y = ss.csc_matrix((data, (idx, np.zeros(idx.shape, dtype=int))), shape=x.shape) return y ###Output _____no_output_____ ###Markdown Test ###Code x = tfidf[:,0].copy() y = tfidf[:,0].copy() T = 1000 sim = np.zeros(T) size = np.zeros(T) mag = np.zeros(T) for i in range(sim.size): sim[i] = smp.cosine_similarity(x.transpose(),y.transpose())[0,0] size[i] = y.size mag[i] = np.sum(y.data) y = mutate(y, lambda n: fit.power_law.generate_random(n), point=(1,.5), insert=(1,.3,None), delete=(1,.3)) plt.figure(figsize=(16,4)) ax = plt.subplot(121) sn.lineplot(x=range(sim.size), y=sim) plt.ylabel('similarity') ax2 = ax.twinx() sn.lineplot(x=range(sim.size), y=mag, ax=ax2, color='darkorange') plt.ylabel('magnitude') plt.title(graph.name) plt.xlabel('years') plt.subplot(122) sn.lineplot(x=range(sim.size), y=size) plt.title(graph.name) plt.ylabel('size') plt.xlabel('years') plt.figure(figsize=(16,4)) plt.subplot(121) plot_distribution(graph.graph['tfidf'][:,1].data) plt.xlabel('tf-idf values') plot_distribution(y.data) plt.title(graph.name) plt.legend(['before mutation', 'after mutation']) plt.xlabel('tf-idf values') plt.subplot(122) plot_distribution(x.data) plot_distribution(y.data) plt.title(graph.name) plt.yscale('linear') plt.xscale('linear') plt.ylim([0,.2]) plt.xlim([0,.1]) plt.legend(['before','after']); ###Output _____no_output_____ ###Markdown Create new nodes Prior: distribution of similarities ###Code def non_neighbor_similarity(graph, tfidf): nodes = list(graph.nodes) sim = [smp.cosine_similarity(tfidf[:,nodes.index(n1)].transpose(), tfidf[:,nodes.index(n2)].transpose())[0,0] for n1 in graph.nodes for n2 in graph.nodes if (n2 is not n1) and (n2 not in list(graph.neighbors(n1)))] return sim non_neighbors = non_neighbor_similarity(graph, tfidf) plt.figure() sns.distplot(neighbors) x = np.linspace(min(neighbors), max(neighbors), 100) mu, std = sp.stats.norm.fit(neighbors) plt.plot(x, sp.stats.norm.pdf(x, mu, std)) sns.distplot(non_neighbors) plt.title(topic) plt.legend([f"fit-neighbors (m={mu:.2f}; s={std:.2f})", 'neighbors', 'non-neighbors']) plt.xlabel('cos similarity'); ###Output _____no_output_____ ###Markdown MethodJust draw from normal pdf Test ###Code npr.normal(loc=mu, scale=std, size=4) ###Output _____no_output_____ ###Markdown CrossoverWhat prior should I use? It needs to be more similar than neighbors. Some kind of a t-test? Prior: maybe just 3 std above mean? ###Code mu + 3*std ###Output _____no_output_____ ###Markdown Methodaverage? or combine elements? ###Code def crossover(v1, v2): """ Crosses two vectors by combining half of one and half of the other. Parameters ---------- v1, v2: scipy.sparse.matrix Returns ------- v3: scipy.sparse.matrix """ idx1 = npr.choice(v1.size, size=int(v1.size/2)) idx2 = npr.choice(v2.size, size=int(v2.size/2)) data = np.array([v1.data[i] for i in idx1] + [v2.data[i] for i in idx2]) idx = np.array([v1.indices[i] for i in idx1] + [v2.indices[i] for i in idx2]) v3 = ss.csc_matrix((data, (idx, np.zeros(idx.shape, dtype=int))), shape=v1.shape) return v3 def crossover_seeds(seeds, graph, vectors, threshold=.7): """ Crosses ``seeds`` if similarity between two seeds is greater than ``threshold``. Then, it sets one of the seeds to the item in ``vectors``. Parameters ---------- seeds: dict {str: [scipy.sparse.csc_matrix]} threshold: float """ nodes = list(graph.nodes) for i, node_i in enumerate(seeds.keys()): for j, node_j in enumerate(seeds.keys()): if i==j: continue for k, seed_vec_k in enumerate(seeds[node_i]): for l, seed_vec_l in enumerate(seeds[node_j]): similarity = smp.cosine_similarity(seed_vec_k.transpose(), seed_vec_l.transpose())[0,0] if similarity > threshold: if bool(npr.rand() < 0.5): seeds[node_i][k] = crossover(seed_vec_k, seed_vec_l) seeds[node_j][l] = vectors[:,nodes.index(node_j)] else: seeds[node_i][k] = vectors[:,nodes.index(node_i)] seeds[node_j][l] = crossover(seed_vec_k, seed_vec_l) ###Output _____no_output_____ ###Markdown Test ###Code tfidf = graph.graph['tfidf'].copy() nodes = list(graph.nodes)[:20] seeds = {node: [tfidf[:,list(graph.nodes).index(node)], tfidf[:,list(graph.nodes).index(node)]] for node in nodes} print(nodes, '\n') vectors = ss.hstack([v for node in nodes for v in seeds[node]]) print(np.triu(smp.cosine_similarity(vectors.transpose()))) crossover_seeds(seeds, graph, tfidf, threshold=0.3) print('\n----------------------------------------------------------\n') vectors = ss.hstack([v for node in nodes if node in seeds.keys() for v in seeds[node]]) print(np.triu(smp.cosine_similarity(vectors.transpose()))) ###Output _____no_output_____ ###Markdown Method ###Code def consume_seeds(seeds, vectors, threshold=0.9): """ Consumes a seed in ``seeds`` if similarity between a seed and an existing vector in ``vectors`` is greater than ``threshold``. Parameters ---------- seeds: dict {string: scipy.sparse.csc_matrix} vectors: scipy.sparse.csc_matrix threshold: float """ for seed, vec in list(seeds.items()): for i in range(vectors.shape[1]): s = smp.cosine_similarity(vec.transpose(), vectors[:,i].transpose()) if s[0,0] > threshold: seeds.pop(seed, None) ###Output _____no_output_____ ###Markdown Test ###Code tfidf = graph.graph['tfidf'].copy() nodes = list(graph.nodes)[:4] seeds = {node: tfidf[:,list(graph.nodes).index(node)] for node in nodes} T = 100 seeds for _ in range(10): seeds['Hydrosphere'] = mutate(seeds['Hydrosphere'], lambda n: fit.power_law.generate_random(n), point=(1,1), insert=(5,.5,None), delete=(5,.5)) consume_seeds(seeds, tfidf[:,:4]) seeds ###Output _____no_output_____ ###Markdown Create nodes Get words from tf-idf vector ###Code import pickle import gensim.utils as gu path_models = '/Users/harangju/Developer/data/wiki/models/' model = gu.SaveLoad.load(path_models + 'tfidf.model') dct = pickle.load(open(path_models + 'dict.model','rb')) words = [dct[i] for i in tfidf[:,0].indices] words[:5] ###Output _____no_output_____ ###Markdown Prior: word weight vs title ###Code idx = np.argsort(tfidf[:,0].data) idx[-5:], tfidf[:,0].data[idx[-10:]] def find_top_words(x, dct, top_n=5, stoplist=set('for a of the and to in'.split())): """ Parameters ---------- x: scipy.sparse.csc_matrix dct: gensim.corpora.dictionary top_n: int Returns ------- words: idx_vector: """ top_idx = np.argsort(x.data)[-top_n:] idx = [x.indices[i] for i in top_idx if dct[x.indices[i]] not in stoplist] words = [dct[i] for i in idx] return words, idx stoplist=set('for a of the and to in'.split()) nodes = [] words1 = [] words2 = [] for i in range(tfidf.shape[1]): if tfidf[:,i].data.size == 0: print(list(graph.nodes)[i], tfidf[:,i].data) continue nodes += [list(graph.nodes)[i]] idx_sorted = np.argsort(tfidf[:,i].data) words1 += [[dct[tfidf[:,i].indices[idx]] for idx in idx_sorted[-5:] if dct[tfidf[:,i].indices[idx]] not in stoplist]] top_words, idx = find_top_words(tfidf[:,i], dct, top_n=5) words2 += [top_words] pd.DataFrame(data={'Node': nodes, 'Top words 1': words1, 'Top words 2': words2}) ###Output _____no_output_____ ###Markdown MethodIf article has any two of the top five words, connect.```for new_article in new_articles: for article in articles: if any two of the top five words are in new_article: connect new_article to article``` ###Code def connect(seed_vector, graph, vectors, dct, top_words=5, match_n=2): """ Parameters ---------- seed_vector: scipy.sparse.csc_matrix graph: networkx.DiGraph (not optional) vectors: scipy.sparse.csc_matrix (not optional) dct: gensim.corpora.dictionary (not optional) top_words: int (default=5) match_n: int how many words should be matched by... """ seed_top_words, seed_top_idx = find_top_words(seed_vector, dct) seed_name = ' '.join(seed_top_words) nodes = list(graph.nodes) graph.add_node(seed_name) for i, node in enumerate(nodes): node_vector = vectors[:,i] node_top_words, node_top_idx = find_top_words(node_vector, dct) if len(set(seed_top_idx).intersection(set(node_vector.indices))) >= match_n: graph.add_edge(node, seed_name) if len(set(node_top_idx).intersection(set(seed_vector.indices))) >= match_n: graph.add_edge(seed_name, node) ###Output _____no_output_____ ###Markdown Test ###Code graph = networks[topic].graph core_nodes = [n for n in graph.nodes if graph.nodes[n]['year'] < -2000] subgraph = graph.subgraph(core_nodes).copy() subgraph.graph.clear() subgraph.name = graph.name + '-cutting' print(f"Core nodes: {core_nodes} in '{subgraph.name}'") test_graph = subgraph.copy() test_vector = ss.hstack([tfidf[:,list(graph.nodes).index(n)] for n in test_graph.nodes]) seed = 'Meteorology' seed_vector = tfidf[:,list(graph.nodes).index(seed)] print('Nodes:', test_graph.nodes) print('Edges:', test_graph.edges, '\n') print(f"Seed: {seed}\n") connect(seed_vector, test_graph, test_vector, dct, match_n=3) print('Nodes:', test_graph.nodes) print('Edges:', test_graph.edges) ###Output _____no_output_____ ###Markdown Test with all nodes without node names Evolve Priors ###Code # import powerlaw # fit = powerlaw.Fit(graph.graph['tfidf'].data) fit.plot_pdf() fit.power_law.plot_pdf(); plt.title(f"Power law x_min={fit.xmin:.1e}, α={fit.alpha:.1f}"); sns.scatterplot(x=np.abs(yd), y=wd) slope, intercept, fit_r, p, stderr = sp.stats.linregress(np.abs(yd), wd) x = np.linspace(0, max(yd), 100) sns.lineplot(x, np.multiply(slope, x) + intercept) plt.title(f"slope={slope:.2f}; r={fit_r:.2f}; p={p:.1e}") plt.xlabel('Δyear') plt.ylabel('manhattan distance (# different words)'); neighbors = neighbor_similarity(graph, tfidf) fit_mu, fit_std = sp.stats.norm.fit(neighbors) non_neighbors = non_neighbor_similarity(graph, tfidf) sns.distplot(neighbors) x = np.linspace(min(neighbors), max(neighbors), 100) plt.plot(x, sp.stats.norm.pdf(x, fit_mu, fit_std)) sns.distplot(non_neighbors) plt.title(topic) plt.legend([f"fit-neighbors (m={fit_mu:.2f}; s={fit_std:.2f})", 'neighbors', 'non-neighbors']) plt.xlabel('cos similarity'); fit_mu + 3*fit_std ###Output _____no_output_____ ###Markdown Method1. Initialize a bag of seeds from a set of nodes.2. For each year, 1. Mutate seeds. For each seed, 1. Change a word with `p_point`. Draw weight from power law prior. 2. Delete a word with `p_delete`. 3. Insert new word with `p_insert`. Draw weight from power law prior. 2. Crossover seeds if `μ+3σ < similarity`. 3. Create new node from seed if `x < similarity` where `x~Norm(θ)`. 1. Connect new node. 2. Initialize new seed. ###Code import sys import scipy.sparse as ss def initialize_seeds(seeds, graph, n_seeds, vectors, thresholds, thresholds_create): for node in graph.nodes: if node not in seeds.keys(): seeds[node] = [] thresholds[node] = [] if len(seeds[node]) < n_seeds: seeds[node].append(vectors[:,list(graph.nodes).index(node)].copy()) thresholds[node].append(thresholds_create(1)) def mutate_seeds(seeds, rvs, point, insert, delete): for node, vecs in seeds.items(): seeds[node] = [mutate(vec, rvs, point=point, insert=insert, delete=delete) for vec in vecs] def create_nodes(seeds, graph, vectors, thresholds, year): nodes = list(graph.nodes) # graph.nodes changed in ``connect()`` for i, node in enumerate(nodes): parent_vec = vectors[:,i].transpose() for j, seed_vec in enumerate(seeds[node]): sim_to_parent = smp.cosine_similarity(seed_vec.transpose(), parent_vec) if sim_to_parent[0,0] < thresholds[node][j]: connect(seed_vec, graph, vectors, dct, match_n=3) vectors = ss.hstack([vectors, seed_vec]) seeds[node].pop(j) thresholds[node].pop(j) for node in graph.nodes: if 'year' not in graph.nodes[node].keys(): graph.nodes[node]['year'] = year return vectors def evolve(graph, vectors, year_end, n_seeds, rvs, point, insert, delete, thresholds_create, threshold_crossover): """ Evolves a graph based on vector representations Parameters ---------- graph: networkx.DiGraph vectors: scipy.sparse.csc_matrix year_end: int n_seeds: int number of seeds per node rvs: lambda n->float random values for point mutations & insertions point, insert, delete: tuple See ``mutate()``. thresholds_create: lambda n-> float thresholds of cosine similarity between parent for node creation threshold_crossover: float threshold of cosine similarity between parent for crossing over nodes """ seeds = {} thresholds = {} data = pd.DataFrame() year_start = max([graph.nodes[n]['year'] for n in graph.nodes])+1 for year in range(year_start, year_end+1): sys.stdout.write(f"\r{year_start}\t> {year}\t> {year_end}"+\ f"\tn={graph.number_of_nodes()}"+\ f" {list(seeds.keys())}") sys.stdout.flush() initialize_seeds(seeds, graph, n_seeds, vectors, thresholds, thresholds_create) mutate_seeds(seeds, rvs, point=point, insert=insert, delete=delete) vectors = create_nodes(seeds, graph, vectors, thresholds, year) crossover_seeds(seeds, graph, vectors, threshold_crossover) for seed, seed_vecs in seeds.items(): for seed_vec in seed_vecs: data = data.append({'Year': year, 'Parent': seed, 'Seed vectors': seed_vec}, ignore_index=True) return vectors, data ###Output _____no_output_____ ###Markdown Test ###Code start_year = -500 core_nodes = [n for n in graph.nodes if graph.nodes[n]['year'] < start_year] subgraph = graph.subgraph(core_nodes).copy() subgraph.graph.clear() tfidf = graph.graph['tfidf'] vectors = ss.hstack([tfidf[:,list(graph.nodes).index(n)] for n in core_nodes]) print(f"Topic: '{graph.name}'" +\ f"Core nodes: {core_nodes}" +\ f"Parameters:\tα (power law): {fit.alpha:.2f}\n\t\t" +\ f"p_insert/delete: {fit_r:.2f}/2\n\t\t" +\ f"neighbor_mu, std: {fit_mu:.2f}, {fit_std:.2f}\n\t\t" +\ f"threshold: {fit_mu+3*fit_std:.2f}") max_val = np.max(tfidf.data) rvs = lambda n: np.vectorize(lambda x: max_val if x>max_val else x, otypes=[np.float64])\ (fit.power_law.generate_random(n)) vectors, data = evolve(subgraph, vectors, year_end=2000, n_seeds=3, rvs=rvs, point=(1,2*fit_std), insert=(1,fit_r/2,list(set(tfidf.indices))), delete=(1,fit_r/2), thresholds_create=lambda n: npr.normal(loc=fit_mu+fit_std, scale=fit_std, size=n), threshold_crossover=fit_mu+3*fit_std) print('\n'+repr(vectors)) print(f"Prior: {graph.number_of_nodes()}\n" +\ f"Model: {subgraph.number_of_nodes()}") data x = data.merge(pd.DataFrame([[i,j,v] for i,u in data['Seed vectors'].apply(list).iteritems() for j,v in enumerate(u)], columns=['index','item','vector'])\ .set_index('index'), left_index=True, right_index=True)\ .drop('Seed vectors', axis=1)\ .reset_index() x['Parent_indexed'] = x['Parent'] + '_' + x['item'].map(str) x = x.drop('item', axis=1) nodes = list(subgraph.nodes) s = lambda a,b: smp.cosine_similarity(a.transpose(), b.transpose())[0,0] x['similarity to parent'] = [s(x.iloc[i]['vector'], vectors[:,nodes.index(x.iloc[i]['Parent'])]) for i in range(len(x.index))] x plt.figure(figsize=(16,20)) sns.lineplot(x='Year', y='similarity to parent', hue='Parent_indexed', data=x); ###Output _____no_output_____ ###Markdown Compare priors ###Code plt.figure(figsize=(16,4)) plt.subplot(121) sns.distplot(neighbors) x = np.linspace(min(neighbors), max(neighbors), 100) mu, std = sp.stats.norm.fit(neighbors) plt.plot(x, sp.stats.norm.pdf(x, mu, std)) sns.distplot(non_neighbors) plt.title(topic + ' (prior)') plt.legend([f"fit-neighbors (m={mu:.2f}; s={std:.2f})", 'neighbors', 'non-neighbors']) plt.xlabel('cos similarity'); plt.xlim([-.2,1.2]) plt.subplot(122) neighbors_model = neighbor_similarity(subgraph, vectors) non_neighbors_model = non_neighbor_similarity(subgraph, vectors) sns.distplot(neighbors_model) x = np.linspace(min(neighbors_model), max(neighbors_model), 100) mu, std = sp.stats.norm.fit(neighbors_model) plt.plot(x, sp.stats.norm.pdf(x, mu, std)) sns.distplot(non_neighbors_model) plt.title(topic + ' (model)') plt.legend([f"fit-neighbors (m={mu:.2f}; s={std:.2f})", 'neighbors', 'non-neighbors']) plt.xlabel('cos similarity') plt.xlim([-.2,1.2]); plt.figure(figsize=(16,4)) plt.subplot(121) sns.distplot([graph.nodes[node]['year'] for node in graph.nodes], rug=True) plt.xlim([-5000,2100]) plt.title('prior') plt.ylabel('discoveries') plt.xlabel('year') plt.subplot(122) sns.distplot([subgraph.nodes[node]['year'] for node in subgraph.nodes], rug=True) plt.xlim([-5000,3100]) plt.title('model') plt.ylabel('discoveries') plt.xlabel('year'); plt.figure(figsize=(16,6)) plt.subplot(121) fit.plot_pdf() fit.power_law.plot_pdf() plt.title(f"empirical xmin={fit.xmin:.1e}, α={fit.alpha:.1f}"); plt.subplot(122) fit_model = powerlaw.Fit(vectors.data) fit_model.plot_pdf() fit_model.power_law.plot_pdf() plt.title(f"model xmin={fit_model.xmin:.1e}, α={fit_model.alpha:.1f}"); plt.figure(figsize=(16,4)) plt.subplot(121) sns.distplot(yd) plt.title(topic + ' prior') plt.xlabel('year difference') plt.subplot(122) yd_model = year_diffs(subgraph) sns.distplot(yd_model) plt.title(topic + ' model') plt.xlabel('year difference'); plt.figure(figsize=(16,10)) plt.subplot(221) sns.scatterplot(x=np.abs(yd), y=wd) slope, intercept, r, p, stderr = sp.stats.linregress(np.abs(yd), wd) x = np.linspace(0, max(yd), 100) sns.lineplot(x, np.multiply(slope, x) + intercept) plt.title(f"slope={slope:.2f}; r={r:.2f}; p={p:.1e} (prior)") plt.xlabel('year') plt.ylabel('manhattan distance'); plt.subplot(222) sns.distplot(wd) mu, std = sp.stats.norm.fit(wd) x = np.linspace(min(wd), max(wd), 100) plt.plot(x, sp.stats.norm.pdf(x, mu, std)) plt.xlabel('manhattan distance') plt.ylabel('probability distribution'); plt.title(f"μ={mu:.2}, σ={std:.2} (prior)") wd_model = word_diffs(subgraph, vectors) plt.subplot(223) sns.scatterplot(x=np.abs(yd_model), y=wd_model) slope, intercept, r, p, stderr = sp.stats.linregress(np.abs(yd_model), wd_model) x = np.linspace(0, max(yd_model), 100) sns.lineplot(x, np.multiply(slope, x) + intercept) plt.title(f"slope={slope:.2f}; r={r:.2f}; p={p:.1e} (model)") plt.xlabel('year') plt.ylabel('manhattan distance'); plt.subplot(224) sns.distplot(wd_model) mu, std = sp.stats.norm.fit(wd_model) x = np.linspace(min(wd_model), max(wd_model), 100) plt.plot(x, sp.stats.norm.pdf(x, mu, std)) plt.xlabel('manhattan distance') plt.ylabel('probability distribution'); plt.title(f"μ={mu:.2}, σ={std:.2} (model)"); neighbors_model = neighbor_similarity(subgraph, vectors) plt.figure(figsize=(16,6)) plt.subplot(121) sns.scatterplot(x=np.abs(yd), y=neighbors) slope, intercept, r, p, stderr = sp.stats.linregress(np.abs(yd), neighbors) x = np.linspace(0, max(yd), 100) sns.lineplot(x, np.multiply(slope, x) + intercept) plt.title(f"slope={slope:.2f}; r={r:.2f}; p={p:.1e} (prior)") plt.xlabel('Δyear') plt.ylabel('cosine similarity'); plt.subplot(122) sns.scatterplot(x=np.abs(yd_model), y=neighbors_model) slope, intercept, r, p, stderr = sp.stats.linregress(np.abs(yd_model), neighbors_model) x = np.linspace(0, max(yd_model), 100) sns.lineplot(x, np.multiply(slope, x) + intercept) plt.title(f"slope={slope:.2f}; r={r:.2f}; p={p:.1e} (model)") plt.xlabel('Δyear') plt.ylabel('cosine similarity'); plt.figure(figsize=(16,6)) plt.subplot(121) sns.scatterplot(x='index', y='weight', data=pd.DataFrame({'index': vectors.indices, 'weight': vectors.data})) plt.ylim([-.1,1.1]); plt.subplot(122) plot_distribution(vectors.data) plt.figure(figsize=(16,10)) plt.subplot(121) nx.draw_networkx(graph, node_color=['r' if graph.nodes[n]['year']<start_year else 'b' for n in graph.nodes]) plt.title('original graph') plt.subplot(122) nx.draw_networkx(subgraph, node_color=['r' if subgraph.nodes[n]['year']<start_year else 'b' for n in subgraph.nodes]) plt.title('new graph'); import json %matplotlib inline def save_graph(g, name): nodes = [{'name': str(i)}#, 'club': 0 #g.node[i]['club']} for i in g.nodes()] links = [{'source': list(g.nodes).index(u), 'target': list(g.nodes).index(v)} for u,v in g.edges()] with open(name + '.json', 'w') as f: json.dump({'nodes': nodes, 'links': links}, f, indent=4,) save_graph(graph, 'graph') save_graph(subgraph, 'subgraph') %%html <div id="graph"></div> <style> .node {stroke: #fff; stroke-width: 1.5px;} .link {stroke: #999; stroke-opacity: .6;} </style> %%html <div id="subgraph"></div> <style> .node {stroke: #fff; stroke-width: 1.5px;} .link {stroke: #999; stroke-opacity: .6;} </style> %%javascript // We load the d3.js library from the Web. require.config({paths: {d3: "http://d3js.org/d3.v3.min"}}); require(["d3"], function(d3) { // The code in this block is executed when the // d3.js library has been loaded. // First, we specify the size of the canvas // containing the visualization (size of the // <div> element). var width = 800, height = 400; var g = 'subgraph'; // We create a color scale. var color = d3.scale.category10(); // We create a force-directed dynamic graph layout. var force = d3.layout.force() .charge(-120) .linkDistance(50) .size([width, height]); // In the <div> element, we create a <svg> graphic // that will contain our interactive visualization. var svg = d3.select('#'.concat(g)).select("svg") if (svg.empty()) { svg = d3.select('#'.concat(g)).append("svg") .attr("width", width) .attr("height", height); } // We load the JSON file. d3.json(g.concat('.json'), function(error, graph) { // In this block, the file has been loaded // and the 'graph' object contains our graph. // We load the nodes and links in the // force-directed graph. force.nodes(graph.nodes) .links(graph.links) .start(); // We create a <line> SVG element for each link // in the graph. var link = svg.selectAll(".link") .data(graph.links) .enter().append("line") .attr("class", "link"); // We create a <circle> SVG element for each node // in the graph, and we specify a few attributes. var node = svg.selectAll(".node") .data(graph.nodes) .enter().append("circle") .attr("class", "node") .attr("r", 5) // radius .style("fill", function(d) { // The node color depends on the club. return color(d.club); }) .call(force.drag); // The name of each node is the node number. node.append("title") .text(function(d) { return d.name; }); // We bind the positions of the SVG elements // to the positions of the dynamic force-directed // graph, at each time step. force.on("tick", function() { link.attr("x1", function(d){return d.source.x}) .attr("y1", function(d){return d.source.y}) .attr("x2", function(d){return d.target.x}) .attr("y2", function(d){return d.target.y}); node.attr("cx", function(d){return d.x}) .attr("cy", function(d){return d.y}); }); }); }); ###Output _____no_output_____ ###Markdown Save/load graph ###Code subgraph.graph['tfidf'] = vectors nx.write_gpickle(subgraph, 'graph7.pickle') subgraph = nx.read_gpickle('graph.pickle') vectors = subgraph.graph['tfidf'] ###Output _____no_output_____
eeg-02/eeg-02-notebook.ipynb
###Markdown EEG-02 Solutions ###Code import os import numpy as np import matplotlib.pyplot as plt import seaborn as sns sns.set_style('white') sns.set_context('notebook', font_scale=1.5) %matplotlib inline ###Output _____no_output_____ ###Markdown Today's demonstration will introduce epoching and event-related potential analysis using `mne-python`. We will inspect EEG data in response to visual and auditory stimuli. We will start by loading the data from last session. ###Code from mne.io import read_raw_fif ## Load data. f = os.path.join('..','eeg-data','sub-01_task-audvis_preproc_raw.fif') raw = read_raw_fif(f, preload=True, verbose=False) ###Output _____no_output_____ ###Markdown Section 1: Finding and defining eventsIn addition to the EEG and peripheral channels, our recording includes trigger channels. Trigger channels mark the onset/offset of events during recording. In our recording in particular, STI 014 is the trigger channel that was used for combining all the events to a single channel. It has several pulses of different amplitude throughout the recording. These pulses correspond to different stimuli presented to the subject during the acquisition. The pulses and their corresponding events are defined in the table below.| Name | | Contents ||--------|----|-----------------------------------------|| LA | 1 | Response to left-ear auditory stimulus || RA | 2 | Response to right-ear auditory stimulus || LV | 3 | Response to left visual field stimulus || RV | 4 | Response to right visual field stimulus || Smiley | 5 | Response to the smiley face || Button | 32 | Response triggered by the button press |These are the events we are going to align the epochs to. To create an event list from raw data, we simply call a function dedicated just for that. Since the event list is simply a numpy array, you can also manually create one. If you create one from an outside source (like a separate file of events), pay special attention in aligning the events correctly with the raw data. ###Code from mne import find_events from mne.viz import plot_events ## Find events. events = find_events(raw) print(events[:5]) ###Output 320 events found Event IDs: [ 1 2 3 4 5 32] [[27977 0 2] [28345 0 3] [28771 0 1] [29219 0 4] [29652 0 2]] ###Markdown The event list contains three columns. The first column corresponds to sample number. To convert this to seconds, you should divide the sample number by the used sampling frequency. The second column is reserved for the old value of the trigger channel at the time of transition, but is currently not in use. The third column is the trigger id (amplitude of the pulse).To get a better picture of the task design, we'll plot out the events. First we'll need to construct an *event_id*, which is a Python dictionary matching event labels to event integers. ###Code ## Plot the events. event_id = {'Auditory/Left': 1, 'Auditory/Right': 2, 'Visual/Left': 3, 'Visual/Right': 4, 'smiley': 5, 'button': 32} ###Output _____no_output_____ ###Markdown Now we plot. ###Code ## Initialize canvas. fig, ax = plt.subplots(1,1,figsize=(16,4)) ## Plot events. color = {1: '#1f77b4', 2: '#ff7f0e', 3: '#2ca02c', 4: '#d62728', 5: '#9467bd', 32: '#8c564b'} plot_events(events, raw.info['sfreq'], raw.first_samp, color=color, event_id=event_id, axes=ax); ###Output _____no_output_____ ###Markdown Section 2: EpochingEpoching describes the process of taking snapshots of the data centered around some event of interest. We will perform epoching using the `mne.Epochs` constructor. To do so, we need to define some parameters for our epoching.In this tutorial we are only interested in triggers 1, 2, 3 and 4. These triggers correspond to auditory and visual stimuli. The event_id here can be an int, a list of ints or a dict. With dicts it is possible to assign these ids to distinct categories. ###Code ## Define events of interest. event_id = dict(LA=1, RA=2, LV=3, RV=4) ###Output _____no_output_____ ###Markdown Next we need to define the windows of interest. The values tmin and tmax refer to offsets in relation to the events. Here we make epochs that collect the data from -500 ms before to 500 ms after the event. To get some meaningful results, we also want to baseline the epochs. Baselining computes the mean over the baseline period and adjusts the data accordingly. The epochs constructor uses a baseline period from tmin to 0.0 seconds by default, but it is wise to be explicit. That way you are less likely to end up with surprises along the way. None as the first element of the tuple refers to the start of the time window (-200 ms in this case). See `mne.Epochs` for more information. ###Code ## Define epoch lengths. tmin = -0.2 tmax = 0.5 baseline = (None, -0.1) ###Output _____no_output_____ ###Markdown Next we define our Rejection parameters for peak-to-peak amplitude. ###Code ## Define rejection threshold. reject = dict(eeg = 100e-6) ###Output _____no_output_____ ###Markdown Finally we perform epoching, choosing only the EEG channels. ###Code from mne import Epochs, pick_types ## Perform epoching. picks = pick_types(raw.info, meg=False, eeg=True) epochs = Epochs(raw, events, event_id=event_id, tmin=tmin, tmax=tmax, baseline=baseline, picks=picks, reject=reject, preload=True, verbose=False) print(epochs) ###Output <Epochs | 286 events (all good), -0.199795 - 0.499488 sec, baseline [None, -0.1], ~57.3 MB, data loaded, 'LA': 72 'LV': 71 'RA': 72 'RV': 71> ###Markdown Next we remove all bad epochs (i.e. those violating amplitude rejection). ###Code ## Crop epochs. epochs = epochs.crop(tmin=-0.1) ## Drop bad epochs. epochs.drop_bad() print(epochs) ###Output <Epochs | 286 events (all good), -0.0998976 - 0.499488 sec, baseline [None, -0.1], ~49.6 MB, data loaded, 'LA': 72 'LV': 71 'RA': 72 'RV': 71> ###Markdown Finally we save the data. Note the naming convenction. ###Code ## Save. fout = os.path.join('..','eeg-data','sub-01_task-audvis-epo.fif') epochs.save(fout) ###Output _____no_output_____ ###Markdown Section 3: ERP Analysis & VisualizationNow that we have defined our epochs, we can inspect the event-related potentials. There are a great many example tutorials on visualizing evoked potentials [here](https://www.martinos.org/mne/stable/auto_tutorials/plot_visualize_evoked.html). We demonstrate a few below. Visual StimuliFirst we compute the evoked response for each auditory stimulus condition. ###Code ## Average within each condition. LV_evoked = epochs['LV'].average() RV_evoked = epochs['RV'].average() ###Output _____no_output_____ ###Markdown Evoked Related PotentialsNext let's plot the ERP for each condition. ###Code print('Left visual') fig, ax = plt.subplots(1,1,figsize=(12,4)) fig = LV_evoked.plot(spatial_colors=True, xlim=(-0.1,0.5), axes=ax); print('Right visual') fig, ax = plt.subplots(1,1,figsize=(12,4)) fig = RV_evoked.plot(spatial_colors=True, xlim=(-0.1,0.5), axes=ax); ###Output Left visual ###Markdown Compare Evoked Potentials ###Code from mne.viz import plot_evoked_topo ## Initialize canvas. fig, ax = plt.subplots(1,1,figsize=(12,10)) ## Plot. plot_evoked_topo([LV_evoked, RV_evoked], axes=ax); ###Output _____no_output_____ ###Markdown Topographic PlotsWe can also plot the scalp topographic maps for each condition. ###Code print('Left visual') LV_evoked.plot_topomap(times=np.arange(0.05,0.25,0.025)); print('Right visual') RV_evoked.plot_topomap(times=np.arange(0.05,0.25,0.025)); ###Output Left visual ###Markdown Comparing Evoked PotentialsUsing the sensor layout from the previous notebook, we can choose a sensor that is clearly picking up a response to the visual stimuli. Here we are observing strong laterality, so we visual two sensors: **EEG 056** and **EEG 057**. We will clearly see that that right- and left-presented stimuli are more strongly represented in the contralateral hemispheres.**EEG 056** ###Code from mne.stats import permutation_cluster_test ## Extract data. eeg_056 = epochs.copy().pick_channels(['EEG 056']) data = [eeg_056['LV'].get_data().squeeze(), eeg_056['RV'].get_data().squeeze()] evokeds = np.mean(data, axis=1) * 1e6 ## Using F-statistic as default. ## F-stat = abs(t-stat ** 2) F_obs, clusters, cluster_pv, H0 = permutation_cluster_test(data, n_permutations=1024, seed=47404, verbose=False) ## Plotting. fig, ax = plt.subplots(1,1,figsize=(12,4)) ax.plot(epochs.times, evokeds[0], lw=2.5, label='LV') # Cond: LV ax.plot(epochs.times, evokeds[1], lw=2.5, label='RV') # Cond: RV # ax.plot(epochs.times, F_obs, lw=2, color='0.2', label='F-vals') # F-stats ymin, ymax = ax.get_ylim() ## Plot clusters. for cluster, pval in zip(clusters, cluster_pv): if pval < 0.05: center = epochs.times[cluster].mean() ax.fill_between(epochs.times[cluster], ymin, ymax, color='0.8', alpha=0.5) ax.annotate('p = %0.3f' %pval, (0,0), (center, ymax), ha='center', va='top', fontsize=14) ## Add details. ax.hlines(0, epochs.tmin, epochs.tmax, linewidth=0.5, alpha=0.5, zorder=0) ax.set(xlim=(epochs.tmin, epochs.tmax), xlabel='Time (s)', ylim=(ymin, ymax), ylabel='uV', title='EEG 056 (Left Visual Cortex)') ax.legend(loc=4, frameon=False) sns.despine() plt.tight_layout() ###Output <ipython-input-16-8d52efc13ece>:11: RuntimeWarning: Ignoring argument "tail", performing 1-tailed F-test seed=47404, verbose=False) ###Markdown **EEG 057** ###Code from mne.stats import permutation_cluster_test ## Extract data. eeg_057 = epochs.copy().pick_channels(['EEG 057']) data = [eeg_057['LV'].get_data().squeeze(), eeg_057['RV'].get_data().squeeze()] evokeds = np.mean(data, axis=1) * 1e6 ## Using F-statistic as default. ## F-stat = abs(t-stat ** 2) F_obs, clusters, cluster_pv, H0 = permutation_cluster_test(data, n_permutations=1024, seed=47404, verbose=False) ## Plotting. fig, ax = plt.subplots(1,1,figsize=(12,4)) ax.plot(epochs.times, evokeds[0], lw=2.5, label='LV') # Cond: LV ax.plot(epochs.times, evokeds[1], lw=2.5, label='RV') # Cond: RV # ax.plot(epochs.times, F_obs, lw=2, color='0.2', label='F-vals') # F-stats ymin, ymax = ax.get_ylim() ## Plot clusters. for cluster, pval in zip(clusters, cluster_pv): if pval < 0.05: center = epochs.times[cluster].mean() ax.fill_between(epochs.times[cluster], ymin, ymax, color='0.8', alpha=0.5) ax.annotate('p = %0.3f' %pval, (0,0), (center, ymax), ha='center', va='top', fontsize=14) ## Add details. ax.hlines(0, epochs.tmin, epochs.tmax, linewidth=0.5, alpha=0.5, zorder=0) ax.set(xlim=(epochs.tmin, epochs.tmax), xlabel='Time (s)', ylim=(ymin, ymax), ylabel='uV', title='EEG 057 (Right Visual Cortex)') ax.legend(loc=4, frameon=False) sns.despine() plt.tight_layout() ###Output <ipython-input-17-f26e8d8155f4>:11: RuntimeWarning: Ignoring argument "tail", performing 1-tailed F-test seed=47404, verbose=False) ###Markdown Difference Waves ###Code from mne import combine_evoked ## Compute difference wave. DV_evoked = combine_evoked([LV_evoked, RV_evoked], [-1,1]) ## Initialize canvas. fig, ax = plt.subplots(1,1,figsize=(12,4)) ## Plot difference waves. for ch in ['EEG 056', 'EEG 057']: ax.plot(DV_evoked.times, DV_evoked.data[DV_evoked.ch_names.index(ch)] * 1e6, lw=2, label=ch) ## Add info. ax.set(xlabel='Time (s)', ylabel='uV', title='Difference (Right - Left)') ax.legend(loc=1, frameon=False) sns.despine() plt.tight_layout() ###Output _____no_output_____
code/ch14/14_trading_platform.ipynb
###Markdown Python for Finance (2nd ed.)**Mastering Data-Driven Finance**&copy; Dr. Yves J. Hilpisch | The Python Quants GmbH Trading Platform Risk Disclaimer Trading forex/CFDs on margin carries a high level of risk and may not be suitable for all investors as you could sustain losses in excess of deposits. Leverage can work against you. Due to the certain restrictions imposed by the local law and regulation, German resident retail client(s) could sustain a total loss of deposited funds but are not subject to subsequent payment obligations beyond the deposited funds. Be aware and fully understand all risks associated with the market and trading. Prior to trading any products, carefully consider your financial situation and experience level. Any opinions, news, research, analyses, prices, or other information is provided as general market commentary, and does not constitute investment advice. FXCM & TPQ will not accept liability for any loss or damage, including without limitation to, any loss of profit, which may arise directly or indirectly from use of or reliance on such information. Author Disclaimer The author is neither an employee, agent nor representative of FXCM and is therefore acting independently. The opinions given are their own, constitute general market commentary, and do not constitute the opinion or advice of FXCM or any form of personal or investment advice. FXCM assumes no responsibility for any loss or damage, including but not limited to, any loss or gain arising out of the direct or indirect use of this or any other content. Trading forex/CFDs on margin carries a high level of risk and may not be suitable for all investors as you could sustain losses in excess of deposits. Retrieving Tick Data ###Code import time import numpy as np import pandas as pd import datetime as dt from pylab import mpl, plt plt.style.use('seaborn') mpl.rcParams['font.family'] = 'serif' %matplotlib inline from fxcmpy import fxcmpy_tick_data_reader as tdr print(tdr.get_available_symbols()) start = dt.datetime(2018, 6, 25) stop = dt.datetime(2018, 6, 30) td = tdr('EURUSD', start, stop) td.get_raw_data().info() td.get_data().info() td.get_data().head() sub = td.get_data(start='2018-06-29 12:00:00', end='2018-06-29 12:15:00') sub.head() sub['Mid'] = sub.mean(axis=1) sub['SMA'] = sub['Mid'].rolling(1000).mean() sub[['Mid', 'SMA']].plot(figsize=(10, 6), lw=0.75); # plt.savefig('../../images/ch14/fxcm_plot_01.png') ###Output _____no_output_____ ###Markdown Retrieving Candles Data ###Code from fxcmpy import fxcmpy_candles_data_reader as cdr print(cdr.get_available_symbols()) start = dt.datetime(2018, 5, 1) stop = dt.datetime(2018, 6, 30) ###Output _____no_output_____ ###Markdown `period` must be one of `m1`, `H1` or `D1` ###Code period = 'H1' candles = cdr('EURUSD', start, stop, period) data = candles.get_data() data.info() data[data.columns[:4]].tail() data[data.columns[4:]].tail() data['MidClose'] = data[['BidClose', 'AskClose']].mean(axis=1) data['SMA1'] = data['MidClose'].rolling(30).mean() data['SMA2'] = data['MidClose'].rolling(100).mean() data[['MidClose', 'SMA1', 'SMA2']].plot(figsize=(10, 6)); # plt.savefig('../../images/ch14/fxcm_plot_02.png') ###Output _____no_output_____ ###Markdown Connecting to the API ###Code import fxcmpy fxcmpy.__version__ api = fxcmpy.fxcmpy(config_file='../../cfg/fxcm.cfg') instruments = api.get_instruments() print(instruments) ###Output ['EUR/USD', 'USD/JPY', 'GBP/USD', 'USD/CHF', 'EUR/CHF', 'AUD/USD', 'USD/CAD', 'NZD/USD', 'EUR/GBP', 'EUR/JPY', 'GBP/JPY', 'CHF/JPY', 'GBP/CHF', 'EUR/AUD', 'EUR/CAD', 'AUD/CAD', 'AUD/JPY', 'CAD/JPY', 'NZD/JPY', 'GBP/CAD', 'GBP/NZD', 'GBP/AUD', 'AUD/NZD', 'USD/SEK', 'EUR/SEK', 'EUR/NOK', 'USD/NOK', 'USD/MXN', 'AUD/CHF', 'EUR/NZD', 'USD/ZAR', 'USD/HKD', 'ZAR/JPY', 'USD/TRY', 'EUR/TRY', 'NZD/CHF', 'CAD/CHF', 'NZD/CAD', 'TRY/JPY', 'USD/CNH', 'AUS200', 'ESP35', 'FRA40', 'GER30', 'HKG33', 'JPN225', 'NAS100', 'SPX500', 'UK100', 'US30', 'Copper', 'CHN50', 'EUSTX50', 'USDOLLAR', 'USOil', 'UKOil', 'SOYF', 'NGAS', 'Bund', 'XAU/USD', 'XAG/USD'] ###Markdown Retrieving Historical Data ###Code candles = api.get_candles('USD/JPY', period='D1', number=10) candles[candles.columns[:4]] candles[candles.columns[4:]] start = dt.datetime(2017, 1, 1) end = dt.datetime(2018, 1, 1) candles = api.get_candles('EUR/GBP', period='D1', start=start, stop=end) candles.info() ###Output <class 'pandas.core.frame.DataFrame'> DatetimeIndex: 309 entries, 2017-01-03 22:00:00 to 2018-01-01 22:00:00 Data columns (total 9 columns): bidopen 309 non-null float64 bidclose 309 non-null float64 bidhigh 309 non-null float64 bidlow 309 non-null float64 askopen 309 non-null float64 askclose 309 non-null float64 askhigh 309 non-null float64 asklow 309 non-null float64 tickqty 309 non-null int64 dtypes: float64(8), int64(1) memory usage: 24.1 KB ###Markdown The parameter `period` must be one of `m1, m5, m15, m30, H1, H2, H3, H4, H6, H8, D1, W1` or `M1`. ###Code candles = api.get_candles('EUR/USD', period='m1', number=250) candles['askclose'].plot(figsize=(10, 6)) # plt.savefig('../../images/ch14/fxcm_plot_03.png'); ###Output _____no_output_____ ###Markdown Streaming Data ###Code def output(data, dataframe): print('%3d | %s | %s | %6.5f, %6.5f' % (len(dataframe), data['Symbol'], pd.to_datetime(int(data['Updated']), unit='ms'), data['Rates'][0], data['Rates'][1])) api.subscribe_market_data('EUR/USD', (output,)) api.get_last_price('EUR/USD') api.unsubscribe_market_data('EUR/USD') ###Output 7 | EUR/USD | 2018-07-24 12:40:10.007000 | 1.16940, 1.16943 ###Markdown Placing Orders ###Code api.get_open_positions() order = api.create_market_buy_order('EUR/USD', 100) sel = ['tradeId', 'amountK', 'currency', 'grossPL', 'isBuy'] api.get_open_positions()[sel] order = api.create_market_buy_order('EUR/GBP', 50) api.get_open_positions()[sel] order = api.create_market_sell_order('EUR/USD', 25) order = api.create_market_buy_order('EUR/GBP', 50) api.get_open_positions()[sel] api.close_all_for_symbol('EUR/GBP') api.get_open_positions()[sel] api.close_all() api.get_open_positions() ###Output _____no_output_____ ###Markdown Account Information ###Code api.get_default_account() api.get_accounts().T ###Output _____no_output_____ ###Markdown Python for Finance (2nd ed.)**Mastering Data-Driven Finance**&copy; Dr. Yves J. Hilpisch | The Python Quants GmbH Trading Platform Risk Disclaimer Trading forex/CFDs on margin carries a high level of risk and may not be suitable for all investors as you could sustain losses in excess of deposits. Leverage can work against you. Due to the certain restrictions imposed by the local law and regulation, German resident retail client(s) could sustain a total loss of deposited funds but are not subject to subsequent payment obligations beyond the deposited funds. Be aware and fully understand all risks associated with the market and trading. Prior to trading any products, carefully consider your financial situation and experience level. Any opinions, news, research, analyses, prices, or other information is provided as general market commentary, and does not constitute investment advice. FXCM & TPQ will not accept liability for any loss or damage, including without limitation to, any loss of profit, which may arise directly or indirectly from use of or reliance on such information. Author Disclaimer The author is neither an employee, agent nor representative of FXCM and is therefore acting independently. The opinions given are their own, constitute general market commentary, and do not constitute the opinion or advice of FXCM or any form of personal or investment advice. FXCM assumes no responsibility for any loss or damage, including but not limited to, any loss or gain arising out of the direct or indirect use of this or any other content. Trading forex/CFDs on margin carries a high level of risk and may not be suitable for all investors as you could sustain losses in excess of deposits. Retrieving Tick Data ###Code import time import numpy as np import pandas as pd import datetime as dt from pylab import mpl, plt plt.style.use('seaborn') mpl.rcParams['font.family'] = 'serif' %config InlineBackend.figure_format = 'svg' from fxcmpy import fxcmpy_tick_data_reader as tdr print(tdr.get_available_symbols()) start = dt.datetime(2018, 6, 25) stop = dt.datetime(2018, 6, 30) td = tdr('EURUSD', start, stop) td.get_raw_data().info() td.get_data().info() td.get_data().head() sub = td.get_data(start='2018-06-29 12:00:00', end='2018-06-29 12:15:00') sub.head() sub['Mid'] = sub.mean(axis=1) sub['SMA'] = sub['Mid'].rolling(1000).mean() sub[['Mid', 'SMA']].plot(figsize=(10, 6), lw=0.75); # plt.savefig('../../images/ch14/fxcm_plot_01.png') ###Output _____no_output_____ ###Markdown Retrieving Candles Data ###Code from fxcmpy import fxcmpy_candles_data_reader as cdr print(cdr.get_available_symbols()) start = dt.datetime(2018, 5, 1) stop = dt.datetime(2018, 6, 30) ###Output _____no_output_____ ###Markdown `period` must be one of `m1`, `H1` or `D1` ###Code period = 'H1' candles = cdr('EURUSD', start, stop, period) data = candles.get_data() data.info() data[data.columns[:4]].tail() data[data.columns[4:]].tail() data['MidClose'] = data[['BidClose', 'AskClose']].mean(axis=1) data['SMA1'] = data['MidClose'].rolling(30).mean() data['SMA2'] = data['MidClose'].rolling(100).mean() data[['MidClose', 'SMA1', 'SMA2']].plot(figsize=(10, 6)); # plt.savefig('../../images/ch14/fxcm_plot_02.png') ###Output _____no_output_____ ###Markdown Connecting to the API ###Code import fxcmpy fxcmpy.__version__ api = fxcmpy.fxcmpy(config_file='../../cfg/fxcm.cfg') instruments = api.get_instruments() print(instruments) ###Output ['EUR/USD', 'USD/JPY', 'GBP/USD', 'USD/CHF', 'EUR/CHF', 'AUD/USD', 'USD/CAD', 'NZD/USD', 'EUR/GBP', 'EUR/JPY', 'GBP/JPY', 'CHF/JPY', 'GBP/CHF', 'EUR/AUD', 'EUR/CAD', 'AUD/CAD', 'AUD/JPY', 'CAD/JPY', 'NZD/JPY', 'GBP/CAD', 'GBP/NZD', 'GBP/AUD', 'AUD/NZD', 'USD/SEK', 'EUR/SEK', 'EUR/NOK', 'USD/NOK', 'USD/MXN', 'AUD/CHF', 'EUR/NZD', 'USD/ZAR', 'USD/HKD', 'ZAR/JPY', 'USD/TRY', 'EUR/TRY', 'NZD/CHF', 'CAD/CHF', 'NZD/CAD', 'TRY/JPY', 'USD/ILS', 'USD/CNH', 'AUS200', 'ESP35', 'FRA40', 'GER30', 'HKG33', 'JPN225', 'NAS100', 'SPX500', 'UK100', 'US30', 'Copper', 'CHN50', 'EUSTX50', 'USDOLLAR', 'US2000', 'USOil', 'UKOil', 'SOYF', 'NGAS', 'USOilSpot', 'UKOilSpot', 'WHEATF', 'CORNF', 'Bund', 'XAU/USD', 'XAG/USD', 'EMBasket', 'JPYBasket', 'BTC/USD', 'BCH/USD', 'ETH/USD', 'LTC/USD', 'XRP/USD', 'CryptoMajor', 'EOS/USD', 'XLM/USD', 'ESPORTS', 'BIOTECH', 'CANNABIS', 'FAANG', 'CHN.TECH', 'CHN.ECOMM', 'USEquities'] ###Markdown Retrieving Historical Data ###Code candles = api.get_candles('USD/JPY', period='D1', number=10) candles[candles.columns[:4]] candles[candles.columns[4:]] start = dt.datetime(2017, 1, 1) end = dt.datetime(2018, 1, 1) candles = api.get_candles('EUR/GBP', period='D1', start=start, stop=end) candles.info() ###Output <class 'pandas.core.frame.DataFrame'> DatetimeIndex: 309 entries, 2017-01-03 22:00:00 to 2018-01-01 22:00:00 Data columns (total 9 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 bidopen 309 non-null float64 1 bidclose 309 non-null float64 2 bidhigh 309 non-null float64 3 bidlow 309 non-null float64 4 askopen 309 non-null float64 5 askclose 309 non-null float64 6 askhigh 309 non-null float64 7 asklow 309 non-null float64 8 tickqty 309 non-null int64 dtypes: float64(8), int64(1) memory usage: 24.1 KB ###Markdown The parameter `period` must be one of `m1, m5, m15, m30, H1, H2, H3, H4, H6, H8, D1, W1` or `M1`. ###Code candles = api.get_candles('EUR/USD', period='m1', number=250) candles['askclose'].plot(figsize=(10, 6)) # plt.savefig('../../images/ch14/fxcm_plot_03.png'); ###Output _____no_output_____ ###Markdown Streaming Data ###Code def output(data, dataframe): print('%3d | %s | %s | %6.5f, %6.5f' % (len(dataframe), data['Symbol'], pd.to_datetime(int(data['Updated']), unit='ms'), data['Rates'][0], data['Rates'][1])) api.subscribe_market_data('EUR/USD', (output,)) api.get_last_price('EUR/USD') api.unsubscribe_market_data('EUR/USD') ###Output _____no_output_____ ###Markdown Placing Orders ###Code api.get_open_positions() order = api.create_market_buy_order('EUR/USD', 100) sel = ['tradeId', 'amountK', 'currency', 'grossPL', 'isBuy'] api.get_open_positions()[sel] order = api.create_market_buy_order('EUR/GBP', 50) api.get_open_positions()[sel] order = api.create_market_sell_order('EUR/USD', 25) order = api.create_market_buy_order('EUR/GBP', 50) api.get_open_positions()[sel] api.close_all_for_symbol('EUR/GBP') api.get_open_positions()[sel] api.close_all() api.get_open_positions() ###Output _____no_output_____ ###Markdown Account Information ###Code api.get_default_account() api.get_accounts().T ###Output _____no_output_____ ###Markdown Python for Finance (2nd ed.)**Mastering Data-Driven Finance**&copy; Dr. Yves J. Hilpisch | The Python Quants GmbH Trading Platform Risk Disclaimer Trading forex/CFDs on margin carries a high level of risk and may not be suitable for all investors as you could sustain losses in excess of deposits. Leverage can work against you. Due to the certain restrictions imposed by the local law and regulation, German resident retail client(s) could sustain a total loss of deposited funds but are not subject to subsequent payment obligations beyond the deposited funds. Be aware and fully understand all risks associated with the market and trading. Prior to trading any products, carefully consider your financial situation and experience level. Any opinions, news, research, analyses, prices, or other information is provided as general market commentary, and does not constitute investment advice. FXCM & TPQ will not accept liability for any loss or damage, including without limitation to, any loss of profit, which may arise directly or indirectly from use of or reliance on such information. Author Disclaimer The author is neither an employee, agent nor representative of FXCM and is therefore acting independently. The opinions given are their own, constitute general market commentary, and do not constitute the opinion or advice of FXCM or any form of personal or investment advice. FXCM assumes no responsibility for any loss or damage, including but not limited to, any loss or gain arising out of the direct or indirect use of this or any other content. Trading forex/CFDs on margin carries a high level of risk and may not be suitable for all investors as you could sustain losses in excess of deposits. Retrieving Tick Data ###Code import time import numpy as np import pandas as pd import datetime as dt from pylab import mpl, plt plt.style.use('seaborn') mpl.rcParams['font.family'] = 'serif' %matplotlib inline from fxcmpy import fxcmpy_tick_data_reader as tdr print(tdr.get_available_symbols()) start = dt.datetime(2018, 6, 25) stop = dt.datetime(2018, 6, 30) td = tdr('EURUSD', start, stop) td.get_raw_data().info() td.get_data().info() td.get_data().head() sub = td.get_data(start='2018-06-29 12:00:00', end='2018-06-29 12:15:00') sub.head() sub['Mid'] = sub.mean(axis=1) sub['SMA'] = sub['Mid'].rolling(1000).mean() sub[['Mid', 'SMA']].plot(figsize=(10, 6), lw=0.75); # plt.savefig('../../images/ch14/fxcm_plot_01.png') ###Output _____no_output_____ ###Markdown Retrieving Candles Data ###Code from fxcmpy import fxcmpy_candles_data_reader as cdr print(cdr.get_available_symbols()) start = dt.datetime(2018, 5, 1) stop = dt.datetime(2018, 6, 30) ###Output _____no_output_____ ###Markdown `period` must be one of `m1`, `H1` or `D1` ###Code period = 'H1' candles = cdr('EURUSD', start, stop, period) data = candles.get_data() data.info() data[data.columns[:4]].tail() data[data.columns[4:]].tail() data['MidClose'] = data[['BidClose', 'AskClose']].mean(axis=1) data['SMA1'] = data['MidClose'].rolling(30).mean() data['SMA2'] = data['MidClose'].rolling(100).mean() data[['MidClose', 'SMA1', 'SMA2']].plot(figsize=(10, 6)); # plt.savefig('../../images/ch14/fxcm_plot_02.png') ###Output _____no_output_____ ###Markdown Connecting to the API ###Code import fxcmpy fxcmpy.__version__ api = fxcmpy.fxcmpy(config_file='../../cfg/fxcm.cfg') instruments = api.get_instruments() print(instruments) ###Output ['EUR/USD', 'USD/JPY', 'GBP/USD', 'USD/CHF', 'EUR/CHF', 'AUD/USD', 'USD/CAD', 'NZD/USD', 'EUR/GBP', 'EUR/JPY', 'GBP/JPY', 'CHF/JPY', 'GBP/CHF', 'EUR/AUD', 'EUR/CAD', 'AUD/CAD', 'AUD/JPY', 'CAD/JPY', 'NZD/JPY', 'GBP/CAD', 'GBP/NZD', 'GBP/AUD', 'AUD/NZD', 'USD/SEK', 'EUR/SEK', 'EUR/NOK', 'USD/NOK', 'USD/MXN', 'AUD/CHF', 'EUR/NZD', 'USD/ZAR', 'USD/HKD', 'ZAR/JPY', 'USD/TRY', 'EUR/TRY', 'NZD/CHF', 'CAD/CHF', 'NZD/CAD', 'TRY/JPY', 'USD/ILS', 'USD/CNH', 'AUS200', 'ESP35', 'FRA40', 'GER30', 'HKG33', 'JPN225', 'NAS100', 'SPX500', 'UK100', 'US30', 'Copper', 'CHN50', 'EUSTX50', 'USDOLLAR', 'US2000', 'USOil', 'UKOil', 'SOYF', 'NGAS', 'USOilSpot', 'UKOilSpot', 'WHEATF', 'CORNF', 'Bund', 'XAU/USD', 'XAG/USD', 'EMBasket', 'JPYBasket', 'BTC/USD', 'BCH/USD', 'ETH/USD', 'LTC/USD', 'XRP/USD', 'CryptoMajor', 'EOS/USD', 'XLM/USD', 'ESPORTS', 'BIOTECH', 'CANNABIS', 'FAANG', 'CHN.TECH', 'CHN.ECOMM', 'USEquities'] ###Markdown Retrieving Historical Data ###Code candles = api.get_candles('USD/JPY', period='D1', number=10) candles[candles.columns[:4]] candles[candles.columns[4:]] start = dt.datetime(2017, 1, 1) end = dt.datetime(2018, 1, 1) candles = api.get_candles('EUR/GBP', period='D1', start=start, stop=end) candles.info() ###Output <class 'pandas.core.frame.DataFrame'> DatetimeIndex: 309 entries, 2017-01-03 22:00:00 to 2018-01-01 22:00:00 Data columns (total 9 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 bidopen 309 non-null float64 1 bidclose 309 non-null float64 2 bidhigh 309 non-null float64 3 bidlow 309 non-null float64 4 askopen 309 non-null float64 5 askclose 309 non-null float64 6 askhigh 309 non-null float64 7 asklow 309 non-null float64 8 tickqty 309 non-null int64 dtypes: float64(8), int64(1) memory usage: 24.1 KB ###Markdown The parameter `period` must be one of `m1, m5, m15, m30, H1, H2, H3, H4, H6, H8, D1, W1` or `M1`. ###Code candles = api.get_candles('EUR/USD', period='m1', number=250) candles['askclose'].plot(figsize=(10, 6)) # plt.savefig('../../images/ch14/fxcm_plot_03.png'); ###Output _____no_output_____ ###Markdown Streaming Data ###Code def output(data, dataframe): print('%3d | %s | %s | %6.5f, %6.5f' % (len(dataframe), data['Symbol'], pd.to_datetime(int(data['Updated']), unit='ms'), data['Rates'][0], data['Rates'][1])) api.subscribe_market_data('EUR/USD', (output,)) api.get_last_price('EUR/USD') api.unsubscribe_market_data('EUR/USD') ###Output _____no_output_____ ###Markdown Placing Orders ###Code api.get_open_positions() order = api.create_market_buy_order('EUR/USD', 100) sel = ['tradeId', 'amountK', 'currency', 'grossPL', 'isBuy'] api.get_open_positions()[sel] order = api.create_market_buy_order('EUR/GBP', 50) api.get_open_positions()[sel] order = api.create_market_sell_order('EUR/USD', 25) order = api.create_market_buy_order('EUR/GBP', 50) api.get_open_positions()[sel] api.close_all_for_symbol('EUR/GBP') api.get_open_positions()[sel] api.close_all() api.get_open_positions() ###Output _____no_output_____ ###Markdown Account Information ###Code api.get_default_account() api.get_accounts().T ###Output _____no_output_____
8-Labs/Z-Spring2021/Lab1/.ipynb_checkpoints/Lab1_Dev-checkpoint.ipynb
###Markdown Laboratory 1: First Steps... ![](https://i1.wp.com/timemanagementninja.com/wp-content/uploads/2013/10/First-Steps.jpg?resize=600%2C400) Notice the code cell below! From this notebook forward please include and run the script in the cell, it will help in debugging a notebook. ###Code # Preamble script block to identify host, user, and kernel import sys ! hostname ! whoami print(sys.executable) print(sys.version) print(sys.version_info) ###Output DESKTOP-EH6HD63 desktop-eh6hd63\farha C:\Users\Farha\Anaconda3\python.exe 3.7.4 (default, Aug 9 2019, 18:34:13) [MSC v.1915 64 bit (AMD64)] sys.version_info(major=3, minor=7, micro=4, releaselevel='final', serial=0) ###Markdown Also, from now on, please make sure that you have the following markdown cell, filled with your own information, on top of your notebooks: Full name: R: Title of the notebook: Date: Now, let's get to work!![](https://www.shutterstock.com/blog/wp-content/uploads/sites/5/2019/06/Variable-Font-Demo-3.gif) VariablesVariables are names given to data that we want to store and manipulate in programs. Avariable has a name and a value. The value representation depends on what type of objectthe variable represents.The utility of variables comes in when we have a structure that is universal, but values ofvariables within the structure will change - otherwise it would be simple enough to justhardwire the arithmetic.Suppose we want to store the time of concentration for some hydrologic calculation. To do so, we can name a variable `TimeOfConcentration`, and then `assign` a value to the variable,for instance: ###Code TimeOfConcentration = 0.0 ###Output _____no_output_____ ###Markdown After this assignment statement the variable is created in the program and has a value of 0.0. The use of a decimal point in the initial assignment establishes the variable as a float (a real variable is called a floating point representation -- or just a float). ###Code TimeOfConcentration + 5 ###Output _____no_output_____ ###Markdown Naming RulesVariable names in Python can only contain letters (a - z, A - Z), numerals (0 - 9), or underscores. The first character cannot be a number, otherwise there is considerable freedom in naming. The names can be reasonably long. `runTime`, `run_Time`, `_run_Time2`, `_2runTime` are all valid names, but `2runTime` is not valid, and will create an error when you try to use it. ###Code # Script to illustrate variable names runTime = 1 _2runTime = 2 # change to 2runTime = 2 and rerun script runTime2 = 2 print(runTime,_2runTime,runTime2) ###Output 1 2 2 ###Markdown There are some reserved words that cannot be used as variable names because they have preassigned meaning in Parseltongue. These words include print, input, if, while, and for. There are several more; the interpreter won't allow you to use these names as variables and will issue an error message when you attempt to run a program with such words used as variables. OperatorsThe `=` sign used in the variable definition is called an assignment operator (or assignment sign). The symbol means that the expression to the right of the symbol is to be evaluated and the result placed into the variable on the left side of the symbol. The "operation" is assignment, the "=" symbol is the operator name.Consider the script below: ###Code # Assignment Operator x = 5 y = 10 print (x,y) x=y # reverse order y=x and re-run, what happens? print (x,y) ###Output 5 10 10 10 ###Markdown So look at what happened. When we assigned values to the variables named `x` and `y`, they started life as 5 and 10. We then wrote those values to the console, and the program returned 5 and 10. Then we assigned `y` to `x` which took the value in y and replaced the value that was in x with this value. We then wrote the contents again, and both variables have the value 10. What's it with ?> Comments are added by writing a hashtag symbol () followed by any text of your choice. Any text that follows the hashtag symbol on the same line is ignored by the Python interpreter.![](https://www.stripecommunications.com/wp-content/uploads/2018/06/toy-story-meme-generator-hashtags-hashtags-everywhere-e822fa.png) Arithmetic OperatorsIn addition to assignment we can also perform arithmetic operations on variables. Thefundamental arithmetic operators are:| Symbol | Meaning | Example ||:---|:---|:---|| = |Assignment| x=3 Assigns value of 3 to x.|| + |Addition| x+y Adds values in x and y.|| - |Subtraction| x-y Subtracts values in y from x.||$*$ |Multiplication| x*y Multiplies values in x and y.|| / |Division| x/y Divides value in x by value in y.|| // |Floor division| x//y Divide x by y, truncate result to whole number.|| % |Modulus| x%y Returns remainder when x is divided by y.||$**$ |Exponentation| x$**$y Raises value in x by value in y. ( e.g. xy)|| += |Additive assignment| x+=2 Equivalent to x = x+2.|| -= |Subtractive assignment| x-=2 Equivalent to x = x-2.|| *= |Multiplicative assignment| x\*=3 Equivalent to x = x\*3.|| /= |Divide assignment| x/3 Equivalent to x = x/3.|Run the script in the next cell for some illustrative results ###Code # Uniary Arithmetic Operators x = 10 y = 5 print(x, y) print(x+y) print(x-y) print(x*y) print(x/y) print((x+1)//y) print((x+1)%y) print(x**y) # Arithmetic assignment operators x = 1 x += 2 print(type(x),x) x = 1 x -= 2 print(type(x),x) x = 1 x *=3 print(type(x),x) x = 10 x /= 2 print(type(x),x) # Interesting what division does to variable type ###Output <class 'int'> 3 <class 'int'> -1 <class 'int'> 3 <class 'float'> 5.0 ###Markdown Data TypeIn the computer data are all binary digits (actually 0 and +5 volts). At a higher level of abstraction data are typed into integers, real, or alphanumeric representation. The type affects the kind of arithmetic operations that are allowed (as well as the kind of arithmetic - integer versus real arithmetic; lexicographical ordering of alphanumeric , etc.)In scientific programming, a common (and really difficult to detect) source of slight inaccuracies (that tend to snowball as the program runs) is mixed mode arithmetic required because two numeric values are of different types (integer and real).Learn more from the textbookhttps://www.inferentialthinking.com/chapters/04/Data_Types.htmlHere we present a quick summary IntegerIntegers are numbers without any fractional portion (nothing after the decimal point { whichis not used in integers). Numbers like -3, -2, -1, 0, 1, 2, 200 are integers. A number like 1.1is not an integer, and 1.0 is also not an integer (the presence of the decimal point makes thenumber a real).To declare an integer in Python, just assign the variable name to an integer for example MyPhoneNumber = 14158576309 Real (Float)A real or float is a number that has (or can have) a fractional portion - the number hasdecimal parts. The numbers 3.14159, -0.001, 11.11, 1., are all floats. The last one is especially tricky, if you don't notice the decimal point you might think it is an integer but theinclusion of the decimal point in Python tells the program that the value is to be treated as a float.To declare a float in Python, just assign the variable name to a float for example MyMassInKilos = 74.8427 String(Alphanumeric)A string is a data type that is treated as text elements. The usual letters are strings, butnumbers can be included. The numbers in a string are simply characters and cannot bedirectly used in arithmetic. There are some kinds of arithmetic that can be performed on strings but generally we process string variables to capture the text nature of their contents. To declare a string in Python, just assign the variable name to a string value - the trick is the value is enclosed in quotes. The quotes are delimiters that tell the program that the characters between the quotes are characters and are to be treated as literal representation.For example MyName = 'Theodore' MyCatName = "Dusty" DustyMassInKilos = "7.48427" are all string variables. The last assignment is made a string on purpose. String variables can be combined using an operation called concatenation. The symbol for concatenation is the plus symbol `+`.Strings can also be converted to all upper case using the `upper()` function. The syntax forthe `upper()` function is `'string to be upper case'.upper()`. Notice the "dot" in the syntax. The operation passes everything to the left of the dot to the function which thenoperates on that content and returns the result all upper case (or an error if the input streamis not a string). ###Code # Variable Types Example MyPhoneNumber = 14158576309 MyMassInKilos = 74.8427 MyName = 'Theodore' MyCatName = "Dusty" DustyMassInKilos = "7.48427" print("All about me") print("Name: ",MyName, " Mass :",MyMassInKilos,"Kg" ) print('Phone : ',MyPhoneNumber) print('My cat\'s name :', MyCatName) # the \ escape character is used to get the ' into the literal print("All about concatenation!") print("A Silly String : ",MyCatName+MyName+DustyMassInKilos) print("A SILLY STRING : ", (MyCatName+MyName+DustyMassInKilos).upper()) print(MyName[0:4]) # Notice how the string is sliced- This is Python: ALWAYS start counting from zero! ###Output All about me Name: Theodore Mass : 74.8427 Kg Phone : 14158576309 My cat's name : Dusty All about concatenation! A Silly String : DustyTheodore7.48427 A SILLY STRING : DUSTYTHEODORE7.48427 Theo ###Markdown Strings can be formatted using the `%` operator or the `format()` function. The concepts willbe introduced later on as needed in the workbook, you can Google search for examples ofhow to do such formatting. Changing TypesA variable type can be changed. This activity is called type casting. Three functions allowtype casting: `int()`, `float()`, and `str()`. The function names indicate the result of usingthe function, hence `int()` returns an integer, `float()` returns a oat, and `str()` returns astring.There is also the useful function `type()` which returns the type of variable.The easiest way to understand is to see an example. ###Code # Type Casting Examples MyInteger = 234 MyFloat = 876.543 MyString = 'What is your name?' print(MyInteger,MyFloat,MyString) print('Integer as float',float(MyInteger)) print('Float as integer',int(MyFloat)) print('Integer as string',str(MyInteger)) print('Integer as hexadecimal',hex(MyInteger)) print('Integer Type',type((MyInteger))) # insert the hex conversion and see what happens! ###Output _____no_output_____ ###Markdown Expressions![](https://thumbs.gfycat.com/HandsomeRegularHuman-max-1mb.gif) Expressions are the "algebraic" constructions that are evaluated and then placed into a variable.Consider x1 = 7 + 3 * 6 / 2 - 1The expression is evaluated from the left to right and in words is Into the object named x1 place the result of: integer 7 + (integer 6 divide by integer 2 = float 3 * integer 3 = float 9 - integer 1 = float 8) = float 15The division operation by default produces a float result unless forced otherwise. The result is the variable `x1` is a float with a value of `15.0` ###Code # Expressions Example x1 = 7 + 3 * 6 // 2 - 1 # Change / into // and see what happens! print(type(x1),x1) ## Simple I/O (Input/Output) ###Output <class 'int'> 15 ###Markdown Example: Simple Input/OutputGet two floating point numbers via the `input()` function and store them under the variable names `float1` and `float2`. Then, compare them, and try a few operations on them! float1 = input("Please enter float1: ") float1 = float(float1) ... Print `float1` and `float2` to the output screen. print("float1:", float1) ...Then check whether `float1` is greater than or equal to `float2`. ###Code float1 = input("Please enter float1: ") float2 = input("Please enter float2: ") print("float1:", float1) print("float2:", float2) float1 = float(float1) float2 = float(float2) print("float1:", float1) print("float2:", float2) float1>float2 float1+float2 float1/float2 ###Output _____no_output_____
notebooks/semantic parameter performance.ipynb
###Markdown Parameters that might affect performance----------------------------------------This notebook examines how parameters in the semantic model of the Danish language affects its performance.- Number of pages read- Use of stopwords- Exclusion of short pages- Scaling of matrix tfidf/count- Normalization of document- Factorization of matrix ###Code from everything import * from dasem.semantic import Semantic from dasem.data import wordsim353 as wordsim353_data # Read datasets four_words = read_csv('../dasem/data/four_words.csv', encoding='utf-8') wordsim353 = wordsim353_data() def compute_accuracy(semantic, four_words): outlier = [] for idx, words in four_words.iterrows(): sorted_words = semantic.sort_by_outlierness(words.values[:4]) outlier.append(sorted_words[0]) accuracy = mean(four_words.word4 == outlier) return accuracy def compute_correlation(semantic, wordsim): human = [] relatednesses = [] for idx, row in wordsim.iterrows(): R = semantic.relatedness([row.da1, row.da2]) relatednesses.append(R[0, 1]) human.append(row['Human (mean)']) human = array(human) relatednesses = array(relatednesses) indices = (~isnan(relatednesses)).nonzero()[0] C = corrcoef(human[indices], relatednesses[indices]) return C[0, 1] max_n_pagess = [3000, 30000, None] norms = ['l1', 'l2', None] stop_wordss = [None, set(nltk.corpus.stopwords.words('danish'))] use_idfs = [True, False] sublinear_tfs = [True, False] columns = ['accuracy', 'correlation', 'stop_words', 'use_idf', 'norm', 'sublinear_tf', 'max_n_pages'] n_total = len(max_n_pagess) * len(norms) * len(stop_wordss) * len(use_idfs) * \ len(sublinear_tfs) results = DataFrame(dtype=float, index=range(n_total), columns=columns) n = 0 for stop_words_index, stop_words in (enumerate(stop_wordss)): for norm in (norms): for use_idf in (use_idfs): for sublinear_tf in (sublinear_tfs): for max_n_pages in (max_n_pagess): results.ix[n, 'max_n_pages'] = max_n_pages results.ix[n, 'stop_words'] = stop_words_index results.ix[n, 'norm'] = str(norm) results.ix[n, 'use_idf'] = use_idf results.ix[n, 'sublinear_tf'] = sublinear_tf semantic = Semantic(stop_words=stop_words, norm=norm, use_idf=use_idf, sublinear_tf=sublinear_tf, max_n_pages=max_n_pages) results.ix[n, 'accuracy'] = compute_accuracy(semantic, four_words) results.ix[n, 'correlation'] = compute_correlation(semantic, wordsim353) n += 1 relatednesses = [] for idx, row in wordsim353.iterrows(): R = semantic.relatedness([row.da1, row.da2]) relatednesses.append(R[0, 1]) wordsim353['relatedness'] = relatednesses wordsim353 wordsim353.plot(x='Human (mean)', y='relatedness', kind='scatter') yscale('log') ylim(0.0001, 1) title('Scatter plot of Wordsim353 data') show() results formula = 'accuracy ~ stop_words + use_idf + norm + sublinear_tf + max_n_pages' model = smf.glm(formula, data=results).fit() model.summary() ###Output _____no_output_____
Copy of YOLOv5 Tutorial.ipynb
###Markdown This is the **official YOLOv5 🚀 notebook** by **Ultralytics**, and is freely available for redistribution under the [GPL-3.0 license](https://choosealicense.com/licenses/gpl-3.0/). For more information please visit https://github.com/ultralytics/yolov5 and https://ultralytics.com. Thank you! SetupClone repo, install dependencies and check PyTorch and GPU. ###Code !git clone https://github.com/ultralytics/yolov5 # clone repo %cd yolov5 %pip install -qr requirements.txt # install dependencies import torch from IPython.display import Image, clear_output # to display images clear_output() print(f"Setup complete. Using torch {torch.__version__} ({torch.cuda.get_device_properties(0).name if torch.cuda.is_available() else 'CPU'})") ###Output Setup complete. Using torch 1.9.0+cu102 (Tesla K80) ###Markdown 1. Inference`detect.py` runs YOLOv5 inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases), and saving results to `runs/detect`. Example inference sources are:```shellpython detect.py --source 0 webcam file.jpg image file.mp4 video path/ directory path/*.jpg glob 'https://youtu.be/NUsoVlDFqZg' YouTube 'rtsp://example.com/media.mp4' RTSP, RTMP, HTTP stream``` ###Code %rm -rf runs !python detect.py --weights yolov5s.pt --img 640 --conf 0.25 --source data/images/ #Image(filename='runs/detect/exp/zidane.jpg', width=600) ###Output detect: weights=['yolov5s.pt'], source=data/images/, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/detect, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False YOLOv5 🚀 v5.0-380-g11f85e7 torch 1.9.0+cu102 CUDA:0 (Tesla K80, 11441.1875MB) Downloading https://github.com/ultralytics/yolov5/releases/download/v5.0/yolov5s.pt to yolov5s.pt... 100% 14.1M/14.1M [00:00<00:00, 15.9MB/s] Fusing layers... Model Summary: 224 layers, 7266973 parameters, 0 gradients image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, 1 fire hydrant, Done. (0.060s) image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 2 ties, Done. (0.027s) Results saved to runs/detect/exp Done. (0.328s) ###Markdown &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2. ValidateValidate a model's accuracy on [COCO](https://cocodataset.org/home) val or test-dev datasets. Models are downloaded automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases). To show results by class use the `--verbose` flag. Note that `pycocotools` metrics may be ~1% better than the equivalent repo metrics, as is visible below, due to slight differences in mAP computation. COCO val2017Download [COCO val 2017](https://github.com/ultralytics/yolov5/blob/74b34872fdf41941cddcf243951cdb090fbac17b/data/coco.yamlL14) dataset (1GB - 5000 images), and test model accuracy. ###Code # Download COCO val2017 torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/releases/download/v1.0/coco2017val.zip', 'tmp.zip') !unzip -q tmp.zip -d ../datasets && rm tmp.zip # Run YOLOv5x on COCO val2017 !python val.py --weights yolov5x.pt --data coco.yaml --img 640 --iou 0.65 --half ###Output val: data=./data/coco.yaml, weights=['yolov5x.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.65, task=val, device=, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True YOLOv5 🚀 v5.0-380-g11f85e7 torch 1.9.0+cu102 CUDA:0 (Tesla K80, 11441.1875MB) Downloading https://github.com/ultralytics/yolov5/releases/download/v5.0/yolov5x.pt to yolov5x.pt... 100% 168M/168M [00:08<00:00, 21.9MB/s] Fusing layers... Model Summary: 476 layers, 87730285 parameters, 0 gradients val: Scanning '../datasets/coco/val2017' images and labels...4952 found, 48 missing, 0 empty, 0 corrupted: 100% 5000/5000 [00:02<00:00, 1987.49it/s] val: New cache created: ../datasets/coco/val2017.cache Class Images Labels P R [email protected] [email protected]:.95: 100% 157/157 [10:01<00:00, 3.83s/it] all 5000 36335 0.746 0.626 0.68 0.49 Speed: 0.2ms pre-process, 111.9ms inference, 1.7ms NMS per image at shape (32, 3, 640, 640) Evaluating pycocotools mAP... saving runs/val/exp/yolov5x_predictions.json... loading annotations into memory... Done (t=0.45s) creating index... index created! Loading and preparing results... DONE (t=5.26s) creating index... index created! Running per image evaluation... Evaluate annotation type *bbox* DONE (t=99.14s). Accumulating evaluation results... DONE (t=14.26s). Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.504 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.688 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.546 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.351 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.551 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.644 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.382 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.629 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.682 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.524 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.735 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.827 Results saved to runs/val/exp ###Markdown COCO test-dev2017Download [COCO test2017](https://github.com/ultralytics/yolov5/blob/74b34872fdf41941cddcf243951cdb090fbac17b/data/coco.yamlL15) dataset (7GB - 40,000 images), to test model accuracy on test-dev set (**20,000 images, no labels**). Results are saved to a `*.json` file which should be **zipped** and submitted to the evaluation server at https://competitions.codalab.org/competitions/20794. ###Code # Download COCO test-dev2017 torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/releases/download/v1.0/coco2017labels.zip', 'tmp.zip') !unzip -q tmp.zip -d ../ && rm tmp.zip # unzip labels !f="test2017.zip" && curl http://images.cocodataset.org/zips/$f -o $f && unzip -q $f && rm $f # 7GB, 41k images %mv ./test2017 ../coco/images # move to /coco # Run YOLOv5s on COCO test-dev2017 using --task test !python val.py --weights yolov5s.pt --data coco.yaml --task test ###Output _____no_output_____ ###Markdown 3. TrainDownload [COCO128](https://www.kaggle.com/ultralytics/coco128), a small 128-image tutorial dataset, start tensorboard and train YOLOv5s from a pretrained checkpoint for 3 epochs (note actual training is typically much longer, around **300-1000 epochs**, depending on your dataset). ###Code # Download COCO128 torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128.zip', 'tmp.zip') !unzip -q tmp.zip -d ../datasets && rm tmp.zip ###Output _____no_output_____ ###Markdown Train a YOLOv5s model on [COCO128](https://www.kaggle.com/ultralytics/coco128) with `--data coco128.yaml`, starting from pretrained `--weights yolov5s.pt`, or from randomly initialized `--weights '' --cfg yolov5s.yaml`. Models are downloaded automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases), and **COCO, COCO128, and VOC datasets are downloaded automatically** on first use.All training results are saved to `runs/train/` with incrementing run directories, i.e. `runs/train/exp2`, `runs/train/exp3` etc. ###Code # Tensorboard (optional) %load_ext tensorboard %tensorboard --logdir runs/train # Weights & Biases (optional) %pip install -q wandb import wandb wandb.login() # Train YOLOv5s on COCO128 for 3 epochs !python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --cache ###Output _____no_output_____ ###Markdown 4. Visualize Weights & Biases Logging 🌟 NEW[Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_notebook) (W&B) is now integrated with YOLOv5 for real-time visualization and cloud logging of training runs. This allows for better run comparison and introspection, as well improved visibility and collaboration for teams. To enable W&B `pip install wandb`, and then train normally (you will be guided through setup on first use). During training you will see live updates at [https://wandb.ai/home](https://wandb.ai/home?utm_campaign=repo_yolo_notebook), and you can create and share detailed [Reports](https://wandb.ai/glenn-jocher/yolov5_tutorial/reports/YOLOv5-COCO128-Tutorial-Results--VmlldzozMDI5OTY) of your results. For more information see the [YOLOv5 Weights & Biases Tutorial](https://github.com/ultralytics/yolov5/issues/1289). Local LoggingAll results are logged by default to `runs/train`, with a new experiment directory created for each new training as `runs/train/exp2`, `runs/train/exp3`, etc. View train and val jpgs to see mosaics, labels, predictions and augmentation effects. Note an Ultralytics **Mosaic Dataloader** is used for training (shown below), which combines 4 images into 1 mosaic during training.> `train_batch0.jpg` shows train batch 0 mosaics and labels> `test_batch0_labels.jpg` shows val batch 0 labels> `test_batch0_pred.jpg` shows val batch 0 _predictions_Training results are automatically logged to [Tensorboard](https://www.tensorflow.org/tensorboard) and [CSV](https://github.com/ultralytics/yolov5/pull/4148) as `results.csv`, which is plotted as `results.png` (below) after training completes. You can also plot any `results.csv` file manually:```pythonfrom utils.plots import plot_results plot_results('path/to/results.csv') plot 'results.csv' as 'results.png'``` EnvironmentsYOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):- **Google Colab and Kaggle** notebooks with free GPU: - **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)- **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) Status![CI CPU testing](https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg)If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), testing ([val.py](https://github.com/ultralytics/yolov5/blob/master/val.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on MacOS, Windows, and Ubuntu every 24 hours and on every commit. AppendixOptional extras below. Unit tests validate repo functionality and should be run on any PRs submitted. ###Code # Reproduce for x in 'yolov5s', 'yolov5m', 'yolov5l', 'yolov5x': !python val.py --weights {x}.pt --data coco.yaml --img 640 --conf 0.25 --iou 0.45 # speed !python val.py --weights {x}.pt --data coco.yaml --img 640 --conf 0.001 --iou 0.65 # mAP # PyTorch Hub import torch # Model model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # Images dir = 'https://ultralytics.com/images/' imgs = [dir + f for f in ('zidane.jpg', 'bus.jpg')] # batch of images # Inference results = model(imgs) results.print() # or .show(), .save() # Unit tests %%shell export PYTHONPATH="$PWD" # to run *.py. files in subdirectories rm -rf runs # remove runs/ for m in yolov5s; do # models python train.py --weights $m.pt --epochs 3 --img 320 --device 0 # train pretrained python train.py --weights '' --cfg $m.yaml --epochs 3 --img 320 --device 0 # train scratch for d in 0 cpu; do # devices python detect.py --weights $m.pt --device $d # detect official python detect.py --weights runs/train/exp/weights/best.pt --device $d # detect custom python val.py --weights $m.pt --device $d # val official python val.py --weights runs/train/exp/weights/best.pt --device $d # val custom done python hubconf.py # hub python models/yolo.py --cfg $m.yaml # inspect python export.py --weights $m.pt --img 640 --batch 1 # export done # Profile from utils.torch_utils import profile m1 = lambda x: x * torch.sigmoid(x) m2 = torch.nn.SiLU() results = profile(input=torch.randn(16, 3, 640, 640), ops=[m1, m2], n=100) # Evolve !python train.py --img 640 --batch 64 --epochs 100 --data coco128.yaml --weights yolov5s.pt --cache --noautoanchor --evolve !d=runs/train/evolve && cp evolve.* $d && zip -r evolve.zip $d && gsutil mv evolve.zip gs://bucket # upload results (optional) # VOC for b, m in zip([64, 48, 32, 16], ['yolov5s', 'yolov5m', 'yolov5l', 'yolov5x']): # zip(batch_size, model) !python train.py --batch {b} --weights {m}.pt --data VOC.yaml --epochs 50 --cache --img 512 --nosave --hyp hyp.finetune.yaml --project VOC --name {m} ###Output _____no_output_____
ml/Assignment 1.ipynb
###Markdown Assignment 1 - Introduction to Machine Learning For this assignment, you will be using the Breast Cancer Wisconsin (Diagnostic) Database to create a classifier that can help diagnose patients. First, read through the description of the dataset (below). ###Code import numpy as np import pandas as pd from sklearn.datasets import load_breast_cancer from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier cancer = load_breast_cancer() print(cancer.DESCR) ###Output .. _breast_cancer_dataset: Breast cancer wisconsin (diagnostic) dataset -------------------------------------------- **Data Set Characteristics:** :Number of Instances: 569 :Number of Attributes: 30 numeric, predictive attributes and the class :Attribute Information: - radius (mean of distances from center to points on the perimeter) - texture (standard deviation of gray-scale values) - perimeter - area - smoothness (local variation in radius lengths) - compactness (perimeter^2 / area - 1.0) - concavity (severity of concave portions of the contour) - concave points (number of concave portions of the contour) - symmetry - fractal dimension ("coastline approximation" - 1) The mean, standard error, and "worst" or largest (mean of the three worst/largest values) of these features were computed for each image, resulting in 30 features. For instance, field 0 is Mean Radius, field 10 is Radius SE, field 20 is Worst Radius. - class: - WDBC-Malignant - WDBC-Benign :Summary Statistics: ===================================== ====== ====== Min Max ===================================== ====== ====== radius (mean): 6.981 28.11 texture (mean): 9.71 39.28 perimeter (mean): 43.79 188.5 area (mean): 143.5 2501.0 smoothness (mean): 0.053 0.163 compactness (mean): 0.019 0.345 concavity (mean): 0.0 0.427 concave points (mean): 0.0 0.201 symmetry (mean): 0.106 0.304 fractal dimension (mean): 0.05 0.097 radius (standard error): 0.112 2.873 texture (standard error): 0.36 4.885 perimeter (standard error): 0.757 21.98 area (standard error): 6.802 542.2 smoothness (standard error): 0.002 0.031 compactness (standard error): 0.002 0.135 concavity (standard error): 0.0 0.396 concave points (standard error): 0.0 0.053 symmetry (standard error): 0.008 0.079 fractal dimension (standard error): 0.001 0.03 radius (worst): 7.93 36.04 texture (worst): 12.02 49.54 perimeter (worst): 50.41 251.2 area (worst): 185.2 4254.0 smoothness (worst): 0.071 0.223 compactness (worst): 0.027 1.058 concavity (worst): 0.0 1.252 concave points (worst): 0.0 0.291 symmetry (worst): 0.156 0.664 fractal dimension (worst): 0.055 0.208 ===================================== ====== ====== :Missing Attribute Values: None :Class Distribution: 212 - Malignant, 357 - Benign :Creator: Dr. William H. Wolberg, W. Nick Street, Olvi L. Mangasarian :Donor: Nick Street :Date: November, 1995 This is a copy of UCI ML Breast Cancer Wisconsin (Diagnostic) datasets. https://goo.gl/U2Uwz2 Features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in the image. Separating plane described above was obtained using Multisurface Method-Tree (MSM-T) [K. P. Bennett, "Decision Tree Construction Via Linear Programming." Proceedings of the 4th Midwest Artificial Intelligence and Cognitive Science Society, pp. 97-101, 1992], a classification method which uses linear programming to construct a decision tree. Relevant features were selected using an exhaustive search in the space of 1-4 features and 1-3 separating planes. The actual linear program used to obtain the separating plane in the 3-dimensional space is that described in: [K. P. Bennett and O. L. Mangasarian: "Robust Linear Programming Discrimination of Two Linearly Inseparable Sets", Optimization Methods and Software 1, 1992, 23-34]. This database is also available through the UW CS ftp server: ftp ftp.cs.wisc.edu cd math-prog/cpo-dataset/machine-learn/WDBC/ .. topic:: References - W.N. Street, W.H. Wolberg and O.L. Mangasarian. Nuclear feature extraction for breast tumor diagnosis. IS&T/SPIE 1993 International Symposium on Electronic Imaging: Science and Technology, volume 1905, pages 861-870, San Jose, CA, 1993. - O.L. Mangasarian, W.N. Street and W.H. Wolberg. Breast cancer diagnosis and prognosis via linear programming. Operations Research, 43(4), pages 570-577, July-August 1995. - W.H. Wolberg, W.N. Street, and O.L. Mangasarian. Machine learning techniques to diagnose breast cancer from fine-needle aspirates. Cancer Letters 77 (1994) 163-171. ###Markdown The object returned by `load_breast_cancer()` is a scikit-learn Bunch object, which is similar to a dictionary. ###Code cancer.keys() ###Output _____no_output_____ ###Markdown Question 0 (Example) How many features does the breast cancer dataset have? ###Code def answer_zero(): return len(cancer['feature_names']) answer_zero() ###Output _____no_output_____ ###Markdown Question 1Scikit-learn works with lists, numpy arrays, scipy-sparse matrices, and pandas DataFrames, so converting the dataset to a DataFrame is not necessary for training this model. Using a DataFrame does however help make many things easier such as munging data, so let's practice creating a classifier with a pandas DataFrame. Convert the sklearn.dataset `cancer` to a DataFrame. *This function should return a `(569, 31)` DataFrame with * *columns = * ['mean radius', 'mean texture', 'mean perimeter', 'mean area', 'mean smoothness', 'mean compactness', 'mean concavity', 'mean concave points', 'mean symmetry', 'mean fractal dimension', 'radius error', 'texture error', 'perimeter error', 'area error', 'smoothness error', 'compactness error', 'concavity error', 'concave points error', 'symmetry error', 'fractal dimension error', 'worst radius', 'worst texture', 'worst perimeter', 'worst area', 'worst smoothness', 'worst compactness', 'worst concavity', 'worst concave points', 'worst symmetry', 'worst fractal dimension', 'target']*and index = * RangeIndex(start=0, stop=569, step=1) ###Code def answer_one(): df = pd.DataFrame(cancer['data'], columns=cancer['feature_names']) df['target'] = cancer['target'].astype('float64') return df answer_one() ###Output _____no_output_____ ###Markdown Question 2What is the class distribution? (i.e. how many instances of `malignant` (encoded 0) and how many `benign` (encoded 1)?)*This function should return a Series named `target` of length 2 with integer values and index =* `['malignant', 'benign']` ###Code def answer_two(): cancer_df = answer_one() target = cancer_df.groupby('target').size().rename({0: 'malignant', 1: 'benign'}) return target answer_two() ###Output _____no_output_____ ###Markdown Question 3Split the DataFrame into `X` (the data) and `y` (the labels).*This function should return a tuple of length 2:* `(X, y)`*, where* * `X`*, a pandas DataFrame, has shape* `(569, 30)`* `y`*, a pandas Series, has shape* `(569,)`. ###Code def answer_three(): cancer_df = answer_one() X = cancer_df[cancer['feature_names']] y = cancer_df['target'] return X, y answer_three() ###Output _____no_output_____ ###Markdown Question 4Using `train_test_split`, split `X` and `y` into training and test sets `(X_train, X_test, y_train, and y_test)`.**Set the random number generator state to 0 using `random_state=0` to make sure your results match the autograder!***This function should return a tuple of length 4:* `(X_train, X_test, y_train, y_test)`*, where* * `X_train` *has shape* `(426, 30)`* `X_test` *has shape* `(143, 30)`* `y_train` *has shape* `(426,)`* `y_test` *has shape* `(143,)` ###Code def answer_four(): X, y = answer_three() X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) return X_train, X_test, y_train, y_test answer_four() ###Output _____no_output_____ ###Markdown Question 5Using KNeighborsClassifier, fit a k-nearest neighbors (knn) classifier with `X_train`, `y_train` and using one nearest neighbor (`n_neighbors = 1`).*This function should return a * `sklearn.neighbors.classification.KNeighborsClassifier`. ###Code def answer_five(): X_train, X_test, y_train, y_test = answer_four() knn = KNeighborsClassifier(n_neighbors=1) return knn.fit(X_train, y_train) answer_five() ###Output _____no_output_____ ###Markdown Question 6Using your knn classifier, predict the class label using the mean value for each feature.Hint: You can use `cancerdf.mean()[:-1].values.reshape(1, -1)` which gets the mean value for each feature, ignores the target column, and reshapes the data from 1 dimension to 2 (necessary for the precict method of KNeighborsClassifier).*This function should return a numpy array either `array([ 0.])` or `array([ 1.])`* ###Code def answer_six(): cancer_df = answer_one() means = cancer_df.mean()[:-1].values.reshape(1, -1) knn = answer_five() return knn.predict(means) answer_six() ###Output _____no_output_____ ###Markdown Question 7Using your knn classifier, predict the class labels for the test set `X_test`.*This function should return a numpy array with shape `(143,)` and values either `0.0` or `1.0`.* ###Code def answer_seven(): X_train, X_test, y_train, y_test = answer_four() knn = answer_five() return knn.predict(X_test) answer_seven() ###Output _____no_output_____ ###Markdown Question 8Find the score (mean accuracy) of your knn classifier using `X_test` and `y_test`.*This function should return a float between 0 and 1* ###Code def answer_eight(): X_train, X_test, y_train, y_test = answer_four() knn = answer_five() return knn.score(X_test, y_test) answer_eight() ###Output _____no_output_____
machine_learning/handling_imbalanced_data.ipynb
###Markdown This will show how to handle imbalanced dataset.**Imbalanced datasets are those which contain more no. of records for one class as compared to other class (say 80-20)**Two main ways of handling imbalanced datasets :1. Undersampling which consists in down-sizing the majority class by removing observations until the dataset is balanced.2. Oversampling which consists in over-sizing the minority class by adding observations. Importing the libraries ###Code from sklearn.datasets import make_classification from collections import Counter from imblearn.under_sampling import NearMiss from imblearn.combine import SMOTETomek ###Output _____no_output_____ ###Markdown Creating the dataset ###Code X, y = make_classification(n_classes=2, class_sep=2, weights=[0.1, 0.9], n_informative=3, n_redundant=1, flip_y=0, n_features=20, n_clusters_per_class=1, n_samples=1000, random_state=10) print('Original dataset shape %s' % Counter(y)) ###Output Original dataset shape Counter({1: 900, 0: 100}) ###Markdown It is clear from the data that it contains more datapoints class 1 as compared to class 0.Perform Undersampling and oversampling on the data. Undersampling ###Code nm = NearMiss() X_res,y_res=nm.fit_sample(X,y) print(f"Original data shape : {Counter(y)}") print(f"Resampled data shape : {Counter(y_res)} ") ###Output _____no_output_____ ###Markdown Oversampling ###Code smk = SMOTETomek(random_state = 42) X_res,y_res=smk.fit_sample(X,y) print(f"Original data shape : {Counter(y)}") print(f"Resampled data shape : {Counter(y_res)} ") ###Output Original data shape : Counter({1: 900, 0: 100}) Resampled data shape : Counter({0: 900, 1: 900})
quizzes/quiz8/quiz8CalculatorParsing.ipynb
###Markdown Q8 ** Run these cells one by one. Study the questions and the answers here. Then answer the corresponding Canvas questions in Quiz-8. ** You will be provided answers here. You'll be provided the answers here. We will tag them as "Free Answer". You will see that only after you run the cells. Write these ** free answers** on Canvas. Our goal is that you ran through these cells at least once !!! Background information for youSomeone was asked to build a calculator following these CFG rules.```RULESRule 0 S -> expressionRule 1 expression -> expression PLUS termRule 2 expression -> expression MINUS termRule 3 expression -> termRule 4 term -> term TIMES factorRule 5 term -> term DIVIDE factorRule 6 term -> factorRule 7 factor -> innerfactor EXP factorRule 8 factor -> innerfactorRule 9 innerfactor -> UMINUS innerfactorRule 10 innerfactor -> LPAREN expression RPARENRule 11 innerfactor -> NUMBER```They implemented these CFGs in a parser that we shall present in Section 2 below. THINGS TO NOTE* We will use "~" (tilde) for unary minus, and "-" (regular minus) for binary infix minus* we will use "^" for exponentiation The ParserYou may be interested in roughly how abstract CFG rules such as listed above turn into CFG rules as supported by a tool such as PLY. ###Code from lex import lex from yacc import yacc from jove.StateNameSanitizers import ResetStNum, NxtStateStr from jove.SystemImports import * # Following ideas from http://www.dabeaz.com/ply/example.html heavily tokens = ('NUMBER','LPAREN','RPAREN','PLUS', 'MINUS', 'TIMES','DIVIDE', 'UMINUS', 'EXP') # Tokens t_PLUS = r'\+' t_MINUS = r'\-' t_TIMES = r'\*' t_DIVIDE = r'\/' t_LPAREN = r'\(' t_RPAREN = r'\)' t_UMINUS = r'\~' t_EXP = r'\^' # parsing + semantic actions in one place! def t_NUMBER(t): r'\d+' try: t.value = int(t.value) except ValueError: print("Integer value too large %d", t.value) t.value = 0 return t # Ignored characters t_ignore = " \t" def t_newline(t): r'\n+' t.lexer.lineno += t.value.count("\n") def t_error(t): print("Illegal character '%s'" % t.value[0]) t.lexer.skip(1) def p_expression_1(t): 'expression : expression PLUS term' # t[0] = (t[1][0] + t[3][0], attrDyadicInfix("+", t[1][1], t[3][1])) def p_expression_2(t): 'expression : expression MINUS term' # t[0] = (t[1][0] - t[3][0], attrDyadicInfix("-", t[1][1], t[3][1])) def p_expression_3(t): 'expression : term' # t[0] = t[1] # Consult this excellent reference for info on precedences # https://www.cs.utah.edu/~zachary/isp/worksheets/operprec/operprec.html def p_term_1(t): 'term : term TIMES factor' # t[0] = (t[1][0] * t[3][0], attrDyadicInfix("*", t[1][1], t[3][1])) def p_term_2(t): 'term : term DIVIDE factor' # if (t[3][0] == 0): print("Error, divide by zero!") t[3][0] = 1 # fix it t[0] = (t[1][0] / t[3][0], attrDyadicInfix("/", t[1][1], t[3][1])) def p_term_3(t): 'term : factor' # t[0] = t[1] def p_factor_1(t): 'factor : innerfactor EXP factor' # t[0] = (t[1][0] ** t[3][0], attrDyadicInfix("^", t[1][1], t[3][1])) def p_factor_2(t): 'factor : innerfactor' # t[0] = t[1] def p_innerfactor_1(t): 'innerfactor : UMINUS innerfactor' # ast = ('~', t[2][1]['ast']) nlin = t[2][1]['dig']['nl'] elin = t[2][1]['dig']['el'] rootin = nlin[0] root = NxtStateStr("~E_") left = NxtStateStr("~_") t[0] =(-t[2][0], {'ast' : ast, 'dig' : {'nl' : [ root, left ] + nlin, # this order important for proper layout! 'el' : elin + [ (root, left), (root, rootin) ] }}) def p_innerfactor_2(t): 'innerfactor : LPAREN expression RPAREN' # ast = t[2][1]['ast'] nlin = t[2][1]['dig']['nl'] elin = t[2][1]['dig']['el'] rootin = nlin[0] root = NxtStateStr("(E)_") left = NxtStateStr("(_") right= NxtStateStr(")_") t[0] =(t[2][0], {'ast' : ast, 'dig' : {'nl' : [root, left] + nlin + [right], #order important f. proper layout! 'el' : elin + [ (root, left), (root, rootin), (root, right) ] }}) def p_innerfactor_3(t): 'innerfactor : NUMBER' # strn = str(t[1]) ast = ('NUMBER', strn) t[0] =(t[1], { 'ast' : ast, 'dig' : {'nl' : [ strn + NxtStateStr("_") ], 'el' : [] }}) def p_error(t): print("Syntax error at '%s'" % t.value) #-- def attrDyadicInfix(op, attr1, attr3): ast = (op, (attr1['ast'], attr3['ast'])) nlin1 = attr1['dig']['nl'] nlin3 = attr3['dig']['nl'] nlin = nlin1 + nlin3 elin1 = attr1['dig']['el'] elin3 = attr3['dig']['el'] elin = elin1 + elin3 rootin1 = nlin1[0] rootin3 = nlin3[0] root = NxtStateStr("E1"+op+"E2"+"_") # NxtStateStr("$_") left = rootin1 middle = NxtStateStr(op+"_") right = rootin3 return {'ast' : ast, 'dig' : {'nl' : [ root, left, middle, right ] + nlin, 'el' : elin + [ (root, left), (root, middle), (root, right) ] }} #=== # This is the main function in this Jove file. #=== def parseExp(s): """In: a string s containing a regular expression. Out: An attribute triple consisting of 1) An abstract syntax tree suitable for processing in the derivative-based scanner 2) A node-list for the parse-tree digraph generated. Good for drawing a parse tree using the drawPT function below 3) An edge list for the parse-tree generated (again good for drawing using the drawPT function below) """ mylexer = lex() myparser = yacc() pt = myparser.parse(s, lexer = mylexer) # print('parsed result is ', pt) # (result, ast, nodes, edges) return (pt[0], pt[1]['ast'], pt[1]['dig']['nl'], pt[1]['dig']['el']) def drawPT(ast_rslt_nl_el, comment="PT"): """Given an (ast, nl, el) triple where nl is the node and el the edge-list, draw the Parse Tree by returning a dot object. """ (rslt, ast, nl, el) = ast_rslt_nl_el print("Result calculated = ", rslt) print("Drawing AST for ", ast) dotObj_pt = Digraph(comment) dotObj_pt.graph_attr['rankdir'] = 'TB' for n in nl: prNam = n.split('_')[0] dotObj_pt.node(n, prNam, shape="oval", peripheries="1") for e in el: dotObj_pt.edge(e[0], e[1]) return dotObj_pt ###Output _____no_output_____ ###Markdown Now answer these questions How does the calculator above parse "~2^2" ? ###Code drawPT(parseExp("~2^2")) ###Output Result calculated = 4 Drawing AST for ('^', (('~', ('NUMBER', '2')), ('NUMBER', '2'))) ###Markdown ** Free answer: ** In our calculator, unary minus has higher precedence than exponentiation, as evidenced by a parse tree of **this many** nodes. Why does Python give a different answer for the expression ```-2**2``` ? ###Code # Python evaluation -2 ** 2 ###Output _____no_output_____ ###Markdown ** Free answer: ** The experiment with the above Python expression shows how our calculator and Python differ. Specifically, the answers are **this one** (calculator) and **this one** (Python). In Python, unary minus binds less tightly than exponentiation. In parsing "2^~3^~4", the following parse tree was produced.How can we tell that the calculator gives higher precedence to "~" (unary minus) and that it right-associates the exponentiation operator? ###Code drawPT(parseExp("2^~3^~4")) ###Output Result calculated = 1.008594091576999 Drawing AST for ('^', (('NUMBER', '2'), ('^', (('~', ('NUMBER', '3')), ('~', ('NUMBER', '4')))))) ###Markdown ** Free answer: ** We see how the tree of **this many nodes** for the above expression 2^~3^~4 is built, where the value of the second "^" flows as the EXPONENT of the first "^". Also see that "~" (the unary minus) is incorporated before any exponentiation gets done. What does ```2**-3**-4``` produce in Python? Is it the same answer? ###Code # The above expression typed into Python in Python's syntax is below, and see what it produces! 2**-3**-4 ###Output _____no_output_____ ###Markdown ** Free answer: ** Python differs from our calculator in how it handles ```2**-3**-4``` versus 2^~3^~4. It yields **this answer**. Show by full parenthesization how Python parses 2**-3**-4 ###Code 2**(-(3**(-4))) ###Output _____no_output_____ ###Markdown ** Free answer: ** It parses it as ```2**(-(3**(-4)))```, showing that unary "-" does not have the same precedence as exp. However, the exps are processed right-associatively! Parsing ```6*3/4*~5/(2+3-4-5-6/7*~8)-~9```How many nodes in this parse tree? Same as Python's answer? ###Code drawPT(parseExp("6*3/4*~5/(2+3-4-5-6/7*~8)-~9")) # Check against Python! 6*3/4*-5/(2+3-4-5-6/7*-8)--9 ###Output _____no_output_____ ###Markdown Q8 ** Run these cells one by one. Study the questions and the answers here. Then answer the corresponding Canvas questions in Quiz-8. ** You will be provided answers here. You'll be provided the answers here. We will tag them as "Free Answer". You will see that only after you run the cells. Write these ** free answers** on Canvas. Our goal is that you ran through these cells at least once !!! Background information for youSomeone was asked to build a calculator following these CFG rules.```RULESRule 0 S -> expressionRule 1 expression -> expression PLUS termRule 2 expression -> expression MINUS termRule 3 expression -> termRule 4 term -> term TIMES factorRule 5 term -> term DIVIDE factorRule 6 term -> factorRule 7 factor -> innerfactor EXP factorRule 8 factor -> innerfactorRule 9 innerfactor -> UMINUS innerfactorRule 10 innerfactor -> LPAREN expression RPARENRule 11 innerfactor -> NUMBER```They implemented these CFGs in a parser that we shall present in Section 2 below. THINGS TO NOTE* We will use "~" (tilde) for unary minus, and "-" (regular minus) for binary infix minus* we will use "^" for exponentiation The ParserYou may be interested in roughly how abstract CFG rules such as listed above turn into CFG rules as supported by a tool such as PLY. ###Code import sys sys.path[0:0] = ['../..','../../3rdparty'] # Put these at the head of the search path from lex import lex from yacc import yacc from jove.StateNameSanitizers import ResetStNum, NxtStateStr from jove.SystemImports import * # Following ideas from http://www.dabeaz.com/ply/example.html heavily tokens = ('NUMBER','LPAREN','RPAREN','PLUS', 'MINUS', 'TIMES','DIVIDE', 'UMINUS', 'EXP') # Tokens t_PLUS = r'\+' t_MINUS = r'\-' t_TIMES = r'\*' t_DIVIDE = r'\/' t_LPAREN = r'\(' t_RPAREN = r'\)' t_UMINUS = r'\~' t_EXP = r'\^' # parsing + semantic actions in one place! def t_NUMBER(t): r'\d+' try: t.value = int(t.value) except ValueError: print("Integer value too large %d", t.value) t.value = 0 return t # Ignored characters t_ignore = " \t" def t_newline(t): r'\n+' t.lexer.lineno += t.value.count("\n") def t_error(t): print("Illegal character '%s'" % t.value[0]) t.lexer.skip(1) def p_expression_1(t): 'expression : expression PLUS term' # t[0] = (t[1][0] + t[3][0], attrDyadicInfix("+", t[1][1], t[3][1])) def p_expression_2(t): 'expression : expression MINUS term' # t[0] = (t[1][0] - t[3][0], attrDyadicInfix("-", t[1][1], t[3][1])) def p_expression_3(t): 'expression : term' # t[0] = t[1] # Consult this excellent reference for info on precedences # https://www.cs.utah.edu/~zachary/isp/worksheets/operprec/operprec.html def p_term_1(t): 'term : term TIMES factor' # t[0] = (t[1][0] * t[3][0], attrDyadicInfix("*", t[1][1], t[3][1])) def p_term_2(t): 'term : term DIVIDE factor' # if (t[3][0] == 0): print("Error, divide by zero!") t[3][0] = 1 # fix it t[0] = (t[1][0] / t[3][0], attrDyadicInfix("/", t[1][1], t[3][1])) def p_term_3(t): 'term : factor' # t[0] = t[1] def p_factor_1(t): 'factor : innerfactor EXP factor' # t[0] = (t[1][0] ** t[3][0], attrDyadicInfix("^", t[1][1], t[3][1])) def p_factor_2(t): 'factor : innerfactor' # t[0] = t[1] def p_innerfactor_1(t): 'innerfactor : UMINUS innerfactor' # ast = ('~', t[2][1]['ast']) nlin = t[2][1]['dig']['nl'] elin = t[2][1]['dig']['el'] rootin = nlin[0] root = NxtStateStr("~E_") left = NxtStateStr("~_") t[0] =(-t[2][0], {'ast' : ast, 'dig' : {'nl' : [ root, left ] + nlin, # this order important for proper layout! 'el' : elin + [ (root, left), (root, rootin) ] }}) def p_innerfactor_2(t): 'innerfactor : LPAREN expression RPAREN' # ast = t[2][1]['ast'] nlin = t[2][1]['dig']['nl'] elin = t[2][1]['dig']['el'] rootin = nlin[0] root = NxtStateStr("(E)_") left = NxtStateStr("(_") right= NxtStateStr(")_") t[0] =(t[2][0], {'ast' : ast, 'dig' : {'nl' : [root, left] + nlin + [right], #order important f. proper layout! 'el' : elin + [ (root, left), (root, rootin), (root, right) ] }}) def p_innerfactor_3(t): 'innerfactor : NUMBER' # strn = str(t[1]) ast = ('NUMBER', strn) t[0] =(t[1], { 'ast' : ast, 'dig' : {'nl' : [ strn + NxtStateStr("_") ], 'el' : [] }}) def p_error(t): print("Syntax error at '%s'" % t.value) #-- def attrDyadicInfix(op, attr1, attr3): ast = (op, (attr1['ast'], attr3['ast'])) nlin1 = attr1['dig']['nl'] nlin3 = attr3['dig']['nl'] nlin = nlin1 + nlin3 elin1 = attr1['dig']['el'] elin3 = attr3['dig']['el'] elin = elin1 + elin3 rootin1 = nlin1[0] rootin3 = nlin3[0] root = NxtStateStr("E1"+op+"E2"+"_") # NxtStateStr("$_") left = rootin1 middle = NxtStateStr(op+"_") right = rootin3 return {'ast' : ast, 'dig' : {'nl' : [ root, left, middle, right ] + nlin, 'el' : elin + [ (root, left), (root, middle), (root, right) ] }} #=== # This is the main function in this Jove file. #=== def parseExp(s): """In: a string s containing a regular expression. Out: An attribute triple consisting of 1) An abstract syntax tree suitable for processing in the derivative-based scanner 2) A node-list for the parse-tree digraph generated. Good for drawing a parse tree using the drawPT function below 3) An edge list for the parse-tree generated (again good for drawing using the drawPT function below) """ mylexer = lex() myparser = yacc() pt = myparser.parse(s, lexer = mylexer) # print('parsed result is ', pt) # (result, ast, nodes, edges) return (pt[0], pt[1]['ast'], pt[1]['dig']['nl'], pt[1]['dig']['el']) def drawPT(ast_rslt_nl_el, comment="PT"): """Given an (ast, nl, el) triple where nl is the node and el the edge-list, draw the Parse Tree by returning a dot object. """ (rslt, ast, nl, el) = ast_rslt_nl_el print("Result calculated = ", rslt) print("Drawing AST for ", ast) dotObj_pt = Digraph(comment) dotObj_pt.graph_attr['rankdir'] = 'TB' for n in nl: prNam = n.split('_')[0] dotObj_pt.node(n, prNam, shape="oval", peripheries="1") for e in el: dotObj_pt.edge(e[0], e[1]) return dotObj_pt ###Output _____no_output_____ ###Markdown Now answer these questions How does the calculator above parse "~2^2" ? ###Code drawPT(parseExp("~2^2")) ###Output Result calculated = 4 Drawing AST for ('^', (('~', ('NUMBER', '2')), ('NUMBER', '2'))) ###Markdown ** Free answer: ** In our calculator, unary minus has higher precedence than exponentiation, as evidenced by a parse tree of **this many** nodes. Why does Python give a different answer for the expression ```-2**2``` ? ###Code # Python evaluation -2 ** 2 ###Output _____no_output_____ ###Markdown ** Free answer: ** The experiment with the above Python expression shows how our calculator and Python differ. Specifically, the answers are **this one** (calculator) and **this one** (Python). In Python, unary minus binds less tightly than exponentiation. In parsing "2^~3^~4", the following parse tree was produced.How can we tell that the calculator gives higher precedence to "~" (unary minus) and that it right-associates the exponentiation operator? ###Code drawPT(parseExp("2^~3^~4")) ###Output Result calculated = 1.008594091576999 Drawing AST for ('^', (('NUMBER', '2'), ('^', (('~', ('NUMBER', '3')), ('~', ('NUMBER', '4')))))) ###Markdown ** Free answer: ** We see how the tree of **this many nodes** for the above expression 2^~3^~4 is built, where the value of the second "^" flows as the EXPONENT of the first "^". Also see that "~" (the unary minus) is incorporated before any exponentiation gets done. What does ```2**-3**-4``` produce in Python? Is it the same answer? ###Code # The above expression typed into Python in Python's syntax is below, and see what it produces! 2**-3**-4 ###Output _____no_output_____ ###Markdown ** Free answer: ** Python differs from our calculator in how it handles ```2**-3**-4``` versus 2^~3^~4. It yields **this answer**. Show by full parenthesization how Python parses 2**-3**-4 ###Code 2**(-(3**(-4))) ###Output _____no_output_____ ###Markdown ** Free answer: ** It parses it as ```2**(-(3**(-4)))```, showing that unary "-" does not have the same precedence as exp. However, the exps are processed right-associatively! Parsing ```6*3/4*~5/(2+3-4-5-6/7*~8)-~9```How many nodes in this parse tree? Same as Python's answer? ###Code drawPT(parseExp("6*3/4*~5/(2+3-4-5-6/7*~8)-~9")) # Check against Python! 6*3/4*-5/(2+3-4-5-6/7*-8)--9 ###Output _____no_output_____ ###Markdown Q8 ** Run these cells one by one. Study the questions and the answers here. Then answer the corresponding Canvas questions in Quiz-8. ** You will be provided answers here. You'll be provided the answers here. We will tag them as "Free Answer". You will see that only after you run the cells. Write these ** free answers** on Canvas. Our goal is that you ran through these cells at least once !!! Background information for youSomeone was asked to build a calculator following these CFG rules.```RULESRule 0 S -> expressionRule 1 expression -> expression PLUS termRule 2 expression -> expression MINUS termRule 3 expression -> termRule 4 term -> term TIMES factorRule 5 term -> term DIVIDE factorRule 6 term -> factorRule 7 factor -> innerfactor EXP factorRule 8 factor -> innerfactorRule 9 innerfactor -> UMINUS innerfactorRule 10 innerfactor -> LPAREN expression RPARENRule 11 innerfactor -> NUMBER```They implemented these CFGs in a parser that we shall present in Section 2 below. THINGS TO NOTE* We will use "~" (tilde) for unary minus, and "-" (regular minus) for binary infix minus* we will use "^" for exponentiation The ParserYou may be interested in roughly how abstract CFG rules such as listed above turn into CFG rules as supported by a tool such as PLY. ###Code from lex import lex from yacc import yacc from jove.StateNameSanitizers import ResetStNum, NxtStateStr from jove.SystemImports import * # Following ideas from http://www.dabeaz.com/ply/example.html heavily tokens = ('NUMBER','LPAREN','RPAREN','PLUS', 'MINUS', 'TIMES','DIVIDE', 'UMINUS', 'EXP') # Tokens t_PLUS = r'\+' t_MINUS = r'\-' t_TIMES = r'\*' t_DIVIDE = r'\/' t_LPAREN = r'\(' t_RPAREN = r'\)' t_UMINUS = r'\~' t_EXP = r'\^' # parsing + semantic actions in one place! def t_NUMBER(t): r'\d+' try: t.value = int(t.value) except ValueError: print("Integer value too large %d", t.value) t.value = 0 return t # Ignored characters t_ignore = " \t" def t_newline(t): r'\n+' t.lexer.lineno += t.value.count("\n") def t_error(t): print("Illegal character '%s'" % t.value[0]) t.lexer.skip(1) def p_expression_1(t): 'expression : expression PLUS term' # t[0] = (t[1][0] + t[3][0], attrDyadicInfix("+", t[1][1], t[3][1])) def p_expression_2(t): 'expression : expression MINUS term' # t[0] = (t[1][0] - t[3][0], attrDyadicInfix("-", t[1][1], t[3][1])) def p_expression_3(t): 'expression : term' # t[0] = t[1] # Consult this excellent reference for info on precedences # https://www.cs.utah.edu/~zachary/isp/worksheets/operprec/operprec.html def p_term_1(t): 'term : term TIMES factor' # t[0] = (t[1][0] * t[3][0], attrDyadicInfix("*", t[1][1], t[3][1])) def p_term_2(t): 'term : term DIVIDE factor' # if (t[3][0] == 0): print("Error, divide by zero!") t[3][0] = 1 # fix it t[0] = (t[1][0] / t[3][0], attrDyadicInfix("/", t[1][1], t[3][1])) def p_term_3(t): 'term : factor' # t[0] = t[1] def p_factor_1(t): 'factor : innerfactor EXP factor' # t[0] = (t[1][0] ** t[3][0], attrDyadicInfix("^", t[1][1], t[3][1])) def p_factor_2(t): 'factor : innerfactor' # t[0] = t[1] def p_innerfactor_1(t): 'innerfactor : UMINUS innerfactor' # ast = ('~', t[2][1]['ast']) nlin = t[2][1]['dig']['nl'] elin = t[2][1]['dig']['el'] rootin = nlin[0] root = NxtStateStr("~E_") left = NxtStateStr("~_") t[0] =(-t[2][0], {'ast' : ast, 'dig' : {'nl' : [ root, left ] + nlin, # this order important for proper layout! 'el' : elin + [ (root, left), (root, rootin) ] }}) def p_innerfactor_2(t): 'innerfactor : LPAREN expression RPAREN' # ast = t[2][1]['ast'] nlin = t[2][1]['dig']['nl'] elin = t[2][1]['dig']['el'] rootin = nlin[0] root = NxtStateStr("(E)_") left = NxtStateStr("(_") right= NxtStateStr(")_") t[0] =(t[2][0], {'ast' : ast, 'dig' : {'nl' : [root, left] + nlin + [right], #order important f. proper layout! 'el' : elin + [ (root, left), (root, rootin), (root, right) ] }}) def p_innerfactor_3(t): 'innerfactor : NUMBER' # strn = str(t[1]) ast = ('NUMBER', strn) t[0] =(t[1], { 'ast' : ast, 'dig' : {'nl' : [ strn + NxtStateStr("_") ], 'el' : [] }}) def p_error(t): print("Syntax error at '%s'" % t.value) #-- def attrDyadicInfix(op, attr1, attr3): ast = (op, (attr1['ast'], attr3['ast'])) nlin1 = attr1['dig']['nl'] nlin3 = attr3['dig']['nl'] nlin = nlin1 + nlin3 elin1 = attr1['dig']['el'] elin3 = attr3['dig']['el'] elin = elin1 + elin3 rootin1 = nlin1[0] rootin3 = nlin3[0] root = NxtStateStr("E1"+op+"E2"+"_") # NxtStateStr("$_") left = rootin1 middle = NxtStateStr(op+"_") right = rootin3 return {'ast' : ast, 'dig' : {'nl' : [ root, left, middle, right ] + nlin, 'el' : elin + [ (root, left), (root, middle), (root, right) ] }} #=== # This is the main function in this Jove file. #=== def parseExp(s): """In: a string s containing a regular expression. Out: An attribute triple consisting of 1) An abstract syntax tree suitable for processing in the derivative-based scanner 2) A node-list for the parse-tree digraph generated. Good for drawing a parse tree using the drawPT function below 3) An edge list for the parse-tree generated (again good for drawing using the drawPT function below) """ mylexer = lex() myparser = yacc() pt = myparser.parse(s, lexer = mylexer) # print('parsed result is ', pt) # (result, ast, nodes, edges) return (pt[0], pt[1]['ast'], pt[1]['dig']['nl'], pt[1]['dig']['el']) def drawPT(ast_rslt_nl_el, comment="PT"): """Given an (ast, nl, el) triple where nl is the node and el the edge-list, draw the Parse Tree by returning a dot object. """ (rslt, ast, nl, el) = ast_rslt_nl_el print("Result calculated = ", rslt) print("Drawing AST for ", ast) dotObj_pt = Digraph(comment) dotObj_pt.graph_attr['rankdir'] = 'TB' for n in nl: prNam = n.split('_')[0] dotObj_pt.node(n, prNam, shape="oval", peripheries="1") for e in el: dotObj_pt.edge(e[0], e[1]) return dotObj_pt ###Output _____no_output_____ ###Markdown Now answer these questions How does the calculator above parse "~2^2" ? ###Code drawPT(parseExp("~2^2")) ###Output Generating LALR tables ###Markdown ** Free answer: ** In our calculator, unary minus has higher precedence than exponentiation, as evidenced by a parse tree of **this many** nodes. Why does Python give a different answer for the expression ```-2**2``` ? ###Code # Python evaluation -2 ** 2 ###Output _____no_output_____ ###Markdown ** Free answer: ** The experiment with the above Python expression shows how our calculator and Python differ. Specifically, the answers are **this one** (calculator) and **this one** (Python). In Python, unary minus binds less tightly than exponentiation. In parsing "2^~3^~4", the following parse tree was produced.How can we tell that the calculator gives higher precedence to "~" (unary minus) and that it right-associates the exponentiation operator? ###Code drawPT(parseExp("2^~3^~4")) ###Output Result calculated = 1.008594091576999 Drawing AST for ('^', (('NUMBER', '2'), ('^', (('~', ('NUMBER', '3')), ('~', ('NUMBER', '4')))))) ###Markdown ** Free answer: ** We see how the tree of **this many nodes** for the above expression 2^~3^~4 is built, where the value of the second "^" flows as the EXPONENT of the first "^". Also see that "~" (the unary minus) is incorporated before any exponentiation gets done. What does ```2**-3**-4``` produce in Python? Is it the same answer? ###Code # The above expression typed into Python in Python's syntax is below, and see what it produces! 2**-3**-4 ###Output _____no_output_____ ###Markdown ** Free answer: ** Python differs from our calculator in how it handles ```2**-3**-4``` versus 2^~3^~4. It yields **this answer**. Show by full parenthesization how Python parses 2**-3**-4 ###Code 2**(-(3**(-4))) ###Output _____no_output_____ ###Markdown ** Free answer: ** It parses it as ```2**(-(3**(-4)))```, showing that unary "-" does not have the same precedence as exp. However, the exps are processed right-associatively! Parsing ```6*3/4*~5/(2+3-4-5-6/7*~8)-~9```How many nodes in this parse tree? Same as Python's answer? ###Code drawPT(parseExp("6*3/4*~5/(2+3-4-5-6/7*~8)-~9")) # Check against Python! 6*3/4*-5/(2+3-4-5-6/7*-8)--9 ###Output _____no_output_____ ###Markdown Q8 ** Run these cells one by one. Study the questions and the answers here. Then answer the corresponding Canvas questions in Quiz-8. ** You will be provided answers here. You'll be provided the answers here. We will tag them as "Free Answer". You will see that only after you run the cells. Write these ** free answers** on Canvas. Our goal is that you ran through these cells at least once !!! Background information for youSomeone was asked to build a calculator following these CFG rules.```RULESRule 0 S -> expressionRule 1 expression -> expression PLUS termRule 2 expression -> expression MINUS termRule 3 expression -> termRule 4 term -> term TIMES factorRule 5 term -> term DIVIDE factorRule 6 term -> factorRule 7 factor -> innerfactor EXP factorRule 8 factor -> innerfactorRule 9 innerfactor -> UMINUS innerfactorRule 10 innerfactor -> LPAREN expression RPARENRule 11 innerfactor -> NUMBER```They implemented these CFGs in a parser that we shall present in Section 2 below. THINGS TO NOTE* We will use "~" (tilde) for unary minus, and "-" (regular minus) for binary infix minus* we will use "^" for exponentiation The ParserYou may be interested in roughly how abstract CFG rules such as listed above turn into CFG rules as supported by a tool such as PLY. ###Code from lex import lex from yacc import yacc from jove.StateNameSanitizers import ResetStNum, NxtStateStr from jove.SystemImports import * # Following ideas from http://www.dabeaz.com/ply/example.html heavily tokens = ('NUMBER','LPAREN','RPAREN','PLUS', 'MINUS', 'TIMES','DIVIDE', 'UMINUS', 'EXP') # Tokens t_PLUS = r'\+' t_MINUS = r'\-' t_TIMES = r'\*' t_DIVIDE = r'\/' t_LPAREN = r'\(' t_RPAREN = r'\)' t_UMINUS = r'\~' t_EXP = r'\^' # parsing + semantic actions in one place! def t_NUMBER(t): r'\d+' try: t.value = int(t.value) except ValueError: print("Integer value too large %d", t.value) t.value = 0 return t # Ignored characters t_ignore = " \t" def t_newline(t): r'\n+' t.lexer.lineno += t.value.count("\n") def t_error(t): print("Illegal character '%s'" % t.value[0]) t.lexer.skip(1) def p_expression_1(t): 'expression : expression PLUS term' # t[0] = (t[1][0] + t[3][0], attrDyadicInfix("+", t[1][1], t[3][1])) def p_expression_2(t): 'expression : expression MINUS term' # t[0] = (t[1][0] - t[3][0], attrDyadicInfix("-", t[1][1], t[3][1])) def p_expression_3(t): 'expression : term' # t[0] = t[1] # Consult this excellent reference for info on precedences # https://www.cs.utah.edu/~zachary/isp/worksheets/operprec/operprec.html def p_term_1(t): 'term : term TIMES factor' # t[0] = (t[1][0] * t[3][0], attrDyadicInfix("*", t[1][1], t[3][1])) def p_term_2(t): 'term : term DIVIDE factor' # if (t[3][0] == 0): print("Error, divide by zero!") t[3][0] = 1 # fix it t[0] = (t[1][0] / t[3][0], attrDyadicInfix("/", t[1][1], t[3][1])) def p_term_3(t): 'term : factor' # t[0] = t[1] def p_factor_1(t): 'factor : innerfactor EXP factor' # t[0] = (t[1][0] ** t[3][0], attrDyadicInfix("^", t[1][1], t[3][1])) def p_factor_2(t): 'factor : innerfactor' # t[0] = t[1] def p_innerfactor_1(t): 'innerfactor : UMINUS innerfactor' # ast = ('~', t[2][1]['ast']) nlin = t[2][1]['dig']['nl'] elin = t[2][1]['dig']['el'] rootin = nlin[0] root = NxtStateStr("~E_") left = NxtStateStr("~_") t[0] =(-t[2][0], {'ast' : ast, 'dig' : {'nl' : [ root, left ] + nlin, # this order important for proper layout! 'el' : elin + [ (root, left), (root, rootin) ] }}) def p_innerfactor_2(t): 'innerfactor : LPAREN expression RPAREN' # ast = t[2][1]['ast'] nlin = t[2][1]['dig']['nl'] elin = t[2][1]['dig']['el'] rootin = nlin[0] root = NxtStateStr("(E)_") left = NxtStateStr("(_") right= NxtStateStr(")_") t[0] =(t[2][0], {'ast' : ast, 'dig' : {'nl' : [root, left] + nlin + [right], #order important f. proper layout! 'el' : elin + [ (root, left), (root, rootin), (root, right) ] }}) def p_innerfactor_3(t): 'innerfactor : NUMBER' # strn = str(t[1]) ast = ('NUMBER', strn) t[0] =(t[1], { 'ast' : ast, 'dig' : {'nl' : [ strn + NxtStateStr("_") ], 'el' : [] }}) def p_error(t): print("Syntax error at '%s'" % t.value) #-- def attrDyadicInfix(op, attr1, attr3): ast = (op, (attr1['ast'], attr3['ast'])) nlin1 = attr1['dig']['nl'] nlin3 = attr3['dig']['nl'] nlin = nlin1 + nlin3 elin1 = attr1['dig']['el'] elin3 = attr3['dig']['el'] elin = elin1 + elin3 rootin1 = nlin1[0] rootin3 = nlin3[0] root = NxtStateStr("E1"+op+"E2"+"_") # NxtStateStr("$_") left = rootin1 middle = NxtStateStr(op+"_") right = rootin3 return {'ast' : ast, 'dig' : {'nl' : [ root, left, middle, right ] + nlin, 'el' : elin + [ (root, left), (root, middle), (root, right) ] }} #=== # This is the main function in this Jove file. #=== def parseExp(s): """In: a string s containing a regular expression. Out: An attribute triple consisting of 1) An abstract syntax tree suitable for processing in the derivative-based scanner 2) A node-list for the parse-tree digraph generated. Good for drawing a parse tree using the drawPT function below 3) An edge list for the parse-tree generated (again good for drawing using the drawPT function below) """ mylexer = lex() myparser = yacc() pt = myparser.parse(s, lexer = mylexer) # print('parsed result is ', pt) # (result, ast, nodes, edges) return (pt[0], pt[1]['ast'], pt[1]['dig']['nl'], pt[1]['dig']['el']) def drawPT(ast_rslt_nl_el, comment="PT"): """Given an (ast, nl, el) triple where nl is the node and el the edge-list, draw the Parse Tree by returning a dot object. """ (rslt, ast, nl, el) = ast_rslt_nl_el print("Result calculated = ", rslt) print("Drawing AST for ", ast) dotObj_pt = Digraph(comment) dotObj_pt.graph_attr['rankdir'] = 'TB' for n in nl: prNam = n.split('_')[0] dotObj_pt.node(n, prNam, shape="oval", peripheries="1") for e in el: dotObj_pt.edge(e[0], e[1]) return dotObj_pt ###Output _____no_output_____ ###Markdown Now answer these questions How does the calculator above parse "~2^2" ? ###Code drawPT(parseExp("~2^2")) ###Output _____no_output_____ ###Markdown ** Free answer: ** In our calculator, unary minus has higher precedence than exponentiation, as evidenced by a parse tree of **this many** nodes. Why does Python give a different answer for the expression ```-2**2``` ? ###Code # Python evaluation -2 ** 2 ###Output _____no_output_____ ###Markdown ** Free answer: ** The experiment with the above Python expression shows how our calculator and Python differ. Specifically, the answers are **this one** (calculator) and **this one** (Python). In Python, unary minus binds less tightly than exponentiation. In parsing "2^~3^~4", the following parse tree was produced.How can we tell that the calculator gives higher precedence to "~" (unary minus) and that it right-associates the exponentiation operator? ###Code drawPT(parseExp("2^~3^~4")) ###Output _____no_output_____ ###Markdown ** Free answer: ** We see how the tree of **this many nodes** for the above expression 2^~3^~4 is built, where the value of the second "^" flows as the EXPONENT of the first "^". Also see that "~" (the unary minus) is incorporated before any exponentiation gets done. What does ```2**-3**-4``` produce in Python? Is it the same answer? ###Code # The above expression typed into Python in Python's syntax is below, and see what it produces! 2**-3**-4 ###Output _____no_output_____ ###Markdown ** Free answer: ** Python differs from our calculator in how it handles ```2**-3**-4``` versus 2^~3^~4. It yields **this answer**. Show by full parenthesization how Python parses 2**-3**-4 ###Code 2**(-(3**(-4))) ###Output _____no_output_____ ###Markdown ** Free answer: ** It parses it as ```2**(-(3**(-4)))```, showing that unary "-" does not have the same precedence as exp. However, the exps are processed right-associatively! Parsing ```6*3/4*~5/(2+3-4-5-6/7*~8)-~9```How many nodes in this parse tree? Same as Python's answer? ###Code drawPT(parseExp("6*3/4*~5/(2+3-4-5-6/7*~8)-~9")) # Check against Python! 6*3/4*-5/(2+3-4-5-6/7*-8)--9 ###Output _____no_output_____
pages/workshop/AWIPS/Grid_Levels_and_Parameters.ipynb
###Markdown This example covers the callable methods of the Python AWIPS DAF when working with gridded data. We start with a connection to an EDEX server, then query data types, then grid names, parameters, levels, and other information. Finally the gridded data is plotted for its domain using Matplotlib and Cartopy. DataAccessLayer.getSupportedDatatypes()getSupportedDatatypes() returns a list of available data types offered by the EDEX server defined above. ###Code from awips.dataaccess import DataAccessLayer import unittest DataAccessLayer.changeEDEXHost("edex-cloud.unidata.ucar.edu") dataTypes = DataAccessLayer.getSupportedDatatypes() dataTypes.sort() list(dataTypes) ###Output _____no_output_____ ###Markdown DataAccessLayer.getAvailableLocationNames()Now create a new data request, and set the data type to **grid** to request all available grids with **getAvailableLocationNames()** ###Code request = DataAccessLayer.newDataRequest() request.setDatatype("grid") available_grids = DataAccessLayer.getAvailableLocationNames(request) available_grids.sort() list(available_grids) ###Output _____no_output_____ ###Markdown DataAccessLayer.getAvailableParameters()After datatype and model name (locationName) are set, you can query all available parameters with **getAvailableParameters()** ###Code request.setLocationNames("RAP13") availableParms = DataAccessLayer.getAvailableParameters(request) availableParms.sort() list(availableParms) ###Output _____no_output_____ ###Markdown DataAccessLayer.getAvailableLevels()Selecting **"T"** for temperature. ###Code request.setParameters("T") availableLevels = DataAccessLayer.getAvailableLevels(request) for lvl in availableLevels: print(lvl) ###Output _____no_output_____ ###Markdown * **0.0SFC** is the Surface level* **FHAG** stands for Fixed Height Above Ground (in meters)* **NTAT** stands for Nominal Top of the ATmosphere* **BL** stands for Boundary Layer, where **0.0_30.0BL** reads as *0-30 mb above ground level* * **TROP** is the Tropopause level**request.setLevels()**For this example we will use Surface Temperature ###Code request.setLevels("2.0FHAG") ###Output _____no_output_____ ###Markdown DataAccessLayer.getAvailableTimes()* **getAvailableTimes(request, True)** will return an object of *run times* - formatted as `YYYY-MM-DD HH:MM:SS`* **getAvailableTimes(request)** will return an object of all times - formatted as `YYYY-MM-DD HH:MM:SS (F:ff)`* **getForecastRun(cycle, times)** will return a DataTime array for a single forecast cycle. ###Code cycles = DataAccessLayer.getAvailableTimes(request, True) times = DataAccessLayer.getAvailableTimes(request) fcstRun = DataAccessLayer.getForecastRun(cycles[-1], times) list(fcstRun) ###Output _____no_output_____ ###Markdown DataAccessLayer.getGridData()Now that we have our `request` and DataTime `fcstRun` arrays ready, it's time to request the data array from EDEX. ###Code response = DataAccessLayer.getGridData(request, [fcstRun[-1]]) for grid in response: data = grid.getRawData() lons, lats = grid.getLatLonCoords() print('Time :', str(grid.getDataTime())) print('Model:', str(grid.getLocationName())) print('Parm :', str(grid.getParameter())) print('Unit :', str(grid.getUnit())) print(data.shape) ###Output _____no_output_____ ###Markdown Plotting with Matplotlib and Cartopy**1. pcolormesh** ###Code %matplotlib inline import matplotlib.pyplot as plt import matplotlib import cartopy.crs as ccrs import cartopy.feature as cfeature from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER import numpy as np import numpy.ma as ma from scipy.io import loadmat from scipy.constants import convert_temperature def make_map(bbox, projection=ccrs.PlateCarree()): fig, ax = plt.subplots(figsize=(16, 9), subplot_kw=dict(projection=projection)) ax.set_extent(bbox) ax.coastlines(resolution='50m') gl = ax.gridlines(draw_labels=True) gl.top_labels = gl.right_labels = False gl.xformatter = LONGITUDE_FORMATTER gl.yformatter = LATITUDE_FORMATTER return fig, ax #convert temp from K to F dataf = convert_temperature(data, 'K', 'F') cmap = plt.get_cmap('rainbow') bbox = [lons.min(), lons.max(), lats.min(), lats.max()] fig, ax = make_map(bbox=bbox) cs = ax.pcolormesh(lons, lats, dataf, cmap=cmap) cbar = fig.colorbar(cs, extend='both', shrink=0.5, orientation='horizontal') cbar.set_label(grid.getLocationName() +" " + grid.getLevel() + " " \ + grid.getParameter() + " (F) " \ + "valid " + str(grid.getDataTime().getRefTime())) ###Output _____no_output_____ ###Markdown **2. contourf** ###Code fig2, ax2 = make_map(bbox=bbox) cs2 = ax2.contourf(lons, lats, dataf, 80, cmap=cmap, vmin=dataf.min(), vmax=dataf.max(), extend='both') cbar2 = fig2.colorbar(cs2, shrink=0.5, orientation='horizontal') cbar2.set_label(grid.getLocationName() +" " + grid.getLevel() + " " \ + grid.getParameter() + " (F) " \ + "valid " + str(grid.getDataTime().getRefTime())) ###Output _____no_output_____
02_statistics/02_a_dinucleotides from class.ipynb
###Markdown Dinucleotides and dipeptidesWe counted the occurrence of individual nucleotides in the genome and residues in the proteome.In real biological sequences, adjacent positions are rarely independent. We now have ways to talk about these sort of inter-dependencies using probabilities.We'll start by counting adjacent pairs of nucleotides in the genome. When a sequence has $N$ bases, it has $N-1$ adjacent pairs: $0$ and $1$, $1$ and $2$, $2$ and $3$, and so forth all the way to $N-2$, $N-1$.An easy way to get a pandas `Series` of these adjacent pairs is to:1. create a Series of first nucleotides in a pair2. create a Series of second nucleotides in a pair3. add together these two seriesWe'll see how this works on a test string```alphabet='abcdefghijklmnopqrstuvwxyz'``` ###Code import pandas as pd alphabet='abcdefghijklmnopqrstuvwxyz' first_letters = pd.Series(list(alphabet[0:-1])) second_letters = pd.Series(list(alphabet[1:])) pairs = first_letters + second_letters pairs ###Output _____no_output_____ ###Markdown Yeast proteome dipeptidesFirst we need to import the `Bio.SeqIO` module from `biopython` so we can read in our yeast sequences. ###Code from Bio import SeqIO ###Output _____no_output_____ ###Markdown Then we need to import the `pandas` module for our `Series` and `DataFrame` types, and the `matplotlib.pyplot` module to make graphs. ###Code import pandas as pd import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Here is a copy of our code to1. Create `proteins` as an iterator over all the protein sequences2. Create an empty `Series` of amino acid counts3. Loop over each protein 1. Count the nubmer of residues in that one protein 1. Add that residue count to the running tally5. Print the sorted version of our count series6. Plot a bar graph of our counts ###Code proteins = SeqIO.parse("../S288C_R64-3-1/orf_trans_R64-3-1_20210421.fasta", "fasta") total_counts = pd.Series(dtype='int64') for protein in proteins: protein_count = pd.Series(list(protein.seq)).value_counts() total_counts = total_counts.add(protein_count, fill_value = 0) print(total_counts.sort_values()) total_counts.sort_values().plot(kind='bar') ###Output * 6064.0 W 30592.0 C 37287.0 M 61220.0 H 63795.0 Y 99429.0 Q 116054.0 P 128629.0 F 130264.0 R 130554.0 G 146138.0 A 161450.0 V 163368.0 D 171556.0 T 173814.0 N 180883.0 E 191723.0 I 192717.0 K 215733.0 S 264092.0 L 279435.0 dtype: float64 ###Markdown DipeptidesNow we'll use the approach above to count every adjacent pair of amino acids.We'll make a series of first amino acids in `first_aas`, a series of second amino acids in `second_aas`, and then combine them to count them. ###Code proteins = SeqIO.parse("../S288C_R64-3-1/orf_trans_R64-3-1_20210421.fasta", "fasta") total_counts = pd.Series(dtype='int64') for protein in proteins: # protein.seq is the sequence of the protein first_aas = pd.Series(list(protein.seq[0:-1])) second_aas = pd.Series(list(protein.seq[1:])) aa_pairs = first_aas + second_aas protein_count = aa_pairs.value_counts() total_counts = total_counts.add(protein_count, fill_value = 0) print(total_counts.sort_values()) #total_counts.sort_values().plot(kind='bar') total_counts.sort_values() ###Output _____no_output_____ ###Markdown ProbabilitiesConvert the counts to probabilities in a variable `dipep_probs` by 1. Using the `.sum()` method to find the total number of amino acid pairs counted2. Dividing the `total_counts` series by this sum to get "normalized" probabilities ###Code total_counts.sum() dipep_probs = total_counts / total_counts.sum() dipep_probs.sort_values() dipep_probs['WW'] ###Output _____no_output_____ ###Markdown Marginal probabilitiesThe table of amino acid _pair_ probabilities give the _joint_ distribution.There are two way to compute the _marginal_ probability of an `A`. We can count every time an `A` shows up in the first position, and we can count every time an `A` shows up in the second position.Compute this both ways and compare it to the value we got from the single-nucleotide counting above. ###Code dipep_probs[ dipep_probs.index.str.startswith('A') ].sum() dipep_probs[ dipep_probs.index.str.endswith('A') ].sum() ###Output _____no_output_____ ###Markdown Compute all of the marginal probabilities. There are many reasonable ways to approach this -- one is to use a for loop ###Code one = pd.Series([1, 2, 3], index=['a', 'b', 'c']) two = pd.Series([10, 20, 30], index=['x', 'y', 'z']) two.combine_first(one) marginal_probs = pd.Series(dtype='float64') for aa in list("ACDEFGHIKLMNPQRSTVWY"): aa_prob = dipep_probs[ dipep_probs.index.str.startswith(aa)].sum() aa_prob = pd.Series([aa_prob], index=[aa]) # print(aa_prob) marginal_probs = marginal_probs.combine_first(aa_prob) print(marginal_probs.sort_values()) ###Output W 0.010410 C 0.012688 M 0.020832 H 0.021708 Y 0.033834 Q 0.039491 P 0.043770 F 0.044326 R 0.044425 G 0.049728 A 0.054938 V 0.055591 D 0.058377 T 0.059145 N 0.061551 E 0.065239 I 0.065577 K 0.073409 S 0.089865 L 0.095086 dtype: float64 ###Markdown Conditional probabilitiesCompute the _conditional_ probability of a `C` following a first `A`. Is this higher or lower than the unconditional (marginal) probability of a `C`? ###Code # P( C 2nd | A 1st ) = P( C 2nd and A 1st ) / P( A 1st, unconditional ) dipep_probs['AC'] / marginal_probs['A'] ###Output _____no_output_____ ###Markdown Another way of looking at this is to compute the ratio `P(CA) / (P(C) * P(A))`, which is the ratio between the observed dinucleotide probability and the expected dinucleotide probabilty under the assumption of independence. ###Code dipep_probs['AC'] / (marginal_probs['A'] * marginal_probs['C']) ###Output _____no_output_____
src/TA2_main.ipynb
###Markdown Building Knowledge Graph Extract Data from CSV ###Code def get_csv_data(filepath, handle_row_func, row_limit=None): data = dict() with open(filepath) as file: next(file) rows = csv.reader(file, delimiter=",") cnt = 0 for row in rows: handle_row_func(data, row) cnt += 1 if row_limit != None and cnt == row_limit: break return data def handle_csv_kanji_func(data, row): kanji,*meanings = row if len(meanings) >= 2: meanings = ",".join(meanings) else: meanings = meanings[0] meanings = meanings.split(":") meanings = meanings[0] data[kanji] = meanings data_kanji = get_csv_data( "dataset/s5_kanjis_output.csv", handle_csv_kanji_func, row_limit=4900, ) print("len(data_kanji) = ", len(data_kanji)) # pp(sample_from_dict(data_kanji)) radical_no_meaning = {"|", "丶", "丿", "乙", "亅", "冖"} def handle_csv_radical_func(data, row): radical,meaning,_ = row if radical not in radical_no_meaning: data[radical] = meaning data_radical = get_csv_data( "dataset/s7_nodes_radical_meaning.csv", handle_csv_radical_func ) print("len(data_radical) = ", len(data_radical)) pp(sample_from_dict(data_radical)) def handle_csv_edges_func(data, row): kanji,radical_list = row if kanji in data_kanji: data[kanji] = radical_list.split(':') data[kanji] = list(set(data[kanji]) - radical_no_meaning) data_edges = get_csv_data("dataset/s7_edges_kanji_radical.csv", handle_csv_edges_func) print("len(data_edges) = ", len(data_edges)) # pp(sample_from_dict(data_edges)) ###Output len(data_edges) = 4393 ###Markdown Data Structure Node Manager ###Code get_key = lambda symbol, dtype : f"{symbol}-{dtype}" node_kanji = { get_key(symbol, 'kanji'): { 'symbol' : symbol, 'meaning': meaning, 'visual' : f"{symbol}\n{meaning}", 'idx' : idx, 'color' : 'red', } for idx, (symbol, meaning) in enumerate(list(data_kanji.items()))} node_radical = { get_key(symbol, 'radical'): { 'symbol' : symbol, 'meaning': meaning, 'visual' : f"{symbol}\n{meaning}", 'idx' : idx, 'color' : 'yellow', } for idx, (symbol, meaning) in enumerate(list(data_radical.items()))} full_node = {**node_radical, **node_kanji} # pp(sample_from_dict(full_node)) ###Output _____no_output_____ ###Markdown Edge Manager ###Code def get_graph_edge(data_edges): edges = [] for kanji, radicals in data_edges.items(): for r in radicals: edges.append( (f"{kanji}-kanji", f"{r}-radical") ) return edges full_edges = get_graph_edge(data_edges) # full_edges[:10] ###Output _____no_output_____ ###Markdown Kanji Graph ###Code kjg_raw = nx.Graph() kjg_raw.add_nodes_from(full_node.items()) kjg_raw.add_edges_from(full_edges) # PREPROCESSING: ENFORCE CONNECTED GRAPH # https://networkx.org/documentation/stable/reference/algorithms/isolates.html # EDA + Preprocessing: Removing Isolated Nodes def enforce_connected_graph(G): n_conn = nx.number_connected_components(G) n_iso = nx.number_of_isolates(G) print('number of connected components: ', nx.number_connected_components(G)) print('number of isolated: ', n_iso) if n_iso > 1: G.remove_nodes_from(list(nx.isolates(G))) n_conn = nx.number_connected_components(G) if n_conn != 1: raise ValueError(f"Number of connected components must be 1, not {n_conn}") else: print("Graph is already connected") return G kjg = enforce_connected_graph(kjg_raw) print(nx.info(kjg)) ###Output Graph with 4612 nodes and 15297 edges ###Markdown Graph Viz Lib ###Code import matplotlib import matplotlib.pyplot as plt import matplotlib.font_manager as fm # Reference: https://albertauyeung.github.io/2020/03/15/matplotlib-cjk-fonts.html [f for f in fm.fontManager.ttflist if 'CJK JP' in f.name] def visualize_graph( Graph: nx.Graph, figsize: tuple=(7,7), color_map: List[str]=None, node_size: int=3000, label_attr: str='visual' # valid value: 'idx', 'visual' ) -> None: if color_map == None: color_map = [Graph.nodes[n]["color"] for n in Graph] else: color_map = color_map plt.figure(1,figsize=figsize) labels = nx.get_node_attributes(Graph, label_attr) nx.draw_kamada_kawai(Graph, node_color=color_map, with_labels=True, labels=labels, node_size=node_size, font_size=20, font_family="Noto Serif CJK JP") plt.show() visualize_graph( Graph = kjg.subgraph(random.sample(kjg.nodes, 100)), node_size = 100, label_attr = '', #: idx or visual ) def get_sg_kanji_with(kjg) -> nx.Graph: sg = nx.Graph() p = '嘩-kanji' radicals = [n for n in kjg.neighbors(p)] sg.add_nodes_from([(p, kjg.nodes[p])] + [(r, kjg.nodes[r]) for r in radicals]) sg.add_edges_from([(p, rp) for rp in radicals]) return sg visualize_graph( Graph = get_sg_kanji_with(kjg), node_size = 2000, figsize = (4,4), label_attr = None ) ###Output _____no_output_____ ###Markdown Graph Function ###Code def generate_graph(G: nx.Graph, nodes: List) -> nx.Graph: R = nx.Graph() R.add_nodes_from([(n, G.nodes[n]) for n in nodes]) R.add_edges_from(nx.utils.pairwise(nodes)) return R def get_node_color_result(g, kinputs, koutputs): color_map = [] for n in g: if n in kinputs: color_map.append("green") # input elif n in koutputs: color_map.append("blue") # output else: color_map.append(g.nodes[n]["color"]) return color_map def visualize_result(g_res, kinputs, koutputs, figsize=(5,5), label_attr='visual'): visualize_graph( Graph=g_res, color_map=get_node_color_result(g_res, kinputs, koutputs), figsize=figsize, label_attr=label_attr, ) ###Output _____no_output_____ ###Markdown Graph Alternatives Graph Internet ###Code g_ias = nx.random_internet_as_graph(300, 10) nx.set_node_attributes(g_ias, {n: {"visual": n, "color": "yellow"} for n in g_ias.nodes}) # visualize_graph( # Graph = g_ias, # node_size = 500, # figsize = (4,4), # with_labels = True, # ) # kin = 49 # say # kout = 41 # lie # result_shortest_path = nx.shortest_path(G=g_ias, source=kin, target=kout) # result = generate_graph(g_ias, result_shortest_path) # visualize_result( # g_res=result, # kinputs=[kin], # koutputs=[kout] # ) ###Output _____no_output_____ ###Markdown Graph List ###Code subgraph_edges = [(e[0][0], [1][0]) for e in random.sample(full_edges, 2000)] sample_graph = nx.Graph(subgraph_edges) sample_graph = enforce_connected_graph(sample_graph) gg = { 'kjg': kjg, 'ias': g_ias } print('number of isolated clean: ', nx.number_of_isolates(gg['kjg'])) print('number of connected clean: ', nx.number_connected_components(gg['kjg'])) ###Output number of isolated clean: 0 number of connected clean: 1 ###Markdown Querying Knowledge Graph Data Structure ###Code kin = '貴-kanji' # precious kout = '業-kanji' # business result_sp = nx.shortest_path(G=kjg, source=kin, target=kout) result = generate_graph(kjg, result_sp) visualize_result( g_res=result, kinputs=[kin], koutputs=[kout], label_attr='visual' ) ###Output _____no_output_____ ###Markdown Algorithm Brute Force Algorithm ###Code def find_path_bf(G: nx.Graph, MOrig: List, MDest: List) -> nx.Graph: result = [] for kin in MOrig: # O(|MOrig|) for kout in MDest: # O(|MDest|) sp_raw = nx.dijkstra_path(G, source=kin, target=kout) # O( (|GV|+|GE|) log |GV|) sp_graph = generate_graph(G, sp_raw) result.append(sp_graph) return nx.compose_all(result) MOrig = ['逢-kanji','嘩-kanji'] MDest = ['颶-kanji','鴪-kanji','賠-kanji','蛤-kanji'] MOrig = ['姻-kanji','寥-kanji'] # matrimony, noisy MDest = ['姑-kanji','嘩-kanji','蛤-kanji'] # mother in law, lonely result = find_path_bf(gg['kjg'], MOrig, MDest) visualize_result( g_res=result, kinputs=MOrig, koutputs=MDest, figsize=(8,8), label_attr='visual' ) ###Output _____no_output_____ ###Markdown Astar Algorithm Heuristic ###Code g_curr = gg['kjg'] def common_neighbor_helper(g_curr, u,v): nu = g_curr[u].keys() # O(1) nv = g_curr[v].keys() # O(1) return len(nu & nv) # O(min(|nu|,|nv|)) def common_neighbor(u, v): return common_neighbor_helper(g_curr,u,v) def jaccard_similarity(u, v): G = g_curr union_size = len(set(G[u]) | set(G[v])) # union neighbor if union_size == 0: return 0 return common_neighbor_helper(G,u,v) / union_size ###Output _____no_output_____ ###Markdown Main A* ###Code def find_path_astar(G: nx.Graph, MOrig: List, MDest: List, heuristic_func) -> nx.Graph: result = [] for kin in MOrig: # O(|MOrig|) for kout in MDest: # (|MDest|) sp_raw = nx.astar_path(G, source=kin, target=kout, heuristic=heuristic_func) # O( (|GV|+|GE|) log |GV|) sp_graph = generate_graph(G, sp_raw) result.append(sp_graph) return nx.compose_all(result) ###Output _____no_output_____ ###Markdown Steiner Tree ###Code def _dijkstra_multisource( G, sources, weight, pred=None, paths=None, cutoff=None, target=None ): G_succ = G._succ if G.is_directed() else G._adj push = heappush pop = heappop dist = {} # dictionary of final distances seen = {} # fringe is heapq with 3-tuples (distance,c,node) # use the count c to avoid comparing nodes (may not be able to) c = count() fringe = [] for source in sources: if source not in G: raise nx.NodeNotFound(f"Source {source} not in G") seen[source] = 0 push(fringe, (0, next(c), source)) while fringe: (d, _, v) = pop(fringe) if v in dist: continue # already searched this node. dist[v] = d if v == target: break for u, e in G_succ[v].items(): cost = weight(v, u, e) if cost is None: continue vu_dist = dist[v] + cost if cutoff is not None: if vu_dist > cutoff: continue if u in dist: u_dist = dist[u] if vu_dist < u_dist: raise ValueError("Contradictory paths found:", "negative weights?") elif pred is not None and vu_dist == u_dist: pred[u].append(v) elif u not in seen or vu_dist < seen[u]: seen[u] = vu_dist push(fringe, (vu_dist, next(c), u)) if paths is not None: paths[u] = paths[v] + [u] if pred is not None: pred[u] = [v] elif vu_dist == seen[u]: if pred is not None: pred[u].append(v) return dist def multi_source_dijkstra(G, sources, target=None, cutoff=None, weight="weight"): if target in sources: return (0, [target]) weight = lambda u, v, data: data.get(weight, 1) paths = {source: [source] for source in sources} # dictionary of paths dist = _dijkstra_multisource(G, sources, weight, paths=paths) if target is None: return (dist, paths) try: return (dist[target], paths[target]) except KeyError as e: raise nx.NetworkXNoPath(f"No path to {target}.") from e def my_all_pairs_dijkstra(G): i = 0 for n in G: i += 1 print('\r%s' % i, end = '\r') dist, path = multi_source_dijkstra(G, {n}) yield (n, (dist, path)) def metric_closure(G, weight="weight"): M = nx.Graph() Gnodes = set(G) all_paths_iter = my_all_pairs_dijkstra(G) for u, (distance, path) in all_paths_iter: Gnodes.remove(u) for v in Gnodes: M.add_edge(u, v, distance=distance[v], path=path[v]) return M mcg = metric_closure(g_curr, weight='weight') from itertools import chain from networkx.utils import pairwise def my_steiner_tree(G, terminal_nodes, weight="weight", is_mcg=True): global mcg # H is the subgraph induced by terminal_nodes in the metric closure M of G. if is_mcg: M = mcg else: M = metric_closure(G, weight=weight) # O(|GV|^2) H = M.subgraph(terminal_nodes) # O(|GV|^2) * O(|MOrig| + |MDest|) # Use the 'distance' attribute of each edge provided by M. mst_edges = nx.minimum_spanning_edges(H, weight="distance", data=True) # O (|GE| log GV) # Create an iterator over each edge in each shortest path; repeats are okay edges = chain.from_iterable(pairwise(d["path"]) for u, v, d in mst_edges) T = G.edge_subgraph(edges) return T def find_path_steiner(G: nx.Graph, MOrig: List, MDest: List, is_mcg: bool) -> nx.Graph: return my_steiner_tree(G, MOrig + MDest, is_mcg=is_mcg) # result = find_path_steiner(gg['ias'], MOrig, MDest) # visualize_result( # g_res=result, # kinputs=MOrig, # koutputs=MDest, # figsize=(8,8) # ) ###Output _____no_output_____ ###Markdown Experiment Test Case ###Code from kanji_lists import JLPT, KYOIKU # https://github.com/ffe4/kanji-lists test_cases_raw = { 'N5 to N4': { 'MOrig': list(JLPT.N5)[:3], 'MDest': list(JLPT.N4)[:7], }, 'G1 to G2': { 'MOrig': list(KYOIKU.GRADE1)[:13], 'MDest': list(KYOIKU.GRADE2)[:17], }, 'G2 to G3': { 'MOrig': list(KYOIKU.GRADE2)[:20], 'MDest': list(KYOIKU.GRADE3)[:30], }, # 'N4 to N3': { # 'MOrig': list(JLPT.N4)[:30], # 'MDest': list(JLPT.N3)[:70], # }, # 'N3 to N2': { # 'MOrig': list(JLPT.N3)[:60], # 'MDest': list(JLPT.N2)[:140], # }, # 'G3 to G4': { # 'MOrig': list(KYOIKU.GRADE3)[:160], # 'MDest': list(KYOIKU.GRADE4)[:240], # }, # 'G4 to G5': { # 'MOrig': list(KYOIKU.GRADE4)[:240], # 'MDest': list(KYOIKU.GRADE5)[:360], # }, # 'N2 to N1': { # 'MOrig': list(JLPT.N2)[:400], # 'MDest': list(JLPT.N1)[:600], # }, # 'G5 to G6': { # 'MOrig': list(KYOIKU.GRADE5)[:500], # 'MDest': list(KYOIKU.GRADE6)[:700], # }, # gg['ias'] # 'tc_ias_1': { # 'MOrig': [1,2,3], # 'MDest': [91,92,93] # }, # 'tc_ias_2': { # 'MOrig': [i*11 for i in range(33)], # 'MDest': [i*10 for i in range(66)] # }, # 'tc_ias_3': { # 'MOrig': [i*12 for i in range(100) if i*12 < 3000], # 'MDest': [i*13 for i in range(200) if i*13 < 3000] # }, # 'tc_ias_4': { # 'MOrig': [i*13 for i in range(200) if i*13 < 3000], # 'MDest': [i*14 for i in range(300) if i*14 < 3000] # }, # 'tc_ias_5': { # 'MOrig': [i*5 for i in range(400) if i*5 < 3000], # 'MDest': [i*7 for i in range(500) if i*7 < 3000] # }, # 'tc_ias_6': { # 'MOrig': [i*7 for i in range(600) if i*7 < 3000], # 'MDest': [i*3 for i in range(700) if i*3 < 3000] # }, } # test_cases_raw def tc_filter_in_graph(G, kanji_list): tc_filtered = [] for k in kanji_list: tk = get_key(k, 'kanji') if tk in G: tc_filtered.append(tk) continue tr = get_key(k, 'radical') if tr in G: tc_filtered.append(tr) continue return tc_filtered def filter_test_cases_raw(G, test_cases_raw): test_cases_clean = {} for tc_name, tc in test_cases_raw.items(): MOrig = tc_filter_in_graph(G, tc['MOrig']) MDest = tc_filter_in_graph(G, tc['MDest']) test_cases_clean[tc_name] = { 'MOrig': MOrig, 'MDest': MDest, } return test_cases_clean test_cases_clean = filter_test_cases_raw(g_curr, test_cases_raw) def find_path(G: nx.Graph, MOrig: List, MDest: List, method='brute_force') -> nx.Graph: if method == 'brute_force': return find_path_bf(G, MOrig, MDest) elif method == 'steiner_tree': return find_path_steiner(G, MOrig, MDest, is_mcg=False) elif method == 'steiner_tree_precompute': return find_path_steiner(G, MOrig, MDest, is_mcg=True) elif method == 'astar_common_neighbor': return find_path_astar(G, MOrig, MDest, common_neighbor) elif method == 'astar_jaccard': return find_path_astar(G, MOrig, MDest, jaccard_similarity) elif method == 'astar_0': return find_path_astar(G, MOrig, MDest, lambda x, y: 0) else: raise ValueError(f"method {method} is not valid") ###Output _____no_output_____ ###Markdown Testing ###Code def get_result_accuracy(G0, Gt): common_nodes = len(G0.nodes() & Gt.nodes()) G0_nodes = len(G0.nodes()) return common_nodes / G0_nodes def get_results_kanjigen(G: nx.Graph, test_cases_clean: dict, algo_list: List): results = {tc_name: dict() for tc_name in test_cases_clean} for tc_name, tc in test_cases_clean.items(): MOrig = tc['MOrig'] MDest = tc['MDest'] if len(MOrig) == 0 or len(MDest) == 0: continue print(f""" ################ len(MOrig) == {len(MOrig)} len(MDest) == {len(MDest)} ################ """) # get time for algo in algo_list: print(f"algo: {algo}") print(f"tc: {tc_name} of {len(test_cases_clean)}") start = time.time() graph = find_path(G, MOrig, MDest, algo) end = time.time() print(f"finish at {datetime.datetime.now()} after {end - start} seconds") print("==============") results[tc_name][algo] = {'graph': graph, 'time': (end - start)} # get used_vertices for algo in algo_list: Gt = results[tc_name][algo]['graph'] results[tc_name][algo]["used_vertices"] = len(Gt) - len(MOrig) - len(MDest) print("----------------------") print(results) print("----------------------") return results algo_list = ['brute_force', 'astar_0', 'astar_common_neighbor', 'astar_jaccard', 'steiner_tree', 'steiner_tree_precompute'] # algo_list = ['brute_force', 'astar_0', 'astar_common_neighbor', 'astar_jaccard', 'steiner_tree_precompute'] results = get_results_kanjigen(g_curr, test_cases_clean, algo_list) pp(results) ###Output _____no_output_____ ###Markdown Analysis ###Code results ###Output _____no_output_____ ###Markdown General ###Code def get_df_results(results, algo_list, metric=None): df_results = {algo: dict() for algo in algo_list} for tc_name, res in results.items(): for algo in algo_list: if algo not in res: continue if tc_name not in df_results[algo]: df_results[algo][tc_name] = dict() if metric == None: df_results[algo][tc_name]['time'] = round(res[algo]['time'], 2) df_results[algo][tc_name]['uv'] = res[algo]['used_vertices'] elif metric == 'time': df_results[algo][tc_name] = round(res[algo]['time'], 2) elif metric == 'uv': df_results[algo][tc_name] = res[algo]['used_vertices'] return df_results df_results = get_df_results(results, algo_list) df_results import pandas as pd import numpy as np df = pd.DataFrame(df_results) df y_color = { 'brute_force': 'black', 'astar_common_neighbor': 'red', 'astar_jaccard': 'yellow', 'steiner_tree': 'purple', 'steiner_tree_precompute': 'green', } ###Output _____no_output_____ ###Markdown Time ###Code df_results = get_df_results(results, algo_list, metric='time') df = pd.DataFrame(df_results) df ax = plt.gca() for algo in algo_list: df.plot(kind='line',ax=ax, y=algo, color=y_color[algo]) plt.show() ###Output _____no_output_____ ###Markdown Used Vertices ###Code df_results = get_df_results(results, algo_list, metric='uv') df = pd.DataFrame(df_results) df ax = plt.gca() for algo in algo_list: df.plot(kind='line',ax=ax, y=algo, color=y_color[algo]) plt.show() ###Output _____no_output_____ ###Markdown Demo ###Code # What user input into application # Demo: 1 # MOrig = ['姻','寥'] # matrimony, noisy # MDest = ['姑','嘩','唹'] # mother in law, lonely, laugh # What user input into application # Demo: 2 MOrig = ['学','栄'] # learn, flourish MDest = ['塾','術','宝', '輔'] # cram school, art, treasure, help # Transformation: to differentiate 日-radical and 日-kanji MOrigf = [f"{x}-kanji" for x in MOrig] MDestf = [f"{x}-kanji" for x in MDest] result = find_path(gg['kjg'], MOrigf, MDestf, 'brute_force') visualize_result( g_res=result, kinputs=MOrigf, koutputs=MDestf, figsize=(14,14), label_attr='visual' ) ###Output _____no_output_____
02_cmd_ta_matching_golden_pandas.ipynb
###Markdown DATA QUALITY - Fruital census Library ###Code import warnings warnings.filterwarnings('ignore') import pandas as pd import numpy as np from pyspark.sql.functions import pandas_udf from pyspark.sql.functions import udf from typing import List, Dict, Optional, Callable, Union import re import string import pyspark import shapely import pandas as pd import geopandas as gpd import nltk import unidecode from shapely.geometry import Polygon, Point from geopandas import GeoDataFrame import os import fastparquet from nltk import ngrams from ngram import NGram from textdistance import damerau_levenshtein from textdistance import jaro_winkler from textdistance import sorensen_dice from textdistance import jaccard from textdistance import overlap from textdistance import ratcliff_obershelp ###Output _____no_output_____ ###Markdown Matching preparation functions **function toools** ###Code def function_vectorizer(input_function: Callable) -> Callable: """This function takes an input funcion that works with arbitrary input and vectorizes it so that the input function is applied to iterables (such as columns of a Spark DataFrame). The ouptut is always going to be pandas Series to ensure compliance with Spark DataFrames. Arguments: input_function {Callable} -- The input function. Returns: Callable -- The function vectorized (i.e. acting on each element of an iterable). """ def vectorized_function(*args): return pd.Series([input_function(*tup) for tup in zip(*args)]) return vectorized_function ###Output _____no_output_____ ###Markdown **Test processing** ###Code name_column_blacklist = ["cafe", "cf", "restaurant", "estaurant", "rest", "ag", "ste", "café", "snack", "hotel", "sarl", "rotisserie", "marrakech"] name_column_regex_replace = {r"\'": "", r"\d{5}": "", r"\s+": " "} address_column_blacklist = [] address_column_regex_replace = {r"\'": "", r"\s+": " ", "avenu ": "av ", "boulevard ": "bd "} # Snowball stemmer was chosen in favor of Porter Stemmer which is a bit more aggressive and tends to remove too much from a word import nltk from nltk.stem.snowball import SnowballStemmer from nltk.tokenize import word_tokenize from nltk.corpus import stopwords nltk.download("punkt") nltk.download("stopwords") # unidecode is the library needed for ASCII folding from unidecode import unidecode import string # Compact Language Detector v3 is a very fast and performant algorithm by Google for language detection: more info here: https://pypi.org/project/pycld3/ import re import pyspark.sql.functions as F from typing import List, Dict, Optional, Callable from langdetect import detect name_column_blacklist = ["cafe", "cf", "restaurant", "estaurant", "rest", "ag", "ste", "café", "snack", "hotel", "sarl", "rotisserie", "marrakech"] name_column_regex_replace = {r"\'": "", r"\d{5}": "", r"\s+": " "} address_column_blacklist = [] address_column_regex_replace = {r"\'": "", r"\s+": " ", "avenu ": "av ", "boulevard ": "bd "} def make_text_prep_func(row, word_blacklist, regex_replace, colonne) : try: STOPWORDS_EN = stopwords.words("english") STOPWORDS_FR = stopwords.words("french") STEMMER_EN = SnowballStemmer(language='english') STEMMER_FR = SnowballStemmer(language='french') except: nltk.download("punkt") nltk.download("stopwords") STOPWORDS_EN = stopwords.words("english") STOPWORDS_FR = stopwords.words("french") STEMMER_EN = SnowballStemmer(language='english') STEMMER_FR = SnowballStemmer(language='french') s=row[colonne] if s is None or s=="": return "" # STOPWORDS_EN = ['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', "you're", "you've", "you'll", "you'd", 'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 'she', "she's", 'her', 'hers', 'herself', 'it', "it's", 'its', 'itself', 'they', 'them', 'their', 'theirs', 'themselves', 'what', 'which', 'who', 'whom', 'this', 'that', "that'll", 'these', 'those', 'am', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'having', 'do', 'does', 'did', 'doing', 'a', 'an', 'the', 'and', 'but', 'if', 'or', 'because', 'as', 'until', 'while', 'of', 'at', 'by', 'for', 'with', 'about', 'against', 'between', 'into', 'through', 'during', 'before', 'after', 'above', 'below', 'to', 'from', 'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under', 'again', 'further', 'then', 'once', 'here', 'there', 'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most', 'other', 'some', 'such', 'no', 'nor', 'not', 'only', 'own', 'same', 'so', 'than', 'too', 'very', 's', 't', 'can', 'will', 'just', 'don', "don't", 'should', "should've", 'now', 'd', 'll', 'm', 'o', 're', 've', 'y', 'ain', 'aren', "aren't", 'couldn', "couldn't", 'didn', "didn't", 'doesn', "doesn't", 'hadn', "hadn't", 'hasn', "hasn't", 'haven', "haven't", 'isn', "isn't", 'ma', 'mightn', "mightn't", 'mustn', "mustn't", 'needn', "needn't", 'shan', "shan't", 'shouldn', "shouldn't", 'wasn', "wasn't", 'weren', "weren't", 'won', "won't", 'wouldn', "wouldn't"] # STOPWORDS_FR = ['au', 'aux', 'avec', 'ce', 'ces', 'dans', 'de', 'des', 'du', 'elle', 'en', 'et', 'eux', 'il', 'ils', 'je', 'la', 'le', 'les', 'leur', 'lui', 'ma', 'mais', 'me', 'même', 'mes', 'moi', 'mon', 'ne', 'nos', 'notre', 'nous', 'on', 'ou', 'par', 'pas', 'pour', 'qu', 'que', 'qui', 'sa', 'se', 'ses', 'son', 'sur', 'ta', 'te', 'tes', 'toi', 'ton', 'tu', 'un', 'une', 'vos', 'votre', 'vous', 'c', 'd', 'j', 'l', 'à', 'm', 'n', 's', 't', 'y', 'été', 'étée', 'étées', 'étés', 'étant', 'étante', 'étants', 'étantes', 'suis', 'es', 'est', 'sommes', 'êtes', 'sont', 'serai', 'seras', 'sera', 'serons', 'serez', 'seront', 'serais', 'serait', 'serions', 'seriez', 'seraient', 'étais', 'était', 'étions', 'étiez', 'étaient', 'fus', 'fut', 'fûmes', 'fûtes', 'furent', 'sois', 'soit', 'soyons', 'soyez', 'soient', 'fusse', 'fusses', 'fût', 'fussions', 'fussiez', 'fussent', 'ayant', 'ayante', 'ayantes', 'ayants', 'eu', 'eue', 'eues', 'eus', 'ai', 'as', 'avons', 'avez', 'ont', 'aurai', 'auras', 'aura', 'aurons', 'aurez', 'auront', 'aurais', 'aurait', 'aurions', 'auriez', 'auraient', 'avais', 'avait', 'avions', 'aviez', 'avaient', 'eut', 'eûmes', 'eûtes', 'eurent', 'aie', 'aies', 'ait', 'ayons', 'ayez', 'aient', 'eusse', 'eusses', 'eût', 'eussions', 'eussiez', 'eussent'] stop_words = STOPWORDS_EN + word_blacklist stemmer = STEMMER_EN s = s.lower() # check if the language is French s_lang = detect(s) if s_lang=="fr": stop_words = STOPWORDS_FR + word_blacklist stemmer = STEMMER_FR stop_words = STOPWORDS_FR + word_blacklist stemmer = STEMMER_FR s_clean = s.translate(str.maketrans(string.punctuation, ' ' * len(string.punctuation))) s_tokens = word_tokenize(s_clean) s_tokens_no_stop = [word for word in s_tokens if word not in stop_words] s_tokens_stemmed = [stemmer.stem(word) for word in s_tokens_no_stop] s_ascii = unidecode(" ".join(s_tokens_stemmed)) for regex, replace in regex_replace.items(): s_ascii = re.sub(regex, replace, s_ascii) return(s_ascii.strip()) address_column_blacklist ###Output _____no_output_____ ###Markdown **geospatial function** ###Code def haversine_distance(row): longit_a=row.R_location_lon latit_a=row.R_location_lat longit_b=row.L_LONGITUDE latit_b=row.L_LATITUDE # Transform to radians longit_a, latit_a, longit_b, latit_b = map(np.radians, [longit_a, latit_a, longit_b, latit_b]) dist_longit = longit_b - longit_a dist_latit = latit_b - latit_a # Calculate area area = np.sin(dist_latit/2)**2 + np.cos(latit_a) * np.cos(latit_b) * np.sin(dist_longit/2)**2 # Calculate the central angle central_angle = 2 * np.arcsin(np.sqrt(area)) # central_angle = 2 * np.arctan2(np.sqrt(area), np.sqrt(1-area)) radius = 6371000 # Calculate Distance distance = central_angle * radius return abs(round(distance, 2)) # haversine_distance_sdf = F.pandas_udf(function_vectorizer(haversine_distance),"double") def sdf_to_gdf(sdf: pyspark.sql.dataframe.DataFrame, longitude: str = "longitude", latitude: str = "latitude", crs: str = "epsg:4326" ) -> GeoDataFrame: pdf = sdf.toPandas() gdf = gpd.GeoDataFrame(pdf, geometry=gpd.points_from_xy(pdf[longitude], pdf[latitude]), crs=crs) return(gdf) ###Output _____no_output_____ ###Markdown **test similaity** ###Code def compound_similarity(row,col1,col2): s1 = row[col1] s2 = row[col2] if s1 is None: s1 = "" if s2 is None: s2 = "" if s1 == "" and s2 == "": return 0. scores = [ damerau_levenshtein.normalized_similarity(s1, s2), jaro_winkler.normalized_similarity(s1, s2), sorensen_dice.normalized_similarity(s1, s2), jaccard.normalized_similarity(s1, s2), overlap.normalized_similarity(s1, s2), ratcliff_obershelp.normalized_similarity(s1, s2), NGram.compare(s1, s2, N=2) ] return np.mean(scores) ###Output _____no_output_____ ###Markdown Data :CMD Golden **cmd dataset** ###Code cmd = pd.read_excel("D:/data_quality/data/customer_invoice_tizi_ouzou.xlsx") [["Client", "LONGITUDE", "LATITUDE", "Nom", "Adresse"]] cmd=cmd.rename(columns={"Client":"CUSTOMER_COD"}) cmd ###Output _____no_output_____ ###Markdown **cmd golden Id** ###Code cmd_golden_uri="C:/Users/Salif SAWADOGO/OneDrive - EQUATORIAL COCA-COLA BOTTLING COMPANY S.L/dynamic segmentation/matching/output/horeca_tz_customer_subset.csv" cmd_golden_ids= pd.read_csv(cmd_golden_uri) [["CUSTOMER_COD"]] cmd_golden_ids ###Output _____no_output_____ ###Markdown **merge datasets** ###Code cmd_golden = cmd.merge(cmd_golden_ids, on="CUSTOMER_COD") cmd_golden ###Output _____no_output_____ ###Markdown **CLEAN string for Analysis** ###Code cmd_golden["ADRESSE_CLEAN"]=cmd_golden.apply(lambda p:make_text_prep_func(p, address_column_blacklist, address_column_regex_replace,"Adresse"),axis=1) cmd_golden["NOM_CLEAN"]=cmd_golden.apply(lambda p:make_text_prep_func(p, name_column_blacklist, name_column_regex_replace,"Nom"),axis=1) ###Output _____no_output_____ ###Markdown Data :TripAdvisor **Reading** ###Code tripadvisor_data_uri ="D:/dynamic segmentation/data_acquisition/TripAdvisor/code/output/ta_combined_l3_Algeria_prepped.parquet" ta=pd.read_parquet(tripadvisor_data_uri) ta ###Output _____no_output_____ ###Markdown **clean addresses and names** ###Code ta["name_CLEAN"]=ta.apply(lambda p:make_text_prep_func(p, name_column_blacklist, name_column_regex_replace,"name"),axis=1) ta["address_CLEAN"]=ta.apply(lambda p:make_text_prep_func(p, address_column_blacklist, address_column_regex_replace,'address'),axis=1) ###Output _____no_output_____ ###Markdown similarity analysis **cross join TripAdvisor data and cmd golden** ###Code def match_join(l_sdf, l_id, l_lon, l_lat, l_name, l_addr, r_sdf, r_id, r_lon, r_lat, r_name, r_addr, distance_threshold_m, minimal = True ): l_slice = l_sdf[[l_id, l_lon, l_lat, l_name, l_addr,"Nom", "Adresse"]] r_slice = r_sdf[[r_id, r_lon, r_lat, r_name, r_addr,"name", "address"]] l_slice.columns= "L_"+l_slice.columns r_slice.columns = "R_"+ r_slice.columns l_slice['key'] = 1 r_slice['key'] = 1 # to obtain the cross join we will merge on # the key and drop it. inner_joined = l_slice.merge(r_slice, on ='key').drop("key", 1) # l_joined = l_slice.join(inner_joined, l_slice.columns) return(inner_joined) matched = match_join(cmd_golden, "CUSTOMER_COD", "LONGITUDE", "LATITUDE", "NOM_CLEAN", "ADRESSE_CLEAN", ta, "id", "location_lon", "location_lat", "name_CLEAN", "address_CLEAN", 2000) matched.nunique() ###Output _____no_output_____ ###Markdown **Compute distance between TripAdvisor outlets and cmd golden outlets** ###Code matched["dist_m"]=matched.apply(lambda p:haversine_distance(p),axis=1) matched.shape #matched=matched.loc[matched["dist_m"]<=2000] matched["dist_m"].hist() distance_threshold_m=2000 ###Output _____no_output_____ ###Markdown **distance similarity** ###Code matched["dist_similarity"] =(distance_threshold_m - matched["dist_m"])/distance_threshold_m matched ###Output _____no_output_____ ###Markdown **addresses and names similarities** ###Code matched["name_similarity"]=matched.apply(lambda p:compound_similarity(p,"L_NOM_CLEAN","R_name_CLEAN"),axis=1) matched["address_similarity"]=matched.apply(lambda p:compound_similarity(p,"L_ADRESSE_CLEAN","R_address_CLEAN"),axis=1) ###Output _____no_output_____ ###Markdown **similarity overall** ###Code matched["similarity"]= matched["name_similarity"]*0.15 + matched["dist_similarity"]*0.8+matched["address_similarity"]*0.05 ###Output _____no_output_____ ###Markdown **Rank by Customer ID** ###Code matched["rank"]=matched.groupby(by="L_CUSTOMER_COD")["similarity"].rank("dense", ascending=False) (matched["rank"]<=15).value_counts() matched_filter=matched.loc[matched["rank"]<=15] matched_filter.to_excel("C:/Users/Salif SAWADOGO/OneDrive - EQUATORIAL COCA-COLA BOTTLING COMPANY S.L/dynamic segmentation/matching/output/manual_match.xlsx") matched.L_CUSTOMER_COD.nunique() cmd_golden.CUSTOMER_COD.nunique() #Marrakech city shape to filter for tizi_ouzou = gpd.read_file(os.path.join("C:/Users/Salif SAWADOGO/OneDrive - EQUATORIAL COCA-COLA BOTTLING COMPANY S.L/dynamic segmentation/urbanicty/Tizi ouzou shapefile", "TZ.shp")) sub_set = gpd.sjoin(tizi_ouzou,temp, op="intersects") from matplotlib import pyplot as plt fig, ax = plt.subplots(figsize=(10, 10)) sub_set = gpd.sjoin(tizi_ouzou,ta_gdf, op="intersects") sub_set.plot(ax=ax, color='darkred', lw=0.5) tizi_ouzou.geometry.boundary.plot(color=None,edgecolor='k',linewidth = 1,ax=ax) gpd.GeoDataFrame(sub_set, geometry=gpd.points_from_xy(sub_set["location_lon"],sub_set["location_lat"]), crs="epsg:4326").plot(ax=ax,marker="o",color="red") #algeria=gpd.read_file("D:dynamic segmentation/algeria census/data/algeria_administrative_level_data/dza_admbnda_adm1_unhcr_20200120.shp") data_fruital=algeria.set_index("ADM1_EN") fruital=["Alger",'Tizi Ouzou','Boumerdes','Blida','Medea','Tipaza','Bouira',"Bordj Bou Arrer",'Ain-Defla','Djelfa','Ghardaia','Laghouat','Tamanrasset',"M'Sila",'Chlef','Ouargla'] data_fruital=data_fruital.loc[fruital] data_fruital=data_fruital.reset_index() from matplotlib import pyplot as plt fig, ax = plt.subplots(figsize=(10, 10)) sub_set = gpd.sjoin(algeria,ta_gdf, op="intersects") sub_set.plot(ax=ax, color='None', lw=0.5) c=data_fruital.plot(column='ADM1_EN', ax=ax,color="darkred") algeria.geometry.boundary.plot(color=None,edgecolor='k',linewidth = 1,ax=ax) sub_set2=sub_set.merge(temp, how='inner') #gpd.GeoDataFrame(sub_set, # geometry=gpd.points_from_xy(sub_set["location_lon"],sub_set["location_lat"]), # crs="epsg:4326").plot(ax=ax,marker="o",color="red",column="id") for x, y, label in zip(sub_set2.geometry.centroid.x, sub_set2.geometry.centroid.y, sub_set2["count poi horeca"]): ax.annotate(label, xy=(x, y), xytext=(1, 1),textcoords="offset points") temp=sub_set.groupby("ADM1_EN")['id'].count().\ reset_index().\ rename(columns={"id":"count poi horeca"}).\ sort_values(by="count poi horeca",ascending=False) sub_set ta_gdf = gpd.GeoDataFrame(ta, geometry=gpd.points_from_xy(ta["location_lon"], ta["location_lat"]), crs="epsg:4326") sub_set.shape import pandas data = pandas.read_csv("D:/data_quality/data/customer_invoice_tizi_ouzou.csv") data['CHANNEL_CUSTOM'] = data['Détail Canal'].replace(['Frui-ALIMENTATION GE','Frui-SUPERETTE ET LI'], 'AG') data['CHANNEL_CUSTOM'] = data['CHANNEL_CUSTOM'].replace(['Frui-CREMERIE','Frui-RESTAURANT / RO' ,'Frui-CAFE/CAFETERIA/','Frui-NIGHT CLUB','Frui-HOTELS',], 'HORECA') data['CHANNEL_CUSTOM'] = data['CHANNEL_CUSTOM'].replace(['Frui-FAST FOOD / PIZ', 'Frui-PIZZERIA'], 'SNACK') data['CHANNEL_CUSTOM'] = data['CHANNEL_CUSTOM'].replace(['Frui-DOUCHE','Frui-BUREAUX DE TABA','Frui-MOUKASSIRAT',"Frui-PATISSERIES",'Frui-FOYER','Frui-CREMERIE',"Frui-LOISIR",'Frui-SALLE DES FETES','Frui-MDN',"Frui-loisir","Frui-ADMINISTRATION","Frui-CYBER CAFE"], 'OTHER') data=data.loc[~data["Classification client"].isin(["Platinum","Prestigieux"])] data=data.loc[~data["CHANNEL_CUSTOM"].isin(["AG"])] pandas.crosstab(data["Classification client"], data.CHANNEL_CUSTOM, margins=True) ###Output _____no_output_____
content/04. Not quite intelligent robots/04.1 Introducing program functions.ipynb
###Markdown 1 Introduction to functions and robot control strategiesSensors are at the heart of robotics. A machine without sensors cannot be a robot in our terms. The human body is replete with sensors. Our five external senses – sight, hearing, touch, smell and taste – and internal sensing such as balance and proprioception (body awareness) are all marvellously sophisticated.For this week’s practical activities, we will be concerned with various techniques that can be used to allow a robot to use sensory information to control its actuators. We will investigate a progression of control strategies:1. dead reckoning – no sensor input2. reflex behaviour – sensors *linked directly* to motors according to the sense–act model3. deliberative behaviour – actuation depends on *reasoning* about sensor information and other knowledge, according to the sense–think–act model.The first control strategy, dead reckoning, is an ‘open-loop’ control approach, since it does not use sensor input.The second is an example of a ‘sense–act’ control strategy that you encountered earlier in the block; we will illustrate this control strategy using simulated implementations of simple Braitenberg vehicles.Finally, there is the most complex control strategy, in which the robot deliberates on the sensor inputs in the context of other knowledge using an approach we refer to as ‘sense–think–act’. This involves *reasoning* and corresponds more closely to the way humans solve complex problems and plan actions in the long and short term.But before we do that, we’ll have a look in a bit more detail at another powerful idea in computer programming: *functions*. You’ve already met some of these, but without much explanation. So now let’s introduce you to them for real. 1.1 Defining simple Python functionsMany of the programs we have used so far have been quite short with little, if any, reused code.As programs get larger, it is often convenient to encapsulate several lines of code within a *function*. Multiple lines of code within a function can then be called conveniently from a single statement whenever they are needed.Functions are very powerful, and if you have studied other programming courses then you may well be familiar with them.For our purposes, the following provides a very quick overview of some of the key behaviours of Python functions. Remember that this isn’t a Python programming module *per se*; rather, it’s a module where we explore how to use Python to get things done. What follows should be enough to get you started writing your own functions, without creating too many bad habits along the way.To see how we can create our own functions, let’s consider a really simple example: a function that just prints out the word *Hello*.The function definition has a very specific syntax: ###Code def FUNCTION_NAME(): # ONE_OR_MORE_LINES_OF_CODE pass ###Output _____no_output_____ ###Markdown *A Python function requires at least one line of valid code (which does not include comments) in the function body. If we don’t know what lines of code we want just yet, the `pass` command is enough to create a valid program line that doesn’t actually have to do anything.* Here are some of the rules relating to the syntactic definition of a Python function:- the `FUNCTION_NAME` __MUST NOT__ contain any spaces or punctuation other than underscore (`_`) characters- the function name __MUST__ be followed by a pair of brackets (`()`), that may contain something (we’ll see what later), followed by a colon (`:`)- the body of the function __MUST__ be indented using space or tab characters; the level of indentation of the first line sets the effective ‘left-hand margin’ for the remaining lines of code in the function- the body of the function must include __AT LEAST__ one valid statement or line of code __EXCLUDING__ comments; if you don’t want the function to do anything, but need it as a placeholder, use `pass` as the single line of required code in the function body.It is good practice to annotate your function with a so-called ‘docstring’ (*documentation string*) providing a concise, imperative description of what the function does. ###Code def FUNCTION_NAME(): """"Docstring containing a concise summary of the function behaviour.""" # ONE_OR_MORE_LINES_OF_CODE pass ###Output _____no_output_____ ###Markdown Run the following code cell to define a simple function that prints the message *Hello*: ###Code def sayHello(): """Print a hello message.""" print('Hello') ###Output _____no_output_____ ###Markdown When we *call* the function, the code contained within the function body is executed.Run the following cell to call the function: ###Code sayHello() ###Output _____no_output_____ ###Markdown Functions can contain multiple lines of code, which means they can provide a convenient way of calling multiple lines of code from a single line of code. 1.2 Passing arguments into functionsFunctions can also be used to perform actions over one or more *arguments* passed into the function. For example, if you want to say hello to a specific person by name, we can pass their name into the function as an argument, and then use that argument within the body of the function.We’ll use a Python *f-string* as a convenient way of passing the variable value, by reference, into a string: ###Code def sayHelloName(name): """Print a welcome message.""" print(f"Hello, {name}") ###Output _____no_output_____ ###Markdown Let’s call that function to see how it behaves: ###Code sayHelloName("Sam") ###Output _____no_output_____ ###Markdown What happens if we forget to provide a name? ###Code sayHelloName() ###Output _____no_output_____ ###Markdown Oops... We have defined the argument as a *positional* argument that is REQUIRED if the function is to be called without raising an error.If we want to make the argument optional then we need to provide a *default value*: ###Code def sayHelloName(name='there'): """Print a message to welcome someone by name.""" print(f"Hello, {name}") sayHelloName() ###Output _____no_output_____ ###Markdown If we want to have different behaviours depending on whether a value is passed for the name, then we can set a default such as `None` and then use a conditional statement to determine what to do based on the value that is presented: ###Code def sayHelloName(name=None): """Print a message to welcome someone optionally by name.""" if name: print(f"Hello, {name}") else: print("Hi there!") sayHelloName() ###Output _____no_output_____ ###Markdown Sometimes, we may want to get one or more values returned back from a function. We can do that using the `return` statement. The `return` statement essentially does two things when it is called: firstly, it terminates the function’s execution at that point; secondly, it optionally returns a value to the part of the program that called the function. 1.2.1 Activity – Defining a simple functionRun the following code cell to define a function that constructs a welcome message, displays the message *and returns it*: ###Code def sayAndReturnHelloName(name): """Print a welcome message and return it.""" message = f"Hello, {name}" print("Printing:", message) return message ###Output _____no_output_____ ###Markdown What do you think will happen when we call the function? *Write your prediction here about what you think will happen when the function is run here __before__ you run the code cell to call it.* ###Code sayAndReturnHelloName('Sam') ###Output _____no_output_____ ###Markdown Run the above cell to call the function. Did you get the response you expected? Discussion*Click on the arrow in the sidebar or run this cell to reveal my observations.* In the first case, a message was *printed* out in the cell’s print area. In the second case, the message was returned as the value returned by the function. As the function appeared on the last line of the code cell, its value was *displayed* as the cell output. 1.3 Setting variables to values returned from a functionAs you might expect, we can set a variable to the value returned from a function: ###Code message = sayAndReturnHelloName('Sam') ###Output _____no_output_____ ###Markdown If we view the value of that variable by running the following cell, what do you think you will see? Will the message be printed as well as displayed? *Write your prediction about what you think will happen when the function is run here __before__ you run the code cell to call it.* ###Code message ###Output _____no_output_____ ###Markdown Only the value returned from the function is displayed. The function is not called again, and so there is no instruction to *print* the message.To return multiple values, we still use a single `return` statement: ###Code def sayAndReturnHelloName(name): """Print a welcome message and return it.""" message = f"Hello, {name}" print("Printing:", message) return (name, message) sayAndReturnHelloName('Sam') ###Output _____no_output_____ ###Markdown Finally, we can have multiple return statements in a function, but only one of them can be called from a single invocation of the function: ###Code def sayHelloName(name=None): """Print a message to welcome someone optionally by name.""" if name: print(f"Hello, {name}") return (name, message) else: print("Hi there!") return print(sayHelloName(), 'and', sayHelloName("Sam")) ###Output _____no_output_____ ###Markdown Generally, it is *not* good practice to return different sorts of object from different parts of the same function. If you try to assign the values returned from the function to a particular variable, that variable could end up being defined in different ways depending on which part of the function returned the value to it. There is quite a lot more to know about functions, particularly in respect of how variables inside the function relate to variables defined outside the function, a topic referred to as *variable scope*.Variables defined within a Python are *scoped* according to where they are defined. Variables are *in scope* at a particular part of a program if they can be seen and referred to at that part of the program.In Python, variables defined _outside_ a function can typically be seen and referred to from within the function. Variables can also be passed into a function via the function’s arguments. But variables defined _inside_ the function _cannot_ be seen outside the function.We will not consider issues of scope any further here, but it is a _very_ powerful concept and one that any comprehensive introduction to programming should cover. 1.4 Using functions in robot control programsLet’s now consider how we might use our functions in a robot control program.We’ll start by considering the simple program we explored previously to make the robot trace out a square.If you recall, our first version of this program explicitly coded each turn and edge movement, and then we used a loop to repeat the same action several times.To get things set up correctly, load the simulator into the notebook in the usual way: ###Code from nbev3devsim.load_nbev3devwidget import roboSim, eds %load_ext nbev3devsim %load_ext nbtutor ###Output _____no_output_____ ###Markdown Tweak the constant value settings in the program below until the robot approximately traces out the shape of a square. ###Code %%sim_magic_preloaded -x 200 -y 500 -a 0 -p -C --pencolor red SIDES = 4 # Try to draw a square, ish... STEERING = -100 TURN_ROTATIONS = 1.6 TURN_SPEED = 10 STRAIGHT_SPEED_PC = SpeedPercent(40) STRAIGHT_ROTATIONS = 4 for side in range(SIDES): # Go straight # Set the left and right motors in a forward direction # and run for the specified number of forward rotations tank_drive.on_for_rotations(STRAIGHT_SPEED_PC, STRAIGHT_SPEED_PC, STRAIGHT_ROTATIONS) # Turn # Set the robot to turn on the spot # and run for a certain number of rotations *of the wheels* tank_turn.on_for_rotations(STEERING, SpeedPercent(TURN_SPEED), TURN_ROTATIONS) ###Output _____no_output_____ ###Markdown We can extract this code into a function that allows us to draw a square whenever we want. By adding an optional `side_length` parameter we can change the side length as required.Download the following program to the simulator and run it there.Can you modify the program to draw a third square with a size somewhere between the size of the first two squares? ###Code %%sim_magic_preloaded -p --pencolor green -a 0 SIDES = 4 # Try to draw a square STEERING = -100 TURN_ROTATIONS = 1.6 TURN_SPEED = 10 STRAIGHT_SPEED_PC = SpeedPercent(40) STRAIGHT_ROTATIONS = 6 def draw_square(side=STRAIGHT_ROTATIONS): """Draw square of specified side length.""" for side_number in range(SIDES): # Go straight # Set the left and right motors in a forward direction # and run for the number of rotations specified by: side tank_drive.on_for_rotations(STRAIGHT_SPEED_PC, STRAIGHT_SPEED_PC, # Use provided side length side) #Turn # Set the robot to turn on the spot # and run for a certain number of rotations *of the wheels* tank_turn.on_for_rotations(STEERING, SpeedPercent(TURN_SPEED), TURN_ROTATIONS) # Call the function to draw a small size square draw_square(4) # And an even smaller square draw_square(2) ###Output _____no_output_____ ###Markdown 1.4.1 Optional activityCopy the code used to define the `draw_square()` function, and modify it so that it takes a second `turn` parameter that replaces the `TURN_ROTATIONS` value.Use the `turn` parameter to tune how far the robot turns at each corner.Then see if you can use a `for...in range(N)` loop to call the square-drawing function several times.Can you further modify the program so that the side length is increased each time the function is called by the loop?*Share your programs in your Cluster group forum.* 1.5 Previewing the simulated robot state from a notebook code cellAs well as viewing the sensor state via the simulator user interface, we can also review it in the notebook itself.We can create a reference to an object that uses some magic to grab a snapshot of the state of the robot in the default `roboSim` simulator. ###Code robotState = %sim_robot_state ###Output _____no_output_____ ###Markdown The `%sim_robot_state` needs to be run in a cell, before we can check that captured state in *another* cell.But once it has run, we can use the `robotState` variable to preview the snapshot of the state of the robot.The state data itself is returned as a Python dictionary which we can reference into to view specific data values. For example, the `x`-coordinate: ###Code robotState.state["x"] ###Output _____no_output_____ ###Markdown Or how about the `penDown` state? ###Code robotState.state['penDown'] ###Output _____no_output_____ ###Markdown For a full list of possible values, we can review all the *keys* associated with the `robotState.state` dictionary: ###Code robotState.state.keys() ###Output _____no_output_____ ###Markdown Let’s use some magic to change the pen down state and then take another snapshot of the robot’s state: ###Code %sim_magic --pendown robotState = %sim_robot_state robotState.state['penDown'] ###Output _____no_output_____ ###Markdown 1.6 Reporting on robot state in the notebookHaving grabbed a snapshot of the robot’s state into the notebook, we can create a function to write reports in the notebook’s own code environment describing the state of the robot.For example, the `robotState.state` dictionary includes the following keys:- `left_light_raw / right_light_raw` for the raw RGB values- `left_light / right_light` for the `reflected_light_intensity` values- `left_light_pc / right_light_pc` for the `reflected_light_intensity_pc` values- `left_light_full / right_light_full` for the `full_reflected_light_intensity` values.We can create a simple function to display this values to make it easier for us to probe the state of the robot: ###Code def report_robot_left_sensor(state): """Print a report of the left light sensor values.""" print(f""" RGB: {state['left_light_raw']} Reflected light intensity: {state['left_light']} Reflected light intensity per cent: {state['left_light_pc']} Full reflected light intensity (%): {state['left_light_full']} """) ###Output _____no_output_____ ###Markdown Let’s see how it works: ###Code report_robot_left_sensor(robotState.state) ###Output _____no_output_____ ###Markdown 1. Introduction to functions and robot control strategiesSensors are at the heart of robotics. A machine without sensors cannot be a robot in our terms. The human body is replete with sensors. Our five external senses – sight, hearing, touch, smell and taste – and internal sensing such as balance and proprioception (body awareness) are all marvellously sophisticated.For this week’s practical activities, we will be concerned with various techniques that can be used to allow a robot to use sensory information to control its actuators. We will investigate a progression of control strategies:1. dead reckoning – no sensor input2. reflex behaviour – sensors *linked directly* to motors according to the sense–act model3. deliberative behaviour – actuation depends on *reasoning* about sensor information and other knowledge, according to the sense–think–act model.The first control strategy, dead reckoning, is an ‘open-loop’ control approach, since it does not use sensor input.The second is an example of a ‘sense–act’ control strategy that you encountered earlier in the block; we will illustrate this control strategy using simulated implementations of simple Braitenberg vehicles.Finally, there is the most complex control strategy, in which the robot deliberates on the sensor inputs in the context of other knowledge using an approach we refer to as ‘sense–think–act’. This involves *reasoning* and corresponds more closely to the way humans solve complex problems and plan actions in the long and short term.But before we do that, we’ll have a look in a bit more detail at another powerful idea in computer programming: *functions*. You’ve already met some of these, but without much explanation. So now let’s introduce you to them for real. 1.1 Defining simple Python functionsMany of the programs we have used so far have been quite short with little, if any, reused code.As programs get larger, it is often convenient to encapsulate several lines of code within a *function*. Multiple lines of code within a function can then be called conveniently from a single statement whenever they are needed.Functions are very powerful, and if you have studied other programming courses then you may well be familiar with them.For our purposes, the following provides a very quick overview of some of the key behaviours of Python functions. Remember that this isn’t a Python programming module *per se*; rather, it’s a module where we explore how to use Python to get things done. What follows should be enough to get you started writing your own functions, without creating too many bad habits along the way.To see how we can create our own functions, let’s consider a really simple example: a function that just prints out the word *Hello*.The function definition has a very specific syntax: ###Code def FUNCTION_NAME(): #ONE_OR_MORE_LINES_OF_CODE pass ###Output _____no_output_____ ###Markdown *A Python function requires at least one line of valid code (which does not include comments) in the function body. If we don't know what lines of code we want just yet, the `pass` command is enough to create a valid program line that doesn't actually have to do anything.* Here are some of the rules relating to the syntactic definition of a Python function:- the `FUNCTION_NAME` __MUST NOT__ contain any spaces or punctuation other than underscore (`_`) characters- the function name __MUST__ be followed by a pair of brackets (`()`), that may contain something (we’ll see what later), followed by a colon (`:`)- the body of the function __MUST__ be indented using space or tab characters; the level of indentation of the first line sets the effective ‘left-hand margin’ for the remaining lines of code in the function- the body of the function must include __AT LEAST__ one valid statement or line of code __EXCLUDING__ comments; if you don’t want the function to do anything, but need it as a placeholder, use `pass` as the single line of required code in the function body.It is good practice to annotate your function with a so-called ‘docstring’ (*documentation string*) providing a concise, imperative description of what the function does. ###Code def FUNCTION_NAME(): """"Docstring containing a concise summary of the function behaviour.""" #ONE_OR_MORE_LINES_OF_CODE pass ###Output _____no_output_____ ###Markdown Run the following code cell to define a simple function that prints the message *Hello*: ###Code def sayHello(): """Print a hello message.""" print('Hello') ###Output _____no_output_____ ###Markdown When we *call* the function, the code contained within the function body is executed.Run the following cell to call the function: ###Code sayHello() ###Output _____no_output_____ ###Markdown Functions can contain multiple lines of code, which means they can provide a convenient way of calling multiple lines of code from a single line of code. 1.2 Passing arguments into functionsFunctions can also be used to perform actions over one or more *arguments* passed into the function. For example, if you want to say hello to a specific person by name, we can pass their name into the function as an argument, and then use that argument within the body of the function.We’ll use a Python *f-string* as a convenient way of passing the variable value, by reference, into a string: ###Code def sayHelloName(name): """Print a welcome message.""" print(f"Hello, {name}") ###Output _____no_output_____ ###Markdown Let’s call that function to see how it behaves: ###Code sayHelloName("Sam") ###Output _____no_output_____ ###Markdown What happens if we forget to provide a name? ###Code sayHelloName() ###Output _____no_output_____ ###Markdown Oops... We have defined the argument as a *positional* argument that is REQUIRED if the function is to be called without raising an error.If we want to make the argument optional then we need to provide a *default value*: ###Code def sayHelloName(name='there'): """Print a message to welcome someone by name.""" print(f"Hello, {name}") sayHelloName() ###Output _____no_output_____ ###Markdown If we want to have different behaviours depending on whether a value is passed for the name, then we can set a default such as `None` and then use a conditional statement to determine what to do based on the value that is presented: ###Code def sayHelloName(name=None): """Print a message to welcome someone optionally by name.""" if name: print(f"Hello, {name}") else: print("Hi there!") sayHelloName() ###Output _____no_output_____ ###Markdown Sometimes, we may want to get one or more values returned back from a function. We can do that using the `return` statement. The `return` statement essentially does two things when it is called: firstly, it terminates the function’s execution at that point; secondly, it optionally returns a value to the part of the program that called the function. 1.2.1 Activity — Defining a simple functionRun the following code cell to define a function that constructs a welcome message, displays the message *and returns it*: ###Code def sayAndReturnHelloName(name): """Print a welcome message and return it.""" message = f"Hello, {name}" print("Printing:", message) return message ###Output _____no_output_____ ###Markdown What do you think will happen when we call the function? *Write your prediction here about what you think will happen when the function is run here __before__ you run the code cell to call it.* ###Code sayAndReturnHelloName('Sam') ###Output _____no_output_____ ###Markdown Run the above cell to call the function. Did you get the response you expected? Discussion*Click on the arrow in the sidebar or run this cell to reveal my observations.* In the first case, a message was *printed* out in the cell’s print area. In the second case, the message was returned as the value returned by the function. As the function appeared on the last line of the code cell, its value was *displayed* as the cell output. 1.3 Setting variables to values returned from a functionAs you might expect, we can set a variable to the value returned from a function: ###Code message = sayAndReturnHelloName('Sam') ###Output _____no_output_____ ###Markdown If we view the value of that variable by running the following cell, what do you think you will see? Will the message be printed as well as displayed? *Write your prediction about what you think will happen when the function is run here __before__ you run the code cell to call it.* ###Code message ###Output _____no_output_____ ###Markdown Only the value returned from the function is displayed. The function is not called again, and so there is no instruction to *print* the message.To return multiple values, we still use a single `return` statement: ###Code def sayAndReturnHelloName(name): """Print a welcome message and return it.""" message = f"Hello, {name}" print("Printing:", message) return (name, message) sayAndReturnHelloName('Sam') ###Output _____no_output_____ ###Markdown Finally, we can have multiple return statements in a function, but only one of them can be called from a single invocation of the function: ###Code def sayHelloName(name=None): """Print a message to welcome someone optionally by name.""" if name: print(f"Hello, {name}") return (name, message) else: print("Hi there!") return print(sayHelloName(), 'and', sayHelloName("Sam")) ###Output _____no_output_____ ###Markdown Generally, it is *not* good practice to return different sorts of object from different parts of the same function. If you try to assign the values returned from the function to a particular variable, that variable could end up being defined in different ways depending on which part of the function returned the value to it. *There is quite a lot more to know about functions, particularly in respect of how variables inside the function relate to variables defined outside the function, a topic referred to as `variable scope`.**Variables defined within a Python are `scoped` according to where they are defined. Variables are `in scope` at a particular part of a program if they can be seen and referred to at that part of the program.**In Python, variables defined _outside_ a function can typically be seen and referred to from within the function. Variables can also be passed into a function via the function's arguments. But variables defined _inside_ the function _cannot_ be seen outside the function.**We will not consider issues of scope any further here, but it is a _very_ powerful concept and one that any comprehensive introduction to programming should cover.* 1.4 Using functions in robot control programsLet's now consider how we might use our our functions in a robot control program.We’ll start by considering the simple program we explored previously to make the robot trace out a square.If you recall, our first version of this program explicitly coded each turn and edge movement, and then we used a loop to repeat the same action several times.To get things set up correctly, load the simulator into the notebook in the usual way: ###Code from nbev3devsim.load_nbev3devwidget import roboSim, eds %load_ext nbev3devsim %load_ext nbtutor ###Output _____no_output_____ ###Markdown Tweak the constant value settings in the program below until the robot approximately traces out the shape of a square. ###Code %%sim_magic_preloaded -x 200 -y 500 -a 0 -p -C --pencolor red SIDES = 4 # Try to draw a square, ish... STEERING = -100 TURN_ROTATIONS = 1.6 TURN_SPEED = 10 STRAIGHT_SPEED_PC = SpeedPercent(40) STRAIGHT_ROTATIONS = 4 for side in range(SIDES): #Go straight # Set the left and right motors in a forward direction # and run for the specified number of forward rotations tank_drive.on_for_rotations(STRAIGHT_SPEED_PC, STRAIGHT_SPEED_PC, STRAIGHT_ROTATIONS) #Turn # Set the robot to turn on the spot # and run for a certain number of rotations *of the wheels* tank_turn.on_for_rotations(STEERING, SpeedPercent(TURN_SPEED), TURN_ROTATIONS) ###Output _____no_output_____ ###Markdown We can extract this code into a function that allows us to draw a square whenever we want. By adding an optional `side_length` parameter we can change the side length as required.Download the following program to the simulator and run it there.Can you modify the program to draw a third square with a size somewhere between the size of the first two squares? ###Code %%sim_magic_preloaded -p --pencolor green -a 0 SIDES = 4 # Try to draw a square STEERING = -100 TURN_ROTATIONS = 1.6 TURN_SPEED = 10 STRAIGHT_SPEED_PC = SpeedPercent(40) STRAIGHT_ROTATIONS = 6 def draw_square(side=STRAIGHT_ROTATIONS): """Draw square of specified side length.""" for side_number in range(SIDES): #Go straight # Set the left and right motors in a forward direction # and run for the number of rotations specified by: side tank_drive.on_for_rotations(STRAIGHT_SPEED_PC, STRAIGHT_SPEED_PC, #Use provided side length side) #Turn # Set the robot to turn on the spot # and run for a certain number of rotations *of the wheels* tank_turn.on_for_rotations(STEERING, SpeedPercent(TURN_SPEED), TURN_ROTATIONS) # Call the function to draw a small size square draw_square(4) # And an even smaller square draw_square(2) ###Output _____no_output_____ ###Markdown 1.4.1 Optional activityCopy the code used to define the `draw_square()` function, and modify it so that it takes a second `turn` parameter that replaces the `TURN_ROTATIONS` value.Use the `turn` parameter to tune how far the robot turns at each corner.Then see if you can use a `for...in range(N)` loop to call the square-drawing function several times.Can you further modify the program so that the side length is increased each time the function is called by the loop?*Share your programs in your Cluster group forum.* 1.5 Previewing the simulated robot state from a notebook code cellAs well viewing the sensor state via the simulator user interface, we can also review it in the notebook itself.We can create a reference to an object that uses some magic to grab a snapshot of the state of the robot in the default `roboSim` simulator. ###Code robotState = %sim_robot_state ###Output _____no_output_____ ###Markdown The `%sim_robot_state` needs to be run in a cell, before we can check that captured state in *another* cell.But once it has run, we can use the `robotState` variable to preview the snapshot of the state of the robot.The state data itself returned as a Python dictionary which we can reference into to view specific data values. For example, the `x` coordinate: ###Code robotState.state["x"] ###Output _____no_output_____ ###Markdown Or how about the `penDown` state? ###Code robotState.state['penDown'] ###Output _____no_output_____ ###Markdown For a full list of possible values, we can review all the *keys* associated with the `robotState.state` dictionary: ###Code robotState.state.keys() ###Output _____no_output_____ ###Markdown Let's use some magic to change the pen down state and then take another snapshot of the robot's state: ###Code %sim_magic --pendown robotState = %sim_robot_state robotState.state['penDown'] ###Output _____no_output_____ ###Markdown 1.6 Reporting on robot state in the notebookHaving grabbed a snapshot of the robot's state into the notebook, we can create a function to write reports in the notebook's own code environment describing the state of the robot.For example, the `robotState.state` dictionary includes the following keys:- `left_light_raw / right_light_raw` for the raw RGB values- `left_light / right_light` for the `reflected_light_intensity` values- `left_light_pc / right_light_pc` for the `reflected_light_intensity_pc` values, and- `left_light_full / right_light_full` for the `full_reflected_light_intensity` values.We can create a simple function to display this values to make it easier for us to probe the state of the robot: ###Code def report_robot_left_sensor(state): """Print a report of the left light sensor values.""" print(f""" RGB: {state['left_light_raw']} Reflected light intensity: {state['left_light']} Reflected light intensity per cent: {state['left_light_pc']} Full reflected light intensity (%): {state['left_light_full']} """) ###Output _____no_output_____ ###Markdown Let's see how it works: ###Code report_robot_left_sensor(robotState.state) ###Output _____no_output_____
jupyter/annotation/english/graph-extraction/graph_extraction_explode_entities.ipynb
###Markdown To use Merge Entities parameter we need to set allowSparkContext parameter to true ###Code spark = SparkSession.builder \ .appName("SparkNLP") \ .master("local[*]") \ .config("spark.driver.memory", "12G") \ .config("spark.serializer", "org.apache.spark.serializer.KryoSerializer") \ .config("spark.kryoserializer.buffer.max", "2000M") \ .config("spark.driver.maxResultSize", "0") \ .config("spark.jars", "jars/sparknlp.jar") \ .config("spark.executor.allowSparkContext", "true") \ .getOrCreate() spark from pyspark.sql.types import StringType text = ['Peter Parker is a nice lad and lives in New York'] data_set = spark.createDataFrame(text, StringType()).toDF("text") data_set.show(truncate=False) ###Output +------------------------------------------------+ |text | +------------------------------------------------+ |Peter Parker is a nice lad and lives in New York| +------------------------------------------------+ ###Markdown Graph Extraction Graph Extraction will use pretrained POS, Dependency Parser and Typed Dependency Parser annotators when the pipeline does not have those defined ###Code document_assembler = DocumentAssembler().setInputCol("text").setOutputCol("document") tokenizer = Tokenizer().setInputCols(["document"]).setOutputCol("token") word_embeddings = WordEmbeddingsModel.pretrained() \ .setInputCols(["document", "token"]) \ .setOutputCol("embeddings") ner_tagger = NerDLModel.pretrained() \ .setInputCols(["document", "token", "embeddings"]) \ .setOutputCol("ner") ###Output glove_100d download started this may take some time. Approximate size to download 145.3 MB [OK!] ner_dl download started this may take some time. Approximate size to download 13.6 MB [OK!] ###Markdown When setting ExplodeEntities to true, Graph Extraction will find paths between all possible pair of entities Since this sentence only has two entities, it will display the paths between PER and LOC. Each pair of entities will have a left path and a right path. By default the paths starts from the root of the dependency tree, which in this case is the token *lad*:* Left path: lad-PER, will output the path between lad and Peter Parker* Right path: lad-LOC, will output the path between lad and New York ###Code graph_extraction = GraphExtraction() \ .setInputCols(["document", "token", "ner"]) \ .setOutputCol("graph") \ .setMergeEntities(True) \ .setExplodeEntities(True) graph_pipeline = Pipeline().setStages([document_assembler, tokenizer, word_embeddings, ner_tagger, graph_extraction]) ###Output _____no_output_____ ###Markdown The result dataset has a *graph* column with the paths between PER,LOC ###Code graph_data_set = graph_pipeline.fit(data_set).transform(data_set) graph_data_set.select("graph").show(truncate=False) ###Output +--------------------------------------------------------------------------------------------------------------------------------------------------+ |graph | +--------------------------------------------------------------------------------------------------------------------------------------------------+ |[[node, 23, 25, lad, [entities -> PER,LOC, path -> lad,Peter Parker,lad,New York, left_path -> lad,Peter Parker, right_path -> lad,New York], []]]| +--------------------------------------------------------------------------------------------------------------------------------------------------+ ###Markdown To use Merge Entities parameter we need to set allowSparkContext parameter to true ###Code spark = SparkSession.builder \ .appName("SparkNLP") \ .master("local[*]") \ .config("spark.driver.memory", "12G") \ .config("spark.serializer", "org.apache.spark.serializer.KryoSerializer") \ .config("spark.kryoserializer.buffer.max", "2000M") \ .config("spark.driver.maxResultSize", "0") \ .config("spark.jars", "jars/sparknlp.jar") \ .config("spark.executor.allowSparkContext", "true") \ .getOrCreate() spark from pyspark.sql.types import StringType text = ['Peter Parker is a nice lad and lives in New York'] data_set = spark.createDataFrame(text, StringType()).toDF("text") data_set.show(truncate=False) ###Output +------------------------------------------------+ |text | +------------------------------------------------+ |Peter Parker is a nice lad and lives in New York| +------------------------------------------------+ ###Markdown Graph Extraction Graph Extraction will use pretrained POS, Dependency Parser and Typed Dependency Parser annotators when the pipeline does not have those defined ###Code document_assembler = DocumentAssembler().setInputCol("text").setOutputCol("document") tokenizer = Tokenizer().setInputCols(["document"]).setOutputCol("token") word_embeddings = WordEmbeddingsModel.pretrained() \ .setInputCols(["document", "token"]) \ .setOutputCol("embeddings") ner_tagger = NerDLModel.pretrained() \ .setInputCols(["document", "token", "embeddings"]) \ .setOutputCol("ner") ###Output glove_100d download started this may take some time. Approximate size to download 145.3 MB [OK!] ner_dl download started this may take some time. Approximate size to download 13.6 MB [OK!] ###Markdown When setting ExplodeEntities to true, Graph Extraction will find paths between all possible pair of entities Since this sentence only has two entities, it will display the paths between PER and LOC. Each pair of entities will have a left path and a right path. By default the paths starts from the root of the dependency tree, which in this case is the token *lad*:* Left path: lad-PER, will output the path between lad and Peter Parker* Right path: lad-LOC, will output the path between lad and New York ###Code graph_extraction = GraphExtraction() \ .setInputCols(["document", "token", "ner"]) \ .setOutputCol("graph") \ .setMergeEntities(True) \ .setExplodeEntities(True) graph_pipeline = Pipeline().setStages([document_assembler, tokenizer, word_embeddings, ner_tagger, graph_extraction]) ###Output _____no_output_____ ###Markdown The result dataset has a *graph* column with the paths between PER,LOC ###Code graph_data_set = graph_pipeline.fit(data_set).transform(data_set) graph_data_set.select("graph").show(truncate=False) ###Output +--------------------------------------------------------------------------------------------------------------------------------------------------+ |graph | +--------------------------------------------------------------------------------------------------------------------------------------------------+ |[[node, 23, 25, lad, [entities -> PER,LOC, path -> lad,Peter Parker,lad,New York, left_path -> lad,Peter Parker, right_path -> lad,New York], []]]| +--------------------------------------------------------------------------------------------------------------------------------------------------+
apphub/NLP/imdb/imdb.ipynb
###Markdown Sentiment Prediction in IMDB Reviews using an LSTM ###Code import tempfile import os import numpy as np import torch import torch.nn as nn import torch.nn.functional as fn import fastestimator as fe from fastestimator.dataset.data import imdb_review from fastestimator.op.numpyop.univariate.reshape import Reshape from fastestimator.op.tensorop.loss import CrossEntropy from fastestimator.op.tensorop.model import ModelOp, UpdateOp from fastestimator.trace.io import BestModelSaver from fastestimator.trace.metric import Accuracy from fastestimator.backend import load_model MAX_WORDS = 10000 MAX_LEN = 500 batch_size = 64 epochs = 10 max_train_steps_per_epoch = None max_eval_steps_per_epoch = None ###Output _____no_output_____ ###Markdown Building components Step 1: Prepare training & evaluation data and define a `Pipeline` We are loading the dataset from tf.keras.datasets.imdb which contains movie reviews and sentiment scores. All the words have been replaced with the integers that specifies the popularity of the word in corpus. To ensure all the sequences are of same length we need to pad the input sequences before defining the `Pipeline`. ###Code train_data, eval_data = imdb_review.load_data(MAX_LEN, MAX_WORDS) pipeline = fe.Pipeline(train_data=train_data, eval_data=eval_data, batch_size=batch_size, ops=Reshape(1, inputs="y", outputs="y")) ###Output _____no_output_____ ###Markdown Step 2: Create a `model` and FastEstimator `Network` First, we have to define the neural network architecture, and then pass the definition, associated model name, and optimizer into fe.build: ###Code class ReviewSentiment(nn.Module): def __init__(self, embedding_size=64, hidden_units=64): super().__init__() self.embedding = nn.Embedding(MAX_WORDS, embedding_size) self.conv1d = nn.Conv1d(in_channels=64, out_channels=32, kernel_size=3, padding=1) self.maxpool1d = nn.MaxPool1d(kernel_size=4) self.lstm = nn.LSTM(input_size=125, hidden_size=hidden_units, num_layers=1) self.fc1 = nn.Linear(in_features=hidden_units, out_features=250) self.fc2 = nn.Linear(in_features=250, out_features=1) def forward(self, x): x = self.embedding(x) x = x.permute((0, 2, 1)) x = self.conv1d(x) x = fn.relu(x) x = self.maxpool1d(x) output, _ = self.lstm(x) x = output[:, -1] # sequence output of only last timestamp x = fn.tanh(x) x = self.fc1(x) x = fn.relu(x) x = self.fc2(x) x = fn.sigmoid(x) return x ###Output _____no_output_____ ###Markdown `Network` is the object that defines the whole training graph, including models, loss functions, optimizers etc. A `Network` can have several different models and loss functions (ex. GANs). `fe.Network` takes a series of operators, in this case just the basic `ModelOp`, loss op, and `UpdateOp` will suffice. It should be noted that "y_pred" is the key in the data dictionary which will store the predictions. ###Code model = fe.build(model_fn=lambda: ReviewSentiment(), optimizer_fn="adam") network = fe.Network(ops=[ ModelOp(model=model, inputs="x", outputs="y_pred"), CrossEntropy(inputs=("y_pred", "y"), outputs="loss"), UpdateOp(model=model, loss_name="loss") ]) ###Output _____no_output_____ ###Markdown Step 3: Prepare `Estimator` and configure the training loop `Estimator` is the API that wraps the `Pipeline`, `Network` and other training metadata together. `Estimator` also contains `Traces`, which are similar to the callbacks of Keras. In the training loop, we want to measure the validation loss and save the model that has the minimum loss. `BestModelSaver` is a convenient `Trace` to achieve this. Let's also measure accuracy over time using another `Trace`: ###Code model_dir = tempfile.mkdtemp() traces = [Accuracy(true_key="y", pred_key="y_pred"), BestModelSaver(model=model, save_dir=model_dir)] estimator = fe.Estimator(network=network, pipeline=pipeline, epochs=epochs, traces=traces, max_train_steps_per_epoch=max_train_steps_per_epoch, max_eval_steps_per_epoch=max_eval_steps_per_epoch) ###Output _____no_output_____ ###Markdown Training ###Code estimator.fit() ###Output ______ __ ______ __ _ __ / ____/___ ______/ /_/ ____/____/ /_(_)___ ___ ____ _/ /_____ _____ / /_ / __ `/ ___/ __/ __/ / ___/ __/ / __ `__ \/ __ `/ __/ __ \/ ___/ / __/ / /_/ (__ ) /_/ /___(__ ) /_/ / / / / / / /_/ / /_/ /_/ / / /_/ \__,_/____/\__/_____/____/\__/_/_/ /_/ /_/\__,_/\__/\____/_/ FastEstimator-Start: step: 1; model_lr: 0.001; ###Markdown Inferencing For inferencing, first we have to load the trained model weights. We previously saved model weights corresponding to our minimum loss, and now we will load the weights using `load_model()`: ###Code model_name = 'model_best_loss.pt' model_path = os.path.join(model_dir, model_name) load_model(model, model_path) ###Output Loaded model weights from /tmp/tmp69qyfzvm/model_best_loss.pt ###Markdown Let's get some random sequence and compare the prediction with the ground truth: ###Code selected_idx = np.random.randint(10000) print("Ground truth is: ",eval_data[selected_idx]['y']) ###Output Ground truth is: 0 ###Markdown Create data dictionary for the inference. The `Transform()` function in Pipeline and Network applies all the operations on the given data: ###Code infer_data = {"x":eval_data[selected_idx]['x'], "y":eval_data[selected_idx]['y']} data = pipeline.transform(infer_data, mode="infer") data = network.transform(data, mode="infer") ###Output _____no_output_____ ###Markdown Finally, print the inferencing results. ###Code print("Prediction for the input sequence: ", np.array(data["y_pred"])[0][0]) ###Output Prediction for the input sequence: 0.30634004 ###Markdown Sentiment Prediction in IMDB Reviews using an LSTM ###Code import tempfile import os import numpy as np import torch.nn as nn import torch.nn.functional as fn import fastestimator as fe from fastestimator.dataset.data import imdb_review from fastestimator.op.numpyop.univariate.reshape import Reshape from fastestimator.op.tensorop.loss import CrossEntropy from fastestimator.op.tensorop.model import ModelOp, UpdateOp from fastestimator.trace.io import BestModelSaver from fastestimator.trace.metric import Accuracy from fastestimator.backend import load_model MAX_WORDS = 10000 MAX_LEN = 500 batch_size = 64 epochs = 10 train_steps_per_epoch = None eval_steps_per_epoch = None ###Output _____no_output_____ ###Markdown Building components Step 1: Prepare training & evaluation data and define a `Pipeline` We are loading the dataset from tf.keras.datasets.imdb which contains movie reviews and sentiment scores. All the words have been replaced with the integers that specifies the popularity of the word in corpus. To ensure all the sequences are of same length we need to pad the input sequences before defining the `Pipeline`. ###Code train_data, eval_data = imdb_review.load_data(MAX_LEN, MAX_WORDS) pipeline = fe.Pipeline(train_data=train_data, eval_data=eval_data, batch_size=batch_size, ops=Reshape(1, inputs="y", outputs="y")) ###Output _____no_output_____ ###Markdown Step 2: Create a `model` and FastEstimator `Network` First, we have to define the neural network architecture, and then pass the definition, associated model name, and optimizer into fe.build: ###Code class ReviewSentiment(nn.Module): def __init__(self, embedding_size=64, hidden_units=64): super().__init__() self.embedding = nn.Embedding(MAX_WORDS, embedding_size) self.conv1d = nn.Conv1d(in_channels=64, out_channels=32, kernel_size=3, padding=1) self.maxpool1d = nn.MaxPool1d(kernel_size=4) self.lstm = nn.LSTM(input_size=125, hidden_size=hidden_units, num_layers=1) self.fc1 = nn.Linear(in_features=hidden_units, out_features=250) self.fc2 = nn.Linear(in_features=250, out_features=1) def forward(self, x): x = self.embedding(x) x = x.permute((0, 2, 1)) x = self.conv1d(x) x = fn.relu(x) x = self.maxpool1d(x) output, _ = self.lstm(x) x = output[:, -1] # sequence output of only last timestamp x = fn.tanh(x) x = self.fc1(x) x = fn.relu(x) x = self.fc2(x) x = fn.sigmoid(x) return x ###Output _____no_output_____ ###Markdown `Network` is the object that defines the whole training graph, including models, loss functions, optimizers etc. A `Network` can have several different models and loss functions (ex. GANs). `fe.Network` takes a series of operators, in this case just the basic `ModelOp`, loss op, and `UpdateOp` will suffice. It should be noted that "y_pred" is the key in the data dictionary which will store the predictions. ###Code model = fe.build(model_fn=lambda: ReviewSentiment(), optimizer_fn="adam") network = fe.Network(ops=[ ModelOp(model=model, inputs="x", outputs="y_pred"), CrossEntropy(inputs=("y_pred", "y"), outputs="loss"), UpdateOp(model=model, loss_name="loss") ]) ###Output _____no_output_____ ###Markdown Step 3: Prepare `Estimator` and configure the training loop `Estimator` is the API that wraps the `Pipeline`, `Network` and other training metadata together. `Estimator` also contains `Traces`, which are similar to the callbacks of Keras. In the training loop, we want to measure the validation loss and save the model that has the minimum loss. `BestModelSaver` is a convenient `Trace` to achieve this. Let's also measure accuracy over time using another `Trace`: ###Code model_dir = tempfile.mkdtemp() traces = [Accuracy(true_key="y", pred_key="y_pred"), BestModelSaver(model=model, save_dir=model_dir)] estimator = fe.Estimator(network=network, pipeline=pipeline, epochs=epochs, traces=traces, train_steps_per_epoch=train_steps_per_epoch, eval_steps_per_epoch=eval_steps_per_epoch) ###Output _____no_output_____ ###Markdown Training ###Code estimator.fit() ###Output ______ __ ______ __ _ __ / ____/___ ______/ /_/ ____/____/ /_(_)___ ___ ____ _/ /_____ _____ / /_ / __ `/ ___/ __/ __/ / ___/ __/ / __ `__ \/ __ `/ __/ __ \/ ___/ / __/ / /_/ (__ ) /_/ /___(__ ) /_/ / / / / / / /_/ / /_/ /_/ / / /_/ \__,_/____/\__/_____/____/\__/_/_/ /_/ /_/\__,_/\__/\____/_/ FastEstimator-Start: step: 1; model_lr: 0.001; ###Markdown Inferencing For inferencing, first we have to load the trained model weights. We previously saved model weights corresponding to our minimum loss, and now we will load the weights using `load_model()`: ###Code model_name = 'model_best_loss.pt' model_path = os.path.join(model_dir, model_name) load_model(model, model_path) ###Output Loaded model weights from /tmp/tmp69qyfzvm/model_best_loss.pt ###Markdown Let's get some random sequence and compare the prediction with the ground truth: ###Code selected_idx = np.random.randint(10000) print("Ground truth is: ",eval_data[selected_idx]['y']) ###Output Ground truth is: 0 ###Markdown Create data dictionary for the inference. The `Transform()` function in Pipeline and Network applies all the operations on the given data: ###Code infer_data = {"x":eval_data[selected_idx]['x'], "y":eval_data[selected_idx]['y']} data = pipeline.transform(infer_data, mode="infer") data = network.transform(data, mode="infer") ###Output _____no_output_____ ###Markdown Finally, print the inferencing results. ###Code print("Prediction for the input sequence: ", np.array(data["y_pred"])[0][0]) ###Output Prediction for the input sequence: 0.30634004 ###Markdown Sentiment Prediction in IMDB Reviews using an LSTM ###Code import tempfile import os import numpy as np import torch import torch.nn as nn import fastestimator as fe from fastestimator.dataset.data import imdb_review from fastestimator.op.numpyop.univariate.reshape import Reshape from fastestimator.op.tensorop.loss import CrossEntropy from fastestimator.op.tensorop.model import ModelOp, UpdateOp from fastestimator.trace.io import BestModelSaver from fastestimator.trace.metric import Accuracy from fastestimator.backend import load_model MAX_WORDS = 10000 MAX_LEN = 500 batch_size = 64 epochs = 10 train_steps_per_epoch = None eval_steps_per_epoch = None ###Output _____no_output_____ ###Markdown Building components Step 1: Prepare training & evaluation data and define a `Pipeline` We are loading the dataset from tf.keras.datasets.imdb which contains movie reviews and sentiment scores. All the words have been replaced with the integers that specifies the popularity of the word in corpus. To ensure all the sequences are of same length we need to pad the input sequences before defining the `Pipeline`. ###Code train_data, eval_data = imdb_review.load_data(MAX_LEN, MAX_WORDS) pipeline = fe.Pipeline(train_data=train_data, eval_data=eval_data, batch_size=batch_size, ops=Reshape(1, inputs="y", outputs="y")) ###Output _____no_output_____ ###Markdown Step 2: Create a `model` and FastEstimator `Network` First, we have to define the neural network architecture, and then pass the definition, associated model name, and optimizer into fe.build: ###Code class ReviewSentiment(nn.Module): def __init__(self, embedding_size=64, hidden_units=64): super().__init__() self.embedding = nn.Embedding(MAX_WORDS, embedding_size) self.conv1d = nn.Conv1d(in_channels=64, out_channels=32, kernel_size=3, padding=1) self.maxpool1d = nn.MaxPool1d(kernel_size=4) self.lstm = nn.LSTM(input_size=125, hidden_size=hidden_units, num_layers=1) self.fc1 = nn.Linear(in_features=hidden_units, out_features=250) self.fc2 = nn.Linear(in_features=250, out_features=1) def forward(self, x): x = self.embedding(x) x = x.permute((0, 2, 1)) x = self.conv1d(x) x = torch.relu(x) x = self.maxpool1d(x) output, _ = self.lstm(x) x = output[:, -1] # sequence output of only last timestamp x = torch.tanh(x) x = self.fc1(x) x = torch.relu(x) x = self.fc2(x) x = torch.sigmoid(x) return x ###Output _____no_output_____ ###Markdown `Network` is the object that defines the whole training graph, including models, loss functions, optimizers etc. A `Network` can have several different models and loss functions (ex. GANs). `fe.Network` takes a series of operators, in this case just the basic `ModelOp`, loss op, and `UpdateOp` will suffice. It should be noted that "y_pred" is the key in the data dictionary which will store the predictions. ###Code model = fe.build(model_fn=lambda: ReviewSentiment(), optimizer_fn="adam") network = fe.Network(ops=[ ModelOp(model=model, inputs="x", outputs="y_pred"), CrossEntropy(inputs=("y_pred", "y"), outputs="loss"), UpdateOp(model=model, loss_name="loss") ]) ###Output _____no_output_____ ###Markdown Step 3: Prepare `Estimator` and configure the training loop `Estimator` is the API that wraps the `Pipeline`, `Network` and other training metadata together. `Estimator` also contains `Traces`, which are similar to the callbacks of Keras. In the training loop, we want to measure the validation loss and save the model that has the minimum loss. `BestModelSaver` is a convenient `Trace` to achieve this. Let's also measure accuracy over time using another `Trace`: ###Code model_dir = tempfile.mkdtemp() traces = [Accuracy(true_key="y", pred_key="y_pred"), BestModelSaver(model=model, save_dir=model_dir)] estimator = fe.Estimator(network=network, pipeline=pipeline, epochs=epochs, traces=traces, train_steps_per_epoch=train_steps_per_epoch, eval_steps_per_epoch=eval_steps_per_epoch) ###Output _____no_output_____ ###Markdown Training ###Code estimator.fit() ###Output ______ __ ______ __ _ __ / ____/___ ______/ /_/ ____/____/ /_(_)___ ___ ____ _/ /_____ _____ / /_ / __ `/ ___/ __/ __/ / ___/ __/ / __ `__ \/ __ `/ __/ __ \/ ___/ / __/ / /_/ (__ ) /_/ /___(__ ) /_/ / / / / / / /_/ / /_/ /_/ / / /_/ \__,_/____/\__/_____/____/\__/_/_/ /_/ /_/\__,_/\__/\____/_/ FastEstimator-Start: step: 1; logging_interval: 100; num_device: 0; FastEstimator-Train: step: 1; loss: 0.6982045; FastEstimator-Train: step: 100; loss: 0.69076145; steps/sec: 4.55; FastEstimator-Train: step: 200; loss: 0.6970146; steps/sec: 5.49; FastEstimator-Train: step: 300; loss: 0.67406845; steps/sec: 5.6; FastEstimator-Train: step: 358; epoch: 1; epoch_time: 69.22 sec; FastEstimator-BestModelSaver: Saved model to /var/folders/lx/drkxftt117gblvgsp1p39rlc0000gn/T/tmpds6dz9wa/model_best_loss.pt FastEstimator-Eval: step: 358; epoch: 1; accuracy: 0.6826793843485801; loss: 0.59441286; min_loss: 0.59441286; since_best_loss: 0; FastEstimator-Train: step: 400; loss: 0.579373; steps/sec: 5.39; FastEstimator-Train: step: 500; loss: 0.5601772; steps/sec: 4.79; FastEstimator-Train: step: 600; loss: 0.3669433; steps/sec: 5.2; FastEstimator-Train: step: 700; loss: 0.5050458; steps/sec: 4.86; FastEstimator-Train: step: 716; epoch: 2; epoch_time: 71.36 sec; FastEstimator-BestModelSaver: Saved model to /var/folders/lx/drkxftt117gblvgsp1p39rlc0000gn/T/tmpds6dz9wa/model_best_loss.pt FastEstimator-Eval: step: 716; epoch: 2; accuracy: 0.7672230652503793; loss: 0.48858097; min_loss: 0.48858097; since_best_loss: 0; FastEstimator-Train: step: 800; loss: 0.43962425; steps/sec: 5.57; FastEstimator-Train: step: 900; loss: 0.33729357; steps/sec: 5.71; FastEstimator-Train: step: 1000; loss: 0.31596264; steps/sec: 5.23; FastEstimator-Train: step: 1074; epoch: 3; epoch_time: 77.79 sec; FastEstimator-BestModelSaver: Saved model to /var/folders/lx/drkxftt117gblvgsp1p39rlc0000gn/T/tmpds6dz9wa/model_best_loss.pt FastEstimator-Eval: step: 1074; epoch: 3; accuracy: 0.8103186646433991; loss: 0.4192897; min_loss: 0.4192897; since_best_loss: 0; FastEstimator-Train: step: 1100; loss: 0.33041656; steps/sec: 3.22; FastEstimator-Train: step: 1200; loss: 0.41677344; steps/sec: 5.75; FastEstimator-Train: step: 1300; loss: 0.43493804; steps/sec: 5.68; FastEstimator-Train: step: 1400; loss: 0.26938343; steps/sec: 5.34; FastEstimator-Train: step: 1432; epoch: 4; epoch_time: 64.02 sec; FastEstimator-BestModelSaver: Saved model to /var/folders/lx/drkxftt117gblvgsp1p39rlc0000gn/T/tmpds6dz9wa/model_best_loss.pt FastEstimator-Eval: step: 1432; epoch: 4; accuracy: 0.823845653587687; loss: 0.3995199; min_loss: 0.3995199; since_best_loss: 0; FastEstimator-Train: step: 1500; loss: 0.323763; steps/sec: 5.76; FastEstimator-Train: step: 1600; loss: 0.21561582; steps/sec: 5.84; FastEstimator-Train: step: 1700; loss: 0.20746922; steps/sec: 5.59; FastEstimator-Train: step: 1790; epoch: 5; epoch_time: 63.49 sec; FastEstimator-Eval: step: 1790; epoch: 5; accuracy: 0.8291784088445697; loss: 0.4008124; min_loss: 0.3995199; since_best_loss: 1; FastEstimator-Train: step: 1800; loss: 0.2219275; steps/sec: 5.12; FastEstimator-Train: step: 1900; loss: 0.2188505; steps/sec: 5.11; FastEstimator-Train: step: 2000; loss: 0.14373234; steps/sec: 5.53; FastEstimator-Train: step: 2100; loss: 0.20883155; steps/sec: 1.96; FastEstimator-Train: step: 2148; epoch: 6; epoch_time: 100.15 sec; FastEstimator-Eval: step: 2148; epoch: 6; accuracy: 0.8313461955343594; loss: 0.41437832; min_loss: 0.3995199; since_best_loss: 2; FastEstimator-Train: step: 2200; loss: 0.20082837; steps/sec: 5.64; FastEstimator-Train: step: 2300; loss: 0.22870378; steps/sec: 5.65; FastEstimator-Train: step: 2400; loss: 0.28569937; steps/sec: 5.7; FastEstimator-Train: step: 2500; loss: 0.16878708; steps/sec: 5.69; FastEstimator-Train: step: 2506; epoch: 7; epoch_time: 63.07 sec; FastEstimator-Eval: step: 2506; epoch: 7; accuracy: 0.8314762627357468; loss: 0.42922923; min_loss: 0.3995199; since_best_loss: 3; FastEstimator-Train: step: 2600; loss: 0.20338291; steps/sec: 5.77; FastEstimator-Train: step: 2700; loss: 0.17639604; steps/sec: 5.68; FastEstimator-Train: step: 2800; loss: 0.12155069; steps/sec: 5.7; FastEstimator-Train: step: 2864; epoch: 8; epoch_time: 62.75 sec; FastEstimator-Eval: step: 2864; epoch: 8; accuracy: 0.8294818989811402; loss: 0.46396694; min_loss: 0.3995199; since_best_loss: 4; FastEstimator-Train: step: 2900; loss: 0.20103803; steps/sec: 5.34; FastEstimator-Train: step: 3000; loss: 0.10518805; steps/sec: 5.71; FastEstimator-Train: step: 3100; loss: 0.10425654; steps/sec: 5.64; FastEstimator-Train: step: 3200; loss: 0.13740686; steps/sec: 5.5; FastEstimator-Train: step: 3222; epoch: 9; epoch_time: 64.67 sec; FastEstimator-Eval: step: 3222; epoch: 9; accuracy: 0.8254498157381314; loss: 0.5149529; min_loss: 0.3995199; since_best_loss: 5; FastEstimator-Train: step: 3300; loss: 0.080922514; steps/sec: 5.77; FastEstimator-Train: step: 3400; loss: 0.088989146; steps/sec: 5.41; FastEstimator-Train: step: 3500; loss: 0.1620798; steps/sec: 5.3; FastEstimator-Train: step: 3580; epoch: 10; epoch_time: 64.87 sec; FastEstimator-Eval: step: 3580; epoch: 10; accuracy: 0.8214177324951225; loss: 0.5555562; min_loss: 0.3995199; since_best_loss: 6; FastEstimator-Finish: step: 3580; model_lr: 0.001; total_time: 1124.45 sec; ###Markdown Inferencing For inferencing, first we have to load the trained model weights. We previously saved model weights corresponding to our minimum loss, and now we will load the weights using `load_model()`: ###Code model_name = 'model_best_loss.pt' model_path = os.path.join(model_dir, model_name) load_model(model, model_path) ###Output _____no_output_____ ###Markdown Let's get some random sequence and compare the prediction with the ground truth: ###Code selected_idx = np.random.randint(10000) print("Ground truth is: ",eval_data[selected_idx]['y']) ###Output Ground truth is: 1 ###Markdown Create data dictionary for the inference. The `Transform()` function in Pipeline and Network applies all the operations on the given data: ###Code infer_data = {"x":eval_data[selected_idx]['x'], "y":eval_data[selected_idx]['y']} data = pipeline.transform(infer_data, mode="infer") data = network.transform(data, mode="infer") ###Output _____no_output_____ ###Markdown Finally, print the inferencing results. ###Code print("Prediction for the input sequence: ", np.array(data["y_pred"])[0][0]) ###Output Prediction for the input sequence: 0.91389465
Case Study/notebooks/EDA-3.ipynb
###Markdown Exploratory Data Analysis-III Task - Finding the Length of each Sequence and Creating a Length Column - Calculating GC Ratio and Creating GC Column - Finding the % of N and Creating % of N Column- Per Base Sequence Content Basic Questions - Maximum and minimum sequence length?- Returns the maximum and minimum Length with their index. - Maximum and minimum sequence GC Ratio?- Returns the maximum and minimum GC Ratio with their index. - GC distributions. - No. of Gen and bar plot ###Code # library import numpy as np # for linear algebra import pandas as pd # for data mangement import matplotlib.pyplot as plt # for data visualizations import seaborn as sns # advance visualizations # set figure styles plt.rcParams['figure.figsize'] =(10,8) plt.rcParams['font.size'] = 14 sns.set_style('whitegrid') # dask import dask.array as da # faster numpy calculations import dask.dataframe as dd # for faster data management ###Output _____no_output_____ ###Markdown Reading and Exploring Data ###Code # read data df = pd.read_csv('./data/3 Id Desc Gen Seq.csv') # examine first few rows df.head() # columns names df.columns # observations X columns df.shape # basic info df.info() # set index as Id df = df.set_index('Id') df.head() ###Output _____no_output_____ ###Markdown Missing Values ###Code # missing values sns.heatmap(df.isnull(), cmap='viridis'); ###Output _____no_output_____ ###Markdown Data Cleaning ###Code # replace newline or tab character with empty space df.Seq.str.replace("\n", "") df.Seq.str.replace("\t", "") # check length of first seq len(df.Seq.iloc[0]) ###Output _____no_output_____ ###Markdown Task 1: Finding the Length of each Sequences and Creating a Length Column ###Code # find the length L = lambda seq: len(seq) # test L('TGGATTTGTTAGTGATACGAATCGCTTTATAATCATATGTTTCTC') # seqLen apply df['Len'] = df['Seq'].apply(lambda seq: len(seq)) df.head(10) ###Output _____no_output_____ ###Markdown Task 2: Calculating GC Ratio and Creating GC Column GC Usefulness - GC-content (or guanine-cytosine content) is the percentage of nitrogenous bases in a DNA or RNA molecule that are either guanine (G) or cytosine (C)- In polymerase chain reaction (PCR) experiments, the GC-content of short oligonucleotides known as primers is often used to predict their annealing temperature to the template DNA.- A higher GC-content level indicates a relatively higher melting temperature.- DNA with low GC-content is less stable than DNA with high GC-content ###Code def calculateGC(seq): """Returns GC Ratio of a sequence""" return round((seq.count('G') + seq.count('C'))/len(seq) * 100, 2) # test fun calculateGC('TGGATTTGTTAGTGATACGAATCGCTTTATAATCATATGTTTCTCT') # calculateGC apply df['GC'] = df['Seq'].apply(calculateGC) df.head(10) ###Output _____no_output_____ ###Markdown Task 3: Finding the % of N and Creating % of N ColumnThe bases marked by N could not be identified due to the low quality of the DNA sequence. ###Code counts = lambda seq: round((seq.count('N') /len(seq)) * 100,2) # test counts('TGGATTTGTTAGTGATACGANATCGCTTTATAATCATNATGTTTNCTCN') # create a column N df['%N'] = df['Seq'].apply(lambda seq: seq.count('N')) df.head(10) ###Output _____no_output_____ ###Markdown Task 4: Per Base Sequence Content ###Code A = lambda seq: round((seq.count('A') /len(seq)) * 100,2) # test A('TGGATTTGTTAGTGATACGANATCGCTTTATAATCATNATGTTTNCTCN') T = lambda seq: round((seq.count('T') /len(seq)) * 100,2) # test T('TGGATTTGTTAGTGATACGANATCGCTTTATAATCATNATGTTTNCTCN') G = lambda seq: round((seq.count('G') /len(seq)) * 100,2) # test G('TGGATTTGTTAGTGATACGANATCGCTTTATAATCATNATGTTTNCTCN') C = lambda seq: round((seq.count('C') /len(seq)) * 100,2) # test C('TGGATTTGTTAGTGATACGANATCGCTTTATAATCATNATGTTTNCTCN') # create a column N df['%A'] = df['Seq'].apply(lambda seq: round((seq.count('A') /len(seq)) * 100,2)) df.head() # create a column N df['%T'] = df['Seq'].apply(lambda seq: round((seq.count('T') /len(seq)) * 100,2)) df.head() # create a column N df['%G'] = df['Seq'].apply(lambda seq: round((seq.count('G') /len(seq)) * 100,2)) df.head() # create a column N df['%C'] = df['Seq'].apply(lambda seq: round((seq.count('C') /len(seq)) * 100,2)) df.head() plt.plot(df['%A'], 'bo') plt.plot(df['%T'], 'rs', linestyle='--') plt.plot(df['%G'], 'bs') plt.plot(df['%C'], 'bo') plt.xlabel('Base-pair Position') plt.ylabel('% of Bases') plt.legend(['%A', '%T', '%G', '%C']) plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown Question 1: Whta is the maximum and minimum length of sequence? ###Code # length Summary df.Len.describe() # max length df.Len.max() # min length df.Len.min() # avg length df.Len.mean() ###Output _____no_output_____ ###Markdown Question 2: Returns the maximum and minimum length with their index. ###Code # maximum length with index df.loc[df.Len.idxmax()] # minimum length with index df.loc[df.Len.idxmin()] sns.catplot(x='Gen', y='Len', data=df, kind='bar', aspect=3, palette='Set2') ###Output _____no_output_____ ###Markdown Question 3: What is the maximum and minimum GC Ratio of sequence? ###Code # GC Summary df.GC.describe() ###Output _____no_output_____ ###Markdown Question 4: Returns the maximum and minimum GC Ratio with their index. ###Code # returns the maximum GC with index df.loc[df.GC.idxmax()] # returns the minimum GC with index df.loc[df.GC.idxmin()] ###Output _____no_output_____ ###Markdown Question 4: GC distributions ###Code # GC distributions sns.distplot(df['GC']); # GC distributions sns.distplot(df['GC'], kde=False); ###Output _____no_output_____ ###Markdown Question 5: No. of Gen and bar plot ###Code # Gen counts df['Gen'].value_counts() # bar chart df['Gen'].value_counts().plot(kind='bar'); ###Output _____no_output_____
Ensayo 20200208/Lectura datos/Resultado 5.ipynb
###Markdown Título: Visualización de frecuencias fundamental y armónicas de ensayo Descripción Ensayo Masa: 3 Fecha de ensayo: 08/02/2020 Sensor: derecho Señal: sensor óptico o inductivo ###Code # Inicialización %matplotlib inline import numpy as np import matplotlib.pyplot as plt from scipy.signal import find_peaks # Definiciones de funciones def fourier_spectrum( nsamples, data, deltat, logdb, power, rms ): """Given nsamples of real voltage data spaced deltat seconds apart, find the spectrum of the data (its frequency components). If logdb, return in dBV, otherwise linear volts. If power, return the power spectrum, otherwise the amplitude spectrum. If rms, use RMS volts, otherwise use peak-peak volts. Also return the number of frequency samples, the frequency sample spacing and maximum frequency. Note: The results from this agree pretty much with my HP 3582A FFT Spectrum Analyzer, although that has higher dynamic range than the 8 bit scope.""" data_freq = np.fft.rfft(data * np.hanning( nsamples )) nfreqs = data_freq.size data_freq = data_freq / nfreqs ascale = 4 if( rms ): ascale = ascale / ( 2 * np.sqrt(2) ) if( power ): spectrum = ( ascale * absolute(data_freq) )**2 if( logdb ): spectrum = 10.0 * np.log10( spectrum ) else: spectrum = ascale * np.absolute(data_freq) if( logdb ): spectrum = 20.0 * log10( spectrum ) freq_step = 1.0 / (deltat * 2 * nfreqs); max_freq = nfreqs * freq_step return( nfreqs, freq_step, max_freq, spectrum ) ###Output _____no_output_____ ###Markdown Apertura de archivos de ensayosLos archivos abiertos corresponden a la configuración de ensayos planificados. Cada uno de ellos corresponden a la siguiente configuración,* Js11: Banco de sensor inductivo con carga a 1kOhm* Js12: Banco de sensor inductivo configurado a 2kOhm* Js13: Banco de sensor inductivo configurado a 4,7kOhm* Js14: Banco de sensor inductivo configurado a 10kOhmCada conjunto de ensayos corresponden a una masa determinada.Para el caso de este informe se relevan los siguientes archivos,| Nro ensayo | R configuración | Sensor | Masas elegida | Registro ||------|------|------|------|------|| 17 | Js11| izquierdo | 3 | Ensayo s_alim 10 CH...|| 18 | Js12| izquierdo | 3 | Ensayo s_alim 12 CH...|| 19 | Js13| izquierdo | 3 | Ensayo s_alim 14 CH...|| 20 | Js14| izquierdo | 3 | Ensayo s_alim 16 CH...| ###Code # Definición de variables de ensayos fecha = '08/02/2020' rotor = 'rotor número 3' sensor = 'izquierdo' tipo_sensor = 'optico' # Definición de ruta de archivos de ensayos ruta_ensayos = 'Registro osciloscopio' + '/' Js11 = 'Ensayo s_alim 10' Js12 = 'Ensayo s_alim 12' Js13 = 'Ensayo s_alim 14' Js14 = 'Ensayo s_alim 16' canal_1 = 'CH1' canal_2 = 'CH2' extension = '.npz' ensayo_1_1 = ruta_ensayos + Js11 + ' ' + canal_1 + extension ensayo_1_2 = ruta_ensayos + Js11 + ' ' + canal_2 + extension ensayo_2_1 = ruta_ensayos + Js12 + ' ' + canal_1 + extension ensayo_2_2 = ruta_ensayos + Js12 + ' ' + canal_2 + extension ensayo_3_1 = ruta_ensayos + Js13 + ' ' + canal_1 + extension ensayo_3_2 = ruta_ensayos + Js13 + ' ' + canal_2 + extension ensayo_4_1 = ruta_ensayos + Js14 + ' ' + canal_1 + extension ensayo_4_2 = ruta_ensayos + Js14 + ' ' + canal_2 + extension with np.load(ensayo_1_1) as archivo: time_V1_1 = archivo['x'] V1_1 = archivo['y'] with np.load(ensayo_1_2) as archivo: time_V1_2 = archivo['x'] V1_2 = archivo['y'] with np.load(ensayo_2_1) as archivo: time_V2_1 = archivo['x'] V2_1 = archivo['y'] with np.load(ensayo_2_2) as archivo: time_V2_2 = archivo['x'] V2_2 = archivo['y'] with np.load(ensayo_3_1) as archivo: time_V3_1 = archivo['x'] V3_1 = archivo['y'] with np.load(ensayo_3_2) as archivo: time_V3_2 = archivo['x'] V3_2 = archivo['y'] with np.load(ensayo_4_1) as archivo: time_V4_1 = archivo['x'] V4_1 = archivo['y'] with np.load(ensayo_4_2) as archivo: time_V4_2 = archivo['x'] V4_2 = archivo['y'] ###Output _____no_output_____ ###Markdown Descripción y elección de canales de mediciónCada ensayo consta de dos mediciones realizadas con el osciloscopio rigol DS1052Z. El canal 1 representa las mediciones relevadas sobre el circuito óptico, el canal 2 representa las tensión medida sobre el sensor inductivo de la balanceadora.En esta sección se podrá decidir entre una medición y otra. ###Code # Elección entre las dos mediciones 'optica' o 'inductivo' if (tipo_sensor == 'optico'): tiempo_1 = time_V1_1 tiempo_2 = time_V2_1 tiempo_3 = time_V3_1 tiempo_4 = time_V4_1 V1 = V1_1 V2 = V2_1 V3 = V3_1 V4 = V4_1 elif (tipo_sensor == 'inductivo'): tiempo_1 = time_V1_2 tiempo_2 = time_V2_2 tiempo_3 = time_V3_2 tiempo_4 = time_V4_2 V1 = V1_2 V2 = V2_2 V3 = V3_2 V4 = V4_2 ###Output _____no_output_____ ###Markdown Recorte de señales medidasEsta acción se hace necesaria debido a que la adquisición por parte del osciloscopio tiene en sus últimos valores un tramo de datos que no corresponden a la adquisición. ###Code # Recortador de la imagen ini_cut = np.empty(1) ini_cut = 0 fin_cut = np.empty(1) #Definición de cantidad de puntos a recortar desde el final fin_cut = V1.size - 20 V1_cort = V1[ ini_cut: fin_cut] tiempo_1_cort = tiempo_1[ ini_cut: fin_cut ] V2_cort = V2[ ini_cut: fin_cut] tiempo_2_cort = tiempo_2[ ini_cut: fin_cut ] V3_cort = V3[ ini_cut: fin_cut] tiempo_3_cort = tiempo_3[ ini_cut: fin_cut ] V4_cort = V4[ ini_cut: fin_cut] tiempo_4_cort = tiempo_4[ ini_cut: fin_cut ] ###Output _____no_output_____ ###Markdown Creción de variables para cálculo de transformada de FourierEl cálculo de fft de cada una de las señales medida requiere variables como cantidad de muestras y el intervalo temporal entre cada muestra. ###Code ## Creación de variables para función fourier_spectrum # Para V1 nro_muestras_V1 = V1_cort.size deltat_V1 = tiempo_1_cort[1] - tiempo_1_cort[0] #Para V2 nro_muestras_V2 = V2_cort.size deltat_V2 = tiempo_2_cort[1] - tiempo_2_cort[0] # Para V3 nro_muestras_V3 = V3_cort.size deltat_V3 = tiempo_3_cort[1] - tiempo_3_cort[0] # Para V4 nro_muestras_V4 = V4_cort.size deltat_V4 = tiempo_4_cort[1] - tiempo_4_cort[0] ###Output _____no_output_____ ###Markdown Cálculo de transformadas ###Code # Cálculo de transformada de fourier para V1 ( nfreqs_V1, freq_step_V1, max_freq_V1, spectrum_V1 ) = fourier_spectrum( nro_muestras_V1, V1_cort, deltat_V1, False, False, True ) # Presentación de datos principales en consola del espectro de V1 print ("Freq step", freq_step_V1, "Max freq", max_freq_V1, "Freq bins",nfreqs_V1) # Cálcula de transformada de fourier para V2 ( nfreqs_V2, freq_step_V2, max_freq_V2, spectrum_V2 ) = fourier_spectrum( nro_muestras_V2, V2_cort, deltat_V2, False, False, True ) # Presentación de datos principales en consola del espectro de V2 ("Freq step", freq_step_V2, "Max freq", max_freq_V2, "Freq bins", nfreqs_V2) # Presentación de datos principales en consola del espectro de V1 print ("Freq step", freq_step_V2, "Max freq", max_freq_V2, "Freq bins",nfreqs_V2) # Cálculo de transformada de fourier para V3 ( nfreqs_V3, freq_step_V3, max_freq_V3, spectrum_V3 ) = fourier_spectrum( nro_muestras_V3, V3_cort, deltat_V3, False, False, True ) # Presentación de datos principales en consola del espectro de V1 print ("Freq step", freq_step_V3, "Max freq", max_freq_V3, "Freq bins",nfreqs_V3) # Cálculo de transformada de fourier para V1 ( nfreqs_V4, freq_step_V4, max_freq_V4, spectrum_V4 ) = fourier_spectrum( nro_muestras_V4, V4_cort, deltat_V4, False, False, True ) # Presentación de datos principales en consola del espectro de V1 print ("Freq step", freq_step_V4, "Max freq", max_freq_V4, "Freq bins",nfreqs_V4) ###Output Freq step 0.41768639227847015 Max freq 1706.6665988498291 Freq bins 4086 Freq step 0.41768639227847015 Max freq 1706.6665988498291 Freq bins 4086 Freq step 0.41768639227847015 Max freq 1706.6665988498291 Freq bins 4086 Freq step 0.41768639227847015 Max freq 1706.6665988498291 Freq bins 4086 ###Markdown Creación de gráfico temporal de todos los ensayos ###Code fig, axs = plt.subplots(2, 2, figsize=(15,15)) fig.suptitle('Ensayo sobre ' + rotor + ' medido en sensor ' + sensor + ' ' + tipo_sensor + ' fecha ' + fecha ) axs[0,0].plot(tiempo_1_cort, V1_cort) axs[0,0].set_title('Tension ensayo Js11') axs[0,0].grid(True) #axs[0,1].set_xlim( 0, 100 ) axs[0,1].plot( tiempo_2_cort, V2_cort, 'tab:red') axs[0,1].set_title('Tension ensayo Js12') axs[0,1].grid(True) axs[1,0].plot(tiempo_3_cort, V3_cort, 'tab:orange') axs[1,0].set_title('Tension ensayo Js13') axs[1,0].grid(True) #axs[1,1].set_xlim( 0, 100 ) axs[1,1].plot( tiempo_4_cort, V4_cort, 'tab:green') axs[1,1].set_title('Tension ensayo Js14') axs[1,1].grid(True) ###Output _____no_output_____ ###Markdown Creación de gráfico de espectro de mediciones y representación de picos ###Code # Creción de eje de frecuencias para cada gráfico de espectro freqs_V1 = np.arange( 0, max_freq_V1, freq_step_V1 ) freqs_V2 = np.arange( 0, max_freq_V2, freq_step_V2 ) freqs_V3 = np.arange( 0, max_freq_V3, freq_step_V3 ) freqs_V4 = np.arange( 0, max_freq_V4, freq_step_V4 ) # Acondicionamiento de vector de frecuencias creado para evitar problemas si la cantidad de puntos es par o impar freqs_V1 = freqs_V1[0:spectrum_V1.size] freqs_V2 = freqs_V2[0:spectrum_V2.size] freqs_V3 = freqs_V3[0:spectrum_V3.size] freqs_V4 = freqs_V4[0:spectrum_V4.size] # Búsque da picos en espectro con su umbral umbral = 0.008 picos_V1, _ = find_peaks(spectrum_V1, height=umbral) picos_V2, _ = find_peaks(spectrum_V2, height=umbral) picos_V3, _ = find_peaks(spectrum_V3, height=umbral) picos_V4, _ = find_peaks(spectrum_V4, height=umbral) # Representación en subplot de gráficos como vienen e invertidos fig, axs = plt.subplots(2, 2, figsize=(15,15)) fig.suptitle('Espectros de ' + rotor + ' medido en sensor ' + sensor + ' ' + tipo_sensor + ' fecha ' + fecha ) axs[0,0].set_xlim( 0, 100 ) axs[0,0].plot(freqs_V1, spectrum_V1) axs[0,0].plot(freqs_V1[picos_V1], spectrum_V1[picos_V1], "x") axs[0,0].plot(np.ones(spectrum_V1.size)*umbral, "--", color="gray") axs[0,0].set_title('Espectro sensor ' + tipo_sensor + ' Js11') axs[0,0].grid(True) axs[0,1].set_xlim( 0, 100 ) axs[0,1].plot( freqs_V2, spectrum_V2, 'tab:red') axs[0,1].plot(freqs_V2[picos_V2], spectrum_V2[picos_V2], "x") axs[0,1].plot(np.ones(spectrum_V2.size)*umbral, "--", color="gray") axs[0,1].set_title('Espectro sensor ' + tipo_sensor + ' Js12') axs[0,1].grid(True) axs[1,0].set_xlim( 0, 100 ) axs[1,0].plot(freqs_V3, spectrum_V3, 'tab:orange') axs[1,0].plot(freqs_V3[picos_V3], spectrum_V3[picos_V3], "x") axs[1,0].plot(np.ones(spectrum_V3.size)*umbral, "--", color="gray") axs[1,0].set_title('Espectro sensor ' + tipo_sensor + ' Js13') axs[1,0].grid(True) axs[1,1].set_xlim( 0, 100 ) axs[1,1].plot( freqs_V4, spectrum_V4, 'tab:green') axs[1,1].plot(freqs_V4[picos_V4], spectrum_V4[picos_V4], "x") axs[1,1].plot(np.ones(spectrum_V4.size)*umbral, "--", color="gray") axs[1,1].set_title('Espectro sensor ' + tipo_sensor + ' Js14') axs[1,1].grid(True) ###Output _____no_output_____ ###Markdown Comparación de picos de fundamental y armónicosComparación de cada uno de los picos en frecuencia y rms ###Code fig, axs = plt.subplots(1, 2, figsize=(15,4)) fig.suptitle('Picos de espectros en ensayos sobre ' + rotor + ' medido en sensor ' + sensor + ' ' + tipo_sensor + ' fecha ' + fecha ) axs[0].plot(freqs_V1[picos_V1[0]], spectrum_V1[picos_V1[0]], "x", color = "green", label = 'Js11') axs[0].plot(freqs_V2[picos_V2[0]], spectrum_V2[picos_V2[0]], "o", color = "blue", label = 'Js12') axs[0].plot(freqs_V3[picos_V3[0]], spectrum_V3[picos_V3[0]], "s", color = "red", label = 'Js13') axs[0].plot(freqs_V4[picos_V4[0]], spectrum_V4[picos_V4[0]], "^", color = "black", label = 'Js14') axs[0].set_title('Primer pico') axs[0].grid(True) axs[0].legend(loc="upper right") axs[1].plot(freqs_V1[picos_V1[1]], spectrum_V1[picos_V1[1]], "x", color = "green", label = 'Js11') axs[1].plot(freqs_V2[picos_V2[1]], spectrum_V2[picos_V2[1]], "o", color = "blue", label = 'Js12') axs[1].plot(freqs_V3[picos_V3[1]], spectrum_V3[picos_V3[1]], "s", color = "red", label = 'Js13') axs[1].plot(freqs_V4[picos_V4[1]], spectrum_V4[picos_V4[1]], "^", color = "black", label = 'Js14') axs[1].set_title('Segundo pico') axs[1].grid(True) axs[1].legend(loc="upper right") ###Output _____no_output_____ ###Markdown Valores de picos ###Code print('Frecuencia 1er pico Js11', np.around(freqs_V1[picos_V1[0]], decimals = 3), '\nAmplitud 1er pico Js11', np.around(spectrum_V1[picos_V1[0]], decimals = 4 ), '\n') print('Frecuencia 2do pico Js11', np.around(freqs_V1[picos_V1[1]], decimals = 3), '\nAmplitud 2do pico Js11', np.around(spectrum_V1[picos_V1[1]], decimals = 4 ), '\n') #print('Frecuencia 3er pico Js11', np.around(freqs_V1[picos_V1[2]], decimals = 3), '\nAmplitud 3er pico Js11', np.around(spectrum_V1[picos_V1[2]], decimals = 4 ), '\n') print('Frecuencia 1er pico Js12', np.around(freqs_V2[picos_V2[0]], decimals = 3), '\nAmplitud 1er pico Js12', np.around(spectrum_V2[picos_V2[0]], decimals = 4 ), '\n') print('Frecuencia 2do pico Js12', np.around(freqs_V2[picos_V2[1]], decimals = 3), '\nAmplitud 2do pico Js12', np.around(spectrum_V2[picos_V2[1]], decimals = 4 ), '\n') #print('Frecuencia 3er pico Js12', np.around(freqs_V2[picos_V2[2]], decimals = 3), '\nAmplitud 3er pico Js12', np.around(spectrum_V2[picos_V2[2]], decimals = 4 ), '\n') print('Frecuencia 1er pico Js13', np.around(freqs_V3[picos_V3[0]], decimals = 3), '\nAmplitud 1er pico Js13', np.around(spectrum_V3[picos_V3[0]], decimals = 4 ), '\n') print('Frecuencia 2do pico Js13', np.around(freqs_V3[picos_V3[1]], decimals = 3), '\nAmplitud 2do pico Js13', np.around(spectrum_V3[picos_V3[1]], decimals = 4 ), '\n') #print('Frecuencia 3er pico Js13', np.around(freqs_V3[picos_V3[2]], decimals = 3), '\nAmplitud 3er pico Js13', np.around(spectrum_V3[picos_V3[2]], decimals = 4 ), '\n') print('Frecuencia 1er pico Js14', np.around(freqs_V4[picos_V4[0]], decimals = 3), '\nAmplitud 1er pico Js14', np.around(spectrum_V4[picos_V4[0]], decimals = 4 ), '\n') print('Frecuencia 2do pico Js14', np.around(freqs_V4[picos_V4[1]], decimals = 3), '\nAmplitud 2do pico Js14', np.around(spectrum_V4[picos_V4[1]], decimals = 4 ), '\n') #print('Frecuencia 3er pico Js14', np.around(freqs_V4[picos_V4[2]], decimals = 3), '\nAmplitud 3er pico Js14', np.around(spectrum_V4[picos_V4[2]], decimals = 4 ), '\n') ###Output Frecuencia 1er pico Js11 10.024 Amplitud 1er pico Js11 0.0824 Frecuencia 2do pico Js11 50.122 Amplitud 2do pico Js11 0.0173 Frecuencia 1er pico Js12 10.024 Amplitud 1er pico Js12 0.0827 Frecuencia 2do pico Js12 50.122 Amplitud 2do pico Js12 0.0173 Frecuencia 1er pico Js13 10.442 Amplitud 1er pico Js13 0.077 Frecuencia 2do pico Js13 50.122 Amplitud 2do pico Js13 0.0175 Frecuencia 1er pico Js14 10.024 Amplitud 1er pico Js14 0.0873 Frecuencia 2do pico Js14 50.122 Amplitud 2do pico Js14 0.0176
notebooks/EDI metadata.ipynb
###Markdown EDI metadata ###Code from pprint import pprint ###Output _____no_output_____ ###Markdown When loading data from an EDI file, all the information from the original file will be included in ``Site['datasource']`` ###Code import mtwaffle edi = mtwaffle.read_edi('bwa2890.edi') type(edi) pprint(edi['datasource']) ###Output {'EDI': {'DEFINEMEAS': {'MAXCHAN': 6, 'MAXMEAS': 99999, 'MAXRUN': 999, 'REFEASTING': nan, 'REFELEV': 0, 'REFLAT': -29.26535489, 'REFLONG': 136.6646507, 'REFNORTHING': nan, 'REFTYPE': 'CART', 'REFX': nan, 'REFY': nan, 'REFZONE': '53J', 'UNITS': 'M'}, 'FREQ': [0.030518, 0.045776, 0.061035, 0.24414, 0.48828, 0.73242, 1.4648, 1.9531, 2.9297, 3.9062, 5.8594, 7.8125, 11.719, 15.625, 23.438, 31.25, 46.875, 62.5, 93.75, 125.0], 'HEAD': {'DATAID': 'bwa2890', 'EASTING': nan, 'ELEV': 0, 'LAT': -29.26535489, 'LONG': 136.6646507, 'NORTHING': nan, 'ZONE': '53J'}, 'MTSECT': {'EX': 1003.001, 'EY': 1004.001, 'HX': 1001.001, 'HY': 1002.001, 'NFREQ': 20, 'RX': 1005.001, 'RY': 1006.001, 'SECTID': 114}, 'ZXX.SDEV': array([ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]), 'ZXX.VAR': [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 'ZXXI': [-0.79361, -0.94345, -0.48594, 0.068462, -0.43625, -0.37074, -0.50657, -0.48218, -0.37645, -0.29186, -0.20842, 0.27786, 0.34704, 0.63522, 0.95935, 1.2004, 1.2771, 1.2227, 0.9778, 0.2749], 'ZXXR': [-2.6522, -3.4179, -3.4198, -3.1276, -3.6339, -3.6531, -3.9647, -4.0128, -4.2103, -4.3636, -4.6565, -4.7214, -4.7217, -4.4021, -4.2256, -3.8702, -3.3716, -2.9752, -2.4059, -2.3529], 'ZXY.SDEV': array([ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]), 'ZXY.VAR': [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 'ZXYI': [3.114, 3.07, 3.0008, 3.0562, 2.6207, 2.2388, 2.6642, 2.7633, 3.142, 3.3817, 3.8248, 4.027, 4.3743, 4.9527, 5.6541, 6.362, 7.5711, 8.9053, 10.924, 14.68], 'ZXYR': [3.8817, 5.6012, 7.1878, 10.282, 11.353, 11.625, 12.421, 12.714, 13.439, 14.214, 15.307, 15.653, 17.061, 17.162, 18.218, 19.14, 20.221, 21.311, 23.019, 24.179], 'ZYX.SDEV': array([ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]), 'ZYX.VAR': [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 'ZYXI': [-2.891, -3.179, -3.1703, -2.9489, -2.7661, -2.7694, -3.3196, -3.5342, -4.0317, -4.1105, -4.3562, -4.4124, -4.5648, -5.0349, -5.6596, -6.2459, -7.5514, -8.9957, -11.534, -15.141], 'ZYXR': [-4.3553, -5.7065, -6.8215, -9.2003, -10.217, -10.625, -11.681, -12.23, -13.42, -14.345, -15.982, -16.426, -17.753, -17.462, -18.556, -19.448, -20.34, -21.286, -22.896, -23.807], 'ZYY.SDEV': array([ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]), 'ZYY.VAR': [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 'ZYYI': [0.59825, 0.7519, 0.91463, 0.27891, 0.33967, 0.41102, 0.10122, -0.011621, -0.1323, -0.31541, -0.49362, -0.099365, -1.124, -0.87051, -1.195, -1.3723, -1.6244, -1.7395, -1.7048, -1.7843], 'ZYYR': [2.3661, 2.6531, 2.2656, 2.9761, 3.2388, 3.3357, 3.7179, 3.6997, 3.7148, 3.6293, 3.7238, 3.6658, 3.5965, 3.2334, 3.0066, 2.6907, 2.2263, 1.8311, 1.2392, 0.93289]}}
coursera/ml_yandex/course4/course4week4/check/first.ipynb
###Markdown Для выполнения этого задания вам понадобятся данные о кредитных историях клиентов одного из банков. Поля в предоставляемых данных имеют следующий смысл:* LIMIT_BAL: размер кредитного лимита (в том числе и на семью клиента)* SEX: пол клиента (1 = мужской, 2 = женский )* EDUCATION: образование (0 = доктор, 1 = магистр; 2 = бакалавр; 3 = выпускник школы; 4 = начальное образование; 5= прочее; 6 = нет данных ).* MARRIAGE: (0 = отказываюсь отвечать; 1 = замужем/женат; 2 = холост; 3 = нет данных).* AGE: возраст в годах* PAY_0 - PAY_6 : История прошлых платежей по кредиту. PAY_6 - платеж в апреле, ... Pay_0 - платеж в сентябре. Платеж = (0 = исправный платеж, 1=задержка в один месяц, 2=задержка в 2 месяца ...)* BILL_AMT1 - BILL_AMT6: задолженность, BILL_AMT6 - на апрель, BILL_AMT1 - на сентябрь* PAY_AMT1 - PAY_AMT6: сумма уплаченная в PAY_AMT6 - апреле, ..., PAY_AMT1 - сентябре* default - индикатор невозврата денежных средств Задание 1 Размер кредитного лимита (LIMIT_BAL). В двух группах, тех людей, кто вернул кредит (default = 0) и тех, кто его не вернул (default = 1) проверьте гипотезы:* a) о равенстве медианных значений кредитного лимита с помощью подходящей интервальной оценки * b) о равенстве распределений с помощью одного из подходящих непараметрических критериев проверки равенства средних. Значимы ли полученные результаты с практической точки зрения ? ###Code %matplotlib inline import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns plt.style.use('ggplot') import scipy from scipy import stats raw_data = pd.read_csv('credit_card_default_analysis.csv') raw_data.head() print 'Размер датасета: {}'.format(raw_data.shape) d0_group = raw_data[raw_data['default']==0] d1_group = raw_data[raw_data['default']==1] fig, ax = plt.subplots(1, 2, figsize = (15, 5), sharey = True) data = [d0_group, d1_group] title = [u'Вернувшие кредит (default=0)',u'Невернувшие кредит (default=1)'] for i in range(2): ax[i].hist(data[i].LIMIT_BAL.values, bins = 20,ec = 'black'); ax[i].axis([0, 1e6, 0, 6000]) ax[i].set_xlabel(u'Размер кредитного лимита') ax[i].set_ylabel(u'Число людей') ax[i].set_title(title[i]) ###Output _____no_output_____ ###Markdown **а) Найдем медианные значения распределений:** * Гипотеза H0 - медианы равны* Гипотеза Н1 - медианы различны ###Code print 'Медианное значение кредитного лимита для тех, кто вернул кредит: {}'.format(d0_group.LIMIT_BAL.median()) print 'Медианное значение кредитного лимита для тех, кто не вернул кредит: {}'.format(d1_group.LIMIT_BAL.median()) ###Output Медианное значение кредитного лимита для тех, кто вернул кредит: 150000.0 Медианное значение кредитного лимита для тех, кто не вернул кредит: 90000.0 ###Markdown Видно, что медианы различаются. Проверим доверительные интервалы распределений с помощью бутстрепа ###Code def get_bootstrap_samples(data, n_samples): indicies = np.random.randint(0, len(data), (n_samples, len(data))) samples = data[indicies] return samples def get_stat_intervals(stat, alpha): boundaries = np.percentile(stat, [100*alpha/2., 100*(1-alpha/2.)]) return boundaries np.random.seed(0) d0_median_scores = np.median(get_bootstrap_samples(d0_group.LIMIT_BAL.values, 1000), axis=0) d1_median_scores = np.median(get_bootstrap_samples(d1_group.LIMIT_BAL.values, 1000), axis=0) delta_median_scores = map(lambda x: x[1] - x[0], zip(d0_median_scores, d1_median_scores)) print "95% доверительный интервал для группы вернувших кредит: {}".format(get_stat_intervals(d0_median_scores, 0.05)) print "95% доверительный интервал для группы не вернувших кредит: {}".format(get_stat_intervals(d1_median_scores, 0.05)) print '95% доверительный интервал для разности групп: {}'.format(get_stat_intervals(delta_median_scores, 0.05)) ###Output 95% доверительный интервал для группы вернувших кредит: [145000. 160000.] 95% доверительный интервал для группы не вернувших кредит: [ 80000. 100000.] 95% доверительный интервал для разности групп: [-80000. -50000.] ###Markdown Интервалы не пересекаются, интрервал разности находится левее нуля. Различие статистически значимо. Гипотеза Н0 отвергается Оценим практическую значимость ###Code Fc = d0_group.LIMIT_BAL.median()/d1_group.LIMIT_BAL.median() print 'Fold change: ', np.round(Fc, 3) ###Output Fold change: 1.667 ###Markdown Разница практически значима **б) Проверим равенство распределений с помощью критерия Манна - Уитни** * Гипотеза H0 - распределения одинаковы* Гипотеза Н1 - распределения отличаются на величину сдвига ###Code stats.mannwhitneyu(d0_group.LIMIT_BAL.values, d1_group.LIMIT_BAL.values) ###Output _____no_output_____ ###Markdown На уровне значимости 0.05 гипотеза H0 уверенно отвергается Задание 2 Пол (SEX): Проверьте гипотезу о том, что гендерный состав группы людей вернувших и не вернувших кредит отличается. Хорошо, если вы предоставите несколько различных решений этой задачи (с помощью доверительного интервала и подходящего статистического критерия) ###Code fig, ax = plt.subplots(1, 2, figsize = (15, 5), sharey = True) data = [d0_group, d1_group] title = [u'Вернувшие кредит (default=0)',u'Невернувшие кредит (default=1)'] for i in range(2): ax[i].hist(data[i].SEX.values, bins = 20,ec = 'black'); #ax[i].axis([0, 1e6, 0, 6000]) ax[i].set_xlabel(u'Пол респодентов') ax[i].set_ylabel(u'Число людей') ax[i].set_title(title[i]) ###Output _____no_output_____ ###Markdown * Гипотеза Н0 - гендерный состав в выборках не отличается* Гипотеза Н1 - гендерный состав различается Построим доверительный интервал и проверим гипотезу с помощью Z-критерия для доли двух независимых выборок ###Code def proportions_diff_confint_ind(sample1, sample2, alpha = 0.05): z = scipy.stats.norm.ppf(1 - alpha / 2.) p1 = float(sum(sample1)) / len(sample1) p2 = float(sum(sample2)) / len(sample2) left_boundary = (p1 - p2) - z * np.sqrt(p1 * (1 - p1)/ len(sample1) + p2 * (1 - p2)/ len(sample2)) right_boundary = (p1 - p2) + z * np.sqrt(p1 * (1 - p1)/ len(sample1) + p2 * (1 - p2)/ len(sample2)) return (left_boundary, right_boundary) def proportions_diff_z_stat_ind(sample1, sample2): n1 = len(sample1) n2 = len(sample2) p1 = float(sum(sample1)) / n1 p2 = float(sum(sample2)) / n2 P = float(p1*n1 + p2*n2) / (n1 + n2) return (p1 - p2) / np.sqrt(P * (1 - P) * (1. / n1 + 1. / n2)) def proportions_diff_z_test(z_stat, alternative = 'two-sided'): if alternative not in ('two-sided', 'less', 'greater'): raise ValueError("alternative not recognized\n" "should be 'two-sided', 'less' or 'greater'") if alternative == 'two-sided': return 2 * (1 - scipy.stats.norm.cdf(np.abs(z_stat))) if alternative == 'less': return scipy.stats.norm.cdf(z_stat) if alternative == 'greater': return 1 - scipy.stats.norm.cdf(z_stat) ###Output _____no_output_____ ###Markdown Закодируем доли для использования в функциях ###Code d0_zeros = np.zeros(len(d0_group[d0_group['SEX']==1].SEX.values)) d0_ones = np.ones(len(d0_group[d0_group['SEX']==2].SEX.values)) d1_zeros = np.zeros(len(d1_group[d1_group['SEX']==1].SEX.values)) d1_ones = np.ones(len(d1_group[d1_group['SEX']==2].SEX.values)) d0_group_sex_binary = np.concatenate([d0_zeros,d0_ones]) d1_group_sex_binary = np.concatenate([d1_zeros,d1_ones]) print len(d0_group_sex_binary), sum(d0_group_sex_binary) print "95%% доверительный интервал: [%f, %f]" %\ proportions_diff_confint_ind(d0_group_sex_binary, d1_group_sex_binary ) ###Output 95% доверительный интервал: [0.033635, 0.060548] ###Markdown Доверительный интервал не содержит нуля, гендерный состав отличается ###Code print "p-value: %f" % proportions_diff_z_test(proportions_diff_z_stat_ind(d0_group_sex_binary, d1_group_sex_binary)) ###Output p-value: 0.000000 ###Markdown Гипотеза Н0 уверенно отвергается Задание 3 Образование (EDUCATION): Проверьте гипотезу о том, что образование не влияет на то, вернет ли человек долг. Предложите способ наглядного представления разницы в ожидаемых и наблюдаемых значениях количества человек вернувших и не вернувших долг. Например, составьте таблицу сопряженности "образование" на "возврат долга", где значением ячейки была бы разность между наблюдаемым и ожидаемым количеством человек. Как бы вы предложили модифицировать таблицу так, чтобы привести значения ячеек к одному масштабу не потеряв в интерпретируемости ? Наличие какого образования является наилучшим индикатором того, что человек отдаст долг ? наоборт, не отдаст долг ? ###Code fig, ax = plt.subplots(1, 2, figsize = (15, 5), sharey = True) data = [d0_group, d1_group] title = [u'Вернувшие кредит (default=0)',u'Невернувшие кредит (default=1)'] for i in range(2): ax[i].hist(data[i].EDUCATION.values, bins = 20,ec = 'black'); #ax[i].axis([0, 1e6, 0, 6000]) ax[i].set_xlabel(u'Уровень образования') ax[i].set_ylabel(u'Число людей') ax[i].set_title(title[i]) ###Output _____no_output_____ ###Markdown Проверим взаимосвзяь данных с помощью критерия хи квадрат для критериальных признаков * Гипотеза Н0 - уровень образование не влияет на вероятность возврата долга* Гипотеза Н1 - уровень образования влияет на это ###Code table_edu = raw_data.pivot_table(index='default', values="LIMIT_BAL", columns='EDUCATION', aggfunc = len, fill_value=0) table_edu.head() # stats.chi2_contingency(table_edu.values) print 'Значение уровня значимости: ', stats.chi2_contingency(table_edu.values)[1] ###Output Значение уровня значимости: 8.825862457577375e-08 ###Markdown Гипотеза H0 отвергается, влияние есть Отобразим диаграмму ожидания/реальности при возврате долга ###Code table_delta = table_edu.values - stats.chi2_contingency(table_edu.values)[3] fig, ax = plt.subplots(1, 2, figsize = (15, 5), sharey = True) data = [table_delta[0], table_delta[1]] label = ['0', '1', '2', '3', '4', '5', '6'] title = [u'Вернувшие кредит (default=0)',u'Невернувшие кредит (default=1)'] for i in range(2): ax[i].bar(label, data[i], ec = 'black'); #ax[i].axis([0, 1e6, 0, 6000]) ax[i].set_xlabel(u'Уровень образования') ax[i].set_ylabel(u'Величина отклонения') ax[i].set_title(title[i]) ###Output _____no_output_____ ###Markdown Масштабируем признаки ###Code data_edu_scale = (table_edu.loc[0] - table_edu.loc[1])/(table_edu.loc[0]+table_edu.loc[1]) data_edu_scale.plot.bar(figsize = (15, 5)) plt.title(u'Соотношение кредитных выплат'); ###Output _____no_output_____ ###Markdown Видно, что * хуже всего кредиты возвращают группы 2 и 3: выпускник и начальное образование* лучше всего кредиты возвращают респонденты из группы 0 - доктора наук Задание 4 Семейное положение (MARRIAGE): Проверьте, как связан семейный статус с индикатором дефолта: нужно предложить меру, по которой можно измерить возможную связь этих переменных и посчитать ее значение. ###Code fig, ax = plt.subplots(1, 2, figsize = (15, 5), sharey = True) data = [d0_group, d1_group] title = [u'Вернувшие кредит (default=0)',u'Невернувшие кредит (default=1)'] for i in range(2): ax[i].hist(data[i].MARRIAGE.values, bins = 20,ec = 'black'); #ax[i].axis([0, 1e6, 0, 6000]) ax[i].set_xlabel(u'Семейный статус') ax[i].set_ylabel(u'Число людей') ax[i].set_title(title[i]) ###Output _____no_output_____ ###Markdown * гипотеза Н0 - данные связаны между собой* гипотеза Н1 - данные не связаны Оценим значимость взаимосвязи с помощью критерия хи-квадрат обобщенного на случай критериальных признаков Подготовка матрицы сопряженности: ###Code table_mar = raw_data.pivot_table(index='default', values="LIMIT_BAL", columns='MARRIAGE', aggfunc = len, fill_value=0) table_mar.head() ###Output _____no_output_____ ###Markdown Вычислим V коэфициент Крамера ###Code def cramers_stat(confusion_matrix): chi2 = stats.chi2_contingency(confusion_matrix)[0] n = confusion_matrix.sum() return np.sqrt(chi2 / (n*(min(confusion_matrix.shape)-1))) print 'Значение V коэффициента Крамера: ', cramers_stat(table_mar.values) ###Output Значение V коэффициента Крамера: 0.034478203662766466 ###Markdown Коэффициент близок к нулю, данные слабо коррелируют друг с другом ###Code print 'Значение уровня значимости: ', stats.chi2_contingency(table_mar)[1] ###Output Значение уровня значимости: 8.825862457577375e-08 ###Markdown Гипотеза H0 отвергается, данные не связаны Задание 5 Возраст (AGE): Относительно двух групп людей вернувших и не вернувших кредит проверьте следующие гипотезы: a) о равенстве медианных значений возрастов людей b) о равенстве распределений с помощью одного из подходящих непараметрических критериев проверки равенства средних. Значимы ли полученные результаты с практической точки зрения ? ###Code fig, ax = plt.subplots(1, 2, figsize = (15, 5), sharey = True) data = [d0_group, d1_group] title = [u'Вернувшие кредит (default=0)',u'Невернувшие кредит (default=1)'] for i in range(2): ax[i].hist(data[i].AGE.values, bins = 20,ec = 'black'); #ax[i].axis([0, 1e6, 0, 6000]) ax[i].set_xlabel(u'Возраст') ax[i].set_ylabel(u'Число людей') ax[i].set_title(title[i]) ###Output _____no_output_____ ###Markdown **а) Найдем медианные значения распределений:** * Гипотеза H0 - медианы распределений равны* Гипотеза Н1 - медианы распределений различны ###Code print 'Медианное значение возраста тех, кто вернул кредит: {}'.format(d0_group.AGE.median()) print 'Медианное значение возраста тех, кто не вернул кредит: {}'.format(d1_group.AGE.median()) ###Output Медианное значение возраста тех, кто вернул кредит: 34.0 Медианное значение возраста тех, кто не вернул кредит: 34.0 ###Markdown Медианы равны. Построим доверительные интревалы с помощью бутстрепа: ###Code np.random.seed(0) d0_median_scores = np.median(get_bootstrap_samples(d0_group.AGE.values, 1000), axis=0) d1_median_scores = np.median(get_bootstrap_samples(d1_group.AGE.values, 1000), axis=0) delta_median_scores = map(lambda x: x[1] - x[0], zip(d0_median_scores, d1_median_scores)) print "95% доверительный интервал для группы вернувших кредит: {}".format(get_stat_intervals(d0_median_scores, 0.05)) print "95% доверительный интервал для группы не вернувших кредит: {}".format(get_stat_intervals(d1_median_scores, 0.05)) print '95% доверительный интервал для разности групп: {}'.format(get_stat_intervals(delta_median_scores, 0.05)) ###Output 95% доверительный интервал для группы вернувших кредит: [33. 35.] 95% доверительный интервал для группы не вернувших кредит: [33. 35.] 95% доверительный интервал для разности групп: [-1. 2.] ###Markdown 0 попадает в доверительный интревал разности, отвергунть гипотезу Н0 нельзя **б) Проверим равенство распределений с помощью критерия Манна - Уитни** * Гипотеза H0 - распределения одинаковы* Гипотеза Н1 - распределения отличаются на величину сдвига ###Code stats.mannwhitneyu(d0_group.AGE.values, d1_group.AGE.values) ###Output _____no_output_____
Pengolahan_Audio.ipynb
###Markdown ###Code from google.colab import drive drive.mount('/content/drive') import sys sys.path.append('/content/drive/My Drive/Colab Notebooks/Latihan/') import numpy as np import matplotlib.pyplot as plt from scipy.io.wavfile import read, write from IPython.display import Audio from numpy.fft import fft, ifft %matplotlib inline Fs, data = read('/content/drive/My Drive/Colab Notebooks/Latihan/MIRA1.wav') #data = data[:,0] print("Sampling Frequency adalah", Fs) Audio(data, rate=Fs) plt.figure() plt.plot(data) plt.xlabel('Sample Index') plt.ylabel('Amplitude') plt.title('Waveform pada Audio') plt.show() write('/content/drive/My Drive/Colab Notebooks/Latihan/output.wav', Fs, data) ###Output _____no_output_____
03B_Layers_API.ipynb
###Markdown TensorFlow Tutorial 03-B Layers APIby [Magnus Erik Hvass Pedersen](http://www.hvass-labs.org/)/ [GitHub](https://github.com/Hvass-Labs/TensorFlow-Tutorials) / [Videos on YouTube](https://www.youtube.com/playlist?list=PL9Hr9sNUjfsmEu1ZniY0XpHSzl5uihcXZ) WARNING!**The Layers API was intended to be a basic builder API for creating Neural Networks in TensorFlow, but the Layers API was never fully completed. Although it still works in TensorFlow v. 1.9, it seems quite possible that it may be deprecated in the future. It is recommended that you use the more complete _Keras API_ instead, see Tutorial 03-C.** IntroductionIt is important to use a builder API when constructing Neural Networks in TensorFlow because it makes it easier to implement and modify the source-code. This also lowers the risk of bugs.Many of the other tutorials used the TensorFlow builder API called PrettyTensor for easy construction of Neural Networks. But there are several other builder APIs available for TensorFlow. PrettyTensor was used in these tutorials, because at the time in mid-2016, PrettyTensor was the most complete and polished builder API available for TensorFlow. But PrettyTensor is only developed by a single person working at Google and although it has some unique and elegant features, it is possible that it may become deprecated in the future.This tutorial is about a small builder API that has recently been added to TensorFlow version 1.1. It is simply called *Layers* or the *Layers API* or by its Python name `tf.layers`. This builder API is automatically installed as part of TensorFlow, so you no longer have to install a separate Python package as was needed with PrettyTensor.This tutorial is very similar to Tutorial 03 on PrettyTensor and shows how to implement the same Convolutional Neural Network using the Layers API. It is recommended that you are familiar with Tutorial 02 on Convolutional Neural Networks. Flowchart The following chart shows roughly how the data flows in the Convolutional Neural Network that is implemented below. See Tutorial 02 for a more detailed description of convolution. ![Flowchart](images/02_network_flowchart.png) The input image is processed in the first convolutional layer using the filter-weights. This results in 16 new images, one for each filter in the convolutional layer. The images are also down-sampled using max-pooling so the image resolution is decreased from 28x28 to 14x14.These 16 smaller images are then processed in the second convolutional layer. We need filter-weights for each of these 16 channels, and we need filter-weights for each output channel of this layer. There are 36 output channels so there are a total of 16 x 36 = 576 filters in the second convolutional layer. The resulting images are also down-sampled using max-pooling to 7x7 pixels.The output of the second convolutional layer is 36 images of 7x7 pixels each. These are then flattened to a single vector of length 7 x 7 x 36 = 1764, which is used as the input to a fully-connected layer with 128 neurons (or elements). This feeds into another fully-connected layer with 10 neurons, one for each of the classes, which is used to determine the class of the image, that is, which number is depicted in the image.The convolutional filters are initially chosen at random, so the classification is done randomly. The error between the predicted and true class of the input image is measured as the so-called cross-entropy. The optimizer then automatically propagates this error back through the Convolutional Network using the chain-rule of differentiation and updates the filter-weights so as to improve the classification error. This is done iteratively thousands of times until the classification error is sufficiently low.These particular filter-weights and intermediate images are the results of one optimization run and may look different if you re-run this Notebook.Note that the computation in TensorFlow is actually done on a batch of images instead of a single image, which makes the computation more efficient. This means the flowchart actually has one more data-dimension when implemented in TensorFlow. Imports ###Code %matplotlib inline import matplotlib.pyplot as plt import tensorflow as tf import numpy as np from sklearn.metrics import confusion_matrix import math ###Output _____no_output_____ ###Markdown This was developed using Python 3.6 (Anaconda) and TensorFlow version: ###Code tf.__version__ ###Output _____no_output_____ ###Markdown Load Data The MNIST data-set is about 12 MB and will be downloaded automatically if it is not located in the given path. ###Code from tensorflow.examples.tutorials.mnist import input_data data = input_data.read_data_sets('data/MNIST/', one_hot=True) ###Output Extracting data/MNIST/train-images-idx3-ubyte.gz Extracting data/MNIST/train-labels-idx1-ubyte.gz Extracting data/MNIST/t10k-images-idx3-ubyte.gz Extracting data/MNIST/t10k-labels-idx1-ubyte.gz ###Markdown The MNIST data-set has now been loaded and consists of 70,000 images and associated labels (i.e. classifications of the images). The data-set is split into 3 mutually exclusive sub-sets. We will only use the training and test-sets in this tutorial. ###Code print("Size of:") print("- Training-set:\t\t{}".format(len(data.train.labels))) print("- Test-set:\t\t{}".format(len(data.test.labels))) print("- Validation-set:\t{}".format(len(data.validation.labels))) ###Output Size of: - Training-set: 55000 - Test-set: 10000 - Validation-set: 5000 ###Markdown The class-labels are One-Hot encoded, which means that each label is a vector with 10 elements, all of which are zero except for one element. The index of this one element is the class-number, that is, the digit shown in the associated image. We also need the class-numbers as integers for the test-set, so we calculate it now. ###Code data.test.cls = np.argmax(data.test.labels, axis=1) ###Output _____no_output_____ ###Markdown Data Dimensions The data dimensions are used in several places in the source-code below. They are defined once so we can use these variables instead of numbers throughout the source-code below. ###Code # We know that MNIST images are 28 pixels in each dimension. img_size = 28 # Images are stored in one-dimensional arrays of this length. img_size_flat = img_size * img_size # Tuple with height and width of images used to reshape arrays. img_shape = (img_size, img_size) # Number of colour channels for the images: 1 channel for gray-scale. num_channels = 1 # Number of classes, one class for each of 10 digits. num_classes = 10 ###Output _____no_output_____ ###Markdown Helper-function for plotting images Function used to plot 9 images in a 3x3 grid, and writing the true and predicted classes below each image. ###Code def plot_images(images, cls_true, cls_pred=None): assert len(images) == len(cls_true) == 9 # Create figure with 3x3 sub-plots. fig, axes = plt.subplots(3, 3) fig.subplots_adjust(hspace=0.3, wspace=0.3) for i, ax in enumerate(axes.flat): # Plot image. ax.imshow(images[i].reshape(img_shape), cmap='binary') # Show true and predicted classes. if cls_pred is None: xlabel = "True: {0}".format(cls_true[i]) else: xlabel = "True: {0}, Pred: {1}".format(cls_true[i], cls_pred[i]) # Show the classes as the label on the x-axis. ax.set_xlabel(xlabel) # Remove ticks from the plot. ax.set_xticks([]) ax.set_yticks([]) # Ensure the plot is shown correctly with multiple plots # in a single Notebook cell. plt.show() ###Output _____no_output_____ ###Markdown Plot a few images to see if data is correct ###Code # Get the first images from the test-set. images = data.test.images[0:9] # Get the true classes for those images. cls_true = data.test.cls[0:9] # Plot the images and labels using our helper-function above. plot_images(images=images, cls_true=cls_true) ###Output _____no_output_____ ###Markdown TensorFlow GraphThe entire purpose of TensorFlow is to have a so-called computational graph that can be executed much more efficiently than if the same calculations were to be performed directly in Python. TensorFlow can be more efficient than NumPy because TensorFlow knows the entire computation graph that must be executed, while NumPy only knows the computation of a single mathematical operation at a time.TensorFlow can also automatically calculate the gradients that are needed to optimize the variables of the graph so as to make the model perform better. This is because the graph is a combination of simple mathematical expressions so the gradient of the entire graph can be calculated using the chain-rule for derivatives.TensorFlow can also take advantage of multi-core CPUs as well as GPUs - and Google has even built special chips just for TensorFlow which are called TPUs (Tensor Processing Units) and are even faster than GPUs.A TensorFlow graph consists of the following parts which will be detailed below:* Placeholder variables used for inputting data to the graph.* Variables that are going to be optimized so as to make the convolutional network perform better.* The mathematical formulas for the convolutional neural network.* A so-called cost-measure or loss-function that can be used to guide the optimization of the variables.* An optimization method which updates the variables.In addition, the TensorFlow graph may also contain various debugging statements e.g. for logging data to be displayed using TensorBoard, which is not covered in this tutorial. Placeholder variables Placeholder variables serve as the input to the TensorFlow computational graph that we may change each time we execute the graph. We call this feeding the placeholder variables and it is demonstrated further below.First we define the placeholder variable for the input images. This allows us to change the images that are input to the TensorFlow graph. This is a so-called tensor, which just means that it is a multi-dimensional array. The data-type is set to `float32` and the shape is set to `[None, img_size_flat]`, where `None` means that the tensor may hold an arbitrary number of images with each image being a vector of length `img_size_flat`. ###Code x = tf.placeholder(tf.float32, shape=[None, img_size_flat], name='x') ###Output _____no_output_____ ###Markdown The convolutional layers expect `x` to be encoded as a 4-dim tensor so we have to reshape it so its shape is instead `[num_images, img_height, img_width, num_channels]`. Note that `img_height == img_width == img_size` and `num_images` can be inferred automatically by using -1 for the size of the first dimension. So the reshape operation is: ###Code x_image = tf.reshape(x, [-1, img_size, img_size, num_channels]) ###Output _____no_output_____ ###Markdown Next we have the placeholder variable for the true labels associated with the images that were input in the placeholder variable `x`. The shape of this placeholder variable is `[None, num_classes]` which means it may hold an arbitrary number of labels and each label is a vector of length `num_classes` which is 10 in this case. ###Code y_true = tf.placeholder(tf.float32, shape=[None, num_classes], name='y_true') ###Output _____no_output_____ ###Markdown We could also have a placeholder variable for the class-number, but we will instead calculate it using argmax. Note that this is a TensorFlow operator so nothing is calculated at this point. ###Code y_true_cls = tf.argmax(y_true, dimension=1) ###Output _____no_output_____ ###Markdown PrettyTensor ImplementationThis section shows the implementation of a Convolutional Neural Network using PrettyTensor taken from Tutorial 03 so it can be compared to the implementation using the Layers API below. This code has been enclosed in an `if False:` block so it does not run here.The basic idea is to wrap the input tensor `x_image` in a PrettyTensor object which has helper-functions for adding new computational layers so as to create an entire Convolutional Neural Network. This is a fairly simple and elegant syntax. ###Code if False: x_pretty = pt.wrap(x_image) with pt.defaults_scope(activation_fn=tf.nn.relu): y_pred, loss = x_pretty.\ conv2d(kernel=5, depth=16, name='layer_conv1').\ max_pool(kernel=2, stride=2).\ conv2d(kernel=5, depth=36, name='layer_conv2').\ max_pool(kernel=2, stride=2).\ flatten().\ fully_connected(size=128, name='layer_fc1').\ softmax_classifier(num_classes=num_classes, labels=y_true) ###Output _____no_output_____ ###Markdown Layers ImplementationWe now implement the same Convolutional Neural Network using the Layers API that is included in TensorFlow version 1.1. This requires more code than PrettyTensor, although a lot of the following are just comments.We use the `net`-variable to refer to the last layer while building the Neural Network. This makes it easy to add or remove layers in the code if you want to experiment. First we set the `net`-variable to the reshaped input image. ###Code net = x_image ###Output _____no_output_____ ###Markdown The input image is then input to the first convolutional layer, which has 16 filters each of size 5x5 pixels. The activation-function is the Rectified Linear Unit (ReLU) described in more detail in Tutorial 02. ###Code net = tf.layers.conv2d(inputs=net, name='layer_conv1', padding='same', filters=16, kernel_size=5, activation=tf.nn.relu) ###Output _____no_output_____ ###Markdown One of the advantages of constructing neural networks in this fashion, is that we can now easily pull out a reference to a layer. This was more complicated in PrettyTensor.Further below we want to plot the output of the first convolutional layer, so we create another variable for holding a reference to that layer. ###Code layer_conv1 = net ###Output _____no_output_____ ###Markdown We now do the max-pooling on the output of the convolutional layer. This was also described in more detail in Tutorial 02. ###Code net = tf.layers.max_pooling2d(inputs=net, pool_size=2, strides=2) ###Output _____no_output_____ ###Markdown We now add the second convolutional layer which has 36 filters each with 5x5 pixels, and a ReLU activation function again. ###Code net = tf.layers.conv2d(inputs=net, name='layer_conv2', padding='same', filters=36, kernel_size=5, activation=tf.nn.relu) ###Output _____no_output_____ ###Markdown We also want to plot the output of this convolutional layer, so we keep a reference for later use. ###Code layer_conv2 = net ###Output _____no_output_____ ###Markdown The output of the second convolutional layer is also max-pooled for down-sampling the images. ###Code net = tf.layers.max_pooling2d(inputs=net, pool_size=2, strides=2) ###Output _____no_output_____ ###Markdown The tensors that are being output by this max-pooling are 4-rank, as can be seen from this: ###Code net ###Output _____no_output_____ ###Markdown Next we want to add fully-connected layers to the Neural Network, but these require 2-rank tensors as input, so we must first flatten the tensors.The `tf.layers` API was first located in `tf.contrib.layers` before it was moved into TensorFlow Core. But even though it has taken the TensorFlow developers a year to move these fairly simple functions, they have somehow forgotten to move the even simpler `flatten()` function. So we still need to use the one in `tf.contrib.layers`. ###Code net = tf.contrib.layers.flatten(net) # This should eventually be replaced by: # net = tf.layers.flatten(net) ###Output _____no_output_____ ###Markdown This has now flattened the data to a 2-rank tensor, as can be seen from this: ###Code net ###Output _____no_output_____ ###Markdown We can now add fully-connected layers to the neural network. These are called *dense* layers in the Layers API. ###Code net = tf.layers.dense(inputs=net, name='layer_fc1', units=128, activation=tf.nn.relu) ###Output _____no_output_____ ###Markdown We need the neural network to classify the input images into 10 different classes. So the final fully-connected layer has `num_classes=10` output neurons. ###Code net = tf.layers.dense(inputs=net, name='layer_fc_out', units=num_classes, activation=None) ###Output _____no_output_____ ###Markdown The output of the final fully-connected layer are sometimes called logits, so we have a convenience variable with that name. ###Code logits = net ###Output _____no_output_____ ###Markdown We use the softmax function to 'squash' the outputs so they are between zero and one, and so they sum to one. ###Code y_pred = tf.nn.softmax(logits=logits) ###Output _____no_output_____ ###Markdown This tells us how likely the neural network thinks the input image is of each possible class. The one that has the highest value is considered the most likely so its index is taken to be the class-number. ###Code y_pred_cls = tf.argmax(y_pred, dimension=1) ###Output _____no_output_____ ###Markdown We have now created the exact same Convolutional Neural Network in a few lines of code that required many complex lines of code in the direct TensorFlow implementation.The Layers API is perhaps not as elegant as PrettyTensor, but it has some other advantages, e.g. that we can more easily refer to intermediate layers, and it is also easier to construct neural networks with branches and multiple outputs using the Layers API. Loss-Function to be Optimized To make the model better at classifying the input images, we must somehow change the variables of the Convolutional Neural Network.The cross-entropy is a performance measure used in classification. The cross-entropy is a continuous function that is always positive and if the predicted output of the model exactly matches the desired output then the cross-entropy equals zero. The goal of optimization is therefore to minimize the cross-entropy so it gets as close to zero as possible by changing the variables of the model.TensorFlow has a function for calculating the cross-entropy, which uses the values of the `logits`-layer because it also calculates the softmax internally, so as to to improve numerical stability. ###Code cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels=y_true, logits=logits) ###Output _____no_output_____ ###Markdown We have now calculated the cross-entropy for each of the image classifications so we have a measure of how well the model performs on each image individually. But in order to use the cross-entropy to guide the optimization of the model's variables we need a single scalar value, so we simply take the average of the cross-entropy for all the image classifications. ###Code loss = tf.reduce_mean(cross_entropy) ###Output _____no_output_____ ###Markdown Optimization MethodNow that we have a cost measure that must be minimized, we can then create an optimizer. In this case it is the Adam optimizer with a learning-rate of 1e-4.Note that optimization is not performed at this point. In fact, nothing is calculated at all, we just add the optimizer-object to the TensorFlow graph for later execution. ###Code optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(loss) ###Output _____no_output_____ ###Markdown Classification AccuracyWe need to calculate the classification accuracy so we can report progress to the user.First we create a vector of booleans telling us whether the predicted class equals the true class of each image. ###Code correct_prediction = tf.equal(y_pred_cls, y_true_cls) ###Output _____no_output_____ ###Markdown The classification accuracy is calculated by first type-casting the vector of booleans to floats, so that False becomes 0 and True becomes 1, and then taking the average of these numbers. ###Code accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) ###Output _____no_output_____ ###Markdown Getting the WeightsFurther below, we want to plot the weights of the convolutional layers. In the TensorFlow implementation we had created the variables ourselves so we could just refer to them directly. But when the network is constructed using a builder API such as `tf.layers`, all the variables of the layers are created indirectly by the builder API. We therefore have to retrieve the variables from TensorFlow.First we need a list of the variable names in the TensorFlow graph: ###Code for var in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES): print(var) ###Output <tf.Variable 'layer_conv1/kernel:0' shape=(5, 5, 1, 16) dtype=float32_ref> <tf.Variable 'layer_conv1/bias:0' shape=(16,) dtype=float32_ref> <tf.Variable 'layer_conv2/kernel:0' shape=(5, 5, 16, 36) dtype=float32_ref> <tf.Variable 'layer_conv2/bias:0' shape=(36,) dtype=float32_ref> <tf.Variable 'layer_fc1/kernel:0' shape=(1764, 128) dtype=float32_ref> <tf.Variable 'layer_fc1/bias:0' shape=(128,) dtype=float32_ref> <tf.Variable 'layer_fc_out/kernel:0' shape=(128, 10) dtype=float32_ref> <tf.Variable 'layer_fc_out/bias:0' shape=(10,) dtype=float32_ref> <tf.Variable 'beta1_power:0' shape=() dtype=float32_ref> <tf.Variable 'beta2_power:0' shape=() dtype=float32_ref> <tf.Variable 'layer_conv1/kernel/Adam:0' shape=(5, 5, 1, 16) dtype=float32_ref> <tf.Variable 'layer_conv1/kernel/Adam_1:0' shape=(5, 5, 1, 16) dtype=float32_ref> <tf.Variable 'layer_conv1/bias/Adam:0' shape=(16,) dtype=float32_ref> <tf.Variable 'layer_conv1/bias/Adam_1:0' shape=(16,) dtype=float32_ref> <tf.Variable 'layer_conv2/kernel/Adam:0' shape=(5, 5, 16, 36) dtype=float32_ref> <tf.Variable 'layer_conv2/kernel/Adam_1:0' shape=(5, 5, 16, 36) dtype=float32_ref> <tf.Variable 'layer_conv2/bias/Adam:0' shape=(36,) dtype=float32_ref> <tf.Variable 'layer_conv2/bias/Adam_1:0' shape=(36,) dtype=float32_ref> <tf.Variable 'layer_fc1/kernel/Adam:0' shape=(1764, 128) dtype=float32_ref> <tf.Variable 'layer_fc1/kernel/Adam_1:0' shape=(1764, 128) dtype=float32_ref> <tf.Variable 'layer_fc1/bias/Adam:0' shape=(128,) dtype=float32_ref> <tf.Variable 'layer_fc1/bias/Adam_1:0' shape=(128,) dtype=float32_ref> <tf.Variable 'layer_fc_out/kernel/Adam:0' shape=(128, 10) dtype=float32_ref> <tf.Variable 'layer_fc_out/kernel/Adam_1:0' shape=(128, 10) dtype=float32_ref> <tf.Variable 'layer_fc_out/bias/Adam:0' shape=(10,) dtype=float32_ref> <tf.Variable 'layer_fc_out/bias/Adam_1:0' shape=(10,) dtype=float32_ref> ###Markdown Each of the convolutional layers has two variables. For the first convolutional layer they are named `layer_conv1/kernel:0` and `layer_conv1/bias:0`. The `kernel` variables are the ones we want to plot further below.It is somewhat awkward to get references to these variables, because we have to use the TensorFlow function `get_variable()` which was designed for another purpose; either creating a new variable or re-using an existing variable. The easiest thing is to make the following helper-function. ###Code def get_weights_variable(layer_name): # Retrieve an existing variable named 'kernel' in the scope # with the given layer_name. # This is awkward because the TensorFlow function was # really intended for another purpose. with tf.variable_scope(layer_name, reuse=True): variable = tf.get_variable('kernel') return variable ###Output _____no_output_____ ###Markdown Using this helper-function we can retrieve the variables. These are TensorFlow objects. In order to get the contents of the variables, you must do something like: `contents = session.run(weights_conv1)` as demonstrated further below. ###Code weights_conv1 = get_weights_variable(layer_name='layer_conv1') weights_conv2 = get_weights_variable(layer_name='layer_conv2') ###Output _____no_output_____ ###Markdown TensorFlow Run Create TensorFlow sessionOnce the TensorFlow graph has been created, we have to create a TensorFlow session which is used to execute the graph. ###Code session = tf.Session() ###Output _____no_output_____ ###Markdown Initialize variablesThe variables for the TensorFlow graph must be initialized before we start optimizing them. ###Code session.run(tf.global_variables_initializer()) ###Output _____no_output_____ ###Markdown Helper-function to perform optimization iterations There are 55,000 images in the training-set. It takes a long time to calculate the gradient of the model using all these images. We therefore only use a small batch of images in each iteration of the optimizer.If your computer crashes or becomes very slow because you run out of RAM, then you may try and lower this number, but you may then need to do more optimization iterations. ###Code train_batch_size = 64 ###Output _____no_output_____ ###Markdown This function performs a number of optimization iterations so as to gradually improve the variables of the neural network layers. In each iteration, a new batch of data is selected from the training-set and then TensorFlow executes the optimizer using those training samples. The progress is printed every 100 iterations. ###Code # Counter for total number of iterations performed so far. total_iterations = 0 def optimize(num_iterations): # Ensure we update the global variable rather than a local copy. global total_iterations for i in range(total_iterations, total_iterations + num_iterations): # Get a batch of training examples. # x_batch now holds a batch of images and # y_true_batch are the true labels for those images. x_batch, y_true_batch = data.train.next_batch(train_batch_size) # Put the batch into a dict with the proper names # for placeholder variables in the TensorFlow graph. feed_dict_train = {x: x_batch, y_true: y_true_batch} # Run the optimizer using this batch of training data. # TensorFlow assigns the variables in feed_dict_train # to the placeholder variables and then runs the optimizer. session.run(optimizer, feed_dict=feed_dict_train) # Print status every 100 iterations. if i % 100 == 0: # Calculate the accuracy on the training-set. acc = session.run(accuracy, feed_dict=feed_dict_train) # Message for printing. msg = "Optimization Iteration: {0:>6}, Training Accuracy: {1:>6.1%}" # Print it. print(msg.format(i + 1, acc)) # Update the total number of iterations performed. total_iterations += num_iterations ###Output _____no_output_____ ###Markdown Helper-function to plot example errors Function for plotting examples of images from the test-set that have been mis-classified. ###Code def plot_example_errors(cls_pred, correct): # This function is called from print_test_accuracy() below. # cls_pred is an array of the predicted class-number for # all images in the test-set. # correct is a boolean array whether the predicted class # is equal to the true class for each image in the test-set. # Negate the boolean array. incorrect = (correct == False) # Get the images from the test-set that have been # incorrectly classified. images = data.test.images[incorrect] # Get the predicted classes for those images. cls_pred = cls_pred[incorrect] # Get the true classes for those images. cls_true = data.test.cls[incorrect] # Plot the first 9 images. plot_images(images=images[0:9], cls_true=cls_true[0:9], cls_pred=cls_pred[0:9]) ###Output _____no_output_____ ###Markdown Helper-function to plot confusion matrix ###Code def plot_confusion_matrix(cls_pred): # This is called from print_test_accuracy() below. # cls_pred is an array of the predicted class-number for # all images in the test-set. # Get the true classifications for the test-set. cls_true = data.test.cls # Get the confusion matrix using sklearn. cm = confusion_matrix(y_true=cls_true, y_pred=cls_pred) # Print the confusion matrix as text. print(cm) # Plot the confusion matrix as an image. plt.matshow(cm) # Make various adjustments to the plot. plt.colorbar() tick_marks = np.arange(num_classes) plt.xticks(tick_marks, range(num_classes)) plt.yticks(tick_marks, range(num_classes)) plt.xlabel('Predicted') plt.ylabel('True') # Ensure the plot is shown correctly with multiple plots # in a single Notebook cell. plt.show() ###Output _____no_output_____ ###Markdown Helper-function for showing the performance Below is a function for printing the classification accuracy on the test-set.It takes a while to compute the classification for all the images in the test-set, that's why the results are re-used by calling the above functions directly from this function, so the classifications don't have to be recalculated by each function.Note that this function can use a lot of computer memory, which is why the test-set is split into smaller batches. If you have little RAM in your computer and it crashes, then you can try and lower the batch-size. ###Code # Split the test-set into smaller batches of this size. test_batch_size = 256 def print_test_accuracy(show_example_errors=False, show_confusion_matrix=False): # Number of images in the test-set. num_test = len(data.test.images) # Allocate an array for the predicted classes which # will be calculated in batches and filled into this array. cls_pred = np.zeros(shape=num_test, dtype=np.int) # Now calculate the predicted classes for the batches. # We will just iterate through all the batches. # There might be a more clever and Pythonic way of doing this. # The starting index for the next batch is denoted i. i = 0 while i < num_test: # The ending index for the next batch is denoted j. j = min(i + test_batch_size, num_test) # Get the images from the test-set between index i and j. images = data.test.images[i:j, :] # Get the associated labels. labels = data.test.labels[i:j, :] # Create a feed-dict with these images and labels. feed_dict = {x: images, y_true: labels} # Calculate the predicted class using TensorFlow. cls_pred[i:j] = session.run(y_pred_cls, feed_dict=feed_dict) # Set the start-index for the next batch to the # end-index of the current batch. i = j # Convenience variable for the true class-numbers of the test-set. cls_true = data.test.cls # Create a boolean array whether each image is correctly classified. correct = (cls_true == cls_pred) # Calculate the number of correctly classified images. # When summing a boolean array, False means 0 and True means 1. correct_sum = correct.sum() # Classification accuracy is the number of correctly classified # images divided by the total number of images in the test-set. acc = float(correct_sum) / num_test # Print the accuracy. msg = "Accuracy on Test-Set: {0:.1%} ({1} / {2})" print(msg.format(acc, correct_sum, num_test)) # Plot some examples of mis-classifications, if desired. if show_example_errors: print("Example errors:") plot_example_errors(cls_pred=cls_pred, correct=correct) # Plot the confusion matrix, if desired. if show_confusion_matrix: print("Confusion Matrix:") plot_confusion_matrix(cls_pred=cls_pred) ###Output _____no_output_____ ###Markdown Performance before any optimizationThe accuracy on the test-set is very low because the variables for the neural network have only been initialized and not optimized at all, so it just classifies the images randomly. ###Code print_test_accuracy() ###Output Accuracy on Test-Set: 5.8% (577 / 10000) ###Markdown Performance after 1 optimization iterationThe classification accuracy does not improve much from just 1 optimization iteration, because the learning-rate for the optimizer is set very low. ###Code optimize(num_iterations=1) print_test_accuracy() ###Output Accuracy on Test-Set: 6.6% (659 / 10000) ###Markdown Performance after 100 optimization iterationsAfter 100 optimization iterations, the model has significantly improved its classification accuracy. ###Code %%time optimize(num_iterations=99) # We already performed 1 iteration above. print_test_accuracy(show_example_errors=True) ###Output Accuracy on Test-Set: 81.2% (8125 / 10000) Example errors: ###Markdown Performance after 1000 optimization iterationsAfter 1000 optimization iterations, the model has greatly increased its accuracy on the test-set to more than 90%. ###Code %%time optimize(num_iterations=900) # We performed 100 iterations above. print_test_accuracy(show_example_errors=True) ###Output Accuracy on Test-Set: 94.5% (9455 / 10000) Example errors: ###Markdown Performance after 10,000 optimization iterationsAfter 10,000 optimization iterations, the model has a classification accuracy on the test-set of about 99%. ###Code %%time optimize(num_iterations=9000) # We performed 1000 iterations above. print_test_accuracy(show_example_errors=True, show_confusion_matrix=True) ###Output Accuracy on Test-Set: 98.8% (9884 / 10000) Example errors: ###Markdown Visualization of Weights and Layers Helper-function for plotting convolutional weights ###Code def plot_conv_weights(weights, input_channel=0): # Assume weights are TensorFlow ops for 4-dim variables # e.g. weights_conv1 or weights_conv2. # Retrieve the values of the weight-variables from TensorFlow. # A feed-dict is not necessary because nothing is calculated. w = session.run(weights) # Get the lowest and highest values for the weights. # This is used to correct the colour intensity across # the images so they can be compared with each other. w_min = np.min(w) w_max = np.max(w) # Number of filters used in the conv. layer. num_filters = w.shape[3] # Number of grids to plot. # Rounded-up, square-root of the number of filters. num_grids = math.ceil(math.sqrt(num_filters)) # Create figure with a grid of sub-plots. fig, axes = plt.subplots(num_grids, num_grids) # Plot all the filter-weights. for i, ax in enumerate(axes.flat): # Only plot the valid filter-weights. if i<num_filters: # Get the weights for the i'th filter of the input channel. # See new_conv_layer() for details on the format # of this 4-dim tensor. img = w[:, :, input_channel, i] # Plot image. ax.imshow(img, vmin=w_min, vmax=w_max, interpolation='nearest', cmap='seismic') # Remove ticks from the plot. ax.set_xticks([]) ax.set_yticks([]) # Ensure the plot is shown correctly with multiple plots # in a single Notebook cell. plt.show() ###Output _____no_output_____ ###Markdown Helper-function for plotting the output of a convolutional layer ###Code def plot_conv_layer(layer, image): # Assume layer is a TensorFlow op that outputs a 4-dim tensor # which is the output of a convolutional layer, # e.g. layer_conv1 or layer_conv2. # Create a feed-dict containing just one image. # Note that we don't need to feed y_true because it is # not used in this calculation. feed_dict = {x: [image]} # Calculate and retrieve the output values of the layer # when inputting that image. values = session.run(layer, feed_dict=feed_dict) # Number of filters used in the conv. layer. num_filters = values.shape[3] # Number of grids to plot. # Rounded-up, square-root of the number of filters. num_grids = math.ceil(math.sqrt(num_filters)) # Create figure with a grid of sub-plots. fig, axes = plt.subplots(num_grids, num_grids) # Plot the output images of all the filters. for i, ax in enumerate(axes.flat): # Only plot the images for valid filters. if i<num_filters: # Get the output image of using the i'th filter. img = values[0, :, :, i] # Plot image. ax.imshow(img, interpolation='nearest', cmap='binary') # Remove ticks from the plot. ax.set_xticks([]) ax.set_yticks([]) # Ensure the plot is shown correctly with multiple plots # in a single Notebook cell. plt.show() ###Output _____no_output_____ ###Markdown Input ImagesHelper-function for plotting an image. ###Code def plot_image(image): plt.imshow(image.reshape(img_shape), interpolation='nearest', cmap='binary') plt.show() ###Output _____no_output_____ ###Markdown Plot an image from the test-set which will be used as an example below. ###Code image1 = data.test.images[0] plot_image(image1) ###Output _____no_output_____ ###Markdown Plot another example image from the test-set. ###Code image2 = data.test.images[13] plot_image(image2) ###Output _____no_output_____ ###Markdown Convolution Layer 1 Now plot the filter-weights for the first convolutional layer.Note that positive weights are red and negative weights are blue. ###Code plot_conv_weights(weights=weights_conv1) ###Output _____no_output_____ ###Markdown Applying each of these convolutional filters to the first input image gives the following output images, which are then used as input to the second convolutional layer. ###Code plot_conv_layer(layer=layer_conv1, image=image1) ###Output _____no_output_____ ###Markdown The following images are the results of applying the convolutional filters to the second image. ###Code plot_conv_layer(layer=layer_conv1, image=image2) ###Output _____no_output_____ ###Markdown Convolution Layer 2 Now plot the filter-weights for the second convolutional layer.There are 16 output channels from the first conv-layer, which means there are 16 input channels to the second conv-layer. The second conv-layer has a set of filter-weights for each of its input channels. We start by plotting the filter-weigths for the first channel.Note again that positive weights are red and negative weights are blue. ###Code plot_conv_weights(weights=weights_conv2, input_channel=0) ###Output _____no_output_____ ###Markdown There are 16 input channels to the second convolutional layer, so we can make another 15 plots of filter-weights like this. We just make one more with the filter-weights for the second channel. ###Code plot_conv_weights(weights=weights_conv2, input_channel=1) ###Output _____no_output_____ ###Markdown It can be difficult to understand and keep track of how these filters are applied because of the high dimensionality.Applying these convolutional filters to the images that were ouput from the first conv-layer gives the following images.Note that these are down-sampled to 14 x 14 pixels which is half the resolution of the original input images, because the first convolutional layer was followed by a max-pooling layer with stride 2. Max-pooling is also done after the second convolutional layer, but we retrieve these images before that has been applied. ###Code plot_conv_layer(layer=layer_conv2, image=image1) ###Output _____no_output_____ ###Markdown And these are the results of applying the filter-weights to the second image. ###Code plot_conv_layer(layer=layer_conv2, image=image2) ###Output _____no_output_____ ###Markdown Close TensorFlow Session We are now done using TensorFlow, so we close the session to release its resources. ###Code # This has been commented out in case you want to modify and experiment # with the Notebook without having to restart it. # session.close() ###Output _____no_output_____ ###Markdown 텐서플로우 튜토리얼 03-B 레이어 APIby [Magnus Erik Hvass Pedersen](http://www.hvass-labs.org/)/ [GitHub](https://github.com/Hvass-Labs/TensorFlow-Tutorials) / [Videos on YouTube](https://www.youtube.com/playlist?list=PL9Hr9sNUjfsmEu1ZniY0XpHSzl5uihcXZ) 경고!**레이어 API는 텐서플로에서 Neural Networks를 생성하기 위한 기본 빌더 API로 의도되었지만 Layers API가 완전히 완성된 적은 없었다. 텐서플로 대 1.9에서는 여전히 작동하지만, 앞으로 더 이상 사용되지 않을 가능성이 꽤 있어 보인다. 대신 보다 완전한 _Keras API_를 사용하는 것이 좋다. 자습서 03-C를 참조하십시오.** 소개텐서플로우(TensorFlow)에서 Neural Networks를 구축할 때는 소스 코드를 구현하고 수정하기 쉽기 때문에 빌더 API를 사용하는 것이 중요하다. 이것은 또한 벌레의 위험을 낮춘다.다른 튜토리얼 중 상당수가 뉴럴 네트워크의 손쉬운 구축을 위해 PretyTensor라는 텐서플로 빌더 API를 사용했다. 그러나 텐서플로우를 위한 몇 가지 다른 빌더 API가 있다. 이 튜토리얼에는 FeatTensor가 사용되었는데, 당시 2016년 중반에는 FeatTensor가 텐서플로우가 사용할 수 있는 가장 완벽하고 세련된 빌더 API였기 때문이다. 하지만 프리티텐서는 구글에서 일하는 한 사람에 의해서만 개발되며, 비록 독특하고 우아한 특징을 가지고 있지만, 미래에 그것이 더 이상 사용되지 않을 수도 있다.이 튜토리얼은 최근 텐서플로 버전 1.1에 추가된 소형 빌더 API에 관한 것이다. 단순히 *레이어* 또는 *레이어 API* 또는 파이썬 이름 tf.레이어즈(tf.layers)로 불린다. 이 빌더 API는 텐서플로우의 일부로 자동 설치되기 때문에 더 이상 PyteTensor와 함께 필요했던 대로 별도의 파이썬 패키지를 설치할 필요가 없다.이 자습서는 Feattensor의 Tutorial 03과 매우 유사하며 Layers API를 사용하여 동일한 Convolutional Neural Network를 구현하는 방법을 보여준다. 콘볼루션 신경 네트워크의 튜토리얼 02에 익숙할 것을 권장한다. 플로우 차트 다음 도표는 아래에 구현된 컨볼루션 신경망에서 데이터가 어떻게 흐르는지 대략적으로 보여준다. 콘볼루션에 대한 자세한 설명은 자습서 02를 참조하십시오. ![Flowchart](images/02_network_flowchart.png) 입력 이미지는 필터-가중치를 사용하여 첫 번째 경련층에서 처리된다. 이로 인해 16개의 새로운 이미지가 생성되며, 각 필터마다 한 개의 합성 층이 생성된다. 영상 또한 최대 풀을 사용하여 하향 샘플링되므로 영상 해상도가 28x28에서 14x14로 감소한다.이 16개의 작은 이미지들은 두 번째 경련층에서 처리된다. 우리는 이 16개 채널 각각에 대한 필터-가중치가 필요하고, 이 계층의 각 출력 채널에 대한 필터-가중치가 필요하다. 출력 채널은 36개가 있으므로 두 번째 경련층에는 총 16 x 36 = 576개의 필터가 있다. 결과 영상도 최대 풀링을 사용하여 7x7 픽셀까지 다운샘플링된다.제2 콘볼루션층의 출력은 각각 7x7픽셀의 36개 이미지다. 그리고 나서 이것들은 길이 7 x 7 x 36 = 1764의 단일 벡터로 평평하게 되는데, 이것은 128개의 뉴런(또는 원소)으로 완전히 연결된 층에 대한 입력으로 사용된다. 이것은 10개의 뉴런으로 완전히 연결된 또 다른 층으로 공급되는데, 각 계층마다 하나씩, 즉 영상의 등급을 결정하는 데 사용되는, 즉 영상에 어떤 숫자가 묘사되어 있는가 하는 것이다.경련형 필터는 처음에 무작위로 선택되기 때문에 분류는 무작위로 이루어진다. 입력 영상의 예측 클래스와 실제 클래스 사이의 오차는 이른바 교차 엔트로피로 측정된다. 그런 다음 최적기는 분화의 체인 규칙을 사용하여 자동으로 이 오류를 콘볼루션 네트워크를 통해 다시 전파하고 분류 오류를 개선하도록 필터 가중치를 업데이트한다. 이는 분류 오류가 충분히 낮을 때까지 반복적으로 수천 번 이루어진다.이러한 특정 필터 무게와 중간 이미지는 하나의 최적화 실행의 결과물이며 이 노트북을 다시 실행하면 다르게 보일 수 있다.TensorFlow의 계산은 실제로 단일 영상 대신 영상 배치에서 수행되므로 계산의 효율성이 향상된다는 점에 유의하십시오. 이는 실제로 TensorFlow에서 구현했을 때 플로우차트가 한 가지 더 데이터 경감을 갖는다는 것을 의미한다. Imports ###Code %matplotlib inline import matplotlib.pyplot as plt import tensorflow as tf import numpy as np from sklearn.metrics import confusion_matrix import math ###Output _____no_output_____ ###Markdown 이것은 Python 3.6 (Anaconda)과 TensorFlow 버전을 사용하여 개발되었다. ###Code tf.__version__ ###Output _____no_output_____ ###Markdown 데이터 로드 MNIST 데이터 세트는 약 12MB로 주어진 경로에 위치하지 않으면 자동으로 다운로드된다. ###Code from tensorflow.examples.tutorials.mnist import input_data data = input_data.read_data_sets('data/MNIST/', one_hot=True) ###Output _____no_output_____ ###Markdown MNIST 데이터 세트는 현재 로드되었으며 7만 개의 영상과 관련 라벨(즉, 영상 분류)으로 구성되어 있다. 데이터 세트는 3개의 상호 배타적인 하위 세트로 분할된다. 이번 튜토리얼에서는 훈련과 시험 세트만 사용할 것이라고 말했다. ###Code print("Size of:") print("- Training-set:\t\t{}".format(len(data.train.labels))) print("- Test-set:\t\t{}".format(len(data.test.labels))) print("- Validation-set:\t{}".format(len(data.validation.labels))) ###Output _____no_output_____ ###Markdown 클래스 라벨은 One-Hot 인코딩된 것으로, 각 라벨은 10개의 원소를 가진 벡터라는 뜻이며, 한 요소를 제외하고는 모두 0이다. 이 한 요소의 색인은 클래스 번호, 즉 관련 이미지에 표시된 숫자다. 시험 세트의 정수로도 학급번영자가 필요하니까 지금 계산하는 거야. ###Code data.test.cls = np.argmax(data.test.labels, axis=1) ###Output _____no_output_____ ###Markdown 데이터 디멘션 데이터 치수는 아래의 소스 코드의 여러 곳에서 사용된다. 이 변수들은 한 번 정의되기 때문에 우리는 아래의 소스 코드 전체에 걸쳐 숫자 대신 이러한 변수를 사용할 수 있다. ###Code # 우리는 MNIST 영상이 각 차원에 28픽셀이라는 것을 알고 있다. img_size = 28 # 이미지는 이 길이의 1차원 배열로 저장된다. img_size_flat = img_size * img_size # 배열을 재구성하는 데 사용되는 이미지의 높이와 폭을 가진 튜플. img_shape = (img_size, img_size) # 영상의 색상 채널 수: 그레이 스케일의 경우 1 채널. num_channels = 1 # 클래스 수, 열 자리마다 한 클래스씩. num_classes = 10 ###Output _____no_output_____ ###Markdown 이미지 플롯을 위한 도우미 함수 9개의 영상을 3x3 그리드에 플로팅하고 각 이미지 아래에 참 클래스와 예측 클래스를 작성하는 데 사용되는 기능 ###Code def plot_images(images, cls_true, cls_pred=None): assert len(images) == len(cls_true) == 9 # 3x3 서브플롯으로 피규어를 만든다. fig, axes = plt.subplots(3, 3) fig.subplots_adjust(hspace=0.3, wspace=0.3) for i, ax in enumerate(axes.flat): # 플롯 이미지. ax.imshow(images[i].reshape(img_shape), cmap='binary') # 진실되고 예측된 클래스를 보여라. if cls_pred is None: xlabel = "True: {0}".format(cls_true[i]) else: xlabel = "True: {0}, Pred: {1}".format(cls_true[i], cls_pred[i]) # x축에 클래스를 라벨로 표시한다. ax.set_xlabel(xlabel) # 플롯에서 눈금을 제거하라. ax.set_xticks([]) ax.set_yticks([]) # 여러 플롯을 사용하여 플롯이 올바르게 표시되도록 하십시오. # 단일 노트북 셀에. plt.show() ###Output _____no_output_____ ###Markdown 데이터가 올바른지 보기 위해 몇 개의 이미지를 플롯하십시오. ###Code # 시험 세트에서 첫 번째 영상을 얻으십시오. images = data.test.images[0:9] # 그 이미지들에 대한 진정한 수업을 받으세요. cls_true = data.test.cls[0:9] # 위의 도우미 함수를 사용하여 이미지와 라벨을 플롯하십시오. plot_images(images=images, cls_true=cls_true) ###Output _____no_output_____ ###Markdown 텐서플로우 그래프텐서플로우의 전체 목적은 파이톤에서 직접 동일한 계산을 수행할 경우보다 훨씬 효율적으로 실행할 수 있는 이른바 계산 그래프를 갖추는 것이다. 텐서플로우는 실행해야 하는 전체 연산 그래프를 알고 있는 반면, NumPy는 한 번에 하나의 수학 연산만을 알고 있기 때문에 텐서플로우는 NumPy보다 효율적일 수 있다.텐서플로우의 전체 목적은 파이톤에서 직접 동일한 계산을 수행할 경우보다 훨씬 효율적으로 실행할 수 있는 이른바 계산 그래프를 갖추는 것이다. 텐서플로우는 실행해야 하는 전체 연산 그래프를 알고 있는 반면, NumPy는 한 번에 하나의 수학 연산만을 알고 있기 때문에 텐서플로우는 NumPy보다 효율적일 수 있다.TensorFlow는 GPU뿐만 아니라 멀티 코어 CPU도 활용할 수 있으며 구글은 TPU(Tensor Processing Units)라고 불리며 GPU보다 더 빠른 텐서플로우만을 위한 특수 칩까지 만들었다.TensorFlow 그래프는 아래에 자세히 설명될 다음과 같은 부분으로 구성된다:* 그래프로 데이터를 입력하는 데 사용되는 자리 표시자 변수.* 컨볼루션 네트워크를 더 잘 수행할 수 있도록 최적화될 변수.* 콘볼루션 신경망의 수학적 공식.* 변수의 최적화를 안내하는 데 사용할 수 있는 이른바 비용 측정 또는 손실 기능.* 변수를 업데이트하는 최적화 방법.또한 TensorFlow 그래프는 본 자습서에서 다루지 않는 TensorBoard를 사용하여 표시되는 데이터 로깅과 같은 다양한 디버깅 문도 포함할 수 있다. Placeholder variables 플레이스홀더 변수는 우리가 그래프를 실행할 때마다 변경될 수 있는 텐서플로 계산 그래프의 입력 역할을 한다. 우리는 이것을 자리 표시자 변수 공급이라고 부르는데, 그것은 아래에 더 자세히 설명되어 있다.먼저 우리는 입력 영상에 대한 자리 표시자 변수를 정의한다. 이를 통해 TensorFlow 그래프에 입력되는 영상을 변경할 수 있다. 이것은 단지 다차원 배열이라는 뜻의 이른바 텐서다. 데이터 타입은 `float32`로, 형태는 `[None, img_size_flat]`로 설정되어 있는데, 여기서 `None`은 각각의 이미지가 길이 `img_size_flat`의 벡터인 상태에서 임의의 수의 영상을 담을 수 있다는 것을 의미한다. ###Code x = tf.placeholder(tf.float32, shape=[None, img_size_flat], name='x') ###Output _____no_output_____ ###Markdown 콘볼루션층에서는 `x`가 4차원 텐서로 인코딩될 것으로 예상하므로 그 모양이 `[num_images, img_hight, img_width, num_channels]`가 되도록 재구성해야 한다. `img_hight == img_width==img_size`와 `num_images`는 첫 번째 치수 크기에 대해 -1을 사용하여 자동으로 추론할 수 있다. 따라서 재편성 작업은 다음과 같다. ###Code x_image = tf.reshape(x, [-1, img_size, img_size, num_channels]) ###Output _____no_output_____ ###Markdown 다음에는 자리 표시자 변수 `x`에 입력된 이미지와 관련된 실제 레이블에 대한 자리 표시자 변수가 있다. 이 자리 표시자 변수의 모양은 임의의 수의 레이블을 포함할 수 있다는 뜻의 `[None, num_classes]`이며, 각 레이블은 길이가 10인 `num_classes`의 벡터다. ###Code y_true = tf.placeholder(tf.float32, shape=[None, num_classes], name='y_true') ###Output _____no_output_____ ###Markdown 클래스 번호에 대한 자리 표시자 변수도 가질 수 있지만 대신 argmax를 사용해 계산하겠다. 이 연산자는 텐서플로우 연산자이므로 이 시점에서는 아무것도 계산되지 않는다는 점에 유의하십시오. ###Code y_true_cls = tf.argmax(y_true, dimension=1) ###Output _____no_output_____ ###Markdown 프리티 텐서 구현이 절은 Tutorial 03에서 가져온 FeatTensor를 이용한 Convolutional Neural Network의 구현을 보여줌으로써 아래의 Layers API를 이용한 구현과 비교할 수 있다. 이 코드는 if False: 블록으로 동봉되어 있어 여기서 실행되지 않는다.입력 텐서 `x_image`를 새로운 연산 레이어를 추가하는 도우미 기능이 있는 Feattensor 객체에 포장해 전체 콘볼루션 신경망을 만드는 것이 기본 아이디어다. 이것은 상당히 단순하고 우아한 구문이다. ###Code if False: x_pretty = pt.wrap(x_image) with pt.defaults_scope(activation_fn=tf.nn.relu): y_pred, loss = x_pretty.\ conv2d(kernel=5, depth=16, name='layer_conv1').\ max_pool(kernel=2, stride=2).\ conv2d(kernel=5, depth=36, name='layer_conv2').\ max_pool(kernel=2, stride=2).\ flatten().\ fully_connected(size=128, name='layer_fc1').\ softmax_classifier(num_classes=num_classes, labels=y_true) ###Output _____no_output_____ ###Markdown 레이어 구현우리는 이제 텐서플로 버전 1.1에 포함된 레이어 API를 이용하여 동일한 컨버전스 뉴럴 네트워크를 구현한다. 다음은 코멘트일 뿐이지만, 이것은 프리티텐서보다 더 많은 코드를 필요로 하는 코드는 다음과 같다.신경망을 구축하는 과정에서 마지막 층을 지칭하기 위해 `net`변수를 사용한다. 이렇게 하면 실험하려는 경우 코드의 레이어를 쉽게 추가하거나 제거할 수 있다. 우선 우리는 `net`변수를 재구성한 입력 이미지로 설정한다. ###Code net = x_image ###Output _____no_output_____ ###Markdown 입력 이미지는 첫 번째 경련층에 입력되는데, 이 경련층에는 크기가 5x5픽셀씩 16개의 필터가 있다. 활성화 기능은 Tutorial 02에 자세히 설명된 Corrective Linear Unit(ReLU)이다. ###Code net = tf.layers.conv2d(inputs=net, name='layer_conv1', padding='same', filters=16, kernel_size=5, activation=tf.nn.relu) ###Output _____no_output_____ ###Markdown 이러한 방식으로 신경망을 구축할 때의 장점 중 하나는 이제 쉽게 층에 대한 참조를 끌어낼 수 있다는 겁니다. 이것은 프리티텐서에서는 더 복잡했다.아래 더 나아가 우리는 첫 번째 경련층의 출력을 그림으로 그리고자 하기 때문에, 우리는 그 층에 대한 참조를 보유하기 위한 또 다른 변수를 만든다. ###Code layer_conv1 = net ###Output _____no_output_____ ###Markdown 우리는 이제 콘볼루션 층의 산출물에 대한 최대 풀을 한다. 이는 자습서 02에서도 자세히 설명하였다. ###Code net = tf.layers.max_pooling2d(inputs=net, pool_size=2, strides=2) ###Output _____no_output_____ ###Markdown 5x5 픽셀의 필터 각각 36개가 달린 두 번째 콘볼루션 레이어와 다시 ReLU 활성화 기능을 추가했다 ###Code net = tf.layers.conv2d(inputs=net, name='layer_conv2', padding='same', filters=36, kernel_size=5, activation=tf.nn.relu) ###Output _____no_output_____ ###Markdown 우리는 또한 이 경련층의 산출물을 그림으로 그리고 싶기 때문에 나중에 사용하기 위해 참조를 유지한다. ###Code layer_conv2 = net ###Output _____no_output_____ ###Markdown 두 번째 콘볼루션층의 출력도 영상을 다운샘플링하기 위해 최대 풀로 되어 있다. ###Code net = tf.layers.max_pooling2d(inputs=net, pool_size=2, strides=2) ###Output _____no_output_____ ###Markdown 이 최대 풀링에 의해 출력되고 있는 텐서는 다음과 같이 4등급이다. ###Code net ###Output _____no_output_____ ###Markdown 다음으로는 뉴럴 네트워크에 완전히 연결된 층을 추가하고 싶지만, 이 층들은 입력으로 2등급 텐서가 필요하기 때문에 우선 텐더를 평평하게 해야 한다.`tf.layers` API는 텐서플로우 코어에 옮겨지기 전 `tf.contrib.layer`에 처음 위치했다. 그러나 텐서플로우 개발자들이 이런 간단한 기능들을 옮기는 데 1년이 걸렸지만 그들은 심지어 더 간단한 `flatten()` 기능을 옮기는 것을 잊어버렸다. 그래서 우리는 `tf.contrib.layers`에 있는 것을 여전히 사용할 필요가 있다. ###Code net = tf.contrib.layers.flatten(net) # 이것은 결국 다음으로 대체되어야 한다.: # net = tf.layers.flatten(net) ###Output _____no_output_____ ###Markdown 이것은 이제 데이터를 2단계 텐서(tensor)로 납작하게 만들었다. 여기서 알 수 있듯이. ###Code net ###Output _____no_output_____ ###Markdown 이제 우리는 신경망에 완전히 연결된 층을 추가할 수 있다. 이를 레이어 API에서 *dense* 레이어라고 한다. ###Code net = tf.layers.dense(inputs=net, name='layer_fc1', units=128, activation=tf.nn.relu) ###Output _____no_output_____ ###Markdown 입력 영상을 10가지 등급으로 분류하려면 신경망이 필요하다. 그래서 최종 완전연결층에는 `num_classes=10` 출력 뉴런이 있다. ###Code net = tf.layers.dense(inputs=net, name='layer_fc_out', units=num_classes, activation=None) ###Output _____no_output_____ ###Markdown 최종 완전 연결 레이어의 출력을 로짓이라고 부르기도 하기 때문에 그런 이름의 편의 변수를 가지고 있다. ###Code logits = net ###Output _____no_output_____ ###Markdown 우리는 소프트맥스 기능을 사용하여 출력이 0과 1 사이에 있도록 `spuash`하고, 따라서 합쳐서 1이 되도록 한다. ###Code y_pred = tf.nn.softmax(logits=logits) ###Output _____no_output_____ ###Markdown 이것은 신경 네트워크가 입력 이미지가 가능한 각 등급의 것이라고 생각하는 가능성을 말해준다. 가장 높은 값을 가진 것이 가장 가능성이 높은 것으로 간주되어 그 지수는 클래스 번호로 간주된다. ###Code y_pred_cls = tf.argmax(y_pred, dimension=1) ###Output _____no_output_____ ###Markdown 우리는 이제 직접 텐서플로 구현에서 많은 복잡한 코드 라인이 필요했던 코드의 몇 줄에 정확히 같은 콘볼루션 신경망을 만들었다.계층 API는 아마도 FeattyTensor만큼 우아하지는 않지만, 예를 들어 우리가 더 쉽게 중간 계층을 언급할 수 있고, 계층 API를 사용하여 가지와 다중 출력을 가진 신경 네트워크를 구축하는 것도 더 용이하다. 최적화해야 하는 손실 함수 입력된 영상을 더 잘 분류하기 위해서는 어떻게든 콘볼루션 신경망의 변수를 바꿔야 한다.크로스 엔트로피는 분류에 사용되는 성능 측정값이다. 교차-엔트로피는 항상 양의 함수로서 모델의 예측 출력이 원하는 출력과 정확히 일치하면 교차-엔트로피는 0이다. 따라서 최적화의 목적은 교차 엔트로피를 최소화하여 모델의 변수를 변경하여 가능한 한 0에 가깝게 하는 것이다.,TensorFlow는 내부에서도 소프트맥스를 계산하기 때문에 로짓 레이어의 값을 사용하는 교차 엔트로피를 계산하는 기능을 갖고 있어 수학적 안정성을 높일 수 있다. ###Code cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels=y_true, logits=logits) ###Output _____no_output_____ ###Markdown 우리는 이제 각 이미지 분류에 대한 교차 엔트로피를 계산했기 때문에 모델이 각 이미지에서 개별적으로 얼마나 잘 수행되는지 측정할 수 있다. 그러나 교차 엔트로피를 사용하여 모델의 변수의 최적화를 유도하려면 단일 스칼라 값이 필요하므로 모든 이미지 분류에 대한 교차 엔트로피의 평균을 단순히 취한다. ###Code loss = tf.reduce_mean(cross_entropy) ###Output _____no_output_____ ###Markdown 최적화 매서드이제 최소화해야 할 비용측정이 생겼으니, 그러면 최적기를 만들 수 있다. 이 경우 학습 속도가 1e-4인 아담 최적화 도구다.이 시점에서는 최적화가 수행되지 않는다는 점에 유의하십시오. 사실 아무것도 계산되지 않고, 나중에 실행할 수 있도록 최적화 도구-개체를 텐서플로 그래프에 추가하기만 하면 된다. ###Code optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(loss) ###Output _____no_output_____ ###Markdown 분류 정확도구분 정확도를 계산해야 사용자에게 진행 상황을 보고할 수 있다.먼저 우리는 예측된 클래스가 각 이미지의 진정한 클래스와 동일한지 여부를 알려주는 술래들의 벡터를 만든다. ###Code correct_prediction = tf.equal(y_pred_cls, y_true_cls) ###Output _____no_output_____ ###Markdown 분류 정확도는 우선 술집의 벡터를 물에 뜨게 하여 거짓이 0이 되고 참이 1이 되게 한 다음 이 숫자들의 평균을 취함으로써 계산된다. ###Code accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) ###Output _____no_output_____ ###Markdown 가중치 얻기아래 더 나아가서 우리는 콘볼루션 층의 무게를 그려보고자 한다. 텐서 플로우 구현에서는 변수를 직접 참조할 수 있도록 변수를 직접 생성했다. 그러나 `tf.layers`와 같은 빌더 API를 사용하여 네트워크를 구축할 때 계층의 모든 변수는 빌더 API에 의해 간접적으로 생성된다. 그러므로 우리는 텐서플로에서 변수를 회수해야 한다.우선 텐서플로 그래프의 변수 이름 목록이 필요하다. ###Code for var in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES): print(var) ###Output _____no_output_____ ###Markdown 각각의 콘볼루션층에는 두 가지 변수가 있다. 첫 번째 경련층에는 `layer_conv1/kernel:0`과 `layer_conv1/bias:0`으로 명명된다. `kernel` 변수는 우리가 아래에서 더 나아가서 구상하고자 하는 변수들이다.새로운 변수를 만들거나 기존 변수를 재사용하는 등 다른 용도로 설계된 텐서플로 함수 `get_variable()`을 사용해야 하기 때문에 이러한 변수에 대한 참조를 얻기가 다소 어색하다. 가장 쉬운 것은 다음과 같은 도우미 함수를 만드는 것이다. ###Code def get_weights_variable(layer_name): # 스코프에서 'kernel'이라는 기존 변수 검색 # 지정된 layer_name과 함께 # 텐서플로 함수가 있어서 어색하다. # 정말로 다른 목적을 위해 의도된 with tf.variable_scope(layer_name, reuse=True): variable = tf.get_variable('kernel') return variable ###Output _____no_output_____ ###Markdown 이 도우미 함수를 이용하면 변수를 되찾을 수 있다. 이것들은 텐서플로우 물체 입니다. 변수의 내용을 얻으려면 아래에 설명된 `contents=session.run(weights_conv1)`과 같은 작업을 수행해야 한다. ###Code weights_conv1 = get_weights_variable(layer_name='layer_conv1') weights_conv2 = get_weights_variable(layer_name='layer_conv2') ###Output _____no_output_____ ###Markdown 텐서플로우 실행 텐서 플로우 세션 생성TensorFlow 그래프가 생성되면 그래프를 실행하는 데 사용되는 TensorFlow 세션을 생성해야 한다. ###Code session = tf.Session() ###Output _____no_output_____ ###Markdown 변수 초기화TensorFlow 그래프의 변수는 최적화를 시작하기 전에 초기화되어야 한다. ###Code session.run(tf.global_variables_initializer()) ###Output _____no_output_____ ###Markdown 최적화 반복을 수행하는 도우미 함수 훈련 세트에는 5만 5천 개의 이미지가 있다. 이 모든 영상을 사용하여 모델의 그라데이션 계산에 오랜 시간이 걸린다. 따라서 최적기의 각 반복에는 작은 이미지 배치만 사용한다.RAM이 부족하여 컴퓨터가 고장 나거나 속도가 매우 느려지면 이 숫자를 줄이려고 할 수 있지만 최적화 반복을 더 많이 수행해야 할 수도 있다. ###Code train_batch_size = 64 ###Output _____no_output_____ ###Markdown 이 함수는 신경망 층의 변수를 점진적으로 개선하기 위해 다수의 최적화 반복을 수행한다. 각 반복에서 교육 세트에서 새로운 데이터 배치를 선택한 다음 텐서플로우는 해당 교육 샘플을 사용하여 최적기를 실행한다. 진행상황은 100회마다 출력된다. ###Code # 지금까지 수행된 총 반복 횟수에 대한 카운터 total_iterations = 0 def optimize(num_iterations): # 로컬 복사본이 아닌 글로벌 변수를 업데이트하십시오. global total_iterations for i in range(total_iterations, total_iterations + num_iterations): # 교육용 예시 한 묶음 가져오기 # x_batch는 이제 한 묶음의 이미지를 가지고 있으며 # y_true_batch는 해당 이미지의 실제 레이블이다. x_batch, y_true_batch = data.train.next_batch(train_batch_size) # 적절한 이름을 가진 명령어에 배치 # TensorFlow 그래프에서 자리 표시자 변수의 경우. feed_dict_train = {x: x_batch, y_true: y_true_batch} # 이 교육 데이터 배치를 사용하여 최적화 도구 실행. # TensorFlow는 feed_dict_train에 변수를 할당한다. # 자리 표시자 변수로 이동한 다음 최적화 도구를 실행하십시오. session.run(optimizer, feed_dict=feed_dict_train) # 100번 반복마다 상태 출력 if i % 100 == 0: # 교육 세트의 정확도 계산. acc = session.run(accuracy, feed_dict=feed_dict_train) # 출력용 메시지 msg = "Optimization Iteration: {0:>6}, Training Accuracy: {1:>6.1%}" # 출력 print(msg.format(i + 1, acc)) # 수행된 총 반복 횟수 업데이트 total_iterations += num_iterations ###Output _____no_output_____ ###Markdown 예시 오류를 플롯하는 도우미 함수 잘못 분류된 테스트 세트의 이미지 예시를 플로팅하는 함수. ###Code def plot_example_errors(cls_pred, correct): # 이 함수는 아래의 print_test_정확도()에서 호출된다. # cls_pred는 다음에 대해 예측된 클래스 번호의 배열이다. # 테스트 세트의 모든 이미지 # correct는 예측 클래스의 여부를 나타내는 부울 배열임 # 테스트 세트의 각 이미지에 대한 True 클래스와 동일함. # 부울 배열 취소 incorrect = (correct == False) # 테스트 세트에서 이미지의 이미지를 가져오십시오. # 잘못 분류된 images = data.test.images[incorrect] # 해당 이미지의 예측 클래스 가져오기 cls_pred = cls_pred[incorrect] # 해당 이미지의 실제 클래스 가져오기 cls_true = data.test.cls[incorrect] # 처음 9개 이미지 플롯 plot_images(images=images[0:9], cls_true=cls_true[0:9], cls_pred=cls_pred[0:9]) ###Output _____no_output_____ ###Markdown 혼동 행렬을 표시하는 도우미 함수 ###Code def plot_confusion_matrix(cls_pred): # 이 함수는 아래의 print_test_정확도()에서 호출된다. # cls_pred는 다음에 대해 예측된 클래스 번호의 배열이다. # 테스트 세트의 모든 이미지 # 테스트 세트에 대한 실제 분류 가져오기 cls_true = data.test.cls # sklearn을 사용하여 혼동 매트릭스 가져오기 cm = confusion_matrix(y_true=cls_true, y_pred=cls_pred) # 혼동 행렬을 텍스트로 출력 print(cm) # 혼동 행렬을 이미지로 표시 plt.matshow(cm) # 플롯을 다양하게 조정 plt.colorbar() tick_marks = np.arange(num_classes) plt.xticks(tick_marks, range(num_classes)) plt.yticks(tick_marks, range(num_classes)) plt.xlabel('Predicted') plt.ylabel('True') # 그림이 여러 그림으로 올바르게 표시되는지 확인 # 단일 노트북 셀에. plt.show() ###Output _____no_output_____ ###Markdown 성능을 보여주는 도우미 함수 아래는 시험 세트에 분류 정확도를 인쇄하는 함수이다.테스트셋의 모든 영상에 대한 분류를 계산하는 데 시간이 걸리므로, 이 함수에서 위의 함수를 직접 호출하여 결과를 다시 사용하는 것이므로 각 함수에 의해 분류를 다시 계산할 필요가 없다.이 함수는 컴퓨터 메모리를 많이 사용할 수 있으므로 테스트 세트가 더 작은 배치로 분할되는 것에 유의하십시오. 컴퓨터에 RAM이 거의 없는데 작동이 안 되면 배치 크기를 줄이려고 하면 된다. ###Code # 테스트 세트를 이 크기의 작은 배치로 분할 test_batch_size = 256 def print_test_accuracy(show_example_errors=False, show_confusion_matrix=False): # 테스트 세트의 이미지 수 num_test = len(data.test.images) # 다음과 같은 예측 클래스에 배열 할당 # 일괄적으로 계산되어 이 배열로 채워질 것이다. cls_pred = np.zeros(shape=num_test, dtype=np.int) # 이제 배치에 대한 예측 클래스를 계산하십시오. # 우리는 단지 모든 배치들을 반복할 것이다. # 이것을 하는 더 영리하고 피톤적인 방법이 있을 것이다. # 다음 배치의 시작 지수는 i로 표시된다. i = 0 while i < num_test: # 다음 배치에 대한 끝 지수는 j로 표시된다. j = min(i + test_batch_size, num_test) # 인덱스 i와 j 사이의 테스트 세트에서 이미지 가져오기. images = data.test.images[i:j, :] # 연결된 레이블 가져오기. labels = data.test.labels[i:j, :] # 이러한 이미지 및 레이블로 피드 딕트 만들기. feed_dict = {x: images, y_true: labels} # 텐서플로우를 사용하여 예측 클래스 계산. cls_pred[i:j] = session.run(y_pred_cls, feed_dict=feed_dict) # 다음 배치에 대한 시작 인덱스를 다음으로 설정 # 현재 배치에 대한 엔드 인덱스 i = j # 테스트 세트의 실제 클래스 번호에 대한 편의 변수 cls_true = data.test.cls # 각 이미지가 올바르게 분류되었는지 여부를 나타내는 부울 배열 만들기 correct = (cls_true == cls_pred) # 올바르게 분류된 이미지 수 계산 # 부울 배열을 합할 때 False는 0을 의미하고 True는 1을 의미한다. correct_sum = correct.sum() # 분류 정확도는 정확하게 분류된 수입니다 # 이미지를 테스트 세트의 총 이미지 수로 나눈다. acc = float(correct_sum) / num_test # 정확도 출력 msg = "Accuracy on Test-Set: {0:.1%} ({1} / {2})" print(msg.format(acc, correct_sum, num_test)) # 필요한 경우 일부 잘못된 분류 예제 그림 그리기. if show_example_errors: print("Example errors:") plot_example_errors(cls_pred=cls_pred, correct=correct) # 원하는 경우 혼동 행렬 그림 그리기 if show_confusion_matrix: print("Confusion Matrix:") plot_confusion_matrix(cls_pred=cls_pred) ###Output _____no_output_____ ###Markdown 최적화 전 성능신경망 변수가 초기화됐을 뿐 전혀 최적화되지 않아 무작위로 영상을 분류할 뿐이어서 시험 세트의 정확도가 매우 낮다. ###Code print_test_accuracy() ###Output _____no_output_____ ###Markdown 최적화 1번 반복 후 성능최적기에 대한 학습 비율이 매우 낮게 설정되어 있기 때문에 분류 정확도는 한 번의 최적화 반복만으로 크게 개선되지 않는다. ###Code optimize(num_iterations=1) print_test_accuracy() ###Output _____no_output_____ ###Markdown 최적화를 100회 반복한 후의 성능100회의 최적화 반복을 거쳐, 그 모델은 분류 정확도를 현저히 향상시켰다. ###Code %%time optimize(num_iterations=99) # We already performed 1 iteration above. print_test_accuracy(show_example_errors=True) ###Output _____no_output_____ ###Markdown 1000번의 최적화 반복 후 성능1000회 최적화 반복 후 이 모델은 시험 세트의 정확도를 90% 이상으로 크게 높였다. ###Code %%time optimize(num_iterations=900) # 위에서 100번 반복했다. print_test_accuracy(show_example_errors=True) ###Output _____no_output_____ ###Markdown 최적화 반복 10,000회 이후 성능최적화 1만 번 반복한 후, 이 모델은 약 99%의 시험 세트에 대한 분류 정확도를 갖는다. ###Code %%time optimize(num_iterations=9000) # We performed 1000 iterations above. print_test_accuracy(show_example_errors=True, show_confusion_matrix=True) ###Output _____no_output_____ ###Markdown 가중치와 층의 시각화 콘볼루션 가중치 플로팅을 위한 도우미 함수 ###Code def plot_conv_weights(weights, input_channel=0): # 가중치가 4-dim 변수에 대한 텐서 흐름 ops라고 가정 # 예: weights_conv1 또는 weights_conv2 # TensorFlow에서 가중치 변수 값 검색. # 아무것도 계산되지 않기 때문에 피드 딕트가 필요하지 않다. w = session.run(weights) # 가중치에 대한 가장 낮은 값과 가장 높은 값 가져오기 # 이것은 전체에서 색 강도를 보정하는 데 사용된다 # 서로 비교될 수 있도록 하는 이미지들 w_min = np.min(w) w_max = np.max(w) # Conv. 층에 사용된 필터 수 num_filters = w.shape[3] # 플롯할 그리드 수 # 필터 수의 반올림, 제곱근 num_grids = math.ceil(math.sqrt(num_filters)) # 하위 그림 그리드를 사용하여 그림 작성 fig, axes = plt.subplots(num_grids, num_grids) # 모든 필터-가중치 그림 그리기 for i, ax in enumerate(axes.flat): # 유효한 필터-가중치만 표시 if i<num_filters: # 입력 채널의 i번째 필터에 대한 가중치 가져오기 # 형식에 대한 자세한 내용은 new_conv_layer()를 참조하십시오. # 4-dim 텐서의 img = w[:, :, input_channel, i] # 플롯 이미지 ax.imshow(img, vmin=w_min, vmax=w_max, interpolation='nearest', cmap='seismic') # 플롯에서 눈금 제거 ax.set_xticks([]) ax.set_yticks([]) # 그림이 여러 그림으로 올바르게 표시되는지 확인 # 단일 노트북 셀에 plt.show() ###Output _____no_output_____ ###Markdown 콘볼루션 층의 출력을 플로팅하기 위한 도우미 함수 ###Code def plot_conv_layer(layer, image): # 레이어가 4-dim 텐서를 출력하는 텐서플로우 op이라고 가정하십시오 # 콘볼루션 층의 결과물, # 예: layer_layer1 또는 layer_layer2. # 하나의 이미지만 포함하는 피드 딕트 생성. # y_true는 y_true이기 때문에 공급할 필요가 없다는 점에 유의하십시오 # 이 계산에 사용되지 않는 feed_dict = {x: [image]} # 레이어의 출력 값 계산 및 검색 # 그 이미지를 입력할 때 values = session.run(layer, feed_dict=feed_dict) # Conv.층에 사용된 필터 수 num_filters = values.shape[3] # 플롯할 그리드 수 # 필터 수의 반올림, 제곱근 num_grids = math.ceil(math.sqrt(num_filters)) # 하위 그림 그리드를 사용하여 그림 작성 fig, axes = plt.subplots(num_grids, num_grids) # 모든 필터의 출력 영상 플롯 for i, ax in enumerate(axes.flat): # 유효한 필터에 대한 영상만 표시 if i<num_filters: # Get the output image of using the i'th filter. img = values[0, :, :, i] # 플롯 이미지 ax.imshow(img, interpolation='nearest', cmap='binary') # 플롯에서 눈금 제거 ax.set_xticks([]) ax.set_yticks([]) # 그림이 여러 그림으로 올바르게 표시되는지 확인 # 단일 노트북 셀에 plt.show() ###Output _____no_output_____ ###Markdown 입력 이미지이미지를 플롯하는 데 도움이 되는 함수 ###Code def plot_image(image): plt.imshow(image.reshape(img_shape), interpolation='nearest', cmap='binary') plt.show() ###Output _____no_output_____ ###Markdown 아래 예제로 사용할 테스트 세트의 이미지를 플롯하십시오. ###Code image1 = data.test.images[0] plot_image(image1) ###Output _____no_output_____ ###Markdown 테스트 세트에서 다른 예제 이미지를 플롯하십시오. ###Code image2 = data.test.images[13] plot_image(image2) ###Output _____no_output_____ ###Markdown 콘볼루션 층 1 이제 첫 번째 경련 층에 대한 필터-가중치를 플롯하십시오.양체중은 빨간색이고 음체중은 파란색이라는 점에 유의하십시오. ###Code plot_conv_weights(weights=weights_conv1) ###Output _____no_output_____ ###Markdown 이러한 각 콘볼루션 필터를 첫 번째 입력 영상에 적용하면 다음과 같은 출력 영상이 제공되며, 이는 두 번째 콘볼루션층에 대한 입력으로 사용된다. ###Code plot_conv_layer(layer=layer_conv1, image=image1) ###Output _____no_output_____ ###Markdown 다음 이미지는 두 번째 이미지에 콘볼루션 필터를 적용한 결과 입니다. ###Code plot_conv_layer(layer=layer_conv1, image=image2) ###Output _____no_output_____ ###Markdown 콘볼루션 층 2 이제 두 번째 콘볼루션층에 대한 필터-가중치를 그려보십시오.첫 번째 콘볼루션층에서 16개의 출력 채널이 있는데, 이것은 두 번째 콘볼루션층으로 16개의 입력 채널이 있다는 것을 의미한다. 두 번째 콘블레이어에는 각 입력 채널에 대한 필터-가중치 집합이 있다. 첫 번째 채널의 필터-가중치를 계획하는 것부터 시작합시다.다시 한 번 긍정적인 체중은 빨간색이고 부정적인 체중은 파란색이라는 것을 주목하라. ###Code plot_conv_weights(weights=weights_conv2, input_channel=0) ###Output _____no_output_____ ###Markdown 제2의 콘볼루션층에는 16개의 입력 채널이 있으므로 이와 같은 필터-가중치를 15개 더 만들 수 있다. 두 번째 채널의 필터-가중치로 한 개만 더 만들면 된다. ###Code plot_conv_weights(weights=weights_conv2, input_channel=1) ###Output _____no_output_____ ###Markdown 차원이 높기 때문에 이러한 필터가 어떻게 적용되는지 이해하고 추적하기가 어려울 수 있다.이러한 콘볼루션 필터를 첫 번째 콘블레이어로부터 출력된 영상에 적용하면 다음과 같은 영상이 나온다.이러한 것들은 원래 입력 이미지의 절반인 14 x 14 픽셀로 다운샘플링된다는 점에 유의하십시오. 첫 번째 경구층에는 보폭을 가진 최대 풀링 층이 뒤따랐기 때문이다.2. 최대 풀링 또한 두 번째 경구층 이후에 이루어지지만, 우리는 그 전에 이러한 이미지들을 회수한다. ###Code plot_conv_layer(layer=layer_conv2, image=image1) ###Output _____no_output_____ ###Markdown 그리고 두 번째 이미지에 필터-가중치를 적용한 결과 입니다. ###Code plot_conv_layer(layer=layer_conv2, image=image2) ###Output _____no_output_____ ###Markdown 텐서플로우 세션 닫기 이제 텐서플로우를 이용한 작업이 끝났기 때문에 그 자원을 공개하기 위해 세션을 닫는다. ###Code # 수정 및 실험을 원할 경우에 대비하여 언급된 사항. # 노트북을 다시 시작할 필요 없이. # session.close() ###Output _____no_output_____ ###Markdown TensorFlow Tutorial 03-B Layers APIby [Magnus Erik Hvass Pedersen](http://www.hvass-labs.org/)/ [GitHub](https://github.com/Hvass-Labs/TensorFlow-Tutorials) / [Videos on YouTube](https://www.youtube.com/playlist?list=PL9Hr9sNUjfsmEu1ZniY0XpHSzl5uihcXZ) IntroductionIt is important to use a builder API when constructing Neural Networks in TensorFlow because it makes it easier to implement and modify the source-code. This also lowers the risk of bugs.Many of the other tutorials used the TensorFlow builder API called PrettyTensor for easy construction of Neural Networks. But there are several other builder APIs available for TensorFlow. PrettyTensor was used in these tutorials, because at the time in mid-2016, PrettyTensor was the most complete and polished builder API available for TensorFlow. But PrettyTensor is only developed by a single person working at Google and although it has some unique and elegant features, it is possible that it may become deprecated in the future.This tutorial is about a small builder API that has recently been added to TensorFlow version 1.1. It is simply called *Layers* or the *Layers API* or by its Python name `tf.layers`. This builder API is automatically installed as part of TensorFlow, so you no longer have to install a separate Python package as was needed with PrettyTensor.This tutorial is very similar to Tutorial 03 on PrettyTensor and shows how to implement the same Convolutional Neural Network using the Layers API. It is recommended that you are familiar with Tutorial 02 on Convolutional Neural Networks. Flowchart The following chart shows roughly how the data flows in the Convolutional Neural Network that is implemented below. See Tutorial 02 for a more detailed description of convolution. ![Flowchart](images/02_network_flowchart.png) The input image is processed in the first convolutional layer using the filter-weights. This results in 16 new images, one for each filter in the convolutional layer. The images are also down-sampled using max-pooling so the image resolution is decreased from 28x28 to 14x14.These 16 smaller images are then processed in the second convolutional layer. We need filter-weights for each of these 16 channels, and we need filter-weights for each output channel of this layer. There are 36 output channels so there are a total of 16 x 36 = 576 filters in the second convolutional layer. The resulting images are also down-sampled using max-pooling to 7x7 pixels.The output of the second convolutional layer is 36 images of 7x7 pixels each. These are then flattened to a single vector of length 7 x 7 x 36 = 1764, which is used as the input to a fully-connected layer with 128 neurons (or elements). This feeds into another fully-connected layer with 10 neurons, one for each of the classes, which is used to determine the class of the image, that is, which number is depicted in the image.The convolutional filters are initially chosen at random, so the classification is done randomly. The error between the predicted and true class of the input image is measured as the so-called cross-entropy. The optimizer then automatically propagates this error back through the Convolutional Network using the chain-rule of differentiation and updates the filter-weights so as to improve the classification error. This is done iteratively thousands of times until the classification error is sufficiently low.These particular filter-weights and intermediate images are the results of one optimization run and may look different if you re-run this Notebook.Note that the computation in TensorFlow is actually done on a batch of images instead of a single image, which makes the computation more efficient. This means the flowchart actually has one more data-dimension when implemented in TensorFlow. Imports ###Code %matplotlib inline import matplotlib.pyplot as plt import tensorflow as tf import numpy as np from sklearn.metrics import confusion_matrix import math ###Output _____no_output_____ ###Markdown This was developed using Python 3.6 (Anaconda) and TensorFlow version: ###Code tf.__version__ ###Output _____no_output_____ ###Markdown Load Data The MNIST data-set is about 12 MB and will be downloaded automatically if it is not located in the given path. ###Code from tensorflow.examples.tutorials.mnist import input_data data = input_data.read_data_sets('data/MNIST/', one_hot=True) ###Output Extracting data/MNIST/train-images-idx3-ubyte.gz Extracting data/MNIST/train-labels-idx1-ubyte.gz Extracting data/MNIST/t10k-images-idx3-ubyte.gz Extracting data/MNIST/t10k-labels-idx1-ubyte.gz ###Markdown The MNIST data-set has now been loaded and consists of 70,000 images and associated labels (i.e. classifications of the images). The data-set is split into 3 mutually exclusive sub-sets. We will only use the training and test-sets in this tutorial. ###Code print("Size of:") print("- Training-set:\t\t{}".format(len(data.train.labels))) print("- Test-set:\t\t{}".format(len(data.test.labels))) print("- Validation-set:\t{}".format(len(data.validation.labels))) ###Output Size of: - Training-set: 55000 - Test-set: 10000 - Validation-set: 5000 ###Markdown The class-labels are One-Hot encoded, which means that each label is a vector with 10 elements, all of which are zero except for one element. The index of this one element is the class-number, that is, the digit shown in the associated image. We also need the class-numbers as integers for the test-set, so we calculate it now. ###Code data.test.cls = np.argmax(data.test.labels, axis=1) ###Output _____no_output_____ ###Markdown Data Dimensions The data dimensions are used in several places in the source-code below. They are defined once so we can use these variables instead of numbers throughout the source-code below. ###Code # We know that MNIST images are 28 pixels in each dimension. img_size = 28 # Images are stored in one-dimensional arrays of this length. img_size_flat = img_size * img_size # Tuple with height and width of images used to reshape arrays. img_shape = (img_size, img_size) # Number of colour channels for the images: 1 channel for gray-scale. num_channels = 1 # Number of classes, one class for each of 10 digits. num_classes = 10 ###Output _____no_output_____ ###Markdown Helper-function for plotting images Function used to plot 9 images in a 3x3 grid, and writing the true and predicted classes below each image. ###Code def plot_images(images, cls_true, cls_pred=None): assert len(images) == len(cls_true) == 9 # Create figure with 3x3 sub-plots. fig, axes = plt.subplots(3, 3) fig.subplots_adjust(hspace=0.3, wspace=0.3) for i, ax in enumerate(axes.flat): # Plot image. ax.imshow(images[i].reshape(img_shape), cmap='binary') # Show true and predicted classes. if cls_pred is None: xlabel = "True: {0}".format(cls_true[i]) else: xlabel = "True: {0}, Pred: {1}".format(cls_true[i], cls_pred[i]) # Show the classes as the label on the x-axis. ax.set_xlabel(xlabel) # Remove ticks from the plot. ax.set_xticks([]) ax.set_yticks([]) # Ensure the plot is shown correctly with multiple plots # in a single Notebook cell. plt.show() ###Output _____no_output_____ ###Markdown Plot a few images to see if data is correct ###Code # Get the first images from the test-set. images = data.test.images[0:9] # Get the true classes for those images. cls_true = data.test.cls[0:9] # Plot the images and labels using our helper-function above. plot_images(images=images, cls_true=cls_true) ###Output _____no_output_____ ###Markdown TensorFlow GraphThe entire purpose of TensorFlow is to have a so-called computational graph that can be executed much more efficiently than if the same calculations were to be performed directly in Python. TensorFlow can be more efficient than NumPy because TensorFlow knows the entire computation graph that must be executed, while NumPy only knows the computation of a single mathematical operation at a time.TensorFlow can also automatically calculate the gradients that are needed to optimize the variables of the graph so as to make the model perform better. This is because the graph is a combination of simple mathematical expressions so the gradient of the entire graph can be calculated using the chain-rule for derivatives.TensorFlow can also take advantage of multi-core CPUs as well as GPUs - and Google has even built special chips just for TensorFlow which are called TPUs (Tensor Processing Units) and are even faster than GPUs.A TensorFlow graph consists of the following parts which will be detailed below:* Placeholder variables used for inputting data to the graph.* Variables that are going to be optimized so as to make the convolutional network perform better.* The mathematical formulas for the convolutional neural network.* A so-called cost-measure or loss-function that can be used to guide the optimization of the variables.* An optimization method which updates the variables.In addition, the TensorFlow graph may also contain various debugging statements e.g. for logging data to be displayed using TensorBoard, which is not covered in this tutorial. Placeholder variables Placeholder variables serve as the input to the TensorFlow computational graph that we may change each time we execute the graph. We call this feeding the placeholder variables and it is demonstrated further below.First we define the placeholder variable for the input images. This allows us to change the images that are input to the TensorFlow graph. This is a so-called tensor, which just means that it is a multi-dimensional array. The data-type is set to `float32` and the shape is set to `[None, img_size_flat]`, where `None` means that the tensor may hold an arbitrary number of images with each image being a vector of length `img_size_flat`. ###Code x = tf.placeholder(tf.float32, shape=[None, img_size_flat], name='x') ###Output _____no_output_____ ###Markdown The convolutional layers expect `x` to be encoded as a 4-dim tensor so we have to reshape it so its shape is instead `[num_images, img_height, img_width, num_channels]`. Note that `img_height == img_width == img_size` and `num_images` can be inferred automatically by using -1 for the size of the first dimension. So the reshape operation is: ###Code x_image = tf.reshape(x, [-1, img_size, img_size, num_channels]) ###Output _____no_output_____ ###Markdown Next we have the placeholder variable for the true labels associated with the images that were input in the placeholder variable `x`. The shape of this placeholder variable is `[None, num_classes]` which means it may hold an arbitrary number of labels and each label is a vector of length `num_classes` which is 10 in this case. ###Code y_true = tf.placeholder(tf.float32, shape=[None, num_classes], name='y_true') ###Output _____no_output_____ ###Markdown We could also have a placeholder variable for the class-number, but we will instead calculate it using argmax. Note that this is a TensorFlow operator so nothing is calculated at this point. ###Code y_true_cls = tf.argmax(y_true, dimension=1) ###Output _____no_output_____ ###Markdown PrettyTensor ImplementationThis section shows the implementation of a Convolutional Neural Network using PrettyTensor taken from Tutorial 03 so it can be compared to the implementation using the Layers API below. This code has been enclosed in an `if False:` block so it does not run here.The basic idea is to wrap the input tensor `x_image` in a PrettyTensor object which has helper-functions for adding new computational layers so as to create an entire Convolutional Neural Network. This is a fairly simple and elegant syntax. ###Code if False: x_pretty = pt.wrap(x_image) with pt.defaults_scope(activation_fn=tf.nn.relu): y_pred, loss = x_pretty.\ conv2d(kernel=5, depth=16, name='layer_conv1').\ max_pool(kernel=2, stride=2).\ conv2d(kernel=5, depth=36, name='layer_conv2').\ max_pool(kernel=2, stride=2).\ flatten().\ fully_connected(size=128, name='layer_fc1').\ softmax_classifier(num_classes=num_classes, labels=y_true) ###Output _____no_output_____ ###Markdown Layers ImplementationWe now implement the same Convolutional Neural Network using the Layers API that is included in TensorFlow version 1.1. This requires more code than PrettyTensor, although a lot of the following are just comments.We use the `net`-variable to refer to the last layer while building the Neural Network. This makes it easy to add or remove layers in the code if you want to experiment. First we set the `net`-variable to the reshaped input image. ###Code net = x_image ###Output _____no_output_____ ###Markdown The input image is then input to the first convolutional layer, which has 16 filters each of size 5x5 pixels. The activation-function is the Rectified Linear Unit (ReLU) described in more detail in Tutorial 02. ###Code net = tf.layers.conv2d(inputs=net, name='layer_conv1', padding='same', filters=16, kernel_size=5, activation=tf.nn.relu) ###Output _____no_output_____ ###Markdown One of the advantages of constructing neural networks in this fashion, is that we can now easily pull out a reference to a layer. This was more complicated in PrettyTensor.Further below we want to plot the output of the first convolutional layer, so we create another variable for holding a reference to that layer. ###Code layer_conv1 = net ###Output _____no_output_____ ###Markdown We now do the max-pooling on the output of the convolutional layer. This was also described in more detail in Tutorial 02. ###Code net = tf.layers.max_pooling2d(inputs=net, pool_size=2, strides=2) ###Output _____no_output_____ ###Markdown We now add the second convolutional layer which has 36 filters each with 5x5 pixels, and a ReLU activation function again. ###Code net = tf.layers.conv2d(inputs=net, name='layer_conv2', padding='same', filters=36, kernel_size=5, activation=tf.nn.relu) ###Output _____no_output_____ ###Markdown We also want to plot the output of this convolutional layer, so we keep a reference for later use. ###Code layer_conv2 = net ###Output _____no_output_____ ###Markdown The output of the second convolutional layer is also max-pooled for down-sampling the images. ###Code net = tf.layers.max_pooling2d(inputs=net, pool_size=2, strides=2) ###Output _____no_output_____ ###Markdown The tensors that are being output by this max-pooling are 4-rank, as can be seen from this: ###Code net ###Output _____no_output_____ ###Markdown Next we want to add fully-connected layers to the Neural Network, but these require 2-rank tensors as input, so we must first flatten the tensors.The `tf.layers` API was first located in `tf.contrib.layers` before it was moved into TensorFlow Core. But even though it has taken the TensorFlow developers a year to move these fairly simple functions, they have somehow forgotten to move the even simpler `flatten()` function. So we still need to use the one in `tf.contrib.layers`. ###Code net = tf.contrib.layers.flatten(net) # This should eventually be replaced by: # net = tf.layers.flatten(net) ###Output _____no_output_____ ###Markdown This has now flattened the data to a 2-rank tensor, as can be seen from this: ###Code net ###Output _____no_output_____ ###Markdown We can now add fully-connected layers to the neural network. These are called *dense* layers in the Layers API. ###Code net = tf.layers.dense(inputs=net, name='layer_fc1', units=128, activation=tf.nn.relu) ###Output _____no_output_____ ###Markdown We need the neural network to classify the input images into 10 different classes. So the final fully-connected layer has `num_classes=10` output neurons. ###Code net = tf.layers.dense(inputs=net, name='layer_fc_out', units=num_classes, activation=None) ###Output _____no_output_____ ###Markdown The output of the final fully-connected layer are sometimes called logits, so we have a convenience variable with that name. ###Code logits = net ###Output _____no_output_____ ###Markdown We use the softmax function to 'squash' the outputs so they are between zero and one, and so they sum to one. ###Code y_pred = tf.nn.softmax(logits=logits) ###Output _____no_output_____ ###Markdown This tells us how likely the neural network thinks the input image is of each possible class. The one that has the highest value is considered the most likely so its index is taken to be the class-number. ###Code y_pred_cls = tf.argmax(y_pred, dimension=1) ###Output _____no_output_____ ###Markdown We have now created the exact same Convolutional Neural Network in a few lines of code that required many complex lines of code in the direct TensorFlow implementation.The Layers API is perhaps not as elegant as PrettyTensor, but it has some other advantages, e.g. that we can more easily refer to intermediate layers, and it is also easier to construct neural networks with branches and multiple outputs using the Layers API. Loss-Function to be Optimized To make the model better at classifying the input images, we must somehow change the variables of the Convolutional Neural Network.The cross-entropy is a performance measure used in classification. The cross-entropy is a continuous function that is always positive and if the predicted output of the model exactly matches the desired output then the cross-entropy equals zero. The goal of optimization is therefore to minimize the cross-entropy so it gets as close to zero as possible by changing the variables of the model.TensorFlow has a function for calculating the cross-entropy, which uses the values of the `logits`-layer because it also calculates the softmax internally, so as to to improve numerical stability. ###Code cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels=y_true, logits=logits) ###Output _____no_output_____ ###Markdown We have now calculated the cross-entropy for each of the image classifications so we have a measure of how well the model performs on each image individually. But in order to use the cross-entropy to guide the optimization of the model's variables we need a single scalar value, so we simply take the average of the cross-entropy for all the image classifications. ###Code loss = tf.reduce_mean(cross_entropy) ###Output _____no_output_____ ###Markdown Optimization MethodNow that we have a cost measure that must be minimized, we can then create an optimizer. In this case it is the Adam optimizer with a learning-rate of 1e-4.Note that optimization is not performed at this point. In fact, nothing is calculated at all, we just add the optimizer-object to the TensorFlow graph for later execution. ###Code optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(loss) ###Output _____no_output_____ ###Markdown Classification AccuracyWe need to calculate the classification accuracy so we can report progress to the user.First we create a vector of booleans telling us whether the predicted class equals the true class of each image. ###Code correct_prediction = tf.equal(y_pred_cls, y_true_cls) ###Output _____no_output_____ ###Markdown The classification accuracy is calculated by first type-casting the vector of booleans to floats, so that False becomes 0 and True becomes 1, and then taking the average of these numbers. ###Code accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) ###Output _____no_output_____ ###Markdown Getting the WeightsFurther below, we want to plot the weights of the convolutional layers. In the TensorFlow implementation we had created the variables ourselves so we could just refer to them directly. But when the network is constructed using a builder API such as `tf.layers`, all the variables of the layers are created indirectly by the builder API. We therefore have to retrieve the variables from TensorFlow.First we need a list of the variable names in the TensorFlow graph: ###Code for var in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES): print(var) ###Output <tf.Variable 'layer_conv1/kernel:0' shape=(5, 5, 1, 16) dtype=float32_ref> <tf.Variable 'layer_conv1/bias:0' shape=(16,) dtype=float32_ref> <tf.Variable 'layer_conv2/kernel:0' shape=(5, 5, 16, 36) dtype=float32_ref> <tf.Variable 'layer_conv2/bias:0' shape=(36,) dtype=float32_ref> <tf.Variable 'layer_fc1/kernel:0' shape=(1764, 128) dtype=float32_ref> <tf.Variable 'layer_fc1/bias:0' shape=(128,) dtype=float32_ref> <tf.Variable 'layer_fc_out/kernel:0' shape=(128, 10) dtype=float32_ref> <tf.Variable 'layer_fc_out/bias:0' shape=(10,) dtype=float32_ref> <tf.Variable 'beta1_power:0' shape=() dtype=float32_ref> <tf.Variable 'beta2_power:0' shape=() dtype=float32_ref> <tf.Variable 'layer_conv1/kernel/Adam:0' shape=(5, 5, 1, 16) dtype=float32_ref> <tf.Variable 'layer_conv1/kernel/Adam_1:0' shape=(5, 5, 1, 16) dtype=float32_ref> <tf.Variable 'layer_conv1/bias/Adam:0' shape=(16,) dtype=float32_ref> <tf.Variable 'layer_conv1/bias/Adam_1:0' shape=(16,) dtype=float32_ref> <tf.Variable 'layer_conv2/kernel/Adam:0' shape=(5, 5, 16, 36) dtype=float32_ref> <tf.Variable 'layer_conv2/kernel/Adam_1:0' shape=(5, 5, 16, 36) dtype=float32_ref> <tf.Variable 'layer_conv2/bias/Adam:0' shape=(36,) dtype=float32_ref> <tf.Variable 'layer_conv2/bias/Adam_1:0' shape=(36,) dtype=float32_ref> <tf.Variable 'layer_fc1/kernel/Adam:0' shape=(1764, 128) dtype=float32_ref> <tf.Variable 'layer_fc1/kernel/Adam_1:0' shape=(1764, 128) dtype=float32_ref> <tf.Variable 'layer_fc1/bias/Adam:0' shape=(128,) dtype=float32_ref> <tf.Variable 'layer_fc1/bias/Adam_1:0' shape=(128,) dtype=float32_ref> <tf.Variable 'layer_fc_out/kernel/Adam:0' shape=(128, 10) dtype=float32_ref> <tf.Variable 'layer_fc_out/kernel/Adam_1:0' shape=(128, 10) dtype=float32_ref> <tf.Variable 'layer_fc_out/bias/Adam:0' shape=(10,) dtype=float32_ref> <tf.Variable 'layer_fc_out/bias/Adam_1:0' shape=(10,) dtype=float32_ref> ###Markdown Each of the convolutional layers has two variables. For the first convolutional layer they are named `layer_conv1/kernel:0` and `layer_conv1/bias:0`. The `kernel` variables are the ones we want to plot further below.It is somewhat awkward to get references to these variables, because we have to use the TensorFlow function `get_variable()` which was designed for another purpose; either creating a new variable or re-using an existing variable. The easiest thing is to make the following helper-function. ###Code def get_weights_variable(layer_name): # Retrieve an existing variable named 'kernel' in the scope # with the given layer_name. # This is awkward because the TensorFlow function was # really intended for another purpose. with tf.variable_scope(layer_name, reuse=True): variable = tf.get_variable('kernel') return variable ###Output _____no_output_____ ###Markdown Using this helper-function we can retrieve the variables. These are TensorFlow objects. In order to get the contents of the variables, you must do something like: `contents = session.run(weights_conv1)` as demonstrated further below. ###Code weights_conv1 = get_weights_variable(layer_name='layer_conv1') weights_conv2 = get_weights_variable(layer_name='layer_conv2') ###Output _____no_output_____ ###Markdown TensorFlow Run Create TensorFlow sessionOnce the TensorFlow graph has been created, we have to create a TensorFlow session which is used to execute the graph. ###Code session = tf.Session() ###Output _____no_output_____ ###Markdown Initialize variablesThe variables for the TensorFlow graph must be initialized before we start optimizing them. ###Code session.run(tf.global_variables_initializer()) ###Output _____no_output_____ ###Markdown Helper-function to perform optimization iterations There are 55,000 images in the training-set. It takes a long time to calculate the gradient of the model using all these images. We therefore only use a small batch of images in each iteration of the optimizer.If your computer crashes or becomes very slow because you run out of RAM, then you may try and lower this number, but you may then need to do more optimization iterations. ###Code train_batch_size = 64 ###Output _____no_output_____ ###Markdown This function performs a number of optimization iterations so as to gradually improve the variables of the neural network layers. In each iteration, a new batch of data is selected from the training-set and then TensorFlow executes the optimizer using those training samples. The progress is printed every 100 iterations. ###Code # Counter for total number of iterations performed so far. total_iterations = 0 def optimize(num_iterations): # Ensure we update the global variable rather than a local copy. global total_iterations for i in range(total_iterations, total_iterations + num_iterations): # Get a batch of training examples. # x_batch now holds a batch of images and # y_true_batch are the true labels for those images. x_batch, y_true_batch = data.train.next_batch(train_batch_size) # Put the batch into a dict with the proper names # for placeholder variables in the TensorFlow graph. feed_dict_train = {x: x_batch, y_true: y_true_batch} # Run the optimizer using this batch of training data. # TensorFlow assigns the variables in feed_dict_train # to the placeholder variables and then runs the optimizer. session.run(optimizer, feed_dict=feed_dict_train) # Print status every 100 iterations. if i % 100 == 0: # Calculate the accuracy on the training-set. acc = session.run(accuracy, feed_dict=feed_dict_train) # Message for printing. msg = "Optimization Iteration: {0:>6}, Training Accuracy: {1:>6.1%}" # Print it. print(msg.format(i + 1, acc)) # Update the total number of iterations performed. total_iterations += num_iterations ###Output _____no_output_____ ###Markdown Helper-function to plot example errors Function for plotting examples of images from the test-set that have been mis-classified. ###Code def plot_example_errors(cls_pred, correct): # This function is called from print_test_accuracy() below. # cls_pred is an array of the predicted class-number for # all images in the test-set. # correct is a boolean array whether the predicted class # is equal to the true class for each image in the test-set. # Negate the boolean array. incorrect = (correct == False) # Get the images from the test-set that have been # incorrectly classified. images = data.test.images[incorrect] # Get the predicted classes for those images. cls_pred = cls_pred[incorrect] # Get the true classes for those images. cls_true = data.test.cls[incorrect] # Plot the first 9 images. plot_images(images=images[0:9], cls_true=cls_true[0:9], cls_pred=cls_pred[0:9]) ###Output _____no_output_____ ###Markdown Helper-function to plot confusion matrix ###Code def plot_confusion_matrix(cls_pred): # This is called from print_test_accuracy() below. # cls_pred is an array of the predicted class-number for # all images in the test-set. # Get the true classifications for the test-set. cls_true = data.test.cls # Get the confusion matrix using sklearn. cm = confusion_matrix(y_true=cls_true, y_pred=cls_pred) # Print the confusion matrix as text. print(cm) # Plot the confusion matrix as an image. plt.matshow(cm) # Make various adjustments to the plot. plt.colorbar() tick_marks = np.arange(num_classes) plt.xticks(tick_marks, range(num_classes)) plt.yticks(tick_marks, range(num_classes)) plt.xlabel('Predicted') plt.ylabel('True') # Ensure the plot is shown correctly with multiple plots # in a single Notebook cell. plt.show() ###Output _____no_output_____ ###Markdown Helper-function for showing the performance Below is a function for printing the classification accuracy on the test-set.It takes a while to compute the classification for all the images in the test-set, that's why the results are re-used by calling the above functions directly from this function, so the classifications don't have to be recalculated by each function.Note that this function can use a lot of computer memory, which is why the test-set is split into smaller batches. If you have little RAM in your computer and it crashes, then you can try and lower the batch-size. ###Code # Split the test-set into smaller batches of this size. test_batch_size = 256 def print_test_accuracy(show_example_errors=False, show_confusion_matrix=False): # Number of images in the test-set. num_test = len(data.test.images) # Allocate an array for the predicted classes which # will be calculated in batches and filled into this array. cls_pred = np.zeros(shape=num_test, dtype=np.int) # Now calculate the predicted classes for the batches. # We will just iterate through all the batches. # There might be a more clever and Pythonic way of doing this. # The starting index for the next batch is denoted i. i = 0 while i < num_test: # The ending index for the next batch is denoted j. j = min(i + test_batch_size, num_test) # Get the images from the test-set between index i and j. images = data.test.images[i:j, :] # Get the associated labels. labels = data.test.labels[i:j, :] # Create a feed-dict with these images and labels. feed_dict = {x: images, y_true: labels} # Calculate the predicted class using TensorFlow. cls_pred[i:j] = session.run(y_pred_cls, feed_dict=feed_dict) # Set the start-index for the next batch to the # end-index of the current batch. i = j # Convenience variable for the true class-numbers of the test-set. cls_true = data.test.cls # Create a boolean array whether each image is correctly classified. correct = (cls_true == cls_pred) # Calculate the number of correctly classified images. # When summing a boolean array, False means 0 and True means 1. correct_sum = correct.sum() # Classification accuracy is the number of correctly classified # images divided by the total number of images in the test-set. acc = float(correct_sum) / num_test # Print the accuracy. msg = "Accuracy on Test-Set: {0:.1%} ({1} / {2})" print(msg.format(acc, correct_sum, num_test)) # Plot some examples of mis-classifications, if desired. if show_example_errors: print("Example errors:") plot_example_errors(cls_pred=cls_pred, correct=correct) # Plot the confusion matrix, if desired. if show_confusion_matrix: print("Confusion Matrix:") plot_confusion_matrix(cls_pred=cls_pred) ###Output _____no_output_____ ###Markdown Performance before any optimizationThe accuracy on the test-set is very low because the variables for the neural network have only been initialized and not optimized at all, so it just classifies the images randomly. ###Code print_test_accuracy() ###Output Accuracy on Test-Set: 5.8% (577 / 10000) ###Markdown Performance after 1 optimization iterationThe classification accuracy does not improve much from just 1 optimization iteration, because the learning-rate for the optimizer is set very low. ###Code optimize(num_iterations=1) print_test_accuracy() ###Output Accuracy on Test-Set: 6.6% (659 / 10000) ###Markdown Performance after 100 optimization iterationsAfter 100 optimization iterations, the model has significantly improved its classification accuracy. ###Code %%time optimize(num_iterations=99) # We already performed 1 iteration above. print_test_accuracy(show_example_errors=True) ###Output Accuracy on Test-Set: 81.2% (8125 / 10000) Example errors: ###Markdown Performance after 1000 optimization iterationsAfter 1000 optimization iterations, the model has greatly increased its accuracy on the test-set to more than 90%. ###Code %%time optimize(num_iterations=900) # We performed 100 iterations above. print_test_accuracy(show_example_errors=True) ###Output Accuracy on Test-Set: 94.5% (9455 / 10000) Example errors: ###Markdown Performance after 10,000 optimization iterationsAfter 10,000 optimization iterations, the model has a classification accuracy on the test-set of about 99%. ###Code %%time optimize(num_iterations=9000) # We performed 1000 iterations above. print_test_accuracy(show_example_errors=True, show_confusion_matrix=True) ###Output Accuracy on Test-Set: 98.8% (9884 / 10000) Example errors: ###Markdown Visualization of Weights and Layers Helper-function for plotting convolutional weights ###Code def plot_conv_weights(weights, input_channel=0): # Assume weights are TensorFlow ops for 4-dim variables # e.g. weights_conv1 or weights_conv2. # Retrieve the values of the weight-variables from TensorFlow. # A feed-dict is not necessary because nothing is calculated. w = session.run(weights) # Get the lowest and highest values for the weights. # This is used to correct the colour intensity across # the images so they can be compared with each other. w_min = np.min(w) w_max = np.max(w) # Number of filters used in the conv. layer. num_filters = w.shape[3] # Number of grids to plot. # Rounded-up, square-root of the number of filters. num_grids = math.ceil(math.sqrt(num_filters)) # Create figure with a grid of sub-plots. fig, axes = plt.subplots(num_grids, num_grids) # Plot all the filter-weights. for i, ax in enumerate(axes.flat): # Only plot the valid filter-weights. if i<num_filters: # Get the weights for the i'th filter of the input channel. # See new_conv_layer() for details on the format # of this 4-dim tensor. img = w[:, :, input_channel, i] # Plot image. ax.imshow(img, vmin=w_min, vmax=w_max, interpolation='nearest', cmap='seismic') # Remove ticks from the plot. ax.set_xticks([]) ax.set_yticks([]) # Ensure the plot is shown correctly with multiple plots # in a single Notebook cell. plt.show() ###Output _____no_output_____ ###Markdown Helper-function for plotting the output of a convolutional layer ###Code def plot_conv_layer(layer, image): # Assume layer is a TensorFlow op that outputs a 4-dim tensor # which is the output of a convolutional layer, # e.g. layer_conv1 or layer_conv2. # Create a feed-dict containing just one image. # Note that we don't need to feed y_true because it is # not used in this calculation. feed_dict = {x: [image]} # Calculate and retrieve the output values of the layer # when inputting that image. values = session.run(layer, feed_dict=feed_dict) # Number of filters used in the conv. layer. num_filters = values.shape[3] # Number of grids to plot. # Rounded-up, square-root of the number of filters. num_grids = math.ceil(math.sqrt(num_filters)) # Create figure with a grid of sub-plots. fig, axes = plt.subplots(num_grids, num_grids) # Plot the output images of all the filters. for i, ax in enumerate(axes.flat): # Only plot the images for valid filters. if i<num_filters: # Get the output image of using the i'th filter. img = values[0, :, :, i] # Plot image. ax.imshow(img, interpolation='nearest', cmap='binary') # Remove ticks from the plot. ax.set_xticks([]) ax.set_yticks([]) # Ensure the plot is shown correctly with multiple plots # in a single Notebook cell. plt.show() ###Output _____no_output_____ ###Markdown Input ImagesHelper-function for plotting an image. ###Code def plot_image(image): plt.imshow(image.reshape(img_shape), interpolation='nearest', cmap='binary') plt.show() ###Output _____no_output_____ ###Markdown Plot an image from the test-set which will be used as an example below. ###Code image1 = data.test.images[0] plot_image(image1) ###Output _____no_output_____ ###Markdown Plot another example image from the test-set. ###Code image2 = data.test.images[13] plot_image(image2) ###Output _____no_output_____ ###Markdown Convolution Layer 1 Now plot the filter-weights for the first convolutional layer.Note that positive weights are red and negative weights are blue. ###Code plot_conv_weights(weights=weights_conv1) ###Output _____no_output_____ ###Markdown Applying each of these convolutional filters to the first input image gives the following output images, which are then used as input to the second convolutional layer. ###Code plot_conv_layer(layer=layer_conv1, image=image1) ###Output _____no_output_____ ###Markdown The following images are the results of applying the convolutional filters to the second image. ###Code plot_conv_layer(layer=layer_conv1, image=image2) ###Output _____no_output_____ ###Markdown Convolution Layer 2 Now plot the filter-weights for the second convolutional layer.There are 16 output channels from the first conv-layer, which means there are 16 input channels to the second conv-layer. The second conv-layer has a set of filter-weights for each of its input channels. We start by plotting the filter-weigths for the first channel.Note again that positive weights are red and negative weights are blue. ###Code plot_conv_weights(weights=weights_conv2, input_channel=0) ###Output _____no_output_____ ###Markdown There are 16 input channels to the second convolutional layer, so we can make another 15 plots of filter-weights like this. We just make one more with the filter-weights for the second channel. ###Code plot_conv_weights(weights=weights_conv2, input_channel=1) ###Output _____no_output_____ ###Markdown It can be difficult to understand and keep track of how these filters are applied because of the high dimensionality.Applying these convolutional filters to the images that were ouput from the first conv-layer gives the following images.Note that these are down-sampled to 14 x 14 pixels which is half the resolution of the original input images, because the first convolutional layer was followed by a max-pooling layer with stride 2. Max-pooling is also done after the second convolutional layer, but we retrieve these images before that has been applied. ###Code plot_conv_layer(layer=layer_conv2, image=image1) ###Output _____no_output_____ ###Markdown And these are the results of applying the filter-weights to the second image. ###Code plot_conv_layer(layer=layer_conv2, image=image2) ###Output _____no_output_____ ###Markdown Close TensorFlow Session We are now done using TensorFlow, so we close the session to release its resources. ###Code # This has been commented out in case you want to modify and experiment # with the Notebook without having to restart it. # session.close() ###Output _____no_output_____ ###Markdown TensorFlow Tutorial 03-B Layers APIby [Abbas Malekpour](https://github.com/abbasmalekpour)/ [GitHub](https://github.com/abbasmalekpour/TensorFlow-Deeplearning) / [ ](https://www.youtube.com/playlist?list=PL9Hr9sNUjfsmEu1ZniY0XpHSzl5uihcXZ) WARNING!**The Layers API was intended to be a basic builder API for creating Neural Networks in TensorFlow, but the Layers API was never fully completed. Although it still works in TensorFlow v. 1.9, it seems quite possible that it may be deprecated in the future. It is recommended that you use the more complete _Keras API_ instead, see Tutorial 03-C.** IntroductionIt is important to use a builder API when constructing Neural Networks in TensorFlow because it makes it easier to implement and modify the source-code. This also lowers the risk of bugs.Many of the other tutorials used the TensorFlow builder API called PrettyTensor for easy construction of Neural Networks. But there are several other builder APIs available for TensorFlow. PrettyTensor was used in these tutorials, because at the time in mid-2016, PrettyTensor was the most complete and polished builder API available for TensorFlow. But PrettyTensor is only developed by a single person working at Google and although it has some unique and elegant features, it is possible that it may become deprecated in the future.This tutorial is about a small builder API that has recently been added to TensorFlow version 1.1. It is simply called *Layers* or the *Layers API* or by its Python name `tf.layers`. This builder API is automatically installed as part of TensorFlow, so you no longer have to install a separate Python package as was needed with PrettyTensor.This tutorial is very similar to Tutorial 03 on PrettyTensor and shows how to implement the same Convolutional Neural Network using the Layers API. It is recommended that you are familiar with Tutorial 02 on Convolutional Neural Networks. Flowchart The following chart shows roughly how the data flows in the Convolutional Neural Network that is implemented below. See Tutorial 02 for a more detailed description of convolution. ![Flowchart](images/02_network_flowchart.png) The input image is processed in the first convolutional layer using the filter-weights. This results in 16 new images, one for each filter in the convolutional layer. The images are also down-sampled using max-pooling so the image resolution is decreased from 28x28 to 14x14.These 16 smaller images are then processed in the second convolutional layer. We need filter-weights for each of these 16 channels, and we need filter-weights for each output channel of this layer. There are 36 output channels so there are a total of 16 x 36 = 576 filters in the second convolutional layer. The resulting images are also down-sampled using max-pooling to 7x7 pixels.The output of the second convolutional layer is 36 images of 7x7 pixels each. These are then flattened to a single vector of length 7 x 7 x 36 = 1764, which is used as the input to a fully-connected layer with 128 neurons (or elements). This feeds into another fully-connected layer with 10 neurons, one for each of the classes, which is used to determine the class of the image, that is, which number is depicted in the image.The convolutional filters are initially chosen at random, so the classification is done randomly. The error between the predicted and true class of the input image is measured as the so-called cross-entropy. The optimizer then automatically propagates this error back through the Convolutional Network using the chain-rule of differentiation and updates the filter-weights so as to improve the classification error. This is done iteratively thousands of times until the classification error is sufficiently low.These particular filter-weights and intermediate images are the results of one optimization run and may look different if you re-run this Notebook.Note that the computation in TensorFlow is actually done on a batch of images instead of a single image, which makes the computation more efficient. This means the flowchart actually has one more data-dimension when implemented in TensorFlow. Imports ###Code %matplotlib inline import matplotlib.pyplot as plt import tensorflow as tf import numpy as np from sklearn.metrics import confusion_matrix import math ###Output _____no_output_____ ###Markdown This was developed using Python 3.6 (Anaconda) and TensorFlow version: ###Code tf.__version__ ###Output _____no_output_____ ###Markdown Load Data The MNIST data-set is about 12 MB and will be downloaded automatically if it is not located in the given path. ###Code from tensorflow.examples.tutorials.mnist import input_data data = input_data.read_data_sets('data/MNIST/', one_hot=True) ###Output Extracting data/MNIST/train-images-idx3-ubyte.gz Extracting data/MNIST/train-labels-idx1-ubyte.gz Extracting data/MNIST/t10k-images-idx3-ubyte.gz Extracting data/MNIST/t10k-labels-idx1-ubyte.gz ###Markdown The MNIST data-set has now been loaded and consists of 70,000 images and associated labels (i.e. classifications of the images). The data-set is split into 3 mutually exclusive sub-sets. We will only use the training and test-sets in this tutorial. ###Code print("Size of:") print("- Training-set:\t\t{}".format(len(data.train.labels))) print("- Test-set:\t\t{}".format(len(data.test.labels))) print("- Validation-set:\t{}".format(len(data.validation.labels))) ###Output Size of: - Training-set: 55000 - Test-set: 10000 - Validation-set: 5000 ###Markdown The class-labels are One-Hot encoded, which means that each label is a vector with 10 elements, all of which are zero except for one element. The index of this one element is the class-number, that is, the digit shown in the associated image. We also need the class-numbers as integers for the test-set, so we calculate it now. ###Code data.test.cls = np.argmax(data.test.labels, axis=1) ###Output _____no_output_____ ###Markdown Data Dimensions The data dimensions are used in several places in the source-code below. They are defined once so we can use these variables instead of numbers throughout the source-code below. ###Code # We know that MNIST images are 28 pixels in each dimension. img_size = 28 # Images are stored in one-dimensional arrays of this length. img_size_flat = img_size * img_size # Tuple with height and width of images used to reshape arrays. img_shape = (img_size, img_size) # Number of colour channels for the images: 1 channel for gray-scale. num_channels = 1 # Number of classes, one class for each of 10 digits. num_classes = 10 ###Output _____no_output_____ ###Markdown Helper-function for plotting images Function used to plot 9 images in a 3x3 grid, and writing the true and predicted classes below each image. ###Code def plot_images(images, cls_true, cls_pred=None): assert len(images) == len(cls_true) == 9 # Create figure with 3x3 sub-plots. fig, axes = plt.subplots(3, 3) fig.subplots_adjust(hspace=0.3, wspace=0.3) for i, ax in enumerate(axes.flat): # Plot image. ax.imshow(images[i].reshape(img_shape), cmap='binary') # Show true and predicted classes. if cls_pred is None: xlabel = "True: {0}".format(cls_true[i]) else: xlabel = "True: {0}, Pred: {1}".format(cls_true[i], cls_pred[i]) # Show the classes as the label on the x-axis. ax.set_xlabel(xlabel) # Remove ticks from the plot. ax.set_xticks([]) ax.set_yticks([]) # Ensure the plot is shown correctly with multiple plots # in a single Notebook cell. plt.show() ###Output _____no_output_____ ###Markdown Plot a few images to see if data is correct ###Code # Get the first images from the test-set. images = data.test.images[0:9] # Get the true classes for those images. cls_true = data.test.cls[0:9] # Plot the images and labels using our helper-function above. plot_images(images=images, cls_true=cls_true) ###Output _____no_output_____ ###Markdown TensorFlow GraphThe entire purpose of TensorFlow is to have a so-called computational graph that can be executed much more efficiently than if the same calculations were to be performed directly in Python. TensorFlow can be more efficient than NumPy because TensorFlow knows the entire computation graph that must be executed, while NumPy only knows the computation of a single mathematical operation at a time.TensorFlow can also automatically calculate the gradients that are needed to optimize the variables of the graph so as to make the model perform better. This is because the graph is a combination of simple mathematical expressions so the gradient of the entire graph can be calculated using the chain-rule for derivatives.TensorFlow can also take advantage of multi-core CPUs as well as GPUs - and Google has even built special chips just for TensorFlow which are called TPUs (Tensor Processing Units) and are even faster than GPUs.A TensorFlow graph consists of the following parts which will be detailed below:* Placeholder variables used for inputting data to the graph.* Variables that are going to be optimized so as to make the convolutional network perform better.* The mathematical formulas for the convolutional neural network.* A so-called cost-measure or loss-function that can be used to guide the optimization of the variables.* An optimization method which updates the variables.In addition, the TensorFlow graph may also contain various debugging statements e.g. for logging data to be displayed using TensorBoard, which is not covered in this tutorial. Placeholder variables Placeholder variables serve as the input to the TensorFlow computational graph that we may change each time we execute the graph. We call this feeding the placeholder variables and it is demonstrated further below.First we define the placeholder variable for the input images. This allows us to change the images that are input to the TensorFlow graph. This is a so-called tensor, which just means that it is a multi-dimensional array. The data-type is set to `float32` and the shape is set to `[None, img_size_flat]`, where `None` means that the tensor may hold an arbitrary number of images with each image being a vector of length `img_size_flat`. ###Code x = tf.placeholder(tf.float32, shape=[None, img_size_flat], name='x') ###Output _____no_output_____ ###Markdown The convolutional layers expect `x` to be encoded as a 4-dim tensor so we have to reshape it so its shape is instead `[num_images, img_height, img_width, num_channels]`. Note that `img_height == img_width == img_size` and `num_images` can be inferred automatically by using -1 for the size of the first dimension. So the reshape operation is: ###Code x_image = tf.reshape(x, [-1, img_size, img_size, num_channels]) ###Output _____no_output_____ ###Markdown Next we have the placeholder variable for the true labels associated with the images that were input in the placeholder variable `x`. The shape of this placeholder variable is `[None, num_classes]` which means it may hold an arbitrary number of labels and each label is a vector of length `num_classes` which is 10 in this case. ###Code y_true = tf.placeholder(tf.float32, shape=[None, num_classes], name='y_true') ###Output _____no_output_____ ###Markdown We could also have a placeholder variable for the class-number, but we will instead calculate it using argmax. Note that this is a TensorFlow operator so nothing is calculated at this point. ###Code y_true_cls = tf.argmax(y_true, dimension=1) ###Output _____no_output_____ ###Markdown PrettyTensor ImplementationThis section shows the implementation of a Convolutional Neural Network using PrettyTensor taken from Tutorial 03 so it can be compared to the implementation using the Layers API below. This code has been enclosed in an `if False:` block so it does not run here.The basic idea is to wrap the input tensor `x_image` in a PrettyTensor object which has helper-functions for adding new computational layers so as to create an entire Convolutional Neural Network. This is a fairly simple and elegant syntax. ###Code if False: x_pretty = pt.wrap(x_image) with pt.defaults_scope(activation_fn=tf.nn.relu): y_pred, loss = x_pretty.\ conv2d(kernel=5, depth=16, name='layer_conv1').\ max_pool(kernel=2, stride=2).\ conv2d(kernel=5, depth=36, name='layer_conv2').\ max_pool(kernel=2, stride=2).\ flatten().\ fully_connected(size=128, name='layer_fc1').\ softmax_classifier(num_classes=num_classes, labels=y_true) ###Output _____no_output_____ ###Markdown Layers ImplementationWe now implement the same Convolutional Neural Network using the Layers API that is included in TensorFlow version 1.1. This requires more code than PrettyTensor, although a lot of the following are just comments.We use the `net`-variable to refer to the last layer while building the Neural Network. This makes it easy to add or remove layers in the code if you want to experiment. First we set the `net`-variable to the reshaped input image. ###Code net = x_image ###Output _____no_output_____ ###Markdown The input image is then input to the first convolutional layer, which has 16 filters each of size 5x5 pixels. The activation-function is the Rectified Linear Unit (ReLU) described in more detail in Tutorial 02. ###Code net = tf.layers.conv2d(inputs=net, name='layer_conv1', padding='same', filters=16, kernel_size=5, activation=tf.nn.relu) ###Output _____no_output_____ ###Markdown One of the advantages of constructing neural networks in this fashion, is that we can now easily pull out a reference to a layer. This was more complicated in PrettyTensor.Further below we want to plot the output of the first convolutional layer, so we create another variable for holding a reference to that layer. ###Code layer_conv1 = net ###Output _____no_output_____ ###Markdown We now do the max-pooling on the output of the convolutional layer. This was also described in more detail in Tutorial 02. ###Code net = tf.layers.max_pooling2d(inputs=net, pool_size=2, strides=2) ###Output _____no_output_____ ###Markdown We now add the second convolutional layer which has 36 filters each with 5x5 pixels, and a ReLU activation function again. ###Code net = tf.layers.conv2d(inputs=net, name='layer_conv2', padding='same', filters=36, kernel_size=5, activation=tf.nn.relu) ###Output _____no_output_____ ###Markdown We also want to plot the output of this convolutional layer, so we keep a reference for later use. ###Code layer_conv2 = net ###Output _____no_output_____ ###Markdown The output of the second convolutional layer is also max-pooled for down-sampling the images. ###Code net = tf.layers.max_pooling2d(inputs=net, pool_size=2, strides=2) ###Output _____no_output_____ ###Markdown The tensors that are being output by this max-pooling are 4-rank, as can be seen from this: ###Code net ###Output _____no_output_____ ###Markdown Next we want to add fully-connected layers to the Neural Network, but these require 2-rank tensors as input, so we must first flatten the tensors.The `tf.layers` API was first located in `tf.contrib.layers` before it was moved into TensorFlow Core. But even though it has taken the TensorFlow developers a year to move these fairly simple functions, they have somehow forgotten to move the even simpler `flatten()` function. So we still need to use the one in `tf.contrib.layers`. ###Code net = tf.contrib.layers.flatten(net) # This should eventually be replaced by: # net = tf.layers.flatten(net) ###Output _____no_output_____ ###Markdown This has now flattened the data to a 2-rank tensor, as can be seen from this: ###Code net ###Output _____no_output_____ ###Markdown We can now add fully-connected layers to the neural network. These are called *dense* layers in the Layers API. ###Code net = tf.layers.dense(inputs=net, name='layer_fc1', units=128, activation=tf.nn.relu) ###Output _____no_output_____ ###Markdown We need the neural network to classify the input images into 10 different classes. So the final fully-connected layer has `num_classes=10` output neurons. ###Code net = tf.layers.dense(inputs=net, name='layer_fc_out', units=num_classes, activation=None) ###Output _____no_output_____ ###Markdown The output of the final fully-connected layer are sometimes called logits, so we have a convenience variable with that name. ###Code logits = net ###Output _____no_output_____ ###Markdown We use the softmax function to 'squash' the outputs so they are between zero and one, and so they sum to one. ###Code y_pred = tf.nn.softmax(logits=logits) ###Output _____no_output_____ ###Markdown This tells us how likely the neural network thinks the input image is of each possible class. The one that has the highest value is considered the most likely so its index is taken to be the class-number. ###Code y_pred_cls = tf.argmax(y_pred, dimension=1) ###Output _____no_output_____ ###Markdown We have now created the exact same Convolutional Neural Network in a few lines of code that required many complex lines of code in the direct TensorFlow implementation.The Layers API is perhaps not as elegant as PrettyTensor, but it has some other advantages, e.g. that we can more easily refer to intermediate layers, and it is also easier to construct neural networks with branches and multiple outputs using the Layers API. Loss-Function to be Optimized To make the model better at classifying the input images, we must somehow change the variables of the Convolutional Neural Network.The cross-entropy is a performance measure used in classification. The cross-entropy is a continuous function that is always positive and if the predicted output of the model exactly matches the desired output then the cross-entropy equals zero. The goal of optimization is therefore to minimize the cross-entropy so it gets as close to zero as possible by changing the variables of the model.TensorFlow has a function for calculating the cross-entropy, which uses the values of the `logits`-layer because it also calculates the softmax internally, so as to to improve numerical stability. ###Code cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels=y_true, logits=logits) ###Output _____no_output_____ ###Markdown We have now calculated the cross-entropy for each of the image classifications so we have a measure of how well the model performs on each image individually. But in order to use the cross-entropy to guide the optimization of the model's variables we need a single scalar value, so we simply take the average of the cross-entropy for all the image classifications. ###Code loss = tf.reduce_mean(cross_entropy) ###Output _____no_output_____ ###Markdown Optimization MethodNow that we have a cost measure that must be minimized, we can then create an optimizer. In this case it is the Adam optimizer with a learning-rate of 1e-4.Note that optimization is not performed at this point. In fact, nothing is calculated at all, we just add the optimizer-object to the TensorFlow graph for later execution. ###Code optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(loss) ###Output _____no_output_____ ###Markdown Classification AccuracyWe need to calculate the classification accuracy so we can report progress to the user.First we create a vector of booleans telling us whether the predicted class equals the true class of each image. ###Code correct_prediction = tf.equal(y_pred_cls, y_true_cls) ###Output _____no_output_____ ###Markdown The classification accuracy is calculated by first type-casting the vector of booleans to floats, so that False becomes 0 and True becomes 1, and then taking the average of these numbers. ###Code accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) ###Output _____no_output_____ ###Markdown Getting the WeightsFurther below, we want to plot the weights of the convolutional layers. In the TensorFlow implementation we had created the variables ourselves so we could just refer to them directly. But when the network is constructed using a builder API such as `tf.layers`, all the variables of the layers are created indirectly by the builder API. We therefore have to retrieve the variables from TensorFlow.First we need a list of the variable names in the TensorFlow graph: ###Code for var in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES): print(var) ###Output <tf.Variable 'layer_conv1/kernel:0' shape=(5, 5, 1, 16) dtype=float32_ref> <tf.Variable 'layer_conv1/bias:0' shape=(16,) dtype=float32_ref> <tf.Variable 'layer_conv2/kernel:0' shape=(5, 5, 16, 36) dtype=float32_ref> <tf.Variable 'layer_conv2/bias:0' shape=(36,) dtype=float32_ref> <tf.Variable 'layer_fc1/kernel:0' shape=(1764, 128) dtype=float32_ref> <tf.Variable 'layer_fc1/bias:0' shape=(128,) dtype=float32_ref> <tf.Variable 'layer_fc_out/kernel:0' shape=(128, 10) dtype=float32_ref> <tf.Variable 'layer_fc_out/bias:0' shape=(10,) dtype=float32_ref> <tf.Variable 'beta1_power:0' shape=() dtype=float32_ref> <tf.Variable 'beta2_power:0' shape=() dtype=float32_ref> <tf.Variable 'layer_conv1/kernel/Adam:0' shape=(5, 5, 1, 16) dtype=float32_ref> <tf.Variable 'layer_conv1/kernel/Adam_1:0' shape=(5, 5, 1, 16) dtype=float32_ref> <tf.Variable 'layer_conv1/bias/Adam:0' shape=(16,) dtype=float32_ref> <tf.Variable 'layer_conv1/bias/Adam_1:0' shape=(16,) dtype=float32_ref> <tf.Variable 'layer_conv2/kernel/Adam:0' shape=(5, 5, 16, 36) dtype=float32_ref> <tf.Variable 'layer_conv2/kernel/Adam_1:0' shape=(5, 5, 16, 36) dtype=float32_ref> <tf.Variable 'layer_conv2/bias/Adam:0' shape=(36,) dtype=float32_ref> <tf.Variable 'layer_conv2/bias/Adam_1:0' shape=(36,) dtype=float32_ref> <tf.Variable 'layer_fc1/kernel/Adam:0' shape=(1764, 128) dtype=float32_ref> <tf.Variable 'layer_fc1/kernel/Adam_1:0' shape=(1764, 128) dtype=float32_ref> <tf.Variable 'layer_fc1/bias/Adam:0' shape=(128,) dtype=float32_ref> <tf.Variable 'layer_fc1/bias/Adam_1:0' shape=(128,) dtype=float32_ref> <tf.Variable 'layer_fc_out/kernel/Adam:0' shape=(128, 10) dtype=float32_ref> <tf.Variable 'layer_fc_out/kernel/Adam_1:0' shape=(128, 10) dtype=float32_ref> <tf.Variable 'layer_fc_out/bias/Adam:0' shape=(10,) dtype=float32_ref> <tf.Variable 'layer_fc_out/bias/Adam_1:0' shape=(10,) dtype=float32_ref> ###Markdown Each of the convolutional layers has two variables. For the first convolutional layer they are named `layer_conv1/kernel:0` and `layer_conv1/bias:0`. The `kernel` variables are the ones we want to plot further below.It is somewhat awkward to get references to these variables, because we have to use the TensorFlow function `get_variable()` which was designed for another purpose; either creating a new variable or re-using an existing variable. The easiest thing is to make the following helper-function. ###Code def get_weights_variable(layer_name): # Retrieve an existing variable named 'kernel' in the scope # with the given layer_name. # This is awkward because the TensorFlow function was # really intended for another purpose. with tf.variable_scope(layer_name, reuse=True): variable = tf.get_variable('kernel') return variable ###Output _____no_output_____ ###Markdown Using this helper-function we can retrieve the variables. These are TensorFlow objects. In order to get the contents of the variables, you must do something like: `contents = session.run(weights_conv1)` as demonstrated further below. ###Code weights_conv1 = get_weights_variable(layer_name='layer_conv1') weights_conv2 = get_weights_variable(layer_name='layer_conv2') ###Output _____no_output_____ ###Markdown TensorFlow Run Create TensorFlow sessionOnce the TensorFlow graph has been created, we have to create a TensorFlow session which is used to execute the graph. ###Code session = tf.Session() ###Output _____no_output_____ ###Markdown Initialize variablesThe variables for the TensorFlow graph must be initialized before we start optimizing them. ###Code session.run(tf.global_variables_initializer()) ###Output _____no_output_____ ###Markdown Helper-function to perform optimization iterations There are 55,000 images in the training-set. It takes a long time to calculate the gradient of the model using all these images. We therefore only use a small batch of images in each iteration of the optimizer.If your computer crashes or becomes very slow because you run out of RAM, then you may try and lower this number, but you may then need to do more optimization iterations. ###Code train_batch_size = 64 ###Output _____no_output_____ ###Markdown This function performs a number of optimization iterations so as to gradually improve the variables of the neural network layers. In each iteration, a new batch of data is selected from the training-set and then TensorFlow executes the optimizer using those training samples. The progress is printed every 100 iterations. ###Code # Counter for total number of iterations performed so far. total_iterations = 0 def optimize(num_iterations): # Ensure we update the global variable rather than a local copy. global total_iterations for i in range(total_iterations, total_iterations + num_iterations): # Get a batch of training examples. # x_batch now holds a batch of images and # y_true_batch are the true labels for those images. x_batch, y_true_batch = data.train.next_batch(train_batch_size) # Put the batch into a dict with the proper names # for placeholder variables in the TensorFlow graph. feed_dict_train = {x: x_batch, y_true: y_true_batch} # Run the optimizer using this batch of training data. # TensorFlow assigns the variables in feed_dict_train # to the placeholder variables and then runs the optimizer. session.run(optimizer, feed_dict=feed_dict_train) # Print status every 100 iterations. if i % 100 == 0: # Calculate the accuracy on the training-set. acc = session.run(accuracy, feed_dict=feed_dict_train) # Message for printing. msg = "Optimization Iteration: {0:>6}, Training Accuracy: {1:>6.1%}" # Print it. print(msg.format(i + 1, acc)) # Update the total number of iterations performed. total_iterations += num_iterations ###Output _____no_output_____ ###Markdown Helper-function to plot example errors Function for plotting examples of images from the test-set that have been mis-classified. ###Code def plot_example_errors(cls_pred, correct): # This function is called from print_test_accuracy() below. # cls_pred is an array of the predicted class-number for # all images in the test-set. # correct is a boolean array whether the predicted class # is equal to the true class for each image in the test-set. # Negate the boolean array. incorrect = (correct == False) # Get the images from the test-set that have been # incorrectly classified. images = data.test.images[incorrect] # Get the predicted classes for those images. cls_pred = cls_pred[incorrect] # Get the true classes for those images. cls_true = data.test.cls[incorrect] # Plot the first 9 images. plot_images(images=images[0:9], cls_true=cls_true[0:9], cls_pred=cls_pred[0:9]) ###Output _____no_output_____ ###Markdown Helper-function to plot confusion matrix ###Code def plot_confusion_matrix(cls_pred): # This is called from print_test_accuracy() below. # cls_pred is an array of the predicted class-number for # all images in the test-set. # Get the true classifications for the test-set. cls_true = data.test.cls # Get the confusion matrix using sklearn. cm = confusion_matrix(y_true=cls_true, y_pred=cls_pred) # Print the confusion matrix as text. print(cm) # Plot the confusion matrix as an image. plt.matshow(cm) # Make various adjustments to the plot. plt.colorbar() tick_marks = np.arange(num_classes) plt.xticks(tick_marks, range(num_classes)) plt.yticks(tick_marks, range(num_classes)) plt.xlabel('Predicted') plt.ylabel('True') # Ensure the plot is shown correctly with multiple plots # in a single Notebook cell. plt.show() ###Output _____no_output_____ ###Markdown Helper-function for showing the performance Below is a function for printing the classification accuracy on the test-set.It takes a while to compute the classification for all the images in the test-set, that's why the results are re-used by calling the above functions directly from this function, so the classifications don't have to be recalculated by each function.Note that this function can use a lot of computer memory, which is why the test-set is split into smaller batches. If you have little RAM in your computer and it crashes, then you can try and lower the batch-size. ###Code # Split the test-set into smaller batches of this size. test_batch_size = 256 def print_test_accuracy(show_example_errors=False, show_confusion_matrix=False): # Number of images in the test-set. num_test = len(data.test.images) # Allocate an array for the predicted classes which # will be calculated in batches and filled into this array. cls_pred = np.zeros(shape=num_test, dtype=np.int) # Now calculate the predicted classes for the batches. # We will just iterate through all the batches. # There might be a more clever and Pythonic way of doing this. # The starting index for the next batch is denoted i. i = 0 while i < num_test: # The ending index for the next batch is denoted j. j = min(i + test_batch_size, num_test) # Get the images from the test-set between index i and j. images = data.test.images[i:j, :] # Get the associated labels. labels = data.test.labels[i:j, :] # Create a feed-dict with these images and labels. feed_dict = {x: images, y_true: labels} # Calculate the predicted class using TensorFlow. cls_pred[i:j] = session.run(y_pred_cls, feed_dict=feed_dict) # Set the start-index for the next batch to the # end-index of the current batch. i = j # Convenience variable for the true class-numbers of the test-set. cls_true = data.test.cls # Create a boolean array whether each image is correctly classified. correct = (cls_true == cls_pred) # Calculate the number of correctly classified images. # When summing a boolean array, False means 0 and True means 1. correct_sum = correct.sum() # Classification accuracy is the number of correctly classified # images divided by the total number of images in the test-set. acc = float(correct_sum) / num_test # Print the accuracy. msg = "Accuracy on Test-Set: {0:.1%} ({1} / {2})" print(msg.format(acc, correct_sum, num_test)) # Plot some examples of mis-classifications, if desired. if show_example_errors: print("Example errors:") plot_example_errors(cls_pred=cls_pred, correct=correct) # Plot the confusion matrix, if desired. if show_confusion_matrix: print("Confusion Matrix:") plot_confusion_matrix(cls_pred=cls_pred) ###Output _____no_output_____ ###Markdown Performance before any optimizationThe accuracy on the test-set is very low because the variables for the neural network have only been initialized and not optimized at all, so it just classifies the images randomly. ###Code print_test_accuracy() ###Output Accuracy on Test-Set: 5.8% (577 / 10000) ###Markdown Performance after 1 optimization iterationThe classification accuracy does not improve much from just 1 optimization iteration, because the learning-rate for the optimizer is set very low. ###Code optimize(num_iterations=1) print_test_accuracy() ###Output Accuracy on Test-Set: 6.6% (659 / 10000) ###Markdown Performance after 100 optimization iterationsAfter 100 optimization iterations, the model has significantly improved its classification accuracy. ###Code %%time optimize(num_iterations=99) # We already performed 1 iteration above. print_test_accuracy(show_example_errors=True) ###Output Accuracy on Test-Set: 81.2% (8125 / 10000) Example errors: ###Markdown Performance after 1000 optimization iterationsAfter 1000 optimization iterations, the model has greatly increased its accuracy on the test-set to more than 90%. ###Code %%time optimize(num_iterations=900) # We performed 100 iterations above. print_test_accuracy(show_example_errors=True) ###Output Accuracy on Test-Set: 94.5% (9455 / 10000) Example errors: ###Markdown Performance after 10,000 optimization iterationsAfter 10,000 optimization iterations, the model has a classification accuracy on the test-set of about 99%. ###Code %%time optimize(num_iterations=9000) # We performed 1000 iterations above. print_test_accuracy(show_example_errors=True, show_confusion_matrix=True) ###Output Accuracy on Test-Set: 98.8% (9884 / 10000) Example errors: ###Markdown Visualization of Weights and Layers Helper-function for plotting convolutional weights ###Code def plot_conv_weights(weights, input_channel=0): # Assume weights are TensorFlow ops for 4-dim variables # e.g. weights_conv1 or weights_conv2. # Retrieve the values of the weight-variables from TensorFlow. # A feed-dict is not necessary because nothing is calculated. w = session.run(weights) # Get the lowest and highest values for the weights. # This is used to correct the colour intensity across # the images so they can be compared with each other. w_min = np.min(w) w_max = np.max(w) # Number of filters used in the conv. layer. num_filters = w.shape[3] # Number of grids to plot. # Rounded-up, square-root of the number of filters. num_grids = math.ceil(math.sqrt(num_filters)) # Create figure with a grid of sub-plots. fig, axes = plt.subplots(num_grids, num_grids) # Plot all the filter-weights. for i, ax in enumerate(axes.flat): # Only plot the valid filter-weights. if i<num_filters: # Get the weights for the i'th filter of the input channel. # See new_conv_layer() for details on the format # of this 4-dim tensor. img = w[:, :, input_channel, i] # Plot image. ax.imshow(img, vmin=w_min, vmax=w_max, interpolation='nearest', cmap='seismic') # Remove ticks from the plot. ax.set_xticks([]) ax.set_yticks([]) # Ensure the plot is shown correctly with multiple plots # in a single Notebook cell. plt.show() ###Output _____no_output_____ ###Markdown Helper-function for plotting the output of a convolutional layer ###Code def plot_conv_layer(layer, image): # Assume layer is a TensorFlow op that outputs a 4-dim tensor # which is the output of a convolutional layer, # e.g. layer_conv1 or layer_conv2. # Create a feed-dict containing just one image. # Note that we don't need to feed y_true because it is # not used in this calculation. feed_dict = {x: [image]} # Calculate and retrieve the output values of the layer # when inputting that image. values = session.run(layer, feed_dict=feed_dict) # Number of filters used in the conv. layer. num_filters = values.shape[3] # Number of grids to plot. # Rounded-up, square-root of the number of filters. num_grids = math.ceil(math.sqrt(num_filters)) # Create figure with a grid of sub-plots. fig, axes = plt.subplots(num_grids, num_grids) # Plot the output images of all the filters. for i, ax in enumerate(axes.flat): # Only plot the images for valid filters. if i<num_filters: # Get the output image of using the i'th filter. img = values[0, :, :, i] # Plot image. ax.imshow(img, interpolation='nearest', cmap='binary') # Remove ticks from the plot. ax.set_xticks([]) ax.set_yticks([]) # Ensure the plot is shown correctly with multiple plots # in a single Notebook cell. plt.show() ###Output _____no_output_____ ###Markdown Input ImagesHelper-function for plotting an image. ###Code def plot_image(image): plt.imshow(image.reshape(img_shape), interpolation='nearest', cmap='binary') plt.show() ###Output _____no_output_____ ###Markdown Plot an image from the test-set which will be used as an example below. ###Code image1 = data.test.images[0] plot_image(image1) ###Output _____no_output_____ ###Markdown Plot another example image from the test-set. ###Code image2 = data.test.images[13] plot_image(image2) ###Output _____no_output_____ ###Markdown Convolution Layer 1 Now plot the filter-weights for the first convolutional layer.Note that positive weights are red and negative weights are blue. ###Code plot_conv_weights(weights=weights_conv1) ###Output _____no_output_____ ###Markdown Applying each of these convolutional filters to the first input image gives the following output images, which are then used as input to the second convolutional layer. ###Code plot_conv_layer(layer=layer_conv1, image=image1) ###Output _____no_output_____ ###Markdown The following images are the results of applying the convolutional filters to the second image. ###Code plot_conv_layer(layer=layer_conv1, image=image2) ###Output _____no_output_____ ###Markdown Convolution Layer 2 Now plot the filter-weights for the second convolutional layer.There are 16 output channels from the first conv-layer, which means there are 16 input channels to the second conv-layer. The second conv-layer has a set of filter-weights for each of its input channels. We start by plotting the filter-weigths for the first channel.Note again that positive weights are red and negative weights are blue. ###Code plot_conv_weights(weights=weights_conv2, input_channel=0) ###Output _____no_output_____ ###Markdown There are 16 input channels to the second convolutional layer, so we can make another 15 plots of filter-weights like this. We just make one more with the filter-weights for the second channel. ###Code plot_conv_weights(weights=weights_conv2, input_channel=1) ###Output _____no_output_____ ###Markdown It can be difficult to understand and keep track of how these filters are applied because of the high dimensionality.Applying these convolutional filters to the images that were ouput from the first conv-layer gives the following images.Note that these are down-sampled to 14 x 14 pixels which is half the resolution of the original input images, because the first convolutional layer was followed by a max-pooling layer with stride 2. Max-pooling is also done after the second convolutional layer, but we retrieve these images before that has been applied. ###Code plot_conv_layer(layer=layer_conv2, image=image1) ###Output _____no_output_____ ###Markdown And these are the results of applying the filter-weights to the second image. ###Code plot_conv_layer(layer=layer_conv2, image=image2) ###Output _____no_output_____ ###Markdown Close TensorFlow Session We are now done using TensorFlow, so we close the session to release its resources. ###Code # This has been commented out in case you want to modify and experiment # with the Notebook without having to restart it. # session.close() ###Output _____no_output_____ ###Markdown TensorFlow Tutorial 03-B Layers APIby [Magnus Erik Hvass Pedersen](http://www.hvass-labs.org/)/ [GitHub](https://github.com/Hvass-Labs/TensorFlow-Tutorials) / [Videos on YouTube](https://www.youtube.com/playlist?list=PL9Hr9sNUjfsmEu1ZniY0XpHSzl5uihcXZ) WARNING!**The Layers API was intended to be a basic builder API for creating Neural Networks in TensorFlow, but the Layers API was never fully completed. Although it still works in TensorFlow v. 1.9, it seems quite possible that it may be deprecated in the future. It is recommended that you use the more complete _Keras API_ instead, see Tutorial 03-C.** IntroductionIt is important to use a builder API when constructing Neural Networks in TensorFlow because it makes it easier to implement and modify the source-code. This also lowers the risk of bugs.Many of the other tutorials used the TensorFlow builder API called PrettyTensor for easy construction of Neural Networks. But there are several other builder APIs available for TensorFlow. PrettyTensor was used in these tutorials, because at the time in mid-2016, PrettyTensor was the most complete and polished builder API available for TensorFlow. But PrettyTensor is only developed by a single person working at Google and although it has some unique and elegant features, it is possible that it may become deprecated in the future.This tutorial is about a small builder API that has recently been added to TensorFlow version 1.1. It is simply called *Layers* or the *Layers API* or by its Python name `tf.layers`. This builder API is automatically installed as part of TensorFlow, so you no longer have to install a separate Python package as was needed with PrettyTensor.This tutorial is very similar to Tutorial 03 on PrettyTensor and shows how to implement the same Convolutional Neural Network using the Layers API. It is recommended that you are familiar with Tutorial 02 on Convolutional Neural Networks. Flowchart The following chart shows roughly how the data flows in the Convolutional Neural Network that is implemented below. See Tutorial 02 for a more detailed description of convolution. ![Flowchart](images/02_network_flowchart.png) The input image is processed in the first convolutional layer using the filter-weights. This results in 16 new images, one for each filter in the convolutional layer. The images are also down-sampled using max-pooling so the image resolution is decreased from 28x28 to 14x14.These 16 smaller images are then processed in the second convolutional layer. We need filter-weights for each of these 16 channels, and we need filter-weights for each output channel of this layer. There are 36 output channels so there are a total of 16 x 36 = 576 filters in the second convolutional layer. The resulting images are also down-sampled using max-pooling to 7x7 pixels.The output of the second convolutional layer is 36 images of 7x7 pixels each. These are then flattened to a single vector of length 7 x 7 x 36 = 1764, which is used as the input to a fully-connected layer with 128 neurons (or elements). This feeds into another fully-connected layer with 10 neurons, one for each of the classes, which is used to determine the class of the image, that is, which number is depicted in the image.The convolutional filters are initially chosen at random, so the classification is done randomly. The error between the predicted and true class of the input image is measured as the so-called cross-entropy. The optimizer then automatically propagates this error back through the Convolutional Network using the chain-rule of differentiation and updates the filter-weights so as to improve the classification error. This is done iteratively thousands of times until the classification error is sufficiently low.These particular filter-weights and intermediate images are the results of one optimization run and may look different if you re-run this Notebook.Note that the computation in TensorFlow is actually done on a batch of images instead of a single image, which makes the computation more efficient. This means the flowchart actually has one more data-dimension when implemented in TensorFlow. Imports ###Code %matplotlib inline import matplotlib.pyplot as plt import tensorflow as tf import numpy as np from sklearn.metrics import confusion_matrix import math ###Output _____no_output_____ ###Markdown This was developed using Python 3.6 (Anaconda) and TensorFlow version: ###Code tf.__version__ ###Output _____no_output_____ ###Markdown Load Data The MNIST data-set is about 12 MB and will be downloaded automatically if it is not located in the given path. ###Code from tensorflow.examples.tutorials.mnist import input_data data = input_data.read_data_sets('data/MNIST/', one_hot=True) ###Output Extracting data/MNIST/train-images-idx3-ubyte.gz Extracting data/MNIST/train-labels-idx1-ubyte.gz Extracting data/MNIST/t10k-images-idx3-ubyte.gz Extracting data/MNIST/t10k-labels-idx1-ubyte.gz ###Markdown The MNIST data-set has now been loaded and consists of 70,000 images and associated labels (i.e. classifications of the images). The data-set is split into 3 mutually exclusive sub-sets. We will only use the training and test-sets in this tutorial. ###Code print("Size of:") print("- Training-set:\t\t{}".format(len(data.train.labels))) print("- Test-set:\t\t{}".format(len(data.test.labels))) print("- Validation-set:\t{}".format(len(data.validation.labels))) ###Output Size of: - Training-set: 55000 - Test-set: 10000 - Validation-set: 5000 ###Markdown The class-labels are One-Hot encoded, which means that each label is a vector with 10 elements, all of which are zero except for one element. The index of this one element is the class-number, that is, the digit shown in the associated image. We also need the class-numbers as integers for the test-set, so we calculate it now. ###Code data.test.cls = np.argmax(data.test.labels, axis=1) ###Output _____no_output_____ ###Markdown Data Dimensions The data dimensions are used in several places in the source-code below. They are defined once so we can use these variables instead of numbers throughout the source-code below. ###Code # We know that MNIST images are 28 pixels in each dimension. img_size = 28 # Images are stored in one-dimensional arrays of this length. img_size_flat = img_size * img_size # Tuple with height and width of images used to reshape arrays. img_shape = (img_size, img_size) # Number of colour channels for the images: 1 channel for gray-scale. num_channels = 1 # Number of classes, one class for each of 10 digits. num_classes = 10 ###Output _____no_output_____ ###Markdown Helper-function for plotting images Function used to plot 9 images in a 3x3 grid, and writing the true and predicted classes below each image. ###Code def plot_images(images, cls_true, cls_pred=None): assert len(images) == len(cls_true) == 9 # Create figure with 3x3 sub-plots. fig, axes = plt.subplots(3, 3) fig.subplots_adjust(hspace=0.3, wspace=0.3) for i, ax in enumerate(axes.flat): # Plot image. ax.imshow(images[i].reshape(img_shape), cmap='binary') # Show true and predicted classes. if cls_pred is None: xlabel = "True: {0}".format(cls_true[i]) else: xlabel = "True: {0}, Pred: {1}".format(cls_true[i], cls_pred[i]) # Show the classes as the label on the x-axis. ax.set_xlabel(xlabel) # Remove ticks from the plot. ax.set_xticks([]) ax.set_yticks([]) # Ensure the plot is shown correctly with multiple plots # in a single Notebook cell. plt.show() ###Output _____no_output_____ ###Markdown Plot a few images to see if data is correct ###Code # Get the first images from the test-set. images = data.test.images[0:9] # Get the true classes for those images. cls_true = data.test.cls[0:9] # Plot the images and labels using our helper-function above. plot_images(images=images, cls_true=cls_true) ###Output _____no_output_____ ###Markdown TensorFlow GraphThe entire purpose of TensorFlow is to have a so-called computational graph that can be executed much more efficiently than if the same calculations were to be performed directly in Python. TensorFlow can be more efficient than NumPy because TensorFlow knows the entire computation graph that must be executed, while NumPy only knows the computation of a single mathematical operation at a time.TensorFlow can also automatically calculate the gradients that are needed to optimize the variables of the graph so as to make the model perform better. This is because the graph is a combination of simple mathematical expressions so the gradient of the entire graph can be calculated using the chain-rule for derivatives.TensorFlow can also take advantage of multi-core CPUs as well as GPUs - and Google has even built special chips just for TensorFlow which are called TPUs (Tensor Processing Units) and are even faster than GPUs.A TensorFlow graph consists of the following parts which will be detailed below:* Placeholder variables used for inputting data to the graph.* Variables that are going to be optimized so as to make the convolutional network perform better.* The mathematical formulas for the convolutional neural network.* A so-called cost-measure or loss-function that can be used to guide the optimization of the variables.* An optimization method which updates the variables.In addition, the TensorFlow graph may also contain various debugging statements e.g. for logging data to be displayed using TensorBoard, which is not covered in this tutorial. Placeholder variables Placeholder variables serve as the input to the TensorFlow computational graph that we may change each time we execute the graph. We call this feeding the placeholder variables and it is demonstrated further below.First we define the placeholder variable for the input images. This allows us to change the images that are input to the TensorFlow graph. This is a so-called tensor, which just means that it is a multi-dimensional array. The data-type is set to `float32` and the shape is set to `[None, img_size_flat]`, where `None` means that the tensor may hold an arbitrary number of images with each image being a vector of length `img_size_flat`. ###Code x = tf.placeholder(tf.float32, shape=[None, img_size_flat], name='x') ###Output _____no_output_____ ###Markdown The convolutional layers expect `x` to be encoded as a 4-dim tensor so we have to reshape it so its shape is instead `[num_images, img_height, img_width, num_channels]`. Note that `img_height == img_width == img_size` and `num_images` can be inferred automatically by using -1 for the size of the first dimension. So the reshape operation is: ###Code x_image = tf.reshape(x, [-1, img_size, img_size, num_channels]) ###Output _____no_output_____ ###Markdown Next we have the placeholder variable for the true labels associated with the images that were input in the placeholder variable `x`. The shape of this placeholder variable is `[None, num_classes]` which means it may hold an arbitrary number of labels and each label is a vector of length `num_classes` which is 10 in this case. ###Code y_true = tf.placeholder(tf.float32, shape=[None, num_classes], name='y_true') ###Output _____no_output_____ ###Markdown We could also have a placeholder variable for the class-number, but we will instead calculate it using argmax. Note that this is a TensorFlow operator so nothing is calculated at this point. ###Code y_true_cls = tf.argmax(y_true, dimension=1) ###Output _____no_output_____ ###Markdown PrettyTensor ImplementationThis section shows the implementation of a Convolutional Neural Network using PrettyTensor taken from Tutorial 03 so it can be compared to the implementation using the Layers API below. This code has been enclosed in an `if False:` block so it does not run here.The basic idea is to wrap the input tensor `x_image` in a PrettyTensor object which has helper-functions for adding new computational layers so as to create an entire Convolutional Neural Network. This is a fairly simple and elegant syntax. ###Code if False: x_pretty = pt.wrap(x_image) with pt.defaults_scope(activation_fn=tf.nn.relu): y_pred, loss = x_pretty.\ conv2d(kernel=5, depth=16, name='layer_conv1').\ max_pool(kernel=2, stride=2).\ conv2d(kernel=5, depth=36, name='layer_conv2').\ max_pool(kernel=2, stride=2).\ flatten().\ fully_connected(size=128, name='layer_fc1').\ softmax_classifier(num_classes=num_classes, labels=y_true) ###Output _____no_output_____ ###Markdown Layers ImplementationWe now implement the same Convolutional Neural Network using the Layers API that is included in TensorFlow version 1.1. This requires more code than PrettyTensor, although a lot of the following are just comments.We use the `net`-variable to refer to the last layer while building the Neural Network. This makes it easy to add or remove layers in the code if you want to experiment. First we set the `net`-variable to the reshaped input image. ###Code net = x_image ###Output _____no_output_____ ###Markdown The input image is then input to the first convolutional layer, which has 16 filters each of size 5x5 pixels. The activation-function is the Rectified Linear Unit (ReLU) described in more detail in Tutorial 02. ###Code net = tf.layers.conv2d(inputs=net, name='layer_conv1', padding='same', filters=16, kernel_size=5, activation=tf.nn.relu) ###Output _____no_output_____ ###Markdown One of the advantages of constructing neural networks in this fashion, is that we can now easily pull out a reference to a layer. This was more complicated in PrettyTensor.Further below we want to plot the output of the first convolutional layer, so we create another variable for holding a reference to that layer. ###Code layer_conv1 = net ###Output _____no_output_____ ###Markdown We now do the max-pooling on the output of the convolutional layer. This was also described in more detail in Tutorial 02. ###Code net = tf.layers.max_pooling2d(inputs=net, pool_size=2, strides=2) ###Output _____no_output_____ ###Markdown We now add the second convolutional layer which has 36 filters each with 5x5 pixels, and a ReLU activation function again. ###Code net = tf.layers.conv2d(inputs=net, name='layer_conv2', padding='same', filters=36, kernel_size=5, activation=tf.nn.relu) ###Output _____no_output_____ ###Markdown We also want to plot the output of this convolutional layer, so we keep a reference for later use. ###Code layer_conv2 = net ###Output _____no_output_____ ###Markdown The output of the second convolutional layer is also max-pooled for down-sampling the images. ###Code net = tf.layers.max_pooling2d(inputs=net, pool_size=2, strides=2) ###Output _____no_output_____ ###Markdown The tensors that are being output by this max-pooling are 4-rank, as can be seen from this: ###Code net ###Output _____no_output_____ ###Markdown Next we want to add fully-connected layers to the Neural Network, but these require 2-rank tensors as input, so we must first flatten the tensors.The `tf.layers` API was first located in `tf.contrib.layers` before it was moved into TensorFlow Core. But even though it has taken the TensorFlow developers a year to move these fairly simple functions, they have somehow forgotten to move the even simpler `flatten()` function. So we still need to use the one in `tf.contrib.layers`. ###Code net = tf.contrib.layers.flatten(net) # This should eventually be replaced by: # net = tf.layers.flatten(net) ###Output _____no_output_____ ###Markdown This has now flattened the data to a 2-rank tensor, as can be seen from this: ###Code net ###Output _____no_output_____ ###Markdown We can now add fully-connected layers to the neural network. These are called *dense* layers in the Layers API. ###Code net = tf.layers.dense(inputs=net, name='layer_fc1', units=128, activation=tf.nn.relu) ###Output _____no_output_____ ###Markdown We need the neural network to classify the input images into 10 different classes. So the final fully-connected layer has `num_classes=10` output neurons. ###Code net = tf.layers.dense(inputs=net, name='layer_fc_out', units=num_classes, activation=None) ###Output _____no_output_____ ###Markdown The output of the final fully-connected layer are sometimes called logits, so we have a convenience variable with that name. ###Code logits = net ###Output _____no_output_____ ###Markdown We use the softmax function to 'squash' the outputs so they are between zero and one, and so they sum to one. ###Code y_pred = tf.nn.softmax(logits=logits) ###Output _____no_output_____ ###Markdown This tells us how likely the neural network thinks the input image is of each possible class. The one that has the highest value is considered the most likely so its index is taken to be the class-number. ###Code y_pred_cls = tf.argmax(y_pred, dimension=1) ###Output _____no_output_____ ###Markdown We have now created the exact same Convolutional Neural Network in a few lines of code that required many complex lines of code in the direct TensorFlow implementation.The Layers API is perhaps not as elegant as PrettyTensor, but it has some other advantages, e.g. that we can more easily refer to intermediate layers, and it is also easier to construct neural networks with branches and multiple outputs using the Layers API. Loss-Function to be Optimized To make the model better at classifying the input images, we must somehow change the variables of the Convolutional Neural Network.The cross-entropy is a performance measure used in classification. The cross-entropy is a continuous function that is always positive and if the predicted output of the model exactly matches the desired output then the cross-entropy equals zero. The goal of optimization is therefore to minimize the cross-entropy so it gets as close to zero as possible by changing the variables of the model.TensorFlow has a function for calculating the cross-entropy, which uses the values of the `logits`-layer because it also calculates the softmax internally, so as to to improve numerical stability. ###Code cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels=y_true, logits=logits) ###Output _____no_output_____ ###Markdown We have now calculated the cross-entropy for each of the image classifications so we have a measure of how well the model performs on each image individually. But in order to use the cross-entropy to guide the optimization of the model's variables we need a single scalar value, so we simply take the average of the cross-entropy for all the image classifications. ###Code loss = tf.reduce_mean(cross_entropy) ###Output _____no_output_____ ###Markdown Optimization MethodNow that we have a cost measure that must be minimized, we can then create an optimizer. In this case it is the Adam optimizer with a learning-rate of 1e-4.Note that optimization is not performed at this point. In fact, nothing is calculated at all, we just add the optimizer-object to the TensorFlow graph for later execution. ###Code optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(loss) ###Output _____no_output_____ ###Markdown Classification AccuracyWe need to calculate the classification accuracy so we can report progress to the user.First we create a vector of booleans telling us whether the predicted class equals the true class of each image. ###Code correct_prediction = tf.equal(y_pred_cls, y_true_cls) ###Output _____no_output_____ ###Markdown The classification accuracy is calculated by first type-casting the vector of booleans to floats, so that False becomes 0 and True becomes 1, and then taking the average of these numbers. ###Code accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) ###Output _____no_output_____ ###Markdown Getting the WeightsFurther below, we want to plot the weights of the convolutional layers. In the TensorFlow implementation we had created the variables ourselves so we could just refer to them directly. But when the network is constructed using a builder API such as `tf.layers`, all the variables of the layers are created indirectly by the builder API. We therefore have to retrieve the variables from TensorFlow.First we need a list of the variable names in the TensorFlow graph: ###Code for var in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES): print(var) ###Output <tf.Variable 'layer_conv1/kernel:0' shape=(5, 5, 1, 16) dtype=float32_ref> <tf.Variable 'layer_conv1/bias:0' shape=(16,) dtype=float32_ref> <tf.Variable 'layer_conv2/kernel:0' shape=(5, 5, 16, 36) dtype=float32_ref> <tf.Variable 'layer_conv2/bias:0' shape=(36,) dtype=float32_ref> <tf.Variable 'layer_fc1/kernel:0' shape=(1764, 128) dtype=float32_ref> <tf.Variable 'layer_fc1/bias:0' shape=(128,) dtype=float32_ref> <tf.Variable 'layer_fc_out/kernel:0' shape=(128, 10) dtype=float32_ref> <tf.Variable 'layer_fc_out/bias:0' shape=(10,) dtype=float32_ref> <tf.Variable 'beta1_power:0' shape=() dtype=float32_ref> <tf.Variable 'beta2_power:0' shape=() dtype=float32_ref> <tf.Variable 'layer_conv1/kernel/Adam:0' shape=(5, 5, 1, 16) dtype=float32_ref> <tf.Variable 'layer_conv1/kernel/Adam_1:0' shape=(5, 5, 1, 16) dtype=float32_ref> <tf.Variable 'layer_conv1/bias/Adam:0' shape=(16,) dtype=float32_ref> <tf.Variable 'layer_conv1/bias/Adam_1:0' shape=(16,) dtype=float32_ref> <tf.Variable 'layer_conv2/kernel/Adam:0' shape=(5, 5, 16, 36) dtype=float32_ref> <tf.Variable 'layer_conv2/kernel/Adam_1:0' shape=(5, 5, 16, 36) dtype=float32_ref> <tf.Variable 'layer_conv2/bias/Adam:0' shape=(36,) dtype=float32_ref> <tf.Variable 'layer_conv2/bias/Adam_1:0' shape=(36,) dtype=float32_ref> <tf.Variable 'layer_fc1/kernel/Adam:0' shape=(1764, 128) dtype=float32_ref> <tf.Variable 'layer_fc1/kernel/Adam_1:0' shape=(1764, 128) dtype=float32_ref> <tf.Variable 'layer_fc1/bias/Adam:0' shape=(128,) dtype=float32_ref> <tf.Variable 'layer_fc1/bias/Adam_1:0' shape=(128,) dtype=float32_ref> <tf.Variable 'layer_fc_out/kernel/Adam:0' shape=(128, 10) dtype=float32_ref> <tf.Variable 'layer_fc_out/kernel/Adam_1:0' shape=(128, 10) dtype=float32_ref> <tf.Variable 'layer_fc_out/bias/Adam:0' shape=(10,) dtype=float32_ref> <tf.Variable 'layer_fc_out/bias/Adam_1:0' shape=(10,) dtype=float32_ref> ###Markdown Each of the convolutional layers has two variables. For the first convolutional layer they are named `layer_conv1/kernel:0` and `layer_conv1/bias:0`. The `kernel` variables are the ones we want to plot further below.It is somewhat awkward to get references to these variables, because we have to use the TensorFlow function `get_variable()` which was designed for another purpose; either creating a new variable or re-using an existing variable. The easiest thing is to make the following helper-function. ###Code def get_weights_variable(layer_name): # Retrieve an existing variable named 'kernel' in the scope # with the given layer_name. # This is awkward because the TensorFlow function was # really intended for another purpose. with tf.variable_scope(layer_name, reuse=True): variable = tf.get_variable('kernel') return variable ###Output _____no_output_____ ###Markdown Using this helper-function we can retrieve the variables. These are TensorFlow objects. In order to get the contents of the variables, you must do something like: `contents = session.run(weights_conv1)` as demonstrated further below. ###Code weights_conv1 = get_weights_variable(layer_name='layer_conv1') weights_conv2 = get_weights_variable(layer_name='layer_conv2') ###Output _____no_output_____ ###Markdown TensorFlow Run Create TensorFlow sessionOnce the TensorFlow graph has been created, we have to create a TensorFlow session which is used to execute the graph. ###Code session = tf.Session() ###Output _____no_output_____ ###Markdown Initialize variablesThe variables for the TensorFlow graph must be initialized before we start optimizing them. ###Code session.run(tf.global_variables_initializer()) ###Output _____no_output_____ ###Markdown Helper-function to perform optimization iterations There are 55,000 images in the training-set. It takes a long time to calculate the gradient of the model using all these images. We therefore only use a small batch of images in each iteration of the optimizer.If your computer crashes or becomes very slow because you run out of RAM, then you may try and lower this number, but you may then need to do more optimization iterations. ###Code train_batch_size = 64 ###Output _____no_output_____ ###Markdown This function performs a number of optimization iterations so as to gradually improve the variables of the neural network layers. In each iteration, a new batch of data is selected from the training-set and then TensorFlow executes the optimizer using those training samples. The progress is printed every 100 iterations. ###Code # Counter for total number of iterations performed so far. total_iterations = 0 def optimize(num_iterations): # Ensure we update the global variable rather than a local copy. global total_iterations for i in range(total_iterations, total_iterations + num_iterations): # Get a batch of training examples. # x_batch now holds a batch of images and # y_true_batch are the true labels for those images. x_batch, y_true_batch = data.train.next_batch(train_batch_size) # Put the batch into a dict with the proper names # for placeholder variables in the TensorFlow graph. feed_dict_train = {x: x_batch, y_true: y_true_batch} # Run the optimizer using this batch of training data. # TensorFlow assigns the variables in feed_dict_train # to the placeholder variables and then runs the optimizer. session.run(optimizer, feed_dict=feed_dict_train) # Print status every 100 iterations. if i % 100 == 0: # Calculate the accuracy on the training-set. acc = session.run(accuracy, feed_dict=feed_dict_train) # Message for printing. msg = "Optimization Iteration: {0:>6}, Training Accuracy: {1:>6.1%}" # Print it. print(msg.format(i + 1, acc)) # Update the total number of iterations performed. total_iterations += num_iterations ###Output _____no_output_____ ###Markdown Helper-function to plot example errors Function for plotting examples of images from the test-set that have been mis-classified. ###Code def plot_example_errors(cls_pred, correct): # This function is called from print_test_accuracy() below. # cls_pred is an array of the predicted class-number for # all images in the test-set. # correct is a boolean array whether the predicted class # is equal to the true class for each image in the test-set. # Negate the boolean array. incorrect = (correct == False) # Get the images from the test-set that have been # incorrectly classified. images = data.test.images[incorrect] # Get the predicted classes for those images. cls_pred = cls_pred[incorrect] # Get the true classes for those images. cls_true = data.test.cls[incorrect] # Plot the first 9 images. plot_images(images=images[0:9], cls_true=cls_true[0:9], cls_pred=cls_pred[0:9]) ###Output _____no_output_____ ###Markdown Helper-function to plot confusion matrix ###Code def plot_confusion_matrix(cls_pred): # This is called from print_test_accuracy() below. # cls_pred is an array of the predicted class-number for # all images in the test-set. # Get the true classifications for the test-set. cls_true = data.test.cls # Get the confusion matrix using sklearn. cm = confusion_matrix(y_true=cls_true, y_pred=cls_pred) # Print the confusion matrix as text. print(cm) # Plot the confusion matrix as an image. plt.matshow(cm) # Make various adjustments to the plot. plt.colorbar() tick_marks = np.arange(num_classes) plt.xticks(tick_marks, range(num_classes)) plt.yticks(tick_marks, range(num_classes)) plt.xlabel('Predicted') plt.ylabel('True') # Ensure the plot is shown correctly with multiple plots # in a single Notebook cell. plt.show() ###Output _____no_output_____ ###Markdown Helper-function for showing the performance Below is a function for printing the classification accuracy on the test-set.It takes a while to compute the classification for all the images in the test-set, that's why the results are re-used by calling the above functions directly from this function, so the classifications don't have to be recalculated by each function.Note that this function can use a lot of computer memory, which is why the test-set is split into smaller batches. If you have little RAM in your computer and it crashes, then you can try and lower the batch-size. ###Code # Split the test-set into smaller batches of this size. test_batch_size = 256 def print_test_accuracy(show_example_errors=False, show_confusion_matrix=False): # Number of images in the test-set. num_test = len(data.test.images) # Allocate an array for the predicted classes which # will be calculated in batches and filled into this array. cls_pred = np.zeros(shape=num_test, dtype=np.int) # Now calculate the predicted classes for the batches. # We will just iterate through all the batches. # There might be a more clever and Pythonic way of doing this. # The starting index for the next batch is denoted i. i = 0 while i < num_test: # The ending index for the next batch is denoted j. j = min(i + test_batch_size, num_test) # Get the images from the test-set between index i and j. images = data.test.images[i:j, :] # Get the associated labels. labels = data.test.labels[i:j, :] # Create a feed-dict with these images and labels. feed_dict = {x: images, y_true: labels} # Calculate the predicted class using TensorFlow. cls_pred[i:j] = session.run(y_pred_cls, feed_dict=feed_dict) # Set the start-index for the next batch to the # end-index of the current batch. i = j # Convenience variable for the true class-numbers of the test-set. cls_true = data.test.cls # Create a boolean array whether each image is correctly classified. correct = (cls_true == cls_pred) # Calculate the number of correctly classified images. # When summing a boolean array, False means 0 and True means 1. correct_sum = correct.sum() # Classification accuracy is the number of correctly classified # images divided by the total number of images in the test-set. acc = float(correct_sum) / num_test # Print the accuracy. msg = "Accuracy on Test-Set: {0:.1%} ({1} / {2})" print(msg.format(acc, correct_sum, num_test)) # Plot some examples of mis-classifications, if desired. if show_example_errors: print("Example errors:") plot_example_errors(cls_pred=cls_pred, correct=correct) # Plot the confusion matrix, if desired. if show_confusion_matrix: print("Confusion Matrix:") plot_confusion_matrix(cls_pred=cls_pred) ###Output _____no_output_____ ###Markdown Performance before any optimizationThe accuracy on the test-set is very low because the variables for the neural network have only been initialized and not optimized at all, so it just classifies the images randomly. ###Code print_test_accuracy() ###Output Accuracy on Test-Set: 5.8% (577 / 10000) ###Markdown Performance after 1 optimization iterationThe classification accuracy does not improve much from just 1 optimization iteration, because the learning-rate for the optimizer is set very low. ###Code optimize(num_iterations=1) print_test_accuracy() ###Output Accuracy on Test-Set: 6.6% (659 / 10000) ###Markdown Performance after 100 optimization iterationsAfter 100 optimization iterations, the model has significantly improved its classification accuracy. ###Code %%time optimize(num_iterations=99) # We already performed 1 iteration above. print_test_accuracy(show_example_errors=True) ###Output Accuracy on Test-Set: 81.2% (8125 / 10000) Example errors: ###Markdown Performance after 1000 optimization iterationsAfter 1000 optimization iterations, the model has greatly increased its accuracy on the test-set to more than 90%. ###Code %%time optimize(num_iterations=900) # We performed 100 iterations above. print_test_accuracy(show_example_errors=True) ###Output Accuracy on Test-Set: 94.5% (9455 / 10000) Example errors: ###Markdown Performance after 10,000 optimization iterationsAfter 10,000 optimization iterations, the model has a classification accuracy on the test-set of about 99%. ###Code %%time optimize(num_iterations=9000) # We performed 1000 iterations above. print_test_accuracy(show_example_errors=True, show_confusion_matrix=True) ###Output Accuracy on Test-Set: 98.8% (9884 / 10000) Example errors: ###Markdown Visualization of Weights and Layers Helper-function for plotting convolutional weights ###Code def plot_conv_weights(weights, input_channel=0): # Assume weights are TensorFlow ops for 4-dim variables # e.g. weights_conv1 or weights_conv2. # Retrieve the values of the weight-variables from TensorFlow. # A feed-dict is not necessary because nothing is calculated. w = session.run(weights) # Get the lowest and highest values for the weights. # This is used to correct the colour intensity across # the images so they can be compared with each other. w_min = np.min(w) w_max = np.max(w) # Number of filters used in the conv. layer. num_filters = w.shape[3] # Number of grids to plot. # Rounded-up, square-root of the number of filters. num_grids = math.ceil(math.sqrt(num_filters)) # Create figure with a grid of sub-plots. fig, axes = plt.subplots(num_grids, num_grids) # Plot all the filter-weights. for i, ax in enumerate(axes.flat): # Only plot the valid filter-weights. if i<num_filters: # Get the weights for the i'th filter of the input channel. # See new_conv_layer() for details on the format # of this 4-dim tensor. img = w[:, :, input_channel, i] # Plot image. ax.imshow(img, vmin=w_min, vmax=w_max, interpolation='nearest', cmap='seismic') # Remove ticks from the plot. ax.set_xticks([]) ax.set_yticks([]) # Ensure the plot is shown correctly with multiple plots # in a single Notebook cell. plt.show() ###Output _____no_output_____ ###Markdown Helper-function for plotting the output of a convolutional layer ###Code def plot_conv_layer(layer, image): # Assume layer is a TensorFlow op that outputs a 4-dim tensor # which is the output of a convolutional layer, # e.g. layer_conv1 or layer_conv2. # Create a feed-dict containing just one image. # Note that we don't need to feed y_true because it is # not used in this calculation. feed_dict = {x: [image]} # Calculate and retrieve the output values of the layer # when inputting that image. values = session.run(layer, feed_dict=feed_dict) # Number of filters used in the conv. layer. num_filters = values.shape[3] # Number of grids to plot. # Rounded-up, square-root of the number of filters. num_grids = math.ceil(math.sqrt(num_filters)) # Create figure with a grid of sub-plots. fig, axes = plt.subplots(num_grids, num_grids) # Plot the output images of all the filters. for i, ax in enumerate(axes.flat): # Only plot the images for valid filters. if i<num_filters: # Get the output image of using the i'th filter. img = values[0, :, :, i] # Plot image. ax.imshow(img, interpolation='nearest', cmap='binary') # Remove ticks from the plot. ax.set_xticks([]) ax.set_yticks([]) # Ensure the plot is shown correctly with multiple plots # in a single Notebook cell. plt.show() ###Output _____no_output_____ ###Markdown Input ImagesHelper-function for plotting an image. ###Code def plot_image(image): plt.imshow(image.reshape(img_shape), interpolation='nearest', cmap='binary') plt.show() ###Output _____no_output_____ ###Markdown Plot an image from the test-set which will be used as an example below. ###Code image1 = data.test.images[0] plot_image(image1) ###Output _____no_output_____ ###Markdown Plot another example image from the test-set. ###Code image2 = data.test.images[13] plot_image(image2) ###Output _____no_output_____ ###Markdown Convolution Layer 1 Now plot the filter-weights for the first convolutional layer.Note that positive weights are red and negative weights are blue. ###Code plot_conv_weights(weights=weights_conv1) ###Output _____no_output_____ ###Markdown Applying each of these convolutional filters to the first input image gives the following output images, which are then used as input to the second convolutional layer. ###Code plot_conv_layer(layer=layer_conv1, image=image1) ###Output _____no_output_____ ###Markdown The following images are the results of applying the convolutional filters to the second image. ###Code plot_conv_layer(layer=layer_conv1, image=image2) ###Output _____no_output_____ ###Markdown Convolution Layer 2 Now plot the filter-weights for the second convolutional layer.There are 16 output channels from the first conv-layer, which means there are 16 input channels to the second conv-layer. The second conv-layer has a set of filter-weights for each of its input channels. We start by plotting the filter-weigths for the first channel.Note again that positive weights are red and negative weights are blue. ###Code plot_conv_weights(weights=weights_conv2, input_channel=0) ###Output _____no_output_____ ###Markdown There are 16 input channels to the second convolutional layer, so we can make another 15 plots of filter-weights like this. We just make one more with the filter-weights for the second channel. ###Code plot_conv_weights(weights=weights_conv2, input_channel=1) ###Output _____no_output_____ ###Markdown It can be difficult to understand and keep track of how these filters are applied because of the high dimensionality.Applying these convolutional filters to the images that were ouput from the first conv-layer gives the following images.Note that these are down-sampled to 14 x 14 pixels which is half the resolution of the original input images, because the first convolutional layer was followed by a max-pooling layer with stride 2. Max-pooling is also done after the second convolutional layer, but we retrieve these images before that has been applied. ###Code plot_conv_layer(layer=layer_conv2, image=image1) ###Output _____no_output_____ ###Markdown And these are the results of applying the filter-weights to the second image. ###Code plot_conv_layer(layer=layer_conv2, image=image2) ###Output _____no_output_____ ###Markdown Close TensorFlow Session We are now done using TensorFlow, so we close the session to release its resources. ###Code # This has been commented out in case you want to modify and experiment # with the Notebook without having to restart it. # session.close() ###Output _____no_output_____ ###Markdown TensorFlow 자습서 03-B Layers API원저자 [Magnus Erik Hvass Pedersen](http://www.hvass-labs.org/)/ [GitHub](https://github.com/Hvass-Labs/TensorFlow-Tutorials) / [Videos on YouTube](https://www.youtube.com/playlist?list=PL9Hr9sNUjfsmEu1ZniY0XpHSzl5uihcXZ) / 번역 곽병권 개요TensorFlow에서 신경망을 만들 때 빌더 API를 사용하는 것이 중요합니다. 왜냐하면 소스 코드를 쉽게 구현하고 수정할 수 있기 때문입니다. 이것은 또한 오류의 가능성을 낮추어 줍니다.본장 이외의 자습서의 대부분은 PrettyTensor라는 TensorFlow 빌더 API를 사용하여 신경망을 쉽게 만들 수 있습니다. TensorFlow에 사용할 수 있는 여러 가지 빌더 API가 있습니다. PrettyTensor는 2016년 중반의 시점에 TensorFlow에서 가장 완벽하고 세련된 빌더 API였기 때문에이 자습서에서 사용 되었습니다. 그러나 PrettyTensor는 Google에서 일하는 한 명의 개인에 의해서만 개발되었으며 독특하고 우아한 기능이 있지만 향후에 더 이상 사용되지 않을 수 있습니다.이 자습서는 최근 TensorFlow 버전 1.1에 추가 된 작은 빌더 API에 대한 것 입니다. 이것은 단순히 *Layers* 또는 *Layers API* 또는 Python 이름 `tf.layers`로 불립니다. 이 빌더 API는 TensorFlow의 일부로 자동 설치되므로 PrettyTensor에서 필요했던 별도의 Python 패키지를 설치할 필요가 없습니다.이 튜토리얼은 PrettyTensor의 Tutorial 03과 매우 유사하며 Layers API를 사용하여 동일한 컨볼루션 신경망을 구현하는 방법을 보여줍니다. 컨볼루션 신경망에 관한 튜토리얼 02을 미리 보고 이 장을 살펴보시기 바랍니다. 흐름도 다음 차트는 아래에 구현 된 컨볼루션 신경망의 데이터 흐름을 대략적으로 보여줍니다. 컨볼루션에 대한 자세한 설명은 자습서 02를 참조하십시오. ![Flowchart](images/02_network_flowchart.png) 입력 이미지는 필터 웨이트를 사용하여 첫 번째 컨볼루션 레이어에서 처리됩니다. 결과적으로 16 개의 새로운 이미지가 생성되며, 하나는 컨볼루션 레이어의 각 필터에 해당합니다. 이미지는 또한 다운 샘플링되므로 이미지 해상도가 28x28에서 14x14로 감소합니다.이 16 개의 작은 이미지는 두 번째 컨볼루션 레이어에서 처리됩니다. 이 16 개의 채널마다 필터 가중치가 필요하며 이 레이어의 각 출력 채널에 대해 필터 가중치가 필요합니다. 36 개의 출력 채널이 있으므로 두 번째 컨볼루션 레이어에는 총 16 x 36 = 576 개의 필터가 있습니다. 결과 이미지는 다시 7x7 픽셀로 다운 샘플링됩니다.두번째 컨볼루션 레이어의 출력은 각각 7x7 픽셀의 36장의 이미지가 됩니다. 그런 다음 길이가 7 x 7 x 36 = 1764 인 단일 벡터로 평탄화되며, 이는 128 개의 뉴런이 있는 완전 연결된 레이어의 입력으로 사용됩니다. 이것은 이미지의 클래스, 즉 어떤 숫자가 이미지에 묘사되어 있는지를 결정하는 데 사용되는 각 클래스에 하나씩, 10 개의 뉴런을 가진 완전히 연결된 또 다른 레이어로 공급됩니다.컨볼루션 필터는 처음에 무작위로 선택되므로 분류가 무작위로 수행됩니다. 입력 이미지의 예측 클래스와 참 클래스 간의 오차는 소위 교차 엔트로피 (cross-entropy)로 측정됩니다. 그런 다음 옵티마이저가 미분의 체인 규칙을 사용하여 컨볼루션 네트워크를 통해, 이 오류를 자동으로 전파하고 분류 오류를 개선하기 위해 필터 가중치를 업데이트합니다. 이것은 분류 오류가 충분히 낮을 때까지 반복적으로 수천 번 반복됩니다.이 특정 필터 가중치와 중간 이미지는 한 번의 최적화 실행 결과이며이 노트북을 다시 실행하면 다르게 보일 수 있습니다.TensorFlow의 계산은 실제로 단일 이미지 대신 이미지 일괄 처리로 수행되므로 계산이 더 효율적입니다. 즉, TensorFlow에서 구현 될 때 순서도에는 실제로 하나 이상의 데이터 차원이 있습니다. Imports ###Code %matplotlib inline import matplotlib.pyplot as plt import tensorflow as tf import numpy as np from sklearn.metrics import confusion_matrix import math ###Output _____no_output_____ ###Markdown 이 문서는 Python 3.6.1 (Anaconda) 및 아래의 TensorFlow 버전을 사용하여 개발되었습니다. ###Code tf.__version__ ###Output _____no_output_____ ###Markdown Load Data MNIST 데이터 세트는 약 12MB이며 주어진 경로에 위치하지 않으면 자동으로 다운로드됩니다. ###Code from tensorflow.examples.tutorials.mnist import input_data data = input_data.read_data_sets('data/MNIST/', one_hot=True) ###Output Extracting data/MNIST/train-images-idx3-ubyte.gz Extracting data/MNIST/train-labels-idx1-ubyte.gz Extracting data/MNIST/t10k-images-idx3-ubyte.gz Extracting data/MNIST/t10k-labels-idx1-ubyte.gz ###Markdown MNIST 데이터 세트는 현재 로드 되었으며 70.000개의 이미지 및 관련 라벨 (즉, 이미지의 분류)로 구성됩니다. 데이터 집합은 3개의 상호 배타적인 하위 집합으로 나뉩니다. 이 튜토리얼에서는 훈련 및 테스트 세트 만 사용합니다. ###Code print("크기:") print("- 훈련 세트:\t\t{}".format(len(data.train.labels))) print("- 테스트 세트:\t\t{}".format(len(data.test.labels))) print("- Validation-set:\t{}".format(len(data.validation.labels))) ###Output 크기: - 훈련 세트: 55000 - 테스트 세트: 10000 - Validation-set: 5000 ###Markdown 클래스 레이블은 One-Hot로 인코딩 됩니다. 즉, 각 레이블은 하나의 요소를 제외하고 모두 0인 요소가 포함 된 10개의 벡터입니다. 이 요소의 색인은 클래스 번호, 즉 연관된 이미지에 표시된 숫자입니다. 테스트 집합에 대한 클래스 수를 정수로 필요로 하므로 지금 계산합니다. ###Code data.test.cls = np.argmax(data.test.labels, axis=1) ###Output _____no_output_____ ###Markdown Data Dimensions 데이터 차원은 아래 소스 코드의 여러 위치에서 사용됩니다. 그것들은 한 번 정의되어 있으므로 아래의 소스 코드에서 숫자 대신 이러한 변수를 사용할 수 있습니다. ###Code # MNIST 데이터는 이미지의 한 변이 28 픽셀입니다. img_size = 28 # 이미지는 각 변의 크기를 곱한 수의 일차원 배열로 표현이 됩니다. img_size_flat = img_size * img_size # 높이와 넓이로 구성된 튜플은 이미지를 재구성하기 위해서 필요합니다. img_shape = (img_size, img_size) # 이미지의 컬러 채널의 수: 1 그레이 스케일 이미지의 경우 1 num_channels = 1 # 클래스의 수, 클래스는 0~9까지의 숫자를 의미합니다. num_classes = 10 ###Output _____no_output_____ ###Markdown 이미지를 그리는 도움 함수 3x3그리드에 9개의 이미지를 플롯하고 각 이미지 아래에 참 및 예측 클래스를 쓰는 데 사용되는 함수입니다. ###Code def plot_images(images, cls_true, cls_pred=None): assert len(images) == len(cls_true) == 9 # Create figure with 3x3 sub-plots. fig, axes = plt.subplots(3, 3) fig.subplots_adjust(hspace=0.3, wspace=0.3) for i, ax in enumerate(axes.flat): # Plot image. ax.imshow(images[i].reshape(img_shape), cmap='binary') # Show true and predicted classes. if cls_pred is None: xlabel = "True: {0}".format(cls_true[i]) else: xlabel = "True: {0}, Pred: {1}".format(cls_true[i], cls_pred[i]) # Show the classes as the label on the x-axis. ax.set_xlabel(xlabel) # Remove ticks from the plot. ax.set_xticks([]) ax.set_yticks([]) # Ensure the plot is shown correctly with multiple plots # in a single Notebook cell. plt.show() ###Output _____no_output_____ ###Markdown 일부의 이미지를 그려서 데이터가 정확한지 확인해 봅니다.¶ ###Code # Get the first images from the test-set. images = data.test.images[0:9] # Get the true classes for those images. cls_true = data.test.cls[0:9] # Plot the images and labels using our helper-function above. plot_images(images=images, cls_true=cls_true) ###Output _____no_output_____ ###Markdown TensorFlow GraphTensorFlow의 목적은 동일한 계산이 파이썬에서 직접 수행되는 것보다 훨씬 효율적으로 실행될 수있는 소위 연산 그래프를 구성하는 것입니다. TensorFlow는 실행해야 하는 전체 연산 그래프를 알고 있기 때문에 NumPy보다 더 효율적입니다. NumPy는 한 번에 하나의 수학 연산 만 계산합니다.또한 TensorFlow는 그래프의 변수를 최적화하여 모델의 성능을 향상시키는 데 필요한 그래디언트를 자동으로 계산할 수 있습니다. 이것은 그래프가 간단한 수학적 표현의 조합이기 때문에 전체 그래프의 그래디언트가 미분에 대한 체인 규칙을 사용하여 계산 될 수 있기 때문입니다.TensorFlow는 GPU뿐 아니라 멀티 코어 CPU를 활용할 수도 있습니다. Google은 TPU (Tensor Processing Units)라고 불리는 TensorFlow 용 특수 칩을 구축했으며 GPU보다 훨씬 빠릅니다.TensorFlow 그래프는 아래에 설명 된 다음 부분으로 구성됩니다.* Placeholder 변수: 변경되는 값을 입력으로 사용할 수 있도록 합니다.* 모델 변수: 모델이 더 좋은 성능을 내도록 최적화 할 수 있습니다.* 모델은 본질적으로 Placeholder 변수와 모델 변수의 입력이 제공되면 출력을 계산하는 수학 함수입니다.* 비용: 변수들을 최적화 하기 위해서 사용되는 측정값 입니다.* 최적화 기법: 모델의 변수를 변경합니다.또한 TensorFlow 그래프는 다양한 디버깅 문을 포함 할 수 있습니다. 이 노트북에서는 다루지 않지만 TensorBoard를 사용하여 데이터를 표시하도록 로깅합니다. Placeholder 변수 Placeholder 변수는 그래프를 실행할 때마다 변경할 수 있는 TensorFlow 계산 그래프의 입력 값 역할을 합니다.먼저 입력 이미지의 placeholder 변수를 정의합니다. 이를 통해 TensorFlow 그래프에 입력되는 이미지를 변경할 수 있습니다. 이것은 소위 텐서 (tensor)라고 불리는데, 이는 그것이 다차원 벡터 또는 행렬이라는 것을 의미합니다. 데이터 형은 float32로 설정되고 형태는 `[None, img_size_flat]`으로 설정됩니다. 여기서 `None`은 텐서가 임의의 수의 이미지를 보유 할 수 있음을 의미합니다. 각 이미지는 길이가 `img_size_flat`인 벡터입니다. ###Code x = tf.placeholder(tf.float32, shape=[None, img_size_flat], name='x') ###Output _____no_output_____ ###Markdown 콘볼루션 레이어는 `x`가 4 차원 텐서로 인코딩 될 것으로 요구하므로 모양을 바꿔야 합니다. 요구되는 형태는 `[num_images, img_height, img_width, num_channels]`이 됩니다. 첫 번째 차원은 -1을 사용하여 자동으로 추론 할 수 있습니다. 따라서 재구성 작업은 다음과 같습니다. ###Code x_image = tf.reshape(x, [-1, img_size, img_size, num_channels]) ###Output _____no_output_____ ###Markdown 다음으로 우리는 placeholder `x`에 입력 된 이미지와 관련된 실제 레이블에 대한 placeholder 변수를 갖습니다. 이 placeholder 변수의 모양은`[None, num_classes]`입니다. 이는 임의의 수의 레이블을 보유 할 수 있음을 의미하며 각 레이블은 이 경우에는 길이가 `num_classes`인 벡터입니다. ###Code y_true = tf.placeholder(tf.float32, shape=[None, num_classes], name='y_true') ###Output _____no_output_____ ###Markdown 클래스 번호에 대한 placeholder 변수를 사용할 수도 있지만 대신 argmax를 사용하여 이를 계산합니다. 이 값은 TensorFlow 연산자이므로 이 시점에서는 아무 것도 계산되지 않습니다. ###Code y_true_cls = tf.argmax(y_true, dimension=1) ###Output WARNING:tensorflow:From <ipython-input-12-4674210f2acc>:1: calling argmax (from tensorflow.python.ops.math_ops) with dimension is deprecated and will be removed in a future version. Instructions for updating: Use the `axis` argument instead ###Markdown PrettyTensor 구현이 섹션에서는 튜토리얼 03에서 가져온 PrettyTensor를 사용하는 컨볼루션 신경망 구현을 보여줍니다. 따라서 아래 Layers API를 사용한 구현과 비교할 수 있습니다. 이 코드는 `if False:` 블록으로 묶여 있으므로 여기서는 실행되지 않습니다.기본 개념은 새로운 연산 Layer를 추가하여 전체 컨볼루션 신경망을 생성하는 도움 함수가 있는 PrettyTensor 객체로 입력 텐서 `x_image`를 감싸는 것 입니다. 이것은 매우 간단하고 우아한 구문입니다. ###Code if False: x_pretty = pt.wrap(x_image) with pt.defaults_scope(activation_fn=tf.nn.relu): y_pred, loss = x_pretty.\ conv2d(kernel=5, depth=16, name='layer_conv1').\ max_pool(kernel=2, stride=2).\ conv2d(kernel=5, depth=36, name='layer_conv2').\ max_pool(kernel=2, stride=2).\ flatten().\ fully_connected(size=128, name='layer_fc1').\ softmax_classifier(num_classes=num_classes, labels=y_true) ###Output _____no_output_____ ###Markdown Layers 구현이제 TensorFlow 버전 1.1 이후에 포함 된 Layers API를 사용하여 동일한 컨볼루션 신경망을 구현합니다. PrettyTensor보다는 많은 코드가 필요합니다. 대부분의 코드는 상당량은 넘겨주어야 할 매개변수의 설명에 해당합니다.신경망을 구축하는 동안 마지막 레이어를 참조하기 위해 `net`-변수를 사용합니다. 다양한 실험을 하려는 경우 코드에서 레이어를 쉽게 추가하거나 제거 할 수 있습니다. 먼저 `net` 변수에 형태를 변경한 입력 이미지를 설정합니다. ###Code net = x_image ###Output _____no_output_____ ###Markdown 그러면 입력 이미지는 크기가 5x5 픽셀 인 각각 16개의 필터가있는 첫 번째 컨볼 루션 레이어에 입력됩니다. 활성화 함수는 Rectified Linear Unit(ReLU)이고, 이에 대해서는 자습서 2장에서 자세히 설명되어 있습니다. ###Code net = tf.layers.conv2d(inputs=net, name='layer_conv1', padding='same', filters=16, kernel_size=5, activation=tf.nn.relu) ###Output _____no_output_____ ###Markdown 이러한 방식으로 신경망을 구성하는 장점 중 하나는 레이어에 대한 참조를 쉽게 추출 할 수 있다는 것입니다. 이것은 PrettyTensor 같은 경우에는 조금 더 복잡합니다.더 아래에서 첫 번째 컨볼루션 레이어의 출력을 플롯해야 하므로 해당 레이어를 참조하는 또 다른 변수를 만듭니다. ###Code layer_conv1 = net ###Output _____no_output_____ ###Markdown 우리는 이제 컨볼루션 레이어의 출력에서 max-pooling을 수행합니다. 이것은 자습서 02에 상세히 설명되어 있습니다. ###Code net = tf.layers.max_pooling2d(inputs=net, pool_size=2, strides=2) ###Output _____no_output_____ ###Markdown 이제 각각 5 x 5 픽셀의 36 개의 필터와 ReLU 활성화 함수를 가진 두 번째 컨볼루션 레이어를 추가합니다. ###Code net = tf.layers.conv2d(inputs=net, name='layer_conv2', padding='same', filters=36, kernel_size=5, activation=tf.nn.relu) ###Output _____no_output_____ ###Markdown 또한 이 컨볼루션 레이어의 출력을 시각화 하려는 것이므로 나중에 사용할 수 있도록 참조를 유지합니다. ###Code layer_conv2 = net ###Output _____no_output_____ ###Markdown 두번째 컨볼루션 계층의 출력은 이미지를 다운 샘플링하기 위해 max-pool을 적용합니다. ###Code net = tf.layers.max_pooling2d(inputs=net, pool_size=2, strides=2) ###Output _____no_output_____ ###Markdown 이 max-pooling에 의해 출력되는 텐서는 다음에 보이는 것과 같이 랭크가 4가 됩니다. ###Code net ###Output _____no_output_____ ###Markdown 다음으로 신경망에 완전히 연결된 레이어를 추가하려고합니다. 하지만 이 레이어는 입력으로 랭크가 2인 텐서가 필요하므로 먼저 텐서를 평평하게 해야합니다.`tf.layers` API는 TensorFlow Core로 옮겨오기 전에 먼저 tf.contrib.layers에 위치 했습니다. 그런데, TensorFlow 개발자가 무려 1년에 걸쳐 이 간단한 함수를 이전 했음에도 불구하고 더 단순한 flatten() 함수를 함께 옮기는 것을 잊어 버렸습니다. 그래서 우리는 여전히 `tf.contrib.layers`를 사용해야 합니다. ###Code net = tf.contrib.layers.flatten(net) # This should eventually be replaced by: # net = tf.layers.flatten(net) ###Output _____no_output_____ ###Markdown 아래에 보이는 것 처럼, 랭크가 2인 텐서로 평탄화를 했습니다. ###Code net ###Output _____no_output_____ ###Markdown 이제 완전히 연결된 레이어를 신경망에 추가 할 수 있습니다. 이것은 레이어 API에서 *dense* 레이어라고 부릅니다. ###Code net = tf.layers.dense(inputs=net, name='layer_fc1', units=128, activation=tf.nn.relu) ###Output _____no_output_____ ###Markdown 입력 이미지를 10 개의 다른 클래스로 분류하기 위해서는 신경망이 필요합니다. 따라서 마지막으로 완전히 연결된 레이어에는 `num_classes=10` 출력 뉴런이 있습니다. ###Code net = tf.layers.dense(inputs=net, name='layer_fc_out', units=num_classes, activation=None) ###Output _____no_output_____ ###Markdown 마지막으로 완전히 연결된 레이어의 출력을 logits이라고도 하며, 우리는 편의상 logits이라는 변수를 사용하겠습니다. ###Code logits = net ###Output _____no_output_____ ###Markdown 우리는 softmax 함수를 사용하여 출력을 변형하여('스쿼시')하여 0과 1 사이에 있도록 하고, 총합이 1이 되도록 합니다. ###Code y_pred = tf.nn.softmax(logits=logits) ###Output _____no_output_____ ###Markdown 이것은 뉴럴 네트워크가 입력 이미지가 각 가능한 클래스에 있다고 생각 할 가능성이 얼마나 높은지를 알려줍니다. 가장 높은 가치를 가진 것이 가장 가능성이 높은 것으로 간주되므로 해당 색인을 클래스 번호로 간주합니다. ###Code y_pred_cls = tf.argmax(y_pred, dimension=1) ###Output _____no_output_____ ###Markdown 우리는 이제 TensorFlow 직접 구현하는 경우 여러 복잡한 코드 행을 필요로 하는 것을, 단 몇 줄의 코드로 정확히 동일하게 동작하는 컨볼루션 신경망을 만들었습니다.Layers API는 어쩌면 PrettyTensor만큼 우아하지는 않지만 다른 장점이 있습니다. 예를 들어, 중간 계층을 보다 쉽게 참조 할 수 있으며 계층 API를 사용하여 분기 및 다중 출력을 사용하여 신경망을 구성하는 경우 쉽게 할 수 있습니다. 손실함수의 최적화 입력 이미지를 분류 할 때 모델의 성능을 높이려면, 컨볼루션 신경망의 내부의 변수를 최적화 해야만 합니다.교차 엔트로피는 분류에 사용되는 성능 측정 값입니다. 교차 엔트로피는 항상 양의 연속 함수이며 모델의 예측 된 출력이 원하는 출력과 정확하게 일치하면 교차 엔트로피는 0입니다. 따라서 최적화의 목표는 교차 엔트로피를 최소화하여 모델의 변수를 최적화 하여 가능한 한 0에 가까워 지도록하는 것입니다.TensorFlow는 cross-entropy를 계산하는 함수를 가지고 있습니다.이 함수는 내부적으로 softmax를 계산하기 때문에 수치 안정성을 향상시키기 위해 `logits`-layer의 값을 사용합니다. ###Code cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels=y_true, logits=logits) ###Output _____no_output_____ ###Markdown 이제 각각의 이미지 분류에 대한 교차 엔트로피를 계산 했으므로 모델이 각 이미지에서 얼마나 잘 작동하는지 측정 할 수 있습니다. 그러나 교차 엔트로피를 사용하여 모델 변수의 최적화를 유도하려면 단일 스칼라 값이 필요하므로 모든 이미지 분류에 대해 교차 엔트로피의 평균을 취합니다. ###Code loss = tf.reduce_mean(cross_entropy) ###Output _____no_output_____ ###Markdown 최적화 방법이제 비용 측정 방법을 알았고 이를 최소화하는 최적화 도구를 만들 수 있습니다. 여기서는 학습 속도를 1e-4로 하고 Adam optimizer를 사용하겠습니다.이 시점에서 최적화는 수행되는 것은 아닙니다. 사실, 아무것도 계산되지 않습니다. 나중에 실행을 위해 TensorFlow 그래프에 최적화 개체를 추가만 했습니다. ###Code optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(loss) ###Output _____no_output_____ ###Markdown 분류 정확도진행 상황을 사용자에게 보고 할 수 있도록 분류 정확도를 계산합니다.먼저 예측 클래스가 각 이미지의 실제 클래스와 같은지 여부를 알려주는 부울 값의 벡터를 만듭니다. ###Code correct_prediction = tf.equal(y_pred_cls, y_true_cls) ###Output _____no_output_____ ###Markdown 분류 정확도는 진리값을 실수로 형변환하여 거짓이 0으로 True가 1이되도록 한 다음이 전체의 평균을 구합니다. ###Code accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) ###Output _____no_output_____ ###Markdown 가중치 얻어오기아래에서 우리는 컨볼루션 레이어의 가중치를 시각화하려고 합니다. TensorFlow 구현에서는 변수를 직접 만들었으므로 직접 참조가 가능했습니다. 그러나 `tf.layers`와 같은 빌더 API를 사용하는 경우에는, 레이어의 모든 변수는 빌더 API에 의해 간접적으로 생성됩니다. 따라서 TensorFlow에서 변수를 검색해야합니다.먼저 TensorFlow 그래프에 변수 이름 목록이 필요합니다. ###Code for var in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES): print(var) ###Output <tf.Variable 'layer_conv1/kernel:0' shape=(5, 5, 1, 16) dtype=float32_ref> <tf.Variable 'layer_conv1/bias:0' shape=(16,) dtype=float32_ref> <tf.Variable 'layer_conv2/kernel:0' shape=(5, 5, 16, 36) dtype=float32_ref> <tf.Variable 'layer_conv2/bias:0' shape=(36,) dtype=float32_ref> <tf.Variable 'layer_fc1/kernel:0' shape=(1764, 128) dtype=float32_ref> <tf.Variable 'layer_fc1/bias:0' shape=(128,) dtype=float32_ref> <tf.Variable 'layer_fc_out/kernel:0' shape=(128, 10) dtype=float32_ref> <tf.Variable 'layer_fc_out/bias:0' shape=(10,) dtype=float32_ref> <tf.Variable 'beta1_power:0' shape=() dtype=float32_ref> <tf.Variable 'beta2_power:0' shape=() dtype=float32_ref> <tf.Variable 'layer_conv1/kernel/Adam:0' shape=(5, 5, 1, 16) dtype=float32_ref> <tf.Variable 'layer_conv1/kernel/Adam_1:0' shape=(5, 5, 1, 16) dtype=float32_ref> <tf.Variable 'layer_conv1/bias/Adam:0' shape=(16,) dtype=float32_ref> <tf.Variable 'layer_conv1/bias/Adam_1:0' shape=(16,) dtype=float32_ref> <tf.Variable 'layer_conv2/kernel/Adam:0' shape=(5, 5, 16, 36) dtype=float32_ref> <tf.Variable 'layer_conv2/kernel/Adam_1:0' shape=(5, 5, 16, 36) dtype=float32_ref> <tf.Variable 'layer_conv2/bias/Adam:0' shape=(36,) dtype=float32_ref> <tf.Variable 'layer_conv2/bias/Adam_1:0' shape=(36,) dtype=float32_ref> <tf.Variable 'layer_fc1/kernel/Adam:0' shape=(1764, 128) dtype=float32_ref> <tf.Variable 'layer_fc1/kernel/Adam_1:0' shape=(1764, 128) dtype=float32_ref> <tf.Variable 'layer_fc1/bias/Adam:0' shape=(128,) dtype=float32_ref> <tf.Variable 'layer_fc1/bias/Adam_1:0' shape=(128,) dtype=float32_ref> <tf.Variable 'layer_fc_out/kernel/Adam:0' shape=(128, 10) dtype=float32_ref> <tf.Variable 'layer_fc_out/kernel/Adam_1:0' shape=(128, 10) dtype=float32_ref> <tf.Variable 'layer_fc_out/bias/Adam:0' shape=(10,) dtype=float32_ref> <tf.Variable 'layer_fc_out/bias/Adam_1:0' shape=(10,) dtype=float32_ref> ###Markdown 각 컨볼루션 레이어에는 두 가지 변수가 있습니다. 첫 번째 콘볼루션 레이어의 경우 `layer_conv1/kernel:0`과 `layer_conv1/bias:0`으로 명명됩니다. `kernel` 변수는 우리가 저 아래에서 시각화하기를 원하는 변수입니다.우리가 다른 목적으로 설계된 TensorFlow 함수 `get_variable ()`을 사용해야 하기 때문에, 이 변수에 대한 참조를 얻는 것은 다소 어색하지만, 그렇게 하지 않으면 새 변수를 만들거나 기존 변수를 다시 사용해야 합니다. 가장 쉬운 방법은 다음 도움 함수를 만드는 것입니다. ###Code def get_weights_variable(layer_name): # Retrieve an existing variable named 'kernel' in the scope # with the given layer_name. # This is awkward because the TensorFlow function was # really intended for another purpose. with tf.variable_scope(layer_name, reuse=True): variable = tf.get_variable('kernel') return variable ###Output _____no_output_____ ###Markdown 이 도움 함수를 사용하여 변수를 검색 할 수 있습니다. TensorFlow 개체입니다. 변수의 내용을 얻으려면 아래에서 더 자세히 설명하는 것처럼 `content = session.run(weights_conv1)`과 같은 것을 해야 합니다. ###Code weights_conv1 = get_weights_variable(layer_name='layer_conv1') weights_conv2 = get_weights_variable(layer_name='layer_conv2') ###Output _____no_output_____ ###Markdown TensorFlow 실행 TensorFlow session 만들기TensorFlow 그래프가 생성되면 그래프를 실행하는 데 사용되는 TensorFlow 세션을 만들어야 합니다. ###Code session = tf.Session() ###Output _____no_output_____ ###Markdown 변수 초기화`weights`와 `biases`등의 변수는 최적화를 시작하기 전에 초기화되어야합니다. ###Code session.run(tf.global_variables_initializer()) ###Output _____no_output_____ ###Markdown 최적화 반복을 수행하는 도움 함수 트레이닝 세트에는 55,000 개의 이미지가 있습니다. 이 모든 이미지를 사용하여 모델의 그래디언트를 계산하는 것은 시간이 꽤 오래 걸립니다. 따라서 우리는 옵티 마이저의 각 반복에서 작은 배치 이미지만 사용합니다.메모리가 부족하여 컴퓨터가 다운되거나 충돌이 발생하면, 이 수를 줄이거 나 늘릴 수 있지만 더 많은 최적화 반복을 수행해야 할 수 있습니다. ###Code train_batch_size = 64 ###Output _____no_output_____ ###Markdown 점진적으로 네트워크 계층의 변수를 향상시키기 위해 최적화 반복을 수행하는 기능. 각 반복에서 훈련 세트에서 새로운 데이터 배치를 선택한 다음 TensorFlow는 이러한 훈련 샘플을 사용하여 최적화 프로그램을 실행합니다. 진행률은 매 100 회 반복됩니다. ###Code # Counter for total number of iterations performed so far. total_iterations = 0 def optimize(num_iterations): # Ensure we update the global variable rather than a local copy. global total_iterations for i in range(total_iterations, total_iterations + num_iterations): # Get a batch of training examples. # x_batch now holds a batch of images and # y_true_batch are the true labels for those images. x_batch, y_true_batch = data.train.next_batch(train_batch_size) # Put the batch into a dict with the proper names # for placeholder variables in the TensorFlow graph. feed_dict_train = {x: x_batch, y_true: y_true_batch} # Run the optimizer using this batch of training data. # TensorFlow assigns the variables in feed_dict_train # to the placeholder variables and then runs the optimizer. session.run(optimizer, feed_dict=feed_dict_train) # Print status every 100 iterations. if i % 100 == 0: # Calculate the accuracy on the training-set. acc = session.run(accuracy, feed_dict=feed_dict_train) # Message for printing. msg = "Optimization Iteration: {0:>6}, Training Accuracy: {1:>6.1%}" # Print it. print(msg.format(i + 1, acc)) # Update the total number of iterations performed. total_iterations += num_iterations ###Output _____no_output_____ ###Markdown 분류 오류 이미지의 예를 표시하는 도움 함수¶ 잘못 분류 된 테스트 세트의 이미지 예제를 출력하는 함수 ###Code def plot_example_errors(cls_pred, correct): # This function is called from print_test_accuracy() below. # cls_pred is an array of the predicted class-number for # all images in the test-set. # correct is a boolean array whether the predicted class # is equal to the true class for each image in the test-set. # Negate the boolean array. incorrect = (correct == False) # Get the images from the test-set that have been # incorrectly classified. images = data.test.images[incorrect] # Get the predicted classes for those images. cls_pred = cls_pred[incorrect] # Get the true classes for those images. cls_true = data.test.cls[incorrect] # Plot the first 9 images. plot_images(images=images[0:9], cls_true=cls_true[0:9], cls_pred=cls_pred[0:9]) ###Output _____no_output_____ ###Markdown 혼란 행렬(Confusion matrix)을 그리기위한 도움 함수 ###Code def plot_confusion_matrix(cls_pred): # This is called from print_test_accuracy() below. # cls_pred is an array of the predicted class-number for # all images in the test-set. # Get the true classifications for the test-set. cls_true = data.test.cls # Get the confusion matrix using sklearn. cm = confusion_matrix(y_true=cls_true, y_pred=cls_pred) # Print the confusion matrix as text. print(cm) # Plot the confusion matrix as an image. plt.matshow(cm) # Make various adjustments to the plot. plt.colorbar() tick_marks = np.arange(num_classes) plt.xticks(tick_marks, range(num_classes)) plt.yticks(tick_marks, range(num_classes)) plt.xlabel('Predicted') plt.ylabel('True') # Ensure the plot is shown correctly with multiple plots # in a single Notebook cell. plt.show() ###Output _____no_output_____ ###Markdown 성능을 표시하는 도움 함수 테스트 세트에 대한 분류 정확도를 출력하는 함수입니다.테스트 세트의 모든 이미지에 대한 분류를 계산하는 데 시간이 걸리기 때문에, 이 함수에서 위의 함수를 직접 호출하여 결과를 다시 사용하므로 각 함수에서 분류를 다시 계산할 필요가 없습니다.이 함수는 많은 양의 메모리를 사용할 수 있으므로 테스트 세트를 작은 배치로 분할하게 됩니다. 컴퓨터에 메모리가 모자라고 충돌이 발생하면 배치 크기를 줄이고 시도를 해 봐야 합니다. ###Code # Split the test-set into smaller batches of this size. test_batch_size = 256 def print_test_accuracy(show_example_errors=False, show_confusion_matrix=False): # Number of images in the test-set. num_test = len(data.test.images) # Allocate an array for the predicted classes which # will be calculated in batches and filled into this array. cls_pred = np.zeros(shape=num_test, dtype=np.int) # Now calculate the predicted classes for the batches. # We will just iterate through all the batches. # There might be a more clever and Pythonic way of doing this. # The starting index for the next batch is denoted i. i = 0 while i < num_test: # The ending index for the next batch is denoted j. j = min(i + test_batch_size, num_test) # Get the images from the test-set between index i and j. images = data.test.images[i:j, :] # Get the associated labels. labels = data.test.labels[i:j, :] # Create a feed-dict with these images and labels. feed_dict = {x: images, y_true: labels} # Calculate the predicted class using TensorFlow. cls_pred[i:j] = session.run(y_pred_cls, feed_dict=feed_dict) # Set the start-index for the next batch to the # end-index of the current batch. i = j # Convenience variable for the true class-numbers of the test-set. cls_true = data.test.cls # Create a boolean array whether each image is correctly classified. correct = (cls_true == cls_pred) # Calculate the number of correctly classified images. # When summing a boolean array, False means 0 and True means 1. correct_sum = correct.sum() # Classification accuracy is the number of correctly classified # images divided by the total number of images in the test-set. acc = float(correct_sum) / num_test # Print the accuracy. msg = "Accuracy on Test-Set: {0:.1%} ({1} / {2})" print(msg.format(acc, correct_sum, num_test)) # Plot some examples of mis-classifications, if desired. if show_example_errors: print("Example errors:") plot_example_errors(cls_pred=cls_pred, correct=correct) # Plot the confusion matrix, if desired. if show_confusion_matrix: print("Confusion Matrix:") plot_confusion_matrix(cls_pred=cls_pred) ###Output _____no_output_____ ###Markdown 최적화 전 성능모델 변수가 초기화되고 전혀 최적화되지 않았기 때문에 테스트 세트의 정확도는 매우 낮으므로 이미지를 무작위로 분류합니다. ###Code print_test_accuracy() ###Output Accuracy on Test-Set: 10.2% (1023 / 10000) ###Markdown 1회 훈련 한 후의 성능학습률이 아주 작게 설정 되었기 때문에, 한번의 반복으로는 분류 정확도가 향상되지 않습니다. ###Code optimize(num_iterations=1) print_test_accuracy() ###Output Accuracy on Test-Set: 10.4% (1042 / 10000) ###Markdown 100번 반복 훈련 후의 성능100번의 훈련 후에는 모델의 분류 정확도가 상당히 향상 되었습니다. ###Code %%time optimize(num_iterations=99) # We already performed 1 iteration above. print_test_accuracy(show_example_errors=True) ###Output Accuracy on Test-Set: 78.6% (7858 / 10000) Example errors: ###Markdown 1,000번 훈련 후의 성능1,000번의 훈련 후에, 모델의 정확도는 크게 향상이 되어 90%이상의 정확도를 보이게 됩니다. ###Code %%time optimize(num_iterations=900) # We performed 100 iterations above. print_test_accuracy(show_example_errors=True) ###Output Accuracy on Test-Set: 94.9% (9491 / 10000) Example errors: ###Markdown 10,000 회의 훈련 후의 성능10,000번을 반복 훈련 한 후에는 테스트 세트의 데이터에 대해서 99%의 분류 정확도를 보여줍니다. ###Code %%time optimize(num_iterations=9000) # We performed 1000 iterations above. print_test_accuracy(show_example_errors=True, show_confusion_matrix=True) ###Output Accuracy on Test-Set: 98.9% (9890 / 10000) Example errors: ###Markdown 가중치와 레이어의 시각화¶ 컨볼루션 레이어의 가중치를 시각화 하기 위한 도움 함수 ###Code def plot_conv_weights(weights, input_channel=0): # Assume weights are TensorFlow ops for 4-dim variables # e.g. weights_conv1 or weights_conv2. # Retrieve the values of the weight-variables from TensorFlow. # A feed-dict is not necessary because nothing is calculated. w = session.run(weights) # Get the lowest and highest values for the weights. # This is used to correct the colour intensity across # the images so they can be compared with each other. w_min = np.min(w) w_max = np.max(w) # Number of filters used in the conv. layer. num_filters = w.shape[3] # Number of grids to plot. # Rounded-up, square-root of the number of filters. num_grids = math.ceil(math.sqrt(num_filters)) # Create figure with a grid of sub-plots. fig, axes = plt.subplots(num_grids, num_grids) # Plot all the filter-weights. for i, ax in enumerate(axes.flat): # Only plot the valid filter-weights. if i<num_filters: # Get the weights for the i'th filter of the input channel. # See new_conv_layer() for details on the format # of this 4-dim tensor. img = w[:, :, input_channel, i] # Plot image. ax.imshow(img, vmin=w_min, vmax=w_max, interpolation='nearest', cmap='seismic') # Remove ticks from the plot. ax.set_xticks([]) ax.set_yticks([]) # Ensure the plot is shown correctly with multiple plots # in a single Notebook cell. plt.show() ###Output _____no_output_____ ###Markdown 컨볼루션 레이어의 출력을 표시하기 위한 도움 함수 ###Code def plot_conv_layer(layer, image): # Assume layer is a TensorFlow op that outputs a 4-dim tensor # which is the output of a convolutional layer, # e.g. layer_conv1 or layer_conv2. # Create a feed-dict containing just one image. # Note that we don't need to feed y_true because it is # not used in this calculation. feed_dict = {x: [image]} # Calculate and retrieve the output values of the layer # when inputting that image. values = session.run(layer, feed_dict=feed_dict) # Number of filters used in the conv. layer. num_filters = values.shape[3] # Number of grids to plot. # Rounded-up, square-root of the number of filters. num_grids = math.ceil(math.sqrt(num_filters)) # Create figure with a grid of sub-plots. fig, axes = plt.subplots(num_grids, num_grids) # Plot the output images of all the filters. for i, ax in enumerate(axes.flat): # Only plot the images for valid filters. if i<num_filters: # Get the output image of using the i'th filter. img = values[0, :, :, i] # Plot image. ax.imshow(img, interpolation='nearest', cmap='binary') # Remove ticks from the plot. ax.set_xticks([]) ax.set_yticks([]) # Ensure the plot is shown correctly with multiple plots # in a single Notebook cell. plt.show() ###Output _____no_output_____ ###Markdown 입력 이미지¶이미지 표시를 위한 도움 함수 ###Code def plot_image(image): plt.imshow(image.reshape(img_shape), interpolation='nearest', cmap='binary') plt.show() ###Output _____no_output_____ ###Markdown 아래 예제처럼 사용될 테스트 세트의 이미지를 표시합니다. ###Code image1 = data.test.images[0] plot_image(image1) ###Output _____no_output_____ ###Markdown 테스트 세트의 다른 이미지를 표시합니다. ###Code image2 = data.test.images[13] plot_image(image2) ###Output _____no_output_____ ###Markdown 컨볼루션 레이어 1 이제 첫 번째 컨볼루션 레이어에 대한 필터 가중치를 그립니다.양의 가중치는 빨간색이고 음수 가중치는 파란색입니다. ###Code plot_conv_weights(weights=weights_conv1) ###Output _____no_output_____ ###Markdown 이들 컨볼루션 필터 각각을 첫번째 입력 이미지에 적용하면 다음의 출력 이미지가 얻어지며, 그 다음에 두번째 컨볼루션 레이어에 대한 입력으로 사용됩니다. ###Code plot_conv_layer(layer=layer_conv1, image=image1) ###Output _____no_output_____ ###Markdown 다음 이미지는 컨볼루션 필터를 두 번째 이미지에 적용한 결과입니다. ###Code plot_conv_layer(layer=layer_conv1, image=image2) ###Output _____no_output_____ ###Markdown 컨볼루션 레이어 2 이제 두 번째 컨볼루션 레이어의 필터 가중치를 그립니다.첫 번째 컨볼루션 레이어에는 16 개의 출력 채널이 있으며 이는 두 번째 컨볼루션 레이어에 16 개의 입력 채널이 있습니다. 두 번째 컨볼루션 레이어에는 각 입력 채널에 대한 일련의 필터 가중치가 있습니다. 우리는 첫 번째 채널에 대해 필터 가중치를 시각화 합니다.양의 가중치는 빨간색이고 음수 가중치는 파란색입니다. ###Code plot_conv_weights(weights=weights_conv2, input_channel=0) ###Output _____no_output_____ ###Markdown 두 번째 컨볼루션 계층에는 16 개의 입력 채널이 있으므로 이와 같이 15 개의 필터 가중치를 추가로 만들 수 있습니다. 우리는 두 번째 채널에 대한 필터 가중치로 하나 더 만듭니다. ###Code plot_conv_weights(weights=weights_conv2, input_channel=1) ###Output _____no_output_____ ###Markdown 높은 차원 때문에 이러한 필터가 적용되는 방법을 이해하고 추적하는 것은 어려울 수 있습니다.첫 컨볼루션 레이어에서 출력 된 이미지에 컨볼루션 필터를 적용하면 다음 이미지가 표시됩니다.첫 번째 컨볼루션 레이어 다음에 스트라이드 2가 있는 max-pooling 레이어가 있기 때문에 원본 입력 이미지의 해상도의 절반인 14 x 14 픽셀로 다운 샘플링됩니다. 최대 풀링은 두 번째 컨벌루션 이후에도 수행되는데, 아래의 이미지는 적용되기 전에 뽑아낸 것 입니다. ###Code plot_conv_layer(layer=layer_conv2, image=image1) ###Output _____no_output_____ ###Markdown 그리고 다음이 두 번째 이미지에 필터 가중치를 적용한 결과입니다. ###Code plot_conv_layer(layer=layer_conv2, image=image2) ###Output _____no_output_____ ###Markdown TensorFlow Session 닫기 TensorFlow를 사용하여 작업을 마쳤으므로 세션을 닫아 리소스를 해제합니다. ###Code # This has been commented out in case you want to modify and experiment # with the Notebook without having to restart it. # session.close() ###Output _____no_output_____
section-04-research-and-development/06-feature-engineering-with-open-source.ipynb
###Markdown Feature Engineering with Open-SourceIn this notebook, we will reproduce the Feature Engineering Pipeline from the notebook 2 (02-Machine-Learning-Pipeline-Feature-Engineering), but we will replace, whenever possible, the manually created functions by open-source classes, and hopefully understand the value they bring forward. Reproducibility: Setting the seedWith the aim to ensure reproducibility between runs of the same notebook, but also between the research and production environment, for each step that includes some element of randomness, it is extremely important that we **set the seed**. ###Code # data manipulation and plotting import pandas as pd import numpy as np import matplotlib.pyplot as plt # for saving the pipeline import joblib # from Scikit-learn from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler, Binarizer # from feature-engine from feature_engine.imputation import ( AddMissingIndicator, MeanMedianImputer, CategoricalImputer, ) from feature_engine.encoding import ( RareLabelEncoder, OrdinalEncoder, ) from feature_engine.transformation import ( LogTransformer, YeoJohnsonTransformer, ) from feature_engine.selection import DropFeatures from feature_engine.wrappers import SklearnTransformerWrapper # to visualise al the columns in the dataframe pd.pandas.set_option('display.max_columns', None) # load dataset data = pd.read_csv('train.csv') # rows and columns of the data print(data.shape) # visualise the dataset data.head() ###Output (1460, 81) ###Markdown Separate dataset into train and testIt is important to separate our data intro training and testing set. When we engineer features, some techniques learn parameters from data. It is important to learn these parameters only from the train set. This is to avoid over-fitting.Our feature engineering techniques will learn:- mean- mode- exponents for the yeo-johnson- category frequency- and category to number mappingsfrom the train set.**Separating the data into train and test involves randomness, therefore, we need to set the seed.** ###Code # Let's separate into train and test set # Remember to set the seed (random_state for this sklearn function) X_train, X_test, y_train, y_test = train_test_split( data.drop(['Id', 'SalePrice'], axis=1), # predictive variables data['SalePrice'], # target test_size=0.1, # portion of dataset to allocate to test set random_state=0, # we are setting the seed here ) X_train.shape, X_test.shape ###Output _____no_output_____ ###Markdown Feature EngineeringIn the following cells, we will engineer the variables of the House Price Dataset so that we tackle:1. Missing values2. Temporal variables3. Non-Gaussian distributed variables4. Categorical variables: remove rare labels5. Categorical variables: convert strings to numbers5. Standardize the values of the variables to the same range TargetWe apply the logarithm ###Code y_train = np.log(y_train) y_test = np.log(y_test) ###Output _____no_output_____ ###Markdown Missing values Categorical variablesWe will replace missing values with the string "missing" in those variables with a lot of missing data. Alternatively, we will replace missing data with the most frequent category in those variables that contain fewer observations without values. This is common practice. ###Code # let's identify the categorical variables # we will capture those of type object cat_vars = [var for var in data.columns if data[var].dtype == 'O'] # MSSubClass is also categorical by definition, despite its numeric values # (you can find the definitions of the variables in the data_description.txt # file available on Kaggle, in the same website where you downloaded the data) # lets add MSSubClass to the list of categorical variables cat_vars = cat_vars + ['MSSubClass'] # cast all variables as categorical X_train[cat_vars] = X_train[cat_vars].astype('O') X_test[cat_vars] = X_test[cat_vars].astype('O') # number of categorical variables len(cat_vars) # make a list of the categorical variables that contain missing values cat_vars_with_na = [ var for var in cat_vars if X_train[var].isnull().sum() > 0 ] # print percentage of missing values per variable X_train[cat_vars_with_na ].isnull().mean().sort_values(ascending=False) # variables to impute with the string missing with_string_missing = [ var for var in cat_vars_with_na if X_train[var].isnull().mean() > 0.1] # variables to impute with the most frequent category with_frequent_category = [ var for var in cat_vars_with_na if X_train[var].isnull().mean() < 0.1] # I print the values here, because it makes it easier for # later when we need to add this values to a config file for # deployment with_string_missing with_frequent_category # replace missing values with new label: "Missing" # set up the class cat_imputer_missing = CategoricalImputer( imputation_method='missing', variables=with_string_missing) # fit the class to the train set cat_imputer_missing.fit(X_train) # the class learns and stores the parameters cat_imputer_missing.imputer_dict_ # replace NA by missing # IMPORTANT: note that we could store this class with joblib X_train = cat_imputer_missing.transform(X_train) X_test = cat_imputer_missing.transform(X_test) # replace missing values with most frequent category # set up the class cat_imputer_frequent = CategoricalImputer( imputation_method='frequent', variables=with_frequent_category) # fit the class to the train set cat_imputer_frequent.fit(X_train) # the class learns and stores the parameters cat_imputer_frequent.imputer_dict_ # replace NA by missing # IMPORTANT: note that we could store this class with joblib X_train = cat_imputer_frequent.transform(X_train) X_test = cat_imputer_frequent.transform(X_test) # check that we have no missing information in the engineered variables X_train[cat_vars_with_na].isnull().sum() # check that test set does not contain null values in the engineered variables [var for var in cat_vars_with_na if X_test[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Numerical variablesTo engineer missing values in numerical variables, we will:- add a binary missing indicator variable- and then replace the missing values in the original variable with the mean ###Code # now let's identify the numerical variables num_vars = [ var for var in X_train.columns if var not in cat_vars and var != 'SalePrice' ] # number of numerical variables len(num_vars) # make a list with the numerical variables that contain missing values vars_with_na = [ var for var in num_vars if X_train[var].isnull().sum() > 0 ] # print percentage of missing values per variable X_train[vars_with_na].isnull().mean() # print, makes my life easier when I want to create the config vars_with_na # add missing indicator missing_ind = AddMissingIndicator(variables=vars_with_na) missing_ind.fit(X_train) X_train = missing_ind.transform(X_train) X_test = missing_ind.transform(X_test) # check the binary missing indicator variables X_train[['LotFrontage_na', 'MasVnrArea_na', 'GarageYrBlt_na']].head() # then replace missing data with the mean # set the imputer mean_imputer = MeanMedianImputer( imputation_method='mean', variables=vars_with_na) # learn and store parameters from train set mean_imputer.fit(X_train) # the stored parameters mean_imputer.imputer_dict_ X_train = mean_imputer.transform(X_train) X_test = mean_imputer.transform(X_test) # IMPORTANT: note that we could save the imputers with joblib # check that we have no more missing values in the engineered variables X_train[vars_with_na].isnull().sum() # check that test set does not contain null values in the engineered variables [var for var in vars_with_na if X_test[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Temporal variables Capture elapsed timeThere is in Feature-engine 2 classes that allow us to perform the 2 transformations below:- [CombineWithFeatureReference](https://feature-engine.readthedocs.io/en/latest/creation/CombineWithReferenceFeature.html) to capture elapsed time- [DropFeatures](https://feature-engine.readthedocs.io/en/latest/selection/DropFeatures.html) to drop the unwanted featuresWe will do the first one manually, so we take the opportunity to create 1 class ourselves for the course. For the second operation, we will use the DropFeatures class. ###Code def elapsed_years(df, var): # capture difference between the year variable # and the year in which the house was sold df[var] = df['YrSold'] - df[var] return df for var in ['YearBuilt', 'YearRemodAdd', 'GarageYrBlt']: X_train = elapsed_years(X_train, var) X_test = elapsed_years(X_test, var) # now we drop YrSold drop_features = DropFeatures(features_to_drop=['YrSold']) X_train = drop_features.fit_transform(X_train) X_test = drop_features.transform(X_test) ###Output _____no_output_____ ###Markdown Numerical variable transformation Logarithmic transformationIn the previous notebook, we observed that the numerical variables are not normally distributed.We will transform with the logarightm the positive numerical variables in order to get a more Gaussian-like distribution. ###Code log_transformer = LogTransformer( variables=["LotFrontage", "1stFlrSF", "GrLivArea"]) X_train = log_transformer.fit_transform(X_train) X_test = log_transformer.transform(X_test) # check that test set does not contain null values in the engineered variables [var for var in ["LotFrontage", "1stFlrSF", "GrLivArea"] if X_test[var].isnull().sum() > 0] # same for train set [var for var in ["LotFrontage", "1stFlrSF", "GrLivArea"] if X_train[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Yeo-Johnson transformationWe will apply the Yeo-Johnson transformation to LotArea. ###Code yeo_transformer = YeoJohnsonTransformer( variables=['LotArea']) X_train = yeo_transformer.fit_transform(X_train) X_test = yeo_transformer.transform(X_test) # the learned parameter yeo_transformer.lambda_dict_ # check absence of na in the train set [var for var in X_train.columns if X_train[var].isnull().sum() > 0] # check absence of na in the test set [var for var in X_train.columns if X_test[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Binarize skewed variablesThere were a few variables very skewed, we would transform those into binary variables.We can perform the below transformation with open source. We can use the [Binarizer](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Binarizer.html) from Scikit-learn, in combination with the [SklearnWrapper](https://feature-engine.readthedocs.io/en/latest/wrappers/Wrapper.html) from Feature-engine to be able to apply the transformation only to a subset of features.Instead, we are going to do it manually, to give us another opportunity to code the class as an in-house package later in the course. ###Code skewed = [ 'BsmtFinSF2', 'LowQualFinSF', 'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'MiscVal' ] binarizer = SklearnTransformerWrapper( transformer=Binarizer(threshold=0), variables=skewed ) X_train = binarizer.fit_transform(X_train) X_test = binarizer.transform(X_test) X_train[skewed].head() ###Output _____no_output_____ ###Markdown Categorical variables Apply mappingsThese are variables which values have an assigned order, related to quality. For more information, check Kaggle website. ###Code # re-map strings to numbers, which determine quality qual_mappings = {'Po': 1, 'Fa': 2, 'TA': 3, 'Gd': 4, 'Ex': 5, 'Missing': 0, 'NA': 0} qual_vars = ['ExterQual', 'ExterCond', 'BsmtQual', 'BsmtCond', 'HeatingQC', 'KitchenQual', 'FireplaceQu', 'GarageQual', 'GarageCond', ] for var in qual_vars: X_train[var] = X_train[var].map(qual_mappings) X_test[var] = X_test[var].map(qual_mappings) exposure_mappings = {'No': 1, 'Mn': 2, 'Av': 3, 'Gd': 4} var = 'BsmtExposure' X_train[var] = X_train[var].map(exposure_mappings) X_test[var] = X_test[var].map(exposure_mappings) finish_mappings = {'Missing': 0, 'NA': 0, 'Unf': 1, 'LwQ': 2, 'Rec': 3, 'BLQ': 4, 'ALQ': 5, 'GLQ': 6} finish_vars = ['BsmtFinType1', 'BsmtFinType2'] for var in finish_vars: X_train[var] = X_train[var].map(finish_mappings) X_test[var] = X_test[var].map(finish_mappings) garage_mappings = {'Missing': 0, 'NA': 0, 'Unf': 1, 'RFn': 2, 'Fin': 3} var = 'GarageFinish' X_train[var] = X_train[var].map(garage_mappings) X_test[var] = X_test[var].map(garage_mappings) fence_mappings = {'Missing': 0, 'NA': 0, 'MnWw': 1, 'GdWo': 2, 'MnPrv': 3, 'GdPrv': 4} var = 'Fence' X_train[var] = X_train[var].map(fence_mappings) X_test[var] = X_test[var].map(fence_mappings) # check absence of na in the train set [var for var in X_train.columns if X_train[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Removing Rare LabelsFor the remaining categorical variables, we will group those categories that are present in less than 1% of the observations. That is, all values of categorical variables that are shared by less than 1% of houses, well be replaced by the string "Rare".To learn more about how to handle categorical variables visit our course [Feature Engineering for Machine Learning](https://www.udemy.com/course/feature-engineering-for-machine-learning/?referralCode=A855148E05283015CF06) in Udemy. ###Code # capture all quality variables qual_vars = qual_vars + finish_vars + ['BsmtExposure','GarageFinish','Fence'] # capture the remaining categorical variables # (those that we did not re-map) cat_others = [ var for var in cat_vars if var not in qual_vars ] len(cat_others) cat_others rare_encoder = RareLabelEncoder(tol=0.01, n_categories=1, variables=cat_others) # find common labels rare_encoder.fit(X_train) # the common labels are stored, we can save the class # and then use it later :) rare_encoder.encoder_dict_ X_train = rare_encoder.transform(X_train) X_test = rare_encoder.transform(X_test) ###Output _____no_output_____ ###Markdown Encoding of categorical variablesNext, we need to transform the strings of the categorical variables into numbers. We will do it so that we capture the monotonic relationship between the label and the target.To learn more about how to encode categorical variables visit our course [Feature Engineering for Machine Learning](https://www.udemy.com/course/feature-engineering-for-machine-learning/?referralCode=A855148E05283015CF06) in Udemy. ###Code # set up the encoder cat_encoder = OrdinalEncoder(encoding_method='ordered', variables=cat_others) # create the mappings cat_encoder.fit(X_train, y_train) # mappings are stored and class can be saved cat_encoder.encoder_dict_ X_train = cat_encoder.transform(X_train) X_test = cat_encoder.transform(X_test) # check absence of na in the train set [var for var in X_train.columns if X_train[var].isnull().sum() > 0] # check absence of na in the test set [var for var in X_test.columns if X_test[var].isnull().sum() > 0] # let me show you what I mean by monotonic relationship # between labels and target def analyse_vars(train, y_train, var): # function plots median house sale price per encoded # category tmp = pd.concat([X_train, np.log(y_train)], axis=1) tmp.groupby(var)['SalePrice'].median().plot.bar() plt.title(var) plt.ylim(2.2, 2.6) plt.ylabel('SalePrice') plt.show() for var in cat_others: analyse_vars(X_train, y_train, var) ###Output _____no_output_____ ###Markdown The monotonic relationship is particularly clear for the variables MSZoning and Neighborhood. Note how, the higher the integer that now represents the category, the higher the mean house sale price.(remember that the target is log-transformed, that is why the differences seem so small). Feature ScalingFor use in linear models, features need to be either scaled. We will scale features to the minimum and maximum values: ###Code # create scaler scaler = MinMaxScaler() # fit the scaler to the train set scaler.fit(X_train) # transform the train and test set # sklearn returns numpy arrays, so we wrap the # array with a pandas dataframe X_train = pd.DataFrame( scaler.transform(X_train), columns=X_train.columns ) X_test = pd.DataFrame( scaler.transform(X_test), columns=X_train.columns ) X_train.head() ###Output _____no_output_____ ###Markdown Feature Engineering with Open-SourceIn this notebook, we will reproduce the Feature Engineering Pipeline from the notebook 2 (02-Machine-Learning-Pipeline-Feature-Engineering), but we will replace, whenever possible, the manually created functions by open-source classes, and hopefully understand the value they bring forward. Reproducibility: Setting the seedWith the aim to ensure reproducibility between runs of the same notebook, but also between the research and production environment, for each step that includes some element of randomness, it is extremely important that we **set the seed**. ###Code # data manipulation and plotting import pandas as pd import numpy as np import matplotlib.pyplot as plt # for saving the pipeline import joblib # from Scikit-learn from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler, Binarizer # from feature-engine from feature_engine.imputation import ( AddMissingIndicator, MeanMedianImputer, CategoricalImputer, ) from feature_engine.encoding import ( RareLabelEncoder, OrdinalEncoder, ) from feature_engine.transformation import ( LogTransformer, YeoJohnsonTransformer, ) from feature_engine.selection import DropFeatures from feature_engine.wrappers import SklearnTransformerWrapper # to visualise al the columns in the dataframe pd.pandas.set_option('display.max_columns', None) # load dataset data = pd.read_csv('train.csv') # rows and columns of the data print(data.shape) # visualise the dataset data.head() ###Output (1460, 81) ###Markdown Separate dataset into train and testIt is important to separate our data intro training and testing set. When we engineer features, some techniques learn parameters from data. It is important to learn these parameters only from the train set. This is to avoid over-fitting.Our feature engineering techniques will learn:- mean- mode- exponents for the yeo-johnson- category frequency- and category to number mappingsfrom the train set.**Separating the data into train and test involves randomness, therefore, we need to set the seed.** ###Code # Let's separate into train and test set # Remember to set the seed (random_state for this sklearn function) X_train, X_test, y_train, y_test = train_test_split( data.drop(['Id', 'SalePrice'], axis=1), # predictive variables data['SalePrice'], # target test_size=0.1, # portion of dataset to allocate to test set random_state=0, # we are setting the seed here ) X_train.shape, X_test.shape ###Output _____no_output_____ ###Markdown Feature EngineeringIn the following cells, we will engineer the variables of the House Price Dataset so that we tackle:1. Missing values2. Temporal variables3. Non-Gaussian distributed variables4. Categorical variables: remove rare labels5. Categorical variables: convert strings to numbers5. Standardize the values of the variables to the same range TargetWe apply the logarithm ###Code y_train = np.log(y_train) y_test = np.log(y_test) ###Output _____no_output_____ ###Markdown Missing values Categorical variablesWe will replace missing values with the string "missing" in those variables with a lot of missing data. Alternatively, we will replace missing data with the most frequent category in those variables that contain fewer observations without values. This is common practice. ###Code # let's identify the categorical variables # we will capture those of type object cat_vars = [var for var in data.columns if data[var].dtype == 'O'] # MSSubClass is also categorical by definition, despite its numeric values # (you can find the definitions of the variables in the data_description.txt # file available on Kaggle, in the same website where you downloaded the data) # lets add MSSubClass to the list of categorical variables cat_vars = cat_vars + ['MSSubClass'] # cast all variables as categorical X_train[cat_vars] = X_train[cat_vars].astype('O') X_test[cat_vars] = X_test[cat_vars].astype('O') # number of categorical variables len(cat_vars) # make a list of the categorical variables that contain missing values cat_vars_with_na = [ var for var in cat_vars if X_train[var].isnull().sum() > 0 ] # print percentage of missing values per variable X_train[cat_vars_with_na ].isnull().mean().sort_values(ascending=False) # variables to impute with the string missing with_string_missing = [ var for var in cat_vars_with_na if X_train[var].isnull().mean() > 0.1] # variables to impute with the most frequent category with_frequent_category = [ var for var in cat_vars_with_na if X_train[var].isnull().mean() < 0.1] # I print the values here, because it makes it easier for # later when we need to add this values to a config file for # deployment with_string_missing with_frequent_category # replace missing values with new label: "Missing" # set up the class cat_imputer_missing = CategoricalImputer( imputation_method='missing', variables=with_string_missing) # fit the class to the train set cat_imputer_missing.fit(X_train) # the class learns and stores the parameters cat_imputer_missing.imputer_dict_ # replace NA by missing # IMPORTANT: note that we could store this class with joblib X_train = cat_imputer_missing.transform(X_train) X_test = cat_imputer_missing.transform(X_test) # replace missing values with most frequent category # set up the class cat_imputer_frequent = CategoricalImputer( imputation_method='frequent', variables=with_frequent_category) # fit the class to the train set cat_imputer_frequent.fit(X_train) # the class learns and stores the parameters cat_imputer_frequent.imputer_dict_ # replace NA by missing # IMPORTANT: note that we could store this class with joblib X_train = cat_imputer_frequent.transform(X_train) X_test = cat_imputer_frequent.transform(X_test) # check that we have no missing information in the engineered variables X_train[cat_vars_with_na].isnull().sum() # check that test set does not contain null values in the engineered variables [var for var in cat_vars_with_na if X_test[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Numerical variablesTo engineer missing values in numerical variables, we will:- add a binary missing indicator variable- and then replace the missing values in the original variable with the mean ###Code # now let's identify the numerical variables num_vars = [ var for var in X_train.columns if var not in cat_vars and var != 'SalePrice' ] # number of numerical variables len(num_vars) # make a list with the numerical variables that contain missing values vars_with_na = [ var for var in num_vars if X_train[var].isnull().sum() > 0 ] # print percentage of missing values per variable X_train[vars_with_na].isnull().mean() # print, makes my life easier when I want to create the config vars_with_na # add missing indicator missing_ind = AddMissingIndicator(variables=vars_with_na) missing_ind.fit(X_train) X_train = missing_ind.transform(X_train) X_test = missing_ind.transform(X_test) # check the binary missing indicator variables X_train[['LotFrontage_na', 'MasVnrArea_na', 'GarageYrBlt_na']].head() # then replace missing data with the mean # set the imputer mean_imputer = MeanMedianImputer( imputation_method='mean', variables=vars_with_na) # learn and store parameters from train set mean_imputer.fit(X_train) # the stored parameters mean_imputer.imputer_dict_ X_train = mean_imputer.transform(X_train) X_test = mean_imputer.transform(X_test) # IMPORTANT: note that we could save the imputers with joblib # check that we have no more missing values in the engineered variables X_train[vars_with_na].isnull().sum() # check that test set does not contain null values in the engineered variables [var for var in vars_with_na if X_test[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Temporal variables Capture elapsed timeThere is in Feature-engine 2 classes that allow us to perform the 2 transformations below:- [CombineWithFeatureReference](https://feature-engine.readthedocs.io/en/latest/creation/CombineWithReferenceFeature.html) to capture elapsed time- [DropFeatures](https://feature-engine.readthedocs.io/en/latest/selection/DropFeatures.html) to drop the unwanted featuresWe will do the first one manually, so we take the opportunity to create 1 class ourselves for the course. For the second operation, we will use the DropFeatures class. ###Code def elapsed_years(df, var): # capture difference between the year variable # and the year in which the house was sold df[var] = df['YrSold'] - df[var] return df for var in ['YearBuilt', 'YearRemodAdd', 'GarageYrBlt']: X_train = elapsed_years(X_train, var) X_test = elapsed_years(X_test, var) # now we drop YrSold drop_features = DropFeatures(features_to_drop=['YrSold']) X_train = drop_features.fit_transform(X_train) X_test = drop_features.transform(X_test) ###Output _____no_output_____ ###Markdown Numerical variable transformation Logarithmic transformationIn the previous notebook, we observed that the numerical variables are not normally distributed.We will transform with the logarightm the positive numerical variables in order to get a more Gaussian-like distribution. ###Code log_transformer = LogTransformer( variables=["LotFrontage", "1stFlrSF", "GrLivArea"]) X_train = log_transformer.fit_transform(X_train) X_test = log_transformer.transform(X_test) # check that test set does not contain null values in the engineered variables [var for var in ["LotFrontage", "1stFlrSF", "GrLivArea"] if X_test[var].isnull().sum() > 0] # same for train set [var for var in ["LotFrontage", "1stFlrSF", "GrLivArea"] if X_train[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Yeo-Johnson transformationWe will apply the Yeo-Johnson transformation to LotArea. ###Code yeo_transformer = YeoJohnsonTransformer( variables=['LotArea']) X_train = yeo_transformer.fit_transform(X_train) X_test = yeo_transformer.transform(X_test) # the learned parameter yeo_transformer.lambda_dict_ # check absence of na in the train set [var for var in X_train.columns if X_train[var].isnull().sum() > 0] # check absence of na in the test set [var for var in X_train.columns if X_test[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Binarize skewed variablesThere were a few variables very skewed, we would transform those into binary variables.We can perform the below transformation with open source. We can use the [Binarizer](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Binarizer.html) from Scikit-learn, in combination with the [SklearnWrapper](https://feature-engine.readthedocs.io/en/latest/wrappers/Wrapper.html) from Feature-engine to be able to apply the transformation only to a subset of features.Instead, we are going to do it manually, to give us another opportunity to code the class as an in-house package later in the course. ###Code skewed = [ 'BsmtFinSF2', 'LowQualFinSF', 'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'MiscVal' ] binarizer = SklearnTransformerWrapper( transformer=Binarizer(threshold=0), variables=skewed ) X_train = binarizer.fit_transform(X_train) X_test = binarizer.transform(X_test) X_train[skewed].head() ###Output _____no_output_____ ###Markdown Categorical variables Apply mappingsThese are variables which values have an assigned order, related to quality. For more information, check Kaggle website. ###Code # re-map strings to numbers, which determine quality qual_mappings = {'Po': 1, 'Fa': 2, 'TA': 3, 'Gd': 4, 'Ex': 5, 'Missing': 0, 'NA': 0} qual_vars = ['ExterQual', 'ExterCond', 'BsmtQual', 'BsmtCond', 'HeatingQC', 'KitchenQual', 'FireplaceQu', 'GarageQual', 'GarageCond', ] for var in qual_vars: X_train[var] = X_train[var].map(qual_mappings) X_test[var] = X_test[var].map(qual_mappings) exposure_mappings = {'No': 1, 'Mn': 2, 'Av': 3, 'Gd': 4} var = 'BsmtExposure' X_train[var] = X_train[var].map(exposure_mappings) X_test[var] = X_test[var].map(exposure_mappings) finish_mappings = {'Missing': 0, 'NA': 0, 'Unf': 1, 'LwQ': 2, 'Rec': 3, 'BLQ': 4, 'ALQ': 5, 'GLQ': 6} finish_vars = ['BsmtFinType1', 'BsmtFinType2'] for var in finish_vars: X_train[var] = X_train[var].map(finish_mappings) X_test[var] = X_test[var].map(finish_mappings) garage_mappings = {'Missing': 0, 'NA': 0, 'Unf': 1, 'RFn': 2, 'Fin': 3} var = 'GarageFinish' X_train[var] = X_train[var].map(garage_mappings) X_test[var] = X_test[var].map(garage_mappings) fence_mappings = {'Missing': 0, 'NA': 0, 'MnWw': 1, 'GdWo': 2, 'MnPrv': 3, 'GdPrv': 4} var = 'Fence' X_train[var] = X_train[var].map(fence_mappings) X_test[var] = X_test[var].map(fence_mappings) # check absence of na in the train set [var for var in X_train.columns if X_train[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Removing Rare LabelsFor the remaining categorical variables, we will group those categories that are present in less than 1% of the observations. That is, all values of categorical variables that are shared by less than 1% of houses, well be replaced by the string "Rare".To learn more about how to handle categorical variables visit our course [Feature Engineering for Machine Learning](https://www.udemy.com/course/feature-engineering-for-machine-learning/?referralCode=A855148E05283015CF06) in Udemy. ###Code # capture all quality variables qual_vars = qual_vars + finish_vars + ['BsmtExposure','GarageFinish','Fence'] # capture the remaining categorical variables # (those that we did not re-map) cat_others = [ var for var in cat_vars if var not in qual_vars ] len(cat_others) cat_others rare_encoder = RareLabelEncoder(tol=0.01, n_categories=1, variables=cat_others) # find common labels rare_encoder.fit(X_train) # the common labels are stored, we can save the class # and then use it later :) rare_encoder.encoder_dict_ X_train = rare_encoder.transform(X_train) X_test = rare_encoder.transform(X_test) ###Output _____no_output_____ ###Markdown Encoding of categorical variablesNext, we need to transform the strings of the categorical variables into numbers. We will do it so that we capture the monotonic relationship between the label and the target.To learn more about how to encode categorical variables visit our course [Feature Engineering for Machine Learning](https://www.udemy.com/course/feature-engineering-for-machine-learning/?referralCode=A855148E05283015CF06) in Udemy. ###Code # set up the encoder cat_encoder = OrdinalEncoder(encoding_method='ordered', variables=cat_others) # create the mappings cat_encoder.fit(X_train, y_train) # mappings are stored and class can be saved cat_encoder.encoder_dict_ X_train = cat_encoder.transform(X_train) X_test = cat_encoder.transform(X_test) # check absence of na in the train set [var for var in X_train.columns if X_train[var].isnull().sum() > 0] # check absence of na in the test set [var for var in X_test.columns if X_test[var].isnull().sum() > 0] # let me show you what I mean by monotonic relationship # between labels and target def analyse_vars(train, y_train, var): # function plots median house sale price per encoded # category tmp = pd.concat([X_train, np.log(y_train)], axis=1) tmp.groupby(var)['SalePrice'].median().plot.bar() plt.title(var) plt.ylim(2.2, 2.6) plt.ylabel('SalePrice') plt.show() for var in cat_others: analyse_vars(X_train, y_train, var) ###Output _____no_output_____ ###Markdown The monotonic relationship is particularly clear for the variables MSZoning and Neighborhood. Note how, the higher the integer that now represents the category, the higher the mean house sale price.(remember that the target is log-transformed, that is why the differences seem so small). Feature ScalingFor use in linear models, features need to be either scaled. We will scale features to the minimum and maximum values: ###Code # create scaler scaler = MinMaxScaler() # fit the scaler to the train set scaler.fit(X_train) # transform the train and test set # sklearn returns numpy arrays, so we wrap the # array with a pandas dataframe X_train = pd.DataFrame( scaler.transform(X_train), columns=X_train.columns ) X_test = pd.DataFrame( scaler.transform(X_test), columns=X_train.columns ) X_train.head() ###Output _____no_output_____ ###Markdown Feature Engineering with Open-SourceIn this notebook, we will reproduce the Feature Engineering Pipeline from the notebook 2 (02-Machine-Learning-Pipeline-Feature-Engineering), but we will replace, whenever possible, the manually created functions by open-source classes, and hopefully understand the value they bring forward. Reproducibility: Setting the seedWith the aim to ensure reproducibility between runs of the same notebook, but also between the research and production environment, for each step that includes some element of randomness, it is extremely important that we **set the seed**. ###Code # data manipulation and plotting import pandas as pd import numpy as np import matplotlib.pyplot as plt # for saving the pipeline import joblib # from Scikit-learn from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler, Binarizer # from feature-engine from feature_engine.imputation import ( AddMissingIndicator, MeanMedianImputer, CategoricalImputer, ) from feature_engine.encoding import ( RareLabelEncoder, OrdinalEncoder, ) from feature_engine.transformation import ( LogTransformer, YeoJohnsonTransformer, ) from feature_engine.selection import DropFeatures from feature_engine.wrappers import SklearnTransformerWrapper # to visualise al the columns in the dataframe pd.pandas.set_option('display.max_columns', None) # load dataset data = pd.read_csv('train.csv') # rows and columns of the data print(data.shape) # visualise the dataset data.head() ###Output (1460, 81) ###Markdown Separate dataset into train and testIt is important to separate our data intro training and testing set. When we engineer features, some techniques learn parameters from data. It is important to learn these parameters only from the train set. This is to avoid over-fitting.Our feature engineering techniques will learn:- mean- mode- exponents for the yeo-johnson- category frequency- and category to number mappingsfrom the train set.**Separating the data into train and test involves randomness, therefore, we need to set the seed.** ###Code # Let's separate into train and test set # Remember to set the seed (random_state for this sklearn function) X_train, X_test, y_train, y_test = train_test_split( data.drop(['Id', 'SalePrice'], axis=1), # predictive variables data['SalePrice'], # target test_size=0.1, # portion of dataset to allocate to test set random_state=0, # we are setting the seed here ) X_train.shape, X_test.shape ###Output _____no_output_____ ###Markdown Feature EngineeringIn the following cells, we will engineer the variables of the House Price Dataset so that we tackle:1. Missing values2. Temporal variables3. Non-Gaussian distributed variables4. Categorical variables: remove rare labels5. Categorical variables: convert strings to numbers5. Standardize the values of the variables to the same range TargetWe apply the logarithm ###Code y_train = np.log(y_train) y_test = np.log(y_test) ###Output _____no_output_____ ###Markdown Missing values Categorical variablesWe will replace missing values with the string "missing" in those variables with a lot of missing data. Alternatively, we will replace missing data with the most frequent category in those variables that contain fewer observations without values. This is common practice. ###Code # let's identify the categorical variables # we will capture those of type object cat_vars = [var for var in data.columns if data[var].dtype == 'O'] # MSSubClass is also categorical by definition, despite its numeric values # (you can find the definitions of the variables in the data_description.txt # file available on Kaggle, in the same website where you downloaded the data) # lets add MSSubClass to the list of categorical variables cat_vars = cat_vars + ['MSSubClass'] # cast all variables as categorical X_train[cat_vars] = X_train[cat_vars].astype('O') X_test[cat_vars] = X_test[cat_vars].astype('O') # number of categorical variables len(cat_vars) # make a list of the categorical variables that contain missing values cat_vars_with_na = [ var for var in cat_vars if X_train[var].isnull().sum() > 0 ] # print percentage of missing values per variable X_train[cat_vars_with_na ].isnull().mean().sort_values(ascending=False) # variables to impute with the string missing with_string_missing = [ var for var in cat_vars_with_na if X_train[var].isnull().mean() > 0.1] # variables to impute with the most frequent category with_frequent_category = [ var for var in cat_vars_with_na if X_train[var].isnull().mean() < 0.1] # I print the values here, because it makes it easier for # later when we need to add this values to a config file for # deployment with_string_missing with_frequent_category # replace missing values with new label: "Missing" # set up the class cat_imputer_missing = CategoricalImputer( imputation_method='missing', variables=with_string_missing) # fit the class to the train set cat_imputer_missing.fit(X_train) # the class learns and stores the parameters cat_imputer_missing.imputer_dict_ # replace NA by missing # IMPORTANT: note that we could store this class with joblib X_train = cat_imputer_missing.transform(X_train) X_test = cat_imputer_missing.transform(X_test) # replace missing values with most frequent category # set up the class cat_imputer_frequent = CategoricalImputer( imputation_method='frequent', variables=with_frequent_category) # fit the class to the train set cat_imputer_frequent.fit(X_train) # the class learns and stores the parameters cat_imputer_frequent.imputer_dict_ # replace NA by missing # IMPORTANT: note that we could store this class with joblib X_train = cat_imputer_frequent.transform(X_train) X_test = cat_imputer_frequent.transform(X_test) # check that we have no missing information in the engineered variables X_train[cat_vars_with_na].isnull().sum() # check that test set does not contain null values in the engineered variables [var for var in cat_vars_with_na if X_test[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Numerical variablesTo engineer missing values in numerical variables, we will:- add a binary missing indicator variable- and then replace the missing values in the original variable with the mean ###Code # now let's identify the numerical variables num_vars = [ var for var in X_train.columns if var not in cat_vars and var != 'SalePrice' ] # number of numerical variables len(num_vars) # make a list with the numerical variables that contain missing values vars_with_na = [ var for var in num_vars if X_train[var].isnull().sum() > 0 ] # print percentage of missing values per variable X_train[vars_with_na].isnull().mean() # print, makes my life easier when I want to create the config vars_with_na # add missing indicator missing_ind = AddMissingIndicator(variables=vars_with_na) missing_ind.fit(X_train) X_train = missing_ind.transform(X_train) X_test = missing_ind.transform(X_test) # check the binary missing indicator variables X_train[['LotFrontage_na', 'MasVnrArea_na', 'GarageYrBlt_na']].head() # then replace missing data with the mean # set the imputer mean_imputer = MeanMedianImputer( imputation_method='mean', variables=vars_with_na) # learn and store parameters from train set mean_imputer.fit(X_train) # the stored parameters mean_imputer.imputer_dict_ X_train = mean_imputer.transform(X_train) X_test = mean_imputer.transform(X_test) # IMPORTANT: note that we could save the imputers with joblib # check that we have no more missing values in the engineered variables X_train[vars_with_na].isnull().sum() # check that test set does not contain null values in the engineered variables [var for var in vars_with_na if X_test[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Temporal variables Capture elapsed timeThere is in Feature-engine 2 classes that allow us to perform the 2 transformations below:- [CombineWithFeatureReference](https://feature-engine.readthedocs.io/en/latest/creation/CombineWithReferenceFeature.html) to capture elapsed time- [DropFeatures](https://feature-engine.readthedocs.io/en/latest/selection/DropFeatures.html) to drop the unwanted featuresWe will do the first one manually, so we take the opportunity to create 1 class ourselves for the course. For the second operation, we will use the DropFeatures class. ###Code def elapsed_years(df, var): # capture difference between the year variable # and the year in which the house was sold df[var] = df['YrSold'] - df[var] return df for var in ['YearBuilt', 'YearRemodAdd', 'GarageYrBlt']: X_train = elapsed_years(X_train, var) X_test = elapsed_years(X_test, var) # now we drop YrSold drop_features = DropFeatures(features_to_drop=['YrSold']) X_train = drop_features.fit_transform(X_train) X_test = drop_features.transform(X_test) ###Output _____no_output_____ ###Markdown Numerical variable transformation Logarithmic transformationIn the previous notebook, we observed that the numerical variables are not normally distributed.We will transform with the logarightm the positive numerical variables in order to get a more Gaussian-like distribution. ###Code log_transformer = LogTransformer( variables=["LotFrontage", "1stFlrSF", "GrLivArea"]) X_train = log_transformer.fit_transform(X_train) X_test = log_transformer.transform(X_test) # check that test set does not contain null values in the engineered variables [var for var in ["LotFrontage", "1stFlrSF", "GrLivArea"] if X_test[var].isnull().sum() > 0] # same for train set [var for var in ["LotFrontage", "1stFlrSF", "GrLivArea"] if X_train[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Yeo-Johnson transformationWe will apply the Yeo-Johnson transformation to LotArea. ###Code yeo_transformer = YeoJohnsonTransformer( variables=['LotArea']) X_train = yeo_transformer.fit_transform(X_train) X_test = yeo_transformer.transform(X_test) # the learned parameter yeo_transformer.lambda_dict_ # check absence of na in the train set [var for var in X_train.columns if X_train[var].isnull().sum() > 0] # check absence of na in the test set [var for var in X_train.columns if X_test[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Binarize skewed variablesThere were a few variables very skewed, we would transform those into binary variables.We can perform the below transformation with open source. We can use the [Binarizer](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Binarizer.html) from Scikit-learn, in combination with the [SklearnWrapper](https://feature-engine.readthedocs.io/en/latest/wrappers/Wrapper.html) from Feature-engine to be able to apply the transformation only to a subset of features.Instead, we are going to do it manually, to give us another opportunity to code the class as an in-house package later in the course. ###Code skewed = [ 'BsmtFinSF2', 'LowQualFinSF', 'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'MiscVal' ] binarizer = SklearnTransformerWrapper( transformer=Binarizer(threshold=0), variables=skewed ) X_train = binarizer.fit_transform(X_train) X_test = binarizer.transform(X_test) X_train[skewed].head() ###Output _____no_output_____ ###Markdown Categorical variables Apply mappingsThese are variables which values have an assigned order, related to quality. For more information, check Kaggle website. ###Code # re-map strings to numbers, which determine quality qual_mappings = {'Po': 1, 'Fa': 2, 'TA': 3, 'Gd': 4, 'Ex': 5, 'Missing': 0, 'NA': 0} qual_vars = ['ExterQual', 'ExterCond', 'BsmtQual', 'BsmtCond', 'HeatingQC', 'KitchenQual', 'FireplaceQu', 'GarageQual', 'GarageCond', ] for var in qual_vars: X_train[var] = X_train[var].map(qual_mappings) X_test[var] = X_test[var].map(qual_mappings) exposure_mappings = {'No': 1, 'Mn': 2, 'Av': 3, 'Gd': 4} var = 'BsmtExposure' X_train[var] = X_train[var].map(exposure_mappings) X_test[var] = X_test[var].map(exposure_mappings) finish_mappings = {'Missing': 0, 'NA': 0, 'Unf': 1, 'LwQ': 2, 'Rec': 3, 'BLQ': 4, 'ALQ': 5, 'GLQ': 6} finish_vars = ['BsmtFinType1', 'BsmtFinType2'] for var in finish_vars: X_train[var] = X_train[var].map(finish_mappings) X_test[var] = X_test[var].map(finish_mappings) garage_mappings = {'Missing': 0, 'NA': 0, 'Unf': 1, 'RFn': 2, 'Fin': 3} var = 'GarageFinish' X_train[var] = X_train[var].map(garage_mappings) X_test[var] = X_test[var].map(garage_mappings) fence_mappings = {'Missing': 0, 'NA': 0, 'MnWw': 1, 'GdWo': 2, 'MnPrv': 3, 'GdPrv': 4} var = 'Fence' X_train[var] = X_train[var].map(fence_mappings) X_test[var] = X_test[var].map(fence_mappings) # check absence of na in the train set [var for var in X_train.columns if X_train[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Removing Rare LabelsFor the remaining categorical variables, we will group those categories that are present in less than 1% of the observations. That is, all values of categorical variables that are shared by less than 1% of houses, well be replaced by the string "Rare".To learn more about how to handle categorical variables visit our course [Feature Engineering for Machine Learning](https://www.udemy.com/course/feature-engineering-for-machine-learning/?referralCode=A855148E05283015CF06) in Udemy. ###Code # capture all quality variables qual_vars = qual_vars + finish_vars + ['BsmtExposure','GarageFinish','Fence'] # capture the remaining categorical variables # (those that we did not re-map) cat_others = [ var for var in cat_vars if var not in qual_vars ] len(cat_others) cat_others rare_encoder = RareLabelEncoder(tol=0.01, n_categories=1, variables=cat_others) # find common labels rare_encoder.fit(X_train) # the common labels are stored, we can save the class # and then use it later :) rare_encoder.encoder_dict_ X_train = rare_encoder.transform(X_train) X_test = rare_encoder.transform(X_test) ###Output _____no_output_____ ###Markdown Encoding of categorical variablesNext, we need to transform the strings of the categorical variables into numbers. We will do it so that we capture the monotonic relationship between the label and the target.To learn more about how to encode categorical variables visit our course [Feature Engineering for Machine Learning](https://www.udemy.com/course/feature-engineering-for-machine-learning/?referralCode=A855148E05283015CF06) in Udemy. ###Code # set up the encoder cat_encoder = OrdinalEncoder(encoding_method='ordered', variables=cat_others) # create the mappings cat_encoder.fit(X_train, y_train) # mappings are stored and class can be saved cat_encoder.encoder_dict_ X_train = cat_encoder.transform(X_train) X_test = cat_encoder.transform(X_test) # check absence of na in the train set [var for var in X_train.columns if X_train[var].isnull().sum() > 0] # check absence of na in the test set [var for var in X_test.columns if X_test[var].isnull().sum() > 0] # let me show you what I mean by monotonic relationship # between labels and target def analyse_vars(train, y_train, var): # function plots median house sale price per encoded # category tmp = pd.concat([X_train, np.log(y_train)], axis=1) tmp.groupby(var)['SalePrice'].median().plot.bar() plt.title(var) plt.ylim(2.2, 2.6) plt.ylabel('SalePrice') plt.show() for var in cat_others: analyse_vars(X_train, y_train, var) ###Output _____no_output_____ ###Markdown The monotonic relationship is particularly clear for the variables MSZoning and Neighborhood. Note how, the higher the integer that now represents the category, the higher the mean house sale price.(remember that the target is log-transformed, that is why the differences seem so small). Feature ScalingFor use in linear models, features need to be either scaled. We will scale features to the minimum and maximum values: ###Code # create scaler scaler = MinMaxScaler() # fit the scaler to the train set scaler.fit(X_train) # transform the train and test set # sklearn returns numpy arrays, so we wrap the # array with a pandas dataframe X_train = pd.DataFrame( scaler.transform(X_train), columns=X_train.columns ) X_test = pd.DataFrame( scaler.transform(X_test), columns=X_train.columns ) X_train.head() ###Output _____no_output_____ ###Markdown Feature Engineering with Open-SourceIn this notebook, we will reproduce the Feature Engineering Pipeline from the notebook 2 (02-Machine-Learning-Pipeline-Feature-Engineering), but we will replace, whenever possible, the manually created functions by open-source classes, and hopefully understand the value they bring forward. Reproducibility: Setting the seedWith the aim to ensure reproducibility between runs of the same notebook, but also between the research and production environment, for each step that includes some element of randomness, it is extremely important that we **set the seed**. ###Code # data manipulation and plotting import pandas as pd import numpy as np import matplotlib.pyplot as plt # for saving the pipeline import joblib # from Scikit-learn from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler, Binarizer # from feature-engine from feature_engine.imputation import ( AddMissingIndicator, MeanMedianImputer, CategoricalImputer, ) from feature_engine.encoding import ( RareLabelEncoder, OrdinalEncoder, ) from feature_engine.transformation import ( LogTransformer, YeoJohnsonTransformer, ) from feature_engine.selection import DropFeatures from feature_engine.wrappers import SklearnTransformerWrapper # to visualise al the columns in the dataframe pd.pandas.set_option('display.max_columns', None) # load dataset data = pd.read_csv('train.csv') # rows and columns of the data print(data.shape) # visualise the dataset data.head() ###Output (1460, 81) ###Markdown Separate dataset into train and testIt is important to separate our data intro training and testing set. When we engineer features, some techniques learn parameters from data. It is important to learn these parameters only from the train set. This is to avoid over-fitting.Our feature engineering techniques will learn:- mean- mode- exponents for the yeo-johnson- category frequency- and category to number mappingsfrom the train set.**Separating the data into train and test involves randomness, therefore, we need to set the seed.** ###Code # Let's separate into train and test set # Remember to set the seed (random_state for this sklearn function) X_train, X_test, y_train, y_test = train_test_split( data.drop(['Id', 'SalePrice'], axis=1), # predictive variables data['SalePrice'], # target test_size=0.1, # portion of dataset to allocate to test set random_state=0, # we are setting the seed here ) X_train.shape, X_test.shape ###Output _____no_output_____ ###Markdown Feature EngineeringIn the following cells, we will engineer the variables of the House Price Dataset so that we tackle:1. Missing values2. Temporal variables3. Non-Gaussian distributed variables4. Categorical variables: remove rare labels5. Categorical variables: convert strings to numbers5. Standardize the values of the variables to the same range TargetWe apply the logarithm ###Code y_train = np.log(y_train) y_test = np.log(y_test) ###Output _____no_output_____ ###Markdown Missing values Categorical variablesWe will replace missing values with the string "missing" in those variables with a lot of missing data. Alternatively, we will replace missing data with the most frequent category in those variables that contain fewer observations without values. This is common practice. ###Code # let's identify the categorical variables # we will capture those of type object cat_vars = [var for var in data.columns if data[var].dtype == 'O'] # MSSubClass is also categorical by definition, despite its numeric values # (you can find the definitions of the variables in the data_description.txt # file available on Kaggle, in the same website where you downloaded the data) # lets add MSSubClass to the list of categorical variables cat_vars = cat_vars + ['MSSubClass'] # cast all variables as categorical X_train[cat_vars] = X_train[cat_vars].astype('O') X_test[cat_vars] = X_test[cat_vars].astype('O') # number of categorical variables len(cat_vars) # make a list of the categorical variables that contain missing values cat_vars_with_na = [ var for var in cat_vars if X_train[var].isnull().sum() > 0 ] # print percentage of missing values per variable X_train[cat_vars_with_na ].isnull().mean().sort_values(ascending=False) # variables to impute with the string missing with_string_missing = [ var for var in cat_vars_with_na if X_train[var].isnull().mean() > 0.1] # variables to impute with the most frequent category with_frequent_category = [ var for var in cat_vars_with_na if X_train[var].isnull().mean() < 0.1] # I print the values here, because it makes it easier for # later when we need to add this values to a config file for # deployment with_string_missing with_frequent_category # replace missing values with new label: "Missing" # set up the class cat_imputer_missing = CategoricalImputer( imputation_method='missing', variables=with_string_missing) # fit the class to the train set cat_imputer_missing.fit(X_train) # the class learns and stores the parameters cat_imputer_missing.imputer_dict_ # replace NA by missing # IMPORTANT: note that we could store this class with joblib X_train = cat_imputer_missing.transform(X_train) X_test = cat_imputer_missing.transform(X_test) # replace missing values with most frequent category # set up the class cat_imputer_frequent = CategoricalImputer( imputation_method='frequent', variables=with_frequent_category) # fit the class to the train set cat_imputer_frequent.fit(X_train) # the class learns and stores the parameters cat_imputer_frequent.imputer_dict_ # replace NA by missing # IMPORTANT: note that we could store this class with joblib X_train = cat_imputer_frequent.transform(X_train) X_test = cat_imputer_frequent.transform(X_test) # check that we have no missing information in the engineered variables X_train[cat_vars_with_na].isnull().sum() # check that test set does not contain null values in the engineered variables [var for var in cat_vars_with_na if X_test[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Numerical variablesTo engineer missing values in numerical variables, we will:- add a binary missing indicator variable- and then replace the missing values in the original variable with the mean ###Code # now let's identify the numerical variables num_vars = [ var for var in X_train.columns if var not in cat_vars and var != 'SalePrice' ] # number of numerical variables len(num_vars) # make a list with the numerical variables that contain missing values vars_with_na = [ var for var in num_vars if X_train[var].isnull().sum() > 0 ] # print percentage of missing values per variable X_train[vars_with_na].isnull().mean() # print, makes my life easier when I want to create the config vars_with_na # add missing indicator missing_ind = AddMissingIndicator(variables=vars_with_na) missing_ind.fit(X_train) X_train = missing_ind.transform(X_train) X_test = missing_ind.transform(X_test) # check the binary missing indicator variables X_train[['LotFrontage_na', 'MasVnrArea_na', 'GarageYrBlt_na']].head() # then replace missing data with the mean # set the imputer mean_imputer = MeanMedianImputer( imputation_method='mean', variables=vars_with_na) # learn and store parameters from train set mean_imputer.fit(X_train) # the stored parameters mean_imputer.imputer_dict_ X_train = mean_imputer.transform(X_train) X_test = mean_imputer.transform(X_test) # IMPORTANT: note that we could save the imputers with joblib # check that we have no more missing values in the engineered variables X_train[vars_with_na].isnull().sum() # check that test set does not contain null values in the engineered variables [var for var in vars_with_na if X_test[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Temporal variables Capture elapsed timeThere is in Feature-engine 2 classes that allow us to perform the 2 transformations below:- [CombineWithFeatureReference](https://feature-engine.readthedocs.io/en/latest/creation/CombineWithReferenceFeature.html) to capture elapsed time- [DropFeatures](https://feature-engine.readthedocs.io/en/latest/selection/DropFeatures.html) to drop the unwanted featuresWe will do the first one manually, so we take the opportunity to create 1 class ourselves for the course. For the second operation, we will use the DropFeatures class. ###Code def elapsed_years(df, var): # capture difference between the year variable # and the year in which the house was sold df[var] = df['YrSold'] - df[var] return df for var in ['YearBuilt', 'YearRemodAdd', 'GarageYrBlt']: X_train = elapsed_years(X_train, var) X_test = elapsed_years(X_test, var) # now we drop YrSold drop_features = DropFeatures(features_to_drop=['YrSold']) X_train = drop_features.fit_transform(X_train) X_test = drop_features.transform(X_test) ###Output _____no_output_____ ###Markdown Numerical variable transformation Logarithmic transformationIn the previous notebook, we observed that the numerical variables are not normally distributed.We will transform with the logarightm the positive numerical variables in order to get a more Gaussian-like distribution. ###Code log_transformer = LogTransformer( variables=["LotFrontage", "1stFlrSF", "GrLivArea"]) X_train = log_transformer.fit_transform(X_train) X_test = log_transformer.transform(X_test) # check that test set does not contain null values in the engineered variables [var for var in ["LotFrontage", "1stFlrSF", "GrLivArea"] if X_test[var].isnull().sum() > 0] # same for train set [var for var in ["LotFrontage", "1stFlrSF", "GrLivArea"] if X_train[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Yeo-Johnson transformationWe will apply the Yeo-Johnson transformation to LotArea. ###Code yeo_transformer = YeoJohnsonTransformer( variables=['LotArea']) X_train = yeo_transformer.fit_transform(X_train) X_test = yeo_transformer.transform(X_test) # the learned parameter yeo_transformer.lambda_dict_ # check absence of na in the train set [var for var in X_train.columns if X_train[var].isnull().sum() > 0] # check absence of na in the test set [var for var in X_train.columns if X_test[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Binarize skewed variablesThere were a few variables very skewed, we would transform those into binary variables.We can perform the below transformation with open source. We can use the [Binarizer](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Binarizer.html) from Scikit-learn, in combination with the [SklearnWrapper](https://feature-engine.readthedocs.io/en/latest/wrappers/Wrapper.html) from Feature-engine to be able to apply the transformation only to a subset of features.Instead, we are going to do it manually, to give us another opportunity to code the class as an in-house package later in the course. ###Code skewed = [ 'BsmtFinSF2', 'LowQualFinSF', 'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'MiscVal' ] binarizer = SklearnTransformerWrapper( transformer=Binarizer(threshold=0), variables=skewed ) X_train = binarizer.fit_transform(X_train) X_test = binarizer.transform(X_test) X_train[skewed].head() ###Output _____no_output_____ ###Markdown Categorical variables Apply mappingsThese are variables which values have an assigned order, related to quality. For more information, check Kaggle website. ###Code # re-map strings to numbers, which determine quality qual_mappings = {'Po': 1, 'Fa': 2, 'TA': 3, 'Gd': 4, 'Ex': 5, 'Missing': 0, 'NA': 0} qual_vars = ['ExterQual', 'ExterCond', 'BsmtQual', 'BsmtCond', 'HeatingQC', 'KitchenQual', 'FireplaceQu', 'GarageQual', 'GarageCond', ] for var in qual_vars: X_train[var] = X_train[var].map(qual_mappings) X_test[var] = X_test[var].map(qual_mappings) exposure_mappings = {'No': 1, 'Mn': 2, 'Av': 3, 'Gd': 4} var = 'BsmtExposure' X_train[var] = X_train[var].map(exposure_mappings) X_test[var] = X_test[var].map(exposure_mappings) finish_mappings = {'Missing': 0, 'NA': 0, 'Unf': 1, 'LwQ': 2, 'Rec': 3, 'BLQ': 4, 'ALQ': 5, 'GLQ': 6} finish_vars = ['BsmtFinType1', 'BsmtFinType2'] for var in finish_vars: X_train[var] = X_train[var].map(finish_mappings) X_test[var] = X_test[var].map(finish_mappings) garage_mappings = {'Missing': 0, 'NA': 0, 'Unf': 1, 'RFn': 2, 'Fin': 3} var = 'GarageFinish' X_train[var] = X_train[var].map(garage_mappings) X_test[var] = X_test[var].map(garage_mappings) fence_mappings = {'Missing': 0, 'NA': 0, 'MnWw': 1, 'GdWo': 2, 'MnPrv': 3, 'GdPrv': 4} var = 'Fence' X_train[var] = X_train[var].map(fence_mappings) X_test[var] = X_test[var].map(fence_mappings) # check absence of na in the train set [var for var in X_train.columns if X_train[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Removing Rare LabelsFor the remaining categorical variables, we will group those categories that are present in less than 1% of the observations. That is, all values of categorical variables that are shared by less than 1% of houses, well be replaced by the string "Rare".To learn more about how to handle categorical variables visit our course [Feature Engineering for Machine Learning](https://www.udemy.com/course/feature-engineering-for-machine-learning/?referralCode=A855148E05283015CF06) in Udemy. ###Code # capture all quality variables qual_vars = qual_vars + finish_vars + ['BsmtExposure','GarageFinish','Fence'] # capture the remaining categorical variables # (those that we did not re-map) cat_others = [ var for var in cat_vars if var not in qual_vars ] len(cat_others) cat_others rare_encoder = RareLabelEncoder(tol=0.01, n_categories=1, variables=cat_others) # find common labels rare_encoder.fit(X_train) # the common labels are stored, we can save the class # and then use it later :) rare_encoder.encoder_dict_ X_train = rare_encoder.transform(X_train) X_test = rare_encoder.transform(X_test) ###Output _____no_output_____ ###Markdown Encoding of categorical variablesNext, we need to transform the strings of the categorical variables into numbers. We will do it so that we capture the monotonic relationship between the label and the target.To learn more about how to encode categorical variables visit our course [Feature Engineering for Machine Learning](https://www.udemy.com/course/feature-engineering-for-machine-learning/?referralCode=A855148E05283015CF06) in Udemy. ###Code # set up the encoder cat_encoder = OrdinalEncoder(encoding_method='ordered', variables=cat_others) # create the mappings cat_encoder.fit(X_train, y_train) # mappings are stored and class can be saved cat_encoder.encoder_dict_ X_train = cat_encoder.transform(X_train) X_test = cat_encoder.transform(X_test) # check absence of na in the train set [var for var in X_train.columns if X_train[var].isnull().sum() > 0] # check absence of na in the test set [var for var in X_test.columns if X_test[var].isnull().sum() > 0] # let me show you what I mean by monotonic relationship # between labels and target def analyse_vars(train, y_train, var): # function plots median house sale price per encoded # category tmp = pd.concat([X_train, np.log(y_train)], axis=1) tmp.groupby(var)['SalePrice'].median().plot.bar() plt.title(var) plt.ylim(2.2, 2.6) plt.ylabel('SalePrice') plt.show() for var in cat_others: analyse_vars(X_train, y_train, var) ###Output _____no_output_____ ###Markdown The monotonic relationship is particularly clear for the variables MSZoning and Neighborhood. Note how, the higher the integer that now represents the category, the higher the mean house sale price.(remember that the target is log-transformed, that is why the differences seem so small). Feature ScalingFor use in linear models, features need to be either scaled. We will scale features to the minimum and maximum values: ###Code # create scaler scaler = MinMaxScaler() # fit the scaler to the train set scaler.fit(X_train) # transform the train and test set # sklearn returns numpy arrays, so we wrap the # array with a pandas dataframe X_train = pd.DataFrame( scaler.transform(X_train), columns=X_train.columns ) X_test = pd.DataFrame( scaler.transform(X_test), columns=X_train.columns ) X_train.head() ###Output _____no_output_____ ###Markdown Feature Engineering with Open-SourceIn this notebook, we will reproduce the Feature Engineering Pipeline from the notebook 2 (02-Machine-Learning-Pipeline-Feature-Engineering), but we will replace, whenever possible, the manually created functions by open-source classes, and hopefully understand the value they bring forward. Reproducibility: Setting the seedWith the aim to ensure reproducibility between runs of the same notebook, but also between the research and production environment, for each step that includes some element of randomness, it is extremely important that we **set the seed**. ###Code # data manipulation and plotting import pandas as pd import numpy as np import matplotlib.pyplot as plt # for saving the pipeline import joblib # from Scikit-learn from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler, Binarizer # from feature-engine from feature_engine.imputation import ( AddMissingIndicator, MeanMedianImputer, CategoricalImputer, ) from feature_engine.encoding import ( RareLabelEncoder, OrdinalEncoder, ) from feature_engine.transformation import ( LogTransformer, YeoJohnsonTransformer, ) from feature_engine.selection import DropFeatures from feature_engine.wrappers import SklearnTransformerWrapper # to visualise al the columns in the dataframe pd.pandas.set_option('display.max_columns', None) # load dataset data = pd.read_csv(r'D:\Machine Learning_Deep Learning\Deploy_Machine_Learning_Model_Udemy\deploying-machine-learning-models\section-04-research-and-development\train.csv') # rows and columns of the data print(data.shape) # visualise the dataset data.head() ###Output (1460, 81) ###Markdown Separate dataset into train and testIt is important to separate our data intro training and testing set. When we engineer features, some techniques learn parameters from data. It is important to learn these parameters only from the train set. This is to avoid over-fitting.Our feature engineering techniques will learn:- mean- mode- exponents for the yeo-johnson- category frequency- and category to number mappingsfrom the train set.**Separating the data into train and test involves randomness, therefore, we need to set the seed.** ###Code # Let's separate into train and test set # Remember to set the seed (random_state for this sklearn function) X_train, X_test, y_train, y_test = train_test_split( data.drop(['Id', 'SalePrice'], axis=1), # predictive variables data['SalePrice'], # target test_size=0.1, # portion of dataset to allocate to test set random_state=0, # we are setting the seed here ) X_train.shape, X_test.shape ###Output _____no_output_____ ###Markdown Feature EngineeringIn the following cells, we will engineer the variables of the House Price Dataset so that we tackle:1. Missing values2. Temporal variables3. Non-Gaussian distributed variables4. Categorical variables: remove rare labels5. Categorical variables: convert strings to numbers5. Standardize the values of the variables to the same range TargetWe apply the logarithm ###Code y_train = np.log(y_train) y_test = np.log(y_test) ###Output _____no_output_____ ###Markdown Missing values Categorical variablesWe will replace missing values with the string "missing" in those variables with a lot of missing data. Alternatively, we will replace missing data with the most frequent category in those variables that contain fewer observations without values. This is common practice. ###Code # let's identify the categorical variables # we will capture those of type object cat_vars = [var for var in data.columns if data[var].dtype == 'O'] # MSSubClass is also categorical by definition, despite its numeric values # (you can find the definitions of the variables in the data_description.txt # file available on Kaggle, in the same website where you downloaded the data) # lets add MSSubClass to the list of categorical variables cat_vars = cat_vars + ['MSSubClass'] # cast all variables as categorical X_train[cat_vars] = X_train[cat_vars].astype('O') X_test[cat_vars] = X_test[cat_vars].astype('O') # number of categorical variables len(cat_vars) # make a list of the categorical variables that contain missing values cat_vars_with_na = [ var for var in cat_vars if X_train[var].isnull().sum() > 0 ] # print percentage of missing values per variable X_train[cat_vars_with_na ].isnull().mean().sort_values(ascending=False) # variables to impute with the string missing with_string_missing = [ var for var in cat_vars_with_na if X_train[var].isnull().mean() > 0.1] # variables to impute with the most frequent category with_frequent_category = [ var for var in cat_vars_with_na if X_train[var].isnull().mean() < 0.1] # I print the values here, because it makes it easier for # later when we need to add this values to a config file for # deployment with_string_missing with_frequent_category # replace missing values with new label: "Missing" # set up the class cat_imputer_missing = CategoricalImputer( imputation_method='missing', variables=with_string_missing) # fit the class to the train set cat_imputer_missing.fit(X_train) # the class learns and stores the parameters cat_imputer_missing.imputer_dict_ # replace NA by missing # IMPORTANT: note that we could store this class with joblib X_train = cat_imputer_missing.transform(X_train) X_test = cat_imputer_missing.transform(X_test) # replace missing values with most frequent category # set up the class cat_imputer_frequent = CategoricalImputer( imputation_method='frequent', variables=with_frequent_category) # fit the class to the train set cat_imputer_frequent.fit(X_train) # the class learns and stores the parameters cat_imputer_frequent.imputer_dict_ # replace NA by missing # IMPORTANT: note that we could store this class with joblib X_train = cat_imputer_frequent.transform(X_train) X_test = cat_imputer_frequent.transform(X_test) # check that we have no missing information in the engineered variables X_train[cat_vars_with_na].isnull().sum() # check that test set does not contain null values in the engineered variables [var for var in cat_vars_with_na if X_test[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Numerical variablesTo engineer missing values in numerical variables, we will:- add a binary missing indicator variable- and then replace the missing values in the original variable with the mean ###Code # now let's identify the numerical variables num_vars = [ var for var in X_train.columns if var not in cat_vars and var != 'SalePrice' ] # number of numerical variables len(num_vars) # make a list with the numerical variables that contain missing values vars_with_na = [ var for var in num_vars if X_train[var].isnull().sum() > 0 ] # print percentage of missing values per variable X_train[vars_with_na].isnull().mean() # print, makes my life easier when I want to create the config vars_with_na # add missing indicator missing_ind = AddMissingIndicator(variables=vars_with_na) missing_ind.fit(X_train) X_train = missing_ind.transform(X_train) X_test = missing_ind.transform(X_test) # check the binary missing indicator variables X_train[['LotFrontage_na', 'MasVnrArea_na', 'GarageYrBlt_na']].head() # then replace missing data with the mean # set the imputer mean_imputer = MeanMedianImputer( imputation_method='mean', variables=vars_with_na) # learn and store parameters from train set mean_imputer.fit(X_train) # the stored parameters mean_imputer.imputer_dict_ X_train = mean_imputer.transform(X_train) X_test = mean_imputer.transform(X_test) # IMPORTANT: note that we could save the imputers with joblib # check that we have no more missing values in the engineered variables X_train[vars_with_na].isnull().sum() # check that test set does not contain null values in the engineered variables [var for var in vars_with_na if X_test[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Temporal variables Capture elapsed timeThere is in Feature-engine 2 classes that allow us to perform the 2 transformations below:- [CombineWithFeatureReference](https://feature-engine.readthedocs.io/en/latest/creation/CombineWithReferenceFeature.html) to capture elapsed time- [DropFeatures](https://feature-engine.readthedocs.io/en/latest/selection/DropFeatures.html) to drop the unwanted featuresWe will do the first one manually, so we take the opportunity to create 1 class ourselves for the course. For the second operation, we will use the DropFeatures class. ###Code def elapsed_years(df, var): # capture difference between the year variable # and the year in which the house was sold df[var] = df['YrSold'] - df[var] return df for var in ['YearBuilt', 'YearRemodAdd', 'GarageYrBlt']: X_train = elapsed_years(X_train, var) X_test = elapsed_years(X_test, var) # now we drop YrSold drop_features = DropFeatures(features_to_drop=['YrSold']) X_train = drop_features.fit_transform(X_train) X_test = drop_features.transform(X_test) ###Output _____no_output_____ ###Markdown Numerical variable transformation Logarithmic transformationIn the previous notebook, we observed that the numerical variables are not normally distributed.We will transform with the logarightm the positive numerical variables in order to get a more Gaussian-like distribution. ###Code log_transformer = LogTransformer( variables=["LotFrontage", "1stFlrSF", "GrLivArea"]) X_train = log_transformer.fit_transform(X_train) X_test = log_transformer.transform(X_test) # check that test set does not contain null values in the engineered variables [var for var in ["LotFrontage", "1stFlrSF", "GrLivArea"] if X_test[var].isnull().sum() > 0] # same for train set [var for var in ["LotFrontage", "1stFlrSF", "GrLivArea"] if X_train[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Yeo-Johnson transformationWe will apply the Yeo-Johnson transformation to LotArea. ###Code yeo_transformer = YeoJohnsonTransformer( variables=['LotArea']) X_train = yeo_transformer.fit_transform(X_train) X_test = yeo_transformer.transform(X_test) # the learned parameter yeo_transformer.lambda_dict_ # check absence of na in the train set [var for var in X_train.columns if X_train[var].isnull().sum() > 0] # check absence of na in the test set [var for var in X_train.columns if X_test[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Binarize skewed variablesThere were a few variables very skewed, we would transform those into binary variables.We can perform the below transformation with open source. We can use the [Binarizer](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Binarizer.html) from Scikit-learn, in combination with the [SklearnWrapper](https://feature-engine.readthedocs.io/en/latest/wrappers/Wrapper.html) from Feature-engine to be able to apply the transformation only to a subset of features.Instead, we are going to do it manually, to give us another opportunity to code the class as an in-house package later in the course. ###Code skewed = [ 'BsmtFinSF2', 'LowQualFinSF', 'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'MiscVal' ] binarizer = SklearnTransformerWrapper( transformer=Binarizer(threshold=0), variables=skewed ) X_train = binarizer.fit_transform(X_train) X_test = binarizer.transform(X_test) X_train[skewed].head() ###Output _____no_output_____ ###Markdown Categorical variables Apply mappingsThese are variables which values have an assigned order, related to quality. For more information, check Kaggle website. ###Code # re-map strings to numbers, which determine quality qual_mappings = {'Po': 1, 'Fa': 2, 'TA': 3, 'Gd': 4, 'Ex': 5, 'Missing': 0, 'NA': 0} qual_vars = ['ExterQual', 'ExterCond', 'BsmtQual', 'BsmtCond', 'HeatingQC', 'KitchenQual', 'FireplaceQu', 'GarageQual', 'GarageCond', ] for var in qual_vars: X_train[var] = X_train[var].map(qual_mappings) X_test[var] = X_test[var].map(qual_mappings) exposure_mappings = {'No': 1, 'Mn': 2, 'Av': 3, 'Gd': 4} var = 'BsmtExposure' X_train[var] = X_train[var].map(exposure_mappings) X_test[var] = X_test[var].map(exposure_mappings) finish_mappings = {'Missing': 0, 'NA': 0, 'Unf': 1, 'LwQ': 2, 'Rec': 3, 'BLQ': 4, 'ALQ': 5, 'GLQ': 6} finish_vars = ['BsmtFinType1', 'BsmtFinType2'] for var in finish_vars: X_train[var] = X_train[var].map(finish_mappings) X_test[var] = X_test[var].map(finish_mappings) garage_mappings = {'Missing': 0, 'NA': 0, 'Unf': 1, 'RFn': 2, 'Fin': 3} var = 'GarageFinish' X_train[var] = X_train[var].map(garage_mappings) X_test[var] = X_test[var].map(garage_mappings) fence_mappings = {'Missing': 0, 'NA': 0, 'MnWw': 1, 'GdWo': 2, 'MnPrv': 3, 'GdPrv': 4} var = 'Fence' X_train[var] = X_train[var].map(fence_mappings) X_test[var] = X_test[var].map(fence_mappings) # check absence of na in the train set [var for var in X_train.columns if X_train[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Removing Rare LabelsFor the remaining categorical variables, we will group those categories that are present in less than 1% of the observations. That is, all values of categorical variables that are shared by less than 1% of houses, well be replaced by the string "Rare".To learn more about how to handle categorical variables visit our course [Feature Engineering for Machine Learning](https://www.udemy.com/course/feature-engineering-for-machine-learning/?referralCode=A855148E05283015CF06) in Udemy. ###Code # capture all quality variables qual_vars = qual_vars + finish_vars + ['BsmtExposure','GarageFinish','Fence'] # capture the remaining categorical variables # (those that we did not re-map) cat_others = [ var for var in cat_vars if var not in qual_vars ] len(cat_others) cat_others rare_encoder = RareLabelEncoder(tol=0.01, n_categories=1, variables=cat_others) # find common labels rare_encoder.fit(X_train) # the common labels are stored, we can save the class # and then use it later :) rare_encoder.encoder_dict_ X_train = rare_encoder.transform(X_train) X_test = rare_encoder.transform(X_test) ###Output _____no_output_____ ###Markdown Encoding of categorical variablesNext, we need to transform the strings of the categorical variables into numbers. We will do it so that we capture the monotonic relationship between the label and the target.To learn more about how to encode categorical variables visit our course [Feature Engineering for Machine Learning](https://www.udemy.com/course/feature-engineering-for-machine-learning/?referralCode=A855148E05283015CF06) in Udemy. ###Code # set up the encoder cat_encoder = OrdinalEncoder(encoding_method='ordered', variables=cat_others) # create the mappings cat_encoder.fit(X_train, y_train) # mappings are stored and class can be saved cat_encoder.encoder_dict_ X_train = cat_encoder.transform(X_train) X_test = cat_encoder.transform(X_test) # check absence of na in the train set [var for var in X_train.columns if X_train[var].isnull().sum() > 0] # check absence of na in the test set [var for var in X_test.columns if X_test[var].isnull().sum() > 0] # let me show you what I mean by monotonic relationship # between labels and target def analyse_vars(train, y_train, var): # function plots median house sale price per encoded # category tmp = pd.concat([X_train, np.log(y_train)], axis=1) tmp.groupby(var)['SalePrice'].median().plot.bar() plt.title(var) plt.ylim(2.2, 2.6) plt.ylabel('SalePrice') plt.show() for var in cat_others: analyse_vars(X_train, y_train, var) ###Output _____no_output_____ ###Markdown The monotonic relationship is particularly clear for the variables MSZoning and Neighborhood. Note how, the higher the integer that now represents the category, the higher the mean house sale price.(remember that the target is log-transformed, that is why the differences seem so small). Feature ScalingFor use in linear models, features need to be either scaled. We will scale features to the minimum and maximum values: ###Code # create scaler scaler = MinMaxScaler() # fit the scaler to the train set scaler.fit(X_train) # transform the train and test set # sklearn returns numpy arrays, so we wrap the # array with a pandas dataframe X_train = pd.DataFrame( scaler.transform(X_train), columns=X_train.columns ) X_test = pd.DataFrame( scaler.transform(X_test), columns=X_train.columns ) X_train.head() ###Output _____no_output_____ ###Markdown Feature Engineering with Open-SourceIn this notebook, we will reproduce the Feature Engineering Pipeline from the notebook 2 (02-Machine-Learning-Pipeline-Feature-Engineering), but we will replace, whenever possible, the manually created functions by open-source classes, and hopefully understand the value they bring forward. Reproducibility: Setting the seedWith the aim to ensure reproducibility between runs of the same notebook, but also between the research and production environment, for each step that includes some element of randomness, it is extremely important that we **set the seed**. ###Code # data manipulation and plotting import pandas as pd import numpy as np import matplotlib.pyplot as plt # for saving the pipeline import joblib # from Scikit-learn from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler, Binarizer # from feature-engine from feature_engine.imputation import ( AddMissingIndicator, MeanMedianImputer, CategoricalImputer, ) from feature_engine.encoding import ( RareLabelEncoder, OrdinalEncoder, ) from feature_engine.transformation import ( LogTransformer, YeoJohnsonTransformer, ) from feature_engine.selection import DropFeatures from feature_engine.wrappers import SklearnTransformerWrapper # to visualise al the columns in the dataframe pd.pandas.set_option('display.max_columns', None) # load dataset data = pd.read_csv('train.csv') # rows and columns of the data print(data.shape) # visualise the dataset data.head() ###Output (1460, 81) ###Markdown Separate dataset into train and testIt is important to separate our data intro training and testing set. When we engineer features, some techniques learn parameters from data. It is important to learn these parameters only from the train set. This is to avoid over-fitting.Our feature engineering techniques will learn:- mean- mode- exponents for the yeo-johnson- category frequency- and category to number mappingsfrom the train set.**Separating the data into train and test involves randomness, therefore, we need to set the seed.** ###Code # Let's separate into train and test set # Remember to set the seed (random_state for this sklearn function) X_train, X_test, y_train, y_test = train_test_split( data.drop(['Id', 'SalePrice'], axis=1), # predictive variables data['SalePrice'], # target test_size=0.1, # portion of dataset to allocate to test set random_state=0, # we are setting the seed here ) X_train.shape, X_test.shape ###Output _____no_output_____ ###Markdown Feature EngineeringIn the following cells, we will engineer the variables of the House Price Dataset so that we tackle:1. Missing values2. Temporal variables3. Non-Gaussian distributed variables4. Categorical variables: remove rare labels5. Categorical variables: convert strings to numbers5. Standardize the values of the variables to the same range TargetWe apply the logarithm ###Code y_train = np.log(y_train) y_test = np.log(y_test) ###Output _____no_output_____ ###Markdown Missing values Categorical variablesWe will replace missing values with the string "missing" in those variables with a lot of missing data. Alternatively, we will replace missing data with the most frequent category in those variables that contain fewer observations without values. This is common practice. ###Code # let's identify the categorical variables # we will capture those of type object cat_vars = [var for var in data.columns if data[var].dtype == 'O'] # MSSubClass is also categorical by definition, despite its numeric values # (you can find the definitions of the variables in the data_description.txt # file available on Kaggle, in the same website where you downloaded the data) # lets add MSSubClass to the list of categorical variables cat_vars = cat_vars + ['MSSubClass'] # cast all variables as categorical X_train[cat_vars] = X_train[cat_vars].astype('O') X_test[cat_vars] = X_test[cat_vars].astype('O') # number of categorical variables len(cat_vars) # make a list of the categorical variables that contain missing values cat_vars_with_na = [ var for var in cat_vars if X_train[var].isnull().sum() > 0 ] # print percentage of missing values per variable X_train[cat_vars_with_na ].isnull().mean().sort_values(ascending=False) # variables to impute with the string missing with_string_missing = [ var for var in cat_vars_with_na if X_train[var].isnull().mean() > 0.1] # variables to impute with the most frequent category with_frequent_category = [ var for var in cat_vars_with_na if X_train[var].isnull().mean() < 0.1] # I print the values here, because it makes it easier for # later when we need to add this values to a config file for # deployment with_string_missing with_frequent_category # replace missing values with new label: "Missing" # set up the class cat_imputer_missing = CategoricalImputer( imputation_method='missing', variables=with_string_missing) # fit the class to the train set cat_imputer_missing.fit(X_train) # the class learns and stores the parameters cat_imputer_missing.imputer_dict_ # replace NA by missing # IMPORTANT: note that we could store this class with joblib X_train = cat_imputer_missing.transform(X_train) X_test = cat_imputer_missing.transform(X_test) # replace missing values with most frequent category # set up the class cat_imputer_frequent = CategoricalImputer( imputation_method='frequent', variables=with_frequent_category) # fit the class to the train set cat_imputer_frequent.fit(X_train) # the class learns and stores the parameters cat_imputer_frequent.imputer_dict_ # replace NA by missing # IMPORTANT: note that we could store this class with joblib X_train = cat_imputer_frequent.transform(X_train) X_test = cat_imputer_frequent.transform(X_test) # check that we have no missing information in the engineered variables X_train[cat_vars_with_na].isnull().sum() # check that test set does not contain null values in the engineered variables [var for var in cat_vars_with_na if X_test[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Numerical variablesTo engineer missing values in numerical variables, we will:- add a binary missing indicator variable- and then replace the missing values in the original variable with the mean ###Code # now let's identify the numerical variables num_vars = [ var for var in X_train.columns if var not in cat_vars and var != 'SalePrice' ] # number of numerical variables len(num_vars) # make a list with the numerical variables that contain missing values vars_with_na = [ var for var in num_vars if X_train[var].isnull().sum() > 0 ] # print percentage of missing values per variable X_train[vars_with_na].isnull().mean() # print, makes my life easier when I want to create the config vars_with_na # add missing indicator missing_ind = AddMissingIndicator(variables=vars_with_na) missing_ind.fit(X_train) X_train = missing_ind.transform(X_train) X_test = missing_ind.transform(X_test) # check the binary missing indicator variables X_train[['LotFrontage_na', 'MasVnrArea_na', 'GarageYrBlt_na']].head() # then replace missing data with the mean # set the imputer mean_imputer = MeanMedianImputer( imputation_method='mean', variables=vars_with_na) # learn and store parameters from train set mean_imputer.fit(X_train) # the stored parameters mean_imputer.imputer_dict_ X_train = mean_imputer.transform(X_train) X_test = mean_imputer.transform(X_test) # IMPORTANT: note that we could save the imputers with joblib # check that we have no more missing values in the engineered variables X_train[vars_with_na].isnull().sum() # check that test set does not contain null values in the engineered variables [var for var in vars_with_na if X_test[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Temporal variables Capture elapsed timeThere is in Feature-engine 2 classes that allow us to perform the 2 transformations below:- [CombineWithFeatureReference](https://feature-engine.readthedocs.io/en/latest/creation/CombineWithReferenceFeature.html) to capture elapsed time- [DropFeatures](https://feature-engine.readthedocs.io/en/latest/selection/DropFeatures.html) to drop the unwanted featuresWe will do the first one manually, so we take the opportunity to create 1 class ourselves for the course. For the second operation, we will use the DropFeatures class. ###Code def elapsed_years(df, var): # capture difference between the year variable # and the year in which the house was sold df[var] = df['YrSold'] - df[var] return df for var in ['YearBuilt', 'YearRemodAdd', 'GarageYrBlt']: X_train = elapsed_years(X_train, var) X_test = elapsed_years(X_test, var) # now we drop YrSold drop_features = DropFeatures(features_to_drop=['YrSold']) X_train = drop_features.fit_transform(X_train) X_test = drop_features.transform(X_test) ###Output _____no_output_____ ###Markdown Numerical variable transformation Logarithmic transformationIn the previous notebook, we observed that the numerical variables are not normally distributed.We will transform with the logarightm the positive numerical variables in order to get a more Gaussian-like distribution. ###Code log_transformer = LogTransformer( variables=["LotFrontage", "1stFlrSF", "GrLivArea"]) X_train = log_transformer.fit_transform(X_train) X_test = log_transformer.transform(X_test) # check that test set does not contain null values in the engineered variables [var for var in ["LotFrontage", "1stFlrSF", "GrLivArea"] if X_test[var].isnull().sum() > 0] # same for train set [var for var in ["LotFrontage", "1stFlrSF", "GrLivArea"] if X_train[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Yeo-Johnson transformationWe will apply the Yeo-Johnson transformation to LotArea. ###Code yeo_transformer = YeoJohnsonTransformer( variables=['LotArea']) X_train = yeo_transformer.fit_transform(X_train) X_test = yeo_transformer.transform(X_test) # the learned parameter yeo_transformer.lambda_dict_ # check absence of na in the train set [var for var in X_train.columns if X_train[var].isnull().sum() > 0] # check absence of na in the test set [var for var in X_train.columns if X_test[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Binarize skewed variablesThere were a few variables very skewed, we would transform those into binary variables.We can perform the below transformation with open source. We can use the [Binarizer](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Binarizer.html) from Scikit-learn, in combination with the [SklearnWrapper](https://feature-engine.readthedocs.io/en/latest/wrappers/Wrapper.html) from Feature-engine to be able to apply the transformation only to a subset of features.Instead, we are going to do it manually, to give us another opportunity to code the class as an in-house package later in the course. ###Code skewed = [ 'BsmtFinSF2', 'LowQualFinSF', 'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'MiscVal' ] binarizer = SklearnTransformerWrapper( transformer=Binarizer(threshold=0), variables=skewed ) X_train = binarizer.fit_transform(X_train) X_test = binarizer.transform(X_test) X_train[skewed].head() ###Output _____no_output_____ ###Markdown Categorical variables Apply mappingsThese are variables which values have an assigned order, related to quality. For more information, check Kaggle website. ###Code # re-map strings to numbers, which determine quality qual_mappings = {'Po': 1, 'Fa': 2, 'TA': 3, 'Gd': 4, 'Ex': 5, 'Missing': 0, 'NA': 0} qual_vars = ['ExterQual', 'ExterCond', 'BsmtQual', 'BsmtCond', 'HeatingQC', 'KitchenQual', 'FireplaceQu', 'GarageQual', 'GarageCond', ] for var in qual_vars: X_train[var] = X_train[var].map(qual_mappings) X_test[var] = X_test[var].map(qual_mappings) exposure_mappings = {'No': 1, 'Mn': 2, 'Av': 3, 'Gd': 4} var = 'BsmtExposure' X_train[var] = X_train[var].map(exposure_mappings) X_test[var] = X_test[var].map(exposure_mappings) finish_mappings = {'Missing': 0, 'NA': 0, 'Unf': 1, 'LwQ': 2, 'Rec': 3, 'BLQ': 4, 'ALQ': 5, 'GLQ': 6} finish_vars = ['BsmtFinType1', 'BsmtFinType2'] for var in finish_vars: X_train[var] = X_train[var].map(finish_mappings) X_test[var] = X_test[var].map(finish_mappings) garage_mappings = {'Missing': 0, 'NA': 0, 'Unf': 1, 'RFn': 2, 'Fin': 3} var = 'GarageFinish' X_train[var] = X_train[var].map(garage_mappings) X_test[var] = X_test[var].map(garage_mappings) fence_mappings = {'Missing': 0, 'NA': 0, 'MnWw': 1, 'GdWo': 2, 'MnPrv': 3, 'GdPrv': 4} var = 'Fence' X_train[var] = X_train[var].map(fence_mappings) X_test[var] = X_test[var].map(fence_mappings) # check absence of na in the train set [var for var in X_train.columns if X_train[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Removing Rare LabelsFor the remaining categorical variables, we will group those categories that are present in less than 1% of the observations. That is, all values of categorical variables that are shared by less than 1% of houses, well be replaced by the string "Rare".To learn more about how to handle categorical variables visit our course [Feature Engineering for Machine Learning](https://www.udemy.com/course/feature-engineering-for-machine-learning/?referralCode=A855148E05283015CF06) in Udemy. ###Code # capture all quality variables qual_vars = qual_vars + finish_vars + ['BsmtExposure','GarageFinish','Fence'] # capture the remaining categorical variables # (those that we did not re-map) cat_others = [ var for var in cat_vars if var not in qual_vars ] len(cat_others) cat_others rare_encoder = RareLabelEncoder(tol=0.01, n_categories=1, variables=cat_others) # find common labels rare_encoder.fit(X_train) # the common labels are stored, we can save the class # and then use it later :) rare_encoder.encoder_dict_ X_train = rare_encoder.transform(X_train) X_test = rare_encoder.transform(X_test) ###Output _____no_output_____ ###Markdown Encoding of categorical variablesNext, we need to transform the strings of the categorical variables into numbers. We will do it so that we capture the monotonic relationship between the label and the target.To learn more about how to encode categorical variables visit our course [Feature Engineering for Machine Learning](https://www.udemy.com/course/feature-engineering-for-machine-learning/?referralCode=A855148E05283015CF06) in Udemy. ###Code # set up the encoder cat_encoder = OrdinalEncoder(encoding_method='ordered', variables=cat_others) # create the mappings cat_encoder.fit(X_train, y_train) # mappings are stored and class can be saved cat_encoder.encoder_dict_ X_train = cat_encoder.transform(X_train) X_test = cat_encoder.transform(X_test) # check absence of na in the train set [var for var in X_train.columns if X_train[var].isnull().sum() > 0] # check absence of na in the test set [var for var in X_test.columns if X_test[var].isnull().sum() > 0] # let me show you what I mean by monotonic relationship # between labels and target def analyse_vars(train, y_train, var): # function plots median house sale price per encoded # category tmp = pd.concat([X_train, np.log(y_train)], axis=1) tmp.groupby(var)['SalePrice'].median().plot.bar() plt.title(var) plt.ylim(2.2, 2.6) plt.ylabel('SalePrice') plt.show() for var in cat_others: analyse_vars(X_train, y_train, var) ###Output _____no_output_____ ###Markdown The monotonic relationship is particularly clear for the variables MSZoning and Neighborhood. Note how, the higher the integer that now represents the category, the higher the mean house sale price.(remember that the target is log-transformed, that is why the differences seem so small). Feature ScalingFor use in linear models, features need to be either scaled. We will scale features to the minimum and maximum values: ###Code # create scaler scaler = MinMaxScaler() # fit the scaler to the train set scaler.fit(X_train) # transform the train and test set # sklearn returns numpy arrays, so we wrap the # array with a pandas dataframe X_train = pd.DataFrame( scaler.transform(X_train), columns=X_train.columns ) X_test = pd.DataFrame( scaler.transform(X_test), columns=X_train.columns ) X_train.head() ###Output _____no_output_____ ###Markdown Feature Engineering with Open-SourceIn this notebook, we will reproduce the Feature Engineering Pipeline from the notebook 2 (02-Machine-Learning-Pipeline-Feature-Engineering), but we will replace, whenever possible, the manually created functions by open-source classes, and hopefully understand the value they bring forward. Reproducibility: Setting the seedWith the aim to ensure reproducibility between runs of the same notebook, but also between the research and production environment, for each step that includes some element of randomness, it is extremely important that we **set the seed**. ###Code # data manipulation and plotting import pandas as pd import numpy as np import matplotlib.pyplot as plt # for saving the pipeline import joblib # from Scikit-learn from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler, Binarizer # from feature-engine from feature_engine.imputation import ( AddMissingIndicator, MeanMedianImputer, CategoricalImputer, ) from feature_engine.encoding import ( RareLabelEncoder, OrdinalEncoder, ) from feature_engine.transformation import ( LogTransformer, YeoJohnsonTransformer, ) from feature_engine.selection import DropFeatures from feature_engine.wrappers import SklearnTransformerWrapper # to visualise al the columns in the dataframe pd.pandas.set_option('display.max_columns', None) # load dataset data = pd.read_csv('train.csv') # rows and columns of the data print(data.shape) # visualise the dataset data.head() ###Output (1460, 81) ###Markdown Separate dataset into train and testIt is important to separate our data intro training and testing set. When we engineer features, some techniques learn parameters from data. It is important to learn these parameters only from the train set. This is to avoid over-fitting.Our feature engineering techniques will learn:- mean- mode- exponents for the yeo-johnson- category frequency- and category to number mappingsfrom the train set.**Separating the data into train and test involves randomness, therefore, we need to set the seed.** ###Code # Let's separate into train and test set # Remember to set the seed (random_state for this sklearn function) X_train, X_test, y_train, y_test = train_test_split( data.drop(['Id', 'SalePrice'], axis=1), # predictive variables data['SalePrice'], # target test_size=0.1, # portion of dataset to allocate to test set random_state=0, # we are setting the seed here ) X_train.shape, X_test.shape ###Output _____no_output_____ ###Markdown Feature EngineeringIn the following cells, we will engineer the variables of the House Price Dataset so that we tackle:1. Missing values2. Temporal variables3. Non-Gaussian distributed variables4. Categorical variables: remove rare labels5. Categorical variables: convert strings to numbers5. Standardize the values of the variables to the same range TargetWe apply the logarithm ###Code y_train = np.log(y_train) y_test = np.log(y_test) ###Output _____no_output_____ ###Markdown Missing values Categorical variablesWe will replace missing values with the string "missing" in those variables with a lot of missing data. Alternatively, we will replace missing data with the most frequent category in those variables that contain fewer observations without values. This is common practice. ###Code # let's identify the categorical variables # we will capture those of type object cat_vars = [var for var in data.columns if data[var].dtype == 'O'] # MSSubClass is also categorical by definition, despite its numeric values # (you can find the definitions of the variables in the data_description.txt # file available on Kaggle, in the same website where you downloaded the data) # lets add MSSubClass to the list of categorical variables cat_vars = cat_vars + ['MSSubClass'] # cast all variables as categorical X_train[cat_vars] = X_train[cat_vars].astype('O') X_test[cat_vars] = X_test[cat_vars].astype('O') # number of categorical variables len(cat_vars) # make a list of the categorical variables that contain missing values cat_vars_with_na = [ var for var in cat_vars if X_train[var].isnull().sum() > 0 ] # print percentage of missing values per variable X_train[cat_vars_with_na ].isnull().mean().sort_values(ascending=False) # variables to impute with the string missing with_string_missing = [ var for var in cat_vars_with_na if X_train[var].isnull().mean() > 0.1] # variables to impute with the most frequent category with_frequent_category = [ var for var in cat_vars_with_na if X_train[var].isnull().mean() < 0.1] # I print the values here, because it makes it easier for # later when we need to add this values to a config file for # deployment with_string_missing with_frequent_category # replace missing values with new label: "Missing" # set up the class cat_imputer_missing = CategoricalImputer( imputation_method='missing', variables=with_string_missing) # fit the class to the train set cat_imputer_missing.fit(X_train) # the class learns and stores the parameters cat_imputer_missing.imputer_dict_ # replace NA by missing # IMPORTANT: note that we could store this class with joblib X_train = cat_imputer_missing.transform(X_train) X_test = cat_imputer_missing.transform(X_test) # replace missing values with most frequent category # set up the class cat_imputer_frequent = CategoricalImputer( imputation_method='frequent', variables=with_frequent_category) # fit the class to the train set cat_imputer_frequent.fit(X_train) # the class learns and stores the parameters cat_imputer_frequent.imputer_dict_ # replace NA by missing # IMPORTANT: note that we could store this class with joblib X_train = cat_imputer_frequent.transform(X_train) X_test = cat_imputer_frequent.transform(X_test) # check that we have no missing information in the engineered variables X_train[cat_vars_with_na].isnull().sum() # check that test set does not contain null values in the engineered variables [var for var in cat_vars_with_na if X_test[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Numerical variablesTo engineer missing values in numerical variables, we will:- add a binary missing indicator variable- and then replace the missing values in the original variable with the mean ###Code # now let's identify the numerical variables num_vars = [ var for var in X_train.columns if var not in cat_vars and var != 'SalePrice' ] # number of numerical variables len(num_vars) # make a list with the numerical variables that contain missing values vars_with_na = [ var for var in num_vars if X_train[var].isnull().sum() > 0 ] # print percentage of missing values per variable X_train[vars_with_na].isnull().mean() # print, makes my life easier when I want to create the config vars_with_na # add missing indicator missing_ind = AddMissingIndicator(variables=vars_with_na) missing_ind.fit(X_train) X_train = missing_ind.transform(X_train) X_test = missing_ind.transform(X_test) # check the binary missing indicator variables X_train[['LotFrontage_na', 'MasVnrArea_na', 'GarageYrBlt_na']].head() # then replace missing data with the mean # set the imputer mean_imputer = MeanMedianImputer( imputation_method='mean', variables=vars_with_na) # learn and store parameters from train set mean_imputer.fit(X_train) # the stored parameters mean_imputer.imputer_dict_ X_train = mean_imputer.transform(X_train) X_test = mean_imputer.transform(X_test) # IMPORTANT: note that we could save the imputers with joblib # check that we have no more missing values in the engineered variables X_train[vars_with_na].isnull().sum() # check that test set does not contain null values in the engineered variables [var for var in vars_with_na if X_test[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Temporal variables Capture elapsed timeThere is in Feature-engine 2 classes that allow us to perform the 2 transformations below:- [CombineWithFeatureReference](https://feature-engine.readthedocs.io/en/latest/creation/CombineWithReferenceFeature.html) to capture elapsed time- [DropFeatures](https://feature-engine.readthedocs.io/en/latest/selection/DropFeatures.html) to drop the unwanted featuresWe will do the first one manually, so we take the opportunity to create 1 class ourselves for the course. For the second operation, we will use the DropFeatures class. ###Code def elapsed_years(df, var): # capture difference between the year variable # and the year in which the house was sold df[var] = df['YrSold'] - df[var] return df for var in ['YearBuilt', 'YearRemodAdd', 'GarageYrBlt']: X_train = elapsed_years(X_train, var) X_test = elapsed_years(X_test, var) # now we drop YrSold drop_features = DropFeatures(features_to_drop=['YrSold']) X_train = drop_features.fit_transform(X_train) X_test = drop_features.transform(X_test) ###Output _____no_output_____ ###Markdown Numerical variable transformation Logarithmic transformationIn the previous notebook, we observed that the numerical variables are not normally distributed.We will transform with the logarightm the positive numerical variables in order to get a more Gaussian-like distribution. ###Code log_transformer = LogTransformer( variables=["LotFrontage", "1stFlrSF", "GrLivArea"]) X_train = log_transformer.fit_transform(X_train) X_test = log_transformer.transform(X_test) # check that test set does not contain null values in the engineered variables [var for var in ["LotFrontage", "1stFlrSF", "GrLivArea"] if X_test[var].isnull().sum() > 0] # same for train set [var for var in ["LotFrontage", "1stFlrSF", "GrLivArea"] if X_train[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Yeo-Johnson transformationWe will apply the Yeo-Johnson transformation to LotArea. ###Code yeo_transformer = YeoJohnsonTransformer( variables=['LotArea']) X_train = yeo_transformer.fit_transform(X_train) X_test = yeo_transformer.transform(X_test) # the learned parameter yeo_transformer.lambda_dict_ # check absence of na in the train set [var for var in X_train.columns if X_train[var].isnull().sum() > 0] # check absence of na in the test set [var for var in X_train.columns if X_test[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Binarize skewed variablesThere were a few variables very skewed, we would transform those into binary variables.We can perform the below transformation with open source. We can use the [Binarizer](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Binarizer.html) from Scikit-learn, in combination with the [SklearnWrapper](https://feature-engine.readthedocs.io/en/latest/wrappers/Wrapper.html) from Feature-engine to be able to apply the transformation only to a subset of features.Instead, we are going to do it manually, to give us another opportunity to code the class as an in-house package later in the course. ###Code skewed = [ 'BsmtFinSF2', 'LowQualFinSF', 'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'MiscVal' ] binarizer = SklearnTransformerWrapper( transformer=Binarizer(threshold=0), variables=skewed ) X_train = binarizer.fit_transform(X_train) X_test = binarizer.transform(X_test) X_train[skewed].head() ###Output _____no_output_____ ###Markdown Categorical variables Apply mappingsThese are variables which values have an assigned order, related to quality. For more information, check Kaggle website. ###Code # re-map strings to numbers, which determine quality qual_mappings = {'Po': 1, 'Fa': 2, 'TA': 3, 'Gd': 4, 'Ex': 5, 'Missing': 0, 'NA': 0} qual_vars = ['ExterQual', 'ExterCond', 'BsmtQual', 'BsmtCond', 'HeatingQC', 'KitchenQual', 'FireplaceQu', 'GarageQual', 'GarageCond', ] for var in qual_vars: X_train[var] = X_train[var].map(qual_mappings) X_test[var] = X_test[var].map(qual_mappings) exposure_mappings = {'No': 1, 'Mn': 2, 'Av': 3, 'Gd': 4} var = 'BsmtExposure' X_train[var] = X_train[var].map(exposure_mappings) X_test[var] = X_test[var].map(exposure_mappings) finish_mappings = {'Missing': 0, 'NA': 0, 'Unf': 1, 'LwQ': 2, 'Rec': 3, 'BLQ': 4, 'ALQ': 5, 'GLQ': 6} finish_vars = ['BsmtFinType1', 'BsmtFinType2'] for var in finish_vars: X_train[var] = X_train[var].map(finish_mappings) X_test[var] = X_test[var].map(finish_mappings) garage_mappings = {'Missing': 0, 'NA': 0, 'Unf': 1, 'RFn': 2, 'Fin': 3} var = 'GarageFinish' X_train[var] = X_train[var].map(garage_mappings) X_test[var] = X_test[var].map(garage_mappings) fence_mappings = {'Missing': 0, 'NA': 0, 'MnWw': 1, 'GdWo': 2, 'MnPrv': 3, 'GdPrv': 4} var = 'Fence' X_train[var] = X_train[var].map(fence_mappings) X_test[var] = X_test[var].map(fence_mappings) # check absence of na in the train set [var for var in X_train.columns if X_train[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Removing Rare LabelsFor the remaining categorical variables, we will group those categories that are present in less than 1% of the observations. That is, all values of categorical variables that are shared by less than 1% of houses, well be replaced by the string "Rare".To learn more about how to handle categorical variables visit our course [Feature Engineering for Machine Learning](https://www.udemy.com/course/feature-engineering-for-machine-learning/?referralCode=A855148E05283015CF06) in Udemy. ###Code # capture all quality variables qual_vars = qual_vars + finish_vars + ['BsmtExposure','GarageFinish','Fence'] # capture the remaining categorical variables # (those that we did not re-map) cat_others = [ var for var in cat_vars if var not in qual_vars ] len(cat_others) cat_others rare_encoder = RareLabelEncoder(tol=0.01, n_categories=1, variables=cat_others) # find common labels rare_encoder.fit(X_train) # the common labels are stored, we can save the class # and then use it later :) rare_encoder.encoder_dict_ X_train = rare_encoder.transform(X_train) X_test = rare_encoder.transform(X_test) ###Output _____no_output_____ ###Markdown Encoding of categorical variablesNext, we need to transform the strings of the categorical variables into numbers. We will do it so that we capture the monotonic relationship between the label and the target.To learn more about how to encode categorical variables visit our course [Feature Engineering for Machine Learning](https://www.udemy.com/course/feature-engineering-for-machine-learning/?referralCode=A855148E05283015CF06) in Udemy. ###Code # set up the encoder cat_encoder = OrdinalEncoder(encoding_method='ordered', variables=cat_others) # create the mappings cat_encoder.fit(X_train, y_train) # mappings are stored and class can be saved cat_encoder.encoder_dict_ X_train = cat_encoder.transform(X_train) X_test = cat_encoder.transform(X_test) # check absence of na in the train set [var for var in X_train.columns if X_train[var].isnull().sum() > 0] # check absence of na in the test set [var for var in X_test.columns if X_test[var].isnull().sum() > 0] # let me show you what I mean by monotonic relationship # between labels and target def analyse_vars(train, y_train, var): # function plots median house sale price per encoded # category tmp = pd.concat([X_train, np.log(y_train)], axis=1) tmp.groupby(var)['SalePrice'].median().plot.bar() plt.title(var) plt.ylim(2.2, 2.6) plt.ylabel('SalePrice') plt.show() for var in cat_others: analyse_vars(X_train, y_train, var) ###Output _____no_output_____ ###Markdown The monotonic relationship is particularly clear for the variables MSZoning and Neighborhood. Note how, the higher the integer that now represents the category, the higher the mean house sale price.(remember that the target is log-transformed, that is why the differences seem so small). Feature ScalingFor use in linear models, features need to be either scaled. We will scale features to the minimum and maximum values: ###Code # create scaler scaler = MinMaxScaler() # fit the scaler to the train set scaler.fit(X_train) # transform the train and test set # sklearn returns numpy arrays, so we wrap the # array with a pandas dataframe X_train = pd.DataFrame( scaler.transform(X_train), columns=X_train.columns ) X_test = pd.DataFrame( scaler.transform(X_test), columns=X_train.columns ) X_train.head() ###Output _____no_output_____ ###Markdown Feature Engineering with Open-SourceIn this notebook, we will reproduce the Feature Engineering Pipeline from the notebook 2 (02-Machine-Learning-Pipeline-Feature-Engineering), but we will replace, whenever possible, the manually created functions by open-source classes, and hopefully understand the value they bring forward. Reproducibility: Setting the seedWith the aim to ensure reproducibility between runs of the same notebook, but also between the research and production environment, for each step that includes some element of randomness, it is extremely important that we **set the seed**. ###Code # data manipulation and plotting import pandas as pd import numpy as np import matplotlib.pyplot as plt # for saving the pipeline import joblib # from Scikit-learn from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler, Binarizer # from feature-engine from feature_engine.imputation import ( AddMissingIndicator, MeanMedianImputer, CategoricalImputer, ) from feature_engine.encoding import ( RareLabelEncoder, OrdinalEncoder, ) from feature_engine.transformation import ( LogTransformer, YeoJohnsonTransformer, ) from feature_engine.selection import DropFeatures from feature_engine.wrappers import SklearnTransformerWrapper # to visualise al the columns in the dataframe pd.pandas.set_option('display.max_columns', None) # load dataset data = pd.read_csv('train.csv') # rows and columns of the data print(data.shape) # visualise the dataset data.head() ###Output (1460, 81) ###Markdown Separate dataset into train and testIt is important to separate our data intro training and testing set. When we engineer features, some techniques learn parameters from data. It is important to learn these parameters only from the train set. This is to avoid over-fitting.Our feature engineering techniques will learn:- mean- mode- exponents for the yeo-johnson- category frequency- and category to number mappingsfrom the train set.**Separating the data into train and test involves randomness, therefore, we need to set the seed.** ###Code # Let's separate into train and test set # Remember to set the seed (random_state for this sklearn function) X_train, X_test, y_train, y_test = train_test_split( data.drop(['Id', 'SalePrice'], axis=1), # predictive variables data['SalePrice'], # target test_size=0.1, # portion of dataset to allocate to test set random_state=0, # we are setting the seed here ) X_train.shape, X_test.shape ###Output _____no_output_____ ###Markdown Feature EngineeringIn the following cells, we will engineer the variables of the House Price Dataset so that we tackle:1. Missing values2. Temporal variables3. Non-Gaussian distributed variables4. Categorical variables: remove rare labels5. Categorical variables: convert strings to numbers5. Standardize the values of the variables to the same range TargetWe apply the logarithm ###Code y_train = np.log(y_train) y_test = np.log(y_test) ###Output _____no_output_____ ###Markdown Missing values Categorical variablesWe will replace missing values with the string "missing" in those variables with a lot of missing data. Alternatively, we will replace missing data with the most frequent category in those variables that contain fewer observations without values. This is common practice. ###Code # let's identify the categorical variables # we will capture those of type object cat_vars = [var for var in data.columns if data[var].dtype == 'O'] # MSSubClass is also categorical by definition, despite its numeric values # (you can find the definitions of the variables in the data_description.txt # file available on Kaggle, in the same website where you downloaded the data) # lets add MSSubClass to the list of categorical variables cat_vars = cat_vars + ['MSSubClass'] # cast all variables as categorical X_train[cat_vars] = X_train[cat_vars].astype('O') X_test[cat_vars] = X_test[cat_vars].astype('O') # number of categorical variables len(cat_vars) # make a list of the categorical variables that contain missing values cat_vars_with_na = [ var for var in cat_vars if X_train[var].isnull().sum() > 0 ] # print percentage of missing values per variable X_train[cat_vars_with_na ].isnull().mean().sort_values(ascending=False) # variables to impute with the string missing with_string_missing = [ var for var in cat_vars_with_na if X_train[var].isnull().mean() > 0.1] # variables to impute with the most frequent category with_frequent_category = [ var for var in cat_vars_with_na if X_train[var].isnull().mean() < 0.1] # I print the values here, because it makes it easier for # later when we need to add this values to a config file for # deployment with_string_missing with_frequent_category # replace missing values with new label: "Missing" # set up the class cat_imputer_missing = CategoricalImputer( imputation_method='missing', variables=with_string_missing) # fit the class to the train set cat_imputer_missing.fit(X_train) # the class learns and stores the parameters cat_imputer_missing.imputer_dict_ # replace NA by missing # IMPORTANT: note that we could store this class with joblib X_train = cat_imputer_missing.transform(X_train) X_test = cat_imputer_missing.transform(X_test) # replace missing values with most frequent category # set up the class cat_imputer_frequent = CategoricalImputer( imputation_method='frequent', variables=with_frequent_category) # fit the class to the train set cat_imputer_frequent.fit(X_train) # the class learns and stores the parameters cat_imputer_frequent.imputer_dict_ # replace NA by missing # IMPORTANT: note that we could store this class with joblib X_train = cat_imputer_frequent.transform(X_train) X_test = cat_imputer_frequent.transform(X_test) # check that we have no missing information in the engineered variables X_train[cat_vars_with_na].isnull().sum() # check that test set does not contain null values in the engineered variables [var for var in cat_vars_with_na if X_test[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Numerical variablesTo engineer missing values in numerical variables, we will:- add a binary missing indicator variable- and then replace the missing values in the original variable with the mean ###Code # now let's identify the numerical variables num_vars = [ var for var in X_train.columns if var not in cat_vars and var != 'SalePrice' ] # number of numerical variables len(num_vars) # make a list with the numerical variables that contain missing values vars_with_na = [ var for var in num_vars if X_train[var].isnull().sum() > 0 ] # print percentage of missing values per variable X_train[vars_with_na].isnull().mean() # print, makes my life easier when I want to create the config vars_with_na # add missing indicator missing_ind = AddMissingIndicator(variables=vars_with_na) missing_ind.fit(X_train) X_train = missing_ind.transform(X_train) X_test = missing_ind.transform(X_test) # check the binary missing indicator variables X_train[['LotFrontage_na', 'MasVnrArea_na', 'GarageYrBlt_na']].head() # then replace missing data with the mean # set the imputer mean_imputer = MeanMedianImputer( imputation_method='mean', variables=vars_with_na) # learn and store parameters from train set mean_imputer.fit(X_train) # the stored parameters mean_imputer.imputer_dict_ X_train = mean_imputer.transform(X_train) X_test = mean_imputer.transform(X_test) # IMPORTANT: note that we could save the imputers with joblib # check that we have no more missing values in the engineered variables X_train[vars_with_na].isnull().sum() # check that test set does not contain null values in the engineered variables [var for var in vars_with_na if X_test[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Temporal variables Capture elapsed timeThere is in Feature-engine 2 classes that allow us to perform the 2 transformations below:- [CombineWithFeatureReference](https://feature-engine.readthedocs.io/en/latest/creation/CombineWithReferenceFeature.html) to capture elapsed time- [DropFeatures](https://feature-engine.readthedocs.io/en/latest/selection/DropFeatures.html) to drop the unwanted featuresWe will do the first one manually, so we take the opportunity to create 1 class ourselves for the course. For the second operation, we will use the DropFeatures class. ###Code def elapsed_years(df, var): # capture difference between the year variable # and the year in which the house was sold df[var] = df['YrSold'] - df[var] return df for var in ['YearBuilt', 'YearRemodAdd', 'GarageYrBlt']: X_train = elapsed_years(X_train, var) X_test = elapsed_years(X_test, var) # now we drop YrSold drop_features = DropFeatures(features_to_drop=['YrSold']) X_train = drop_features.fit_transform(X_train) X_test = drop_features.transform(X_test) ###Output _____no_output_____ ###Markdown Numerical variable transformation Logarithmic transformationIn the previous notebook, we observed that the numerical variables are not normally distributed.We will transform with the logarightm the positive numerical variables in order to get a more Gaussian-like distribution. ###Code log_transformer = LogTransformer( variables=["LotFrontage", "1stFlrSF", "GrLivArea"]) X_train = log_transformer.fit_transform(X_train) X_test = log_transformer.transform(X_test) # check that test set does not contain null values in the engineered variables [var for var in ["LotFrontage", "1stFlrSF", "GrLivArea"] if X_test[var].isnull().sum() > 0] # same for train set [var for var in ["LotFrontage", "1stFlrSF", "GrLivArea"] if X_train[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Yeo-Johnson transformationWe will apply the Yeo-Johnson transformation to LotArea. ###Code yeo_transformer = YeoJohnsonTransformer( variables=['LotArea']) X_train = yeo_transformer.fit_transform(X_train) X_test = yeo_transformer.transform(X_test) # the learned parameter yeo_transformer.lambda_dict_ # check absence of na in the train set [var for var in X_train.columns if X_train[var].isnull().sum() > 0] # check absence of na in the test set [var for var in X_train.columns if X_test[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Binarize skewed variablesThere were a few variables very skewed, we would transform those into binary variables.We can perform the below transformation with open source. We can use the [Binarizer](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Binarizer.html) from Scikit-learn, in combination with the [SklearnWrapper](https://feature-engine.readthedocs.io/en/latest/wrappers/Wrapper.html) from Feature-engine to be able to apply the transformation only to a subset of features.Instead, we are going to do it manually, to give us another opportunity to code the class as an in-house package later in the course. ###Code skewed = [ 'BsmtFinSF2', 'LowQualFinSF', 'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'MiscVal' ] binarizer = SklearnTransformerWrapper( transformer=Binarizer(threshold=0), variables=skewed ) X_train = binarizer.fit_transform(X_train) X_test = binarizer.transform(X_test) X_train[skewed].head() ###Output _____no_output_____ ###Markdown Categorical variables Apply mappingsThese are variables which values have an assigned order, related to quality. For more information, check Kaggle website. ###Code # re-map strings to numbers, which determine quality qual_mappings = {'Po': 1, 'Fa': 2, 'TA': 3, 'Gd': 4, 'Ex': 5, 'Missing': 0, 'NA': 0} qual_vars = ['ExterQual', 'ExterCond', 'BsmtQual', 'BsmtCond', 'HeatingQC', 'KitchenQual', 'FireplaceQu', 'GarageQual', 'GarageCond', ] for var in qual_vars: X_train[var] = X_train[var].map(qual_mappings) X_test[var] = X_test[var].map(qual_mappings) exposure_mappings = {'No': 1, 'Mn': 2, 'Av': 3, 'Gd': 4} var = 'BsmtExposure' X_train[var] = X_train[var].map(exposure_mappings) X_test[var] = X_test[var].map(exposure_mappings) finish_mappings = {'Missing': 0, 'NA': 0, 'Unf': 1, 'LwQ': 2, 'Rec': 3, 'BLQ': 4, 'ALQ': 5, 'GLQ': 6} finish_vars = ['BsmtFinType1', 'BsmtFinType2'] for var in finish_vars: X_train[var] = X_train[var].map(finish_mappings) X_test[var] = X_test[var].map(finish_mappings) garage_mappings = {'Missing': 0, 'NA': 0, 'Unf': 1, 'RFn': 2, 'Fin': 3} var = 'GarageFinish' X_train[var] = X_train[var].map(garage_mappings) X_test[var] = X_test[var].map(garage_mappings) fence_mappings = {'Missing': 0, 'NA': 0, 'MnWw': 1, 'GdWo': 2, 'MnPrv': 3, 'GdPrv': 4} var = 'Fence' X_train[var] = X_train[var].map(fence_mappings) X_test[var] = X_test[var].map(fence_mappings) # check absence of na in the train set [var for var in X_train.columns if X_train[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Removing Rare LabelsFor the remaining categorical variables, we will group those categories that are present in less than 1% of the observations. That is, all values of categorical variables that are shared by less than 1% of houses, well be replaced by the string "Rare".To learn more about how to handle categorical variables visit our course [Feature Engineering for Machine Learning](https://www.udemy.com/course/feature-engineering-for-machine-learning/?referralCode=A855148E05283015CF06) in Udemy. ###Code # capture all quality variables qual_vars = qual_vars + finish_vars + ['BsmtExposure','GarageFinish','Fence'] # capture the remaining categorical variables # (those that we did not re-map) cat_others = [ var for var in cat_vars if var not in qual_vars ] len(cat_others) cat_others rare_encoder = RareLabelEncoder(tol=0.01, n_categories=1, variables=cat_others) # find common labels rare_encoder.fit(X_train) # the common labels are stored, we can save the class # and then use it later :) rare_encoder.encoder_dict_ X_train = rare_encoder.transform(X_train) X_test = rare_encoder.transform(X_test) ###Output _____no_output_____ ###Markdown Encoding of categorical variablesNext, we need to transform the strings of the categorical variables into numbers. We will do it so that we capture the monotonic relationship between the label and the target.To learn more about how to encode categorical variables visit our course [Feature Engineering for Machine Learning](https://www.udemy.com/course/feature-engineering-for-machine-learning/?referralCode=A855148E05283015CF06) in Udemy. ###Code # set up the encoder cat_encoder = OrdinalEncoder(encoding_method='ordered', variables=cat_others) # create the mappings cat_encoder.fit(X_train, y_train) # mappings are stored and class can be saved cat_encoder.encoder_dict_ X_train = cat_encoder.transform(X_train) X_test = cat_encoder.transform(X_test) # check absence of na in the train set [var for var in X_train.columns if X_train[var].isnull().sum() > 0] # check absence of na in the test set [var for var in X_test.columns if X_test[var].isnull().sum() > 0] # let me show you what I mean by monotonic relationship # between labels and target def analyse_vars(train, y_train, var): # function plots median house sale price per encoded # category tmp = pd.concat([X_train, np.log(y_train)], axis=1) tmp.groupby(var)['SalePrice'].median().plot.bar() plt.title(var) plt.ylim(2.2, 2.6) plt.ylabel('SalePrice') plt.show() for var in cat_others: analyse_vars(X_train, y_train, var) ###Output _____no_output_____ ###Markdown The monotonic relationship is particularly clear for the variables MSZoning and Neighborhood. Note how, the higher the integer that now represents the category, the higher the mean house sale price.(remember that the target is log-transformed, that is why the differences seem so small). Feature ScalingFor use in linear models, features need to be either scaled. We will scale features to the minimum and maximum values: ###Code # create scaler scaler = MinMaxScaler() # fit the scaler to the train set scaler.fit(X_train) # transform the train and test set # sklearn returns numpy arrays, so we wrap the # array with a pandas dataframe X_train = pd.DataFrame( scaler.transform(X_train), columns=X_train.columns ) X_test = pd.DataFrame( scaler.transform(X_test), columns=X_train.columns ) X_train.head() #Save the cleaned datasets in csv for use in next notebook X_train.to_csv('xtrain.csv', index = False) X_test.to_csv('xtest.csv', index = False) y_train.to_csv('ytrain.csv', index = False) y_test.to_csv('ytest.csv', index = False) #now save the scaling pipeline in case we need it in future joblib.dump(scaler, 'minmax_scaler.joblib') ###Output _____no_output_____ ###Markdown Feature Engineering with Open-SourceIn this notebook, we will reproduce the Feature Engineering Pipeline from the notebook 2 (02-Machine-Learning-Pipeline-Feature-Engineering), but we will replace, whenever possible, the manually created functions by open-source classes, and hopefully understand the value they bring forward. Reproducibility: Setting the seedWith the aim to ensure reproducibility between runs of the same notebook, but also between the research and production environment, for each step that includes some element of randomness, it is extremely important that we **set the seed**. ###Code # data manipulation and plotting import pandas as pd import numpy as np import matplotlib.pyplot as plt # for saving the pipeline import joblib # from Scikit-learn from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler, Binarizer # from feature-engine from feature_engine.imputation import ( AddMissingIndicator, MeanMedianImputer, CategoricalImputer, ) from feature_engine.encoding import ( RareLabelEncoder, OrdinalEncoder, ) from feature_engine.transformation import ( LogTransformer, YeoJohnsonTransformer, ) from feature_engine.selection import DropFeatures from feature_engine.wrappers import SklearnTransformerWrapper # to visualise al the columns in the dataframe pd.pandas.set_option('display.max_columns', None) # load dataset data = pd.read_csv('train.csv') # rows and columns of the data print(data.shape) # visualise the dataset data.head() ###Output (1460, 81) ###Markdown Separate dataset into train and testIt is important to separate our data intro training and testing set. When we engineer features, some techniques learn parameters from data. It is important to learn these parameters only from the train set. This is to avoid over-fitting.Our feature engineering techniques will learn:- mean- mode- exponents for the yeo-johnson- category frequency- and category to number mappingsfrom the train set.**Separating the data into train and test involves randomness, therefore, we need to set the seed.** ###Code # Let's separate into train and test set # Remember to set the seed (random_state for this sklearn function) X_train, X_test, y_train, y_test = train_test_split( data.drop(['Id', 'SalePrice'], axis=1), # predictive variables data['SalePrice'], # target test_size=0.1, # portion of dataset to allocate to test set random_state=0, # we are setting the seed here ) X_train.shape, X_test.shape ###Output _____no_output_____ ###Markdown Feature EngineeringIn the following cells, we will engineer the variables of the House Price Dataset so that we tackle:1. Missing values2. Temporal variables3. Non-Gaussian distributed variables4. Categorical variables: remove rare labels5. Categorical variables: convert strings to numbers5. Standardize the values of the variables to the same range TargetWe apply the logarithm ###Code y_train = np.log(y_train) y_test = np.log(y_test) ###Output _____no_output_____ ###Markdown Missing values Categorical variablesWe will replace missing values with the string "missing" in those variables with a lot of missing data. Alternatively, we will replace missing data with the most frequent category in those variables that contain fewer observations without values. This is common practice. ###Code # let's identify the categorical variables # we will capture those of type object cat_vars = [var for var in data.columns if data[var].dtype == 'O'] # MSSubClass is also categorical by definition, despite its numeric values # (you can find the definitions of the variables in the data_description.txt # file available on Kaggle, in the same website where you downloaded the data) # lets add MSSubClass to the list of categorical variables cat_vars = cat_vars + ['MSSubClass'] # cast all variables as categorical X_train[cat_vars] = X_train[cat_vars].astype('O') X_test[cat_vars] = X_test[cat_vars].astype('O') # number of categorical variables len(cat_vars) # make a list of the categorical variables that contain missing values cat_vars_with_na = [ var for var in cat_vars if X_train[var].isnull().sum() > 0 ] # print percentage of missing values per variable X_train[cat_vars_with_na ].isnull().mean().sort_values(ascending=False) # variables to impute with the string missing with_string_missing = [ var for var in cat_vars_with_na if X_train[var].isnull().mean() > 0.1] # variables to impute with the most frequent category with_frequent_category = [ var for var in cat_vars_with_na if X_train[var].isnull().mean() < 0.1] # I print the values here, because it makes it easier for # later when we need to add this values to a config file for # deployment with_string_missing with_frequent_category # replace missing values with new label: "Missing" # set up the class cat_imputer_missing = CategoricalImputer( imputation_method='missing', variables=with_string_missing) # fit the class to the train set cat_imputer_missing.fit(X_train) # the class learns and stores the parameters cat_imputer_missing.imputer_dict_ # replace NA by missing # IMPORTANT: note that we could store this class with joblib X_train = cat_imputer_missing.transform(X_train) X_test = cat_imputer_missing.transform(X_test) # replace missing values with most frequent category # set up the class cat_imputer_frequent = CategoricalImputer( imputation_method='frequent', variables=with_frequent_category) # fit the class to the train set cat_imputer_frequent.fit(X_train) # the class learns and stores the parameters cat_imputer_frequent.imputer_dict_ # replace NA by missing # IMPORTANT: note that we could store this class with joblib X_train = cat_imputer_frequent.transform(X_train) X_test = cat_imputer_frequent.transform(X_test) # check that we have no missing information in the engineered variables X_train[cat_vars_with_na].isnull().sum() # check that test set does not contain null values in the engineered variables [var for var in cat_vars_with_na if X_test[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Numerical variablesTo engineer missing values in numerical variables, we will:- add a binary missing indicator variable- and then replace the missing values in the original variable with the mean ###Code # now let's identify the numerical variables num_vars = [ var for var in X_train.columns if var not in cat_vars and var != 'SalePrice' ] # number of numerical variables len(num_vars) # make a list with the numerical variables that contain missing values vars_with_na = [ var for var in num_vars if X_train[var].isnull().sum() > 0 ] # print percentage of missing values per variable X_train[vars_with_na].isnull().mean() # print, makes my life easier when I want to create the config vars_with_na # add missing indicator missing_ind = AddMissingIndicator(variables=vars_with_na) missing_ind.fit(X_train) X_train = missing_ind.transform(X_train) X_test = missing_ind.transform(X_test) # check the binary missing indicator variables X_train[['LotFrontage_na', 'MasVnrArea_na', 'GarageYrBlt_na']].head() # then replace missing data with the mean # set the imputer mean_imputer = MeanMedianImputer( imputation_method='mean', variables=vars_with_na) # learn and store parameters from train set mean_imputer.fit(X_train) # the stored parameters mean_imputer.imputer_dict_ X_train = mean_imputer.transform(X_train) X_test = mean_imputer.transform(X_test) # IMPORTANT: note that we could save the imputers with joblib # check that we have no more missing values in the engineered variables X_train[vars_with_na].isnull().sum() # check that test set does not contain null values in the engineered variables [var for var in vars_with_na if X_test[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Temporal variables Capture elapsed timeThere is in Feature-engine 2 classes that allow us to perform the 2 transformations below:- [CombineWithFeatureReference](https://feature-engine.readthedocs.io/en/latest/creation/CombineWithReferenceFeature.html) to capture elapsed time- [DropFeatures](https://feature-engine.readthedocs.io/en/latest/selection/DropFeatures.html) to drop the unwanted featuresWe will do the first one manually, so we take the opportunity to create 1 class ourselves for the course. For the second operation, we will use the DropFeatures class. ###Code def elapsed_years(df, var): # capture difference between the year variable # and the year in which the house was sold df[var] = df['YrSold'] - df[var] return df for var in ['YearBuilt', 'YearRemodAdd', 'GarageYrBlt']: X_train = elapsed_years(X_train, var) X_test = elapsed_years(X_test, var) # now we drop YrSold drop_features = DropFeatures(features_to_drop=['YrSold']) X_train = drop_features.fit_transform(X_train) X_test = drop_features.transform(X_test) ###Output _____no_output_____ ###Markdown Numerical variable transformation Logarithmic transformationIn the previous notebook, we observed that the numerical variables are not normally distributed.We will transform with the logarightm the positive numerical variables in order to get a more Gaussian-like distribution. ###Code log_transformer = LogTransformer( variables=["LotFrontage", "1stFlrSF", "GrLivArea"]) X_train = log_transformer.fit_transform(X_train) X_test = log_transformer.transform(X_test) # check that test set does not contain null values in the engineered variables [var for var in ["LotFrontage", "1stFlrSF", "GrLivArea"] if X_test[var].isnull().sum() > 0] # same for train set [var for var in ["LotFrontage", "1stFlrSF", "GrLivArea"] if X_train[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Yeo-Johnson transformationWe will apply the Yeo-Johnson transformation to LotArea. ###Code yeo_transformer = YeoJohnsonTransformer( variables=['LotArea']) X_train = yeo_transformer.fit_transform(X_train) X_test = yeo_transformer.transform(X_test) # the learned parameter yeo_transformer.lambda_dict_ # check absence of na in the train set [var for var in X_train.columns if X_train[var].isnull().sum() > 0] # check absence of na in the test set [var for var in X_train.columns if X_test[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Binarize skewed variablesThere were a few variables very skewed, we would transform those into binary variables.We can perform the below transformation with open source. We can use the [Binarizer](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Binarizer.html) from Scikit-learn, in combination with the [SklearnWrapper](https://feature-engine.readthedocs.io/en/latest/wrappers/Wrapper.html) from Feature-engine to be able to apply the transformation only to a subset of features.Instead, we are going to do it manually, to give us another opportunity to code the class as an in-house package later in the course. ###Code skewed = [ 'BsmtFinSF2', 'LowQualFinSF', 'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'MiscVal' ] binarizer = SklearnTransformerWrapper( transformer=Binarizer(threshold=0), variables=skewed ) X_train = binarizer.fit_transform(X_train) X_test = binarizer.transform(X_test) X_train[skewed].head() ###Output _____no_output_____ ###Markdown Categorical variables Apply mappingsThese are variables which values have an assigned order, related to quality. For more information, check Kaggle website. ###Code # re-map strings to numbers, which determine quality qual_mappings = {'Po': 1, 'Fa': 2, 'TA': 3, 'Gd': 4, 'Ex': 5, 'Missing': 0, 'NA': 0} qual_vars = ['ExterQual', 'ExterCond', 'BsmtQual', 'BsmtCond', 'HeatingQC', 'KitchenQual', 'FireplaceQu', 'GarageQual', 'GarageCond', ] for var in qual_vars: X_train[var] = X_train[var].map(qual_mappings) X_test[var] = X_test[var].map(qual_mappings) exposure_mappings = {'No': 1, 'Mn': 2, 'Av': 3, 'Gd': 4} var = 'BsmtExposure' X_train[var] = X_train[var].map(exposure_mappings) X_test[var] = X_test[var].map(exposure_mappings) finish_mappings = {'Missing': 0, 'NA': 0, 'Unf': 1, 'LwQ': 2, 'Rec': 3, 'BLQ': 4, 'ALQ': 5, 'GLQ': 6} finish_vars = ['BsmtFinType1', 'BsmtFinType2'] for var in finish_vars: X_train[var] = X_train[var].map(finish_mappings) X_test[var] = X_test[var].map(finish_mappings) garage_mappings = {'Missing': 0, 'NA': 0, 'Unf': 1, 'RFn': 2, 'Fin': 3} var = 'GarageFinish' X_train[var] = X_train[var].map(garage_mappings) X_test[var] = X_test[var].map(garage_mappings) fence_mappings = {'Missing': 0, 'NA': 0, 'MnWw': 1, 'GdWo': 2, 'MnPrv': 3, 'GdPrv': 4} var = 'Fence' X_train[var] = X_train[var].map(fence_mappings) X_test[var] = X_test[var].map(fence_mappings) # check absence of na in the train set [var for var in X_train.columns if X_train[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Removing Rare LabelsFor the remaining categorical variables, we will group those categories that are present in less than 1% of the observations. That is, all values of categorical variables that are shared by less than 1% of houses, well be replaced by the string "Rare".To learn more about how to handle categorical variables visit our course [Feature Engineering for Machine Learning](https://www.udemy.com/course/feature-engineering-for-machine-learning/?referralCode=A855148E05283015CF06) in Udemy. ###Code # capture all quality variables qual_vars = qual_vars + finish_vars + ['BsmtExposure','GarageFinish','Fence'] # capture the remaining categorical variables # (those that we did not re-map) cat_others = [ var for var in cat_vars if var not in qual_vars ] len(cat_others) cat_others rare_encoder = RareLabelEncoder(tol=0.01, n_categories=1, variables=cat_others) # find common labels rare_encoder.fit(X_train) # the common labels are stored, we can save the class # and then use it later :) rare_encoder.encoder_dict_ X_train = rare_encoder.transform(X_train) X_test = rare_encoder.transform(X_test) ###Output _____no_output_____ ###Markdown Encoding of categorical variablesNext, we need to transform the strings of the categorical variables into numbers. We will do it so that we capture the monotonic relationship between the label and the target.To learn more about how to encode categorical variables visit our course [Feature Engineering for Machine Learning](https://www.udemy.com/course/feature-engineering-for-machine-learning/?referralCode=A855148E05283015CF06) in Udemy. ###Code # set up the encoder cat_encoder = OrdinalEncoder(encoding_method='ordered', variables=cat_others) # create the mappings cat_encoder.fit(X_train, y_train) # mappings are stored and class can be saved cat_encoder.encoder_dict_ X_train = cat_encoder.transform(X_train) X_test = cat_encoder.transform(X_test) # check absence of na in the train set [var for var in X_train.columns if X_train[var].isnull().sum() > 0] # check absence of na in the test set [var for var in X_test.columns if X_test[var].isnull().sum() > 0] # let me show you what I mean by monotonic relationship # between labels and target def analyse_vars(train, y_train, var): # function plots median house sale price per encoded # category tmp = pd.concat([X_train, np.log(y_train)], axis=1) tmp.groupby(var)['SalePrice'].median().plot.bar() plt.title(var) plt.ylim(2.2, 2.6) plt.ylabel('SalePrice') plt.show() for var in cat_others: analyse_vars(X_train, y_train, var) ###Output _____no_output_____ ###Markdown The monotonic relationship is particularly clear for the variables MSZoning and Neighborhood. Note how, the higher the integer that now represents the category, the higher the mean house sale price.(remember that the target is log-transformed, that is why the differences seem so small). Feature ScalingFor use in linear models, features need to be either scaled. We will scale features to the minimum and maximum values: ###Code # create scaler scaler = MinMaxScaler() # fit the scaler to the train set scaler.fit(X_train) # transform the train and test set # sklearn returns numpy arrays, so we wrap the # array with a pandas dataframe X_train = pd.DataFrame( scaler.transform(X_train), columns=X_train.columns ) X_test = pd.DataFrame( scaler.transform(X_test), columns=X_train.columns ) X_train.head() ###Output _____no_output_____ ###Markdown Feature Engineering with Open-SourceIn this notebook, we will reproduce the Feature Engineering Pipeline from the notebook 2 (02-Machine-Learning-Pipeline-Feature-Engineering), but we will replace, whenever possible, the manually created functions by open-source classes, and hopefully understand the value they bring forward. Reproducibility: Setting the seedWith the aim to ensure reproducibility between runs of the same notebook, but also between the research and production environment, for each step that includes some element of randomness, it is extremely important that we **set the seed**. ###Code # data manipulation and plotting import pandas as pd import numpy as np import matplotlib.pyplot as plt # for saving the pipeline import joblib # from Scikit-learn from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler, Binarizer # from feature-engine from feature_engine.imputation import ( AddMissingIndicator, MeanMedianImputer, CategoricalImputer, ) from feature_engine.encoding import ( RareLabelEncoder, OrdinalEncoder, ) from feature_engine.transformation import ( LogTransformer, YeoJohnsonTransformer, ) from feature_engine.selection import DropFeatures from feature_engine.wrappers import SklearnTransformerWrapper # to visualise al the columns in the dataframe pd.pandas.set_option('display.max_columns', None) # load dataset data = pd.read_csv('train.csv') # rows and columns of the data print(data.shape) # visualise the dataset data.head() ###Output (1460, 81) ###Markdown Separate dataset into train and testIt is important to separate our data intro training and testing set. When we engineer features, some techniques learn parameters from data. It is important to learn these parameters only from the train set. This is to avoid over-fitting.Our feature engineering techniques will learn:- mean- mode- exponents for the yeo-johnson- category frequency- and category to number mappingsfrom the train set.**Separating the data into train and test involves randomness, therefore, we need to set the seed.** ###Code # Let's separate into train and test set # Remember to set the seed (random_state for this sklearn function) X_train, X_test, y_train, y_test = train_test_split( data.drop(['Id', 'SalePrice'], axis=1), # predictive variables data['SalePrice'], # target test_size=0.1, # portion of dataset to allocate to test set random_state=0, # we are setting the seed here ) X_train.shape, X_test.shape ###Output _____no_output_____ ###Markdown Feature EngineeringIn the following cells, we will engineer the variables of the House Price Dataset so that we tackle:1. Missing values2. Temporal variables3. Non-Gaussian distributed variables4. Categorical variables: remove rare labels5. Categorical variables: convert strings to numbers5. Standardize the values of the variables to the same range TargetWe apply the logarithm ###Code y_train = np.log(y_train) y_test = np.log(y_test) ###Output _____no_output_____ ###Markdown Missing values Categorical variablesWe will replace missing values with the string "missing" in those variables with a lot of missing data. Alternatively, we will replace missing data with the most frequent category in those variables that contain fewer observations without values. This is common practice. ###Code # let's identify the categorical variables # we will capture those of type object cat_vars = [var for var in data.columns if data[var].dtype == 'O'] # MSSubClass is also categorical by definition, despite its numeric values # (you can find the definitions of the variables in the data_description.txt # file available on Kaggle, in the same website where you downloaded the data) # lets add MSSubClass to the list of categorical variables cat_vars = cat_vars + ['MSSubClass'] # cast all variables as categorical X_train[cat_vars] = X_train[cat_vars].astype('O') X_test[cat_vars] = X_test[cat_vars].astype('O') # number of categorical variables len(cat_vars) # make a list of the categorical variables that contain missing values cat_vars_with_na = [ var for var in cat_vars if X_train[var].isnull().sum() > 0 ] # print percentage of missing values per variable X_train[cat_vars_with_na ].isnull().mean().sort_values(ascending=False) # variables to impute with the string missing with_string_missing = [ var for var in cat_vars_with_na if X_train[var].isnull().mean() > 0.1] # variables to impute with the most frequent category with_frequent_category = [ var for var in cat_vars_with_na if X_train[var].isnull().mean() < 0.1] # I print the values here, because it makes it easier for # later when we need to add this values to a config file for # deployment with_string_missing with_frequent_category # replace missing values with new label: "Missing" # set up the class cat_imputer_missing = CategoricalImputer( imputation_method='missing', variables=with_string_missing) # fit the class to the train set cat_imputer_missing.fit(X_train) # the class learns and stores the parameters cat_imputer_missing.imputer_dict_ # replace NA by missing # IMPORTANT: note that we could store this class with joblib X_train = cat_imputer_missing.transform(X_train) X_test = cat_imputer_missing.transform(X_test) # replace missing values with most frequent category # set up the class cat_imputer_frequent = CategoricalImputer( imputation_method='frequent', variables=with_frequent_category) # fit the class to the train set cat_imputer_frequent.fit(X_train) # the class learns and stores the parameters cat_imputer_frequent.imputer_dict_ # replace NA by missing # IMPORTANT: note that we could store this class with joblib X_train = cat_imputer_frequent.transform(X_train) X_test = cat_imputer_frequent.transform(X_test) # check that we have no missing information in the engineered variables X_train[cat_vars_with_na].isnull().sum() # check that test set does not contain null values in the engineered variables [var for var in cat_vars_with_na if X_test[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Numerical variablesTo engineer missing values in numerical variables, we will:- add a binary missing indicator variable- and then replace the missing values in the original variable with the mean ###Code # now let's identify the numerical variables num_vars = [ var for var in X_train.columns if var not in cat_vars and var != 'SalePrice' ] # number of numerical variables len(num_vars) # make a list with the numerical variables that contain missing values vars_with_na = [ var for var in num_vars if X_train[var].isnull().sum() > 0 ] # print percentage of missing values per variable X_train[vars_with_na].isnull().mean() # print, makes my life easier when I want to create the config vars_with_na # add binary missing indicator missing_ind = AddMissingIndicator(variables=vars_with_na) missing_ind.fit(X_train) X_train = missing_ind.transform(X_train) X_test = missing_ind.transform(X_test) # check the binary missing indicator variables X_train[['LotFrontage_na', 'MasVnrArea_na', 'GarageYrBlt_na']].head() # then replace missing data with the mean # set the imputer mean_imputer = MeanMedianImputer( imputation_method='mean', variables=vars_with_na) # learn and store parameters from train set mean_imputer.fit(X_train) # the stored parameters mean_imputer.imputer_dict_ X_train = mean_imputer.transform(X_train) X_test = mean_imputer.transform(X_test) # IMPORTANT: note that we could save the imputers with joblib # check that we have no more missing values in the engineered variables X_train[vars_with_na].isnull().sum() # check that test set does not contain null values in the engineered variables [var for var in vars_with_na if X_test[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Temporal variables Capture elapsed timeThere is in Feature-engine 2 classes that allow us to perform the 2 transformations below:- [CombineWithFeatureReference](https://feature-engine.readthedocs.io/en/latest/creation/CombineWithReferenceFeature.html) to capture elapsed time- [DropFeatures](https://feature-engine.readthedocs.io/en/latest/selection/DropFeatures.html) to drop the unwanted featuresWe will do the first one manually, so we take the opportunity to create 1 class ourselves for the course. For the second operation, we will use the DropFeatures class. ###Code def elapsed_years(df, var): # capture difference between the year variable # and the year in which the house was sold df[var] = df['YrSold'] - df[var] return df for var in ['YearBuilt', 'YearRemodAdd', 'GarageYrBlt']: X_train = elapsed_years(X_train, var) X_test = elapsed_years(X_test, var) # now we drop YrSold drop_features = DropFeatures(features_to_drop=['YrSold']) X_train = drop_features.fit_transform(X_train) X_test = drop_features.transform(X_test) ###Output _____no_output_____ ###Markdown Numerical variable transformation Logarithmic transformationIn the previous notebook, we observed that the numerical variables are not normally distributed.We will transform with the logarightm the positive numerical variables in order to get a more Gaussian-like distribution. ###Code log_transformer = LogTransformer( variables=["LotFrontage", "1stFlrSF", "GrLivArea"]) X_train = log_transformer.fit_transform(X_train) X_test = log_transformer.transform(X_test) # check that test set does not contain null values in the engineered variables [var for var in ["LotFrontage", "1stFlrSF", "GrLivArea"] if X_test[var].isnull().sum() > 0] # same for train set [var for var in ["LotFrontage", "1stFlrSF", "GrLivArea"] if X_train[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Yeo-Johnson transformationWe will apply the Yeo-Johnson transformation to LotArea. ###Code yeo_transformer = YeoJohnsonTransformer( variables=['LotArea']) X_train = yeo_transformer.fit_transform(X_train) X_test = yeo_transformer.transform(X_test) # the learned parameter yeo_transformer.lambda_dict_ # check absence of na in the train set [var for var in X_train.columns if X_train[var].isnull().sum() > 0] # check absence of na in the test set [var for var in X_train.columns if X_test[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Binarize skewed variablesThere were a few variables very skewed, we would transform those into binary variables.We can perform the below transformation with open source. We can use the [Binarizer](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Binarizer.html) from Scikit-learn, in combination with the [SklearnWrapper](https://feature-engine.readthedocs.io/en/latest/wrappers/Wrapper.html) from Feature-engine to be able to apply the transformation only to a subset of features.Instead, we are going to do it manually, to give us another opportunity to code the class as an in-house package later in the course. ###Code skewed = [ 'BsmtFinSF2', 'LowQualFinSF', 'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'MiscVal' ] binarizer = SklearnTransformerWrapper( transformer=Binarizer(threshold=0), variables=skewed ) X_train = binarizer.fit_transform(X_train) X_test = binarizer.transform(X_test) X_train[skewed].head() ###Output _____no_output_____ ###Markdown Categorical variables Apply mappingsThese are variables which values have an assigned order, related to quality. For more information, check Kaggle website. ###Code # re-map strings to numbers, which determine quality qual_mappings = {'Po': 1, 'Fa': 2, 'TA': 3, 'Gd': 4, 'Ex': 5, 'Missing': 0, 'NA': 0} qual_vars = ['ExterQual', 'ExterCond', 'BsmtQual', 'BsmtCond', 'HeatingQC', 'KitchenQual', 'FireplaceQu', 'GarageQual', 'GarageCond', ] for var in qual_vars: X_train[var] = X_train[var].map(qual_mappings) X_test[var] = X_test[var].map(qual_mappings) exposure_mappings = {'No': 1, 'Mn': 2, 'Av': 3, 'Gd': 4} var = 'BsmtExposure' X_train[var] = X_train[var].map(exposure_mappings) X_test[var] = X_test[var].map(exposure_mappings) finish_mappings = {'Missing': 0, 'NA': 0, 'Unf': 1, 'LwQ': 2, 'Rec': 3, 'BLQ': 4, 'ALQ': 5, 'GLQ': 6} finish_vars = ['BsmtFinType1', 'BsmtFinType2'] for var in finish_vars: X_train[var] = X_train[var].map(finish_mappings) X_test[var] = X_test[var].map(finish_mappings) garage_mappings = {'Missing': 0, 'NA': 0, 'Unf': 1, 'RFn': 2, 'Fin': 3} var = 'GarageFinish' X_train[var] = X_train[var].map(garage_mappings) X_test[var] = X_test[var].map(garage_mappings) fence_mappings = {'Missing': 0, 'NA': 0, 'MnWw': 1, 'GdWo': 2, 'MnPrv': 3, 'GdPrv': 4} var = 'Fence' X_train[var] = X_train[var].map(fence_mappings) X_test[var] = X_test[var].map(fence_mappings) # check absence of na in the train set [var for var in X_train.columns if X_train[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Removing Rare LabelsFor the remaining categorical variables, we will group those categories that are present in less than 1% of the observations. That is, all values of categorical variables that are shared by less than 1% of houses, well be replaced by the string "Rare".To learn more about how to handle categorical variables visit our course [Feature Engineering for Machine Learning](https://www.udemy.com/course/feature-engineering-for-machine-learning/?referralCode=A855148E05283015CF06) in Udemy. ###Code # capture all quality variables qual_vars = qual_vars + finish_vars + ['BsmtExposure','GarageFinish','Fence'] # capture the remaining categorical variables # (those that we did not re-map) cat_others = [ var for var in cat_vars if var not in qual_vars ] len(cat_others) cat_others rare_encoder = RareLabelEncoder(tol=0.01, n_categories=1, variables=cat_others) # find common labels rare_encoder.fit(X_train) # the common labels are stored, we can save the class # and then use it later :) rare_encoder.encoder_dict_ X_train = rare_encoder.transform(X_train) X_test = rare_encoder.transform(X_test) ###Output _____no_output_____ ###Markdown Encoding of categorical variablesNext, we need to transform the strings of the categorical variables into numbers. We will do it so that we capture the monotonic relationship between the label and the target.To learn more about how to encode categorical variables visit our course [Feature Engineering for Machine Learning](https://www.udemy.com/course/feature-engineering-for-machine-learning/?referralCode=A855148E05283015CF06) in Udemy. ###Code # set up the encoder cat_encoder = OrdinalEncoder(encoding_method='ordered', variables=cat_others) # create the mappings cat_encoder.fit(X_train, y_train) # mappings are stored and class can be saved cat_encoder.encoder_dict_ X_train = cat_encoder.transform(X_train) X_test = cat_encoder.transform(X_test) # check absence of na in the train set [var for var in X_train.columns if X_train[var].isnull().sum() > 0] # check absence of na in the test set [var for var in X_test.columns if X_test[var].isnull().sum() > 0] # let me show you what I mean by monotonic relationship # between labels and target def analyse_vars(train, y_train, var): # function plots median house sale price per encoded # category tmp = pd.concat([X_train, np.log(y_train)], axis=1) tmp.groupby(var)['SalePrice'].median().plot.bar() plt.title(var) plt.ylim(2.2, 2.6) plt.ylabel('SalePrice') plt.show() for var in cat_others: analyse_vars(X_train, y_train, var) ###Output _____no_output_____ ###Markdown The monotonic relationship is particularly clear for the variables MSZoning and Neighborhood. Note how, the higher the integer that now represents the category, the higher the mean house sale price.(remember that the target is log-transformed, that is why the differences seem so small). Feature ScalingFor use in linear models, features need to be either scaled. We will scale features to the minimum and maximum values: ###Code # create scaler scaler = MinMaxScaler() # fit the scaler to the train set scaler.fit(X_train) # transform the train and test set # sklearn returns numpy arrays, so we wrap the # array with a pandas dataframe X_train = pd.DataFrame( scaler.transform(X_train), columns=X_train.columns ) X_test = pd.DataFrame( scaler.transform(X_test), columns=X_train.columns ) X_train.head() ###Output _____no_output_____ ###Markdown Feature Engineering with Open-SourceIn this notebook, we will reproduce the Feature Engineering Pipeline from the notebook 2 (02-Machine-Learning-Pipeline-Feature-Engineering), but we will replace, whenever possible, the manually created functions by open-source classes, and hopefully understand the value they bring forward. Reproducibility: Setting the seedWith the aim to ensure reproducibility between runs of the same notebook, but also between the research and production environment, for each step that includes some element of randomness, it is extremely important that we **set the seed**. ###Code # data manipulation and plotting import pandas as pd import numpy as np import matplotlib.pyplot as plt # for saving the pipeline import joblib # from Scikit-learn from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler, Binarizer # from feature-engine from feature_engine.imputation import ( AddMissingIndicator, MeanMedianImputer, CategoricalImputer, ) from feature_engine.encoding import ( RareLabelEncoder, OrdinalEncoder, ) from feature_engine.transformation import ( LogTransformer, YeoJohnsonTransformer, ) from feature_engine.selection import DropFeatures from feature_engine.wrappers import SklearnTransformerWrapper # to visualise al the columns in the dataframe pd.pandas.set_option('display.max_columns', None) # load dataset data = pd.read_csv('train.csv') # rows and columns of the data print(data.shape) # visualise the dataset data.head() ###Output (1460, 81) ###Markdown Separate dataset into train and testIt is important to separate our data intro training and testing set. When we engineer features, some techniques learn parameters from data. It is important to learn these parameters only from the train set. This is to avoid over-fitting.Our feature engineering techniques will learn:- mean- mode- exponents for the yeo-johnson- category frequency- and category to number mappingsfrom the train set.**Separating the data into train and test involves randomness, therefore, we need to set the seed.** ###Code # Let's separate into train and test set # Remember to set the seed (random_state for this sklearn function) X_train, X_test, y_train, y_test = train_test_split( data.drop(['Id', 'SalePrice'], axis=1), # predictive variables data['SalePrice'], # target test_size=0.1, # portion of dataset to allocate to test set random_state=0, # we are setting the seed here ) X_train.shape, X_test.shape ###Output _____no_output_____ ###Markdown Feature EngineeringIn the following cells, we will engineer the variables of the House Price Dataset so that we tackle:1. Missing values2. Temporal variables3. Non-Gaussian distributed variables4. Categorical variables: remove rare labels5. Categorical variables: convert strings to numbers5. Standardize the values of the variables to the same range TargetWe apply the logarithm ###Code y_train = np.log(y_train) y_test = np.log(y_test) ###Output _____no_output_____ ###Markdown Missing values Categorical variablesWe will replace missing values with the string "missing" in those variables with a lot of missing data. Alternatively, we will replace missing data with the most frequent category in those variables that contain fewer observations without values. This is common practice. ###Code # let's identify the categorical variables # we will capture those of type object cat_vars = [var for var in data.columns if data[var].dtype == 'O'] # MSSubClass is also categorical by definition, despite its numeric values # (you can find the definitions of the variables in the data_description.txt # file available on Kaggle, in the same website where you downloaded the data) # lets add MSSubClass to the list of categorical variables cat_vars = cat_vars + ['MSSubClass'] # cast all variables as categorical X_train[cat_vars] = X_train[cat_vars].astype('O') X_test[cat_vars] = X_test[cat_vars].astype('O') # number of categorical variables len(cat_vars) # make a list of the categorical variables that contain missing values cat_vars_with_na = [ var for var in cat_vars if X_train[var].isnull().sum() > 0 ] # print percentage of missing values per variable X_train[cat_vars_with_na ].isnull().mean().sort_values(ascending=False) # variables to impute with the string missing with_string_missing = [ var for var in cat_vars_with_na if X_train[var].isnull().mean() > 0.1] # variables to impute with the most frequent category with_frequent_category = [ var for var in cat_vars_with_na if X_train[var].isnull().mean() < 0.1] # I print the values here, because it makes it easier for # later when we need to add this values to a config file for # deployment with_string_missing with_frequent_category # replace missing values with new label: "Missing" # set up the class cat_imputer_missing = CategoricalImputer( imputation_method='missing', variables=with_string_missing) # fit the class to the train set cat_imputer_missing.fit(X_train) # the class learns and stores the parameters cat_imputer_missing.imputer_dict_ # replace NA by missing # IMPORTANT: note that we could store this class with joblib X_train = cat_imputer_missing.transform(X_train) X_test = cat_imputer_missing.transform(X_test) # replace missing values with most frequent category # set up the class cat_imputer_frequent = CategoricalImputer( imputation_method='frequent', variables=with_frequent_category) # fit the class to the train set cat_imputer_frequent.fit(X_train) # the class learns and stores the parameters cat_imputer_frequent.imputer_dict_ # replace NA by missing # IMPORTANT: note that we could store this class with joblib X_train = cat_imputer_frequent.transform(X_train) X_test = cat_imputer_frequent.transform(X_test) # check that we have no missing information in the engineered variables X_train[cat_vars_with_na].isnull().sum() # check that test set does not contain null values in the engineered variables [var for var in cat_vars_with_na if X_test[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Numerical variablesTo engineer missing values in numerical variables, we will:- add a binary missing indicator variable- and then replace the missing values in the original variable with the mean ###Code # now let's identify the numerical variables num_vars = [ var for var in X_train.columns if var not in cat_vars and var != 'SalePrice' ] # number of numerical variables len(num_vars) # make a list with the numerical variables that contain missing values vars_with_na = [ var for var in num_vars if X_train[var].isnull().sum() > 0 ] # print percentage of missing values per variable X_train[vars_with_na].isnull().mean() # print, makes my life easier when I want to create the config vars_with_na # add missing indicator missing_ind = AddMissingIndicator(variables=vars_with_na) missing_ind.fit(X_train) X_train = missing_ind.transform(X_train) X_test = missing_ind.transform(X_test) # check the binary missing indicator variables X_train[['LotFrontage_na', 'MasVnrArea_na', 'GarageYrBlt_na']].head() # then replace missing data with the mean # set the imputer mean_imputer = MeanMedianImputer( imputation_method='mean', variables=vars_with_na) # learn and store parameters from train set mean_imputer.fit(X_train) # the stored parameters mean_imputer.imputer_dict_ X_train = mean_imputer.transform(X_train) X_test = mean_imputer.transform(X_test) # IMPORTANT: note that we could save the imputers with joblib # check that we have no more missing values in the engineered variables X_train[vars_with_na].isnull().sum() # check that test set does not contain null values in the engineered variables [var for var in vars_with_na if X_test[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Temporal variables Capture elapsed timeThere is in Feature-engine 2 classes that allow us to perform the 2 transformations below:- [CombineWithFeatureReference](https://feature-engine.readthedocs.io/en/latest/creation/CombineWithReferenceFeature.html) to capture elapsed time- [DropFeatures](https://feature-engine.readthedocs.io/en/latest/selection/DropFeatures.html) to drop the unwanted featuresWe will do the first one manually, so we take the opportunity to create 1 class ourselves for the course. For the second operation, we will use the DropFeatures class. ###Code def elapsed_years(df, var): # capture difference between the year variable # and the year in which the house was sold df[var] = df['YrSold'] - df[var] return df for var in ['YearBuilt', 'YearRemodAdd', 'GarageYrBlt']: X_train = elapsed_years(X_train, var) X_test = elapsed_years(X_test, var) # now we drop YrSold drop_features = DropFeatures(features_to_drop=['YrSold']) X_train = drop_features.fit_transform(X_train) X_test = drop_features.transform(X_test) ###Output _____no_output_____ ###Markdown Numerical variable transformation Logarithmic transformationIn the previous notebook, we observed that the numerical variables are not normally distributed.We will transform with the logarightm the positive numerical variables in order to get a more Gaussian-like distribution. ###Code log_transformer = LogTransformer( variables=["LotFrontage", "1stFlrSF", "GrLivArea"]) X_train = log_transformer.fit_transform(X_train) X_test = log_transformer.transform(X_test) # check that test set does not contain null values in the engineered variables [var for var in ["LotFrontage", "1stFlrSF", "GrLivArea"] if X_test[var].isnull().sum() > 0] # same for train set [var for var in ["LotFrontage", "1stFlrSF", "GrLivArea"] if X_train[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Yeo-Johnson transformationWe will apply the Yeo-Johnson transformation to LotArea. ###Code yeo_transformer = YeoJohnsonTransformer( variables=['LotArea']) X_train = yeo_transformer.fit_transform(X_train) X_test = yeo_transformer.transform(X_test) # the learned parameter yeo_transformer.lambda_dict_ # check absence of na in the train set [var for var in X_train.columns if X_train[var].isnull().sum() > 0] # check absence of na in the test set [var for var in X_train.columns if X_test[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Binarize skewed variablesThere were a few variables very skewed, we would transform those into binary variables.We can perform the below transformation with open source. We can use the [Binarizer](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Binarizer.html) from Scikit-learn, in combination with the [SklearnWrapper](https://feature-engine.readthedocs.io/en/latest/wrappers/Wrapper.html) from Feature-engine to be able to apply the transformation only to a subset of features.Instead, we are going to do it manually, to give us another opportunity to code the class as an in-house package later in the course. ###Code skewed = [ 'BsmtFinSF2', 'LowQualFinSF', 'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'MiscVal' ] binarizer = SklearnTransformerWrapper( transformer=Binarizer(threshold=0), variables=skewed ) X_train = binarizer.fit_transform(X_train) X_test = binarizer.transform(X_test) X_train[skewed].head() ###Output _____no_output_____ ###Markdown Categorical variables Apply mappingsThese are variables which values have an assigned order, related to quality. For more information, check Kaggle website. ###Code # re-map strings to numbers, which determine quality qual_mappings = {'Po': 1, 'Fa': 2, 'TA': 3, 'Gd': 4, 'Ex': 5, 'Missing': 0, 'NA': 0} qual_vars = ['ExterQual', 'ExterCond', 'BsmtQual', 'BsmtCond', 'HeatingQC', 'KitchenQual', 'FireplaceQu', 'GarageQual', 'GarageCond', ] for var in qual_vars: X_train[var] = X_train[var].map(qual_mappings) X_test[var] = X_test[var].map(qual_mappings) exposure_mappings = {'No': 1, 'Mn': 2, 'Av': 3, 'Gd': 4} var = 'BsmtExposure' X_train[var] = X_train[var].map(exposure_mappings) X_test[var] = X_test[var].map(exposure_mappings) finish_mappings = {'Missing': 0, 'NA': 0, 'Unf': 1, 'LwQ': 2, 'Rec': 3, 'BLQ': 4, 'ALQ': 5, 'GLQ': 6} finish_vars = ['BsmtFinType1', 'BsmtFinType2'] for var in finish_vars: X_train[var] = X_train[var].map(finish_mappings) X_test[var] = X_test[var].map(finish_mappings) garage_mappings = {'Missing': 0, 'NA': 0, 'Unf': 1, 'RFn': 2, 'Fin': 3} var = 'GarageFinish' X_train[var] = X_train[var].map(garage_mappings) X_test[var] = X_test[var].map(garage_mappings) fence_mappings = {'Missing': 0, 'NA': 0, 'MnWw': 1, 'GdWo': 2, 'MnPrv': 3, 'GdPrv': 4} var = 'Fence' X_train[var] = X_train[var].map(fence_mappings) X_test[var] = X_test[var].map(fence_mappings) # check absence of na in the train set [var for var in X_train.columns if X_train[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Removing Rare LabelsFor the remaining categorical variables, we will group those categories that are present in less than 1% of the observations. That is, all values of categorical variables that are shared by less than 1% of houses, well be replaced by the string "Rare".To learn more about how to handle categorical variables visit our course [Feature Engineering for Machine Learning](https://www.udemy.com/course/feature-engineering-for-machine-learning/?referralCode=A855148E05283015CF06) in Udemy. ###Code # capture all quality variables qual_vars = qual_vars + finish_vars + ['BsmtExposure','GarageFinish','Fence'] # capture the remaining categorical variables # (those that we did not re-map) cat_others = [ var for var in cat_vars if var not in qual_vars ] len(cat_others) cat_others rare_encoder = RareLabelEncoder(tol=0.01, n_categories=1, variables=cat_others) # find common labels rare_encoder.fit(X_train) # the common labels are stored, we can save the class # and then use it later :) rare_encoder.encoder_dict_ X_train = rare_encoder.transform(X_train) X_test = rare_encoder.transform(X_test) ###Output _____no_output_____ ###Markdown Encoding of categorical variablesNext, we need to transform the strings of the categorical variables into numbers. We will do it so that we capture the monotonic relationship between the label and the target.To learn more about how to encode categorical variables visit our course [Feature Engineering for Machine Learning](https://www.udemy.com/course/feature-engineering-for-machine-learning/?referralCode=A855148E05283015CF06) in Udemy. ###Code # set up the encoder cat_encoder = OrdinalEncoder(encoding_method='ordered', variables=cat_others) # create the mappings cat_encoder.fit(X_train, y_train) # mappings are stored and class can be saved cat_encoder.encoder_dict_ X_train = cat_encoder.transform(X_train) X_test = cat_encoder.transform(X_test) # check absence of na in the train set [var for var in X_train.columns if X_train[var].isnull().sum() > 0] # check absence of na in the test set [var for var in X_test.columns if X_test[var].isnull().sum() > 0] # let me show you what I mean by monotonic relationship # between labels and target def analyse_vars(train, y_train, var): # function plots median house sale price per encoded # category tmp = pd.concat([X_train, np.log(y_train)], axis=1) tmp.groupby(var)['SalePrice'].median().plot.bar() plt.title(var) plt.ylim(2.2, 2.6) plt.ylabel('SalePrice') plt.show() for var in cat_others: analyse_vars(X_train, y_train, var) ###Output _____no_output_____ ###Markdown The monotonic relationship is particularly clear for the variables MSZoning and Neighborhood. Note how, the higher the integer that now represents the category, the higher the mean house sale price.(remember that the target is log-transformed, that is why the differences seem so small). Feature ScalingFor use in linear models, features need to be either scaled. We will scale features to the minimum and maximum values: ###Code # create scaler scaler = MinMaxScaler() # fit the scaler to the train set scaler.fit(X_train) # transform the train and test set # sklearn returns numpy arrays, so we wrap the # array with a pandas dataframe X_train = pd.DataFrame( scaler.transform(X_train), columns=X_train.columns ) X_test = pd.DataFrame( scaler.transform(X_test), columns=X_train.columns ) X_train.head() ###Output _____no_output_____ ###Markdown Feature Engineering with Open-SourceIn this notebook, we will reproduce the Feature Engineering Pipeline from the notebook 2 (02-Machine-Learning-Pipeline-Feature-Engineering), but we will replace, whenever possible, the manually created functions by open-source classes, and hopefully understand the value they bring forward. Reproducibility: Setting the seedWith the aim to ensure reproducibility between runs of the same notebook, but also between the research and production environment, for each step that includes some element of randomness, it is extremely important that we **set the seed**. ###Code # data manipulation and plotting import pandas as pd import numpy as np import matplotlib.pyplot as plt # for saving the pipeline import joblib # from Scikit-learn from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler, Binarizer # from feature-engine from feature_engine.imputation import ( AddMissingIndicator, MeanMedianImputer, CategoricalImputer, ) from feature_engine.encoding import ( RareLabelEncoder, OrdinalEncoder, ) from feature_engine.transformation import ( LogTransformer, YeoJohnsonTransformer, ) from feature_engine.selection import DropFeatures from feature_engine.wrappers import SklearnTransformerWrapper # to visualise al the columns in the dataframe pd.pandas.set_option('display.max_columns', None) # load dataset data = pd.read_csv('train.csv') # rows and columns of the data print(data.shape) # visualise the dataset data.head() ###Output (1460, 81) ###Markdown Separate dataset into train and testIt is important to separate our data intro training and testing set. When we engineer features, some techniques learn parameters from data. It is important to learn these parameters only from the train set. This is to avoid over-fitting.Our feature engineering techniques will learn:- mean- mode- exponents for the yeo-johnson- category frequency- and category to number mappingsfrom the train set.**Separating the data into train and test involves randomness, therefore, we need to set the seed.** ###Code # Let's separate into train and test set # Remember to set the seed (random_state for this sklearn function) X_train, X_test, y_train, y_test = train_test_split( data.drop(['Id', 'SalePrice'], axis=1), # predictive variables data['SalePrice'], # target test_size=0.1, # portion of dataset to allocate to test set random_state=0, # we are setting the seed here ) X_train.shape, X_test.shape ###Output _____no_output_____ ###Markdown Feature EngineeringIn the following cells, we will engineer the variables of the House Price Dataset so that we tackle:1. Missing values2. Temporal variables3. Non-Gaussian distributed variables4. Categorical variables: remove rare labels5. Categorical variables: convert strings to numbers5. Standardize the values of the variables to the same range TargetWe apply the logarithm ###Code y_train = np.log(y_train) y_test = np.log(y_test) ###Output _____no_output_____ ###Markdown Missing values Categorical variablesWe will replace missing values with the string "missing" in those variables with a lot of missing data. Alternatively, we will replace missing data with the most frequent category in those variables that contain fewer observations without values. This is common practice. ###Code # let's identify the categorical variables # we will capture those of type object cat_vars = [var for var in data.columns if data[var].dtype == 'O'] # MSSubClass is also categorical by definition, despite its numeric values # (you can find the definitions of the variables in the data_description.txt # file available on Kaggle, in the same website where you downloaded the data) # lets add MSSubClass to the list of categorical variables cat_vars = cat_vars + ['MSSubClass'] # cast all variables as categorical X_train[cat_vars] = X_train[cat_vars].astype('O') X_test[cat_vars] = X_test[cat_vars].astype('O') # number of categorical variables len(cat_vars) # make a list of the categorical variables that contain missing values cat_vars_with_na = [ var for var in cat_vars if X_train[var].isnull().sum() > 0 ] # print percentage of missing values per variable X_train[cat_vars_with_na ].isnull().mean().sort_values(ascending=False) # variables to impute with the string missing with_string_missing = [ var for var in cat_vars_with_na if X_train[var].isnull().mean() > 0.1] # variables to impute with the most frequent category with_frequent_category = [ var for var in cat_vars_with_na if X_train[var].isnull().mean() < 0.1] # I print the values here, because it makes it easier for # later when we need to add this values to a config file for # deployment with_string_missing with_frequent_category # replace missing values with new label: "Missing" # set up the class cat_imputer_missing = CategoricalImputer( imputation_method='missing', variables=with_string_missing) # fit the class to the train set cat_imputer_missing.fit(X_train) # the class learns and stores the parameters cat_imputer_missing.imputer_dict_ # replace NA by missing # IMPORTANT: note that we could store this class with joblib X_train = cat_imputer_missing.transform(X_train) X_test = cat_imputer_missing.transform(X_test) # replace missing values with most frequent category # set up the class cat_imputer_frequent = CategoricalImputer( imputation_method='frequent', variables=with_frequent_category) # fit the class to the train set cat_imputer_frequent.fit(X_train) # the class learns and stores the parameters cat_imputer_frequent.imputer_dict_ # replace NA by missing # IMPORTANT: note that we could store this class with joblib X_train = cat_imputer_frequent.transform(X_train) X_test = cat_imputer_frequent.transform(X_test) # check that we have no missing information in the engineered variables X_train[cat_vars_with_na].isnull().sum() # check that test set does not contain null values in the engineered variables [var for var in cat_vars_with_na if X_test[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Numerical variablesTo engineer missing values in numerical variables, we will:- add a binary missing indicator variable- and then replace the missing values in the original variable with the mean ###Code # now let's identify the numerical variables num_vars = [ var for var in X_train.columns if var not in cat_vars and var != 'SalePrice' ] # number of numerical variables len(num_vars) # make a list with the numerical variables that contain missing values vars_with_na = [ var for var in num_vars if X_train[var].isnull().sum() > 0 ] # print percentage of missing values per variable X_train[vars_with_na].isnull().mean() # print, makes my life easier when I want to create the config vars_with_na # add missing indicator missing_ind = AddMissingIndicator(variables=vars_with_na) missing_ind.fit(X_train) X_train = missing_ind.transform(X_train) X_test = missing_ind.transform(X_test) # check the binary missing indicator variables X_train[['LotFrontage_na', 'MasVnrArea_na', 'GarageYrBlt_na']].head() # then replace missing data with the mean # set the imputer mean_imputer = MeanMedianImputer( imputation_method='mean', variables=vars_with_na) # learn and store parameters from train set mean_imputer.fit(X_train) # the stored parameters mean_imputer.imputer_dict_ X_train = mean_imputer.transform(X_train) X_test = mean_imputer.transform(X_test) # IMPORTANT: note that we could save the imputers with joblib # check that we have no more missing values in the engineered variables X_train[vars_with_na].isnull().sum() # check that test set does not contain null values in the engineered variables [var for var in vars_with_na if X_test[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Temporal variables Capture elapsed timeThere is in Feature-engine 2 classes that allow us to perform the 2 transformations below:- [CombineWithFeatureReference](https://feature-engine.readthedocs.io/en/latest/creation/CombineWithReferenceFeature.html) to capture elapsed time- [DropFeatures](https://feature-engine.readthedocs.io/en/latest/selection/DropFeatures.html) to drop the unwanted featuresWe will do the first one manually, so we take the opportunity to create 1 class ourselves for the course. For the second operation, we will use the DropFeatures class. ###Code def elapsed_years(df, var): # capture difference between the year variable # and the year in which the house was sold df[var] = df['YrSold'] - df[var] return df for var in ['YearBuilt', 'YearRemodAdd', 'GarageYrBlt']: X_train = elapsed_years(X_train, var) X_test = elapsed_years(X_test, var) # now we drop YrSold drop_features = DropFeatures(features_to_drop=['YrSold']) X_train = drop_features.fit_transform(X_train) X_test = drop_features.transform(X_test) ###Output _____no_output_____ ###Markdown Numerical variable transformation Logarithmic transformationIn the previous notebook, we observed that the numerical variables are not normally distributed.We will transform with the logarightm the positive numerical variables in order to get a more Gaussian-like distribution. ###Code log_transformer = LogTransformer( variables=["LotFrontage", "1stFlrSF", "GrLivArea"]) X_train = log_transformer.fit_transform(X_train) X_test = log_transformer.transform(X_test) # check that test set does not contain null values in the engineered variables [var for var in ["LotFrontage", "1stFlrSF", "GrLivArea"] if X_test[var].isnull().sum() > 0] # same for train set [var for var in ["LotFrontage", "1stFlrSF", "GrLivArea"] if X_train[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Yeo-Johnson transformationWe will apply the Yeo-Johnson transformation to LotArea. ###Code yeo_transformer = YeoJohnsonTransformer( variables=['LotArea']) X_train = yeo_transformer.fit_transform(X_train) X_test = yeo_transformer.transform(X_test) # the learned parameter yeo_transformer.lambda_dict_ # check absence of na in the train set [var for var in X_train.columns if X_train[var].isnull().sum() > 0] # check absence of na in the test set [var for var in X_train.columns if X_test[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Binarize skewed variablesThere were a few variables very skewed, we would transform those into binary variables.We can perform the below transformation with open source. We can use the [Binarizer](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Binarizer.html) from Scikit-learn, in combination with the [SklearnWrapper](https://feature-engine.readthedocs.io/en/latest/wrappers/Wrapper.html) from Feature-engine to be able to apply the transformation only to a subset of features.Instead, we are going to do it manually, to give us another opportunity to code the class as an in-house package later in the course. ###Code skewed = [ 'BsmtFinSF2', 'LowQualFinSF', 'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'MiscVal' ] binarizer = SklearnTransformerWrapper( transformer=Binarizer(threshold=0), variables=skewed ) X_train = binarizer.fit_transform(X_train) X_test = binarizer.transform(X_test) X_train[skewed].head() ###Output _____no_output_____ ###Markdown Categorical variables Apply mappingsThese are variables which values have an assigned order, related to quality. For more information, check Kaggle website. ###Code # re-map strings to numbers, which determine quality qual_mappings = {'Po': 1, 'Fa': 2, 'TA': 3, 'Gd': 4, 'Ex': 5, 'Missing': 0, 'NA': 0} qual_vars = ['ExterQual', 'ExterCond', 'BsmtQual', 'BsmtCond', 'HeatingQC', 'KitchenQual', 'FireplaceQu', 'GarageQual', 'GarageCond', ] for var in qual_vars: X_train[var] = X_train[var].map(qual_mappings) X_test[var] = X_test[var].map(qual_mappings) exposure_mappings = {'No': 1, 'Mn': 2, 'Av': 3, 'Gd': 4} var = 'BsmtExposure' X_train[var] = X_train[var].map(exposure_mappings) X_test[var] = X_test[var].map(exposure_mappings) finish_mappings = {'Missing': 0, 'NA': 0, 'Unf': 1, 'LwQ': 2, 'Rec': 3, 'BLQ': 4, 'ALQ': 5, 'GLQ': 6} finish_vars = ['BsmtFinType1', 'BsmtFinType2'] for var in finish_vars: X_train[var] = X_train[var].map(finish_mappings) X_test[var] = X_test[var].map(finish_mappings) garage_mappings = {'Missing': 0, 'NA': 0, 'Unf': 1, 'RFn': 2, 'Fin': 3} var = 'GarageFinish' X_train[var] = X_train[var].map(garage_mappings) X_test[var] = X_test[var].map(garage_mappings) fence_mappings = {'Missing': 0, 'NA': 0, 'MnWw': 1, 'GdWo': 2, 'MnPrv': 3, 'GdPrv': 4} var = 'Fence' X_train[var] = X_train[var].map(fence_mappings) X_test[var] = X_test[var].map(fence_mappings) # check absence of na in the train set [var for var in X_train.columns if X_train[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Removing Rare LabelsFor the remaining categorical variables, we will group those categories that are present in less than 1% of the observations. That is, all values of categorical variables that are shared by less than 1% of houses, well be replaced by the string "Rare".To learn more about how to handle categorical variables visit our course [Feature Engineering for Machine Learning](https://www.udemy.com/course/feature-engineering-for-machine-learning/?referralCode=A855148E05283015CF06) in Udemy. ###Code # capture all quality variables qual_vars = qual_vars + finish_vars + ['BsmtExposure','GarageFinish','Fence'] # capture the remaining categorical variables # (those that we did not re-map) cat_others = [ var for var in cat_vars if var not in qual_vars ] len(cat_others) cat_others rare_encoder = RareLabelEncoder(tol=0.01, n_categories=1, variables=cat_others) # find common labels rare_encoder.fit(X_train) # the common labels are stored, we can save the class # and then use it later :) rare_encoder.encoder_dict_ X_train = rare_encoder.transform(X_train) X_test = rare_encoder.transform(X_test) ###Output _____no_output_____ ###Markdown Encoding of categorical variablesNext, we need to transform the strings of the categorical variables into numbers. We will do it so that we capture the monotonic relationship between the label and the target.To learn more about how to encode categorical variables visit our course [Feature Engineering for Machine Learning](https://www.udemy.com/course/feature-engineering-for-machine-learning/?referralCode=A855148E05283015CF06) in Udemy. ###Code # set up the encoder cat_encoder = OrdinalEncoder(encoding_method='ordered', variables=cat_others) # create the mappings cat_encoder.fit(X_train, y_train) # mappings are stored and class can be saved cat_encoder.encoder_dict_ X_train = cat_encoder.transform(X_train) X_test = cat_encoder.transform(X_test) # check absence of na in the train set [var for var in X_train.columns if X_train[var].isnull().sum() > 0] # check absence of na in the test set [var for var in X_test.columns if X_test[var].isnull().sum() > 0] # let me show you what I mean by monotonic relationship # between labels and target def analyse_vars(train, y_train, var): # function plots median house sale price per encoded # category tmp = pd.concat([X_train, np.log(y_train)], axis=1) tmp.groupby(var)['SalePrice'].median().plot.bar() plt.title(var) plt.ylim(2.2, 2.6) plt.ylabel('SalePrice') plt.show() for var in cat_others: analyse_vars(X_train, y_train, var) ###Output _____no_output_____ ###Markdown The monotonic relationship is particularly clear for the variables MSZoning and Neighborhood. Note how, the higher the integer that now represents the category, the higher the mean house sale price.(remember that the target is log-transformed, that is why the differences seem so small). Feature ScalingFor use in linear models, features need to be either scaled. We will scale features to the minimum and maximum values: ###Code # create scaler scaler = MinMaxScaler() # fit the scaler to the train set scaler.fit(X_train) # transform the train and test set # sklearn returns numpy arrays, so we wrap the # array with a pandas dataframe X_train = pd.DataFrame( scaler.transform(X_train), columns=X_train.columns ) X_test = pd.DataFrame( scaler.transform(X_test), columns=X_train.columns ) X_train.head() ###Output _____no_output_____ ###Markdown Feature Engineering with Open-SourceIn this notebook, we will reproduce the Feature Engineering Pipeline from the notebook 2 (02-Machine-Learning-Pipeline-Feature-Engineering), but we will replace, whenever possible, the manually created functions by open-source classes, and hopefully understand the value they bring forward. Reproducibility: Setting the seedWith the aim to ensure reproducibility between runs of the same notebook, but also between the research and production environment, for each step that includes some element of randomness, it is extremely important that we **set the seed**. ###Code # data manipulation and plotting import pandas as pd import numpy as np import matplotlib.pyplot as plt # for saving the pipeline import joblib # from Scikit-learn from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler, Binarizer # binarizer for heavily skewed variables # from feature-engine # to handle missing values from feature_engine.imputation import ( AddMissingIndicator, # for creating new variable with binary (0, 1) 'missing' indicator MeanMedianImputer, # for replacement by the mean CategoricalImputer, # for replacement by string/number or frequent category. # fill_value: str, int, float, default=’Missing’ ) from feature_engine.encoding import ( RareLabelEncoder, # for removal of rare labels OrdinalEncoder, ) from feature_engine.transformation import ( LogTransformer, YeoJohnsonTransformer, ) from feature_engine.selection import DropFeatures from feature_engine.wrappers import SklearnTransformerWrapper # used in conjunction with binarizer # to visualise all the columns in the dataframe pd.pandas.set_option('display.max_columns', None) # load dataset data = pd.read_csv('../data/train.csv') # rows and columns of the data print(data.shape) # visualise the dataset data.head() ###Output (1460, 81) ###Markdown Separate dataset into train and testIt is important to separate our data into training and testing set. When we engineer features, some techniques learn parameters from data. It is important to learn these parameters only from the train set. This is to avoid over-fitting.Our feature engineering techniques will learn:- mean- mode- exponents for the yeo-johnson- category frequency- and category to number mappingsfrom the train set.**Separating the data into train and test involves randomness, therefore, we need to set the seed.** ###Code # Let's separate into train and test set # Remember to set the seed (random_state for this sklearn function) X_train, X_test, y_train, y_test = train_test_split( data.drop(['Id', 'SalePrice'], axis=1), # predictive variables data['SalePrice'], # target test_size=0.1, # portion of dataset to allocate to test set random_state=0, # we are setting the seed here ) X_train.shape, X_test.shape ###Output _____no_output_____ ###Markdown Feature EngineeringIn the following cells, we will engineer the variables of the House Price Dataset so that we tackle:1. Missing values2. Temporal variables3. Non-Gaussian distributed variables4. Categorical variables: remove rare labels5. Categorical variables: convert strings to numbers5. Standardize the values of the variables to the same range TargetWe apply the logarithm of the target ###Code y_train = np.log(y_train) y_test = np.log(y_test) ###Output _____no_output_____ ###Markdown Missing values Categorical variablesWe will replace missing values with the string "missing" in those variables with a lot (>=10%) of missing data. Alternatively, we will replace missing data with the most frequent category in those variables that contain fewer observations (<10%) without values. This is common practice. ###Code # let's identify the categorical variables # we will capture those of type object cat_vars = [var for var in data.columns if data[var].dtype == 'O'] # MSSubClass is also categorical by definition, despite its numeric values # (you can find the definitions of the variables in the data_description.txt # file available on Kaggle, in the same website where you downloaded the data) # lets add MSSubClass to the list of categorical variables cat_vars = cat_vars + ['MSSubClass'] # cast all variables as categorical X_train[cat_vars] = X_train[cat_vars].astype('O') X_test[cat_vars] = X_test[cat_vars].astype('O') # number of categorical variables len(cat_vars) # make a list of the categorical variables that contain missing values cat_vars_with_na = [ var for var in cat_vars if X_train[var].isnull().sum() > 0 ] # print percentage of missing values per variable X_train[cat_vars_with_na ].isnull().mean().sort_values(ascending=False) ###Output _____no_output_____ ###Markdown Create two lists for imputation: Use list comprehension. =10% missing: with_string_missing ###Code # variables to impute with the string missing with_string_missing = [ var for var in cat_vars_with_na if X_train[var].isnull().mean() >= 0.1] # more than 10% missing # variables to impute with the most frequent category with_frequent_category = [ var for var in cat_vars_with_na if X_train[var].isnull().mean() < 0.1] # less than 10% missing # I print the values here, because it makes it easier for # later when we need to add these values to a config file for # deployment with_string_missing with_frequent_category # replace missing values with new label: "Missing" # set up the class cat_imputer_missing = CategoricalImputer( imputation_method='missing', variables=with_string_missing) # fit the class to the train set cat_imputer_missing.fit(X_train) # the class learns and stores the parameters cat_imputer_missing.imputer_dict_ ###Output _____no_output_____ ###Markdown Use joblib to store fitted class ###Code # store the fitted class using joblib (sklearn) import joblib joblib.dump(cat_imputer_missing,'cat_imp_missing') # retrieve fitted class using joblib (sklearn) joblib_cat_imp = joblib.load('cat_imp_missing') # open file to read it # replace NA by missing # # IMPORTANT: note that we could store this class with joblib # X_train = cat_imputer_missing.transform(X_train) # X_test = cat_imputer_missing.transform(X_test) X_train = joblib_cat_imp.transform(X_train) X_test = joblib_cat_imp.transform(X_test) # replace missing values with most frequent category # set up the class cat_imputer_frequent = CategoricalImputer( imputation_method='frequent', variables=with_frequent_category) # fit the class to the train set cat_imputer_frequent.fit(X_train) # the class learns and stores the parameters cat_imputer_frequent.imputer_dict_ # replace NA by missing # IMPORTANT: note that we could store this class with joblib X_train = cat_imputer_frequent.transform(X_train) X_test = cat_imputer_frequent.transform(X_test) # check that we have no missing information in the engineered variables X_train[cat_vars_with_na].isnull().sum() # check that test set does not contain null values in the engineered variables [var for var in cat_vars_with_na if X_test[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Numerical variablesTo engineer missing values in numerical variables, we will:- add a binary missing indicator variable- and then replace the missing values in the original variable with the mean ###Code # now let's identify the numerical variables num_vars = [ var for var in X_train.columns if var not in cat_vars and var != 'SalePrice' ] # number of numerical variables len(num_vars) # make a list with the numerical variables that contain missing values vars_with_na = [ var for var in num_vars if X_train[var].isnull().sum() > 0 ] # print percentage of missing values per variable X_train[vars_with_na].isnull().mean() # print, makes my life easier when I want to create the config vars_with_na # add missing indicator variables missing_ind = AddMissingIndicator(variables=vars_with_na) missing_ind.fit(X_train) X_train = missing_ind.transform(X_train) X_test = missing_ind.transform(X_test) # check the binary missing indicator variables X_train[['LotFrontage_na', 'MasVnrArea_na', 'GarageYrBlt_na']].head() # then replace missing data with the mean # set the imputer mean_imputer = MeanMedianImputer( imputation_method='mean', variables=vars_with_na) # learn and store parameters from train set mean_imputer.fit(X_train) # the stored parameters mean_imputer.imputer_dict_ X_train = mean_imputer.transform(X_train) X_test = mean_imputer.transform(X_test) # IMPORTANT: note that we could save the imputers with joblib # check that we have no more missing values in the engineered variables X_train[vars_with_na].isnull().sum() # check that test set does not contain null values in the engineered variables [var for var in vars_with_na if X_test[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Temporal variables Capture elapsed timeThere are in Feature-engine 2 classes that allow us to perform the 2 transformations below:- [CombineWithFeatureReference](https://feature-engine.readthedocs.io/en/latest/creation/CombineWithReferenceFeature.html) to capture elapsed time- [DropFeatures](https://feature-engine.readthedocs.io/en/latest/selection/DropFeatures.html) to drop the unwanted featuresWe will do the first one manually, so we take the opportunity to create 1 class ourselves for the course. For the second operation, we will use the DropFeatures class. ###Code def elapsed_years(df, var): # capture difference between the year variable # and the year in which the house was sold df[var] = df['YrSold'] - df[var] return df for var in ['YearBuilt', 'YearRemodAdd', 'GarageYrBlt']: X_train = elapsed_years(X_train, var) X_test = elapsed_years(X_test, var) # now we drop YrSold drop_features = DropFeatures(features_to_drop=['YrSold']) X_train = drop_features.fit_transform(X_train) X_test = drop_features.transform(X_test) ###Output _____no_output_____ ###Markdown Numerical variable transformation Logarithmic transformationIn the previous notebook, we observed that the numerical variables are not normally distributed.We will transform with the logarithm the positive numerical variables in order to get a more Gaussian-like distribution. ###Code log_transformer = LogTransformer( variables=["LotFrontage", "1stFlrSF", "GrLivArea"]) X_train = log_transformer.fit_transform(X_train) X_test = log_transformer.transform(X_test) # check that test set does not contain null values in the engineered variables [var for var in ["LotFrontage", "1stFlrSF", "GrLivArea"] if X_test[var].isnull().sum() > 0] # same for train set [var for var in ["LotFrontage", "1stFlrSF", "GrLivArea"] if X_train[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Yeo-Johnson transformationWe will apply the Yeo-Johnson transformation to LotArea. ###Code yeo_transformer = YeoJohnsonTransformer( variables=['LotArea']) X_train = yeo_transformer.fit_transform(X_train) X_test = yeo_transformer.transform(X_test) # the learned parameter yeo_transformer.lambda_dict_ # check absence of na in the train set [var for var in X_train.columns if X_train[var].isnull().sum() > 0] # check absence of na in the test set [var for var in X_train.columns if X_test[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Binarize skewed variablesThere were a few variables very skewed, we would transform those into binary variables.We can perform the below transformation with open source. We can use the [Binarizer](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Binarizer.html) from Scikit-learn, in combination with the [SklearnWrapper](https://feature-engine.readthedocs.io/en/latest/wrappers/Wrapper.html) from Feature-engine to be able to apply the transformation only to a subset of features.Instead, we are going to do it manually, to give us another opportunity to code the class as an in-house package later in the course. ###Code skewed = [ 'BsmtFinSF2', 'LowQualFinSF', 'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'MiscVal' ] X_train[skewed].head() # before transformation binarizer = SklearnTransformerWrapper( transformer=Binarizer(threshold=0), variables=skewed ) X_train = binarizer.fit_transform(X_train) X_test = binarizer.transform(X_test) X_train[skewed].head() # after transformation ###Output _____no_output_____ ###Markdown Categorical variables Apply mappingsThese are variables which values have an assigned order, related to quality. For more information, check Kaggle website. ###Code # re-map strings to numbers, which determine quality qual_mappings = {'Po': 1, 'Fa': 2, 'TA': 3, 'Gd': 4, 'Ex': 5, 'Missing': 0, 'NA': 0} qual_vars = ['ExterQual', 'ExterCond', 'BsmtQual', 'BsmtCond', 'HeatingQC', 'KitchenQual', 'FireplaceQu', 'GarageQual', 'GarageCond', ] for var in qual_vars: X_train[var] = X_train[var].map(qual_mappings) X_test[var] = X_test[var].map(qual_mappings) exposure_mappings = {'No': 1, 'Mn': 2, 'Av': 3, 'Gd': 4} var = 'BsmtExposure' X_train[var] = X_train[var].map(exposure_mappings) X_test[var] = X_test[var].map(exposure_mappings) finish_mappings = {'Missing': 0, 'NA': 0, 'Unf': 1, 'LwQ': 2, 'Rec': 3, 'BLQ': 4, 'ALQ': 5, 'GLQ': 6} finish_vars = ['BsmtFinType1', 'BsmtFinType2'] for var in finish_vars: X_train[var] = X_train[var].map(finish_mappings) X_test[var] = X_test[var].map(finish_mappings) garage_mappings = {'Missing': 0, 'NA': 0, 'Unf': 1, 'RFn': 2, 'Fin': 3} var = 'GarageFinish' X_train[var] = X_train[var].map(garage_mappings) X_test[var] = X_test[var].map(garage_mappings) fence_mappings = {'Missing': 0, 'NA': 0, 'MnWw': 1, 'GdWo': 2, 'MnPrv': 3, 'GdPrv': 4} var = 'Fence' X_train[var] = X_train[var].map(fence_mappings) X_test[var] = X_test[var].map(fence_mappings) # check absence of na in the train set [var for var in X_train.columns if X_train[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Removing Rare LabelsFor the remaining categorical variables, we will group those categories that are present in less than 1% of the observations. That is, all values of categorical variables that are shared by less than 1% of houses, well be replaced by the string "Rare".To learn more about how to handle categorical variables visit our course [Feature Engineering for Machine Learning](https://www.udemy.com/course/feature-engineering-for-machine-learning/?referralCode=A855148E05283015CF06) in Udemy. ###Code # capture all quality variables qual_vars = qual_vars + finish_vars + ['BsmtExposure','GarageFinish','Fence'] # capture the remaining categorical variables # (those that we did not re-map) cat_others = [ var for var in cat_vars if var not in qual_vars ] len(cat_others) cat_others rare_encoder = RareLabelEncoder(tol=0.01, n_categories=1, variables=cat_others) # find common labels rare_encoder.fit(X_train) # the common labels are stored, we can save the class # and then use it later :) rare_encoder.encoder_dict_ X_train = rare_encoder.transform(X_train) X_test = rare_encoder.transform(X_test) ###Output _____no_output_____ ###Markdown Encoding of categorical variablesNext, we need to transform the strings of the categorical variables into numbers. We will do it so that we capture the monotonic relationship between the label and the target.To learn more about how to encode categorical variables visit our course [Feature Engineering for Machine Learning](https://www.udemy.com/course/feature-engineering-for-machine-learning/?referralCode=A855148E05283015CF06) in Udemy. ###Code # set up the encoder cat_encoder = OrdinalEncoder(encoding_method='ordered', variables=cat_others) # create the mappings cat_encoder.fit(X_train, y_train) # mappings are stored and class can be saved cat_encoder.encoder_dict_ X_train = cat_encoder.transform(X_train) X_test = cat_encoder.transform(X_test) # check absence of na in the train set [var for var in X_train.columns if X_train[var].isnull().sum() > 0] # check absence of na in the test set [var for var in X_test.columns if X_test[var].isnull().sum() > 0] # let me show you what I mean by monotonic relationship # between labels and target def analyse_vars(train, y_train, var): # function plots median house sale price per encoded # category tmp = pd.concat([X_train, np.log(y_train)], axis=1) tmp.groupby(var)['SalePrice'].median().plot.bar() plt.title(var) plt.ylim(2.2, 2.6) plt.ylabel('SalePrice') plt.show() for var in cat_others: analyse_vars(X_train, y_train, var) ###Output _____no_output_____ ###Markdown The monotonic relationship is particularly clear for the variables MSZoning and Neighborhood. Note how, the higher the integer that now represents the category, the higher the mean house sale price.**NB Remember that the target is log-transformed, that is why the differences seem so small.** Feature ScalingFor use in linear models, features need to be either scaled. We will scale features to the minimum and maximum values: ###Code # create scaler scaler = MinMaxScaler() # fit the scaler to the train set scaler.fit(X_train) # transform the train and test set # sklearn returns numpy arrays, so we wrap the # array with a pandas dataframe X_train = pd.DataFrame( scaler.transform(X_train), columns=X_train.columns ) X_test = pd.DataFrame( scaler.transform(X_test), columns=X_train.columns ) X_train.head() ###Output _____no_output_____ ###Markdown Feature Engineering with Open-SourceIn this notebook, we will reproduce the Feature Engineering Pipeline from the notebook 2 (02-Machine-Learning-Pipeline-Feature-Engineering), but we will replace, whenever possible, the manually created functions by open-source classes, and hopefully understand the value they bring forward. Reproducibility: Setting the seedWith the aim to ensure reproducibility between runs of the same notebook, but also between the research and production environment, for each step that includes some element of randomness, it is extremely important that we **set the seed**. ###Code # data manipulation and plotting import pandas as pd import numpy as np import matplotlib.pyplot as plt # for saving the pipeline import joblib # from Scikit-learn from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler, Binarizer # from feature-engine from feature_engine.imputation import ( AddMissingIndicator, MeanMedianImputer, CategoricalImputer, ) from feature_engine.encoding import ( RareLabelEncoder, OrdinalEncoder, ) from feature_engine.transformation import ( LogTransformer, YeoJohnsonTransformer, ) from feature_engine.selection import DropFeatures from feature_engine.wrappers import SklearnTransformerWrapper # to visualise al the columns in the dataframe pd.pandas.set_option('display.max_columns', None) # load dataset data = pd.read_csv('train.csv') # rows and columns of the data print(data.shape) # visualise the dataset data.head() ###Output (1460, 81) ###Markdown Separate dataset into train and testIt is important to separate our data intro training and testing set. When we engineer features, some techniques learn parameters from data. It is important to learn these parameters only from the train set. This is to avoid over-fitting.Our feature engineering techniques will learn:- mean- mode- exponents for the yeo-johnson- category frequency- and category to number mappingsfrom the train set.**Separating the data into train and test involves randomness, therefore, we need to set the seed.** ###Code # Let's separate into train and test set # Remember to set the seed (random_state for this sklearn function) X_train, X_test, y_train, y_test = train_test_split( data.drop(['Id', 'SalePrice'], axis=1), # predictive variables data['SalePrice'], # target test_size=0.1, # portion of dataset to allocate to test set random_state=0, # we are setting the seed here ) X_train.shape, X_test.shape ###Output _____no_output_____ ###Markdown Feature EngineeringIn the following cells, we will engineer the variables of the House Price Dataset so that we tackle:1. Missing values2. Temporal variables3. Non-Gaussian distributed variables4. Categorical variables: remove rare labels5. Categorical variables: convert strings to numbers5. Standardize the values of the variables to the same range TargetWe apply the logarithm ###Code y_train = np.log(y_train) y_test = np.log(y_test) ###Output _____no_output_____ ###Markdown Missing values Categorical variablesWe will replace missing values with the string "missing" in those variables with a lot of missing data. Alternatively, we will replace missing data with the most frequent category in those variables that contain fewer observations without values. This is common practice. ###Code # let's identify the categorical variables # we will capture those of type object cat_vars = [var for var in data.columns if data[var].dtype == 'O'] # MSSubClass is also categorical by definition, despite its numeric values # (you can find the definitions of the variables in the data_description.txt # file available on Kaggle, in the same website where you downloaded the data) # lets add MSSubClass to the list of categorical variables cat_vars = cat_vars + ['MSSubClass'] # cast all variables as categorical X_train[cat_vars] = X_train[cat_vars].astype('O') X_test[cat_vars] = X_test[cat_vars].astype('O') # number of categorical variables len(cat_vars) # make a list of the categorical variables that contain missing values cat_vars_with_na = [ var for var in cat_vars if X_train[var].isnull().sum() > 0 ] # print percentage of missing values per variable X_train[cat_vars_with_na ].isnull().mean().sort_values(ascending=False) # variables to impute with the string missing with_string_missing = [ var for var in cat_vars_with_na if X_train[var].isnull().mean() > 0.1] # variables to impute with the most frequent category with_frequent_category = [ var for var in cat_vars_with_na if X_train[var].isnull().mean() < 0.1] # I print the values here, because it makes it easier for # later when we need to add this values to a config file for # deployment with_string_missing with_frequent_category # replace missing values with new label: "Missing" # set up the class cat_imputer_missing = CategoricalImputer( imputation_method='missing', variables=with_string_missing) # fit the class to the train set cat_imputer_missing.fit(X_train) # the class learns and stores the parameters cat_imputer_missing.imputer_dict_ # replace NA by missing # IMPORTANT: note that we could store this class with joblib X_train = cat_imputer_missing.transform(X_train) X_test = cat_imputer_missing.transform(X_test) # replace missing values with most frequent category # set up the class cat_imputer_frequent = CategoricalImputer( imputation_method='frequent', variables=with_frequent_category) # fit the class to the train set cat_imputer_frequent.fit(X_train) # the class learns and stores the parameters cat_imputer_frequent.imputer_dict_ # replace NA by missing # IMPORTANT: note that we could store this class with joblib X_train = cat_imputer_frequent.transform(X_train) X_test = cat_imputer_frequent.transform(X_test) # check that we have no missing information in the engineered variables X_train[cat_vars_with_na].isnull().sum() # check that test set does not contain null values in the engineered variables [var for var in cat_vars_with_na if X_test[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Numerical variablesTo engineer missing values in numerical variables, we will:- add a binary missing indicator variable- and then replace the missing values in the original variable with the mean ###Code # now let's identify the numerical variables num_vars = [ var for var in X_train.columns if var not in cat_vars and var != 'SalePrice' ] # number of numerical variables len(num_vars) # make a list with the numerical variables that contain missing values vars_with_na = [ var for var in num_vars if X_train[var].isnull().sum() > 0 ] # print percentage of missing values per variable X_train[vars_with_na].isnull().mean() # print, makes my life easier when I want to create the config vars_with_na # add missing indicator missing_ind = AddMissingIndicator(variables=vars_with_na) missing_ind.fit(X_train) X_train = missing_ind.transform(X_train) X_test = missing_ind.transform(X_test) # check the binary missing indicator variables X_train[['LotFrontage_na', 'MasVnrArea_na', 'GarageYrBlt_na']].head() # then replace missing data with the mean # set the imputer mean_imputer = MeanMedianImputer( imputation_method='mean', variables=vars_with_na) # learn and store parameters from train set mean_imputer.fit(X_train) # the stored parameters mean_imputer.imputer_dict_ X_train = mean_imputer.transform(X_train) X_test = mean_imputer.transform(X_test) # IMPORTANT: note that we could save the imputers with joblib # check that we have no more missing values in the engineered variables X_train[vars_with_na].isnull().sum() # check that test set does not contain null values in the engineered variables [var for var in vars_with_na if X_test[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Temporal variables Capture elapsed timeThere is in Feature-engine 2 classes that allow us to perform the 2 transformations below:- [CombineWithFeatureReference](https://feature-engine.readthedocs.io/en/latest/creation/CombineWithReferenceFeature.html) to capture elapsed time- [DropFeatures](https://feature-engine.readthedocs.io/en/latest/selection/DropFeatures.html) to drop the unwanted featuresWe will do the first one manually, so we take the opportunity to create 1 class ourselves for the course. For the second operation, we will use the DropFeatures class. ###Code def elapsed_years(df, var): # capture difference between the year variable # and the year in which the house was sold df[var] = df['YrSold'] - df[var] return df for var in ['YearBuilt', 'YearRemodAdd', 'GarageYrBlt']: X_train = elapsed_years(X_train, var) X_test = elapsed_years(X_test, var) # now we drop YrSold drop_features = DropFeatures(features_to_drop=['YrSold']) X_train = drop_features.fit_transform(X_train) X_test = drop_features.transform(X_test) ###Output _____no_output_____ ###Markdown Numerical variable transformation Logarithmic transformationIn the previous notebook, we observed that the numerical variables are not normally distributed.We will transform with the logarightm the positive numerical variables in order to get a more Gaussian-like distribution. ###Code log_transformer = LogTransformer( variables=["LotFrontage", "1stFlrSF", "GrLivArea"]) X_train = log_transformer.fit_transform(X_train) X_test = log_transformer.transform(X_test) # check that test set does not contain null values in the engineered variables [var for var in ["LotFrontage", "1stFlrSF", "GrLivArea"] if X_test[var].isnull().sum() > 0] # same for train set [var for var in ["LotFrontage", "1stFlrSF", "GrLivArea"] if X_train[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Yeo-Johnson transformationWe will apply the Yeo-Johnson transformation to LotArea. ###Code yeo_transformer = YeoJohnsonTransformer( variables=['LotArea']) X_train = yeo_transformer.fit_transform(X_train) X_test = yeo_transformer.transform(X_test) # the learned parameter yeo_transformer.lambda_dict_ # check absence of na in the train set [var for var in X_train.columns if X_train[var].isnull().sum() > 0] # check absence of na in the test set [var for var in X_train.columns if X_test[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Binarize skewed variablesThere were a few variables very skewed, we would transform those into binary variables.We can perform the below transformation with open source. We can use the [Binarizer](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Binarizer.html) from Scikit-learn, in combination with the [SklearnWrapper](https://feature-engine.readthedocs.io/en/latest/wrappers/Wrapper.html) from Feature-engine to be able to apply the transformation only to a subset of features.Instead, we are going to do it manually, to give us another opportunity to code the class as an in-house package later in the course. ###Code skewed = [ 'BsmtFinSF2', 'LowQualFinSF', 'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'MiscVal' ] binarizer = SklearnTransformerWrapper( transformer=Binarizer(threshold=0), variables=skewed ) X_train = binarizer.fit_transform(X_train) X_test = binarizer.transform(X_test) X_train[skewed].head() ###Output _____no_output_____ ###Markdown Categorical variables Apply mappingsThese are variables which values have an assigned order, related to quality. For more information, check Kaggle website. ###Code # re-map strings to numbers, which determine quality qual_mappings = {'Po': 1, 'Fa': 2, 'TA': 3, 'Gd': 4, 'Ex': 5, 'Missing': 0, 'NA': 0} qual_vars = ['ExterQual', 'ExterCond', 'BsmtQual', 'BsmtCond', 'HeatingQC', 'KitchenQual', 'FireplaceQu', 'GarageQual', 'GarageCond', ] for var in qual_vars: X_train[var] = X_train[var].map(qual_mappings) X_test[var] = X_test[var].map(qual_mappings) exposure_mappings = {'No': 1, 'Mn': 2, 'Av': 3, 'Gd': 4} var = 'BsmtExposure' X_train[var] = X_train[var].map(exposure_mappings) X_test[var] = X_test[var].map(exposure_mappings) finish_mappings = {'Missing': 0, 'NA': 0, 'Unf': 1, 'LwQ': 2, 'Rec': 3, 'BLQ': 4, 'ALQ': 5, 'GLQ': 6} finish_vars = ['BsmtFinType1', 'BsmtFinType2'] for var in finish_vars: X_train[var] = X_train[var].map(finish_mappings) X_test[var] = X_test[var].map(finish_mappings) garage_mappings = {'Missing': 0, 'NA': 0, 'Unf': 1, 'RFn': 2, 'Fin': 3} var = 'GarageFinish' X_train[var] = X_train[var].map(garage_mappings) X_test[var] = X_test[var].map(garage_mappings) fence_mappings = {'Missing': 0, 'NA': 0, 'MnWw': 1, 'GdWo': 2, 'MnPrv': 3, 'GdPrv': 4} var = 'Fence' X_train[var] = X_train[var].map(fence_mappings) X_test[var] = X_test[var].map(fence_mappings) # check absence of na in the train set [var for var in X_train.columns if X_train[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Removing Rare LabelsFor the remaining categorical variables, we will group those categories that are present in less than 1% of the observations. That is, all values of categorical variables that are shared by less than 1% of houses, well be replaced by the string "Rare".To learn more about how to handle categorical variables visit our course [Feature Engineering for Machine Learning](https://www.udemy.com/course/feature-engineering-for-machine-learning/?referralCode=A855148E05283015CF06) in Udemy. ###Code # capture all quality variables qual_vars = qual_vars + finish_vars + ['BsmtExposure','GarageFinish','Fence'] # capture the remaining categorical variables # (those that we did not re-map) cat_others = [ var for var in cat_vars if var not in qual_vars ] len(cat_others) cat_others rare_encoder = RareLabelEncoder(tol=0.01, n_categories=1, variables=cat_others) # find common labels rare_encoder.fit(X_train) # the common labels are stored, we can save the class # and then use it later :) rare_encoder.encoder_dict_ X_train = rare_encoder.transform(X_train) X_test = rare_encoder.transform(X_test) ###Output _____no_output_____ ###Markdown Encoding of categorical variablesNext, we need to transform the strings of the categorical variables into numbers. We will do it so that we capture the monotonic relationship between the label and the target.To learn more about how to encode categorical variables visit our course [Feature Engineering for Machine Learning](https://www.udemy.com/course/feature-engineering-for-machine-learning/?referralCode=A855148E05283015CF06) in Udemy. ###Code # set up the encoder cat_encoder = OrdinalEncoder(encoding_method='ordered', variables=cat_others) # create the mappings cat_encoder.fit(X_train, y_train) # mappings are stored and class can be saved cat_encoder.encoder_dict_ X_train = cat_encoder.transform(X_train) X_test = cat_encoder.transform(X_test) # check absence of na in the train set [var for var in X_train.columns if X_train[var].isnull().sum() > 0] # check absence of na in the test set [var for var in X_test.columns if X_test[var].isnull().sum() > 0] # let me show you what I mean by monotonic relationship # between labels and target def analyse_vars(train, y_train, var): # function plots median house sale price per encoded # category tmp = pd.concat([X_train, np.log(y_train)], axis=1) tmp.groupby(var)['SalePrice'].median().plot.bar() plt.title(var) plt.ylim(2.2, 2.6) plt.ylabel('SalePrice') plt.show() for var in cat_others: analyse_vars(X_train, y_train, var) ###Output _____no_output_____ ###Markdown The monotonic relationship is particularly clear for the variables MSZoning and Neighborhood. Note how, the higher the integer that now represents the category, the higher the mean house sale price.(remember that the target is log-transformed, that is why the differences seem so small). Feature ScalingFor use in linear models, features need to be either scaled. We will scale features to the minimum and maximum values: ###Code # create scaler scaler = MinMaxScaler() # fit the scaler to the train set scaler.fit(X_train) # transform the train and test set # sklearn returns numpy arrays, so we wrap the # array with a pandas dataframe X_train = pd.DataFrame( scaler.transform(X_train), columns=X_train.columns ) X_test = pd.DataFrame( scaler.transform(X_test), columns=X_train.columns ) X_train.head() ###Output _____no_output_____ ###Markdown Feature Engineering with Open-SourceIn this notebook, we will reproduce the Feature Engineering Pipeline from the notebook 2 (02-Machine-Learning-Pipeline-Feature-Engineering), but we will replace, whenever possible, the manually created functions by open-source classes, and hopefully understand the value they bring forward. Reproducibility: Setting the seedWith the aim to ensure reproducibility between runs of the same notebook, but also between the research and production environment, for each step that includes some element of randomness, it is extremely important that we **set the seed**. ###Code # data manipulation and plotting import pandas as pd import numpy as np import matplotlib.pyplot as plt # for saving the pipeline import joblib # from Scikit-learn from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler, Binarizer # from feature-engine from feature_engine.imputation import ( AddMissingIndicator, MeanMedianImputer, CategoricalImputer, ) from feature_engine.encoding import ( RareLabelEncoder, OrdinalEncoder, ) from feature_engine.transformation import ( LogTransformer, YeoJohnsonTransformer, ) from feature_engine.selection import DropFeatures from feature_engine.wrappers import SklearnTransformerWrapper # to visualise al the columns in the dataframe pd.pandas.set_option('display.max_columns', None) # load dataset data = pd.read_csv('./dataset/input/train.csv') # rows and columns of the data print(data.shape) # visualise the dataset data.head() ###Output (1460, 81) ###Markdown Separate dataset into train and testIt is important to separate our data intro training and testing set. When we engineer features, some techniques learn parameters from data. It is important to learn these parameters only from the train set. This is to avoid over-fitting.Our feature engineering techniques will learn:- mean- mode- exponents for the yeo-johnson- category frequency- and category to number mappingsfrom the train set.**Separating the data into train and test involves randomness, therefore, we need to set the seed.** ###Code # Let's separate into train and test set # Remember to set the seed (random_state for this sklearn function) X_train, X_test, y_train, y_test = train_test_split( data.drop(['Id', 'SalePrice'], axis=1), # predictive variables data['SalePrice'], # target test_size=0.1, # portion of dataset to allocate to test set random_state=0, # we are setting the seed here ) X_train.shape, X_test.shape ###Output _____no_output_____ ###Markdown Feature EngineeringIn the following cells, we will engineer the variables of the House Price Dataset so that we tackle:1. Missing values2. Temporal variables3. Non-Gaussian distributed variables4. Categorical variables: remove rare labels5. Categorical variables: convert strings to numbers5. Standardize the values of the variables to the same range TargetWe apply the logarithm ###Code y_train = np.log(y_train) y_test = np.log(y_test) ###Output _____no_output_____ ###Markdown Missing values Categorical variablesWe will replace missing values with the string "missing" in those variables with a lot of missing data. Alternatively, we will replace missing data with the most frequent category in those variables that contain fewer observations without values. This is common practice. ###Code # let's identify the categorical variables # we will capture those of type object cat_vars = [var for var in data.columns if data[var].dtype == 'O'] # MSSubClass is also categorical by definition, despite its numeric values # (you can find the definitions of the variables in the data_description.txt # file available on Kaggle, in the same website where you downloaded the data) # lets add MSSubClass to the list of categorical variables cat_vars = cat_vars + ['MSSubClass'] # cast all variables as categorical X_train[cat_vars] = X_train[cat_vars].astype('O') X_test[cat_vars] = X_test[cat_vars].astype('O') # number of categorical variables len(cat_vars) # make a list of the categorical variables that contain missing values cat_vars_with_na = [ var for var in cat_vars if X_train[var].isnull().sum() > 0 ] # print percentage of missing values per variable X_train[cat_vars_with_na ].isnull().mean().sort_values(ascending=False) # variables to impute with the string missing with_string_missing = [ var for var in cat_vars_with_na if X_train[var].isnull().mean() > 0.1] # variables to impute with the most frequent category with_frequent_category = [ var for var in cat_vars_with_na if X_train[var].isnull().mean() < 0.1] # I print the values here, because it makes it easier for # later when we need to add this values to a config file for # deployment with_string_missing with_frequent_category # replace missing values with new label: "Missing" # set up the class cat_imputer_missing = CategoricalImputer( imputation_method='missing', variables=with_string_missing) # fit the class to the train set cat_imputer_missing.fit(X_train) # the class learns and stores the parameters cat_imputer_missing.imputer_dict_ # replace NA by missing # IMPORTANT: note that we could store this class with joblib X_train = cat_imputer_missing.transform(X_train) X_test = cat_imputer_missing.transform(X_test) # replace missing values with most frequent category # set up the class cat_imputer_frequent = CategoricalImputer( imputation_method='frequent', variables=with_frequent_category) # fit the class to the train set cat_imputer_frequent.fit(X_train) # the class learns and stores the parameters cat_imputer_frequent.imputer_dict_ # replace NA by missing # IMPORTANT: note that we could store this class with joblib X_train = cat_imputer_frequent.transform(X_train) X_test = cat_imputer_frequent.transform(X_test) # check that we have no missing information in the engineered variables X_train[cat_vars_with_na].isnull().sum() # check that test set does not contain null values in the engineered variables [var for var in cat_vars_with_na if X_test[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Numerical variablesTo engineer missing values in numerical variables, we will:- add a binary missing indicator variable- and then replace the missing values in the original variable with the mean ###Code # now let's identify the numerical variables num_vars = [ var for var in X_train.columns if var not in cat_vars and var != 'SalePrice' ] # number of numerical variables len(num_vars) # make a list with the numerical variables that contain missing values vars_with_na = [ var for var in num_vars if X_train[var].isnull().sum() > 0 ] # print percentage of missing values per variable X_train[vars_with_na].isnull().mean() # print, makes my life easier when I want to create the config vars_with_na # add missing indicator missing_ind = AddMissingIndicator(variables=vars_with_na) missing_ind.fit(X_train) X_train = missing_ind.transform(X_train) X_test = missing_ind.transform(X_test) # check the binary missing indicator variables X_train[['LotFrontage_na', 'MasVnrArea_na', 'GarageYrBlt_na']].head() # then replace missing data with the mean # set the imputer mean_imputer = MeanMedianImputer( imputation_method='mean', variables=vars_with_na) # learn and store parameters from train set mean_imputer.fit(X_train) # the stored parameters mean_imputer.imputer_dict_ X_train = mean_imputer.transform(X_train) X_test = mean_imputer.transform(X_test) # IMPORTANT: note that we could save the imputers with joblib # check that we have no more missing values in the engineered variables X_train[vars_with_na].isnull().sum() # check that test set does not contain null values in the engineered variables [var for var in vars_with_na if X_test[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Temporal variables Capture elapsed timeThere is in Feature-engine 2 classes that allow us to perform the 2 transformations below:- [CombineWithFeatureReference](https://feature-engine.readthedocs.io/en/latest/creation/CombineWithReferenceFeature.html) to capture elapsed time- [DropFeatures](https://feature-engine.readthedocs.io/en/latest/selection/DropFeatures.html) to drop the unwanted featuresWe will do the first one manually, so we take the opportunity to create 1 class ourselves for the course. For the second operation, we will use the DropFeatures class. ###Code def elapsed_years(df, var): # capture difference between the year variable # and the year in which the house was sold df[var] = df['YrSold'] - df[var] return df for var in ['YearBuilt', 'YearRemodAdd', 'GarageYrBlt']: X_train = elapsed_years(X_train, var) X_test = elapsed_years(X_test, var) # now we drop YrSold drop_features = DropFeatures(features_to_drop=['YrSold']) X_train = drop_features.fit_transform(X_train) X_test = drop_features.transform(X_test) ###Output _____no_output_____ ###Markdown Numerical variable transformation Logarithmic transformationIn the previous notebook, we observed that the numerical variables are not normally distributed.We will transform with the logarightm the positive numerical variables in order to get a more Gaussian-like distribution. ###Code log_transformer = LogTransformer( variables=["LotFrontage", "1stFlrSF", "GrLivArea"]) X_train = log_transformer.fit_transform(X_train) X_test = log_transformer.transform(X_test) # check that test set does not contain null values in the engineered variables [var for var in ["LotFrontage", "1stFlrSF", "GrLivArea"] if X_test[var].isnull().sum() > 0] # same for train set [var for var in ["LotFrontage", "1stFlrSF", "GrLivArea"] if X_train[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Yeo-Johnson transformationWe will apply the Yeo-Johnson transformation to LotArea. ###Code yeo_transformer = YeoJohnsonTransformer( variables=['LotArea']) X_train = yeo_transformer.fit_transform(X_train) X_test = yeo_transformer.transform(X_test) # the learned parameter yeo_transformer.lambda_dict_ # check absence of na in the train set [var for var in X_train.columns if X_train[var].isnull().sum() > 0] # check absence of na in the test set [var for var in X_train.columns if X_test[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Binarize skewed variablesThere were a few variables very skewed, we would transform those into binary variables.We can perform the below transformation with open source. We can use the [Binarizer](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Binarizer.html) from Scikit-learn, in combination with the [SklearnWrapper](https://feature-engine.readthedocs.io/en/latest/wrappers/Wrapper.html) from Feature-engine to be able to apply the transformation only to a subset of features.Instead, we are going to do it manually, to give us another opportunity to code the class as an in-house package later in the course. ###Code skewed = [ 'BsmtFinSF2', 'LowQualFinSF', 'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'MiscVal' ] binarizer = SklearnTransformerWrapper( transformer=Binarizer(threshold=0), variables=skewed ) X_train = binarizer.fit_transform(X_train) X_test = binarizer.transform(X_test) X_train[skewed].head() ###Output _____no_output_____ ###Markdown Categorical variables Apply mappingsThese are variables which values have an assigned order, related to quality. For more information, check Kaggle website. ###Code # re-map strings to numbers, which determine quality qual_mappings = {'Po': 1, 'Fa': 2, 'TA': 3, 'Gd': 4, 'Ex': 5, 'Missing': 0, 'NA': 0} qual_vars = ['ExterQual', 'ExterCond', 'BsmtQual', 'BsmtCond', 'HeatingQC', 'KitchenQual', 'FireplaceQu', 'GarageQual', 'GarageCond', ] for var in qual_vars: X_train[var] = X_train[var].map(qual_mappings) X_test[var] = X_test[var].map(qual_mappings) exposure_mappings = {'No': 1, 'Mn': 2, 'Av': 3, 'Gd': 4} var = 'BsmtExposure' X_train[var] = X_train[var].map(exposure_mappings) X_test[var] = X_test[var].map(exposure_mappings) finish_mappings = {'Missing': 0, 'NA': 0, 'Unf': 1, 'LwQ': 2, 'Rec': 3, 'BLQ': 4, 'ALQ': 5, 'GLQ': 6} finish_vars = ['BsmtFinType1', 'BsmtFinType2'] for var in finish_vars: X_train[var] = X_train[var].map(finish_mappings) X_test[var] = X_test[var].map(finish_mappings) garage_mappings = {'Missing': 0, 'NA': 0, 'Unf': 1, 'RFn': 2, 'Fin': 3} var = 'GarageFinish' X_train[var] = X_train[var].map(garage_mappings) X_test[var] = X_test[var].map(garage_mappings) fence_mappings = {'Missing': 0, 'NA': 0, 'MnWw': 1, 'GdWo': 2, 'MnPrv': 3, 'GdPrv': 4} var = 'Fence' X_train[var] = X_train[var].map(fence_mappings) X_test[var] = X_test[var].map(fence_mappings) # check absence of na in the train set [var for var in X_train.columns if X_train[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Removing Rare LabelsFor the remaining categorical variables, we will group those categories that are present in less than 1% of the observations. That is, all values of categorical variables that are shared by less than 1% of houses, well be replaced by the string "Rare".To learn more about how to handle categorical variables visit our course [Feature Engineering for Machine Learning](https://www.udemy.com/course/feature-engineering-for-machine-learning/?referralCode=A855148E05283015CF06) in Udemy. ###Code # capture all quality variables qual_vars = qual_vars + finish_vars + ['BsmtExposure','GarageFinish','Fence'] # capture the remaining categorical variables # (those that we did not re-map) cat_others = [ var for var in cat_vars if var not in qual_vars ] len(cat_others) cat_others rare_encoder = RareLabelEncoder(tol=0.01, n_categories=1, variables=cat_others) # find common labels rare_encoder.fit(X_train) # the common labels are stored, we can save the class # and then use it later :) rare_encoder.encoder_dict_ X_train = rare_encoder.transform(X_train) X_test = rare_encoder.transform(X_test) ###Output _____no_output_____ ###Markdown Encoding of categorical variablesNext, we need to transform the strings of the categorical variables into numbers. We will do it so that we capture the monotonic relationship between the label and the target.To learn more about how to encode categorical variables visit our course [Feature Engineering for Machine Learning](https://www.udemy.com/course/feature-engineering-for-machine-learning/?referralCode=A855148E05283015CF06) in Udemy. ###Code # set up the encoder cat_encoder = OrdinalEncoder(encoding_method='ordered', variables=cat_others) # create the mappings cat_encoder.fit(X_train, y_train) # mappings are stored and class can be saved cat_encoder.encoder_dict_ X_train = cat_encoder.transform(X_train) X_test = cat_encoder.transform(X_test) # check absence of na in the train set [var for var in X_train.columns if X_train[var].isnull().sum() > 0] # check absence of na in the test set [var for var in X_test.columns if X_test[var].isnull().sum() > 0] # let me show you what I mean by monotonic relationship # between labels and target def analyse_vars(train, y_train, var): # function plots median house sale price per encoded # category tmp = pd.concat([X_train, np.log(y_train)], axis=1) tmp.groupby(var)['SalePrice'].median().plot.bar() plt.title(var) plt.ylim(2.2, 2.6) plt.ylabel('SalePrice') plt.show() for var in cat_others: analyse_vars(X_train, y_train, var) ###Output _____no_output_____ ###Markdown The monotonic relationship is particularly clear for the variables MSZoning and Neighborhood. Note how, the higher the integer that now represents the category, the higher the mean house sale price.(remember that the target is log-transformed, that is why the differences seem so small). Feature ScalingFor use in linear models, features need to be either scaled. We will scale features to the minimum and maximum values: ###Code # create scaler scaler = MinMaxScaler() # fit the scaler to the train set scaler.fit(X_train) # transform the train and test set # sklearn returns numpy arrays, so we wrap the # array with a pandas dataframe X_train = pd.DataFrame( scaler.transform(X_train), columns=X_train.columns ) X_test = pd.DataFrame( scaler.transform(X_test), columns=X_train.columns ) X_train.head() ###Output _____no_output_____ ###Markdown Feature Engineering with Open-SourceIn this notebook, we will reproduce the Feature Engineering Pipeline from the notebook 2 (02-Machine-Learning-Pipeline-Feature-Engineering), but we will replace, whenever possible, the manually created functions by open-source classes, and hopefully understand the value they bring forward. Reproducibility: Setting the seedWith the aim to ensure reproducibility between runs of the same notebook, but also between the research and production environment, for each step that includes some element of randomness, it is extremely important that we **set the seed**. ###Code # data manipulation and plotting import pandas as pd import numpy as np import matplotlib.pyplot as plt # for saving the pipeline import joblib # from Scikit-learn from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler, Binarizer # from feature-engine from feature_engine.imputation import ( AddMissingIndicator, MeanMedianImputer, CategoricalImputer, ) from feature_engine.encoding import ( RareLabelEncoder, OrdinalEncoder, ) from feature_engine.transformation import ( LogTransformer, YeoJohnsonTransformer, ) from feature_engine.selection import DropFeatures from feature_engine.wrappers import SklearnTransformerWrapper # to visualise al the columns in the dataframe pd.pandas.set_option('display.max_columns', None) # load dataset data = pd.read_csv('train.csv') # rows and columns of the data print(data.shape) # visualise the dataset data.head() ###Output (1460, 81) ###Markdown Separate dataset into train and testIt is important to separate our data intro training and testing set. When we engineer features, some techniques learn parameters from data. It is important to learn these parameters only from the train set. This is to avoid over-fitting.Our feature engineering techniques will learn:- mean- mode- exponents for the yeo-johnson- category frequency- and category to number mappingsfrom the train set.**Separating the data into train and test involves randomness, therefore, we need to set the seed.** ###Code # Let's separate into train and test set # Remember to set the seed (random_state for this sklearn function) X_train, X_test, y_train, y_test = train_test_split( data.drop(['Id', 'SalePrice'], axis=1), # predictive variables data['SalePrice'], # target test_size=0.1, # portion of dataset to allocate to test set random_state=0, # we are setting the seed here ) X_train.shape, X_test.shape ###Output _____no_output_____ ###Markdown Feature EngineeringIn the following cells, we will engineer the variables of the House Price Dataset so that we tackle:1. Missing values2. Temporal variables3. Non-Gaussian distributed variables4. Categorical variables: remove rare labels5. Categorical variables: convert strings to numbers5. Standardize the values of the variables to the same range TargetWe apply the logarithm ###Code y_train = np.log(y_train) y_test = np.log(y_test) ###Output _____no_output_____ ###Markdown Missing values Categorical variablesWe will replace missing values with the string "missing" in those variables with a lot of missing data. Alternatively, we will replace missing data with the most frequent category in those variables that contain fewer observations without values. This is common practice. ###Code # let's identify the categorical variables # we will capture those of type object cat_vars = [var for var in data.columns if data[var].dtype == 'O'] # MSSubClass is also categorical by definition, despite its numeric values # (you can find the definitions of the variables in the data_description.txt # file available on Kaggle, in the same website where you downloaded the data) # lets add MSSubClass to the list of categorical variables cat_vars = cat_vars + ['MSSubClass'] # cast all variables as categorical X_train[cat_vars] = X_train[cat_vars].astype('O') X_test[cat_vars] = X_test[cat_vars].astype('O') # number of categorical variables len(cat_vars) # make a list of the categorical variables that contain missing values cat_vars_with_na = [ var for var in cat_vars if X_train[var].isnull().sum() > 0 ] # print percentage of missing values per variable X_train[cat_vars_with_na ].isnull().mean().sort_values(ascending=False) # variables to impute with the string missing with_string_missing = [ var for var in cat_vars_with_na if X_train[var].isnull().mean() > 0.1] # variables to impute with the most frequent category with_frequent_category = [ var for var in cat_vars_with_na if X_train[var].isnull().mean() < 0.1] # I print the values here, because it makes it easier for # later when we need to add this values to a config file for # deployment with_string_missing with_frequent_category # replace missing values with new label: "Missing" # set up the class cat_imputer_missing = CategoricalImputer( imputation_method='missing', variables=with_string_missing) # fit the class to the train set cat_imputer_missing.fit(X_train) # the class learns and stores the parameters cat_imputer_missing.imputer_dict_ # replace NA by missing # IMPORTANT: note that we could store this class with joblib X_train = cat_imputer_missing.transform(X_train) X_test = cat_imputer_missing.transform(X_test) # replace missing values with most frequent category # set up the class cat_imputer_frequent = CategoricalImputer( imputation_method='frequent', variables=with_frequent_category) # fit the class to the train set cat_imputer_frequent.fit(X_train) # the class learns and stores the parameters cat_imputer_frequent.imputer_dict_ # replace NA by missing # IMPORTANT: note that we could store this class with joblib X_train = cat_imputer_frequent.transform(X_train) X_test = cat_imputer_frequent.transform(X_test) # check that we have no missing information in the engineered variables X_train[cat_vars_with_na].isnull().sum() # check that test set does not contain null values in the engineered variables [var for var in cat_vars_with_na if X_test[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Numerical variablesTo engineer missing values in numerical variables, we will:- add a binary missing indicator variable- and then replace the missing values in the original variable with the mean ###Code # now let's identify the numerical variables num_vars = [ var for var in X_train.columns if var not in cat_vars and var != 'SalePrice' ] # number of numerical variables len(num_vars) # make a list with the numerical variables that contain missing values vars_with_na = [ var for var in num_vars if X_train[var].isnull().sum() > 0 ] # print percentage of missing values per variable X_train[vars_with_na].isnull().mean() # print, makes my life easier when I want to create the config vars_with_na # add missing indicator missing_ind = AddMissingIndicator(variables=vars_with_na) missing_ind.fit(X_train) X_train = missing_ind.transform(X_train) X_test = missing_ind.transform(X_test) # check the binary missing indicator variables X_train[['LotFrontage_na', 'MasVnrArea_na', 'GarageYrBlt_na']].head() # then replace missing data with the mean # set the imputer mean_imputer = MeanMedianImputer( imputation_method='mean', variables=vars_with_na) # learn and store parameters from train set mean_imputer.fit(X_train) # the stored parameters mean_imputer.imputer_dict_ X_train = mean_imputer.transform(X_train) X_test = mean_imputer.transform(X_test) # IMPORTANT: note that we could save the imputers with joblib # check that we have no more missing values in the engineered variables X_train[vars_with_na].isnull().sum() # check that test set does not contain null values in the engineered variables [var for var in vars_with_na if X_test[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Temporal variables Capture elapsed timeThere is in Feature-engine 2 classes that allow us to perform the 2 transformations below:- [CombineWithFeatureReference](https://feature-engine.readthedocs.io/en/latest/creation/CombineWithReferenceFeature.html) to capture elapsed time- [DropFeatures](https://feature-engine.readthedocs.io/en/latest/selection/DropFeatures.html) to drop the unwanted featuresWe will do the first one manually, so we take the opportunity to create 1 class ourselves for the course. For the second operation, we will use the DropFeatures class. ###Code def elapsed_years(df, var): # capture difference between the year variable # and the year in which the house was sold df[var] = df['YrSold'] - df[var] return df for var in ['YearBuilt', 'YearRemodAdd', 'GarageYrBlt']: X_train = elapsed_years(X_train, var) X_test = elapsed_years(X_test, var) # now we drop YrSold drop_features = DropFeatures(features_to_drop=['YrSold']) X_train = drop_features.fit_transform(X_train) X_test = drop_features.transform(X_test) ###Output _____no_output_____ ###Markdown Numerical variable transformation Logarithmic transformationIn the previous notebook, we observed that the numerical variables are not normally distributed.We will transform with the logarightm the positive numerical variables in order to get a more Gaussian-like distribution. ###Code log_transformer = LogTransformer( variables=["LotFrontage", "1stFlrSF", "GrLivArea"]) X_train = log_transformer.fit_transform(X_train) X_test = log_transformer.transform(X_test) # check that test set does not contain null values in the engineered variables [var for var in ["LotFrontage", "1stFlrSF", "GrLivArea"] if X_test[var].isnull().sum() > 0] # same for train set [var for var in ["LotFrontage", "1stFlrSF", "GrLivArea"] if X_train[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Yeo-Johnson transformationWe will apply the Yeo-Johnson transformation to LotArea. ###Code yeo_transformer = YeoJohnsonTransformer( variables=['LotArea']) X_train = yeo_transformer.fit_transform(X_train) X_test = yeo_transformer.transform(X_test) # the learned parameter yeo_transformer.lambda_dict_ # check absence of na in the train set [var for var in X_train.columns if X_train[var].isnull().sum() > 0] # check absence of na in the test set [var for var in X_train.columns if X_test[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Binarize skewed variablesThere were a few variables very skewed, we would transform those into binary variables.We can perform the below transformation with open source. We can use the [Binarizer](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Binarizer.html) from Scikit-learn, in combination with the [SklearnWrapper](https://feature-engine.readthedocs.io/en/latest/wrappers/Wrapper.html) from Feature-engine to be able to apply the transformation only to a subset of features.Instead, we are going to do it manually, to give us another opportunity to code the class as an in-house package later in the course. ###Code skewed = [ 'BsmtFinSF2', 'LowQualFinSF', 'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'MiscVal' ] binarizer = SklearnTransformerWrapper( transformer=Binarizer(threshold=0), variables=skewed ) X_train = binarizer.fit_transform(X_train) X_test = binarizer.transform(X_test) X_train[skewed].head() ###Output _____no_output_____ ###Markdown Categorical variables Apply mappingsThese are variables which values have an assigned order, related to quality. For more information, check Kaggle website. ###Code # re-map strings to numbers, which determine quality qual_mappings = {'Po': 1, 'Fa': 2, 'TA': 3, 'Gd': 4, 'Ex': 5, 'Missing': 0, 'NA': 0} qual_vars = ['ExterQual', 'ExterCond', 'BsmtQual', 'BsmtCond', 'HeatingQC', 'KitchenQual', 'FireplaceQu', 'GarageQual', 'GarageCond', ] for var in qual_vars: X_train[var] = X_train[var].map(qual_mappings) X_test[var] = X_test[var].map(qual_mappings) exposure_mappings = {'No': 1, 'Mn': 2, 'Av': 3, 'Gd': 4} var = 'BsmtExposure' X_train[var] = X_train[var].map(exposure_mappings) X_test[var] = X_test[var].map(exposure_mappings) finish_mappings = {'Missing': 0, 'NA': 0, 'Unf': 1, 'LwQ': 2, 'Rec': 3, 'BLQ': 4, 'ALQ': 5, 'GLQ': 6} finish_vars = ['BsmtFinType1', 'BsmtFinType2'] for var in finish_vars: X_train[var] = X_train[var].map(finish_mappings) X_test[var] = X_test[var].map(finish_mappings) garage_mappings = {'Missing': 0, 'NA': 0, 'Unf': 1, 'RFn': 2, 'Fin': 3} var = 'GarageFinish' X_train[var] = X_train[var].map(garage_mappings) X_test[var] = X_test[var].map(garage_mappings) fence_mappings = {'Missing': 0, 'NA': 0, 'MnWw': 1, 'GdWo': 2, 'MnPrv': 3, 'GdPrv': 4} var = 'Fence' X_train[var] = X_train[var].map(fence_mappings) X_test[var] = X_test[var].map(fence_mappings) # check absence of na in the train set [var for var in X_train.columns if X_train[var].isnull().sum() > 0] ###Output _____no_output_____ ###Markdown Removing Rare LabelsFor the remaining categorical variables, we will group those categories that are present in less than 1% of the observations. That is, all values of categorical variables that are shared by less than 1% of houses, well be replaced by the string "Rare".To learn more about how to handle categorical variables visit our course [Feature Engineering for Machine Learning](https://www.udemy.com/course/feature-engineering-for-machine-learning/?referralCode=A855148E05283015CF06) in Udemy. ###Code # capture all quality variables qual_vars = qual_vars + finish_vars + ['BsmtExposure','GarageFinish','Fence'] # capture the remaining categorical variables # (those that we did not re-map) cat_others = [ var for var in cat_vars if var not in qual_vars ] len(cat_others) cat_others rare_encoder = RareLabelEncoder(tol=0.01, n_categories=1, variables=cat_others) # find common labels rare_encoder.fit(X_train) # the common labels are stored, we can save the class # and then use it later :) rare_encoder.encoder_dict_ X_train = rare_encoder.transform(X_train) X_test = rare_encoder.transform(X_test) ###Output _____no_output_____ ###Markdown Encoding of categorical variablesNext, we need to transform the strings of the categorical variables into numbers. We will do it so that we capture the monotonic relationship between the label and the target.To learn more about how to encode categorical variables visit our course [Feature Engineering for Machine Learning](https://www.udemy.com/course/feature-engineering-for-machine-learning/?referralCode=A855148E05283015CF06) in Udemy. ###Code # set up the encoder cat_encoder = OrdinalEncoder(encoding_method='ordered', variables=cat_others) # create the mappings cat_encoder.fit(X_train, y_train) # mappings are stored and class can be saved cat_encoder.encoder_dict_ X_train = cat_encoder.transform(X_train) X_test = cat_encoder.transform(X_test) # check absence of na in the train set [var for var in X_train.columns if X_train[var].isnull().sum() > 0] # check absence of na in the test set [var for var in X_test.columns if X_test[var].isnull().sum() > 0] # let me show you what I mean by monotonic relationship # between labels and target def analyse_vars(train, y_train, var): # function plots median house sale price per encoded # category tmp = pd.concat([X_train, np.log(y_train)], axis=1) tmp.groupby(var)['SalePrice'].median().plot.bar() plt.title(var) plt.ylim(2.2, 2.6) plt.ylabel('SalePrice') plt.show() for var in cat_others: analyse_vars(X_train, y_train, var) ###Output _____no_output_____ ###Markdown The monotonic relationship is particularly clear for the variables MSZoning and Neighborhood. Note how, the higher the integer that now represents the category, the higher the mean house sale price.(remember that the target is log-transformed, that is why the differences seem so small). Feature ScalingFor use in linear models, features need to be either scaled. We will scale features to the minimum and maximum values: ###Code # create scaler scaler = MinMaxScaler() # fit the scaler to the train set scaler.fit(X_train) # transform the train and test set # sklearn returns numpy arrays, so we wrap the # array with a pandas dataframe X_train = pd.DataFrame( scaler.transform(X_train), columns=X_train.columns ) X_test = pd.DataFrame( scaler.transform(X_test), columns=X_train.columns ) X_train.head() ###Output _____no_output_____
analyses/Evo results with Hiidenportti model.ipynb
###Markdown No NMS ###Code from drone_detector.metrics import * gt_dis = ground_truth.dissolve(by='label') res_dis = results.dissolve(by='class_id') poly_IoU(gt_dis, res_dis) deadwood_categories = [{'supercategory': 'deadwood', 'id':1, 'name':'Standing'}, {'supercategory': 'deadwood', 'id':2, 'name':'Fallen'}] raw_coco_eval = GisCOCOeval('../data/sudenpesankangas/results/raw', '../data/sudenpesankangas/results/raw', None, None, deadwood_categories) raw_coco_eval.prepare_data(gt_label_col='label') raw_coco_eval.prepare_eval() raw_coco_eval.coco_eval.params.maxDets = (100, 10000) raw_coco_eval.evaluate() ###Output Evaluating for category Standing Running per image evaluation... Evaluate annotation type *segm* DONE (t=14.48s). Accumulating evaluation results... DONE (t=0.01s). Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=10000 ] = 0.237 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=10000 ] = 0.472 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=10000 ] = 0.195 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=10000 ] = 0.044 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=10000 ] = 0.258 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=10000 ] = 0.476 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.065 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.066 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.187 Evaluating for category Fallen Running per image evaluation... Evaluate annotation type *segm* DONE (t=92.95s). Accumulating evaluation results... DONE (t=0.02s). Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=10000 ] = 0.013 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=10000 ] = 0.054 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=10000 ] = 0.003 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=10000 ] = 0.014 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=10000 ] = 0.022 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=10000 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.009 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.013 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.004 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000 Evaluating for full data... Running per image evaluation... Evaluate annotation type *segm* DONE (t=108.99s). Accumulating evaluation results... DONE (t=0.03s). Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=10000 ] = 0.125 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=10000 ] = 0.263 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=10000 ] = 0.099 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=10000 ] = 0.029 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=10000 ] = 0.140 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=10000 ] = 0.476 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.037 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.006 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.035 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.187 ###Markdown NMS ###Code from drone_detector.postproc import * from pathlib import Path import os raw_dir = Path('../data/sudenpesankangas/results/predicted_vectors/') nms_dir = Path('../data/sudenpesankangas/results/nms/predicted_vectors/') raw_files = os.listdir(raw_dir) for r in raw_files: gdf_temp = gpd.read_file(raw_dir/r) gdf_nms = do_nms(gdf_temp) gdf_nms.to_file(nms_dir/r, driver='GeoJSON') gdf_nms = None gdf_temp = None res_nms = do_nms(results) res_nms_dis = res_nms.dissolve(by='class_id') poly_IoU(gt_dis, res_nms_dis) deadwood_categories = [{'supercategory': 'deadwood', 'id':1, 'name':'Standing'}, {'supercategory': 'deadwood', 'id':2, 'name':'Fallen'}] nms_coco_eval = GisCOCOeval('../data/sudenpesankangas/results/nms', '../data/sudenpesankangas/results/nms', None, None, deadwood_categories) nms_coco_eval.prepare_data(gt_label_col='label') # note to self: dont name interesting column as "class" nms_coco_eval.prepare_eval() nms_coco_eval.coco_eval.params.maxDets = (1000, 10000) nms_coco_eval.evaluate() ###Output Evaluating for category Standing Running per image evaluation... Evaluate annotation type *segm* DONE (t=8.39s). Accumulating evaluation results... DONE (t=0.01s). Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=10000 ] = 0.360 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=10000 ] = 0.736 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=10000 ] = 0.290 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=10000 ] = 0.088 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=10000 ] = 0.385 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=10000 ] = 0.518 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=1000 ] = 0.443 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.279 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.453 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.574 Evaluating for category Fallen Running per image evaluation... Evaluate annotation type *segm* DONE (t=39.29s). Accumulating evaluation results... DONE (t=0.01s). Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=10000 ] = 0.015 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=10000 ] = 0.067 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=10000 ] = 0.001 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=10000 ] = 0.016 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=10000 ] = 0.022 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=10000 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=1000 ] = 0.053 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.072 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.031 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = -1.000 Evaluating for full data... Running per image evaluation... Evaluate annotation type *segm* DONE (t=47.37s). Accumulating evaluation results... DONE (t=0.03s). Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=10000 ] = 0.187 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=10000 ] = 0.402 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=10000 ] = 0.146 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=10000 ] = 0.052 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=10000 ] = 0.204 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=10000 ] = 0.518 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=1000 ] = 0.248 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.176 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.242 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.574 ###Markdown Area-based NMS ###Code raw_dir = Path('../data/sudenpesankangas/results/predicted_vectors/') nms_area_dir = Path('../data/sudenpesankangas/results/nms_area/predicted_vectors/') raw_files = os.listdir(raw_dir) for r in raw_files: gdf_temp = gpd.read_file(raw_dir/r) gdf_nms_area = do_nms(gdf_temp, crit='area') gdf_nms_area.to_file(nms_area_dir/r, driver='GeoJSON') gdf_nms_area = None gdf_temp = None res_nms_area = do_nms(results) res_nms_area_dis = res_nms_area.dissolve(by='class_id') poly_IoU(gt_dis, res_nms_area_dis) deadwood_categories = [{'supercategory': 'deadwood', 'id':1, 'name':'Standing'}, {'supercategory': 'deadwood', 'id':2, 'name':'Fallen'}] nms_area_coco_eval = GisCOCOeval('../data/sudenpesankangas/results/nms_area', '../data/sudenpesankangas/results/nms_area', None, None, deadwood_categories) nms_area_coco_eval.prepare_data(gt_label_col='label') # note to self: dont name interesting column as "class" nms_area_coco_eval.prepare_eval() nms_area_coco_eval.coco_eval.params.maxDets = (1000, 10000) nms_area_coco_eval.evaluate() ###Output Evaluating for category Standing Running per image evaluation... Evaluate annotation type *segm* DONE (t=8.00s). Accumulating evaluation results... DONE (t=0.01s). Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=10000 ] = 0.370 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=10000 ] = 0.745 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=10000 ] = 0.297 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=10000 ] = 0.154 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=10000 ] = 0.382 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=10000 ] = 0.518 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=1000 ] = 0.439 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.281 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.448 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.574 Evaluating for category Fallen Running per image evaluation... Evaluate annotation type *segm* DONE (t=32.56s). Accumulating evaluation results... DONE (t=0.01s). Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=10000 ] = 0.019 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=10000 ] = 0.085 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=10000 ] = 0.002 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=10000 ] = 0.021 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=10000 ] = 0.024 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=10000 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=1000 ] = 0.057 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.074 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.037 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = -1.000 Evaluating for full data... Running per image evaluation... Evaluate annotation type *segm* DONE (t=40.40s). Accumulating evaluation results... DONE (t=0.02s). Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=10000 ] = 0.195 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=10000 ] = 0.415 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=10000 ] = 0.149 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=10000 ] = 0.087 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=10000 ] = 0.203 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=10000 ] = 0.518 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=1000 ] = 0.248 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.178 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.242 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.574
example/time_series-Copy1.ipynb
###Markdown Copyright 2019 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Time series forecasting View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook This tutorial is an introduction to time series forecasting using TensorFlow. It builds a few different styles of models including Convolutional and Recurrent Neural Networks (CNNs and RNNs).This is covered in two main parts, with subsections: * Forecast for a single timestep: * A single feature. * All features.* Forecast multiple steps: * Single-shot: Make the predictions all at once. * Autoregressive: Make one prediction at a time and feed the output back to the model. Setup ###Code import os import datetime import IPython import IPython.display import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import tensorflow as tf mpl.rcParams['figure.figsize'] = (8, 6) mpl.rcParams['axes.grid'] = False from tensorflow.python.data.ops import dataset_ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.util.tf_export import keras_export def timeseries_dataset_from_array( data, targets, sequence_length, sequence_stride=1, sampling_rate=1, batch_size=128, shuffle=False, seed=None, start_index=None, end_index=None): # Validate the shape of data and targets if targets is not None and len(targets) != len(data): raise ValueError('Expected data and targets to have the same number of ' 'time steps (axis 0) but got ' 'shape(data) = %s; shape(targets) = %s.' % (data.shape, targets.shape)) if start_index and (start_index < 0 or start_index >= len(data)): raise ValueError('start_index must be higher than 0 and lower than the ' 'length of the data. Got: start_index=%s ' 'for data of length %s.' % (start_index, len(data))) if end_index: if start_index and end_index <= start_index: raise ValueError('end_index must be higher than start_index. Got: ' 'start_index=%s, end_index=%s.' % (start_index, end_index)) if end_index >= len(data): raise ValueError('end_index must be lower than the length of the data. ' 'Got: end_index=%s' % (end_index,)) if end_index <= 0: raise ValueError('end_index must be higher than 0. ' 'Got: end_index=%s' % (end_index,)) # Validate strides if sampling_rate <= 0 or sampling_rate >= len(data): raise ValueError( 'sampling_rate must be higher than 0 and lower than ' 'the length of the data. Got: ' 'sampling_rate=%s for data of length %s.' % (sampling_rate, len(data))) if sequence_stride <= 0 or sequence_stride >= len(data): raise ValueError( 'sequence_stride must be higher than 0 and lower than ' 'the length of the data. Got: sequence_stride=%s ' 'for data of length %s.' % (sequence_stride, len(data))) if start_index is None: start_index = 0 if end_index is None: end_index = len(data) # Determine the lowest dtype to store start positions (to lower memory usage). num_seqs = end_index - start_index - (sequence_length * sampling_rate) + 1 if num_seqs < 2147483647: index_dtype = 'int32' else: index_dtype = 'int64' # Generate start positions start_positions = np.arange(0, num_seqs, sequence_stride, dtype=index_dtype) if shuffle: if seed is None: seed = np.random.randint(1e6) rng = np.random.RandomState(seed) rng.shuffle(start_positions) sequence_length = math_ops.cast(sequence_length, dtype=index_dtype) sampling_rate = math_ops.cast(sampling_rate, dtype=index_dtype) positions_ds = dataset_ops.Dataset.from_tensors(start_positions).repeat() # For each initial window position, generates indices of the window elements indices = dataset_ops.Dataset.zip( (dataset_ops.Dataset.range(len(start_positions)), positions_ds)).map( lambda i, positions: math_ops.range( # pylint: disable=g-long-lambda positions[i], positions[i] + sequence_length * sampling_rate, sampling_rate), num_parallel_calls=dataset_ops.AUTOTUNE) dataset = sequences_from_indices(data, indices, start_index, end_index) if targets is not None: indices = dataset_ops.Dataset.zip( (dataset_ops.Dataset.range(len(start_positions)), positions_ds)).map( lambda i, positions: positions[i], num_parallel_calls=dataset_ops.AUTOTUNE) target_ds = sequences_from_indices( targets, indices, start_index, end_index) dataset = dataset_ops.Dataset.zip((dataset, target_ds)) if shuffle: # Shuffle locally at each iteration dataset = dataset.shuffle(buffer_size=batch_size * 8, seed=seed) dataset = dataset.batch(batch_size) return dataset def sequences_from_indices(array, indices_ds, start_index, end_index): dataset = dataset_ops.Dataset.from_tensors(array[start_index : end_index]) dataset = dataset_ops.Dataset.zip((dataset.repeat(), indices_ds)).map( lambda steps, inds: array_ops.gather(steps, inds), # pylint: disable=unnecessary-lambda num_parallel_calls=dataset_ops.AUTOTUNE) return dataset ###Output _____no_output_____ ###Markdown The weather datasetThis tutorial uses a weather time series dataset recorded by the Max Planck Institute for Biogeochemistry.This dataset contains 14 different features such as air temperature, atmospheric pressure, and humidity. These were collected every 10 minutes, beginning in 2003. For efficiency, you will use only the data collected between 2009 and 2016. This section of the dataset was prepared by François Chollet for his book [Deep Learning with Python](https://www.manning.com/books/deep-learning-with-python). ###Code zip_path = tf.keras.utils.get_file( origin='https://storage.googleapis.com/tensorflow/tf-keras-datasets/jena_climate_2009_2016.csv.zip', fname='jena_climate_2009_2016.csv.zip', extract=True) csv_path, _ = os.path.splitext(zip_path) ###Output _____no_output_____ ###Markdown This tutorial will just deal with **hourly predictions**, so start by sub-sampling the data from 10 minute intervals to 1h: ###Code df = pd.read_csv(csv_path) # slice [start:stop:step], starting from index 5 take every 6th record. df = df[5::6] date_time = pd.to_datetime(df.pop('Date Time'), format='%d.%m.%Y %H:%M:%S') ###Output _____no_output_____ ###Markdown Let's take a glance at the data. Here are the first few rows: ###Code df.head() ###Output _____no_output_____ ###Markdown Here is the evolution of a few features over time. ###Code plot_cols = ['T (degC)', 'p (mbar)', 'rho (g/m**3)'] plot_features = df[plot_cols] plot_features.index = date_time _ = plot_features.plot(subplots=True) plot_features = df[plot_cols][:480] plot_features.index = date_time[:480] _ = plot_features.plot(subplots=True) ###Output _____no_output_____ ###Markdown Inspect and cleanup Next look at the statistics of the dataset: ###Code df.describe().transpose() ###Output _____no_output_____ ###Markdown Wind velocity One thing that should stand out is the `min` value of the wind velocity, `wv (m/s)` and `max. wv (m/s)` columns. This `-9999` is likely erroneous. There's a separate wind direction column, so the velocity should be `>=0`. Replace it with zeros: ###Code wv = df['wv (m/s)'] bad_wv = wv == -9999.0 wv[bad_wv] = 0.0 max_wv = df['max. wv (m/s)'] bad_max_wv = max_wv == -9999.0 max_wv[bad_max_wv] = 0.0 # The above inplace edits are reflected in the DataFrame df['wv (m/s)'].min() ###Output _____no_output_____ ###Markdown Feature engineeringBefore diving in to build a model it's important to understand your data, and be sure that you're passing the model appropriately formatted data. WindThe last column of the data, `wd (deg)`, gives the wind direction in units of degrees. Angles do not make good model inputs, 360° and 0° should be close to each other, and wrap around smoothly. Direction shouldn't matter if the wind is not blowing. Right now the distribution of wind data looks like this: ###Code plt.hist2d(df['wd (deg)'], df['wv (m/s)'], bins=(50, 50), vmax=400) plt.colorbar() plt.xlabel('Wind Direction [deg]') plt.ylabel('Wind Velocity [m/s]') ###Output _____no_output_____ ###Markdown But this will be easier for the model to interpret if you convert the wind direction and velocity columns to a wind **vector**: ###Code wv = df.pop('wv (m/s)') max_wv = df.pop('max. wv (m/s)') # Convert to radians. wd_rad = df.pop('wd (deg)')*np.pi / 180 # Calculate the wind x and y components. df['Wx'] = wv*np.cos(wd_rad) df['Wy'] = wv*np.sin(wd_rad) # Calculate the max wind x and y components. df['max Wx'] = max_wv*np.cos(wd_rad) df['max Wy'] = max_wv*np.sin(wd_rad) ###Output _____no_output_____ ###Markdown The distribution of wind vectors is much simpler for the model to correctly interpret. ###Code plt.hist2d(df['Wx'], df['Wy'], bins=(50, 50), vmax=400) plt.colorbar() plt.xlabel('Wind X [m/s]') plt.ylabel('Wind Y [m/s]') ax = plt.gca() ax.axis('tight') ###Output _____no_output_____ ###Markdown Time Similarly the `Date Time` column is very useful, but not in this string form. Start by converting it to seconds: ###Code timestamp_s = date_time.map(datetime.datetime.timestamp) ###Output _____no_output_____ ###Markdown Similar to the wind direction the time in seconds is not a useful model input. Being weather data it has clear daily and yearly periodicity. There are many ways you could deal with periodicity.A simple approach to convert it to a usable signal is to use `sin` and `cos` to convert the time to clear "Time of day" and "Time of year" signals: ###Code day = 24*60*60 year = (365.2425)*day df['Day sin'] = np.sin(timestamp_s * (2 * np.pi / day)) df['Day cos'] = np.cos(timestamp_s * (2 * np.pi / day)) df['Year sin'] = np.sin(timestamp_s * (2 * np.pi / year)) df['Year cos'] = np.cos(timestamp_s * (2 * np.pi / year)) plt.plot(np.array(df['Day sin'])[:25]) plt.plot(np.array(df['Day cos'])[:25]) plt.xlabel('Time [h]') plt.title('Time of day signal') ###Output _____no_output_____ ###Markdown This gives the model access to the most important frequency features. In this case we knew ahead of time which frequencies were important. If you didn't know, you can determine which frequencies are important using an `fft`. To check our assumptions, here is the `tf.signal.rfft` of the temperature over time. Note the obvious peaks at frequencies near `1/year` and `1/day`: ###Code fft = tf.signal.rfft(df['T (degC)']) f_per_dataset = np.arange(0, len(fft)) n_samples_h = len(df['T (degC)']) hours_per_year = 24*365.2524 years_per_dataset = n_samples_h/(hours_per_year) f_per_year = f_per_dataset/years_per_dataset plt.step(f_per_year, np.abs(fft)) plt.xscale('log') plt.ylim(0, 400000) plt.xlim([0.1, max(plt.xlim())]) plt.xticks([1, 365.2524], labels=['1/Year', '1/day']) _ = plt.xlabel('Frequency (log scale)') ###Output _____no_output_____ ###Markdown Split the data We'll use a `(70%, 20%, 10%)` split for the training, validation, and test sets. Note the data is **not** being randomly shuffled before splitting. This is for two reasons.1. It ensures that chopping the data into windows of consecutive samples is still possible.2. It ensures that the validation/test results are more realistic, being evaluated on data collected after the model was trained. ###Code column_indices = {name: i for i, name in enumerate(df.columns)} n = len(df) train_df = df[0:int(n*0.7)] val_df = df[int(n*0.7):int(n*0.9)] test_df = df[int(n*0.9):] num_features = df.shape[1] ###Output _____no_output_____ ###Markdown Normalize the dataIt is important to scale features before training a neural network. Normalization is a common way of doing this scaling. Subtract the mean and divide by the standard deviation of each feature. The mean and standard deviation should only be computed using the training data so that the models have no access to the values in the validation and test sets.It's also arguable that the model shouldn't have access to future values in the training set when training, and that this normalization should be done using moving averages. That's not the focus of this tutorial, and the validation and test sets ensure that we get (somewhat) honest metrics. So in the interest of simplicity this tutorial uses a simple average. ###Code train_mean = train_df.mean() train_std = train_df.std() train_df = (train_df - train_mean) / train_std val_df = (val_df - train_mean) / train_std test_df = (test_df - train_mean) / train_std ###Output _____no_output_____ ###Markdown Now peek at the distribution of the features. Some features do have long tails, but there are no obvious errors like the `-9999` wind velocity value. ###Code df_std = (df - train_mean) / train_std df_std = df_std.melt(var_name='Column', value_name='Normalized') plt.figure(figsize=(12, 6)) ax = sns.violinplot(x='Column', y='Normalized', data=df_std) _ = ax.set_xticklabels(df.keys(), rotation=90) ###Output _____no_output_____ ###Markdown Data windowingThe models in this tutorial will make a set of predictions based on a window of consecutive samples from the data. The main features of the input windows are:* The width (number of time steps) of the input and label windows* The time offset between them.* Which features are used as inputs, labels, or both. This tutorial builds a variety of models (including Linear, DNN, CNN and RNN models), and uses them for both:* *Single-output*, and *multi-output* predictions.* *Single-time-step* and *multi-time-step* predictions.This section focuses on implementing the data windowing so that it can be reused for all of those models. Depending on the task and type of model you may want to generate a variety of data windows. Here are some examples:1. For example, to make a single prediction 24h into the future, given 24h of history you might define a window like this: ![One prediction 24h into the future.](images/raw_window_24h.png)2. A model that makes a prediction 1h into the future, given 6h of history would need a window like this: ![One prediction 1h into the future.](images/raw_window_1h.png) The rest of this section defines a `WindowGenerator` class. This class can:1. Handle the indexes and offsets as shown in the diagrams above.1. Split windows of features into a `(features, labels)` pairs.2. Plot the content of the resulting windows.3. Efficiently generate batches of these windows from the training, evaluation, and test data, using `tf.data.Dataset`s. 1. Indexes and offsetsStart by creating the `WindowGenerator` class. The `__init__` method includes all the necessary logic for the input and label indices.It also takes the train, eval, and test dataframes as input. These will be converted to `tf.data.Dataset`s of windows later. ###Code class WindowGenerator(): def __init__(self, input_width, label_width, shift, train_df=train_df, val_df=val_df, test_df=test_df, label_columns=None): # Store the raw data. self.train_df = train_df self.val_df = val_df self.test_df = test_df # Work out the label column indices. self.label_columns = label_columns if label_columns is not None: self.label_columns_indices = {name: i for i, name in enumerate(label_columns)} self.column_indices = {name: i for i, name in enumerate(train_df.columns)} # Work out the window parameters. self.input_width = input_width self.label_width = label_width self.shift = shift self.total_window_size = input_width + shift self.input_slice = slice(0, input_width) self.input_indices = np.arange(self.total_window_size)[self.input_slice] self.label_start = self.total_window_size - self.label_width self.labels_slice = slice(self.label_start, None) self.label_indices = np.arange(self.total_window_size)[self.labels_slice] def __repr__(self): return '\n'.join([ f'Total window size: {self.total_window_size}', f'Input indices: {self.input_indices}', f'Label indices: {self.label_indices}', f'Label column name(s): {self.label_columns}']) ###Output _____no_output_____ ###Markdown Here is code to create the 2 windows shown in the diagrams at the start of this section: ###Code w1 = WindowGenerator(input_width=24, label_width=1, shift=24, label_columns=['T (degC)']) w1 w2 = WindowGenerator(input_width=6, label_width=1, shift=1, label_columns=['T (degC)']) w2 ###Output _____no_output_____ ###Markdown 2. SplitGiven a list consecutive inputs, the `split_window` method will convert them to a window of inputs and a window of labels.The example `w2`, above, will be split like this:![The initial window is all consecuitive samples, this splits it into an (inputs, labels) pairs](images/split_window.png)This diagram doesn't show the `features` axis of the data, but this `split_window` function also handles the `label_columns` so it can be used for both the single output and multi-output examples. ###Code def split_window(self, features): inputs = features[:, self.input_slice, :] labels = features[:, self.labels_slice, :] if self.label_columns is not None: labels = tf.stack( [labels[:, :, self.column_indices[name]] for name in self.label_columns], axis=-1) # Slicing doesn't preserve static shape information, so set the shapes # manually. This way the `tf.data.Datasets` are easier to inspect. inputs.set_shape([None, self.input_width, None]) labels.set_shape([None, self.label_width, None]) return inputs, labels WindowGenerator.split_window = split_window ###Output _____no_output_____ ###Markdown Try it out: ###Code # Stack three slices, the length of the total window: example_window = tf.stack([np.array(train_df[:w2.total_window_size]), np.array(train_df[100:100+w2.total_window_size]), np.array(train_df[200:200+w2.total_window_size])]) example_inputs, example_labels = w2.split_window(example_window) print('All shapes are: (batch, time, features)') print(f'Window shape: {example_window.shape}') print(f'Inputs shape: {example_inputs.shape}') print(f'labels shape: {example_labels.shape}') ###Output All shapes are: (batch, time, features) Window shape: (3, 7, 19) Inputs shape: (3, 6, 19) labels shape: (3, 1, 1) ###Markdown Typically data in TensorFlow is packed into arrays where the outermost index is across examples (the "batch" dimension). The middle indices are the "time" or "space" (width, height) dimension(s). The innermost indices are the features.The code above took a batch of 2, 7-timestep windows, with 19 features at each time step. It split them into a batch of 6-timestep, 19 feature inputs, and a 1-timestep 1-feature label. The label only has one feature because the `WindowGenerator` was initialized with `label_columns=['T (degC)']`. Initially this tutorial will build models that predict single output labels. 3. PlotHere is a plot method that allows a simple visualization of the split window: ###Code w2.example = example_inputs, example_labels def plot(self, model=None, plot_col='T (degC)', max_subplots=3): inputs, labels = self.example plt.figure(figsize=(12, 8)) plot_col_index = self.column_indices[plot_col] max_n = min(max_subplots, len(inputs)) for n in range(max_n): plt.subplot(3, 1, n+1) plt.ylabel(f'{plot_col} [normed]') plt.plot(self.input_indices, inputs[n, :, plot_col_index], label='Inputs', marker='.', zorder=-10) if self.label_columns: label_col_index = self.label_columns_indices.get(plot_col, None) else: label_col_index = plot_col_index if label_col_index is None: continue plt.scatter(self.label_indices, labels[n, :, label_col_index], edgecolors='k', label='Labels', c='#2ca02c', s=64) if model is not None: predictions = model(inputs) plt.scatter(self.label_indices, predictions[n, :, label_col_index], marker='X', edgecolors='k', label='Predictions', c='#ff7f0e', s=64) if n == 0: plt.legend() plt.xlabel('Time [h]') WindowGenerator.plot = plot ###Output _____no_output_____ ###Markdown This plot aligns inputs, labels, and (later) predictions based on the time that the item refers to: ###Code w2.plot() ###Output _____no_output_____ ###Markdown You can plot the other columns, but the example window `w2` configuration only has labels for the `T (degC)` column. ###Code w2.plot(plot_col='p (mbar)') ###Output _____no_output_____ ###Markdown 4. Create `tf.data.Dataset`s Finally this `make_dataset` method will take a time series `DataFrame` and convert it to a `tf.data.Dataset` of `(input_window, label_window)` pairs using the `preprocessing.timeseries_dataset_from_array` function. ###Code def make_dataset(self, data): data = np.array(data, dtype=np.float32) ds = timeseries_dataset_from_array( data=data, targets=None, sequence_length=self.total_window_size, sequence_stride=1, shuffle=True, batch_size=32,) ds = ds.map(self.split_window) return ds WindowGenerator.make_dataset = make_dataset ###Output _____no_output_____ ###Markdown The `WindowGenerator` object holds training, validation and test data. Add properties for accessing them as `tf.data.Datasets` using the above `make_dataset` method. Also add a standard example batch for easy access and plotting: ###Code @property def train(self): return self.make_dataset(self.train_df) @property def val(self): return self.make_dataset(self.val_df) @property def test(self): return self.make_dataset(self.test_df) @property def example(self): """Get and cache an example batch of `inputs, labels` for plotting.""" result = getattr(self, '_example', None) if result is None: # No example batch was found, so get one from the `.train` dataset result = next(iter(self.train)) # And cache it for next time self._example = result return result WindowGenerator.train = train WindowGenerator.val = val WindowGenerator.test = test WindowGenerator.example = example ###Output _____no_output_____ ###Markdown Now the `WindowGenerator` object gives you access to the `tf.data.Dataset` objects, so you can easily iterate over the data.The `Dataset.element_spec` property tells you the structure, `dtypes` and shapes of the dataset elements. ###Code # Each element is an (inputs, label) pair w2.train.element_spec ###Output _____no_output_____ ###Markdown Iterating over a `Dataset` yields concrete batches: ###Code for example_inputs, example_labels in w2.train.take(1): print(f'Inputs shape (batch, time, features): {example_inputs.shape}') print(f'Labels shape (batch, time, features): {example_labels.shape}') ###Output Inputs shape (batch, time, features): (32, 6, 19) Labels shape (batch, time, features): (32, 1, 1) ###Markdown Single step modelsThe simplest model you can build on this sort of data is one that predicts a single feature's value, 1 timestep (1h) in the future based only on the current conditions.So start by building models to predict the `T (degC)` value 1h into the future.![Predict the next time step](images/narrow_window.png)Configure a `WindowGenerator` object to produce these single-step `(input, label)` pairs: ###Code single_step_window = WindowGenerator( input_width=1, label_width=1, shift=1, label_columns=['T (degC)']) single_step_window ###Output _____no_output_____ ###Markdown The `window` object creates `tf.data.Datasets` from the training, validation, and test sets, allowing you to easily iterate over batches of data. ###Code for example_inputs, example_labels in single_step_window.train.take(1): print(f'Inputs shape (batch, time, features): {example_inputs.shape}') print(f'Labels shape (batch, time, features): {example_labels.shape}') ###Output Inputs shape (batch, time, features): (32, 1, 19) Labels shape (batch, time, features): (32, 1, 1) ###Markdown BaselineBefore building a trainable model it would be good to have a performance baseline as a point for comparison with the later more complicated models.This first task is to predict temperature 1h in the future given the current value of all features. The current values include the current temperature. So start with a model that just returns the current temperature as the prediction, predicting "No change". This is a reasonable baseline since temperature changes slowly. Of course, this baseline will work less well if you make a prediction further in the future.![Send the input to the output](images/baseline.png) ###Code class Baseline(tf.keras.Model): def __init__(self, label_index=None): super().__init__() self.label_index = label_index def call(self, inputs): if self.label_index is None: return inputs result = inputs[:, :, self.label_index] return result[:, :, tf.newaxis] ###Output _____no_output_____ ###Markdown Instantiate and evaluate this model: ###Code baseline = Baseline(label_index=column_indices['T (degC)']) baseline.compile(loss=tf.losses.MeanSquaredError(), metrics=[tf.metrics.MeanAbsoluteError()]) val_performance = {} performance = {} val_performance['Baseline'] = baseline.evaluate(single_step_window.val) performance['Baseline'] = baseline.evaluate(single_step_window.test, verbose=0) ###Output 439/439 [==============================] - 1s 3ms/step - loss: 0.0128 - mean_absolute_error: 0.0785 ###Markdown That printed some performance metrics, but those don't give you a feeling for how well the model is doing.The `WindowGenerator` has a plot method, but the plots won't be very interesting with only a single sample. So, create a wider `WindowGenerator` that generates windows 24h of consecutive inputs and labels at a time. The `wide_window` doesn't change the way the model operates. The model still makes predictions 1h into the future based on a single input time step. Here the `time` axis acts like the `batch` axis: Each prediction is made independently with no interaction between time steps. ###Code wide_window = WindowGenerator( input_width=24, label_width=24, shift=1, label_columns=['T (degC)']) wide_window ###Output _____no_output_____ ###Markdown This expanded window can be passed directly to the same `baseline` model without any code changes. This is possible because the inputs and labels have the same number of timesteps, and the baseline just forwards the input to the output: ![One prediction 1h into the future, ever hour.](images/last_window.png) ###Code print('Input shape:', single_step_window.example[0].shape) print('Output shape:', baseline(single_step_window.example[0]).shape) ###Output Input shape: (32, 1, 19) Output shape: (32, 1, 1) ###Markdown Plotting the baseline model's predictions you can see that it is simply the labels, shifted right by 1h. ###Code wide_window.plot(baseline) ###Output _____no_output_____ ###Markdown In the above plots of three examples the single step model is run over the course of 24h. This deserves some explaination:* The blue "Inputs" line shows the input temperature at each time step. The model recieves all features, this plot only shows the temperature.* The green "Labels" dots show the target prediction value. These dots are shown at the prediction time, not the input time. That is why the range of labels is shifted 1 step relative to the inputs.* The orange "Predictions" crosses are the model's prediction's for each output time step. If the model were predicting perfectly the predictions would land directly on the "labels". Linear modelThe simplest **trainable** model you can apply to this task is to insert linear transformation between the input and output. In this case the output from a time step only depends on that step:![A single step prediction](images/narrow_window.png)A `layers.Dense` with no `activation` set is a linear model. The layer only transforms the last axis of the data from `(batch, time, inputs)` to `(batch, time, units)`, it is applied independently to every item across the `batch` and `time` axes. ###Code linear = tf.keras.Sequential([ tf.keras.layers.Dense(units=1) ]) print('Input shape:', single_step_window.example[0].shape) print('Output shape:', linear(single_step_window.example[0]).shape) ###Output Input shape: (32, 1, 19) Output shape: (32, 1, 1) ###Markdown This tutorial trains many models, so package the training procedure into a function: ###Code MAX_EPOCHS = 20 def compile_and_fit(model, window, patience=2): early_stopping = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=patience, mode='min') model.compile(loss=tf.losses.MeanSquaredError(), optimizer=tf.optimizers.Adam(), metrics=[tf.metrics.MeanAbsoluteError()]) history = model.fit(window.train, epochs=MAX_EPOCHS, validation_data=window.val, callbacks=[early_stopping]) return history ###Output _____no_output_____ ###Markdown Train the model and evaluate its performance: ###Code history = compile_and_fit(linear, single_step_window) val_performance['Linear'] = linear.evaluate(single_step_window.val) performance['Linear'] = linear.evaluate(single_step_window.test, verbose=0) ###Output Epoch 1/20 1534/1534 [==============================] - 11s 7ms/step - loss: 0.2789 - mean_absolute_error: 0.3265 - val_loss: 0.0000e+00 - val_mean_absolute_error: 0.0000e+00 Epoch 2/20 1534/1534 [==============================] - 8s 5ms/step - loss: 0.0220 - mean_absolute_error: 0.1061 - val_loss: 0.0106 - val_mean_absolute_error: 0.0764 Epoch 3/20 1534/1534 [==============================] - 8s 5ms/step - loss: 0.0101 - mean_absolute_error: 0.0741 - val_loss: 0.0092 - val_mean_absolute_error: 0.0707 Epoch 4/20 1534/1534 [==============================] - 8s 5ms/step - loss: 0.0094 - mean_absolute_error: 0.0711 - val_loss: 0.0089 - val_mean_absolute_error: 0.0699 Epoch 5/20 1534/1534 [==============================] - 8s 5ms/step - loss: 0.0092 - mean_absolute_error: 0.0703 - val_loss: 0.0088 - val_mean_absolute_error: 0.0699 Epoch 6/20 1534/1534 [==============================] - 8s 5ms/step - loss: 0.0091 - mean_absolute_error: 0.0700 - val_loss: 0.0088 - val_mean_absolute_error: 0.0691 Epoch 7/20 1534/1534 [==============================] - 8s 5ms/step - loss: 0.0091 - mean_absolute_error: 0.0699 - val_loss: 0.0089 - val_mean_absolute_error: 0.0702 Epoch 8/20 1534/1534 [==============================] - 8s 5ms/step - loss: 0.0091 - mean_absolute_error: 0.0698 - val_loss: 0.0088 - val_mean_absolute_error: 0.0692 Epoch 9/20 1534/1534 [==============================] - 8s 5ms/step - loss: 0.0091 - mean_absolute_error: 0.0698 - val_loss: 0.0087 - val_mean_absolute_error: 0.0688 Epoch 10/20 1333/1534 [=========================>....] - ETA: 0s - loss: 0.0091 - mean_absolute_error: 0.0696WARNING:tensorflow:Early stopping conditioned on metric `val_loss` which is not available. Available metrics are: loss,mean_absolute_error ###Markdown Like the `baseline` model, the linear model can be called on batches of wide windows. Used this way the model makes a set of independent predictions on consecuitive time steps. The `time` axis acts like another `batch` axis. There are no interactions between the precictions at each time step.![A single step prediction](images/wide_window.png) ###Code print('Input shape:', wide_window.example[0].shape) print('Output shape:', baseline(wide_window.example[0]).shape) ###Output _____no_output_____ ###Markdown Here is the plot of its example predictions on the `wide_widow`, note how in many cases the prediction is clearly better than just returning the input temperature, but in a few cases it's worse: ###Code wide_window.plot(linear) ###Output _____no_output_____ ###Markdown One advantage to linear models is that they're relatively simple to interpret.You can pull out the layer's weights, and see the weight assigned to each input: ###Code plt.bar(x = range(len(train_df.columns)), height=linear.layers[0].kernel[:,0].numpy()) axis = plt.gca() axis.set_xticks(range(len(train_df.columns))) _ = axis.set_xticklabels(train_df.columns, rotation=90) ###Output _____no_output_____ ###Markdown Sometimes the model doesn't even place the most weight on the input `T (degC)`. This is one of the risks of random initialization. DenseBefore applying models that actually operate on multiple time-steps, it's worth checking the performance of deeper, more powerful, single input step models.Here's a model similar to the `linear` model, except it stacks several a few `Dense` layers between the input and the output: ###Code dense = tf.keras.Sequential([ tf.keras.layers.Dense(units=64, activation='relu'), tf.keras.layers.Dense(units=64, activation='relu'), tf.keras.layers.Dense(units=1) ]) history = compile_and_fit(dense, single_step_window) val_performance['Dense'] = dense.evaluate(single_step_window.val) performance['Dense'] = dense.evaluate(single_step_window.test, verbose=0) ###Output _____no_output_____ ###Markdown Multi-step denseA single-time-step model has no context for the current values of its inputs. It can't see how the input features are changing over time. To address this issue the model needs access to multiple time steps when making predictions:![Three time steps are used for each prediction.](images/conv_window.png) The `baseline`, `linear` and `dense` models handled each time step independently. Here the model will take multiple time steps as input to produce a single output.Create a `WindowGenerator` that will produce batches of the 3h of inputs and, 1h of labels: Note that the `Window`'s `shift` parameter is relative to the end of the two windows. ###Code CONV_WIDTH = 3 conv_window = WindowGenerator( input_width=CONV_WIDTH, label_width=1, shift=1, label_columns=['T (degC)']) conv_window conv_window.plot() plt.title("Given 3h as input, predict 1h into the future.") ###Output _____no_output_____ ###Markdown You could train a `dense` model on a multiple-input-step window by adding a `layers.Flatten` as the first layer of the model: ###Code multi_step_dense = tf.keras.Sequential([ # Shape: (time, features) => (time*features) tf.keras.layers.Flatten(), tf.keras.layers.Dense(units=32, activation='relu'), tf.keras.layers.Dense(units=32, activation='relu'), tf.keras.layers.Dense(units=1), # Add back the time dimension. # Shape: (outputs) => (1, outputs) tf.keras.layers.Reshape([1, -1]), ]) print('Input shape:', conv_window.example[0].shape) print('Output shape:', multi_step_dense(conv_window.example[0]).shape) history = compile_and_fit(multi_step_dense, conv_window) IPython.display.clear_output() val_performance['Multi step dense'] = multi_step_dense.evaluate(conv_window.val) performance['Multi step dense'] = multi_step_dense.evaluate(conv_window.test, verbose=0) conv_window.plot(multi_step_dense) ###Output _____no_output_____ ###Markdown The main down-side of this approach is that the resulting model can only be executed on input wndows of exactly this shape. ###Code print('Input shape:', wide_window.example[0].shape) try: print('Output shape:', multi_step_dense(wide_window.example[0]).shape) except Exception as e: print(f'\n{type(e).__name__}:{e}') ###Output _____no_output_____ ###Markdown The convolutional models in the next section fix this problem. Convolution neural network A convolution layer (`layers.Conv1D`) also takes multiple time steps as input to each prediction. Below is the **same** model as `multi_step_dense`, re-written with a convolution. Note the changes:* The `layers.Flatten` and the first `layers.Dense` are replaced by a `layers.Conv1D`.* The `layers.Reshape` is no longer necessary since the convolution keeps the time axis in its output. ###Code conv_model = tf.keras.Sequential([ tf.keras.layers.Conv1D(filters=32, kernel_size=(CONV_WIDTH,), activation='relu'), tf.keras.layers.Dense(units=32, activation='relu'), tf.keras.layers.Dense(units=1), ]) ###Output _____no_output_____ ###Markdown Run it on an example batch to see that the model produces outputs with the expected shape: ###Code print("Conv model on `conv_window`") print('Input shape:', conv_window.example[0].shape) print('Output shape:', conv_model(conv_window.example[0]).shape) ###Output Conv model on `conv_window` Input shape: (32, 3, 19) Output shape: (32, 1, 1) ###Markdown Train and evaluate it on the ` conv_window` and it should give performance similar to the `multi_step_dense` model. ###Code history = compile_and_fit(conv_model, conv_window) IPython.display.clear_output() val_performance['Conv'] = conv_model.evaluate(conv_window.val) performance['Conv'] = conv_model.evaluate(conv_window.test, verbose=0) ###Output Epoch 1/20 1/Unknown - 1s 897ms/stepWARNING:tensorflow:Early stopping conditioned on metric `val_loss` which is not available. Available metrics are: 1/Unknown - 1s 899ms/step ###Markdown The difference between this `conv_model` and the `multi_step_dense` model is that the `conv_model` can be run on inputs on inputs of any length. The convolutional layer is applied to a sliding window of inputs:![Executing a convolutional model on a sequence](images/wide_conv_window.png)If you run it on wider input, it produces wider output: ###Code print("Wide window") print('Input shape:', wide_window.example[0].shape) print('Labels shape:', wide_window.example[1].shape) print('Output shape:', conv_model(wide_window.example[0]).shape) ###Output _____no_output_____ ###Markdown Note that the output is shorter than the input. To make training or plotting work, you need the labels, and prediction to have the same length. So build a `WindowGenerator` to produce wide windows with a few extra input time steps so the label and prediction lengths match: ###Code LABEL_WIDTH = 24 INPUT_WIDTH = LABEL_WIDTH + (CONV_WIDTH - 1) wide_conv_window = WindowGenerator( input_width=INPUT_WIDTH, label_width=LABEL_WIDTH, shift=1, label_columns=['T (degC)']) wide_conv_window print("Wide conv window") print('Input shape:', wide_conv_window.example[0].shape) print('Labels shape:', wide_conv_window.example[1].shape) print('Output shape:', conv_model(wide_conv_window.example[0]).shape) ###Output _____no_output_____ ###Markdown Now you can plot the model's predictions on a wider window. Note the 3 input time steps before the first prediction. Every prediction here is based on the 3 preceding timesteps: ###Code wide_conv_window.plot(conv_model) ###Output _____no_output_____ ###Markdown Recurrent neural networkA Recurrent Neural Network (RNN) is a type of neural network well-suited to time series data. RNNs process a time series step-by-step, maintaining an internal state from time-step to time-step.For more details, read the [text generation tutorial](https://www.tensorflow.org/tutorials/text/text_generation) or the [RNN guide](https://www.tensorflow.org/guide/keras/rnn). In this tutorial, you will use an RNN layer called Long Short Term Memory ([LSTM](https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/layers/LSTM)). An important constructor argument for all keras RNN layers is the `return_sequences` argument. This setting can configure the layer in one of two ways.1. If `False`, the default, the layer only returns the output of the final timestep, giving the model time to warm up its internal state before making a single prediction: ![An lstm warming up and making a single prediction](images/lstm_1_window.png)2. If `True` the layer returns an output for each input. This is useful for: * Stacking RNN layers. * Training a model on multiple timesteps simultaneously.![An lstm making a prediction after every timestep](images/lstm_many_window.png) ###Code lstm_model = tf.keras.models.Sequential([ # Shape [batch, time, features] => [batch, time, lstm_units] tf.keras.layers.LSTM(32, return_sequences=True), # Shape => [batch, time, features] tf.keras.layers.Dense(units=1) ]) ###Output _____no_output_____ ###Markdown With `return_sequences=True` the model can be trained on 24h of data at a time.Note: This will give a pessimistic view of the model's performance. On the first timestep the model has no access to previous steps, and so can't do any better than the simple `linear` and `dense` models shown earlier. ###Code print('Input shape:', wide_window.example[0].shape) print('Output shape:', lstm_model(wide_window.example[0]).shape) history = compile_and_fit(lstm_model, wide_window) IPython.display.clear_output() val_performance['LSTM'] = lstm_model.evaluate(wide_window.val) performance['LSTM'] = lstm_model.evaluate(wide_window.test, verbose=0) wide_window.plot(lstm_model) ###Output _____no_output_____ ###Markdown Performance With this dataset typically each of the models does slightly better than the one before it. ###Code x = np.arange(len(performance)) width = 0.3 metric_name = 'mean_absolute_error' metric_index = lstm_model.metrics_names.index('mean_absolute_error') val_mae = [v[metric_index] for v in val_performance.values()] test_mae = [v[metric_index] for v in performance.values()] plt.ylabel('mean_absolute_error [T (degC), normalized]') plt.bar(x - 0.17, val_mae, width, label='Validation') plt.bar(x + 0.17, test_mae, width, label='Test') plt.xticks(ticks=x, labels=performance.keys(), rotation=45) _ = plt.legend() for name, value in performance.items(): print(f'{name:12s}: {value[1]:0.4f}') ###Output _____no_output_____ ###Markdown Multi-output modelsThe models so far all predicted a single output feature, `T (degC)`, for a single time step.All of these models can be converted to predict multiple features just by changing the number of units in the output layer and adjusting the training windows to include all features in the `labels`. ###Code single_step_window = WindowGenerator( # `WindowGenerator` returns all features as labels if you # don't set the `label_columns` argument. input_width=1, label_width=1, shift=1) wide_window = WindowGenerator( input_width=24, label_width=24, shift=1) for example_inputs, example_labels in wide_window.train.take(1): print(f'Inputs shape (batch, time, features): {example_inputs.shape}') print(f'Labels shape (batch, time, features): {example_labels.shape}') ###Output _____no_output_____ ###Markdown Note above that the `features` axis of the labels now has the same depth as the inputs, instead of 1. BaselineThe same baseline model can be used here, but this time repeating all features instead of selecting a specific `label_index`. ###Code baseline = Baseline() baseline.compile(loss=tf.losses.MeanSquaredError(), metrics=[tf.metrics.MeanAbsoluteError()]) val_performance = {} performance = {} val_performance['Baseline'] = baseline.evaluate(wide_window.val) performance['Baseline'] = baseline.evaluate(wide_window.test, verbose=0) ###Output _____no_output_____ ###Markdown Dense ###Code dense = tf.keras.Sequential([ tf.keras.layers.Dense(units=64, activation='relu'), tf.keras.layers.Dense(units=64, activation='relu'), tf.keras.layers.Dense(units=num_features) ]) history = compile_and_fit(dense, single_step_window) IPython.display.clear_output() val_performance['Dense'] = dense.evaluate(single_step_window.val) performance['Dense'] = dense.evaluate(single_step_window.test, verbose=0) ###Output _____no_output_____ ###Markdown RNN ###Code %%time wide_window = WindowGenerator( input_width=24, label_width=24, shift=1) lstm_model = tf.keras.models.Sequential([ # Shape [batch, time, features] => [batch, time, lstm_units] tf.keras.layers.LSTM(32, return_sequences=True), # Shape => [batch, time, features] tf.keras.layers.Dense(units=num_features) ]) history = compile_and_fit(lstm_model, wide_window) IPython.display.clear_output() val_performance['LSTM'] = lstm_model.evaluate( wide_window.val) performance['LSTM'] = lstm_model.evaluate( wide_window.test, verbose=0) print() ###Output _____no_output_____ ###Markdown Advanced: Residual connectionsThe `Baseline` model from earlier took advantage of the fact that the sequence doesn't change drastically from time step to time step. Every model trained in this tutorial so far was randomly initialized, and then had to learn that the output is a a small change from the previous time step.While you can get around this issue with careful initialization, it's simpler to build this into the model structure.It's common in time series analysis to build models that instead of predicting the next value, predict the how the value will change in the next timestep.Similarly, "Residual networks" or "ResNets" in deep learning refer to architectures where each layer adds to the model's accumulating result.That is how you take advantage of the knowledge that the change should be small.![A model with a residual connection](images/residual.png)Essentially this initializes the model to match the `Baseline`. For this task it helps models converge faster, with slightly better performance. This approach can be used in conjunction with any model discussed in this tutorial. Here it is being applied to the LSTM model, note the use of the `tf.initializers.zeros` to ensure that the initial predicted changes are small, and don't overpower the residual connection. There are no symmetry-breaking concerns for the gradients here, since the `zeros` are only used on the last layer. ###Code class ResidualWrapper(tf.keras.Model): def __init__(self, model): super().__init__() self.model = model def call(self, inputs, *args, **kwargs): delta = self.model(inputs, *args, **kwargs) # The prediction for each timestep is the input # from the previous time step plus the delta # calculated by the model. return inputs + delta %%time residual_lstm = ResidualWrapper( tf.keras.Sequential([ tf.keras.layers.LSTM(32, return_sequences=True), tf.keras.layers.Dense( num_features, # The predicted deltas should start small # So initialize the output layer with zeros kernel_initializer=tf.initializers.zeros) ])) history = compile_and_fit(residual_lstm, wide_window) IPython.display.clear_output() val_performance['Residual LSTM'] = residual_lstm.evaluate(wide_window.val) performance['Residual LSTM'] = residual_lstm.evaluate(wide_window.test, verbose=0) print() ###Output _____no_output_____ ###Markdown Performance Here is the overall performance for these multi-output models. ###Code x = np.arange(len(performance)) width = 0.3 metric_name = 'mean_absolute_error' metric_index = lstm_model.metrics_names.index('mean_absolute_error') val_mae = [v[metric_index] for v in val_performance.values()] test_mae = [v[metric_index] for v in performance.values()] plt.bar(x - 0.17, val_mae, width, label='Validation') plt.bar(x + 0.17, test_mae, width, label='Test') plt.xticks(ticks=x, labels=performance.keys(), rotation=45) plt.ylabel('MAE (average over all outputs)') _ = plt.legend() for name, value in performance.items(): print(f'{name:15s}: {value[1]:0.4f}') ###Output _____no_output_____ ###Markdown The above performances are averaged across all model outputs. Multi-step modelsBoth the single-output and multiple-output models in the previous sections made **single time step predictions**, 1h into the future.This section looks at how to expand these models to make **multiple time step predictions**.In a multi-step prediction, the model needs to learn to predict a range of future values. Thus, unlike a single step model, where only a single future point is predicted, a multi-step model predicts a sequence of the future values.There are two rough approaches to this:1. Single shot predictions where the entire time series is predicted at once.2. Autoregressive predictions where the model only makes single step predictions and its output is fed back as its input.In this section all the models will predict **all the features across all output time steps**. For the multi-step model, the training data again consists of hourly samples. However, here, the models will learn to predict 24h of the future, given 24h of the past.Here is a `Window` object that generates these slices from the dataset: ###Code OUT_STEPS = 24 multi_window = WindowGenerator(input_width=24, label_width=OUT_STEPS, shift=OUT_STEPS) multi_window.plot() multi_window ###Output _____no_output_____ ###Markdown Baselines A simple baseline for this task is to repeat the last input time step for the required number of output timesteps:![Repeat the last input, for each output step](images/multistep_last.png) ###Code class MultiStepLastBaseline(tf.keras.Model): def call(self, inputs): return tf.tile(inputs[:, -1:, :], [1, OUT_STEPS, 1]) last_baseline = MultiStepLastBaseline() last_baseline.compile(loss=tf.losses.MeanSquaredError(), metrics=[tf.metrics.MeanAbsoluteError()]) multi_val_performance = {} multi_performance = {} multi_val_performance['Last'] = last_baseline.evaluate(multi_window.val) multi_performance['Last'] = last_baseline.evaluate(multi_window.val, verbose=0) multi_window.plot(last_baseline) ###Output _____no_output_____ ###Markdown Since this task is to predict 24h given 24h another simple approach is to repeat the previous day, assuming tomorrow will be similar:![Repeat the previous day](images/multistep_repeat.png) ###Code class RepeatBaseline(tf.keras.Model): def call(self, inputs): return inputs repeat_baseline = RepeatBaseline() repeat_baseline.compile(loss=tf.losses.MeanSquaredError(), metrics=[tf.metrics.MeanAbsoluteError()]) multi_val_performance['Repeat'] = repeat_baseline.evaluate(multi_window.val) multi_performance['Repeat'] = repeat_baseline.evaluate(multi_window.test, verbose=0) multi_window.plot(repeat_baseline) ###Output _____no_output_____ ###Markdown Single-shot modelsOne high level approach to this problem is use a "single-shot" model, where the model makes the entire sequence prediction in a single step.This can be implemented efficiently as a `layers.Dense` with `OUT_STEPS*features` output units. The model just needs to reshape that output to the required `(OUTPUT_STEPS, features)`. LinearA simple linear model based on the last input time step does better than either baseline, but is underpowered. The model needs to predict `OUTPUT_STEPS` time steps, from a single input time step with a linear projection. It can only capture a low-dimensional slice of the behavior, likely based mainly on the time of day and time of year.![Predct all timesteps from the last time-step](images/multistep_dense.png) ###Code multi_linear_model = tf.keras.Sequential([ # Take the last time-step. # Shape [batch, time, features] => [batch, 1, features] tf.keras.layers.Lambda(lambda x: x[:, -1:, :]), # Shape => [batch, 1, out_steps*features] tf.keras.layers.Dense(OUT_STEPS*num_features, kernel_initializer=tf.initializers.zeros), # Shape => [batch, out_steps, features] tf.keras.layers.Reshape([OUT_STEPS, num_features]) ]) history = compile_and_fit(multi_linear_model, multi_window) IPython.display.clear_output() multi_val_performance['Linear'] = multi_linear_model.evaluate(multi_window.val) multi_performance['Linear'] = multi_linear_model.evaluate(multi_window.test, verbose=0) multi_window.plot(multi_linear_model) ###Output _____no_output_____ ###Markdown DenseAdding a `layers.Dense` between the input and output gives the linear model more power, but is still only based on a single input timestep. ###Code multi_dense_model = tf.keras.Sequential([ # Take the last time step. # Shape [batch, time, features] => [batch, 1, features] tf.keras.layers.Lambda(lambda x: x[:, -1:, :]), # Shape => [batch, 1, dense_units] tf.keras.layers.Dense(512, activation='relu'), # Shape => [batch, out_steps*features] tf.keras.layers.Dense(OUT_STEPS*num_features, kernel_initializer=tf.initializers.zeros), # Shape => [batch, out_steps, features] tf.keras.layers.Reshape([OUT_STEPS, num_features]) ]) history = compile_and_fit(multi_dense_model, multi_window) IPython.display.clear_output() multi_val_performance['Dense'] = multi_dense_model.evaluate(multi_window.val) multi_performance['Dense'] = multi_dense_model.evaluate(multi_window.test, verbose=0) multi_window.plot(multi_dense_model) ###Output _____no_output_____ ###Markdown CNN A convolutional model makes predictions based on a fixed-width history, which may lead to better performance than the dense model since it can see how things are changing over time:![A convolutional model sees how things change over time](images/multistep_conv.png) ###Code CONV_WIDTH = 3 multi_conv_model = tf.keras.Sequential([ # Shape [batch, time, features] => [batch, CONV_WIDTH, features] tf.keras.layers.Lambda(lambda x: x[:, -CONV_WIDTH:, :]), # Shape => [batch, 1, conv_units] tf.keras.layers.Conv1D(256, activation='relu', kernel_size=(CONV_WIDTH)), # Shape => [batch, 1, out_steps*features] tf.keras.layers.Dense(OUT_STEPS*num_features, kernel_initializer=tf.initializers.zeros), # Shape => [batch, out_steps, features] tf.keras.layers.Reshape([OUT_STEPS, num_features]) ]) history = compile_and_fit(multi_conv_model, multi_window) IPython.display.clear_output() multi_val_performance['Conv'] = multi_conv_model.evaluate(multi_window.val) multi_performance['Conv'] = multi_conv_model.evaluate(multi_window.test, verbose=0) multi_window.plot(multi_conv_model) ###Output _____no_output_____ ###Markdown RNN A recurrent model can learn to use a long history of inputs, if it's relevant to the predictions the model is making. Here the model will accumulate internal state for 24h, before making a single prediction for the next 24h.In this single-shot format, the LSTM only needs to produce an output at the last time step, so set `return_sequences=False`.![The lstm accumulates state over the input window, and makes a single prediction for the next 24h](images/multistep_lstm.png) ###Code multi_lstm_model = tf.keras.Sequential([ # Shape [batch, time, features] => [batch, lstm_units] # Adding more `lstm_units` just overfits more quickly. tf.keras.layers.LSTM(32, return_sequences=False), # Shape => [batch, out_steps*features] tf.keras.layers.Dense(OUT_STEPS*num_features, kernel_initializer=tf.initializers.zeros), # Shape => [batch, out_steps, features] tf.keras.layers.Reshape([OUT_STEPS, num_features]) ]) history = compile_and_fit(multi_lstm_model, multi_window) IPython.display.clear_output() multi_val_performance['LSTM'] = multi_lstm_model.evaluate(multi_window.val) multi_performance['LSTM'] = multi_lstm_model.evaluate(multi_window.train, verbose=0) multi_window.plot(multi_lstm_model) ###Output _____no_output_____ ###Markdown Advanced: Autoregressive modelThe above models all predict the entire output sequence as a in a single step.In some cases it may be helpful for the model to decompose this prediction into individual time steps. Then each model's output can be fed back into itself at each step and predictions can be made conditioned on the previous one, like in the classic [Generating Sequences With Recurrent Neural Networks](https://arxiv.org/abs/1308.0850).One clear advantage to this style of model is that it can be set up to produce output with a varying length.You could take any of single single-step multi-output models trained in the first half of this tutorial and run in an autoregressive feedback loop, but here we'll focus on building a model that's been explicitly trained to do that.![Feedback a model's output to its input](images/multistep_autoregressive.png) RNNThis tutorial only builds an autoregressive RNN model, but this pattern could be applied to any model that was designed to output a single timestep.The model will have the same basic form as the single-step `LSTM` models: An `LSTM` followed by a `layers.Dense` that converts the `LSTM` outputs to model predictions.A `layers.LSTM` is a `layers.LSTMCell` wrapped in the higher level `layers.RNN` that manages the state and sequence results for you (See [Keras RNNs](https://www.tensorflow.org/guide/keras/rnn) for details).In this case the model has to manually manage the inputs for each step so it uses `layers.LSTMCell` directly for the lower level, single time step interface. ###Code class FeedBack(tf.keras.Model): def __init__(self, units, out_steps): super().__init__() self.out_steps = out_steps self.units = units self.lstm_cell = tf.keras.layers.LSTMCell(units) # Also wrap the LSTMCell in an RNN to simplify the `warmup` method. self.lstm_rnn = tf.keras.layers.RNN(self.lstm_cell, return_state=True) self.dense = tf.keras.layers.Dense(num_features) feedback_model = FeedBack(units=32, out_steps=OUT_STEPS) ###Output _____no_output_____ ###Markdown The first method this model needs is a `warmup` method to initialize is its internal state based on the inputs. Once trained this state will capture the relevant parts of the input history. This is equivalent to the single-step `LSTM` model from earlier: ###Code def warmup(self, inputs): # inputs.shape => (batch, time, features) # x.shape => (batch, lstm_units) x, *state = self.lstm_rnn(inputs) # predictions.shape => (batch, features) prediction = self.dense(x) return prediction, state FeedBack.warmup = warmup ###Output _____no_output_____ ###Markdown This method returns a single time-step prediction, and the internal state of the LSTM: ###Code prediction, state = feedback_model.warmup(multi_window.example[0]) prediction.shape ###Output _____no_output_____ ###Markdown With the `RNN`'s state, and an initial prediction you can now continue iterating the model feeding the predictions at each step back as the input.The simplest approach to collecting the output predictions is to use a python list, and `tf.stack` after the loop. Note: Stacking a python list like this only works with eager-execution, using `Model.compile(..., run_eagerly=True)` for training, or with a fixed length output. For a dynamic output length you would need to use a `tf.TensorArray` instead of a python list, and `tf.range` instead of the python `range`. ###Code def call(self, inputs, training=None): # Use a TensorArray to capture dynamically unrolled outputs. predictions = [] # Initialize the lstm state prediction, state = self.warmup(inputs) # Insert the first prediction predictions.append(prediction) # Run the rest of the prediction steps for n in range(1, self.out_steps): # Use the last prediction as input. x = prediction # Execute one lstm step. x, state = self.lstm_cell(x, states=state, training=training) # Convert the lstm output to a prediction. prediction = self.dense(x) # Add the prediction to the output predictions.append(prediction) # predictions.shape => (time, batch, features) predictions = tf.stack(predictions) # predictions.shape => (batch, time, features) predictions = tf.transpose(predictions, [1, 0, 2]) return predictions FeedBack.call = call ###Output _____no_output_____ ###Markdown Test run this model on the example inputs: ###Code print('Output shape (batch, time, features): ', feedback_model(multi_window.example[0]).shape) ###Output _____no_output_____ ###Markdown Now train the model: ###Code history = compile_and_fit(feedback_model, multi_window) IPython.display.clear_output() multi_val_performance['AR LSTM'] = feedback_model.evaluate(multi_window.val) multi_performance['AR LSTM'] = feedback_model.evaluate(multi_window.test, verbose=0) multi_window.plot(feedback_model) ###Output _____no_output_____ ###Markdown Performance There are clearly diminishing returns as a function of model complexity on this problem. ###Code x = np.arange(len(multi_performance)) width = 0.3 metric_name = 'mean_absolute_error' metric_index = lstm_model.metrics_names.index('mean_absolute_error') val_mae = [v[metric_index] for v in multi_val_performance.values()] test_mae = [v[metric_index] for v in multi_performance.values()] plt.bar(x - 0.17, val_mae, width, label='Validation') plt.bar(x + 0.17, test_mae, width, label='Test') plt.xticks(ticks=x, labels=multi_performance.keys(), rotation=45) plt.ylabel(f'MAE (average over all times and outputs)') _ = plt.legend() ###Output _____no_output_____ ###Markdown The metrics for the multi-output models in the first half of this tutorial show the performance averaged across all output features. These performances similar but also averaged across output timesteps. ###Code for name, value in multi_performance.items(): print(f'{name:8s}: {value[1]:0.4f}') ###Output _____no_output_____
Vacation/Vacation1Py.ipynb
###Markdown VacationPy---- Note* Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps. ###Code # Dependencies and Setup import matplotlib.pyplot as plt import pandas as pd import numpy as np import requests import gmaps import os import ipywidgets as widgets import math # Import API key from api_keys import g_key ###Output _____no_output_____ ###Markdown Store Part I results into DataFrame* Load the csv exported in Part I to a DataFrame ###Code csvpath="outputcityweather.csv" csvread=pd.read_csv(csvpath) df=pd.DataFrame(csvread) df #conversion from Kelvin to Fahrenheit Max_Temp = df["Max Temp"] df["Temp in F"] = (Max_Temp - 273.15) * (9 / 5) + 32 df.head() ###Output _____no_output_____ ###Markdown Humidity Heatmap* Configure gmaps.* Use the Lat and Lng as locations and Humidity as the weight.* Add Heatmap layer to map. ###Code humidity=df["Humidity"] maxhumidity=humidity.max() longlatlocation=df[["Lat", "Lng"]] mapfig = gmaps.figure() heatmaplayer = gmaps.heatmap_layer(longlatlocation, weights=humidity,dissipating=False, max_intensity=maxhumidity,point_radius=3) mapfig.add_layer(heatmaplayer) mapfig ###Output _____no_output_____ ###Markdown Create new DataFrame fitting weather criteria* Narrow down the cities to fit weather conditions.* Drop any rows will null values. ###Code narrowe = df.loc[(df["Temp in F"] > 70) & (df["Temp in F"] < 80) & (df["Cloudiness"] == 0), :] narrowe = narrowe.dropna(how='any') narrowe.reset_index(inplace=True) del narrowe['index'] narrowe.head() hotel= [] for i in range(len(narrowe)): lat = narrowe.loc[i]['Lat'] lng = narrowe.loc[i]['Lng'] params = { "location": f"{lat},{lng}", "radius": 5000, "types" : "hotel", "key": g_key } base_url = "https://maps.googleapis.com/maps/api/place/nearbysearch/json" request = requests.get(base_url, params=params) response= request.json() try: hotel.append(response['results'][0]['name']) except: hotel.append("") narrowe["Hotel Name"] = hotel narrowe = narrowe.dropna(how='any') narrowe.head() ###Output _____no_output_____ ###Markdown Hotel Map* Store into variable named `hotel_df`.* Add a "Hotel Name" column to the DataFrame.* Set parameters to search for hotels with 5000 meters.* Hit the Google Places API for each city's coordinates.* Store the first Hotel result into the DataFrame.* Plot markers on top of the heatmap. ###Code # NOTE: Do not change any of the code in this cell # Using the template add the hotel marks to the heatmap info_box_template = """ <dl> <dt>Name</dt><dd>{Hotel Name}</dd> <dt>City</dt><dd>{City}</dd> <dt>Country</dt><dd>{Country}</dd> </dl> """ # Store the DataFrame Row # NOTE: be sure to update with your DataFrame name hotel_info = [info_box_template.format(**row) for index, row in narrowe.iterrows()] locations = narrowe[["Lat", "Lng"]] # Add marker layer ontop of heat map marker=gmaps.marker_layer(locations) mapfig.add_layer(marker) mapfig # Display figure ###Output _____no_output_____
sample-run/example_analysis.ipynb
###Markdown VegMapperLicense TermsCopyright (c) 2019, California Institute of Technology ("Caltech"). U.S. Government sponsorship acknowledged.All rights reserved.Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.* Redistributions must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.* Neither the name of Caltech nor its operating division, the Jet Propulsion Laboratory, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ###Code #load in Python libraries import ipywidgets as ipw from ipyfilechooser import FileChooser from IPython.display import Markdown, display def printmd(string): display(Markdown(string)) #set up Python/R dual functionality for notebook %load_ext rpy2.ipython %%R #initialize R cell and load in necessary libraries library(rgdal) library(arm) library(gdalUtils) library(raster) ###Output _____no_output_____ ###Markdown User inputs: ###Code %%R ##### FILES ##### #all GIS data in lat lon WGS84 unless specified #path to comma-delimited file, must have cols 'latitude', 'longitude', 'class' in_points = "wwf_2018_clipped.csv" #remote sensing stack in ENVI flat binary format, get stack info in_stack = "indo_stack_nov_2018_clipped" #path to output comma-delimited file, same as in_points with appended remote sensing values out_points = "wwf_2018_clipped_testPred.csv" #name of the output map in ENVI flat binary format out_pred = "op3_indo_nov_2018_clipped" #name of output GeoTIFF out_tif = "predSurface.tif" #--------------------------------------------------------------# ##### PARAMETERS ##### buffer = 1 hhBandIndex = 0 #NOTE: see Apply routine for information #treshold for logistic model; #when probability is larger than this threshold, we say that oil palm is present threshold = 0.5 #RUN: priors (variable order corresponds to order in which bands are read), currently Costa Rica #sequence of prior values needs to match the sequence of stack_names below use_prior = TRUE prior_mean = c(0.06491638, -26.63132179, 0.05590800, -29.64091620) prior_scale = c(0.02038204, 7.58200324, 0.01686930, 8.73995422) prior_mean_int = 1.99274801 prior_scale_int = 7.22600112 #lower and upper bounds for posterior credible intervals lp = 0.025 up = 0.975 #--------------------------------------------------------------# ##### BAND INFO ##### stack_names = c("vcf", "c_rvi", "ndvi", "l_rvi_mosaic") #desired bands from the in_stack (names should match source) #NOTE: this is a DEVELOPER input and not a user input, # please do not change this unless you have been approved to do so bands = c(2,3,1,4) #index of each of the bands defined above (from in_stack) nodata = -9999 #NA value present in input bands: NEEDS TO BE A LIST OF NUMBERS IF NOT CONSISTENT ACROSS BANDS ###Output _____no_output_____ ###Markdown EXTRACTObjective: read remote sensing values at training points. The cell below creates a function to get intensity values from stack and executes extract routine: ###Code %%R getPixel= function(gdalObject, X, Y, buffer, ulX, ulY, cellSize, bands){ nrow = dim(gdalObject)[1] ncol = dim(gdalObject)[2] rowOffset = ((ulY-Y)/cellSize) - buffer if(rowOffset<0 | (rowOffset+buffer+2) > nrow){ return(NA) } colOffset = ((X-ulX)/cellSize) - buffer if(colOffset<0 | (colOffset+buffer+2) > ncol){ return(NA) } windowY = buffer+2 windowX = windowY pixelValue = getRasterData(gdalObject, band=bands, offset=c(rowOffset, colOffset), region.dim=c(windowY, windowX)) return(pixelValue) } #stack information r_stack = stack(in_stack) res = xres(r_stack) r_extent = r_stack@extent ulX = r_extent@xmin ulY = r_extent@ymax # s_info = GDALinfo(in_stack) also works, lacks ulY #grab stack gdalObj = new("GDALDataset", in_stack) #append remote sensing information to point table and write to cvs file inData <- read.csv(in_points, header=TRUE) numPoints <- nrow(inData) header <- c(colnames(inData), stack_names) write.table(x=t(header), file=out_points, append=FALSE, col.names=FALSE, row.names=FALSE, sep=",") print("Extracting values for...") for(i in 1:numPoints){ allBands <- rep(NA, length(bands)) for (j in 1:length(bands)){ oneBand = getPixel(gdalObj, inData$longitude[i], inData$latitude[i], buffer, ulX, ulY, res, bands[j]) w = which (oneBand == nodata[j]) oneBand[w]<-NA allBands[j] = mean(oneBand, na.rm=TRUE) if(i==1) print(stack_names[j]) } mydata <- data.frame(t(as.vector(allBands))) colnames(mydata) <- stack_names newRow = cbind(inData[i,],mydata) write.table(x=newRow, file=out_points, append=TRUE, col.names=FALSE, row.names=FALSE, sep=",") } ###Output _____no_output_____ ###Markdown RUNObjective: fit Bayesian model, calculate posteriors and confusion matrix. The cell below creates the model and executes the prediction, constructs a confusion matrix, calculates the prediction accuracy/posterior CI, calculates/builds posteriors for subsequent runs, and prints the result: ###Code %%R #ADDITIONAL INPUTS #columns of the predictor variables to be used in this model (taken from pred csv) #column order indicated here is vcf, c_rvi, ndvi, l_rvi_mosaic, matching the priors above index = c(13,14,15,16) %%R #impute missing values by variable means data = read.csv(out_points) for (i in which(sapply(data, is.numeric))) { for (j in which(is.na(data[, i]))) { data[j, i] <- mean(data[data[, "my_class"] == data[j, "my_class"], i], na.rm = TRUE) } } #true_label: 1 for oil_palm and 0 for non oil_palm true_label = 1*(data$my_class == 'oil_palm') #EDIT: why this --> http://127.0.0.1:54098/notebooks/sample-run/example_analysis.ipynb #transform interested variables into a matrix which would be used x = as.matrix(data[, index]) all_names = names(data) stack_names = all_names[index] colnames(x) = stack_names #build model by incorporating those variables formula = as.formula(paste("true_label ~ ", paste(stack_names, collapse="+"),sep = "")) use_data = as.data.frame(cbind(x, true_label)) #to specify prior #if noninformative prior, use prior.mean=apply(x, 2, mean), prior.scale=Inf, prior.df=Inf #if having a prior, set prior.mean=c(....), prior.scale=c(.....) #length of prior mean and prior scale should be equal to the number of predictors if(! use_prior){ model = bayesglm(formula, data=use_data, family=binomial(link='logit'), prior.mean=apply(x, 2, mean), prior.scale=Inf, scale=FALSE) } if(use_prior){ model = bayesglm(formula, data=use_data, family=binomial(link='logit'), prior.mean=prior_mean, prior.scale=prior_scale, prior.mean.for.intercept=prior_mean_int, prior.scale.for.intercept=prior_scale_int, scale = FALSE) } #oil_palm prediction class_prediction = 1*(model$fitted.values >= threshold) #if the fitted value is above the threshold, value is changed to binary 1 print(class_prediction) #used instead of na.remove to get rid of NA values in 2018 validation dataset true_label = true_label[!is.na(true_label)] #generate confusion matrix bayesian_conf_matrix = matrix(0,2,2) bayesian_conf_matrix[1,1] = sum(class_prediction + true_label == 0) bayesian_conf_matrix[2,2] = sum(class_prediction + true_label == 2) bayesian_conf_matrix[1,2] = sum((class_prediction == 0) & (true_label == 1)) bayesian_conf_matrix[2,1] = sum((class_prediction == 1) & (true_label == 0)) rownames(bayesian_conf_matrix) = c("Predicted non-oil-palm", "Predicted oil-palm") colnames(bayesian_conf_matrix) = c("Actual non-oil-palm", "Actual oil-palm") print(bayesian_conf_matrix) #overall accuracy of model accu_bayes = sum(class_prediction == true_label) / nrow(data) print("Overall accuracy:") print(accu_bayes) #EDIT: push values to Python and use numpy/matplotlib to display matrix # approach posterior distributions of coefficients # specify number of draws num_draw = 2000 post_dist = sim(model, n.sims=num_draw) coef_matrix = coef(post_dist) # calculate posterior credible intervals for coefficients posterior_ci_coef = matrix(NA, ncol(x)+1, 2) for (i in 1:(ncol(x)+1)){ posterior_ci_coef[i, ] = unname(quantile(coef_matrix[, i], probs=c(lp, up), na.rm=TRUE)) } # calculate posterior credible intervals for every data point posterior_ci_data = matrix(NA, nrow(x), 2) for(i in 1:nrow(x)){ temp = as.numeric() for(j in 1:num_draw){ temp[j] = 1 / (1 + exp(-coef_matrix[j, 1] - sum(coef_matrix[j, 2:(length(index)+1)] * x[i, ]))) } posterior_ci_data[i, ] = unname(quantile(temp, probs=c(lp, up), na.rm=TRUE)) } # build posterior objects for next run posterior_mean = model$coefficients posterior_scale = apply(coef(post_dist), 2, sd) #print the posteriors, store them for later #EDIT: not sure if this works with combinations of other stack variables than current build (need to test in future) posterior_mean intercept = posterior_mean[["(Intercept)"]] numVars = length(posterior_mean) posteriors = posterior_mean[2:numVars] #EDIT: does this need to be transformed into c() variable? ###Output _____no_output_____ ###Markdown APPLYObjective: apply model fits to calculate OP3 for the area covered by the data stack. OP3 = oil palm probability presence, ranging between 0-1. The cell below applies the model to the stack and executes the predictive analysis, outputting the prediction surface in GeoTIFF and ENVI binary formats: ###Code %%R #generate dummy for Docker #only use env variables if creation fails (will normally return NULL but still create object) # Sys.setenv(PROJ_LIB="/usr/bin/proj/") # Sys.getenv("PROJ_LIB") #dummy corresponds to one band from the original stack, used to save your output prediction map in_dummy = "temp_dummy" gdal_translate(src_dataset=in_stack, dst_dataset=in_dummy, of="ENVI", b=1) #create GIS objects gdalObjStack = new("GDALDataset", in_stack) gdalObjDummy = new("GDALDataset", in_dummy) rasterWidth = ncol(gdalObjStack) rasterRows = nrow(gdalObjStack) #calculate prediction for each pixel and save print("Checking a few values...") for(i in 1:rasterRows){ oneRasterLine = getRasterData(gdalObjStack, offset=c(i-1,0), region.dim=c(1, rasterWidth)) hhBand = hhBandIndex #PREVIOUSLY: which(bandNames == "alos2_hh") #NOTE: previous value was 0, bandNames/modelBands was removed for redundancy, # the above code has not been tested yet pred = rep(-9999, rasterWidth) for(j in 1:rasterWidth){ #hh = (20*log10(oneRasterLine[j, 1, hhBand])) -83 hh = oneRasterLine[j, 1, hhBand] #gets hh value at each of the pixels #open water mask #if(is.na(hh) | hh < -20){ #pred[j] = 0 #} #else{ #select bands selectBands = oneRasterLine[j, 1, bands] #EDITED: changed modelBands to bands z = (intercept + sum(posteriors * selectBands)) pred[j] = exp(z)/(1+ exp(z)) #z = (intercept + sum(posteriors * scaledBands)) #pred[j] = exp(z)/(1+ exp(z)) if ((i/100 == i%/%100) & j == 1000) print(z) #reality check on the model fits #} } #write one row to file putRasterData(gdalObjDummy, pred, offset=c(i-1, 0)) #place predicted line in raster into dummy } saveDataset(gdalObjDummy, out_pred) #convert to GeoTiff gdal_translate(src_dataset=out_pred, dst_dataset=out_tif, of="GTiff") ###Output _____no_output_____ ###Markdown VegMapperLicense TermsCopyright (c) 2019, California Institute of Technology ("Caltech"). U.S. Government sponsorship acknowledged.All rights reserved.Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.* Redistributions must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.* Neither the name of Caltech nor its operating division, the Jet Propulsion Laboratory, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ###Code #load in Python libraries import ipywidgets as ipw from ipyfilechooser import FileChooser from IPython.display import Markdown, display def printmd(string): display(Markdown(string)) #set up Python/R dual functionality for notebook %load_ext rpy2.ipython %%R #initialize R cell and load in necessary libraries library(rgdal) library(arm) library(gdalUtils) library(raster) ###Output _____no_output_____ ###Markdown User inputs: ###Code %%R ##### FILES ##### #all GIS data in lat lon WGS84 unless specified #path to comma-delimited file, must have cols 'latitude', 'longitude', 'class' in_points = "wwf_2018_clipped.csv" #remote sensing stack in ENVI flat binary format, get stack info in_stack = "indo_stack_nov_2018_clipped" #path to output comma-delimited file, same as in_points with appended remote sensing values out_points = "wwf_2018_clipped_testPred.csv" #name of the output map in ENVI flat binary format out_pred = "op3_indo_nov_2018_clipped" #name of output GeoTIFF out_tif = "predSurface.tif" #--------------------------------------------------------------# ##### PARAMETERS ##### buffer = 1 hhBandIndex = 0 #NOTE: see Apply routine for information #treshold for logistic model; #when probability is larger than this threshold, we say that oil palm is present threshold = 0.5 #RUN: priors (variable order corresponds to order in which bands are read), currently Costa Rica #sequence of prior values needs to match the sequence of stack_names below use_prior = TRUE prior_mean = c(0.06491638, -26.63132179, 0.05590800, -29.64091620) prior_scale = c(0.02038204, 7.58200324, 0.01686930, 8.73995422) prior_mean_int = 1.99274801 prior_scale_int = 7.22600112 #lower and upper bounds for posterior credible intervals lp = 0.025 up = 0.975 #--------------------------------------------------------------# ##### BAND INFO ##### stack_names = c("vcf", "c_rvi", "ndvi", "l_rvi_mosaic") #desired bands from the in_stack (names should match source) #NOTE: this is a DEVELOPER input and not a user input, # please do not change this unless you have been approved to do so bands = c(2,3,1,4) #index of each of the bands defined above (from in_stack) nodata = -9999 #NA value present in input bands: NEEDS TO BE A LIST OF NUMBERS IF NOT CONSISTENT ACROSS BANDS ###Output _____no_output_____ ###Markdown EXTRACTObjective: read remote sensing values at training points. The cell below creates a function to get intensity values from stack and executes extract routine: ###Code %%R getPixel= function(gdalObject, X, Y, buffer, ulX, ulY, cellSize, bands){ nrow = dim(gdalObject)[1] ncol = dim(gdalObject)[2] rowOffset = ((ulY-Y)/cellSize) - buffer if(rowOffset<0 | (rowOffset+buffer+2) > nrow){ return(NA) } colOffset = ((X-ulX)/cellSize) - buffer if(colOffset<0 | (colOffset+buffer+2) > ncol){ return(NA) } windowY = buffer+2 windowX = windowY pixelValue = getRasterData(gdalObject, band=bands, offset=c(rowOffset, colOffset), region.dim=c(windowY, windowX)) return(pixelValue) } #stack information r_stack = stack(in_stack) res = xres(r_stack) r_extent = r_stack@extent ulX = r_extent@xmin ulY = r_extent@ymax # s_info = GDALinfo(in_stack) also works, lacks ulY #grab stack gdalObj = new("GDALDataset", in_stack) #append remote sensing information to point table and write to cvs file inData <- read.csv(in_points, header=TRUE) numPoints <- nrow(inData) header <- c(colnames(inData), stack_names) write.table(x=t(header), file=out_points, append=FALSE, col.names=FALSE, row.names=FALSE, sep=",") print("Extracting values for...") for(i in 1:numPoints){ allBands <- rep(NA, length(bands)) for (j in 1:length(bands)){ oneBand = getPixel(gdalObj, inData$longitude[i], inData$latitude[i], buffer, ulX, ulY, res, bands[j]) w = which (oneBand == nodata[j]) oneBand[w]<-NA allBands[j] = mean(oneBand, na.rm=TRUE) if(i==1) print(stack_names[j]) } mydata <- data.frame(t(as.vector(allBands))) colnames(mydata) <- stack_names newRow = cbind(inData[i,],mydata) write.table(x=newRow, file=out_points, append=TRUE, col.names=FALSE, row.names=FALSE, sep=",") } ###Output _____no_output_____ ###Markdown RUNObjective: fit Bayesian model, calculate posteriors and confusion matrix. The cell below creates the model and executes the prediction, constructs a confusion matrix, calculates the prediction accuracy/posterior CI, calculates/builds posteriors for subsequent runs, and prints the result: ###Code %%R #ADDITIONAL INPUTS #columns of the predictor variables to be used in this model (taken from pred csv) #column order indicated here is vcf, c_rvi, ndvi, l_rvi_mosaic, matching the priors above index = c(13,14,15,16) %%R #impute missing values by variable means data = read.csv(out_points) for (i in which(sapply(data, is.numeric))) { for (j in which(is.na(data[, i]))) { data[j, i] <- mean(data[data[, "my_class"] == data[j, "my_class"], i], na.rm = TRUE) } } #true_label: 1 for oil_palm and 0 for non oil_palm true_label = 1*(data$my_class == 'oil_palm') #EDIT: why this --> http://127.0.0.1:54098/notebooks/sample-run/example_analysis.ipynb #transform interested variables into a matrix which would be used x = as.matrix(data[, index]) all_names = names(data) stack_names = all_names[index] colnames(x) = stack_names #build model by incorporating those variables formula = as.formula(paste("true_label ~ ", paste(stack_names, collapse="+"),sep = "")) use_data = as.data.frame(cbind(x, true_label)) #to specify prior #if noninformative prior, use prior.mean=apply(x, 2, mean), prior.scale=Inf, prior.df=Inf #if having a prior, set prior.mean=c(....), prior.scale=c(.....) #length of prior mean and prior scale should be equal to the number of predictors if(! use_prior){ model = bayesglm(formula, data=use_data, family=binomial(link='logit'), prior.mean=apply(x, 2, mean), prior.scale=Inf, scale=FALSE) } if(use_prior){ model = bayesglm(formula, data=use_data, family=binomial(link='logit'), prior.mean=prior_mean, prior.scale=prior_scale, prior.mean.for.intercept=prior_mean_int, prior.scale.for.intercept=prior_scale_int, scale = FALSE) } #oil_palm prediction class_prediction = 1*(model$fitted.values >= threshold) #if the fitted value is above the threshold, value is changed to binary 1 print(class_prediction) #used instead of na.remove to get rid of NA values in 2018 validation dataset true_label = true_label[!is.na(true_label)] #generate confusion matrix bayesian_conf_matrix = matrix(0,2,2) bayesian_conf_matrix[1,1] = sum(class_prediction + true_label == 0) bayesian_conf_matrix[2,2] = sum(class_prediction + true_label == 2) bayesian_conf_matrix[1,2] = sum((class_prediction == 0) & (true_label == 1)) bayesian_conf_matrix[2,1] = sum((class_prediction == 1) & (true_label == 0)) rownames(bayesian_conf_matrix) = c("Predicted non-oil-palm", "Predicted oil-palm") colnames(bayesian_conf_matrix) = c("Actual non-oil-palm", "Actual oil-palm") print(bayesian_conf_matrix) #overall accuracy of model accu_bayes = sum(class_prediction == true_label) / nrow(data) print("Overall accuracy:") print(accu_bayes) #EDIT: push values to Python and use numpy/matplotlib to display matrix # approach posterior distributions of coefficients # specify number of draws num_draw = 2000 post_dist = sim(model, n.sims=num_draw) coef_matrix = coef(post_dist) # calculate posterior credible intervals for coefficients posterior_ci_coef = matrix(NA, ncol(x)+1, 2) for (i in 1:(ncol(x)+1)){ posterior_ci_coef[i, ] = unname(quantile(coef_matrix[, i], probs=c(lp, up), na.rm=TRUE)) } # calculate posterior credible intervals for every data point posterior_ci_data = matrix(NA, nrow(x), 2) for(i in 1:nrow(x)){ temp = as.numeric() for(j in 1:num_draw){ temp[j] = 1 / (1 + exp(-coef_matrix[j, 1] - sum(coef_matrix[j, 2:(length(index)+1)] * x[i, ]))) } posterior_ci_data[i, ] = unname(quantile(temp, probs=c(lp, up), na.rm=TRUE)) } # build posterior objects for next run posterior_mean = model$coefficients posterior_scale = apply(coef(post_dist), 2, sd) #print the posteriors, store them for later #EDIT: not sure if this works with combinations of other stack variables than current build (need to test in future) posterior_mean intercept = posterior_mean[["(Intercept)"]] numVars = length(posterior_mean) posteriors = posterior_mean[2:numVars] #EDIT: does this need to be transformed into c() variable? ###Output _____no_output_____ ###Markdown APPLYObjective: apply model fits to calculate OP3 for the area covered by the data stack. OP3 = oil palm probability presence, ranging between 0-1. The cell below applies the model to the stack and executes the predictive analysis, outputting the prediction surface in GeoTIFF and ENVI binary formats: ###Code %%R #generate dummy for Docker #only use env variables if creation fails (will normally return NULL but still create object) # Sys.setenv(PROJ_LIB="/usr/bin/proj/") # Sys.getenv("PROJ_LIB") #dummy corresponds to one band from the original stack, used to save your output prediction map in_dummy = "temp_dummy" gdal_translate(src_dataset=in_stack, dst_dataset=in_dummy, of="ENVI", b=1) #create GIS objects gdalObjStack = new("GDALDataset", in_stack) gdalObjDummy = new("GDALDataset", in_dummy) rasterWidth = ncol(gdalObjStack) rasterRows = nrow(gdalObjStack) #calculate prediction for each pixel and save print("Checking a few values...") for(i in 1:rasterRows){ oneRasterLine = getRasterData(gdalObjStack, offset=c(i-1,0), region.dim=c(1, rasterWidth)) hhBand = hhBandIndex #PREVIOUSLY: which(bandNames == "alos2_hh") #NOTE: previous value was 0, bandNames/modelBands was removed for redundancy, # the above code has not been tested yet pred = rep(-9999, rasterWidth) for(j in 1:rasterWidth){ #hh = (20*log10(oneRasterLine[j, 1, hhBand])) -83 hh = oneRasterLine[j, 1, hhBand] #gets hh value at each of the pixels #open water mask #if(is.na(hh) | hh < -20){ #pred[j] = 0 #} #else{ #select bands selectBands = oneRasterLine[j, 1, bands] #EDITED: changed modelBands to bands z = (intercept + sum(posteriors * selectBands)) pred[j] = exp(z)/(1+ exp(z)) #z = (intercept + sum(posteriors * scaledBands)) #pred[j] = exp(z)/(1+ exp(z)) if ((i/100 == i%/%100) & j == 1000) print(z) #reality check on the model fits #} } #write one row to file putRasterData(gdalObjDummy, pred, offset=c(i-1, 0)) #place predicted line in raster into dummy } saveDataset(gdalObjDummy, out_pred) #convert to GeoTiff gdal_translate(src_dataset=out_pred, dst_dataset=out_tif, of="GTiff") ###Output _____no_output_____
A Primer on Genetic Algorithms.ipynb
###Markdown Primer On Genetic Algorithms ###Code # We will begin this introduction to Genetic Algorithms by creating a target string, # and a starting random string using Genetic Algorithms import random # No. of individuals in each generation POPULATION_SIZE = 100 # Valid genes GENES = '''abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ 123456789, .-;:_!"#%&/()=?@${[]}"''' TARGET = "The rain in Spain is mainly in the plain." class Individual(object): ''' Class representing an individual in the population ''' def __init__(self, chromosome): self.chromosome = chromosome self.fitness = self.cal_fitness() @classmethod def mutated_genes(self): ''' Create random genes for mutation ''' global GENES gene = random.choice(GENES) return gene @classmethod def create_gnome(self): ''' Create a chromosome of strings. ''' global TARGET gnome_len = len(TARGET) return [self.mutated_genes() for _ in range(gnome_len)] def mate(self, par2): ''' Perform mating which produces an offspring ''' child_chromosome = [] for gp1, gp2 in zip(self.chromosome, par2.chromosome): # random probability prob = random.random() # if the probability is less than 0.45, insert gene # from parent 1 if prob < 0.45: child_chromosome.append(gp1) # if the probability is between 0.45 and 0.90, insert # gene from parent 2 elif prob >=0.45 and prob < 0.90: child_chromosome.append(gp2) # otherwise insert a random gene(mutate), in order to # maintain diversity else: child_chromosome.append(self.mutated_genes()) # create new individual (offspring) using generated chromosome # for offspring return Individual(child_chromosome) def cal_fitness(self): ''' Calculate fitness score, it is the number of characters in the string which differs from the target string ''' global TARGET fitness = 0 for gs, gt in zip(self.chromosome, TARGET): if gs != gt: fitness += 1 return fitness # Program driver code def main(): global POPULATION_SIZE # current generation generation = 1 found = False population = [] # create initial population for _ in range(POPULATION_SIZE): gnome = Individual.create_gnome() population.append(Individual(gnome)) while not found: # sort the population in increasing order of fitness score population = sorted(population, key = lambda x:x.fitness) # if the individual having the lowest fitness i.e. 0 # then we know that we have reached the target and will # break the loop if population[0].fitness <= 0: found = True break # Conversely, generate new offspring for a new generation new_generation = [] # Perform "Elitism" operation, which means only 10% of the # fittest population goes to the next generation s = int((90 * POPULATION_SIZE) / 100) new_generation.extend(population[:s]) # From 50% of the fittest population, individuals will mate # to produce their offspring s = int((90* POPULATION_SIZE / 100)) for _ in range(s): parent1 = random.choice(population[:50]) parent2 = random.choice(population[:50]) child = parent1.mate(parent2) new_generation.append(child) population = new_generation print("Generation: {}\tString: {}\tFitness: {}".\ format(generation, "".join(population[0].chromosome), population[0].fitness)) generation += 1 print("Generation: {}\tString: {}\tFitness: {}".\ format(generation, "".join(population[0].chromosome), population[0].fitness)) if __name__ == '__main__': main() ###Output Generation: 1 String: t-eS;O:P"Q!m:p,-rdv:xMR]x(NUvmGL{Y92_pivT Fitness: 38 Generation: 2 String: Te Nhr?%DI,a8[$r9-i! 6ZUnFTB9g ztO?g[Kic" Fitness: 35 Generation: 3 String: / ev}Yi[ ZprLyE(asi1B,a7qld 7nsgw]qQhaiG( Fitness: 31 Generation: 4 String: U-ev}Yij ZGrLpE4r#ifBmaiOld 8nGLwJq;vaiv. Fitness: 27 Generation: 5 String: TCEvrYoj {-aSp"4k#i@ mainly 8nGPt! ;vPiB. Fitness: 23 Generation: 6 String: T-evr[ij EGrSp"rr-iT maiOld qnGLwc Xlaiv. Fitness: 21 Generation: 7 String: T}e tain6in S3Y#ipis mannKy l7 F53 ulain. Fitness: 16 Generation: 8 String: }!e9r=on Cn Apaincis Cain"x 8n$the p[aiv. Fitness: 15 Generation: 9 String: T}evrain i- KpLrn-ps mainlyjqn two plaiv. Fitness: 13 Generation: 10 String: T!evtain in SpM_ndisJm3inly 8n t5e plai]. Fitness: 11 Generation: 11 String: J8evrain Cn Spgi,cis mainly18n the plain8 Fitness: 10 Generation: 12 String: TyevrarX in Spain?is mainly In the ulain. Fitness: 7 Generation: 13 String: TyevrarX in Spain?is mainly In the ulain. Fitness: 7 Generation: 14 String: Tyevrain in SpEin?is mainly 8o the plain. Fitness: 6 Generation: 15 String: T_eTrain in Spaindis mainly In he plain. Fitness: 5 Generation: 16 String: T7e rain in Spain is mainly IN he plain. Fitness: 4 Generation: 17 String: T7e rain in Spain is mainly IN he plain. Fitness: 4 Generation: 18 String: T7e rain in SpainVis mainly id the plain. Fitness: 3 Generation: 19 String: Tye rain in Spain is mainly In the plain. Fitness: 2 Generation: 20 String: Tye rain in Spain is mainly In the plain. Fitness: 2 Generation: 21 String: Tye rain in Spain is mainly In the plain. Fitness: 2 Generation: 22 String: T_e rain in Spain is mainly in the plain. Fitness: 1 Generation: 23 String: T_e rain in Spain is mainly in the plain. Fitness: 1 Generation: 24 String: T_e rain in Spain is mainly in the plain. Fitness: 1 Generation: 25 String: T_e rain in Spain is mainly in the plain. Fitness: 1 Generation: 26 String: T_e rain in Spain is mainly in the plain. Fitness: 1 Generation: 27 String: T_e rain in Spain is mainly in the plain. Fitness: 1 Generation: 28 String: T_e rain in Spain is mainly in the plain. Fitness: 1 Generation: 29 String: T_e rain in Spain is mainly in the plain. Fitness: 1 Generation: 30 String: T_e rain in Spain is mainly in the plain. Fitness: 1 Generation: 31 String: The rain in Spain is mainly in the plain. Fitness: 0
_drafts/modeling-the-nhl-better/.ipynb_checkpoints/Hockey Model Ideal Data-checkpoint.ipynb
###Markdown Generate Ideal Data ###Code n_days = 200 n_teams = 32 gpd = 8 true_Δi_σ = 0.0 true_Δh_σ = 0.0 true_Δod_σ = 0.002 true_i_0 = 1.12 true_h_0 = 0.25 true_o_0 = np.random.normal(0, 0.15, n_teams) true_o_0 = true_o_0 - np.mean(true_o_0) true_d_0 = np.random.normal(0, 0.15, n_teams) true_d_0 = true_d_0 - np.mean(true_d_0) true_i = np.zeros(n_days) true_h = np.zeros(n_days) true_o = np.zeros((n_days, n_teams)) true_d = np.zeros((n_days, n_teams)) true_i[0] = true_i_0 true_h[0] = true_h_0 true_o[0,:] = true_o_0 true_d[0,:] = true_d_0 games_list = [] matches = np.arange(12) np.random.shuffle(matches) for t in range(1, n_days): true_i[t] = true_i[t-1] + np.random.normal(0.0, true_Δi_σ) true_h[t] = true_h[t-1] + np.random.normal(0.0, true_Δh_σ) true_o[t,:] = true_o[t-1,:] + np.random.normal(0.0, true_Δod_σ, n_teams) true_o[t,:] = true_o[t,:] - np.mean(true_o[t,:]) true_d[t,:] = true_d[t-1,:] + np.random.normal(0.0, true_Δod_σ, n_teams) true_d[t,:] = true_d[t,:] - np.mean(true_d[t,:]) if matches.shape[0]//2 < gpd: new_matches = np.arange(n_teams) np.random.shuffle(new_matches) matches = np.concatenate([matches, new_matches]) for _ in range(gpd): idₕ = matches[0] idₐ = matches[1] logλₕ = true_i[t] + true_h[t] + true_o[t,idₕ] - true_d[t,idₐ] logλₐ = true_i[t] + true_o[t,idₐ] - true_d[t,idₕ] sₕ = np.random.poisson(np.exp(logλₕ)) sₐ = np.random.poisson(np.exp(logλₐ)) if sₕ > sₐ: hw = 1 elif sₕ == sₐ: p = np.exp(logλₕ)/(np.exp(logλₕ) + np.exp(logλₐ)) hw = np.random.binomial(1, p) else: hw = 0 games_list.append([t, idₕ, sₕ, idₐ, sₐ, hw]) matches = matches[2:] games = pd.DataFrame(games_list, columns=['day', 'idₕ', 'sₕ', 'idₐ', 'sₐ', 'hw']) games.head() games['idₕ'].value_counts() + games['idₐ'].value_counts() ###Output _____no_output_____ ###Markdown Model 1: Daily Updates, No Deltas ###Code def get_m1_posteriors(trace): posteriors = {} h_μ, h_σ = norm.fit(trace['h']) posteriors['h'] = [h_μ, h_σ] i_μ, i_σ = norm.fit(trace['i']) posteriors['i'] = [i_μ, i_σ] o_μ = [] o_σ = [] d_μ = [] d_σ = [] for i in range(n_teams): oᵢ_μ, oᵢ_σ = norm.fit(trace['o'][:,i]) o_μ.append(oᵢ_μ) o_σ.append(oᵢ_σ) dᵢ_μ, dᵢ_σ = norm.fit(trace['d'][:,i]) d_μ.append(dᵢ_μ) d_σ.append(dᵢ_σ) posteriors['o'] = [np.array(o_μ), np.array(o_σ)] posteriors['d'] = [np.array(d_μ), np.array(d_σ)] return posteriors def m1_iteration(obs_data, priors): idₕ = obs_data['idₕ'].to_numpy() sₕ_obs = obs_data['sₕ'].to_numpy() idₐ = obs_data['idₐ'].to_numpy() sₐ_obs = obs_data['sₐ'].to_numpy() hw_obs = obs_data['hw'].to_numpy() with pm.Model() as model: # Global model parameters h = pm.Normal('h', mu=priors['h'][0], sigma=priors['h'][1]) i = pm.Normal('i', mu=priors['i'][0], sigma=priors['i'][1]) # Team-specific poisson model parameters o_star = pm.Normal('o_star', mu=priors['o'][0], sigma=priors['o'][1], shape=n_teams) d_star = pm.Normal('d_star', mu=priors['d'][0], sigma=priors['d'][1], shape=n_teams) o = pm.Deterministic('o', o_star - tt.mean(o_star)) d = pm.Deterministic('d', d_star - tt.mean(d_star)) λₕ = tt.exp(i + h + o[idₕ] - d[idₐ]) λₐ = tt.exp(i + o[idₐ] - d[idₕ]) # OT/SO home win bernoulli model parameter # P(T < Y), where T ~ a, Y ~ b: a/(a + b) pₕ = λₕ/(λₕ + λₐ) # Likelihood of observed data sₕ = pm.Poisson('sₕ', mu=λₕ, observed=sₕ_obs) sₐ = pm.Poisson('sₐ', mu=λₐ, observed=sₐ_obs) hw = pm.Bernoulli('hw', p=pₕ, observed=hw_obs) trace = pm.sample(1000, tune=1000, cores=3, progressbar=F) posteriors = get_m1_posteriors(trace) return posteriors ws = 7 iv1_rows = [] priors = { 'h': [0.25, 0.1], 'i': [1.0, 0.1], 'o': [np.array([0] * n_teams), np.array([0.15] * n_teams)], 'd': [np.array([0] * n_teams), np.array([0.15] * n_teams)] } for t in tqdm(range(ws, n_days+1)): obs_data = games[((games['day'] <= t) & (games['day'] > (t - ws)))] priors = posteriors = m1_iteration(obs_data, priors); iv_row = posteriors['h'] + posteriors['i'] + list(posteriors['o'][0]) +list(posteriors['o'][1]) + \ list(posteriors['d'][0]) + list(posteriors['d'][1]) iv1_rows.append(iv_row) ###Output _____no_output_____ ###Markdown Model 2: Daily Updates with Deltas ###Code def get_m2_posteriors(trace): posteriors = {} h_μ, h_σ = norm.fit(trace['h']) posteriors['h'] = [h_μ, h_σ] i_μ, i_σ = norm.fit(trace['i']) posteriors['i'] = [i_μ, i_σ] o_μ = [] o_σ = [] d_μ = [] d_σ = [] for i in range(n_teams): oᵢ_μ, oᵢ_σ = norm.fit(trace['o'][:,i]) o_μ.append(oᵢ_μ) o_σ.append(oᵢ_σ) dᵢ_μ, dᵢ_σ = norm.fit(trace['d'][:,i]) d_μ.append(dᵢ_μ) d_σ.append(dᵢ_σ) posteriors['o'] = [np.array(o_μ), np.array(o_σ)] posteriors['d'] = [np.array(d_μ), np.array(d_σ)] # Deltas Δ_h_μ, Δ_h_σ = norm.fit(trace['Δ_h']) posteriors['Δ_h'] = [Δ_h_μ, Δ_h_σ] Δ_i_μ, Δ_i_σ = norm.fit(trace['Δ_i']) posteriors['Δ_i'] = [Δ_i_μ, Δ_i_σ] Δ_od_μ_μ, Δ_od_μ_σ = norm.fit(trace['Δ_od_μ']) posteriors['Δ_od_μ'] = [Δ_od_μ_μ, Δ_od_μ_σ] Δ_od_σ_α, _, Δ_od_σ_β = invgamma.fit(trace['Δ_od_σ']) posteriors['Δ_od_σ'] = [Δ_od_σ_α, Δ_od_σ_β] return posteriors def m2_iteration(obs_data, priors): idₕ = obs_data['idₕ'].to_numpy() sₕ_obs = obs_data['sₕ'].to_numpy() idₐ = obs_data['idₐ'].to_numpy() sₐ_obs = obs_data['sₐ'].to_numpy() hw_obs = obs_data['hw'].to_numpy() with pm.Model() as model: # Global model parameters h_init = pm.Normal('h_init', mu=priors['h'][0], sigma=priors['h'][1]) Δ_h = pm.Normal('Δ_h', mu=priors['Δ_h'][0], sigma=priors['Δ_h'][1]) h = pm.Deterministic('h', h_init + Δ_h) i_init = pm.Normal('i_init', mu=priors['i'][0], sigma=priors['i'][1]) Δ_i = pm.Normal('Δ_i', mu=priors['Δ_i'][0], sigma=priors['Δ_i'][1]) i = pm.Deterministic('i', i_init + Δ_i) Δ_od_μ = pm.Normal('Δ_od_μ', mu=priors['Δ_od_μ'][0], sigma=priors['Δ_od_μ'][1]) Δ_od_σ = pm.InverseGamme('Δ_od_σ', mu=priors['Δ_od_σ'][0], sigma=priors['Δ_od_σ'][1]) # Team-specific poisson model parameters o_star_init = pm.Normal('o_star_init', mu=priors['o'][0], sigma=priors['o'][1], shape=n_teams) Δ_o = pm.Normal('Δ_o', mu=Δ_od_μ, sigma=Δ_od_σ, shape=n_teams) o_star = pm.Deterministic('o_star', o_star_init + Δ_o) o = pm.Deterministic('o', o_star - tt.mean(o_star)) d_star_init = pm.Normal('d_star_init', mu=priors['d'][0], sigma=priors['d'][1], shape=n_teams) Δ_d = pm.Normal('Δ_d', mu=Δ_od_μ, sigma=Δ_od_σ, shape=n_teams) d_star = pm.Deterministic('d_star', d_star_init + Δ_d) d = pm.Deterministic('d', d_star - tt.mean(d_star)) # Regulation game time goal Poisson rates λₕ = tt.exp(i + h + o[idₕ] - d[idₐ]) λₐ = tt.exp(i + o[idₐ] - d[idₕ]) # OT/SO home win bernoulli model parameter # P(T < Y), where T ~ a, Y ~ b: a/(a + b) pₕ = λₕ/(λₕ + λₐ) # Likelihood of observed data sₕ = pm.Poisson('sₕ', mu=λₕ, observed=sₕ_obs) sₐ = pm.Poisson('sₐ', mu=λₐ, observed=sₐ_obs) hw = pm.Bernoulli('hw', p=pₕ, observed=hw_obs) trace = pm.sample(1000, tune=1000, cores=3, progressbar=False) posteriors = get_m2_posteriors(trace) return posteriors ws = 7 iv2_rows = [] priors = { 'h': [0.25, 0.1], 'i': [1.0, 0.1], 'o': [np.array([0] * n_teams), np.array([0.15] * n_teams)], 'd': [np.array([0] * n_teams), np.array([0.15] * n_teams)], 'Δ_h': [0.0, 0.001], 'Δ_i': [0.0, .001], 'Δ_od_μ': [0.0, 0.0005], 'Δ_od_σ': [5.0, 0.01], } for t in tqdm(range(ws, n_days+1)): obs_data = games[((games['day'] <= t) & (games['day'] > (t - ws)))] priors = posteriors = m2_iteration(obs_data, priors); iv_row = posteriors['h'] + posteriors['i'] + list(posteriors['o'][0]) + list(posteriors['o'][1]) + \ list(posteriors['d'][0]) + list(posteriors['d'][1] + posteriors['Δ_h'] + posteriors['Δ_i'] +\ posteriors['Δ_od_μ'] + posteriors['Δ_od_σ']) iv2_rows.append(iv_row) ###Output _____no_output_____ ###Markdown Model 3: Daily Updates with Zero Cenetered Deltas ###Code def get_m3_posteriors(trace): posteriors = {} h_μ, h_σ = norm.fit(trace['h']) posteriors['h'] = [h_μ, h_σ] i_μ, i_σ = norm.fit(trace['i']) posteriors['i'] = [i_μ, i_σ] o_μ = [] o_σ = [] d_μ = [] d_σ = [] for i in range(n_teams): oᵢ_μ, oᵢ_σ = norm.fit(trace['o'][:,i]) o_μ.append(oᵢ_μ) o_σ.append(oᵢ_σ) dᵢ_μ, dᵢ_σ = norm.fit(trace['d'][:,i]) d_μ.append(dᵢ_μ) d_σ.append(dᵢ_σ) posteriors['o'] = [np.array(o_μ), np.array(o_σ)] posteriors['d'] = [np.array(d_μ), np.array(d_σ)] # Deltas Δ_h_μ, Δ_h_σ = norm.fit(trace['Δ_h'], loc=0.0) posteriors['Δ_h'] = [0.0, Δ_h_σ] Δ_i_μ, Δ_i_σ = norm.fit(trace['Δ_i'], loc=0.0) posteriors['Δ_i'] = [0.0, Δ_i_σ] Δ_od_σ_α, _, Δ_od_σ_β = invgamma.fit(trace['Δ_od_σ']) posteriors['Δ_od_σ'] = [Δ_od_σ_α, Δ_od_σ_β] return posteriors def m3_iteration(obs_data, priors): idₕ = obs_data['idₕ'].to_numpy() sₕ_obs = obs_data['sₕ'].to_numpy() idₐ = obs_data['idₐ'].to_numpy() sₐ_obs = obs_data['sₐ'].to_numpy() hw_obs = obs_data['hw'].to_numpy() with pm.Model() as model: # Global model parameters h_init = pm.Normal('h_init', mu=priors['h'][0], sigma=priors['h'][1]) Δ_h = pm.Normal('Δ_h', mu=priors['Δ_h'][0], sigma=priors['Δ_h'][1]) h = pm.Deterministic('h', h_init + Δ_h) i_init = pm.Normal('i_init', mu=priors['i'][0], sigma=priors['i'][1]) Δ_i = pm.Normal('Δ_i', mu=priors['Δ_i'][0], sigma=priors['Δ_i'][1]) i = pm.Deterministic('i', i_init + Δ_i) Δ_od_σ = pm.InverseGamma('Δ_od_σ', alpha=priors['Δ_od_σ'][0], beta=priors['Δ_od_σ'][1]) # Team-specific poisson model parameters o_star_init = pm.Normal('o_star_init', mu=priors['o'][0], sigma=priors['o'][1], shape=n_teams) Δ_o = pm.Normal('Δ_o', mu=0.0, sigma=Δ_od_σ, shape=n_teams) o_star = pm.Deterministic('o_star', o_star_init + Δ_o) o = pm.Deterministic('o', o_star - tt.mean(o_star)) d_star_init = pm.Normal('d_star_init', mu=priors['d'][0], sigma=priors['d'][1], shape=n_teams) Δ_d = pm.Normal('Δ_d', mu=0.0, sigma=Δ_od_σ, shape=n_teams) d_star = pm.Deterministic('d_star', d_star_init + Δ_d) d = pm.Deterministic('d', d_star - tt.mean(d_star)) # Regulation game time goal Poisson rates λₕ = tt.exp(i + h + o[idₕ] - d[idₐ]) λₐ = tt.exp(i + o[idₐ] - d[idₕ]) # OT/SO home win bernoulli model parameter # P(T < Y), where T ~ a, Y ~ b: a/(a + b) #pₕ = λₕ/(λₕ + λₐ) # Likelihood of observed data sₕ = pm.Poisson('sₕ', mu=λₕ, observed=sₕ_obs) sₐ = pm.Poisson('sₐ', mu=λₐ, observed=sₐ_obs) #hw = pm.Bernoulli('hw', p=pₕ, observed=hw_obs) trace = pm.sample(10000, tune=10000, cores=3)#, progressbar=False) posteriors = get_m3_posteriors(trace) return posteriors ws = 28 iv3_rows = [] # Initialize model with model1 parameters on first 75 days of data init_priors = { 'h': [0.25, 0.01], 'i': [1.12, 0.01], 'o': [np.array([0] * n_teams), np.array([0.15] * n_teams)], 'd': [np.array([0] * n_teams), np.array([0.15] * n_teams)] } init_data = games[(games['day'] <= 75)] priors = m1_iteration(init_data, init_priors) priors['Δ_h'] = [0.0, 0.005] priors['Δ_i'] = [0.0, 0.005] priors['Δ_od_σ'] = [5.0, 0.01] for t in tqdm(range(ws, n_days+1)): obs_data = games[((games['day'] <= t) & (games['day'] > (t - ws)))] priors = posteriors = m3_iteration(obs_data, priors); iv_row = posteriors['h'] + posteriors['i'] + list(posteriors['o'][0]) + list(posteriors['o'][1]) + \ list(posteriors['d'][0]) + list(posteriors['d'][1]) + posteriors['Δ_h'] + posteriors['Δ_i'] +\ posteriors['Δ_od_σ'] iv3_rows.append(iv_row) ###Output _____no_output_____ ###Markdown Model 4: Do not vary h and i with each step ###Code def get_m4_posteriors(trace): posteriors = {} h_μ, h_σ = norm.fit(trace['h']) posteriors['h'] = [h_μ, h_σ] i_μ, i_σ = norm.fit(trace['i']) posteriors['i'] = [i_μ, i_σ] o_μ = [] o_σ = [] d_μ = [] d_σ = [] for i in range(n_teams): oᵢ_μ, oᵢ_σ = norm.fit(trace['o'][:,i]) o_μ.append(oᵢ_μ) o_σ.append(oᵢ_σ) dᵢ_μ, dᵢ_σ = norm.fit(trace['d'][:,i]) d_μ.append(dᵢ_μ) d_σ.append(dᵢ_σ) posteriors['o'] = [np.array(o_μ), np.array(o_σ)] posteriors['d'] = [np.array(d_μ), np.array(d_σ)] # Unified o and d variances o_σ_α, _, o_σ_β = invgamma.fit(trace['o_σ']) posteriors['o_σ'] = [o_σ_α, o_σ_β] d_σ_α, _, d_σ_β = invgamma.fit(trace['d_σ']) posteriors['d_σ'] = [d_σ_α, d_σ_β] return posteriors def m4_iteration(obs_data, priors): idₕ = obs_data['idₕ'].to_numpy() sₕ_obs = obs_data['sₕ'].to_numpy() idₐ = obs_data['idₐ'].to_numpy() sₐ_obs = obs_data['sₐ'].to_numpy() hw_obs = obs_data['hw'].to_numpy() with pm.Model() as model: # Global model parameters h = pm.Normal('h', mu=priors['h'][0], sigma=priors['h'][1]) i = pm.Normal('i', mu=priors['i'][0], sigma=priors['i'][1]) o_σ = pm.InverseGamma('o_σ', alpha=priors['o_σ'][0], beta=priors['o_σ'][1]) d_σ = pm.InverseGamma('d_σ', alpha=priors['d_σ'][0], beta=priors['d_σ'][1]) Δ_od= pm.Normal('Δ_od_σ', mu=0.0, sigma=0.0025) # Team-specific poisson model parameters o_star_init = pm.Normal('o_star_init', mu=priors['o'][0], sigma=o_σ, shape=n_teams) Δ_o = pm.Normal('Δ_o', mu=0.0, sigma=Δ_od_σ, shape=n_teams) o_star = pm.Deterministic('o_star', o_star_init + Δ_o) o = pm.Deterministic('o', o_star - tt.mean(o_star)) d_star_init = pm.Normal('d_star_init', mu=priors['d'][0], sigma=d_σ, shape=n_teams) Δ_d = pm.Normal('Δ_d', mu=0.0, sigma=Δ_od_σ, shape=n_teams) d_star = pm.Deterministic('d_star', d_star_init + Δ_d) d = pm.Deterministic('d', d_star - tt.mean(d_star)) # Regulation game time goal Poisson rates λₕ = tt.exp(i + h + o[idₕ] - d[idₐ]) λₐ = tt.exp(i + o[idₐ] - d[idₕ]) # OT/SO home win bernoulli model parameter # P(T < Y), where T ~ a, Y ~ b: a/(a + b) pₕ = λₕ/(λₕ + λₐ) # Likelihood of observed data sₕ = pm.Poisson('sₕ', mu=λₕ, observed=sₕ_obs) sₐ = pm.Poisson('sₐ', mu=λₐ, observed=sₐ_obs) hw = pm.Bernoulli('hw', p=pₕ, observed=hw_obs) trace = pm.sample(10000, tune=10000, target_accept=0.90, cores=3)#, progressbar=False) posteriors = get_m4_posteriors(trace) return posteriors start_day = 150 ws = 14 iv4_rows = [] # Initialize model with model1 parameters on first 75 days of data init_priors = { 'h': [0.25, 0.01], 'i': [1.12, 0.01], 'o': [np.array([0] * n_teams), np.array([0.15] * n_teams)], 'd': [np.array([0] * n_teams), np.array([0.15] * n_teams)] } init_data = games[(games['day'] <= start_day)] priors = m1_iteration(init_data, init_priors) priors['o_σ'] = [5.0, 0.4] priors['d_σ'] = [5.0, 0.4] priors['Δ_od_σ'] = [5.0, 0.1] print(priors) for t in tqdm(range(start_day, n_days+1)): obs_data = games[((games['day'] <= t) & (games['day'] > (t - ws)))] priors = posteriors = m4_iteration(obs_data, priors); iv_row = posteriors['h'] + posteriors['i'] + list(posteriors['o'][0]) + list(posteriors['o'][1]) + \ list(posteriors['d'][0]) + list(posteriors['d'][1]) + posteriors['o_σ'] +\ posteriors['d_σ'] + posteriors['Δ_od_σ'] iv4_rows.append(iv_row) true_o np.array(iv4_rows) np.array(iv4_rows)[:,4:36] col_names = ['h_μ', 'h_σ', 'i_μ', 'i_σ'] + ['o{}_μ'.format(i) for i in range(n_teams)] + \ ['o{}_σ'.format(i) for i in range(n_teams)] + ['d{}_μ'.format(i) for i in range(n_teams)] + \ ['d{}_σ'.format(i) for i in range(n_teams)] + \ ['o_σ_α', 'o_σ_β', 'd_σ_α', 'd_σ_β', 'Δ_od_σ_α', 'Δ_od_σ_β'] iv4_df = pd.DataFrame(iv4_rows, columns=col_names) iv4_df['day'] = list(range(start_day, n_days+1)) iv4_df.head() iv4_df.to_csv('iv4_df.csv') lv_df = pd.DataFrame(data={'h':true_h, 'i':true_i}) lv_df = pd.concat([lv_df, pd.DataFrame(data=true_o, columns=['o{}'.format(i) for i in range(n_teams)])], axis=1) lv_df = pd.concat([lv_df, pd.DataFrame(data=true_d, columns=['d{}'.format(i) for i in range(n_teams)])], axis=1) lv_df['day'] = list(range(1,n_days+1)) lv_df.iloc[150:155,:].head() lv_df.to_csv('lv_df.csv') ###Output _____no_output_____
CourseWork/PowerProduction.ipynb
###Markdown Having a mess around with the Power Production dataset Around 18 minutes into "regression using scikit-learn" video provides some ideas for PLOTTING of linear regression, which might be a nice plot to have in the project. ###Code import pandas as pd import sklearn as sklearn import seaborn as sns import numpy as numpy import sklearn.linear_model as lin #stackoverflow chat suggests that you can't import an external dataset into seaborn, use pandas instead??!! #It's as though if it's not here >>>https://github.com/mwaskom/seaborn<<< seaborn doesn't want to know. powerproduction=pd.read_csv("powerproduction.csv") #powerproduction.describe() print(powerproduction) ###Output speed power 0 0.000 0.0 1 0.125 0.0 2 0.150 0.0 3 0.225 0.0 4 0.275 0.0 .. ... ... 495 24.775 0.0 496 24.850 0.0 497 24.875 0.0 498 24.950 0.0 499 25.000 0.0 [500 rows x 2 columns] ###Markdown Analysis ###Code sns.pairplot(powerproduction) ###Output _____no_output_____ ###Markdown Functions to draw linear regression models ###Code sns.regplot(x="speed", y="power", data=powerproduction); #a blue line appears as a suggestion sns.lmplot(x="speed", y="power", data=powerproduction); ###Output C:\Users\Acer\anaconda3\lib\site-packages\numpy\linalg\linalg.py:1965: RuntimeWarning: invalid value encountered in greater large = s > cutoff ###Markdown Source: https://seaborn.pydata.org/tutorial/regression.htmlYou should note that the resulting plots are identical, except that the figure shapes are different. regplot() accepts the x and y variables in a variety of formats including simple numpy arrays, pandas Series objects, or as references to variables in a pandas DataFrame object passed to data. In contrast, lmplot() has data as a required parameter and the x and y variables must be specified as strings. This data format is called “long-form” or “tidy” data. Other than this input flexibility, regplot() possesses a subset of lmplot()’s features, so we will demonstrate them using the latter. Observations on these graphsThe curve shape corresponds with graphs at https://energyeducation.ca/encyclopedia/Wind_powerIt is logical, it takes a reasonable amount of wind to get the turbine going and then when it's moving and the wind drops...it will still rotate and come to a stop eventually.The cut off point seems to be around speed kmph? 24.5. Perhaps it is dangerous for the turbine to move at a high speed.>>Turbines are designed to operate within a specific range of wind speeds. The limits of the range are known as the cut-in speed and cut-out speed.[5] The cut-in speed is the point at which the wind turbine is able to generate power. The cut-out speed is the point at which the turbine must be shut down to avoid damage to the equipment. The cut-in and cut-out speeds are related to the turbine design and size and are decided on prior to construction.[6] TrainAttempt to automate the prediction, find relationships between the paired data. import sklearn.linear_model as linmanipulate the two lists of numbersx = flipper["body_mass_g"].to_numpy()y = flipper["flipper_length_mm"].to_numpy()even though you've only one input value, you must reshape as if there are more. It is ascikit learm thing....x = x.reshape(-1, 1)use sckitlearn to give numbers pertaining to the suggested blue line abovemodel = lin.LinearRegression()model.fit(x, y)tells skcitlearn where the values arer = model.score(x, y)find out the r value, how well the lines fits the data setp = [model.intercept_, model.coef_[0]]provide the intercept ###Code import sklearn.linear_model as lin powerproduction=pd.read_csv("powerproduction.csv") #manipulate the two lists of numbers #x=powerproduction["speed"].to_numpy() speed=powerproduction["speed"].to_numpy() y=powerproduction["power"].to_numpy() #y = data["power"].to_numpy() x = speed.reshape(-1, 1) model = lin.LinearRegression() model.fit(x, y)#tells skcitlearn where the values are r = model.score(x, y)#find out the r value, how well the lines fits the data set p = [model.intercept_, model.coef_[0]]#provide the intercept r #.72 is not too bad of a fit #In statistics, the correlation coefficient r measures the strength #and direction of a linear relationship between two variables on a scatterplot. p#the minimum value -13 windspeed delivers 4.9 units of power....that don't sound right ### Predict def f(x, p): # x is the input, p is the parameter/s e.g. a list of values somehow trained on a dataset already # p can be used to help us make predictions in the case of x return p[0] + x * p[1] #this function is designed to provide linear results ###Output _____no_output_____ ###Markdown per Ian.....the calculations are straightforward,our ideas behind them are important.the functions might be deterministicmaybe the input becomes part of the function (not external data anymore) ###Code f(7, p) #we can use the p values above where 7 windspeed, how much power is generated? #we trained p on the dataset, it is a model #you could define another function using p also , see below. def predict(x): return f(x, p) predict(2.9) ###Output _____no_output_____ ###Markdown The web service needs to get input into the function.The function needs to reject amounts higher than 24.399The function needs to reject amounts lower than 0.325When I leave the dataset as it is , the figures are skewed - it is giving negative value.Remove the problematic values to train it properly ###Code powerproduction=pd.read_csv("powerproduction.csv") #Code adapted from https://stackoverflow.com/questions/22649693/drop-rows-with-all-zeros-in-pandas-data-frame df=powerproduction #print (df.sort_values('power', ascending=True)) #new_df = df[df.loc[:]!=0].dropna() #df.drop(0,111,110,105,89) #this does not work - only deletes index 0 #print(df.drop(['speed'], axis=1)) new_df X = new_df.transpose() X #new_df.to_csv(index=False) #new_df.to_csv(index=True) newdf_csv_data = new_df.to_csv('new_df.csv', index = False) #print('\nCSV String:\n', gfg_csv_data) print('\nCSV String:\n', newdf_csv_data) new_df=pd.read_csv("new_df.csv") new_df.describe() new_df.shape #debugging. why does speed have 500 here? print (new_df.sort_values('speed', ascending=False)) ###Output speed power 450 24.399 95.117 449 24.374 98.223 448 24.349 93.078 447 24.299 93.694 446 24.249 103.700 .. ... ... 4 0.526 5.553 3 0.501 1.048 2 0.450 3.826 1 0.400 5.186 0 0.325 4.331 [451 rows x 2 columns] ###Markdown Analysis 2 ###Code sns.lmplot(x="speed", y="power", data=new_df); new_df=pd.read_csv("new_df.csv") a=new_df["speed"].to_numpy() b=new_df["power"].to_numpy() a = speed.reshape(-1, 1) model = lin.LinearRegression() model.fit(a,b)#tells skcitlearn where the values are #r = model.score(x, y)#find out the r value, how well the lines fits the data set #p = [model.intercept_, model.coef_[0]]#provide the intercept # Let's rename already created dataFrame. # Check the current column names # using "columns" attribute. # df.columns # Change the column names #new_df.columns =['Col_1', 'Col_2'] # printing the data frame #new_df new_df=pd.read_csv("new_df.csv") a=new_df["Col_1"].to_numpy() b=new_df["Col_2"].to_numpy() #a = speed.reshape(-1, 1) #model = lin.LinearRegression() ###Output _____no_output_____
feature_selection/feature_selection.ipynb
###Markdown Feature Selection ###Code import mlrun %nuclio config kind = "job" %nuclio config spec.image = "mlrun/ml-models" # nuclio: start-code import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np import os import json # Feature selection strategies from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import SelectFromModel # Model based feature selection from sklearn.ensemble import ExtraTreesClassifier from sklearn.svm import LinearSVC from sklearn.linear_model import LogisticRegression # Scale feature scores from sklearn.preprocessing import MinMaxScaler # SKLearn estimators list from sklearn.utils import all_estimators # MLRun utils from mlrun.mlutils.plots import gcf_clear from mlrun.utils.helpers import create_class from mlrun.artifacts import PlotArtifact # Feature Selection from feature_selection import feature_selection, show_values_on_bars, plot_stat # nuclio: end-code ###Output _____no_output_____ ###Markdown Test ###Code from mlrun import code_to_function, mount_v3io, mlconf, NewTask, run_local mlconf.artifact_path = os.path.abspath('./artifacts') mlconf.db_path = 'http://mlrun-api:8080' ###Output _____no_output_____ ###Markdown Local Test ###Code task = NewTask(params={'k': 2, 'min_votes': 0.3, 'label_column': 'is_error'}, inputs={'df_artifact': os.path.abspath('data/metrics.pq')}) from feature_selection import feature_selection, show_values_on_bars, plot_stat runl = run_local(task=task, name='feature_selection', handler=feature_selection, artifact_path=os.path.join(os.path.abspath('./'), 'artifacts')) ###Output > 2021-08-11 10:12:05,721 [info] starting run feature_selection uid=8765f9e7fde94efeb662fbe2c37a0e1a DB=http://mlrun-api:8080 ###Markdown Job Test ###Code fn = code_to_function(name='feature_selection', handler='feature_selection') fn.spec.default_handler = 'feature_selection' fn.spec.description = "Select features through multiple Statistical and Model filters" fn.metadata.categories = ['data-prep', 'ml'] fn.metadata.labels = {"author": "alexz"} fn.export('function.yaml') fn.apply(mount_v3io()) fn_run = fn.run(task) mlrun.get_dataitem(fn_run.spec.inputs['df_artifact']).as_df() mlrun.get_dataitem(fn_run.outputs['feature_scores']).as_df() mlrun.get_dataitem(fn_run.outputs['selected_features']).as_df() ###Output _____no_output_____ ###Markdown Feature Selection ###Code import nuclio %nuclio config kind = "job" %nuclio config spec.image = "mlrun/ml-models" # nuclio: start-code import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np import os import json # Feature selection strategies from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import SelectFromModel # Model based feature selection from sklearn.ensemble import ExtraTreesClassifier from sklearn.svm import LinearSVC from sklearn.linear_model import LogisticRegression # Scale feature scores from sklearn.preprocessing import MinMaxScaler # SKLearn estimators list from sklearn.utils import all_estimators # MLRun utils from mlrun.mlutils import create_class, gcf_clear from mlrun.artifacts import PlotArtifact def show_values_on_bars(axs, h_v="v", space=0.4): def _show_on_single_plot(ax): if h_v == "v": for p in ax.patches: _x = p.get_x() + p.get_width() / 2 _y = p.get_y() + p.get_height() value = int(p.get_height()) ax.text(_x, _y, value, ha="center") elif h_v == "h": for p in ax.patches: _x = p.get_x() + p.get_width() + float(space) _y = p.get_y() + p.get_height() value = int(p.get_width()) ax.text(_x, _y, value, ha="left") if isinstance(axs, np.ndarray): for idx, ax in np.ndenumerate(axs): _show_on_single_plot(ax) else: _show_on_single_plot(axs) def plot_stat(context, stat_name, stat_df): gcf_clear(plt) # Add chart ax = plt.axes() stat_chart = sns.barplot(x=stat_name, y='index', data=stat_df.sort_values(stat_name, ascending=False).reset_index(), ax=ax) plt.tight_layout() for p in stat_chart.patches: width = p.get_width() plt.text(5+p.get_width(), p.get_y()+0.55*p.get_height(), '{:1.2f}'.format(width), ha='center', va='center') context.log_artifact(PlotArtifact(f'{stat_name}', body=plt.gcf()), local_path=os.path.join('plots', 'feature_selection', f'{stat_name}.html')) gcf_clear(plt) def feature_selection(context, df_artifact, k=2, min_votes=0.5, label_column: str = 'Y', stat_filters = ['f_classif', 'mutual_info_classif', 'chi2', 'f_regression'], model_filters = {'LinearSVC': 'LinearSVC', 'LogisticRegression': 'LogisticRegression', 'ExtraTreesClassifier': 'ExtraTreesClassifier'}, max_scaled_scores = True): """Applies selected feature selection statistical functions or models on our 'df_artifact'. Each statistical function or model will vote for it's best K selected features. If a feature has >= 'min_votes' votes, it will be selected. :param context: the function context :param k: number of top features to select from each statistical function or model :param min_votes: minimal number of votes (from a model or by statistical function) needed for a feature to be selected. Can be specified by percentage of votes or absolute number of votes :param label_column: ground-truth (y) labels :param stat_filters: statistical functions to apply to the features (from sklearn.feature_selection) :param model_filters: models to use for feature evaluation, can be specified by model name (ex. LinearSVC), formalized json (contains 'CLASS', 'FIT', 'META') or a path to such json file. :param max_scaled_scores: produce feature scores table scaled with max_scaler """ # Read input DF df_path = str(df_artifact) context.logger.info(f'input dataset {df_path}') if df_path.endswith('csv'): df = pd.read_csv(df_path) elif df_path.endswith('parquet') or df_path.endswith('pq'): df = pd.read_parquet(df_path) # Set feature vector and labels y = df.pop(label_column) X = df # Create selected statistical estimators stat_functions_list = {stat_name:SelectKBest(create_class(f'sklearn.feature_selection.{stat_name}'), k) for stat_name in stat_filters} requires_abs = ['chi2'] # Run statistic filters selected_features_agg = {} stats_df = pd.DataFrame(index=X.columns) for stat_name, stat_func in stat_functions_list.items(): try: # Compute statistics params = (X, y) if stat_name in requires_abs else (abs(X), y) stat = stat_func.fit(*params) # Collect stat function results stat_df = pd.DataFrame(index=X.columns, columns=[stat_name], data=stat.scores_) plot_stat(context, stat_name, stat_df) stats_df = stats_df.join(stat_df) # Select K Best features selected_features = X.columns[stat_func.get_support()] selected_features_agg[stat_name] = selected_features except Exception as e: context.logger.info(f"Couldn't calculate {stat_name} because of: {e}") # Create models from class name / json file / json params all_sklearn_estimators = dict(all_estimators()) if len(model_filters) > 0 else {} selected_models = {} for model_name, model in model_filters.items(): if '.json' in model: current_model = json.load(open(model, 'r')) ClassifierClass = create_class(current_model["META"]["class"]) selected_models[model_name] = ClassifierClass(**current_model["CLASS"]) elif model in all_sklearn_estimators: selected_models[model_name] = all_sklearn_estimators[model_name]() else: try: current_model = json.loads(model) if isinstance(model, str) else current_model ClassifierClass = create_class(current_model["META"]["class"]) selected_models[model_name] = ClassifierClass(**current_model["CLASS"]) except: context.logger.info(f'unable to load {model}') # Run model filters models_df = pd.DataFrame(index=X.columns) for model_name, model in selected_models.items(): # Train model and get feature importance select_from_model = SelectFromModel(model).fit(X,y) feature_idx = select_from_model.get_support() feature_names = X.columns[feature_idx] selected_features_agg[model_name] = feature_names.tolist() # Collect model feature importance if hasattr(select_from_model.estimator_, 'coef_'): stat_df = select_from_model.estimator_.coef_ elif hasattr(select_from_model.estimator_, 'feature_importances_'): stat_df = select_from_model.estimator_.feature_importances_ stat_df = pd.DataFrame(index=X.columns, columns=[model_name], data=stat_df[0]) models_df = models_df.join(stat_df) plot_stat(context, model_name, stat_df) # Create feature_scores DF with stat & model filters scores result_matrix_df = pd.concat([stats_df, models_df], axis=1, sort=False) context.log_dataset(key='feature_scores', df=result_matrix_df, local_path='feature_scores.parquet', format='parquet') if max_scaled_scores: normalized_df = result_matrix_df.replace([np.inf, -np.inf], np.nan).values min_max_scaler = MinMaxScaler() normalized_df = min_max_scaler.fit_transform(normalized_df) normalized_df = pd.DataFrame(data=normalized_df, columns=result_matrix_df.columns, index=result_matrix_df.index) context.log_dataset(key='max_scaled_scores_feature_scores', df=normalized_df, local_path='max_scaled_scores_feature_scores.parquet', format='parquet') # Create feature count DataFrame for test_name in selected_features_agg: result_matrix_df[test_name] = [1 if x in selected_features_agg[test_name] else 0 for x in X.columns] result_matrix_df.loc[:,'num_votes'] = result_matrix_df.sum(axis=1) context.log_dataset(key='selected_features_count', df=result_matrix_df, local_path='selected_features_count.parquet', format='parquet') # How many votes are needed for a feature to be selected? if isinstance(min_votes, int): votes_needed = min_votes else: num_filters = len(stat_filters) + len(model_filters) votes_needed = int(np.floor(num_filters * max(min(min_votes, 1), 0))) context.logger.info(f'votes needed to be selected: {votes_needed}') # Create final feature dataframe selected_features = result_matrix_df[result_matrix_df.num_votes>=votes_needed].index.tolist() good_feature_df = df.loc[:, selected_features] final_df = pd.concat([good_feature_df,y], axis=1) context.log_dataset(key='selected_features', df=final_df, local_path='selected_features.parquet', format='parquet') # nuclio: end-code ###Output _____no_output_____ ###Markdown Test ###Code from mlrun import code_to_function, mount_v3io, mlconf, NewTask, run_local mlconf.artifact_path = os.path.abspath('./artifacts') mlconf.db_path = 'http://mlrun-api:8080' ###Output _____no_output_____ ###Markdown Local Test ###Code task = NewTask(params={'k': 2, 'min_votes': 0.3, 'label_column': 'is_error'}, inputs={'df_artifact': '/User/demo-network-operations/data/metrics.parquet'}) runl = run_local(task=task, name='feature_selection', handler=feature_selection, artifact_path=os.path.join(os.path.abspath('./'), 'artifacts')) ###Output [mlrun] 2020-04-12 12:28:08,160 starting run feature_selection uid=558aa6cf639d4e9eab6c8d6020f45962 -> http://10.194.95.255:8080 ###Markdown Job Test ###Code fn = code_to_function(name='feature_selection', handler='feature_selection') fn.spec.default_handler = 'feature_selection' fn.spec.description = "Select features through multiple Statistical and Model filters" fn.metadata.categories = ['data-prep', 'ml'] fn.metadata.labels = {"author": "orz"} fn.export('function.yaml') fn.apply(mount_v3io()) fn.run(task) pd.read_parquet(runl.spec.inputs['df_artifact']) pd.read_parquet(runl.outputs['feature_scores']) pd.read_parquet(runl.outputs['max_scaled_scores_feature_scores']) pd.read_parquet(runl.outputs['selected_features_count']) pd.read_parquet(runl.outputs['selected_features']) ###Output _____no_output_____ ###Markdown Feature Selection ###Code import nuclio %nuclio config kind = "job" %nuclio config spec.image = "mlrun/ml-models" # nuclio: start-code import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np import os import json # Feature selection strategies from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import SelectFromModel # Model based feature selection from sklearn.ensemble import ExtraTreesClassifier from sklearn.svm import LinearSVC from sklearn.linear_model import LogisticRegression # Scale feature scores from sklearn.preprocessing import MinMaxScaler # SKLearn estimators list from sklearn.utils import all_estimators # MLRun utils from mlrun.mlutils.plots import gcf_clear from mlrun.utils.helpers import create_class from mlrun.artifacts import PlotArtifact def show_values_on_bars(axs, h_v="v", space=0.4): def _show_on_single_plot(ax): if h_v == "v": for p in ax.patches: _x = p.get_x() + p.get_width() / 2 _y = p.get_y() + p.get_height() value = int(p.get_height()) ax.text(_x, _y, value, ha="center") elif h_v == "h": for p in ax.patches: _x = p.get_x() + p.get_width() + float(space) _y = p.get_y() + p.get_height() value = int(p.get_width()) ax.text(_x, _y, value, ha="left") if isinstance(axs, np.ndarray): for idx, ax in np.ndenumerate(axs): _show_on_single_plot(ax) else: _show_on_single_plot(axs) def plot_stat(context, stat_name, stat_df): gcf_clear(plt) # Add chart ax = plt.axes() stat_chart = sns.barplot(x=stat_name, y='index', data=stat_df.sort_values(stat_name, ascending=False).reset_index(), ax=ax) plt.tight_layout() for p in stat_chart.patches: width = p.get_width() plt.text(5+p.get_width(), p.get_y()+0.55*p.get_height(), '{:1.2f}'.format(width), ha='center', va='center') context.log_artifact(PlotArtifact(f'{stat_name}', body=plt.gcf()), local_path=os.path.join('plots', 'feature_selection', f'{stat_name}.html')) gcf_clear(plt) def feature_selection(context, df_artifact, k=2, min_votes=0.5, label_column: str = 'Y', stat_filters = ['f_classif', 'mutual_info_classif', 'chi2', 'f_regression'], model_filters = {'LinearSVC': 'LinearSVC', 'LogisticRegression': 'LogisticRegression', 'ExtraTreesClassifier': 'ExtraTreesClassifier'}, max_scaled_scores = True): """Applies selected feature selection statistical functions or models on our 'df_artifact'. Each statistical function or model will vote for it's best K selected features. If a feature has >= 'min_votes' votes, it will be selected. :param context: the function context :param k: number of top features to select from each statistical function or model :param min_votes: minimal number of votes (from a model or by statistical function) needed for a feature to be selected. Can be specified by percentage of votes or absolute number of votes :param label_column: ground-truth (y) labels :param stat_filters: statistical functions to apply to the features (from sklearn.feature_selection) :param model_filters: models to use for feature evaluation, can be specified by model name (ex. LinearSVC), formalized json (contains 'CLASS', 'FIT', 'META') or a path to such json file. :param max_scaled_scores: produce feature scores table scaled with max_scaler """ # Read input DF df_path = str(df_artifact) context.logger.info(f'input dataset {df_path}') if df_path.endswith('csv'): df = pd.read_csv(df_path) elif df_path.endswith('parquet') or df_path.endswith('pq'): df = pd.read_parquet(df_path) # Set feature vector and labels y = df.pop(label_column) X = df # Create selected statistical estimators stat_functions_list = {stat_name:SelectKBest(create_class(f'sklearn.feature_selection.{stat_name}'), k) for stat_name in stat_filters} requires_abs = ['chi2'] # Run statistic filters selected_features_agg = {} stats_df = pd.DataFrame(index=X.columns) for stat_name, stat_func in stat_functions_list.items(): try: # Compute statistics params = (X, y) if stat_name in requires_abs else (abs(X), y) stat = stat_func.fit(*params) # Collect stat function results stat_df = pd.DataFrame(index=X.columns, columns=[stat_name], data=stat.scores_) plot_stat(context, stat_name, stat_df) stats_df = stats_df.join(stat_df) # Select K Best features selected_features = X.columns[stat_func.get_support()] selected_features_agg[stat_name] = selected_features except Exception as e: context.logger.info(f"Couldn't calculate {stat_name} because of: {e}") # Create models from class name / json file / json params all_sklearn_estimators = dict(all_estimators()) if len(model_filters) > 0 else {} selected_models = {} for model_name, model in model_filters.items(): if '.json' in model: current_model = json.load(open(model, 'r')) ClassifierClass = create_class(current_model["META"]["class"]) selected_models[model_name] = ClassifierClass(**current_model["CLASS"]) elif model in all_sklearn_estimators: selected_models[model_name] = all_sklearn_estimators[model_name]() else: try: current_model = json.loads(model) if isinstance(model, str) else current_model ClassifierClass = create_class(current_model["META"]["class"]) selected_models[model_name] = ClassifierClass(**current_model["CLASS"]) except: context.logger.info(f'unable to load {model}') # Run model filters models_df = pd.DataFrame(index=X.columns) for model_name, model in selected_models.items(): # Train model and get feature importance select_from_model = SelectFromModel(model).fit(X,y) feature_idx = select_from_model.get_support() feature_names = X.columns[feature_idx] selected_features_agg[model_name] = feature_names.tolist() # Collect model feature importance if hasattr(select_from_model.estimator_, 'coef_'): stat_df = select_from_model.estimator_.coef_ elif hasattr(select_from_model.estimator_, 'feature_importances_'): stat_df = select_from_model.estimator_.feature_importances_ stat_df = pd.DataFrame(index=X.columns, columns=[model_name], data=stat_df[0]) models_df = models_df.join(stat_df) plot_stat(context, model_name, stat_df) # Create feature_scores DF with stat & model filters scores result_matrix_df = pd.concat([stats_df, models_df], axis=1, sort=False) context.log_dataset(key='feature_scores', df=result_matrix_df, local_path='feature_scores.parquet', format='parquet') if max_scaled_scores: normalized_df = result_matrix_df.replace([np.inf, -np.inf], np.nan).values min_max_scaler = MinMaxScaler() normalized_df = min_max_scaler.fit_transform(normalized_df) normalized_df = pd.DataFrame(data=normalized_df, columns=result_matrix_df.columns, index=result_matrix_df.index) context.log_dataset(key='max_scaled_scores_feature_scores', df=normalized_df, local_path='max_scaled_scores_feature_scores.parquet', format='parquet') # Create feature count DataFrame for test_name in selected_features_agg: result_matrix_df[test_name] = [1 if x in selected_features_agg[test_name] else 0 for x in X.columns] result_matrix_df.loc[:,'num_votes'] = result_matrix_df.sum(axis=1) context.log_dataset(key='selected_features_count', df=result_matrix_df, local_path='selected_features_count.parquet', format='parquet') # How many votes are needed for a feature to be selected? if isinstance(min_votes, int): votes_needed = min_votes else: num_filters = len(stat_filters) + len(model_filters) votes_needed = int(np.floor(num_filters * max(min(min_votes, 1), 0))) context.logger.info(f'votes needed to be selected: {votes_needed}') # Create final feature dataframe selected_features = result_matrix_df[result_matrix_df.num_votes>=votes_needed].index.tolist() good_feature_df = df.loc[:, selected_features] final_df = pd.concat([good_feature_df,y], axis=1) context.log_dataset(key='selected_features', df=final_df, local_path='selected_features.parquet', format='parquet') # nuclio: end-code ###Output _____no_output_____ ###Markdown Test ###Code from mlrun import code_to_function, mount_v3io, mlconf, NewTask, run_local mlconf.artifact_path = os.path.abspath('./artifacts') mlconf.db_path = 'http://mlrun-api:8080' ###Output _____no_output_____ ###Markdown Local Test ###Code task = NewTask(params={'k': 2, 'min_votes': 0.3, 'label_column': 'is_error'}, inputs={'df_artifact': '/User/demo-network-operations/data/metrics.parquet'}) runl = run_local(task=task, name='feature_selection', handler=feature_selection, artifact_path=os.path.join(os.path.abspath('./'), 'artifacts')) ###Output [mlrun] 2020-04-12 12:28:08,160 starting run feature_selection uid=558aa6cf639d4e9eab6c8d6020f45962 -> http://10.194.95.255:8080 ###Markdown Job Test ###Code fn = code_to_function(name='feature_selection', handler='feature_selection') fn.spec.default_handler = 'feature_selection' fn.spec.description = "Select features through multiple Statistical and Model filters" fn.metadata.categories = ['data-prep', 'ml'] fn.metadata.labels = {"author": "orz"} fn.export('function.yaml') fn.apply(mount_v3io()) fn.run(task) pd.read_parquet(runl.spec.inputs['df_artifact']) pd.read_parquet(runl.outputs['feature_scores']) pd.read_parquet(runl.outputs['max_scaled_scores_feature_scores']) pd.read_parquet(runl.outputs['selected_features_count']) pd.read_parquet(runl.outputs['selected_features']) ###Output _____no_output_____ ###Markdown Feature Selection ###Code import nuclio %nuclio config kind = "job" %nuclio config spec.image = "mlrun/ml-models" # nuclio: start-code import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np import os import json # Feature selection strategies from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import SelectFromModel # Model based feature selection from sklearn.ensemble import ExtraTreesClassifier from sklearn.svm import LinearSVC from sklearn.linear_model import LogisticRegression # Scale feature scores from sklearn.preprocessing import MinMaxScaler # SKLearn estimators list from sklearn.utils import all_estimators # MLRun utils from mlrun.mlutils import create_class, gcf_clear from mlrun.artifacts import PlotArtifact def show_values_on_bars(axs, h_v="v", space=0.4): def _show_on_single_plot(ax): if h_v == "v": for p in ax.patches: _x = p.get_x() + p.get_width() / 2 _y = p.get_y() + p.get_height() value = int(p.get_height()) ax.text(_x, _y, value, ha="center") elif h_v == "h": for p in ax.patches: _x = p.get_x() + p.get_width() + float(space) _y = p.get_y() + p.get_height() value = int(p.get_width()) ax.text(_x, _y, value, ha="left") if isinstance(axs, np.ndarray): for idx, ax in np.ndenumerate(axs): _show_on_single_plot(ax) else: _show_on_single_plot(axs) def plot_stat(context, stat_name, stat_df): gcf_clear(plt) # Add chart ax = plt.axes() stat_chart = sns.barplot(x=stat_name, y='index', data=stat_df.sort_values(stat_name, ascending=False).reset_index(), ax=ax) plt.tight_layout() for p in stat_chart.patches: width = p.get_width() plt.text(5+p.get_width(), p.get_y()+0.55*p.get_height(), '{:1.2f}'.format(width), ha='center', va='center') context.log_artifact(PlotArtifact(f'{stat_name}', body=plt.gcf()), local_path=os.path.join('plots', 'feature_selection', f'{stat_name}.html')) gcf_clear(plt) def feature_selection(context, df_artifact, k=2, min_votes=0.5, label_column: str = 'Y', stat_filters = ['f_classif', 'mutual_info_classif', 'chi2', 'f_regression'], model_filters = {'LinearSVC': 'LinearSVC', 'LogisticRegression': 'LogisticRegression', 'ExtraTreesClassifier': 'ExtraTreesClassifier'}, max_scaled_scores = True): """Applies selected feature selection statistical functions or models on our 'df_artifact'. Each statistical function or model will vote for it's best K selected features. If a feature has >= 'min_votes' votes, it will be selected. :param context: the function context :param k: number of top features to select from each statistical function or model :param min_votes: minimal number of votes (from a model or by statistical function) needed for a feature to be selected. Can be specified by percentage of votes or absolute number of votes :param label_column: ground-truth (y) labels :param stat_filters: statistical functions to apply to the features (from sklearn.feature_selection) :param model_filters: models to use for feature evaluation, can be specified by model name (ex. LinearSVC), formalized json (contains 'CLASS', 'FIT', 'META') or a path to such json file. :param max_scaled_scores: produce feature scores table scaled with max_scaler """ # Read input DF df_path = str(df_artifact) context.logger.info(f'input dataset {df_path}') if df_path.endswith('csv'): df = pd.read_csv(df_path) elif df_path.endswith('parquet') or df_path.endswith('pq'): df = pd.read_parquet(df_path) # Set feature vector and labels y = df.pop(label_column) X = df # Create selected statistical estimators stat_functions_list = {stat_name:SelectKBest(create_class(f'sklearn.feature_selection.{stat_name}'), k) for stat_name in stat_filters} requires_abs = ['chi2'] # Run statistic filters selected_features_agg = {} stats_df = pd.DataFrame(index=X.columns) for stat_name, stat_func in stat_functions_list.items(): # Compute statistics params = (X, y) if stat_name in requires_abs else (abs(X), y) stat = stat_func.fit(*params) # Collect stat function results stat_df = pd.DataFrame(index=X.columns, columns=[stat_name], data=stat.scores_) plot_stat(context, stat_name, stat_df) stats_df = stats_df.join(stat_df) # Select K Best features selected_features = X.columns[stat_func.get_support()] selected_features_agg[stat_name] = selected_features # Create models from class name / json file / json params all_sklearn_estimators = dict(all_estimators()) if len(model_filters) > 0 else {} selected_models = {} for model_name, model in model_filters.items(): if '.json' in model: current_model = json.load(open(model, 'r')) ClassifierClass = create_class(current_model["META"]["class"]) selected_models[model_name] = ClassifierClass(**current_model["CLASS"]) elif model in all_sklearn_estimators: selected_models[model_name] = all_sklearn_estimators[model_name]() else: try: current_model = json.loads(model) if isinstance(model, str) else current_model ClassifierClass = create_class(current_model["META"]["class"]) selected_models[model_name] = ClassifierClass(**current_model["CLASS"]) except: context.logger.info(f'unable to load {model}') # Run model filters models_df = pd.DataFrame(index=X.columns) for model_name, model in selected_models.items(): # Train model and get feature importance select_from_model = SelectFromModel(model).fit(X,y) feature_idx = select_from_model.get_support() feature_names = X.columns[feature_idx] selected_features_agg[model_name] = feature_names.tolist() # Collect model feature importance if hasattr(select_from_model.estimator_, 'coef_'): stat_df = select_from_model.estimator_.coef_ elif hasattr(select_from_model.estimator_, 'feature_importances_'): stat_df = select_from_model.estimator_.feature_importances_ stat_df = pd.DataFrame(index=X.columns, columns=[model_name], data=stat_df[0]) models_df = models_df.join(stat_df) plot_stat(context, model_name, stat_df) # Create feature_scores DF with stat & model filters scores result_matrix_df = pd.concat([stats_df, models_df], axis=1, sort=False) context.log_dataset(key='feature_scores', df=result_matrix_df, local_path='feature_scores.parquet', format='parquet') if max_scaled_scores: normalized_df = result_matrix_df.replace([np.inf, -np.inf], np.nan).values min_max_scaler = MinMaxScaler() normalized_df = min_max_scaler.fit_transform(normalized_df) normalized_df = pd.DataFrame(data=normalized_df, columns=result_matrix_df.columns, index=result_matrix_df.index) context.log_dataset(key='max_scaled_scores_feature_scores', df=normalized_df, local_path='max_scaled_scores_feature_scores.parquet', format='parquet') # Create feature count DataFrame for test_name in selected_features_agg: result_matrix_df[test_name] = [1 if x in selected_features_agg[test_name] else 0 for x in X.columns] result_matrix_df.loc[:,'num_votes'] = result_matrix_df.sum(axis=1) context.log_dataset(key='selected_features_count', df=result_matrix_df, local_path='selected_features_count.parquet', format='parquet') # How many votes are needed for a feature to be selected? if isinstance(min_votes, int): votes_needed = min_votes else: num_filters = len(stat_filters) + len(model_filters) votes_needed = int(np.floor(num_filters * max(min(min_votes, 1), 0))) context.logger.info(f'votes needed to be selected: {votes_needed}') # Create final feature dataframe selected_features = result_matrix_df[result_matrix_df.num_votes>=votes_needed].index.tolist() good_feature_df = df.loc[:, selected_features] final_df = pd.concat([good_feature_df,y], axis=1) context.log_dataset(key='selected_features', df=final_df, local_path='selected_features.parquet', format='parquet') # nuclio: end-code ###Output _____no_output_____ ###Markdown Test ###Code from mlrun import code_to_function, mount_v3io, mlconf, NewTask, run_local mlconf.artifact_path = os.path.abspath('./artifacts') mlconf.db_path = 'http://mlrun-api:8080' ###Output _____no_output_____ ###Markdown Local Test ###Code task = NewTask(params={'k': 2, 'min_votes': 0.3, 'label_column': 'is_error'}, inputs={'df_artifact': '/User/demo-network-operations/data/metrics.parquet'}) runl = run_local(task=task, name='feature_selection', handler=feature_selection, artifact_path=os.path.join(os.path.abspath('./'), 'artifacts')) ###Output [mlrun] 2020-04-12 12:28:08,160 starting run feature_selection uid=558aa6cf639d4e9eab6c8d6020f45962 -> http://10.194.95.255:8080 ###Markdown Job Test ###Code fn = code_to_function(name='feature_selection', handler='feature_selection') fn.spec.default_handler = 'feature_selection' fn.spec.description = "Select features through multiple Statistical and Model filters" fn.metadata.categories = ['data-prep', 'ml'] fn.metadata.labels = {"author": "orz"} fn.export('function.yaml') fn.apply(mount_v3io()) fn.run(task) pd.read_parquet(runl.spec.inputs['df_artifact']) pd.read_parquet(runl.outputs['feature_scores']) pd.read_parquet(runl.outputs['max_scaled_scores_feature_scores']) pd.read_parquet(runl.outputs['selected_features_count']) pd.read_parquet(runl.outputs['selected_features']) ###Output _____no_output_____ ###Markdown Feature Selection ###Code import mlrun %nuclio config kind = "job" %nuclio config spec.image = "mlrun/ml-models" # nuclio: start-code import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np import os import json # Feature selection strategies from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import SelectFromModel # Model based feature selection from sklearn.ensemble import ExtraTreesClassifier from sklearn.svm import LinearSVC from sklearn.linear_model import LogisticRegression # Scale feature scores from sklearn.preprocessing import MinMaxScaler # SKLearn estimators list from sklearn.utils import all_estimators # MLRun utils from mlrun.mlutils.plots import gcf_clear from mlrun.utils.helpers import create_class from mlrun.artifacts import PlotArtifact def show_values_on_bars(axs, h_v="v", space=0.4): def _show_on_single_plot(ax): if h_v == "v": for p in ax.patches: _x = p.get_x() + p.get_width() / 2 _y = p.get_y() + p.get_height() value = int(p.get_height()) ax.text(_x, _y, value, ha="center") elif h_v == "h": for p in ax.patches: _x = p.get_x() + p.get_width() + float(space) _y = p.get_y() + p.get_height() value = int(p.get_width()) ax.text(_x, _y, value, ha="left") if isinstance(axs, np.ndarray): for idx, ax in np.ndenumerate(axs): _show_on_single_plot(ax) else: _show_on_single_plot(axs) def plot_stat(context, stat_name, stat_df): gcf_clear(plt) # Add chart ax = plt.axes() stat_chart = sns.barplot(x=stat_name, y='index', data=stat_df.sort_values(stat_name, ascending=False).reset_index(), ax=ax) plt.tight_layout() for p in stat_chart.patches: width = p.get_width() plt.text(5+p.get_width(), p.get_y()+0.55*p.get_height(), '{:1.2f}'.format(width), ha='center', va='center') context.log_artifact(PlotArtifact(f'{stat_name}', body=plt.gcf()), local_path=os.path.join('plots', 'feature_selection', f'{stat_name}.html')) gcf_clear(plt) def feature_selection(context, df_artifact, k=2, min_votes=0.5, label_column: str = 'Y', stat_filters = ['f_classif', 'mutual_info_classif', 'chi2', 'f_regression'], model_filters = {'LinearSVC': 'LinearSVC', 'LogisticRegression': 'LogisticRegression', 'ExtraTreesClassifier': 'ExtraTreesClassifier'}, max_scaled_scores = True): """Applies selected feature selection statistical functions or models on our 'df_artifact'. Each statistical function or model will vote for it's best K selected features. If a feature has >= 'min_votes' votes, it will be selected. :param context: the function context :param k: number of top features to select from each statistical function or model :param min_votes: minimal number of votes (from a model or by statistical function) needed for a feature to be selected. Can be specified by percentage of votes or absolute number of votes :param label_column: ground-truth (y) labels :param stat_filters: statistical functions to apply to the features (from sklearn.feature_selection) :param model_filters: models to use for feature evaluation, can be specified by model name (ex. LinearSVC), formalized json (contains 'CLASS', 'FIT', 'META') or a path to such json file. :param max_scaled_scores: produce feature scores table scaled with max_scaler """ # Read input DF df = df_artifact.as_df() # Drop nan's and inf's for our calculations df = df.replace([np.inf, -np.inf], np.nan).dropna() # Set feature vector and labels y = df.pop(label_column) X = df # Create selected statistical estimators stat_functions_list = {stat_name:SelectKBest(create_class(f'sklearn.feature_selection.{stat_name}'), k) for stat_name in stat_filters} requires_abs = ['chi2'] # Run statistic filters selected_features_agg = {} stats_df = pd.DataFrame(index=X.columns) for stat_name, stat_func in stat_functions_list.items(): try: # Compute statistics params = (X, y) if stat_name in requires_abs else (np.abs(X), y) stat = stat_func.fit(*params) # Collect stat function results stat_df = pd.DataFrame(index=X.columns, columns=[stat_name], data=stat.scores_) plot_stat(context, stat_name, stat_df) stats_df = stats_df.join(stat_df) # Select K Best features selected_features = X.columns[stat_func.get_support()] selected_features_agg[stat_name] = selected_features except Exception as e: context.logger.info(f"Couldn't calculate {stat_name} because of: {e}") # Create models from class name / json file / json params all_sklearn_estimators = dict(all_estimators()) if len(model_filters) > 0 else {} selected_models = {} for model_name, model in model_filters.items(): if '.json' in model: current_model = json.load(open(model, 'r')) ClassifierClass = create_class(current_model["META"]["class"]) selected_models[model_name] = ClassifierClass(**current_model["CLASS"]) elif model in all_sklearn_estimators: selected_models[model_name] = all_sklearn_estimators[model_name]() else: try: current_model = json.loads(model) if isinstance(model, str) else current_model ClassifierClass = create_class(current_model["META"]["class"]) selected_models[model_name] = ClassifierClass(**current_model["CLASS"]) except: context.logger.info(f'unable to load {model}') # Run model filters models_df = pd.DataFrame(index=X.columns) for model_name, model in selected_models.items(): # Train model and get feature importance select_from_model = SelectFromModel(model).fit(X,y) feature_idx = select_from_model.get_support() feature_names = X.columns[feature_idx] selected_features_agg[model_name] = feature_names.tolist() # Collect model feature importance if hasattr(select_from_model.estimator_, 'coef_'): stat_df = select_from_model.estimator_.coef_ elif hasattr(select_from_model.estimator_, 'feature_importances_'): stat_df = select_from_model.estimator_.feature_importances_ stat_df = pd.DataFrame(index=X.columns, columns=[model_name], data=stat_df[0]) models_df = models_df.join(stat_df) plot_stat(context, model_name, stat_df) # Create feature_scores DF with stat & model filters scores result_matrix_df = pd.concat([stats_df, models_df], axis=1, sort=False) context.log_dataset(key='feature_scores', df=result_matrix_df, local_path='feature_scores.parquet', format='parquet') if max_scaled_scores: normalized_df = result_matrix_df.replace([np.inf, -np.inf], np.nan).values min_max_scaler = MinMaxScaler() normalized_df = min_max_scaler.fit_transform(normalized_df) normalized_df = pd.DataFrame(data=normalized_df, columns=result_matrix_df.columns, index=result_matrix_df.index) context.log_dataset(key='max_scaled_scores_feature_scores', df=normalized_df, local_path='max_scaled_scores_feature_scores.parquet', format='parquet') # Create feature count DataFrame for test_name in selected_features_agg: result_matrix_df[test_name] = [1 if x in selected_features_agg[test_name] else 0 for x in X.columns] result_matrix_df.loc[:,'num_votes'] = result_matrix_df.sum(axis=1) context.log_dataset(key='selected_features_count', df=result_matrix_df, local_path='selected_features_count.parquet', format='parquet') # How many votes are needed for a feature to be selected? if isinstance(min_votes, int): votes_needed = min_votes else: num_filters = len(stat_filters) + len(model_filters) votes_needed = int(np.floor(num_filters * max(min(min_votes, 1), 0))) context.logger.info(f'votes needed to be selected: {votes_needed}') # Create final feature dataframe selected_features = result_matrix_df[result_matrix_df.num_votes>=votes_needed].index.tolist() good_feature_df = df.loc[:, selected_features] final_df = pd.concat([good_feature_df,y], axis=1) context.log_dataset(key='selected_features', df=final_df, local_path='selected_features.parquet', format='parquet') # nuclio: end-code ###Output _____no_output_____ ###Markdown Test ###Code from mlrun import code_to_function, mount_v3io, mlconf, NewTask, run_local mlconf.artifact_path = os.path.abspath('./artifacts') mlconf.db_path = 'http://mlrun-api:8080' ###Output _____no_output_____ ###Markdown Local Test ###Code task = NewTask(params={'k': 2, 'min_votes': 0.3, 'label_column': 'is_error'}, inputs={'df_artifact': os.path.abspath('data/metrics.pq')}) runl = run_local(task=task, name='feature_selection', handler=feature_selection, artifact_path=os.path.join(os.path.abspath('./'), 'artifacts')) ###Output > 2021-06-10 12:55:47,338 [info] starting run feature_selection uid=bcf7669f839147798ff84c6e2934bdbb DB=http://mlrun-api:8080 ###Markdown Job Test ###Code fn = code_to_function(name='feature_selection', handler='feature_selection') fn.spec.default_handler = 'feature_selection' fn.spec.description = "Select features through multiple Statistical and Model filters" fn.metadata.categories = ['data-prep', 'ml'] fn.metadata.labels = {"author": "orz"} fn.export('function.yaml') fn.apply(mount_v3io()) fn_run = fn.run(task) mlrun.get_dataitem(fn_run.spec.inputs['df_artifact']).as_df() mlrun.get_dataitem(fn_run.outputs['feature_scores']).as_df() mlrun.get_dataitem(fn_run.outputs['selected_features']).as_df() ###Output _____no_output_____
supervised/3.1.decision_trees.ipynb
###Markdown 3.1 Clasificador de arbol decision ###Code import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import classification_report from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from utilities import visualize_classifier data = np.loadtxt('data_decision_trees.txt', delimiter = ',') X, y = data[:, :-1], data[:,-1] class_0 = np.array(X[y==0]) class_1 = np.array(X[y==1]) print(class_1) plt.figure() plt.scatter(class_0[:,0], class_0[:,1], s=75, facecolors='black',edgecolors='black',linewidth=1,marker='x') plt.scatter(class_1[:,0],class_1[:,1], s=75, facecolors='white', edgecolors='black', linewidth=1, marker='o') plt.title('Input data') X_train , X_test, y_train, y_test = train_test_split(X,y,test_size=0.25,random_state= 5) #Decision , Trees classifier params = {'random_state':0,'max_depth':4} classifier = DecisionTreeClassifier(**params) classifier.fit(X_train,y_train) print('Training dataset') visualize_classifier(classifier, X_train, y_train) y_test_pred = classifier.predict(X_test) print('Test dataset') visualize_classifier(classifier, X_test, y_test) class_names = ['Class-0', 'Class-1'] print("\n" + "#"*40) print("\nClassifier performance on training dataset\n") print(classification_report(y_train, classifier.predict(X_train), target_names=class_names)) print("#"*40 + '\n') print("#"*40) print("\nClassifier performance on test dataset\n") print(classification_report(y_test, y_test_pred, target_names=class_names)) print("#"*40 + "\n") """ El rendimiento de un clasificador se caracteriza por la precisión, la recuperación y las puntuaciones f1. La precisión se refiere a la precisión de la clasificación y el recuerdo se refiere al número de elementos que se recuperaron como un porcentaje del número total de elementos que se suponía que debían recuperarse. Un buen clasificador tendrá alta precisión y alta recuperación, pero generalmente es una compensación entre los dos. Por lo tanto, tenemos puntaje f1 para caracterizar eso. La puntuación F1 es la media armónica de precisión y recuperación, lo que le da un buen equilibrio entre la precisión y los valores de recuperación. """ ###Output _____no_output_____
curve-fitting-1d.ipynb
###Markdown 1次元のカーブフィッティングscipy.optimize.curve_fitによるカーブフィッティングpolyvalは多項式のみだから汎用的でない 1次の多項式 ###Code # 必要なモジュールのインポート from numpy import * from matplotlib.pyplot import * from scipy.optimize import curve_fit # モデルを用意する def model_poly1d(x, a, b): return a * x + b # データを用意する x = linspace(-5, 5, 101) y_model = model_poly1d(x, a=5, b=10) plot(x, y_model) noise = random.normal(0, 10, len(x)) scatter(x, noise) y_exp = y_model + noise scatter(x, y_exp) plot(x, y_model) savefig('fitting.svg', format='svg', dpi=1200) param, covar = curve_fit(model_poly1d, x, y_exp) param # error print(covar) print(diag(covar)) print(sqrt(diag(covar))) y_fit = model_poly1d(x, param[0], param[1]) %matplotlib inline scatter(x, y_exp) plot(x, y_model, color='black') plot(x, y_fit, color='red') ###Output _____no_output_____ ###Markdown 指数関数 ###Code h = hist(noise, bins=10) def gaussian(x, mu, sigma): return (1/sqrt(2*pi*power(sigma,2))) * exp(-power(x-mu,2)/sqrt(2*power(sigma,2))) param, covar = curve_fit(gaussian, h[1][:-1], h[0]) noise_fit = gaussian(h[1][:-1], param[0], param[1]) scatter(h[1][:-1], noise_fit) ###Output _____no_output_____
notebooks/01-06-Image-combination.ipynb
###Markdown Image combinationImage combination serves several purposes. Combining images:+ reduces noise in images+ can remove transient artifacts like cosmic rays and satellite tracks+ can remove stars in flat images taken at twilightIt's essential that several of each type of calibration image (bias, dark, flat)be taken. Combining them reduces the noise in the images by roughly a factor of$1/\sqrt{N}$, where $N$ is the number of images being combined. As shown in theprevious notebook, using a single calibration image actually *increases* thenoise in your image.There are a few ways to combine images; if done properly, features that show upin only one of the images (like cosmic rays) are not present in the combination.If done incorrectly, those features show up in your combined images and thencontaminate your calibrated science images too. The bottom line: combine by averaging images, but clip extreme valuesThe remainder of this notebook demonstrates this conclusion and explains how todo a combination by averaging images with [ccdproc](https://ccdproc.readthedocs.io/en/latest/). ###Code import numpy as np %matplotlib inline from matplotlib import pyplot as plt from matplotlib import rc from astropy.visualization import hist from astropy.stats import mad_std # Use custom style for larger fonts and figures plt.style.use('guide.mplstyle') # Set some default parameters for the plots below rc('font', size=20) rc('axes', grid=True) ###Output _____no_output_____ ###Markdown Combination method: average or median?In this section we'll look at a simplified version of the challenges ofcombining images to reduce noise. It's fair to think of astronomical images(especially bias and dark images) as being a Gaussian distribution of pixelvalues around the bias level, and a width related to the read noise of thedetector. To simplify what follows, we will work arrays of random numbers drawnfrom a Gaussian distribution instead of with astronomical images.In properly done flat images the noise is technically a Poisson distribution,but with a large enough number of counts, the distribution is indistinguishablefrom a Gaussian distribution whose width is related to the square root of thenumber of counts. While some regions of a science image are dominated by Poissonnoise from sources in the image, most of the image will be dominated by Gaussianread noise from the detector or Poisson noise from the sky background.Instead of working with a combination of images, we'll create 100 Gaussiandistributions with a mean of zero, and a standard deviation of one, and combinethose two different ways: by finding the average and by finding the median. Eachdistribution has size $320^2$ so that we can view it as either a distribution of102,400 values or as an image that is $320 \times 320$.We can think of each of these 100 distributions as representing an image, like abias or dark. To make the analogy to real images a little more direct, a "bias"of 1000 is added to each distribution. ###Code n_distributions = 100 bias_level = 1000 n_side = 320 bits = np.random.randn(n_distributions, n_side**2) + bias_level average = np.average(bits, axis=0) median = np.median(bits, axis=0) ###Output _____no_output_____ ###Markdown Now that we've created the distributions and combined them in two differentways, let's take a look at them. The [`hist` function from astropy.visualization](https://astropy.readthedocs.io/en/stable/visualization/histogram.html) is usedbelow because it can figure out what bin size to use for your data. ###Code fig, ax = plt.subplots(1, 2, sharey=True, tight_layout=True, figsize=(20, 10)) hist(bits[0, :], bins='freedman', ax=ax[0]); ax[0].set_title('One sample distribution') ax[0].set_xlabel('Pixel value') ax[0].set_ylabel('Number of pixels') hist(average, bins='freedman', label='average', alpha=0.5, ax=ax[1]); hist(median, bins='freedman', label='median', alpha=0.5, ax=ax[1]); ax[1].set_title('{} distributions combined'.format(n_distributions)) ax[1].set_xlabel('Pixel value') ax[1].legend() ###Output _____no_output_____ ###Markdown Combining by averaging gives a narrower (i.e. less noisy) distribution thancombining by median, though both substantially reduced the width of thedistribution. The conclusion so far is that combining by averaging is mildlypreferable to combining by median. Computationally, the mean is also faster tocompute than the median. Image view of these distributionsAs suggested above, we could view each of these distributions as an imageinstead of a histogram. One take away from the diagram below is that in thiscase, the difference between mean and median is not apparent.In all cases, the extreme values of the image display are set to bracket thewidth of the initial distribution. ###Code fig, axes = plt.subplots(1, 3, sharey=True, tight_layout=True, figsize=(20, 10)) data_source = [bits[0, :], average, median] titles = ['One distrbution', 'Average of {n}'.format(n=n_distributions), 'Median of {n}'.format(n=n_distributions)] for axis, data, title in zip(axes, data_source, titles): axis.imshow(data.reshape(n_side, n_side), vmin=bias_level - 3, vmax=bias_level + 3) axis.set_xticks([]) axis.set_yticks([]) axis.grid(False) axis.set_title(title) ###Output _____no_output_____ ###Markdown The effect of outliersSuppose that, in just one of the 100 distributions we're combining, there are asmall number of extreme values. In astronomical images these extremes happenvery frequently because of cosmic ray hits on the detector that cause, in onesmall patch of a calibration image, much higher counts. Another case occurs whencombining twilight flats, which often contain faint images of stars.In the example below, we set just 50 points out of the 102,400 in the firstdistribution to a somewhat higher value than the rest. ###Code bits[0, 10000:10050] = 2 * bias_level ###Output _____no_output_____ ###Markdown Remember, we can think of the values in this distribution as an image, a viewthat will be particularly convenient in this case. ###Code plt.imshow(bits[0, :].reshape(n_side, n_side), vmin=bias_level - 3, vmax=bias_level + 3) plt.xticks([]) plt.yticks([]) plt.title('One distribution with outliers') plt.grid(False) ###Output _____no_output_____ ###Markdown Now that we know what the outliers in this (and *only* this) distribution looklike, we'll combine all of the distributions as we did above. ###Code average = np.average(bits, axis=0) median = np.median(bits, axis=0) ###Output _____no_output_____ ###Markdown Even though only one out of the 100 "images" we're combining has these highpixel values, the distribution of pixels for the average is clearly affected(well, maybe not clearly, since seeing it requires a logarithmic $y$-axis). Thedistribution for the median looks much the same as above. Since median simplylooks for the middle value, an extreme value doesn't affect the result too much. ###Code plt.figure(figsize=(10, 10)) hist(average, bins='freedman', alpha=0.5, label='average'); hist(median, bins='freedman', alpha=0.5, label='median'); plt.legend() plt.xlabel('Counts') plt.ylabel('Number of pixels') plt.semilogy(); ###Output _____no_output_____ ###Markdown Combining using the average has a noticeable effect on the result; medianremoves the artifactThe effect of the outlier is *much* clearer if the distributions are displayedas images. If the distributions we're combining were calibration images then theoutliers that appear in one image (e.g. a cosmic ray) would affect the combinedimage we hoped to use for calibration. ###Code fig, axes = plt.subplots(1, 3, sharey=True, tight_layout=True, figsize=(20, 10)) data_source = [bits[0, :], average, median] titles = ['One distribution with outliers', 'Average of {n}'.format(n=n_distributions), 'Median of {n}'.format(n=n_distributions)] for axis, data, title in zip(axes, data_source, titles): axis.imshow(data.reshape(n_side, n_side), vmin=bias_level - 3, vmax=bias_level + 3) axis.set_xticks([]) axis.set_yticks([]) axis.grid(False) axis.set_title(title) ###Output _____no_output_____ ###Markdown On one hand, the noise properties are better when you combine by taking theaverage. On the other hand, the median eliminates features that appear in onlyone image.Astronomical images will almost always have those transient features. Even at anobservatory near sea level in an exposure that is very short, cosmic ray hitsare common. The solution: average combine, but clip the extreme valuesThe answer here is to first clip extreme values from the distributions and thencombine using the average. That rejects outlying values like the median but withthe modestly better statistical properties of the average. A method called"sigma clipping" is used to remove the extreme values. **Please do not use the code below for reducing your data...**...in the next set of notebooks we'll walk through the package[ccdproc](https://ccdproc.readthedocs.io), which automates much of what you see below.The section below demonstrates and explains some of what's happening behind thescenes in [ccdproc](https://ccdproc.readthedocs.io). Sigma clippingSigma clipping means calculating how "far" each pixel to be combined is from the"typical" value and excluding values from the combination if they are "too far"from the pixel value.To be clear, when evaluating which values to reject we're doing it for each ofthe 102,400 points in the distribution (or, if you prefer, each of the320$\times$320 pixels in the image) we're going to combine. In other words, foreach point (or pixel), we'll compute a "typical" value for the 100 distributions(images) we're combining and exclude any from the average that are "too far"from the "typical value."What should be used as the "typical" value, how do we measure how "far" away avalue is, and how far is "too far"?The last question is easiest to answer: it depends a bit on the noise level inyour camera but something like 5 farther from the "typical" value than most ofthe pixels are.Using the average as the typical value and the standard deviation as a measureof how far a particular value is from the typical value is often not the bestchoice. The problem with this is that outlying values in a single distribution(or image) strongly bias the average and exaggerate the standard deviation. Inthis example, where we're combining 100 distributions (images), using theaverage and standard deviation might work since there are so many distributions.A more typical number of bias or dark images that one might combine is 10 or 20.In that case, an extreme value in one image strongly affects the mean andstandard deviation.As an example, consider combining 10, 20, or 100 of our distributions, as shownin the cell below. Only in the case of 100 distributions would our extreme valueof 2000 be excluded if we excluded values more than 5 times the standarddeviation from the average. ###Code print('Number combined\t Average\t Standard dev σ \t 10σ ') for n_to_combine in [10, 20, n_distributions]: avg = np.mean(bits[:n_to_combine, 10000]) std = np.std(bits[:n_to_combine, 10000]) print('{n:10d}\t{avg:10.2f}\t{std:10.2f}\t{ten_sig:10.2f}'.format(n=n_to_combine, avg=avg, std=std, ten_sig=10 * std)) ###Output _____no_output_____ ###Markdown A better choice is to use the median as the typical value and the *medianabsolute deviation* in place of the standard deviation as the measure of how fara value is from the typical value. The [median absolute deviation](https://en.wikipedia.org/wiki/Median_absolute_deviation), or MAD,of a set of points $x$ is defined by:$$MAD = \frac{1}{N}\sum_{i=0}^N |x_i - \text{median}(x)|.$$This is a measure of the typical absolute distance from the median of the set ofvalues. The MAD is not directly equivalent to the standard deviation. Therelationship between the two depends on the distribution of values, but for aGaussian distribution multiplying the MAD by 1.4826 does the trick. The[astropy function `mad_std`](http://docs.astropy.org/en/stable/api/astropy.stats.mad_std.html) will calculate the MAD and multiply by theappropriate factor for you.Repeating the calculation above but with median as the central value and the MADin place of the standard deviation demonstrates that even for 10 distributionsthe extreme value will be excluded. ###Code print('{:^20}{:^20}{:^20}{:^20}'.format('Number combined', 'Median', 'MAD σ', '10σ')) for n_to_combine in [10, 20, n_distributions]: avg = np.median(bits[:n_to_combine, 10000]) std = mad_std(bits[:n_to_combine, 10000]) print('{n:^20d}{avg:^20.2f}{std:^20.2f}{ten_sig:^20.2f}'.format(n=n_to_combine, avg=avg, std=std, ten_sig=10 * std)) ###Output _____no_output_____ ###Markdown The downside to using the median and median absolute deviation? They can be slowto compute for large images or large stacks of images. The cells below perform the actual clipping; you should generally use theastropy function [`sigma_clip`](https://astropy.readthedocs.io/en/stable/stats/robust.html) to do this, but here we'll doit manually to illustrate the process.We begin by calculating the MAD standard deviation estimator for our data. ###Code mad_sigma = mad_std(bits, axis=0) ###Output _____no_output_____ ###Markdown The expression below is true for all of the points farther than $10\sigma_{MAD}$ from the median of the distributions and false everywhere else.This array will be used to exclude the extreme points. ###Code exclude = (bits - median) / mad_sigma > 10 ###Output _____no_output_____ ###Markdown Next, we calculate the average, excluding the points identified as "too far"from from the median. There are two approaches we can take here. One is to usenumpy masked arrays; the other is to temporarily set the excluded values to thespecial value `np.nan` and use a numpy function that excludes `nan` from thecalculation. The latter approach is often faster than the former.The best approach is really to use a higher-level function from astropy forccdproc. Those will take care of the details of implementing the clipping foryou. ###Code original_values = bits[exclude] bits[exclude] = np.nan clip_combine = np.nanmean(bits, axis=0) bits[exclude] = original_values ###Output _____no_output_____ ###Markdown SummaryCombine images by (1) excluding extreme values using sigma clipping, with themedian as the typical value and the MAD estimator of the standard deviation, andthen (2) averaging the remaining pixels across all of the images.Note that in the distribution below the clipped average is a narrowerdistribution (less noise) than the median but that it still excludes the extremevalue that appeared in one image. ###Code plt.figure(figsize=(10, 10)) hist(clip_combine, bins='freedman', alpha=0.5, label='clipped average') hist(median, bins='freedman', alpha=0.5, label='median'); plt.legend() plt.xlabel('Counts') plt.ylabel('Number of pixels') ###Output _____no_output_____ ###Markdown Image combinationImage combination serves several purposes. Combining images:+ reduces noise in images+ can remove transient artifacts like cosmic rays and satellite tracks+ can remove stars in flat images taken at twilightIt's essential that several of each type of calibration image (bias, dark, flat)be taken. Combining them reduces the noise in the images by roughly a factor of$1/\sqrt{N}$, where $N$ is the number of images being combined. As shown in theprevious notebook, using a single calibration image actually *increases* thenoise in your image.There are a few ways to combine images; if done properly, features that show upin only one of the images (like cosmic rays) are not present in the combination.If done incorrectly, those features show up in your combined images and thencontaminate your calibrated science images too. The bottom line: combine by averaging images, but clip extreme valuesThe remainder of this notebook demonstrates this conclusion and explains how todo a combination by averaging images with [ccdproc](https://ccdproc.readthedocs.io/en/latest/). ###Code import os import numpy as np %matplotlib inline from matplotlib import pyplot as plt from matplotlib import rc from astropy.visualization import hist from astropy.stats import mad_std # Use custom style for larger fonts and figures plt.style.use('guide.mplstyle') # Set some default parameters for the plots below rc('font', size=20) rc('axes', grid=True) # Set up the random number generator, allowing a seed to be set from the environment seed = os.getenv('GUIDE_RANDOM_SEED', None) # This is the generator to use for any image component which changes in each image, e.g. read noise # or Poisson error noise_rng = np.random.default_rng(int(seed)) ###Output _____no_output_____ ###Markdown Combination method: average or median?In this section we'll look at a simplified version of the challenges ofcombining images to reduce noise. It's fair to think of astronomical images(especially bias and dark images) as being a Gaussian distribution of pixelvalues around the bias level, and a width related to the read noise of thedetector. To simplify what follows, we will work arrays of random numbers drawnfrom a Gaussian distribution instead of with astronomical images.In properly done flat images the noise is technically a Poisson distribution,but with a large enough number of counts, the distribution is indistinguishablefrom a Gaussian distribution whose width is related to the square root of thenumber of counts. While some regions of a science image are dominated by Poissonnoise from sources in the image, most of the image will be dominated by Gaussianread noise from the detector or Poisson noise from the sky background.Instead of working with a combination of images, we'll create 100 Gaussiandistributions with a mean of zero, and a standard deviation of one, and combinethose two different ways: by finding the average and by finding the median. Eachdistribution has size $320^2$ so that we can view it as either a distribution of102,400 values or as an image that is $320 \times 320$.We can think of each of these 100 distributions as representing an image, like abias or dark. To make the analogy to real images a little more direct, a "bias"of 1000 is added to each distribution. ###Code n_distributions = 100 bias_level = 1000 n_side = 320 bits = noise_rng.normal(size=(n_distributions, n_side**2)) + bias_level average = np.average(bits, axis=0) median = np.median(bits, axis=0) ###Output _____no_output_____ ###Markdown Now that we've created the distributions and combined them in two differentways, let's take a look at them. The [`hist` function from astropy.visualization](https://astropy.readthedocs.io/en/stable/visualization/histogram.html) is usedbelow because it can figure out what bin size to use for your data. ###Code fig, ax = plt.subplots(1, 2, sharey=True, tight_layout=True, figsize=(20, 10)) hist(bits[0, :], bins='freedman', ax=ax[0]); ax[0].set_title('One sample distribution') ax[0].set_xlabel('Pixel value') ax[0].set_ylabel('Number of pixels') hist(average, bins='freedman', label='average', alpha=0.5, ax=ax[1]); hist(median, bins='freedman', label='median', alpha=0.5, ax=ax[1]); ax[1].set_title('{} distributions combined'.format(n_distributions)) ax[1].set_xlabel('Pixel value') ax[1].legend() ###Output _____no_output_____ ###Markdown Combining by averaging gives a narrower (i.e. less noisy) distribution thancombining by median, though both substantially reduced the width of thedistribution. The conclusion so far is that combining by averaging is mildlypreferable to combining by median. Computationally, the mean is also faster tocompute than the median. Image view of these distributionsAs suggested above, we could view each of these distributions as an imageinstead of a histogram. One take away from the diagram below is that in thiscase, the difference between mean and median is not apparent.In all cases, the extreme values of the image display are set to bracket thewidth of the initial distribution. ###Code fig, axes = plt.subplots(1, 3, sharey=True, tight_layout=True, figsize=(20, 10)) data_source = [bits[0, :], average, median] titles = ['One distrbution', 'Average of {n}'.format(n=n_distributions), 'Median of {n}'.format(n=n_distributions)] for axis, data, title in zip(axes, data_source, titles): axis.imshow(data.reshape(n_side, n_side), vmin=bias_level - 3, vmax=bias_level + 3) axis.set_xticks([]) axis.set_yticks([]) axis.grid(False) axis.set_title(title) ###Output _____no_output_____ ###Markdown The effect of outliersSuppose that, in just one of the 100 distributions we're combining, there are asmall number of extreme values. In astronomical images these extremes happenvery frequently because of cosmic ray hits on the detector that cause, in onesmall patch of a calibration image, much higher counts. Another case occurs whencombining twilight flats, which often contain faint images of stars.In the example below, we set just 50 points out of the 102,400 in the firstdistribution to a somewhat higher value than the rest. ###Code bits[0, 10000:10050] = 2 * bias_level ###Output _____no_output_____ ###Markdown Remember, we can think of the values in this distribution as an image, a viewthat will be particularly convenient in this case. ###Code plt.imshow(bits[0, :].reshape(n_side, n_side), vmin=bias_level - 3, vmax=bias_level + 3) plt.xticks([]) plt.yticks([]) plt.title('One distribution with outliers') plt.grid(False) ###Output _____no_output_____ ###Markdown Now that we know what the outliers in this (and *only* this) distribution looklike, we'll combine all of the distributions as we did above. ###Code average = np.average(bits, axis=0) median = np.median(bits, axis=0) ###Output _____no_output_____ ###Markdown Even though only one out of the 100 "images" we're combining has these highpixel values, the distribution of pixels for the average is clearly affected(well, maybe not clearly, since seeing it requires a logarithmic $y$-axis). Thedistribution for the median looks much the same as above. Since median simplylooks for the middle value, an extreme value doesn't affect the result too much. ###Code plt.figure(figsize=(10, 10)) hist(average, bins='freedman', alpha=0.5, label='average'); hist(median, bins='freedman', alpha=0.5, label='median'); plt.legend() plt.xlabel('Counts') plt.ylabel('Number of pixels') plt.semilogy(); ###Output _____no_output_____ ###Markdown Combining using the average has a noticeable effect on the result; medianremoves the artifactThe effect of the outlier is *much* clearer if the distributions are displayedas images. If the distributions we're combining were calibration images then theoutliers that appear in one image (e.g. a cosmic ray) would affect the combinedimage we hoped to use for calibration. ###Code fig, axes = plt.subplots(1, 3, sharey=True, tight_layout=True, figsize=(20, 10)) data_source = [bits[0, :], average, median] titles = ['One distribution with outliers', 'Average of {n}'.format(n=n_distributions), 'Median of {n}'.format(n=n_distributions)] for axis, data, title in zip(axes, data_source, titles): axis.imshow(data.reshape(n_side, n_side), vmin=bias_level - 3, vmax=bias_level + 3) axis.set_xticks([]) axis.set_yticks([]) axis.grid(False) axis.set_title(title) ###Output _____no_output_____ ###Markdown On one hand, the noise properties are better when you combine by taking theaverage. On the other hand, the median eliminates features that appear in onlyone image.Astronomical images will almost always have those transient features. Even at anobservatory near sea level in an exposure that is very short, cosmic ray hitsare common. The solution: average combine, but clip the extreme valuesThe answer here is to first clip extreme values from the distributions and thencombine using the average. That rejects outlying values like the median but withthe modestly better statistical properties of the average. A method called"sigma clipping" is used to remove the extreme values. **Please do not use the code below for reducing your data...**...in the next set of notebooks we'll walk through the package[ccdproc](https://ccdproc.readthedocs.io), which automates much of what you see below.The section below demonstrates and explains some of what's happening behind thescenes in [ccdproc](https://ccdproc.readthedocs.io). Sigma clippingSigma clipping means calculating how "far" each pixel to be combined is from the"typical" value and excluding values from the combination if they are "too far"from the pixel value.To be clear, when evaluating which values to reject we're doing it for each ofthe 102,400 points in the distribution (or, if you prefer, each of the320$\times$320 pixels in the image) we're going to combine. In other words, foreach point (or pixel), we'll compute a "typical" value for the 100 distributions(images) we're combining and exclude any from the average that are "too far"from the "typical value."What should be used as the "typical" value, how do we measure how "far" away avalue is, and how far is "too far"?The last question is easiest to answer: it depends a bit on the noise level inyour camera but something like 5 farther from the "typical" value than most ofthe pixels are.Using the average as the typical value and the standard deviation as a measureof how far a particular value is from the typical value is often not the bestchoice. The problem with this is that outlying values in a single distribution(or image) strongly bias the average and exaggerate the standard deviation. Inthis example, where we're combining 100 distributions (images), using theaverage and standard deviation might work since there are so many distributions.A more typical number of bias or dark images that one might combine is 10 or 20.In that case, an extreme value in one image strongly affects the mean andstandard deviation.As an example, consider combining 10, 20, or 100 of our distributions, as shownin the cell below. Only in the case of 100 distributions would our extreme valueof 2000 be excluded if we excluded values more than 5 times the standarddeviation from the average. ###Code print('Number combined\t Average\t Standard dev σ \t 10σ ') for n_to_combine in [10, 20, n_distributions]: avg = np.mean(bits[:n_to_combine, 10000]) std = np.std(bits[:n_to_combine, 10000]) print('{n:10d}\t{avg:10.2f}\t{std:10.2f}\t{ten_sig:10.2f}'.format(n=n_to_combine, avg=avg, std=std, ten_sig=10 * std)) ###Output _____no_output_____ ###Markdown A better choice is to use the median as the typical value and the *medianabsolute deviation* in place of the standard deviation as the measure of how fara value is from the typical value. The [median absolute deviation](https://en.wikipedia.org/wiki/Median_absolute_deviation), or MAD,of a set of points $x$ is defined by:$$MAD = \frac{1}{N}\sum_{i=0}^N |x_i - \text{median}(x)|.$$This is a measure of the typical absolute distance from the median of the set ofvalues. The MAD is not directly equivalent to the standard deviation. Therelationship between the two depends on the distribution of values, but for aGaussian distribution multiplying the MAD by 1.4826 does the trick. The[astropy function `mad_std`](http://docs.astropy.org/en/stable/api/astropy.stats.mad_std.html) will calculate the MAD and multiply by theappropriate factor for you.Repeating the calculation above but with median as the central value and the MADin place of the standard deviation demonstrates that even for 10 distributionsthe extreme value will be excluded. ###Code print('{:^20}{:^20}{:^20}{:^20}'.format('Number combined', 'Median', 'MAD σ', '10σ')) for n_to_combine in [10, 20, n_distributions]: avg = np.median(bits[:n_to_combine, 10000]) std = mad_std(bits[:n_to_combine, 10000]) print('{n:^20d}{avg:^20.2f}{std:^20.2f}{ten_sig:^20.2f}'.format(n=n_to_combine, avg=avg, std=std, ten_sig=10 * std)) ###Output _____no_output_____ ###Markdown The downside to using the median and median absolute deviation? They can be slowto compute for large images or large stacks of images. The cells below perform the actual clipping; you should generally use theastropy function [`sigma_clip`](https://astropy.readthedocs.io/en/stable/stats/robust.html) to do this, but here we'll doit manually to illustrate the process.We begin by calculating the MAD standard deviation estimator for our data. ###Code mad_sigma = mad_std(bits, axis=0) ###Output _____no_output_____ ###Markdown The expression below is true for all of the points farther than $10\sigma_{MAD}$ from the median of the distributions and false everywhere else.This array will be used to exclude the extreme points. ###Code exclude = (bits - median) / mad_sigma > 10 ###Output _____no_output_____ ###Markdown Next, we calculate the average, excluding the points identified as "too far"from from the median. There are two approaches we can take here. One is to usenumpy masked arrays; the other is to temporarily set the excluded values to thespecial value `np.nan` and use a numpy function that excludes `nan` from thecalculation. The latter approach is often faster than the former.The best approach is really to use a higher-level function from astropy forccdproc. Those will take care of the details of implementing the clipping foryou. ###Code original_values = bits[exclude] bits[exclude] = np.nan clip_combine = np.nanmean(bits, axis=0) bits[exclude] = original_values ###Output _____no_output_____ ###Markdown SummaryCombine images by (1) excluding extreme values using sigma clipping, with themedian as the typical value and the MAD estimator of the standard deviation, andthen (2) averaging the remaining pixels across all of the images.Note that in the distribution below the clipped average is a narrowerdistribution (less noise) than the median but that it still excludes the extremevalue that appeared in one image. ###Code plt.figure(figsize=(10, 10)) hist(clip_combine, bins='freedman', alpha=0.5, label='clipped average') hist(median, bins='freedman', alpha=0.5, label='median'); plt.legend() plt.xlabel('Counts') plt.ylabel('Number of pixels') ###Output _____no_output_____ ###Markdown Image combinationImage combination serves several purposes. Combining images:+ reduces noise in images+ can remove transient artifacts like cosmic rays and satellite tracks+ can remove stars in flat images taken at twilightIt's essential that several of each type of calibration image (bias, dark, flat)be taken. Combining them reduces the noise in the images by roughly a factor of$1/\sqrt{N}$, where $N$ is the number of images being combined. As shown in theprevious notebook, using a single calibration image actually *increases* thenoise in your image.There are a few ways to combine images; if done properly, features that show upin only one of the images (like cosmic rays) are not present in the combination.If done incorrectly, those features show up in your combined images and thencontaminate your calibrated science images too. The bottom line: combine by averaging images, but clip extreme valuesThe remainder of this notebook demonstrates this conclusion and explains how todo a combination by averaging images with [ccdproc](https://ccdproc.readthedocs.io/en/latest/). ###Code import os import numpy as np %matplotlib inline from matplotlib import pyplot as plt from matplotlib import rc from astropy.visualization import hist from astropy.stats import mad_std # Use custom style for larger fonts and figures plt.style.use('guide.mplstyle') # Set some default parameters for the plots below rc('font', size=20) rc('axes', grid=True) # Set up the random number generator, allowing a seed to be set from the environment seed = os.getenv('GUIDE_RANDOM_SEED', None) if seed is not None: seed = int(seed) # This is the generator to use for any image component which changes in each image, e.g. read noise # or Poisson error noise_rng = np.random.default_rng(seed) ###Output _____no_output_____ ###Markdown Combination method: average or median?In this section we'll look at a simplified version of the challenges ofcombining images to reduce noise. It's fair to think of astronomical images(especially bias and dark images) as being a Gaussian distribution of pixelvalues around the bias level, and a width related to the read noise of thedetector. To simplify what follows, we will work arrays of random numbers drawnfrom a Gaussian distribution instead of with astronomical images.In properly done flat images the noise is technically a Poisson distribution,but with a large enough number of counts, the distribution is indistinguishablefrom a Gaussian distribution whose width is related to the square root of thenumber of counts. While some regions of a science image are dominated by Poissonnoise from sources in the image, most of the image will be dominated by Gaussianread noise from the detector or Poisson noise from the sky background.Instead of working with a combination of images, we'll create 100 Gaussiandistributions with a mean of zero, and a standard deviation of one, and combinethose two different ways: by finding the average and by finding the median. Eachdistribution has size $320^2$ so that we can view it as either a distribution of102,400 values or as an image that is $320 \times 320$.We can think of each of these 100 distributions as representing an image, like abias or dark. To make the analogy to real images a little more direct, a "bias"of 1000 is added to each distribution. ###Code n_distributions = 100 bias_level = 1000 n_side = 320 bits = noise_rng.normal(size=(n_distributions, n_side**2)) + bias_level average = np.average(bits, axis=0) median = np.median(bits, axis=0) ###Output _____no_output_____ ###Markdown Now that we've created the distributions and combined them in two differentways, let's take a look at them. The [`hist` function from astropy.visualization](https://astropy.readthedocs.io/en/stable/visualization/histogram.html) is usedbelow because it can figure out what bin size to use for your data. ###Code fig, ax = plt.subplots(1, 2, sharey=True, tight_layout=True, figsize=(20, 10)) hist(bits[0, :], bins='freedman', ax=ax[0]); ax[0].set_title('One sample distribution') ax[0].set_xlabel('Pixel value') ax[0].set_ylabel('Number of pixels') hist(average, bins='freedman', label='average', alpha=0.5, ax=ax[1]); hist(median, bins='freedman', label='median', alpha=0.5, ax=ax[1]); ax[1].set_title('{} distributions combined'.format(n_distributions)) ax[1].set_xlabel('Pixel value') ax[1].legend() ###Output _____no_output_____ ###Markdown Combining by averaging gives a narrower (i.e. less noisy) distribution thancombining by median, though both substantially reduced the width of thedistribution. The conclusion so far is that combining by averaging is mildlypreferable to combining by median. Computationally, the mean is also faster tocompute than the median. Image view of these distributionsAs suggested above, we could view each of these distributions as an imageinstead of a histogram. One take away from the diagram below is that in thiscase, the difference between mean and median is not apparent.In all cases, the extreme values of the image display are set to bracket thewidth of the initial distribution. ###Code fig, axes = plt.subplots(1, 3, sharey=True, tight_layout=True, figsize=(20, 10)) data_source = [bits[0, :], average, median] titles = ['One distrbution', 'Average of {n}'.format(n=n_distributions), 'Median of {n}'.format(n=n_distributions)] for axis, data, title in zip(axes, data_source, titles): axis.imshow(data.reshape(n_side, n_side), vmin=bias_level - 3, vmax=bias_level + 3) axis.set_xticks([]) axis.set_yticks([]) axis.grid(False) axis.set_title(title) ###Output _____no_output_____ ###Markdown The effect of outliersSuppose that, in just one of the 100 distributions we're combining, there are asmall number of extreme values. In astronomical images these extremes happenvery frequently because of cosmic ray hits on the detector that cause, in onesmall patch of a calibration image, much higher counts. Another case occurs whencombining twilight flats, which often contain faint images of stars.In the example below, we set just 50 points out of the 102,400 in the firstdistribution to a somewhat higher value than the rest. ###Code bits[0, 10000:10050] = 2 * bias_level ###Output _____no_output_____ ###Markdown Remember, we can think of the values in this distribution as an image, a viewthat will be particularly convenient in this case. ###Code plt.imshow(bits[0, :].reshape(n_side, n_side), vmin=bias_level - 3, vmax=bias_level + 3) plt.xticks([]) plt.yticks([]) plt.title('One distribution with outliers') plt.grid(False) ###Output _____no_output_____ ###Markdown Now that we know what the outliers in this (and *only* this) distribution looklike, we'll combine all of the distributions as we did above. ###Code average = np.average(bits, axis=0) median = np.median(bits, axis=0) ###Output _____no_output_____ ###Markdown Even though only one out of the 100 "images" we're combining has these highpixel values, the distribution of pixels for the average is clearly affected(well, maybe not clearly, since seeing it requires a logarithmic $y$-axis). Thedistribution for the median looks much the same as above. Since median simplylooks for the middle value, an extreme value doesn't affect the result too much. ###Code plt.figure(figsize=(10, 10)) hist(average, bins='freedman', alpha=0.5, label='average'); hist(median, bins='freedman', alpha=0.5, label='median'); plt.legend() plt.xlabel('Counts') plt.ylabel('Number of pixels') plt.semilogy(); ###Output _____no_output_____ ###Markdown Combining using the average has a noticeable effect on the result; medianremoves the artifactThe effect of the outlier is *much* clearer if the distributions are displayedas images. If the distributions we're combining were calibration images then theoutliers that appear in one image (e.g. a cosmic ray) would affect the combinedimage we hoped to use for calibration. ###Code fig, axes = plt.subplots(1, 3, sharey=True, tight_layout=True, figsize=(20, 10)) data_source = [bits[0, :], average, median] titles = ['One distribution with outliers', 'Average of {n}'.format(n=n_distributions), 'Median of {n}'.format(n=n_distributions)] for axis, data, title in zip(axes, data_source, titles): axis.imshow(data.reshape(n_side, n_side), vmin=bias_level - 3, vmax=bias_level + 3) axis.set_xticks([]) axis.set_yticks([]) axis.grid(False) axis.set_title(title) ###Output _____no_output_____ ###Markdown On one hand, the noise properties are better when you combine by taking theaverage. On the other hand, the median eliminates features that appear in onlyone image.Astronomical images will almost always have those transient features. Even at anobservatory near sea level in an exposure that is very short, cosmic ray hitsare common. The solution: average combine, but clip the extreme valuesThe answer here is to first clip extreme values from the distributions and thencombine using the average. That rejects outlying values like the median but withthe modestly better statistical properties of the average. A method called"sigma clipping" is used to remove the extreme values. **Please do not use the code below for reducing your data...**...in the next set of notebooks we'll walk through the package[ccdproc](https://ccdproc.readthedocs.io), which automates much of what you see below.The section below demonstrates and explains some of what's happening behind thescenes in [ccdproc](https://ccdproc.readthedocs.io). Sigma clippingSigma clipping means calculating how "far" each pixel to be combined is from the"typical" value and excluding values from the combination if they are "too far"from the pixel value.To be clear, when evaluating which values to reject we're doing it for each ofthe 102,400 points in the distribution (or, if you prefer, each of the320$\times$320 pixels in the image) we're going to combine. In other words, foreach point (or pixel), we'll compute a "typical" value for the 100 distributions(images) we're combining and exclude any from the average that are "too far"from the "typical value."What should be used as the "typical" value, how do we measure how "far" away avalue is, and how far is "too far"?The last question is easiest to answer: it depends a bit on the noise level inyour camera but something like 5 farther from the "typical" value than most ofthe pixels are.Using the average as the typical value and the standard deviation as a measureof how far a particular value is from the typical value is often not the bestchoice. The problem with this is that outlying values in a single distribution(or image) strongly bias the average and exaggerate the standard deviation. Inthis example, where we're combining 100 distributions (images), using theaverage and standard deviation might work since there are so many distributions.A more typical number of bias or dark images that one might combine is 10 or 20.In that case, an extreme value in one image strongly affects the mean andstandard deviation.As an example, consider combining 10, 20, or 100 of our distributions, as shownin the cell below. Only in the case of 100 distributions would our extreme valueof 2000 be excluded if we excluded values more than 5 times the standarddeviation from the average. ###Code print('Number combined\t Average\t Standard dev σ \t 10σ ') for n_to_combine in [10, 20, n_distributions]: avg = np.mean(bits[:n_to_combine, 10000]) std = np.std(bits[:n_to_combine, 10000]) print('{n:10d}\t{avg:10.2f}\t{std:10.2f}\t{ten_sig:10.2f}'.format(n=n_to_combine, avg=avg, std=std, ten_sig=10 * std)) ###Output _____no_output_____ ###Markdown A better choice is to use the median as the typical value and the *medianabsolute deviation* in place of the standard deviation as the measure of how fara value is from the typical value. The [median absolute deviation](https://en.wikipedia.org/wiki/Median_absolute_deviation), or MAD,of a set of points $x$ is defined by:$$MAD = \frac{1}{N}\sum_{i=0}^N |x_i - \text{median}(x)|.$$This is a measure of the typical absolute distance from the median of the set ofvalues. The MAD is not directly equivalent to the standard deviation. Therelationship between the two depends on the distribution of values, but for aGaussian distribution multiplying the MAD by 1.4826 does the trick. The[astropy function `mad_std`](http://docs.astropy.org/en/stable/api/astropy.stats.mad_std.html) will calculate the MAD and multiply by theappropriate factor for you.Repeating the calculation above but with median as the central value and the MADin place of the standard deviation demonstrates that even for 10 distributionsthe extreme value will be excluded. ###Code print('{:^20}{:^20}{:^20}{:^20}'.format('Number combined', 'Median', 'MAD σ', '10σ')) for n_to_combine in [10, 20, n_distributions]: avg = np.median(bits[:n_to_combine, 10000]) std = mad_std(bits[:n_to_combine, 10000]) print('{n:^20d}{avg:^20.2f}{std:^20.2f}{ten_sig:^20.2f}'.format(n=n_to_combine, avg=avg, std=std, ten_sig=10 * std)) ###Output _____no_output_____ ###Markdown The downside to using the median and median absolute deviation? They can be slowto compute for large images or large stacks of images. The cells below perform the actual clipping; you should generally use theastropy function [`sigma_clip`](https://astropy.readthedocs.io/en/stable/stats/robust.html) to do this, but here we'll doit manually to illustrate the process.We begin by calculating the MAD standard deviation estimator for our data. ###Code mad_sigma = mad_std(bits, axis=0) ###Output _____no_output_____ ###Markdown The expression below is true for all of the points farther than $10\sigma_{MAD}$ from the median of the distributions and false everywhere else.This array will be used to exclude the extreme points. ###Code exclude = (bits - median) / mad_sigma > 10 ###Output _____no_output_____ ###Markdown Next, we calculate the average, excluding the points identified as "too far"from from the median. There are two approaches we can take here. One is to usenumpy masked arrays; the other is to temporarily set the excluded values to thespecial value `np.nan` and use a numpy function that excludes `nan` from thecalculation. The latter approach is often faster than the former.The best approach is really to use a higher-level function from astropy forccdproc. Those will take care of the details of implementing the clipping foryou. ###Code original_values = bits[exclude] bits[exclude] = np.nan clip_combine = np.nanmean(bits, axis=0) bits[exclude] = original_values ###Output _____no_output_____ ###Markdown SummaryCombine images by (1) excluding extreme values using sigma clipping, with themedian as the typical value and the MAD estimator of the standard deviation, andthen (2) averaging the remaining pixels across all of the images.Note that in the distribution below the clipped average is a narrowerdistribution (less noise) than the median but that it still excludes the extremevalue that appeared in one image. ###Code plt.figure(figsize=(10, 10)) hist(clip_combine, bins='freedman', alpha=0.5, label='clipped average') hist(median, bins='freedman', alpha=0.5, label='median'); plt.legend() plt.xlabel('Counts') plt.ylabel('Number of pixels') ###Output _____no_output_____
Flights_Delay_classification/Train_Model_general---OG.ipynb
###Markdown Libraries & Parameters ###Code !pip install -q awswrangler import awswrangler as wr import pandas as pd import boto3 import pytz import numpy as np !pip install -U -q seaborn import seaborn as sns import matplotlib.pyplot as plt import datetime from sagemaker import get_execution_role # Get Sagemaker Role role = get_execution_role() print(role) ###Output Couldn't call 'get_role' to get Role ARN from role name AmazonSageMaker-ExecutionRole-20210503T205912 to get Role path. Assuming role was created in SageMaker AWS console, as the name contains `AmazonSageMaker-ExecutionRole`. Defaulting to Role ARN with service-role in path. If this Role ARN is incorrect, please add IAM read permissions to your role or supply the Role Arn directly. ###Markdown Runtime Parameters ###Code # airline_to_run = 'MQ' ###Output _____no_output_____ ###Markdown ___ 1.) Download Data S3 parameters ###Code # Flight data from Sagemaker Data Wrangler bucket = 'sagemaker-us-west-2-506926764659/export-flow-05-16-30-08-0c003aed/output/data-wrangler-flow-processing-05-16-30-08-0c003aed/b98f4f8c-ddaf-4ee1-99da-b0dd09f47a21/default' filename = 'part-00000-92fade68-00c4-41b3-9182-593084da2eae-c000.csv' path_to_file = 's3://{}/{}'.format(bucket, filename) # # Flight data from entire year of 2011 # bucket = 'from-public-data/carrier-perf/transformed' # filename = 'airOT2011all.csv' # path_to_file = 's3://{}/{}'.format(bucket, filename) # # Flight data from 2011_01 # bucket = 'from-public-data/carrier-perf/transformed/airOT2011' # filename = 'airOT201101.csv' # path_to_file = 's3://{}/{}'.format(bucket, filename) # ________________________________________________________________ # Supporting dataset useful for EDA and understanding data # - airport codes # - airline codes bucket2 = 'from-public-data/carrier-perf/raw' file_airport = 'airports.csv' file_airline = 'airlines.csv' path_to_file_airport = 's3://{}/{}'.format(bucket2, file_airport) path_to_file_airline = 's3://{}/{}'.format(bucket2, file_airline) ###Output _____no_output_____ ###Markdown === === === === === Download data from S3 1. Flights Performance dataset ###Code df = wr.s3.read_csv([path_to_file]) # df ###Output _____no_output_____ ###Markdown A whopping 7,294,649 rows (records) of JUST year 2007! Thanks to all the Sagemaker Data Wrangler, I was able to already do some data cleaning and adjustment: - Create new variable `late_flight` depending on `DEP_DELAY` - Trim value to remove outliers for `DEP_DLAY` - Drop records for Cancelled flights `CANCELED` == 1 (doesn't make much sense to have flights that's irrelevant to flights delay when flight never occur) 2. Airports & Airlines dataset ###Code df_airports = wr.s3.read_csv([path_to_file_airport]) df_airlines = wr.s3.read_csv([path_to_file_airline]) # df_airlines ###Output _____no_output_____ ###Markdown === === === === === Initial Data Clean-up and Organization ###Code # rename 'DAY_OF_MONTH' column to 'DAY' (in prep of transforming to datetime format) df = df.rename(columns={'DAY_OF_MONTH': 'DAY'}) # df ###Output _____no_output_____ ###Markdown 1. Date / Time modificationsMake date and time more appropriate. This will make it easier when making plots. ###Code # Create a datetime field `DATE` df['DATE'] = pd.to_datetime(df[['YEAR','MONTH','DAY']]) # Convert 'HHMM' string to datetime.time def format_heure(chaine): if pd.isnull(chaine): return np.nan else: if chaine == 2400: chaine = 0 chaine = "{0:04d}".format(int(chaine)) heure = datetime.time(int(chaine[0:2]), int(chaine[2:4])) return heure df['DEP_TIME'] = df['DEP_TIME'].apply(format_heure) df['ARR_TIME'] = df['ARR_TIME'].apply(format_heure) ###Output _____no_output_____ ###Markdown 2. Organize ColumnsLet's organize columns (features) to be more logical ###Code variables_to_remove = ['ORIGIN_AIRPORT_ID', 'DEST_AIRPORT_ID'] df.drop(variables_to_remove, axis = 1, inplace = True) df = df[[ 'DATE', 'YEAR', 'MONTH', 'DAY', 'DAY_OF_WEEK', 'UNIQUE_CARRIER', 'ORIGIN', 'DEST', 'DEP_TIME', 'DEP_DELAY', 'DEP_DELAY_no_outlier', 'ACTUAL_ELAPSED_TIME', 'AIR_TIME', 'DISTANCE', 'ARR_TIME', 'ARR_DELAY', 'CARRIER_DELAY', 'WEATHER_DELAY', 'NAS_DELAY', 'SECURITY_DELAY', 'LATE_AIRCRAFT_DELAY', 'late_flight']] # REMOVED for a generalized ML model for all airline carriers # df_toTrain = df.loc[df['UNIQUE_CARRIER'] == airline_to_run] df_toTrain = df distinct_airlines = df_toTrain.UNIQUE_CARRIER.unique() print('New dataset has {0} records with {1} variables, containing only airlines {2}'.format(df_toTrain.shape[0], df_toTrain.shape[1], distinct_airlines)) df_toTrain ###Output _____no_output_____ ###Markdown ___ 2.) Explorational Data Analysis Distribution of Target (dependent) Variable `late_flight` ###Code df_toTrain.late_flight.value_counts().plot(kind='bar') df_toTrain.late_flight.value_counts() ###Output _____no_output_____ ###Markdown **NOTE** Looks like a pretty imbalance distribution of target variable. Will probably need to use SMOTE and create synthetic data for the minority class. Corrleations ###Code # increase figure size plt.figure(figsize=(13, 9)) heatmap = sns.heatmap(df_toTrain.corr(), vmin=-1, vmax=1, annot=True, cmap="YlGnBu") # define title heatmap.set_title('Correlation Heatmap', fontdict={'fontsize':15}, pad=12) # ref. https://medium.com/@szabo.bibor/how-to-create-a-seaborn-correlation-heatmap-in-python-834c0686b88e ###Output _____no_output_____ ###Markdown **NOTE** Looks like high correlation between: - `DEP_DELAY_no_outlier` :: `ARR_DELAY`, which could makes logical sense because if you are late departing, then you are likely to be late arriving - `ACTUAL_ELAPSED_TIME` :: `DISTANCE` :: `AIR_TIME`, which make sense as each 3-variables are referencing same part of flight 3.) Train Model ###Code # Download PyCaret !pip install pycaret --quiet ###Output /opt/conda/lib/python3.7/site-packages/secretstorage/dhcrypto.py:16: CryptographyDeprecationWarning: int_from_bytes is deprecated, use int.from_bytes instead from cryptography.utils import int_from_bytes /opt/conda/lib/python3.7/site-packages/secretstorage/util.py:25: CryptographyDeprecationWarning: int_from_bytes is deprecated, use int.from_bytes instead from cryptography.utils import int_from_bytes ###Markdown a. Get the Data ###Code data = df_toTrain.sample(frac=0.01, random_state=123) data_unseen = df.drop(data.index) data.reset_index(inplace=True, drop=True) data_unseen.reset_index(inplace=True, drop=True) print('Data for Modeling: ' + str(data.shape)) print('Unseen Data For Predictions: ' + str(data_unseen.shape)) ###Output Data for Modeling: (72946, 22) Unseen Data For Predictions: (7221703, 22) ###Markdown b. Setting Up Environment in PyCaret ###Code from pycaret.classification import * exp = setup(data = data, numeric_features = ['YEAR', 'MONTH','DAY','DAY_OF_WEEK'], ignore_features = ['DEP_DELAY', 'ARR_DELAY', 'AIR_TIME', 'ACTUAL_ELAPSED_TIME', 'ARR_TIME'], target = 'late_flight', fix_imbalance = True, normalize = True, transformation = True, ignore_low_variance = True, remove_multicollinearity = True, multicollinearity_threshold = 0.95, use_gpu = True, fold = 2 ) ###Output _____no_output_____ ###Markdown c. Comparing all models ###Code # ref. # -- https://pycaret.readthedocs.io/en/latest/api/classification.html?highlight=compare_models#pycaret.classification.compare_models # -- https://machinelearningmastery.com/k-fold-cross-validation/ best_model = compare_models(cross_validation=False) # best_model = compare_modelfold=old=3) ###Output _____no_output_____ ###Markdown 4.) Create Model(s) a. Random Forest Classifier ###Code rf = create_model('rf') # rf = create_model('rf', cross_validation=False) # trained model object is stored as `rf` # print(rf) ###Output _____no_output_____ ###Markdown b. Ada Boost Classifier ###Code ada = create_model('ada') # ada = create_model('ada', cross_validation=False) # trained model object is stored as `ada` # print(ada) ###Output _____no_output_____ ###Markdown c. Light Gradient Boosting Machine ###Code lightgbm = create_model('lightgbm') # lightgbm = create_model('lightgbm', cross_validation=False) # trained model object is stored as `lightgbm` # print(lightgbm) ###Output _____no_output_____ ###Markdown 5.) Tune Model(s) c. Light Gradient Boosting Machine ###Code tuned_lightgbm = tune_model(lightgbm, n_iter=2, early_stopping=True) # tuned model object is stored as `tuned_lightgbm` # print(tuned_lightgbm) ###Output _____no_output_____ ###Markdown 6.) Models Performance c. Light Gradient Boosting Machine i. Confusion Matrix ###Code plot_model(tuned_lightgbm, plot = 'confusion_matrix') ###Output findfont: Font family ['sans-serif'] not found. Falling back to DejaVu Sans. findfont: Font family ['sans-serif'] not found. Falling back to DejaVu Sans. findfont: Font family ['sans-serif'] not found. Falling back to DejaVu Sans. ###Markdown ii. Features Importance ###Code plot_model(tuned_lightgbm, plot='feature') ###Output findfont: Font family ['sans-serif'] not found. Falling back to DejaVu Sans. ###Markdown Features that has greatest explanatory power are:* `DISTANCE`* `DAY` of the month* (closely by) `MONTH` iii. Intrepret Model's with SHAPref. * https://www.analyticsvidhya.com/blog/2020/05/pycaret-machine-learning-model-seconds/* https://www.analyticsvidhya.com/blog/2019/11/shapley-value-machine-learning-interpretability-game-theory/?utm_source=blog&utm_medium=pycaret-machine-learning-model-seconds ###Code !apt-get update && apt-get install -y build-essential -q !python -m pip install -q shap interpret_model(tuned_lightgbm, plot='summary') interpret_model(tuned_lightgbm, plot='correlation') ###Output _____no_output_____ ###Markdown 8.) Predict of Test Data Sample c. Light Gradient Boosting Machine ###Code predict_model(tuned_lightgbm) ###Output _____no_output_____ ###Markdown 9.) Deploy Model (finalized) c. Light Gradient Boosting Machine ###Code final_lightgbm = finalize_model(tuned_lightgbm) #Final model's parameters for deployment print(final_lightgbm) ###Output [LightGBM] [Warning] bagging_fraction is set=0.4, subsample=1.0 will be ignored. Current value: bagging_fraction=0.4 [LightGBM] [Warning] feature_fraction is set=1.0, colsample_bytree=1.0 will be ignored. Current value: feature_fraction=1.0 [LightGBM] [Warning] bagging_freq is set=5, subsample_freq=0 will be ignored. Current value: bagging_freq=5 [LightGBM] [Warning] bagging_fraction is set=0.4, subsample=1.0 will be ignored. Current value: bagging_fraction=0.4 [LightGBM] [Warning] feature_fraction is set=1.0, colsample_bytree=1.0 will be ignored. Current value: feature_fraction=1.0 [LightGBM] [Warning] bagging_freq is set=5, subsample_freq=0 will be ignored. Current value: bagging_freq=5 LGBMClassifier(bagging_fraction=0.4, bagging_freq=5, boosting_type='gbdt', class_weight=None, colsample_bytree=1.0, feature_fraction=1.0, importance_type='split', learning_rate=0.5, max_depth=-1, min_child_samples=31, min_child_weight=0.001, min_split_gain=0.6, n_estimators=100, n_jobs=-1, num_leaves=100, objective=None, random_state=3505, reg_alpha=10, reg_lambda=2, silent=True, subsample=1.0, subsample_for_bin=200000, subsample_freq=0) ###Markdown **Caution**: Once the model is finalized using `finalize_model()`, the entire dataset including the test/hold-out set is used for training. As a result, if the model is used for predictions on the hold-out set after `finalize_model()` is used, the information grid printed will be misleading as you are trying to predict on the same data that was used for modeling. ###Code predict_model(final_lightgbm) ###Output _____no_output_____ ###Markdown 10.) Predict on Unseen Dataset ###Code # Decrease size of unseen data `data_unseen` by sampling 168 random rows data_unseen_mini = data_unseen.sample(n = 168) unseen_predictions = predict_model(final_lightgbm, data=data_unseen_mini) unseen_predictions KPI = 'Accuracy' from pycaret.utils import check_metric # check_metric(unseen_predictions['late_flight'], unseen_predictions['Label']) KPI_score = check_metric(unseen_predictions['late_flight'], unseen_predictions['Label'], metric=KPI) print('The {0} of `lightgbm` model is {1}.'.format(KPI, KPI_score)) ###Output The Accuracy of `lightgbm` model is 0.994. ###Markdown 11.) Persist Model ###Code today = datetime.datetime.now() today_datetime = today.strftime("%d-%m-%Y %H:%M:%S") pkl_filename = 'Final_model___' + 'lightgbm' + '___for_all_airlines_' + today_datetime save_model(final_lightgbm, pkl_filename) ###Output Transformation Pipeline and Model Succesfully Saved ###Markdown 12.) Load a Saved Model ###Code # REMEMBER to omit file suffix ".pkl" model_to_load = 'Final_model___lightgbm___for_all_airlines_07-05-2021 13:31:37' saved_model = load_model(model_to_load) # Decrease size of unseen data `data_unseen` by sampling 168 random rows data_unseen_mini = data_unseen.sample(n = 168) new_prediction = predict_model(saved_model, data=data_unseen_mini) new_prediction.head() KPI = 'Accuracy' from pycaret.utils import check_metric # check_metric(unseen_predictions['late_flight'], unseen_predictions['Label']) KPI_score = check_metric(new_prediction['late_flight'], new_prediction['Label'], metric=KPI) print('The {0} of `lightgbm` model is {1}.'.format(KPI, KPI_score)) ###Output The Accuracy of `lightgbm` model is 0.9821.
notebooks/02-estimators.ipynb
###Markdown 2. Core conceptsIn this notebook, we will review:- Estimators in _scikit-learn_, and some of their functions.- How estimators can be supervised models that perform classification or regression tasks, as well as unsupervised models.--- Some important conceptsLet's quickly review some conceptual distinctions in Machine Learning (ML). This section is a refresher. If you are lacking some knowledge on these concepts, please consult our suggested reading in [Notebook 1](./01-preliminaries.ipynb). What machine learning is aboutAn excellent working definition of ML can be found in [Tal Yarkoni's tutorial](https://github.com/neurohackademy/nh2020-curriculum/blob/master/tu-machine-learning-yarkoni/02-core-concepts.ipynb): ML is the field of science/engineering that seeks to build systems capable of learning from experience. The goal of ML is to develop algorithms that can learn from data with a minimum set of explicitly programmed rules on how to do so.There are two main types of ML models depending on how they learn from data: supervised and unsupervised. Supervised MLIn supervised ML, we have available the real values of the variables we want to predict. The model can then use this information to train itself by comparing its predicted values with the real ones using a __loss function__, and an __optimization algorithm__ to iteratively make small adjustments and improve its perfomance. Regression vs classificationSupervised learning models can also be divided into regression and classification tasks. Regression models seek to predict a continuous variable (e.g. age), while classification models predict discrete labels (e.g. wine class). Unsupervised MLIn unsupervised ML, these labels are unkown. The algorithm instead seeks to find a pattern in the data that might be useful. EstimatorsIn _scikit-learn_ an [estimator](https://scikit-learn.org/stable/tutorial/statistical_inference/settings.htmlestimators-objects) is a Python object that __learns from data__. That means, both supervised (classification or regression) and unsupervised models can be constructed and fitted using estimators. We will review some properties of estimators in _scikit-learn_ using an example for each of these types of models. Linear RegressionA linear regression is an example of a supervised regression model. Used as a machine learning tool, linear regression predicts the values of a continuous variable from a __linear combination__ of one or more features.For example, if we had a feature matrix $X$ contaning the values of features $x1$ and $x2$, the value $\hat{y}$ predicted by linear regression could be expressed as:$$\hat{y}_i = \beta_0 + \beta_1x_{i1} + \beta_2x_{i2}$$> - where $\beta$ are the parameters the model learns from the data to make the predictions> - $\beta_1$ and $\beta_2$ are also called the coefficients, and $\beta_0$ the interceptLet's now see how we can fit a linear regression model using _scikit-learn_. We will first need to create a dataset for this exercise. With _scikit-learn_ we can do so using the `make_regression()` function (read the documentation [here](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_regression.htmlsklearn.datasets.make_regression)). Let's create one containing 400 samples and 100 features. We will also define 20 of these features as informative, and add some gaussian noise to the data to make the task harder for the model: ###Code import numpy as np from sklearn.datasets import make_regression # Create fake dataset X, y = make_regression( n_samples=400, n_features=100, n_informative=20, noise=10, random_state=0 ) # Print shape of feature matrix and labels print(f"Shape of dataset: {np.shape(X)}") print(f"Shape of labels: {np.shape(y)}") ###Output _____no_output_____ ###Markdown Since it's a regression problem, let's make sure the target of our model is a continuous variable. Let's print the first ten values of `y`: ###Code print(y[:10]) ###Output _____no_output_____ ###Markdown Now let's create a linear regression estimator using `LinearRegression` (read documentation [here](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html?highlight=linear%20regressionsklearn.linear_model.LinearRegression)). ###Code from sklearn.linear_model import LinearRegression # Create model reg = LinearRegression() ###Output _____no_output_____ ###Markdown Estimator objects contain certain parameters that define how they will behave when learning the data, as well as their outputs. These are called __estimator parameters__. Let's inspect the ones of `reg`: ###Code # Print estimator parameters vars(reg) ###Output _____no_output_____ ###Markdown These parameters can be changed by modifying their corresponding attributes when calling the estimator, or afterwards using `set_params()`: ###Code # Set new model parameters reg.set_params(**{"normalize": True}) vars(reg) ###Output _____no_output_____ ###Markdown Training the modelOnce the estimator object has been created, it can now learn the value of its parameters from the data. For this we need to call the `fit()` function, and pass our feature matrix (`X`) and true values (`y`) as input: ###Code # Fit linear regression model reg = reg.fit(X, y) ###Output _____no_output_____ ###Markdown Let's inspect the attributes of `reg` again: ###Code # Print the names of the attributes vars(reg).keys() ###Output _____no_output_____ ###Markdown `reg` now contains new attributes. These are refered to as __estimated parameters__, because they have been learned from the data. In _scikit-learn_, these are indexed by an underscore (`_`) at the end. For example, we can now access the coefficients learned by our linear model. We should have as many coefficients as features in our dataset: ###Code print(f"Number of coefficients: {reg.coef_.shape[0]}") ###Output _____no_output_____ ###Markdown Let's also print the values of some of them, and the value of the intercept. ###Code # Define coefficients and intercept coefs = reg.coef_ intercept = reg.intercept_ # Print print(f"Model coefficients (first 10):\n {coefs[:10]} \n") print(f"Model intercept: \n {intercept}") ###Output _____no_output_____ ###Markdown Be careful if your intention is to interpret the coefficients of the model. This process is far from straightforward. Read this very useful [example](https://scikit-learn.org/stable/auto_examples/inspection/plot_linear_model_coefficient_interpretation.html) to learn more about this issue. Making predictions with the modelNow that our model is fitted, we can use it to make predictions. In _scikit-learn_, this is achieved by calling the function `predict()`. Let's predict the values of `X` using our fitted model, and visually compare them to their real values on the first ten samples: ###Code import pandas as pd # Predict labels with trained model y_pred = reg.predict(X) # Create dataframe for printing the predictions df = pd.DataFrame({"y_pred": y_pred[:10], "y_real": y[:10]}) df ###Output _____no_output_____ ###Markdown Scoring the modelWe can use the predicted values to evaluate the performance of the model by quantifyng the difference between these and the real values.In _scikit-learn_ we can evaluate the performance of the estimator using the function `score()`: ###Code # Score the model using r2 score = reg.score(X, y) # Print score print(f"Linear model R2: {np.round(score,3)}") ###Output _____no_output_____ ###Markdown By default, linear models are evaluated by calculating $R^2$, also called __coefficient of determination__. $R^2$ quantifies how much of the total variance of the outcome variable (`y`) is explained by the fitted model. The best possible value is 1. The higher the value, the best job the model does at explaining the data. You can read more about the implementation of $R^2$ in _scikit-learn_ [here](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.htmlsklearn.metrics.r2_score). ✍️ ExerciseThere are other scoring metrics for regression problems. Check the module [sklearn.metrics](https://scikit-learn.org/stable/modules/classes.htmlmodule-sklearn.metrics) for an overview of the alternatives. Pick one, and implement it in the cell below. Press the three dots to reveal the solution._Hint!_ If you want to implement a scoring function that is not the default one, you won't be able to do so using the `score()` method. You will need to use a function specifically designed for the scoring metric, and pass the real and predicted values as input. ###Code #### Answer using mean squared error from sklearn.metrics import mean_squared_error # Compute mean squared error mse = mean_squared_error(y, y_pred) # Print score print(f"Mean squared error: {mse}") ###Output _____no_output_____ ###Markdown Logistic regressionLogistic regression is a very popular classification model. It uses a [logistic function](https://en.wikipedia.org/wiki/Logistic_function) to estimate the probability that an observation belongs to different classes. Let's implement a logistic regression is _scikit-learn_.We will create a fake dataset ready for classification using the `make_classification()` method (read the documentation [here](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.htmlsklearn.datasets.make_classification)): ###Code from sklearn.datasets import make_classification # Create fake dataset X, y = make_classification( n_samples=400, n_features=100, n_informative=20, random_state=0 ) ###Output _____no_output_____ ###Markdown Our `y` should now be a categorical variable. Let's print 10 samples to make sure: ###Code print(y[:10]) ###Output _____no_output_____ ###Markdown Classifiers are also estimators in _scikit-learn_. This means we can also use them with the functions illustrated for the linear regression case.Let's create a `LogisticRegression` estimator (read the documentation [here](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.htmlsklearn.linear_model.LogisticRegression)), and fit it to our data: ###Code from sklearn.linear_model import LogisticRegression # Create model clf = LogisticRegression() # Fit model clf = clf.fit(X, y) ###Output _____no_output_____ ###Markdown ✍️ ExerciseCan you compare the first 10 predictions of the fitted model to their real values? Write your answer in the cell below, and press the three dots to reveal the solution. ###Code #### Answer # Predict labels with trained model y_pred = clf.predict(X[:10]) y_real = y[:10] # Create dataframe for printing the predictions df = pd.DataFrame({"y_pred": y_pred, "y_real": y_real}) df ###Output _____no_output_____ ###Markdown Probabilistic predictionsLogistic Regression is a [probabilistic classifier](https://en.wikipedia.org/wiki/Probabilistic_classification), meaning it predicts a probability distribution over the classes.In _scikit-learn_ we can inspect the probabilities assigned to each class using `predict_proba()`: ###Code # Predict the probability of each class y_pred_proba = clf.predict_proba(X[:10]) # Create dataframe for printing the predictions for each class df = pd.DataFrame(y_pred_proba, columns=["class 0", "class 1"]) df ###Output _____no_output_____ ###Markdown By default, the predictions made by `LogisticRegression` when calling `score()` are evaluated by computing the __mean accuracy__ of the predictions: ###Code # Score predictions score = clf.score(X, y) print(f"Mean accuracy: {np.round(score, 2)}") ###Output _____no_output_____ ###Markdown K-MeansUnsupervised models are also estimators in _scikit-learn_, since they also learn from data. One type of unsupervised models are __clustering algorithms__. These learn to group the data from their feature values so that observations within a group are more similar than those between groups. You can read more about clustering [here](https://github.com/martinagvilas/intro_stat_learning/blob/master/notebooks/lab2_clustering.ipynb).A very popular clustering algorithm is __k-means__. This method partitions the data into __$k$ pre-specified__ clusters in a way that minimizes the within-cluster variance. Let's implement k-means using _scikit-learn_. We first need to generate a dataset suitable for clustering using `make_blobs()` (read documentation [here](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.htmlsklearn.datasets.make_blobs)) which generates Gaussian shaped blobs. We will create a very simple dataset with only two features, to simplify visualization of the clusters: ###Code import matplotlib.pyplot as plt import seaborn as sns from sklearn.datasets import make_blobs # Create fake dataset X, y = make_blobs( n_samples=400, n_features=2, random_state=0, cluster_std=1 ) ###Output _____no_output_____ ###Markdown Let's visualize our dataset with a scatterplot, and color the observations according to their real labels: ###Code # Plot dataset sns.scatterplot( x=X[:, 0], y=X[:, 1], hue=y, marker='o', s=25, edgecolor='k', legend=True ).set_title("Data") plt.show() ###Output _____no_output_____ ###Markdown There are 3 clusters in our fake dataset. Usually we don't have this information available and we need to select an arbitrary number of clusters for the algorithm to find.Let's see an example of this and perform k-means clustering by calling `KMeans` (read documentation [here](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.htmlsklearn.cluster.KMeans)) with 5 clusters ($k=5$): ###Code from sklearn.cluster import KMeans # Create model kmeans = KMeans(n_clusters=5) # Fit model kmeans = kmeans.fit(X) ###Output _____no_output_____ ###Markdown Since this is an unsupervised method, we don't need to provide `y` as input to `fit()`. We also cannot compute the accuracy of the fitted model. But we can compute the average distance of the labeled example to the center of their assigned cluster using the `score()` function: ###Code # Compute average distance score = kmeans.score(X, y) print(f"Average distance: {score}") ###Output _____no_output_____ ###Markdown If you want to read more about the meaning behind the returned value, read [this answer](https://stackoverflow.com/questions/32370543/understanding-score-returned-by-scikit-learn-kmeans) on stackoverflow. More importantly, we can now use our fitted model to predict to which cluster the observations belong to. Let's predict the assignment of the first 10 observations: ###Code # Predict cluster label y_pred = kmeans.predict(X) print(f"Predicted labels (first 10): {y_pred[:10]}") ###Output _____no_output_____ ###Markdown We can use a scatterplot to inspect the predicted labels from the model: ###Code # Plot predicted labels sns.scatterplot( x=X[:, 0], y=X[:, 1], hue=y_pred, marker='o', s=25, edgecolor='k', legend=False ).set_title("Data") plt.show() ###Output _____no_output_____ ###Markdown We have the same number of predicted labels as the number of $k$. ✍️ Exercise Can you create a `KMeans` model specifying the correct number of clusters (`k=3`) and plot its predictions? Compare it with the plot of the real labels. Write your code in the cell below and press the three dots to see the solution. ###Code #### Answer # Create model kmeans = KMeans(n_clusters=3) # Fit model kmeans = kmeans.fit(X, y) # Predict labels y_pred = kmeans.predict(X) # Plot predicted labels sns.scatterplot( x=X[:, 0], y=X[:, 1], hue=y_pred, marker='o', s=25, edgecolor='k', legend=False ).set_title("Data") plt.show() ###Output _____no_output_____
.ipynb_checkpoints/Find_the_best_moving_average-checkpoint.ipynb
###Markdown ###Code !pip install yfinance import yfinance import pandas as pd import numpy as np import matplotlib.pyplot as plt from scipy.stats import ttest_ind import datetime plt.rcParams['figure.figsize'] = [10, 7] plt.rc('font', size=14) np.random.seed(0) y = np.arange(0,100,1) + np.random.normal(0,10,100) sma = pd.Series(y).rolling(20).mean() plt.plot(y,label="Time series") plt.plot(sma,label="20-period SMA") plt.legend() plt.show() n_forward = 40 name = 'GLD' start_date = "2010-01-01" end_date = "2020-06-15" ticker = yfinance.Ticker("FB") data = ticker.history(interval="1d",start='2010-01-01',end=end_date) plt.plot(data['Close'],label='Facebook') plt.plot(data['Close'].rolling(20).mean(),label = "20-periods SMA") plt.plot(data['Close'].rolling(50).mean(),label = "50-periods SMA") plt.plot(data['Close'].rolling(200).mean(),label = "200-periods SMA") plt.legend() plt.xlim((datetime.date(2019,1,1),datetime.date(2020,6,15))) plt.ylim((100,250)) plt.show() ticker = yfinance.Ticker(name) data = ticker.history(interval="1d",start=start_date,end=end_date) data['Forward Close'] = data['Close'].shift(-n_forward) data['Forward Return'] = (data['Forward Close'] - data['Close'])/data['Close'] result = [] train_size = 0.6 for sma_length in range(20,500): data['SMA'] = data['Close'].rolling(sma_length).mean() data['input'] = [int(x) for x in data['Close'] > data['SMA']] df = data.dropna() training = df.head(int(train_size * df.shape[0])) test = df.tail(int((1 - train_size) * df.shape[0])) tr_returns = training[training['input'] == 1]['Forward Return'] test_returns = test[test['input'] == 1]['Forward Return'] mean_forward_return_training = tr_returns.mean() mean_forward_return_test = test_returns.mean() pvalue = ttest_ind(tr_returns,test_returns,equal_var=False)[1] result.append({ 'sma_length':sma_length, 'training_forward_return': mean_forward_return_training, 'test_forward_return': mean_forward_return_test, 'p-value':pvalue }) result.sort(key = lambda x : -x['training_forward_return']) result[0] best_sma = result[0]['sma_length'] data['SMA'] = data['Close'].rolling(best_sma).mean() plt.plot(data['Close'],label=name) plt.plot(data['SMA'],label = "{} periods SMA".format(best_sma)) plt.legend() plt.show() ###Output _____no_output_____
docs/python/basics/Confusion_matrix.ipynb
###Markdown ---title: "Confusion Matrix"author: "Vaishnavi"date: 2020-08-09description: "-"type: technical_notedraft: false--- from sklearn.metrics import confusion_matrix ###Code var1 = "Cat" var2 = "Ant" var3 = "Bird" true = [var3, var1, var3, var3, var1, var2] pred = [var1, var1, var3, var3, var1, var3] confusion_matrix(true, pred, labels=[var1, var2, var3]) ###Output _____no_output_____ ###Markdown ---title: "Confusion_Matrix"author: "Aishwarya"date: 2020-08-10description: "-"type: technical_notedraft: false--- ###Code from sklearn.metrics import confusion_matrix C = "Cat" A = "Ant" B = "Bird" true = [C, A, C, C, A, B] pred = [A, A, C, C, A, C] confusion_matrix(true, pred, labels=[A, B, C]) ###Output _____no_output_____ ###Markdown ---title: "Confusion Matrix"author: "Kamal"date: 2020-08-11description: "-"type: technical_notedraft: false--- ###Code from sklearn.metrics import confusion_matrix, classification_report C="Cat" F="Fish" H="Hen" true = [C,C,C,C,C,C,C,C,C,C, F,F,F,F,F,F,F,F,F,F, H,H,H,H,H,H,H,H,H,H,H] pred = [C,C,C,C,C,C,F,H,F,C, C,C,H,F,F,F,F,F,F,H, H,H,H,H,H,H,C,F,H,H,H] confusion_matrix(true,pred) print(classification_report(true,pred)) ###Output precision recall f1-score support Cat 0.70 0.70 0.70 10 Fish 0.67 0.60 0.63 10 Hen 0.75 0.82 0.78 11 accuracy 0.71 31 macro avg 0.71 0.71 0.70 31 weighted avg 0.71 0.71 0.71 31
homework/Lab_6/lab6.ipynb
###Markdown Lab Six: Convolutional Neural Networks Sian Xiao & Tingting Zhao 0. Dataset SelectionThe Chinese MNIST (Chinese numbers handwritten characters images) dataset is downloaded from [Kaggle](https://www.kaggle.com/gpreda/chinese-mnist). It's collected and modified from a [project at Newcastle University](https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831/1).In the original project, one hundred Chinese nationals took part in data collection. Each participant wrote with a standard black ink pen all 15 numbers in a table with 15 designated regions drawn on a white A4 paper. This process was repeated 10 times with each participant. Each sheet was scanned at the resolution of 300x300 pixels.It resulted a dataset of 15000 images, each representing one character from a set of 15 characters (grouped in samples, grouped in suites, with 10 samples/volunteer and 100 volunteers).The modified dataset (Kaggle) contains the following:* an index file, chinese_mnist.csv* a folder with 15,000 jpg images, sized 64 x 64.The .csv file contains a data frame with following attributes:* `suite_id`: There are totally 100 suites, each created by a volunteer.* `sample_id`: Each volunteer created 10 samples.* `code`: Each sample contains characters from 0 to 100M (totally 15 Chinese number characters). This is a code used to identify.* `value`: Numerical value of each character.* `character`:The actual Chinese character corresponding to one number.The mapping of value, character and code is shown below:| value | character | code ||-----------|-----------|------|| 0 | 零 | 1 || 1 | 一 | 2 || 2 | 二 | 3 || 3 | 三 | 4 || 4 | 四 | 5 || 5 | 五 | 6 || 6 | 六 | 7 || 7 | 七 | 8 || 8 | 八 | 9 || 9 | 九 | 10 || 10 | 十 | 11 || 100 | 百 | 12 || 1000 | 千 | 13 || 10000 | 万 | 14 || 100000000 | 亿 | 15 |The file names are `__.jpg`. ###Code import pandas as pd from tensorflow import keras from sklearn.model_selection import StratifiedKFold import os import numpy as np from collections import Counter import cv2 import warnings warnings.filterwarnings('ignore') from tensorflow.keras.callbacks import EarlyStopping from tensorflow.keras.regularizers import l2 from tensorflow.keras.preprocessing.image import ImageDataGenerator from sklearn import metrics as mt from sklearn.metrics import roc_curve, auc from sklearn.decomposition import PCA from skimage.feature import daisy from matplotlib import pyplot as plt import seaborn as sns from math import ceil from tensorflow.keras.layers import Add, Input, average, concatenate, Input, Dense, Dropout, Activation, Flatten from tensorflow.keras.layers import Conv2D, MaxPooling2D, Reshape, SeparableConv2D, BatchNormalization from tensorflow.keras.models import Sequential, Model from tensorflow.keras.applications import ResNet50 from tensorflow.keras.applications.resnet import preprocess_input %matplotlib inline ###Output _____no_output_____ ###Markdown 1. Preparation 1.1 Metrics ###Code data = pd.read_csv('data/chinese_mnist.csv', encoding='utf-8') data_group = data.groupby(by=['code','value']) data_group.character.value_counts() image_files = list(os.listdir("data/image")) print(f"Number of image files in folder: {len(image_files)}") print(f"Number of instances in csv: {len(data)}") ###Output Number of image files in folder: 15000 Number of instances in csv: 15000 ###Markdown **There are metrics designed for unbalanced dataset (like Cohen’s Kappa). Also, we can use precision, recall and F1 score (mainly for binary classification, or one-to-rest classification). As the dataset itself is well-organized to be balanced, and we care each category equaily, we don't need to use those complicated metrics designed for unbalanced dataset. If we have a cancer recgnition task, we need to care about false negative rate. But here we just need a high accuracy for all numbers. So we use accuracy as evaluation metrics.****Confusion matrix can be used to visualize the result.**https://scikit-learn.org/stable/modules/model_evaluation.htmlclassification-metrics`from sklearn.metrics import multilabel_confusion_matrix, log_loss, f1_score, accuracy_score, precision_score, recall_score` 1.2 Splits ###Code %%time X_list, y_list = [], [] for file in image_files: code = int(file.split('.jpg')[0].split('_')[-1]) img_path = 'data/image/' + file img = cv2.imread(img_path, 0) # Load image in grayscale mode img_re = cv2.bitwise_not(img) img_new = img_re/255.0 -0.5 # Zero mean X_list.append(img_new) y_list.append(code-1) # Zero base to use keras.utils.to_categorical X_ori = np.array(X_list) y_ori = np.array(y_list) ### !!!Note!!! ### From here, code-1 is the index for value now!!! ###Output CPU times: user 2.25 s, sys: 2.13 s, total: 4.38 s Wall time: 20.7 s ###Markdown | value | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 100 | 1E3 | 1E4 | 1E8 ||-----------|----|----|----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|| code | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 || character | 零 | 一 | 二 | 三 | 四 | 五 | 六 | 七 | 八 | 九 | 十 | 百 | 千 | 万 | 亿 || y | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | ###Code NUM_CLASSES = 15 img_wh = 64 X = np.expand_dims(X_ori.reshape((-1,img_wh,img_wh)), axis=3) print(X[0].shape) y = keras.utils.to_categorical(y_ori, NUM_CLASSES) print(y[:10]) ###Output (64, 64, 1) [[0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.] [1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]] ###Markdown **We choose to use Stratified K-Folds cross-validator because it can preserve the percentage of samples for each class. As we hope to classify different characters, we should learn from each classification equally.** ###Code skf = StratifiedKFold(n_splits=4) train_idx_list, test_idx_list = [], [] # have to use y_ori ('multiclass') to use StratifiedKFold # can't use y, but index is universal for y and y_ori for train_idx, test_idx in skf.split(X, y_ori): train_idx_list.append(train_idx) test_idx_list.append(test_idx) for i in range(4): fold = list(y_ori[train_idx_list[0]]) print(Counter(fold)) ###Output Counter({11: 750, 14: 750, 9: 750, 13: 750, 7: 750, 10: 750, 12: 750, 8: 750, 2: 750, 3: 750, 5: 750, 4: 750, 0: 750, 6: 750, 1: 750}) Counter({11: 750, 14: 750, 9: 750, 13: 750, 7: 750, 10: 750, 12: 750, 8: 750, 2: 750, 3: 750, 5: 750, 4: 750, 0: 750, 6: 750, 1: 750}) Counter({11: 750, 14: 750, 9: 750, 13: 750, 7: 750, 10: 750, 12: 750, 8: 750, 2: 750, 3: 750, 5: 750, 4: 750, 0: 750, 6: 750, 1: 750}) Counter({11: 750, 14: 750, 9: 750, 13: 750, 7: 750, 10: 750, 12: 750, 8: 750, 2: 750, 3: 750, 5: 750, 4: 750, 0: 750, 6: 750, 1: 750}) ###Markdown **It's perfectly balanced.** 2. Modeling 2.1 Data expansion**Since in realality the character may be captured in different direaction, distorted, so we turn on rotation, width_shift, height_shift,zoom functions. Because flipping a character will not confuse the character with another, so flipping is meaningless in this case.** **Let's use the first fold as example.** ###Code X_train, X_test = X[train_idx_list[0]], X[test_idx_list[0]] y_train, y_test = y[train_idx_list[0]], y[test_idx_list[0]] # note here we have to use one hot encoded y %%time datagen = ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=5, # people would write characters slightly different in direction width_shift_range=4, # same as 0.046875, allow move within 4 pixels. height_shift_range=4, # same as 0.046875, allow move within 4 pixels. shear_range=0., # Float. Shear Intensity (Shear angle in counter-clockwise direction as radians) zoom_range=0.03, # different people write characters of different sizes channel_shift_range=0., fill_mode='nearest', # I think it's the same to use 'constant' since edges of picture are 1.0 cval=1., horizontal_flip=False, # flip a character is meaningless in our case vertical_flip=False, # flip a character is meaningless in our case rescale=None) datagen.fit(X_train) tmps = datagen.flow(X_train, y_train, batch_size=1) labels = ["零","一","二","三","四","五","六","七","八","九","十","百","千","万","亿"] for tmp in tmps: plt.imshow(tmp[0].squeeze(), cmap=plt.cm.gray) plt.title(np.argmax(tmp[1])) # didn't install Chinese font in my matplotlib, can't use labels[]. break ###Output _____no_output_____ ###Markdown 2.2 CNN architectures**Here we used AlexNet (Alex), ResNet and Ensemble Nets (EnsNet) architectures, each architecture we enhanced the number of filter by 8 times and add one more layer of the fully connected MLP.** 2.2.1 AlexNet**Alex_1** ###Code ### AlexNet style convolutional phase ### Alex_1 = Sequential(name='Alex_1') Alex_1.add(Conv2D(filters=8, input_shape = (img_wh,img_wh,1),kernel_size=(3,3), padding='same', activation='relu', data_format="channels_last")) Alex_1.add(Conv2D(filters=16, kernel_size=(3,3), padding='same', activation='relu')) Alex_1.add(MaxPooling2D(pool_size=(2,2), data_format="channels_last")) Alex_1.add(Dropout(0.25)) Alex_1.add(Flatten()) Alex_1.add(Dense(128, activation='relu')) Alex_1.add(Dropout(0.5)) Alex_1.add(Dense(NUM_CLASSES, activation='softmax')) Alex_1.compile(loss='categorical_crossentropy', # 'categorical_crossentropy' 'mean_squared_error' optimizer='rmsprop', # 'adadelta' 'rmsprop' metrics=['accuracy'] ) Alex_1.summary() %%time # the flow method yields batches of images indefinitely, with the given transformations history_Alex_1 = Alex_1.fit_generator(datagen.flow(X_train, y_train, batch_size=64), steps_per_epoch=int(len(X_train)/64), epochs=30, verbose=1, validation_data=(X_test,y_test), callbacks=[EarlyStopping(monitor='val_loss', patience=4)] ) plt.figure(figsize=(10,4)) plt.subplot(1,2,1) plt.plot(history_Alex_1.history['loss'],label='Training') plt.plot(history_Alex_1.history['val_loss'],label='Testing') plt.ylabel('Loss') plt.xlabel('epochs') plt.legend() plt.subplot(1,2,2) plt.plot(history_Alex_1.history['accuracy'],label='Training') plt.plot(history_Alex_1.history['val_accuracy'],label='Testing') plt.ylabel('Accuracy') plt.xlabel('epochs') plt.legend() plt.show() ###Output _____no_output_____ ###Markdown **Alex_2** ###Code ### AlexNet style convolutional phase ### Alex_2 = Sequential(name='Alex_2') Alex_2.add(Conv2D(filters=64, input_shape = (img_wh,img_wh,1),kernel_size=(3,3), padding='same', activation='relu', data_format="channels_last")) Alex_2.add(Conv2D(filters=128, kernel_size=(3,3), padding='same', activation='relu')) Alex_2.add(MaxPooling2D(pool_size=(2,2), data_format="channels_last")) # add one layer on flattened output Alex_2.add(Dropout(0.20)) Alex_2.add(Flatten()) Alex_2.add(Dense(128, activation='relu')) Alex_2.add(Dropout(0.40)) Alex_2.add(Dense(64, activation='relu')) Alex_2.add(Dropout(0.60)) Alex_2.add(Dense(NUM_CLASSES, activation='softmax')) # Let's train the model Alex_2.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy'] ) Alex_2.summary() %%time history_Alex_2 = Alex_2.fit_generator(datagen.flow(X_train, y_train, batch_size=64), steps_per_epoch=int(len(X_train)/64), epochs=30, verbose=1, validation_data=(X_test,y_test), callbacks=[EarlyStopping(monitor='val_loss', patience=4)] ) plt.figure(figsize=(10,4)) plt.subplot(1,2,1) plt.plot(history_Alex_2.history['loss'],label='Training') plt.plot(history_Alex_2.history['val_loss'],label='Testing') plt.ylabel('Loss') plt.xlabel('epochs') plt.legend() plt.subplot(1,2,2) plt.plot(history_Alex_2.history['accuracy'],label='Training') plt.plot(history_Alex_2.history['val_accuracy'],label='Testing') plt.ylabel('Accuracy') plt.xlabel('epochs') plt.legend() plt.show() ###Output _____no_output_____ ###Markdown 2.2.2 ResNet**ResNet_1** ###Code ### ResNet-Style Bypass ### l2_lambda= 0.000001 input_holder = Input(shape=(img_wh, img_wh, 1)) x = Conv2D(filters=8, input_shape = (img_wh,img_wh,1), kernel_size=(3,3), kernel_initializer='he_uniform', kernel_regularizer=l2(l2_lambda), padding='same', activation='relu', data_format="channels_last")(input_holder) x = MaxPooling2D(pool_size=(2,2), data_format="channels_last")(x) x = Conv2D(filters=8, kernel_size=(3,3), kernel_initializer='he_uniform', kernel_regularizer=l2(l2_lambda), padding='same', activation='relu', data_format="channels_last")(x) x_split = MaxPooling2D(pool_size=(2,2), data_format="channels_last")(x) x = Conv2D(filters=16, kernel_size=(1,1), kernel_initializer='he_uniform', kernel_regularizer=l2(l2_lambda), padding='same', activation='relu', data_format="channels_last")(x_split) x = Conv2D(filters=16, kernel_size=(3,3), kernel_initializer='he_uniform', kernel_regularizer=l2(l2_lambda), padding='same', activation='relu', data_format="channels_last")(x) x = Conv2D(filters=8, kernel_size=(1,1), kernel_initializer='he_uniform', kernel_regularizer=l2(l2_lambda), padding='same', activation='relu', data_format="channels_last")(x) x = Add()([x, x_split]) x = Activation("relu")(x) x = MaxPooling2D(pool_size=(2,2), data_format="channels_last")(x) x = Flatten()(x) x = Dropout(0.25)(x) x = Dense(256)(x) x = Activation("relu")(x) x = Dropout(0.5)(x) x = Dense(NUM_CLASSES)(x) x = Activation('softmax')(x) ResNet_1 = Model(inputs=input_holder, outputs=x, name='ResNet_1') ResNet_1.compile(loss='categorical_crossentropy', # 'categorical_crossentropy' 'mean_squared_error' optimizer='rmsprop', # 'adadelta' 'rmsprop' metrics=['accuracy'] ) ResNet_1.summary() %%time history_ResNet_1 = ResNet_1.fit_generator(datagen.flow(X_train, y_train, batch_size=64), steps_per_epoch=int(len(X_train)/64), epochs=30, verbose=1, validation_data=(X_test,y_test), callbacks=[EarlyStopping(monitor='val_loss', patience=4)] ) plt.figure(figsize=(10,4)) plt.subplot(1,2,1) plt.plot(history_ResNet_1.history['loss'],label='Training') plt.plot(history_ResNet_1.history['val_loss'],label='Testing') plt.ylabel('Loss') plt.xlabel('epochs') plt.legend() plt.subplot(1,2,2) plt.plot(history_ResNet_1.history['accuracy'],label='Training ') plt.plot(history_ResNet_1.history['val_accuracy'],label='Testing') plt.ylabel('Accuracy') plt.xlabel('epochs') plt.legend() plt.show() ###Output _____no_output_____ ###Markdown **ResNet_2** ###Code %%time input_holder = Input(shape=(img_wh, img_wh, 1)) x = Conv2D(filters=64, input_shape = (img_wh,img_wh,1), kernel_size=(3,3), kernel_initializer='he_uniform', kernel_regularizer=l2(l2_lambda), padding='same', activation='relu', data_format="channels_last")(input_holder) x = MaxPooling2D(pool_size=(2,2), data_format="channels_last")(x) x = Conv2D(filters=64, kernel_size=(3,3), kernel_initializer='he_uniform', kernel_regularizer=l2(l2_lambda), padding='same', activation='relu', data_format="channels_last")(x) x_split = MaxPooling2D(pool_size=(2,2), data_format="channels_last")(x) x = Conv2D(filters=128, kernel_size=(1,1), kernel_initializer='he_uniform', kernel_regularizer=l2(l2_lambda), padding='same', activation='relu', data_format="channels_last")(x_split) x = Conv2D(filters=128, kernel_size=(3,3), kernel_initializer='he_uniform', kernel_regularizer=l2(l2_lambda), padding='same', activation='relu', data_format="channels_last")(x) x = Conv2D(filters=64, kernel_size=(1,1), kernel_initializer='he_uniform', kernel_regularizer=l2(l2_lambda), padding='same', activation='relu', data_format="channels_last")(x) x = Add()([x, x_split]) x = Activation("relu")(x) x = MaxPooling2D(pool_size=(2,2), data_format="channels_last")(x) x = Flatten()(x) x = Dropout(0.20)(x) x = Flatten()(x) x = Dense(512)(x) x = Activation("relu")(x) x = Dropout(0.40)(x) x = Flatten()(x) x = Dense(256)(x) x = Activation("relu")(x) x = Dropout(0.60)(x) x = Dense(NUM_CLASSES)(x) x = Activation('softmax')(x) ResNet_2 = Model(inputs=input_holder, outputs=x, name='ResNet_2') ResNet_2.compile(loss='categorical_crossentropy', # 'categorical_crossentropy' 'mean_squared_error' optimizer='rmsprop', # 'adadelta' 'rmsprop' metrics=['accuracy'] ) ResNet_2.summary() %%time history_ResNet_2 = ResNet_2.fit_generator(datagen.flow(X_train, y_train, batch_size=64), steps_per_epoch=int(len(X_train)/64), epochs=30, verbose=1, validation_data=(X_test,y_test), callbacks=[EarlyStopping(monitor='val_loss', patience=4)] ) plt.figure(figsize=(10,4)) plt.subplot(1,2,1) plt.plot(history_ResNet_2.history['loss'],label='Training') plt.plot(history_ResNet_2.history['val_loss'],label='Testing') plt.ylabel('Loss') plt.xlabel('epochs') plt.legend() plt.subplot(1,2,2) plt.plot(history_ResNet_2.history['accuracy'],label='Training') plt.plot(history_ResNet_2.history['val_accuracy'],label='Testing') plt.ylabel('Accuracy') plt.xlabel('epochs') plt.legend() plt.show() ###Output _____no_output_____ ###Markdown 2.2.3 EnsNet**EnsNet_1** ###Code ### Ensemble Nets ### num_ensembles = 3 l2_lambda = 0.000001 input_holder = Input(shape=(img_wh, img_wh, 1)) # start with a conv layer x = Conv2D(filters=16, input_shape = (img_wh,img_wh,1), kernel_size=(3,3), kernel_initializer='he_uniform', kernel_regularizer=l2(l2_lambda), padding='same', activation='relu', data_format="channels_last")(input_holder) x = Conv2D(filters=16, kernel_size=(3,3), kernel_initializer='he_uniform', kernel_regularizer=l2(l2_lambda), padding='same', activation='relu')(x) input_conv = MaxPooling2D(pool_size=(2, 2), data_format="channels_last")(x) branches = [] for _ in range(num_ensembles): # start using NiN (MLPConv) x = Conv2D(filters=16, input_shape = (img_wh,img_wh,1), kernel_size=(3,3), kernel_initializer='he_uniform', kernel_regularizer=l2(l2_lambda), padding='same', activation='linear', data_format="channels_last")(input_conv) x = Conv2D(filters=16, kernel_size=(1,1), kernel_initializer='he_uniform', kernel_regularizer=l2(l2_lambda), padding='same', activation='relu', data_format="channels_last")(x) x = MaxPooling2D(pool_size=(2, 2), data_format="channels_last")(x) x = Conv2D(filters=32, input_shape = (img_wh,img_wh,1), kernel_size=(3,3), kernel_initializer='he_uniform', kernel_regularizer=l2(l2_lambda), padding='same', activation='linear', data_format="channels_last")(x) x = Conv2D(filters=32, kernel_size=(1,1), kernel_initializer='he_uniform', kernel_regularizer=l2(l2_lambda), padding='same', activation='linear', data_format="channels_last")(x) x = MaxPooling2D(pool_size=(2, 2), data_format="channels_last")(x) # add one layer on flattened output x = Flatten()(x) x = Dropout(0.25)(x) # add some dropout for regularization after conv layers x = Dense(32, activation='relu', kernel_initializer='he_uniform', kernel_regularizer=l2(l2_lambda) )(x) x = Dense(NUM_CLASSES, activation='relu', kernel_initializer='he_uniform', kernel_regularizer=l2(l2_lambda) )(x) # now add this branch onto the master list branches.append(x) # that's it, we just need to average the results x = concatenate(branches) x = Dense(NUM_CLASSES, activation='softmax', kernel_initializer='glorot_uniform', kernel_regularizer=l2(l2_lambda) )(x) EnsNet_1 = Model(inputs=input_holder, outputs=x, name='EnsNet_1') EnsNet_1.compile(loss='categorical_crossentropy', # 'categorical_crossentropy' 'mean_squared_error' optimizer='rmsprop', # 'adadelta' 'rmsprop' metrics=['accuracy'] ) EnsNet_1.summary() %%time history_EnsNet_1 = EnsNet_1.fit_generator(datagen.flow(X_train, y_train, batch_size=64), steps_per_epoch=int(len(X_train)/64), epochs=30, verbose=1, validation_data=(X_test,y_test), callbacks=[EarlyStopping(monitor='val_loss', patience=4)] ) plt.figure(figsize=(10,4)) plt.subplot(1,2,1) plt.plot(history_EnsNet_1.history['loss'],label='Training') plt.plot(history_EnsNet_1.history['val_loss'],label='Testing') plt.ylabel('Loss') plt.xlabel('epochs') plt.legend() plt.subplot(1,2,2) plt.plot(history_EnsNet_1.history['accuracy'],label='Training') plt.plot(history_EnsNet_1.history['val_accuracy'],label='Testing') plt.ylabel('accuracy') plt.xlabel('epochs') plt.legend() plt.show() ###Output _____no_output_____ ###Markdown **EnsNet_2** ###Code ### Ensemble Nets ### num_ensembles = 3 l2_lambda = 0.000001 input_holder = Input(shape=(img_wh, img_wh, 1)) x = Conv2D(filters=64, input_shape = (img_wh,img_wh,1), kernel_size=(3,3), kernel_initializer='he_uniform', kernel_regularizer=l2(l2_lambda), padding='same', activation='relu', data_format="channels_last")(input_holder) x = Conv2D(filters=64, kernel_size=(3,3), kernel_initializer='he_uniform', kernel_regularizer=l2(l2_lambda), padding='same', activation='relu')(x) input_conv = MaxPooling2D(pool_size=(2, 2), data_format="channels_last")(x) branches = [] for _ in range(num_ensembles): x = Conv2D(filters=64, input_shape = (img_wh,img_wh,1), kernel_size=(3,3), kernel_initializer='he_uniform', kernel_regularizer=l2(l2_lambda), padding='same', activation='linear', data_format="channels_last")(input_conv) x = Conv2D(filters=64, kernel_size=(1,1), kernel_initializer='he_uniform', kernel_regularizer=l2(l2_lambda), padding='same', activation='relu', data_format="channels_last")(x) x = MaxPooling2D(pool_size=(2, 2), data_format="channels_last")(x) x = Conv2D(filters=128, input_shape = (img_wh,img_wh,1), kernel_size=(3,3), kernel_initializer='he_uniform', kernel_regularizer=l2(l2_lambda), padding='same', activation='linear', data_format="channels_last")(x) x = Conv2D(filters=128, kernel_size=(1,1), kernel_initializer='he_uniform', kernel_regularizer=l2(l2_lambda), padding='same', activation='linear', data_format="channels_last")(x) x = MaxPooling2D(pool_size=(2, 2), data_format="channels_last")(x) x = Flatten()(x) x = Dropout(0.25)(x) x = Dense(128, activation='relu', kernel_initializer='he_uniform', kernel_regularizer=l2(l2_lambda) )(x) x = Dropout(0.50)(x) x = Dense(64, activation='relu', kernel_initializer='he_uniform', kernel_regularizer=l2(l2_lambda) )(x) x = Dense(NUM_CLASSES, activation='relu', kernel_initializer='he_uniform', kernel_regularizer=l2(l2_lambda) )(x) branches.append(x) x = concatenate(branches) x = Dense(NUM_CLASSES, activation='softmax', kernel_initializer='glorot_uniform', kernel_regularizer=l2(l2_lambda) )(x) EnsNet_2 = Model(inputs=input_holder, outputs=x, name='EnsNet_2') EnsNet_2.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy'] ) EnsNet_2.summary() %%time history_EnsNet_2 = EnsNet_2.fit_generator(datagen.flow(X_train, y_train, batch_size=64), steps_per_epoch=int(len(X_train)/64), epochs=30, verbose=1, validation_data=(X_test,y_test), callbacks=[EarlyStopping(monitor='val_loss', patience=4)] ) plt.figure(figsize=(10,4)) plt.subplot(1,2,1) plt.plot(history_EnsNet_2.history['loss'],label='Training') plt.plot(history_EnsNet_2.history['val_loss'],label='Testing') plt.ylabel('Loss') plt.xlabel('epochs') plt.legend() plt.subplot(1,2,2) plt.plot(history_EnsNet_2.history['accuracy'],label='Training') plt.plot(history_EnsNet_2.history['val_accuracy'],label='Testing') plt.ylabel('accuracy') plt.xlabel('epochs') plt.legend() plt.show() ###Output _____no_output_____ ###Markdown 2.3 Visualization and Comparison 2.3.1 Visualization ###Code # visualize def visualize_models(X_test, y_test, model_names=[], labels='auto'): assert isinstance(model_names, list) assert all(isinstance(name, str) for name in model_names) assert isinstance(y_test[0], np.int64) height = ceil(len(model_names)/2) plt.figure(figsize=(20, 6*height)) for i, name in enumerate(model_names): model = eval(name) yhat_model = np.argmax(model.predict(X_test), axis=1) acc_model = mt.accuracy_score(y_test,yhat_model) plt.subplot(height,2,i+1) cm = mt.confusion_matrix(y_test,yhat_model) cm = cm/np.sum(cm,axis=1)[:,np.newaxis] sns.heatmap(cm, annot=True, fmt='.2f',xticklabels=labels,yticklabels=labels, cmap = sns.color_palette("YlOrBr", as_cmap=True)) plt.title(f'{str(name)}: {acc_model}', fontsize=20) plt.tight_layout() # have to use y_ori since it's 'multiclass' instead of onehot encoded array visualize_models(X_test, y_ori[test_idx_list[0]], labels='auto', model_names=['Alex_1', 'Alex_2', 'ResNet_1', 'ResNet_2', 'EnsNet_1', 'EnsNet_2']) ###Output _____no_output_____ ###Markdown **As we can see, it seems EnsNet is better than ResNet, Alex got relatively the worsest results. Let's use statistical method to do the comparison.** 2.3.2 Comparison ###Code # Define a function for McNemar's Test # confidence: 0.90 0.95 0.99 # 1DOF critical value: 2.706 3.841 6.635 def mn_test(ypred1, ypred2, ytrue): tab_b = sum((ypred1 == ytrue) & (ypred2 != ytrue)) tab_c = sum((ypred1 != ytrue) & (ypred2 == ytrue)) if tab_b + tab_c == 0: chi2 = 0 else: chi2 = (abs(tab_b - tab_c)-1)**2 / (tab_b + tab_c) return round(chi2,4) ###Output _____no_output_____ ###Markdown **we would like to compare between same architecture with different parameters.** ###Code yhat_Alex_1 = np.argmax(Alex_1.predict(X_test), axis=1) yhat_Alex_2 = np.argmax(Alex_2.predict(X_test), axis=1) yhat_ResNet_1 = np.argmax(ResNet_1.predict(X_test), axis=1) yhat_ResNet_2 = np.argmax(ResNet_2.predict(X_test), axis=1) yhat_EnsNet_1 = np.argmax(EnsNet_1.predict(X_test), axis=1) yhat_EnsNet_2 = np.argmax(EnsNet_2.predict(X_test), axis=1) print("Alex 1 vs Alex 2: Test statistic",mn_test(yhat_Alex_1, yhat_Alex_2, y_ori[test_idx_list[0]])) print("ResNet 1 vs ResNet 2: Test statistic",mn_test(yhat_ResNet_1, yhat_ResNet_2, y_ori[test_idx_list[0]])) print("EnsNet 1 vs EnsNet 2: Test statistic",mn_test(yhat_EnsNet_1, yhat_EnsNet_2, y_ori[test_idx_list[0]])) ###Output Alex 1 vs Alex 2: Test statistic 32.7935 ResNet 1 vs ResNet 2: Test statistic 30.2222 EnsNet 1 vs EnsNet 2: Test statistic 0.3556 ###Markdown **As we can see, `ResNet_2` and `Alex_2` are different from `ResNet_1` and `Alex_1`, respectively. While `ResNet_2` and `Alex_1` have higher accuracy, we would say they have better perfromance.****We can't conclude `EnsNet_2` is actually better than `EnsNet_1` since the $\chi^2$ value is smaller than 2.706, but it has better accuracy so let's just use `EnsNet_2` as an example.****Let's compare `Alex_1` , `ResNet_2` and `EnsNet_2`.** ###Code print("ResNet 2 vs EnsNet 2: Test statistic",mn_test(yhat_ResNet_2, yhat_EnsNet_2, y_ori[test_idx_list[0]])) print("Alex 1 vs EnsNet 2: Test statistic",mn_test(yhat_Alex_1, yhat_EnsNet_2, y_ori[test_idx_list[0]])) print("Alex 1 vs ResNet 2: Test statistic",mn_test(yhat_Alex_1, yhat_ResNet_2, y_ori[test_idx_list[0]])) ###Output ResNet 2 vs EnsNet 2: Test statistic 9.4464 Alex 1 vs EnsNet 2: Test statistic 134.453 Alex 1 vs ResNet 2: Test statistic 90.2798 ###Markdown **$\chi^2$ values for all three comparisons much larger than 6.635, so we can say they are different by 99% confidence. And EnsNet_2 actually has the highest accuracy, let's assume EnsNet_2 is the best.** 2.4 CNN vs. MLP**Let's first implement a MLP. Here we tried to use raw data, PCA reduced data, Daisy extraction data to build MLP model.** 2.4.1 Raw data ###Code # Raw data mlp = Sequential() mlp.add( Flatten() ) # make images flat for the MLP input mlp.add( Dense(input_dim=X_train.shape[1], units=30, activation='relu') ) mlp.add( Dense(units=15, activation='relu') ) mlp.add( Dense(NUM_CLASSES) ) mlp.add( Activation('softmax') ) mlp.compile(loss='mean_squared_error', optimizer='rmsprop', metrics=['accuracy']) history_MLP = mlp.fit(X_train, y_train, batch_size=64, epochs=50, verbose=1, validation_data=(X_test,y_test), callbacks=[EarlyStopping(monitor='val_loss', patience=4)] ) ###Output Epoch 1/50 176/176 [==============================] - 1s 3ms/step - loss: 0.0630 - accuracy: 0.0669 - val_loss: 0.0622 - val_accuracy: 0.0667 Epoch 2/50 176/176 [==============================] - 0s 2ms/step - loss: 0.0622 - accuracy: 0.0637 - val_loss: 0.0622 - val_accuracy: 0.0667 Epoch 3/50 176/176 [==============================] - 0s 2ms/step - loss: 0.0622 - accuracy: 0.0630 - val_loss: 0.0622 - val_accuracy: 0.0667 Epoch 4/50 176/176 [==============================] - 0s 2ms/step - loss: 0.0622 - accuracy: 0.0675 - val_loss: 0.0622 - val_accuracy: 0.0667 Epoch 5/50 176/176 [==============================] - 0s 2ms/step - loss: 0.0622 - accuracy: 0.0605 - val_loss: 0.0622 - val_accuracy: 0.0667 Epoch 6/50 176/176 [==============================] - 0s 2ms/step - loss: 0.0622 - accuracy: 0.0643 - val_loss: 0.0622 - val_accuracy: 0.0667 Epoch 7/50 176/176 [==============================] - 0s 2ms/step - loss: 0.0622 - accuracy: 0.0656 - val_loss: 0.0622 - val_accuracy: 0.0667 Epoch 8/50 176/176 [==============================] - 0s 2ms/step - loss: 0.0622 - accuracy: 0.0717 - val_loss: 0.0622 - val_accuracy: 0.0667 Epoch 9/50 176/176 [==============================] - 0s 2ms/step - loss: 0.0622 - accuracy: 0.0634 - val_loss: 0.0622 - val_accuracy: 0.0667 Epoch 10/50 176/176 [==============================] - 0s 2ms/step - loss: 0.0622 - accuracy: 0.0705 - val_loss: 0.0622 - val_accuracy: 0.0667 Epoch 11/50 176/176 [==============================] - 0s 2ms/step - loss: 0.0622 - accuracy: 0.0605 - val_loss: 0.0622 - val_accuracy: 0.0667 Epoch 12/50 176/176 [==============================] - 0s 2ms/step - loss: 0.0622 - accuracy: 0.0647 - val_loss: 0.0622 - val_accuracy: 0.0667 Epoch 13/50 176/176 [==============================] - 0s 2ms/step - loss: 0.0622 - accuracy: 0.0682 - val_loss: 0.0622 - val_accuracy: 0.0667 Epoch 14/50 176/176 [==============================] - 0s 2ms/step - loss: 0.0622 - accuracy: 0.0640 - val_loss: 0.0622 - val_accuracy: 0.0667 ###Markdown **Using raw data as input, the accuracy is terriable** 2.4.2 PCA reduced data ###Code # PCA n_components = 750 pca= PCA(n_components=n_components).fit(X_train.reshape(X_train.shape[0],-1)) X_train_pca =pca.transform(X_train.reshape(X_train.shape[0],-1)) X_test_pca =pca.transform(X_test.reshape(X_test.shape[0],-1)) mlp_pca = Sequential() mlp_pca.add( Flatten() ) mlp_pca.add( Dense(input_dim=X_train_pca.shape[1], units=30, activation='relu') ) mlp_pca.add( Dense(units=15, activation='relu') ) mlp_pca.add( Dense(NUM_CLASSES) ) mlp_pca.add( Activation('softmax') ) mlp_pca.compile(loss='mean_squared_error', optimizer='rmsprop', metrics=['accuracy']) history_MLP_pca = mlp_pca.fit(X_train_pca, y_train, batch_size=64, epochs=150, verbose=1, validation_data=(X_test_pca,y_test), callbacks=[EarlyStopping(monitor='val_loss', patience=4)] ) ###Output Epoch 1/150 176/176 [==============================] - 1s 2ms/step - loss: 0.0617 - accuracy: 0.0984 - val_loss: 0.0593 - val_accuracy: 0.1712 Epoch 2/150 176/176 [==============================] - 0s 2ms/step - loss: 0.0577 - accuracy: 0.2102 - val_loss: 0.0557 - val_accuracy: 0.2885 Epoch 3/150 176/176 [==============================] - 0s 2ms/step - loss: 0.0531 - accuracy: 0.3403 - val_loss: 0.0511 - val_accuracy: 0.3979 Epoch 4/150 176/176 [==============================] - 0s 2ms/step - loss: 0.0474 - accuracy: 0.4544 - val_loss: 0.0470 - val_accuracy: 0.4456 Epoch 5/150 176/176 [==============================] - 0s 2ms/step - loss: 0.0431 - accuracy: 0.5037 - val_loss: 0.0447 - val_accuracy: 0.4752 Epoch 6/150 176/176 [==============================] - 0s 2ms/step - loss: 0.0394 - accuracy: 0.5493 - val_loss: 0.0431 - val_accuracy: 0.5011 Epoch 7/150 176/176 [==============================] - 0s 2ms/step - loss: 0.0372 - accuracy: 0.5914 - val_loss: 0.0420 - val_accuracy: 0.5131 Epoch 8/150 176/176 [==============================] - 0s 2ms/step - loss: 0.0354 - accuracy: 0.6078 - val_loss: 0.0410 - val_accuracy: 0.5293 Epoch 9/150 176/176 [==============================] - 0s 2ms/step - loss: 0.0327 - accuracy: 0.6458 - val_loss: 0.0402 - val_accuracy: 0.5405 Epoch 10/150 176/176 [==============================] - 0s 2ms/step - loss: 0.0319 - accuracy: 0.6568 - val_loss: 0.0397 - val_accuracy: 0.5509 Epoch 11/150 176/176 [==============================] - 0s 1ms/step - loss: 0.0302 - accuracy: 0.6820 - val_loss: 0.0390 - val_accuracy: 0.5555 Epoch 12/150 176/176 [==============================] - 0s 2ms/step - loss: 0.0287 - accuracy: 0.7003 - val_loss: 0.0384 - val_accuracy: 0.5640 Epoch 13/150 176/176 [==============================] - 0s 2ms/step - loss: 0.0269 - accuracy: 0.7190 - val_loss: 0.0379 - val_accuracy: 0.5741 Epoch 14/150 176/176 [==============================] - 0s 1ms/step - loss: 0.0257 - accuracy: 0.7356 - val_loss: 0.0375 - val_accuracy: 0.5867 Epoch 15/150 176/176 [==============================] - 0s 1ms/step - loss: 0.0246 - accuracy: 0.7507 - val_loss: 0.0373 - val_accuracy: 0.5864 Epoch 16/150 176/176 [==============================] - 0s 2ms/step - loss: 0.0236 - accuracy: 0.7596 - val_loss: 0.0370 - val_accuracy: 0.5971 Epoch 17/150 176/176 [==============================] - 0s 2ms/step - loss: 0.0225 - accuracy: 0.7735 - val_loss: 0.0367 - val_accuracy: 0.5997 Epoch 18/150 176/176 [==============================] - 0s 2ms/step - loss: 0.0216 - accuracy: 0.7853 - val_loss: 0.0367 - val_accuracy: 0.5973 Epoch 19/150 176/176 [==============================] - 0s 2ms/step - loss: 0.0206 - accuracy: 0.7915 - val_loss: 0.0367 - val_accuracy: 0.6040 Epoch 20/150 176/176 [==============================] - 0s 2ms/step - loss: 0.0198 - accuracy: 0.8076 - val_loss: 0.0365 - val_accuracy: 0.6083 Epoch 21/150 176/176 [==============================] - 0s 2ms/step - loss: 0.0185 - accuracy: 0.8200 - val_loss: 0.0366 - val_accuracy: 0.6016 Epoch 22/150 176/176 [==============================] - 0s 2ms/step - loss: 0.0175 - accuracy: 0.8292 - val_loss: 0.0366 - val_accuracy: 0.6053 Epoch 23/150 176/176 [==============================] - 0s 2ms/step - loss: 0.0175 - accuracy: 0.8291 - val_loss: 0.0365 - val_accuracy: 0.6099 Epoch 24/150 176/176 [==============================] - 0s 2ms/step - loss: 0.0167 - accuracy: 0.8398 - val_loss: 0.0365 - val_accuracy: 0.6109 Epoch 25/150 176/176 [==============================] - 0s 2ms/step - loss: 0.0162 - accuracy: 0.8454 - val_loss: 0.0366 - val_accuracy: 0.6120 Epoch 26/150 176/176 [==============================] - 0s 2ms/step - loss: 0.0159 - accuracy: 0.8448 - val_loss: 0.0366 - val_accuracy: 0.6144 Epoch 27/150 176/176 [==============================] - 0s 2ms/step - loss: 0.0148 - accuracy: 0.8558 - val_loss: 0.0368 - val_accuracy: 0.6141 ###Markdown **From lab2, we knew using the first 750 of components is enough to represent the data, so here we used the first 750 components as input, and the accuracy was enhanced greatly. Let's try using Daisy.** 2.4.3 Daisy extraction data ###Code # daisy def apply_daisy(row,shape): feat = daisy(row.reshape(shape), step=5, radius=5, rings=2, histograms=8, orientations=8, visualize=False) return feat.reshape((-1)) X_train_daisy = np.apply_along_axis(apply_daisy, 1, X_train.reshape(-1,64*64),(64,64)) print(X_train_daisy.shape) X_test_daisy = np.apply_along_axis(apply_daisy, 1, X_test.reshape(-1,64*64),(64,64)) print(X_test_daisy.shape) mlp_daisy = Sequential() mlp_daisy.add( Flatten() ) mlp_daisy.add( Dense(input_dim=X_train_daisy.shape[1], units=30, activation='relu') ) mlp_daisy.add( Dense(units=15, activation='relu') ) mlp_daisy.add( Dense(NUM_CLASSES) ) mlp_daisy.add( Activation('softmax') ) mlp_daisy.compile(loss='mean_squared_error', optimizer='rmsprop', metrics=['accuracy']) history_MLP_daisy= mlp_daisy.fit(X_train_daisy, y_train, batch_size=64, epochs=150, verbose=1, validation_data=(X_test_daisy,y_test), callbacks=[EarlyStopping(monitor='val_loss', patience=4)] ) ###Output Epoch 1/150 176/176 [==============================] - 1s 5ms/step - loss: 0.0580 - accuracy: 0.2323 - val_loss: 0.0461 - val_accuracy: 0.4573 Epoch 2/150 176/176 [==============================] - 1s 3ms/step - loss: 0.0433 - accuracy: 0.5178 - val_loss: 0.0361 - val_accuracy: 0.6229 Epoch 3/150 176/176 [==============================] - 1s 3ms/step - loss: 0.0342 - accuracy: 0.6438 - val_loss: 0.0308 - val_accuracy: 0.6840 Epoch 4/150 176/176 [==============================] - 1s 3ms/step - loss: 0.0284 - accuracy: 0.7053 - val_loss: 0.0264 - val_accuracy: 0.7293 Epoch 5/150 176/176 [==============================] - 1s 3ms/step - loss: 0.0249 - accuracy: 0.7486 - val_loss: 0.0248 - val_accuracy: 0.7419 Epoch 6/150 176/176 [==============================] - 0s 3ms/step - loss: 0.0218 - accuracy: 0.7795 - val_loss: 0.0214 - val_accuracy: 0.7843 Epoch 7/150 176/176 [==============================] - 0s 3ms/step - loss: 0.0196 - accuracy: 0.8106 - val_loss: 0.0202 - val_accuracy: 0.7933 Epoch 8/150 176/176 [==============================] - 1s 3ms/step - loss: 0.0187 - accuracy: 0.8153 - val_loss: 0.0192 - val_accuracy: 0.8048 Epoch 9/150 176/176 [==============================] - 1s 3ms/step - loss: 0.0172 - accuracy: 0.8360 - val_loss: 0.0176 - val_accuracy: 0.8240 Epoch 10/150 176/176 [==============================] - 1s 3ms/step - loss: 0.0157 - accuracy: 0.8484 - val_loss: 0.0164 - val_accuracy: 0.8381 Epoch 11/150 176/176 [==============================] - 1s 3ms/step - loss: 0.0148 - accuracy: 0.8625 - val_loss: 0.0169 - val_accuracy: 0.8235 Epoch 12/150 176/176 [==============================] - 0s 3ms/step - loss: 0.0143 - accuracy: 0.8587 - val_loss: 0.0163 - val_accuracy: 0.8360 Epoch 13/150 176/176 [==============================] - 1s 3ms/step - loss: 0.0133 - accuracy: 0.8702 - val_loss: 0.0149 - val_accuracy: 0.8413 Epoch 14/150 176/176 [==============================] - 1s 3ms/step - loss: 0.0126 - accuracy: 0.8833 - val_loss: 0.0141 - val_accuracy: 0.8568 Epoch 15/150 176/176 [==============================] - 1s 3ms/step - loss: 0.0116 - accuracy: 0.8918 - val_loss: 0.0134 - val_accuracy: 0.8648 Epoch 16/150 176/176 [==============================] - 1s 3ms/step - loss: 0.0111 - accuracy: 0.8997 - val_loss: 0.0132 - val_accuracy: 0.8680 Epoch 17/150 176/176 [==============================] - 1s 3ms/step - loss: 0.0106 - accuracy: 0.9069 - val_loss: 0.0123 - val_accuracy: 0.8829 Epoch 18/150 176/176 [==============================] - 1s 3ms/step - loss: 0.0100 - accuracy: 0.9107 - val_loss: 0.0124 - val_accuracy: 0.8768 Epoch 19/150 176/176 [==============================] - 0s 3ms/step - loss: 0.0095 - accuracy: 0.9134 - val_loss: 0.0119 - val_accuracy: 0.8789 Epoch 20/150 176/176 [==============================] - 1s 3ms/step - loss: 0.0087 - accuracy: 0.9244 - val_loss: 0.0120 - val_accuracy: 0.8832 Epoch 21/150 176/176 [==============================] - 0s 3ms/step - loss: 0.0088 - accuracy: 0.9206 - val_loss: 0.0112 - val_accuracy: 0.8899 Epoch 22/150 176/176 [==============================] - 1s 3ms/step - loss: 0.0086 - accuracy: 0.9224 - val_loss: 0.0104 - val_accuracy: 0.9035 Epoch 23/150 176/176 [==============================] - 1s 3ms/step - loss: 0.0084 - accuracy: 0.9268 - val_loss: 0.0105 - val_accuracy: 0.8979 Epoch 24/150 176/176 [==============================] - 1s 3ms/step - loss: 0.0080 - accuracy: 0.9287 - val_loss: 0.0108 - val_accuracy: 0.8920 Epoch 25/150 176/176 [==============================] - 0s 3ms/step - loss: 0.0075 - accuracy: 0.9320 - val_loss: 0.0097 - val_accuracy: 0.9077 Epoch 26/150 176/176 [==============================] - 1s 3ms/step - loss: 0.0076 - accuracy: 0.9338 - val_loss: 0.0099 - val_accuracy: 0.9000 Epoch 27/150 176/176 [==============================] - 1s 3ms/step - loss: 0.0072 - accuracy: 0.9356 - val_loss: 0.0094 - val_accuracy: 0.9053 Epoch 28/150 176/176 [==============================] - 1s 3ms/step - loss: 0.0065 - accuracy: 0.9433 - val_loss: 0.0092 - val_accuracy: 0.9149 Epoch 29/150 176/176 [==============================] - 0s 3ms/step - loss: 0.0066 - accuracy: 0.9409 - val_loss: 0.0091 - val_accuracy: 0.9096 Epoch 30/150 176/176 [==============================] - 1s 3ms/step - loss: 0.0063 - accuracy: 0.9447 - val_loss: 0.0094 - val_accuracy: 0.9061 Epoch 31/150 176/176 [==============================] - 0s 3ms/step - loss: 0.0062 - accuracy: 0.9446 - val_loss: 0.0099 - val_accuracy: 0.9016 Epoch 32/150 176/176 [==============================] - 1s 3ms/step - loss: 0.0059 - accuracy: 0.9495 - val_loss: 0.0086 - val_accuracy: 0.9165 Epoch 33/150 176/176 [==============================] - 0s 3ms/step - loss: 0.0055 - accuracy: 0.9535 - val_loss: 0.0085 - val_accuracy: 0.9120 Epoch 34/150 176/176 [==============================] - 1s 3ms/step - loss: 0.0052 - accuracy: 0.9522 - val_loss: 0.0099 - val_accuracy: 0.8997 Epoch 35/150 176/176 [==============================] - 0s 3ms/step - loss: 0.0055 - accuracy: 0.9521 - val_loss: 0.0083 - val_accuracy: 0.9168 Epoch 36/150 176/176 [==============================] - 0s 3ms/step - loss: 0.0051 - accuracy: 0.9570 - val_loss: 0.0078 - val_accuracy: 0.9227 Epoch 37/150 176/176 [==============================] - 1s 3ms/step - loss: 0.0051 - accuracy: 0.9552 - val_loss: 0.0082 - val_accuracy: 0.9184 Epoch 38/150 176/176 [==============================] - 0s 3ms/step - loss: 0.0049 - accuracy: 0.9568 - val_loss: 0.0087 - val_accuracy: 0.9136 Epoch 39/150 176/176 [==============================] - 0s 3ms/step - loss: 0.0048 - accuracy: 0.9594 - val_loss: 0.0088 - val_accuracy: 0.9104 Epoch 40/150 176/176 [==============================] - 0s 3ms/step - loss: 0.0047 - accuracy: 0.9583 - val_loss: 0.0081 - val_accuracy: 0.9157 ###Markdown **Using Daisy, the accuracy was further enhanced!** ###Code plt.figure(figsize=(10,4)) plt.subplot(1,2,1) plt.plot(history_MLP_daisy.history['loss'],label='Training') plt.plot(history_MLP_daisy.history['val_loss'],label='Testing') plt.ylabel('Loss') plt.xlabel('epochs') plt.legend() plt.subplot(1,2,2) plt.plot(history_MLP_daisy.history['accuracy'],label='Training') plt.plot(history_MLP_daisy.history['val_accuracy'],label='Testing') plt.ylabel('accuracy') plt.xlabel('epochs') plt.legend() plt.show() ###Output _____no_output_____ ###Markdown **Let's compare the performance.** ###Code # Compute ROC curve and ROC area for each class def roc(y_score): n_classes =15 fpr = dict() tpr = dict() roc_auc = dict() for i in range(n_classes): fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i]) roc_auc[i] = auc(fpr[i], tpr[i]) # Compute micro-average ROC curve and ROC area fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), y_score.ravel()) roc_auc["micro"] = auc(fpr["micro"], tpr["micro"]) return fpr,tpr,roc_auc mlp_fpr,mlp_tpr,mlp_roc_auc=roc(mlp_daisy.predict_proba(X_test_daisy)) EnsNet_fpr,EnsNet_tpr,EnsNet_roc_auc=roc(EnsNet_2.predict(X_test)) ResNet_fpr,ResNet_tpr,ResNet_roc_auc=roc(ResNet_2.predict(X_test)) # Plot ROC curve plt.figure(figsize=(12, 12)) plt.plot(mlp_fpr["micro"], mlp_tpr["micro"], label='MLP ROC curve (area = {0:0.2f})' ''.format(mlp_roc_auc["micro"])) plt.plot(EnsNet_fpr["micro"], EnsNet_tpr["micro"], label='EnsNet ROC curve (area = {0:0.2f})' ''.format(EnsNet_roc_auc["micro"])) plt.plot(ResNet_fpr["micro"], ResNet_tpr["micro"], label='ResNet ROC curve (area = {0:0.2f})' ''.format(ResNet_roc_auc["micro"])) plt.plot([0, 1], [0, 1], 'k--') plt.xlim([0.0, 1.05]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title(' Receiver operating characteristic to multi-class') plt.legend(loc="lower right") plt.show() ###Output _____no_output_____ ###Markdown **EnsNet and ResNet model are perfect, MLP model is almost perfect, it seems this data set is too easy.** ###Code yhat_MLP = np.argmax(mlp_daisy.predict(X_test_daisy), axis=1) print("MLP_DAISY vs EnsNet_2: Test statistic",mn_test(yhat_MLP, yhat_EnsNet_2, y_ori[test_idx_list[0]])) ###Output MLP_DAISY vs EnsNet_2: Test statistic 257.4031 ###Markdown **$\chi^2$ value for MLP_DAISY vs EnsNet_2 is larger than 6.635, we can conclude that EnsNet_2 is better than MLP with 99% confidence.** 3. Transfer learning ###Code # only need to change X to 3 channels # use the preprocessed y X_list_tl = [] for file in image_files: code = int(file.split('.jpg')[0].split('_')[-1]) img_path = 'data/image/' + file img = cv2.imread(img_path) X_list_tl.append(img) # ResNet requires: exactly 3 inputs channels, and width and height no smaller than 32. # valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers) # didn't zero mean, because of the requirement of VGG19 X_tl = np.array(X_list_tl) print(X_tl[0].shape) plt.imshow(X_tl[0]) plt.show() # load only convolutional layers of resnet: if 'res_no_top' not in locals(): res_no_top = ResNet50(weights='imagenet', include_top=False, input_shape=(64,64,3)) X_train_tl = X_tl[train_idx_list[0]] X_test_tl = X_tl[test_idx_list[0]] x_train_up = preprocess_input(X_train_tl) x_test_up = preprocess_input(X_test_tl) %%time x_train_resnet = res_no_top.predict(x_train_up) x_test_resnet = res_no_top.predict(x_test_up) print(x_train_resnet.shape) input_x = Input(shape=x_train_resnet[0].shape) x = Flatten()(input_x) x = Dense(2000, activation='relu',kernel_initializer='he_uniform')(x) x = Dropout(0.5)(x) x = Dense(200, activation='relu',kernel_initializer='he_uniform')(x) predictions = Dense(NUM_CLASSES, activation='softmax', kernel_initializer='glorot_uniform')(x) ResNet_tl = Model(inputs=input_x, outputs=predictions, name='ResNet_tl') ResNet_tl.summary() ResNet_tl.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy'] ) %%time history_ResNet_tl = ResNet_tl.fit(x_train_resnet, y_train, epochs=30, batch_size=64, verbose=1, validation_data=(x_test_resnet,y_test), callbacks=[EarlyStopping(monitor='val_loss', patience=4)] ) plt.figure(figsize=(10,4)) plt.subplot(1,2,1) plt.plot(history_ResNet_tl.history['loss'],label='Training') plt.plot(history_ResNet_tl.history['val_loss'],label='Testing') plt.ylabel('Loss') plt.xlabel('epochs') plt.legend() plt.subplot(1,2,2) plt.plot(history_ResNet_tl.history['accuracy'],label='Training') plt.plot(history_ResNet_tl.history['val_accuracy'],label='Testing') plt.ylabel('accuracy') plt.xlabel('epochs') plt.legend() plt.show() # compare ensnet_2 and resnet_tl yhat_ResNet_tl = np.argmax(ResNet_tl.predict(x_test_resnet), axis=1) print("ResNet_tl vs EnsNet_2: Test statistic",mn_test(yhat_ResNet_tl, yhat_EnsNet_2, y_ori[test_idx_list[0]])) ###Output ResNet_tl vs EnsNet_2: Test statistic 118.0904
core/Python Decorators and attr library.ipynb
###Markdown Python Decorators and attr libraryA decorator is a function that takes another function and extends the behavior of the latter function without explicitly modifying it.https://realpython.com/primer-on-python-decorators/--- Decorator use examplesHere are some examples how decorators can be used.* Flask web framework * `@app.route` = a decorator that tells Flask what URLs should trigger the function that it decorates. * https://flask.palletsprojects.com/en/1.1.x/quickstart/ * unittest module * `@unittest.expectedFailure` = tells unittest module that it is expected that the decorated test (function) will fail. * https://docs.python.org/3/library/unittest.htmlskipping-tests-and-expected-failures * Timing function execution * a decorator that records the start and end time of a function call, calculates the difference.--- ###Code %%writefile flask_demo.py from flask import Flask app = Flask(__name__) @app.route('/') def index(): return 'Welcome to our web-app!' @app.route('/hello') def hello_world(): return 'Hello, World!' ###Output _____no_output_____ ###Markdown run the file from command line:```export FLASK_APP=flask_demo.pyflask run``` --- What is a higher Order Function? * takes one or more functions as arguments* and/or returns a function as its result What is a function?* Essentially, functions return a value based on the given arguments. ###Code def add_two(bar): return bar + 2 ###Output _____no_output_____ ###Markdown First Class ObjectsIn Python, functions are first-class objects. This means that functions can be passed around, and used as arguments, just like any other value (e.g, string, int, float). ###Code print(add_two(2)) print(type(add_two)) def call_fn_with_arg(f, arg): res = f(arg) return res print(call_fn_with_arg(add_two, 9)) ###Output _____no_output_____ ###Markdown Nested Functions* Because of the first-class nature of functions in Python, you can define functions inside other functions. Such functions are called nested functions. ###Code def parent(): print("Printing from the parent() function.") def first_child(): return "Printing from the first_child() function." def second_child(): return "Printing from the second_child() function." print(first_child()) print(second_child()) parent() dir(parent) first_child() #Aha First Child is not in general Scope!! ###Output _____no_output_____ ###Markdown Returning FunctionsPython also allows you to return functions from other functions. Let’s alter the previous function for this example. ###Code def parent(num=42): def first_child(): return "Printing from the first_child() function." def second_child(): return "Printing from the second_child() function." print('Checking if num is 10') if num == 10: return first_child else: return second_child type(parent) foo = parent(10) bar = parent(11) print(foo) print(bar) print(foo()) print(bar()) foo.__name__ bar.__name__ ###Output _____no_output_____ ###Markdown Decorators - wrappers ###Code def my_decorator(f): def wrapper(): print("Something is happening before some_function() is called.") f() print("Something is happening after some_function() is called.") return wrapper def just_some_function(): print("Wheee!") just_some_function() f = my_decorator(just_some_function) f() @my_decorator def my_fun(): print("Yey, my_fun() called!") # The use of @my_decorator is equivalent to: # my_fun = my_decorator(my_fun) my_fun() # you can chain decorators together @my_decorator @my_decorator def myfun(): print("Wow decorators!") myfun() def my_decorator(f): def wrapper(): print("Something is happening before some_function() is called.") f() print("one more time") f() print("Something is happening after some_function() is called.") return wrapper def just_some_function(): print("Wheee!") just_some_function = my_decorator(just_some_function) just_some_function() ###Output Something is happening before some_function() is called. Wheee! one more time Wheee! Something is happening after some_function() is called. ###Markdown Put simply, decorators wrap a function, modifying its behavior. ###Code # another example with an if def my_dec2(some_function): def wrapper(): num = 10 if num == 10: print("Yes!") else: print("No!") some_function() print("Something is happening after some_function() is called.") return wrapper def just_some_function(): print("Inside!") just_some_function() just_some_function = my_dec2(just_some_function) just_some_function() %%writefile my_deco.py def my_newdeco(some_function): def wrapper(): num = 10 if num == 10: print("Yes!") else: print("No!") some_function() print("Something is happening after some_function() is called.") return wrapper if __name__ == "__main__": my_decorator() import my_deco dir(my_deco) # THIS is the decorator syntax ### Same as just_some_function = my_deco.my_newdeco(just_some_function) @my_deco.my_newdeco def just_some_function(): print("Wheee!") just_some_function() just_some_function.__name__ def twice(f): return lambda x: f(f(x)) def plusfour(x): return x + 4 g = twice(plusfour) g(9) ###Output _____no_output_____ ###Markdown Decorating with argumentsSay that you have a function that accepts some arguments. Can you still decorate it?The problem is that the inner function wrapper_do_twice() does not take any arguments, but name="World" was passed to it. You could fix this by letting wrapper_do_twice() accept one argument, but then it would not work for the say_whee() function you created earlier.The solution is to use *args and **kwargs in the inner wrapper function. Then it will accept an arbitrary number of positional and keyword arguments. Rewrite decorators.py as follows: ###Code def do_twice(func): def wrapper_do_twice(*args, **kwargs): func(*args, **kwargs) func(*args, **kwargs) return wrapper_do_twice @do_twice def print_something(name ="World ", repeat=1): print("Hello, ", name*repeat) print_something("Valdis ", repeat=3) @do_twice def show(*posit, **kwargs): print(posit) print(kwargs) print() show("it works now", test=1, name="Valdis") show.__name__ ###Output _____no_output_____ ###Markdown The wrapper_do_twice() inner function now accepts any number of arguments and passes them on to the function it decorates Fixing introspection for decorated functionsA great convenience when working with Python, especially in the interactive shell, is its powerful introspection ability. Introspection is the ability of an object to know about its own attributes at runtime. For instance, a function knows its own name and documentation: However, after being decorated, say_whee() has gotten very confused about its identity. It now reports being the wrapper_do_twice() inner function inside the do_twice() decorator. Although technically true, this is not very useful information.To fix this, decorators should use the @functools.wraps decorator, which will preserve information about the original function. Update decorators.py again: ###Code # boilerplate for building your own decorators import functools def decorator(func): @functools.wraps(func) def wrapper_decorator(*args, **kwargs): # Do something before value = func(*args, **kwargs) # Do something after return value return wrapper_decorator @decorator def my_fun(): """ Help string here. """ my_fun() my_fun.__name__ my_fun.__doc__ ###Output _____no_output_____ ###Markdown Example: timeitfrom https://stackoverflow.com/questions/1622943/timeit-versus-timing-decorator ###Code import functools from time import time def timeit(f): @functools.wraps(f) def wrap(*args, **kw): ts = time() result = f(*args, **kw) te = time() print('func:%r args:[%r, %r] took: %2.4f sec' % \ (f.__name__, args, kw, te-ts)) return result return wrap @timeit def do_something(num = 1_000_000): res = [] for i in range(num): res.append(i**2) print("Finished") do_something(num = 10_000_000) @timeit def do_simple_thing(num = 1_000_000): res = [] for i in range(num): res.append(i) print("Finished simple thing") do_simple_thing(num = 10_000_000) @timeit def do_anything(num = 1_000_000, fun = lambda x: x): """ Apply function fun num times """ res = [] for i in range(num): res.append(fun(i)) print(f"Finishinged running {fun} {num} times") do_anything() do_anything(10_000_000) do_anything(10_000_000, lambda x: x**2) do_anything(10_000_000, lambda x: x+x) # it could very well be that we are hitting some CPU caches here import random random.random() do_anything(fun = lambda _: random.random()) do_anything(10_000_000, lambda _: random.random()) # turns out that pseudo random numbers are generated faster than power of 2 do_anything(10_000_000, lambda x: x*x) do_anything(10_000_000, lambda x: x**2) do_anything(10_000_000, lambda x: x*x*x) do_anything(10_000_000, lambda x: x**3) %%timeit do_something() %%time do_something() %%timeit random.random() %%timeit random.random()+1 do_something() do_simple_thing() ###Output Finished func:'do_something' args:[(), {}] took: 0.3842 sec Finished simple thing func:'do_simple_thing' args:[(), {}] took: 0.1326 sec ###Markdown Class Exercise* Write a Python program to make a chain of function decorators for text to wrap in HTML tags* Possible decorators (bold, italic, underline, any others ?) ###Code #TODO create a decorator here def strong(f): """ Wraps text in <strong> tag """ @functools.wraps(f) def wrapper_decorator(*args, **kwargs): # Do something before value = "<strong>" value += f(*args, **kwargs) # Do something after return value+"</strong>" return wrapper_decorator @strong def my_text_function(text): return f"Hello {text}" my_text_function("Valdis") %%timeit my_text_function("Uldis") ###Output 601 ns ± 14.1 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each) ###Markdown Popular decorator library: attrs Classes Without Boilerplatehttps://github.com/python-attrs/attrsClass decorator and a way to declaratively define the attributes on that class ###Code import attr #Decorator Magic happens below @attr.s class SomeClass(object): a_number = attr.ib(default=42) list_of_numbers = attr.ib(default=attr.Factory(list)) a_string = attr.ib(default='justadefaultname') def hard_math(self, another_number): return self.a_number + sum(self.list_of_numbers) * another_number sc = SomeClass(1, [2,3,4], "MyNameIsInigo") ###Output _____no_output_____ ###Markdown After declaring your attributes attrs gives you:* a concise and explicit overview of the class’s attributes,* a nice human-readable __repr__,* a complete set of comparison methods,* an initializer,* more stuff ###Code sc sc.hard_math(10) attr.asdict(sc) sc2 = SomeClass([2,3],5) # will not work quite this way.. sc2 ###Output _____no_output_____ ###Markdown New in Python 3.7: Dataclasses inspired by attr, easier way to declare classeshttps://docs.python.org/3/whatsnew/3.7.htmlwhatsnew37-pep557 ###Code ## dataclasses # The new dataclass() decorator provides a way to declare data classes. A data class describes its attributes using class variable annotations. Its constructor and other magic methods, such as __repr__(), __eq__(), and __hash__() are generated automatically. # Example: from dataclasses import dataclass @dataclass class Point: x: float y: float z: float = 0.0 p = Point(1.5, 2.5) print(p) # produces "Point(x=1.5, y=2.5, z=0.0)" ###Output _____no_output_____
Week 2/.ipynb_checkpoints/S+P_Week_2_Lesson_2-checkpoint.ipynb
###Markdown ###Code try: # %tensorflow_version only exists in Colab. %tensorflow_version 2.x except Exception: pass import tensorflow as tf import numpy as np import matplotlib.pyplot as plt print(tf.__version__) def plot_series(time, series, format="-", start=0, end=None): plt.plot(time[start:end], series[start:end], format) plt.xlabel("Time") plt.ylabel("Value") plt.grid(True) def trend(time, slope=0): return slope * time def seasonal_pattern(season_time): """Just an arbitrary pattern, you can change it if you wish""" return np.where(season_time < 0.4, np.cos(season_time * 2 * np.pi), 1 / np.exp(3 * season_time)) def seasonality(time, period, amplitude=1, phase=0): """Repeats the same pattern at each period""" season_time = ((time + phase) % period) / period return amplitude * seasonal_pattern(season_time) def noise(time, noise_level=1, seed=None): rnd = np.random.RandomState(seed) return rnd.randn(len(time)) * noise_level time = np.arange(4 * 365 + 1, dtype="float32") baseline = 10 series = trend(time, 0.1) baseline = 10 amplitude = 40 slope = 0.05 noise_level = 5 # Create the series series = baseline + trend(time, slope) + seasonality(time, period=365, amplitude=amplitude) # Update with noise series += noise(time, noise_level, seed=42) split_time = 1000 time_train = time[:split_time] x_train = series[:split_time] time_valid = time[split_time:] x_valid = series[split_time:] window_size = 20 batch_size = 32 shuffle_buffer_size = 1000 def windowed_dataset(series, window_size, batch_size, shuffle_buffer): dataset = tf.data.Dataset.from_tensor_slices(series) dataset = dataset.window(window_size + 1, shift=1, drop_remainder=True) dataset = dataset.flat_map(lambda window: window.batch(window_size + 1)) dataset = dataset.shuffle(shuffle_buffer).map(lambda window: (window[:-1], window[-1])) dataset = dataset.batch(batch_size).prefetch(1) return dataset dataset = windowed_dataset(x_train, window_size, batch_size, shuffle_buffer_size) print(dataset) l0 = tf.keras.layers.Dense(1, input_shape=[window_size]) model = tf.keras.models.Sequential([l0]) model.compile(loss="mse", optimizer=tf.keras.optimizers.SGD(lr=1e-6, momentum=0.9)) model.fit(dataset,epochs=100,verbose=0) print("Layer weights {}".format(l0.get_weights())) forecast = [] for time in range(len(series) - window_size): forecast.append(model.predict(series[time:time + window_size][np.newaxis])) forecast = forecast[split_time-window_size:] results = np.array(forecast)[:, 0, 0] plt.figure(figsize=(10, 6)) plot_series(time_valid, x_valid) plot_series(time_valid, results) tf.keras.metrics.mean_absolute_error(x_valid, results).numpy() ###Output _____no_output_____
2-Code/.ipynb_checkpoints/2-1-Model-1-checkpoint.ipynb
###Markdown Predicting the Next Pandemic of Dengue Baseline Modelby Brenda Hali--- Importing Libraries ###Code #data manipualtion libraries import pandas as pd import numpy as np import seaborn as sns #data visualization from matplotlib import pyplot as plt #data modeling libraries from sklearn.model_selection import train_test_split from sklearn.metrics import mean_absolute_error #statsmodels from statsmodels.tools import eval_measures import statsmodels.api as sm import statsmodels.formula.api as smf ###Output _____no_output_____ ###Markdown Importing Datasets ###Code sj_train = pd.read_csv('../1-Data/4-sj_train.csv') sj_test = pd.read_csv('../1-Data/5-sj_test.csv') iq_train = pd.read_csv('../1-Data/6-iq_train.csv') iq_test = pd.read_csv('../1-Data/7-iq_test.csv') sj_train.drop('Unnamed: 0', axis =1, inplace = True) iq_train.drop('Unnamed: 0', axis =1, inplace = True) sj_test.drop('Unnamed: 0', axis =1, inplace = True) iq_test.drop('Unnamed: 0', axis =1, inplace = True) sj_train.head() ###Output _____no_output_____ ###Markdown Modeling Baseline modelSplitting data into train and test ###Code sj_train_subtrain = sj_train.head(800) sj_train_subtest = sj_train.tail(sj_train.shape[0] - 800) iq_train_subtrain = iq_train.head(400) iq_train_subtest = iq_train.tail(iq_train.shape[0] - 400) def get_best_model(train, test): # Step 1: specify the form of the model model_formula = "total_cases ~ 1 + " \ "reanalysis_specific_humidity_g_per_kg + " \ "reanalysis_dew_point_temp_k + " \ "reanalysis_min_air_temp_k + " \ "station_min_temp_c + " \ "station_max_temp_c + " \ "station_avg_temp_c" grid = 10 ** np.arange(-8, -3, dtype=np.float64) best_alpha = [] best_score = 1000 # Step 2: Find the best hyper parameter, alpha for alpha in grid: model = smf.glm(formula=model_formula, data=train, family=sm.families.NegativeBinomial(alpha=alpha)) results = model.fit() predictions = results.predict(test).astype(int) score = eval_measures.meanabs(predictions, test.total_cases) if score < best_score: best_alpha = alpha best_score = score print('Best Alpha = ', best_alpha) print('Best Score = ', best_score) # Step 3: refit on entire dataset full_dataset = pd.concat([train, test]) model = smf.glm(formula=model_formula, data=full_dataset, family=sm.families.NegativeBinomial(alpha=best_alpha)) fitted_model = model.fit() return fitted_model sj_best_model = get_best_model(sj_train_subtrain, sj_train_subtest) iq_best_model = get_best_model(iq_train_subtrain, iq_train_subtest) figs, axes = plt.subplots(nrows=2, ncols=1) # plot sj sj_train['fitted'] = sj_best_model.fittedvalues sj_train.fitted.plot(ax=axes[0], label="Predictions") sj_train.total_cases.plot(ax=axes[0], label="Actual") # plot iq iq_train['fitted'] = iq_best_model.fittedvalues iq_train.fitted.plot(ax=axes[1], label="Predictions") iq_train.total_cases.plot(ax=axes[1], label="Actual") plt.suptitle("Dengue Predicted Cases vs. Actual Cases") plt.legend(); sj_predictions = sj_best_model.predict(sj_test).astype(int) iq_predictions = iq_best_model.predict(iq_test).astype(int) #creating a new colum with MSE of our first predictions sj_test['baseline'] = sj_predictions iq_test['baseline'] = iq_predictions ###Output _____no_output_____
Gradient_Descent_Boston_Dataset.ipynb
###Markdown Gradient Descent Algorithm ###Code def step_gradient(X, Y, m, learning_rate): m_slope = np.zeros(len(X[0])) for i in range(len(X)): x = X[i] y = Y[i] for j in range(len(x)): m_slope[j] += (-2/len(X))*(y-sum(m*x))*x[j] new_m = m - (learning_rate)*(m_slope) return new_m def cost(x, y, m): cost = 0 for i in range(len(x)): cost += (1/len(x))*((y[i]-sum(m*x[i]))**2) return cost def gd(x, y, learning_rate, num_iterations): m = np.zeros(len(x[0])) for i in range(num_iterations): m = step_gradient(x, y, m, learning_rate) print("itr= ", i, "cost=", cost(x, y, m)) return m def gradient_descent(x,y): learning_rate = 0.23 num_iterations = 330 x = np.append(x, np.ones(len(x)).reshape(-1,1),axis=1) m = gd(x, y, learning_rate, num_iterations) return m ###Output _____no_output_____ ###Markdown Loading Training Data ###Code train_data = np.genfromtxt("train.csv", delimiter = ",") X_train = train_data[:,:-1] Y_train = train_data[:,-1] square = [] for i in X_train: square.append(i**2) square = np.array(square) X_train = np.append(X_train, square, axis = 1) scaler = preprocessing.MinMaxScaler() scaler.fit(X_train) X_train = scaler.transform(X_train) m = gradient_descent(X_train, Y_train) print("final m :",m) ###Output itr= 0 cost= 532.2891356563496 itr= 1 cost= 480.2975303149365 itr= 2 cost= 438.0621496141528 itr= 3 cost= 402.4827171680969 itr= 4 cost= 371.64745521203366 itr= 5 cost= 344.3578994450321 itr= 6 cost= 319.8452830659182 itr= 7 cost= 297.60113564108013 itr= 8 cost= 277.2759873967504 itr= 9 cost= 258.6186932429382 itr= 10 cost= 241.43999166115023 itr= 11 cost= 225.59053038926794 itr= 12 cost= 210.94753492764875 itr= 13 cost= 197.40664690255102 itr= 14 cost= 184.8768607707388 itr= 15 cost= 173.27732279935066 itr= 16 cost= 162.53525433330037 itr= 17 cost= 152.58455834137618 itr= 18 cost= 143.36484533776718 itr= 19 cost= 134.82072042336634 itr= 20 cost= 126.9012362393857 itr= 21 cost= 119.55945427634299 itr= 22 cost= 112.75207948789357 itr= 23 cost= 106.4391466334301 itr= 24 cost= 100.58374485947904 itr= 25 cost= 95.15177189980051 itr= 26 cost= 90.11171222289295 itr= 27 cost= 85.43443525556334 itr= 28 cost= 81.0930109229999 itr= 29 cost= 77.06254044421331 itr= 30 cost= 73.3200007708866 itr= 31 cost= 69.84410135562351 itr= 32 cost= 66.61515214097821 itr= 33 cost= 63.614941808640964 itr= 34 cost= 60.82662543988284 itr= 35 cost= 58.234620826609 itr= 36 cost= 55.82451274488609 itr= 37 cost= 53.58296456436902 itr= 38 cost= 51.49763662062849 itr= 39 cost= 49.55711082485773 itr= 40 cost= 47.750821028049316 itr= 41 cost= 46.06898869532286 itr= 42 cost= 44.50256348122501 itr= 43 cost= 43.04316832896608 itr= 44 cost= 41.683048746024504 itr= 45 cost= 40.41502593561891 itr= 46 cost= 39.23245348844058 itr= 47 cost= 38.12917736194972 itr= 48 cost= 37.09949889563991 itr= 49 cost= 36.13814063011317 itr= 50 cost= 35.24021471572473 itr= 51 cost= 34.40119371307077 itr= 52 cost= 33.616883602816564 itr= 53 cost= 32.88339883640567 itr= 54 cost= 32.19713927213702 itr= 55 cost= 31.554768853040443 itr= 56 cost= 30.95319589399853 itr= 57 cost= 30.38955485572608 itr= 58 cost= 29.861189492595095 itr= 59 cost= 29.365637269946482 itr= 60 cost= 28.900614954513884 itr= 61 cost= 28.46400528895234 itr= 62 cost= 28.05384466826666 itr= 63 cost= 27.66831174221013 itr= 64 cost= 27.305716873517994 itr= 65 cost= 26.96449238718967 itr= 66 cost= 26.643183550969653 itr= 67 cost= 26.34044023173763 itr= 68 cost= 26.055009176725513 itr= 69 cost= 25.78572687236644 itr= 70 cost= 25.531512937169826 itr= 71 cost= 25.29136400832874 itr= 72 cost= 25.0643480848296 itr= 73 cost= 24.849599292656844 itr= 74 cost= 24.646313040299294 itr= 75 cost= 24.453741535174014 itr= 76 cost= 24.271189633811943 itr= 77 cost= 24.098011000706244 itr= 78 cost= 23.93360455262583 itr= 79 cost= 23.777411166951122 itr= 80 cost= 23.628910634212716 itr= 81 cost= 23.487618836510837 itr= 82 cost= 23.35308513487964 itr= 83 cost= 23.224889949938508 itr= 84 cost= 23.10264252135549 itr= 85 cost= 22.98597883274071 itr= 86 cost= 22.874559689595696 itr= 87 cost= 22.76806893887943 itr= 88 cost= 22.66621181961252 itr= 89 cost= 22.56871343473804 itr= 90 cost= 22.475317335194458 itr= 91 cost= 22.38578420783636 itr= 92 cost= 22.29989065946759 itr= 93 cost= 22.21742808983305 itr= 94 cost= 22.138201646953444 itr= 95 cost= 22.062029258682763 itr= 96 cost= 21.988740734829207 itr= 97 cost= 21.918176934603732 itr= 98 cost= 21.850188994553374 itr= 99 cost= 21.784637612499093 itr= 100 cost= 21.721392383334155 itr= 101 cost= 21.660331182848143 itr= 102 cost= 21.60133959602966 itr= 103 cost= 21.544310386564938 itr= 104 cost= 21.48914300449621 itr= 105 cost= 21.435743129228506 itr= 106 cost= 21.384022245285177 itr= 107 cost= 21.333897248405346 itr= 108 cost= 21.285290079755892 itr= 109 cost= 21.238127386196645 itr= 110 cost= 21.19234020469112 itr= 111 cost= 21.147863669096136 itr= 112 cost= 21.10463673769634 itr= 113 cost= 21.062601939969195 itr= 114 cost= 21.021705141180302 itr= 115 cost= 20.981895323511218 itr= 116 cost= 20.943124382518523 itr= 117 cost= 20.905346937812634 itr= 118 cost= 20.86852015692537 itr= 119 cost= 20.83260359141345 itr= 120 cost= 20.797559024313408 itr= 121 cost= 20.7633503281307 itr= 122 cost= 20.729943332603824 itr= 123 cost= 20.69730570154263 itr= 124 cost= 20.66540681808863 itr= 125 cost= 20.634217677795984 itr= 126 cost= 20.603710788973654 itr= 127 cost= 20.573860079771652 itr= 128 cost= 20.54464081153099 itr= 129 cost= 20.516029497953518 itr= 130 cost= 20.488003829678856 itr= 131 cost= 20.460542603886385 itr= 132 cost= 20.4336256585683 itr= 133 cost= 20.407233811144806 itr= 134 cost= 20.381348801117223 itr= 135 cost= 20.35595323647592 itr= 136 cost= 20.331030543601663 itr= 137 cost= 20.306564920416566 itr= 138 cost= 20.282541292559586 itr= 139 cost= 20.258945272376796 itr= 140 cost= 20.23576312053273 itr= 141 cost= 20.212981710061996 itr= 142 cost= 20.190588492693756 itr= 143 cost= 20.168571467294573 itr= 144 cost= 20.14691915028392 itr= 145 cost= 20.125620547889714 itr= 146 cost= 20.104665130118352 itr= 147 cost= 20.084042806324593 itr= 148 cost= 20.063743902272872 itr= 149 cost= 20.04375913859106 itr= 150 cost= 20.024079610523522 itr= 151 cost= 20.00469676889696 itr= 152 cost= 19.985602402219502 itr= 153 cost= 19.966788619837743 itr= 154 cost= 19.948247836083066 itr= 155 cost= 19.929972755342128 itr= 156 cost= 19.91195635799157 itr= 157 cost= 19.894191887141606 itr= 158 cost= 19.876672836135704 itr= 159 cost= 19.859392936758482 itr= 160 cost= 19.842346148106323 itr= 161 cost= 19.825526646079062 itr= 162 cost= 19.808928813453267 itr= 163 cost= 19.792547230500915 itr= 164 cost= 19.776376666119106 itr= 165 cost= 19.760412069439514 itr= 166 cost= 19.744648561887725 itr= 167 cost= 19.729081429664802 itr= 168 cost= 19.713706116625662 itr= 169 cost= 19.698518217529998 itr= 170 cost= 19.683513471643234 itr= 171 cost= 19.668687756666863 itr= 172 cost= 19.654037082978224 itr= 173 cost= 19.63955758816173 itr= 174 cost= 19.625245531814336 itr= 175 cost= 19.61109729060921 itr= 176 cost= 19.59710935360266 itr= 177 cost= 19.583278317770482 itr= 178 cost= 19.569600883760327 itr= 179 cost= 19.556073851848286 itr= 180 cost= 19.54269411808771 itr= 181 cost= 19.529458670639798 itr= 182 cost= 19.516364586275877 itr= 183 cost= 19.503409027041787 itr= 184 cost= 19.490589237075582 itr= 185 cost= 19.477902539570312 itr= 186 cost= 19.46534633387387 itr= 187 cost= 19.452918092718733 itr= 188 cost= 19.440615359574725 itr= 189 cost= 19.428435746118286 itr= 190 cost= 19.416376929812024 itr= 191 cost= 19.404436651589354 itr= 192 cost= 19.39261271363779 itr= 193 cost= 19.380902977277273 itr= 194 cost= 19.36930536092756 itr= 195 cost= 19.357817838160656 itr= 196 cost= 19.34643843583413 itr= 197 cost= 19.335165232301232 itr= 198 cost= 19.32399635569405 itr= 199 cost= 19.312929982276057 itr= 200 cost= 19.301964334861054 itr= 201 cost= 19.29109768129476 itr= 202 cost= 19.280328332996852 itr= 203 cost= 19.269654643559605 itr= 204 cost= 19.259075007401847 itr= 205 cost= 19.24858785847409 itr= 206 cost= 19.238191669013865 itr= 207 cost= 19.227884948348258 itr= 208 cost= 19.217666241741437 itr= 209 cost= 19.207534129285747 itr= 210 cost= 19.19748722483392 itr= 211 cost= 19.187524174970644 itr= 212 cost= 19.177643658022003 itr= 213 cost= 19.167844383101038 itr= 214 cost= 19.158125089187802 itr= 215 cost= 19.148484544242265 itr= 216 cost= 19.138921544349458 itr= 217 cost= 19.129434912894286 itr= 218 cost= 19.120023499765864 itr= 219 cost= 19.110686180589525 itr= 220 cost= 19.10142185598564 itr= 221 cost= 19.09222945085388 itr= 222 cost= 19.083107913682305 itr= 223 cost= 19.074056215879853 itr= 224 cost= 19.065073351131677 itr= 225 cost= 19.056158334775937 itr= 226 cost= 19.047310203201775 itr= 227 cost= 19.038528013267243 itr= 228 cost= 19.029810841736506 itr= 229 cost= 19.02115778473561 itr= 230 cost= 19.012567957226086 itr= 231 cost= 19.00404049249576 itr= 232 cost= 18.995574541665974 itr= 233 cost= 18.987169273214725 itr= 234 cost= 18.978823872515175 itr= 235 cost= 18.9705375413887 itr= 236 cost= 18.96230949767233 itr= 237 cost= 18.954138974799633 itr= 238 cost= 18.94602522139489 itr= 239 cost= 18.937967500879978 itr= 240 cost= 18.929965091093255 itr= 241 cost= 18.922017283920457 itr= 242 cost= 18.914123384936918 itr= 243 cost= 18.906282713060538 ###Markdown Loading Testing Data ###Code X_test = np.genfromtxt("test.csv", delimiter = ",") square = [] for i in X_test: square.append(i**2) square = np.array(square) X_test = np.append(X_test, square, axis = 1) scaler.fit(X_test) X_test = scaler.transform(X_test) X_test = np.append(X_test, np.ones(len(X_test)).reshape(-1, 1), axis=1) ###Output _____no_output_____ ###Markdown Prediction ###Code predictions = [] for i in X_test: Y_pred = sum(i*m) predictions.append(Y_pred) np_predictions = np.array(predictions) np.savetxt("predictions.csv", np_predictions,fmt="%.5f", delimiter=",") ###Output _____no_output_____
spincaster/parts/button_cap.ipynb
###Markdown Spincaster Button CapEnlarged caps for tactile switches mounted to the DIY spincaster. Ream with a 3.2mm drill bit before attachingEngage silly mode for more butt. ###Code show_object(button) from pathlib import Path; downloads = str(Path.home() / "Downloads") cq.exporters.export(button, f"{downloads}/spincaster_button_cap.stl") print("done") ###Output done
notebooks/D1_L6_MatPlotLib_and_Seaborn/02-Simple-Scatter-Plots.ipynb
###Markdown Simple Scatter Plots Another commonly used plot type is the simple scatter plot, a close cousin of the line plot.Instead of points being joined by line segments, here the points are represented individually with a dot, circle, or other shape.We’ll start by setting up the notebook for plotting and importing the functions we will use: ###Code %matplotlib inline import matplotlib.pyplot as plt plt.style.use('seaborn-whitegrid') import numpy as np ###Output _____no_output_____ ###Markdown Scatter Plots with ``plt.plot``In the previous section we looked at ``plt.plot``/``ax.plot`` to produce line plots.It turns out that this same function can produce scatter plots as well: ###Code x = np.linspace(0, 10, 30) y = np.sin(x) plt.plot(x, y, 'o', color='black'); ###Output _____no_output_____ ###Markdown The third argument in the function call is a character that represents the type of symbol used for the plotting. Just as you can specify options such as ``'-'``, ``'--'`` to control the line style, the marker style has its own set of short string codes. The full list of available symbols can be seen in the documentation of ``plt.plot``, or in Matplotlib's online documentation. Most of the possibilities are fairly intuitive, and we'll show a number of the more common ones here: ###Code rng = np.random.RandomState(0) for marker in ['o', '.', ',', 'x', '+', 'v', '^', '<', '>', 's', 'd']: plt.plot(rng.rand(5), rng.rand(5), marker, label="marker='{0}'".format(marker)) plt.legend(numpoints=1) plt.xlim(0, 1.8); ###Output _____no_output_____ ###Markdown For even more possibilities, these character codes can be used together with line and color codes to plot points along with a line connecting them: ###Code plt.plot(x, y, '-ok'); ###Output _____no_output_____ ###Markdown Additional keyword arguments to ``plt.plot`` specify a wide range of properties of the lines and markers: ###Code plt.plot(x, y, '-p', color='gray', markersize=15, linewidth=4, markerfacecolor='white', markeredgecolor='gray', markeredgewidth=2) plt.ylim(-1.2, 1.2); ###Output _____no_output_____ ###Markdown This type of flexibility in the ``plt.plot`` function allows for a wide variety of possible visualization options.For a full description of the options available, refer to the ``plt.plot`` documentation. Scatter Plots with ``plt.scatter``A second, more powerful method of creating scatter plots is the ``plt.scatter`` function, which can be used very similarly to the ``plt.plot`` function: ###Code plt.scatter(x, y, marker='o'); ###Output _____no_output_____ ###Markdown The primary difference of ``plt.scatter`` from ``plt.plot`` is that it can be used to create scatter plots where the properties of each individual point (size, face color, edge color, etc.) can be individually controlled or mapped to data.Let's show this by creating a random scatter plot with points of many colors and sizes.In order to better see the overlapping results, we'll also use the ``alpha`` keyword to adjust the transparency level: ###Code rng = np.random.RandomState(0) x = rng.randn(100) y = rng.randn(100) colors = rng.rand(100) sizes = 1000 * rng.rand(100) plt.scatter(x, y, c=colors, s=sizes, alpha=0.3, cmap='viridis') plt.colorbar(); # show color scale ###Output _____no_output_____ ###Markdown Notice that the color argument is automatically mapped to a color scale (shown here by the ``colorbar()`` command), and that the size argument is given in pixels.In this way, the color and size of points can be used to convey information in the visualization, in order to visualize multidimensional data.For example, we might use the Iris data from Scikit-Learn, where each sample is one of three types of flowers that has had the size of its petals and sepals carefully measured: ###Code from sklearn.datasets import load_iris iris = load_iris() features = iris.data.T plt.scatter(features[0], features[1], alpha=0.2, s=100*features[3], c=iris.target, cmap='viridis') plt.xlabel(iris.feature_names[0]) plt.ylabel(iris.feature_names[1]); ###Output _____no_output_____
docs/bayes_window_book/neurons_example/lme.ipynb
###Markdown Linear mixed effects ###Code from bayes_window import models, BayesWindow, LMERegression from bayes_window.generative_models import generate_fake_spikes, generate_fake_lfp import numpy as np df, df_monster, index_cols, _ = generate_fake_lfp(mouse_response_slope=8, n_trials=40) ###Output _____no_output_____ ###Markdown LFP Without data overlay ###Code bw = LMERegression(df=df, y='Log power', treatment='stim', group='mouse') bw.fit(add_data=False) bw.plot().display() bw.data_and_posterior ###Output _____no_output_____ ###Markdown With data overlay ###Code bw = LMERegression(df=df, y='Log power', treatment='stim', group='mouse') try: bw.fit(add_data=True, do_make_change='subtract'); bw.plot() except NotImplementedError: print('\n Data addition to LME is not implemented') ###Output Using formula Log_power ~ C(stim, Treatment) + (1 | mouse) Coef. Std.Err. z P>|z| [0.025 \ Intercept 0.013 C(stim, Treatment)[T.1] 0.123 0.022 5.496 0.000 0.079 1 | mouse -0.076 174464.372 -0.000 1.000 -341943.961 Group Var 0.000 0.975] Intercept C(stim, Treatment)[T.1] 0.167 1 | mouse 341943.809 Group Var Data addition to LME is not implemented ###Markdown Spikes ###Code df, df_monster, index_cols, firing_rates = generate_fake_spikes(n_trials=20, n_neurons=6, n_mice=3, dur=5, mouse_response_slope=40, overall_stim_response_strength=5) df['log_isi']=np.log10(df['isi']) bw = LMERegression(df=df, y='log_isi', treatment='stim', condition=['neuron_x_mouse'], group='mouse',) bw.fit(add_data=False,add_group_intercept=True, add_group_slope=False); bw.chart ###Output _____no_output_____ ###Markdown Group slope ###Code bw = LMERegression(df=df, y='log_isi', treatment='stim', condition=['neuron_x_mouse'], group='mouse',) bw.fit(add_data=False,add_group_intercept=True, add_group_slope=True) bw.chart bw.plot(x='neuron_x_mouse:O').display() ###Output _____no_output_____ ###Markdown Categorical ###Code bw.fit(formula='log_isi ~ (1|mouse) + C(stim| neuron_x_mouse)') bw.plot(x='neuron_x_mouse:O').display() ###Output _____no_output_____ ###Markdown Nested ###Code bw = LMERegression(df=df, y='log_isi', treatment='stim', condition=['neuron_x_mouse'], group='mouse',) try: bw.fit(add_data=False,add_group_intercept=True, add_group_slope=True, add_nested_group=True) except Exception as e: print(e) ###Output Using formula log_isi ~ (stim|mouse) + stim| neuron_x_mouse__0:mouse + stim|neuron_x_mouse__1:mouse + stim|neuron_x_mouse__2:mouse + stim|neuron_x_mouse__3:mouse + stim|neuron_x_mouse__4:mouse + stim|neuron_x_mouse__5:mouse + stim|neuron_x_mouse__6:mouse + stim|neuron_x_mouse__7:mouse + stim|neuron_x_mouse__8:mouse + stim|neuron_x_mouse__9:mouse + stim|neuron_x_mouse__10:mouse + stim|neuron_x_mouse__11:mouse + stim|neuron_x_mouse__12:mouse + stim|neuron_x_mouse__13:mouse + stim|neuron_x_mouse__14:mouse + stim|neuron_x_mouse__15:mouse + stim|neuron_x_mouse__16:mouse + stim|neuron_x_mouse__17:mouse Singular matrix
bruno/Issue #1.ipynb
###Markdown Table of ContentsImportsRead DataPlots - Author: Bruno- Start: 16/04 Imports ###Code import zipfile import pandas as pd import numpy as np pd.set_option('display.max_columns', 50) import matplotlib.pyplot as plt %matplotlib inline plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots import seaborn as sns sns.set() ###Output _____no_output_____ ###Markdown Read Data ###Code DATA_DIR = "../main/datasets/" DATA_FILE = "1.0v.zip" with zipfile.ZipFile(DATA_DIR+DATA_FILE) as z: # I am saving the data again to use in my auto eda script; # Too lazy to change it :) dfs = [] for name in ["infos", "items", "orders"]: dfs.append(pd.read_csv(z.open(f"1.0v/{name}.csv"), sep="|")) infos, items, orders = dfs orders.head(2) orders.isna().sum() orders["time"] = pd.to_datetime(orders["time"]) print("The first timestamp is", orders["time"].min(), "and the last is", orders["time"].max()) orders["days"] = orders["time"].dt.dayofyear # Make sure we have data for every single day assert (orders["days"].unique() != np.arange(1, 181)).sum() == 0 ###Output _____no_output_____ ###Markdown Plots ###Code ticks = np.arange(1, 181, 10) sns.countplot(orders["days"]) plt.xticks(ticks, ticks, rotation=90) plt.title("Quantidade de LINHAS por dia"); orders["temp_qtd"] = 1 for name, col in zip(["QTD LINHAS", "VENDAS", "VALOR DA VENDA"], ["temp_qtd", "order", "salesPrice"]): temp = orders.groupby("days")[col].sum() week_mean = temp.rolling(7, min_periods=1).mean() sns.lineplot(y=temp.values, x=temp.index, label="value") sns.lineplot(y=week_mean, x=week_mean.index, label="Média deslizante 1 semana") ticks = np.arange(1, 181, 10) plt.xticks(ticks, ticks, rotation=90) plt.title(f"{name} por dia") plt.show() ###Output _____no_output_____ ###Markdown Very interesting! Something happened after day 50 and they started selling more...OBS: In general, "order" = 1, but not always, that's why the first 2 plots are similar ###Code (orders["order"] != 1).sum() / len(orders) ###Output _____no_output_____
examples/EDA_imputation.ipynb
###Markdown Take only numerical variables ###Code track_df_numeric=manipulate.get_numerical(track_df) track_df_numeric.head() ###Output _____no_output_____ ###Markdown Inspect missing values to choose a variable which has many missing valuesFor this variable we will then try to impute the missing values we will try to impute CO2 Emission (GPS-based).value ###Code missingValues=inspect.missing_values_per_variable(track_df_numeric) missingValues ###Output _____no_output_____ ###Markdown Spearman correlation Just to get an impression, chose the variable which has the strongest non-parametric relationship with CO2 Emission (GPS-based).value by applying a spearman correlation.Here it seems to be he Speed.value so we will try to impute CO2 Emission (GPS-based).value based on Speed.value ###Code allCoeffs, very_strong, strong, moderate, weak = inspect.get_classified_correlations(track_df_numeric, 'spearman') allCoeffs.loc[(allCoeffs['column'] == 'Consumption (GPS-based).value')] ###Output _____no_output_____ ###Markdown As speed correlates the strongest with the CO2 Emission, we will use Speed as predictor. First create a subset of the two variables. ###Code relation = track_df[["track.id","Speed.value", "CO2 Emission (GPS-based).value"]] ###Output _____no_output_____ ###Markdown OutlierSet outlier to Nan ###Code correct.flag_outlier_in_sample(relation, dropOutlierColumn=True, setOutlierToNan=True, dropFlag=True) relation ###Output outlier_in_sample_Speed.value 0 outlier_in_sample_CO2 Emission (GPS-based).value 0 Flagged outlier in sample: 0 ###Markdown Prepare the data To train the model we need some complete data. Therefore we delete all rows without a valid value. ###Code relation2 = relation.dropna() relation2 ###Output _____no_output_____ ###Markdown As we can see in the plot, there may be a linear relationship, however the line is far away from describing the relationship well.Still, we will have a look how good the linear regression predicts CO2 Emissions ###Code inspect.plot_linear_regression(relation2["Speed.value"], relation2["CO2 Emission (GPS-based).value"], title='Linear relation Speed/CO2_Consumption') ###Output _____no_output_____ ###Markdown Prepare variables ###Code X = np.c_[relation2["Speed.value"]] y = np.c_[relation2["CO2 Emission (GPS-based).value"]] inspect.plot_scatter(relation2,"Speed.value" , "CO2 Emission (GPS-based).value", 0.3) ###Output _____no_output_____ ###Markdown Median Impute nan with median ###Code X_impute= np.c_[relation["CO2 Emission (GPS-based).value"]] X_impute imputer=sklearn.impute.SimpleImputer(strategy='median') imputer.fit(y) imputedCO2Emission=imputer.transform(X_impute) imputedCO2Emission ###Output _____no_output_____ ###Markdown Linear Regression Impute nan with linear regression model ###Code modelLinear= sklearn.linear_model.LinearRegression() modelLinear.fit(X, y) prepareData = np.c_[relation2["Speed.value"]] y_predicted= modelLinear.predict(prepareData) ###Output _____no_output_____ ###Markdown Check the rmseWe have an rmse of ~ 3.5, this means we have typical prediction error of 3.5 ###Code mse = mean_squared_error(y, y_predicted) rmse = sqrt(mse) rmse ###Output _____no_output_____ ###Markdown K-nearest Neighbor Impute nan with k-nearest neighbor model ###Code modelNeighbor = sklearn.neighbors.KNeighborsRegressor(n_neighbors=2) modelNeighbor.fit(X,y) y_predict_n=modelNeighbor.predict(prepareData) #y_predict_n ###Output _____no_output_____ ###Markdown Check the rmseStill not perfect but better: we have here a typical error of ~ 2.4.We will need more sophisticated methods to impute missing values. ###Code rmse_n = sqrt(mean_squared_error(y, y_predict_n)) rmse_n ###Output _____no_output_____ ###Markdown Take only numerical variables ###Code track_df_numeric=manipulate.get_numerical(track_df) track_df_numeric.head() ###Output _____no_output_____ ###Markdown Inspect missing values to choose a variable which has many missing valuesFor this variable we will then try to impute the missing values we will try to impute CO2 Emission (GPS-based).value ###Code missingValues=inspect.missing_values_per_variable(track_df_numeric) missingValues ###Output _____no_output_____ ###Markdown Spearman correlation Just to get an impression, chose the variable which has the strongest non-parametric relationship with CO2 Emission (GPS-based).value by applying a spearman correlation.Here it seems to be he Speed.value so we will try to impute CO2 Emission (GPS-based).value based on Speed.value ###Code allCoeffs, very_strong, strong, moderate, weak = inspect.get_classified_correlations(track_df_numeric, 'spearman') allCoeffs.loc[(allCoeffs['column'] == 'Consumption (GPS-based).value')] ###Output _____no_output_____ ###Markdown As speed correlates the strongest with the CO2 Emission, we will use Speed as predictor. First create a subset of the two variables. ###Code relation = track_df[["track.id","Speed.value", "CO2 Emission (GPS-based).value"]] ###Output _____no_output_____ ###Markdown OutlierSet outlier to Nan ###Code correct.flag_outlier_in_sample(relation, dropOutlierColumn=True, setOutlierToNan=True, dropFlag=True) relation ###Output outlier_in_sample_Speed.value 0 outlier_in_sample_CO2 Emission (GPS-based).value 0 Flagged outlier in sample: 0 ###Markdown Prepare the data To train the model we need some complete data. Therefore we delete all rows without a valid value. ###Code relation2 = relation.dropna() relation2 ###Output _____no_output_____ ###Markdown As we can see in the plot, there may be a linear relationship, however the line is far away from describing the relationship well.Still, we will have a look how good the linear regression predicts CO2 Emissions ###Code inspect.plot_linear_regression(relation2["Speed.value"], relation2["CO2 Emission (GPS-based).value"], title='Linear relation Speed/CO2_Consumption') ###Output _____no_output_____ ###Markdown Prepare variables ###Code X = np.c_[relation2["Speed.value"]] y = np.c_[relation2["CO2 Emission (GPS-based).value"]] inspect.plot_scatter(relation2,"Speed.value" , "CO2 Emission (GPS-based).value", 0.3) ###Output _____no_output_____ ###Markdown Median Impute nan with median ###Code X_impute= np.c_[relation["CO2 Emission (GPS-based).value"]] X_impute imputer=sklearn.impute.SimpleImputer(strategy='median') imputer.fit(y) imputedCO2Emission=imputer.transform(X_impute) imputedCO2Emission ###Output _____no_output_____ ###Markdown Linear Regression Impute nan with linear regression model ###Code modelLinear= sklearn.linear_model.LinearRegression() modelLinear.fit(X, y) prepareData = np.c_[relation2["Speed.value"]] y_predicted= modelLinear.predict(prepareData) ###Output _____no_output_____ ###Markdown Check the rmseWe have an rmse of ~ 3.5, this means we have typical prediction error of 3.5 ###Code mse = mean_squared_error(y, y_predicted) rmse = sqrt(mse) rmse ###Output _____no_output_____ ###Markdown K-nearest Neighbor Impute nan with k-nearest neighbor model ###Code modelNeighbor = sklearn.neighbors.KNeighborsRegressor(n_neighbors=2) modelNeighbor.fit(X,y) y_predict_n=modelNeighbor.predict(prepareData) #y_predict_n ###Output _____no_output_____ ###Markdown Check the rmseStill not perfect but better: we have here a typical error of ~ 2.4.We will need more sophisticated methods to impute missing values. ###Code rmse_n = sqrt(mean_squared_error(y, y_predict_n)) rmse_n ###Output _____no_output_____