path
stringlengths
7
265
concatenated_notebook
stringlengths
46
17M
content/ML/ML_8.ipynb
###Markdown ClusteringSo far in this course, we've focused our attention in machine learning on two fundamental tasks. - **Regression** aims to predict the value of a quantitative variable. - **Classification** aims to predict the value of a qualitative variable. However, this isn't all there is to machine learning. In this lecture, we're going to take a quick look at another task, called *clustering*. Clustering fits into the broad set of *unsupervised* machine learning tasks. In unsupervised tasks, there's no target variable to predict, and therefore no "right answer." Instead, the aim of an unsupervised algorithm is to explore the data and detect some latent structure. Clustering is the most common example of unsupervised tasks. In a clustering task, we hypothesize that the data may be naturally divided into dense clusters. The purpose of a clustering algorithm is to find these clusters. This lecture is based on the chapter [*In Depth: k-Means Clustering*](https://jakevdp.github.io/PythonDataScienceHandbook/05.11-k-means.html) of the [*Python Data Science Handbook*](https://jakevdp.github.io/PythonDataScienceHandbook/) by Jake VanderPlas. ###Code import numpy as np from matplotlib import pyplot as plt import pandas as pd ###Output _____no_output_____ ###Markdown Let's start by generating some synthetic data. The `make_blobs()` function will create a user-specified number of "blobs" of data, each of which are reasonably well-separated from each other. Under the hood, it does this by assigning a true label to each data point, which it then returns as `y_true`. However, in a standard clustering task, we would not assume that the true labels exist, and we won't use them here. ###Code from sklearn.datasets import make_blobs X, y_true = make_blobs(n_samples=300, centers=4, cluster_std=0.60, random_state=0) fig, ax = plt.subplots(1) ax.scatter(X[:, 0], X[:, 1], s=50); ###Output _____no_output_____ ###Markdown Visually, it appears that there are 4 clusters. Let's import `KMeans` and see how we do: ###Code from sklearn.cluster import KMeans kmeans = KMeans(n_clusters=4) kmeans.fit(X) ###Output _____no_output_____ ###Markdown To get cluster labels, we use the `predict()` method: ###Code y_kmeans = kmeans.predict(X) ###Output _____no_output_____ ###Markdown Now let's visualize the results. The use of the `c` and `cmap` arguments to `ax.scatter()` allow us to easily plot points of multiple colors. ###Code fig, ax = plt.subplots(1) ax.scatter(X[:, 0], X[:, 1], c=y_kmeans, s=50, cmap='viridis') ###Output _____no_output_____ ###Markdown It looks like `k-means` did a pretty good job of detecting our clusters! Under the hood, `k-means` tries to identify a "centroid" for each cluster. The two main principles are: 1. Each centroid is the mean of all the points to which it corresponds. 2. Each point is closer to its centroid than to any other centroid. The `KMeans` class makes it easy to retrieve the cluster centroids and visualize them. ###Code centers = kmeans.cluster_centers_ ax.scatter(centers[:, 0], centers[:, 1], c='black', s=200, alpha=0.5) fig ###Output _____no_output_____ ###Markdown We can see that the cluster centroids do indeed correspond pretty nicely to the "middle" of each of the identified clusters. This experiment went very well, but of course, things in the real world aren't that easy. Let's take a look at the Palmer Penguins again, for example. ###Code import urllib def retrieve_data(url): """ Retrieve a file from the specified url and save it in a local file called data.csv. The intended values of url are: """ # grab the data and parse it filedata = urllib.request.urlopen(url) to_write = filedata.read() # write to file with open("data.csv", "wb") as f: f.write(to_write) retrieve_data("https://philchodrow.github.io/PIC16A/datasets/palmer_penguins.csv") penguins = pd.read_csv("data.csv") ###Output _____no_output_____ ###Markdown Let's make a simple scatterplot of the culmen lengths and depths for the penguins. ###Code fig, ax = plt.subplots(1) for s in penguins['Species'].unique(): df = penguins[penguins['Species'] == s] ax.scatter(df['Culmen Length (mm)'], df['Culmen Depth (mm)'], label = s) ###Output _____no_output_____ ###Markdown When we include the colors, it looks like there might be some clusters of penguins here. Maybe even 3? Let's see. ###Code X = penguins[["Culmen Length (mm)", "Culmen Depth (mm)"]].dropna() kmeans = KMeans(n_clusters=3) kmeans.fit(X) fig, ax = plt.subplots(1) ax.scatter(X["Culmen Length (mm)"], X["Culmen Depth (mm)"], c = kmeans.predict(X)); ###Output _____no_output_____
numpy/4. Binary Data - Solutions.ipynb
###Markdown Reading Binary Data with NumpyTamás Gál ([email protected])The latest version of this notebook is available at [https://github.com/Asterics2020-Obelics](https://github.com/Asterics2020-Obelics/School2019/tree/master/numpy)**Warning**: This notebook contains all the solutions. If you are currently sitting in the `NumPy` lecture, close this immediately ;-) You will now work in a blank notebook, you don't need anything else! ###Code import numpy as np import sys print("Python version: {0}\n" "NumPy version: {1}" .format(sys.version, np.__version__)) %matplotlib inline import matplotlib.pyplot as plt plt.rcParams['figure.figsize'] = (16, 5) plt.rcParams['figure.dpi'] = 300 ###Output _____no_output_____ ###Markdown Exercise: Read a KM3NeT Event File and create a histogram of the PMT ToTsUse `numpy.fromfile()` and custom `dtype`s to read an event from `School2019/numpy/IO_EVT.dat`The KM3NeT DAQ dataformat for storing an event consists of a header and two sets of hits (triggered hits and snapshot hits). The header has been skipped, so `IO_EVT.dat` only contains the **triggered** and **snapshot** hits. Triggered hits:- n_hits `[int32, little endian]`- n_hits * triggered_hit_struct - optical module ID `[int32, little endian]`, example 808476737 - PMT ID `[unsigned char (byte)]`, value between 0 and 30 - time in nanoseconds `[uint32, big endian]`, example 90544845 - ToT (time over threshold) `[unsigned byte]`, value between 0 and 255 - trigger mask `[uint64, little endian]`, bitmask, typical values are 1, 3, 4, 6 Snapshot hits: same as triggered hits but without the `trigger mask` field Solution We can use the `xxd` command to have a quick look at the binary data. If we don't know the structure, this might be a good starting point to identify some strings or recognise numbers from a proiri knowledge. ###Code !xxd IO_EVT.dat |head -n 10 ###Output 00000000: 0f00 0000 4160 3030 0205 659a 101d 0400 ....A`00..e..... 00000010: 0000 0000 0000 4160 3030 0305 659a 2515 ......A`00..e.%. 00000020: 0400 0000 0000 0000 5e7b 3030 0005 659a ........^{00..e. 00000030: 6821 0400 0000 0000 0000 5e7b 3030 0105 h!........^{00.. 00000040: 659a 541b 0600 0000 0000 0000 5e7b 3030 e.T.........^{00 00000050: 0a05 659a 6511 0600 0000 0000 0000 5e7b ..e.e.........^{ 00000060: 3030 1005 659a 5c1b 0600 0000 0000 0000 00..e.\......... 00000070: 5e7b 3030 1405 659a 5619 0600 0000 0000 ^{00..e.V....... 00000080: 0000 4887 3730 0105 6599 cf1a 0600 0000 ..H.70..e....... 00000090: 0000 0000 4887 3730 0b05 6599 d613 0600 ....H.70..e..... ###Markdown The hit `dtype` We define our custom `dtype` for the hits and use the `dtype.descr` attribute as a base `dtype` for triggered hits, extended with the `triggermask` field. ###Code hit_dtype = np.dtype([ ("dom_id", "<i"), ("pmt_id", "B"), ("time", ">I"), ("tot", "B"), ]) trig_hit_dtype = np.dtype(hit_dtype.descr + [('triggermask', '<Q')]) ###Output _____no_output_____ ###Markdown The file `IO_EVT.dat` contains a single event. Opened in binary-read mode (`"rb"`), the `fobj` behaves like a stream. `np.fromfile` will call the `.read()` method with the number of bytes calculated from the given `dtype`.According to the data format specification, the first integer (represented by `dtype='<i'` where `<` indicates that it's little endian) is the number of triggered hits.To read the array of triggered hits, the `trig_hit_dtype` is used and the `count=n_trig_hits` argument is passed, otherwise `numpy` will read till the end of the file.We repeat the same process for the regular (snapshot) hits. Parsing the binary data ###Code with open("IO_EVT.dat", "rb") as fobj: n_trig_hits = np.fromfile(fobj, dtype='<i', count=1)[0] trig_hits = np.fromfile(fobj, dtype=trig_hit_dtype, count=n_trig_hits) n_hits = np.fromfile(fobj, dtype='<i', count=1)[0] hits = np.fromfile(fobj, dtype=hit_dtype, count=n_hits) ###Output _____no_output_____ ###Markdown Let's see what we got: ###Code trig_hits hits ###Output _____no_output_____ ###Markdown The overall ToT distributionWe can easily access a specific attribute of all hits using dictionary-notation. ###Code plt.hist(hits['tot']) plt.xlabel('ToT [ns]') plt.yscale('log') plt.ylabel('count'); ###Output _____no_output_____ ###Markdown Live Event Read-Out from the KM3NeT ORCA DetectorIn this example we will read events directly from the ORCA detector, running in the deeps of the Mediterranean!Install ControlHost to communicate with the detector: **`pip install controlhost`**.To create a connection, subscribe to triggered events via the **`"IO_EVT"`** tag to **131.188.167.67**:**The header is 48 bytes, just skip it.** Retrieve 100 events and create another ToT histogram from all hits! Unfortunately `eduroam` doesn't allow the connection, so you have to use VPN or the take the binary dump `events.dat````pythonfobj = open("events.dat", "rb")``` ###Code fobj = open("events.dat", "rb") ###Output _____no_output_____ ###Markdown ```pythonimport controlhost as chwith ch.Client("131.188.167.67", tag="IO_EVT") as client: for i in range(5): data = client.get_message().data[48:] print(len(data))``` Solution (live connection) ###Code import io import tqdm # for nice progress bars def retrieve_hits(client): """Retrieves the hits of the next event using a ControlHost client""" data = io.BytesIO(client.get_message().data) # creat a stream data.read(48) # skip the first 48 bytes n_trig_hits = np.frombuffer(data.read(4), dtype='<i', count=1)[0] triggered_hits = np.frombuffer( data.read(trig_hit_dtype.itemsize * n_trig_hits), dtype=trig_hit_dtype ) n_hits = np.frombuffer(data.read(4), dtype='<i', count=1)[0] hits = np.frombuffer( data.read(hit_dtype.itemsize * n_hits), dtype=hit_dtype ) return trig_hits, hits ###Output _____no_output_____ ###Markdown Solution (binary file) ###Code def extract_hits(filename): """Extract the hits from a binary dump""" fobj = open(filename, 'rb') hits = [] triggered_hits = [] while fobj: header = fobj.read(48) # skip the first 48 bytes if not header: break n_trig_hits = np.frombuffer(fobj.read(4), dtype='<i', count=1)[0] _triggered_hits = np.frombuffer( fobj.read(trig_hit_dtype.itemsize * n_trig_hits), dtype=trig_hit_dtype ) triggered_hits.append(_triggered_hits) n_hits = np.frombuffer(fobj.read(4), dtype='<i', count=1)[0] _hits = np.frombuffer( fobj.read(hit_dtype.itemsize * n_hits), dtype=hit_dtype ) hits.append(_hits) fobj.close() return trig_hits, hits ###Output _____no_output_____ ###Markdown Gathering hits data (live connection) ###Code tots = [] with ch.Client("131.188.167.67", tag="IO_EVT") as client: for i in tqdm.trange(100): trig_hits, hits = retrieve_hits(client) tots.append(hits['tot']) ###Output 100%|██████████| 100/100 [00:38<00:00, 3.19it/s] ###Markdown Extracting hits (binary file) ###Code triggered_hits, hits = extract_hits("events.dat") tots = [h['tot'] for h in hits] plt.hist(np.concatenate(tots).ravel(), bins=100) plt.xlabel('ToT [ns]') plt.yscale('log') plt.ylabel('count'); ###Output _____no_output_____
modulos/modulo-1-introducao.ipynb
###Markdown Revisando o conteúdo da semana!Amy Guerra 1 - Em uma instrução print, o que acontece se você omitir um dos parênteses ou ambos? ###Code >>> print ('Hello,Word!') ###Output Hello,Word! ###Markdown 2 - O que acontece se puser um sinal de mais antes de um número? E se escrever assim: 2++2? ###Code >>> 2++2 ###Output _____no_output_____ ###Markdown 3 - O que acontece se você tentar usar 02 isso no Python? ###Code >>> 02 ###Output _____no_output_____ ###Markdown 4 - Quantos segundos há em 42 minutos e 42 segundos? ###Code minuto=60 segundos = 42*minuto print("Existem {} segundos em 42 minutos e 42 segundos".format(segundos+42)) ###Output Existem 2562 segundos em 42 minutos e 42 segundos ###Markdown 5 - Vimos que n = 42 é legal. E 42 = n? ###Code 60=minuto segundos=42*minuto print("Existem {}segundos em 42 minutos e 42 segundos" .format(segundos+42)) ###Output _____no_output_____ ###Markdown 6 - Ou x = y = 1? ###Code x = y = 1 print("X",x) print("Y",y) ###Output X 1 Y 1 ###Markdown 7 - O que acontece se você puser um ponto e vírgula no fim de uma instrução no Python? E um ponto? ###Code >>> print ('Hello,Word!'). ###Output _____no_output_____ ###Markdown 8 - Em notação matemática é possível multiplicar x e y desta forma: xy. O que acontece se você tentar fazer o mesmo no Python? ###Code x=1 y=2 print (xy) ###Output _____no_output_____ ###Markdown --- Quais são as outras formas de praticar esses conceitos? Leia um valor inteiro. A seguir, calcule o menor número de notas possíveis (cédulas) no qual o valor pode ser decomposto. As notas consideradas são de 100, 50, 20, 10, 5, 2 e 1. Imprima o valor lido e, em seguida, a quantidade mínima de notas de cada tipo necessárias, conforme o exemplo fornecido abaixo. ###Code >>> print ("Digite um valor inteiro") valor=int(input()) print("_"*25) print("R$",valor) nota100= valor//100 valor = valor - nota100*100 nota50 = valor//50 valor = valor - nota50*50 nota20= valor//20 valor = valor - nota20*20 nota10=valor//10 valor = valor - nota10*10 nota5= valor//5 valor = valor - nota5*5 nota2=valor//2 valor = valor - nota2*2 moeda1= valor// 1 valor= valor - moeda1*1 print('{} nota(s) de R$ 100,00'.format(nota100)) print('{} nota(s) de R$ 50,00'.format(nota50)) print('{} nota(s) de R$ 20,00'.format(nota20)) print('{} nota(s) de R$ 10,00'.format(nota10)) print('{} nota(s) de R$ 5,00'.format(nota5)) # vírgula funciona da mesma forma print(nota2, 'nota(s) de R$ 2,00') # Usando o format com variável print('{moeda} moeda(s) de R$ 1,00'.format(moeda=moeda1)) ###Output Digite um valor inteiro 157 _________________________ R$ 157 1 nota(s) de R$ 100,00 1 nota(s) de R$ 50,00 0 nota(s) de R$ 20,00 0 nota(s) de R$ 10,00 1 nota(s) de R$ 5,00 1 nota(s) de R$ 2,00 0 moeda(s) de R$ 1,00 ###Markdown Revisando o conteúdo da semana! Daniela Rodrigues 1 - Em uma instrução print, o que acontece se você omitir um dos parênteses ou ambos? ###Code ###Output _____no_output_____ ###Markdown 2 - O que acontece se puser um sinal de mais antes de um número? E se escrever assim: 2++2? ###Code ###Output _____no_output_____ ###Markdown 3 - O que acontece se você tentar usar 02 isso no Python? ###Code ###Output _____no_output_____ ###Markdown 4 - Quantos segundos há em 42 minutos e 42 segundos? ###Code ###Output _____no_output_____ ###Markdown 5 - Vimos que n = 42 é legal. E 42 = n? ###Code ###Output _____no_output_____ ###Markdown 6 - Ou x = y = 1? ###Code ###Output _____no_output_____ ###Markdown 7 - O que acontece se você puser um ponto e vírgula no fim de uma instrução no Python? E um ponto? ###Code ###Output _____no_output_____ ###Markdown 8 - Em notação matemática é possível multiplicar x e y desta forma: xy. O que acontece se você tentar fazer o mesmo no Python? ###Code ###Output _____no_output_____ ###Markdown Revisando o conteúdo da semana! Lilian Gomes 1 - Em uma instrução print, o que acontece se você omitir um dos parênteses ou ambos? ###Code print ("Grupo de estudo") ###Output Grupo de estudo ###Markdown 2 - O que acontece se puser um sinal de mais antes de um número? E se escrever assim: 2++2? ###Code ###Output _____no_output_____ ###Markdown 3 - O que acontece se você tentar usar 02 isso no Python? ###Code ###Output _____no_output_____ ###Markdown 4 - Quantos segundos há em 42 minutos e 42 segundos? ###Code ###Output _____no_output_____ ###Markdown 5 - Vimos que n = 42 é legal. E 42 = n? ###Code ###Output _____no_output_____ ###Markdown 6 - Ou x = y = 1? ###Code ###Output _____no_output_____ ###Markdown 7 - O que acontece se você puser um ponto e vírgula no fim de uma instrução no Python? E um ponto? ###Code ###Output _____no_output_____ ###Markdown 8 - Em notação matemática é possível multiplicar x e y desta forma: xy. O que acontece se você tentar fazer o mesmo no Python? ###Code ###Output _____no_output_____ ###Markdown Revisando o conteúdo da semana! ###Code ###Output _____no_output_____ ###Markdown ###Code print('Escreva seu nome') ###Output Escreva seu nome ###Markdown 1 - Em uma instrução print, o que acontece se você omitir um dos parênteses ou ambos? ###Code ###Output _____no_output_____ ###Markdown 2 - O que acontece se puser um sinal de mais antes de um número? E se escrever assim: 2++2? ###Code ###Output _____no_output_____ ###Markdown 3 - O que acontece se você tentar usar 02 isso no Python? ###Code ###Output _____no_output_____ ###Markdown 4 - Quantos segundos há em 42 minutos e 42 segundos? ###Code ###Output _____no_output_____ ###Markdown 5 - Vimos que n = 42 é legal. E 42 = n? ###Code ###Output _____no_output_____ ###Markdown 6 - Ou x = y = 1? ###Code ###Output _____no_output_____ ###Markdown 7 - O que acontece se você puser um ponto e vírgula no fim de uma instrução no Python? E um ponto? ###Code ###Output _____no_output_____ ###Markdown 8 - Em notação matemática é possível multiplicar x e y desta forma: xy. O que acontece se você tentar fazer o mesmo no Python? ###Code ###Output _____no_output_____ ###Markdown Revisando o conteúdo da semana!Naiara Santos 1 - Em uma instrução print, o que acontece se você omitir um dos parênteses ou ambos? ###Code ###Output _____no_output_____ ###Markdown 2 - O que acontece se puser um sinal de mais antes de um número? E se escrever assim: 2++2? ###Code ###Output _____no_output_____ ###Markdown 3 - O que acontece se você tentar usar 02 isso no Python? ###Code ###Output _____no_output_____ ###Markdown 4 - Quantos segundos há em 42 minutos e 42 segundos? ###Code ###Output _____no_output_____ ###Markdown 5 - Vimos que n = 42 é legal. E 42 = n? ###Code ###Output _____no_output_____ ###Markdown 6 - Ou x = y = 1? ###Code ###Output _____no_output_____ ###Markdown 7 - O que acontece se você puser um ponto e vírgula no fim de uma instrução no Python? E um ponto? ###Code ###Output _____no_output_____ ###Markdown 8 - Em notação matemática é possível multiplicar x e y desta forma: xy. O que acontece se você tentar fazer o mesmo no Python? ###Code ###Output _____no_output_____ ###Markdown Revisando o conteúdo da semana! Anna Carolina 1 - Em uma instrução print, o que acontece se você omitir um dos parênteses ou ambos? ###Code ###Output _____no_output_____ ###Markdown 2 - O que acontece se puser um sinal de mais antes de um número? E se escrever assim: 2++2? ###Code ###Output _____no_output_____ ###Markdown 3 - O que acontece se você tentar usar 02 isso no Python? ###Code ###Output _____no_output_____ ###Markdown 4 - Quantos segundos há em 42 minutos e 42 segundos? ###Code ###Output _____no_output_____ ###Markdown 5 - Vimos que n = 42 é legal. E 42 = n? ###Code ###Output _____no_output_____ ###Markdown 6 - Ou x = y = 1? ###Code ###Output _____no_output_____ ###Markdown 7 - O que acontece se você puser um ponto e vírgula no fim de uma instrução no Python? E um ponto? ###Code ###Output _____no_output_____ ###Markdown 8 - Em notação matemática é possível multiplicar x e y desta forma: xy. O que acontece se você tentar fazer o mesmo no Python? ###Code ###Output _____no_output_____ ###Markdown Revisando o conteúdo da semana! 1 - Em uma instrução print, o que acontece se você omitir um dos parênteses ou ambos? ###Code print "Alô, alô" print("40tenadas" ###Output _____no_output_____ ###Markdown 2 - O que acontece se puser um sinal de mais antes de um número? E se escrever assim: 2++2? ###Code print(+2) print(2++2) ###Output 4 ###Markdown 3 - O que acontece se você tentar usar 02 isso no Python? ###Code print(02) ###Output _____no_output_____ ###Markdown 4 - Quantos segundos há em 42 minutos e 42 segundos? ###Code minuto = 60 minutos_42 = 42*minuto print("Existem {} segundos em 42 minutos e 42 segundos".format(minutos_42 + 42)) ###Output Existem 2562 segundos em 42 minutos e 42 segundos ###Markdown 5 - Vimos que n = 42 é legal. E 42 = n? ###Code 42 = n ###Output _____no_output_____ ###Markdown 6 - Ou x = y = 1? ###Code x = y = 1 print("X",x) print("Y",y) ###Output X 1 Y 1 ###Markdown 7 - O que acontece se você puser um ponto e vírgula no fim de uma instrução no Python? E um ponto? ###Code ponto_no_final = 2 + 2. C = "tá achando que eu sou C amadah?"; print("COM PONTO:", ponto_no_final) print("PONTO E VÍRGULA:", C) ###Output COM PONTO: 4.0 PONTO E VÍRGULA: tá achando que eu sou C amadah? ###Markdown 8 - Em notação matemática é possível multiplicar x e y desta forma: xy. O que acontece se você tentar fazer o mesmo no Python? ###Code x = 2 y = 3 print(xy) ###Output _____no_output_____ ###Markdown --- Quais são as outras formas de praticar esses conceitos? Leia um valor inteiro. A seguir, calcule o menor número de notas possíveis (cédulas) no qual o valor pode ser decomposto. As notas consideradas são de **100, 50, 20, 10, 5, 2 e 1**. Imprima o valor lido e, em seguida, a quantidade mínima de notas de cada tipo necessárias, conforme o exemplo fornecido abaixo. ###Code print("Digite um número inteiro:") valor = int(input()) print("_"*25) print("R$",valor) notas_100 = valor // 100 valor = valor - notas_100*100 notas_50 = valor // 50 valor = valor - notas_50*50 notas_20 = valor // 20 valor = valor - notas_20*20 notas_10 = valor // 10 valor = valor - notas_10*10 notas_5 = valor // 5 valor = valor - notas_5*5 notas_2 = valor // 2 valor = valor - notas_2*2 moeda_1 = valor // 1 valor = valor - moeda_1*1 print('{} nota(s) de R$ 100,00'.format(notas_100)) print('{} nota(s) de R$ 50,00'.format(notas_50)) print('{} nota(s) de R$ 20,00'.format(notas_20)) print('{} nota(s) de R$ 10,00'.format(notas_10)) print('{} nota(s) de R$ 5,00'.format(notas_5)) # vírgula funciona da mesma forma print(notas_2, 'nota(s) de R$ 2,00') # Usando o format com variável print('{moeda} moeda(s) de R$ 1,00'.format(moeda=moeda_1)) ###Output Digite um número inteiro: 12345 _________________________ R$ 12345 123 nota(s) de R$ 100,00 0 nota(s) de R$ 50,00 2 nota(s) de R$ 20,00 0 nota(s) de R$ 10,00 1 nota(s) de R$ 5,00 0 nota(s) de R$ 2,00 0 moeda(s) de R$ 1,00 ###Markdown Lembrete! ###Code # floor division, Retorna a parte inteira da divisão print("O Resultado inteiro de 10/2:",10 // 2) print("O Resultado inteiro de 15/2:",15 // 2) # MOD, Retorna o RESTO da divisão print("\nO Resto de 10/2:",10 % 2) print("O Resto de 15/2:",15 % 2) ###Output O Resultado inteiro de 10/2: 5 O Resultado inteiro de 15/2: 7 O Resto de 10/2: 0 O Resto de 15/2: 1 ###Markdown Como aproximar ou arredondar números decimais ###Code from math import ceil, floor value = 1.45299759 print("Arredondado de", value,"pra baixo (minimo):",floor(value)) # Format por ordem =============> valor 0 , valor 1 print("Arredondado {1} pra cima (teto): {0}".format(ceil(value), value)) print("Limitar casas decimais com o format: {0:.2f}".format(value)) ###Output Arredondado de 1.45299759 pra baixo (minimo): 1 Arredondado 1.45299759 pra cima (teto): 2 Limitar casas decimais com o format: 1.45 ###Markdown Revisando o conteúdo da semana! Débora Oliveira 1 - Em uma instrução print, o que acontece se você omitir um dos parênteses ou ambos? ###Code print("Grupo de Estudo") ###Output Grupo de Estudo ###Markdown 2 - O que acontece se puser um sinal de mais antes de um número? E se escrever assim: 2++2? ###Code +2 2++2 5*2 10/2 ###Output _____no_output_____ ###Markdown 3 - O que acontece se você tentar usar 02 isso no Python? ###Code 02 ###Output _____no_output_____ ###Markdown 4 - Quantos segundos há em 42 minutos e 42 segundos? ###Code (42*60)+42 ###Output _____no_output_____ ###Markdown 5 - Vimos que n = 42 é legal. E 42 = n? ###Code n = 42 n 42 = n ###Output _____no_output_____ ###Markdown 6 - Ou x = y = 1? ###Code x = y = 1 x y ###Output _____no_output_____ ###Markdown 7 - O que acontece se você puser um ponto e vírgula no fim de uma instrução no Python? E um ponto? ###Code k = 10; k l = 5. l ###Output _____no_output_____ ###Markdown 8 - Em notação matemática é possível multiplicar x e y desta forma: xy. O que acontece se você tentar fazer o mesmo no Python? ###Code e = 5 u = 5 eu e * u ###Output _____no_output_____ ###Markdown --- Quais são as outras formas de praticar esses conceitos? ###Code valor = 4/3*3.14*5**3 print(valor) print("{:.2f}".format(4/3*3.14*5**3)) preço = 24.95 preço_desconto = 24.95 * 0.4 qtd = 60 transporte = 3 + (0.75 * qtd) total = preço_desconto * qtd + transporte print(total) print("{:.2f}".format(total)) segundos_saida = (6 * 3600) + (52 * 60) segundos_caminhada = ((8 * 60) + 15) * 2 segundos_corrida = ((7 * 60) + 12) * 3 segundos_total = segundos_saida + segundos_caminhada + segundos_corrida horas_chegada = segundos_total // 3600 minutos_chegada = (segundos_total % 3600) // 60 segundos_chegada = segundos_total % 60 print(horas_chegada, 'h' , minutos_chegada, 'm', segundos_chegada, 's') print("Digite o valor que deseja:") valor = int(input()) notas_200 = valor // 200 print("{} nota(s) de R$ 200".format(notas_200)) valor = valor - (notas_200 * 200) notas_100 = valor // 100 print("{} nota(s) de R$ 100".format(notas_100)) valor = valor - (notas_100 * 100) notas_50 = valor // 50 print("{} nota(s) de R$ 50".format(notas_50)) valor = valor - (notas_50 * 50) notas_20 = valor // 20 print("{} nota(s) de R$ 20".format(notas_20)) valor = valor - (notas_20 * 20) notas_10 = valor // 10 print("{} nota(s) de R$ 10".format(notas_10)) valor = valor - (notas_10 * 10) notas_05 = valor // 5 print("{} nota(s) de R$ 5".format(notas_05)) valor = valor - (notas_05 * 5) notas_02 = valor // 2 print("{} nota(s) de R$ 2".format(notas_02)) valor = valor - (notas_02 * 2) ###Output Digite o valor que deseja: 2563 12 nota(s) de R$ 200 1 nota(s) de R$ 100 1 nota(s) de R$ 50 0 nota(s) de R$ 20 1 nota(s) de R$ 10 0 nota(s) de R$ 5 1 nota(s) de R$ 2 ###Markdown Revisando o conteúdo da semana!Milena Ferreira ###Code ###Output _____no_output_____ ###Markdown 1 - Em uma instrução print, o que acontece se você omitir um dos parênteses ou ambos? ###Code ###Output _____no_output_____ ###Markdown 2 - O que acontece se puser um sinal de mais antes de um número? E se escrever assim: 2++2? ###Code ###Output _____no_output_____ ###Markdown 3 - O que acontece se você tentar usar 02 isso no Python? ###Code ###Output _____no_output_____ ###Markdown 4 - Quantos segundos há em 42 minutos e 42 segundos? ###Code ###Output _____no_output_____ ###Markdown 5 - Vimos que n = 42 é legal. E 42 = n? ###Code ###Output _____no_output_____ ###Markdown 6 - Ou x = y = 1? ###Code ###Output _____no_output_____ ###Markdown 7 - O que acontece se você puser um ponto e vírgula no fim de uma instrução no Python? E um ponto? ###Code ###Output _____no_output_____ ###Markdown 8 - Em notação matemática é possível multiplicar x e y desta forma: xy. O que acontece se você tentar fazer o mesmo no Python? ###Code ###Output _____no_output_____ ###Markdown Revisando o conteúdo da semana! 1 - Em uma instrução print, o que acontece se você omitir um dos parênteses ou ambos? ###Code print("Teste") ###Output Teste ###Markdown 2 - O que acontece se puser um sinal de mais antes de um número? E se escrever assim: 2++2? ###Code ###Output _____no_output_____ ###Markdown 3 - O que acontece se você tentar usar 02 isso no Python? ###Code ###Output _____no_output_____ ###Markdown 4 - Quantos segundos há em 42 minutos e 42 segundos? ###Code ###Output _____no_output_____ ###Markdown 5 - Vimos que n = 42 é legal. E 42 = n? ###Code ###Output _____no_output_____ ###Markdown 6 - Ou x = y = 1? ###Code ###Output _____no_output_____ ###Markdown 7 - O que acontece se você puser um ponto e vírgula no fim de uma instrução no Python? E um ponto? ###Code ###Output _____no_output_____ ###Markdown 8 - Em notação matemática é possível multiplicar x e y desta forma: xy. O que acontece se você tentar fazer o mesmo no Python? ###Code ###Output _____no_output_____
Spring2017-2019/16-LSQ/Seminar16.ipynb
###Markdown Семинар Задача наименьших квадратов (Least Squares Problem) Постановка задачи1. **Широкая:** пусть даны $m$ пар измерениий $(x_i, y_i)$, где $ x_i \in \mathbb{R}^n, \; y_i \in \mathbb{R}^p$. Найти такую функцию $f$, что $$\frac{1}{2}\|f(x_i) - y_i \|^2_2 \to \min$$2. **Уже:** пусть даны $m$ пар измерениий $(x_i, y_i)$, где $ x_i \in \mathbb{R}^n, \; y_i \in \mathbb{R}^p$. Найти такую *параметрическую* функцию $f(x, w)$, что $$\frac{1}{2}\|f(x_i, w) - y_i \|^2_2 \to \min_w$$3. **Ещё уже:** пусть даны $m$ пар измерениий $(x_i, y_i)$, где $ x_i \in \mathbb{R}^n, \; y_i \in \mathbb{R}$. Найти такую *параметрическую* функцию $f(x, w)$, что $$\frac{1}{2} \sum_{i=1}^m(f(x_i, w) - y_i )^2 \to \min_w$$ Линейный случайРассмотрим случай линейной зависимости между измерениями $x_i \in \mathbb{R}^n$ и $y_i \in \mathbb{R}, \; i = 1,\ldots, m$.Тогда$$f(x, w) = x^{\top}w$$или$$f(X, W) = XW$$Задача наименьших квадратов формулируется в виде$$L(w|X, y) = \frac{1}{2}\sum\limits_{i=1}^m (x^{\top}_i w - y_i)^2 = \frac{1}{2}\|Xw - y \|^2_2 \to \min_w$$**Замечание.** Везде далее $m \geq n$ и $\mathrm{rank}(X) = n$ кроме специально оговоренных случаев Нормальное уравнениеИз необходимого условия минимума первого порядка и выпуклости нормы следует, что $$L'(w^* | X, y) = 0 \Rightarrow (X^{\top}X)w^* = X^{\top}y$$или$$w^* = (X^{\top}X)^{-1}X^{\top}y = X^+y = X^{\dagger}y,$$где $X^{\dagger} = X^+ = (X^{\top}X)^{-1}X^{\top}$ - *псевдообратная матрица*.**Замечение:** убедитесь, что Вы можете вывести выражение для $w^*$!**Вопрос:** к какой задаче сведена задача оптимизации? Прямые методы Разложение Холецкого**Определение.** Любая матрица $A \in \mathbb{S}^n_{++}$ имеет единственное разложение Холецкого:$$A = LL^{\top},$$где $L$ - нижнетреугольная матрица.Алгоритм:1. Вычислить $X^{\top}X$ и $X^{\top}y$2. Вычислить разложение Холецкого матрицы $X^{\top}X$3. Найти $w^*$ прямой и обратной подстановкой Pro & contraPro - при $m \gg n$ хранение $X^{\top}X$ требует намного меньше памяти, чем хранение $X$- если матрица $X$ разреженная, существуют методы также дающие разреженное разложение Холецкого Contra- число обусловленности $X^{\top}X$ равно квадрату числа обусловленности $X$. Ошибка пропорциональна обусловленности.- необходимо вычислить $X^{\top}X$ QR разложение**Определение.** Любую матрицу $A \in \mathbb{R}^{m \times n}$ можно представить в виде$$A = QR,$$где $Q \in \mathbb{R}^{m \times m}$ - унитарная матрица, а $R \in \mathbb{R}^{m \times n}$ - прямоугольная верхнетреугольная. Применение1. Вычислить QR разложение матрицы $X$: $X = QR$.2. $Q = [Q_1, Q_2]$, $Q_1 \in \mathbb{R}^{m \times n}$,$R = \begin{bmatrix}R_1\\0\end{bmatrix}$,$R_1 \in \mathbb{R}^{n \times n}$ - квадратная верхнетреугольная матрица2. Задача примет вид: $$\|R_1w - Q_1^{\top}y \|^2_2 \to \min_w$$и нормальное уравнение$$R_1w^* = Q_1^{\top}y$$Получили уравнение с квадратной верхнетреугольной матрицей, которое легко решается обратной подстановкой. Pro & contraPro - ошибка пропорциональна числу обусловленности $X$, а не $X^{\top}X$- более устойчив, чем использование разложение ХолецкогоContra- нельзя контролировать устойчивость решения Сингулярное разложение (SVD)**Определение.** Любую матрицу $A \in \mathbb{R}^{m \times n}$ можно представить в виде$$A = U\widehat{\Sigma} V^* = [U_1, U_2] \begin{bmatrix} \Sigma\\ 0 \end{bmatrix} V^*,$$где $U \in \mathbb{R}^{m \times m}$ - унитарная матрица, $U_1 \in \mathbb{R}^{m \times n}$, $\Sigma = \mathrm{diag}(\sigma_1, \ldots, \sigma_n) \in \mathbb{R}^{n \times n}$ - диагональная с сингулярными числами $\sigma_i$ на диагонали, и $V \in \mathbb{R}^{n \times n}$ - унитарная. Применение$$\| Xw - y\|^2_2 = \left\| \begin{bmatrix} \Sigma \\ 0 \end{bmatrix} V^* w - \begin{bmatrix} U_1^{\top} \\ U_2^{\top} \end{bmatrix}y \right\|^2_2 \sim \| \Sigma V^* w - U_1^{\top}y \|^2_2$$Решение линейной системы с **квадратной** матрицей:$$w^* = V\Sigma^{-1}U_1^{\top}y = \sum\limits_{i=1}^n \frac{u_i^{\top}y}{\sigma_i} v_i,$$где $v_i$ и $u_i$ - столбцы матриц $V$ и $U_1$ Pro & contraPro - информация о чувствительности решения к возмущениям $y$- контроль устойчивости: малые сингулярные числа можно отбросить- если матрица близка к вырожденной, то только SVD позволяет это показатьContra- вычисление SVD наиболее затратно по сравнению с QR разложением и разложением Холецкого Эксперименты ###Code import numpy as np n = 1000 m = 2 * n X = np.random.randn(m, n) w = np.random.randn(n) y = X.dot(w) + 1e-5 * np.random.randn(m) w_est = np.linalg.solve(X.T.dot(X), X.T.dot(y)) print(np.linalg.norm(w - w_est)) import scipy.linalg as sclin import scipy.sparse.linalg as scsplin def CholSolve(X, y): res = sclin.cho_factor(X.T.dot(X), lower=True) return sclin.cho_solve(res, X.T.dot(y)) def QRSolve(X, y): Q, R = sclin.qr(X) return sclin.solve_triangular(R[:R.shape[1], :], Q[:, :R.shape[1]].T.dot(y)) def SVDSolve(X, y): U, s, V = sclin.svd(X, full_matrices=False) return V.T.dot(np.diagflat(1.0 / s).dot(U.T.dot(y))) def CGSolve(X, y): def mv(x): return X.T.dot(X.dot(x)) LA = scsplin.LinearOperator((X.shape[1], X.shape[1]), matvec=mv) w, _ = scsplin.cg(LA, X.T.dot(y), tol=1e-10) return w def NPSolve(X, y): return np.linalg.solve(X.T.dot(X), X.T.dot(y)) def LSQRSolve(X, y): res = scsplin.lsqr(X, y) return res[0] w_chol = CholSolve(X, y) print(np.linalg.norm(w - w_chol)) w_qr = QRSolve(X, y) print(np.linalg.norm(w - w_qr)) w_svd = SVDSolve(X, y) print(np.linalg.norm(w - w_svd)) w_cg = CGSolve(X, y) print(np.linalg.norm(w - w_cg)) w_np = NPSolve(X, y) print(np.linalg.norm(w - w_np)) w_lsqr = LSQRSolve(X, y) print(np.linalg.norm(w - w_lsqr)) %timeit w_chol = CholSolve(X, y) %timeit w_qr = QRSolve(X, y) %timeit w_svd = SVDSolve(X, y) %timeit w_cg = CGSolve(X, y) %timeit w_np = NPSolve(X, y) %timeit w_lsqr = LSQRSolve(X, y) %matplotlib inline import time import matplotlib.pyplot as plt n = [10, 100, 1000, 2000, 5000] chol_time = [] qr_time = [] svd_time = [] cg_time = [] np_time = [] lsqr_time = [] for dim in n: m = int(1.5 * dim) X = np.random.randn(m, dim) w = np.random.randn(dim) y = X.dot(w) + 1e-5 * np.random.randn(m) st = time.time() w_chol = CholSolve(X, y) chol_time.append(time.time() - st) st = time.time() w_qr = QRSolve(X, y) qr_time.append(time.time() - st) st = time.time() w_svd = SVDSolve(X, y) svd_time.append(time.time() - st) st = time.time() w_cg = CGSolve(X, y) cg_time.append(time.time() - st) st = time.time() w_np = NPSolve(X, y) np_time.append(time.time() - st) st = time.time() w_lsqr = LSQRSolve(X, y) lsqr_time.append(time.time() - st) plt.figure(figsize=(10,8)) plt.plot(n, chol_time, linewidth=5, label="Cholesky") plt.plot(n, qr_time, linewidth=5, label="QR") plt.plot(n, svd_time, linewidth=5, label="SVD") plt.plot(n, cg_time, linewidth=5, label="CG") plt.plot(n, np_time, linewidth=5, label="Numpy") plt.plot(n, lsqr_time, linewidth=5, label="LSQR") plt.legend(loc="best", fontsize=20) plt.xscale("log") plt.yscale("log") plt.xlabel(r"Dimension", fontsize=20) plt.ylabel(r"Time, sec.", fontsize=20) plt.xticks(fontsize = 20) _ = plt.yticks(fontsize = 20) ###Output _____no_output_____ ###Markdown Нелинейный случай (J. Nocedal, S. Wright Numerical Optimization, Ch. 10)**Вопрос:** а если необходимо моделировать измерения нелинейной функцией $f(x, w)$?**Ответ:** аналитического решения уже нет, поэтому необходимо использовать итерационные методы Метод Гаусса-Ньютона- Целевая функция$$S = \frac{1}{2}\| f(X, w) - y\|^2_2 = \frac{1}{2}\|r(w)\|_2^2 \to \min_w$$- Градиент$$S' = \sum_{i=1}^m r_i(w)r_i'(w) = J^{\top}(w)r(w), $$где $J$ - якобиан остатков $r(w)$- Гессиан \begin{align*}S''(w) = & \sum_{i=1}^m r_i'(w)r_i'(w) + \sum_{i=1}^m r_i(w)r_i''(w) \\= & J^{\top}(w)J(w) + \sum_{i=1}^m r_i(w)r_i''(w)\end{align*} Метод Ньютона - Уравнение на поиск направления в методе Ньютона$$S''(w_k)h_{k+1} = -J^{\top}(w_k)r(w_k)$$- Или более подробно$$\left(J^{\top}(w_k)J(w_k) + \sum_{i=1}^m r_i(w_k)r_i''(w_k)\right) h_{k+1} = -J^{\top}(w_k)r(w_k)$$**Вопрос:** что меняется с добавлением имени Гаусса? Метод Гаусса-Ньютона $$\left(J^{\top}(w_k)J(w_k)\right) h_{k+1} = -J^{\top}(w_k)r(w_k)$$**Замечание:** шаг метода определяется линейным поиском с помощью комбинации ранее освещённых правил. Альтернативный вывод с помощью линеаризации целевой функции- Исходная задача$$S = \frac{1}{2}\| f(X, w) - y\|^2_2 = \frac{1}{2}\|r(w)\|_2^2 \to \min_w$$- Линеаризуем целевую функцию в текущей точке $w_k$ для получения направления $h_k$$$S(w_{k+1}) = \frac{1}{2}\| r(w_{k+1}) \|^2_2 \approx \frac{1}{2}\|r(w_k) + J(w_k)^{\top} h_k\|_2^2 \to \min_{h_k}$$- Получили **линейную** задачу, про которую выше были получены аналитические результаты Теорема сходимости**Теорема.** Пусть остатки $r_i(w)$ ограничены и их градиенты Липшицевы, а якобиан $J$ полного ранга. Тогда$$\lim_{k \to \infty} J^{\top}(w_k)r_k = 0,$$при выборе шага по достаточному убыванию и условию кривизны. Скорость сходимости$$\|w_{k+1} - w^* \|_2 \leq \| (J^{\top}J(w^*))^{-1}H(w^*)\| \|w_k - w^* \|_2 + O(\|w_k - w^* \|^2_2)$$- Зависит от соотношения между $J^{\top}J$ и $H(w_k) = \sum\limits_{i=1}^m r_i(w_k)r_i''(w_k)$- Чем меньше $\| (J^{\top}J(w^*))^{-1}H(w^*) \|$, тем быстрее сходимость - Если $H(w^*) = 0$, то сходимость локально квадратичная Случай больших остатков- В этом случае $H(w_k)$ пренебрегать нельзя- Сигнализирует о неадекватности выбранной параметрической функции $f(X, w)$- Требует применения *гибридных* алгоритмов, которые работают как метод Гаусса-Ньютона при маленьких остатках и работают как метод Ньютона или квазиньютоновский метод при больших остатках Pro & contraPro- не нужно вычислять $r''(w)$- из якобиана вычисляется оценка гессиана- используемое приближение гессиана часто очень точное в смысле нормы- в случае полного ранга якобиана, гарантируется, что полученное направление - это направление убывания- интерпретация как линеаризация функции $f(x, w)$ около точки экстремумаContra- приближение гессиана может быть очень неточным- если матрица $J^{\top}J$ близка к вырожденной, решение неустойчиво, и даже сходимость не гарантируется Метод Левенберга-Марквардта Какие проблемы накопились?- В методе Ньютона сходимость только **локальная**, но **квадратичная**- Вырожденность гессиана или его приближения (метод Гаусса-Ньютона) приводит к неустойчивости решения- Градиентный метод сходится к стационарной точке из **любого** начального приближения, но **линейно** Как решить эти проблемы? Хотя бы частично... **Идея:** отделить спектр гессиана от 0 с помощью дополнительного слагаемого вида $\lambda I$Метод Левенберга-Марквардта:$$(f''(x_k) + \lambda_k I)h_k = -f'(x_k), \qquad \lambda_k > 0$$ Почему это хорошая идея? - При $\lambda_k \to 0$ метод работает как метод Ньютона- При $\lambda_k \to \infty$ метод работает как градиентный спуск- В методе Гаусса-Ньютона слагаемое $\lambda_k I$ является оценкой $H(w_k)$- Если оценка гессиана $J^{\top}J$ разреженная, то добавление $\lambda_k I$ её не портит и позволяет быстро решать систему уравнений- Регуляризация исходной задачи - см. далее Осталась одна проблема.... Стратегий подбора $\lambda_k$ очень много. Общая идея аналогична backtracking'у:- задаём начальное приближение- если убывание функции достаточное, то метод находится в зоне, где хорошо работает квадратичная аппроксимация, следовательно можно ещё уменьшить $\lambda_{k+1}$- если убывание недостаточно сильное, то надо увеличить $\lambda_k$ и ещё раз получить направление $h_k$ и проверить насколько оно подходит Сходимость- Доказательства сходимости непросты из-за необходимости учитывать изменения $\lambda_k$- Гарантируется сходимость к стационарной точке при адекватном моделировании кривизны функции в каждой точке ```python def simple_levenberg_marquardt(f, jac, x, lam, rho_min, rho_max, tol): n = x.shape[0] while True: J = jac(x) F = f(x) while True: x_next = np.linalg.solve(J.T.dot(J) + lam * np.eye(n), -J.dot(F)) F_next = f(x_next) if np.linalg.norm(F_next) < np.linalg.norm(F): lam = rho_min * lam x = x_next break else: lam = lam * rho_max if np.linalg.norm(F) - np.linalg.norm(F_next) < tol: break return x``` ЭкспериментРассмотрим задачу нелинейных наименьших квадратов для следующей функции$$f(w|x) = w_1 e^{w_2 x}\cos(w_3 x + w_4)$$при $w = (1, -0.5, 10, 0)$ ###Code w = np.array([1, -0.5, 10, 0]) def f(x, w=w): return w[0] * np.exp(x * w[1]) * np.cos(w[2] * x + w[3]) num_points = 100 x_range = np.linspace(0, 5, num=num_points) plt.plot(x_range, f(x_range)) num_samples = 50 x_samples = np.random.choice(x_range, size=num_samples) y_samples = f(x_samples) + 0.05 * np.random.randn(num_samples) plt.plot(x_range, f(x_range)) plt.scatter(x_samples, y_samples, c="red") import scipy.optimize as scopt res = lambda w: f(x_samples, w) - y_samples def jac(w): J = np.zeros((num_samples, 4)) J[:, 0] = np.exp(x_samples * w[1]) * np.cos(x_samples * w[2] + w[3]) J[:, 1] = w[0] * x_samples * np.exp(x_samples * w[1]) * np.cos(x_samples * w[2] + w[3]) J[:, 2] = -w[0] * x_samples * np.exp(x_samples * w[1]) * np.sin(x_samples * w[2] + w[3]) J[:, 3] = -w[0] * np.exp(x_samples * w[1]) * np.sin(x_samples * w[2] + w[3]) return J result = {} x0 = np.random.randn(4) result["LM"] = scopt.least_squares(fun=res, method="lm", x0=x0, jac=jac) # result["TR"] = scopt.least_squares(fun=res, method="trf", x0=x0, jac=jac) # result["Dogleg"] = scopt.least_squares(fun=res, method="dogbox", x0=x0, jac=jac) plt.figure(figsize=(8, 6)) fontsize = 16 plt.plot(x_range, f(x_range), label="Exact") for method in result: plt.plot(x_range, f(x_range, result[method].x), label=method) plt.legend(fontsize=fontsize) plt.xticks(fontsize=fontsize) plt.yticks(fontsize=fontsize) print("Exact parameters = {}".format(w)) for method in result: print("{} method parameters = {}".format(method, result[method].x)) ###Output Exact parameters = [ 1. -0.5 10. 0. ] LM method parameters = [ 1.01790846 -0.49635022 9.9670075 0.01450216]
notebooks/2b Input Driven Observations (GLM-HMM).ipynb
###Markdown Input Driven Observations ("GLM-HMM")Notebook prepared by Zoe Ashwood: feel free to email me with feedback or questions (zashwood at cs dot princeton dot edu).This notebook demonstrates the "InputDrivenObservations" class, and illustrates its use in the context of modeling decision-making data as in Ashwood et al. (2020) ([Mice alternate between discrete strategies during perceptualdecision-making](https://www.biorxiv.org/content/10.1101/2020.10.19.346353v1.full.pdf)).Compared to the model considered in the notebook ["2 Input Driven HMM"](https://github.com/lindermanlab/ssm/blob/master/notebooks/2%20Input%20Driven%20HMM.ipynb), Ashwood et al. (2020) assumes a stationary transition matrix where transition probabilities *do not* depend on external inputs. However, observation probabilities now *do* depend on external covariates according to:$$\begin{align}\Pr(y_t = c \mid z_{t} = k, u_t, w_{kc}) = \frac{\exp\{w_{kc}^\mathsf{T} u_t\}}{\sum_{c'=1}^C \exp\{w_{kc'}^\mathsf{T} u_t\}}\end{align}$$where $c \in \{1, ..., C\}$ indicates the categorical class for the observation, $u_{t} \in \mathbb{R}^{M}$ is the set of input covariates, and $w_{kc} \in \mathbb{R}^{M}$ is the set of input weights associated with state $k$ and class $c$. These weights, along with the transition matrix and initial state probabilities, will be learned.In Ashwood et al. (2020), $C = 2$ as $y_{t}$ represents the binary choice made by an animal during a 2AFC (2-Alternative Forced Choice) task. The above equation then reduces to:$$\begin{align}\Pr(y_t = 1 \mid z_{t} = k, u_t, w_{k}) = \frac{1}{1 + \exp\{-w_{k}^\mathsf{T} u_t\}}.\end{align}$$and only a single set of weights is associated with each state. 1. SetupThe line `import ssm` imports the package for use. Here, we have also imported a few other packages for plotting. ###Code import numpy as np import numpy.random as npr import matplotlib.pyplot as plt import ssm from ssm.util import one_hot, find_permutation %matplotlib inline npr.seed(0) ###Output _____no_output_____ ###Markdown 2. Input Driven ObservationsWe create a HMM with input-driven observations and 'standard' (stationary) transitions with the following line: ```python ssm.HMM(num_states, obs_dim, input_dim, observations="input_driven_obs", observation_kwargs=dict(C=num_categories), transitions="standard")```As in Ashwood et al. (2020), we are going to model an animal's binary choice data during a decision-making task, so we will set `num_categories=2` because the animal only has two options available to it. We will also set `obs_dim = 1` because the dimensionality of the observation data is 1 (if we were also modeling, for example, the binned reaction time of the animal, we could set `obs_dim = 2`). For the sake of simplicity, we will assume that an animal's choice in a particular state is only affected by the external stimulus associated with that particular trial, and its innate choice bias. Thus, we will set `input_dim = 2` and we will simulate input data that resembles sequences of stimuli in what follows. In Ashwood et al. (2020), they found that many mice used 3 decision-making states when performing 2AFC tasks. We will, thus, set `num_states = 3`. 2a. Initialize GLM-HMM ###Code # Set the parameters of the GLM-HMM num_states = 3 # number of discrete states obs_dim = 1 # number of observed dimensions num_categories = 2 # number of categories for output input_dim = 2 # input dimensions # Make a GLM-HMM true_glmhmm = ssm.HMM(num_states, obs_dim, input_dim, observations="input_driven_obs", observation_kwargs=dict(C=num_categories), transitions="standard") ###Output _____no_output_____ ###Markdown 2b. Specify parameters of generative GLM-HMM Let's update the weights and transition matrix for the true GLM-HMM so as to bring the GLM-HMM to the parameter regime that real animals use (according to Ashwood et al. (2020)): ###Code gen_weights = np.array([[[6, 1]], [[2, -3]], [[2, 3]]]) gen_log_trans_mat = np.log(np.array([[[0.98, 0.01, 0.01], [0.05, 0.92, 0.03], [0.02, 0.03, 0.94]]])) true_glmhmm.observations.params = gen_weights true_glmhmm.transitions.params = gen_log_trans_mat # Plot generative parameters: fig = plt.figure(figsize=(8, 3), dpi=80, facecolor='w', edgecolor='k') plt.subplot(1, 2, 1) cols = ['#ff7f00', '#4daf4a', '#377eb8'] for k in range(num_states): plt.plot(range(input_dim), gen_weights[k][0], marker='o', color=cols[k], linestyle='-', lw=1.5, label="state " + str(k+1)) plt.yticks(fontsize=10) plt.ylabel("GLM weight", fontsize=15) plt.xlabel("covariate", fontsize=15) plt.xticks([0, 1], ['stimulus', 'bias'], fontsize=12, rotation=45) plt.axhline(y=0, color="k", alpha=0.5, ls="--") plt.legend() plt.title("Generative weights", fontsize = 15) plt.subplot(1, 2, 2) gen_trans_mat = np.exp(gen_log_trans_mat)[0] plt.imshow(gen_trans_mat, vmin=-0.8, vmax=1, cmap='bone') for i in range(gen_trans_mat.shape[0]): for j in range(gen_trans_mat.shape[1]): text = plt.text(j, i, str(np.around(gen_trans_mat[i, j], decimals=2)), ha="center", va="center", color="k", fontsize=12) plt.xlim(-0.5, num_states - 0.5) plt.xticks(range(0, num_states), ('1', '2', '3'), fontsize=10) plt.yticks(range(0, num_states), ('1', '2', '3'), fontsize=10) plt.ylim(num_states - 0.5, -0.5) plt.ylabel("state t", fontsize = 15) plt.xlabel("state t+1", fontsize = 15) plt.title("Generative transition matrix", fontsize = 15) ###Output _____no_output_____ ###Markdown 2c. Create external input sequences Simulate an example set of external inputs for each trial in a session. We will create an array of size `(num_sess x num_trials_per_sess x num_covariates)`. As in Ashwood et al. (2020), for each trial in a session we will include the stimulus presented to the animal at that trial, as well as a '1' as the second covariate (so as to capture the animal's innate bias for one of the two options available to it). We will simulate stimuli sequences so as to resemble the sequences of stimuli in the International Brain Laboratory et al. (2020) task. ###Code num_sess = 20 # number of example sessions num_trials_per_sess = 100 # number of trials in a session inpts = np.ones((num_sess, num_trials_per_sess, input_dim)) # initialize inpts array stim_vals = [-1, -0.5, -0.25, -0.125, -0.0625, 0, 0.0625, 0.125, 0.25, 0.5, 1] inpts[:,:,0] = np.random.choice(stim_vals, (num_sess, num_trials_per_sess)) # generate random sequence of stimuli inpts = list(inpts) #convert inpts to correct format ###Output _____no_output_____ ###Markdown 2d. Simulate states and observations with generative model ###Code # Generate a sequence of latents and choices for each session true_latents, true_choices = [], [] for sess in range(num_sess): true_z, true_y = true_glmhmm.sample(num_trials_per_sess, input=inpts[sess]) true_latents.append(true_z) true_choices.append(true_y) # Calculate true loglikelihood true_ll = true_glmhmm.log_probability(true_choices, inputs=inpts) print("true ll = " + str(true_ll)) ###Output true ll = -910.4271498215511 ###Markdown 3. Fit GLM-HMM and perform recovery analysis  3a. Maximum Likelihood Estimation Now we instantiate a new GLM-HMM and check that we can recover the generative parameters in simulated data: ###Code new_glmhmm = ssm.HMM(num_states, obs_dim, input_dim, observations="input_driven_obs", observation_kwargs=dict(C=num_categories), transitions="standard") N_iters = 200 # maximum number of EM iterations. Fitting with stop earlier if increase in LL is below tolerance specified by tolerance parameter fit_ll = new_glmhmm.fit(true_choices, inputs=inpts, method="em", num_iters=N_iters, tolerance=10**-4) # Plot the log probabilities of the true and fit models. Fit model final LL should be greater # than or equal to true LL. fig = plt.figure(figsize=(4, 3), dpi=80, facecolor='w', edgecolor='k') plt.plot(fit_ll, label="EM") plt.plot([0, len(fit_ll)], true_ll * np.ones(2), ':k', label="True") plt.legend(loc="lower right") plt.xlabel("EM Iteration") plt.xlim(0, len(fit_ll)) plt.ylabel("Log Probability") plt.show() ###Output _____no_output_____ ###Markdown 3b. Retrieved parameters Compare retrieved weights and transition matrices to generative parameters. To do this, we may first need to permute the states of the fit GLM-HMM relative to thegenerative model. One way to do this uses the `find_permutation` function from `ssm`: ###Code new_glmhmm.permute(find_permutation(true_latents[0], new_glmhmm.most_likely_states(true_choices[0], input=inpts[0]))) ###Output _____no_output_____ ###Markdown Now plot generative and retrieved weights for GLMs (analogous plot to Figure S1c in Ashwood et al. (2020)): ###Code fig = plt.figure(figsize=(4, 3), dpi=80, facecolor='w', edgecolor='k') cols = ['#ff7f00', '#4daf4a', '#377eb8'] recovered_weights = new_glmhmm.observations.params for k in range(num_states): if k ==0: plt.plot(range(input_dim), gen_weights[k][0], marker='o', color=cols[k], linestyle='-', lw=1.5, label="generative") plt.plot(range(input_dim), recovered_weights[k][0], color=cols[k], lw=1.5, label = "recovered", linestyle = '--') else: plt.plot(range(input_dim), gen_weights[k][0], marker='o', color=cols[k], linestyle='-', lw=1.5, label="") plt.plot(range(input_dim), recovered_weights[k][0], color=cols[k], lw=1.5, label = '', linestyle = '--') plt.yticks(fontsize=10) plt.ylabel("GLM weight", fontsize=15) plt.xlabel("covariate", fontsize=15) plt.xticks([0, 1], ['stimulus', 'bias'], fontsize=12, rotation=45) plt.axhline(y=0, color="k", alpha=0.5, ls="--") plt.legend() plt.title("Weight recovery", fontsize=15) ###Output _____no_output_____ ###Markdown Now plot generative and retrieved transition matrices (analogous plot to Figure S1c in Ashwood et al. (2020)): ###Code fig = plt.figure(figsize=(5, 2.5), dpi=80, facecolor='w', edgecolor='k') plt.subplot(1, 2, 1) gen_trans_mat = np.exp(gen_log_trans_mat)[0] plt.imshow(gen_trans_mat, vmin=-0.8, vmax=1, cmap='bone') for i in range(gen_trans_mat.shape[0]): for j in range(gen_trans_mat.shape[1]): text = plt.text(j, i, str(np.around(gen_trans_mat[i, j], decimals=2)), ha="center", va="center", color="k", fontsize=12) plt.xlim(-0.5, num_states - 0.5) plt.xticks(range(0, num_states), ('1', '2', '3'), fontsize=10) plt.yticks(range(0, num_states), ('1', '2', '3'), fontsize=10) plt.ylim(num_states - 0.5, -0.5) plt.ylabel("state t", fontsize = 15) plt.xlabel("state t+1", fontsize = 15) plt.title("generative", fontsize = 15) plt.subplot(1, 2, 2) recovered_trans_mat = np.exp(new_glmhmm.transitions.log_Ps) plt.imshow(recovered_trans_mat, vmin=-0.8, vmax=1, cmap='bone') for i in range(recovered_trans_mat.shape[0]): for j in range(recovered_trans_mat.shape[1]): text = plt.text(j, i, str(np.around(recovered_trans_mat[i, j], decimals=2)), ha="center", va="center", color="k", fontsize=12) plt.xlim(-0.5, num_states - 0.5) plt.xticks(range(0, num_states), ('1', '2', '3'), fontsize=10) plt.yticks(range(0, num_states), ('1', '2', '3'), fontsize=10) plt.ylim(num_states - 0.5, -0.5) plt.title("recovered", fontsize = 15) plt.subplots_adjust(0, 0, 1, 1) ###Output _____no_output_____ ###Markdown 3c. Posterior State Probabilities Let's now plot $p(z_{t} = k|\mathbf{y}, \{u_{t}\}_{t=1}^{T})$, the posterior state probabilities, which give the probability of the animal being in state k at trial t. ###Code # Get expected states: posterior_probs = [new_glmhmm.expected_states(data=data, input=inpt)[0] for data, inpt in zip(true_choices, inpts)] fig = plt.figure(figsize=(5, 2.5), dpi=80, facecolor='w', edgecolor='k') sess_id = 0 #session id; can choose any index between 0 and num_sess-1 for k in range(num_states): plt.plot(posterior_probs[sess_id][:, k], label="State " + str(k + 1), lw=2, color=cols[k]) plt.ylim((-0.01, 1.01)) plt.yticks([0, 0.5, 1], fontsize = 10) plt.xlabel("trial #", fontsize = 15) plt.ylabel("p(state)", fontsize = 15) ###Output _____no_output_____ ###Markdown With these posterior state probabilities, we can assign trials to states and then plot the fractional occupancy of each state: ###Code # concatenate posterior probabilities across sessions posterior_probs_concat = np.concatenate(posterior_probs) # get state with maximum posterior probability at particular trial: state_max_posterior = np.argmax(posterior_probs_concat, axis = 1) # now obtain state fractional occupancies: _, state_occupancies = np.unique(state_max_posterior, return_counts=True) state_occupancies = state_occupancies/np.sum(state_occupancies) fig = plt.figure(figsize=(2, 2.5), dpi=80, facecolor='w', edgecolor='k') for z, occ in enumerate(state_occupancies): plt.bar(z, occ, width = 0.8, color = cols[z]) plt.ylim((0, 1)) plt.xticks([0, 1, 2], ['1', '2', '3'], fontsize = 10) plt.yticks([0, 0.5, 1], ['0', '0.5', '1'], fontsize=10) plt.xlabel('state', fontsize = 15) plt.ylabel('frac. occupancy', fontsize=15) ###Output _____no_output_____ ###Markdown 4. Fit GLM-HMM and perform recovery analysis: Maximum A Priori Estimation Above, we performed Maximum Likelihood Estimation to retrieve the generative parameters of the GLM-HMM in simulated data. In the small data regime, where we do not have many trials available to us, we may instead want to perform Maximum A Priori (MAP) Estimation in order to incorporate a prior term and restrict the range for the best fitting parameters. Unfortunately, what is meant by 'small data regime' is problem dependent and will be affected by the number of states in the generative GLM-HMM, and the specific parameters of the generative model, amongst other things. In practice, we may perform both Maximum Likelihood Estimation and MAP estimation and compare the ability of the fit models to make predictions on held-out data (see Section 5 on Cross-Validation below). The prior we consider for the GLM-HMM is the product of a Gaussian prior on the GLM weights, $W$, and a Dirichlet prior on the transition matrix, $A$:$$\begin{align}\Pr(W, A) &= \mathcal{N}(W|0, \Sigma) \Pr(A|\alpha) \\&= \mathcal{N}(W|0, diag(\sigma^{2}, \cdots, \sigma^{2})) \prod_{j=1}^{K} \dfrac{1}{B(\alpha)} \prod_{k=1}^{K} A_{jk}^{\alpha -1}\end{align}$$There are two hyperparameters controlling the strength of the prior: $\sigma$ and $\alpha$. The larger the value of $\sigma$ and if $\alpha = 1$, the more similar MAP estimation will become to Maximum Likelihood Estimation, and the prior term will become an additive offset to the objective function of the GLM-HMM that is independent of the values of $W$ and $A$. In comparison, setting $\sigma = 2$ and $\alpha = 2$ will result in the prior no longer being independent of $W$ and $\alpha$. In order to perform MAP estimation for the GLM-HMM with `ssm`, the new syntax is:```pythonssm.HMM(num_states, obs_dim, input_dim, observations="input_driven_obs", observation_kwargs=dict(C=num_categories,prior_sigma=prior_sigma), transitions="sticky", transition_kwargs=dict(alpha=prior_alpha,kappa=0))```where `prior_sigma` is the $\sigma$ parameter from above, and `prior_alpha` is the $\alpha$ parameter. ###Code # Instantiate GLM-HMM and set prior hyperparameters prior_sigma = 2 prior_alpha = 2 map_glmhmm = ssm.HMM(num_states, obs_dim, input_dim, observations="input_driven_obs", observation_kwargs=dict(C=num_categories,prior_sigma=prior_sigma), transitions="sticky", transition_kwargs=dict(alpha=prior_alpha,kappa=0)) # Fit GLM-HMM with MAP estimation: _ = map_glmhmm.fit(true_choices, inputs=inpts, method="em", num_iters=N_iters, tolerance=10**-4) ###Output _____no_output_____ ###Markdown Compare final likelihood of data with MAP estimation and MLE to likelihood under generative model (note: we cannot use log_probability that is output of `fit` function as this incorporates prior term, which is not comparable between generative and MAP models). We want to check that MAP and MLE likelihood values are higher than true likelihood; if they are not, this may indicate a poor initialization and that we should refit these models. ###Code true_likelihood = true_glmhmm.log_likelihood(true_choices, inputs=inpts) mle_final_ll = new_glmhmm.log_likelihood(true_choices, inputs=inpts) map_final_ll = map_glmhmm.log_likelihood(true_choices, inputs=inpts) # Plot these values fig = plt.figure(figsize=(2, 2.5), dpi=80, facecolor='w', edgecolor='k') loglikelihood_vals = [true_likelihood, mle_final_ll, map_final_ll] colors = ['Red', 'Navy', 'Purple'] for z, occ in enumerate(loglikelihood_vals): plt.bar(z, occ, width = 0.8, color = colors[z]) plt.ylim((true_likelihood-5, true_likelihood+15)) plt.xticks([0, 1, 2], ['true', 'mle', 'map'], fontsize = 10) plt.xlabel('model', fontsize = 15) plt.ylabel('loglikelihood', fontsize=15) ###Output _____no_output_____ ###Markdown 5. Cross Validation To assess which model is better - the model fit via Maximum Likelihood Estimation, or the model fit via MAP estimation - we can investigate the predictive power of these fit models on held-out test data sets. ###Code # Create additional input sequences to be used as held-out test data num_test_sess = 10 test_inpts = np.ones((num_test_sess, num_trials_per_sess, input_dim)) test_inpts[:,:,0] = np.random.choice(stim_vals, (num_test_sess, num_trials_per_sess)) test_inpts = list(test_inpts) # Create set of test latents and choices to accompany input sequences: test_latents, test_choices = [], [] for sess in range(num_test_sess): test_z, test_y = true_glmhmm.sample(num_trials_per_sess, input=test_inpts[sess]) test_latents.append(test_z) test_choices.append(test_y) # Compare likelihood of test_choices for model fit with MLE and MAP: mle_test_ll = new_glmhmm.log_likelihood(test_choices, inputs=test_inpts) map_test_ll = map_glmhmm.log_likelihood(test_choices, inputs=test_inpts) fig = plt.figure(figsize=(2, 2.5), dpi=80, facecolor='w', edgecolor='k') loglikelihood_vals = [mle_test_ll, map_test_ll] colors = ['Navy', 'Purple'] for z, occ in enumerate(loglikelihood_vals): plt.bar(z, occ, width = 0.8, color = colors[z]) plt.ylim((mle_test_ll-2, mle_test_ll+5)) plt.xticks([0, 1], ['mle', 'map'], fontsize = 10) plt.xlabel('model', fontsize = 15) plt.ylabel('loglikelihood', fontsize=15) ###Output _____no_output_____ ###Markdown Here we see that the model fit with MAP estimation achieves higher likelihood on the held-out dataset than the model fit with MLE, so we would choose this model as the best model of animal decision-making behavior (although we'd probably want to perform multiple fold cross-validation to be sure that this is the case in all instantiations of test data). Let's finish by comparing the retrieved weights and transition matrices from MAP estimation to the generative parameters. ###Code map_glmhmm.permute(find_permutation(true_latents[0], map_glmhmm.most_likely_states(true_choices[0], input=inpts[0]))) fig = plt.figure(figsize=(6, 3), dpi=80, facecolor='w', edgecolor='k') cols = ['#ff7f00', '#4daf4a', '#377eb8'] plt.subplot(1,2,1) recovered_weights = new_glmhmm.observations.params for k in range(num_states): if k ==0: # show labels only for first state plt.plot(range(input_dim), gen_weights[k][0], marker='o', color=cols[k], lw=1.5, label="generative") plt.plot(range(input_dim), recovered_weights[k][0], color=cols[k], lw=1.5, label = 'recovered', linestyle='--') else: plt.plot(range(input_dim), gen_weights[k][0], marker='o', color=cols[k], lw=1.5, label="") plt.plot(range(input_dim), recovered_weights[k][0], color=cols[k], lw=1.5, label = '', linestyle='--') plt.yticks(fontsize=10) plt.ylabel("GLM weight", fontsize=15) plt.xlabel("covariate", fontsize=15) plt.xticks([0, 1], ['stimulus', 'bias'], fontsize=12, rotation=45) plt.axhline(y=0, color="k", alpha=0.5, ls="--") plt.title("MLE", fontsize = 15) plt.legend() plt.subplot(1,2,2) recovered_weights = map_glmhmm.observations.params for k in range(num_states): plt.plot(range(input_dim), gen_weights[k][0], marker='o', color=cols[k], lw=1.5, label="", linestyle = '-') plt.plot(range(input_dim), recovered_weights[k][0], color=cols[k], lw=1.5, label = '', linestyle='--') plt.yticks(fontsize=10) plt.xticks([0, 1], ['', ''], fontsize=12, rotation=45) plt.axhline(y=0, color="k", alpha=0.5, ls="--") plt.title("MAP", fontsize = 15) fig = plt.figure(figsize=(7, 2.5), dpi=80, facecolor='w', edgecolor='k') plt.subplot(1, 3, 1) gen_trans_mat = np.exp(gen_log_trans_mat)[0] plt.imshow(gen_trans_mat, vmin=-0.8, vmax=1, cmap='bone') for i in range(gen_trans_mat.shape[0]): for j in range(gen_trans_mat.shape[1]): text = plt.text(j, i, str(np.around(gen_trans_mat[i, j], decimals=2)), ha="center", va="center", color="k", fontsize=12) plt.xlim(-0.5, num_states - 0.5) plt.xticks(range(0, num_states), ('1', '2', '3'), fontsize=10) plt.yticks(range(0, num_states), ('1', '2', '3'), fontsize=10) plt.ylim(num_states - 0.5, -0.5) plt.ylabel("state t", fontsize = 15) plt.xlabel("state t+1", fontsize = 15) plt.title("generative", fontsize = 15) plt.subplot(1, 3, 2) recovered_trans_mat = np.exp(new_glmhmm.transitions.log_Ps) plt.imshow(recovered_trans_mat, vmin=-0.8, vmax=1, cmap='bone') for i in range(recovered_trans_mat.shape[0]): for j in range(recovered_trans_mat.shape[1]): text = plt.text(j, i, str(np.around(recovered_trans_mat[i, j], decimals=2)), ha="center", va="center", color="k", fontsize=12) plt.xlim(-0.5, num_states - 0.5) plt.xticks(range(0, num_states), ('1', '2', '3'), fontsize=10) plt.yticks(range(0, num_states), ('1', '2', '3'), fontsize=10) plt.ylim(num_states - 0.5, -0.5) plt.title("recovered - MLE", fontsize = 15) plt.subplots_adjust(0, 0, 1, 1) plt.subplot(1, 3, 3) recovered_trans_mat = np.exp(map_glmhmm.transitions.log_Ps) plt.imshow(recovered_trans_mat, vmin=-0.8, vmax=1, cmap='bone') for i in range(recovered_trans_mat.shape[0]): for j in range(recovered_trans_mat.shape[1]): text = plt.text(j, i, str(np.around(recovered_trans_mat[i, j], decimals=2)), ha="center", va="center", color="k", fontsize=12) plt.xlim(-0.5, num_states - 0.5) plt.xticks(range(0, num_states), ('1', '2', '3'), fontsize=10) plt.yticks(range(0, num_states), ('1', '2', '3'), fontsize=10) plt.ylim(num_states - 0.5, -0.5) plt.title("recovered - MAP", fontsize = 15) plt.subplots_adjust(0, 0, 1, 1) ###Output _____no_output_____ ###Markdown Input Driven Observations ("GLM-HMM")Notebook prepared by Zoe Ashwood: feel free to email me with feedback or questions (zashwood at cs dot princeton dot edu).This notebook demonstrates the "InputDrivenObservations" class, and illustrates its use in the context of modeling decision-making data as in Ashwood et al. (2020) ([Mice alternate between discrete strategies during perceptualdecision-making](https://www.biorxiv.org/content/10.1101/2020.10.19.346353v1.full.pdf)).Compared to the model considered in the notebook ["2 Input Driven HMM"](https://github.com/lindermanlab/ssm/blob/master/notebooks/2%20Input%20Driven%20HMM.ipynb), Ashwood et al. (2020) assumes a stationary transition matrix where transition probabilities *do not* depend on external inputs. However, observation probabilities now *do* depend on external covariates according to:for $c \neq C$:$$\begin{align}\Pr(y_t = c \mid z_{t} = k, u_t, w_{kc}) = \frac{\exp\{w_{kc}^\mathsf{T} u_t\}}{1+\sum_{c'=1}^{C-1} \exp\{w_{kc'}^\mathsf{T} u_t\}}\end{align}$$and for $c = C$:$$\begin{align}\Pr(y_t = c \mid z_{t} = k, u_t, w_{kc}) = \frac{1}{1+\sum_{c'=1}^{C-1} \exp\{w_{kc'}^\mathsf{T} u_t\}}\end{align}$$where $c \in \{1, ..., C\}$ indicates the categorical class for the observation, $u_{t} \in \mathbb{R}^{M}$ is the set of input covariates, and $w_{kc} \in \mathbb{R}^{M}$ is the set of input weights associated with state $k$ and class $c$. These weights, along with the transition matrix and initial state probabilities, will be learned.In Ashwood et al. (2020), $C = 2$ as $y_{t}$ represents the binary choice made by an animal during a 2AFC (2-Alternative Forced Choice) task. The above equations then reduce to:$$\begin{align}\Pr(y_t = 0 \mid z_{t} = k, u_t, w_{k}) = \frac{\exp\{w_{k}^\mathsf{T} u_t\}}{1 + \exp\{w_{k}^\mathsf{T} u_t\}} = \frac{1}{1 + \exp\{-w_{k}^\mathsf{T} u_t\}}.\end{align}$$$$\begin{align}\Pr(y_t = 1 \mid z_{t} = k, u_t, w_{k}) = \frac{1}{1 + \exp\{w_{k}^\mathsf{T} u_t\}}.\end{align}$$and only a single weight vector, $w_{k}$, is associated with each state. 1. SetupThe line `import ssm` imports the package for use. Here, we have also imported a few other packages for plotting. ###Code import autograd.numpy.random as npr import numpy as np import numpy.random as npr import matplotlib.pyplot as plt import ssm from ssm.util import find_permutation npr.seed(0) ###Output _____no_output_____ ###Markdown 2. Input Driven ObservationsWe create a HMM with input-driven observations and 'standard' (stationary) transitions with the following line: ```python ssm.HMM(num_states, obs_dim, input_dim, observations="input_driven_obs", observation_kwargs=dict(C=num_categories), transitions="standard")```As in Ashwood et al. (2020), we are going to model an animal's binary choice data during a decision-making task, so we will set `num_categories=2` because the animal only has two options available to it. We will also set `obs_dim = 1` because the dimensionality of the observation data is 1 (if we were also modeling, for example, the binned reaction time of the animal, we could set `obs_dim = 2`). For the sake of simplicity, we will assume that an animal's choice in a particular state is only affected by the external stimulus associated with that particular trial, and its innate choice bias. Thus, we will set `input_dim = 2` and we will simulate input data that resembles sequences of stimuli in what follows. In Ashwood et al. (2020), they found that many mice used 3 decision-making states when performing 2AFC tasks. We will, thus, set `num_states = 3`. 2a. Initialize GLM-HMM ###Code # Set the parameters of the GLM-HMM num_states = 3 # number of discrete states obs_dim = 1 # number of observed dimensions num_categories = 2 # number of categories for output input_dim = 2 # input dimensions # Make a GLM-HMM true_glmhmm = ssm.HMM(num_states, obs_dim, input_dim, observations="input_driven_obs", observation_kwargs=dict(C=num_categories), transitions="standard") ###Output _____no_output_____ ###Markdown 2b. Specify parameters of generative GLM-HMM Let's update the weights and transition matrix for the true GLM-HMM so as to bring the GLM-HMM to the parameter regime that real animals use (according to Ashwood et al. (2020)): ###Code gen_weights = np.array([[[6, 1]], [[2, -3]], [[2, 3]]]) gen_log_trans_mat = np.log(np.array([[[0.98, 0.01, 0.01], [0.05, 0.92, 0.03], [0.03, 0.03, 0.94]]])) true_glmhmm.observations.params = gen_weights true_glmhmm.transitions.params = gen_log_trans_mat # Plot generative parameters: fig = plt.figure(figsize=(8, 3), dpi=80, facecolor='w', edgecolor='k') plt.subplot(1, 2, 1) cols = ['#ff7f00', '#4daf4a', '#377eb8'] for k in range(num_states): plt.plot(range(input_dim), gen_weights[k][0], marker='o', color=cols[k], linestyle='-', lw=1.5, label="state " + str(k+1)) plt.yticks(fontsize=10) plt.ylabel("GLM weight", fontsize=15) plt.xlabel("covariate", fontsize=15) plt.xticks([0, 1], ['stimulus', 'bias'], fontsize=12, rotation=45) plt.axhline(y=0, color="k", alpha=0.5, ls="--") plt.legend() plt.title("Generative weights", fontsize = 15) plt.subplot(1, 2, 2) gen_trans_mat = np.exp(gen_log_trans_mat)[0] plt.imshow(gen_trans_mat, vmin=-0.8, vmax=1, cmap='bone') for i in range(gen_trans_mat.shape[0]): for j in range(gen_trans_mat.shape[1]): text = plt.text(j, i, str(np.around(gen_trans_mat[i, j], decimals=2)), ha="center", va="center", color="k", fontsize=12) plt.xlim(-0.5, num_states - 0.5) plt.xticks(range(0, num_states), ('1', '2', '3'), fontsize=10) plt.yticks(range(0, num_states), ('1', '2', '3'), fontsize=10) plt.ylim(num_states - 0.5, -0.5) plt.ylabel("state t", fontsize = 15) plt.xlabel("state t+1", fontsize = 15) plt.title("Generative transition matrix", fontsize = 15) ###Output _____no_output_____ ###Markdown 2c. Create external input sequences Simulate an example set of external inputs for each trial in a session. We will create an array of size `(num_sess x num_trials_per_sess x num_covariates)`. As in Ashwood et al. (2020), for each trial in a session we will include the stimulus presented to the animal at that trial, as well as a '1' as the second covariate (so as to capture the animal's innate bias for one of the two options available to it). We will simulate stimuli sequences so as to resemble the sequences of stimuli in the International Brain Laboratory et al. (2020) task. ###Code num_sess = 20 # number of example sessions num_trials_per_sess = 100 # number of trials in a session inpts = np.ones((num_sess, num_trials_per_sess, input_dim)) # initialize inpts array stim_vals = [-1, -0.5, -0.25, -0.125, -0.0625, 0, 0.0625, 0.125, 0.25, 0.5, 1] inpts[:,:,0] = np.random.choice(stim_vals, (num_sess, num_trials_per_sess)) # generate random sequence of stimuli inpts = list(inpts) #convert inpts to correct format inpts ###Output _____no_output_____ ###Markdown 2d. Simulate states and observations with generative model ###Code # Generate a sequence of latents and choices for each session true_latents, true_choices = [], [] for sess in range(num_sess): true_z, true_y = true_glmhmm.sample(num_trials_per_sess, input=inpts[sess]) true_latents.append(true_z) true_choices.append(true_y) true_z # Calculate true loglikelihood true_ll = true_glmhmm.log_probability(true_choices, inputs=inpts) print("true ll = " + str(true_ll)) ###Output _____no_output_____ ###Markdown 3. Fit GLM-HMM and perform recovery analysis  3a. Maximum Likelihood Estimation Now we instantiate a new GLM-HMM and check that we can recover the generative parameters in simulated data: ###Code new_glmhmm = ssm.HMM(num_states, obs_dim, input_dim, observations="input_driven_obs", observation_kwargs=dict(C=num_categories), transitions="standard") N_iters = 200 # maximum number of EM iterations. Fitting with stop earlier if increase in LL is below tolerance specified by tolerance parameter fit_ll = new_glmhmm.fit(true_choices[0], inputs=inpts[0], method="em", num_iters=N_iters, tolerance=10**-4) new_glmhmm.transitions.transition_matrices(true_choices[0], inpts[0], None, None) new_glmhmm.observations.log_likelihoods(true_choices[0], inpts[0], None, None).shape # Plot the log probabilities of the true and fit models. Fit model final LL should be greater # than or equal to true LL. fig = plt.figure(figsize=(4, 3), dpi=80, facecolor='w', edgecolor='k') plt.plot(fit_ll, label="EM") plt.plot([0, len(fit_ll)], true_ll * np.ones(2), ':k', label="True") plt.legend(loc="lower right") plt.xlabel("EM Iteration") plt.xlim(0, len(fit_ll)) plt.ylabel("Log Probability") plt.show() ###Output _____no_output_____ ###Markdown 3b. Retrieved parameters Compare retrieved weights and transition matrices to generative parameters. To do this, we may first need to permute the states of the fit GLM-HMM relative to thegenerative model. One way to do this uses the `find_permutation` function from `ssm`: ###Code new_glmhmm.permute(find_permutation(true_latents[0], new_glmhmm.most_likely_states(true_choices[0], input=inpts[0]))) ###Output _____no_output_____ ###Markdown Now plot generative and retrieved weights for GLMs (analogous plot to Figure S1c in Ashwood et al. (2020)): ###Code fig = plt.figure(figsize=(4, 3), dpi=80, facecolor='w', edgecolor='k') cols = ['#ff7f00', '#4daf4a', '#377eb8'] recovered_weights = new_glmhmm.observations.params for k in range(num_states): if k ==0: plt.plot(range(input_dim), gen_weights[k][0], marker='o', color=cols[k], linestyle='-', lw=1.5, label="generative") plt.plot(range(input_dim), recovered_weights[k][0], color=cols[k], lw=1.5, label = "recovered", linestyle = '--') else: plt.plot(range(input_dim), gen_weights[k][0], marker='o', color=cols[k], linestyle='-', lw=1.5, label="") plt.plot(range(input_dim), recovered_weights[k][0], color=cols[k], lw=1.5, label = '', linestyle = '--') plt.yticks(fontsize=10) plt.ylabel("GLM weight", fontsize=15) plt.xlabel("covariate", fontsize=15) plt.xticks([0, 1], ['stimulus', 'bias'], fontsize=12, rotation=45) plt.axhline(y=0, color="k", alpha=0.5, ls="--") plt.legend() plt.title("Weight recovery", fontsize=15) ###Output _____no_output_____ ###Markdown Now plot generative and retrieved transition matrices (analogous plot to Figure S1c in Ashwood et al. (2020)): ###Code fig = plt.figure(figsize=(5, 2.5), dpi=80, facecolor='w', edgecolor='k') plt.subplot(1, 2, 1) gen_trans_mat = np.exp(gen_log_trans_mat)[0] plt.imshow(gen_trans_mat, vmin=-0.8, vmax=1, cmap='bone') for i in range(gen_trans_mat.shape[0]): for j in range(gen_trans_mat.shape[1]): text = plt.text(j, i, str(np.around(gen_trans_mat[i, j], decimals=2)), ha="center", va="center", color="k", fontsize=12) plt.xlim(-0.5, num_states - 0.5) plt.xticks(range(0, num_states), ('1', '2', '3'), fontsize=10) plt.yticks(range(0, num_states), ('1', '2', '3'), fontsize=10) plt.ylim(num_states - 0.5, -0.5) plt.ylabel("state t", fontsize = 15) plt.xlabel("state t+1", fontsize = 15) plt.title("generative", fontsize = 15) plt.subplot(1, 2, 2) recovered_trans_mat = np.exp(new_glmhmm.transitions.log_Ps) plt.imshow(recovered_trans_mat, vmin=-0.8, vmax=1, cmap='bone') for i in range(recovered_trans_mat.shape[0]): for j in range(recovered_trans_mat.shape[1]): text = plt.text(j, i, str(np.around(recovered_trans_mat[i, j], decimals=2)), ha="center", va="center", color="k", fontsize=12) plt.xlim(-0.5, num_states - 0.5) plt.xticks(range(0, num_states), ('1', '2', '3'), fontsize=10) plt.yticks(range(0, num_states), ('1', '2', '3'), fontsize=10) plt.ylim(num_states - 0.5, -0.5) plt.title("recovered", fontsize = 15) plt.subplots_adjust(0, 0, 1, 1) ###Output _____no_output_____ ###Markdown 3c. Posterior State Probabilities Let's now plot $p(z_{t} = k|\mathbf{y}, \{u_{t}\}_{t=1}^{T})$, the posterior state probabilities, which give the probability of the animal being in state k at trial t. ###Code # Get expected states: posterior_probs = [new_glmhmm.expected_states(data=data, input=inpt)[0] for data, inpt in zip([true_choices[0]], [inpts[0]])] true_choices fig = plt.figure(figsize=(5, 2.5), dpi=80, facecolor='w', edgecolor='k') sess_id = 0 #session id; can choose any index between 0 and num_sess-1 for k in range(num_states): plt.plot(posterior_probs[sess_id][:, k], label="State " + str(k + 1), lw=2, color=cols[k]) plt.ylim((-0.01, 1.01)) plt.yticks([0, 0.5, 1], fontsize = 10) plt.xlabel("trial #", fontsize = 15) plt.ylabel("p(state)", fontsize = 15) ###Output _____no_output_____ ###Markdown With these posterior state probabilities, we can assign trials to states and then plot the fractional occupancy of each state: ###Code # concatenate posterior probabilities across sessions posterior_probs_concat = np.concatenate(posterior_probs) # get state with maximum posterior probability at particular trial: state_max_posterior = np.argmax(posterior_probs_concat, axis = 1) # now obtain state fractional occupancies: _, state_occupancies = np.unique(state_max_posterior, return_counts=True) state_occupancies = state_occupancies/np.sum(state_occupancies) fig = plt.figure(figsize=(2, 2.5), dpi=80, facecolor='w', edgecolor='k') for z, occ in enumerate(state_occupancies): plt.bar(z, occ, width = 0.8, color = cols[z]) plt.ylim((0, 1)) plt.xticks([0, 1, 2], ['1', '2', '3'], fontsize = 10) plt.yticks([0, 0.5, 1], ['0', '0.5', '1'], fontsize=10) plt.xlabel('state', fontsize = 15) plt.ylabel('frac. occupancy', fontsize=15) ###Output _____no_output_____ ###Markdown 4. Fit GLM-HMM and perform recovery analysis: Maximum A Priori Estimation Above, we performed Maximum Likelihood Estimation to retrieve the generative parameters of the GLM-HMM in simulated data. In the small data regime, where we do not have many trials available to us, we may instead want to perform Maximum A Priori (MAP) Estimation in order to incorporate a prior term and restrict the range for the best fitting parameters. Unfortunately, what is meant by 'small data regime' is problem dependent and will be affected by the number of states in the generative GLM-HMM, and the specific parameters of the generative model, amongst other things. In practice, we may perform both Maximum Likelihood Estimation and MAP estimation and compare the ability of the fit models to make predictions on held-out data (see Section 5 on Cross-Validation below). The prior we consider for the GLM-HMM is the product of a Gaussian prior on the GLM weights, $W$, and a Dirichlet prior on the transition matrix, $A$:$$\begin{align}\Pr(W, A) &= \mathcal{N}(W|0, \Sigma) \Pr(A|\alpha) \\&= \mathcal{N}(W|0, diag(\sigma^{2}, \cdots, \sigma^{2})) \prod_{j=1}^{K} \dfrac{1}{B(\alpha)} \prod_{k=1}^{K} A_{jk}^{\alpha -1}\end{align}$$There are two hyperparameters controlling the strength of the prior: $\sigma$ and $\alpha$. The larger the value of $\sigma$ and if $\alpha = 1$, the more similar MAP estimation will become to Maximum Likelihood Estimation, and the prior term will become an additive offset to the objective function of the GLM-HMM that is independent of the values of $W$ and $A$. In comparison, setting $\sigma = 2$ and $\alpha = 2$ will result in the prior no longer being independent of $W$ and $\alpha$. In order to perform MAP estimation for the GLM-HMM with `ssm`, the new syntax is:```pythonssm.HMM(num_states, obs_dim, input_dim, observations="input_driven_obs", observation_kwargs=dict(C=num_categories,prior_sigma=prior_sigma), transitions="sticky", transition_kwargs=dict(alpha=prior_alpha,kappa=0))```where `prior_sigma` is the $\sigma$ parameter from above, and `prior_alpha` is the $\alpha$ parameter. ###Code # Instantiate GLM-HMM and set prior hyperparameters prior_sigma = 2 prior_alpha = 2 map_glmhmm = ssm.HMM(num_states, obs_dim, input_dim, observations="input_driven_obs", observation_kwargs=dict(C=num_categories,prior_sigma=prior_sigma), transitions="sticky", transition_kwargs=dict(alpha=prior_alpha,kappa=0)) # Fit GLM-HMM with MAP estimation: _ = map_glmhmm.fit(true_choices, inputs=inpts, method="em", num_iters=N_iters, tolerance=10**-4) ###Output _____no_output_____ ###Markdown Compare final likelihood of data with MAP estimation and MLE to likelihood under generative model (note: we cannot use log_probability that is output of `fit` function as this incorporates prior term, which is not comparable between generative and MAP models). We want to check that MAP and MLE likelihood values are higher than true likelihood; if they are not, this may indicate a poor initialization and that we should refit these models. ###Code true_likelihood = true_glmhmm.log_likelihood(true_choices, inputs=inpts) mle_final_ll = new_glmhmm.log_likelihood(true_choices, inputs=inpts) map_final_ll = map_glmhmm.log_likelihood(true_choices, inputs=inpts) # Plot these values fig = plt.figure(figsize=(2, 2.5), dpi=80, facecolor='w', edgecolor='k') loglikelihood_vals = [true_likelihood, mle_final_ll, map_final_ll] colors = ['Red', 'Navy', 'Purple'] for z, occ in enumerate(loglikelihood_vals): plt.bar(z, occ, width = 0.8, color = colors[z]) plt.ylim((true_likelihood-5, true_likelihood+15)) plt.xticks([0, 1, 2], ['true', 'mle', 'map'], fontsize = 10) plt.xlabel('model', fontsize = 15) plt.ylabel('loglikelihood', fontsize=15) ###Output _____no_output_____ ###Markdown 5. Cross Validation To assess which model is better - the model fit via Maximum Likelihood Estimation, or the model fit via MAP estimation - we can investigate the predictive power of these fit models on held-out test data sets. ###Code # Create additional input sequences to be used as held-out test data num_test_sess = 10 test_inpts = np.ones((num_test_sess, num_trials_per_sess, input_dim)) test_inpts[:,:,0] = np.random.choice(stim_vals, (num_test_sess, num_trials_per_sess)) test_inpts = list(test_inpts) # Create set of test latents and choices to accompany input sequences: test_latents, test_choices = [], [] for sess in range(num_test_sess): test_z, test_y = true_glmhmm.sample(num_trials_per_sess, input=test_inpts[sess]) test_latents.append(test_z) test_choices.append(test_y) # Compare likelihood of test_choices for model fit with MLE and MAP: mle_test_ll = new_glmhmm.log_likelihood(test_choices, inputs=test_inpts) map_test_ll = map_glmhmm.log_likelihood(test_choices, inputs=test_inpts) fig = plt.figure(figsize=(2, 2.5), dpi=80, facecolor='w', edgecolor='k') loglikelihood_vals = [mle_test_ll, map_test_ll] colors = ['Navy', 'Purple'] for z, occ in enumerate(loglikelihood_vals): plt.bar(z, occ, width = 0.8, color = colors[z]) plt.ylim((mle_test_ll-2, mle_test_ll+5)) plt.xticks([0, 1], ['mle', 'map'], fontsize = 10) plt.xlabel('model', fontsize = 15) plt.ylabel('loglikelihood', fontsize=15) ###Output _____no_output_____ ###Markdown Here we see that the model fit with MAP estimation achieves higher likelihood on the held-out dataset than the model fit with MLE, so we would choose this model as the best model of animal decision-making behavior (although we'd probably want to perform multiple fold cross-validation to be sure that this is the case in all instantiations of test data). Let's finish by comparing the retrieved weights and transition matrices from MAP estimation to the generative parameters. ###Code map_glmhmm.permute(find_permutation(true_latents[0], map_glmhmm.most_likely_states(true_choices[0], input=inpts[0]))) fig = plt.figure(figsize=(6, 3), dpi=80, facecolor='w', edgecolor='k') cols = ['#ff7f00', '#4daf4a', '#377eb8'] plt.subplot(1,2,1) recovered_weights = new_glmhmm.observations.params for k in range(num_states): if k ==0: # show labels only for first state plt.plot(range(input_dim), gen_weights[k][0], marker='o', color=cols[k], lw=1.5, label="generative") plt.plot(range(input_dim), recovered_weights[k][0], color=cols[k], lw=1.5, label = 'recovered', linestyle='--') else: plt.plot(range(input_dim), gen_weights[k][0], marker='o', color=cols[k], lw=1.5, label="") plt.plot(range(input_dim), recovered_weights[k][0], color=cols[k], lw=1.5, label = '', linestyle='--') plt.yticks(fontsize=10) plt.ylabel("GLM weight", fontsize=15) plt.xlabel("covariate", fontsize=15) plt.xticks([0, 1], ['stimulus', 'bias'], fontsize=12, rotation=45) plt.axhline(y=0, color="k", alpha=0.5, ls="--") plt.title("MLE", fontsize = 15) plt.legend() plt.subplot(1,2,2) recovered_weights = map_glmhmm.observations.params for k in range(num_states): plt.plot(range(input_dim), gen_weights[k][0], marker='o', color=cols[k], lw=1.5, label="", linestyle = '-') plt.plot(range(input_dim), recovered_weights[k][0], color=cols[k], lw=1.5, label = '', linestyle='--') plt.yticks(fontsize=10) plt.xticks([0, 1], ['', ''], fontsize=12, rotation=45) plt.axhline(y=0, color="k", alpha=0.5, ls="--") plt.title("MAP", fontsize = 15) fig = plt.figure(figsize=(7, 2.5), dpi=80, facecolor='w', edgecolor='k') plt.subplot(1, 3, 1) gen_trans_mat = np.exp(gen_log_trans_mat)[0] plt.imshow(gen_trans_mat, vmin=-0.8, vmax=1, cmap='bone') for i in range(gen_trans_mat.shape[0]): for j in range(gen_trans_mat.shape[1]): text = plt.text(j, i, str(np.around(gen_trans_mat[i, j], decimals=2)), ha="center", va="center", color="k", fontsize=12) plt.xlim(-0.5, num_states - 0.5) plt.xticks(range(0, num_states), ('1', '2', '3'), fontsize=10) plt.yticks(range(0, num_states), ('1', '2', '3'), fontsize=10) plt.ylim(num_states - 0.5, -0.5) plt.ylabel("state t", fontsize = 15) plt.xlabel("state t+1", fontsize = 15) plt.title("generative", fontsize = 15) plt.subplot(1, 3, 2) recovered_trans_mat = np.exp(new_glmhmm.transitions.log_Ps) plt.imshow(recovered_trans_mat, vmin=-0.8, vmax=1, cmap='bone') for i in range(recovered_trans_mat.shape[0]): for j in range(recovered_trans_mat.shape[1]): text = plt.text(j, i, str(np.around(recovered_trans_mat[i, j], decimals=2)), ha="center", va="center", color="k", fontsize=12) plt.xlim(-0.5, num_states - 0.5) plt.xticks(range(0, num_states), ('1', '2', '3'), fontsize=10) plt.yticks(range(0, num_states), ('1', '2', '3'), fontsize=10) plt.ylim(num_states - 0.5, -0.5) plt.title("recovered - MLE", fontsize = 15) plt.subplots_adjust(0, 0, 1, 1) plt.subplot(1, 3, 3) recovered_trans_mat = np.exp(map_glmhmm.transitions.log_Ps) plt.imshow(recovered_trans_mat, vmin=-0.8, vmax=1, cmap='bone') for i in range(recovered_trans_mat.shape[0]): for j in range(recovered_trans_mat.shape[1]): text = plt.text(j, i, str(np.around(recovered_trans_mat[i, j], decimals=2)), ha="center", va="center", color="k", fontsize=12) plt.xlim(-0.5, num_states - 0.5) plt.xticks(range(0, num_states), ('1', '2', '3'), fontsize=10) plt.yticks(range(0, num_states), ('1', '2', '3'), fontsize=10) plt.ylim(num_states - 0.5, -0.5) plt.title("recovered - MAP", fontsize = 15) plt.subplots_adjust(0, 0, 1, 1) ###Output _____no_output_____ ###Markdown 6. Multinomial GLM-HMM Until now, we have only considered the case where there are 2 output classes (the Bernoulli GLM-HMM corresponding to `C=num_categories=2`), yet the `ssm` framework is sufficiently general to allow us to fit the multinomial GLM-HMM described in Equations 1 and 2. Here we demonstrate a recovery analysis for the multinomial GLM-HMM. ###Code # Set the parameters of the GLM-HMM num_states = 4 # number of discrete states obs_dim = 1 # number of observed dimensions num_categories = 3 # number of categories for output input_dim = 2 # input dimensions # Make a GLM-HMM true_glmhmm = ssm.HMM(num_states, obs_dim, input_dim, observations="input_driven_obs", observation_kwargs=dict(C=num_categories), transitions="standard") # Set weights of multinomial GLM-HMM gen_weights = np.array([[[0.6,3], [2,3]], [[6,1], [6,-2]], [[1,1], [3,1]], [[2,2], [0,5]]]) print(gen_weights.shape) true_glmhmm.observations.params = gen_weights ###Output _____no_output_____ ###Markdown In the above, notice that the shape of the weights for the multinomial GLM-HMM is `(num_states, num_categories-1, input_dim)`. Specifically, we only learn `num_categories-1` weight vectors (of size `input_dim`) for a given state, and we set the weights for the other observation class to zero. Constraining the weight vectors for one class is important if that we want to be able to identify generative weights in simulated data. If we didn't do this, it is easy to see that one could generate the same observation probabilities with a set of weight vectors that are offset by a constant vector $w_{k}$ (the index k indicates that a different offset vector could exist per state):$$\begin{align}\Pr(y_t = c \mid z_{t} = k, u_t, w_{kc}) = \frac{\exp\{w_{kc}^\mathsf{T} u_t\}}{\sum_{c'=1}^C \exp\{w_{kc'}^\mathsf{T} u_t\}} = \frac{\exp\{(w_{kc}-w_{k})^\mathsf{T} u_t\}}{\sum_{c'=1}^C \exp\{(w_{kc'}-w_{k})^\mathsf{T} u_t\}}\end{align}$$Equations 1 and 2 at the top of this notebook already take into account the fact that the weights for a particular class for a given state are fixed to zero (this is why $c = C$ is handled differently). ###Code # Set transition matrix of multinomial GLM-HMM gen_log_trans_mat = np.log(np.array([[[0.90, 0.04, 0.05, 0.01], [0.05, 0.92, 0.01, 0.02], [0.03, 0.02, 0.94, 0.01], [0.09, 0.01, 0.01, 0.89]]])) true_glmhmm.transitions.params = gen_log_trans_mat # Create external inputs sequence; compared to the example above, we will increase the number of examples # (through the "num_trials_per_session" paramater) since the number of parameters has increased num_sess = 20 # number of example sessions num_trials_per_sess = 1000 # number of trials in a session inpts = np.ones((num_sess, num_trials_per_sess, input_dim)) # initialize inpts array stim_vals = [-1, -0.5, -0.25, -0.125, -0.0625, 0, 0.0625, 0.125, 0.25, 0.5, 1] inpts[:,:,0] = np.random.choice(stim_vals, (num_sess, num_trials_per_sess)) # generate random sequence of stimuli inpts = list(inpts) # Generate a sequence of latents and choices for each session true_latents, true_choices = [], [] for sess in range(num_sess): true_z, true_y = true_glmhmm.sample(num_trials_per_sess, input=inpts[sess]) true_latents.append(true_z) true_choices.append(true_y) # plot example data: fig = plt.figure(figsize=(8, 3), dpi=80, facecolor='w', edgecolor='k') plt.step(range(100),true_choices[0][range(100)], color = "red") plt.yticks([0, 1, 2]) plt.title("example data (multinomial GLM-HMM)") plt.xlabel("trial #", fontsize = 15) plt.ylabel("observation class", fontsize = 15) # Calculate true loglikelihood true_ll = true_glmhmm.log_probability(true_choices, inputs=inpts) print("true ll = " + str(true_ll)) # fit GLM-HMM new_glmhmm = ssm.HMM(num_states, obs_dim, input_dim, observations="input_driven_obs", observation_kwargs=dict(C=num_categories), transitions="standard") N_iters = 500 # maximum number of EM iterations. Fitting with stop earlier if increase in LL is below tolerance specified by tolerance parameter fit_ll = new_glmhmm.fit(true_choices, inputs=inpts, method="em", num_iters=N_iters, tolerance=10**-4) # Plot the log probabilities of the true and fit models. Fit model final LL should be greater # than or equal to true LL. fig = plt.figure(figsize=(4, 3), dpi=80, facecolor='w', edgecolor='k') plt.plot(fit_ll, label="EM") plt.plot([0, len(fit_ll)], true_ll * np.ones(2), ':k', label="True") plt.legend(loc="lower right") plt.xlabel("EM Iteration") plt.xlim(0, len(fit_ll)) plt.ylabel("Log Probability") plt.show() # permute recovered state identities to match state identities of generative model new_glmhmm.permute(find_permutation(true_latents[0], new_glmhmm.most_likely_states(true_choices[0], input=inpts[0]))) # Plot recovered parameters: recovered_weights = new_glmhmm.observations.params recovered_transitions = new_glmhmm.transitions.params fig = plt.figure(figsize=(16, 8), dpi=80, facecolor='w', edgecolor='k') plt.subplots_adjust(wspace=0.3, hspace=0.6) plt.subplot(2, 2, 1) cols = ['#ff7f00', '#4daf4a', '#377eb8', '#f781bf', '#a65628', '#984ea3', '#999999', '#e41a1c', '#dede00'] for c in range(num_categories): plt.subplot(2, num_categories+1, c+1) if c < num_categories-1: for k in range(num_states): plt.plot(range(input_dim), gen_weights[k,c], marker='o', color=cols[k], lw=1.5, label="state " + str(k+1) + "; class " + str(c+1)) else: for k in range(num_states): plt.plot(range(input_dim), np.zeros(input_dim), marker='o', color=cols[k], lw=1.5, label="state " + str(k+1) + "; class " + str(c+1), alpha = 0.5) plt.axhline(y=0, color="k", alpha=0.5, ls="--") plt.yticks(fontsize=10) plt.xticks([0, 1], ['', '']) if c == 0: plt.ylabel("GLM weight", fontsize=15) plt.legend() plt.title("Generative weights; class " + str(c+1), fontsize = 15) plt.ylim((-3, 10)) plt.subplot(2, num_categories+1, num_categories+1) gen_trans_mat = np.exp(gen_log_trans_mat)[0] plt.imshow(gen_trans_mat, vmin=-0.8, vmax=1, cmap='bone') for i in range(gen_trans_mat.shape[0]): for j in range(gen_trans_mat.shape[1]): text = plt.text(j, i, str(np.around(gen_trans_mat[i, j], decimals=2)), ha="center", va="center", color="k", fontsize=12) plt.xlim(-0.5, num_states - 0.5) plt.xticks(range(0, num_states), ('1', '2', '3', '4'), fontsize=10) plt.yticks(range(0, num_states), ('1', '2', '3', '4'), fontsize=10) plt.ylim(num_states - 0.5, -0.5) plt.ylabel("state t", fontsize = 15) plt.xlabel("state t+1", fontsize = 15) plt.title("Generative transition matrix", fontsize = 15) cols = ['#ff7f00', '#4daf4a', '#377eb8', '#f781bf', '#a65628', '#984ea3', '#999999', '#e41a1c', '#dede00'] for c in range(num_categories): plt.subplot(2, num_categories+1, num_categories + c + 2) if c < num_categories-1: for k in range(num_states): plt.plot(range(input_dim), recovered_weights[k,c], marker='o', linestyle = '--', color=cols[k], lw=1.5, label="state " + str(k+1) + "; class " + str(c+1)) else: for k in range(num_states): plt.plot(range(input_dim), np.zeros(input_dim), marker='o', linestyle = '--', color=cols[k], lw=1.5, label="state " + str(k+1) + "; class " + str(c+1), alpha = 0.5) plt.axhline(y=0, color="k", alpha=0.5, ls="--") plt.yticks(fontsize=10) plt.xlabel("covariate", fontsize=15) if c == 0: plt.ylabel("GLM weight", fontsize=15) plt.xticks([0, 1], ['stimulus', 'bias'], fontsize=12, rotation=45) plt.legend() plt.title("Recovered weights; class " + str(c+1), fontsize = 15) plt.ylim((-3,10)) plt.subplot(2, num_categories+1, 2*num_categories+2) recovered_trans_mat = np.exp(recovered_transitions)[0] plt.imshow(recovered_trans_mat, vmin=-0.8, vmax=1, cmap='bone') for i in range(recovered_trans_mat.shape[0]): for j in range(recovered_trans_mat.shape[1]): text = plt.text(j, i, str(np.around(recovered_trans_mat[i, j], decimals=2)), ha="center", va="center", color="k", fontsize=12) plt.xlim(-0.5, num_states - 0.5) plt.xticks(range(0, num_states), ('1', '2', '3', '4'), fontsize=10) plt.yticks(range(0, num_states), ('1', '2', '3', '4'), fontsize=10) plt.ylim(num_states - 0.5, -0.5) plt.ylabel("state t", fontsize = 15) plt.xlabel("state t+1", fontsize = 15) plt.title("Recovered transition matrix", fontsize = 15) ###Output _____no_output_____ ###Markdown Input Driven Observations ("GLM-HMM")Notebook prepared by Zoe Ashwood: feel free to email me with feedback or questions (zashwood at cs dot princeton dot edu).This notebook demonstrates the "InputDrivenObservations" class, and illustrates its use in the context of modeling decision-making data as in Ashwood et al. (2020) ([Mice alternate between discrete strategies during perceptualdecision-making](https://www.biorxiv.org/content/10.1101/2020.10.19.346353v1.full.pdf)).Compared to the model considered in the notebook ["2 Input Driven HMM"](https://github.com/lindermanlab/ssm/blob/master/notebooks/2%20Input%20Driven%20HMM.ipynb), Ashwood et al. (2020) assumes a stationary transition matrix where transition probabilities *do not* depend on external inputs. However, observation probabilities now *do* depend on external covariates according to:for $c \neq C$:$$\begin{align}\Pr(y_t = c \mid z_{t} = k, u_t, w_{kc}) = \frac{\exp\{w_{kc}^\mathsf{T} u_t\}}{1+\sum_{c'=1}^{C-1} \exp\{w_{kc'}^\mathsf{T} u_t\}}\end{align}$$and for $c = C$:$$\begin{align}\Pr(y_t = c \mid z_{t} = k, u_t, w_{kc}) = \frac{1}{1+\sum_{c'=1}^{C-1} \exp\{w_{kc'}^\mathsf{T} u_t\}}\end{align}$$where $c \in \{1, ..., C\}$ indicates the categorical class for the observation, $u_{t} \in \mathbb{R}^{M}$ is the set of input covariates, and $w_{kc} \in \mathbb{R}^{M}$ is the set of input weights associated with state $k$ and class $c$. These weights, along with the transition matrix and initial state probabilities, will be learned.In Ashwood et al. (2020), $C = 2$ as $y_{t}$ represents the binary choice made by an animal during a 2AFC (2-Alternative Forced Choice) task. The above equations then reduce to:$$\begin{align}\Pr(y_t = 0 \mid z_{t} = k, u_t, w_{k}) = \frac{\exp\{w_{k}^\mathsf{T} u_t\}}{1 + \exp\{w_{k}^\mathsf{T} u_t\}} = \frac{1}{1 + \exp\{-w_{k}^\mathsf{T} u_t\}}.\end{align}$$$$\begin{align}\Pr(y_t = 1 \mid z_{t} = k, u_t, w_{k}) = \frac{1}{1 + \exp\{w_{k}^\mathsf{T} u_t\}}.\end{align}$$and only a single weight vector, $w_{k}$, is associated with each state. 1. SetupThe line `import ssm` imports the package for use. Here, we have also imported a few other packages for plotting. ###Code import numpy as np import numpy.random as npr import matplotlib.pyplot as plt import ssm from ssm.util import find_permutation npr.seed(0) ###Output _____no_output_____ ###Markdown 2. Input Driven ObservationsWe create a HMM with input-driven observations and 'standard' (stationary) transitions with the following line: ```python ssm.HMM(num_states, obs_dim, input_dim, observations="input_driven_obs", observation_kwargs=dict(C=num_categories), transitions="standard")```As in Ashwood et al. (2020), we are going to model an animal's binary choice data during a decision-making task, so we will set `num_categories=2` because the animal only has two options available to it. We will also set `obs_dim = 1` because the dimensionality of the observation data is 1 (if we were also modeling, for example, the binned reaction time of the animal, we could set `obs_dim = 2`). For the sake of simplicity, we will assume that an animal's choice in a particular state is only affected by the external stimulus associated with that particular trial, and its innate choice bias. Thus, we will set `input_dim = 2` and we will simulate input data that resembles sequences of stimuli in what follows. In Ashwood et al. (2020), they found that many mice used 3 decision-making states when performing 2AFC tasks. We will, thus, set `num_states = 3`. 2a. Initialize GLM-HMM ###Code # Set the parameters of the GLM-HMM num_states = 3 # number of discrete states obs_dim = 1 # number of observed dimensions num_categories = 2 # number of categories for output input_dim = 2 # input dimensions # Make a GLM-HMM true_glmhmm = ssm.HMM(num_states, obs_dim, input_dim, observations="input_driven_obs", observation_kwargs=dict(C=num_categories), transitions="standard") ###Output _____no_output_____ ###Markdown 2b. Specify parameters of generative GLM-HMM Let's update the weights and transition matrix for the true GLM-HMM so as to bring the GLM-HMM to the parameter regime that real animals use (according to Ashwood et al. (2020)): ###Code gen_weights = np.array([[[6, 1]], [[2, -3]], [[2, 3]]]) gen_log_trans_mat = np.log(np.array([[[0.98, 0.01, 0.01], [0.05, 0.92, 0.03], [0.03, 0.03, 0.94]]])) true_glmhmm.observations.params = gen_weights true_glmhmm.transitions.params = gen_log_trans_mat # Plot generative parameters: fig = plt.figure(figsize=(8, 3), dpi=80, facecolor='w', edgecolor='k') plt.subplot(1, 2, 1) cols = ['#ff7f00', '#4daf4a', '#377eb8'] for k in range(num_states): plt.plot(range(input_dim), gen_weights[k][0], marker='o', color=cols[k], linestyle='-', lw=1.5, label="state " + str(k+1)) plt.yticks(fontsize=10) plt.ylabel("GLM weight", fontsize=15) plt.xlabel("covariate", fontsize=15) plt.xticks([0, 1], ['stimulus', 'bias'], fontsize=12, rotation=45) plt.axhline(y=0, color="k", alpha=0.5, ls="--") plt.legend() plt.title("Generative weights", fontsize = 15) plt.subplot(1, 2, 2) gen_trans_mat = np.exp(gen_log_trans_mat)[0] plt.imshow(gen_trans_mat, vmin=-0.8, vmax=1, cmap='bone') for i in range(gen_trans_mat.shape[0]): for j in range(gen_trans_mat.shape[1]): text = plt.text(j, i, str(np.around(gen_trans_mat[i, j], decimals=2)), ha="center", va="center", color="k", fontsize=12) plt.xlim(-0.5, num_states - 0.5) plt.xticks(range(0, num_states), ('1', '2', '3'), fontsize=10) plt.yticks(range(0, num_states), ('1', '2', '3'), fontsize=10) plt.ylim(num_states - 0.5, -0.5) plt.ylabel("state t", fontsize = 15) plt.xlabel("state t+1", fontsize = 15) plt.title("Generative transition matrix", fontsize = 15) ###Output _____no_output_____ ###Markdown 2c. Create external input sequences Simulate an example set of external inputs for each trial in a session. We will create an array of size `(num_sess x num_trials_per_sess x num_covariates)`. As in Ashwood et al. (2020), for each trial in a session we will include the stimulus presented to the animal at that trial, as well as a '1' as the second covariate (so as to capture the animal's innate bias for one of the two options available to it). We will simulate stimuli sequences so as to resemble the sequences of stimuli in the International Brain Laboratory et al. (2020) task. ###Code num_sess = 20 # number of example sessions num_trials_per_sess = 100 # number of trials in a session inpts = np.ones((num_sess, num_trials_per_sess, input_dim)) # initialize inpts array stim_vals = [-1, -0.5, -0.25, -0.125, -0.0625, 0, 0.0625, 0.125, 0.25, 0.5, 1] inpts[:,:,0] = np.random.choice(stim_vals, (num_sess, num_trials_per_sess)) # generate random sequence of stimuli inpts = list(inpts) #convert inpts to correct format ###Output _____no_output_____ ###Markdown 2d. Simulate states and observations with generative model ###Code # Generate a sequence of latents and choices for each session true_latents, true_choices = [], [] for sess in range(num_sess): true_z, true_y = true_glmhmm.sample(num_trials_per_sess, input=inpts[sess]) true_latents.append(true_z) true_choices.append(true_y) # Calculate true loglikelihood true_ll = true_glmhmm.log_probability(true_choices, inputs=inpts) print("true ll = " + str(true_ll)) ###Output true ll = -900.7834782398646 ###Markdown 3. Fit GLM-HMM and perform recovery analysis  3a. Maximum Likelihood Estimation Now we instantiate a new GLM-HMM and check that we can recover the generative parameters in simulated data: ###Code new_glmhmm = ssm.HMM(num_states, obs_dim, input_dim, observations="input_driven_obs", observation_kwargs=dict(C=num_categories), transitions="standard") N_iters = 200 # maximum number of EM iterations. Fitting with stop earlier if increase in LL is below tolerance specified by tolerance parameter fit_ll = new_glmhmm.fit(true_choices, inputs=inpts, method="em", num_iters=N_iters, tolerance=10**-4) # Plot the log probabilities of the true and fit models. Fit model final LL should be greater # than or equal to true LL. fig = plt.figure(figsize=(4, 3), dpi=80, facecolor='w', edgecolor='k') plt.plot(fit_ll, label="EM") plt.plot([0, len(fit_ll)], true_ll * np.ones(2), ':k', label="True") plt.legend(loc="lower right") plt.xlabel("EM Iteration") plt.xlim(0, len(fit_ll)) plt.ylabel("Log Probability") plt.show() ###Output _____no_output_____ ###Markdown 3b. Retrieved parameters Compare retrieved weights and transition matrices to generative parameters. To do this, we may first need to permute the states of the fit GLM-HMM relative to thegenerative model. One way to do this uses the `find_permutation` function from `ssm`: ###Code new_glmhmm.permute(find_permutation(true_latents[0], new_glmhmm.most_likely_states(true_choices[0], input=inpts[0]))) ###Output _____no_output_____ ###Markdown Now plot generative and retrieved weights for GLMs (analogous plot to Figure S1c in Ashwood et al. (2020)): ###Code fig = plt.figure(figsize=(4, 3), dpi=80, facecolor='w', edgecolor='k') cols = ['#ff7f00', '#4daf4a', '#377eb8'] recovered_weights = new_glmhmm.observations.params for k in range(num_states): if k ==0: plt.plot(range(input_dim), gen_weights[k][0], marker='o', color=cols[k], linestyle='-', lw=1.5, label="generative") plt.plot(range(input_dim), recovered_weights[k][0], color=cols[k], lw=1.5, label = "recovered", linestyle = '--') else: plt.plot(range(input_dim), gen_weights[k][0], marker='o', color=cols[k], linestyle='-', lw=1.5, label="") plt.plot(range(input_dim), recovered_weights[k][0], color=cols[k], lw=1.5, label = '', linestyle = '--') plt.yticks(fontsize=10) plt.ylabel("GLM weight", fontsize=15) plt.xlabel("covariate", fontsize=15) plt.xticks([0, 1], ['stimulus', 'bias'], fontsize=12, rotation=45) plt.axhline(y=0, color="k", alpha=0.5, ls="--") plt.legend() plt.title("Weight recovery", fontsize=15) ###Output _____no_output_____ ###Markdown Now plot generative and retrieved transition matrices (analogous plot to Figure S1c in Ashwood et al. (2020)): ###Code fig = plt.figure(figsize=(5, 2.5), dpi=80, facecolor='w', edgecolor='k') plt.subplot(1, 2, 1) gen_trans_mat = np.exp(gen_log_trans_mat)[0] plt.imshow(gen_trans_mat, vmin=-0.8, vmax=1, cmap='bone') for i in range(gen_trans_mat.shape[0]): for j in range(gen_trans_mat.shape[1]): text = plt.text(j, i, str(np.around(gen_trans_mat[i, j], decimals=2)), ha="center", va="center", color="k", fontsize=12) plt.xlim(-0.5, num_states - 0.5) plt.xticks(range(0, num_states), ('1', '2', '3'), fontsize=10) plt.yticks(range(0, num_states), ('1', '2', '3'), fontsize=10) plt.ylim(num_states - 0.5, -0.5) plt.ylabel("state t", fontsize = 15) plt.xlabel("state t+1", fontsize = 15) plt.title("generative", fontsize = 15) plt.subplot(1, 2, 2) recovered_trans_mat = np.exp(new_glmhmm.transitions.log_Ps) plt.imshow(recovered_trans_mat, vmin=-0.8, vmax=1, cmap='bone') for i in range(recovered_trans_mat.shape[0]): for j in range(recovered_trans_mat.shape[1]): text = plt.text(j, i, str(np.around(recovered_trans_mat[i, j], decimals=2)), ha="center", va="center", color="k", fontsize=12) plt.xlim(-0.5, num_states - 0.5) plt.xticks(range(0, num_states), ('1', '2', '3'), fontsize=10) plt.yticks(range(0, num_states), ('1', '2', '3'), fontsize=10) plt.ylim(num_states - 0.5, -0.5) plt.title("recovered", fontsize = 15) plt.subplots_adjust(0, 0, 1, 1) ###Output _____no_output_____ ###Markdown 3c. Posterior State Probabilities Let's now plot $p(z_{t} = k|\mathbf{y}, \{u_{t}\}_{t=1}^{T})$, the posterior state probabilities, which give the probability of the animal being in state k at trial t. ###Code # Get expected states: posterior_probs = [new_glmhmm.expected_states(data=data, input=inpt)[0] for data, inpt in zip(true_choices, inpts)] fig = plt.figure(figsize=(5, 2.5), dpi=80, facecolor='w', edgecolor='k') sess_id = 0 #session id; can choose any index between 0 and num_sess-1 for k in range(num_states): plt.plot(posterior_probs[sess_id][:, k], label="State " + str(k + 1), lw=2, color=cols[k]) plt.ylim((-0.01, 1.01)) plt.yticks([0, 0.5, 1], fontsize = 10) plt.xlabel("trial #", fontsize = 15) plt.ylabel("p(state)", fontsize = 15) ###Output _____no_output_____ ###Markdown With these posterior state probabilities, we can assign trials to states and then plot the fractional occupancy of each state: ###Code # concatenate posterior probabilities across sessions posterior_probs_concat = np.concatenate(posterior_probs) # get state with maximum posterior probability at particular trial: state_max_posterior = np.argmax(posterior_probs_concat, axis = 1) # now obtain state fractional occupancies: _, state_occupancies = np.unique(state_max_posterior, return_counts=True) state_occupancies = state_occupancies/np.sum(state_occupancies) fig = plt.figure(figsize=(2, 2.5), dpi=80, facecolor='w', edgecolor='k') for z, occ in enumerate(state_occupancies): plt.bar(z, occ, width = 0.8, color = cols[z]) plt.ylim((0, 1)) plt.xticks([0, 1, 2], ['1', '2', '3'], fontsize = 10) plt.yticks([0, 0.5, 1], ['0', '0.5', '1'], fontsize=10) plt.xlabel('state', fontsize = 15) plt.ylabel('frac. occupancy', fontsize=15) ###Output _____no_output_____ ###Markdown 4. Fit GLM-HMM and perform recovery analysis: Maximum A Priori Estimation Above, we performed Maximum Likelihood Estimation to retrieve the generative parameters of the GLM-HMM in simulated data. In the small data regime, where we do not have many trials available to us, we may instead want to perform Maximum A Priori (MAP) Estimation in order to incorporate a prior term and restrict the range for the best fitting parameters. Unfortunately, what is meant by 'small data regime' is problem dependent and will be affected by the number of states in the generative GLM-HMM, and the specific parameters of the generative model, amongst other things. In practice, we may perform both Maximum Likelihood Estimation and MAP estimation and compare the ability of the fit models to make predictions on held-out data (see Section 5 on Cross-Validation below). The prior we consider for the GLM-HMM is the product of a Gaussian prior on the GLM weights, $W$, and a Dirichlet prior on the transition matrix, $A$:$$\begin{align}\Pr(W, A) &= \mathcal{N}(W|0, \Sigma) \Pr(A|\alpha) \\&= \mathcal{N}(W|0, diag(\sigma^{2}, \cdots, \sigma^{2})) \prod_{j=1}^{K} \dfrac{1}{B(\alpha)} \prod_{k=1}^{K} A_{jk}^{\alpha -1}\end{align}$$There are two hyperparameters controlling the strength of the prior: $\sigma$ and $\alpha$. The larger the value of $\sigma$ and if $\alpha = 1$, the more similar MAP estimation will become to Maximum Likelihood Estimation, and the prior term will become an additive offset to the objective function of the GLM-HMM that is independent of the values of $W$ and $A$. In comparison, setting $\sigma = 2$ and $\alpha = 2$ will result in the prior no longer being independent of $W$ and $\alpha$. In order to perform MAP estimation for the GLM-HMM with `ssm`, the new syntax is:```pythonssm.HMM(num_states, obs_dim, input_dim, observations="input_driven_obs", observation_kwargs=dict(C=num_categories,prior_sigma=prior_sigma), transitions="sticky", transition_kwargs=dict(alpha=prior_alpha,kappa=0))```where `prior_sigma` is the $\sigma$ parameter from above, and `prior_alpha` is the $\alpha$ parameter. ###Code # Instantiate GLM-HMM and set prior hyperparameters prior_sigma = 2 prior_alpha = 2 map_glmhmm = ssm.HMM(num_states, obs_dim, input_dim, observations="input_driven_obs", observation_kwargs=dict(C=num_categories,prior_sigma=prior_sigma), transitions="sticky", transition_kwargs=dict(alpha=prior_alpha,kappa=0)) # Fit GLM-HMM with MAP estimation: _ = map_glmhmm.fit(true_choices, inputs=inpts, method="em", num_iters=N_iters, tolerance=10**-4) ###Output _____no_output_____ ###Markdown Compare final likelihood of data with MAP estimation and MLE to likelihood under generative model (note: we cannot use log_probability that is output of `fit` function as this incorporates prior term, which is not comparable between generative and MAP models). We want to check that MAP and MLE likelihood values are higher than true likelihood; if they are not, this may indicate a poor initialization and that we should refit these models. ###Code true_likelihood = true_glmhmm.log_likelihood(true_choices, inputs=inpts) mle_final_ll = new_glmhmm.log_likelihood(true_choices, inputs=inpts) map_final_ll = map_glmhmm.log_likelihood(true_choices, inputs=inpts) # Plot these values fig = plt.figure(figsize=(2, 2.5), dpi=80, facecolor='w', edgecolor='k') loglikelihood_vals = [true_likelihood, mle_final_ll, map_final_ll] colors = ['Red', 'Navy', 'Purple'] for z, occ in enumerate(loglikelihood_vals): plt.bar(z, occ, width = 0.8, color = colors[z]) plt.ylim((true_likelihood-5, true_likelihood+15)) plt.xticks([0, 1, 2], ['true', 'mle', 'map'], fontsize = 10) plt.xlabel('model', fontsize = 15) plt.ylabel('loglikelihood', fontsize=15) ###Output _____no_output_____ ###Markdown 5. Cross Validation To assess which model is better - the model fit via Maximum Likelihood Estimation, or the model fit via MAP estimation - we can investigate the predictive power of these fit models on held-out test data sets. ###Code # Create additional input sequences to be used as held-out test data num_test_sess = 10 test_inpts = np.ones((num_test_sess, num_trials_per_sess, input_dim)) test_inpts[:,:,0] = np.random.choice(stim_vals, (num_test_sess, num_trials_per_sess)) test_inpts = list(test_inpts) # Create set of test latents and choices to accompany input sequences: test_latents, test_choices = [], [] for sess in range(num_test_sess): test_z, test_y = true_glmhmm.sample(num_trials_per_sess, input=test_inpts[sess]) test_latents.append(test_z) test_choices.append(test_y) # Compare likelihood of test_choices for model fit with MLE and MAP: mle_test_ll = new_glmhmm.log_likelihood(test_choices, inputs=test_inpts) map_test_ll = map_glmhmm.log_likelihood(test_choices, inputs=test_inpts) fig = plt.figure(figsize=(2, 2.5), dpi=80, facecolor='w', edgecolor='k') loglikelihood_vals = [mle_test_ll, map_test_ll] colors = ['Navy', 'Purple'] for z, occ in enumerate(loglikelihood_vals): plt.bar(z, occ, width = 0.8, color = colors[z]) plt.ylim((mle_test_ll-2, mle_test_ll+5)) plt.xticks([0, 1], ['mle', 'map'], fontsize = 10) plt.xlabel('model', fontsize = 15) plt.ylabel('loglikelihood', fontsize=15) ###Output _____no_output_____ ###Markdown Here we see that the model fit with MAP estimation achieves higher likelihood on the held-out dataset than the model fit with MLE, so we would choose this model as the best model of animal decision-making behavior (although we'd probably want to perform multiple fold cross-validation to be sure that this is the case in all instantiations of test data). Let's finish by comparing the retrieved weights and transition matrices from MAP estimation to the generative parameters. ###Code map_glmhmm.permute(find_permutation(true_latents[0], map_glmhmm.most_likely_states(true_choices[0], input=inpts[0]))) fig = plt.figure(figsize=(6, 3), dpi=80, facecolor='w', edgecolor='k') cols = ['#ff7f00', '#4daf4a', '#377eb8'] plt.subplot(1,2,1) recovered_weights = new_glmhmm.observations.params for k in range(num_states): if k ==0: # show labels only for first state plt.plot(range(input_dim), gen_weights[k][0], marker='o', color=cols[k], lw=1.5, label="generative") plt.plot(range(input_dim), recovered_weights[k][0], color=cols[k], lw=1.5, label = 'recovered', linestyle='--') else: plt.plot(range(input_dim), gen_weights[k][0], marker='o', color=cols[k], lw=1.5, label="") plt.plot(range(input_dim), recovered_weights[k][0], color=cols[k], lw=1.5, label = '', linestyle='--') plt.yticks(fontsize=10) plt.ylabel("GLM weight", fontsize=15) plt.xlabel("covariate", fontsize=15) plt.xticks([0, 1], ['stimulus', 'bias'], fontsize=12, rotation=45) plt.axhline(y=0, color="k", alpha=0.5, ls="--") plt.title("MLE", fontsize = 15) plt.legend() plt.subplot(1,2,2) recovered_weights = map_glmhmm.observations.params for k in range(num_states): plt.plot(range(input_dim), gen_weights[k][0], marker='o', color=cols[k], lw=1.5, label="", linestyle = '-') plt.plot(range(input_dim), recovered_weights[k][0], color=cols[k], lw=1.5, label = '', linestyle='--') plt.yticks(fontsize=10) plt.xticks([0, 1], ['', ''], fontsize=12, rotation=45) plt.axhline(y=0, color="k", alpha=0.5, ls="--") plt.title("MAP", fontsize = 15) fig = plt.figure(figsize=(7, 2.5), dpi=80, facecolor='w', edgecolor='k') plt.subplot(1, 3, 1) gen_trans_mat = np.exp(gen_log_trans_mat)[0] plt.imshow(gen_trans_mat, vmin=-0.8, vmax=1, cmap='bone') for i in range(gen_trans_mat.shape[0]): for j in range(gen_trans_mat.shape[1]): text = plt.text(j, i, str(np.around(gen_trans_mat[i, j], decimals=2)), ha="center", va="center", color="k", fontsize=12) plt.xlim(-0.5, num_states - 0.5) plt.xticks(range(0, num_states), ('1', '2', '3'), fontsize=10) plt.yticks(range(0, num_states), ('1', '2', '3'), fontsize=10) plt.ylim(num_states - 0.5, -0.5) plt.ylabel("state t", fontsize = 15) plt.xlabel("state t+1", fontsize = 15) plt.title("generative", fontsize = 15) plt.subplot(1, 3, 2) recovered_trans_mat = np.exp(new_glmhmm.transitions.log_Ps) plt.imshow(recovered_trans_mat, vmin=-0.8, vmax=1, cmap='bone') for i in range(recovered_trans_mat.shape[0]): for j in range(recovered_trans_mat.shape[1]): text = plt.text(j, i, str(np.around(recovered_trans_mat[i, j], decimals=2)), ha="center", va="center", color="k", fontsize=12) plt.xlim(-0.5, num_states - 0.5) plt.xticks(range(0, num_states), ('1', '2', '3'), fontsize=10) plt.yticks(range(0, num_states), ('1', '2', '3'), fontsize=10) plt.ylim(num_states - 0.5, -0.5) plt.title("recovered - MLE", fontsize = 15) plt.subplots_adjust(0, 0, 1, 1) plt.subplot(1, 3, 3) recovered_trans_mat = np.exp(map_glmhmm.transitions.log_Ps) plt.imshow(recovered_trans_mat, vmin=-0.8, vmax=1, cmap='bone') for i in range(recovered_trans_mat.shape[0]): for j in range(recovered_trans_mat.shape[1]): text = plt.text(j, i, str(np.around(recovered_trans_mat[i, j], decimals=2)), ha="center", va="center", color="k", fontsize=12) plt.xlim(-0.5, num_states - 0.5) plt.xticks(range(0, num_states), ('1', '2', '3'), fontsize=10) plt.yticks(range(0, num_states), ('1', '2', '3'), fontsize=10) plt.ylim(num_states - 0.5, -0.5) plt.title("recovered - MAP", fontsize = 15) plt.subplots_adjust(0, 0, 1, 1) ###Output _____no_output_____ ###Markdown 6. Multinomial GLM-HMM Until now, we have only considered the case where there are 2 output classes (the Bernoulli GLM-HMM corresponding to `C=num_categories=2`), yet the `ssm` framework is sufficiently general to allow us to fit the multinomial GLM-HMM described in Equations 1 and 2. Here we demonstrate a recovery analysis for the multinomial GLM-HMM. ###Code # Set the parameters of the GLM-HMM num_states = 4 # number of discrete states obs_dim = 1 # number of observed dimensions num_categories = 3 # number of categories for output input_dim = 2 # input dimensions # Make a GLM-HMM true_glmhmm = ssm.HMM(num_states, obs_dim, input_dim, observations="input_driven_obs", observation_kwargs=dict(C=num_categories), transitions="standard") # Set weights of multinomial GLM-HMM gen_weights = np.array([[[0.6,3], [2,3]], [[6,1], [6,-2]], [[1,1], [3,1]], [[2,2], [0,5]]]) print(gen_weights.shape) true_glmhmm.observations.params = gen_weights ###Output (4, 2, 2) ###Markdown In the above, notice that the shape of the weights for the multinomial GLM-HMM is `(num_states, num_categories-1, input_dim)`. Specifically, we only learn `num_categories-1` weight vectors (of size `input_dim`) for a given state, and we set the weights for the other observation class to zero. Constraining the weight vectors for one class is important if that we want to be able to identify generative weights in simulated data. If we didn't do this, it is easy to see that one could generate the same observation probabilities with a set of weight vectors that are offset by a constant vector $w_{k}$ (the index k indicates that a different offset vector could exist per state):$$\begin{align}\Pr(y_t = c \mid z_{t} = k, u_t, w_{kc}) = \frac{\exp\{w_{kc}^\mathsf{T} u_t\}}{\sum_{c'=1}^C \exp\{w_{kc'}^\mathsf{T} u_t\}} = \frac{\exp\{(w_{kc}-w_{k})^\mathsf{T} u_t\}}{\sum_{c'=1}^C \exp\{(w_{kc'}-w_{k})^\mathsf{T} u_t\}}\end{align}$$Equations 1 and 2 at the top of this notebook already take into account the fact that the weights for a particular class for a given state are fixed to zero (this is why $c = C$ is handled differently). ###Code # Set transition matrix of multinomial GLM-HMM gen_log_trans_mat = np.log(np.array([[[0.90, 0.04, 0.05, 0.01], [0.05, 0.92, 0.01, 0.02], [0.03, 0.02, 0.94, 0.01], [0.09, 0.01, 0.01, 0.89]]])) true_glmhmm.transitions.params = gen_log_trans_mat # Create external inputs sequence; compared to the example above, we will increase the number of examples # (through the "num_trials_per_session" paramater) since the number of parameters has increased num_sess = 20 # number of example sessions num_trials_per_sess = 1000 # number of trials in a session inpts = np.ones((num_sess, num_trials_per_sess, input_dim)) # initialize inpts array stim_vals = [-1, -0.5, -0.25, -0.125, -0.0625, 0, 0.0625, 0.125, 0.25, 0.5, 1] inpts[:,:,0] = np.random.choice(stim_vals, (num_sess, num_trials_per_sess)) # generate random sequence of stimuli inpts = list(inpts) # Generate a sequence of latents and choices for each session true_latents, true_choices = [], [] for sess in range(num_sess): true_z, true_y = true_glmhmm.sample(num_trials_per_sess, input=inpts[sess]) true_latents.append(true_z) true_choices.append(true_y) # plot example data: fig = plt.figure(figsize=(8, 3), dpi=80, facecolor='w', edgecolor='k') plt.step(range(100),true_choices[0][range(100)], color = "red") plt.yticks([0, 1, 2]) plt.title("example data (multinomial GLM-HMM)") plt.xlabel("trial #", fontsize = 15) plt.ylabel("observation class", fontsize = 15) # Calculate true loglikelihood true_ll = true_glmhmm.log_probability(true_choices, inputs=inpts) print("true ll = " + str(true_ll)) # fit GLM-HMM new_glmhmm = ssm.HMM(num_states, obs_dim, input_dim, observations="input_driven_obs", observation_kwargs=dict(C=num_categories), transitions="standard") N_iters = 500 # maximum number of EM iterations. Fitting with stop earlier if increase in LL is below tolerance specified by tolerance parameter fit_ll = new_glmhmm.fit(true_choices, inputs=inpts, method="em", num_iters=N_iters, tolerance=10**-4) # Plot the log probabilities of the true and fit models. Fit model final LL should be greater # than or equal to true LL. fig = plt.figure(figsize=(4, 3), dpi=80, facecolor='w', edgecolor='k') plt.plot(fit_ll, label="EM") plt.plot([0, len(fit_ll)], true_ll * np.ones(2), ':k', label="True") plt.legend(loc="lower right") plt.xlabel("EM Iteration") plt.xlim(0, len(fit_ll)) plt.ylabel("Log Probability") plt.show() # permute recovered state identities to match state identities of generative model new_glmhmm.permute(find_permutation(true_latents[0], new_glmhmm.most_likely_states(true_choices[0], input=inpts[0]))) # Plot recovered parameters: recovered_weights = new_glmhmm.observations.params recovered_transitions = new_glmhmm.transitions.params fig = plt.figure(figsize=(16, 8), dpi=80, facecolor='w', edgecolor='k') plt.subplots_adjust(wspace=0.3, hspace=0.6) plt.subplot(2, 2, 1) cols = ['#ff7f00', '#4daf4a', '#377eb8', '#f781bf', '#a65628', '#984ea3', '#999999', '#e41a1c', '#dede00'] for c in range(num_categories): plt.subplot(2, num_categories+1, c+1) if c < num_categories-1: for k in range(num_states): plt.plot(range(input_dim), gen_weights[k,c], marker='o', color=cols[k], lw=1.5, label="state " + str(k+1) + "; class " + str(c+1)) else: for k in range(num_states): plt.plot(range(input_dim), np.zeros(input_dim), marker='o', color=cols[k], lw=1.5, label="state " + str(k+1) + "; class " + str(c+1), alpha = 0.5) plt.axhline(y=0, color="k", alpha=0.5, ls="--") plt.yticks(fontsize=10) plt.xticks([0, 1], ['', '']) if c == 0: plt.ylabel("GLM weight", fontsize=15) plt.legend() plt.title("Generative weights; class " + str(c+1), fontsize = 15) plt.ylim((-3, 10)) plt.subplot(2, num_categories+1, num_categories+1) gen_trans_mat = np.exp(gen_log_trans_mat)[0] plt.imshow(gen_trans_mat, vmin=-0.8, vmax=1, cmap='bone') for i in range(gen_trans_mat.shape[0]): for j in range(gen_trans_mat.shape[1]): text = plt.text(j, i, str(np.around(gen_trans_mat[i, j], decimals=2)), ha="center", va="center", color="k", fontsize=12) plt.xlim(-0.5, num_states - 0.5) plt.xticks(range(0, num_states), ('1', '2', '3', '4'), fontsize=10) plt.yticks(range(0, num_states), ('1', '2', '3', '4'), fontsize=10) plt.ylim(num_states - 0.5, -0.5) plt.ylabel("state t", fontsize = 15) plt.xlabel("state t+1", fontsize = 15) plt.title("Generative transition matrix", fontsize = 15) cols = ['#ff7f00', '#4daf4a', '#377eb8', '#f781bf', '#a65628', '#984ea3', '#999999', '#e41a1c', '#dede00'] for c in range(num_categories): plt.subplot(2, num_categories+1, num_categories + c + 2) if c < num_categories-1: for k in range(num_states): plt.plot(range(input_dim), recovered_weights[k,c], marker='o', linestyle = '--', color=cols[k], lw=1.5, label="state " + str(k+1) + "; class " + str(c+1)) else: for k in range(num_states): plt.plot(range(input_dim), np.zeros(input_dim), marker='o', linestyle = '--', color=cols[k], lw=1.5, label="state " + str(k+1) + "; class " + str(c+1), alpha = 0.5) plt.axhline(y=0, color="k", alpha=0.5, ls="--") plt.yticks(fontsize=10) plt.xlabel("covariate", fontsize=15) if c == 0: plt.ylabel("GLM weight", fontsize=15) plt.xticks([0, 1], ['stimulus', 'bias'], fontsize=12, rotation=45) plt.legend() plt.title("Recovered weights; class " + str(c+1), fontsize = 15) plt.ylim((-3,10)) plt.subplot(2, num_categories+1, 2*num_categories+2) recovered_trans_mat = np.exp(recovered_transitions)[0] plt.imshow(recovered_trans_mat, vmin=-0.8, vmax=1, cmap='bone') for i in range(recovered_trans_mat.shape[0]): for j in range(recovered_trans_mat.shape[1]): text = plt.text(j, i, str(np.around(recovered_trans_mat[i, j], decimals=2)), ha="center", va="center", color="k", fontsize=12) plt.xlim(-0.5, num_states - 0.5) plt.xticks(range(0, num_states), ('1', '2', '3', '4'), fontsize=10) plt.yticks(range(0, num_states), ('1', '2', '3', '4'), fontsize=10) plt.ylim(num_states - 0.5, -0.5) plt.ylabel("state t", fontsize = 15) plt.xlabel("state t+1", fontsize = 15) plt.title("Recovered transition matrix", fontsize = 15) ###Output _____no_output_____
notebooks/Effect of Near-Duplicates on Retrieval-Evaluation.ipynb
###Markdown The Effect of Near-Duplicates on the Evaluation of Search EnginesThis jupyter-notebook provides supplementary material to our homonymousECIR-Paper that reproduces and generalizes the observations by [Bernstein and Zobel](https://dl.acm.org/citation.cfm?doid=1099554.1099733)~\cite{} that content-equivalent.... You can use the variables `EVALUATION`, `PREPROCESSING`, and `SIMILARITY` to configuresome reports that show informations that we kept out of the paper for shortness. ExampleTo include NDCG and MAP as evaluation measures (`EVALUATION = ['NDCG', 'MAP']`)Please contact us in case of questions or problems: [Maik Fröbe](maik-froebe.de) ([webis.de](webis.de)).Please cite... ###Code from judgment_util import * ###Output _____no_output_____
Quantitative results.ipynb
###Markdown Table of Contents1&nbsp;&nbsp;Imports2&nbsp;&nbsp;CIFAR-10 Results Imports ###Code import os from os.path import join import numpy as np # Plotting imports %matplotlib inline import seaborn as sns import matplotlib.pyplot as plt import matplotlib.font_manager from matplotlib.patches import Patch from matplotlib.lines import Line2D matplotlib.rcParams['mathtext.fontset'] = 'custom' matplotlib.rcParams['mathtext.rm'] = 'Bitstream Vera Sans' matplotlib.rcParams['mathtext.it'] = 'Bitstream Vera Sans:italic' matplotlib.rcParams['mathtext.bf'] = 'Bitstream Vera Sans:bold' plt.rcParams['text.latex.preamble']=[r"\usepackage{lmodern}", r'\usepackage{amssymb}', r'\usepackage{amsmath}', r'\usepackage{wasysym}'] params = {'text.usetex' : True, 'font.size' : 20, 'font.family' : 'sans-serif', 'font.serif' : 'Computer Modern Sans serif', 'text.latex.unicode': True, } plt.rcParams.update(params) from interpretability.utils import explainers_color_map #loading results for plotting from project_utils import get_precomputed_results get_precomputed_results() def joined_listdir(path): return [(join(path, d), d) for d in os.listdir(path)] exps = ['pretrained-densenet121', 'densenet_121_cossched', 'densenet_121', 'pretrained-resnet34', 'resnet_34', 'pretrained-vgg11', 'vgg_11', 'pretrained-inception', 'inception_v3'] results = {} for exp in exps: exp_results = {} for mdir, method in joined_listdir(join("results", exp, "localisation")): exp_results[method] = np.loadtxt(join(mdir, "localisation_metric.np")) results.update({exp: exp_results}) pairs = [ ('pretrained-densenet121', 'densenet_121_cossched', "DenseNet-121"), ('pretrained-resnet34', 'resnet_34', "ResNet-34"), ('pretrained-vgg11', 'vgg_11', "VGG-11"), ('pretrained-inception', 'inception_v3', "InceptionNet"), ] n_imgs = 9 fig, axes = plt.subplots(2, 2, figsize=(45 * .725, 12 * .725)) pretrained = False labels_ordered = None for ax_idx, (p, ax) in enumerate(zip(pairs, axes.flatten())): offset = 0 labels1 = np.array(sorted(results[p[0]].items(), key=lambda x: np.percentile(x[1], 50))).T.tolist()[0] + ["Ours"] labels2, _ = np.array(sorted(results[p[1]].items(), key=lambda x: np.percentile(x[1], 50), reverse=False)).T.tolist() total = len(labels1 if pretrained else labels2) if labels_ordered is None: labels_ordered = labels1 if pretrained else labels2 l1 = ax.hlines([1], -.4, total, alpha=1, linestyle="dashed", label="Oracle", lw=4, color=np.array((41, 110, 180), dtype=float)/255, zorder=20) l2 = ax.hlines([(1/n_imgs)], -.4, total, alpha=1, linestyle="dashed", lw=4, label="Uniform", color=np.array((255, 180, 0), dtype=float)/255, zorder=20) box_plot = sns.boxplot(data=( ([results[p[0]][l] for l in labels1[:-1]] + [results[p[1]]["Ours"]]) if pretrained else [results[p[1]][l] for l in labels2] ), ax=ax, fliersize=0, zorder=50, width=.7) for i, l in enumerate(labels1 if pretrained else labels2): mybox = box_plot.artists[i] mybox.set_facecolor(np.array(explainers_color_map[l])/255) mybox.set_linewidth(2) mybox.set_zorder(20) ax.set_xticks([]) ax.tick_params(axis='y', which='major', labelsize=34) ax.add_artist(l1) if ax_idx >= 2: ax.annotate(("B-Cos " if not pretrained else "Pretrained ") + p[2], xy=(0.25, 1.2), xycoords=("axes fraction", "data"), fontsize=48, ha="center", va="center", bbox=dict(boxstyle="round", fc=(1, 1, 1, .5), ec="black", lw=1)) else: ax.annotate(("B-Cos " if not pretrained else "Pretrained ") + p[2], xy=(0.25, .45+.075), xycoords=("axes fraction", "axes fraction"), fontsize=48, ha="center", bbox=dict(boxstyle="round", fc=(1, 1, 1, .5), ec="black", lw=1)) ax.set_ylim(ax.get_ylim()[0], 1.4 if ax_idx >=2 else 1.4) if pretrained: ax.vlines([len(labels1)-1.5], -2, 2, linestyle=(1, (4, 2)), linewidth=4) ax.annotate("B-cos", xy=(len(labels1)-1, .5), xycoords=("data", "data"), fontsize=32, ha="center", va="center", bbox=dict(boxstyle="round", fc=(1, 1, 1, .5), ec="black", lw=1), rotation=90) ax.set_yticks(np.arange(0, 1.2, .2)) ax.set_yticklabels(["${:.1f}$".format(l) for l in np.arange(0, 1.2, .2)], fontsize=40) if ax_idx % 2 == 1: ax.tick_params("y", labelleft=False, which="both") ax.grid(linewidth=2, color="white", zorder=-10) ax.set_xlim(-.5, total -1 + .5) ax.grid(zorder=-10, linestyle="dashed", alpha=1, axis="y") legend_elements = [Patch(facecolor=np.array(explainers_color_map[l])/255, edgecolor='black', lw=2, label=l) for l in labels_ordered] fig.tight_layout(h_pad=0, w_pad=.65, rect=(0, 0, 1, 1.2)) ax = fig.add_axes([0, 1.2, 1, .1]) ax.grid(False) ax.set_xticks([]) ax.set_yticks([]) ax.set_facecolor("white") leg = fig.legend(handles=legend_elements, loc='upper center', ncol=len(labels1), fontsize=48, bbox_to_anchor=[.535, 1.175+0.01], handlelength=1.5, columnspacing=1.5, handletextpad=.5, facecolor="w", edgecolor="black", ) leg.set_in_layout(True) leg.get_frame().set_linewidth(2) legend_elements = [Line2D([0], [0], color=np.array((41, 110, 180), dtype=float)/255, lw=4, label='Oracle attributions', linestyle="dashed"), Line2D([0], [0], color=np.array((255, 180, 0), dtype=float)/255, lw=4, label='Uniform attributions', linestyle="dashed") ] leg2 = fig.legend(handles=legend_elements, loc='upper center', ncol=2, fontsize=42, bbox_to_anchor=[.5, 1.3+0.01], facecolor="w", edgecolor="black", framealpha=1, ) txt = plt.figtext(-.01, .6, "Localisation Metric", rotation=90, fontsize=55, va="center", ha="center") fig.add_artist(leg) fig.set_facecolor("white") n_imgs = 9 fig, axes = plt.subplots(2, 1, figsize=(60 * .6 / 2, 15 * .6)) label_order = None for ax_idx, (p, ax) in enumerate(zip(pairs[::3], axes.flatten())): offset = 0 labels1, _ = np.array(sorted(results[p[0]].items(), key=lambda x: np.percentile(x[1], 50))).T.tolist() labels2, _ = np.array(sorted(results[p[1]].items(), key=lambda x: np.percentile(x[1], 50), reverse=False)).T.tolist() if label_order is None: label_order = labels2 total = len(labels2) l1 = ax.hlines([1], -.4, total, alpha=1, linestyle="dashed", label="Oracle", lw=4, color=np.array((41, 110, 180), dtype=float)/255, zorder=20) l2 = ax.hlines([(1/n_imgs)], -.4, total, alpha=1, linestyle="dashed", lw=4, label="Uniform", color=np.array((255, 180, 0), dtype=float)/255, zorder=20) box_plot = sns.boxplot(data=( [results[p[1]][l] for l in labels2] ), ax=ax, fliersize=0, zorder=50, width=.7) for i, l in enumerate(labels2): mybox = box_plot.artists[i] mybox.set_facecolor(np.array(explainers_color_map[l])/255) mybox.set_linewidth(2) mybox.set_zorder(20) ax.set_xticks([]) ax.tick_params(axis='y', which='major', labelsize=34) ax.add_artist(l1) if ax_idx >= 2: ax.annotate("B-cos " + p[2], xy=(0.1, .6), xycoords=("axes fraction", "axes fraction"), fontsize=42, bbox=dict(boxstyle="round", fc=(1, 1, 1, .5), ec="black", lw=1)) else: ax.annotate("B-cos " + p[2], xy=(0.1, .45), xycoords=("axes fraction", "axes fraction"), fontsize=42, bbox=dict(boxstyle="round", fc=(1, 1, 1, .5), ec="black", lw=1)) ax.set_ylim(ax.get_ylim()[0], 1.1 if ax_idx >=2 else 1.3) if ax_idx %2 == 0 or True: ax.set_yticks(np.arange(0, 1.2, .2)) ax.set_yticklabels(["${:.1f}$".format(l) for l in np.arange(0, 1.2, .2)], fontsize=40) ax.grid(linewidth=2, color="white", zorder=-10) ax.set_xlim(-.5, total -1 + .5) ax.grid(zorder=-10, linestyle="dashed", alpha=1, axis="y") unique_entries = [l for l in explainers_color_map.keys() if l in labels1 + labels2] legend_elements = [Patch(facecolor=np.array(explainers_color_map[l])/255, edgecolor='black', lw=2, label=l) for l in label_order] leg.set_in_layout(True) leg.get_frame().set_linewidth(2) fig.tight_layout(h_pad=0, w_pad=.65, rect=(0, 0, 1, 1.2)) ax = fig.add_axes([0, 1.2, 1, .1]) ax.grid(False) ax.set_xticks([]) ax.set_yticks([]) ax.set_facecolor("white") leg = fig.legend(handles=legend_elements, loc='upper center', ncol=len(unique_entries), fontsize=32, bbox_to_anchor=[.55, 1.15+0.06], handlelength=1.25, columnspacing=1.1, handletextpad=.5, facecolor="w", edgecolor="black", ) legend_elements = [Line2D([0], [0], color=np.array((41, 110, 180), dtype=float)/255, lw=4, label='Oracle attributions', linestyle="dashed"), Line2D([0], [0], color=np.array((255, 180, 0), dtype=float)/255, lw=4, label='Uniform attributions', linestyle="dashed") ] leg2 = fig.legend(handles=legend_elements, loc='upper center', ncol=2, fontsize=32, bbox_to_anchor=[.55, .5+0.06], borderaxespad=0.025, facecolor="w", edgecolor="black", framealpha=1, ) txt = plt.figtext(-.01, .6, "Localisation Metric", rotation=90, fontsize=55, va="center", ha="center") fig.add_artist(leg) fig.set_facecolor("white") ###Output _____no_output_____ ###Markdown CIFAR-10 Results ###Code from experiments.CIFAR10.bcos.experiment_parameters import exps as c10_exps fontsize = 24 sns.set_style("darkgrid") results = [] labels = [] # final accs of models accs = np.array([93.53, 93.81, 93.69, 93.69, 93.19, 92.6, 92.37])/100 for e in c10_exps.keys(): results.append(np.loadtxt(join("results", "c10", e, "localisation_metric.np"))) labels.append(e) fig, ax = plt.subplots(1, figsize=(12, 5)) n_imgs = 9 l1 = ax.hlines([1], -.4, len(results), alpha=1, linestyle="dashed", label="Oracle", lw=3, color=np.array((41, 110, 180), dtype=float)/255, zorder=20) l2 = ax.hlines([(1/n_imgs)], -.4, len(results), alpha=1, linestyle="dashed", lw=3, label="Uniform", color=np.array((255, 180, 0), dtype=float)/255, zorder=20) box_plot = sns.boxplot(data=results, ax=ax, fliersize=0, zorder=50) ax.set_xticks(range(len(results))) ax.tick_params(axis='y', which='major', labelsize=fontsize) ax.set_xticklabels([l.replace("_", "-") for l in labels], rotation=60, fontsize=fontsize) l1 = ax.legend([l1], ["Oracle"], loc="upper right", bbox_to_anchor=(.21, 1), facecolor="white", framealpha=1, borderaxespad=0.1, fontsize=fontsize) ax.legend([l2], ["Uniform"], loc="upper right", bbox_to_anchor=(.45, 1), facecolor="white", framealpha=1, borderaxespad=0.1, fontsize=fontsize) plt.gca().add_artist(l1) ax.set_ylabel("Localisation Metric", fontsize=24) ax.set_yticks(np.arange(0, 1.2, .2)) ax.set_ylim(ax.get_ylim()[0], 1.2) ax.set_xlim(-.5, len(results) - 1 + .5) ax.grid(zorder=-10, linestyle="dashed", alpha=1, axis="y") fig.tight_layout() fig.set_facecolor("white") ax.set_xlabel("Exponent B", fontsize=24) ax.set_yticks(np.arange(.0, 1.1, 0.2)) ax.set_yticklabels(["{:.1f}".format(y) for y in np.arange(.0, 1.1, 0.2)]) ax = ax.twinx() ax.set_xticklabels(["{:.2f}".format(b) for b in [1.00, 1.25, 1.50, 1.75, 2.00, 2.25, 2.50]], fontsize=fontsize) cmap = matplotlib.cm.get_cmap('Greens') colours = [cmap(i) for i in np.linspace(0, 1, len(c10_exps))] for i, k in enumerate(colours): mybox = box_plot.artists[i] mybox.set_facecolor(k) mybox.set_zorder(20) ax.plot(np.arange(len(c10_exps)), accs, "x--", color="red", markersize=12, markeredgewidth=4) ax.set_ylim((.90, .95)) ax.set_yticks([.91, .92, .93, .94]) ax.set_yticklabels(["{:.2f}".format(y) for y in [.91, .92, .93, .94]]) ax.tick_params("y", labelcolor="red", color="red", labelsize=20) ax.grid(False) ax.set_ylabel("Accuracy", color="red", fontsize=24, rotation=270, labelpad=28) fig.tight_layout() ###Output _____no_output_____
P3 - Stroke Prediction/Code/Stroke Prediction.ipynb
###Markdown Stroke Prediction **Vinay Nagaraj** Overview According to the World Health Organization (WHO) stroke is the 2nd leading cause of death globally, responsible for approximately 11% of total deaths. A Report from the American Heart Association informs that an average, someone in the US has a stroke every 40 seconds. Stroke is a treatable disease, and if detected or predicted early, its severity can be greatly reduced. If stroke can be predicted at an early stage there is 4% lower risk of in-hospital death, 4% better odds of walking independently after leaving the hospital and also 3% better odds of being sent home instead of to an institution. As part of this project, I will be using the dataset from [Kaggle](https://www.kaggle.com/fedesoriano/stroke-prediction-dataset) by which I intend to consider all the relevant information about the patient such as gender, age, various diseases, and smoking and build predictive analytics techniques that would predict the patients with high risk and is likely to get stroke. This helps in providing the advanced warning to alert the patients so that they can apply proper precautions and possibly the prevent the stroke. ###Code # Load necessary libraries import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import scikitplot as skplt from sklearn.model_selection import train_test_split from imblearn.over_sampling import SMOTE from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import f_classif from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import classification_report,confusion_matrix,accuracy_score # Read our data stroke_data = pd.read_csv('healthcare-dataset-stroke-data.csv') # Check the dimension of the data frame print("The dimension of the table is: ", stroke_data.shape) # Lets look at some sample records to understand the data print(stroke_data.head(5).T) # Check the types of each feature stroke_data.dtypes # Check for any missing values stroke_data.isna().sum() # First let us round off Age to convert it to integer stroke_data['age'] = stroke_data['age'].apply(lambda x : round(x)) # BMI values less than 12 and greater than 60 are potential outliers. So we will change them to NaN stroke_data['bmi'] = stroke_data['bmi'].apply(lambda bmi_value: bmi_value if 12 < bmi_value < 60 else np.nan) # Sorting DataFrame based on Gender then on Age and using Forward Fill-ffill() to fill NaN value for BMI stroke_data.sort_values(['gender', 'age'], inplace=True) stroke_data.reset_index(drop=True, inplace=True) stroke_data['bmi'].ffill(inplace=True) # Check for any missing values stroke_data.isna().sum() ###Output _____no_output_____ ###Markdown **Data Summary**- gender: "Male", "Female" or "Other"- age: age of the patient- hypertension: 0 if the patient doesn't have hypertension, 1 if the patient has hypertension- heart_disease: 0 if the patient doesn't have any heart diseases, 1 if the patient has a heart disease- ever_married: "No" or "Yes"- work_type: "children", "Govt_jov", "Never_worked", "Private" or "Self-employed"- Residence_type: "Rural" or "Urban"- avg_glucose_level: average glucose level in blood- bmi: body mass index- smoking_status: "formerly smoked", "never smoked", "smokes" or "Unknown"*- stroke: 1 if the patient had a stroke or 0 if not\*Note: "Unknown" in smoking_status means that the information is unavailable for this patient ###Code stroke_data.describe() # Understand the categorical data in our dataset for column in stroke_data.columns: if stroke_data[column].dtype == object: print("{} : {}".format(str(column), str(stroke_data[column].unique()))) print(stroke_data[column].value_counts()) print("-----------------------------------------------------\n\n") # Drop 'id' feature as it is irrelevant. stroke_data = stroke_data.drop('id', axis=1) ###Output _____no_output_____ ###Markdown Below are our observations so far:\1) Input data has 5110 records and 12 features.\2) bmi had 201 rows of missing values which is now filled using Forward Fill.\3) 'id' is an irrelevant features to our analysis, so was dropped. Graph Analysis/EDA ###Code # Plot of Patients who had stroke vs Patients who did not have stroke sns.countplot('stroke', data=stroke_data) plt.title('0: No Stroke, 1: Stroke', fontsize=14) plt.show() # Percentage of Patients who had stroke vs Patients who did not have stroke Count_stroke_patients = len(stroke_data[stroke_data["stroke"]==1]) # Patients who had stroke Count_nostroke_patients = len(stroke_data[stroke_data["stroke"]==0]) # Patients who never had stroke print("Total count of Patients who had stroke = ",Count_stroke_patients) print("Total count of Patients who never had stroke = ",Count_nostroke_patients) Percentage_of_stroke_patients = Count_stroke_patients/(Count_stroke_patients+Count_nostroke_patients) print("Percentage of Patients who had stroke = ",Percentage_of_stroke_patients*100) Percentage_of_nostroke_patients= Count_nostroke_patients/(Count_nostroke_patients+Count_stroke_patients) print("Percentage of Patients who never had stroke = ",Percentage_of_nostroke_patients*100) ###Output Total count of Patients who had stroke = 249 Total count of Patients who never had stroke = 4861 Percentage of Patients who had stroke = 4.87279843444227 Percentage of Patients who never had stroke = 95.12720156555773 ###Markdown Our Dataset contains a total of 4,861 rows of patients who never had stroke and 249 rows of patients who had stroke. We can observe that our dataset is highly imbalanced and we will handle that by over-sampling (SMOTE) before we perform model analysis. ###Code # plot the effect of Smoking on Stroke g= sns.catplot(x = "smoking_status", y = "stroke", data = stroke_data, kind = "bar", height = 5) g.set_ylabels("Smoking on Stroke Probability") plt.title("Effect of Smoking on Stroke",fontsize=15) plt.xticks(rotation=45) plt.show() ###Output _____no_output_____ ###Markdown Being a smoker or a formerly smoker increases your risk of having a stroke. Also, looks like people who used to smoke are more prone to a Stroke than people still smoking. But surely Smoking is injurious to health. ###Code # plot the effect of Marriage on Stroke g= sns.catplot(x = "ever_married", y = "stroke", data = stroke_data, kind = "bar", height = 5) g.set_ylabels("Marriage on Stroke Probability") plt.title("Effect of Marriage on Stroke",fontsize=15) plt.xticks(rotation=45) plt.show() ###Output _____no_output_____ ###Markdown Wasn't this obvious :) ###Code # plot the effect of Heart Disease on Stroke g= sns.catplot(x = "heart_disease", y = "stroke", data = stroke_data, kind = "bar", height = 5) g.set_ylabels("heart_disease on Stroke Probability") plt.title("Effect of Heart Disease on Stroke",fontsize=15) plt.show() ###Output _____no_output_____ ###Markdown People with a history of heart disease are more prone to Stroke ###Code # plot the effect of Hypertension on Stroke g= sns.catplot(x = "hypertension", y = "stroke", data = stroke_data, kind = "bar", height = 5) g.set_ylabels("hypertension on Stroke Probability") plt.title("Effect of Hypertension on Stroke",fontsize=15) plt.show() ###Output _____no_output_____ ###Markdown People with a history of Hypertension are more prone to Stroke ###Code # plot the effect of Gender on Stroke g= sns.catplot(x = "gender", y = "stroke", data = stroke_data, kind = "bar", height = 5) g.set_ylabels("Gender on Stroke Probability") plt.title("Effect of Gender on Stroke",fontsize=15) plt.show() ###Output _____no_output_____ ###Markdown Male are more prone to Stroke when compared to Females. ###Code # Stroke distribution by age Age plt.figure(figsize=(12,10)) sns.distplot(stroke_data[stroke_data['stroke'] == 0]["age"], color='green') # No Stroke - green sns.distplot(stroke_data[stroke_data['stroke'] == 1]["age"], color='red') # Stroke - Red plt.title('No Stroke vs Stroke by Age', fontsize=15) plt.xlim([18,100]) plt.show() ###Output _____no_output_____ ###Markdown Based on the above plot, it seems clear that Age is a big factor in stroke patients - the older you get the more at risk you are. ###Code # plot the effect of work-type on Stroke plt.figure(figsize=(10,5)) sns.countplot(data=stroke_data[stroke_data["stroke"]==1],x='work_type',palette='cool') plt.title("Effect of Work Type on Stroke",fontsize=15) plt.show() ###Output _____no_output_____ ###Markdown Private work type exposes you to more stroke, than being self-employed or Govt work. ###Code # plot the effect of Residence_type on Stroke plt.figure(figsize=(10,5)) sns.countplot(data=stroke_data[stroke_data["stroke"]==1],x='Residence_type',palette='cool') plt.title("Effect of Residence_type on Stroke",fontsize=15) plt.show() ###Output _____no_output_____ ###Markdown People staying in Urban areas are more prone to Stroke ###Code # BMI Box Plot plt.figure(figsize=(10,7)) sns.boxplot(data=stroke_data,x=stroke_data["bmi"],color='gray') plt.title("Box Plot on BMI",fontsize=15) plt.show() ###Output _____no_output_____ ###Markdown Train/Test ###Code # Update the data in gender column, by changing value of Female to 0, Male to 1 and Other to 2 stroke_data['gender'].replace({'Female': 0, 'Male': 1, 'Other': 2}, inplace = True) # Update the data in ever_married column, by changing value of Yes to 0 and No to 1 stroke_data['ever_married'].replace({'Yes': 0, 'No': 1}, inplace = True) # Update the data in work_type column, by changing value of Private to 0, Self-employed to 1, children to 2, Govt_job to 3 and Never_worked to 4 stroke_data['work_type'].replace({'Private': 0, 'Self-employed': 1, 'children': 2, 'Govt_job': 3, 'Never_worked': 4}, inplace = True) # Update the data in Residence_type column, by changing value of Urban to 0 and Rural to 1 stroke_data['Residence_type'].replace({'Urban': 0, 'Rural': 1}, inplace = True) # Update the data in smoking_status column, by changing value of never smoked to 0, formerly smoked to 1, smokes to 2 and Unknown to 3 stroke_data['smoking_status'].replace({'never smoked': 0, 'formerly smoked': 1, 'smokes': 2, 'Unknown': 3}, inplace = True) # Pearson Correlation Heatmap plt.subplots(figsize=(15,12)) sns.heatmap(stroke_data.corr(method = 'pearson'), annot=True, fmt='.0%') plt.title("Pearson Correlation Heatmap",fontsize=15) plt.show() # Spearman Correlation Heatmap plt.subplots(figsize=(15,12)) sns.heatmap(stroke_data.corr(method = 'spearman'), annot=True, fmt='.0%') plt.title("Spearman Correlation Heatmap",fontsize=15) plt.show() # Train and test data x=stroke_data.drop(columns=["stroke"],axis="columns") y=stroke_data.stroke x.head() x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=.3,random_state=42) # Details of training dataset print("Transaction Number x_train dataset: ", x_train.shape) print("Transaction Number y_train dataset: ", y_train.shape) print("Transaction Number x_test dataset: ", x_test.shape) print("Transaction Number y_test dataset: ", y_test.shape) print("Before OverSampling, counts of label '1': {}".format(sum(y_train==1))) print("Before OverSampling, counts of label '0': {} \n".format(sum(y_train==0))) sns.countplot(x=y_train, data=stroke_data, palette='CMRmap') plt.title("Before OverSampling",fontsize=15) plt.show() ###Output Transaction Number x_train dataset: (3577, 10) Transaction Number y_train dataset: (3577,) Transaction Number x_test dataset: (1533, 10) Transaction Number y_test dataset: (1533,) Before OverSampling, counts of label '1': 172 Before OverSampling, counts of label '0': 3405 ###Markdown As we see above, the dataset is highly imbalanced as most of the records belong to Patients who never had a stroke. Therefore the algorithms are much more likely to classify new observations to the majority class and high accuracy won't tell us anything. In order to address this challenge, we are using oversampling data approach instead of undersampling. Oversampling increases the number of minority class members in the training set. The advantage of oversampling is that no information from the original training set is lost unlike in undersampling, as all observations from the minority and majority classes are kept.Since this approach is prone to overfitting, we have to be cautious. We are using oversampling technique called SMOTE (Synthetic Minority Oversampling Technique), to make our dataset balanced. It creates synthetic points from the minority class. ###Code # Oversample the training dataset sm = SMOTE(random_state=2) x_train_s, y_train_s = sm.fit_resample(x_train, y_train.ravel()) print('After OverSampling, the shape of x_train: {}'.format(x_train_s.shape)) print('After OverSampling, the shape of y_train: {} \n'.format(y_train_s.shape)) print("After OverSampling, counts of label '1', %: {}".format(sum(y_train_s==1)/len(y_train_s)*100.0,2)) print("After OverSampling, counts of label '0', %: {}".format(sum(y_train_s==0)/len(y_train_s)*100.0,2)) sns.countplot(x=y_train_s, data=stroke_data, palette='CMRmap') plt.title("After OverSampling",fontsize=15) plt.show() # Determine 10 best features using SelectKBest best_features = SelectKBest(score_func=f_classif, k=10) fit = best_features.fit(x_train_s,y_train_s) df_scores = pd.DataFrame(fit.scores_) df_columns = pd.DataFrame(x_train_s.columns) # concatenate dataframes feature_scores = pd.concat([df_columns, df_scores],axis=1) feature_scores.columns = ['Feature_Name','Score'] # name output columns print(feature_scores.nlargest(10,'Score')) # print 10 best features # Bar plot showing features in the order of score tmp = feature_scores.sort_values(by='Score',ascending=False) plt.title('Features importance',fontsize=14) s = sns.barplot(x='Feature_Name',y='Score',data=tmp) s.set_xticklabels(s.get_xticklabels(),rotation=90) plt.show() ###Output _____no_output_____ ###Markdown Model Evaluation & Selection Random Forest Classifier ###Code rf = RandomForestClassifier() rf.fit(x_train_s,y_train_s) rf_predict = rf.predict(x_test) dec = np.int64(np.ceil(np.log10(len(y_test)))) print('Confusion Matrix - Random Forest') print(confusion_matrix(y_test, rf_predict), '\n') print('Classification report - Random Forest') print(classification_report(y_test,rf_predict, digits=dec), '\n') print('Random Forest Accuracy Score = ', accuracy_score(y_test,rf_predict)*100) skplt.metrics.plot_confusion_matrix(y_test,rf_predict) plt.title('Random Forest Confusion Matrix') plt.show() ###Output _____no_output_____ ###Markdown k-Nearest Neighbors ###Code kn = KNeighborsClassifier(n_neighbors=4) kn.fit(x_train_s,y_train_s) kn_predict = kn.predict(x_test) print('Confusion Matrix - kNN') print(confusion_matrix(y_test, kn_predict), '\n') print('Classification report - kNN') print(classification_report(y_test,kn_predict, digits=dec), '\n') print('k-Nearest Neighbor Accuracy Score = ', accuracy_score(y_test,kn_predict)*100) skplt.metrics.plot_confusion_matrix(y_test,kn_predict) plt.title('kNN Confusion Matrix') plt.show() ###Output _____no_output_____ ###Markdown Decision Tree Classifier ###Code dt = DecisionTreeClassifier() dt.fit(x_train_s,y_train_s) dt_predict = dt.predict(x_test) print('Confusion Matrix - Decision Tree') print(confusion_matrix(y_test, dt_predict), '\n') print('Classification report - Decision Tree') print(classification_report(y_test,dt_predict, digits=dec), '\n') print('Decision Tree Accuracy Score = ', accuracy_score(y_test,dt_predict)*100) skplt.metrics.plot_confusion_matrix(y_test,dt_predict) plt.title('Decision Tree Confusion Matrix') plt.show() ###Output _____no_output_____
8.Where_Are_Forests_Located_Widget.ipynb
###Markdown "Where are Forests Located?" WidgetThis widget is a mix of a donut chart and a ranked list. It shows tree cover extent by admin region. On hover the pie chart segments display the extent, in ha and %, for that region.The donut chart should display data for the top few admin regions, and group the rest together as 'Other Districts'Displayed data, ordered by DESC area(ha). 1. Admin-2 or -1 name2. % of total extent3. Area of extent (ha)User Variables:1. Hanson extent ('Gadm28'), IFL2013, Plantations or Intact forest2. Admin-0 and -1 region ###Code #Import Global Metadata etc %run '0.Importable_Globals.ipynb' # VARIABLES location = 'All Region' # 'plantations', 'ifl_2013', or 'primary_forests'... here 'gadm28'=default threshold = 0 # 0,10,15,20,25,30,50,75,100 adm0 = 'GBR' adm1 = 1 # To rank admin 1 areas, set to None # To rank admin 2 areas, specify an admin 1 level extent_year = 2000 #extent data, 2000 or 2010 tags = ["forest_change", "land_cover"] selectable_polynames = ['gadm28', 'wdpa', 'primary_forest', 'ifl_2013'] # get admin 1 or 2 level human-readable name info as needed: adm1_to_name = None adm2_to_name = None if adm1: tmp = get_admin2_json(iso=adm0, adm1=adm1) adm2_to_name ={} for row in tmp: adm2_to_name[row.get('adm2')] = row.get('name') tmp = get_admin1_json(iso=adm0) adm1_to_name={} for row in tmp: adm1_to_name[row.get('adm1')] = row.get('name') # Returns json object containing admin-codes, total area and extent (both in ha) # If adm1 is not specified, it returns the total values for each adm1 region # Else, returns the adm2 values within that adm1 region # You may also specify a polyname (intersecting area) e.g. 'extent and % of plantations only' # By default polyname is 'gadm28' (all forest extent) def multiregion_extent_queries(adm0, adm1=None, year='area_extent_2000', p_name='gadm28', threshold=30): if adm0 and not adm1: print('Request for adm1 areas') sql = (f"SELECT adm1 as region, sum({year}) as extent, sum(area_gadm28) as total " f"FROM {ds} " f"WHERE iso = '{adm0}' " f"AND thresh = {threshold} " f"AND polyname = '{p_name}' " f"GROUP BY adm1 " f"ORDER BY adm1") elif adm0 and adm1: print('Request for adm2 areas') sql = (f"SELECT adm2 as region, {year} as extent, area_gadm28 as total " f"FROM {ds} " f"WHERE iso = '{adm0}' " f"AND thresh = {threshold} " f"AND polyname = '{p_name}' " f"AND adm1 = '{adm1}' ") return sql # Takes the data from the above api call and generates a list containing the relevant data: # Admin-Code, Forest Extent Area, Percentage of Admin region # NOTE that 'area_percent' is the forest extent area relative to teh area of its admin-region. def data_output(data, adm1=None): output = [] for d in range(0, len(data)): tmp_ = { 'region': data[d]['region'], 'area_percent': (100*data[d]['extent']/data[d]['total']), 'area_ha': data[d]['extent'] } output.append(tmp_) return output # Example sql and returned data url = f"https://production-api.globalforestwatch.org/v1/query/{ds}" sql = multiregion_extent_queries(adm0, adm1, extent_year_dict[extent_year], polynames[location], threshold) properties = {"sql": sql} r = requests.get(url, params = properties) print(r.url) print(f'Status: {r.status_code}') data = r.json()['data'] data[0:3] # After generating list return wanted metrics # (NOTE! This is not sorted.) extent_json = data_output(data, adm1) extent_json[0:3] #Sort regions by area (DESC) newlist = sorted(extent_json, key=lambda k: k['area_ha'], reverse=True) newlist[0:3] # Example donut chart # NOTE - THE COLOURS ARE NOT NECESSARILY THOSE NEEDED FOR PRODUCTION limit = 0 sizes = [] labels = [] for r in range(0,10): try: if adm1: labels.append(adm2_to_name[newlist[r].get('region')]) elif adm0: labels.append(adm1_to_name[newlist[r].get('region')]) sizes.append(newlist[r].get('area_ha')) except: break limit += 1 other_regions=0 for rows in range(limit+1,len(newlist)): other_regions += newlist[rows].get('area_ha') if other_regions != 0: labels.append('Other regions') sizes.append(other_regions) if adm1: title = adm1_to_name[adm1] elif adm0: title = iso_to_countries[adm0] fig1, ax1 = plt.subplots() ax1.pie(sizes, labels=labels, autopct='%1.1f%%', shadow=False, startangle=90, colors=['#0da330', '#69ef88','green','grey']) ax1.axis('equal') centre_circle = plt.Circle((0,0),0.75,color='black', fc='white',linewidth=0.5) fig1 = plt.gcf() fig1.gca().add_artist(centre_circle) plt.title(f'Forest cover in {title}') plt.show() ###Output _____no_output_____ ###Markdown Dynamic Sentence for "Where are Forests Located?" Widget1. Returns the no of regions responsible for >50% of the regions tree cover extent (adm1) - or, the extent (%) that the top 10% of regions are responsible for (adm2)2. Max and Min extent (%) in that region3. Average extent (%) that each region contributes to the total ###Code #Calculate total three cover loss at this threshold total = 0 for i in range(0,len(extent_json)): total += newlist[i]['area_ha'] # Calculate % extent for the sub-region (relative to total extent) Also filters out incorrect/duplicated data correct_list = [] for i in range(0,len(extent_json)): if(i != 0 and newlist[i]['region'] != newlist[i-1]['region']): correct_list.append(100*newlist[i]['area_ha']/total) elif i == 0: correct_list.append(100*newlist[i]['area_ha']/total) correct_list[0:3] #Calculate the mean extent mean=0 for i in range(0, len(correct_list)): mean += correct_list[i] mean = mean/len(correct_list) # Percentile calcs: work out how many regions are responsible for >50% loss # x is no. of adm regions. tenth_percentile = int(len(correct_list)/10) if adm1: top_ten_index = tenth_percentile total = np.sum(correct_list[0: top_ten_index+1]) accumulated_percent = 0 for n, item in enumerate(correct_list): accumulated_percent += item if accumulated_percent >= 50: lower_fity_percentile_regions = n +1 break #Extent Stats extent_stats = { 'max': correct_list[0], 'min': correct_list[len(correct_list)-1], 'avg': mean} extent_stats #Dynamic sentence. For adm2. if adm1: if len(correct_list) > 10: print(f"The top {tenth_percentile} sub-regions are responsible for ", end="") print(f"{total:,.0f}% of {adm1_to_name[adm1]}'s ", end="") if location == 'All Region': print(f"regional tree cover in {extent_year} ", end="") print(f"where tree canopy is greater than {threshold}%. ", end="") elif (location == 'Mining' or 'Mining in Intact Forest Landscapes' or 'Mining in Plantation Areas'): print(f"tree cover in areas with {location.lower()} in {extent_year} ", end="") print(f"where tree canopy is greater than {threshold}%. ", end="") else: print(f"tree cover found in {location.lower()} in {extent_year} ", end="") print(f"where tree canopy is greater than {threshold}%. ", end="") print(f"{adm2_to_name[newlist[0].get('region')]} has the largest relative tree cover ", end="") print(f"in {adm1_to_name[adm1]} at {extent_stats['max']:,.0f}%.", end="") else: #Dynamic sentence. For adm1. if len(correct_list) > 10: print(f"In {iso_to_countries[adm0]} {lower_fity_percentile_regions} ", end="") print(f"regions represent more than half ({accumulated_percent:,.0f}%) ",end="") print(f"of all tree cover extent ", end="") if location == 'All Region': print(f"country-wide. ", end="") elif (location == 'Mining' or 'Mining in Intact Forest Landscapes' or 'Mining in Plantation Areas'): print(f"in areas with {location.lower()}. ", end="") else: print(f"found in {location.lower()}. ", end="") else: print(f"Within {iso_to_countries[adm0]}, ", end="") print(f"{adm1_to_name[newlist[0].get('region')]} ", end="") print(f"has the largest relative tree cover in {extent_year} ", end="") print(f"at {extent_stats['max']:,.0f}%, ", end="") print(f"where tree canopy is greater than {threshold}%. ", end="") ###Output The top 11 sub-regions are responsible for 1,879% of England's regional tree cover in 2000 where tree canopy is greater than 0%. Surrey has the largest relative tree cover in England at 8%. ###Markdown "Which regions are the forested?" WidgetA seperate widget, which displays only a ranked list of subregions by relative tree cover extent (i.e. relative to the subregions size) and a dynamic sentence.Replaces the % option in the **"Where are the forests located?"** widget. ###Code # VARIABLES location = 'All Region' # 'plantations', 'ifl_2013', or 'primary_forests'... here 'gadm28'=default threshold = 0 # 0,10,15,20,25,30,50,75,100 adm0 = 'GBR' adm1 = 1 # To rank admin 1 areas, set to None # To rank admin 2 areas, specify an admin 1 level extent_year = 2000 #extent data, 2000 or 2010 tags = ["forest_change", "land_cover"] selectable_polynames = ['gadm28', 'wdpa', 'primary_forest', 'ifl_2013'] # get admin 1 or 2 level human-readable name info as needed: adm1_to_name = None adm2_to_name = None if adm1: tmp = get_admin2_json(iso=adm0, adm1=adm1) adm2_to_name ={} for row in tmp: adm2_to_name[row.get('adm2')] = row.get('name') tmp = get_admin1_json(iso=adm0) adm1_to_name={} for row in tmp: adm1_to_name[row.get('adm1')] = row.get('name') # Returns json object containing admin-codes, total area and extent (both in ha) # If adm1 is not specified, it returns the total values for each adm1 region # Else, returns the adm2 values within that adm1 region # You may also specify a polyname (intersecting area) e.g. 'extent and % of plantations only' # By default polyname is 'gadm28' (all forest extent) def multiregion_extent_queries(adm0, adm1=None, year='area_extent_2000', p_name='gadm28', threshold=30): if adm0 and not adm1: print('Request for adm1 areas') sql = (f"SELECT adm1 as region, sum({year}) as extent, sum(area_gadm28) as total " f"FROM {ds} " f"WHERE iso = '{adm0}' " f"AND thresh = {threshold} " f"AND polyname = '{p_name}' " f"GROUP BY adm1 " f"ORDER BY adm1") elif adm0 and adm1: print('Request for adm2 areas') sql = (f"SELECT adm2 as region, {year} as extent, area_gadm28 as total " f"FROM {ds} " f"WHERE iso = '{adm0}' " f"AND thresh = {threshold} " f"AND polyname = '{p_name}' " f"AND adm1 = '{adm1}' ") return sql # Takes the data from the above api call and generates a list containing the relevant data: # Admin-Code, Forest Extent Area, Percentage of Admin region # NOTE that 'area_percent' is the forest extent area relative to teh area of its admin-region. def data_output(data, adm1=None): output = [] for d in range(0, len(data)): tmp_ = { 'region': data[d]['region'], 'area_percent': (100*data[d]['extent']/data[d]['total']), 'area_ha': data[d]['extent'] } output.append(tmp_) return output # Example sql and returned data url = f"https://production-api.globalforestwatch.org/v1/query/{ds}" sql = multiregion_extent_queries(adm0, adm1, extent_year_dict[extent_year], polynames[location], threshold) properties = {"sql": sql} r = requests.get(url, params = properties) print(r.url) print(f'Status: {r.status_code}') data = r.json()['data'] data[0:3] # After generating list return wanted metrics # (NOTE! This is not sorted.) extent_json = data_output(data, adm1) extent_json[0:3] #Sort regions by relative area, in % (DESC) newlist = sorted(extent_json, key=lambda k: k['area_percent'], reverse=True) newlist[0:3] #Calculate total tree cover at this threshold total = 0 for i in range(0,len(extent_json)): total += newlist[i]['area_percent'] mean = total/len(extent_json) mean #Dynamic sentence. For adm2. if adm1: print(f"The most forested sub-region in {adm1_to_name[adm1]} ", end="") print(f"is {adm2_to_name[newlist[0].get('region')]} ", end="") else: print(f"The most forested sub-region in {iso_to_countries[adm0]} ", end="") print(f"is {adm1_to_name[adm1]} ", end="") print(f"at {newlist[0].get('area_percent')}% ", end="") if location == 'All Region': print(f"tree cover in {extent_year}, ", end="") print(f"where tree canopy is greater than {threshold}%. ", end="") elif (location == 'Mining' or 'Mining in Intact Forest Landscapes' or 'Mining in Plantation Areas'): print(f"tree cover in areas with {location.lower()} in {extent_year}, ", end="") print(f"where tree canopy is greater than {threshold}%. ", end="") else: print(f"tree cover found in {location.lower()} in {extent_year}, ", end="") print(f"where tree canopy is greater than {threshold}%. ", end="") print(f"This is compared to compared to an average ", end="") print(f"of {mean:,.1f}% across all sub-regions. ", end="") ###Output The most forested sub-region in England is Surrey at 41.784433325254305% tree cover in 2000, where tree canopy is greater than 0%. This is compared to compared to an average of 16.8% across all sub-regions.
My_notebooks/collision_avoidance/data_collection.ipynb
###Markdown Collision Avoidance - Data CollectionIf you ran through the basic motion notebook, hopefully you're enjoying how easy it can be to make your Jetbot move around! Thats very cool! But what's even cooler, is making JetBot move around all by itself! This is a super hard task, that has many different approaches but the whole problem is usually broken down into easier sub-problems. It could be argued that one of the mostimportant sub-problems to solve, is the problem of preventing the robot from entering dangerous situations! We're calling this *collision avoidance*. In this set of notebooks, we're going to attempt to solve the problem using deep learning and a single, very versatile, sensor: the camera. You'll see how with a neural network, camera, and the NVIDIA Jetson Nano, we can teach the robot a very useful behavior!The approach we take to avoiding collisions is to create a virtual "safety bubble" around the robot. Within this safety bubble, the robot is able to spin in a circle without hitting any objects (or other dangerous situations like falling off a ledge). Of course, the robot is limited by what's in it's field of vision, and we can't prevent objects from being placed behind the robot, etc. But we can prevent the robot from entering these scenarios itself.The way we'll do this is super simple: First, we'll manually place the robot in scenarios where it's "safety bubble" is violated, and label these scenarios ``blocked``. We save a snapshot of what the robot sees along with this label.Second, we'll manually place the robot in scenarios where it's safe to move forward a bit, and label these scenarios ``free``. Likewise, we save a snapshot along with this label.That's all that we'll do in this notebook; data collection. Once we have lots of images and labels, we'll upload this data to a GPU enabled machine where we'll *train* a neural network to predict whether the robot's safety bubble is being violated based off of the image it sees. We'll use this to implement a simple collision avoidance behavior in the end :)> IMPORTANT NOTE: When JetBot spins in place, it actually spins about the center between the two wheels, not the center of the robot chassis itself. This is an important detail to remember when you're trying to estimate whether the robot's safety bubble is violated or not. But don't worry, you don't have to be exact. If in doubt it's better to lean on the cautious side (a big safety bubble). We want to make sure JetBot doesn't enter a scenario that it couldn't get out of by turning in place. Display live camera feedSo let's get started. First, let's initialize and display our camera like we did in the *teleoperation* notebook. > Our neural network takes a 224x224 pixel image as input. We'll set our camera to that size to minimize the filesize of our dataset (we've tested that it works for this task).> In some scenarios it may be better to collect data in a larger image size and downscale to the desired size later. ###Code import traitlets from jetcam.usb_camera import USBCamera from jetcam.utils import bgr8_to_jpeg import ipywidgets as widgets from IPython.display import display camera = USBCamera(width=224, height=224, capture_width=640, capture_height=480, capture_device=0) image = widgets.Image(format='jpeg', width=224, height=224) # this width and height doesn't necessarily have to match the camera camera_link = traitlets.dlink((camera, 'value'), (image, 'value'), transform=bgr8_to_jpeg) display(image) camera.running = True ###Output _____no_output_____ ###Markdown Awesome, next let's create a few directories where we'll store all our data. We'll create a folder ``dataset`` that will contain two sub-folders ``free`` and ``blocked``, where we'll place the images for each scenario. ###Code import os blocked_dir = '/workspace/jetbot/dataset0/blocked' free_dir = '/workspace/jetbot/dataset0/free' # we have this "try/except" statement because these next functions can throw an error if the directories exist already try: os.makedirs(free_dir) os.makedirs(blocked_dir) except FileExistsError: print('Directories not created because they already exist') ###Output _____no_output_____ ###Markdown If you refresh the Jupyter file browser on the left, you should now see those directories appear. Next, let's create and display some buttons that we'll use to save snapshotsfor each class label. We'll also add some text boxes that will display how many images of each category that we've collected so far. This is useful because we want to makesure we collect about as many ``free`` images as ``blocked`` images. It also helps to know how many images we've collected overall. ###Code import ipywidgets.widgets as widgets button_layout = widgets.Layout(width='128px', height='64px') free_button = widgets.Button(description='add free', button_style='success', layout=button_layout) blocked_button = widgets.Button(description='add blocked', button_style='danger', layout=button_layout) free_count = widgets.IntText(layout=button_layout, value=len(os.listdir(free_dir))) blocked_count = widgets.IntText(layout=button_layout, value=len(os.listdir(blocked_dir))) display(widgets.HBox([free_count, free_button])) display(widgets.HBox([blocked_count, blocked_button])) ###Output _____no_output_____ ###Markdown Right now, these buttons wont do anything. We have to attach functions to save images for each category to the buttons' ``on_click`` event. We'll save the valueof the ``Image`` widget (rather than the camera), because it's already in compressed JPEG format!To make sure we don't repeat any file names (even across different machines!) we'll use the ``uuid`` package in python, which defines the ``uuid1`` method to generatea unique identifier. This unique identifier is generated from information like the current time and the machine address. ###Code from uuid import uuid1 def save_snapshot(directory): image_path = os.path.join(directory, str(uuid1()) + '.jpg') with open(image_path, 'wb') as f: f.write(image_widget.value) def save_free(): global free_dir, free_count save_snapshot(free_dir) free_count.value = len(os.listdir(free_dir)) def save_blocked(): global blocked_dir, blocked_count save_snapshot(blocked_dir) blocked_count.value = len(os.listdir(blocked_dir)) # attach the callbacks, we use a 'lambda' function to ignore the # parameter that the on_click event would provide to our function # because we don't need it. free_button.on_click(lambda x: save_free()) blocked_button.on_click(lambda x: save_blocked()) ###Output _____no_output_____ ###Markdown Great! Now the buttons above should save images to the ``free`` and ``blocked`` directories. You can use the Jupyter Lab file browser to view these files!Now go ahead and collect some data 1. Place the robot in a scenario where it's blocked and press ``add blocked``2. Place the robot in a scenario where it's free and press ``add free``3. Repeat 1, 2> REMINDER: You can move the widgets to new windows by right clicking the cell and clicking ``Create New View for Output``. Or, you can just re-display them> together as we will belowHere are some tips for labeling data1. Try different orientations2. Try different lighting3. Try varied object / collision types; walls, ledges, objects4. Try different textured floors / objects; patterned, smooth, glass, etc.Ultimately, the more data we have of scenarios the robot will encounter in the real world, the better our collision avoidance behavior will be. It's importantto get *varied* data (as described by the above tips) and not just a lot of data, but you'll probably need at least 100 images of each class (that's not a science, just a helpful tip here). But don't worry, it goes pretty fast once you get going :) ###Code display(image_widget) display(widgets.HBox([free_count, free_button])) display(widgets.HBox([blocked_count, blocked_button])) ###Output _____no_output_____ ###Markdown Again, let's close the camera conneciton properly so that we can use the camera in the later notebook. ###Code camera.stop() ###Output _____no_output_____ ###Markdown NextOnce you've collected enough data, we'll need to copy that data to our GPU desktop or cloud machine for training. First, we can call the following *terminal* command to compressour dataset folder into a single *zip* file.> The ! prefix indicates that we want to run the cell as a *shell* (or *terminal*) command.> The -r flag in the zip command below indicates *recursive* so that we include all nested files, the -q flag indicates *quiet* so that the zip command doesn't print any output ###Code !zip -r -q /workspace/jetbot/data0.zip /workspace/jetbot/dataset0 ###Output _____no_output_____ ###Markdown You should see a file named ``dataset.zip`` in the Jupyter Lab file browser. You should download the zip file using the Jupyter Lab file browser by right clicking and selecting ``Download``.Next, we'll need to upload this data to our GPU desktop or cloud machine (we refer to this as the *host*) to train the collision avoidance neural network. We'll assume that you've set up your trainingmachine as described in the JetBot WiKi. If you have, you can navigate to ``http://:8888`` to open up the Jupyter Lab environment running on the host. The notebook you'll need to open there is called ``collision_avoidance/train_model.ipynb``.So head on over to your training machine and follow the instructions there! Once your model is trained, we'll return to the robot Jupyter Lab enivornment to use the model for a live demo! ###Code camera.running = False camera.unobserve() camera().release camera('off') ###Output _____no_output_____
NoSQL/NetworkX/force.ipynb
###Markdown JavascriptExample of writing JSON format graph data and using the D3 Javascript library to produce an HTML/Javascript drawing. ###Code # Author: Aric Hagberg <[email protected]> # Copyright (C) 2011-2019 by # Aric Hagberg <[email protected]> # Dan Schult <[email protected]> # Pieter Swart <[email protected]> # All rights reserved. # BSD license. import json import flask import networkx as nx from networkx.readwrite import json_graph G = nx.barbell_graph(6, 3) # this d3 example uses the name attribute for the mouse-hover value, # so add a name to each node for n in G: G.nodes[n]['name'] = n # write json formatted data d = json_graph.node_link_data(G) # node-link format to serialize # write json json.dump(d, open('force/force.json', 'w')) print('Wrote node-link JSON data to force/force.json') # Serve the file over http to allow for cross origin requests app = flask.Flask(__name__, static_folder="force") @app.route('/') def static_proxy(): return app.send_static_file('force.html') print('\nGo to http://localhost:8000 to see the example\n') app.run(port=8000) ###Output _____no_output_____
colgado.ipynb
###Markdown Colgado Este código está adaptado de https://github.com/kiteco/python-youtube-code/tree/master/build-hangman-in-python.También se puede encontrar el tutorial en YouTube https://www.youtube.com/watch?v=m4nEnsavl6w&t=363s. Librerías ###Code # Se utiliza esta librería para elegir aleatoriamente la palabra que hay que adivinar. import random ###Output _____no_output_____ ###Markdown Funciones `obtiene_palabras` ###Code def obtiene_palabras(): """ Lee el archivo palabras.txt y almacena los contenidos en una List. Cada elemento de la List es una de las palabras del archivo. """ palabras = [] with open('palabras.txt', 'r') as f_palabras: for line in f_palabras: for w in line.split(','): palabras.append(w.rstrip().lstrip()) return palabras palabras = obtiene_palabras() print(palabras[0: 10]) ###Output ['humanidad', 'humano', 'peo', 'poto', 'persona', 'gente', 'hombre', 'mujer', 'bebé', 'niño'] ###Markdown `elige_palabra(palabra)` ###Code def elige_palabra(palabras): """ Esta función elige de forma aleatoria una de las palabras en la List. """ palabra = random.choice(palabras) return palabra.upper() elige_palabra(palabras) ###Output _____no_output_____ ###Markdown `muestra_colgado(tentativos)` ###Code def muestra_colgado(tentativos): """ Muestra el estado del colgado en función del número de tentativos remanente. El número máximo de tentativos debe ser 6. """ etapas = [ # estado final: cabeza, torso, brazos y piernas """ -------- | | | O | \\|/ | | | / \\ - """, # cabeza, torso, brazos y una pierna """ -------- | | | O | \\|/ | | | / - """, # cabeza, torso y ambos brazos """ -------- | | | O | \\|/ | | | - """, # cabeza, torso y un brazo """ -------- | | | O | \\| | | | - """, # cabeza y torso """ -------- | | | O | | | | | - """, # cabeza """ -------- | | | O | | | - """, # estado inicial """ -------- | | | | | | - """ ] return etapas[tentativos] print(muestra_colgado(0)) ###Output -------- | | | O | \|/ | | | / \ - ###Markdown `juega(palabra)` Esta es la función principal del juego. ###Code def juega(palabra): adivinado = False letras_adivinadas = [] palabras_adivinadas = [] intentos = 6 print("¡Juguemos al Colgado!") print(muestra_colgado(intentos)) linea_palabra = "_" * len(palabra) print(linea_palabra) print(f'La palabra tiene {len(palabra)} letras.') print("\n") # Entramos al main loop de un partido while not adivinado and intentos > 0: intento = input( "Por favor adivina una letra o toda la palabra: " ).upper() if len(intento) == 1 and intento.isalpha(): if intento in letras_adivinadas: print(f'Ya intentaste con la letra {intento}') elif intento not in palabra: print(f'La letra {intento} no está en la palabra.') intentos -= 1 letras_adivinadas.append(intento) else: print(f'¡Buena! La letra {intento} está en la palabra.') letras_adivinadas.append(intento) word_as_list = list(linea_palabra) indices = [i for i, letter in enumerate( palabra) if letter == intento] for index in indices: word_as_list[index] = intento linea_palabra = "".join(word_as_list) if "_" not in linea_palabra: adivinado = True elif len(intento) == len(palabra) and intento.isalpha(): if intento in palabras_adivinadas: print(f'Ya intentaste con la palabra {intento}.') elif intento != palabra: print(f'La palabra no es {intento}.') intentos -= 1 palabras_adivinadas.append(intento) else: adivinado = True linea_palabra = palabra else: print("Ese no es un intento válido.") print(muestra_colgado(intentos)) print(linea_palabra) print("\n") if adivinado: print("¡Felicitaciones! Adivinaste la palabra y ganaste.") else: print(f'Pucha, te quedaste sin intentos, la palabra era {palabra}.') def main(): palabras = obtiene_palabras() palabra = elige_palabra(palabras) juega(palabra) while input("¿Juegas de nuevo? (S/N) ").upper() == "S": palabra = elige_palabra() juega(palabra) main() ###Output ¡Juguemos al Colgado! -------- | | | | | | - ______ La palabra tiene 6 letras. Por favor adivina una letra o toda la palabra: a ¡Buena! La letra A está en la palabra. -------- | | | | | | - ____A_ Por favor adivina una letra o toda la palabra: e ¡Buena! La letra E está en la palabra. -------- | | | | | | - _E__A_ Por favor adivina una letra o toda la palabra: T La letra T no está en la palabra. -------- | | | O | | | - _E__A_ Por favor adivina una letra o toda la palabra: r ¡Buena! La letra R está en la palabra. -------- | | | O | | | - _ERRAR Por favor adivina una letra o toda la palabra: Herrar La palabra no es HERRAR. -------- | | | O | | | | | - _ERRAR Por favor adivina una letra o toda la palabra: yerrar La palabra no es YERRAR. -------- | | | O | \| | | | - _ERRAR Por favor adivina una letra o toda la palabra: cerrar -------- | | | O | \| | | | - CERRAR ¡Felicitaciones! Adivinaste la palabra y ganaste. ¿Juegas de nuevo? (S/N) n
notebooks/03_cudf_group_sort.ipynb
###Markdown Grouping and Sorting with cuDF In this notebook you will be introduced to grouping and sorting with cuDF, with performance comparisons to Pandas, before integrating what you learned in a short data analysis exercise. Objectives By the time you complete this notebook you will be able to:- Perform GPU-accelerated group and sort operations with cuDF Imports ###Code import cudf import pandas as pd ###Output _____no_output_____ ###Markdown Read Data We once again read the UK population data, returning to timed comparisons with Pandas. ###Code %time gdf = cudf.read_csv('../data/data_pop.csv') gdf.drop(gdf.columns[0], axis=1, inplace=True) %time df = pd.read_csv('../data/data_pop.csv') df.drop(df.columns[0], axis=1, inplace=True) gdf.shape == df.shape gdf.dtypes gdf.shape gdf.head() ###Output _____no_output_____ ###Markdown Grouping and Sorting Record Grouping Record grouping with cuDF works the same way as in Pandas. cuDF ###Code %%time counties = gdf[['county', 'age']].groupby(['county']) avg_ages = counties.mean() print(avg_ages[:5]) ###Output _____no_output_____ ###Markdown Pandas ###Code %%time counties_pd = df[['county', 'age']].groupby(['county']) avg_ages_pd = counties_pd.mean() print(avg_ages_pd[:5]) ###Output _____no_output_____ ###Markdown Sorting Sorting is also very similar to Pandas, though cuDF does not support in-place sorting. cuDF ###Code %time gdf_names = gdf['name'].sort_values() print(gdf_names[:5]) # yes, "A" is an infrequent but correct given name in the UK, according to census data print(gdf_names[-5:]) ###Output _____no_output_____ ###Markdown Pandas This operation takes a while with Pandas. Feel free to start the next exercise while you wait. ###Code %time df_names = df['name'].sort_values() print(df_names[:5]) print(df_names[-5:]) ###Output _____no_output_____ ###Markdown Exercise 3: Youngest Names For this exercise you will need to use both `groupby` and `sort_values`.We would like to know which names are associated with the lowest average age and how many people have those names. Using the `mean` and `count` methods on the data grouped by name, identify the three names with the lowest mean age and their counts. Visualize the Population - Use Bokeh to visualize the population data ###Code import cupy as cp from bokeh import plotting as bplt from bokeh import models as bmdl ###Output _____no_output_____ ###Markdown Setup Visualizations RAPIDS can be used with a wide array of visualizations, both open source and proprietary. We won't teach to a specific visualization option in this workshop but will just use the open source [Bokeh](https://bokeh.pydata.org/en/latest/index.html) to illustrate the results of some machine learning algorithms. As such, please feel free to make a light pass over this section, which enables visualizations to be output in this notebook, and creates a visualization helper function `base_plot` we will use below. ###Code # Turn on in-Jupyter viz bplt.output_notebook() # Helper function for visuals def base_plot(data=None, padding=None, tools='pan,wheel_zoom,reset', plot_width=500, plot_height=500, x_range=(0, 100), y_range=(0, 100), **plot_args): # if we send in two columns of data, we can use them to auto-size the scale if data is not None and padding is not None: x_range = (min(data.iloc[:, 0]) - padding, max(data.iloc[:, 0]) + padding) y_range = (min(data.iloc[:, 1]) - padding, max(data.iloc[:, 1]) + padding) p = bplt.figure(tools=tools, plot_width=plot_width, plot_height=plot_height, x_range=x_range, y_range=y_range, outline_line_color=None, min_border=0, min_border_left=0, min_border_right=0, min_border_top=0, min_border_bottom=0, **plot_args) p.axis.visible = True p.xgrid.grid_line_color = None p.ygrid.grid_line_color = None p.add_tools(bmdl.BoxZoomTool(match_aspect=True)) return p ###Output _____no_output_____ ###Markdown Subset Data for Vizualizations Bokeh, [DataShader](http://datashader.org/), and other open source visualization projects are being connected with RAPIDS via the [cuXfilter](https://github.com/rapidsai/cuxfilter) framework. For simplicity in this workshop, we will use the standard CPU Bokeh. CPU performance can be a real bottleneck to our workflows, so the typical approach is to select subsets of our data to visualize, especially during initial iterations.Here we make a subset of our data, and use the `to_pandas` method on that subset so that we can pass the pandas Dataframe for visualizations: ###Code plot_subset = gdf.take(cp.random.choice(gdf.shape[0], size=100000, replace=True)) df_subset = plot_subset.to_pandas() df_subset.head() ###Output _____no_output_____ ###Markdown Visualize Population Density and Distribution To avoid overplotting, we shrink the `alpha` value and reduce the `size` of each pixel. ###Code options = dict(line_color=None, fill_color='blue', size=2, # Reduce size to make points more distinct alpha=.05) # Reduce alpha to avoid overplotting ###Output _____no_output_____ ###Markdown We give the `easting` and `northing` columns of our data subset to our visualization helper function... ###Code p = base_plot(data=df_subset[['easting', 'northing']], padding=10000) ###Output _____no_output_____ ###Markdown ...plot circles for each datapoint... ###Code p.circle(x=list(df_subset['easting']), y=list(df_subset['northing']), **options) ###Output _____no_output_____ ###Markdown ...and display. ###Code bplt.show(p) ###Output _____no_output_____
Data_Analytics_in_Action/digits.ipynb
###Markdown **识别手写体数字** 导入数据集 ###Code from sklearn import datasets digits = datasets.load_digits() print digits.DESCR ###Output Optical Recognition of Handwritten Digits Data Set =================================================== Notes ----- Data Set Characteristics: :Number of Instances: 5620 :Number of Attributes: 64 :Attribute Information: 8x8 image of integer pixels in the range 0..16. :Missing Attribute Values: None :Creator: E. Alpaydin (alpaydin '@' boun.edu.tr) :Date: July; 1998 This is a copy of the test set of the UCI ML hand-written digits datasets http://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits The data set contains images of hand-written digits: 10 classes where each class refers to a digit. Preprocessing programs made available by NIST were used to extract normalized bitmaps of handwritten digits from a preprinted form. From a total of 43 people, 30 contributed to the training set and different 13 to the test set. 32x32 bitmaps are divided into nonoverlapping blocks of 4x4 and the number of on pixels are counted in each block. This generates an input matrix of 8x8 where each element is an integer in the range 0..16. This reduces dimensionality and gives invariance to small distortions. For info on NIST preprocessing routines, see M. D. Garris, J. L. Blue, G. T. Candela, D. L. Dimmick, J. Geist, P. J. Grother, S. A. Janet, and C. L. Wilson, NIST Form-Based Handprint Recognition System, NISTIR 5469, 1994. References ---------- - C. Kaynak (1995) Methods of Combining Multiple Classifiers and Their Applications to Handwritten Digit Recognition, MSc Thesis, Institute of Graduate Studies in Science and Engineering, Bogazici University. - E. Alpaydin, C. Kaynak (1998) Cascading Classifiers, Kybernetika. - Ken Tang and Ponnuthurai N. Suganthan and Xi Yao and A. Kai Qin. Linear dimensionalityreduction using relevance weighted LDA. School of Electrical and Electronic Engineering Nanyang Technological University. 2005. - Claudio Gentile. A New Approximate Maximal Margin Classification Algorithm. NIPS. 2000. ###Markdown 手写体数字图像的数据,则存储在digit.images,数组中每个元素表示一张图像,每个元素为 $8 \times 8$形状的矩阵,矩阵各项为数值类型,每个数值对应着一种灰度等级,0代表白色,15代表黑色 ###Code digits.images[0] ###Output _____no_output_____ ###Markdown 借助matplotlib库,生成图像 ###Code import matplotlib.pyplot as plt %matplotlib inline plt.imshow(digits.images[0],cmap=plt.cm.gray_r,interpolation='nearest') digits.target digits.target.size ###Output _____no_output_____ ###Markdown 学习预测 digits数据集有1797个元素,考虑使用前1791个作为训练集,剩余的6个作为验证集,查看细节 ###Code import matplotlib.pyplot as plt %matplotlib inline plt.subplot(321) plt.imshow(digits.images[1791], cmap=plt.cm.gray_r, interpolation='nearest') plt.subplot(322) plt.imshow(digits.images[1792], cmap=plt.cm.gray_r, interpolation='nearest') plt.subplot(323) plt.imshow(digits.images[1793], cmap=plt.cm.gray_r, interpolation='nearest') plt.subplot(324) plt.imshow(digits.images[1794], cmap=plt.cm.gray_r, interpolation='nearest') plt.subplot(325) plt.imshow(digits.images[1795], cmap=plt.cm.gray_r, interpolation='nearest') plt.subplot(326) plt.imshow(digits.images[1796], cmap=plt.cm.gray_r, interpolation='nearest') ###Output _____no_output_____ ###Markdown 定义svc估计器进行学习 ###Code from sklearn import svm svc = svm.SVC(gamma=0.0001,C=100.) svc.fit(digits.data[1:1790],digits.target[1:1790]) svc.predict(digits.data[1791:1976]) digits.target[1791:1976] ###Output _____no_output_____
.ipynb_checkpoints/Recommender Systems with Python-checkpoint.ipynb
###Markdown Movie Recommendation System with PythonIn this project, we'll develop a basic recommender system with Python and pandas.Movies will be suggested by similarity to other movies; this is not a robust recommendation system, but something to start out on. ###Code import numpy as np import pandas as pd ###Output _____no_output_____ ###Markdown Data We have two datasets:- A dataset of movie ratings.- A dataset of all movies titles and their ids. ###Code #Reading the ratings dataset. column_names = ['user_id', 'item_id', 'rating', 'timestamp'] df = pd.read_csv('data/u.data', sep='\t', names=column_names) df.head() ###Output _____no_output_____ ###Markdown Reading the movie titles ###Code movie_titles = pd.read_csv("data/Movie_Id_Titles") movie_titles.head() ###Output _____no_output_____ ###Markdown We can merge them together: ###Code df = pd.merge(df,movie_titles,on='item_id') df.head() ###Output _____no_output_____ ###Markdown Exploratory AnalysisLet's explore the data a bit and get a look at some of the best rated movies. ###Code import matplotlib.pyplot as plt import seaborn as sns sns.set_style('white') %matplotlib inline ###Output _____no_output_____ ###Markdown Let's create a ratings dataframe with average rating and number of ratings: ###Code df.groupby('title')['rating'].mean().sort_values(ascending=False).head() df.groupby('title')['rating'].count().sort_values(ascending=False).head() ratings = pd.DataFrame(df.groupby('title')['rating'].mean()) ratings.head() ###Output _____no_output_____ ###Markdown Setting the number of ratings column: ###Code ratings['num of ratings'] = pd.DataFrame(df.groupby('title')['rating'].count()) ratings.head() ###Output _____no_output_____ ###Markdown Visualizing the number of ratings ###Code plt.figure(figsize=(10,4)) ratings['num of ratings'].hist(bins=40) plt.figure(figsize=(10,4)) ratings['rating'].hist(bins=70) sns.jointplot(x='rating',y='num of ratings',data=ratings,alpha=0.5) ###Output _____no_output_____ ###Markdown Okay! Now that we have a general idea of what the data looks like, let's move on to creating a simple recommendation system: Recommending Similar Movies Now let's create a matrix that has the user ids on one access and the movie title on another axis. Each cell will then consist of the rating the user gave to that movie. Note there will be a lot of NaN values, because most people have not seen most of the movies. ###Code moviemat = df.pivot_table(index='user_id',columns='title',values='rating') moviemat.head() ###Output _____no_output_____ ###Markdown Most rated movie: ###Code ratings.sort_values('num of ratings',ascending=False).head(10) ###Output _____no_output_____ ###Markdown Let's choose two movies: starwars, a sci-fi movie. And Liar Liar, a comedy. ###Code ratings.head() ###Output _____no_output_____ ###Markdown Now let's grab the user ratings for those two movies: ###Code starwars_user_ratings = moviemat['Star Wars (1977)'] liarliar_user_ratings = moviemat['Liar Liar (1997)'] starwars_user_ratings.head() ###Output _____no_output_____ ###Markdown We can then use corrwith() method to get correlations between two pandas series: ###Code similar_to_starwars = moviemat.corrwith(starwars_user_ratings) similar_to_liarliar = moviemat.corrwith(liarliar_user_ratings) ###Output /Users/marci/anaconda/lib/python3.5/site-packages/numpy/lib/function_base.py:2487: RuntimeWarning: Degrees of freedom <= 0 for slice warnings.warn("Degrees of freedom <= 0 for slice", RuntimeWarning) ###Markdown Let's clean this by removing NaN values and using a DataFrame instead of a series: ###Code corr_starwars = pd.DataFrame(similar_to_starwars,columns=['Correlation']) corr_starwars.dropna(inplace=True) corr_starwars.head() ###Output _____no_output_____ ###Markdown Now if we sort the dataframe by correlation, we should get the most similar movies, however note that we get some results that don't really make sense. This is because there are a lot of movies only watched once by users who also watched star wars (it was the most popular movie). ###Code corr_starwars.sort_values('Correlation',ascending=False).head(10) ###Output _____no_output_____ ###Markdown Let's fix this by filtering out movies that have less than 100 reviews (this value was chosen based off the histogram from earlier). ###Code corr_starwars = corr_starwars.join(ratings['num of ratings']) corr_starwars.head() ###Output _____no_output_____ ###Markdown Now sort the values and notice how the titles make a lot more sense: ###Code corr_starwars[corr_starwars['num of ratings']>100].sort_values('Correlation',ascending=False).head() ###Output _____no_output_____ ###Markdown Now the same for the comedy Liar Liar: ###Code corr_liarliar = pd.DataFrame(similar_to_liarliar,columns=['Correlation']) corr_liarliar.dropna(inplace=True) corr_liarliar = corr_liarliar.join(ratings['num of ratings']) corr_liarliar[corr_liarliar['num of ratings']>100].sort_values('Correlation',ascending=False).head() ###Output _____no_output_____ ###Markdown ___ ___ Recommender Systems with PythonWelcome to the code notebook for creating Recommender Systems with Python. This notebook follows along with the presentation. Recommendation Systems usually rely on larger data sets and specifically need to be organized in a particular fashion. Because of this, we won't have a project to go along with this topic, instead we will have a more intensive walkthrough process on creating a recommendation system with Python.___ Methods UsedTwo most common types of recommender systems are **Content-Based** and **Collaborative Filtering (CF)**. * Collaborative filtering produces recommendations based on the knowledge of users’ attitude to items, that is it uses the "wisdom of the crowd" to recommend items. * Content-based recommender systems focus on the attributes of the items and give you recommendations based on the similarity between them. Collaborative FilteringIn general, Collaborative filtering (CF) is more commonly used than content-based systems because it usually gives better results and is relatively easy to understand (from an overall implementation perspective). The algorithm has the ability to do feature learning on its own, which means that it can start to learn for itself what features to use. CF can be divided into **Memory-Based Collaborative Filtering** and **Model-Based Collaborative filtering**. In this tutorial, we will implement Model-Based CF by using singular value decomposition (SVD) and Memory-Based CF by computing cosine similarity. The DataWe will use famous MovieLens dataset, which is one of the most common datasets used when implementing and testing recommender engines. It contains 100k movie ratings from 943 users and a selection of 1682 movies.You can download the dataset [here](http://files.grouplens.org/datasets/movielens/ml-100k.zip) or just use the u.data file that is already included in this folder.____ Getting StartedLet's import some libraries we will need: ###Code import numpy as np import pandas as pd ###Output _____no_output_____ ###Markdown We can then read in the **u.data** file, which contains the full dataset. You can read a brief description of the dataset [here](http://files.grouplens.org/datasets/movielens/ml-100k-README.txt).Note how we specify the separator argument for a Tab separated file. ###Code column_names = ['user_id', 'item_id', 'rating', 'timestamp'] df = pd.read_csv('u.data', sep='\t', names=column_names) ###Output _____no_output_____ ###Markdown Get a sneak peek of the first two rows in the dataset. Next, let's count the number of unique users and movies. ###Code df.head() ###Output _____no_output_____ ###Markdown Note how we only have the item_id ###Code n_users = df.user_id.unique().shape[0] n_items = df.item_id.unique().shape[0] print('Number of users = ' + str(n_users) + ' | Number of movies = ' + str(n_items)) ###Output Number of users = 944 | Number of movies = 1682 ###Markdown You can use the [`scikit-learn`](http://scikit-learn.org/stable/) library to split the dataset into testing and training. [`Cross_validation.train_test_split`](http://scikit-learn.org/stable/modules/generated/sklearn.cross_validation.train_test_split.html) shuffles and splits the data into two datasets according to the percentage of test examples (``test_size``), which in this case is 0.25. ###Code from sklearn import cross_validation as cv train_data, test_data = cv.train_test_split(df, test_size=0.25) ###Output _____no_output_____ ###Markdown Memory-Based Collaborative FilteringMemory-Based Collaborative Filtering approaches can be divided into two main sections: **user-item filtering** and **item-item filtering**. A *user-item filtering* will take a particular user, find users that are similar to that user based on similarity of ratings, and recommend items that those similar users liked. In contrast, *item-item filtering* will take an item, find users who liked that item, and find other items that those users or similar users also liked. It takes items and outputs other items as recommendations. * *Item-Item Collaborative Filtering*: “Users who liked this item also liked …”* *User-Item Collaborative Filtering*: “Users who are similar to you also liked …”In both cases, you create a user-item matrix which you build from the entire dataset. Since you have split the data into testing and training you will need to create two ``[943 x 1682]`` matrices. The training matrix contains 75% of the ratings and the testing matrix contains 25% of the ratings. Example of user-item matrix:After you have built the user-item matrix you calculate the similarity and create a similarity matrix. The similarity values between items in *Item-Item Collaborative Filtering* are measured by observing all the users who have rated both items. For *User-Item Collaborative Filtering* the similarity values between users are measured by observing all the items that are rated by both users.A distance metric commonly used in recommender systems is *cosine similarity*, where the ratings are seen as vectors in ``n``-dimensional space and the similarity is calculated based on the angle between these vectors. Cosine similiarity for users *a* and *m* can be calculated using the formula below, where you take dot product of the user vector *$u_k$* and the user vector *$u_a$* and divide it by multiplication of the Euclidean lengths of the vectors.To calculate similarity between items *m* and *b* you use the formula:<img class="aligncenter size-thumbnail img-responsive" src="https://latex.codecogs.com/gif.latex?s_u^{cos}(i_m,i_b)=\frac{i_m&space;\cdot&space;i_b&space;}{&space;\left&space;\|&space;i_m&space;\right&space;\|&space;\left&space;\|&space;i_b&space;\right&space;\|&space;}&space;=\frac{\sum&space;x_{a,m}x_{a,b}}{\sqrt{\sum&space;x_{a,m}^2\sum&space;x_{a,b}^2}}"/>Your first step will be to create the user-item matrix. Since you have both testing and training data you need to create two matrices. ###Code #Create two user-item matrices, one for training and another for testing train_data_matrix = np.zeros((n_users, n_items)) for line in train_data.itertuples(): train_data_matrix[line[1]-1, line[2]-1] = line[3] test_data_matrix = np.zeros((n_users, n_items)) for line in test_data.itertuples(): test_data_matrix[line[1]-1, line[2]-1] = line[3] ###Output _____no_output_____ ###Markdown You can use the [`pairwise_distances`](http://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.pairwise_distances.html) function from `sklearn` to calculate the cosine similarity. Note, the output will range from 0 to 1 since the ratings are all positive. ###Code from sklearn.metrics.pairwise import pairwise_distances user_similarity = pairwise_distances(train_data_matrix, metric='cosine') item_similarity = pairwise_distances(train_data_matrix.T, metric='cosine') ###Output _____no_output_____ ###Markdown Next step is to make predictions. You have already created similarity matrices: `user_similarity` and `item_similarity` and therefore you can make a prediction by applying following formula for user-based CF:You can look at the similarity between users *k* and *a* as weights that are multiplied by the ratings of a similar user *a* (corrected for the average rating of that user). You will need to normalize it so that the ratings stay between 1 and 5 and, as a final step, sum the average ratings for the user that you are trying to predict. The idea here is that some users may tend always to give high or low ratings to all movies. The relative difference in the ratings that these users give is more important than the absolute values. To give an example: suppose, user *k* gives 4 stars to his favourite movies and 3 stars to all other good movies. Suppose now that another user *t* rates movies that he/she likes with 5 stars, and the movies he/she fell asleep over with 3 stars. These two users could have a very similar taste but treat the rating system differently. When making a prediction for item-based CF you don't need to correct for users average rating since query user itself is used to do predictions. ###Code def predict(ratings, similarity, type='user'): if type == 'user': mean_user_rating = ratings.mean(axis=1) #You use np.newaxis so that mean_user_rating has same format as ratings ratings_diff = (ratings - mean_user_rating[:, np.newaxis]) pred = mean_user_rating[:, np.newaxis] + similarity.dot(ratings_diff) / np.array([np.abs(similarity).sum(axis=1)]).T elif type == 'item': pred = ratings.dot(similarity) / np.array([np.abs(similarity).sum(axis=1)]) return pred item_prediction = predict(train_data_matrix, item_similarity, type='item') user_prediction = predict(train_data_matrix, user_similarity, type='user') ###Output _____no_output_____ ###Markdown EvaluationThere are many evaluation metrics but one of the most popular metric used to evaluate accuracy of predicted ratings is *Root Mean Squared Error (RMSE)*. You can use the [`mean_square_error`](http://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html) (MSE) function from `sklearn`, where the RMSE is just the square root of MSE. To read more about different evaluation metrics you can take a look at [this article](http://research.microsoft.com/pubs/115396/EvaluationMetrics.TR.pdf). Since you only want to consider predicted ratings that are in the test dataset, you filter out all other elements in the prediction matrix with `prediction[ground_truth.nonzero()]`. ###Code from sklearn.metrics import mean_squared_error from math import sqrt def rmse(prediction, ground_truth): prediction = prediction[ground_truth.nonzero()].flatten() ground_truth = ground_truth[ground_truth.nonzero()].flatten() return sqrt(mean_squared_error(prediction, ground_truth)) print('User-based CF RMSE: ' + str(rmse(user_prediction, test_data_matrix))) print('Item-based CF RMSE: ' + str(rmse(item_prediction, test_data_matrix))) ###Output User-based CF RMSE: 3.1269170802946533 Item-based CF RMSE: 3.4566054361533025 ###Markdown Memory-based algorithms are easy to implement and produce reasonable prediction quality. The drawback of memory-based CF is that it doesn't scale to real-world scenarios and doesn't address the well-known cold-start problem, that is when new user or new item enters the system. Model-based CF methods are scalable and can deal with higher sparsity level than memory-based models, but also suffer when new users or items that don't have any ratings enter the system. I would like to thank Ethan Rosenthal for his [post](http://blog.ethanrosenthal.com/2015/11/02/intro-to-collaborative-filtering/) about Memory-Based Collaborative Filtering. Model-based Collaborative FilteringModel-based Collaborative Filtering is based on **matrix factorization (MF)** which has received greater exposure, mainly as an unsupervised learning method for latent variable decomposition and dimensionality reduction. Matrix factorization is widely used for recommender systems where it can deal better with scalability and sparsity than Memory-based CF. The goal of MF is to learn the latent preferences of users and the latent attributes of items from known ratings (learn features that describe the characteristics of ratings) to then predict the unknown ratings through the dot product of the latent features of users and items. When you have a very sparse matrix, with a lot of dimensions, by doing matrix factorization you can restructure the user-item matrix into low-rank structure, and you can represent the matrix by the multiplication of two low-rank matrices, where the rows contain the latent vector. You fit this matrix to approximate your original matrix, as closely as possible, by multiplying the low-rank matrices together, which fills in the entries missing in the original matrix.Let's calculate the sparsity level of MovieLens dataset: ###Code sparsity=round(1.0-len(df)/float(n_users*n_items),3) print('The sparsity level of MovieLens100K is ' + str(sparsity*100) + '%') ###Output The sparsity level of MovieLens100K is 93.7% ###Markdown To give an example of the learned latent preferences of the users and items: let's say for the MovieLens dataset you have the following information: _(user id, age, location, gender, movie id, director, actor, language, year, rating)_. By applying matrix factorization the model learns that important user features are _age group (under 10, 10-18, 18-30, 30-90)_, _location_ and _gender_, and for movie features it learns that _decade_, _director_ and _actor_ are most important. Now if you look into the information you have stored, there is no such feature as the _decade_, but the model can learn on its own. The important aspect is that the CF model only uses data (user_id, movie_id, rating) to learn the latent features. If there is little data available model-based CF model will predict poorly, since it will be more difficult to learn the latent features. Models that use both ratings and content features are called **Hybrid Recommender Systems** where both Collaborative Filtering and Content-based Models are combined. Hybrid recommender systems usually show higher accuracy than Collaborative Filtering or Content-based Models on their own: they are capable to address the cold-start problem better since if you don't have any ratings for a user or an item you could use the metadata from the user or item to make a prediction. Hybrid recommender systems will be covered in the next tutorials. SVDA well-known matrix factorization method is **Singular value decomposition (SVD)**. Collaborative Filtering can be formulated by approximating a matrix `X` by using singular value decomposition. The winning team at the Netflix Prize competition used SVD matrix factorization models to produce product recommendations, for more information I recommend to read articles: [Netflix Recommendations: Beyond the 5 stars](http://techblog.netflix.com/2012/04/netflix-recommendations-beyond-5-stars.html) and [Netflix Prize and SVD](http://buzzard.ups.edu/courses/2014spring/420projects/math420-UPS-spring-2014-gower-netflix-SVD.pdf).The general equation can be expressed as follows:Given `m x n` matrix `X`:* *`U`* is an *`(m x r)`* orthogonal matrix* *`S`* is an *`(r x r)`* diagonal matrix with non-negative real numbers on the diagonal* *V^T* is an *`(r x n)`* orthogonal matrixElements on the diagnoal in `S` are known as *singular values of `X`*. Matrix *`X`* can be factorized to *`U`*, *`S`* and *`V`*. The *`U`* matrix represents the feature vectors corresponding to the users in the hidden feature space and the *`V`* matrix represents the feature vectors corresponding to the items in the hidden feature space.Now you can make a prediction by taking dot product of *`U`*, *`S`* and *`V^T`*. ###Code import scipy.sparse as sp from scipy.sparse.linalg import svds #get SVD components from train matrix. Choose k. u, s, vt = svds(train_data_matrix, k = 20) s_diag_matrix=np.diag(s) X_pred = np.dot(np.dot(u, s_diag_matrix), vt) print('User-based CF MSE: ' + str(rmse(X_pred, test_data_matrix))) ###Output User-based CF MSE: 2.7178500181267085
Advance Retail Sales Clothing and Clothing Accessory Stores .ipynb
###Markdown Data Preprocessing Splitting data ###Code # I want 10% of the whole data has to be splitted to train and test length = 0.1 split_length =len(data) - int(len(data)*length) train_data = data.iloc[:split_length] test_data = data.iloc[split_length:] len(train_data),len(test_data) ###Output _____no_output_____ ###Markdown Scaling data using MinMaxScaler ###Code #scaling data scaler = MinMaxScaler() scale_train = scaler.fit_transform(train_data) scale_test = scaler.transform(test_data) ###Output _____no_output_____ ###Markdown Preparing Time series generator data for training as well as validation data ###Code def timeserieGenerator(length=12,batch_size=1): train_generator = TimeseriesGenerator(scale_train,scale_train,length = length,batch_size = batch_size) validation_generator = TimeseriesGenerator(scale_test,scale_test,length = length,batch_size = batch_size) return train_generator,validation_generator,length length = int(input("Enter the length:")) batch_size = int(input("Enter Batch Size:")) train_generator,validation_generator,length = timeserieGenerator(length,batch_size) ###Output Enter the length:12 Enter Batch Size:1 ###Markdown Building Model ###Code def building_and_fitting_model(model_type,length=12,n_features = 1): model1 = Sequential() model1.add(model_type(50,activation = 'relu',input_shape=(length,n_features))) model1.add(Dense(1)) model1.compile(optimizer='adam',loss = 'mse') print(model1.summary()) ES = EarlyStopping(monitor = 'val_loss',mode = 'min',patience=5) model1.fit_generator(train_generator,validation_data = validation_generator,epochs = 300,callbacks = [ES]) print(str(model_type),":\n") df = pd.DataFrame(model1.history.history) df.plot() return model1 def forecast(to_be_forecasted,model): forecast = [] first_eval_batch = scale_train[-length:] current_eval_batch = first_eval_batch.reshape((1,length,batch_size)) for i in range(to_be_forecasted): prediction = model.predict(current_eval_batch)[0] forecast.append(prediction) current_eval_batch = np.append(current_eval_batch[:,1:,:],[[prediction]],axis=1) forecast = scaler.inverse_transform(forecast) return forecast ###Output _____no_output_____ ###Markdown LSTM ###Code model_LSTM = building_and_fitting_model(LSTM,length = length , n_features = batch_size) forecast_points = forecast(len(scale_test),model_LSTM) test_data["LSTM"] = forecast_points ###Output Model: "sequential" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= lstm (LSTM) (None, 50) 10400 _________________________________________________________________ dense (Dense) (None, 1) 51 ================================================================= Total params: 10,451 Trainable params: 10,451 Non-trainable params: 0 _________________________________________________________________ None WARNING:tensorflow:From <ipython-input-9-da0b8aab6513>:11: Model.fit_generator (from tensorflow.python.keras.engine.training) is deprecated and will be removed in a future version. Instructions for updating: Please use Model.fit, which supports generators. WARNING:tensorflow:sample_weight modes were coerced from ... to ['...'] WARNING:tensorflow:sample_weight modes were coerced from ... to ['...'] Train for 289 steps, validate for 21 steps Epoch 1/300 289/289 [==============================] - 7s 23ms/step - loss: 0.0286 - val_loss: 0.0221 Epoch 2/300 289/289 [==============================] - 3s 11ms/step - loss: 0.0193 - val_loss: 0.0176 Epoch 3/300 289/289 [==============================] - 6s 21ms/step - loss: 0.0167 - val_loss: 0.0457 Epoch 4/300 289/289 [==============================] - 3s 12ms/step - loss: 0.0128 - val_loss: 0.0063 Epoch 5/300 289/289 [==============================] - 6s 20ms/step - loss: 0.0079 - val_loss: 0.0144 Epoch 6/300 289/289 [==============================] - 5s 17ms/step - loss: 0.0044 - val_loss: 0.0011 Epoch 7/300 289/289 [==============================] - 4s 12ms/step - loss: 0.0028 - val_loss: 0.0012 Epoch 8/300 289/289 [==============================] - 5s 16ms/step - loss: 0.0024 - val_loss: 0.0020 Epoch 9/300 289/289 [==============================] - 4s 13ms/step - loss: 0.0019 - val_loss: 0.0015 Epoch 10/300 289/289 [==============================] - 5s 19ms/step - loss: 0.0031 - val_loss: 9.9300e-04 Epoch 11/300 289/289 [==============================] - 4s 14ms/step - loss: 0.0017 - val_loss: 0.0010 Epoch 12/300 289/289 [==============================] - 6s 21ms/step - loss: 0.0016 - val_loss: 0.0032 Epoch 13/300 289/289 [==============================] - 6s 22ms/step - loss: 0.0017 - val_loss: 0.0012 Epoch 14/300 289/289 [==============================] - 5s 17ms/step - loss: 0.0015 - val_loss: 0.0010 Epoch 15/300 289/289 [==============================] - 6s 21ms/step - loss: 0.0014 - val_loss: 0.0011 <class 'tensorflow.python.keras.layers.recurrent_v2.LSTM'> : ###Markdown SimpleRNN ###Code len(scale_test) model_SRNN = building_and_fitting_model(SimpleRNN,length = length , n_features = batch_size) forecast_points = forecast(len(scale_test),model_SRNN) test_data["SimpleRNN"] = forecast_points ###Output Model: "sequential_1" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= simple_rnn (SimpleRNN) (None, 50) 2600 _________________________________________________________________ dense_1 (Dense) (None, 1) 51 ================================================================= Total params: 2,651 Trainable params: 2,651 Non-trainable params: 0 _________________________________________________________________ None WARNING:tensorflow:sample_weight modes were coerced from ... to ['...'] WARNING:tensorflow:sample_weight modes were coerced from ... to ['...'] Train for 289 steps, validate for 21 steps Epoch 1/300 289/289 [==============================] - 6s 20ms/step - loss: 0.0206 - val_loss: 0.0083 Epoch 2/300 289/289 [==============================] - 3s 12ms/step - loss: 0.0057 - val_loss: 0.0019 Epoch 3/300 289/289 [==============================] - 3s 10ms/step - loss: 9.8295e-04 - val_loss: 0.0016 Epoch 4/300 289/289 [==============================] - 3s 10ms/step - loss: 0.0016 - val_loss: 0.0013 Epoch 5/300 289/289 [==============================] - 4s 13ms/step - loss: 0.0012 - val_loss: 0.0025 Epoch 6/300 289/289 [==============================] - 5s 17ms/step - loss: 0.0010 - val_loss: 0.0028 Epoch 7/300 289/289 [==============================] - 5s 16ms/step - loss: 0.0014 - val_loss: 0.0041 Epoch 8/300 289/289 [==============================] - 5s 17ms/step - loss: 0.0013 - val_loss: 0.0023 Epoch 9/300 289/289 [==============================] - 4s 15ms/step - loss: 0.0022 - val_loss: 0.0015 <class 'tensorflow.python.keras.layers.recurrent.SimpleRNN'> : ###Markdown GRU ###Code model_GRU = building_and_fitting_model(GRU,length = length , n_features = batch_size) forecast_points = forecast(len(scale_test),model_GRU) test_data["GRU"] = forecast_points test_data.plot(figsize=(12,8)) ###Output _____no_output_____ ###Markdown Evaluating model using reccursion metrics ###Code def max_error_value(true,predicted): return max_error(true,predicted) def r2score(true,predicted): return r2_score(true,predicted) def mean_squared_error_value(true,predicted): return mean_squared_error(true,predicted) def mean_squared_error_value(true,predicted): return mean_squared_error(true,predicted) def evaluating_models(): #Printing Max Error print("Max Error from LSTM:",max_error_value(test_data[['RSCCASN']],test_data[['LSTM']])) print("Max Error from SimpleRNN:",max_error_value(test_data[['RSCCASN']],test_data[['SimpleRNN']])) print("Max Error from GRU:",max_error_value(test_data[['RSCCASN']],test_data[['GRU']])) print("\n\n") #Mean Squared Error print("Mean Squared Error from LSTM: ",mean_squared_error_value(test_data[['RSCCASN']],test_data[['LSTM']])) print("Mean Squared Error from SimpleRNN: ",mean_squared_error_value(test_data[['RSCCASN']],test_data[['SimpleRNN']])) print("Mean Squared Error from GRU: ",mean_squared_error_value(test_data[['RSCCASN']],test_data[['GRU']])) print("\n\n") #r2_score rscr = 0 model = 'LSTM' #LSTM rscr = r2score(test_data[['RSCCASN']],test_data[['LSTM']]) print("r2_score From LSTM:",rscr) #SimpleRNN temp = r2score(test_data[['RSCCASN']],test_data[['SimpleRNN']]) print("r2_score From SimpleRNN:",temp) if temp>rscr: rscr = temp model = 'SimpleRNN' #GRU temp = r2score(test_data[['RSCCASN']],test_data[['GRU']]) print("r2_score From GRU:",temp) if temp>rscr: rscr = temp model = 'GRU' print('\n\nBest Model Among All Is: ',model ,"With r2_score: ",rscr) evaluating_models() ###Output Max Error from LSTM: 6932.228821754456 Max Error from SimpleRNN: 2853.161606788639 Max Error from GRU: 3813.265411853794 Mean Squared Error from LSTM: 2436821.037504457 Mean Squared Error from SimpleRNN: 1203552.3144490453 Mean Squared Error from GRU: 1981421.7655668282 r2_score From LSTM: 0.8290642740266767 r2_score From SimpleRNN: 0.9155743957184854 r2_score From GRU: 0.8610091743530878 Best Model Among All Is: SimpleRNN With r2_score: 0.9155743957184854 ###Markdown Based on the above, we are using SimpleRNN for predicting or forecasting for an year's data Forecasting results with the trained model of SimpleRNN Note: More and more you forecast,introducing of noise is too much into data. ###Code scaled_data_for_forecasting = scaler.fit_transform(data) train_data.tail() period = int(input('Enter the number of years to be forecasted:')) period *= 12 forecasting_result = forecast(period,model_SRNN) forecating_index = pd.date_range(start='2017-02-01',periods=period,freq='MS') forecating_index forecast_dataframe = pd.DataFrame(data = forecasting_result,index = forecating_index, columns = ['Forecast']) # Forecasted dataframe forecast_dataframe ###Output _____no_output_____ ###Markdown plotting in different plots ###Code train_data.plot() forecast_dataframe.plot() ###Output _____no_output_____ ###Markdown Plotting in same axis ###Code ax = train_data.plot(figsize=(12,8)) forecast_dataframe.plot(ax=ax) plt.xlim('2015-01-01','2021-01-01') ###Output _____no_output_____
Mycodes/chapter02_prerequisite/2.2_tensor.ipynb
###Markdown 2.2 数据操作 ###Code import torch torch.manual_seed(0) torch.cuda.manual_seed(0) print(torch.__version__) ###Output 1.9.1+cpu ###Markdown 2.2.1 创建`Tensor`创建一个5x3的未初始化的`Tensor`: ###Code x = torch.empty(5, 3) print(x) ###Output tensor([[0., 0., 0.], [0., 0., 0.], [0., 0., 0.], [0., 0., 0.], [0., 0., 0.]]) ###Markdown 创建一个5x3的随机初始化的`Tensor`: ###Code x = torch.rand(5, 3) print(x) x = torch.randn(5, 3) print(x) torch.randint(1,100,(5,3)) torch.randn?? torch.rand?? torch.randint?? # randint(low=0, high, size) ###Output _____no_output_____ ###Markdown 创建一个5x3的long型全0的`Tensor`: ###Code x = torch.zeros(5, 3, dtype=torch.long) print(x) ###Output tensor([[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]]) ###Markdown 直接根据数据创建: ###Code x = torch.tensor([5.5, 3]) print(x) ###Output tensor([5.5000, 3.0000]) ###Markdown 还可以通过现有的`Tensor`来创建,此方法会默认重用输入`Tensor`的一些属性,例如数据类型,除非自定义数据类型。 ###Code x = x.new_ones(5, 3, dtype=torch.float64) # 返回的tensor默认具有相同的torch.dtype和torch.device print(x) x = torch.randn_like(x, dtype=torch.float) # 指定新的数据类型 print(x) ###Output tensor([[1., 1., 1.], [1., 1., 1.], [1., 1., 1.], [1., 1., 1.], [1., 1., 1.]], dtype=torch.float64) tensor([[ 0.2692, -0.0630, 0.0084], [ 0.9664, 0.7486, 1.2709], [ 0.2109, 1.5359, -2.1960], [-0.4223, -0.1316, 0.1957], [-1.0772, 0.4173, -0.1003]]) ###Markdown 我们可以通过`shape`或者`size()`来获取`Tensor`的形状: ###Code print(x.size()) print(x.shape) ###Output torch.Size([5, 3]) torch.Size([5, 3]) ###Markdown > 注意:返回的torch.Size其实就是一个tuple, 支持所有tuple的操作。 2.2.2 操作 算术操作* **加法形式一** ###Code y = torch.rand(5, 3) print(x + y) ###Output tensor([[ 0.3880, 0.6854, 0.0545], [ 0.9858, 0.7628, 1.6695], [ 1.0471, 1.5626, -1.2804], [-0.1224, 0.5148, 0.7185], [-1.0281, 1.3320, 0.6689]]) ###Markdown * **加法形式二** ###Code print(torch.add(x, y)) result = torch.empty(5, 3) result torch.add(x, y) result = torch.empty(5, 3) torch.add(x, y, out=result) print(result) result = torch.empty(5, 3) torch.add(x, y, out=result) print(result) torch.add?? ###Output _____no_output_____ ###Markdown * **加法形式三、inplace** ###Code # adds x to y y.add_(x) print(y) ###Output tensor([[ 1.3967, 1.0892, 0.4369], [ 1.6995, 2.0453, 0.6539], [-0.1553, 3.7016, -0.3599], [ 0.7536, 0.0870, 1.2274], [ 2.5046, -0.1913, 0.4760]]) ###Markdown > **注:PyTorch操作inplace版本都有后缀"_", 例如`x.copy_(y), x.t_()`** 索引我们还可以使用类似NumPy的索引操作来访问`Tensor`的一部分,需要注意的是:**索引出来的结果与原数据共享内存,也即修改一个,另一个会跟着修改。** ###Code print(x) y = x[0, :] y += 1 print(y) print(x[0, :]) # 源tensor也被改了 print(x) ###Output tensor([[ 1.2692, 0.9370, 1.0084], [ 0.9664, 0.7486, 1.2709], [ 0.2109, 1.5359, -2.1960], [-0.4223, -0.1316, 0.1957], [-1.0772, 0.4173, -0.1003]]) ###Markdown 改变形状用`view()`来改变`Tensor`的形状: ###Code y = x.view(15) z = x.view(-1, 5) # -1所指的维度可以根据其他维度的值推出来 print(x.size(), y.size(), z.size()) ###Output torch.Size([5, 3]) torch.Size([15]) torch.Size([3, 5]) ###Markdown **注意`view()`返回的新tensor与源tensor共享内存,也即更改其中的一个,另外一个也会跟着改变。** ###Code print(x) x += 1 print(x) print(y) # 也加了1 ###Output tensor([[ 1.2692, 0.9370, 1.0084], [ 0.9664, 0.7486, 1.2709], [ 0.2109, 1.5359, -2.1960], [-0.4223, -0.1316, 0.1957], [-1.0772, 0.4173, -0.1003]]) tensor([[ 2.2692, 1.9370, 2.0084], [ 1.9664, 1.7486, 2.2709], [ 1.2109, 2.5359, -1.1960], [ 0.5777, 0.8684, 1.1957], [-0.0772, 1.4173, 0.8997]]) tensor([ 2.2692, 1.9370, 2.0084, 1.9664, 1.7486, 2.2709, 1.2109, 2.5359, -1.1960, 0.5777, 0.8684, 1.1957, -0.0772, 1.4173, 0.8997]) ###Markdown 如果不想共享内存,推荐先用`clone`创造一个副本然后再使用`view`。 ###Code print(x) x_cp = x.clone().view(15) x -= 1 print(x) print(x_cp) ###Output tensor([[ 2.2692, 1.9370, 2.0084], [ 1.9664, 1.7486, 2.2709], [ 1.2109, 2.5359, -1.1960], [ 0.5777, 0.8684, 1.1957], [-0.0772, 1.4173, 0.8997]]) tensor([[ 1.2692, 0.9370, 1.0084], [ 0.9664, 0.7486, 1.2709], [ 0.2109, 1.5359, -2.1960], [-0.4223, -0.1316, 0.1957], [-1.0772, 0.4173, -0.1003]]) tensor([ 2.2692, 1.9370, 2.0084, 1.9664, 1.7486, 2.2709, 1.2109, 2.5359, -1.1960, 0.5777, 0.8684, 1.1957, -0.0772, 1.4173, 0.8997]) ###Markdown 另外一个常用的函数就是`item()`, 它可以将一个标量`Tensor`转换成一个Python number: ###Code x = torch.randn(1) print(x) print(x.item()) ###Output tensor([1.2897]) 1.2897011041641235 ###Markdown 2.2.3 广播机制 ###Code x = torch.arange(1, 3).view(1, 2) print(x) y = torch.arange(1, 4).view(3, 1) print(y) print(x + y) ###Output tensor([[1, 2]]) tensor([[1], [2], [3]]) tensor([[2, 3], [3, 4], [4, 5]]) ###Markdown 2.2.4 运算的内存开销 ###Code x = torch.tensor([1, 2]) y = torch.tensor([3, 4]) id_before = id(y) y += x print(id(y) == id_before) x = torch.tensor([1, 2]) y = torch.tensor([3, 4]) id_before = id(y) y = y + x print(id(y) == id_before) x = torch.tensor([1, 2]) y = torch.tensor([3, 4]) id_before = id(y) y[:] = y + x print(id(y) == id_before) x = torch.tensor([1, 2]) y = torch.tensor([3, 4]) id_before = id(y) torch.add(x, y, out=y) # y += x, y.add_(x) print(id(y) == id_before) x = torch.tensor([1, 2]) y = torch.tensor([3, 4]) id_before = id(y) # torch.add(x, y, out=y) # y += x, y.add_(x) y.add_(x) print(id(y) == id_before) ###Output True ###Markdown 2.2.5 `Tensor`和NumPy相互转换**`numpy()`和`from_numpy()`这两个函数产生的`Tensor`和NumPy array实际是使用的相同的内存,改变其中一个时另一个也会改变!!!** `Tensor`转NumPy ###Code a = torch.ones(5) b = a.numpy() print(a, b) a += 1 print(a, b) b += 1 print(a, b) ###Output tensor([1., 1., 1., 1., 1.]) [1. 1. 1. 1. 1.] tensor([2., 2., 2., 2., 2.]) [2. 2. 2. 2. 2.] tensor([3., 3., 3., 3., 3.]) [3. 3. 3. 3. 3.] ###Markdown NumPy数组转`Tensor` ###Code import numpy as np a = np.ones(5) b = torch.from_numpy(a) print(a, b) a += 1 print(a, b) b += 1 print(a, b) ###Output [1. 1. 1. 1. 1.] tensor([1., 1., 1., 1., 1.], dtype=torch.float64) [2. 2. 2. 2. 2.] tensor([2., 2., 2., 2., 2.], dtype=torch.float64) [3. 3. 3. 3. 3.] tensor([3., 3., 3., 3., 3.], dtype=torch.float64) ###Markdown 直接用`torch.tensor()`将NumPy数组转换成`Tensor`,该方法总是会进行数据拷贝,返回的`Tensor`和原来的数据不再共享内存。 ###Code # 用torch.tensor()转换时不会共享内存 c = torch.tensor(a) a += 1 print(a, c) ###Output [4. 4. 4. 4. 4.] tensor([3., 3., 3., 3., 3.], dtype=torch.float64) ###Markdown 2.2.6 `Tensor` on GPU ###Code x # 以下代码只有在PyTorch GPU版本上才会执行 if torch.cuda.is_available(): device = torch.device("cuda") # GPU y = torch.ones_like(x, device=device) # 直接创建一个在GPU上的Tensor x = x.to(device) # 等价于 .to("cuda") z = x + y print(z) print(z.to("cpu", torch.double)) # to()还可以同时更改数据类型 ###Output _____no_output_____
module1-scrape-and-process-data/LS_DS_121_Scrape_and_process_data.ipynb
###Markdown _Lambda School Data Science_ Scrape and process dataObjectives- scrape and parse web pages- use list comprehensions- select rows and columns with pandasLinks- [Automate the Boring Stuff with Python, Chapter 11](https://automatetheboringstuff.com/chapter11/) - Requests - Beautiful Soup- [Python List Comprehensions: Explained Visually](https://treyhunner.com/2015/12/python-list-comprehensions-now-in-color/)- [Pandas Cheat Sheet](https://github.com/pandas-dev/pandas/blob/master/doc/cheatsheet/Pandas_Cheat_Sheet.pdf) - Subset Observations (Rows) - Subset Variables (Columns)- Python Data Science Handbook - [Chapter 3.1](https://jakevdp.github.io/PythonDataScienceHandbook/03.01-introducing-pandas-objects.html), Introducing Pandas Objects - [Chapter 3.2](https://jakevdp.github.io/PythonDataScienceHandbook/03.02-data-indexing-and-selection.html), Data Indexing and Selection Scrape the titles of PyCon 2019 talks ###Code url = 'https://us.pycon.org/2019/schedule/talks/list/' import bs4 import requests result = requests.get(url) # Making sure it went through correctly result soup = bs4.BeautifulSoup(result.text) first = soup.select('h2')[0] first # Making it readable by removing HTML tags first.text.strip() titles = [tag.text.strip() for tag in soup.select('h2')] titles ###Output _____no_output_____ ###Markdown 5 ways to look at long titlesLet's define a long title as greater than 80 characters 1. For Loop ###Code long_titles = [] for title in titles: if len(title) > 80: long_titles.append(title) long_titles ###Output _____no_output_____ ###Markdown 2. List Comprehension ###Code [title for title in titles if len(title) > 80] ###Output _____no_output_____ ###Markdown 3. Filter with named function ###Code def long(title): return len(title) > 80 long("Short and meaningless string") long('Supercalifragilisticexpealidociouseventhoughthesoundofitissomethingquiteatrocious') list(filter(long, titles)) ###Output _____no_output_____ ###Markdown 4. Filter with anonymous function ###Code list(filter(lambda t: len(t) > 80, titles)) ###Output _____no_output_____ ###Markdown 5. Pandaspandas documentation: [Working with Text Data](https://pandas.pydata.org/pandas-docs/stable/text.html) ###Code import pandas as pd pd.options.display.max_colwidth = 200 df = pd.DataFrame({'title': titles}) df.shape df[ df['title'].str.len() > 80 ] condition = df['title'].str.len() > 80 df[condition] ###Output _____no_output_____ ###Markdown Make new dataframe columnspandas documentation: [apply](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.apply.html) title length ###Code df['title length'] = df['title'].apply(len) df.shape df.head() df[ df['title length'] > 80 ] df.loc[ df['title length'] > 80, 'title'] ###Output _____no_output_____ ###Markdown long title ###Code df['long title'] = df['title length'] > 80 df.shape df.head() df[ df['long title']==True] df[df['long title']] ###Output _____no_output_____ ###Markdown first letter ###Code df['first letter'] = df['title'].str[0] df[ df['first letter']=='T' ] ###Output _____no_output_____ ###Markdown word countUsing [`textstat`](https://github.com/shivam5992/textstat) ###Code !pip install textstat import textstat df['title word count'] = df['title'].apply(textstat.lexicon_count) df.head() df[ df['title word count'] <= 3 ] ###Output _____no_output_____ ###Markdown Rename column`title length` --> `title character count`pandas documentation: [rename](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.rename.html) ###Code df = df.rename(columns={'title length': 'title character count'}) df.head() ###Output _____no_output_____ ###Markdown Analyze the dataframe Describepandas documentation: [describe](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.describe.html) ###Code df.describe() df.describe(include='all') df.describe(exclude='number') ###Output _____no_output_____ ###Markdown Sort valuespandas documentation: [sort_values](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.sort_values.html) Five shortest titles, by character count ###Code df.sort_values(by='title character count').head(5) ###Output _____no_output_____ ###Markdown Titles sorted reverse alphabetically ###Code df.sort_values(by='first letter', ascending=False).head() ###Output _____no_output_____ ###Markdown Get value countspandas documentation: [value_counts](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.value_counts.html) Frequency counts of first letters ###Code df['first letter'].value_counts() ###Output _____no_output_____ ###Markdown Percentage of talks with long titles ###Code df['long title'].value_counts(normalize=True) ###Output _____no_output_____ ###Markdown Plotpandas documentation: [Visualization](https://pandas.pydata.org/pandas-docs/stable/visualization.html) Top 5 most frequent first letters ###Code %matplotlib inline (df['first letter'] .value_counts() .head(5) .plot .barh(color='grey', title='PyCon 2019 Talks: Top 5 Most Frequent First Letters')); ###Output _____no_output_____ ###Markdown Histogram of title lengths, in characters ###Code title = 'Distribution of title length, in characters' df['title character count'].plot.hist(title=title); ###Output _____no_output_____ ###Markdown Assignment**Scrape** the talk descriptions. Hint: `soup.select('.presentation-description')`**Make** new columns in the dataframe:- description- description character count- description word count**Describe** all the dataframe's columns. What's the average description word count? The minimum? The maximum?**Answer** the question: Which descriptions could fit in a tweet? Stretch Challenge**Make** another new column in the dataframe:- description grade level (you can use [this `textstat` function](https://github.com/shivam5992/textstatthe-flesch-kincaid-grade-level) to get the Flesh-Kincaid grade level)**Answer** the question: What's the distribution of grade levels? Plot a histogram.**Be aware** that [Textstat has issues when sentences aren't separated by spaces](https://github.com/shivam5992/textstat/issues/77issuecomment-453734048). (A Lambda School Data Science student helped identify this issue, and emailed with the developer.) Also, [BeautifulSoup doesn't separate paragraph tags with spaces](https://bugs.launchpad.net/beautifulsoup/+bug/1768330).So, you may get some inaccurate or surprising grade level estimates here. Don't worry, that's ok — but optionally, can you do anything to try improving the grade level estimates? ###Code ### ASSIGNMENT # Scraping talk descriptions descriptions = [tag.text.strip() for tag in soup.select('.presentation-description')] descriptions df.head() # Adding new column df['description'] = pd.DataFrame({'title': descriptions}) df.head() # Add description character count # Add description word count # Format like this : df['title'].apply(len) df['description_chars'] = df['description'].apply(len) df['description_words'] = df['description'].apply(textstat.lexicon_count) df.head() ###Output _____no_output_____ ###Markdown Describe all the dataframe's columns. What's the average description word count? The minimum? The maximum?Answer the question: Which descriptions could fit in a tweet? ###Code # Average description word count count_sum = [] for count in df["description_words"]: count_sum.append(count) average_count = sum(count_sum)/len(count_sum) average_count # Minimum description word count minimum_word_count = min(count_sum) minimum_word_count # Maximum description word count maximum_word_count = max(count_sum) maximum_word_count # Descriptions that could fit in a tweet df[ df['description_chars'] <= 280 ] # Descriptions that could fit in a tweet prior to 2018 # Probably would be important if we were, say, trying to determine which descriptions were shared on the site's twitter account over the past five years df[ df['description_chars'] <= 140 ] ###Output _____no_output_____ ###Markdown _Lambda School Data Science_ Scrape and process dataObjectives- scrape and parse web pages- use list comprehensions- select rows and columns with pandasLinks- [Automate the Boring Stuff with Python, Chapter 11](https://automatetheboringstuff.com/chapter11/) - Requests - Beautiful Soup- [Python List Comprehensions: Explained Visually](https://treyhunner.com/2015/12/python-list-comprehensions-now-in-color/)- [Pandas Cheat Sheet](https://github.com/pandas-dev/pandas/blob/master/doc/cheatsheet/Pandas_Cheat_Sheet.pdf) - Subset Observations (Rows) - Subset Variables (Columns)- Python Data Science Handbook - [Chapter 3.1](https://jakevdp.github.io/PythonDataScienceHandbook/03.01-introducing-pandas-objects.html), Introducing Pandas Objects - [Chapter 3.2](https://jakevdp.github.io/PythonDataScienceHandbook/03.02-data-indexing-and-selection.html), Data Indexing and Selection Scrape the titles of PyCon 2019 talks ###Code url = 'https://us.pycon.org/2019/schedule/talks/list/' import bs4 import requests result = requests.get(url) result type(result) result.text type(result.text) soup = bs4.BeautifulSoup(result.text) soup type(soup) soup.select('h2') type(soup.select('h2')) len(soup.select('h2')) first = soup.select('h2')[0] first type(first) first.text type(first.text) first.text.strip() last = soup.select('h2')[-1] last.text.strip() # This ... titles = [] for tag in soup.select('h2'): title = tag.text.strip() titles.append(title) # ... is the same as this: titles = [tag.text.strip() for tag in soup.select('h2')] type(titles), len(titles) titles[0], titles[-1] ###Output _____no_output_____ ###Markdown 5 ways to look at long titlesLet's define a long title as greater than 80 characters 1. For Loop ###Code long_titles = [] for title in titles: if len(title) > 80: long_titles.append(title) long_titles ###Output _____no_output_____ ###Markdown 2. List Comprehension ###Code [title for title in titles if len(title) > 80] ###Output _____no_output_____ ###Markdown 3. Filter with named function ###Code def long(title): return len(title) > 80 long('Python is good!') long('Thinking Inside the Box: How Python Helped Us Adapt to An Existing Data Ingestion Pipeline') list(filter(long, titles)) ###Output _____no_output_____ ###Markdown 4. Filter with anonymous function ###Code list(filter(lambda t: len(t) > 80, titles)) ###Output _____no_output_____ ###Markdown 5. Pandaspandas documentation: [Working with Text Data](https://pandas.pydata.org/pandas-docs/stable/text.html) ###Code import pandas as pd pd.options.display.max_colwidth = 200 df = pd.DataFrame({'title': titles}) df.shape df[ df['title'].str.len() > 80 ] condition = df['title'].str.len() > 80 df[condition] ###Output _____no_output_____ ###Markdown Make new dataframe columnspandas documentation: [apply](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.apply.html) title length ###Code df['title length'] = df['title'].apply(len) df.shape df.head() df[ df['title length'] > 80 ] df.loc[ df['title length'] > 80, 'title'] ###Output _____no_output_____ ###Markdown long title ###Code df['long title'] = df['title length'] > 80 df.shape df.head() df[ df['long title']==True] df[df['long title']] ###Output _____no_output_____ ###Markdown first letter ###Code # 'Python is great!'[0] df['first letter'] = df['title'].str[0] df[ df['first letter']=='P' ] df[ df['title'].str.startswith('P') ] ###Output _____no_output_____ ###Markdown word countUsing [`textstat`](https://github.com/shivam5992/textstat) ###Code !pip install textstat import textstat df['title word count'] = df['title'].apply(textstat.lexicon_count) df.shape df.head() df[ df['title word count'] <= 3 ] ###Output _____no_output_____ ###Markdown Rename column`title length` --> `title character count`pandas documentation: [rename](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.rename.html) ###Code df = df.rename(columns={'title length': 'title character count'}) ###Output _____no_output_____ ###Markdown Analyze the dataframe Describepandas documentation: [describe](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.describe.html) ###Code df.describe() df.describe(include='all') df.describe(exclude='number') ###Output _____no_output_____ ###Markdown Sort valuespandas documentation: [sort_values](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.sort_values.html) Five shortest titles, by character count ###Code df.sort_values(by='title character count').head(5) ###Output _____no_output_____ ###Markdown Titles sorted reverse alphabetically ###Code df.sort_values(by='first letter', ascending=False).head() ###Output _____no_output_____ ###Markdown Get value countspandas documentation: [value_counts](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.value_counts.html) Frequency counts of first letters ###Code df['first letter'].value_counts() ###Output _____no_output_____ ###Markdown Percentage of talks with long titles ###Code df['long title'].value_counts(normalize=True) ###Output _____no_output_____ ###Markdown Plotpandas documentation: [Visualization](https://pandas.pydata.org/pandas-docs/stable/visualization.html) Top 5 most frequent first letters ###Code %matplotlib inline (df['first letter'] .value_counts() .head(5) .plot .barh(color='grey', title='Top 5 most frequent first letters, PyCon 2019 talks')); ###Output _____no_output_____ ###Markdown Histogram of title lengths, in characters ###Code title = 'Distribution of title length, in characters' df['title character count'].plot.hist(title=title); ###Output _____no_output_____ ###Markdown Assignment**Scrape** the talk descriptions. Hint: `soup.select('.presentation-description')`**Make** new columns in the dataframe:- description- description character count- description word count**Describe** all the dataframe's columns. What's the average description word count? The minimum? The maximum?**Answer** the question: Which descriptions could fit in a tweet? Stretch Challenge**Make** another new column in the dataframe:- description grade level (you can use [this `textstat` function](https://github.com/shivam5992/textstatthe-flesch-kincaid-grade-level) to get the Flesh-Kincaid grade level)**Answer** the question: What's the distribution of grade levels? Plot a histogram.**Be aware** that [Textstat has issues when sentences aren't separated by spaces](https://github.com/shivam5992/textstat/issues/77issuecomment-453734048). (A Lambda School Data Science student helped identify this issue, and emailed with the developer.) Also, [BeautifulSoup doesn't separate paragraph tags with spaces](https://bugs.launchpad.net/beautifulsoup/+bug/1768330).So, you may get some inaccurate or surprising grade level estimates here. Don't worry, that's ok — but optionally, can you do anything to try improving the grade level estimates? ###Code descrip = [tag.text.strip() for tag in soup.select('.presentation-description')] #print(descrip) df['description'] = descrip df['description char length'] = [len(x) for x in descrip] df['desscription word count'] = [x for x in df['description'].apply(textstat.lexicon_count)] df.describe() ###Output _____no_output_____ ###Markdown Description Word CountMax 421Min 20Mean 130.821053Description Character CountMax 2827Min 121Mean 813.073684 ###Code tweetable_descriptions = df.loc[ df['description char length'] > 280, 'title'] # df[['description char length' < 280, 'title']] print('Tweetable descriptions are') print(df.loc[ df['description char length'] <= 280, 'title']) print(df.loc[ df['description char length'] <= 280,'description']) df['grade level'] = df['description'].apply(textstat.flesch_kincaid_grade) print('These are the Flesh-Kincaid Grade descriptions.') print(df['grade level'].describe()) (df['grade level'].plot.hist(title='Flesh-Kincaid histogram')); ###Output _____no_output_____ ###Markdown _Lambda School Data Science_ Scrape and process dataObjectives- scrape and parse web pages- use list comprehensions- select rows and columns with pandasLinks- [Automate the Boring Stuff with Python, Chapter 11](https://automatetheboringstuff.com/chapter11/) - Requests - Beautiful Soup- [Python List Comprehensions: Explained Visually](https://treyhunner.com/2015/12/python-list-comprehensions-now-in-color/)- [Pandas Cheat Sheet](https://github.com/pandas-dev/pandas/blob/master/doc/cheatsheet/Pandas_Cheat_Sheet.pdf) - Subset Observations (Rows) - Subset Variables (Columns)- Python Data Science Handbook - [Chapter 3.1](https://jakevdp.github.io/PythonDataScienceHandbook/03.01-introducing-pandas-objects.html), Introducing Pandas Objects - [Chapter 3.2](https://jakevdp.github.io/PythonDataScienceHandbook/03.02-data-indexing-and-selection.html), Data Indexing and Selection Scrape the titles of PyCon 2018 talks ###Code url = 'https://us.pycon.org/2018/schedule/talks/list/' ###Output _____no_output_____ ###Markdown 5 ways to look at long titlesLet's define a long title as greater than 80 characters 1. For Loop ###Code ###Output _____no_output_____ ###Markdown 2. List Comprehension ###Code ###Output _____no_output_____ ###Markdown 3. Filter with named function ###Code ###Output _____no_output_____ ###Markdown 4. Filter with anonymous function ###Code ###Output _____no_output_____ ###Markdown 5. Pandaspandas documentation: [Working with Text Data](https://pandas.pydata.org/pandas-docs/stable/text.html) ###Code ###Output _____no_output_____ ###Markdown Make new dataframe columnspandas documentation: [apply](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.apply.html) ###Code ###Output _____no_output_____ ###Markdown title length ###Code ###Output _____no_output_____ ###Markdown long title ###Code ###Output _____no_output_____ ###Markdown first letter ###Code ###Output _____no_output_____ ###Markdown word countUsing [`textstat`](https://github.com/shivam5992/textstat) ###Code #!pip install textstat ###Output _____no_output_____ ###Markdown Rename column`title length` --> `title character count`pandas documentation: [rename](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.rename.html) ###Code ###Output _____no_output_____ ###Markdown Analyze the dataframe Describepandas documentation: [describe](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.describe.html) ###Code ###Output _____no_output_____ ###Markdown Sort valuespandas documentation: [sort_values](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.sort_values.html) Five shortest titles, by character count ###Code ###Output _____no_output_____ ###Markdown Titles sorted reverse alphabetically ###Code ###Output _____no_output_____ ###Markdown Get value countspandas documentation: [value_counts](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.value_counts.html) Frequency counts of first letters ###Code ###Output _____no_output_____ ###Markdown Percentage of talks with long titles ###Code ###Output _____no_output_____ ###Markdown Plotpandas documentation: [Visualization](https://pandas.pydata.org/pandas-docs/stable/visualization.html) Top 5 most frequent first letters ###Code ###Output _____no_output_____ ###Markdown Histogram of title lengths, in characters ###Code ###Output _____no_output_____ ###Markdown Assignment**Scrape** the talk descriptions. Hint: `soup.select('.presentation-description')`**Make** new columns in the dataframe:- description- description character count- description word count- description grade level (use [this `textstat` function](https://github.com/shivam5992/textstatthe-flesch-kincaid-grade-level) to get the Flesh-Kincaid grade level)**Describe** all the dataframe's columns. What's the average description word count? The minimum? The maximum?**Answer** these questions:- Which descriptions could fit in a tweet?- What's the distribution of grade levels? Plot a histogram. ###Code import bs4 import requests import numpy as np import pandas as pd import matplotlib.pyplot as plt result = requests.get(url) soup = bs4.BeautifulSoup(result.text) descriptions = [tag.text.strip() for tag in soup.select('.presentation-description')] print (len(descriptions)) print (descriptions) df = pd.DataFrame({'description': descriptions}) df['char count'] = df.description.apply(len) df.head() import textstat df['descr. word count'] = df['description'].apply(textstat.lexicon_count) df.head() df['grade level'] = df['description'].apply(textstat.flesch_kincaid_grade) df.head() df.describe() df.describe(exclude=np.number) df['tweetable'] = df['char count']<=280 df[df['tweetable'] == True] plt.hist(df['grade level']) plt.title('Histogram of Description Grade Levels') plt.show(); ###Output _____no_output_____ ###Markdown _Lambda School Data Science_ Scrape and process dataObjectives- scrape and parse web pages- use list comprehensions- select rows and columns with pandasLinks- [Automate the Boring Stuff with Python, Chapter 11](https://automatetheboringstuff.com/chapter11/) - Requests - Beautiful Soup- [Python List Comprehensions: Explained Visually](https://treyhunner.com/2015/12/python-list-comprehensions-now-in-color/)- [Pandas Cheat Sheet](https://github.com/pandas-dev/pandas/blob/master/doc/cheatsheet/Pandas_Cheat_Sheet.pdf) - Subset Observations (Rows) - Subset Variables (Columns)- Python Data Science Handbook - [Chapter 3.1](https://jakevdp.github.io/PythonDataScienceHandbook/03.01-introducing-pandas-objects.html), Introducing Pandas Objects - [Chapter 3.2](https://jakevdp.github.io/PythonDataScienceHandbook/03.02-data-indexing-and-selection.html), Data Indexing and Selection Scrape the titles of PyCon 2018 talks ###Code url = 'https://us.pycon.org/2018/schedule/talks/list/' ###Output _____no_output_____ ###Markdown 5 ways to look at long titlesLet's define a long title as greater than 80 characters 1. For Loop ###Code ###Output _____no_output_____ ###Markdown 2. List Comprehension ###Code ###Output _____no_output_____ ###Markdown 3. Filter with named function ###Code ###Output _____no_output_____ ###Markdown 4. Filter with anonymous function ###Code ###Output _____no_output_____ ###Markdown 5. Pandaspandas documentation: [Working with Text Data](https://pandas.pydata.org/pandas-docs/stable/text.html) ###Code ###Output _____no_output_____ ###Markdown Make new dataframe columnspandas documentation: [apply](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.apply.html) ###Code ###Output _____no_output_____ ###Markdown title length ###Code ###Output _____no_output_____ ###Markdown long title ###Code ###Output _____no_output_____ ###Markdown first letter ###Code ###Output _____no_output_____ ###Markdown word countUsing [`textstat`](https://github.com/shivam5992/textstat) ###Code !pip install textstat ###Output _____no_output_____ ###Markdown Rename column`title length` --> `title character count`pandas documentation: [rename](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.rename.html) ###Code ###Output _____no_output_____ ###Markdown Analyze the dataframe Describepandas documentation: [describe](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.describe.html) ###Code ###Output _____no_output_____ ###Markdown Sort valuespandas documentation: [sort_values](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.sort_values.html) Five shortest titles, by character count ###Code ###Output _____no_output_____ ###Markdown Titles sorted reverse alphabetically ###Code ###Output _____no_output_____ ###Markdown Get value countspandas documentation: [value_counts](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.value_counts.html) Frequency counts of first letters ###Code ###Output _____no_output_____ ###Markdown Percentage of talks with long titles ###Code ###Output _____no_output_____ ###Markdown Plotpandas documentation: [Visualization](https://pandas.pydata.org/pandas-docs/stable/visualization.html) Top 5 most frequent first letters ###Code ###Output _____no_output_____ ###Markdown Histogram of title lengths, in characters ###Code ###Output _____no_output_____ ###Markdown _Lambda School Data Science_ Scrape and process dataObjectives- scrape and parse web pages- use list comprehensions- select rows and columns with pandasLinks- [Automate the Boring Stuff with Python, Chapter 11](https://automatetheboringstuff.com/chapter11/) - Requests - Beautiful Soup- [Python List Comprehensions: Explained Visually](https://treyhunner.com/2015/12/python-list-comprehensions-now-in-color/)- [Pandas Cheat Sheet](https://github.com/pandas-dev/pandas/blob/master/doc/cheatsheet/Pandas_Cheat_Sheet.pdf) - Subset Observations (Rows) - Subset Variables (Columns)- Python Data Science Handbook - [Chapter 3.1](https://jakevdp.github.io/PythonDataScienceHandbook/03.01-introducing-pandas-objects.html), Introducing Pandas Objects - [Chapter 3.2](https://jakevdp.github.io/PythonDataScienceHandbook/03.02-data-indexing-and-selection.html), Data Indexing and Selection Scrape the titles of PyCon 2019 talks ###Code url = 'https://us.pycon.org/2019/schedule/talks/list/' import bs4 import requests result = requests.get(url) result type(result) result.text type(result.text) soup = bs4.BeautifulSoup(result.text) soup type(soup) soup.select('h2') type(soup.select('h2')) len(soup.select('h2')) first = soup.select('h2')[0] first type(first) first.text type(first.text) first.text.strip() last = soup.select('h2')[-1] last.text.strip() #This... titles = [] for tag in soup.select('h2'): title = tag.text.strip() titles.append(title) # ... is the same as this: titles = [tag.text.strip() for tag in soup. select('h2')] type(titles),len(titles) titles[0],titles[-1] ###Output _____no_output_____ ###Markdown 5 ways to look at long titlesLet's define a long title as greater than 80 characters 1. For Loop ###Code long_titles = [] for title in titles: if len(title) > 80: #print(title) long_titles.append(title) long_titles ###Output _____no_output_____ ###Markdown 2. List Comprehension ###Code [title for title in titles if len(title) > 80] ###Output _____no_output_____ ###Markdown 3. Filter with named function ###Code def long(title): return len(title)>80 long('Python is good!') def long(title): return len(title)>80 long('Thinking Inside the Box: How Python Helped Us Adapt to An Existing Data Ingestion Pipeline') list(filter(long, titles)) ###Output _____no_output_____ ###Markdown 4. Filter with anonymous function ###Code #rarely used filter(lambda t: len(t)> 80,titles) #rarely used list(filter(lambda t: len(t)> 80,titles)) ###Output _____no_output_____ ###Markdown 5. Pandaspandas documentation: [Working with Text Data](https://pandas.pydata.org/pandas-docs/stable/text.html) ###Code import pandas as pd pd.options.display.max_colwidth = 200 df = pd.DataFrame({'title':titles}) df.shape df[df['title'].str.len()>80] df['title'] df['title'].str.len() df['title'].str.len()>80 condition = df['title'].str.len()>80 df[condition] ###Output _____no_output_____ ###Markdown Make new dataframe columnspandas documentation: [apply](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.apply.html) title length ###Code df['title length'] = df['title'].apply(len) df.shape df.head() df[df['title length'] > 80] df.loc[df['title length']> 80, 'title length'] df.loc[df['title length']> 80, 'title'] ###Output _____no_output_____ ###Markdown long title ###Code df['long title']=df['title length']>80 df.shape df.head() df[df['long title']==True] df[df['long title']] df[df['long title']==False] df[df['long title']!=True] df[~df['long title']] ###Output _____no_output_____ ###Markdown first letter ###Code 'Python is great!'[-1] 'Python is great!'[0] df['title'].str[0] df['first letter'] = df['title'].str[0] df[df['first letter']=='P'] 'Python is great!'.startswith('P') 'Hello world!'.startswith('P') df[df['title'].str.startswith('P')] df[df['title'].str.contains('neural')] df[df['title'].str.contains('Neural')] ###Output _____no_output_____ ###Markdown word countUsing [`textstat`](https://github.com/shivam5992/textstat) ###Code !pip install textstat import textstat df['title'].apply(textstat.lexicon_count) #new column df['title word count'] = df['title'].apply(textstat.lexicon_count) df.shape df.head() df[df['title word count']<= 3] ###Output _____no_output_____ ###Markdown Rename column`title length` --> `title character count`pandas documentation: [rename](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.rename.html) ###Code df.head() df = df.rename(columns={'description character count':'title character count','description': 'title','description word count':'title word count'}) df.head() ###Output _____no_output_____ ###Markdown Analyze the dataframe Describepandas documentation: [describe](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.describe.html) ###Code df.describe() df.describe(include='all') df.describe(exclude='number') ###Output _____no_output_____ ###Markdown Sort valuespandas documentation: [sort_values](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.sort_values.html) Five shortest titles, by character count ###Code df.describe() df.sort_values(by='title character count').head(5) df.sort_values(by='title character count').head(5)['title'] ###Output _____no_output_____ ###Markdown Titles sorted reverse alphabetically ###Code #REVERSE, reverse, reverse alphabetically df.sort_values(by='first letter',ascending=False) ###Output _____no_output_____ ###Markdown Get value countspandas documentation: [value_counts](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.value_counts.html) Frequency counts of first letters ###Code df['first letter'].value_counts() ###Output _____no_output_____ ###Markdown Percentage of talks with long titles ###Code df['long title'].value_counts() df['long title'].value_counts() / 95 df['long title'].value_counts() / len(df) df['long title'].value_counts(normalize=True) ###Output _____no_output_____ ###Markdown Plotpandas documentation: [Visualization](https://pandas.pydata.org/pandas-docs/stable/visualization.html) Top 5 most frequent first letters ###Code df['first letter'] df['first letter'].value_counts() df['first letter'].value_counts().head(5) %matplotlib inline (df['first letter'] .value_counts() .head(5) .plot.barh()); #the ; suppresses the line of matplotlib data %matplotlib inline (df['first letter'] .value_counts() .head(5) .plot.barh()) #the ; suppresses the line of matplotlib axes data %matplotlib inline (df['first letter'] .value_counts() .head(5) .plot.barh(color='grey', title='Top 5 Most Frequesnt First Letters, PyCon Title 2019 Talks')); ###Output _____no_output_____ ###Markdown Histogram of title lengths, in characters ###Code title = 'Distribution of Title Length, In Characters' df['title character count'].plot.hist(title=title); ###Output _____no_output_____ ###Markdown Assignment**Scrape** the talk descriptions. Hint: `soup.select('.presentation-description')`**Make** new columns in the dataframe:- description- description character count- description word count**Describe** all the dataframe's columns. What's the average description word count? The minimum? The maximum?**Answer** the question: Which descriptions could fit in a tweet?**04.02.19 - Stretch Challenge - SCROLL DOWN** ###Code url = 'https://us.pycon.org/2019/schedule/talks/list/' import bs4 import requests result = requests.get(url) soup = bs4.BeautifulSoup(result.text) soup type(soup) soup.select('div.presentation-description') first = soup.select('div.presentation-description')[0] first first.text.strip() df.describe(include='all') #df.head() df = df.rename(columns={'title':'description'}) df = df.rename(columns={'title character count':'description character count'}) df = df.rename(columns={'title word count':'description word count'}) df.head() df.describe(include='all') ###Output _____no_output_____ ###Markdown Average description word count is 8 words. (Rounding up 7.978)Minimum description word count is 2 words.Maximum description word count is 19 words.All descriptions could fit in a tweet since they are all less than or equal to 140 characters. Will represent in code form below. ###Code df[df['description character count'] <= 140] ###Output _____no_output_____ ###Markdown Stretch Challenge**Make** another new column in the dataframe:- description grade level (you can use [this `textstat` function](https://github.com/shivam5992/textstatthe-flesch-kincaid-grade-level) to get the Flesh-Kincaid grade level)**Answer** the question: What's the distribution of grade levels? Plot a histogram.**Be aware** that [Textstat has issues when sentences aren't separated by spaces](https://github.com/shivam5992/textstat/issues/77issuecomment-453734048). (A Lambda School Data Science student helped identify this issue, and emailed with the developer.) Also, [BeautifulSoup doesn't separate paragraph tags with spaces](https://bugs.launchpad.net/beautifulsoup/+bug/1768330).So, you may get some inaccurate or surprising grade level estimates here. Don't worry, that's ok — but optionally, can you do anything to try improving the grade level estimates? ###Code df.describe(include='all') #df['description grade level'] = df['description grade level',] #loop text from description first #textstat.flesch_kincaid_grade(df['description'][0]) #[ expression for item in list if conditional ] # for item in flesch_kincaid_grade.description !pip install textstat import textstat [textstat.flesch_kincaid_grade(item) for item in df['description'] ] df['description grade level'] = df.description.apply(textstat.flesch_kincaid_grade) df['description grade level'].hist(); ###Output _____no_output_____ ###Markdown _Lambda School Data Science_ Scrape and process dataObjectives- scrape and parse web pages- use list comprehensions- select rows and columns with pandasLinks- [Automate the Boring Stuff with Python, Chapter 11](https://automatetheboringstuff.com/chapter11/) - Requests - Beautiful Soup- [Python List Comprehensions: Explained Visually](https://treyhunner.com/2015/12/python-list-comprehensions-now-in-color/)- [Pandas Cheat Sheet](https://github.com/pandas-dev/pandas/blob/master/doc/cheatsheet/Pandas_Cheat_Sheet.pdf) - Subset Observations (Rows) - Subset Variables (Columns)- Python Data Science Handbook - [Chapter 3.1](https://jakevdp.github.io/PythonDataScienceHandbook/03.01-introducing-pandas-objects.html), Introducing Pandas Objects - [Chapter 3.2](https://jakevdp.github.io/PythonDataScienceHandbook/03.02-data-indexing-and-selection.html), Data Indexing and Selection Scrape the titles of PyCon 2018 talks ###Code url = 'https://us.pycon.org/2018/schedule/talks/list/' ###Output _____no_output_____ ###Markdown 5 ways to look at long titlesLet's define a long title as greater than 80 characters 1. For Loop ###Code ###Output _____no_output_____ ###Markdown 2. List Comprehension ###Code ###Output _____no_output_____ ###Markdown 3. Filter with named function ###Code ###Output _____no_output_____ ###Markdown 4. Filter with anonymous function ###Code ###Output _____no_output_____ ###Markdown 5. Pandaspandas documentation: [Working with Text Data](https://pandas.pydata.org/pandas-docs/stable/text.html) ###Code ###Output _____no_output_____ ###Markdown Make new dataframe columnspandas documentation: [apply](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.apply.html) ###Code ###Output _____no_output_____ ###Markdown title length ###Code ###Output _____no_output_____ ###Markdown long title ###Code ###Output _____no_output_____ ###Markdown first letter ###Code ###Output _____no_output_____ ###Markdown word countUsing [`textstat`](https://github.com/shivam5992/textstat) ###Code !pip install textstat ###Output _____no_output_____ ###Markdown Rename column`title length` --> `title character count`pandas documentation: [rename](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.rename.html) ###Code ###Output _____no_output_____ ###Markdown Analyze the dataframe Describepandas documentation: [describe](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.describe.html) ###Code ###Output _____no_output_____ ###Markdown Sort valuespandas documentation: [sort_values](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.sort_values.html) Five shortest titles, by character count ###Code ###Output _____no_output_____ ###Markdown Titles sorted reverse alphabetically ###Code ###Output _____no_output_____ ###Markdown Get value countspandas documentation: [value_counts](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.value_counts.html) Frequency counts of first letters ###Code ###Output _____no_output_____ ###Markdown Percentage of talks with long titles ###Code ###Output _____no_output_____ ###Markdown Plotpandas documentation: [Visualization](https://pandas.pydata.org/pandas-docs/stable/visualization.html) Top 5 most frequent first letters ###Code ###Output _____no_output_____ ###Markdown Histogram of title lengths, in characters ###Code ###Output _____no_output_____ ###Markdown Assignment**Scrape** the talk descriptions. Hint: `soup.select('.presentation-description')`**Make** new columns in the dataframe:- description- description character count- description word count- description grade level (use [this `textstat` function](https://github.com/shivam5992/textstatthe-flesch-kincaid-grade-level) to get the Flesh-Kincaid grade level)**Describe** all the dataframe's columns. What's the average description word count? The minimum? The maximum?**Answer** these questions:- Which descriptions could fit in a tweet?- What's the distribution of grade levels? Plot a histogram. ###Code url = 'https://us.pycon.org/2018/schedule/talks/list/' import bs4 import requests import pandas as pd result = requests.get(url) soup = bs4.BeautifulSoup(result.text) descriptions = [tag.text.strip() for tag in soup.select('div.presentation-description')] df = pd.DataFrame({'description': descriptions}) df['description length'] = df.description.apply(len) df.loc[df['description length'] > 100, 'description length'] df df.describe() ! pip install textstat import textstat df['description word count'] = df.description.apply(textstat.lexicon_count) df['description character count'] = df.description.str.len() df['description character count'] df['kincaid grade'] = df.description.apply(textstat.flesch_kincaid_grade) df['tweet length'] = df[df['description word count'] < 281] df['tweet length'] %matplotlib inline title = 'Distribution of the Flesch-Kincaid grade' df['kincaid grade'].plot.hist(title=title) ###Output _____no_output_____ ###Markdown _Lambda School Data Science_ Scrape and process dataObjectives- scrape and parse web pages- use list comprehensions- select rows and columns with pandasLinks- [Automate the Boring Stuff with Python, Chapter 11](https://automatetheboringstuff.com/chapter11/) - Requests - Beautiful Soup- [Python List Comprehensions: Explained Visually](https://treyhunner.com/2015/12/python-list-comprehensions-now-in-color/)- [Pandas Cheat Sheet](https://github.com/pandas-dev/pandas/blob/master/doc/cheatsheet/Pandas_Cheat_Sheet.pdf) - Subset Observations (Rows) - Subset Variables (Columns)- Python Data Science Handbook - [Chapter 3.1](https://jakevdp.github.io/PythonDataScienceHandbook/03.01-introducing-pandas-objects.html), Introducing Pandas Objects - [Chapter 3.2](https://jakevdp.github.io/PythonDataScienceHandbook/03.02-data-indexing-and-selection.html), Data Indexing and Selection Scrape the titles of PyCon 2019 talks ###Code url = 'https://us.pycon.org/2019/schedule/talks/list/' import bs4 import requests result = requests.get(url) result type(result) result.text type(result.text) soup = bs4.BeautifulSoup(result.text) soup type(soup) soup.select('h2') type(soup.select('h2')) len(soup.select('h2')) first = soup.select('h2')[0] first type(first) first.text type(first.text) # remove whitespace first.text.strip() soup.select('h2')[-1] last = soup.select('h2')[-1] last.text.strip() for tag in soup.select('h2'): title = tag.text.strip() print(title) titles = [tag.text.strip() for tag in soup.select('h2')] titles type(titles), len(titles) ###Output _____no_output_____ ###Markdown 5 ways to look at long titlesLet's define a long title as greater than 80 characters 1. For Loop ###Code long_titles = [] for title in titles: if len(title) > 80: long_titles.append(title) ###Output _____no_output_____ ###Markdown 2. List Comprehension ###Code [title for title in titles if len(titles) > 80] def long(title): return len(title) > 80 long('Python is good') list(filter(long, titles)) ###Output _____no_output_____ ###Markdown 3. Filter with named function 4. Filter with anonymous function ###Code list(filter(lambda t: len(t) > 80, titles)) ###Output _____no_output_____ ###Markdown 5. Pandaspandas documentation: [Working with Text Data](https://pandas.pydata.org/pandas-docs/stable/text.html) ###Code import pandas as pd pd.options.display.max_colwidth = 200 df = pd.DataFrame({'title' : titles}) df.shape df.head() df[df['title'].str.len() > 80] condition = df['title'].str.len() > 80 df[condition] ###Output _____no_output_____ ###Markdown Make new dataframe columnspandas documentation: [apply](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.apply.html) title length ###Code df['title length'] = df['title'].apply(len) df.head() df.loc[ df['title length'] > 80, ['title']] ###Output _____no_output_____ ###Markdown long title ###Code df['long title'] = df['title length'] > 80 df.shape df.head() df[ df['long title']==True] df[~df['long title']] ###Output _____no_output_____ ###Markdown first letter ###Code # 'Python is great:'[0] df['first letter'] = df['title'].str[0] df[ df['first letter']=='P'] # 'Python is good!'.startswith('P') df[ df['title'].str.startswith('P') ] df[ df['title'].str.contains('Python')] ###Output _____no_output_____ ###Markdown word countUsing [`textstat`](https://github.com/shivam5992/textstat) ###Code !pip install textstat import textstat df['title word count'] = df['title'].apply(textstat.lexicon_count) print(df.shape) df.head() df[ df['title word count'] <= 3] ###Output _____no_output_____ ###Markdown Rename column`title length` --> `title character count`pandas documentation: [rename](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.rename.html) ###Code df = df.rename(columns={'title length' : 'title character count'}) df.head() ###Output _____no_output_____ ###Markdown Analyze the dataframe Describepandas documentation: [describe](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.describe.html) ###Code df.describe() df.describe(include='all') df.describe(exclude='number') ###Output _____no_output_____ ###Markdown Sort valuespandas documentation: [sort_values](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.sort_values.html) Five shortest titles, by character count ###Code df.sort_values(by='title character count').head(5) ###Output _____no_output_____ ###Markdown Titles sorted reverse alphabetically ###Code df.sort_values(by='first letter', ascending=False).head() ###Output _____no_output_____ ###Markdown Get value countspandas documentation: [value_counts](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.value_counts.html) Frequency counts of first letters ###Code df['first letter'].value_counts() ###Output _____no_output_____ ###Markdown Percentage of talks with long titles ###Code df['long title'].value_counts(normalize=True) ###Output _____no_output_____ ###Markdown Plotpandas documentation: [Visualization](https://pandas.pydata.org/pandas-docs/stable/visualization.html) Top 5 most frequent first letters ###Code (df['first letter'] .value_counts() .head(5) .plot .barh(color='gray', title="Top 5 letter of 2019 Pythoncon Talks")); title = "Distribution of Title Length in Characters" df['title character count'].plot.hist(title=title); ###Output _____no_output_____ ###Markdown Histogram of title lengths, in characters Assignment**Scrape** the talk descriptions. Hint: `soup.select('.presentation-description')`**Make** new columns in the dataframe:- description- description character count- description word count**Describe** all the dataframe's columns. What's the average description word count? The minimum? The maximum?**Answer** the question: Which descriptions could fit in a tweet? ###Code soup.find_all('div', id='presentation-description') soup.select('div.presentation-description') type('.presentation-description') for tag in soup.select('.presentation-description'): descriptions = tag.text.strip() print(descriptions) descriptions = [desc.text for desc in soup.select('.presentation-description')] descriptions desc_df = pd.DataFrame({'.presentation-description' : descriptions}) pd.options.display.max_colwidth = 10000 desc_df.shape desc_df.head() desc_df = desc_df.rename(columns={'.presentation-description' : 'Presentation Description'}) desc_df.head() desc_df['Presentation Description Character Count'] = desc_df['Presentation Description'].apply(len) # desc_df = desc_df.drop(columns = ['Description Character Count']) desc_df.head() desc_df['Presentation Description Word Count'] = desc_df['Presentation Description'].apply(textstat.lexicon_count) print(desc_df.shape) desc_df.head() desc_df.describe() desc_df.describe(include='all') desc_df.describe(exclude='number') # Tweetable Presentation Descriptions desc_df.loc[ desc_df['Presentation Description Character Count'] <= 280, ['Presentation Description']] ###Output _____no_output_____ ###Markdown Stretch Challenge**Make** another new column in the dataframe:- description grade level (you can use [this `textstat` function](https://github.com/shivam5992/textstatthe-flesch-kincaid-grade-level) to get the Flesh-Kincaid grade level)**Answer** the question: What's the distribution of grade levels? Plot a histogram.**Be aware** that [Textstat has issues when sentences aren't separated by spaces](https://github.com/shivam5992/textstat/issues/77issuecomment-453734048). (A Lambda School Data Science student helped identify this issue, and emailed with the developer.) Also, [BeautifulSoup doesn't separate paragraph tags with spaces](https://bugs.launchpad.net/beautifulsoup/+bug/1768330).So, you may get some inaccurate or surprising grade level estimates here. Don't worry, that's ok — but optionally, can you do anything to try improving the grade level estimates? ###Code desc_fkg = textstat.flesch_kincaid_grade('.presentaion-description') desc_fkg desc_df['Presentation Description Flesch-Kincaid Grade'] = desc_df['Presentation Description'].apply(textstat.flesch_kincaid_grade) desc_df.head() title = "Presentation Description Flesch-Kincaid Grade" desc_df['Presentation Description Flesch-Kincaid Grade'].plot.hist(title=title); ###Output _____no_output_____ ###Markdown _Lambda School Data Science_ Scrape and process dataObjectives- scrape and parse web pages- use list comprehensions- select rows and columns with pandasLinks- [Automate the Boring Stuff with Python, Chapter 11](https://automatetheboringstuff.com/chapter11/) - Requests - Beautiful Soup- [Python List Comprehensions: Explained Visually](https://treyhunner.com/2015/12/python-list-comprehensions-now-in-color/)- [Pandas Cheat Sheet](https://github.com/pandas-dev/pandas/blob/master/doc/cheatsheet/Pandas_Cheat_Sheet.pdf) - Subset Observations (Rows) - Subset Variables (Columns)- Python Data Science Handbook - [Chapter 3.1](https://jakevdp.github.io/PythonDataScienceHandbook/03.01-introducing-pandas-objects.html), Introducing Pandas Objects - [Chapter 3.2](https://jakevdp.github.io/PythonDataScienceHandbook/03.02-data-indexing-and-selection.html), Data Indexing and Selection Scrape the titles of PyCon 2019 talks ###Code url = 'https://us.pycon.org/2019/schedule/talks/list/' import bs4 import requests result = requests.get(url) result type(result) result.text type(result.text) #verify type of information soup = bs4.BeautifulSoup(result.text) #soup type(soup) # verify what type of soup again soup.select('h2') # pulling in the titles type(soup.select('h2')) # what type is this and what can i do with a list? len((1, 2, 3)) # length of the list len(soup.select('h2')) # total length of the list/talks # means our parsing is working first = soup.select('h2')[0] # <-- index no 0 first type(first) # its a tag == text obj first.text # have removed h2 tag, first.text.strip() #removing any characters from either end that are whitespace characters # you can put any part of this sentence in the (), not really useful but good to know last = soup.select('h2')[-1] # trick to get the last list #assign a variable to it last.text.strip() # reflects what we have already done twice, # if i just want to print the title, use a print statement for tag in soup.select('h2'): title = tag.text.strip() print(title) #this.... titles = [] for tag in soup.select('h2'): title = tag.text.strip() titles.append(title) #titles # content of a list #is the same as this titles = [tag.text.strip() for tag in soup.select('h2')] #titles len(titles) type(titles), len(titles) # type of list, sum titles[0], titles[-1] #first and last ###Output _____no_output_____ ###Markdown 5 ways to look at long titlesLet's define a long title as greater than 80 characters 1. For Loop ###Code for title in titles: if len(title) > 80: #if length is longer than 80 print titles print(title) #or long_titles = [] for title in titles: if len(title) > 80: #if length is longer than 80 print titles long_titles.append(title) #used mainly when things get complicated ###Output _____no_output_____ ###Markdown 2. List Comprehension ###Code list_titles = [title for title in titles if len(title) > 80] list_titles ###Output _____no_output_____ ###Markdown 3. Filter with named function ###Code def long(title): return len(title) > 80 long('Python is good!') long('Thinking Inside the Box: How Python Helped Us Adapt to An Existing Data Ingestion Pipeline') list(filter(long, titles)) # list of all things that pass through this filter ###Output _____no_output_____ ###Markdown 4. Filter with anonymous function ###Code list(filter(lambda t: len(t) > 80, titles)) #where t means titles #this isnt visually appealing, very confusing and not always used ###Output _____no_output_____ ###Markdown 5. Pandaspandas documentation: [Working with Text Data](https://pandas.pydata.org/pandas-docs/stable/text.html) ###Code import pandas as pd pd.options.display.max_colwidth = 200 #setting col width to not truncate the data df = pd.DataFrame({'title': titles}) # making a dict #we are making a dataframe here #df #df.shape df[ df['title'].str.len() > 80 ] #another way to do this, we are subsetting the obsevation #basically saying this column name length is greater than 80 #if you don't understand this, break it down and solve each piece of this # dont play computer in your head, let the computer show you what it is doing #.str says, treat this colimn like a bunch of strings #df['title'].str.len() #condtion = df['title'].str.len() >80 or delete the condtion and you will see all rows in a T or F setting #df[condition] only will pass the rows where that statement is true ###Output _____no_output_____ ###Markdown Make new dataframe columnspandas documentation: [apply](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.apply.html) title length ###Code df['title length'] = df['title'].apply(len) #returning list of 95 numbers where df.shape df.head() df[ df['title length'] > 80] df.loc[ df['title length'] >80, 'title'] df.loc[ df['title length'] >80, 'title length'] ###Output _____no_output_____ ###Markdown long title ###Code df['long title'] = df['title length'] > 80 df.shape # shape increased df.head() # assigning a boolean value df[ df['long title']== True] # gives all col where long title equales true #df[ -df[ Use - to flip it ###Output _____no_output_____ ###Markdown first letter ###Code #'Python is Great!'[0] #first #'Python is Great!'[-1]#last df['first letter'] = df['title'].str[0] #all the first letters | assign it to a column df[ df['first letter']=='P' ] #shows where they all start with p 'Python is good'.startswith('P') # if you didnt want to create another col df[ df['title'].str.startswith('P')] #another way ###Output _____no_output_____ ###Markdown word countUsing [`textstat`](https://github.com/shivam5992/textstat) ###Code !pip install textstat import textstat df['title'].apply(textstat.lexicon_count).sum() #wordcount summ df['title word count'] = df['title'].apply(textstat.lexicon_count).sum() #wordcount summ df.head() df[ df['title word count'] <= 3] #why doesnt this show ###Output _____no_output_____ ###Markdown Rename column`title length` --> `title character count`pandas documentation: [rename](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.rename.html) ###Code df = df.rename(columns={'title length': 'title char count'}) #make syre you assign a new df to this, assign it back! df.head() ###Output _____no_output_____ ###Markdown Analyze the dataframe Describepandas documentation: [describe](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.describe.html) ###Code df.describe() df.describe(include='all') #show / exclude is an option as well df.describe(exclude='number') #anything numpy considrs a number ###Output _____no_output_____ ###Markdown Sort valuespandas documentation: [sort_values](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.sort_values.html) Five shortest titles, by character count ###Code df.sort_values(by='title char count').head(5) #[:5] is ok also df.sort_values(by='title char count').head(5)['title'] ###Output _____no_output_____ ###Markdown Titles sorted reverse alphabetically ###Code df.sort_values(by='first letter', ascending=False) df.sort_values(by='first letter', ascending=False).head() #you can use decending as well ###Output _____no_output_____ ###Markdown Get value countspandas documentation: [value_counts](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.value_counts.html) Frequency counts of first letters ###Code df['first letter'].value_counts() #frequency of each ###Output _____no_output_____ ###Markdown Percentage of talks with long titles ###Code df['long title'].value_counts() df['long title'].value_counts() / 95 #creating percentages 95 is len of df ###Output _____no_output_____ ###Markdown Plotpandas documentation: [Visualization](https://pandas.pydata.org/pandas-docs/stable/visualization.html) Top 5 most frequent first letters ###Code %matplotlib inline (df['first letter'] .value_counts() .head() .plot .barh(color='pink', title= 'fhkj')); #declaritive style ###Output _____no_output_____ ###Markdown Histogram of title lengths, in characters ###Code title = 'fh' df['title char count'].plot.hist(title=title); ###Output _____no_output_____ ###Markdown Assignment**Scrape** the talk descriptions. Hint: `soup.select('.presentation-description')`**Make** new columns in the dataframe:- description- description character count- description word count**Describe** all the dataframe's columns. What's the average description word count? The minimum? The maximum?**Answer** the question: Which descriptions could fit in a tweet? Stretch Challenge**Make** another new column in the dataframe:- description grade level (you can use [this `textstat` function](https://github.com/shivam5992/textstatthe-flesch-kincaid-grade-level) to get the Flesh-Kincaid grade level)**Answer** the question: What's the distribution of grade levels? Plot a histogram.**Be aware** that [Textstat has issues when sentences aren't separated by spaces](https://github.com/shivam5992/textstat/issues/77issuecomment-453734048). (A Lambda School Data Science student helped identify this issue, and emailed with the developer.) Also, [BeautifulSoup doesn't separate paragraph tags with spaces](https://bugs.launchpad.net/beautifulsoup/+bug/1768330).So, you may get some inaccurate or surprising grade level estimates here. Don't worry, that's ok — but optionally, can you do anything to try improving the grade level estimates? ###Code url = 'https://us.pycon.org/2019/schedule/talks/list/' import bs4 import requests result = requests.get(url) soup = bs4.BeautifulSoup(result.text) #soup # Scrape the Talk Descriptions soup.select('.presentation-description') # What type of data am I looking at? type(soup.select('.presentation-description')) # What is the total amount of lines len(soup.select('.presentation-description')) descriptions = [tag.text.strip() for tag in soup.select('.presentation-description')] descriptions # Verify len(descriptions) ###Output _____no_output_____ ###Markdown **DataFrame Work** ###Code # Pull in pandas import pandas as pd pd.options.display.max_colwidth = 200 #setting col width to not truncate the data ###Output _____no_output_____ ###Markdown **Description** ###Code # Setting up the Dataframe df = pd.DataFrame({'description': descriptions }) # Verify #df df.shape ###Output _____no_output_____ ###Markdown **Description Character Count** ###Code df['description character count'] = df['description'].apply(len) df.shape df.head() ###Output _____no_output_____ ###Markdown **Description Word Count** ###Code import textstat df['description word count'] = df['description'].apply(textstat.lexicon_count) df['description'].apply(textstat.lexicon_count).sum() # checking to see the total word count # Checking if it works df.head() # Verify df.shape ###Output _____no_output_____ ###Markdown Describe Each DF ***I wasn't very certain on what exactly was being asked, so I generated a .describe for each column*** ###Code import numpy as np ###Output _____no_output_____ ###Markdown **Description Column*****Note: This column has no numbers. I just put it up for practice with syntax*** ###Code df['description'].describe(exclude=[np.object]) ###Output _____no_output_____ ###Markdown **Description Word Count Column** ###Code df['description word count'].describe() ###Output _____no_output_____ ###Markdown **Average, Minimum, and Maximum** ###Code print('The Average Description Word Count is:', df['description word count'].mean()) print('The Minimum Description Word Count is:', df['description word count'].min()) print('The Maximum Description Word Count is:', df['description word count'].max()) ###Output The Average Description Word Count is: 130.82105263157894 The Minimum Description Word Count is: 20 The Maximum Description Word Count is: 421 ###Markdown **Description Character Count Column** ###Code df['description character count'].describe() ###Output _____no_output_____ ###Markdown **Look at all the Columns Together** ###Code df.describe(include='all') ###Output _____no_output_____ ###Markdown What Descriptions Could fit in a Tweet ###Code # Checking out characters under 280(maximum tweet characters) df[ df['description character count'] < 280] # Another way to locate df.loc[ df['description character count'] < 280, 'description character count'] ###Output _____no_output_____ ###Markdown Stretch Goal **Create another Column** ***SOLVED*** ###Code df['description grade level'] = df['description'].apply(textstat.flesch_kincaid_grade) df.head() ###Output _____no_output_____ ###Markdown **Create a Histogram** ###Code df['description grade level'].plot.hist(color='pink'); ###Output _____no_output_____ ###Markdown _Lambda School Data Science_ Scrape and process dataObjectives- scrape and parse web pages- use list comprehensions- select rows and columns with pandasLinks- [Automate the Boring Stuff with Python, Chapter 11](https://automatetheboringstuff.com/chapter11/) - Requests - Beautiful Soup- [Python List Comprehensions: Explained Visually](https://treyhunner.com/2015/12/python-list-comprehensions-now-in-color/)- [Pandas Cheat Sheet](https://github.com/pandas-dev/pandas/blob/master/doc/cheatsheet/Pandas_Cheat_Sheet.pdf) - Subset Observations (Rows) - Subset Variables (Columns)- Python Data Science Handbook - [Chapter 3.1](https://jakevdp.github.io/PythonDataScienceHandbook/03.01-introducing-pandas-objects.html), Introducing Pandas Objects - [Chapter 3.2](https://jakevdp.github.io/PythonDataScienceHandbook/03.02-data-indexing-and-selection.html), Data Indexing and Selection Scrape the titles of PyCon 2018 talks ###Code url = 'https://us.pycon.org/2018/schedule/talks/list/' ###Output _____no_output_____ ###Markdown 5 ways to look at long titlesLet's define a long title as greater than 80 characters 1. For Loop ###Code ###Output _____no_output_____ ###Markdown 2. List Comprehension ###Code ###Output _____no_output_____ ###Markdown 3. Filter with named function ###Code ###Output _____no_output_____ ###Markdown 4. Filter with anonymous function ###Code ###Output _____no_output_____ ###Markdown 5. Pandaspandas documentation: [Working with Text Data](https://pandas.pydata.org/pandas-docs/stable/text.html) ###Code ###Output _____no_output_____ ###Markdown Make new dataframe columnspandas documentation: [apply](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.apply.html) ###Code ###Output _____no_output_____ ###Markdown title length ###Code ###Output _____no_output_____ ###Markdown long title ###Code ###Output _____no_output_____ ###Markdown first letter ###Code ###Output _____no_output_____ ###Markdown word countUsing [`textstat`](https://github.com/shivam5992/textstat) ###Code !pip install textstat ###Output _____no_output_____ ###Markdown Rename column`title length` --> `title character count`pandas documentation: [rename](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.rename.html) ###Code ###Output _____no_output_____ ###Markdown Analyze the dataframe Describepandas documentation: [describe](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.describe.html) ###Code ###Output _____no_output_____ ###Markdown Sort valuespandas documentation: [sort_values](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.sort_values.html) Five shortest titles, by character count ###Code ###Output _____no_output_____ ###Markdown Titles sorted reverse alphabetically ###Code ###Output _____no_output_____ ###Markdown Get value countspandas documentation: [value_counts](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.value_counts.html) Frequency counts of first letters ###Code ###Output _____no_output_____ ###Markdown Percentage of talks with long titles ###Code ###Output _____no_output_____ ###Markdown Plotpandas documentation: [Visualization](https://pandas.pydata.org/pandas-docs/stable/visualization.html) Top 5 most frequent first letters ###Code ###Output _____no_output_____ ###Markdown Histogram of title lengths, in characters ###Code ###Output _____no_output_____ ###Markdown Assignment**Scrape** the talk descriptions. Hint: `soup.select('.presentation-description')`**Make** new columns in the dataframe:- description- description character count- description word count- description grade level (use [this `textstat` function](https://github.com/shivam5992/textstatthe-flesch-kincaid-grade-level) to get the Flesh-Kincaid grade level)**Describe** all the dataframe's columns. What's the average description word count? The minimum? The maximum?**Answer** these questions:- Which descriptions could fit in a tweet?- What's the distribution of grade levels? Plot a histogram. ###Code import requests import bs4 url = 'https://us.pycon.org/2018/schedule/talks/list/' result = requests.get(url) soup = bs4.BeautifulSoup(result.text) soup.select('.presentation-description')[0].text.strip() descriptions = [tag.text.strip() for tag in soup.select('.presentation-description')] titles = [tag.text.strip() for tag in soup.select('h2')] len(descriptions), len(titles) import pandas as pd pd.options.display.max_colwidth = 200 df = pd.DataFrame({'description':descriptions}) df.head() df['description char count'] = df.description.apply(len) df.head() !pip install textstat import textstat # use textstat to count words. df['description word count'] = df.description.apply(textstat.lexicon_count) df.head() # readability by grade level using the Flesh-Kincaid grade level # FK grade levels 0-18 # 0-6: Basic, 7-12: Average, 12-18: Skilled df['description FK grade level'] = df.description.apply(textstat.flesch_kincaid_grade) df.head() # looks like we have one value that is way too high. might want to categorize them. df['description FK grade level'].describe() import numpy as np criteria = [((df['description FK grade level'] >= 0) & (df['description FK grade level'] < 6)), ((df['description FK grade level'] >= 6) & (df['description FK grade level'] < 12)), ((df['description FK grade level'] >= 12))] values = ['Basic', 'Average', 'Skilled'] df['description FK category'] = np.select(criteria,values) df.head() df['description FK category'].value_counts().plot.barh(title='Counts for each FK category'); df.describe() list(df['description'][df['description char count'] < 280])[0] df['tweetable description'] = df['description char count'] <= 280 df['description FK grade level'].plot.hist(title='distribution of FK grade levels'); df['description FOG grade level'] = df.description.apply(textstat.gunning_fog) df['description SMOG grade level'] = df.description.apply(textstat.smog_index) df.head() df['mean grade level'] = (df['description FK grade level'] + df['description FOG grade level'] + df['description SMOG grade level']) / 3 df.head() df['description char per word'] = df['description char count'] / df['description word count'] df['description char per word'].corr(df['mean grade level']) df.pivot_table(values = 'description char per word', index='description FK category').plot.barh() df.head() df.describe() df.corr() soup.select('h2')[0].text.strip() df.head(1) df['title'] = [tag.text.strip() for tag in soup.select('h2')] df.head(1) df = df.drop(labels='titles', axis='columns') df.head(1) df['title char count'] = df.title.apply(len) df['first letter in title'] = df.title.str[0] df['title word count'] = df.title.apply(textstat.lexicon_count) df.head(1) df['first letter in title'] = df['first letter in title'].str.upper() df.shape df['title char per word'] = df['title char count'] / df['title word count'] df['bigger words in title'] = (df['title char per word'] > df['description char per word']) df['bigger words in title'].describe() len(soup.select('b')[1::2][0]) df = df.drop(labels='speaker names', axis='columns') df.head(1) df['speaker names'] = [tag.text.strip() for tag in soup.select('b')[::2]] df['time/place'] = [tag.text.strip() for tag in soup.select('b')[1::2]] import re def split(expression): expression = re.split('\n',expression) cols = [] event_day = expression[0].strip() event_time = expression[1].strip() event_location = expression[3].strip() cols.append(event_day) cols.append(event_time) cols.append(event_location) return cols times_places = list(df['time/place'].apply(split)) days = [] times = [] locations = [] for item in times_places: days.append(item[0]) times.append(item[1]) locations.append(item[2]) df['event day'] = days df['event times'] = times df['event locations'] = locations df = df.drop(labels='time/place',axis=1) df['event locations'].value_counts() ###Output _____no_output_____ ###Markdown _Lambda School Data Science_ Scrape and process dataObjectives- scrape and parse web pages- use list comprehensions- select rows and columns with pandasLinks- [Automate the Boring Stuff with Python, Chapter 11](https://automatetheboringstuff.com/chapter11/) - Requests - Beautiful Soup- [Python List Comprehensions: Explained Visually](https://treyhunner.com/2015/12/python-list-comprehensions-now-in-color/)- [Pandas Cheat Sheet](https://github.com/pandas-dev/pandas/blob/master/doc/cheatsheet/Pandas_Cheat_Sheet.pdf) - Subset Observations (Rows) - Subset Variables (Columns)- Python Data Science Handbook - [Chapter 3.1](https://jakevdp.github.io/PythonDataScienceHandbook/03.01-introducing-pandas-objects.html), Introducing Pandas Objects - [Chapter 3.2](https://jakevdp.github.io/PythonDataScienceHandbook/03.02-data-indexing-and-selection.html), Data Indexing and Selection Scrape the titles of PyCon 2019 talks ###Code url = 'https://us.pycon.org/2019/schedule/talks/list/' import bs4 import requests result = requests.get(url) ## Response [200] means that everything went okay with the retrieval of information result ## what is the type of the information.. in this case, object type(result) ## returns HTML code. the text from the URL result.text type(result.text) ## bs4.beautifulsoup function helps organize this str soup = bs4.BeautifulSoup(result.text) soup ## beautiful soup object type(soup) ## tab to get info.. select finds certain elements. One can inspect source from web pages and look for clues for the ##information that you want. trial and error until you get what you want! soup.select('h2') ## select all h2 tags on the page type(soup.select('h2')) ## returns a list! len(soup.select('h2')) ## tells you the length of the list.. about 100 talks in this case! first = soup.select('h2')[0] ## return the first element first type(first) ## soup tag element ## keep tab completing to see what you can do for these different types of items first.text ## get the text from the bs4 Tag object! .. text with spaces and newline characters type(first.text) # another string first.text.strip() ## strip the blank spaces first.text.strip().strip('5') ## strips specific text last = soup.select('h2')[-1] ## select the last element last #loop through all the text and print the titles with spaces removed! titles = [] for tag in soup.select('h2'): title = tag.text.strip() titles.append(title) print(titles) ## a list! type(titles) titlesCompr = [tag.text.strip() for tag in soup.select('h2')] ## list comprehensions! same as 'titles' list above print(titlesCompr) titlesCompr[0], titlesCompr[-1] ## first and last titles! can iterate the list! ###Output _____no_output_____ ###Markdown 5 ways to look at long titlesLet's define a long title as greater than 80 characters 1. For Loop ###Code ## for loop for title in titles: if len(title) > 80: print(title) ###Output ¡Escuincla babosa!: Creating a telenovela script in three Python deep learning frameworks Getting started with Deep Learning: Using Keras & Numpy to detect voice disorders How to engage Python contributors in the long term? Tech is easy, people are hard. Lessons learned from building a community of Python users among thousands of analysts Life Is Better Painted Black, or: How to Stop Worrying and Embrace Auto-Formatting One Engineer, an API, and an MVP: Or, how I spent one hour improving hiring data at my company. Put down the deep learning: When not to use neural networks and what to do instead Thinking Inside the Box: How Python Helped Us Adapt to An Existing Data Ingestion Pipeline ###Markdown 2. List Comprehension ###Code long_titles = [title for title in titles if len(title) > 80] # list comprehension long_titles ###Output _____no_output_____ ###Markdown 3. Filter with named function ###Code ## function that returns true or false if title is long or not def long(title): return len(title) > 80 long("Python is good") ## filters for long titles (using long function).. list call to it returns it into a list ## functional style of programming list(filter(long, titles)) ###Output _____no_output_____ ###Markdown 4. Filter with anonymous function ###Code ## another way to do the same thing as before. 'Lambdas are like list comprehensions for functions' list(filter(lambda t: len(t) > 80, titles)) ###Output _____no_output_____ ###Markdown 5. Pandaspandas documentation: [Working with Text Data](https://pandas.pydata.org/pandas-docs/stable/text.html) ###Code import pandas as pd pd.options.display.max_colwidth = 200 ## shows full title so it doesn't get truncated df = pd.DataFrame({'title': titles}) # craete datafram using data from previous list! df.shape df[ df['title'].str.len() > 80] ## refer to pandas cheat sheet to see what is going on here! ###Output _____no_output_____ ###Markdown Make new dataframe columnspandas documentation: [apply](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.apply.html) ###Code ###Output _____no_output_____ ###Markdown title length ###Code ## adding column that shows the title lengths df['title_length'] = df['title'].apply(len) df.loc[df['title_length']>80, 'title_length'] ## returns titles with length greater than 80 ###Output _____no_output_____ ###Markdown long title ###Code ## boolean column.. if short then false, if long, then True df['long_title'] = df['title_length'] > 80 df.shape df[df['long_title']] ## return ones with long titles only ###Output _____no_output_____ ###Markdown first letter ###Code df['first_letter'] = df['title'].str[0] ## add column of first letters df[df['first_letter']=='P'] ## show rows where first letter is 'P' ## same as.. '.startswith('P')' .. python methods.. very convenient! df[df['title'].str.startswith('P')] ## keep in mind.. strings put in are case sensitive... .lower() or .upper() can be used ## other methods.. .contains('string') ###Output _____no_output_____ ###Markdown word countUsing [`textstat`](https://github.com/shivam5992/textstat) ###Code !pip install textstat ## stats on text information import textstat ## tab complete to look at methods! always helpful ## textstat. df['title_word_count'] = df['title'].apply(textstat.lexicon_count) df.shape df.head() df[df['title_word_count'] <= 3] # look at short word count names ###Output _____no_output_____ ###Markdown Rename column`title length` --> `title character count`pandas documentation: [rename](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.rename.html) ###Code ## rename. .make sure to reassign to original (or new) dataframe, dependind if you want ## to keep them separated or not df = df.rename(columns={'title_length': 'title_character_count'}) df.head() ## you can see that the column got renamed ###Output _____no_output_____ ###Markdown Analyze the dataframe Describepandas documentation: [describe](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.describe.html) ###Code df.describe() ## will only show numeric columns df.describe(exclude='number') ## includes all columns.. but probably won't be great for some of the stats ###Output _____no_output_____ ###Markdown Sort valuespandas documentation: [sort_values](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.sort_values.html) Five shortest titles, by character count ###Code df.sort_values(by='title_character_count').head()['title'] ###Output _____no_output_____ ###Markdown Titles sorted reverse alphabetically ###Code df.sort_values(by='first_letter', ascending=False).head() ## be aware of details of functions.. might not return because of style ###Output _____no_output_____ ###Markdown Get value countspandas documentation: [value_counts](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.value_counts.html) Frequency counts of first letters ###Code df['first_letter'].value_counts() ###Output _____no_output_____ ###Markdown Percentage of talks with long titles ###Code df['long_title'].value_counts() / 95 # manual way to get percentage.. divide by length of dataframe df['long_title'].value_counts(normalize=True) # parameter that gives percentages ###Output _____no_output_____ ###Markdown Plotpandas documentation: [Visualization](https://pandas.pydata.org/pandas-docs/stable/visualization.html) Top 5 most frequent first letters ###Code ## parentheses around everything allows to put chain on different lines (df['first_letter'] .value_counts() .head() .plot .barh(color='grey', title='top five most frequent letters, Pycon 2019 talks')) # horizontal plot for top five letter counts ###Output _____no_output_____ ###Markdown Histogram of title lengths, in characters ###Code # histogram.. with title added to it.. of distribution of character counts title = "distribution of title length in characters" df['title_character_count'].plot.hist(title=title) ###Output _____no_output_____ ###Markdown Assignment**Scrape** the talk descriptions. Hint: `soup.select('.presentation-description')`**Make** new columns in the dataframe:- description- description character count- description word count**Describe** all the dataframe's columns. What's the average description word count? The minimum? The maximum?**Answer** the question: Which descriptions could fit in a tweet? Stretch Challenge**Make** another new column in the dataframe:- description grade level (you can use [this `textstat` function](https://github.com/shivam5992/textstatthe-flesch-kincaid-grade-level) to get the Flesh-Kincaid grade level)**Answer** the question: What's the distribution of grade levels? Plot a histogram.**Be aware** that [Textstat has issues when sentences aren't separated by spaces](https://github.com/shivam5992/textstat/issues/77issuecomment-453734048). (A Lambda School Data Science student helped identify this issue, and emailed with the developer.) Also, [BeautifulSoup doesn't separate paragraph tags with spaces](https://bugs.launchpad.net/beautifulsoup/+bug/1768330).So, you may get some inaccurate or surprising grade level estimates here. Don't worry, that's ok — but optionally, can you do anything to try improving the grade level estimates? ###Code soup.select('.presentation-description') ## selecting data that is within the '.presentation-description' tags descriptions = [tag.text.strip() for tag in soup.select('.presentation-description')] ## putting the stripped descriptions into a list df_copy = df ## making a copy of the dataframe df_copy['descriptions'] = descriptions ## making a column named 'descriptions' consisiting of the talk descriptions df_copy.head() ## show the new data frame with the added column ## adding a column that shows the character count of the descriptions df_copy['description_character_count'] = df_copy['descriptions'].apply(len) df_copy.head() ## adding a column with description word counts using 'textstat' library df_copy['descriptions_word_count'] = df_copy['descriptions'].apply(textstat.lexicon_count) df_copy.head() ## Describe all the dataframe's columns. What's the average description word count? The minimum? The maximum? df_copy.describe() ###Output _____no_output_____ ###Markdown 1. **Average descriptions word count**: 130.82 words2. **Minimum descriptions word count**: 20 words3. **Maximum descriptions word count**: 421 words ###Code ## Answer the question: Which descriptions could fit in a tweet? - Twitter current limit is 280 characters df_copy[df_copy['description_character_count'] <= 280] ###Output _____no_output_____ ###Markdown Only 1 description would fit in a tweet - "Making Music with Pythin, SuperCollider and FoxDot" ***STRETCH CHALLENGE*****Make** another new column in the dataframe:- description grade level (you can use [this `textstat` function](https://github.com/shivam5992/textstatthe-flesch-kincaid-grade-level) to get the Flesh-Kincaid grade level)**Answer** the question: What's the distribution of grade levels? Plot a histogram.**Be aware** that [Textstat has issues when sentences aren't separated by spaces](https://github.com/shivam5992/textstat/issues/77issuecomment-453734048). (A Lambda School Data Science student helped identify this issue, and emailed with the developer.) Also, [BeautifulSoup doesn't separate paragraph tags with spaces](https://bugs.launchpad.net/beautifulsoup/+bug/1768330).So, you may get some inaccurate or surprising grade level estimates here. Don't worry, that's ok — but optionally, can you do anything to try improving the grade level estimates? ###Code ## new column that shows the description grade level kincaid_grade = [textstat.flesch_kincaid_grade(text) for text in descriptions] df_copy['description_grade_level'] = kincaid_grade df_copy.head() ## distribution of description grade levels histogram df_copy['description_grade_level'].hist() ###Output _____no_output_____ ###Markdown _Lambda School Data Science_ Scrape and process dataObjectives- scrape and parse web pages- use list comprehensions- select rows and columns with pandasLinks- [Automate the Boring Stuff with Python, Chapter 11](https://automatetheboringstuff.com/chapter11/) - Requests - Beautiful Soup- [Python List Comprehensions: Explained Visually](https://treyhunner.com/2015/12/python-list-comprehensions-now-in-color/)- [Pandas Cheat Sheet](https://github.com/pandas-dev/pandas/blob/master/doc/cheatsheet/Pandas_Cheat_Sheet.pdf) - Subset Observations (Rows) - Subset Variables (Columns)- Python Data Science Handbook - [Chapter 3.1](https://jakevdp.github.io/PythonDataScienceHandbook/03.01-introducing-pandas-objects.html), Introducing Pandas Objects - [Chapter 3.2](https://jakevdp.github.io/PythonDataScienceHandbook/03.02-data-indexing-and-selection.html), Data Indexing and Selection Scrape the titles of PyCon 2019 talks ###Code url = 'https://us.pycon.org/2019/schedule/talks/list/' ###Output _____no_output_____ ###Markdown 5 ways to look at long titlesLet's define a long title as greater than 80 characters 1. For Loop ###Code ###Output _____no_output_____ ###Markdown 2. List Comprehension ###Code ###Output _____no_output_____ ###Markdown 3. Filter with named function ###Code ###Output _____no_output_____ ###Markdown 4. Filter with anonymous function ###Code ###Output _____no_output_____ ###Markdown 5. Pandaspandas documentation: [Working with Text Data](https://pandas.pydata.org/pandas-docs/stable/text.html) ###Code ###Output _____no_output_____ ###Markdown Make new dataframe columnspandas documentation: [apply](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.apply.html) ###Code ###Output _____no_output_____ ###Markdown title length ###Code ###Output _____no_output_____ ###Markdown long title ###Code ###Output _____no_output_____ ###Markdown first letter ###Code ###Output _____no_output_____ ###Markdown word countUsing [`textstat`](https://github.com/shivam5992/textstat) ###Code !pip install textstat ###Output _____no_output_____ ###Markdown Rename column`title length` --> `title character count`pandas documentation: [rename](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.rename.html) ###Code ###Output _____no_output_____ ###Markdown Analyze the dataframe Describepandas documentation: [describe](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.describe.html) ###Code ###Output _____no_output_____ ###Markdown Sort valuespandas documentation: [sort_values](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.sort_values.html) Five shortest titles, by character count ###Code ###Output _____no_output_____ ###Markdown Titles sorted reverse alphabetically ###Code ###Output _____no_output_____ ###Markdown Get value countspandas documentation: [value_counts](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.value_counts.html) Frequency counts of first letters ###Code ###Output _____no_output_____ ###Markdown Percentage of talks with long titles ###Code ###Output _____no_output_____ ###Markdown Plotpandas documentation: [Visualization](https://pandas.pydata.org/pandas-docs/stable/visualization.html) Top 5 most frequent first letters ###Code ###Output _____no_output_____ ###Markdown Histogram of title lengths, in characters ###Code ###Output _____no_output_____ ###Markdown _Lambda School Data Science_ Scrape and process dataObjectives- scrape and parse web pages- use list comprehensions- select rows and columns with pandasLinks- [Automate the Boring Stuff with Python, Chapter 11](https://automatetheboringstuff.com/chapter11/) - Requests - Beautiful Soup- [Python List Comprehensions: Explained Visually](https://treyhunner.com/2015/12/python-list-comprehensions-now-in-color/)- [Pandas Cheat Sheet](https://github.com/pandas-dev/pandas/blob/master/doc/cheatsheet/Pandas_Cheat_Sheet.pdf) - Subset Observations (Rows) - Subset Variables (Columns)- Python Data Science Handbook - [Chapter 3.1](https://jakevdp.github.io/PythonDataScienceHandbook/03.01-introducing-pandas-objects.html), Introducing Pandas Objects - [Chapter 3.2](https://jakevdp.github.io/PythonDataScienceHandbook/03.02-data-indexing-and-selection.html), Data Indexing and Selection Scrape the titles of PyCon 2019 talks ###Code url = 'https://us.pycon.org/2019/schedule/talks/list/' import requests, bs4 result = requests.get(url) result type(result) result.text soup = bs4.BeautifulSoup(result.text) type(soup) soup.select('h2') type(soup.select('h2')) len(soup.select('h2')) first = soup.select('h2')[0] first type(first) first.text type(first.text) first.text.strip() last = soup.select('h2')[-1] last.text.strip() for tag in soup.select('h2'): title = tag.text.strip() print(title) titles = [] for tag in soup.select('h2'): title = tag.text.strip() titles.append(title) print(titles) titles = [tag.text.strip() for tag in soup.select('h2')] print(titles) ###Output ['5 Steps to Build Python Native GUI Widgets for BeeWare', '8 things that happen at the dot: Attribute Access & Descriptors', 'Account Security Patterns: How Logged-In Are you?', 'Ace Your Technical Interview Using Python', 'Advanced asyncio: Solving Real-world Production Problems', 'A Guide to Software Engineering for Visually Impaired', 'A Medieval DSL? Parsing Heraldic Blazons with Python!', 'A New Era in Python Governance', 'API Evolution the Right Way', 'A Right Stitch-up: Creating embroidery patterns with Pillow', 'A Snake in the Bits: Security Automation with Python', 'Assets in Django without losing your hair', 'Attracting the Invisible Contributors', 'Beyond Two Groups: Generalized Bayesian A/B[/C/D/E...] Testing', 'Break the Cycle: Three excellent Python tools to automate repetitive tasks', 'Building a Culture of Observability', 'Building an Open Source Artificial Pancreas', 'Building reproducible Python applications for secured environments', 'But, Why is the (Django) Admin Slow?', 'Coded Readers: Using Python to uncover surprising patterns in the books you love', 'Code Review Skills for Pythonistas', 'CUDA in your Python: Effective Parallel Programming on the GPU', "Dependency hell: a library author's guide", 'Django Channels in practice', 'Does remote work really work?', "Don't be a robot, build the bot", 'Eita! Why Internationalization and Localization matter', 'Engineering Ethics and Open Source Software', 'Ensuring Safe Water Access with Python and Machine Learning', 'Escape from auto-manual testing with Hypothesis!', '¡Escuincla babosa!: Creating a telenovela script in three Python deep learning frameworks', "Everything at Once: Python's Many Concurrency Models", 'Exceptional Exceptions - How to properly raise, handle and create them.', 'Extracting tabular data from PDFs with Camelot & Excalibur', 'Fighting Climate Change with Python', 'Floats are Friends: making the most of IEEE754.00000000000000002', 'From days to minutes, from minutes to milliseconds with SQLAlchemy', 'Getting Started Testing in Data Science', 'Getting started with Deep Learning: Using Keras & Numpy to detect voice disorders', 'Getting to Three Million Lines of Type-Annotated Python', 'Going from 2 to 3 on Windows, macOS and Linux', "Help! I'm now the leader of our Meetup group!", 'How to Build a Clinical Diagnostic Model in Python', 'How to engage Python contributors in the long term? Tech is easy, people are hard.', 'How to JIT: Writing a Python JIT from scratch in pure Python', 'How to Think about Data Visualization', 'Instant serverless APIs, powered by SQLite', 'Intentional Deployment: Best Practices for Feature Flag Management', 'Lessons learned from building a community of Python users among thousands of analysts', 'Leveraging the Type System to Write Secure Applications', 'Life Is Better Painted Black, or: How to Stop Worrying and Embrace Auto-Formatting', 'Lowering the Stakes of Failure with Pre-mortems and Post-mortems', 'Machine learning model and dataset versioning practices', 'Maintaining a Python Project When It’s Not Your Job', 'Making Music with Python, SuperCollider and FoxDot', 'Measures and Mismeasures of algorithmic fairness', 'Measuring Model Fairness', 'Migrating Pinterest from Python2 to Python3', 'Mocking and Patching Pitfalls', 'Modern solvers: Problems well-defined are problems solved', 'One Engineer, an API, and an MVP: Or, how I spent one hour improving hiring data at my company.', 'Plan your next eclipse viewing with Jupyter and geopandas', 'Plugins: Adding Flexibility to Your Apps', 'Plug-n-Stream Player Piano: Signal Processing With Python', 'Practical decorators', 'Programmatic Notebooks with papermill', 'Put down the deep learning: When not to use neural networks and what to do instead', 'Python on Windows is Okay, Actually', 'Python Security Tools', "Releasing the World's Largest Python Site Every 7 Minutes", 'Rescuing Kerala with Python', 'Scraping a Million Pokemon Battles: Distributed Systems By Example', "Set Practice: learning from Python's set types", 'Statistical Profiling (and other fun with the sys module)', 'Strategies for testing Async code', 'Supporting Engineers with Mental Health Issues', 'Syntax Trees and Python - Automated Code Transformations', 'Take Back the Web with GraphQL', 'Terrain, Art, Python and LiDAR', 'The Black Magic of Python Wheels', 'The Perils of Inheritance: Why We Should Prefer Composition', 'The Refactoring Balance Beam: When to Make Changes and When to Leave it Alone', 'The Zen of Python Teams', 'Things I Wish They Told Me About The Multiprocessing Module in Python 3', 'Thinking Inside the Box: How Python Helped Us Adapt to An Existing Data Ingestion Pipeline', 'Thinking like a Panda: Everything you need to know to use pandas the right way.', 'Thoth - how to recommend the best possible libraries for your application', 'Time to take out the rubbish: garbage collector', 'to GIL or not to GIL: the Future of Multi-Core (C)Python', 'Type hinting (and mypy)', 'Understanding Python’s Debugging Internals', 'What is a PLC and how do I talk Python to it?', "What's new in Python 3.7", 'Wily Python: Writing simpler and more maintainable Python', "Working with Time Zones: Everything You Wish You Didn't Need to Know"] ###Markdown 5 ways to look at long titlesLet's define a long title as greater than 80 characters 1. For Loop ###Code long_titles = [] for title in titles: if len(title) > 80: # print(title) long_titles.append(title) ###Output _____no_output_____ ###Markdown 2. List Comprehension ###Code long_titles = [title for title in titles if len(title) > 80] print(long_titles) ###Output ['¡Escuincla babosa!: Creating a telenovela script in three Python deep learning frameworks', 'Getting started with Deep Learning: Using Keras & Numpy to detect voice disorders', 'How to engage Python contributors in the long term? Tech is easy, people are hard.', 'Lessons learned from building a community of Python users among thousands of analysts', 'Life Is Better Painted Black, or: How to Stop Worrying and Embrace Auto-Formatting', 'One Engineer, an API, and an MVP: Or, how I spent one hour improving hiring data at my company.', 'Put down the deep learning: When not to use neural networks and what to do instead', 'Thinking Inside the Box: How Python Helped Us Adapt to An Existing Data Ingestion Pipeline'] ###Markdown 3. Filter with named function ###Code def long(title): return len(title) > 80 long('Getting started with Deep Learning: Using Keras & Numpy to detect voice disorders') filter(long, titles) list(filter(long, titles)) ###Output _____no_output_____ ###Markdown 4. Filter with anonymous function ###Code list(filter(lambda t: len(t) > 80, titles)) ###Output _____no_output_____ ###Markdown 5. Pandaspandas documentation: [Working with Text Data](https://pandas.pydata.org/pandas-docs/stable/text.html) ###Code import pandas as pd pd.options.display.max_colwidth = 200 df = pd.DataFrame({'title': titles}) print(df) print(df.shape) df[ df['title'].str.len() > 80 ] ###Output _____no_output_____ ###Markdown Make new dataframe columnspandas documentation: [apply](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.apply.html) title length ###Code df['title length'] = df['title'].apply(len) print(df['title length']) df.shape df.loc[df['title length'] > 80, 'title'] ###Output _____no_output_____ ###Markdown long title ###Code df['long title'] = df['title length'] > 80 df.shape df[ df['long title'] == True ] df[ df['long title']] ###Output _____no_output_____ ###Markdown 3 ways to get all rows where 'long title' is false:df[ df['long title'] == False]df[ df['long title'] != True] ~ denotes an inversion, so True returns Falsedf[ ~df['long title']] first letter ###Code df['first character'] = df['title'].str[0] df[ df['first character'] == 'P' ] df[ df['title'].str.startswith('P')] ###Output _____no_output_____ ###Markdown word countUsing [`textstat`](https://github.com/shivam5992/textstat) ###Code !pip install textstat import textstat df['title word count'] = df['title'].apply(textstat.lexicon_count) df.head() df.shape df [ df['title word count'] <= 3 ] ###Output _____no_output_____ ###Markdown Rename column`title length` --> `title character count`pandas documentation: [rename](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.rename.html) ###Code df = df.rename(columns={'title length': 'title character count'}) df.head() ###Output _____no_output_____ ###Markdown Analyze the dataframe Describepandas documentation: [describe](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.describe.html) ###Code df.describe() df.describe(exclude='number') ###Output _____no_output_____ ###Markdown Sort valuespandas documentation: [sort_values](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.sort_values.html) Five shortest titles, by character count ###Code df.sort_values(by='title character count').head() ###Output _____no_output_____ ###Markdown Titles sorted reverse alphabetically ###Code df.sort_values(by='first character', ascending=False) ###Output _____no_output_____ ###Markdown Get value countspandas documentation: [value_counts](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.value_counts.html) Frequency counts of first letters ###Code df['first character'].value_counts() ###Output _____no_output_____ ###Markdown Percentage of talks with long titles ###Code df['long title'].value_counts(normalize=True) ###Output _____no_output_____ ###Markdown Plotpandas documentation: [Visualization](https://pandas.pydata.org/pandas-docs/stable/visualization.html) Top 5 most frequent first letters ###Code %matplotlib inline # Method chaining (df['first character'] .value_counts() .head() .plot .barh(color = 'grey', title='Top 5 most frequent first letters, PyCon 2019 talks')); ###Output _____no_output_____ ###Markdown Histogram of title lengths, in characters ###Code title = 'Distribution of title length, in characters' df['title character count'].plot.hist(title=title); ###Output _____no_output_____ ###Markdown Assignment**Scrape** the talk descriptions. Hint: `soup.select('.presentation-description')`**Make** new columns in the dataframe:- description- description character count- description word count**Describe** all the dataframe's columns. What's the average description word count? The minimum? The maximum?**Answer** the question: Which descriptions could fit in a tweet? Stretch Challenge**Make** another new column in the dataframe:- description grade level (you can use [this `textstat` function](https://github.com/shivam5992/textstatthe-flesch-kincaid-grade-level) to get the Flesh-Kincaid grade level)**Answer** the question: What's the distribution of grade levels? Plot a histogram.**Be aware** that [Textstat has issues when sentences aren't separated by spaces](https://github.com/shivam5992/textstat/issues/77issuecomment-453734048). (A Lambda School Data Science student helped identify this issue, and emailed with the developer.) Also, [BeautifulSoup doesn't separate paragraph tags with spaces](https://bugs.launchpad.net/beautifulsoup/+bug/1768330).So, you may get some inaccurate or surprising grade level estimates here. Don't worry, that's ok — but optionally, can you do anything to try improving the grade level estimates? ###Code soup.select('.presentation-description') first_description = soup.select('.presentation-description')[0] first_description first_description.text first_description.text.strip() first_description.text.strip().replace('\r\n\r\n', " ") type(first_description.text.strip()) descriptions = [tag.text.strip().replace('\r\n\r\n', " ") for tag in soup.select('.presentation-description')] print(descriptions) df['description'] = pd.DataFrame(descriptions) df.head() df['description char count'] = df['description'].apply(len) df.head() df['description'].describe() df['description word count'] = df['description'].apply(textstat.lexicon_count) df.head() df.describe() df.describe(exclude='number') df[ df['description char count'] <= 280] ###Output _____no_output_____ ###Markdown Stretch ChallengeMake another new column in the dataframe:description grade level (you can use this textstat function to get the Flesh-Kincaid grade level)Answer the question: What's the distribution of grade levels? Plot a histogram.Be aware that Textstat has issues when sentences aren't separated by spaces. (A Lambda School Data Science student helped identify this issue, and emailed with the developer.)Also, BeautifulSoup doesn't separate paragraph tags with spaces.So, you may get some inaccurate or surprising grade level estimates here. Don't worry, that's ok — but optionally, can you do anything to try improving the grade level estimates? ###Code df['description grade level'] = [textstat.flesch_kincaid_grade(text) for text in descriptions] df.head() ###Output _____no_output_____ ###Markdown _Lambda School Data Science_ Scrape and process dataObjectives- scrape and parse web pages- use list comprehensions- select rows and columns with pandasLinks- [Automate the Boring Stuff with Python, Chapter 11](https://automatetheboringstuff.com/chapter11/) - Requests - Beautiful Soup- [Python List Comprehensions: Explained Visually](https://treyhunner.com/2015/12/python-list-comprehensions-now-in-color/)- [Pandas Cheat Sheet](https://github.com/pandas-dev/pandas/blob/master/doc/cheatsheet/Pandas_Cheat_Sheet.pdf) - Subset Observations (Rows) - Subset Variables (Columns)- Python Data Science Handbook - [Chapter 3.1](https://jakevdp.github.io/PythonDataScienceHandbook/03.01-introducing-pandas-objects.html), Introducing Pandas Objects - [Chapter 3.2](https://jakevdp.github.io/PythonDataScienceHandbook/03.02-data-indexing-and-selection.html), Data Indexing and Selection Scrape the titles of PyCon 2018 talks ###Code url = 'https://us.pycon.org/2018/schedule/talks/list/' import requests, bs4 result = requests.get(url) # tab lists available options, shift + enter runs the cell result.text soup = bs4.BeautifulSoup(result.text) soup.select('h2') len(soup.select('h2')) first = soup.select('h2')[0] first.text.strip() #[-1:] vs -1 does slicing instead of locating last = soup.select('h2')[-1:] titles =[] for tag in soup.select('h2'): tag.text.strip() titles.append(titles) titles =[tag.text.strip() for tag in soup.select('h2')] type (titles), len(titles) ###Output _____no_output_____ ###Markdown 5 ways to look at long titlesLet's define a long title as greater than 80 characters 1. For Loop ###Code for title in titles: if len(title) > 80: print (title) long_titles =[] for title in titles: if len(title) > 80: long_titles.append(title) long_titles ###Output _____no_output_____ ###Markdown 2. List Comprehension ###Code [title for title in titles if len(title) > 80] ###Output _____no_output_____ ###Markdown 3. Filter with named function ###Code def long(title): return len(title) >80 list(filter(long,titles)) ###Output _____no_output_____ ###Markdown 4. Filter with anonymous function ###Code list(filter(lambda t: len(t) >80,titles)) df.title.apply(len) df['title'].str[0] df.title[0] def first_letter(string): return string[0] df.title.apply(first_letter) ###Output _____no_output_____ ###Markdown 5. Pandaspandas documentation: [Working with Text Data](https://pandas.pydata.org/pandas-docs/stable/text.html) ###Code ###Output _____no_output_____ ###Markdown Make new dataframe columnspandas documentation: [apply](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.apply.html) ###Code import pandas as pd pd.options.display.max_colwidth = 200 df = pd. DataFrame({'title':titles}) df[df.title.str.len()>80] ###Output _____no_output_____ ###Markdown title length ###Code df['title length'] = df.title.apply(len) df.head() df[df['title length']>80] df.loc[df['title length']>80,'title length'] ###Output _____no_output_____ ###Markdown long title ###Code df['long title'] = df['title length'] > 80 df[df['long title']] ###Output _____no_output_____ ###Markdown first letter ###Code title = 'Debugging PySpark' first_letter = title[0] first_letter df['first letter']=df.title.str[0] df.head() df[df['first letter']=='P'] ###Output _____no_output_____ ###Markdown word countUsing [`textstat`](https://github.com/shivam5992/textstat) ###Code !pip install textstat import textstat first = df.title.values[0] last = df.title.values[-1] first, last textstat.lexicon_count(first),textstat.lexicon_count(last) df['title word count']=df.title.apply(textstat.lexicon_count) df[df['title word count']<=3] ###Output _____no_output_____ ###Markdown Rename column`title length` --> `title character count`pandas documentation: [rename](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.rename.html) ###Code df.rename(columns={'title length':'title character count'}, inplace=True) df.columns ###Output _____no_output_____ ###Markdown Analyze the dataframe Describepandas documentation: [describe](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.describe.html) ###Code df.describe() df.describe(include='all') import numpy as np df.describe(exclude=np.number) ###Output _____no_output_____ ###Markdown Sort valuespandas documentation: [sort_values](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.sort_values.html) Five shortest titles, by character count ###Code #ascending = False to get longer df.sort_values(by='title character count', ).head(5) ###Output _____no_output_____ ###Markdown Titles sorted reverse alphabetically ###Code df['first letter'] =df['first letter'].str.upper() df.sort_values(by='first letter', ascending = False) ###Output _____no_output_____ ###Markdown Get value countspandas documentation: [value_counts](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.value_counts.html) Frequency counts of first letters ###Code df['first letter'].value_counts().sort_index() ###Output _____no_output_____ ###Markdown Percentage of talks with long titles ###Code df['long title'].value_counts() / len(df) df['long title'].value_counts(normalize='True') ###Output _____no_output_____ ###Markdown Plotpandas documentation: [Visualization](https://pandas.pydata.org/pandas-docs/stable/visualization.html) Top 5 most frequent first letters ###Code %matplotlib inline ###Output _____no_output_____ ###Markdown Histogram of title lengths, in characters ###Code (df['first letter'] .value_counts() .head(5) .plot.barh(color='grey',title='Top 5 most frequent first letters, Pycon 2018 Talks')); title ='Distribution of title length in characters' df['title character count'].plot.hist(title=title); ###Output _____no_output_____ ###Markdown Assignment**Scrape** the talk descriptions. Hint: `soup.select('.presentation-description')`**Make** new columns in the dataframe:- description- description character count- description word count- description grade level (use [this `textstat` function](https://github.com/shivam5992/textstatthe-flesch-kincaid-grade-level) to get the Flesh-Kincaid grade level)**Describe** all the dataframe's columns. What's the average description word count? The minimum? The maximum?**Answer** these questions:- Which descriptions could fit in a tweet?- What's the distribution of grade levels? Plot a histogram. ###Code #scrape description =[tag.text.strip() for tag in soup.select('.presentation-description')] #new columns df['descriptions'] = pd. DataFrame({'descriptions':description}) df['descriptions character count'] = df.descriptions.apply(len) df['descriptions word count']=df.descriptions.apply(textstat.lexicon_count) df['grade level']=df.descriptions.apply(textstat.flesch_kincaid_grade) df.head() df.describe() #135 average description word count. The minimum is 35 words, the maximum is 436 words #Which descriptions could fit in a tweet? df[df.descriptions.apply(len)<280] df['grade level'].plot.hist(title="Grade Level"); ###Output _____no_output_____ ###Markdown _Lambda School Data Science_ Scrape and process dataObjectives- scrape and parse web pages- use list comprehensions- select rows and columns with pandasLinks- [Automate the Boring Stuff with Python, Chapter 11](https://automatetheboringstuff.com/chapter11/) - Requests - Beautiful Soup- [Python List Comprehensions: Explained Visually](https://treyhunner.com/2015/12/python-list-comprehensions-now-in-color/)- [Pandas Cheat Sheet](https://github.com/pandas-dev/pandas/blob/master/doc/cheatsheet/Pandas_Cheat_Sheet.pdf) - Subset Observations (Rows) - Subset Variables (Columns)- Python Data Science Handbook - [Chapter 3.1](https://jakevdp.github.io/PythonDataScienceHandbook/03.01-introducing-pandas-objects.html), Introducing Pandas Objects - [Chapter 3.2](https://jakevdp.github.io/PythonDataScienceHandbook/03.02-data-indexing-and-selection.html), Data Indexing and Selection Scrape the titles of PyCon 2019 talks ###Code url = 'https://us.pycon.org/2019/schedule/talks/list/' import bs4 import requests result = requests.get(url) result soup = bs4.BeautifulSoup(result.text) type(soup) soup.select('h2') first = soup.select('h2')[0] first.text first.text.strip() titles = [title.text.strip() for title in soup.select('h2')] len(titles), type(titles) ###Output _____no_output_____ ###Markdown 5 ways to look at long titlesLet's define a long title as greater than 80 characters 1. For Loop ###Code long_titles = [] for title in titles: if len(title) > 80: long_titles.append(title) long_titles ###Output _____no_output_____ ###Markdown 2. List Comprehension ###Code long_titles = [title for title in titles if len(title) > 80] long_titles ###Output _____no_output_____ ###Markdown 3. Filter with named function ###Code def long(title): return len(title) > 80 list(filter(long, titles)) ###Output _____no_output_____ ###Markdown 4. Filter with anonymous function ###Code list(filter(lambda t: len(t) > 80, titles)) ###Output _____no_output_____ ###Markdown 5. Pandaspandas documentation: [Working with Text Data](https://pandas.pydata.org/pandas-docs/stable/text.html) ###Code import pandas as pd pd.options.display.max_colwidth = 200 df = pd.DataFrame({'title': titles}) df.shape df[ df['title'].str.len() > 80 ] ###Output _____no_output_____ ###Markdown Make new dataframe columnspandas documentation: [apply](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.apply.html) title length ###Code df['title length'] = df['title'].apply(len) df.shape df.head() ###Output _____no_output_____ ###Markdown long title ###Code df['long title'] = df['title'].apply(len) > 80 df.head() df[ df['long title'] == True ] ###Output _____no_output_____ ###Markdown first letter ###Code df['first letter'] = df['title'].str[0] df[ df['first letter'] == 'P'] ###Output _____no_output_____ ###Markdown word countUsing [`textstat`](https://github.com/shivam5992/textstat) ###Code !pip install textstat import textstat df['title word count'] = df['title'].apply(textstat.lexicon_count) df.shape df.head() ###Output _____no_output_____ ###Markdown Rename column`title length` --> `title character count`pandas documentation: [rename](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.rename.html) ###Code df = df.rename(columns={'title length':'title character count'}) ###Output _____no_output_____ ###Markdown Analyze the dataframe Describepandas documentation: [describe](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.describe.html) ###Code df.describe(exclude='number') ###Output _____no_output_____ ###Markdown Sort valuespandas documentation: [sort_values](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.sort_values.html) Five shortest titles, by character count ###Code df.sort_values(by='title character count')[:5] ###Output _____no_output_____ ###Markdown Titles sorted reverse alphabetically ###Code df.sort_values(by='title', ascending=False).head() ###Output _____no_output_____ ###Markdown Get value countspandas documentation: [value_counts](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.value_counts.html) Frequency counts of first letters ###Code df['first letter'].value_counts() ###Output _____no_output_____ ###Markdown Percentage of talks with long titles ###Code df['long title'].value_counts(normalize=True) ###Output _____no_output_____ ###Markdown Plotpandas documentation: [Visualization](https://pandas.pydata.org/pandas-docs/stable/visualization.html) Top 5 most frequent first letters ###Code %matplotlib inline (df['first letter'] .value_counts() .head(5) .plot .barh( color='grey', title='Top 5 Most Frequent First Letters, Pycon 2019 Talks')); ###Output _____no_output_____ ###Markdown Histogram of title lengths, in characters ###Code (df['title character count'] .plot .hist( color='b', title='Distribution of Title Lengths')); ###Output _____no_output_____ ###Markdown Assignment**Scrape** the talk descriptions. Hint: `soup.select('.presentation-description')`**Make** new columns in the dataframe:- description- description character count- description word count**Describe** all the dataframe's columns. What's the average description word count? The minimum? The maximum?**Answer** the question: Which descriptions could fit in a tweet? Stretch Challenge**Make** another new column in the dataframe:- description grade level (you can use [this `textstat` function](https://github.com/shivam5992/textstatthe-flesch-kincaid-grade-level) to get the Flesh-Kincaid grade level)**Answer** the question: What's the distribution of grade levels? Plot a histogram.**Be aware** that [Textstat has issues when sentences aren't separated by spaces](https://github.com/shivam5992/textstat/issues/77issuecomment-453734048). (A Lambda School Data Science student helped identify this issue, and emailed with the developer.) Also, [BeautifulSoup doesn't separate paragraph tags with spaces](https://bugs.launchpad.net/beautifulsoup/+bug/1768330).So, you may get some inaccurate or surprising grade level estimates here. Don't worry, that's ok — but optionally, can you do anything to try improving the grade level estimates? ###Code results.text descriptions = soup.select('.presentation-description') print(descriptions) first = descriptions[0] first.text.strip() last = descriptions[-1].text.strip() last.replace('\r\n\r\n', ' ') descs = [] for desc in soup.select('.presentation-description'): desc = desc.text.strip() desc = desc.replace('\r\n\r\n', ' ') descs.append(desc) descs type(descs), len(descs) # Add presentation descriptions to dataframe df['description'] = descs df.head() textstat.lexicon_count(df['description'][0]) # Add description word count column df['description word count'] = df['description'].apply(textstat.lexicon_count) df.head() # Add description character count column df['description character count'] = df['description'].apply(len) df.head() # Describing the dataframe's columns. df.describe() ###Output _____no_output_____ ###Markdown - The presentation description's mean word count is approximately 131 words. - The minimum presentation description's word count is 20 words and the maximum is 421 words. ###Code df.describe(exclude='number') # Check to see which presentation descriptions would fit in a tweet (less than 280 characters) df[ df['description character count'] <= 280 ] df['description'][70] df['description grade level'] = df['description'].apply(textstat.flesch_kincaid_grade) df.head() df['description'][2] df.describe() df[ df['description grade level'] > 16 ] import matplotlib.pyplot as plt plt.style.use('seaborn-whitegrid') ax = plt.axes() ax.hist(df['description grade level'], alpha=0.7, histtype='stepfilled', color='steelblue', edgecolor='none') ax.set( xlabel='Description Grade Level', ylabel='Number of Presentation Descriptions', title='Reading Grade Level of Presentation Descriptions'); fig = plt.subplots(figsize=(16,8)) ax = plt.axes() plt.hist2d( df['description word count'], df['title word count'], bins=5, cmap='Blues' ) ax.set( xlabel='Description Word Count', ylabel='Title Word Count', title='Relationship between Presentation Title and Description Word Count' ) cb = plt.colorbar() cb.set_label('counts in each bin') fig = plt.subplots(figsize=(16,8)) ax = plt.axes() plt.scatter( df['description word count'], df['description character count'], c=df['description grade level'], s=df['title character count'], alpha=0.3, cmap='viridis' ) ax.set( xlabel='Description Word Count', ylabel='Description Character Count', title='Relationship between Description Length and Readability' ) cb = plt.colorbar() cb.set_label('Reading Grade Level') plt.axis([0,250,0,1500]) plt.show() ###Output _____no_output_____ ###Markdown _Lambda School Data Science_ Scrape and process dataObjectives- scrape and parse web pages- use list comprehensions- select rows and columns with pandasLinks- [Automate the Boring Stuff with Python, Chapter 11](https://automatetheboringstuff.com/chapter11/) - Requests - Beautiful Soup- [Python List Comprehensions: Explained Visually](https://treyhunner.com/2015/12/python-list-comprehensions-now-in-color/)- [Pandas Cheat Sheet](https://github.com/pandas-dev/pandas/blob/master/doc/cheatsheet/Pandas_Cheat_Sheet.pdf) - Subset Observations (Rows) - Subset Variables (Columns)- Python Data Science Handbook - [Chapter 3.1](https://jakevdp.github.io/PythonDataScienceHandbook/03.01-introducing-pandas-objects.html), Introducing Pandas Objects - [Chapter 3.2](https://jakevdp.github.io/PythonDataScienceHandbook/03.02-data-indexing-and-selection.html), Data Indexing and Selection Scrape the titles of PyCon 2019 talks ###Code url = 'https://us.pycon.org/2019/schedule/talks/list/' import bs4 import requests result = requests.get(url) soup = bs4.BeautifulSoup(result.text) titles = [tag.text.strip() for tag in soup.select('h2')] ###Output _____no_output_____ ###Markdown 5 ways to look at long titlesLet's define a long title as greater than 80 characters 1. For Loop ###Code long_titles_for_loop = [] for title in titles: if len(titles) > 80: long_titles_for_loop.append(title) ###Output _____no_output_____ ###Markdown 2. List Comprehension ###Code long_titles_list_comp = [title for title in titles if len(title) > 80] ###Output _____no_output_____ ###Markdown 3. Filter with named function ###Code def long(title): return len(title) > 80 long_titles_named_func = list(filter(long, titles)) ###Output _____no_output_____ ###Markdown 4. Filter with anonymous function ###Code long_titles_anon_func = list(filter(lambda x: len(x) > 80, titles)) ###Output _____no_output_____ ###Markdown 5. Pandaspandas documentation: [Working with Text Data](https://pandas.pydata.org/pandas-docs/stable/text.html) ###Code import pandas as pd pd.options.display.max_colwidth = 200 df = pd.DataFrame({'title': titles}) long_titles_pd = df[df['title'].str.len() > 80] df.head() ###Output _____no_output_____ ###Markdown Make new dataframe columnspandas documentation: [apply](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.apply.html) title length ###Code df['title_length'] = df.title.apply(len) df.head() ###Output _____no_output_____ ###Markdown long title ###Code df['long_title'] = df['title_length'] > 80 df.head() ###Output _____no_output_____ ###Markdown first letter ###Code df['first_letter'] = df['title'].str[0] df.head() ###Output _____no_output_____ ###Markdown word countUsing [`textstat`](https://github.com/shivam5992/textstat) ###Code !pip install textstat import textstat df['title_word_count'] = df['title'].apply(textstat.lexicon_count) df.head() ###Output _____no_output_____ ###Markdown Rename column`title length` --> `title character count`pandas documentation: [rename](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.rename.html) ###Code df.rename(columns={'title_length': 'title character count'}, inplace=True) df.head() ###Output _____no_output_____ ###Markdown Analyze the dataframe Describepandas documentation: [describe](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.describe.html) ###Code df.describe() ###Output _____no_output_____ ###Markdown Sort valuespandas documentation: [sort_values](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.sort_values.html) Five shortest titles, by character count ###Code sorted_df = df.sort_values(by='title character count') five_shortest_titles = list(sorted_df.title[0:5]) five_shortest_titles ###Output _____no_output_____ ###Markdown Titles sorted reverse alphabetically ###Code alpha_sort_reverse = df.sort_values(by='title', ascending=False) reverse_sorted_titles = list(alpha_sort_reverse['title']) reverse_sorted_titles ###Output _____no_output_____ ###Markdown Get value countspandas documentation: [value_counts](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.value_counts.html) Frequency counts of first letters ###Code df.first_letter.value_counts() ###Output _____no_output_____ ###Markdown Percentage of talks with long titles ###Code df['long_title'].value_counts(normalize=True) ###Output _____no_output_____ ###Markdown Plotpandas documentation: [Visualization](https://pandas.pydata.org/pandas-docs/stable/visualization.html) Top 5 most frequent first letters ###Code (df.first_letter .value_counts() .head(5) .plot .barh(color='grey', title='Top 5 most frequent first letters')); ###Output _____no_output_____ ###Markdown Histogram of title lengths, in characters ###Code hist_title = 'Distribution of title length in character counts' df['title character count'].plot.hist(title=hist_title); ###Output _____no_output_____ ###Markdown Assignment**Scrape** the talk descriptions. Hint: `soup.select('.presentation-description')`**Make** new columns in the dataframe:- description- description character count- description word count**Describe** all the dataframe's columns. What's the average description word count? The minimum? The maximum?**Answer** the question: Which descriptions could fit in a tweet? ###Code #Scrape the talk descriptions. Hint: soup.select('.presentation-description') descriptions = [desc.text for desc in soup.select('.presentation-description')] #Make new columns in the dataframe: #description df['description'] = descriptions #description character count df['description_character_count'] = df['description'].apply(len) #description word count df['description_word_count'] = df['description'].apply(textstat.lexicon_count) #Describe all the dataframe's columns. What's the average description word count? The minimum? The maximum? df.describe() print('The avg description word count is: ' + str(round(df.description_word_count.mean(), 1))) print('The minimum is: ' + str(df.description_word_count.min())) print('The maximum is: ' + str(df.description_word_count.max())) #Answer the question: Which descriptions could fit in a tweet? twitter_max = 280 twitterable_descriptions = df[df['description_character_count'] <= twitter_max]['description'] twitterable_descriptions ###Output _____no_output_____ ###Markdown Stretch Challenge**Make** another new column in the dataframe:- description grade level (you can use [this `textstat` function](https://github.com/shivam5992/textstatthe-flesch-kincaid-grade-level) to get the Flesh-Kincaid grade level)**Answer** the question: What's the distribution of grade levels? Plot a histogram.**Be aware** that [Textstat has issues when sentences aren't separated by spaces](https://github.com/shivam5992/textstat/issues/77issuecomment-453734048). (A Lambda School Data Science student helped identify this issue, and emailed with the developer.) Also, [BeautifulSoup doesn't separate paragraph tags with spaces](https://bugs.launchpad.net/beautifulsoup/+bug/1768330).So, you may get some inaccurate or surprising grade level estimates here. Don't worry, that's ok — but optionally, can you do anything to try improving the grade level estimates? ###Code #Make another new column in the dataframe: description grade level df['flesch_score'] = df['description'].apply(textstat.flesch_kincaid_grade) grade_levels = [] for score in df['flesch_score']: if score < 30: grade_levels.append('College +') elif score < 50: grade_levels.append('College') elif score < 60: grade_levels.append('Grade 10-12') elif score < 70: grade_levels.append('Grade 8-9') elif score < 80: grade_levels.append('Grade 7') elif score < 90: grade_levels.append('Grade 6') else: grade_levels.append('Grade 5') df['description_grade_level'] = grade_levels #Answer the question: What's the distribution of grade levels? Plot a histogram. df['description_grade_level'].value_counts() df['description_grade_level'].value_counts().plot.bar(title='Histogram of Grade Level for each description'); ###Output _____no_output_____ ###Markdown _Lambda School Data Science_ Scrape and process dataObjectives- scrape and parse web pages- use list comprehensions- select rows and columns with pandasLinks- [Automate the Boring Stuff with Python, Chapter 11](https://automatetheboringstuff.com/chapter11/) - Requests - Beautiful Soup- [Python List Comprehensions: Explained Visually](https://treyhunner.com/2015/12/python-list-comprehensions-now-in-color/)- [Pandas Cheat Sheet](https://github.com/pandas-dev/pandas/blob/master/doc/cheatsheet/Pandas_Cheat_Sheet.pdf) - Subset Observations (Rows) - Subset Variables (Columns)- Python Data Science Handbook - [Chapter 3.1](https://jakevdp.github.io/PythonDataScienceHandbook/03.01-introducing-pandas-objects.html), Introducing Pandas Objects - [Chapter 3.2](https://jakevdp.github.io/PythonDataScienceHandbook/03.02-data-indexing-and-selection.html), Data Indexing and Selection Scrape the titles of PyCon 2019 talks ###Code url = 'https://us.pycon.org/2019/schedule/talks/list/' ###Output _____no_output_____ ###Markdown 5 ways to look at long titlesLet's define a long title as greater than 80 characters 1. For Loop 2. List Comprehension 3. Filter with named function 4. Filter with anonymous function 5. Pandaspandas documentation: [Working with Text Data](https://pandas.pydata.org/pandas-docs/stable/text.html) Make new dataframe columnspandas documentation: [apply](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.apply.html) title length long title first letter word countUsing [`textstat`](https://github.com/shivam5992/textstat) ###Code !pip install textstat ###Output _____no_output_____ ###Markdown _Lambda School Data Science_ Scrape and process dataObjectives- scrape and parse web pages- use list comprehensions- select rows and columns with pandasLinks- [Automate the Boring Stuff with Python, Chapter 11](https://automatetheboringstuff.com/chapter11/) - Requests - Beautiful Soup- [Python List Comprehensions: Explained Visually](https://treyhunner.com/2015/12/python-list-comprehensions-now-in-color/)- [Pandas Cheat Sheet](https://github.com/pandas-dev/pandas/blob/master/doc/cheatsheet/Pandas_Cheat_Sheet.pdf) - Subset Observations (Rows) - Subset Variables (Columns)- Python Data Science Handbook - [Chapter 3.1](https://jakevdp.github.io/PythonDataScienceHandbook/03.01-introducing-pandas-objects.html), Introducing Pandas Objects - [Chapter 3.2](https://jakevdp.github.io/PythonDataScienceHandbook/03.02-data-indexing-and-selection.html), Data Indexing and Selection Scrape the titles of PyCon 2018 talks ###Code url = 'https://us.pycon.org/2018/schedule/talks/list/' ###Output _____no_output_____ ###Markdown 5 ways to look at long titlesLet's define a long title as greater than 80 characters 1. For Loop ###Code ###Output _____no_output_____ ###Markdown 2. List Comprehension ###Code ###Output _____no_output_____ ###Markdown 3. Filter with named function ###Code ###Output _____no_output_____ ###Markdown 4. Filter with anonymous function ###Code ###Output _____no_output_____ ###Markdown 5. Pandaspandas documentation: [Working with Text Data](https://pandas.pydata.org/pandas-docs/stable/text.html) ###Code ###Output _____no_output_____ ###Markdown Make new dataframe columnspandas documentation: [apply](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.apply.html) ###Code ###Output _____no_output_____ ###Markdown title length ###Code ###Output _____no_output_____ ###Markdown long title ###Code ###Output _____no_output_____ ###Markdown first letter ###Code ###Output _____no_output_____ ###Markdown word countUsing [`textstat`](https://github.com/shivam5992/textstat) ###Code !pip install textstat ###Output _____no_output_____ ###Markdown Rename column`title length` --> `title character count`pandas documentation: [rename](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.rename.html) ###Code ###Output _____no_output_____ ###Markdown Analyze the dataframe Describepandas documentation: [describe](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.describe.html) ###Code ###Output _____no_output_____ ###Markdown Sort valuespandas documentation: [sort_values](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.sort_values.html) Five shortest titles, by character count ###Code ###Output _____no_output_____ ###Markdown Titles sorted reverse alphabetically ###Code ###Output _____no_output_____ ###Markdown Get value countspandas documentation: [value_counts](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.value_counts.html) Frequency counts of first letters ###Code ###Output _____no_output_____ ###Markdown Percentage of talks with long titles ###Code ###Output _____no_output_____ ###Markdown Plotpandas documentation: [Visualization](https://pandas.pydata.org/pandas-docs/stable/visualization.html) Top 5 most frequent first letters ###Code ###Output _____no_output_____ ###Markdown Histogram of title lengths, in characters ###Code ###Output _____no_output_____ ###Markdown Assignment**Scrape** the talk descriptions. Hint: `soup.select('.presentation-description')`**Make** new columns in the dataframe:- description- description character count- description word count- description grade level (use [this `textstat` function](https://github.com/shivam5992/textstatthe-flesch-kincaid-grade-level) to get the Flesh-Kincaid grade level)**Describe** all the dataframe's columns. What's the average description word count? The minimum? The maximum?**Answer** these questions:- Which descriptions could fit in a tweet?- What's the distribution of grade levels? Plot a histogram. ###Code url = 'https://us.pycon.org/2018/schedule/talks/list/' import bs4 import requests result = requests.get(url) result type(result) result.text # To retrieve top search result links soup = bs4.BeautifulSoup(result.text) soup # Extracting talk descriptions desc = soup.select('.presentation-description') desc # Extracting talk descriptions in a list with only texts description = [tag.text.strip() for tag in soup.select('.presentation-description')] description type(description), len(description) description[0], description[2] type(desc) len(desc) desc_first = desc [0] desc_first type(desc_first) type(desc_first.text) ###Output _____no_output_____ ###Markdown New Columns in the dataframe ###Code import pandas as pd pd.set_option('display.width', 1000) #to increase the column width df = pd.DataFrame({'description': description}) df.head() #df['title length'] = df.title.apply(len) df['description character count'] = df.description.apply(len) df.head() # word count !pip install textstat #df['description word count'] = import textstat df['description word count'] = df.description.apply(textstat.lexicon_count) df.head() df['description grade level'] = df.description.apply(textstat.flesch_kincaid_grade) df.head() df.describe() ###Output _____no_output_____ ###Markdown 1. Average description word count is 1192. Minimum = 353. Maximum = 436 ###Code # Descriptions that could fit in a tweet df[df.description.str.len()<281] title = 'Distribution of Description Grade Levels' df['description grade level'].plot.hist(title = title); ###Output _____no_output_____ ###Markdown _Lambda School Data Science_ Scrape and process dataObjectives- scrape and parse web pages- use list comprehensions- select rows and columns with pandasLinks- [Automate the Boring Stuff with Python, Chapter 11](https://automatetheboringstuff.com/chapter11/) - Requests - Beautiful Soup- [Python List Comprehensions: Explained Visually](https://treyhunner.com/2015/12/python-list-comprehensions-now-in-color/)- [Pandas Cheat Sheet](https://github.com/pandas-dev/pandas/blob/master/doc/cheatsheet/Pandas_Cheat_Sheet.pdf) - Subset Observations (Rows) - Subset Variables (Columns)- Python Data Science Handbook - [Chapter 3.1](https://jakevdp.github.io/PythonDataScienceHandbook/03.01-introducing-pandas-objects.html), Introducing Pandas Objects - [Chapter 3.2](https://jakevdp.github.io/PythonDataScienceHandbook/03.02-data-indexing-and-selection.html), Data Indexing and Selection Scrape the titles of PyCon 2018 talks ###Code url = 'https://us.pycon.org/2018/schedule/talks/list/' import bs4 import requests result = requests.get(url) type(result.text) #confirms str result #successful type(result) type(result.text) #confirms str soup = bs4.BeautifulSoup(result.text) soup.select('h2') #print(soup) #dont do this type(soup.select('h2')) len(soup.select('h2')) #95 talks first = soup.select('h2')[0] #first talk first first.text #cleaner but has problems first.text.strip() #defaults to strip white spaces and newline parse last = soup.select('h2')[-1] #last talk print(type(last)) #tag print(type(soup.select('h2')[-1:])) #list, not useful #our complete list of titles loop style titles = [] for tag in soup.select('h2'): tag.text.strip() titles.append(titles) #list comp style titles = [tag.text.strip() for tag in soup.select('h2')] type(titles), len(titles) titles[0], titles[-1] ###Output _____no_output_____ ###Markdown 5 ways to look at long titlesLet's define a long title as greater than 80 characters 1. For Loop ###Code #nonfunctional compared to other methods long_titles = [] for title in titles: if len(title) > 80: long_titles.append(title) len(long_titles) ###Output _____no_output_____ ###Markdown 2. List Comprehension ###Code long_titles = [title for title in titles if len(title) > 80] len(long_titles) ###Output _____no_output_____ ###Markdown 3. Filter with named function ###Code def long(title): return len(title) > 80 long('Hello') #False list(filter(long, titles)) #filter by itself is an object ###Output _____no_output_____ ###Markdown 4. Filter with anonymous function ###Code list(filter(lambda t: len(t)>80, titles)) ###Output _____no_output_____ ###Markdown 5. Pandaspandas documentation: [Working with Text Data](https://pandas.pydata.org/pandas-docs/stable/text.html) ###Code import pandas as pd pd.options.display.max_colwidth = 200 df = pd.DataFrame({'title': titles}) df[df.title.str.len() > 80] condition = df.title.str.len() > 80 #calls a Series of booleans df[condition] df.title.str.len() #calls a Series of ints equal to str.len ###Output _____no_output_____ ###Markdown Make new dataframe columnspandas documentation: [apply](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.apply.html) title length ###Code df['title_length'] = df.title.apply(len) df.head() df.loc[df['title_length']>80, 'title length']] ###Output _____no_output_____ ###Markdown long title ###Code #alt df[df['long_title' == True]] ###Output _____no_output_____ ###Markdown first letter ###Code df['first_letter'] = df.title.str[0] df.head() df[df['first_letter'] == 'P'] ###Output _____no_output_____ ###Markdown word countUsing [`textstat`](https://github.com/shivam5992/textstat) ###Code !pip install textstat import textstat first = df.title.values[0] last = df.title.values[-1] first, last textstat.lexicon_count(first), textstat.lexicon_count(last) df['title_word_count'] = df.title.apply(textstat.lexicon_count) df[df['title_word_count'] <= 3] ###Output _____no_output_____ ###Markdown Rename column`title length` --> `title character count`pandas documentation: [rename](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.rename.html) ###Code df['title_character_count'] = df['title_length'] df.head() #alt df = df.rename(columns={'title_legth': 'title_cha'}) df.columns ###Output _____no_output_____ ###Markdown Analyze the dataframe Describepandas documentation: [describe](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.describe.html) ###Code import numpy as np df.describe(exclude=np.number) ###Output _____no_output_____ ###Markdown Sort valuespandas documentation: [sort_values](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.sort_values.html) ###Code df.sort_values(by='title_character_count').head() ###Output _____no_output_____ ###Markdown Five shortest titles, by character count ###Code df['first_letter'] = df['first_letter'].str.upper() df.sort_values(by='first_letter', ascending=False).head() ###Output _____no_output_____ ###Markdown Titles sorted reverse alphabetically ###Code ###Output _____no_output_____ ###Markdown Get value countspandas documentation: [value_counts](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.value_counts.html) Frequency counts of first letters ###Code df['first_letter'].value_counts().sort_index() df[df['first_letter']=='""'] ###Output _____no_output_____ ###Markdown Percentage of talks with long titles ###Code df['long_title'].value_counts()/len(df) #alt df['long_title'].value_counts(normalize=True)*100 ###Output _____no_output_____ ###Markdown Plotpandas documentation: [Visualization](https://pandas.pydata.org/pandas-docs/stable/visualization.html) Top 5 most frequent first letters ###Code %matplotlib inline (df['first_letter'].value_counts().head() .plot.barh(color='grey', title='Top 5 Most Frequent First Letters')); #suppress subplot object with ; ###Output _____no_output_____ ###Markdown Histogram of title lengths, in characters ###Code title = 'Dist of Character Count' df['title_character_count'].plot.hist(title=title); ###Output _____no_output_____ ###Markdown Assignment**Scrape** the talk descriptions. Hint: `soup.select('.presentation-description')`**Make** new columns in the dataframe:- description- description character count- description word count- description grade level (use [this `textstat` function](https://github.com/shivam5992/textstatthe-flesch-kincaid-grade-level) to get the Flesh-Kincaid grade level)**Describe** all the dataframe's columns. What's the average description word count? The minimum? The maximum?**Answer** these questions:- Which descriptions could fit in a tweet?- What's the distribution of grade levels? Plot a histogram. ###Code description = [tag.text.strip() for tag in soup.select('.presentation-description')] df['description'] = description df.head(2) df['desc_character_count'] = df.description.apply(len) df['desc_word_count'] = df.description.apply(textstat.lexicon_count) df.head(2) textlist = [] indexno = 0 for index in df['description']: x = textstat.flesch_kincaid_grade(df['description'][indexno]) textlist.append(x) indexno = indexno+1 df['desc_gradelv'] = textlist df.head(2) import numpy as np df.describe(exclude=np.number) df.describe(include=np.number) #min desc word count - 35 #max desc word count - 436 #mean desc word count - 134.6 df = df[df['desc_character_count'] <= 280] df.head() #df includes only descriptions that would be tweetable %matplotlib inline title = 'Distribution of Reading Levels' ax = df['desc_gradelv'].plot.hist(title=title) ###Output _____no_output_____
src/trash/PredatorStudy_ESCA.ipynb
###Markdown PREDATOR: **PRED**icting the imp**A**ct of cancer somatic mu**T**ations on pr**O**tein-protein inte**R**actions ESCA &nbsp; File LocationC:\Users\ibrah\Documents\GitHub\Predicting-Mutation-Effects\src &nbsp; File NamePredatorStudy_ESCA.ipynb &nbsp; Last EditedNovember 2nd, 2021 &nbsp; Purpose - [x] Apply on Cancer Datasets > ESCA* Target (Cancer) data: - *ESCA_Interface.txt* ###Code # Common imports import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import os import os.path as op import sys import random from pathlib import Path from pprint import pprint from IPython.display import display from tqdm.notebook import tqdm from helpers.helpers_predator.displayers import ( display_label_counts, display_labels, visualize_label_counts, display_data, ) from helpers.helpers_predator.visualizers import ( visualize_sampled_train_datasets_label_counts ) from helpers.helpers_predator.common import load_predator from helpers.helpers_predator.common import export_data # PATHS ESCA_PATH = Path(r"../../My-ELASPIC-Web-API/Elaspic_Results/Merged_Results/ESCA_Interface_2021-11-02.txt") PREDATOR_MODEL_PATH = Path(r"PredatorModels/PredatorModel_2021-10-24/04f37897/predator.pkl") PREDICTIONS_DATASETS_FOLDER_PATH = "../data/predictions_datasets/" # Reflect changes in the modules immediately. %load_ext autoreload %autoreload 2 ###Output _____no_output_____ ###Markdown Load the Predator ###Code predator = load_predator(PREDATOR_MODEL_PATH) ###Output 2021-11-02 10:11:16 | INFO | helpers.helpers_predator.common | Predator object PredatorModels\PredatorModel_2021-10-24\04f37897\predator.pkl is loaded successfully. ###Markdown Prediction TCGA on Cancer Dataset: ESCA ###Code predator.initialize_target_data_materials( tcga_code_path_pairs=[('esca', ESCA_PATH)] ) ###Output 2021-11-02 10:11:29 | DEBUG | helpers.helpers_predator.data_materials | Initialize `esca` .. 2021-11-02 10:11:29 | DEBUG | helpers.helpers_predator.data_materials | Initialize `target_esca_data` .. 2021-11-02 10:11:29 | DEBUG | helpers.helpers_predator.data_materials | Initializing target data materials .. 2021-11-02 10:11:29 | DEBUG | helpers.helpers_predator.data_materials | Determined features: ['Provean_score', 'EL2_score', 'Final_ddG', 'Interactor_alignment_score', 'Solvent_accessibility_wt', 'Matrix_score', 'Solvent_accessibility_mut', 'van_der_waals_mut', 'Interactor_template_sequence_identity', 'solvation_polar_wt'] 2021-11-02 10:11:29 | DEBUG | helpers.helpers_predator.data_materials | Declaring Xs_esca data materials .. ###Markdown TCGA Cancer Datasets ESCA ###Code display_data(predator.data_materials["esca"]) ###Output Data dimensions: (2435, 103) ###Markdown Preprocessed TCGA Cancer Datasets ESCA ###Code display_data(predator.data_materials["target_esca_data"]) ###Output Data dimensions: (2435, 61) ###Markdown Voting mode: `hard` ###Code predator.predict(voting='hard') # Predictions for first 10 experiment. predator.predictions["esca"][:3] predator.predictions.plot_predictions_distributions("esca") ###Output 2021-11-02 10:12:24 | DEBUG | helpers.helpers_predator.predictions | Initializing value counts .. ###Markdown Predictions Post Processing Post processing of predictions involves following steps: 1. Merging Predictions with SNV Data The prediction column is merged with SNV data for each experiment.$\text{For each experiment } n: $$$ \textit{(Prediction Merged Data)}_n = \underbrace{[\textit{Predictions}_n]}_\text{0, 1 or "NoVote"} + \underbrace{[\textit{Protein }] [\textit{Mutation }] [\textit{Interactor }]}_\text{Cancer Data Triplets} + \underbrace{[\textit{Features }] }_\text{Elaspic}$$ 2. Convert to 1-isomer: `Interactor_UniProt_ID` $\textit{Interactor_UniProt_ID}$ column contains isomer proteins. Here, we convert them into primary isoform representation (i.e. without dashes). | Interactor_UniProt_ID |--------------| P38936 || P16473 || P16473-2 || P19793 | 3. Dropping Invalid Predictions Entries which predicted as both `Decreasing` and `Increasing+NoEff` are dropped. Due to having different features for the same $\textit{(protein, mutation, interactor)}$ triplet from ELASPIC, the triplet $\textit{(protein, mutation, interactor)}$ may be classified both 0 and 1. We drop such instances. ###Code predator.predictions_post_process() display_data(predator.predictions["esca_predicted_datasets"][0]) predator.predictions.plot_distribution_valid_vs_invalid("esca") predator.predictions.plot_num_finalized_predictions("esca") predator.prepare_ensemble_prediction_data() display_data(predator.predictions["esca_ensemble_prediction_data"]) display_data(predator.data_materials["esca"]) display_data(predator.data_materials["Xs_esca"][0]) predator.predictions.plot_ensemble_prediction_distribution("esca") ov_prediction_results_hard = predator.predictions["esca_prediction_results"] display_data(ov_prediction_results_hard) ov_ensemble_prediction_data_hard = predator.predictions["esca_ensemble_prediction_data"] ov_prediction_results_hard_no_votes_dropped = predator.predictions["esca_prediction_results_no_votes_dropped"] display_data(ov_prediction_results_hard_no_votes_dropped) visualize_label_counts(ov_prediction_results_hard_no_votes_dropped, 'Prediction') ###Output Label counts: Disrupting 591 Increasing + No Effect 582 Name: Prediction, dtype: int64 ###Markdown Voting mode: `soft` ###Code predator.initialize_target_data_materials( tcga_code_path_pairs=[('esca', ESCA_PATH)] ) predator.predict(voting='soft') predator.predictions.keys() # Predictions for first 10 experiment. predator.predictions["esca_prob"][:3] ###Output _____no_output_____ ###Markdown Predictions Post Processing Post processing of predictions involves following steps: 1. Merging Predictions with SNV Data The prediction column is merged with SNV data for each experiment.$\text{For each experiment } n: $$$ \textit{(Prediction Merged Data)}_n = \underbrace{[\textit{Predictions}_n]}_\text{Probs Percentages} + \underbrace{[\textit{Protein }] [\textit{Mutation }] [\textit{Interactor }]}_\text{Cancer Data Triplets} + \underbrace{[\textit{Features }] }_\text{Elaspic}$$ 2. Convert to 1-isomer: `Interactor_UniProt_ID` $\textit{Interactor_UniProt_ID}$ column contains isomer proteins. Here, we convert them into primary isoform representation (i.e. without dashes). | Interactor_UniProt_ID |--------------| P38936 || P16473 || P16473-2 || P19793 | 3. Dropping Invalid Predictions Entries whose predicted class-1 probability lies in both `Decreasing` and `Increasing+NoEff` are dropped. Due to having different features for the same $\textit{(protein, mutation, interactor)}$ triplet from ELASPIC, the triplet $\textit{(protein, mutation, interactor)}$ may contain class-1 probability prediction of both lower than 0.50 and higher than 50. We drop such instances. ###Code predator.predictions_post_process() predator.predictions.keys() display_data(predator.predictions["esca_predicted_probs_datasets"][0]) predator.predictions.plot_distribution_valid_vs_invalid("esca") predator.predictions.plot_num_finalized_predictions("esca") display_data(predator.predictions['esca_finalized_prediction_dataframes'][0]) predator.prepare_ensemble_prediction_data() display_data(predator.predictions['esca_predictions_prob_data']) predator.predictions.plot_ensemble_prediction_distribution("esca") esca_prediction_results_soft = predator.predictions['esca_prediction_results'] display_data(esca_prediction_results_soft) esca_prediction_results_soft_no_votes_dropped = predator.predictions["esca_prediction_results_no_votes_dropped"] display_data(esca_prediction_results_soft_no_votes_dropped) visualize_label_counts(esca_prediction_results_soft_no_votes_dropped, 'Prediction') esca_ensemble_prediction_data_soft = predator.predictions["esca_ensemble_prediction_data"] esca_predictions_prob_data_soft = predator.predictions["esca_predictions_prob_data"] ###Output _____no_output_____ ###Markdown Exporting Predictions ###Code # esca_prediction_results = esca_prediction_results_hard_no_votes_dropped esca_prediction_results = esca_prediction_results_soft_no_votes_dropped display_data(esca_prediction_results) predator.export_prediction( tcga="esca", data=esca_prediction_results, file_name="predictions", folder_path=PREDICTIONS_DATASETS_FOLDER_PATH, voting="soft", overwrite=False, file_extension='csv' ) ###Output 2021-11-06 13:16:05 | DEBUG | helpers.helpers_predator.common | Folder with ID 4be914c2 is created. 2021-11-06 13:16:05 | DEBUG | helpers.helpers_predator.common | Exporting data predictions at location ../data/predictions_datasets/ in folder esca_prediction_2021-11-06\4be914c2.. 2021-11-06 13:16:06 | INFO | helpers.helpers_predator.common | ../data/predictions_datasets/esca_prediction_2021-11-06\4be914c2\predictions_soft_2021-11-06.csv is exported successfully. 2021-11-06 13:16:06 | INFO | helpers.helpers_predator.common | Config is exported.
.ipynb_checkpoints/functions-checkpoint.ipynb
###Markdown This notebook has all functions.Methods :Method 1 : Threshold-->Filter-->Erosion-->DilationMethod 2 : Filter-->Threshold-->Erosion-->Dilation ###Code # to save labelled images BASE_DIR="/Users/Trupti/01-LIDo/02-VijiProject/ImageAnalysis/" def save_img_method1(folder_path,img_name,iterator): LABELLED_IMG_DIR = BASE_DIR + "AnalysisMethods/AnalysisResults/XMovie/labelled_images/" directory=folder_path.split('/')[-1].split('.')[0] # to create a folder per experiment to save csvs path = LABELLED_IMG_DIR + directory try: os.makedirs(path) except FileExistsError: # directory already exists pass plt.imsave((path + '/' +'label_image'+str(iterator)+'.png'),img_name,dpi=300) def save_img_method2(folder_path,img_name,iterator): LABELLED_IMG_DIR = BASE_DIR + "AnalysisMethods/AnalysisResults/AMovie/labelled_images/" directory=folder_path.split('/')[-1].split('.')[0] # to create a folder per experiment to save csvs path = LABELLED_IMG_DIR + directory try: os.makedirs(path) except FileExistsError: # directory already exists pass plt.imsave((path + '/' +'label_image'+str(iterator)+'.png'),img_name,dpi=300) def cytoplasm_signal(img): ''' This function takes an 8bit image,calculates the pixel value for all 4 corners in a 5x5 window and returns its mean. ''' col,row=img.shape topLeft=img[0:5, 0:5].flatten() topRight=img[col-5:col,0:5].flatten() bottomLeft=img[0:5,col-5:col].flatten() bottomRight=img[col-5:col,col-5:col].flatten() mean_array=np.concatenate([topLeft,topRight,bottomLeft,bottomRight]) mean=np.mean(mean_array) return(mean) # remove the outliers def outliers(df): ''' This functions takes the dataframe as input and removes the outliers outside the first and third quartile range ''' Q1 = df['intensity_ratio'].quantile(0.25) Q3 = df['intensity_ratio'].quantile(0.75) IQR = Q3 - Q1 df_out= df[~((df['intensity_ratio'] < (Q1 - 1.5 * IQR)) |(df['intensity_ratio'] > (Q3 + 1.5 * IQR)))] return(df_out) def prewitt_method1_BG(folder_path): ''' This function takes the folder path of tif images and performs following steps. 1. Reads the image from the path 2. Converts the 16bit image to 8 bit 3. Prewitt Filter-->Yen Threshold-->Erosion-->dilation For mean intensity calculation, the background noise needs to be filtered from the intensity image. ''' df_green_final = pd.DataFrame(columns=['fname','label', 'area', 'eccentricity', 'perimeter','mean_intensity','bg_value_mask','bg_value_channel']) df_red_final = pd.DataFrame(columns=['fname','label', 'area', 'eccentricity', 'perimeter','mean_intensity','bg_value_mask','bg_value_channel']) # set path for images red_chpath = os.path.join(folder_path,"pp1","*.tif") #C1 red channel green_chpath = os.path.join(folder_path,"mask","*.tif") #C0 green channel # create red channel image array red_image=[] for file in natsorted(glob.glob(red_chpath)): red_image.append(file) propList = ['label','area', 'eccentricity', 'perimeter', 'mean_intensity'] k=0 for file in natsorted(glob.glob(green_chpath)): green_channel_image= io.imread(file) # This is to measure and label the particles #Convert an (ImageJ) TIFF to an 8 bit numpy array green_image= (green_channel_image / np.amax(green_channel_image) * 255).astype(np.uint8) #Apply threshold threshold = filters.threshold_yen(green_image) #Generate thresholded image threshold_image = green_image > threshold # Apply prewitt filter to threshold image prewitt_im= filters.prewitt(threshold_image) #Apply erosion to the filtered image followed by dilation to the eroded image erosion_im=morphology.binary_erosion(prewitt_im, selem=None, out=None) dilation_im=morphology.binary_dilation(erosion_im, selem=None, out=None) # label the final converted image labelled_mask,num_labels = ndi.label(dilation_im) #overlay onto channel image (red channel image) red_channel_image = io.imread(red_image[k]) image_label_overlay = color.label2rgb(labelled_mask, image=red_channel_image,bg_label=0) # #SAVE THE IMAGES : uncomment to save the images save_img_method1(folder_path,labelled_mask,k) #save_img(folder_path,green_image,k) #save_img(folder_path,red_channel_image,k) #save_img(folder_path,image_label_overlay,k) #Calculate properties ################################## # calculate background and subtract from intensity image bg_value_green=cytoplasm_signal(green_channel_image) # mask image bg_value_red=cytoplasm_signal(red_channel_image) # PP1 channel image # subtract background mod_green_channel_image = green_channel_image-bg_value_green mod_red_channel_image= red_channel_image-bg_value_red #Using regionprops or regionprops_table all_props_green=measure.regionprops_table(labelled_mask, intensity_image=mod_green_channel_image, properties=['label','area', 'eccentricity', 'perimeter', 'mean_intensity']) # intensity image is 16 bit green channel image all_props_red=measure.regionprops_table(labelled_mask, intensity_image=mod_red_channel_image, properties=['label','area', 'eccentricity', 'perimeter', 'mean_intensity']) # intensity image is 16 bit red channel image df_green = pd.DataFrame(all_props_green) df_green['fname']=file[-13:] # this is to shorten the filename. change this number as per the file name (check for better method) df_red= pd.DataFrame(all_props_red) df_red['fname']=red_image[k][-13:] df_green['label']=str(k) +"_"+ df_green['label'].astype(str) # creates unique label which later helps to merge both dataframes df_red['label']= str(k) +"_" + df_red['label'].astype(str) df_green_final=pd.concat([df_green_final,df_green]) df_green_final['bg_value_mask']=bg_value_green df_red_final=pd.concat([df_red_final,df_red]) df_red_final['bg_value_channel']=bg_value_red k+=1 return(df_green_final,df_red_final) def prewitt_method1_noBG(folder_path): ''' This function takes the folder path of tif images and performs following steps. 1. Reads the image from the path 2. Converts the 16bit image to 8 bit 3. Prewitt Filter-->Yen Threshold-->Erosion-->dilation For mean intensity calculation,background is not removed for the mean intensity calculations ''' df_green_final = pd.DataFrame(columns=['fname','label', 'area', 'eccentricity', 'perimeter', 'mean_intensity']) df_red_final = pd.DataFrame(columns=['fname','label', 'area', 'eccentricity', 'perimeter', 'mean_intensity']) # set path for images red_chpath = os.path.join(folder_path,"pp1","*.tif") #C1 red channel green_chpath = os.path.join(folder_path,"mask","*.tif") #C0 green channel # create red channel image array red_image=[] for file in natsorted(glob.glob(red_chpath)): red_image.append(file) propList = ['label','area', 'eccentricity', 'perimeter', 'mean_intensity'] k=0 for file in natsorted(glob.glob(green_chpath)): green_channel_image= io.imread(file) # This is to measure and label the particles #Convert an (ImageJ) TIFF to an 8 bit numpy array green_image= (green_channel_image / np.amax(green_channel_image) * 255).astype(np.uint8) #Apply threshold threshold = filters.threshold_yen(green_image) #Generate thresholded image threshold_image = green_image > threshold # Apply prewitt filter to threshold image prewitt_im= filters.prewitt(threshold_image) #Apply erosion to the filtered image followed by dilation to the eroded image erosion_im=morphology.binary_erosion(prewitt_im, selem=None, out=None) dilation_im=morphology.binary_dilation(erosion_im, selem=None, out=None) # label the final converted image labelled_mask,num_labels = ndi.label(dilation_im) #overlay onto channel image (red channel image) red_channel_image = io.imread(red_image[k]) image_label_overlay = color.label2rgb(labelled_mask, image=red_channel_image,bg_label=0) #Calculate properties all_props_green=measure.regionprops_table(labelled_mask, intensity_image=green_channel_image, properties=['label','area', 'eccentricity', 'perimeter', 'mean_intensity']) # intensity image is 16 bit green channel image all_props_red=measure.regionprops_table(labelled_mask, intensity_image=red_channel_image, properties=['label','area', 'eccentricity', 'perimeter', 'mean_intensity']) # intensity image is 16 bit red channel image df_green = pd.DataFrame(all_props_green) df_green['fname']=file[-13:] # this is to shorten the filename. change this number as per the file name (check for better method) df_red= pd.DataFrame(all_props_red) df_red['fname']=red_image[k][-13:] df_green['label']=str(k) +"_"+ df_green['label'].astype(str) # creates unique label which later helps to merge both dataframes df_red['label']= str(k) +"_" + df_red['label'].astype(str) df_green_final=pd.concat([df_green_final,df_green]) df_red_final=pd.concat([df_red_final,df_red]) k+=1 return(df_green_final,df_red_final) def prewitt_method2_BG(folder_path): ''' This function takes the folder path of tif images and performs following steps. 1. Reads the image from the path 2. Converts the 16bit image to 8 bit 3. Prewitt Filter-->Yen Threshold-->Erosion-->dilation For mean intensity calculation, the background noise needs to be filtered from the intensity image. ''' df_green_final = pd.DataFrame(columns=['fname','label', 'area', 'eccentricity', 'perimeter', 'mean_intensity','bg_value_mask','bg_value_channel']) df_red_final = pd.DataFrame(columns=['fname','label', 'area', 'eccentricity', 'perimeter', 'mean_intensity','bg_value_mask','bg_value_channel']) # set path for images red_chpath = os.path.join(folder_path,"channel","*.tif") #C1 red channel green_chpath = os.path.join(folder_path,"mask","*.tif") #C0 green channel # create red channel image array red_image=[] for file in natsorted(glob.glob(red_chpath)): red_image.append(file) propList = ['label','area', 'eccentricity', 'perimeter', 'mean_intensity'] k=0 for file in natsorted(glob.glob(green_chpath)): green_channel_image= io.imread(file) # This is to measure and label the particles #Convert an (ImageJ) TIFF to an 8 bit numpy array green_image= (green_channel_image / np.amax(green_channel_image) * 255).astype(np.uint8) #Apply filter prewitt_im= filters.prewitt(green_image) #apply threshold to filtered image threshold = filters.threshold_yen(prewitt_im) #Generate thresholded image threshold_image = prewitt_im > threshold #Apply erosion to the filtered image followed by dilation to the eroded image erosion_im=morphology.binary_erosion(threshold_image, selem=None, out=None) dilation_im=morphology.binary_dilation(erosion_im, selem=None, out=None) # label the final converted image labelled_mask,num_labels = ndi.label(dilation_im) #overlay onto channel image (red channel image) red_channel_image = io.imread(red_image[k]) image_label_overlay = color.label2rgb(labelled_mask, image=red_channel_image,bg_label=0) #SAVE THE IMAGES : uncomment to save the images save_img_method2(folder_path,labelled_mask,k) #save_img(folder_path,green_image,k) #save_img(folder_path,red_channel_image,k) #save_img(folder_path,image_label_overlay,k) #Calculate properties ################################## # calculate background and subtract from intensity image bg_value_green=cytoplasm_signal(green_channel_image) # mask image bg_value_red=cytoplasm_signal(red_channel_image) # PP1 channel image # subtract background mod_green_channel_image = green_channel_image-bg_value_green mod_red_channel_image= red_channel_image-bg_value_red #Using regionprops or regionprops_table all_props_green=measure.regionprops_table(labelled_mask, intensity_image=mod_green_channel_image, properties=['label','area', 'eccentricity', 'perimeter', 'mean_intensity','bg_value_mask','bg_value_channel']) # intensity image is 16 bit green channel image all_props_red=measure.regionprops_table(labelled_mask, intensity_image=mod_red_channel_image, properties=['label','area', 'eccentricity', 'perimeter', 'mean_intensity','bg_value_mask','bg_value_channel']) # intensity image is 16 bit red channel image df_green = pd.DataFrame(all_props_green) df_green['fname']=file[-13:] # this is to shorten the filename. change this number as per the file name (check for better method) df_red= pd.DataFrame(all_props_red) df_red['fname']=red_image[k][-13:] df_green['label']=str(k) +"_"+ df_green['label'].astype(str) # creates unique label which later helps to merge both dataframes df_red['label']= str(k) +"_" + df_red['label'].astype(str) df_green_final=pd.concat([df_green_final,df_green]) df_green_final['bg_value_mask']=bg_value_green df_red_final=pd.concat([df_red_final,df_red]) df_red_final['bg_value_channel']=bg_value_red k+=1 return(df_green_final,df_red_final) def prewitt_method2_noBG(folder_path): ''' This function takes the folder path of tif images and performs following steps. 1. Reads the image from the path 2. Converts the 16bit image to 8 bit 3. Prewitt Filter-->Yen Threshold-->Erosion-->dilation Background is not removed for the mean intensity calculations ''' df_green_final = pd.DataFrame(columns=['fname','label', 'area', 'eccentricity', 'perimeter','mean_intensity']) df_red_final = pd.DataFrame(columns=['fname','label', 'area', 'eccentricity', 'perimeter','mean_intensity']) # set path for images red_chpath = os.path.join(folder_path,"channel","*.tif") #C1 red channel green_chpath = os.path.join(folder_path,"mask","*.tif") #C0 green channel # create red channel image array red_image=[] for file in natsorted(glob.glob(red_chpath)): red_image.append(file) propList = ['label','area', 'eccentricity', 'perimeter', 'mean_intensity'] k=0 for file in natsorted(glob.glob(green_chpath)): green_channel_image= io.imread(file) # This is to measure and label the particles #Convert an (ImageJ) TIFF to an 8 bit numpy array green_image= (green_channel_image / np.amax(green_channel_image) * 255).astype(np.uint8) #Apply filter prewitt_im= filters.prewitt(green_image) #apply threshold to filtered image threshold = filters.threshold_yen(prewitt_im) #Generate thresholded image threshold_image = prewitt_im > threshold #Apply erosion to the filtered image followed by dilation to the eroded image erosion_im=morphology.binary_erosion(threshold_image, selem=None, out=None) dilation_im=morphology.binary_dilation(erosion_im, selem=None, out=None) # label the final converted image labelled_mask,num_labels = ndi.label(dilation_im) #overlay onto channel image (red channel image) red_channel_image = io.imread(red_image[k]) image_label_overlay = color.label2rgb(labelled_mask, image=red_channel_image,bg_label=0) #Calculate properties all_props_green=measure.regionprops_table(labelled_mask, intensity_image=green_channel_image, properties=['label','area', 'eccentricity', 'perimeter', 'mean_intensity']) # intensity image is 16 bit green channel image all_props_red=measure.regionprops_table(labelled_mask, intensity_image=red_channel_image, properties=['label','area', 'eccentricity', 'perimeter', 'mean_intensity']) # intensity image is 16 bit red channel image df_green = pd.DataFrame(all_props_green) df_green['fname']=file[-13:] # this is to shorten the filename. change this number as per the file name (check for better method) df_red= pd.DataFrame(all_props_red) df_red['fname']=red_image[k][-13:] df_green['label']=str(k) +"_"+ df_green['label'].astype(str) # creates unique label which later helps to merge both dataframes df_red['label']= str(k) +"_" + df_red['label'].astype(str) df_green_final=pd.concat([df_green_final,df_green]) df_red_final=pd.concat([df_red_final,df_red]) k+=1 return(df_green_final,df_red_final) ###Output _____no_output_____ ###Markdown Packages ###Code import os import pandas as pd import seaborn as sns from astropy.io import ascii ###Output _____no_output_____ ###Markdown Functions ###Code def read_data(folder_path): filenames = os.listdir(folder_path) for filename in filenames: if(filename.endswith('.tbl')): first_file = filename break df_data = ascii.read(folder_path + first_file).to_pandas() for filename in filenames: if(filename.endswith('.tbl') and not filename == first_file): data = ascii.read(folder_path + filename).to_pandas() df_data = df_data.append(data) return df_data def plot_data(dataframe): data = read_data('datasets/time-curves/2301590/') ###Output _____no_output_____
04 - Clustering(KR).ipynb
###Markdown 클러스터링*지도* 학습과 달리 *비지도* 학습은 레이블 예측을 훈련하고 검증 할 "실측 라벨"가 없을 때 사용됩니다. 비지도 학습의 가장 일반적인 형태는 *클러스터링*으로, 학습 데이터가 예측할 클래스 레이블에 대해 알려진 값을 포함하지 않는다는 점을 제외하고는 개념적으로 *분류*와 유사합니다. 클러스터링은 특성 값에서 확인할 수있는 유사성을 기반으로 학습 사례를 분리하여 작동합니다. 이렇게 생각해보세요. 주어진 엔티티의 숫자 특징은 n 차원 공간에서 엔티티의 위치를 정의하는 벡터 좌표로 생각할 수 있습니다. 클러스터링 모델이 추구하는 것은 다른 클러스터와 분리되어있는 동안 서로 가까운 엔티티의 그룹 또는 *클러스터*를 식별하는 것입니다.예를 들어 다양한 종류의 밀 종자에 대한 측정 값이 포함 된 데이터 세트를 살펴 보겠습니다.> ** 인용 ** :이 실습에 사용 된 seed 데이터 세트는 원래 Lublin에있는 폴란드 과학 아카데미의 Agrophysics 연구소에서 게시했으며 UCI 데이터 저장소(Dua, D. 및 Graff, C. (2019)에서 다운로드할 수 있다. UCI 기계 학습 저장소 [http://archive.ics.uci.edu/ml].: 캘리포니아 대학교, 정보 및 컴퓨터 과학 대학). ###Code import pandas as pd # load the training dataset data = pd.read_csv('data/seeds.csv') # Display a random sample of 10 observations (just the features) features = data[data.columns[0:6]] features.sample(10) ###Output _____no_output_____ ###Markdown 보시다시피 데이터 세트에는 시드(seeds)의 각 인스턴스 (*관찰*)에 대한 6 개의 데이터 포인트 (또는 *특징*)가 포함되어 있습니다. 따라서 이를 6차원 공간에서 각 인스턴스의 위치를 설명하는 좌표로 해석할 수 있습니다.물론 6 차원 공간은 3 차원, 2 차원 플롯에서 시각화하기 어렵습니다. 따라서 *주성분 분석* (PCA)이라는 수학적 기법을 활용하여 특징 간의 관계를 분석하고 각 관측치를 두 주요 구성 요소에 대한 좌표로 요약합니다. 즉, 6차원 특징 값을 2 차원 좌표로 변환하여 2 차원으로 표현해줍니다. ###Code from sklearn.preprocessing import MinMaxScaler from sklearn.decomposition import PCA # Normalize the numeric features so they're on the same scale scaled_features = MinMaxScaler().fit_transform(features[data.columns[0:6]]) # Get two principal components pca = PCA(n_components=2).fit(scaled_features) features_2d = pca.transform(scaled_features) features_2d[0:10] ###Output _____no_output_____ ###Markdown 이제 데이터 지점을 2차원으로 변환하여 플롯으로 시각화할 수 있습니다. ###Code import matplotlib.pyplot as plt %matplotlib inline plt.scatter(features_2d[:,0],features_2d[:,1]) plt.xlabel('Dimension 1') plt.ylabel('Dimension 2') plt.title('Data') plt.show() ###Output _____no_output_____ ###Markdown 바라건대 적어도 2 개, 틀림없이 3 개, 합리적으로 구별되는 데이터 포인트 그룹을 볼 수 있기를 바랍니다. 그러나 여기에 클러스터링의 근본적인 문제 중 하나가 있습니다. 실제 클래스 레이블 없이 데이터를 분리할 클러스터 수를 어떻게 알 수 있을까요?알아낼 수있는 한 가지 방법은 데이터 샘플을 사용하여 클러스터 수가 증가하는 일련의 클러스터링 모델을 만들고 각 클러스터 내에서 데이터 포인트가 얼마나 밀접하게 그룹화되어 있는지 측정하는 것입니다. 이 견고성을 측정하는 데 자주 사용되는 메트릭은 *WCSS*(클러스터 내 제곱합)이며 값이 낮으면 데이터 포인트가 더 가깝다는 것을 의미합니다. 그런 다음 각 모델에 대한 WCSS를 시각화 할 수 있습니다. ###Code #importing the libraries import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans %matplotlib inline # Create 10 models with 1 to 10 clusters wcss = [] for i in range(1, 11): kmeans = KMeans(n_clusters = i) # Fit the data points kmeans.fit(features.values) # Get the WCSS (inertia) value wcss.append(kmeans.inertia_) #Plot the WCSS values onto a line graph plt.plot(range(1, 11), wcss) plt.title('WCSS by Clusters') plt.xlabel('Number of clusters') plt.ylabel('WCSS') plt.show() ###Output _____no_output_____ ###Markdown 이 플롯은 군집 수가 1개에서 2개로 증가함에 따라 WCSS가 크게 감소하고 (더 큰 *밀착성*) 클러스터가 2개에서 3개로 더욱 눈에 띄게 감소함을 보여줍니다. 그 후에는 감소가 덜 두드러 져서 차트에서 약 3 개의 군집에 "elbow"가 생깁니다. 이는 합리적으로 잘 분리 된 데이터 포인트 클러스터가 2 ~ 3 개 있음을 나타내는 좋은 표시입니다. K-Means Clustering테스트 클러스터를 만드는 데 사용한 알고리즘은 *K-means*입니다. 이것은 데이터 세트를 동일한 분산의 *K* 클러스터로 분리하는 일반적으로 사용되는 클러스터링 알고리즘입니다. 클러스터 수 *K*는 사용자가 정의합니다. 기본 알고리즘에는 다음 단계가 있습니다.1. K centroids(중심) 세트가 무작위로 선택 됩니다.2. 클러스터는 데이터 포인트를 가장 가까운 중심에 할당하여 형성됩니다.3. 각 군집의 평균이 계산되고 중심이 평균으로 이동합니다.4. 중지 기준이 충족 될 때까지 2 단계와 3 단계가 반복됩니다. 일반적으로 알고리즘은 새로운 반복이 발생할 때마다 중심의 움직임을 무시할 수 있고 클러스터가 정적으로 될 때 종료됩니다.5. 클러스터 변경이 중지되면 알고리즘이 *수렴*되어 클러스터의 위치를 정의합니다. 중심의 임의 시작점은 알고리즘을 다시 실행하면 클러스터가 약간 다를 수 있으므로 훈련에는 일반적으로 여러 클러스터가 포함됩니다. 반복, 매번 중심을 다시 초기화하고 최상의 WCSS를 가진 모델이 선택됩니다.K 값을 3으로 해서 데이터에 K-Means을 사용해 보겠습니다. ###Code from sklearn.cluster import KMeans # Create a model based on 3 centroids model = KMeans(n_clusters=3, init='k-means++', n_init=100, max_iter=1000) # Fit to the data and predict the cluster assignments for each data point km_clusters = model.fit_predict(features.values) # View the cluster assignments km_clusters ###Output _____no_output_____ ###Markdown 2 차원 데이터 포인트가있는 클러스터 할당을 살펴 보겠습니다. ###Code def plot_clusters(samples, clusters): col_dic = {0:'blue',1:'green',2:'orange'} mrk_dic = {0:'*',1:'x',2:'+'} colors = [col_dic[x] for x in clusters] markers = [mrk_dic[x] for x in clusters] for sample in range(len(clusters)): plt.scatter(samples[sample][0], samples[sample][1], color = colors[sample], marker=markers[sample], s=100) plt.xlabel('Dimension 1') plt.ylabel('Dimension 2') plt.title('Assignments') plt.show() plot_clusters(features_2d, km_clusters) ###Output _____no_output_____ ###Markdown 데이터가 세 개의 개별 군집으로 분리되었기를 바랍니다.그렇다면 클러스터링의 실질적인 용도는 무엇일까요? 클러스터 수나 클러스터가 무엇을 나타내는지 모르는 상태에서 District Cluster로 그룹화해야 하는 데이터가 있는 경우도 있습니다. 예를 들어, 마케팅 조직은 고객을 서로 다른 부문으로 구분한 다음 해당 부문이 서로 다른 구매 행동을 보이는 방식을 조사하고자 할 수 있습니다.클러스터링은 분류 모델을 생성하기 위한 초기 단계로 사용됩니다. 먼저 개별 데이터 지점 그룹을 식별한 다음 이러한 클러스터에 클래스 레이블을 할당합니다. 그런 다음 이 레이블링된 데이터를 사용하여 지도 학습으로 분류 모델을 학습 할 수 있습니다.seed 데이터의 경우 여러 종의 씨앗이 이미 알려져 있고 0 (*Kama*), 1 (*Rosa*) 또는 2 (*Canadian*)로 인코딩되어 있으므로 이러한 식별자를 사용하여 비지도 알고리즘에 의해 식별된 클러스터와 종 분류를 비교할 수 있습니다. ###Code seed_species = data[data.columns[7]] plot_clusters(features_2d, seed_species.values) ###Output _____no_output_____ ###Markdown 군집 할당과 클래스 레이블간에 약간의 차이가있을 수 있지만 K-Menas 모델은 관측치를 군집화하는 합리적인 작업을 수행하여 동일한 종의 종자가 일반적으로 동일한 군집에 있어야합니다. 계층적 클러스터링(Hierarchical Clustering)계층적 클러스터링 방법은 K-menas 방법과 비교할 때 분포 가정이 적습니다. 그러나 K-menas 방법은 일반적으로 더 확장 가능하며 때로는 매우 그렇습니다.계층적 클러스터링은 *divisive* 방법 또는 *agglomerative* 방법으로 클러스터를 생성합니다. 분할 방법은 전체 데이터 세트에서 시작하여 단계적으로 파티션을 찾는 "하향식"접근 방식입니다. 집계 클러스터링은 "상향식" 접근 방식입니다. 이 실습에서는 대략 다음과 같이 작동하는 집계 클러스터링을 사용합니다.1. 각 데이터 포인트 간의 연결 거리가 계산됩니다.2. 포인트는 가장 가까운 이웃과 쌍으로 클러스터됩니다.3. 클러스터 간의 연결 거리가 계산됩니다.4. 클러스터는 더 큰 클러스터로 쌍으로 결합됩니다.5. 모든 데이터 포인트가 단일 클러스터에있을 때까지 3 단계와 4 단계가 반복됩니다.연결 함수는 여러 가지 방법으로 계산할 수 있습니다.-Ward linkage는 연결되는 클러스터의 분산 증가를 측정합니다.-평균 연결은 두 군집 구성원 간의 평균 쌍별 거리를 사용합니다.-완전 또는 최대 연결은 두 군집 구성원 간의 최대 거리를 사용합니다.연결 함수를 계산하기 위해 몇 가지 다른 거리 메트릭이 사용됩니다.-유클리드 또는 l2 거리가 가장 널리 사용됩니다. 이것은 Ward 연결 방법에 대한 유일한 메트릭입니다.-맨해튼 또는 l1 거리는 특이 치에 강하고 다른 흥미로운 속성을 가지고 있습니다.-코사인 유사도는 벡터의 크기로 나눈 위치 벡터 간의 내적입니다. 이 측정 항목은 유사성의 측정값인 반면 다른 두 측정 항목은 차이 측정 값입니다. 유사성은 이미지 또는 텍스트 문서와 같은 데이터로 작업할 때 매우 유용할 수 있습니다. Agglomerative 클러스터링(Agglomerative Clustering)Agglomerative 클러스터링 알고리즘을 사용하여 seed 데이터를 클러스터링하는 예를 살펴 보겠습니다. ###Code from sklearn.cluster import AgglomerativeClustering agg_model = AgglomerativeClustering(n_clusters=3) agg_clusters = agg_model.fit_predict(features.values) agg_clusters ###Output _____no_output_____ ###Markdown 그렇다면 agglomerative 클러스터 할당은 어떻게 생겼을까요? ###Code import matplotlib.pyplot as plt %matplotlib inline def plot_clusters(samples, clusters): col_dic = {0:'blue',1:'green',2:'orange'} mrk_dic = {0:'*',1:'x',2:'+'} colors = [col_dic[x] for x in clusters] markers = [mrk_dic[x] for x in clusters] for sample in range(len(clusters)): plt.scatter(samples[sample][0], samples[sample][1], color = colors[sample], marker=markers[sample], s=100) plt.xlabel('Dimension 1') plt.ylabel('Dimension 2') plt.title('Assignments') plt.show() plot_clusters(features_2d, agg_clusters) ###Output _____no_output_____
SPL3/chapter3/unigram.ipynb
###Markdown ###Code from collections import Counter from random import choices class corpus(): def __init__(self, corpus): self.word_list = [] self.bigram_counter = {} for sent in corpus: words = sent.split() #the only prepocessing method I use for now. self.word_list += words #count bigram for i in range(len(words) - 1): if (words[i], words[i + 1]) not in self.bigram_counter: self.bigram_counter[(words[i], words[i + 1])] = 1 else: self.bigram_counter[(words[i], words[i + 1])] += 1 self.unigram_counter = Counter(self.word_list) def count_unigram(self): unigram_prob = {} denominator = sum(self.unigram_counter.values()) for key in self.unigram_counter: unigram_prob[key] = self.unigram_counter[key] / denominator return unigram_prob def count_bigram(self): bigram_prob = {} for prefix in self.unigram_counter: relative_dict = {} for next_word in self.unigram_counter: if(prefix, next_word) in self.bigram_counter: relative_dict[(prefix, next_word)] = self.bigram_counter[(prefix, next_word)] denominator = sum(relative_dict.values()) for key in relative_dict: relative_dict[key] /= denominator #merge two dict bigram_prob = {**bigram_prob, **relative_dict} return bigram_prob def generate(self, max_len=10): start = '<s>' end = '</s>' sent = [start] while sent[-1] != end and len(sent) < max_len: prefix = sent[-1] #calculate relative frequency relative_dict = {} for key in self.unigram_counter: if (prefix, key) in self.bigram_counter: relative_dict[(prefix, key)] = self.bigram_counter[(prefix, key)] denominator = sum(relative_dict.values()) for key in relative_dict: relative_dict[key] /= denominator #generate a sample next_bigram = choices(list(relative_dict.keys()), list(relative_dict.values())) #update status sent.append(next_bigram[0][-1]) return sent if sent[-1] == end else sent + [end] def compute_ppl(self, text): text = text.split() bigram_prob = self.count_bigram() ppl = 1 for i in range(len(text) - 2): w1, w2 = text[i], text[i+1] ppl *= bigram_prob[(w1, w2)] return pow(ppl, -1/(len(text) - 2)) test_corpus = ['<s> I am Sam </s>', '<s> Sam I am </s>', '<s> I am Sam </s>', '<s> I do not like green eggs and Sam </s>'] my_corpus = corpus(test_corpus) my_corpus.count_unigram() my_corpus.count_bigram() my_corpus.generate() my_corpus.compute_ppl('<s> I am Sam </s>') ###Output _____no_output_____
workshops/tfx-caip-tf23/lab-04-tfx-metadata/labs/lab-04.ipynb
###Markdown Inspecting TFX metadata Learning Objectives1. Use a GRPC server to access and analyze pipeline artifacts stored in the ML Metadata service of your AI Platform Pipelines instance.In this lab, you will explore TFX pipeline metadata including pipeline and run artifacts. A hosted **AI Platform Pipelines** instance includes the [ML Metadata](https://github.com/google/ml-metadata) service. In **AI Platform Pipelines**, ML Metadata uses *MySQL* as a database backend and can be accessed using a GRPC server. Setup ###Code import os import ml_metadata import tensorflow_data_validation as tfdv import tensorflow_model_analysis as tfma from ml_metadata.metadata_store import metadata_store from ml_metadata.proto import metadata_store_pb2 from tfx.orchestration import metadata from tfx.types import standard_artifacts !python -c "import tfx; print('TFX version: {}'.format(tfx.__version__))" !python -c "import kfp; print('KFP version: {}'.format(kfp.__version__))" ###Output _____no_output_____ ###Markdown Option 1: Explore metadata from existing TFX pipeline runs from AI Pipelines instance created in `lab-02` or `lab-03`. 1.1 Configure Kubernetes port forwardingTo enable access to the ML Metadata GRPC server, configure Kubernetes port forwarding.From a JupyterLab terminal, execute the following commands:```gcloud container clusters get-credentials [YOUR CLUSTER] --zone [YOUR CLUSTER ZONE] kubectl port-forward service/metadata-grpc-service --namespace [YOUR NAMESPACE] 7000:8080``` Proceed to the next step, "Connecting to ML Metadata". Option 2: Create new AI Pipelines instance and evaluate metadata on newly triggered pipeline runs.Hosted AI Pipelines incurs cost for the duration your Kubernetes cluster is running. If you deleted your previous lab instance, proceed with the 6 steps below to deploy a new TFX pipeline and triggers runs to inspect its metadata. ###Code import yaml # Set `PATH` to include the directory containing TFX CLI. PATH=%env PATH %env PATH=/home/jupyter/.local/bin:{PATH} ###Output _____no_output_____ ###Markdown The pipeline source can be found in the `pipeline` folder. Switch to the `pipeline` folder and compile the pipeline. ###Code %cd pipeline ###Output _____no_output_____ ###Markdown 2.1 Create AI Platform Pipelines clusterNavigate to [AI Platform Pipelines](https://console.cloud.google.com/ai-platform/pipelines/clusters) page in the Google Cloud Console.Create or select an existing Kubernetes cluster (GKE) and deploy AI Platform. Make sure to select `"Allow access to the following Cloud APIs https://www.googleapis.com/auth/cloud-platform"` to allow for programmatic access to your pipeline by the Kubeflow SDK for the rest of the lab. Also, provide an `App instance name` such as "TFX-lab-04". 2.2 Configure environment settings Update the below constants with the settings reflecting your lab environment.- `GCP_REGION` - the compute region for AI Platform Training and Prediction- `ARTIFACT_STORE` - the GCS bucket created during installation of AI Platform Pipelines. The bucket name starts with the `kubeflowpipelines-` prefix. Alternatively, you can specify create a new storage bucket to write pipeline artifacts to. ###Code !gsutil ls ###Output _____no_output_____ ###Markdown * `CUSTOM_SERVICE_ACCOUNT` - In the gcp console Click on the Navigation Menu. Navigate to `IAM & Admin`, then to `Service Accounts` and use the service account starting with prifix - `'tfx-tuner-caip-service-account'`. This enables CloudTuner and the Google Cloud AI Platform extensions Tuner component to work together and allows for distributed and parallel tuning backed by AI Platform Vizier's hyperparameter search algorithm. Please see the lab setup `README` for setup instructions. - `ENDPOINT` - set the `ENDPOINT` constant to the endpoint to your AI Platform Pipelines instance. The endpoint to the AI Platform Pipelines instance can be found on the [AI Platform Pipelines](https://console.cloud.google.com/ai-platform/pipelines/clusters) page in the Google Cloud Console.1. Open the *SETTINGS* for your instance2. Use the value of the `host` variable in the *Connect to this Kubeflow Pipelines instance from a Python client via Kubeflow Pipelines SKD* section of the *SETTINGS* window. ###Code #TODO: Set your environment resource settings here for GCP_REGION, ARTIFACT_STORE_URI, ENDPOINT, and CUSTOM_SERVICE_ACCOUNT. GCP_REGION = 'us-central1' ARTIFACT_STORE_URI = 'gs://dougkelly-sandbox-kubeflowpipelines-default' ENDPOINT = '60ff837483ecde05-dot-us-central2.pipelines.googleusercontent.com' CUSTOM_SERVICE_ACCOUNT = 'tfx-tuner-caip-service-account@dougkelly-sandbox.iam.gserviceaccount.com' PROJECT_ID = !(gcloud config get-value core/project) PROJECT_ID = PROJECT_ID[0] # Set your resource settings as environment variables. These override the default values in pipeline/config.py. %env GCP_REGION={GCP_REGION} %env ARTIFACT_STORE_URI={ARTIFACT_STORE_URI} %env CUSTOM_SERVICE_ACCOUNT={CUSTOM_SERVICE_ACCOUNT} %env PROJECT_ID={PROJECT_ID} ###Output _____no_output_____ ###Markdown 2.3 Compile pipeline ###Code PIPELINE_NAME = 'tfx_covertype_lab_04' MODEL_NAME = 'tfx_covertype_classifier' DATA_ROOT_URI = 'gs://workshop-datasets/covertype/small' CUSTOM_TFX_IMAGE = 'gcr.io/{}/{}'.format(PROJECT_ID, PIPELINE_NAME) RUNTIME_VERSION = '2.3' PYTHON_VERSION = '3.7' USE_KFP_SA=False ENABLE_TUNING=False %env PIPELINE_NAME={PIPELINE_NAME} %env MODEL_NAME={MODEL_NAME} %env DATA_ROOT_URI={DATA_ROOT_URI} %env KUBEFLOW_TFX_IMAGE={CUSTOM_TFX_IMAGE} %env RUNTIME_VERSION={RUNTIME_VERSION} %env PYTHON_VERIONS={PYTHON_VERSION} %env USE_KFP_SA={USE_KFP_SA} %env ENABLE_TUNING={ENABLE_TUNING} !tfx pipeline compile --engine kubeflow --pipeline_path runner.py ###Output _____no_output_____ ###Markdown 2.4 Deploy pipeline to AI Platform ###Code !tfx pipeline create \ --pipeline_path=runner.py \ --endpoint={ENDPOINT} \ --build_target_image={CUSTOM_TFX_IMAGE} ###Output _____no_output_____ ###Markdown (optional) If you make local changes to the pipeline, you can update the deployed package on AI Platform with the following command: ###Code !tfx pipeline update --pipeline_path runner.py --endpoint {ENDPOINT} ###Output _____no_output_____ ###Markdown 2.5 Create and monitor pipeline run ###Code !tfx run create --pipeline_name={PIPELINE_NAME} --endpoint={ENDPOINT} ###Output _____no_output_____ ###Markdown 2.6 Configure Kubernetes port forwarding To enable access to the ML Metadata GRPC server, configure Kubernetes port forwarding.From a JupyterLab terminal, execute the following commands:```gcloud container clusters get-credentials [YOUR CLUSTER] --zone [YOURE CLUSTER ZONE] kubectl port-forward service/metadata-grpc-service --namespace [YOUR NAMESPACE] 7000:8080``` Connecting to ML Metadata Configure ML Metadata GRPC client ###Code grpc_host = 'localhost' grpc_port = 7000 connection_config = metadata_store_pb2.MetadataStoreClientConfig() connection_config.host = grpc_host connection_config.port = grpc_port ###Output _____no_output_____ ###Markdown Connect to ML Metadata service ###Code store = metadata_store.MetadataStore(connection_config) ###Output _____no_output_____ ###Markdown ImportantA full pipeline run without tuning takes about 40-45 minutes to complete. You need to wait until a pipeline run is complete before proceeding with the steps below. Exploring ML Metadata The Metadata Store uses the following data model:- `ArtifactType` describes an artifact's type and its properties that are stored in the Metadata Store. These types can be registered on-the-fly with the Metadata Store in code, or they can be loaded in the store from a serialized format. Once a type is registered, its definition is available throughout the lifetime of the store.- `Artifact` describes a specific instances of an ArtifactType, and its properties that are written to the Metadata Store.- `ExecutionType` describes a type of component or step in a workflow, and its runtime parameters.- `Execution` is a record of a component run or a step in an ML workflow and the runtime parameters. An Execution can be thought of as an instance of an ExecutionType. Every time a developer runs an ML pipeline or step, executions are recorded for each step.- `Event` is a record of the relationship between an Artifact and Executions. When an Execution happens, Events record every Artifact that was used by the Execution, and every Artifact that was produced. These records allow for provenance tracking throughout a workflow. By looking at all Events MLMD knows what Executions happened, what Artifacts were created as a result, and can recurse back from any Artifact to all of its upstream inputs.- `ContextType` describes a type of conceptual group of Artifacts and Executions in a workflow, and its structural properties. For example: projects, pipeline runs, experiments, owners.- `Context` is an instances of a ContextType. It captures the shared information within the group. For example: project name, changelist commit id, experiment annotations. It has a user-defined unique name within its ContextType.- `Attribution` is a record of the relationship between Artifacts and Contexts.- `Association` is a record of the relationship between Executions and Contexts. List the registered artifact types. ###Code for artifact_type in store.get_artifact_types(): print(artifact_type.name) ###Output _____no_output_____ ###Markdown Display the registered execution types. ###Code for execution_type in store.get_execution_types(): print(execution_type.name) ###Output _____no_output_____ ###Markdown List the registered context types. ###Code for context_type in store.get_context_types(): print(context_type.name) ###Output _____no_output_____ ###Markdown Visualizing TFX artifacts Retrieve data analysis and validation artifacts ###Code with metadata.Metadata(connection_config) as store: schema_artifacts = store.get_artifacts_by_type(standard_artifacts.Schema.TYPE_NAME) stats_artifacts = store.get_artifacts_by_type(standard_artifacts.ExampleStatistics.TYPE_NAME) anomalies_artifacts = store.get_artifacts_by_type(standard_artifacts.ExampleAnomalies.TYPE_NAME) schema_file = os.path.join(schema_artifacts[-1].uri, 'schema.pbtxt') print("Generated schame file:{}".format(schema_file)) stats_path = stats_artifacts[-1].uri train_stats_file = os.path.join(stats_path, 'train', 'stats_tfrecord') eval_stats_file = os.path.join(stats_path, 'eval', 'stats_tfrecord') print("Train stats file:{}, Eval stats file:{}".format( train_stats_file, eval_stats_file)) anomalies_path = anomalies_artifacts[-1].uri train_anomalies_file = os.path.join(anomalies_path, 'train', 'anomalies.pbtxt') eval_anomalies_file = os.path.join(anomalies_path, 'eval', 'anomalies.pbtxt') print("Train anomalies file:{}, Eval anomalies file:{}".format( train_anomalies_file, eval_anomalies_file)) ###Output _____no_output_____ ###Markdown Visualize schema ###Code schema = tfdv.load_schema_text(schema_file) tfdv.display_schema(schema=schema) ###Output _____no_output_____ ###Markdown Visualize statistics Exercise: looking at the features visualized below, answer the following questions:- Which feature transformations would you apply to each feature with TF Transform?- Are there data quality issues with certain features that may impact your model performance? How might you deal with it? ###Code train_stats = tfdv.load_statistics(train_stats_file) eval_stats = tfdv.load_statistics(eval_stats_file) tfdv.visualize_statistics(lhs_statistics=eval_stats, rhs_statistics=train_stats, lhs_name='EVAL_DATASET', rhs_name='TRAIN_DATASET') ###Output _____no_output_____ ###Markdown Visualize anomalies ###Code train_anomalies = tfdv.load_anomalies_text(train_anomalies_file) tfdv.display_anomalies(train_anomalies) eval_anomalies = tfdv.load_anomalies_text(eval_anomalies_file) tfdv.display_anomalies(eval_anomalies) ###Output _____no_output_____ ###Markdown Retrieve model artifacts ###Code with metadata.Metadata(connection_config) as store: model_eval_artifacts = store.get_artifacts_by_type(standard_artifacts.ModelEvaluation.TYPE_NAME) hyperparam_artifacts = store.get_artifacts_by_type(standard_artifacts.HyperParameters.TYPE_NAME) model_eval_path = model_eval_artifacts[-1].uri print("Generated model evaluation result:{}".format(model_eval_path)) best_hparams_path = os.path.join(hyperparam_artifacts[-1].uri, 'best_hyperparameters.txt') print("Generated model best hyperparameters result:{}".format(best_hparams_path)) ###Output _____no_output_____ ###Markdown Return best hyperparameters ###Code # Latest pipeline run Tuner search space. json.loads(file_io.read_file_to_string(best_hparams_path))['space'] # Latest pipeline run Tuner searched best_hyperparameters artifacts. json.loads(file_io.read_file_to_string(best_hparams_path))['values'] ###Output _____no_output_____ ###Markdown Visualize model evaluations Exercise: review the model evaluation results below and answer the following questions:- Which Wilderness Area had the highest accuracy?- Which Wilderness Area had the lowest performance? Why do you think that is? What are some steps you could take to improve your next model runs? ###Code eval_result = tfma.load_eval_result(model_eval_path) tfma.view.render_slicing_metrics( eval_result, slicing_column='Wilderness_Area') ###Output _____no_output_____ ###Markdown Inspecting TFX metadata Learning Objectives1. Use a GRPC server to access and analyze pipeline artifacts stored in the ML Metadata service of your AI Platform Pipelines instance.In this lab, you will explore TFX pipeline metadata including pipeline and run artifacts. A hosted **AI Platform Pipelines** instance includes the [ML Metadata](https://github.com/google/ml-metadata) service. In **AI Platform Pipelines**, ML Metadata uses *MySQL* as a database backend and can be accessed using a GRPC server. Setup ###Code import os import json import ml_metadata import tensorflow_data_validation as tfdv import tensorflow_model_analysis as tfma from ml_metadata.metadata_store import metadata_store from ml_metadata.proto import metadata_store_pb2 from tfx.orchestration import metadata from tfx.types import standard_artifacts from tensorflow.python.lib.io import file_io !python -c "import tfx; print('TFX version: {}'.format(tfx.__version__))" !python -c "import kfp; print('KFP version: {}'.format(kfp.__version__))" ###Output _____no_output_____ ###Markdown Option 1: Explore metadata from existing TFX pipeline runs from AI Pipelines instance created in `lab-02` or `lab-03`. 1.1 Configure Kubernetes port forwardingTo enable access to the ML Metadata GRPC server, configure Kubernetes port forwarding.From a JupyterLab terminal, execute the following commands:```gcloud container clusters get-credentials [YOUR CLUSTER] --zone [YOUR CLUSTER ZONE] kubectl port-forward service/metadata-grpc-service --namespace [YOUR NAMESPACE] 7000:8080``` Proceed to the next step, "Connecting to ML Metadata". Option 2: Create new AI Pipelines instance and evaluate metadata on newly triggered pipeline runs.Hosted AI Pipelines incurs cost for the duration your Kubernetes cluster is running. If you deleted your previous lab instance, proceed with the 6 steps below to deploy a new TFX pipeline and triggers runs to inspect its metadata. ###Code import yaml # Set `PATH` to include the directory containing TFX CLI. PATH=%env PATH %env PATH=/home/jupyter/.local/bin:{PATH} ###Output _____no_output_____ ###Markdown The pipeline source can be found in the `pipeline` folder. Switch to the `pipeline` folder and compile the pipeline. ###Code %cd pipeline ###Output _____no_output_____ ###Markdown 2.1 Create AI Platform Pipelines clusterNavigate to [AI Platform Pipelines](https://console.cloud.google.com/ai-platform/pipelines/clusters) page in the Google Cloud Console.Create or select an existing Kubernetes cluster (GKE) and deploy AI Platform. Make sure to select `"Allow access to the following Cloud APIs https://www.googleapis.com/auth/cloud-platform"` to allow for programmatic access to your pipeline by the Kubeflow SDK for the rest of the lab. Also, provide an `App instance name` such as "TFX-lab-04". 2.2 Configure environment settings Update the below constants with the settings reflecting your lab environment.- `GCP_REGION` - the compute region for AI Platform Training and Prediction- `ARTIFACT_STORE` - the GCS bucket created during installation of AI Platform Pipelines. The bucket name starts with the `kubeflowpipelines-` prefix. Alternatively, you can specify create a new storage bucket to write pipeline artifacts to. ###Code !gsutil ls ###Output _____no_output_____ ###Markdown * `CUSTOM_SERVICE_ACCOUNT` - In the gcp console Click on the Navigation Menu. Navigate to `IAM & Admin`, then to `Service Accounts` and use the service account starting with prifix - `'tfx-tuner-caip-service-account'`. This enables CloudTuner and the Google Cloud AI Platform extensions Tuner component to work together and allows for distributed and parallel tuning backed by AI Platform Vizier's hyperparameter search algorithm. Please see the lab setup `README` for setup instructions. - `ENDPOINT` - set the `ENDPOINT` constant to the endpoint to your AI Platform Pipelines instance. The endpoint to the AI Platform Pipelines instance can be found on the [AI Platform Pipelines](https://console.cloud.google.com/ai-platform/pipelines/clusters) page in the Google Cloud Console.1. Open the *SETTINGS* for your instance2. Use the value of the `host` variable in the *Connect to this Kubeflow Pipelines instance from a Python client via Kubeflow Pipelines SKD* section of the *SETTINGS* window. ###Code #TODO: Set your environment resource settings here for GCP_REGION, ARTIFACT_STORE_URI, ENDPOINT, and CUSTOM_SERVICE_ACCOUNT. GCP_REGION = 'us-central1' ARTIFACT_STORE_URI = 'gs://dougkelly-sandbox-kubeflowpipelines-default' #Change ENDPOINT = '60ff837483ecde05-dot-us-central2.pipelines.googleusercontent.com' #Change CUSTOM_SERVICE_ACCOUNT = 'tfx-tuner-caip-service-account@dougkelly-sandbox.iam.gserviceaccount.com' #Change PROJECT_ID = !(gcloud config get-value core/project) PROJECT_ID = PROJECT_ID[0] # Set your resource settings as environment variables. These override the default values in pipeline/config.py. %env GCP_REGION={GCP_REGION} %env ARTIFACT_STORE_URI={ARTIFACT_STORE_URI} %env CUSTOM_SERVICE_ACCOUNT={CUSTOM_SERVICE_ACCOUNT} %env PROJECT_ID={PROJECT_ID} ###Output _____no_output_____ ###Markdown 2.3 Compile pipeline ###Code PIPELINE_NAME = 'tfx_covertype_lab_04' MODEL_NAME = 'tfx_covertype_classifier' DATA_ROOT_URI = 'gs://workshop-datasets/covertype/small' CUSTOM_TFX_IMAGE = 'gcr.io/{}/{}'.format(PROJECT_ID, PIPELINE_NAME) RUNTIME_VERSION = '2.3' PYTHON_VERSION = '3.7' USE_KFP_SA=False ENABLE_TUNING=True %env PIPELINE_NAME={PIPELINE_NAME} %env MODEL_NAME={MODEL_NAME} %env DATA_ROOT_URI={DATA_ROOT_URI} %env KUBEFLOW_TFX_IMAGE={CUSTOM_TFX_IMAGE} %env RUNTIME_VERSION={RUNTIME_VERSION} %env PYTHON_VERIONS={PYTHON_VERSION} %env USE_KFP_SA={USE_KFP_SA} %env ENABLE_TUNING={ENABLE_TUNING} !tfx pipeline compile --engine kubeflow --pipeline_path runner.py ###Output _____no_output_____ ###Markdown 2.4 Deploy pipeline to AI Platform ###Code !tfx pipeline create \ --pipeline_path=runner.py \ --endpoint={ENDPOINT} \ --build_target_image={CUSTOM_TFX_IMAGE} ###Output _____no_output_____ ###Markdown (optional) If you make local changes to the pipeline, you can update the deployed package on AI Platform with the following command: ###Code !tfx pipeline update --pipeline_path runner.py --endpoint {ENDPOINT} ###Output _____no_output_____ ###Markdown 2.5 Create and monitor pipeline run ###Code !tfx run create --pipeline_name={PIPELINE_NAME} --endpoint={ENDPOINT} ###Output _____no_output_____ ###Markdown 2.6 Configure Kubernetes port forwarding To enable access to the ML Metadata GRPC server, configure Kubernetes port forwarding.From a JupyterLab terminal, execute the following commands:```gcloud container clusters get-credentials [YOUR CLUSTER] --zone [YOURE CLUSTER ZONE] kubectl port-forward service/metadata-grpc-service --namespace [YOUR NAMESPACE] 7000:8080``` Connecting to ML Metadata Configure ML Metadata GRPC client ###Code grpc_host = 'localhost' grpc_port = 7000 connection_config = metadata_store_pb2.MetadataStoreClientConfig() connection_config.host = grpc_host connection_config.port = grpc_port ###Output _____no_output_____ ###Markdown Connect to ML Metadata service ###Code store = metadata_store.MetadataStore(connection_config) ###Output _____no_output_____ ###Markdown ImportantA full pipeline run without tuning takes about 40-45 minutes to complete. You need to wait until a pipeline run is complete before proceeding with the steps below. Exploring ML Metadata The Metadata Store uses the following data model:- `ArtifactType` describes an artifact's type and its properties that are stored in the Metadata Store. These types can be registered on-the-fly with the Metadata Store in code, or they can be loaded in the store from a serialized format. Once a type is registered, its definition is available throughout the lifetime of the store.- `Artifact` describes a specific instances of an ArtifactType, and its properties that are written to the Metadata Store.- `ExecutionType` describes a type of component or step in a workflow, and its runtime parameters.- `Execution` is a record of a component run or a step in an ML workflow and the runtime parameters. An Execution can be thought of as an instance of an ExecutionType. Every time a developer runs an ML pipeline or step, executions are recorded for each step.- `Event` is a record of the relationship between an Artifact and Executions. When an Execution happens, Events record every Artifact that was used by the Execution, and every Artifact that was produced. These records allow for provenance tracking throughout a workflow. By looking at all Events MLMD knows what Executions happened, what Artifacts were created as a result, and can recurse back from any Artifact to all of its upstream inputs.- `ContextType` describes a type of conceptual group of Artifacts and Executions in a workflow, and its structural properties. For example: projects, pipeline runs, experiments, owners.- `Context` is an instances of a ContextType. It captures the shared information within the group. For example: project name, changelist commit id, experiment annotations. It has a user-defined unique name within its ContextType.- `Attribution` is a record of the relationship between Artifacts and Contexts.- `Association` is a record of the relationship between Executions and Contexts. List the registered artifact types. ###Code for artifact_type in store.get_artifact_types(): print(artifact_type.name) ###Output _____no_output_____ ###Markdown Display the registered execution types. ###Code for execution_type in store.get_execution_types(): print(execution_type.name) ###Output _____no_output_____ ###Markdown List the registered context types. ###Code for context_type in store.get_context_types(): print(context_type.name) ###Output _____no_output_____ ###Markdown Visualizing TFX artifacts Retrieve data analysis and validation artifacts ###Code with metadata.Metadata(connection_config) as store: schema_artifacts = store.get_artifacts_by_type(standard_artifacts.Schema.TYPE_NAME) stats_artifacts = store.get_artifacts_by_type(standard_artifacts.ExampleStatistics.TYPE_NAME) anomalies_artifacts = store.get_artifacts_by_type(standard_artifacts.ExampleAnomalies.TYPE_NAME) schema_file = os.path.join(schema_artifacts[-1].uri, 'schema.pbtxt') print("Generated schame file:{}".format(schema_file)) stats_path = stats_artifacts[-1].uri train_stats_file = os.path.join(stats_path, 'train', 'stats_tfrecord') eval_stats_file = os.path.join(stats_path, 'eval', 'stats_tfrecord') print("Train stats file:{}, Eval stats file:{}".format( train_stats_file, eval_stats_file)) anomalies_path = anomalies_artifacts[-1].uri train_anomalies_file = os.path.join(anomalies_path, 'train', 'anomalies.pbtxt') eval_anomalies_file = os.path.join(anomalies_path, 'eval', 'anomalies.pbtxt') print("Train anomalies file:{}, Eval anomalies file:{}".format( train_anomalies_file, eval_anomalies_file)) ###Output _____no_output_____ ###Markdown Visualize schema ###Code schema = tfdv.load_schema_text(schema_file) tfdv.display_schema(schema=schema) ###Output _____no_output_____ ###Markdown Visualize statistics Exercise: looking at the features visualized below, answer the following questions:- Which feature transformations would you apply to each feature with TF Transform?- Are there data quality issues with certain features that may impact your model performance? How might you deal with it? ###Code train_stats = tfdv.load_statistics(train_stats_file) eval_stats = tfdv.load_statistics(eval_stats_file) tfdv.visualize_statistics(lhs_statistics=eval_stats, rhs_statistics=train_stats, lhs_name='EVAL_DATASET', rhs_name='TRAIN_DATASET') ###Output _____no_output_____ ###Markdown Visualize anomalies ###Code train_anomalies = tfdv.load_anomalies_text(train_anomalies_file) tfdv.display_anomalies(train_anomalies) eval_anomalies = tfdv.load_anomalies_text(eval_anomalies_file) tfdv.display_anomalies(eval_anomalies) ###Output _____no_output_____ ###Markdown Retrieve model artifacts ###Code with metadata.Metadata(connection_config) as store: model_eval_artifacts = store.get_artifacts_by_type(standard_artifacts.ModelEvaluation.TYPE_NAME) hyperparam_artifacts = store.get_artifacts_by_type(standard_artifacts.HyperParameters.TYPE_NAME) model_eval_path = model_eval_artifacts[-1].uri print("Generated model evaluation result:{}".format(model_eval_path)) best_hparams_path = os.path.join(hyperparam_artifacts[-1].uri, 'best_hyperparameters.txt') print("Generated model best hyperparameters result:{}".format(best_hparams_path)) ###Output _____no_output_____ ###Markdown Return best hyperparameters ###Code # Latest pipeline run Tuner search space. json.loads(file_io.read_file_to_string(best_hparams_path))['space'] # Latest pipeline run Tuner searched best_hyperparameters artifacts. json.loads(file_io.read_file_to_string(best_hparams_path))['values'] ###Output _____no_output_____ ###Markdown Visualize model evaluations Exercise: review the model evaluation results below and answer the following questions:- Which Wilderness Area had the highest accuracy?- Which Wilderness Area had the lowest performance? Why do you think that is? What are some steps you could take to improve your next model runs? ###Code eval_result = tfma.load_eval_result(model_eval_path) tfma.view.render_slicing_metrics( eval_result, slicing_column='Wilderness_Area') ###Output _____no_output_____ ###Markdown Inspecting TFX metadata Learning Objectives1. Use a GRPC server to access and analyze pipeline artifacts stored in the ML Metadata service of your AI Platform Pipelines instance.In this lab, you will explore TFX pipeline metadata including pipeline and run artifacts. A hosted **AI Platform Pipelines** instance includes the [ML Metadata](https://github.com/google/ml-metadata) service. In **AI Platform Pipelines**, ML Metadata uses *MySQL* as a database backend and can be accessed using a GRPC server. Setup ###Code import os import ml_metadata import tensorflow_data_validation as tfdv import tensorflow_model_analysis as tfma from ml_metadata.metadata_store import metadata_store from ml_metadata.proto import metadata_store_pb2 from tfx.orchestration import metadata from tfx.types import standard_artifacts !python -c "import tfx; print('TFX version: {}'.format(tfx.__version__))" !python -c "import kfp; print('KFP version: {}'.format(kfp.__version__))" ###Output _____no_output_____ ###Markdown Option 1: Explore metadata from existing TFX pipeline runs from AI Pipelines instance created in `lab-02` or `lab-03`. 1.1 Configure Kubernetes port forwardingTo enable access to the ML Metadata GRPC server, configure Kubernetes port forwarding.From a JupyterLab terminal, execute the following commands:```gcloud container clusters get-credentials [YOUR CLUSTER] --zone [YOUR CLUSTER ZONE] kubectl port-forward service/metadata-grpc-service --namespace [YOUR NAMESPACE] 7000:8080``` Proceed to the next step, "Connecting to ML Metadata". Option 2: Create new AI Pipelines instance and evaluate metadata on newly triggered pipeline runs.Hosted AI Pipelines incurs cost for the duration your Kubernetes cluster is running. If you deleted your previous lab instance, proceed with the 6 steps below to deploy a new TFX pipeline and triggers runs to inspect its metadata. ###Code import yaml # Set `PATH` to include the directory containing TFX CLI. PATH=%env PATH %env PATH=/home/jupyter/.local/bin:{PATH} ###Output _____no_output_____ ###Markdown The pipeline source can be found in the `pipeline` folder. Switch to the `pipeline` folder and compile the pipeline. ###Code %cd pipeline ###Output _____no_output_____ ###Markdown 2.1 Create AI Platform Pipelines clusterNavigate to [AI Platform Pipelines](https://console.cloud.google.com/ai-platform/pipelines/clusters) page in the Google Cloud Console.Create or select an existing Kubernetes cluster (GKE) and deploy AI Platform. Make sure to select `"Allow access to the following Cloud APIs https://www.googleapis.com/auth/cloud-platform"` to allow for programmatic access to your pipeline by the Kubeflow SDK for the rest of the lab. Also, provide an `App instance name` such as "TFX-lab-04". 2.2 Configure environment settings Update the below constants with the settings reflecting your lab environment.- `GCP_REGION` - the compute region for AI Platform Training and Prediction- `ARTIFACT_STORE` - the GCS bucket created during installation of AI Platform Pipelines. The bucket name starts with the `kubeflowpipelines-` prefix. Alternatively, you can specify create a new storage bucket to write pipeline artifacts to. ###Code !gsutil ls ###Output _____no_output_____ ###Markdown * `CUSTOM_SERVICE_ACCOUNT` - your user created custom google cloud service account for your pipeline's AI Platform Training job that you created during initial setup for these labs to access the Cloud AI Platform Vizier service. This enables CloudTuner and the Google Cloud AI Platform extensions Tuner component to work together and allows for distributed and parallel tuning backed by AI Platform Vizier's hyperparameter search algorithm. Please see the lab setup `README` for setup instructions. - `ENDPOINT` - set the `ENDPOINT` constant to the endpoint to your AI Platform Pipelines instance. The endpoint to the AI Platform Pipelines instance can be found on the [AI Platform Pipelines](https://console.cloud.google.com/ai-platform/pipelines/clusters) page in the Google Cloud Console.1. Open the *SETTINGS* for your instance2. Use the value of the `host` variable in the *Connect to this Kubeflow Pipelines instance from a Python client via Kubeflow Pipelines SKD* section of the *SETTINGS* window. ###Code #TODO: Set your environment resource settings here for GCP_REGION, ARTIFACT_STORE_URI, ENDPOINT, and CUSTOM_SERVICE_ACCOUNT. GCP_REGION = 'us-central1' ARTIFACT_STORE_URI = 'gs://dougkelly-sandbox-kubeflowpipelines-default' ENDPOINT = '60ff837483ecde05-dot-us-central2.pipelines.googleusercontent.com' CUSTOM_SERVICE_ACCOUNT = 'tfx-tuner-caip-service-account@dougkelly-sandbox.iam.gserviceaccount.com' PROJECT_ID = !(gcloud config get-value core/project) PROJECT_ID = PROJECT_ID[0] # Set your resource settings as environment variables. These override the default values in pipeline/config.py. %env GCP_REGION={GCP_REGION} %env ARTIFACT_STORE_URI={ARTIFACT_STORE_URI} %env CUSTOM_SERVICE_ACCOUNT={CUSTOM_SERVICE_ACCOUNT} %env PROJECT_ID={PROJECT_ID} ###Output _____no_output_____ ###Markdown 2.3 Compile pipeline ###Code PIPELINE_NAME = 'tfx_covertype_lab_04' MODEL_NAME = 'tfx_covertype_classifier' DATA_ROOT_URI = 'gs://workshop-datasets/covertype/small' CUSTOM_TFX_IMAGE = 'gcr.io/{}/{}'.format(PROJECT_ID, PIPELINE_NAME) RUNTIME_VERSION = '2.3' PYTHON_VERSION = '3.7' USE_KFP_SA=False ENABLE_TUNING=False %env PIPELINE_NAME={PIPELINE_NAME} %env MODEL_NAME={MODEL_NAME} %env DATA_ROOT_URI={DATA_ROOT_URI} %env KUBEFLOW_TFX_IMAGE={CUSTOM_TFX_IMAGE} %env RUNTIME_VERSION={RUNTIME_VERSION} %env PYTHON_VERIONS={PYTHON_VERSION} %env USE_KFP_SA={USE_KFP_SA} %env ENABLE_TUNING={ENABLE_TUNING} !tfx pipeline compile --engine kubeflow --pipeline_path runner.py ###Output _____no_output_____ ###Markdown 2.4 Deploy pipeline to AI Platform ###Code !tfx pipeline create \ --pipeline_path=runner.py \ --endpoint={ENDPOINT} \ --build_target_image={CUSTOM_TFX_IMAGE} ###Output _____no_output_____ ###Markdown (optional) If you make local changes to the pipeline, you can update the deployed package on AI Platform with the following command: ###Code !tfx pipeline update --pipeline_path runner.py --endpoint {ENDPOINT} ###Output _____no_output_____ ###Markdown 2.5 Create and monitor pipeline run ###Code !tfx run create --pipeline_name={PIPELINE_NAME} --endpoint={ENDPOINT} ###Output _____no_output_____ ###Markdown 2.6 Configure Kubernetes port forwarding To enable access to the ML Metadata GRPC server, configure Kubernetes port forwarding.From a JupyterLab terminal, execute the following commands:```gcloud container clusters get-credentials [YOUR CLUSTER] --zone [YOURE CLUSTER ZONE] kubectl port-forward service/metadata-grpc-service --namespace [YOUR NAMESPACE] 7000:8080``` Connecting to ML Metadata Configure ML Metadata GRPC client ###Code grpc_host = 'localhost' grpc_port = 7000 connection_config = metadata_store_pb2.MetadataStoreClientConfig() connection_config.host = grpc_host connection_config.port = grpc_port ###Output _____no_output_____ ###Markdown Connect to ML Metadata service ###Code store = metadata_store.MetadataStore(connection_config) ###Output _____no_output_____ ###Markdown ImportantA full pipeline run without tuning takes about 40-45 minutes to complete. You need to wait until a pipeline run is complete before proceeding with the steps below. Exploring ML Metadata The Metadata Store uses the following data model:- `ArtifactType` describes an artifact's type and its properties that are stored in the Metadata Store. These types can be registered on-the-fly with the Metadata Store in code, or they can be loaded in the store from a serialized format. Once a type is registered, its definition is available throughout the lifetime of the store.- `Artifact` describes a specific instances of an ArtifactType, and its properties that are written to the Metadata Store.- `ExecutionType` describes a type of component or step in a workflow, and its runtime parameters.- `Execution` is a record of a component run or a step in an ML workflow and the runtime parameters. An Execution can be thought of as an instance of an ExecutionType. Every time a developer runs an ML pipeline or step, executions are recorded for each step.- `Event` is a record of the relationship between an Artifact and Executions. When an Execution happens, Events record every Artifact that was used by the Execution, and every Artifact that was produced. These records allow for provenance tracking throughout a workflow. By looking at all Events MLMD knows what Executions happened, what Artifacts were created as a result, and can recurse back from any Artifact to all of its upstream inputs.- `ContextType` describes a type of conceptual group of Artifacts and Executions in a workflow, and its structural properties. For example: projects, pipeline runs, experiments, owners.- `Context` is an instances of a ContextType. It captures the shared information within the group. For example: project name, changelist commit id, experiment annotations. It has a user-defined unique name within its ContextType.- `Attribution` is a record of the relationship between Artifacts and Contexts.- `Association` is a record of the relationship between Executions and Contexts. List the registered artifact types. ###Code for artifact_type in store.get_artifact_types(): print(artifact_type.name) ###Output _____no_output_____ ###Markdown Display the registered execution types. ###Code for execution_type in store.get_execution_types(): print(execution_type.name) ###Output _____no_output_____ ###Markdown List the registered context types. ###Code for context_type in store.get_context_types(): print(context_type.name) ###Output _____no_output_____ ###Markdown Visualizing TFX artifacts Retrieve data analysis and validation artifacts ###Code with metadata.Metadata(connection_config) as store: stats_artifacts = store.get_artifacts_by_type(standard_artifacts.ExampleStatistics.TYPE_NAME) schema_artifacts = store.get_artifacts_by_type(standard_artifacts.Schema.TYPE_NAME) anomalies_artifacts = store.get_artifacts_by_type(standard_artifacts.ExampleAnomalies.TYPE_NAME) stats_path = stats_artifacts[-1].uri train_stats_file = os.path.join(stats_path, 'train', 'stats_tfrecord') eval_stats_file = os.path.join(stats_path, 'eval', 'stats_tfrecord') print("Train stats file:{}, Eval stats file:{}".format( train_stats_file, eval_stats_file)) schema_file = os.path.join(schema_artifacts[-1].uri, 'schema.pbtxt') print("Generated schame file:{}".format(schema_file)) anomalies_file = os.path.join(anomalies_artifacts[-1].uri, 'anomalies.pbtxt') print("Generated anomalies file:{}".format(anomalies_file)) ###Output _____no_output_____ ###Markdown Visualize statistics Exercise: looking at the features visualized below, answer the following questions:- Which feature transformations would you apply to each feature with TF Transform?- Are there data quality issues with certain features that may impact your model performance? How might you deal with it? ###Code train_stats = tfdv.load_statistics(train_stats_file) eval_stats = tfdv.load_statistics(eval_stats_file) tfdv.visualize_statistics(lhs_statistics=eval_stats, rhs_statistics=train_stats, lhs_name='EVAL_DATASET', rhs_name='TRAIN_DATASET') ###Output _____no_output_____ ###Markdown Visualize schema ###Code schema = tfdv.load_schema_text(schema_file) tfdv.display_schema(schema=schema) ###Output _____no_output_____ ###Markdown Visualize anomalies ###Code anomalies = tfdv.load_anomalies_text(anomalies_file) tfdv.display_anomalies(anomalies) ###Output _____no_output_____ ###Markdown Retrieve model evaluations ###Code with metadata.Metadata(connection_config) as store: model_eval_artifacts = store.get_artifacts_by_type(standard_artifacts.ModelEvaluation.TYPE_NAME) model_eval_path = model_eval_artifacts[-1].uri print("Generated model evaluation result:{}".format(model_eval_path)) ###Output _____no_output_____ ###Markdown Visualize model evaluations Exercise: review the model evaluation results below and answer the following questions:- Which Wilderness Area had the highest accuracy?- Which Wilderness Area had the lowest performance? Why do you think that is? What are some steps you could take to improve your next model runs? ###Code eval_result = tfma.load_eval_result(model_eval_path) tfma.view.render_slicing_metrics( eval_result, slicing_column='Wilderness_Area') ###Output _____no_output_____ ###Markdown Inspecting TFX metadata Learning Objectives1. Use a GRPC server to access and analyze pipeline artifacts stored in the ML Metadata service of your AI Platform Pipelines instance.In this lab, you will explore TFX pipeline metadata including pipeline and run artifacts. A hosted **AI Platform Pipelines** instance includes the [ML Metadata](https://github.com/google/ml-metadata) service. In **AI Platform Pipelines**, ML Metadata uses *MySQL* as a database backend and can be accessed using a GRPC server. Setup ###Code import os import ml_metadata import tensorflow_data_validation as tfdv import tensorflow_model_analysis as tfma from ml_metadata.metadata_store import metadata_store from ml_metadata.proto import metadata_store_pb2 from tfx.orchestration import metadata from tfx.types import standard_artifacts !python -c "import tfx; print('TFX version: {}'.format(tfx.__version__))" !python -c "import kfp; print('KFP version: {}'.format(kfp.__version__))" ###Output _____no_output_____ ###Markdown Option 1: Explore metadata from existing TFX pipeline runs from AI Pipelines instance created in `lab-02` or `lab-03`. 1.1 Configure Kubernetes port forwardingTo enable access to the ML Metadata GRPC server, configure Kubernetes port forwarding.From a JupyterLab terminal, execute the following commands:```gcloud container clusters get-credentials [YOUR CLUSTER] --zone [YOUR CLUSTER ZONE] kubectl port-forward service/metadata-grpc-service --namespace [YOUR NAMESPACE] 7000:8080``` Proceed to the next step, "Connecting to ML Metadata". Option 2: Create new AI Pipelines instance and evaluate metadata on newly triggered pipeline runs.Hosted AI Pipelines incurs cost for the duration your Kubernetes cluster is running. If you deleted your previous lab instance, proceed with the 6 steps below to deploy a new TFX pipeline and triggers runs to inspect its metadata. ###Code import yaml # Set `PATH` to include the directory containing TFX CLI. PATH=%env PATH %env PATH=/home/jupyter/.local/bin:{PATH} ###Output _____no_output_____ ###Markdown The pipeline source can be found in the `pipeline` folder. Switch to the `pipeline` folder and compile the pipeline. ###Code %cd pipeline ###Output _____no_output_____ ###Markdown 2.1 Create AI Platform Pipelines clusterNavigate to [AI Platform Pipelines](https://console.cloud.google.com/ai-platform/pipelines/clusters) page in the Google Cloud Console.Create or select an existing Kubernetes cluster (GKE) and deploy AI Platform. Make sure to select `"Allow access to the following Cloud APIs https://www.googleapis.com/auth/cloud-platform"` to allow for programmatic access to your pipeline by the Kubeflow SDK for the rest of the lab. Also, provide an `App instance name` such as "TFX-lab-04". 2.2 Configure environment settings Update the below constants with the settings reflecting your lab environment.- `GCP_REGION` - the compute region for AI Platform Training and Prediction- `ARTIFACT_STORE` - the GCS bucket created during installation of AI Platform Pipelines. The bucket name starts with the `kubeflowpipelines-` prefix. Alternatively, you can specify create a new storage bucket to write pipeline artifacts to. ###Code !gsutil ls ###Output _____no_output_____ ###Markdown * `CUSTOM_SERVICE_ACCOUNT` - In the gcp console Click on the Navigation Menu. Navigate to `IAM & Admin`, then to `Service Accounts` and use the service account starting with prifix - `'tfx-tuner-caip-service-account'`. This enables CloudTuner and the Google Cloud AI Platform extensions Tuner component to work together and allows for distributed and parallel tuning backed by AI Platform Vizier's hyperparameter search algorithm. Please see the lab setup `README` for setup instructions. - `ENDPOINT` - set the `ENDPOINT` constant to the endpoint to your AI Platform Pipelines instance. The endpoint to the AI Platform Pipelines instance can be found on the [AI Platform Pipelines](https://console.cloud.google.com/ai-platform/pipelines/clusters) page in the Google Cloud Console.1. Open the *SETTINGS* for your instance2. Use the value of the `host` variable in the *Connect to this Kubeflow Pipelines instance from a Python client via Kubeflow Pipelines SKD* section of the *SETTINGS* window. ###Code #TODO: Set your environment resource settings here for GCP_REGION, ARTIFACT_STORE_URI, ENDPOINT, and CUSTOM_SERVICE_ACCOUNT. GCP_REGION = 'us-central1' ARTIFACT_STORE_URI = 'gs://dougkelly-sandbox-kubeflowpipelines-default' ENDPOINT = '60ff837483ecde05-dot-us-central2.pipelines.googleusercontent.com' CUSTOM_SERVICE_ACCOUNT = 'tfx-tuner-caip-service-account@dougkelly-sandbox.iam.gserviceaccount.com' PROJECT_ID = !(gcloud config get-value core/project) PROJECT_ID = PROJECT_ID[0] # Set your resource settings as environment variables. These override the default values in pipeline/config.py. %env GCP_REGION={GCP_REGION} %env ARTIFACT_STORE_URI={ARTIFACT_STORE_URI} %env CUSTOM_SERVICE_ACCOUNT={CUSTOM_SERVICE_ACCOUNT} %env PROJECT_ID={PROJECT_ID} ###Output _____no_output_____ ###Markdown 2.3 Compile pipeline ###Code PIPELINE_NAME = 'tfx_covertype_lab_04' MODEL_NAME = 'tfx_covertype_classifier' DATA_ROOT_URI = 'gs://workshop-datasets/covertype/small' CUSTOM_TFX_IMAGE = 'gcr.io/{}/{}'.format(PROJECT_ID, PIPELINE_NAME) RUNTIME_VERSION = '2.3' PYTHON_VERSION = '3.7' USE_KFP_SA=False ENABLE_TUNING=False %env PIPELINE_NAME={PIPELINE_NAME} %env MODEL_NAME={MODEL_NAME} %env DATA_ROOT_URI={DATA_ROOT_URI} %env KUBEFLOW_TFX_IMAGE={CUSTOM_TFX_IMAGE} %env RUNTIME_VERSION={RUNTIME_VERSION} %env PYTHON_VERIONS={PYTHON_VERSION} %env USE_KFP_SA={USE_KFP_SA} %env ENABLE_TUNING={ENABLE_TUNING} !tfx pipeline compile --engine kubeflow --pipeline_path runner.py ###Output _____no_output_____ ###Markdown 2.4 Deploy pipeline to AI Platform ###Code !tfx pipeline create \ --pipeline_path=runner.py \ --endpoint={ENDPOINT} \ --build_target_image={CUSTOM_TFX_IMAGE} ###Output _____no_output_____ ###Markdown (optional) If you make local changes to the pipeline, you can update the deployed package on AI Platform with the following command: ###Code !tfx pipeline update --pipeline_path runner.py --endpoint {ENDPOINT} ###Output _____no_output_____ ###Markdown 2.5 Create and monitor pipeline run ###Code !tfx run create --pipeline_name={PIPELINE_NAME} --endpoint={ENDPOINT} ###Output _____no_output_____ ###Markdown 2.6 Configure Kubernetes port forwarding To enable access to the ML Metadata GRPC server, configure Kubernetes port forwarding.From a JupyterLab terminal, execute the following commands:```gcloud container clusters get-credentials [YOUR CLUSTER] --zone [YOURE CLUSTER ZONE] kubectl port-forward service/metadata-grpc-service --namespace [YOUR NAMESPACE] 7000:8080``` Connecting to ML Metadata Configure ML Metadata GRPC client ###Code grpc_host = 'localhost' grpc_port = 7000 connection_config = metadata_store_pb2.MetadataStoreClientConfig() connection_config.host = grpc_host connection_config.port = grpc_port ###Output _____no_output_____ ###Markdown Connect to ML Metadata service ###Code store = metadata_store.MetadataStore(connection_config) ###Output _____no_output_____ ###Markdown ImportantA full pipeline run without tuning takes about 40-45 minutes to complete. You need to wait until a pipeline run is complete before proceeding with the steps below. Exploring ML Metadata The Metadata Store uses the following data model:- `ArtifactType` describes an artifact's type and its properties that are stored in the Metadata Store. These types can be registered on-the-fly with the Metadata Store in code, or they can be loaded in the store from a serialized format. Once a type is registered, its definition is available throughout the lifetime of the store.- `Artifact` describes a specific instances of an ArtifactType, and its properties that are written to the Metadata Store.- `ExecutionType` describes a type of component or step in a workflow, and its runtime parameters.- `Execution` is a record of a component run or a step in an ML workflow and the runtime parameters. An Execution can be thought of as an instance of an ExecutionType. Every time a developer runs an ML pipeline or step, executions are recorded for each step.- `Event` is a record of the relationship between an Artifact and Executions. When an Execution happens, Events record every Artifact that was used by the Execution, and every Artifact that was produced. These records allow for provenance tracking throughout a workflow. By looking at all Events MLMD knows what Executions happened, what Artifacts were created as a result, and can recurse back from any Artifact to all of its upstream inputs.- `ContextType` describes a type of conceptual group of Artifacts and Executions in a workflow, and its structural properties. For example: projects, pipeline runs, experiments, owners.- `Context` is an instances of a ContextType. It captures the shared information within the group. For example: project name, changelist commit id, experiment annotations. It has a user-defined unique name within its ContextType.- `Attribution` is a record of the relationship between Artifacts and Contexts.- `Association` is a record of the relationship between Executions and Contexts. List the registered artifact types. ###Code for artifact_type in store.get_artifact_types(): print(artifact_type.name) ###Output _____no_output_____ ###Markdown Display the registered execution types. ###Code for execution_type in store.get_execution_types(): print(execution_type.name) ###Output _____no_output_____ ###Markdown List the registered context types. ###Code for context_type in store.get_context_types(): print(context_type.name) ###Output _____no_output_____ ###Markdown Visualizing TFX artifacts Retrieve data analysis and validation artifacts ###Code with metadata.Metadata(connection_config) as store: stats_artifacts = store.get_artifacts_by_type(standard_artifacts.ExampleStatistics.TYPE_NAME) schema_artifacts = store.get_artifacts_by_type(standard_artifacts.Schema.TYPE_NAME) anomalies_artifacts = store.get_artifacts_by_type(standard_artifacts.ExampleAnomalies.TYPE_NAME) stats_path = stats_artifacts[-1].uri train_stats_file = os.path.join(stats_path, 'train', 'stats_tfrecord') eval_stats_file = os.path.join(stats_path, 'eval', 'stats_tfrecord') print("Train stats file:{}, Eval stats file:{}".format( train_stats_file, eval_stats_file)) schema_file = os.path.join(schema_artifacts[-1].uri, 'schema.pbtxt') print("Generated schame file:{}".format(schema_file)) anomalies_file = os.path.join(anomalies_artifacts[-1].uri, 'anomalies.pbtxt') print("Generated anomalies file:{}".format(anomalies_file)) ###Output _____no_output_____ ###Markdown Visualize statistics Exercise: looking at the features visualized below, answer the following questions:- Which feature transformations would you apply to each feature with TF Transform?- Are there data quality issues with certain features that may impact your model performance? How might you deal with it? ###Code train_stats = tfdv.load_statistics(train_stats_file) eval_stats = tfdv.load_statistics(eval_stats_file) tfdv.visualize_statistics(lhs_statistics=eval_stats, rhs_statistics=train_stats, lhs_name='EVAL_DATASET', rhs_name='TRAIN_DATASET') ###Output _____no_output_____ ###Markdown Visualize schema ###Code schema = tfdv.load_schema_text(schema_file) tfdv.display_schema(schema=schema) ###Output _____no_output_____ ###Markdown Visualize anomalies ###Code anomalies = tfdv.load_anomalies_text(anomalies_file) tfdv.display_anomalies(anomalies) ###Output _____no_output_____ ###Markdown Retrieve model evaluations ###Code with metadata.Metadata(connection_config) as store: model_eval_artifacts = store.get_artifacts_by_type(standard_artifacts.ModelEvaluation.TYPE_NAME) model_eval_path = model_eval_artifacts[-1].uri print("Generated model evaluation result:{}".format(model_eval_path)) ###Output _____no_output_____ ###Markdown Visualize model evaluations Exercise: review the model evaluation results below and answer the following questions:- Which Wilderness Area had the highest accuracy?- Which Wilderness Area had the lowest performance? Why do you think that is? What are some steps you could take to improve your next model runs? ###Code eval_result = tfma.load_eval_result(model_eval_path) tfma.view.render_slicing_metrics( eval_result, slicing_column='Wilderness_Area') ###Output _____no_output_____
introduction_to_python/Introduction to Python.ipynb
###Markdown IntroductionPython is an easy to learn, powerful programming language. It has efficient high-level data structures and a simple but effective approach to object-oriented programming. Python’s elegant syntax and dynamic typing, together with its interpreted nature, make it an ideal language for scripting and rapid application development in many areas on most platforms.In this section we will cover the basic of Python language and features of python. The tutorial is created with Jupyter Notebook a web application that allow us to share documents including live python code, however this tutorial can be followed using your python intrepreter. We will also assume you have basic programming skill so we will skip a lot of basic concepts.We will use python 3.6 for this tutorial which you can download and install from https://www.python.org/. After installing python you can open you command line/bash and type "__python --v__" to check your installed python version. You can also start your python intrepreter with typing "python" in your command line and press enter. ###Code import sys print(sys.version) ###Output 3.6.3 |Anaconda custom (32-bit)| (default, Nov 8 2017, 15:12:41) [MSC v.1900 32 bit (Intel)] ###Markdown basic of pythonPython is a high-level, dynamically typed multiparadigm programming language. Python code is often said to be almost like pseudocode, since it allows you to express very powerful ideas in very few lines of code while being very readable. As an example, here is an implementation of the classic quicksort algorithm in Python: ###Code def quicksort(arr): if len(arr) <= 1: return arr pivot = arr[len(arr) // 2] left = [x for x in arr if x < pivot] middle = [x for x in arr if x == pivot] right = [x for x in arr if x > pivot] return quicksort(left) + middle + quicksort(right) print(quicksort([3,6,8,10,1,2,1])) ###Output [1, 1, 2, 3, 6, 8, 10]
projects/notebooks/03_sent2vec_admissiondiagnosis_clustering.ipynb
###Markdown Sent2Vec: admission diagnosis clusteringGroup diagnosis with feature vectors from pretrained NLP modelCODE NOT RUNNING YET, STILL BUGGY WITH THE "embed_sentences" function. Calculate feature vector for each diagnosis string ###Code import os import numpy as np from collections import Counter import sent2vec os.makedirs("_cache", exist_ok=True) SENT2VEC_MODEL_PATH = '/data/wiki_unigrams.bin' sent2vec_model = sent2vec.Sent2vecModel() assert os.path.exists(SENT2VEC_MODEL_PATH) patient_demo_dict = np.load('_cache/patient_demo.npy', allow_pickle=True).item() admissiondx = patient_demo_dict['apacheadmissiondx'] admissiondx_embs_cache_path = '_cache/admissiondx_embs.npy' if os.path.exists(admissiondx_embs_cache_path): admissiondx_embs = np.load(admissiondx_embs_cache_path, allow_pickle=True) else: sent2vec_model.load_model(SENT2VEC_MODEL_PATH, inference_mode=True) admissiondx_embs = sent2vec_model.embed_sentences(admissiondx) np.save('_cache/admissiondx_embs.npy', admissiondx_embs) sent2vec_model.release_shared_mem(SENT2VEC_MODEL_PATH) print(1) admissiondx_embs.shape admissiondx_embs = admissiondx_embs.reshape(admissiondx_embs.shape[0], -1) admissiondx_embs.shape ###Output _____no_output_____ ###Markdown Feature vector clustering ###Code from sklearn.manifold import TSNE from sklearn.decomposition import LatentDirichletAllocation, PCA from sklearn.cluster import AffinityPropagation, DBSCAN, OPTICS import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown DBSCAN Clustering ###Code # Cluster DBSCAN_clusters = DBSCAN(eps=0.3, min_samples=10) DBSCAN_clusters.fit(admissiondx_embs) print("Number of core samples:", DBSCAN_clusters.core_sample_indices_.shape) admissiondx_dbscan_labels = DBSCAN_clusters.labels_ core_samples_mask = np.zeros_like(admissiondx_dbscan_labels, dtype=bool) core_samples_mask[DBSCAN_clusters.core_sample_indices_] = True n_clusters_ = len(set(admissiondx_dbscan_labels)) - (1 if -1 in admissiondx_dbscan_labels else 0) n_noise_ = list(admissiondx_dbscan_labels).count(-1) print('Estimated number of clusters: %d' % n_clusters_) print('Estimated number of noise points: %d' % n_noise_) diagnosis_dict = {} for i, label in enumerate(admissiondx_dbscan_labels): if label in diagnosis_dict: diagnosis_dict[label].append(i) else: diagnosis_dict[label] = [i] admissiondx[diagnosis_dict[1]] admissiondx[diagnosis_dict[2]] for i in range(128): print('\n',len(admissiondx[diagnosis_dict[i]]), '\n', admissiondx[diagnosis_dict[i]]) ###Output _____no_output_____ ###Markdown OPTICS Clustering ###Code OPTICS_cluster = OPTICS(min_samples=50, xi=.05, min_cluster_size=.01) OPTICS_cluster.fit(admissiondx_embs) num_labels_optics = len(set(OPTICS_cluster.labels_)) print('Estimated number of labels: %d' % num_labels_optics) diagnosis_dict_optics = {} for i, label in enumerate(OPTICS_cluster.labels_): if label in diagnosis_dict_optics: diagnosis_dict_optics[label].append(i) else: diagnosis_dict_optics[label] = [i] # f = open('diagnosis_stats.txt', 'w') # for i in range(-1, 19): # f.write(f'Group {i}\n') # c = Counter(admissiondx[diagnosis_dict_optics[i]]) # for key in c: # f.write(f'{key}: {c[key]}\n') # f.write('\n\n\n') # f.close() ###Output _____no_output_____ ###Markdown Save clustering models ###Code import joblib joblib.dump(OPTICS_cluster, 'admission_diagnosis_cluster_OPTICS') joblib.dump(DBSCAN_clusters, 'admission_diagnosis_cluster_DBSCAN') OPTICS_cluster = joblib.load('admission_diagnosis_cluster_OPTICS') DBSCAN_clusters = joblib.load('admission_diagnosis_cluster_DBSCAN') admissiondx_dbscan_labels = DBSCAN_clusters.labels_ colors = [plt.cm.Spectral(each) for each in np.linspace(0, 1, len(admissiondx_dbscan_labels))] for k, col in zip(admissiondx_dbscan_labels, colors): if k == -1: # Black used for noise. col = [0, 0, 0, 1] class_member_mask = (admissiondx_dbscan_labels == k) xy = admissiondx_embs[class_member_mask & core_samples_mask] plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col), markeredgecolor='k', markersize=14) xy = admissiondx_embs[class_member_mask & ~core_samples_mask] plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col), markeredgecolor='k', markersize=6) plt.title('Estimated number of clusters: %d' % n_clusters_) plt.show() ###Output _____no_output_____
01 Machine Learning/scikit_examples_jupyter/model_selection/plot_roc.ipynb
###Markdown =======================================Receiver Operating Characteristic (ROC)=======================================Example of Receiver Operating Characteristic (ROC) metric to evaluateclassifier output quality.ROC curves typically feature true positive rate on the Y axis, and falsepositive rate on the X axis. This means that the top left corner of the plot isthe "ideal" point - a false positive rate of zero, and a true positive rate ofone. This is not very realistic, but it does mean that a larger area under thecurve (AUC) is usually better.The "steepness" of ROC curves is also important, since it is ideal to maximizethe true positive rate while minimizing the false positive rate.Multiclass settings-------------------ROC curves are typically used in binary classification to study the output ofa classifier. In order to extend ROC curve and ROC area to multi-classor multi-label classification, it is necessary to binarize the output. One ROCcurve can be drawn per label, but one can also draw a ROC curve by consideringeach element of the label indicator matrix as a binary prediction(micro-averaging).Another evaluation measure for multi-class classification ismacro-averaging, which gives equal weight to the classification of eachlabel.NoteSee also :func:`sklearn.metrics.roc_auc_score`, `sphx_glr_auto_examples_model_selection_plot_roc_crossval.py`. ###Code print(__doc__) import numpy as np import matplotlib.pyplot as plt from itertools import cycle from sklearn import svm, datasets from sklearn.metrics import roc_curve, auc from sklearn.model_selection import train_test_split from sklearn.preprocessing import label_binarize from sklearn.multiclass import OneVsRestClassifier from scipy import interp # Import some data to play with iris = datasets.load_iris() X = iris.data y = iris.target # Binarize the output y = label_binarize(y, classes=[0, 1, 2]) n_classes = y.shape[1] # Add noisy features to make the problem harder random_state = np.random.RandomState(0) n_samples, n_features = X.shape X = np.c_[X, random_state.randn(n_samples, 200 * n_features)] # shuffle and split training and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.5, random_state=0) # Learn to predict each class against the other classifier = OneVsRestClassifier(svm.SVC(kernel='linear', probability=True, random_state=random_state)) y_score = classifier.fit(X_train, y_train).decision_function(X_test) # Compute ROC curve and ROC area for each class fpr = dict() tpr = dict() roc_auc = dict() for i in range(n_classes): fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i]) roc_auc[i] = auc(fpr[i], tpr[i]) # Compute micro-average ROC curve and ROC area fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), y_score.ravel()) roc_auc["micro"] = auc(fpr["micro"], tpr["micro"]) ###Output _____no_output_____ ###Markdown Plot of a ROC curve for a specific class ###Code plt.figure() lw = 2 plt.plot(fpr[2], tpr[2], color='darkorange', lw=lw, label='ROC curve (area = %0.2f)' % roc_auc[2]) plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic example') plt.legend(loc="lower right") plt.show() ###Output _____no_output_____ ###Markdown Plot ROC curves for the multiclass problem ###Code # Compute macro-average ROC curve and ROC area # First aggregate all false positive rates all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)])) # Then interpolate all ROC curves at this points mean_tpr = np.zeros_like(all_fpr) for i in range(n_classes): mean_tpr += interp(all_fpr, fpr[i], tpr[i]) # Finally average it and compute AUC mean_tpr /= n_classes fpr["macro"] = all_fpr tpr["macro"] = mean_tpr roc_auc["macro"] = auc(fpr["macro"], tpr["macro"]) # Plot all ROC curves plt.figure() plt.plot(fpr["micro"], tpr["micro"], label='micro-average ROC curve (area = {0:0.2f})' ''.format(roc_auc["micro"]), color='deeppink', linestyle=':', linewidth=4) plt.plot(fpr["macro"], tpr["macro"], label='macro-average ROC curve (area = {0:0.2f})' ''.format(roc_auc["macro"]), color='navy', linestyle=':', linewidth=4) colors = cycle(['aqua', 'darkorange', 'cornflowerblue']) for i, color in zip(range(n_classes), colors): plt.plot(fpr[i], tpr[i], color=color, lw=lw, label='ROC curve of class {0} (area = {1:0.2f})' ''.format(i, roc_auc[i])) plt.plot([0, 1], [0, 1], 'k--', lw=lw) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Some extension of Receiver operating characteristic to multi-class') plt.legend(loc="lower right") plt.show() ###Output _____no_output_____
doc/t_to_z_procedure.ipynb
###Markdown Properly Transforming T to Z Scores for Large Brain MapsWe discovered a strange truncation of strongly negative values when converting from T statistic scores --> P values --> Z scores. First we will show the strangeness. The task behind the mapThis is a group map for a "story" contrast from a language task from the Human Connectome Project (HCP). For [this task](http://www.sciencedirect.com/science/article/pii/S1053811913005272), there are alternating blocks of doing match problems and listening to a story. This contrast is for the "story" blocks. The mapWe concatenated each single subject cope1.nii.gz image representing this contrast in time, for a total of 486 subjects (timepoints), and ran randomise for 5000 iterations (fsl). ###Code randomise -i OneSamp4D -o OneSampT -1 -T ###Output _____no_output_____ ###Markdown Viewing the T Statistic MapNow we can read in the file, and first look at the image itself and the T-distribution. ###Code import matplotlib import matplotlib.pylab as plt import numpy as np %matplotlib inline import nibabel as nib from nilearn.plotting import plot_stat_map, plot_roi from scipy.spatial.distance import pdist from scipy.stats import norm, t import seaborn as sns all_copes_file = "../example/tfMRI_LANGUAGE_STORY.nii_tstat1.nii.gz" all_copes = nib.load(all_copes_file) plot_stat_map(all_copes) print("Here is our map created with randomise for all 486 subjects, for the story contrast") ###Output /home/tomo/anaconda3/envs/t2z/lib/python3.6/site-packages/nilearn/datasets/__init__.py:96: FutureWarning: Fetchers from the nilearn.datasets module will be updated in version 0.9 to return python strings instead of bytes and Pandas dataframes instead of Numpy arrays. "Numpy arrays.", FutureWarning) /home/tomo/anaconda3/envs/t2z/lib/python3.6/site-packages/nilearn/plotting/img_plotting.py:341: FutureWarning: Default resolution of the MNI template will change from 2mm to 1mm in version 0.10.0 anat_img = load_mni152_template() ###Markdown Now I want to point out something about this map - we have a set of strongly negative outliers. ###Code # Function to flag outliers def plot_outliers(image,n_std=6): mr = nib.load(image) data = mr.get_data() mean = data.mean() std = data.std() six_dev_up = mean + n_std * std six_dev_down = mean - n_std*std empty_brain = np.zeros(data.shape) empty_brain[data>=six_dev_up] = 1 empty_brain[data<=six_dev_down] = 1 outlier_nii = nib.nifti1.Nifti1Image(empty_brain,affine=mr.get_affine(),header=mr.get_header()) plot_roi(outlier_nii) plot_outliers(all_copes_file) ###Output /home/tomo/anaconda3/envs/t2z/lib/python3.6/site-packages/ipykernel_launcher.py:4: DeprecationWarning: get_data() is deprecated in favor of get_fdata(), which has a more predictable return type. To obtain get_data() behavior going forward, use numpy.asanyarray(img.dataobj). * deprecated from version: 3.0 * Will raise <class 'nibabel.deprecator.ExpiredDeprecationError'> as of version: 5.0 after removing the cwd from sys.path. /home/tomo/anaconda3/envs/t2z/lib/python3.6/site-packages/ipykernel_launcher.py:12: DeprecationWarning: get_affine method is deprecated. Please use the ``img.affine`` property instead. * deprecated from version: 2.1 * Will raise <class 'nibabel.deprecator.ExpiredDeprecationError'> as of version: 4.0 if sys.path[0] == '': /home/tomo/anaconda3/envs/t2z/lib/python3.6/site-packages/ipykernel_launcher.py:12: DeprecationWarning: get_header method is deprecated. Please use the ``img.header`` property instead. * deprecated from version: 2.1 * Will raise <class 'nibabel.deprecator.ExpiredDeprecationError'> as of version: 4.0 if sys.path[0] == '': ###Markdown It is a separate problem entirely if those outliers should be there, but for the purposes of this problem, we would want any conversion from T to Z to maintain those outliers. Let's now look at the distribution of the data. Viewing the T Distribution ###Code data = all_copes.get_data() data = data[data!=0] sns.distplot(data.flatten(), label="Original T-Stat Data") plt.legend() print("Here is our map created with randomise for all 486 subjects, for the story contrast") ###Output /home/tomo/anaconda3/envs/t2z/lib/python3.6/site-packages/ipykernel_launcher.py:1: DeprecationWarning: get_data() is deprecated in favor of get_fdata(), which has a more predictable return type. To obtain get_data() behavior going forward, use numpy.asanyarray(img.dataobj). * deprecated from version: 3.0 * Will raise <class 'nibabel.deprecator.ExpiredDeprecationError'> as of version: 5.0 """Entry point for launching an IPython kernel. /home/tomo/anaconda3/envs/t2z/lib/python3.6/site-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning) ###Markdown We have a heavy left tail, meaning lots of strongly negative values. Converting from T to P-ValuesWe next will convert T scores into P values by way of the "survival function" from the scipy.stats t module. The survival function is actually 1 - the cumulative density function (CDF) that will give us the probability (p-value) for each of our random variable (the T). ![this](http://upload.wikimedia.org/math/d/b/1/db1695bdb2b59b9bd2d9d818b9a3b505.png)The degrees of freedom should be the number of subjects from which the group map was derived -2. ###Code dof=486 - 2 data = all_copes.get_data() p_values = t.sf(data, df = dof) p_values[p_values==1] = 0.99999999999999 sns.distplot(p_values.flatten(), label="P-Values from T-Stat Data") plt.legend() print("Here are the p-values created from the t-stat map, including all zeros in the map when we calculate") ###Output /home/tomo/anaconda3/envs/t2z/lib/python3.6/site-packages/ipykernel_launcher.py:2: DeprecationWarning: get_data() is deprecated in favor of get_fdata(), which has a more predictable return type. To obtain get_data() behavior going forward, use numpy.asanyarray(img.dataobj). * deprecated from version: 3.0 * Will raise <class 'nibabel.deprecator.ExpiredDeprecationError'> as of version: 5.0 /home/tomo/anaconda3/envs/t2z/lib/python3.6/site-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning) ###Markdown Converting from P-Values to Z-ScoresNow we can use scipy.stats.norm inverse survival function to "undo" the p-values back into normal (Z scores). ###Code z_values = norm.isf(p_values) sns.distplot(z_values.flatten(), label="Z-Values from T-Stat Data") plt.legend() print("Here are the z-values created from the t-stat map, including all zeros in the map when we calculate") ###Output /home/tomo/anaconda3/envs/t2z/lib/python3.6/site-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning) ###Markdown But now we see something strange. The distribution looks almost truncated. When we look at the new image, the strong negative values (previously outliers in ventricles) aren't there either: ###Code # Need to make sure we look at the same slices :) def plot_outliers(image,cut_coords,n_std=6): mr = nib.load(image) data = mr.get_data() mean = data.mean() std = data.std() six_dev_up = mean + n_std * std six_dev_down = mean - n_std*std empty_brain = np.zeros(data.shape) empty_brain[data>=six_dev_up] = 1 empty_brain[data<=six_dev_down] = 1 outlier_nii = nib.nifti1.Nifti1Image(empty_brain,affine=mr.get_affine(),header=mr.get_header()) plot_roi(outlier_nii,cut_coords=cut_coords) Z_nii = nib.nifti1.Nifti1Image(z_values,affine=all_copes.get_affine(),header=all_copes.get_header()) nib.save(Z_nii,"../example/Zimage.nii") plot_outliers("../example/Zimage.nii",cut_coords=(7,0,13)) ###Output /home/tomo/anaconda3/envs/t2z/lib/python3.6/site-packages/ipykernel_launcher.py:15: DeprecationWarning: get_affine method is deprecated. Please use the ``img.affine`` property instead. * deprecated from version: 2.1 * Will raise <class 'nibabel.deprecator.ExpiredDeprecationError'> as of version: 4.0 from ipykernel import kernelapp as app /home/tomo/anaconda3/envs/t2z/lib/python3.6/site-packages/ipykernel_launcher.py:15: DeprecationWarning: get_header method is deprecated. Please use the ``img.header`` property instead. * deprecated from version: 2.1 * Will raise <class 'nibabel.deprecator.ExpiredDeprecationError'> as of version: 4.0 from ipykernel import kernelapp as app /home/tomo/anaconda3/envs/t2z/lib/python3.6/site-packages/ipykernel_launcher.py:4: DeprecationWarning: get_data() is deprecated in favor of get_fdata(), which has a more predictable return type. To obtain get_data() behavior going forward, use numpy.asanyarray(img.dataobj). * deprecated from version: 3.0 * Will raise <class 'nibabel.deprecator.ExpiredDeprecationError'> as of version: 5.0 after removing the cwd from sys.path. /home/tomo/anaconda3/envs/t2z/lib/python3.6/site-packages/ipykernel_launcher.py:12: DeprecationWarning: get_affine method is deprecated. Please use the ``img.affine`` property instead. * deprecated from version: 2.1 * Will raise <class 'nibabel.deprecator.ExpiredDeprecationError'> as of version: 4.0 if sys.path[0] == '': /home/tomo/anaconda3/envs/t2z/lib/python3.6/site-packages/ipykernel_launcher.py:12: DeprecationWarning: get_header method is deprecated. Please use the ``img.header`` property instead. * deprecated from version: 2.1 * Will raise <class 'nibabel.deprecator.ExpiredDeprecationError'> as of version: 4.0 if sys.path[0] == '': /home/tomo/anaconda3/envs/t2z/lib/python3.6/site-packages/numpy/ma/core.py:2832: UserWarning: Warning: converting a masked element to nan. order=order, subok=True, ndmin=ndmin) ###Markdown And here is the problem. The outliers are clearly gone, and it's because the distribution has been truncated:![img](http://www.vbmis.com/bmi/share/chris/t_to_z/truncated_t_to_z.png) Properly Converting T to ZI found [this paper](http://www.stats.uwo.ca/faculty/aim/2010/JSSSnipets/V23N1.pdf), which summarizes the problem:![img](http://www.vbmis.com/bmi/share/chris/t_to_z/correct_t_to_z.png) Implementing the Correct Transformation from T to ZThis was modified from the code provided in the paper above. Thank you! ###Code data = all_copes.get_data() # Let's select just the nonzero voxels nonzero = data[data!=0] # We will store our results here Z = np.zeros(len(nonzero)) # Select values less than or == 0, and greater than zero c = np.zeros(len(nonzero)) k1 = (nonzero <= c) k2 = (nonzero > c) # Subset the data into two sets t1 = nonzero[k1] t2 = nonzero[k2] # Calculate p values for <=0 p_values_t1 = t.cdf(t1, df = dof) z_values_t1 = norm.ppf(p_values_t1) # Calculate p values for > 0 p_values_t2 = t.cdf(-t2, df = dof) z_values_t2 = -norm.ppf(p_values_t2) Z[k1] = z_values_t1 Z[k2] = z_values_t2 sns.distplot(Z, label="Z-Values from T-Stat Data") plt.legend() ###Output /home/tomo/anaconda3/envs/t2z/lib/python3.6/site-packages/ipykernel_launcher.py:1: DeprecationWarning: get_data() is deprecated in favor of get_fdata(), which has a more predictable return type. To obtain get_data() behavior going forward, use numpy.asanyarray(img.dataobj). * deprecated from version: 3.0 * Will raise <class 'nibabel.deprecator.ExpiredDeprecationError'> as of version: 5.0 """Entry point for launching an IPython kernel. /home/tomo/anaconda3/envs/t2z/lib/python3.6/site-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning) ###Markdown Viewing the new Z Score MapDid we fix it? ###Code empty_nii = np.zeros(all_copes.shape) empty_nii[all_copes.get_data()!=0] = Z Z_nii_fixed = nib.nifti1.Nifti1Image(empty_nii,affine=all_copes.get_affine(),header=all_copes.get_header()) nib.save(Z_nii_fixed,"../example/Zfixed.nii") plot_stat_map(Z_nii_fixed) ###Output /home/tomo/anaconda3/envs/t2z/lib/python3.6/site-packages/ipykernel_launcher.py:2: DeprecationWarning: get_data() is deprecated in favor of get_fdata(), which has a more predictable return type. To obtain get_data() behavior going forward, use numpy.asanyarray(img.dataobj). * deprecated from version: 3.0 * Will raise <class 'nibabel.deprecator.ExpiredDeprecationError'> as of version: 5.0 /home/tomo/anaconda3/envs/t2z/lib/python3.6/site-packages/ipykernel_launcher.py:3: DeprecationWarning: get_affine method is deprecated. Please use the ``img.affine`` property instead. * deprecated from version: 2.1 * Will raise <class 'nibabel.deprecator.ExpiredDeprecationError'> as of version: 4.0 This is separate from the ipykernel package so we can avoid doing imports until /home/tomo/anaconda3/envs/t2z/lib/python3.6/site-packages/ipykernel_launcher.py:3: DeprecationWarning: get_header method is deprecated. Please use the ``img.header`` property instead. * deprecated from version: 2.1 * Will raise <class 'nibabel.deprecator.ExpiredDeprecationError'> as of version: 4.0 This is separate from the ipykernel package so we can avoid doing imports until
examples/Tutorial.ipynb
###Markdown Tutorial: converting, writing, and reading with heparchy Here's a quick (very incomplete) primer on using `heparchy`'s utilities to convert, write, and read files in a hierarchical and high performance way.(Proper Sphinx documentation coming soon.) ###Code from tqdm import tqdm # some nice progress bars :) ###Output _____no_output_____ ###Markdown Write events hierarchically under processes within a database file ###Code from heparchy.write.hdf import HdfWriter ###Output _____no_output_____ ###Markdown As long as you provide `HepWriter` with `numpy` arrays in the correct shape and data type, you can source your data however you want. In this case, we make use of the built-in HepMC file parser, `heparchy.hepmc.HepMC`. ###Code from heparchy.read.hepmc import HepMC ###Output _____no_output_____ ###Markdown The `heparchy.hepmc.HepMC` file parser returns an object whose `data` property is a `heparchy.data.ShowerData` object. This has some convenience methods which traverse the shower looking for a user defined signal vertex, and then follows one of the produced particles, identifying all of its descendants with a boolean mask. To make use of this functionality during the data conversion, we will also import `heparchy.data.SignalVertex`, and define some vertices for this process. ###Code from heparchy.data.event import SignalVertex signal_vertices = [ SignalVertex( # top decay incoming=[6], outgoing=[24,5], # defines the vertex follow=[24,5] # specifies which of the outgoing particles to track in the shower ), SignalVertex( # anti-top decay incoming=[-6], outgoing=[-24,-5], follow=[-5] # we can be selective about which outgoing particles to follow ), ] ###Output _____no_output_____ ###Markdown Heparchy uses context managers and iterators to improve safety, speed, and remove boilerplate. This does lead to a lot of nesting, but the result is fairly intuitive.1. create a file to store the data2. add "processes" to that file (however you want to define them, _eg._ `p p > t t~`)3. within those processes nest events, each of which contain datasetsThere are context managers for each of those stages which handle the fiddly bits and standardise the process. The returned objects then provide methods to write the datasets, as in the example below.The example below also contains the `HepMC` file parser, which itself opens HepMC files by use of a context manager, and the returned object may be iterated over all of the events. So that's another two layers of nesting (yay), but pretty convenient. ###Code with HdfWriter('showers.hdf5') as hep_file: # first we create the file with hep_file.new_process('top') as process: # then write a process with HepMC('/home/jlc1n20/messy/test.hepmc') as raw_file: # load in data to convert from HepMC for shower in tqdm(raw_file): # iterate through the events in the HepMC file signal_masks = shower.signal_mask(signal_vertices) # signal_masks is a list in same order as signal_vertices # each element is a dictionary, keyed by pdg code of followed particle W_mask = signal_masks[0][24] b_mask = signal_masks[0][5] anti_b_mask = signal_masks[1][-5] with process.new_event() as event: # create event for writing # add datasets - each is optional! event.set_edges(shower.edges) # can omit if only storing final state event.set_pmu(shower.pmu) event.set_pdg(shower.pdg) event.set_mask(name='final', data=shower.final) event.set_mask(name='W_mask', data=W_mask) event.set_mask(name='b_mask', data=b_mask) event.set_mask(name='anti_b_mask', data=anti_b_mask) ###Output 4999it [09:15, 9.00it/s] ###Markdown Read data from heparchy format ###Code from heparchy.read.hdf import HdfReader ###Output _____no_output_____ ###Markdown Iteratively read all events of a given process Reading data follows a similar hierarchical structure to writing data, as above.1. open the heparchy data file2. read processes given by name3. iterate over the nested events, extracting their datasetsThe first two of these tasks are handled with context managers, but the final task is achieved simply by iterating over the process object, which provides event objects with properties and methods that efficiently read from the heparchy file. ###Code with HdfReader('showers.hdf5') as hep_file: process = hep_file.read_process(name='top') for shower in tqdm(process): pmu = shower.pmu pdg = shower.pdg num_pcls = shower.count name = shower.name edges = shower.edges final = shower.mask('final') W_mask = shower.mask('W_mask') ###Output 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 4999/4999 [00:12<00:00, 411.45it/s] ###Markdown 12 seconds - not a bad speedup having needed 11 minutes to read the data from HepMC! Read individual events If you need only to access one event at a time, or are using this library within dataloaders which extract datasets in their own order _eg._ for `pytorch`, you need not iterate over the process, and instead can use the `read_event` method. ###Code with HdfReader('showers.hdf5') as hep_file: process = hep_file.read_process(name='top') num_events = len(process) shower = process.read_event(128) pmu = shower.pmu pdg = shower.pdg num_pcls = shower.count name = shower.name edges = shower.edges final = shower.mask('final') W_mask = shower.mask('W_mask') b_mask = shower.mask('b_mask') anti_b_mask = shower.mask('anti_b_mask') pmu ###Output _____no_output_____ ###Markdown Sanity check: the extracted data Just to calm any misgivings about what is contained in all of these properties, it's all just strings, integers, and numpy arrays. See below. ###Code name num_pcls pmu pdg edges final W_mask ###Output _____no_output_____ ###Markdown What next? You can, of course, now do whatever you want with this data. Below I list some useful idioms for handling the data afterwards. Combining masks ###Code import numpy as np ###Output _____no_output_____ ###Markdown Now that we have access to some boolean masks over the data, we can combine them to perform simple queries over the particle data. _eg._ to get the final state particles which descended from the W, simply perform a bitwise `and`. ###Code W_final = np.bitwise_and(W_mask, final) pmu[W_final] # extract momenta of final W descendants ###Output _____no_output_____ ###Markdown If you want to do the same thing for the b-quark descendants, but also to remove neutrinos because they aren't going to show up in detector data, you can do a boolean comparison over the `pdg` output array, and perform the `and` operation over all three masks using the `ufunc.reduce` method. _ie._ ###Code neutrino_pdgs = [12, 14, 16] neutrino_filter = ~np.isin(np.abs(pdg), neutrino_pdgs) b_detectable = np.bitwise_and.reduce([b_mask, final, neutrino_filter]) pmu[b_detectable] # extract momenta of detectable b descendants ###Output _____no_output_____ ###Markdown Querying events via DataFrames While this is fine for basic manipulations, it does get rather messy when more detailed data extraction is required. As a convenience, `ShowerData` objects have a method which returns `pandas.DataFrame` object, which has extremely powerful vectorised aggregation and query methods. ###Code from heparchy.data.event import ShowerData with HdfReader('showers.hdf5') as hep_file: process = hep_file.read_process(name='top') event = process.read_event(1202) # event number chosen at whim shower = ShowerData( edges=event.edges, pmu=event.pmu, pdg=event.pdg, final=event.mask('final'), ) shower_df = shower.to_pandas(data=['pdg', 'pmu', 'final', 'pt', 'eta', 'phi']) shower_df ###Output _____no_output_____ ###Markdown This reconstructs the same dataclass object that was being handed to us from the `heparchy.hepmc.HepMC` parser, hence we can compute signal masks for the event any time we like, not just when parsing HepMC files\*. Let's compute them again, this time following the W- as well, because now we've demonstrated the ability to be selective, it's just annoying not to have it. We can then add this to the DataFrame and do some glorious compound queries on the whole dataset!---\* The data doesn't need to be from a HepMC file at all. As long as you can format the shower into numpy arrays, you can pass it to the `ShowerData` object constructor. ###Code signal_vertices = [ SignalVertex(incoming=[6], outgoing=[24,5], follow=[24,5]), SignalVertex(incoming=[-6], outgoing=[-24,-5], follow=[-24, -5]), ] signal_masks = shower.signal_mask(signal_vertices) shower_df['W'] = signal_masks[0][24] shower_df['b'] = signal_masks[0][5] shower_df['anti_W'] = signal_masks[1][-24] shower_df['anti_b'] = signal_masks[1][-5] shower_df ###Output _____no_output_____ ###Markdown Nice, eh?If we wish to perform cuts on the data, for instance to filter out particles which wouldn't be observed in the final state, it is trivial to extract this data using `query`. ###Code nu_pdgs = (12, 14, 16) detect_df = shower_df.query('final and pt > 0.5 and abs(eta) < 2.5 and @nu_pdgs not in abs(pdg)') ###Output _____no_output_____ ###Markdown In one line, we have extracted particles in the final state, while filtering out low transverse momentum, high pseudorapidity, and neutrinos. This data set can be further queried, and aggregations performed over it to calculate useful quantities.For instance, the total jet transverse momentum for the W- boson may be calculated as follows: ###Code anti_W_df = detect_df.query('anti_W') pt = np.sqrt(anti_W_df['x'].sum() ** 2 + anti_W_df['y'].sum() ** 2) pt ###Output _____no_output_____ ###Markdown Introduction to pyNS pyNS is a Python library to programmatically access the Neuroscout API. pyNS let's you query the API and create analyses, without having to mess around with buildling any JSON requests yourself.In this tutorial, I'll demonstrate how to query the API to create your own analysis. ###Code from pyns import Neuroscout api = Neuroscout('[email protected]', 'yourpassword') ###Output _____no_output_____ ###Markdown The `Neuroscout` object will be your main entry point to the API. You can instantiate this object without any credentials to access public API routes, or preferably with your Neuroscout credentials to be able to create and save your analyses. The `Neuroscout` object has links to each main API route, and each of these links implements the standard HTTP verbs that are suppoted by each route, such as `datasets`, `runs`, `predictors`, etc... Querying datasets and runs ###Code api.datasets.get() ###Output _____no_output_____ ###Markdown This request returns a list of two datasets, with information about the dataset, as well as the run IDs associated with this dataset. Let's focus on the dataset, `life`If we want more information on the specific runs within this dataset, we can query the `runs` route, using the dataset_id associated with `life` ###Code dataset = api.datasets.get()[1] api.runs.get(dataset_id=dataset['id']) ###Output _____no_output_____ ###Markdown Using this information, we can decide which runs to focus on for our analysis. Querying predictors Now let's take a look at the predictors associated with this dataset ###Code api.predictors.get(run_id=dataset['runs']) ###Output _____no_output_____ ###Markdown A bunch of useful information to help me choose some features! Let's keep it simple and go with 'rmse' (sound volume) and 'FramewiseDisplacement': Building an Analysis Now, let's build an analysis. For this, we can use the `Analysis` class, which makes it easy to build an Analysis locally, by mirroring the Analysis representation on the server. To build an `Analysis` object, we can use the `create_analysis` which pre-populates our `Analysis` object with the relevant information, including a pre-build BIDS model, and registers it to the API. ###Code analysis = api.analyses.create_analysis( dataset_name='Life', name='My new analysis!', predictor_names=['rmse', 'FramewiseDisplacement'], hrf_variables=['rmse'], subject=['rid000001', 'rid000005'] ) ###Output _____no_output_____ ###Markdown This newly created analysis has been assigned a unique ID by the Neuroscout API ###Code analysis.hash_id # Some properties are read-only and came from the server analysis.created_at ###Output _____no_output_____ ###Markdown The analysis creation function has found the runs relevant to the subjects we're interested in, and created a basic BIDS-Model for our analysis: ###Code analysis.model analysis.runs # Neuroscout API Predictor IDs analysis.predictors ###Output _____no_output_____ ###Markdown We can edit this Analysis object to fill in any other Analysis details, and push them to the Neuroscout API: ###Code analysis.description = "This is my analysis, and it's probably the best" analysis.push() ###Output _____no_output_____ ###Markdown ReportsNow that we have created and design an analysis we can generate some reports based on our designLet's generate a report using only a single run ###Code analysis.generate_report(run_id=analysis.runs[0]) ###Output _____no_output_____ ###Markdown This report should take a few seconds to a few minutes to compile, and we can check its status: ###Code report = analysis.get_report(run_id=analysis.runs[0]) report report ###Output _____no_output_____ ###Markdown Great, our report was sucesfully generated with no errors. Now lets take a look at the resulting design matrix: ###Code from IPython.display import Image Image(url=report['result']['design_matrix_plot'][0]) ###Output _____no_output_____ ###Markdown Compiling the analysisFinally, now that we are happy with our analysis, we can ask Neuroscout to verify the analysis, and generate an analysis bundle for us ###Code analysis.compile() analysis.get_status() ###Output _____no_output_____ ###Markdown Great! Our analysis passed with no errors. We can now run our analysis using the `neuroscout-cli`. For more information on the `neuroscout-cli`, see here: https://github.com/neuroscout/neuroscout-cli Cloning our analysis Now that we've gone off and run our analysis, we realized we want to make some changes. In this case, I'm just going to change the analysis name.With Neuroscout this is easy, because I simply clone my previous analysis, and take off from I left off ###Code new_analysis = analysis.clone() new_analysis.hash_id new_analysis.name = 'My new analysis name!' ###Output _____no_output_____ ###Markdown However, what if we wanted to take this same model, and apply it to a different model. For example, `dataset_id` 5, which correspond to SherlockMerlin?To do so, we have to use the `fill` function to get the correct `predictors` and `runs`, as these IDS "correspond to the wrong dataset ###Code new_analysis.predictors = [] new_analysis.runs = [] new_analysis.dataset_id = 5 new_analysis.fill() ###Output _____no_output_____ ###Markdown This function automatically filled in all available runs for dataset_id = 5, and found the corresponding predictor ids based on the names used in the model. We can now compile this cloned analysis. ###Code new_analysis.compile() new_analysis.get_status() ###Output _____no_output_____ ###Markdown funcX TutorialfuncX is a Function-as-a-Service (FaaS) platform for science that enables you to register functions in a cloud-hosted service and then reliably execute those functions on a remote funcX endpoint. This tutorial is configured to use a tutorial endpoint hosted by the funcX team. You can set up and use your own endpoint by following the [funcX documentation](https://funcx.readthedocs.io/en/latest/endpoints.html) funcX Python SDKThe funcX Python SDK provides programming abstractions for interacting with the funcX service. Before running this tutorial locally, you should first install the funcX SDK as follows: $ pip install funcx(If you are running on binder, we've already done this for you in the binder environment.)The funcX SDK exposes a `FuncXClient` object for all interactions with the funcX service. In order to use the funcX service, you must first authenticate using one of hundreds of supported identity providers (e. g., your institution, ORCID, Google). As part of the authentication process, you must grant permission for funcX to access your identity information (to retrieve your email address), Globus Groups management access (to share functions and endpoints), and Globus Search (to discover functions and endpoints). ###Code from funcx.sdk.client import FuncXClient fxc = FuncXClient() ###Output _____no_output_____ ###Markdown Basic usageThe following example demonstrates how you can register and execute a function. Registering a functionfuncX works like any other FaaS platform: you must first register a function with funcX before being able to execute it on a remote endpoint. The registration process will serialize the function body and store it securely in the funcX service. As we will see below, you may share functions with others and discover functions shared with you.When you register a function, funcX will return a universally unique identifier (UUID) for it. This UUID can then be used to manage and invoke the function. ###Code def hello_world(): return "Hello World!" func_uuid = fxc.register_function(hello_world) print(func_uuid) ###Output _____no_output_____ ###Markdown Running a function To invoke a function, you must provide a) the function's UUID; and b) the `endpoint_id` of the endpoint on which you wish to execute that function. Note: here we use the public funcX tutorial endpoint; you may change the `endpoint_id` to the UUID of any endpoint on which you have permission to execute functions. funcX functions are designed to be executed remotely and asynchrously. To avoid synchronous invocation, the result of a function invocation (called a `task`) is a UUID, which may be introspected to monitor execution status and retrieve results.The funcX service will manage the reliable execution of a task, for example, by qeueing tasks when the endpoint is busy or offline and retrying tasks in case of node failures. ###Code tutorial_endpoint = '4b116d3c-1703-4f8f-9f6f-39921e5864df' # Public tutorial endpoint res = fxc.run(endpoint_id=tutorial_endpoint, function_id=func_uuid) print(res) ###Output _____no_output_____ ###Markdown Retrieving resultsWhen the task has completed executing, you can access the results via the funcX client as follows: ###Code fxc.get_result(res) ###Output _____no_output_____ ###Markdown Functions with argumentsfuncX supports registration and invocation of functions with arbitrary arguments and returned parameters. funcX will serialize any \*args and \*\*kwargs when invoking a function and it will serialize any return parameters or exceptions. Note: funcX uses standard Python serialization libraries (e. g., Pickle, Dill). It also limits the size of input arguments and returned parameters to 5 MB.The following example shows a function that computes the sum of a list of input arguments. First we register the function as above: ###Code def funcx_sum(items): return sum(items) sum_function = fxc.register_function(funcx_sum) ###Output _____no_output_____ ###Markdown When invoking the function, you can pass in arguments like any other function, either by position or with keyword arguments. ###Code items = [1, 2, 3, 4, 5] res = fxc.run(items, endpoint_id=tutorial_endpoint, function_id=sum_function) print (fxc.get_result(res)) ###Output _____no_output_____ ###Markdown Functions with dependenciesfuncX requires that functions explictly state all dependencies within the function body. It also assumes that the dependent libraries are available on the endpoint in which the function will execute. For example, in the following function we explictly import the time module. ###Code def funcx_date(): from datetime import date return date.today() date_function = fxc.register_function(funcx_date) res = fxc.run(endpoint_id=tutorial_endpoint, function_id=date_function) print (fxc.get_result(res)) ###Output _____no_output_____ ###Markdown Calling external applicationsDepending on the configuration of the funcX endpoint, you can often invoke external applications that are avaialble in the endpoint environment. ###Code def funcx_echo(name): import os return os.popen("echo Hello %s" % name).read() echo_function = fxc.register_function(funcx_echo) res = fxc.run("World", endpoint_id=tutorial_endpoint, function_id=echo_function) print (fxc.get_result(res)) ###Output _____no_output_____ ###Markdown Catching exceptionsWhen functions fail, the exception is captured and serialized by the funcX endpoint, and is reraised when you try to get the result. In the following example, the 'deterministic failure' exception is raised when `fxc.get_result` is called on the failing function. ###Code def failing(): raise Exception("deterministic failure") failing_function = fxc.register_function(failing) res = fxc.run(endpoint_id=tutorial_endpoint, function_id=failing_function) fxc.get_result(res) ###Output _____no_output_____ ###Markdown Running functions many timesAfter registering a function, you can invoke it repeatedly. The following example shows how the monte carlo method can be used to estimate pi. Specifically, if a circle with radius $r$ is inscribed inside a square with side length $2r$, the area of the circle is $\pi r^2$ and the area of the square is $(2r)^2$. Thus, if $N$ uniformly-distributed random points are dropped within the square, approximately $N\pi/4$ will be inside the circle. ###Code import time # function that estimates pi by placing points in a box def pi(num_points): from random import random inside = 0 for i in range(num_points): x, y = random(), random() # Drop a random point in the box. if x**2 + y**2 < 1: # Count points within the circle. inside += 1 return (inside*4 / num_points) # register the function pi_function = fxc.register_function(pi) # execute the function 3 times estimates = [] for i in range(3): estimates.append(fxc.run(10**5, endpoint_id=tutorial_endpoint, function_id=pi_function)) # wait for tasks to complete time.sleep(5) # wait for all tasks to complete for e in estimates: while fxc.get_task(e)['pending'] == 'True': time.sleep(3) # get the results and calculate the total results = [fxc.get_result(i) for i in estimates] total = 0 for r in results: total += r # print the results print("Estimates: %s" % results) print("Average: {:.5f}".format(total/len(results))) ###Output _____no_output_____ ###Markdown Describing and discovering functions funcX manages a registry of functions that can be shared, discovered and reused. When registering a function, you may choose to set a description to support discovery, as well as making it `public` (so that others can run it) and/or `searchable` (so that others can discover it). ###Code def hello_world(): return "Hello World!" func_uuid = fxc.register_function(hello_world, description="hello world function", public=True, searchable=True) print(func_uuid) ###Output _____no_output_____ ###Markdown You can search previously registered functions to which you have access using `search_function`. The first parameter is searched against all the fields, such as author, description, function name, and function source. You can navigate through pages of results with the `offset` and `limit` keyword args. The object returned is a simple wrapper on a list, so you can index into it, but also can have a pretty-printed table. ###Code search_results = fxc.search_function("hello", offset=0, limit=5) print(search_results) ###Output _____no_output_____ ###Markdown Managing endpointsfuncX endpoints advertise whether or not they are online as well as information about their available resources, queued tasks, and other information. If you are permitted to execute functions on an endpoint, you can also retrieve the status of the endpoint. The following example shows how to look up the status (online or offline) and the number of number of waiting tasks and workers connected to the endpoint. ###Code endpoint_status = fxc.get_endpoint_status(tutorial_endpoint) print("Status: %s" % endpoint_status['status']) print("Workers: %s" % endpoint_status['logs'][0]['total_workers']) print("Tasks: %s" % endpoint_status['logs'][0]['outstanding_tasks']) ###Output _____no_output_____ ###Markdown Advanced featuresfuncX provides several features that address more advanced use cases. Running batchesAfter registering a function, you might want to invoke that function many times without making individual calls to the funcX service. Such examples occur when running monte carlo simulations, ensembles, and parameter sweep applications. funcX provides a batch interface that enables specification of a range of function invocations. To use this interface, you must create a funcX batch object and then add each invocation to that object. You can then pass the constructed object to the `batch_run` interface. ###Code def squared(x): return x**2 squared_function = fxc.register_function(squared) inputs = list(range(10)) batch = fxc.create_batch() for x in inputs: batch.add(x, endpoint_id=tutorial_endpoint, function_id=squared_function) batch_res = fxc.batch_run(batch) ###Output _____no_output_____ ###Markdown Similary, funcX provides an interface to retrieve the status of the entire batch of invocations. ###Code fxc.get_batch_result(batch_res) ###Output _____no_output_____ ###Markdown funcX TutorialfuncX is a Function-as-a-Service (FaaS) platform for science that enables you to convert almost any computing resource into a high-performance function serving device. Deploying a funcX endpoint will integrate your resource into the function serving fabric, allowing you to dynamically send, monitor, and receive results from function invocations. funcX is built on top of Parsl, allowing you to connect your endpoint to large compute resources via traditional batch queues, where funcX will dynamically provision, use, and release resources on-demand to fulfill function requests.Here we provide an example of using funcX to register a function and run it on a publicly available tutorial endpoint. We start by creating a funcX client to interact with the service. ###Code from funcx.sdk.client import FuncXClient fxc = FuncXClient() ###Output _____no_output_____ ###Markdown Here we define the tutorial endpoint to be used in this demonstration. Because the tutorial endpoint is Kubernetes-based, we select a simple python3.6 container that will be used during execution. ###Code def funcx_sum(items): return sum(items) func_uuid = fxc.register_function(funcx_sum, description="A sum function") print(func_uuid) payload = [1, 2, 3, 4, 66] endpoint_uuid = '840b214f-ea5c-4d0c-b2b8-ea591634065b' res = fxc.run(payload, endpoint_id=endpoint_uuid, function_id=func_uuid) print(res) fxc.get_result(res) ###Output _____no_output_____ ###Markdown Loading DataLoad train data stored in CSV format using Pandas. Pretty much any format is acceptable, just some form of text and accompanying labels. Modify according to your task. For the purpose of this tutorial, we are using a sample from New York Times Front Page Dataset (Boydstun, 2014). ###Code train_df = pd.read_csv("../data/tutorial_train.csv") ###Output _____no_output_____ ###Markdown Loading test data ###Code test_df = pd.read_csv("../data/tutorial_test.csv") ###Output _____no_output_____ ###Markdown Just to get an idea of what this dataset looks like Paired data consisting of freeform text accompanied by their supervised labels towards the particular task. Here the text is headlines of news stories and the label categorizes them into the subjects. We have a total of 25 possible labels here, each represented by a separate number. ###Code print(len(train_df.label.values)) train_df.head() print(train_df.text[:10].tolist(), train_df.label[:10].tolist()) ###Output ['AIDS in prison, treatment costs overwhelm prison budgets', 'olympics security', 'police brutality', 'Iranian nuclear program; deal with European Union and its leaving of Iran free to develop plutonium.', 'terror alert raised', 'Job report shows unexpected vigor for US economy', "Clinton proposes West Bank Plan to Isreal's Prime Minister Netanyahu", 'Senators debate Iraq War policy', 'Myrtle Beach', 'china visit'] [12, 19, 12, 16, 16, 5, 19, 16, 14, 19] ###Markdown Learning ParametersThese are training arguments that you would use to train the classifier. For the purposes of the tutorial we set some sample values. Presumably in a different case you would perform a grid search or random search CV ###Code lr = 1e-3 epochs = 2 print("Learning Rate ", lr) print("Train Epochs ", epochs) ###Output Learning Rate 0.001 Train Epochs 2 ###Markdown Initialise model1. First argument is indicative to use the Roberta architecture (alternatives - Bert, XLNet... as provided by Huggingface). Used to specify the right tokenizer and classification head as well 2. Second argument provides intialisation point as provided by Huggingface [here](https://huggingface.co/transformers/pretrained_models.html). Examples - roberta-base, roberta-large, gpt2-large...3. The tokenizer accepts the freeform text input and tansforms it into a sequence of tokens suitable for input to the transformer. The transformer architecture processes these before passing it on to the classifier head which transforms this representation into the label space. 4. Number of labels is specified below to initialise the classification head appropriately. As per the classification task you would change this.5. You can see the training args set above were used in the model initiation below.. 6. Pass in training arguments as initialised, especially note the output directory where the model is to be saved and also training logs will be output. The overwrite output directory parameter is a safeguard in case you're rerunning the experiment. Similarly if you're rerunning the same experiment with different parameters, you might not want to reprocess the input every time - the first time it's done, it is cached so you might be able to just reuse the same. fp16 refers to floating point precision which you set according to the GPUs available to you, it shouldn't affect the classification result just the performance. ###Code model = TransformerModel('roberta', 'roberta-base', num_labels=25, reprocess_input_data=True, num_train_epochs=epochs, learning_rate=lr, output_dir='./saved_model/', overwrite_output_dir=True, fp16=False) ###Output _____no_output_____ ###Markdown Run training ###Code model.train(train_df['text'], test_df['label']) ###Output Starting Epoch: 0 Starting Epoch: 1 Training of roberta model complete. Saved to ./saved_model/. ###Markdown To see more in depth logs, set flag show_running_loss=True on the function call of train_model Inference from modelAt training time the model is saved to the output directory that was passed in at initialization. We can either continue retaining the same model object, or load from the directory it was previously saved at. In this example we show the loading to illustrate how you would do the same. This is helpful when you want to train and save a classifier and use the same sporadically. For example in an online setting where you have some labelled training data you would train and save a model, and then load and use it to classify tweets as your collection pipeline progresses. ###Code model = TransformerModel('roberta', 'roberta-base', num_labels=25, location="./saved_model/") ###Output _____no_output_____ ###Markdown Evaluate on test setAt inference time we have access to the model outputs which we can use to make predictions as shown below. Similarly you could perform any emprical analysis on the output before/after saving the same. Typically you would save the results for replication purposes. You can use the model outputs as you would on a normal Pytorch model, here we just show label predictions and accuracy. In this tutorial we only used a fraction of the available data, hence why the actual accuracy is not great. For full results that we conducted on the experiments, check out our paper. ###Code result, model_outputs, wrong_predictions = model.evaluate(test_df['text'], test_df['label']) preds = np.argmax(model_outputs, axis = 1) len(test_df), len(preds) correct = 0 labels = test_df['label'].tolist() for i in range(len(labels)): if preds[i] == labels[i]: correct+=1 accuracy = correct/len(labels) print("Accuracy: ", accuracy) pickle.dump(model_outputs, open("../model_outputs.pkl", "wb")) ###Output _____no_output_____ ###Markdown Run inference This is the use case when you only have a new set of documents and no labels. For example if we just want to make predictions on a set of new text documents without loading a pandas datafram i.e. if you just have a list of texts, it can be predicted as shown below. Note that here you have the predictions and model outputs. ###Code texts = test_df['text'].tolist() preds, model_outputs = model.predict(texts) correct = 0 for i in range(len(labels)): if preds[i] == labels[i]: correct+=1 accuracy = correct/len(labels) print("Accuracy: ", accuracy) ###Output Accuracy: 0.23947895791583165 ###Markdown Tutorial ###Code import pandas as pd from autoc import DataExploration, NaImputer, PreProcessor from autoc.naimputer import missing_map from autoc.outliersdetection import OutliersDetection from autoc.utils.getdata import get_dataset from autoc.utils.helpers import cserie %matplotlib inline import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Titanic dataset ###Code # Loading Titanic dataset titanic = get_dataset('titanic') titanic.head() ###Output _____no_output_____ ###Markdown DataExploration The DataExploraion class is designed to provide helpers for basic Dataexploration task ###Code # Instantiate the class this way exploration_titanic = DataExploration(titanic) # The structure function gives a good summary of important characteristics of the dataset like # missing values, nb_unique values, cst columns, types of the column ... exploration_titanic.structure() # If you want more specific primitive : exploration_titanic.nacolcount() cserie(exploration_titanic.narows_full) # no rows of only missing values exploration_titanic.count_unique() # More complete numeric summary than describe() exploration_titanic.numeric_summary() # you can access to numeric # Look at quantiles exploration_titanic.dfquantiles(nb_quantiles=10) ###Output _____no_output_____ ###Markdown Primitive list : Print Warning ###Code # print Consistency infos # This function helps you to trakc potential consistency errors in the dataset # like duplicates columns, constant columns, full missing rows, full missing columns. exploration_titanic.print_infos('consistency', print_empty=False) ###Output {'duplicated_rows': {'action': 'delete', 'comment': 'You should delete this rows with df.drop_duplicates()', 'level': 'ERROR', 'value': Int64Index([ 47, 76, 77, 87, 95, 101, 121, 133, 173, 196, ... 838, 844, 846, 859, 863, 870, 877, 878, 884, 886], dtype='int64', length=107)}} ###Markdown Fancier Functions ###Code # Nearzerovariance function inspired from caret exploration_titanic.nearzerovar() # Find highly correlated columns exploration_titanic.findcorr() # no highly numerical correlated columns exploration_titanic.findupcol() # no duplicated cols # Recheck duplicated row titanic.duplicated().sum() ###Output _____no_output_____ ###Markdown Outliers Detection This class is a simple class to detect one dimension outliers. ###Code outlier_detection = OutliersDetection(titanic) outlier_detection.basic_cutoff outlier_detection.strong_cutoff soft_outliers_fare = outlier_detection.outlier_detection_serie_1d('fare',cutoff_params=outlier_detection.basic_cutoff) strong_outliers_fare = outlier_detection.outlier_detection_serie_1d('fare',cutoff_params=outlier_detection.strong_cutoff) # finding index of your Dataframe index_strong_outliers = (strong_outliers_fare.is_outlier == 1) titanic.fare.describe() # a lot of outliers because distribution is lognormal titanic.loc[index_strong_outliers, :].head() titanic.fare.hist() outlier_detection.outlier_detection_1d(cutoff_params=outlier_detection.basic_cutoff).head(20) ###Output _____no_output_____ ###Markdown Prerocessor ###Code # initialize preprocessing preprocessor = PreProcessor(titanic, copy=True) print("We made a copy so id titanic : {} different from id preprocessor.data {}".format( id(titanic),id(preprocessor.data))) # using infos consistency from DataExploration preprocessor.print_infos('consistency') # basic cleaning delete constant columns titanic_clean = preprocessor.basic_cleaning() titanic_clean.shape # We removed the dupliated columns titanic.shape preprocessor.infer_subtypes() # this function tries to indentify different subtypes of data preprocessor.subtypes ###Output _____no_output_____ ###Markdown Airbnb Dataset This is a dataset from airbnb users found (the dataset used here is train_users_2.csv from the [this airbnb kaggle competition](https://www.kaggle.com/c/airbnb-recruiting-new-user-bookings/data?train_users_2.csv.zip) ###Code df_airbnb = get_dataset('airbnb_users') ###Output _____no_output_____ ###Markdown DataExploration ###Code exploration_airbnb = DataExploration(df_airbnb) exploration_airbnb.print_infos('consistency') exploration_airbnb.structure() exploration_airbnb.sign_summary() # Get sign summary (look for -1 na encoded value for example) ###Output _____no_output_____ ###Markdown Outliers Detection ###Code airbnb_od = OutliersDetection(df_airbnb) # OutliersDetection is a subclass of DataExploration airbnb_od.structure() airbnb_od.numeric_summary() # you can access to numeric airbnb_od.strong_cutoff outliers_age = airbnb_od.outlier_detection_serie_1d('age', cutoff_params=airbnb_od.strong_cutoff) outliers_age.head(10) print("nb strong outliers : {}".format(outliers_age.is_outlier.sum())) index_outliers_age = cserie(outliers_age.is_outlier==1, index=True) df_airbnb.loc[index_outliers_age,:] ###Output _____no_output_____ ###Markdown Naimputer ###Code #plt.style.use('ggplot') # ggplot2 style for mathplotlib naimp = NaImputer(df_airbnb) naimp.data_isna.corr() naimp.plot_corrplot_na() missing_map(df_airbnb, nmax=200) naimp.get_isna_ttest('age', type_test='ks') naimp.get_isna_ttest('age', type_test='ttest') naimp.get_overlapping_matrix() naimp.nacolcount() ###Output _____no_output_____ ###Markdown Overview of the Tutorial- Imports- Part A: Step-by-Step Walkthrough- Part B: Wrapping Function Walkthrough- Part C: Plotting Temperature Profile - Common Errors and Fixes Imports In order to import the musical robot packages - the package must be downloaded first - further instructions can be found in the package information ###Code import sys import matplotlib.pyplot as plt import numpy as np #sys.path.insert(0, '../musicalrobot/') # Importing the required modules from musicalrobot import irtemp from musicalrobot import edge_detection as ed from musicalrobot import pixel_analysis as pa from musicalrobot import data_encoding as de %matplotlib inline ###Output _____no_output_____ ###Markdown PART A: Step-by-Step Walkthrough Use the function 'edge_detection.input_file' to load the input file - a file is provided in the data folder ###Code frames = ed.input_file('../musicalrobot/data/10_17_19_PPA_Shallow_plate.tiff') plt.imshow(frames[0]) ###Output _____no_output_____ ###Markdown NOTE: Need to replace with data with the border up Crop the input file if required to remove the noise and increase the accuracy of edge detectionWhen cropping focus on removing any sections of large temperature disparity and evening out the temperatures over the range of the plate in the viewfinder ###Code crop_frame = [] for frame in frames: crop_frame.append(frame[25:90,50:120]) plt.imshow(crop_frame[300]) plt.colorbar() ###Output _____no_output_____ ###Markdown Equalize Image to determine sample position ###Code img_eq = pa.image_eq(crop_frame) ###Output _____no_output_____ ###Markdown Determining the sum of pixels in each column and row ###Code column_sum, row_sum = pa.pixel_sum(img_eq) ###Output _____no_output_____ ###Markdown Determining the plate and sample locations ###Code # input of the previous outputs as well as the known layout of samples r_peaks, c_peaks = pa.peak_values(column_sum, row_sum, 3, 3, freeze_heat=False) sample_location = pa.locations(r_peaks, c_peaks, img_eq) #pixel location of sample in row r_peaks #pixel location of sample in column c_peaks #outputs of all pixel locations sample_location ###Output _____no_output_____ ###Markdown Extract temperature profiles at all of the sample and plate locations ###Code temp, plate_temp = pa.pixel_intensity(sample_location,crop_frame, 'Row', 'Column', 'plate_location') ###Output _____no_output_____ ###Markdown Finding inflection Temperature ###Code s_peaks, s_infl = ed.peak_detection(temp,plate_temp, 'Sample') #lists all of the inflection points that were recorded over the samples np.asarray(s_infl)[:,0] ###Output _____no_output_____ ###Markdown Confirming validity of inflection pointThis function will catagorize the calculated inflection points on the noise and inflection validity for each point - In this example all of the inflection points are catagorized as "noiseless" and "inflection" - this is ideal for inflection points. If the point has extra noise or is not catagorized as an inflection for sure, this is a suggestion to manually check the graphs. ###Code result_df = de.final_result(temp, plate_temp, path='../musicalrobot/data/') result_df ###Output _____no_output_____ ###Markdown Part B: Using Wrapping FunctionAll of the functions covered in part A are wrapped and can be run with a single row after the cropping function is run Load and crop the image in the same way as in part A Run the wrapping function ###Code result_df1 = pa.pixel_temp(crop_frame,n_columns = 3, n_rows = 3, freeze_heat=False, path='../musicalrobot/data/') ###Output _____no_output_____ ###Markdown Part C: Plotting Temperature Profiles Need to include the dual graph bit ###Code for i in range(len(temp)): plt.plot(plate_temp[i], temp[i]) plt.title('PPA Melting Temperature') plt.xlabel('Plate temperature($^{\circ}$C)') plt.ylabel('Sample Temperature($^{\circ}$C)') # plt.savefig('../temp_profiles/ppa_'+ str(i+1)+ '.png') # uncomment previous line to save figures into an established folder plt.show() ###Output _____no_output_____ ###Markdown Introduction: DDOT tutorial* __What is an ontology?__ An ontology is a hierarchical arrangement of two types of nodes: (1)genes at the leaves of the hierarchy and (2) terms at intermediatelevels of the hierarchy. The hierarchy can be thought of as directedacyclic graph (DAG), in which each node can have multiple children ormultiple parent nodes. DAGs are a generalization of trees(a.k.a. dendogram), where each node has at most one parent.* __What is DDOT?__ The DDOT Python package provides many functions for assembling,analyzing, and visualizing ontologies. The main functionalities areimplemented in an object-oriented manner by an "Ontology" class, which handles ontologies that are data-driven as well as thosethat are manually curated like the Gene Ontology.* __What to do after reading this tutorial__ Check out a complete list of functions in the [Ontology class](http://ddot.readthedocs.io/en/latest/ontology.html) and a list of [utility functions](http://ddot.readthedocs.io/en/latest/utils.html) that may help you build more concise pipelines. Also check out [example Jupyter notebooks](https://github.com/michaelkyu/ddot/tree/master/examples) that contain pipelines for downloading and processing the Gene Ontology and for inferring data-driven gene ontologies of diseases ###Code # Import Ontology class from DDOT package import ddot from ddot import Ontology ###Output /cellar/users/mikeyu/anaconda2/envs/ddot_py36/lib/python3.6/site-packages/requests/__init__.py:80: RequestsDependencyWarning: urllib3 (1.23) or chardet (3.0.4) doesn't match a supported version! RequestsDependencyWarning) ###Markdown Creating an Ontology object* An object of the Ontology class can be created in several ways.* In this tutorial, we will construct and analyze the toy ontology shown below. Create ontology through the \_\_init\_\_ constructor ###Code # Connections from child terms to parent terms hierarchy = [('S3', 'S1'), ('S4', 'S1'), ('S5', 'S1'), ('S5', 'S2'), ('S6', 'S2'), ('S1', 'S0'), ('S2', 'S0')] # Connections from genes to terms mapping = [('A', 'S3'), ('B', 'S3'), ('C', 'S3'), ('C', 'S4'), ('D', 'S4'), ('E', 'S5'), ('F', 'S5'), ('G', 'S6'), ('H', 'S6')] # Construct ontology ont = Ontology(hierarchy, mapping) # Prints a summary of the ontology's structure print(ont) ###Output 8 genes, 7 terms, 9 gene-term relations, 7 term-term relations node_attributes: [] edge_attributes: [] ###Markdown Create an ontology from a tab-delimited table or Pandas dataframe ###Code # Write ontology to a tab-delimited table ont.to_table('toy_ontology.txt') # Reconstruct the ontology from the table ont2 = Ontology.from_table('toy_ontology.txt') ont2 ###Output _____no_output_____ ###Markdown From the Network Data Exchange (NDEx).* It is strongly recommended that you create a free account on NDEx in order to keep track of your own ontologies.* Note that there are two NDEx servers: the main one at http://ndexbio.org/ and a test server for prototyping your code at http://test.ndexbio.org. Each server requires a separate user account. While you get familiar with DDOT, we recommend that you use an account on the test server. ###Code # Set the NDEx server and the user account. # This "scratch" account will work for this tutorial, but you should replace it with your own account. ndex_server = 'http://test.ndexbio.org' ndex_user, ndex_pass = 'scratch', 'scratch' # Upload ontology to NDEx. The string after "v2/network/" is a unique identifier, which is called the UUID, of the ontology in NDEx url, _ = ont.to_ndex(ndex_server=ndex_server, ndex_user=ndex_user, ndex_pass=ndex_pass) print(url) # Download the ontology from NDEx ont2 = Ontology.from_ndex(url) print(ont2) ###Output 8 genes, 7 terms, 9 gene-term relations, 7 term-term relations node_attributes: ['Vis:Fill Color', 'name', 'Vis:Shape', 'Vis:Size', 'Vis:Border Paint'] edge_attributes: ['Vis:Visible'] ###Markdown Inspecting the structure of an ontology An Ontology object contains seven attributes:* ``genes`` : List of gene names* ``terms`` : List of term names* ``gene_2_term`` : dictionary mapping a gene name to a list of terms connected to that gene. Terms are represented as their 0-based index in ``terms``.* ``term_2_gene`` : dictionary mapping a term name to a list or genes connected to that term. Genes are represented as their 0-based index in ``genes``.* ``child_2_parent`` : dictionary mapping a child term to its parent terms.* ``parent_2_child`` : dictionary mapping a parent term to its children terms.* ``term_sizes`` : A list of each term's size, i.e. the number of unique genes contained within this term and its descendants. The order of this list is the same as ``terms``. For every ``i``, it holds that ``term_sizes[i] = len(self.term_2_gene[self.terms[i]])`` ###Code ont.genes ont.terms ont.gene_2_term ont.term_2_gene ont.child_2_parent ont.parent_2_child ###Output _____no_output_____ ###Markdown Alternatively, the hierarchical connections can be viewed as a binary matrix, using `Ontology.connected()` ###Code conn = ont.connected() import numpy as np np.array(conn, dtype=np.int32) ###Output _____no_output_____ ###Markdown A summary of an Ontology’s object, i.e. the number of genes, terms, and connections, can be printed `print(ont)` ###Code print(ont) ###Output 8 genes, 7 terms, 9 gene-term relations, 7 term-term relations node_attributes: [] edge_attributes: [] ###Markdown Manipulating the structure of an ontology DDOT provides several convenience functions for processing Ontologies into a desirable structure. Currently, there are no functions for adding genes and terms. If this is needed, then we recommend creating a new Ontology or manipulating the contents in a different library, such as NetworkX or igraph, and transforming the results into Ontology. Renaming nodes ###Code # Renaming genes and terms. ont2 = ont.rename(genes={'A' : 'A_alias'}, terms={'S0':'S0_alias'}) ont2.to_table() ###Output _____no_output_____ ###Markdown Delete S1 and G while preserving transitive connections ###Code ont2 = ont.delete(to_delete=['S1', 'G']) print(ont2) ###Output 7 genes, 6 terms, 8 gene-term relations, 6 term-term relations node_attributes: [] edge_attributes: [] ###Markdown Delete S1 and G (don't preserve transitive connections) ###Code ont2 = ont.delete(to_delete=['S1', 'G'], preserve_transitivity=False) print(ont2) ###Output 7 genes, 6 terms, 8 gene-term relations, 3 term-term relations node_attributes: [] edge_attributes: [] ###Markdown Propagate gene-term connections* Often times, it is convenient to explicitly include all transitive connections in the hierarchy. That is, if a hierarchy has edges A-->B and B-->C, then the hierarchy also has A-->C. This can be done by calling `Ontology.propagate(direction='forward')` function.* On the other hand, all transitive connections can be removed with `Ontology.propagate(direction='reverse')`. This is useful as a parsimonious set of connections. ###Code # Include all transitive connections between genes and terms ont2 = ont.propagate(direction='forward', gene_term=True, term_term=False) print(ont2) # Remove all transitive connections between genes and terms, retaining only a parsimonious set of connections ont3 = ont2.propagate(direction='reverse', gene_term=True, term_term=False) print(ont3) ###Output 8 genes, 7 terms, 27 gene-term relations, 7 term-term relations node_attributes: [] edge_attributes: [] 8 genes, 7 terms, 9 gene-term relations, 7 term-term relations node_attributes: [] edge_attributes: [] ###Markdown Propagate term-term connections ###Code # Include all transitive connections between terms ont2 = ont.propagate(direction='forward', gene_term=False, term_term=True) print(ont2) # Remove all transitive connections between terms, retaining only a parsimonious set of connections ont3 = ont2.propagate(direction='reverse', gene_term=False, term_term=True) print(ont3) ###Output 8 genes, 7 terms, 9 gene-term relations, 11 term-term relations node_attributes: [] edge_attributes: [] 8 genes, 7 terms, 9 gene-term relations, 7 term-term relations node_attributes: [] edge_attributes: [] ###Markdown Take the subbranch consisting of all term and genes under S1 ###Code ont2 = ont.focus(branches=['S1']) print(ont2) ###Output Genes and Terms to keep: 10 6 genes, 4 terms, 7 gene-term relations, 3 term-term relations node_attributes: [] edge_attributes: [] ###Markdown Inferring a data-driven ontology* Given a set of genes and a gene similarity network, we can hierarchically cluster the genes to infer cellular subsystems using the CliXO algorithm. The resulting hierarchy of subsystems defines a "data-driven gene ontology". For more information about the CLIXO algorithm, see Kramer et al. Bioinformatics, 30(12), pp.i34-i42. 2014.* Conversely, we can also "flatten" the ontology structure to infer a gene-by-gene similarity network. In particular, the similarity between two genes is calculated as the size of the smallest common subsystem, known as "Resnik semantic similarity".* The CLIXO algorithm has been designed to reconstruct the original hierarchy from the Resnik score. ###Code # Flatten ontology to gene-by-gene network sim, genes = ont.flatten() print('Similarity matrix') print(np.round(sim, 2)) print('Row/column names of similarity matrix') print(genes) # Reconstruct the ontology using the CLIXO algorithm. # In general, you may feed any kind of gene-gene similarities, e.g. measurements of protein-protein interactions, gene co-expression, or genetic interactions. ont2 = Ontology.run_clixo(sim, 0.0, 1.0, square=True, square_names=genes) print(ont2) ont2.to_table(edge_attr=True) ###Output _____no_output_____ ###Markdown Ontology alignment* The structures of two ontologies can be compared through a procedure known as ontology alignment. Ontology.align() implements the ontology alignment described in (Dutkowski et al. Nature biotechnology, 31(1), 2013), in which terms are matched if they contain similar sets of genes and if their parents and children terms are also similar.* Ontology alignment is particularly useful for annotating a data-driven gene ontology by aligning it to a curated ontology such as the Gene Ontology (GO). For instance, if a data-driven term is identified to have a similar set of genes as the GO term for DNA repair, then the data-driven subsystem can be annotated as being involved in DNA repair. Moreover, data-driven terms with no matches in the ontology alignment may represent new molecular mechanisms. ###Code ## Make a second ontology (the ontology to the right in the above diagram) # Connections from child terms to parent terms hierarchy = [('T3', 'T1'), ('T4', 'T1'), ('T1', 'T0'), ('T5', 'T0')] # Connections from genes to terms mapping = [('A', 'T3'), ('B', 'T3'), ('C', 'T3'), ('D', 'T4'), ('E', 'T4'), ('F', 'T4'), ('G', 'T5'), ('H', 'T5')] # Construct ontology ont_B = Ontology(hierarchy, mapping) ont.align(ont_B) ###Output collapse command: /cellar/users/mikeyu/anaconda2/envs/ddot_py36/lib/python3.6/site-packages/ddot/alignOntology/collapseRedundantNodes /tmp/tmpgdjisdao collapse command: /cellar/users/mikeyu/anaconda2/envs/ddot_py36/lib/python3.6/site-packages/ddot/alignOntology/collapseRedundantNodes /tmp/tmp1dv8t8j0 Alignment command: /cellar/users/mikeyu/anaconda2/envs/ddot_py36/lib/python3.6/site-packages/ddot/alignOntology/calculateFDRs /tmp/tmp0e8ukp6u /tmp/tmp9gs4huql 0.05 criss_cross /tmp/tmpycs1ivbe 100 40 gene ###Markdown Construct ontotypes* A major goal of genetics is to understand how genotype translates to phenotype. An ontology represents biological structure through which this genotype-phenotype translation happens. * Given a set of mutations comprising a genotype, DDOT allows you to propagate the impact of these mutations to the subsystems containing these genes in the ontology. In particular, the impact on a subsystem is estimated by the number of its genes that have been mutated. These subsystem activities, which we have called an “ontotype”, enables more accurate and interpretable predictions of phenotype from genotype (Yu et al. Cell Systems 2016, 2(2), pp.77-88. 2016). ###Code # Genotypes can be represented as tuples of mutated genes genotypes = [('A', 'B'), ('A', 'E'), ('A', 'H'), ('B', 'E'), ('B', 'H'), ('C', 'F'), ('D', 'E'), ('D', 'H'), ('E', 'H'), ('G', 'H')] # Calculate the ontotypes, represented a genotype-by-term matrix. Each value represents the functional impact on a term in a genotype. ontotypes = ont.get_ontotype(genotypes) print(ontotypes) # Genotypes can also be represented a genotype-by-gene matrix as an alternative input format import pandas as pd, numpy as np genotypes_df = pd.DataFrame(np.zeros((len(genotypes), len(ont.genes)), np.float64), index=['Genotype%s' % i for i in range(len(genotypes))], columns=ont.genes) for i, (g1, g2) in enumerate(genotypes): genotypes_df.loc['Genotype%s' % i, g1] = 1.0 genotypes_df.loc['Genotype%s' % i, g2] = 1.0 print('Genotype matrix') print(genotypes_df) print("") ontotypes = ont.get_ontotype(genotypes_df, input_format='matrix') print('Ontotype matrix') print(ontotypes) ###Output Genotype matrix A B C D E F G H Genotype0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 Genotype1 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 Genotype2 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 Genotype3 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 Genotype4 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 Genotype5 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 Genotype6 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 Genotype7 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 Genotype8 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 Genotype9 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 Ontotype matrix S0 S1 S2 S3 S4 S5 S6 Genotype0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 Genotype1 0.0 0.0 0.0 1.0 0.0 1.0 0.0 Genotype2 0.0 0.0 0.0 1.0 0.0 0.0 1.0 Genotype3 0.0 0.0 0.0 1.0 0.0 1.0 0.0 Genotype4 0.0 0.0 0.0 1.0 0.0 0.0 1.0 Genotype5 0.0 0.0 0.0 1.0 1.0 1.0 0.0 Genotype6 0.0 0.0 0.0 0.0 1.0 1.0 0.0 Genotype7 0.0 0.0 0.0 0.0 1.0 0.0 1.0 Genotype8 0.0 0.0 0.0 0.0 0.0 1.0 1.0 Genotype9 0.0 0.0 0.0 0.0 0.0 0.0 2.0 ###Markdown Conversions to NetworkX and igraph ###Code # Convert to an igraph object G = ont.to_igraph() print(G) # Reconstruct the Ontology object from the igraph object Ontology.from_igraph(G) # Convert to a NetworkX object G = ont.to_networkx() print(G.nodes()) print(G.edges()) # Reconstruct the Ontology object from the NetworkX object tmp = Ontology.from_networkx(G) print(tmp) ###Output 8 genes, 7 terms, 9 gene-term relations, 7 term-term relations node_attributes: [] edge_attributes: [] ###Markdown Ontology visualization using HiView (http://hiview.ucsd.edu)* HiView is a web application for general visualization of the hierarchical structure in ontologies.* To use HiView, you must first upload your ontology into NDEx using the [Ontology.to_ndex()](http://ddot.readthedocs.io/en/latest/ontology.htmlddot.Ontology.to_ndex) function, and then input the NDEx URL for the ontology to HiView* In contrast to almost all other hierarchical visualization tools, which are limited to simple tree structures, HiView also supports more complicated hierarchies in the form of directed acyclic graphs, in which nodes may have multiple parents. A simple upload to NDEx and visualization in HiView* Upload ontologies to NDEx using the `Ontology.to_ndex()` function.* Setting the parameter `layout="bubble"` (default value) will identify a spanning tree of the DAG and then lay this tree in a space-compact manner. When viewing in HiView, only the edges in the spanning tree are shown, while the other edges can be chosen to be shown. ###Code url, _ = ont.to_ndex(ndex_server=ndex_server, ndex_user=ndex_user, ndex_pass=ndex_pass, layout='bubble') print('Go to http://hiview.ucsd.edu in your web browser') print('Enter this into the "NDEx Sever URL" field: %s' % ndex_server) print('Enter this into the "UUID of the main hierarchy" field: %s' % url.split('/')[-1]) ###Output Go to http://hiview.ucsd.edu in your web browser Enter this into the "NDEx Sever URL" field: http://test.ndexbio.org Enter this into the "UUID of the main hierarchy" field: 31385ecb-6b55-11e8-9d1c-0660b7976219 ###Markdown An alternative layout by duplicating nodes* Setting the parameter `layout="bubble-collect"` will convert the DAG into a tree by duplicating nodes.* This transformation enables the ontology structure to be visualized without edges crossing. ###Code url, _ = ont.to_ndex(ndex_server=ndex_server, ndex_user=ndex_user, ndex_pass=ndex_pass, layout='bubble-collect') print('Go to http://hiview.ucsd.edu in your web browser') print('Enter this into the "NDEx Sever URL" field: %s' % ndex_server) print('Enter this into the "UUID of the main hierarchy" field: %s' % url.split('/')[-1]) ###Output Go to http://hiview.ucsd.edu in your web browser Enter this into the "NDEx Sever URL" field: http://test.ndexbio.org Enter this into the "UUID of the main hierarchy" field: 31686f7d-6b55-11e8-9d1c-0660b7976219 ###Markdown Visualizing metadata by modifying node labels, colors, and sizes* An Ontology object has a `node_attr` field that is a pandas DataFrame. The rows of the dataframe are genes or terms, and the columns are node attributes.* HiView understands special node attributes to control the node labels, colors, and sizes. ###Code # Set the node labels (default is the gene and term names, as found in Ontology.genes and Ontology.terms) ont.node_attr.loc['S4', 'Label'] = 'S4 alias' ont.node_attr.loc['S5', 'Label'] = 'S5 alias' # Set the fill color of nodes ont.node_attr.loc['C', 'Vis:Fill Color'] = '#7fc97f' ont.node_attr.loc['S1', 'Vis:Fill Color'] = '#beaed4' ont.node_attr.loc['S0', 'Vis:Fill Color'] = '#fdc086' # Set the node sizes (if not set, the default is the term size, as found in Ontology.term_sizes) ont.node_attr.loc['C', 'Size'] = 10 ont.node_attr url, _ = ont.to_ndex(ndex_server=ndex_server, ndex_user=ndex_user, ndex_pass=ndex_pass, layout='bubble-collect') print('Go to http://hiview.ucsd.edu in your web browser') print('Enter this into the "NDEx Sever URL" field: %s' % ndex_server) print('Enter this into the "UUID of the main hierarchy" field: %s' % url.split('/')[-1]) # Clear node attributes (optional) ont.clear_node_attr() ont.node_attr ###Output _____no_output_____ ###Markdown Visualize gene-gene interaction networks alongside the ontology* Every term in an ontology represents a biological function shared among the term's genes. Based on this intuition, those genes should be interacting in different ways, e.g. protein-protein interactions, RNA expression, or genetic interactions.* Gene-gene interaction networks can be uploaded with the ontology to NDEx, so that they can be visualized at the same time in HiView ###Code # Calculate a gene-by-gene similarity matrix using the Resnik semantic similarity definition (see section "Inferring a data-driven ontology") sim, genes = ont.flatten() print(genes) print(np.round(sim, 2)) # Convert the gene-by-gene similarity matrix into a dataframe with a "long" format, where rows represent gene pairs. This conversion can be easily done with ddot.melt_square() import pandas as pd sim_df = pd.DataFrame(sim, index=genes, columns=genes) sim_long = ddot.melt_square(sim_df) sim_long.head() # Create other gene-gene interactions. For example, these can represent protein-protein interactions or gene co-expression. Here, we simulate interactions by adding a random noise to the Resnik similarity sim_long['example_interaction_type1'] = sim_long['similarity'] + np.random.random(sim_long.shape[0]) / 2. sim_long['example_interaction_type2'] = sim_long['similarity'] + np.random.random(sim_long.shape[0]) / 2. sim_long.head() # Include the above gene-gene interactions by setting the `network` and `main_feature` parameters. url, _ = ont.to_ndex(ndex_server=ndex_server, ndex_user=ndex_user, ndex_pass=ndex_pass, network=sim_long, main_feature='similarity', layout='bubble-collect') print('Go to http://hiview.ucsd.edu in your web browser') print('Enter this into the "NDEx Sever URL" field: %s' % ndex_server) print('Enter this into the "UUID of the main hierarchy" field: %s' % url.split('/')[-1]) ###Output Go to http://hiview.ucsd.edu in your web browser Enter this into the "NDEx Sever URL" field: http://test.ndexbio.org Enter this into the "UUID of the main hierarchy" field: 32a5aa8c-6b55-11e8-9d1c-0660b7976219 ###Markdown **RosbagInputFormat** RosbagInputFormat is an open source **splitable** Hadoop InputFormat for the rosbag file format.![./concept.png](./concept.png) Usage from Spark (pyspark)Example data can be found for instance at https://github.com/udacity/self-driving-car/tree/master/datasets published under MIT License. Check that the rosbag file version is V2.0The code you cloned is located in ```/opt/ros_hadoop/master``` while the latest release is in ```/opt/ros_hadoop/latest```../lib/rosbaginputformat.jar is a symlink to a recent version. You can replace it with the version you would like to test.```bashjava -jar ../lib/rosbaginputformat.jar --version -f /opt/ros_hadoop/master/dist/HMB_4.bag``` Extract the index as configurationThe index is a very very small configuration file containing a protobuf array that will be given in the job configuration.**Note** that the operation **will not** process and it **will not** parse the whole bag file, but will simply seek to the required offset. ###Code %%bash echo -e "Current working directory: $(pwd)\n\n" tree -d -L 2 /opt/ros_hadoop/ %%bash # assuming you start the notebook in the doc/ folder of master (default Dockerfile build) java -jar ../lib/rosbaginputformat.jar -f /opt/ros_hadoop/master/dist/HMB_4.bag ###Output Found: 421 chunks It should be the same number reported by rosbag tool. If you encounter any issues try reindexing your file and submit an issue.  ###Markdown This will generate a very small file named HMB_4.bag.idx.bin in the same folder. Copy the bag file in HDFSUsing your favorite tool put the bag file in your working HDFS folder.**Note:** keep the index json file as configuration to your jobs, **do not** put small files in HDFS.For convenience we already provide an example file (/opt/ros_hadoop/master/dist/HMB_4.bag) in the HDFS under /user/root/```bashhdfs dfs -put /opt/ros_hadoop/master/dist/HMB_4.baghdfs dfs -ls``` Process the ros bag file in Spark using the RosbagInputFormat![./header.png](./header.png) Create the Spark Session or get an existing one ###Code from pyspark import SparkContext, SparkConf from pyspark.sql import SparkSession sparkConf = SparkConf() sparkConf.setMaster("local[*]") sparkConf.setAppName("ros_hadoop") sparkConf.set("spark.jars", "../lib/protobuf-java-3.3.0.jar,../lib/rosbaginputformat.jar,../lib/scala-library-2.11.8.jar") spark = SparkSession.builder.config(conf=sparkConf).getOrCreate() sc = spark.sparkContext ###Output _____no_output_____ ###Markdown Create an RDD from the Rosbag file**Note:** your HDFS address might differ. ###Code fin = sc.newAPIHadoopFile( path = "hdfs://127.0.0.1:9000/user/root/HMB_4.bag", inputFormatClass = "de.valtech.foss.RosbagMapInputFormat", keyClass = "org.apache.hadoop.io.LongWritable", valueClass = "org.apache.hadoop.io.MapWritable", conf = {"RosbagInputFormat.chunkIdx":"/opt/ros_hadoop/master/dist/HMB_4.bag.idx.bin"}) ###Output _____no_output_____ ###Markdown Interpret the MessagesTo interpret the messages we need the connections.We could get the connections as configuration as well. At the moment we decided to collect the connections into Spark driver in a dictionary and use it in the subsequent RDD actions. Note in the next version of the RosbagInputFormater alternative implementations will be given. Collect the connections from all Spark partitions of the bag file into the Spark driver ###Code conn_a = fin.filter(lambda r: r[1]['header']['op'] == 7).map(lambda r: r[1]).collect() conn_d = {str(k['header']['topic']):k for k in conn_a} # see topic names conn_d.keys() ###Output _____no_output_____ ###Markdown Load the python map functions from src/main/python/functions.py ###Code %run -i ../src/main/python/functions.py ###Output _____no_output_____ ###Markdown Use of msg_map to apply a function on all messagesPython **rosbag.bag** needs to be installed on all Spark workers.The msg_map function (from src/main/python/functions.py) takes three arguments:1. r = the message or RDD record Tuple2. func = a function (default str) to apply to the ROS message3. conn = a connection to specify what topic to process ###Code %matplotlib inline # use %matplotlib notebook in python3 from functools import partial import pandas as pd import numpy as np # Take messages from '/imu/data' topic using default str func rdd = fin.flatMap( partial(msg_map, conn=conn_d['/imu/data']) ) print(rdd.take(1)[0]) ###Output header: seq: 1701626 stamp: secs: 1479425728 nsecs: 747487068 frame_id: /imu orientation: x: -0.0251433756238 y: 0.0284643176884 z: -0.0936542998233 w: 0.994880191333 orientation_covariance: [0.017453292519943295, 0.0, 0.0, 0.0, 0.017453292519943295, 0.0, 0.0, 0.0, 0.15707963267948966] angular_velocity: x: 0.0 y: 0.0 z: 0.0 angular_velocity_covariance: [-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0] linear_acceleration: x: 1.16041922569 y: 0.595418334007 z: 10.7565326691 linear_acceleration_covariance: [0.0004, 0.0, 0.0, 0.0, 0.0004, 0.0, 0.0, 0.0, 0.0004] ###Markdown Image data from camera messagesAn example of taking messages using a func other than default str.In our case we apply a lambda to messages from from '/center_camera/image_color/compressed' topic. As usual with Spark the operation will happen in parallel on all workers. ###Code from PIL import Image from io import BytesIO res = fin.flatMap( partial(msg_map, func=lambda r: r.data, conn=conn_d['/center_camera/image_color/compressed']) ).take(50) Image.open(BytesIO(res[48])) ###Output _____no_output_____ ###Markdown Plot fuel levelThe topic /vehicle/fuel_level_report contains 2215 ROS messages. Let us plot the header.stamp in seconds vs. fuel_level using a pandas dataframe ###Code def f(msg): return (msg.header.stamp.secs, msg.fuel_level) d = fin.flatMap( partial(msg_map, func=f, conn=conn_d['/vehicle/fuel_level_report']) ).toDF().toPandas() d.set_index('_1').plot(legend=False); ###Output _____no_output_____ ###Markdown Aggregate acceleration statistics ###Code %matplotlib inline import matplotlib.pylab as plt import seaborn as sns from pyspark.sql import types as T import yaml sns.set_style('whitegrid') sns.set_context('talk') schema = T.StructType() schema = schema.add(T.StructField('seq',T.IntegerType())) schema = schema.add(T.StructField('secs',T.IntegerType())) schema = schema.add(T.StructField('nsecs',T.IntegerType())) schema = schema.add(T.StructField('orientation_x',T.DoubleType())) schema = schema.add(T.StructField('orientation_y',T.DoubleType())) schema = schema.add(T.StructField('orientation_z',T.DoubleType())) schema = schema.add(T.StructField('angular_velocity_x',T.DoubleType())) schema = schema.add(T.StructField('angular_velocity_y',T.DoubleType())) schema = schema.add(T.StructField('angular_velocity_z',T.DoubleType())) schema = schema.add(T.StructField('linear_acceleration_x',T.DoubleType())) schema = schema.add(T.StructField('linear_acceleration_y',T.DoubleType())) schema = schema.add(T.StructField('linear_acceleration_z',T.DoubleType())) def get_time_and_acc(r): r = yaml.load(r) return (r['header']['seq'], r['header']['stamp']['secs'], r['header']['stamp']['nsecs'], r['orientation']['x'], r['orientation']['y'], r['orientation']['z'], r['angular_velocity']['x'], r['angular_velocity']['y'], r['angular_velocity']['z'], r['linear_acceleration']['x'], r['linear_acceleration']['y'], r['linear_acceleration']['z'], ) pdf_acc = spark.createDataFrame(fin .flatMap(partial(msg_map, conn=conn_d['/imu/data'])) .map(get_time_and_acc), schema=schema).toPandas() pdf_acc.head() xbins = np.arange(-5,5,0.2) ybins = np.arange(-5,5,0.2) h,_,_ = np.histogram2d(pdf_acc.linear_acceleration_x,pdf_acc.linear_acceleration_y, bins=(xbins,ybins)) h[h == 0] = np.NaN fig, ax = plt.subplots(figsize=(10,8)) plt.imshow(h.T,extent=[xbins[0],xbins[-1],ybins[0],ybins[-1]],origin='lower',interpolation='nearest') #plt.colorbar() plt.xlabel(r'Acceleration x [m/s^2]') plt.ylabel('Acceleration y [m/s^2]') plt.title('Acceleration distribution'); ###Output _____no_output_____ ###Markdown Visualize track in Google mapsYou have to apply for an Google Maps API key to execute this section, cf.https://developers.google.com/maps/documentation/javascript/get-api-keyAdd your key to the next cell: ###Code import gmaps gmaps.configure('AI...') schema = T.StructType() schema = schema.add(T.StructField('seq',T.IntegerType())) schema = schema.add(T.StructField('secs',T.IntegerType())) schema = schema.add(T.StructField('nsecs',T.IntegerType())) schema = schema.add(T.StructField('latitude',T.DoubleType())) schema = schema.add(T.StructField('longitude',T.DoubleType())) schema = schema.add(T.StructField('altitude',T.DoubleType())) schema = schema.add(T.StructField('status_service',T.IntegerType())) schema = schema.add(T.StructField('status_status',T.IntegerType())) def get_gps(r): r = yaml.load(r) return (r['header']['seq'], r['header']['stamp']['secs'], r['header']['stamp']['nsecs'], r['latitude'], r['longitude'], r['altitude'], r['status']['service'], r['status']['status'] ) pdf_gps = spark.createDataFrame( fin .flatMap(partial(msg_map, conn=conn_d['/vehicle/gps/fix'])) .map(get_gps), schema=schema ).toPandas() pdf_gps.head() fig, ax = plt.subplots() pdf_gps.sort_values('secs').plot('longitude','latitude',ax=ax, legend=False) plt.xlabel('Longitude') plt.ylabel('Latitude'); c='rgba(0,0,150,0.3)' fig = gmaps.figure(center=(pdf_gps.latitude.mean(),pdf_gps.longitude.mean()), zoom_level=14) track = gmaps.symbol_layer(pdf_gps[['latitude','longitude']], fill_color=c, stroke_color=c, scale=2) fig.add_layer(track) fig ###Output _____no_output_____ ###Markdown Output of this cell would look like this![](./map.png) Machine Learning models on Spark workersA dot product Keras "model" for each message from a topic. We will compare it with the one computed with numpy.**Note** that the imports happen in the workers and not in driver. On the other hand the connection dictionary is sent over the closure. ###Code def f(msg): from keras.layers import dot, Dot, Input from keras.models import Model linear_acceleration = { 'x': msg.linear_acceleration.x, 'y': msg.linear_acceleration.y, 'z': msg.linear_acceleration.z, } linear_acceleration_covariance = np.array(msg.linear_acceleration_covariance) i1 = Input(shape=(3,)) i2 = Input(shape=(3,)) o = dot([i1,i2], axes=1) model = Model([i1,i2], o) # return a tuple with (numpy dot product, keras dot "predict") return ( np.dot(linear_acceleration_covariance.reshape(3,3), [linear_acceleration['x'], linear_acceleration['y'], linear_acceleration['z']]), model.predict([ np.array([[ linear_acceleration['x'], linear_acceleration['y'], linear_acceleration['z'] ]]), linear_acceleration_covariance.reshape((3,3))]) ) fin.flatMap(partial(msg_map, func=f, conn=conn_d['/vehicle/imu/data_raw'])).take(5) # tuple with (numpy dot product, keras dot "predict") from pyspark.sql import Row pdf_steering = spark.createDataFrame(fin.flatMap(partial(msg_map, func=lambda r: Row(**yaml.load(str(r))), conn=conn_d['/vehicle/steering_report']))).toPandas() pdf_steering['secs'] = pdf_steering.header.map(lambda r: r['stamp']['secs']) fig, axes = plt.subplots(2,1,figsize=(10,8)) pdf_steering.set_index('secs').speed.plot(ax=axes[0]) pdf_steering.set_index('secs').steering_wheel_angle.plot(ax=axes[1]) axes[0].set_ylabel('Speed [mph?]') axes[1].set_ylabel('Steering wheel angle [%]') ###Output _____no_output_____ ###Markdown HOW TO USE OPTICHILL IMPORTING THE NECESSARY MODULES TO RUN THE CODE ###Code import pandas as pd import numpy as np import glob import os from optichill import bas_filter from optichill import GBM_model ###Output _____no_output_____ ###Markdown FILTERING OUT THE DATA * First split the data from Plant 1 to training and testing data:(Ensure that the correct path to the data files from the directory of this notebook is stated) ###Code train_data = [ 'Plt1 m 2018-01.csv', 'Plt1 m 2018-02.csv', 'Plt1 m 2018-03.csv', 'Plt1 m 2018-04.csv' ] test_data = [ 'Plt1 m 2016-11.csv', 'Plt1 m 2016-12.csv', 'Plt1 m 2017-01.csv', 'Plt1 m 2017-02.csv', 'Plt1 m 2017-03.csv', 'Plt1 m 2017-04.csv', 'Plt1 m 2017-05.csv', 'Plt1 m 2017-06.csv', 'Plt1 m 2017-07.csv', 'Plt1 m 2017-08.csv', 'Plt1 m 2017-09.csv', 'Plt1 m 2017-10.csv', 'Plt1 m 2017-11.csv', 'Plt1 m 2017-12.csv' ] points_list = '../../capstone/Plt1/Plt1 Points List.xlsx' ###Output _____no_output_____ ###Markdown Two filtered datasets (training and testing) are obtained using the `train_single_plant` function: `include_alarms` allows you to decide whether you need to include alarms or not, and `dim_remove` allows you to specify which features you want to include or exclude from the dataset. This allows you to explore the fit with certain feature only. * Use `bas_filter.train_single_plant` to allow the data to import the data, filter out features that are redundent and alarms to provide a training and testing dataset that can be used. ###Code df_train, df_test = bas_filter.train_single_plt( '../../capstone/Plt1', train_data, test_data, points_list, include_alarms = False, dim_remove = [] ) ###Output Filtering Training Set ['../../capstone/Plt1\\Plt1 m 2018-01.csv'] ['../../capstone/Plt1\\Plt1 m 2018-02.csv'] ['../../capstone/Plt1\\Plt1 m 2018-03.csv'] ['../../capstone/Plt1\\Plt1 m 2018-04.csv'] Descriptors in the points list that are not in the datasets. CommunicationFailure_COV CH3COM1F CH3Ready CH4COM1F CH4Ready CH4SURGE CH5COM1F CH5Ready Original data contains 32796 points and 414 dimensions. A CTTR_ALARM was noted and 122 datapoints were removed from the dataset. A PCHWP3Failed was noted and 122 datapoints were removed from the dataset. A PCHWP4Failed was noted and 122 datapoints were removed from the dataset. A PCHWP5Failed was noted and 122 datapoints were removed from the dataset. A SCHWP3Failed was noted and 122 datapoints were removed from the dataset. A SCHWP4Failed was noted and 122 datapoints were removed from the dataset. A SCHWP5Failed was noted and 122 datapoints were removed from the dataset. A CH3_CHWSTSP_Alarm was noted and 122 datapoints were removed from the dataset. A CH3ALARM was noted and 122 datapoints were removed from the dataset. A CH3F was noted and 122 datapoints were removed from the dataset. A CH4_CHWSTSP_Alarm was noted and 122 datapoints were removed from the dataset. A CH4ALARM was noted and 126 datapoints were removed from the dataset. A CH4F was noted and 126 datapoints were removed from the dataset. A CH5_CHWSTSP_Alarm was noted and 126 datapoints were removed from the dataset. A CH5ALARM was noted and 1212 datapoints were removed from the dataset. A CH5F was noted and 1212 datapoints were removed from the dataset. A CDWP3Failed was noted and 1212 datapoints were removed from the dataset. A CDWP3SPD_Alarm was noted and 9685 datapoints were removed from the dataset. A CDWP4Failed was noted and 9685 datapoints were removed from the dataset. A CDWP4SPD_Alarm was noted and 10249 datapoints were removed from the dataset. A CDWP5Failed was noted and 10249 datapoints were removed from the dataset. A CDWP5SPD_Alarm was noted and 17264 datapoints were removed from the dataset. A CT4Failed was noted and 17264 datapoints were removed from the dataset. A CT4SPD_Alarm was noted and 17279 datapoints were removed from the dataset. A CT5Failed was noted and 17279 datapoints were removed from the dataset. A CT5SPD_Alarm was noted and 17279 datapoints were removed from the dataset. Filtered data contains 15021 points and 193 dimensions. Filtering Test Set ['../../capstone/Plt1\\Plt1 m 2016-11.csv'] ['../../capstone/Plt1\\Plt1 m 2016-12.csv'] ['../../capstone/Plt1\\Plt1 m 2017-01.csv'] ['../../capstone/Plt1\\Plt1 m 2017-02.csv'] ['../../capstone/Plt1\\Plt1 m 2017-03.csv'] ###Markdown * Split the data into a datasest with kW/Ton and all the other features. This is similar to splitting the data into "x and y"axes: ###Code ytrain = df_train['kW/Ton'] ytest = df_test['kW/Ton'] xtrain = df_train.drop(['kW/Ton'], axis=1) xtest = df_test.drop(['kW/Ton'], axis=1) ###Output _____no_output_____ ###Markdown USING GBM (GRADIENT BOOSTING MACHINES) FOR DETERMINING FEATURE IMPORTANCE AND PREDICTING EFFICIENCY * Train the model by using the `GBM_model.train_model` function. The R2 gets printed below: ###Code GBM_model.train_model(xtrain, ytrain, xtest, ytest) GBM_model.predict_model() ###Output _____no_output_____ ###Markdown * Save the features importance list (A list of all the features of the plant in order of their importance to the efficiency) into a .csv file using `GBM_model.feature_importance_list`: ###Code GBM_model.feature_importance_list('Plt1_tutorial.csv', xtest) ###Output The feature importance list was created as Plt1_tutorial.csv ###Markdown funcX TutorialfuncX is a Function-as-a-Service (FaaS) platform for science that enables you to register functions in a cloud-hosted service and then reliably execute those functions on a remote funcX endpoint. This tutorial is configured to use a tutorial endpoint hosted by the funcX team. You can set up and use your own endpoint by following the [funcX documentation](https://funcx.readthedocs.io/en/latest/endpoints.html) funcX Python SDKThe funcX Python SDK provides programming abstractions for interacting with the funcX service. Before running this tutorial locally, you should first install the funcX SDK as follows: $ pip install funcx(If you are running on binder, we've already done this for you in the binder environment.)The funcX SDK exposes a `FuncXClient` object for all interactions with the funcX service. In order to use the funcX service, you must first authenticate using one of hundreds of supported identity providers (e. g., your institution, ORCID, Google). As part of the authentication process, you must grant permission for funcX to access your identity information (to retrieve your email address), Globus Groups management access (to share functions and endpoints), and Globus Search (to discover functions and endpoints). ###Code from funcx.sdk.client import FuncXClient fxc = FuncXClient() ###Output _____no_output_____ ###Markdown Basic usageThe following example demonstrates how you can register and execute a function. Registering a functionfuncX works like any other FaaS platform: you must first register a function with funcX before being able to execute it on a remote endpoint. The registration process will serialize the function body and store it securely in the funcX service. As we will see below, you may share functions with others and discover functions shared with you.When you register a function, funcX will return a universally unique identifier (UUID) for it. This UUID can then be used to manage and invoke the function. ###Code def hello_world(): return "Hello World!" func_uuid = fxc.register_function(hello_world) print(func_uuid) ###Output _____no_output_____ ###Markdown Running a function To invoke a function, you must provide a) the function's UUID; and b) the `endpoint_id` of the endpoint on which you wish to execute that function. Note: here we use the public funcX tutorial endpoint; you may change the `endpoint_id` to the UUID of any endpoint on which you have permission to execute functions. funcX functions are designed to be executed remotely and asynchrously. To avoid synchronous invocation, the result of a function invocation (called a `task`) is a UUID, which may be introspected to monitor execution status and retrieve results.The funcX service will manage the reliable execution of a task, for example, by qeueing tasks when the endpoint is busy or offline and retrying tasks in case of node failures. ###Code tutorial_endpoint = '4b116d3c-1703-4f8f-9f6f-39921e5864df' # Public tutorial endpoint res = fxc.run(endpoint_id=tutorial_endpoint, function_id=func_uuid) print(res) ###Output _____no_output_____ ###Markdown Retrieving resultsWhen the task has completed executing, you can access the results via the funcX client as follows: ###Code fxc.get_result(res) ###Output _____no_output_____ ###Markdown Functions with argumentsfuncX supports registration and invocation of functions with arbitrary arguments and returned parameters. funcX will serialize any \*args and \*\*kwargs when invoking a function and it will serialize any return parameters or exceptions. Note: funcX uses standard Python serialization libraries (e. g., Pickle, Dill). It also limits the size of input arguments and returned parameters to 5 MB.The following example shows a function that computes the sum of a list of input arguments. First we register the function as above: ###Code def funcx_sum(items): return sum(items) sum_function = fxc.register_function(funcx_sum) ###Output _____no_output_____ ###Markdown When invoking the function, you can pass in arguments like any other function, either by position or with keyword arguments. ###Code items = [1, 2, 3, 4, 5] res = fxc.run(items, endpoint_id=tutorial_endpoint, function_id=sum_function) print (fxc.get_result(res)) ###Output _____no_output_____ ###Markdown Functions with dependenciesfuncX requires that functions explictly state all dependencies within the function body. It also assumes that the dependent libraries are available on the endpoint in which the function will execute. For example, in the following function we explictly import the time module. ###Code def funcx_date(): from datetime import date return date.today() date_function = fxc.register_function(funcx_date) res = fxc.run(endpoint_id=tutorial_endpoint, function_id=date_function) print (fxc.get_result(res)) ###Output _____no_output_____ ###Markdown Calling external applicationsDepending on the configuration of the funcX endpoint, you can often invoke external applications that are avaialble in the endpoint environment. ###Code def funcx_echo(name): import os return os.popen("echo Hello %s" % name).read() echo_function = fxc.register_function(funcx_echo) res = fxc.run("World", endpoint_id=tutorial_endpoint, function_id=echo_function) print (fxc.get_result(res)) ###Output _____no_output_____ ###Markdown Catching exceptionsWhen functions fail, the exception is captured and serialized by the funcX endpoint, and is reraised when you try to get the result. In the following example, the 'deterministic failure' exception is raised when `fxc.get_result` is called on the failing function. ###Code def failing(): raise Exception("deterministic failure") failing_function = fxc.register_function(failing) res = fxc.run(endpoint_id=tutorial_endpoint, function_id=failing_function) fxc.get_result(res) ###Output _____no_output_____ ###Markdown Running functions many timesAfter registering a function, you can invoke it repeatedly. The following example shows how the monte carlo method can be used to estimate pi. Specifically, if a circle with radius $r$ is inscribed inside a square with side length $2r$, the area of the circle is $\pi r^2$ and the area of the square is $(2r)^2$. Thus, if $N$ uniformly-distributed random points are dropped within the square, approximately $N\pi/4$ will be inside the circle. ###Code import time # function that estimates pi by placing points in a box def pi(num_points): from random import random inside = 0 for i in range(num_points): x, y = random(), random() # Drop a random point in the box. if x**2 + y**2 < 1: # Count points within the circle. inside += 1 return (inside*4 / num_points) # register the function pi_function = fxc.register_function(pi) # execute the function 3 times estimates = [] for i in range(3): estimates.append(fxc.run(10**5, endpoint_id=tutorial_endpoint, function_id=pi_function)) # wait for tasks to complete time.sleep(5) # wait for all tasks to complete for e in estimates: while fxc.get_task(e)['pending'] == 'True': time.sleep(3) # get the results and calculate the total results = [fxc.get_result(i) for i in estimates] total = 0 for r in results: total += r # print the results print("Estimates: %s" % results) print("Average: {:.5f}".format(total/len(results))) ###Output _____no_output_____ ###Markdown Describing and discovering functions funcX manages a registry of functions that can be shared, discovered and reused. When registering a function, you may choose to set a description to support discovery, as well as making it `public` (so that others can run it) and/or `searchable` (so that others can discover it). ###Code def hello_world(): return "Hello World!" func_uuid = fxc.register_function(hello_world, description="hello world function", public=True, searchable=True) print(func_uuid) ###Output _____no_output_____ ###Markdown You can search previously registered functions to which you have access using `search_function`. The first parameter is searched against all the fields, such as author, description, function name, and function source. You can navigate through pages of results with the `offset` and `limit` keyword args. The object returned is a simple wrapper on a list, so you can index into it, but also can have a pretty-printed table. ###Code search_results = fxc.search_function("hello", offset=0, limit=5) print(search_results) ###Output _____no_output_____ ###Markdown Managing endpointsfuncX endpoints advertise whether or not they are online as well as information about their available resources, queued tasks, and other information. If you are permitted to execute functions on an endpoint, you can also retrieve the status of the endpoint. The following example shows how to look up the status (online or offline) and the number of number of waiting tasks and workers connected to the endpoint. ###Code endpoint_status = fxc.get_endpoint_status(tutorial_endpoint) print("Status: %s" % endpoint_status['status']) print("Workers: %s" % endpoint_status['logs'][0]['total_workers']) print("Tasks: %s" % endpoint_status['logs'][0]['outstanding_tasks']) ###Output _____no_output_____ ###Markdown Advanced featuresfuncX provides several features that address more advanced use cases. Running batchesAfter registering a function, you might want to invoke that function many times without making individual calls to the funcX service. Such examples occur when running monte carlo simulations, ensembles, and parameter sweep applications. funcX provides a batch interface that enables specification of a range of function invocations. To use this interface, you must create a funcX batch object and then add each invocation to that object. You can then pass the constructed object to the `batch_run` interface. ###Code def squared(x): return x**2 squared_function = fxc.register_function(squared) inputs = list(range(10)) batch = fxc.create_batch() for x in inputs: batch.add(x, endpoint_id=tutorial_endpoint, function_id=squared_function) batch_res = fxc.batch_run(batch) ###Output _____no_output_____ ###Markdown Similary, funcX provides an interface to retrieve the status of the entire batch of invocations. ###Code fxc.get_batch_status(batch_res) ###Output _____no_output_____ ###Markdown Prerequisite the tsumiki cell magic extension can be loaded via: ###Code %load_ext tsumiki ###Output _____no_output_____ ###Markdown Usage with notebook. Write with markdown. ###Code %%tsumiki :Markdown: # Title1 ## Title2 ### Title3 - list1 - list2 - [ ] foo - [x] bar ###Output _____no_output_____ ###Markdown Write with HTML ###Code %%tsumiki :HTML: <font color="red">Red</font> </br> <font color="green">Green</font> ###Output _____no_output_____ ###Markdown Multiple columnsSpecify `:` as the number of columns. ###Code %%tsumiki :Markdown:: * left1 * left2 :Markdown:: * right1 * right2 ###Output _____no_output_____ ###Markdown Write with mixed markup langueges. ###Code %%tsumiki :Markdown: # Title :HTML::: <p>col0</p> <font color="red">Red</font> </br> <font color="green">Green</font> :Markdown::: col1 * list1 * list2 :Markdown::: col2 * list1 * list2 ###Output _____no_output_____ ###Markdown Usage with Python. import module ###Code import tsumiki text = """ :Markdown: # Title * list1 * list2 """ print(tsumiki.Tsumiki(text).html) ###Output <div class="tsumiki"> <style> .tsumiki .columns1 { margin-bottom: 12px; } </style> <h1>Title</h1> <ul> <li>list1</li> <li>list2</li> </ul> </div> ###Markdown pyWRspice Wrapper Tutorial IntroPyWRspice is Python wrapper for [WRspice](http://www.wrcad.com/), a SPICE simulation engine modified by Whiteley Research (WR) featuring Josephson junctions. In the package:- simulation.py: Simulate a complete or parametric WRspice script via WRspice simulator.- script.py: Programmatically construct a WRspice script.- remote.py: Run WRspice simulation remotely on an SSH server. Install WRspiceGet and install the software [here](http://www.wrcad.com/xictools/index.html).*Important* : Make sure to take note where the executable wrspice is on your machine. On Unix, it is likely "/usr/local/xictools/bin/wrspice". On Windows, "C:/usr/local/xictools/bin/wrspice.bat". ###Code # Add pyWRspice location to system path, if you haven't run setup.py import sys sys.path.append("../") import numpy as np import logging, importlib from pyWRspice import script, simulation, remote import matplotlib.pyplot as plt %matplotlib inline logging.basicConfig(level=logging.WARNING) ###Output _____no_output_____ ###Markdown 1. Run a complete WRspice script Let's run a simple WRspice script.**Requirements: **- Declare the script with python format strings. - `write {output_file}` should be written by the script in the `.control` block, using the binary/text format. ###Code script1 = """* Transient response of RLC circuit .tran 50p 100n * RLC model of a transmission line R1 1 2 0.1 L1 2 3 1n C1 3 0 20p R2 3 0 1e3 * Load impedance Rload 3 0 50 * Pulse voltage source V1 1 0 pulse(0 1 1n 1n 1n 20n) * .control run set filetype=binary write {output_file} v(2) v(3) .endc """ ###Output _____no_output_____ ###Markdown Wrap the script into a WRWrapper class instance.*Important*: Make sure to specify ```command = ``` path to the executable wrspice file on your machine. On Unix, it is likely ```/usr/local/xictools/bin/wrspice```.On Windows, ```C:/usr/local/xictools/bin/wrspice.bat```. ###Code engine = simulation.WRWrapper(command = "/usr/local/xictools/bin/wrspice") # Typical for Unix # On Windows, try: # sw = WRWrapper(command = "C:/usr/local/xictools/bin/wrspice.bat") ###Output _____no_output_____ ###Markdown Run the script.If you want to save the circuit file, specify the keyword argument ```circuit_file```. If you want to save the data file, specify ```output_file```. If not specified, temporary files will be created then deleted after execution.The ```run``` method returns the output data. ###Code dat1 = engine.run(script1) # If you want to save the file, run: dat1 = engine.run(script1,circuit_file="dummy.cir",output_file="dummy.raw") # Extract the data ts = dat1.variables[0].values v2 = dat1.variables[1].values v3 = dat1.variables[2].values # Or we can convert the data into pandas DataFrame object df = dat1.to_df() ts = df['time'] v2 = df['v(2)'] v3 = df['v(3)'] # Or we can convert the data into numpy array df = dat1.to_array() ts = df[0] v2 = df[1] v3 = df[2] # Plot the data fig = plt.figure(figsize=(12,6)) plt.plot(ts*1e9, v2, label="v(2)") plt.plot(ts*1e9, v3, label="v(3)") plt.xlabel("Time [ns]") plt.ylabel("Voltage [V]") plt.legend() plt.show() ###Output _____no_output_____ ###Markdown 2. Run a parametric WRspice scriptWe can parametrize the circuit description by using keyword substitution in Python string. Basically, if ```s = "Value={x}"``` then ```s.format(x=2)``` results in ```Value=2```.In the example below, we parametrize the values of the capacitor as ```cap``` (pF) and pulse duration as ```dur``` (ns). ###Code script2 = """* Transient response of RLC circuit .tran 50p 100n * RLC model of a transmission line R1 1 2 0.1 L1 2 3 1n C1 3 0 {cap}p R2 3 0 1e3 * Load impedance Rload 3 0 50 * Pulse voltage source V1 1 0 pulse(0 1 1n 1n 1n {dur}n) * .control run set filetype=binary write {output_file} v(2) v(3) .endc """ sw = simulation.WRWrapper(script2, command = "/usr/local/xictools/bin/wrspice") ###Output _____no_output_____ ###Markdown We then specify the values of ```cap``` and ```dur``` when execute the script with the ```run``` function. ###Code dat2 = engine.run(script2,cap=30, dur=40) # Extract the data dat2 = dat2.to_array() ts = dat2[0] v2 = dat2[1] v3 = dat2[2] # Plot the data fig = plt.figure(figsize=(12,6)) plt.plot(ts*1e9, v2, label="v(2)") plt.plot(ts*1e9, v3, label="v(3)") plt.xlabel("Time [ns]") plt.ylabel("Voltage [V]") plt.legend() plt.show() ###Output _____no_output_____ ###Markdown **Tip:** When there are many parameters, it is clumsy to pass them into the ```run()``` method. We can collect them into a dictionary object and pass it altogether to ```run()```. This makes it easier for verifying and changing values. As an example: ###Code params = {'cap':30, 'dur':40, 'output_file':None} # Check the script before running print(script2.format(**params)) # Run the script by passing the params to the run() method dat2 = engine.run(script2,**params) # The results should be the same as the previous run. Not shown here. ###Output _____no_output_____ ###Markdown 3. Run WRspice script with multiple parametric values in parallel We can pass a list of values to one or more parameters and run them all in parallel, using multiprocessing, with the ```run_parallel()``` method. Let's demonstrate it with ```cap```. ###Code # Recycle params above params["cap"] = [20,50,100] params["dur"] = 40 params3, dat3 = engine.run_parallel(script2,save_file=False,**params) ###Output _____no_output_____ ###Markdown The returned is an array of data corresponding to multiple runs. We need some extra work to extract them. ###Code params3 dat3 # Extract data caps = params3["cap"] v3s = [] for dat in dat3: v3s.append(dat.to_array()[2]) ts = dat.to_array()[0] # Plot the data fig = plt.figure(figsize=(12,6)) for cap,v3 in zip(caps,v3s): plt.plot(ts*1e9, v3, label="cap = %s pF" %cap) plt.xlabel("Time [ns]") plt.ylabel("Voltage [V]") plt.legend() plt.show() ###Output _____no_output_____ ###Markdown Parallel run with multiple parametersWe can change multiple parameters in one single parallel run. For example, repeat the above simulation with 2 different pulse durations. ###Code # Recycle params above params["cap"] = [20,50,100] params["dur"] = [30, 60] params4, dat4 = engine.run_parallel(script2,save_file=False,**params) # Examine the returned parameter values for k,v in params4.items(): print("%s = %s" %(k,v)) print("") # Get the shape of the returned data dat4.shape # Plot the data fig = plt.figure(figsize=(12,6)) shape = dat4.shape for i in range(shape[0]): for j in range(shape[1]): dat = dat4[i,j] ts = dat.variables[0].values v3 = dat.variables[2].values plt.plot(ts*1e9, v3, label="cap=%s[pF], dur=%s[ns]" %(params4["cap"][i,j],params4["dur"][i,j])) plt.xlabel("Time [ns]") plt.ylabel("Voltage [V]") plt.legend() plt.show() ###Output _____no_output_____ ###Markdown 4. Adaptive runWill be added later if there will be demand. 5. Construct a WRspice script using script.pySo far we have written the sample WRspice scripts manually. The task can become arduous for large circuits. One can use the template package ```jinja``` to ease the task. Here we explore a different, pythonic way, to construct ```script2``` above. ###Code # Reminder: script2 print(script2) ###Output * Transient response of RLC circuit .tran 50p 100n * RLC model of a transmission line R1 1 2 0.1 L1 2 3 1n C1 3 0 {cap}p R2 3 0 1e3 * Load impedance Rload 3 0 50 * Pulse voltage source V1 1 0 pulse(0 1 1n 1n 1n {dur}n) * .control run set filetype=binary write {output_file} v(2) v(3) .endc ###Markdown Set up a circuitWe can declare a component by specifying its name, a list of ```ports```, ```value```, and additional parameters. ```ports``` can be numeric or string but, as with ```value```, will be converted to string eventually. ###Code # Circuit components R1 = script.Component("R1",ports=[1,"p2"],value=0.1,params={},comment="") # Full description L1 = script.Component("L1",["p2",3],"1n") C1 = script.Component("C1",[L1.ports[1],0],"{cap}p") R2 = script.Component("R2",[3,0],1e3) # Set up a circuit cir = script.Circuit() # Add components to the circuit cir.add_component(R1) # Add one component cir.add_components([L1,C1,R2]) # Add a list of components # Display the circuit print(cir.script()) # Plot the circuit, showing value plt.figure(figsize=(9,6)) cir.plot(show_value=True) plt.show() # Similarly, set up a circuit having the load resistance and voltage source Rload = script.Component("Rload",[3,0],50, comment="Load resistance") V1 = script.Component("V1",[1,0],"pulse(0 1 1n 1n 1n {dur}n)", comment="Pulse source") control_cir = script.Circuit() control_cir.add_components([Rload,V1]) print(control_cir.script()) ###Output * Load resistance Rload 3 0 50 * Pulse source V1 1 0 pulse(0 1 1n 1n 1n {dur}n) ###Markdown We can add models by ```add_model()```, subcircuits by ```add_subcircuit()``` or add extra script by ```add_script()``` into the circuit object. Let's skip these for now. Set up a script ###Code scr = script.Script("Transient response of RLC circuit") # Add circuits scr.add_circuit(cir) scr.add_circuit(control_cir) # Specify analysis and data saving scr.analysis = ".tran 50p 100n" scr.config_save(["p2",3],filename=None,filetype="binary") # specify which voltages to save; filename and filetype are optional # Print out the script print(scr.script()) # For confirmation, plot the combined circuit plt.figure(figsize=(9,6)) scr.plot() plt.show() ###Output *Transient response of RLC circuit .tran 50p 100n R1 1 p2 0.1 L1 p2 3 1n C1 3 0 {cap}p R2 3 0 1000.0 * Load resistance Rload 3 0 50 * Pulse source V1 1 0 pulse(0 1 1n 1n 1n {dur}n) .control run set filetype=binary write {output_file} v(p2) v(3) .endc ###Markdown Test run the script ###Code # Get the circuit parameters scr.get_params() print(scr.params) # Set values to the parameters scr.params["cap"] = 100 scr.params["dur"] = 40 # Alternatively scr.set_params(cap=100,dur=40) # Run the script dat5 = engine.run(scr.script(),**scr.params) # Extract the data dat5 = dat5.to_array() ts = dat5[0] v2 = dat5[1] v3 = dat5[2] # Plot the data fig = plt.figure(figsize=(8,6)) plt.plot(ts*1e9, v2, label="v(2)") plt.plot(ts*1e9, v3, label="v(3)") plt.xlabel("Time [ns]") plt.ylabel("Voltage [V]") plt.legend() plt.show() ###Output _____no_output_____ ###Markdown Add an array of componentsAdding an array of components or subcircuits into a circuit is now very simple. Let's use ```cir``` as a subcircuit modelling a segment of a transmission line. We will simulate 10 of them. ###Code big_cir = script.Circuit() # Add subcircuit big_cir.add_subcircuit(cir,"segment",[1,3]) print(big_cir.script()) # The subcircuit can be instantiated as a general component whose name starts with 'X' # Let's add 10 of them for i in range(1,11): big_cir.add_component(script.Component("X%d"%i,[i,i+1],"segment")) # Check the result print(big_cir.script()) # Add the source and load Rload.ports = [11,0] # Change the ports of Rload, originally [3,0] big_cir.add_components([V1,Rload]) # Plot the circuit, not show value plt.figure(figsize=(12,6)) big_cir.plot() plt.show() # In case we forgot how the subcircuit looks like, let's plot it again plt.figure(figsize=(8,6)) big_cir.subcircuits["segment"].plot(show_value=True) plt.show() # Set up a script scr2 = script.Script("Transient response of a transmission line") # Add circuits scr2.add_circuit(big_cir) # Specify analysis and data saving scr2.analysis = ".tran 50p 100n" scr2.config_save([1,5,11]) # Just examine a few voltages # Final check of the script print(scr2.script()) # Get the circuit parameters scr2.get_params() # Set values to the parameters scr2.set_params(cap=100,dur=40) # Run the script dat5 = engine.run(scr2.script(),**scr2.params) # Extract the data df5 = dat5.to_df() ts = df5["time"] vs = df5["v(1)"] vmid = df5["v(5)"] vload = df5["v(11)"] # Plot the data fig = plt.figure(figsize=(8,6)) plt.plot(ts*1e9, vs, label="V source") plt.plot(ts*1e9, vmid, label="V mid") plt.plot(ts*1e9, vload, label="V load") plt.xlabel("Time [ns]") plt.ylabel("Voltage [V]") plt.legend() plt.show() ###Output _____no_output_____ ###Markdown Introduction: DDOT tutorial* __What is an ontology?__ An ontology is a hierarchical arrangement of two types of nodes: (1)genes at the leaves of the hierarchy and (2) terms at intermediatelevels of the hierarchy. The hierarchy can be thought of as directedacyclic graph (DAG), in which each node can have multiple children ormultiple parent nodes. DAGs are a generalization of trees(a.k.a. dendogram), where each node has at most one parent.* __What is DDOT?__ The DDOT Python package provides many functions for assembling,analyzing, and visualizing ontologies. The main functionalities areimplemented in an object-oriented manner by an "Ontology" class, which handles ontologies that are data-driven as well as thosethat are manually curated like the Gene Ontology.* __What to do after reading this tutorial__ Check out a complete list of functions in the [Ontology class](http://ddot.readthedocs.io/en/latest/ontology.html) and a list of [utility functions](http://ddot.readthedocs.io/en/latest/utils.html) that may help you build more concise pipelines. Also check out [example Jupyter notebooks](https://github.com/michaelkyu/ddot/tree/master/examples) that contain pipelines for downloading and processing the Gene Ontology and for inferring data-driven gene ontologies of diseases ###Code import os import ddot import numpy as np import pandas as pd from ddot import Ontology ###Output _____no_output_____ ###Markdown Creating an Ontology object* An object of the Ontology class can be created in several ways.* In this tutorial, we will construct and analyze the toy ontology shown below. Create ontology through the `__init__` constructor ###Code # Connections from child terms to parent terms hierarchy = [('S3', 'S1'), ('S4', 'S1'), ('S5', 'S1'), ('S5', 'S2'), ('S6', 'S2'), ('S1', 'S0'), ('S2', 'S0')] # Connections from genes to terms mapping = [('A', 'S3'), ('B', 'S3'), ('C', 'S3'), ('C', 'S4'), ('D', 'S4'), ('E', 'S5'), ('F', 'S5'), ('G', 'S6'), ('H', 'S6')] # Construct ontology ont = Ontology(hierarchy, mapping) # Prints a summary of the ontology's structure print(ont) ###Output 8 genes, 7 terms, 9 gene-term relations, 7 term-term relations node_attributes: [] edge_attributes: [] ###Markdown Create an ontology from a tab-delimited table or Pandas dataframe ###Code # Write ontology to a tab-delimited table ont.to_table('toy_ontology.txt') # Reconstruct the ontology from the table Ontology.from_table('toy_ontology.txt') ###Output _____no_output_____ ###Markdown Create an Ontology from the Network Data Exchange (NDEx)* It is strongly recommended that you create a free account on NDEx in order to keep track of your own ontologies.* Note that there are two NDEx servers: the main one at http://ndexbio.org/ and a test server for prototyping your code at http://test.ndexbio.org. Each server requires a separate user account. While you get familiar with DDOT, we recommend that you use an account on the test server. Set the NDEx server and the user account.This "scratch" account will work for this tutorial, but you should replace it with your own account. ###Code ndex_server = os.environ.get('NDEX_SERVER', default='http://ndexbio.org') ndex_user = os.environ.get('NDEX_USERNAME', default='scratch') ndex_pass = os.environ.get('NDEX_PASSWORD', default='scratch') ###Output _____no_output_____ ###Markdown Upload ontology to NDEx. The string after "v2/network/" is a unique identifier, which is called the UUID, of the ontology in NDEx ###Code url, _ = ont.to_ndex( ndex_user=ndex_user, ndex_pass=ndex_pass, ndex_server=ndex_server, ) print(url) # Download the ontology from NDEx ont2 = Ontology.from_ndex(url) print(ont2) ###Output 8 genes, 7 terms, 9 gene-term relations, 7 term-term relations node_attributes: ['Vis:Fill Color', 'Vis:Border Paint', 'Vis:Size', 'Vis:Shape', 'name'] edge_attributes: ['Vis:Visible'] ###Markdown Inspecting the structure of an ontology An Ontology object contains seven attributes:* ``genes`` : List of gene names* ``terms`` : List of term names* ``gene_2_term`` : dictionary mapping a gene name to a list of terms connected to that gene. Terms are represented as their 0-based index in ``terms``.* ``term_2_gene`` : dictionary mapping a term name to a list or genes connected to that term. Genes are represented as their 0-based index in ``genes``.* ``child_2_parent`` : dictionary mapping a child term to its parent terms.* ``parent_2_child`` : dictionary mapping a parent term to its children terms.* ``term_sizes`` : A list of each term's size, i.e. the number of unique genes contained within this term and its descendants. The order of this list is the same as ``terms``. For every ``i``, it holds that ``term_sizes[i] = len(self.term_2_gene[self.terms[i]])`` ###Code ont.genes ont.terms ont.gene_2_term ont.term_2_gene ont.child_2_parent ont.parent_2_child ###Output _____no_output_____ ###Markdown Alternatively, the hierarchical connections can be viewed as a binary matrix, using `Ontology.connected()` ###Code conn = ont.connected() np.array(conn, dtype=np.int32) ###Output _____no_output_____ ###Markdown A summary of an Ontology’s object, i.e. the number of genes, terms, and connections, can be printed `print(ont)` ###Code print(ont) ###Output 8 genes, 7 terms, 9 gene-term relations, 7 term-term relations node_attributes: [] edge_attributes: [] ###Markdown Manipulating the structure of an ontology DDOT provides several convenience functions for processing Ontologies into a desirable structure. Currently, there are no functions for adding genes and terms. If this is needed, then we recommend creating a new Ontology or manipulating the contents in a different library, such as NetworkX or igraph, and transforming the results into Ontology. Renaming nodes ###Code # Renaming genes and terms. ont2 = ont.rename(genes={'A' : 'A_alias'}, terms={'S0':'S0_alias'}) ont2.to_table() ###Output _____no_output_____ ###Markdown Delete S1 and G while preserving transitive connections ###Code ont2 = ont.delete(to_delete=['S1', 'G']) print(ont2) ###Output 7 genes, 6 terms, 8 gene-term relations, 6 term-term relations node_attributes: [] edge_attributes: [] ###Markdown Delete S1 and G (don't preserve transitive connections) ###Code ont2 = ont.delete(to_delete=['S1', 'G'], preserve_transitivity=False) print(ont2) ###Output 7 genes, 6 terms, 8 gene-term relations, 3 term-term relations node_attributes: [] edge_attributes: [] ###Markdown Propagate gene-term connections* Often times, it is convenient to explicitly include all transitive connections in the hierarchy. That is, if a hierarchy has edges A-->B and B-->C, then the hierarchy also has A-->C. This can be done by calling `Ontology.propagate(direction='forward')` function.* On the other hand, all transitive connections can be removed with `Ontology.propagate(direction='reverse')`. This is useful as a parsimonious set of connections. ###Code # Include all transitive connections between genes and terms ont2 = ont.propagate(direction='forward', gene_term=True, term_term=False) print(ont2) # Remove all transitive connections between genes and terms, retaining only a parsimonious set of connections ont3 = ont2.propagate(direction='reverse', gene_term=True, term_term=False) print(ont3) ###Output 8 genes, 7 terms, 27 gene-term relations, 7 term-term relations node_attributes: [] edge_attributes: [] 8 genes, 7 terms, 9 gene-term relations, 7 term-term relations node_attributes: [] edge_attributes: [] ###Markdown Propagate term-term connections ###Code # Include all transitive connections between terms ont2 = ont.propagate(direction='forward', gene_term=False, term_term=True) print(ont2) # Remove all transitive connections between terms, retaining only a parsimonious set of connections ont3 = ont2.propagate(direction='reverse', gene_term=False, term_term=True) print(ont3) ###Output 8 genes, 7 terms, 9 gene-term relations, 11 term-term relations node_attributes: [] edge_attributes: [] 8 genes, 7 terms, 9 gene-term relations, 7 term-term relations node_attributes: [] edge_attributes: [] ###Markdown Take the subbranch consisting of all term and genes under S1 ###Code ont2 = ont.focus(branches=['S1']) print(ont2) ###Output Genes and Terms to keep: 10 6 genes, 4 terms, 7 gene-term relations, 3 term-term relations node_attributes: [] edge_attributes: [] ###Markdown Inferring a data-driven ontology* Given a set of genes and a gene similarity network, we can hierarchically cluster the genes to infer cellular subsystems using the CliXO algorithm. The resulting hierarchy of subsystems defines a "data-driven gene ontology". For more information about the CLIXO algorithm, see [Kramer, *et al.* Bioinformatics, 30(12), pp.i34-i42. 2014](https://doi.org/10.1093/bioinformatics/btu282).* Conversely, we can also "flatten" the ontology structure to infer a gene-by-gene similarity network. In particular, the similarity between two genes is calculated as the size of the smallest common subsystem, known as "Resnik semantic similarity".* The CLIXO algorithm has been designed to reconstruct the original hierarchy from the Resnik score. ###Code # Flatten ontology to gene-by-gene network sim, genes = ont.flatten() print('Similarity matrix:') print(np.round(sim, 2)) print('\nRow/column names of similarity matrix:') print(*genes) ###Output Similarity matrix: [[ 1.42 1.42 1.42 0.42 0.42 0.42 -0. -0. ] [ 1.42 1.42 1.42 0.42 0.42 0.42 -0. -0. ] [ 1.42 1.42 2. 2. 0.42 0.42 -0. -0. ] [ 0.42 0.42 2. 2. 0.42 0.42 -0. -0. ] [ 0.42 0.42 0.42 0.42 2. 2. 1. 1. ] [ 0.42 0.42 0.42 0.42 2. 2. 1. 1. ] [-0. -0. -0. -0. 1. 1. 2. 2. ] [-0. -0. -0. -0. 1. 1. 2. 2. ]] Row/column names of similarity matrix: A B C D E F G H ###Markdown Reconstruct the ontology using the CLIXO algorithm.In general, you may feed any kind of gene-gene similarities, e.g. measurements of protein-protein interactions, gene co-expression, or genetic interactions. ###Code sim_df = pd.DataFrame(sim, index=list(genes), columns=list(genes)) ont2 = Ontology.run_clixo( sim_df, df_output_path='df_temp.txt', clixo_output_path='clixo_temp.txt', output_log_path='output_log.txt', alpha=0.0, beta=1.0, square=True, square_names=genes, ) print(ont2) ont2.to_table(edge_attr=True) ###Output _____no_output_____ ###Markdown Ontology alignment* The structures of two ontologies can be compared through a procedure known as ontology alignment. Ontology.align() implements the ontology alignment described in (Dutkowski et al. Nature biotechnology, 31(1), 2013), in which terms are matched if they contain similar sets of genes and if their parents and children terms are also similar.* Ontology alignment is particularly useful for annotating a data-driven gene ontology by aligning it to a curated ontology such as the Gene Ontology (GO). For instance, if a data-driven term is identified to have a similar set of genes as the GO term for DNA repair, then the data-driven subsystem can be annotated as being involved in DNA repair. Moreover, data-driven terms with no matches in the ontology alignment may represent new molecular mechanisms. ###Code ## Make a second ontology (the ontology to the right in the above diagram) # Connections from child terms to parent terms hierarchy = [('T3', 'T1'), ('T4', 'T1'), ('T1', 'T0'), ('T5', 'T0')] # Connections from genes to terms mapping = [('A', 'T3'), ('B', 'T3'), ('C', 'T3'), ('D', 'T4'), ('E', 'T4'), ('F', 'T4'), ('G', 'T5'), ('H', 'T5')] # Construct ontology ont_B = Ontology(hierarchy, mapping) ont.align(ont_B) ###Output collapse command: /Users/cthoyt/dev/ddot/ddot/alignOntology/collapseRedundantNodes /var/folders/l8/mz5vb84x5sg3bpv8__vr91240000gn/T/tmp58gwlwxp collapse command: /Users/cthoyt/dev/ddot/ddot/alignOntology/collapseRedundantNodes /var/folders/l8/mz5vb84x5sg3bpv8__vr91240000gn/T/tmpk_5b48wr Alignment command: /Users/cthoyt/dev/ddot/ddot/alignOntology/calculateFDRs /var/folders/l8/mz5vb84x5sg3bpv8__vr91240000gn/T/tmptcfp2au4 /var/folders/l8/mz5vb84x5sg3bpv8__vr91240000gn/T/tmpjtzdkhiy 0.05 criss_cross /var/folders/l8/mz5vb84x5sg3bpv8__vr91240000gn/T/tmpby1ips80 100 8 gene ###Markdown Construct ontotypes* A major goal of genetics is to understand how genotype translates to phenotype. An ontology represents biological structure through which this genotype-phenotype translation happens. * Given a set of mutations comprising a genotype, DDOT allows you to propagate the impact of these mutations to the subsystems containing these genes in the ontology. In particular, the impact on a subsystem is estimated by the number of its genes that have been mutated. These subsystem activities, which we have called an “ontotype”, enables more accurate and interpretable predictions of phenotype from genotype (Yu et al. Cell Systems 2016, 2(2), pp.77-88. 2016). ###Code # Genotypes can be represented as tuples of mutated genes genotypes = [('A', 'B'), ('A', 'E'), ('A', 'H'), ('B', 'E'), ('B', 'H'), ('C', 'F'), ('D', 'E'), ('D', 'H'), ('E', 'H'), ('G', 'H')] # Calculate the ontotypes, represented a genotype-by-term matrix. Each value represents the functional impact on a term in a genotype. ontotypes = ont.get_ontotype(genotypes) print(ontotypes) # Genotypes can also be represented a genotype-by-gene matrix as an alternative input format genotypes_df = pd.DataFrame( np.zeros((len(genotypes), len(ont.genes)), np.float64), index=[f'Genotype{i}' for i in range(len(genotypes))], columns=ont.genes, ) for i, (g1, g2) in enumerate(genotypes): genotypes_df.loc['Genotype%s' % i, g1] = 1.0 genotypes_df.loc['Genotype%s' % i, g2] = 1.0 print('Genotype matrix:') print(genotypes_df) ontotypes = ont.get_ontotype(genotypes_df, input_format='matrix') print('Ontotype matrix:') print(ontotypes) ###Output Ontotype matrix: S0 S1 S2 S3 S4 S5 S6 Genotype0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 Genotype1 0.0 0.0 0.0 1.0 0.0 1.0 0.0 Genotype2 0.0 0.0 0.0 1.0 0.0 0.0 1.0 Genotype3 0.0 0.0 0.0 1.0 0.0 1.0 0.0 Genotype4 0.0 0.0 0.0 1.0 0.0 0.0 1.0 Genotype5 0.0 0.0 0.0 1.0 1.0 1.0 0.0 Genotype6 0.0 0.0 0.0 0.0 1.0 1.0 0.0 Genotype7 0.0 0.0 0.0 0.0 1.0 0.0 1.0 Genotype8 0.0 0.0 0.0 0.0 0.0 1.0 1.0 Genotype9 0.0 0.0 0.0 0.0 0.0 0.0 2.0 ###Markdown Conversions to NetworkX and igraph ###Code # Convert to an igraph object G = ont.to_igraph() print(G) # Reconstruct the Ontology object from the igraph object Ontology.from_igraph(G) # Convert to a NetworkX object G = ont.to_networkx() print(G.nodes()) print(G.edges()) # Reconstruct the Ontology object from the NetworkX object tmp = Ontology.from_networkx(G) print(tmp) ###Output 8 genes, 7 terms, 9 gene-term relations, 7 term-term relations node_attributes: [] edge_attributes: [] ###Markdown Ontology visualization using HiView (http://hiview.ucsd.edu)* HiView is a web application for general visualization of the hierarchical structure in ontologies.* To use HiView, you must first upload your ontology into NDEx using the [Ontology.to_ndex()](http://ddot.readthedocs.io/en/latest/ontology.htmlddot.Ontology.to_ndex) function, and then input the NDEx URL for the ontology to HiView* In contrast to almost all other hierarchical visualization tools, which are limited to simple tree structures, HiView also supports more complicated hierarchies in the form of directed acyclic graphs, in which nodes may have multiple parents. A simple upload to NDEx and visualization in HiView* Upload ontologies to NDEx using the `Ontology.to_ndex()` function.* Setting the parameter `layout="bubble"` (default value) will identify a spanning tree of the DAG and then lay this tree in a space-compact manner. When viewing in HiView, only the edges in the spanning tree are shown, while the other edges can be chosen to be shown. ###Code url, _ = ont.to_ndex( ndex_server=ndex_server, ndex_user=ndex_user, ndex_pass=ndex_pass, layout=None, # 'bubble' ) print('Go to http://hiview.ucsd.edu in your web browser') print('Enter this into the "NDEx Sever URL" field: %s' % ndex_server) print('Enter this into the "UUID of the main hierarchy" field: %s' % url.split('/')[-1]) ###Output Go to http://hiview.ucsd.edu in your web browser Enter this into the "NDEx Sever URL" field: http://ndexbio.org Enter this into the "UUID of the main hierarchy" field: 97424525-d861-11e8-aaa6-0ac135e8bacf ###Markdown An alternative layout by duplicating nodes* Setting the parameter `layout="bubble-collect"` will convert the DAG into a tree by duplicating nodes.* This transformation enables the ontology structure to be visualized without edges crossing. ###Code url, _ = ont.to_ndex(ndex_server=ndex_server, ndex_user=ndex_user, ndex_pass=ndex_pass, layout='bubble-collect') print('Go to http://hiview.ucsd.edu in your web browser') print('Enter this into the "NDEx Sever URL" field: %s' % ndex_server) print('Enter this into the "UUID of the main hierarchy" field: %s' % url.split('/')[-1]) ###Output Go to http://hiview.ucsd.edu in your web browser Enter this into the "NDEx Sever URL" field: http://ndexbio.org Enter this into the "UUID of the main hierarchy" field: 98071bc8-d861-11e8-aaa6-0ac135e8bacf ###Markdown Visualizing metadata by modifying node labels, colors, and sizes* An Ontology object has a `node_attr` field that is a pandas DataFrame. The rows of the dataframe are genes or terms, and the columns are node attributes.* HiView understands special node attributes to control the node labels, colors, and sizes. ###Code # Set the node labels (default is the gene and term names, as found in Ontology.genes and Ontology.terms) ont.node_attr.loc['S4', 'Label'] = 'S4 alias' ont.node_attr.loc['S5', 'Label'] = 'S5 alias' # Set the fill color of nodes ont.node_attr.loc['C', 'Vis:Fill Color'] = '#7fc97f' ont.node_attr.loc['S1', 'Vis:Fill Color'] = '#beaed4' ont.node_attr.loc['S0', 'Vis:Fill Color'] = '#fdc086' # Set the node sizes (if not set, the default is the term size, as found in Ontology.term_sizes) ont.node_attr.loc['C', 'Size'] = 10 ont.node_attr url, _ = ont.to_ndex(ndex_server=ndex_server, ndex_user=ndex_user, ndex_pass=ndex_pass, layout='bubble-collect') print('Go to http://hiview.ucsd.edu in your web browser') print('Enter this into the "NDEx Sever URL" field: %s' % ndex_server) print('Enter this into the "UUID of the main hierarchy" field: %s' % url.split('/')[-1]) # Clear node attributes (optional) ont.clear_node_attr() ont.node_attr ###Output _____no_output_____ ###Markdown Visualize gene-gene interaction networks alongside the ontology* Every term in an ontology represents a biological function shared among the term's genes. Based on this intuition, those genes should be interacting in different ways, e.g. protein-protein interactions, RNA expression, or genetic interactions.* Gene-gene interaction networks can be uploaded with the ontology to NDEx, so that they can be visualized at the same time in HiView ###Code # Calculate a gene-by-gene similarity matrix using the Resnik semantic similarity definition (see section "Inferring a data-driven ontology") sim, genes = ont.flatten() print(genes) print(np.round(sim, 2)) ###Output ['A' 'B' 'C' 'D' 'E' 'F' 'G' 'H'] [[ 1.42 1.42 1.42 0.42 0.42 0.42 -0. -0. ] [ 1.42 1.42 1.42 0.42 0.42 0.42 -0. -0. ] [ 1.42 1.42 2. 2. 0.42 0.42 -0. -0. ] [ 0.42 0.42 2. 2. 0.42 0.42 -0. -0. ] [ 0.42 0.42 0.42 0.42 2. 2. 1. 1. ] [ 0.42 0.42 0.42 0.42 2. 2. 1. 1. ] [-0. -0. -0. -0. 1. 1. 2. 2. ] [-0. -0. -0. -0. 1. 1. 2. 2. ]] ###Markdown Convert the gene-by-gene similarity matrix into a dataframe with a "long" format, where rows represent gene pairs. This conversion can be easily done with ddot.melt_square() ###Code sim_df = pd.DataFrame(sim, index=genes, columns=genes) sim_long = ddot.melt_square(sim_df) sim_long.head() ###Output _____no_output_____ ###Markdown Create other gene-gene interactions. For example, these can represent protein-protein interactions or gene co-expression. Here, we simulate interactions by adding a random noise to the Resnik similarity ###Code sim_long['example_interaction_type1'] = sim_long['similarity'] + np.random.random(sim_long.shape[0]) / 2. sim_long['example_interaction_type2'] = sim_long['similarity'] + np.random.random(sim_long.shape[0]) / 2. sim_long.head() # Include the above gene-gene interactions by setting the `network` and `main_feature` parameters. url, _ = ont.to_ndex( ndex_server=ndex_server, ndex_user=ndex_user, ndex_pass=ndex_pass, network=sim_long, main_feature='similarity', layout='bubble-collect', ) print('Go to http://hiview.ucsd.edu in your web browser') print('Enter this into the "NDEx Sever URL" field: %s' % ndex_server) print('Enter this into the "UUID of the main hierarchy" field: %s' % url.split('/')[-1]) ###Output Go to http://hiview.ucsd.edu in your web browser Enter this into the "NDEx Sever URL" field: http://ndexbio.org Enter this into the "UUID of the main hierarchy" field: 9d05f2b3-d861-11e8-aaa6-0ac135e8bacf ###Markdown pyFCI tutorialThis is a prototipe for a library to perform **intrinsic dimension estimation using the local full correlation integral estimator** presented in out [paper](https://www.nature.com/articles/s41598-019-53549-9). InstallationClone the repository locally git clone https://github.com/vittorioerba/pyFCI.gitand install using pip cd pyFCI pip3 install . If you want to make modifications to the source code, install by sìymlinking cd pyFCI pip3 install -e . UsageWe recommend using numpy arrays as often as you can. ###Code # imports import pyFCI import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D ###Output _____no_output_____ ###Markdown Let's generate a simple dataset to play with. ###Code N = 100; d = 3; dataset = np.random.rand(N,d) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(dataset[:,0], dataset[:,1], dataset[:,2]) ###Output _____no_output_____ ###Markdown Global Intrinsic Dimension Estimation (IDE)First of all, we need to preprocess our dataset so that it has null mean, and all vectors are normalized. ###Code processed_dataset = pyFCI.center_and_normalize(dataset) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(processed_dataset[:,0], processed_dataset[:,1], processed_dataset[:,2]) ###Output _____no_output_____ ###Markdown Then, we proceed to compute the **full correlation integral** (FCI). ###Code fci = pyFCI.FCI(processed_dataset) fig = plt.figure() ax = fig.add_subplot() ax.plot(fci[:,0], fci[:,1]) ax.set_xlim([0,2]) ax.set_ylim([0,1]) ###Output _____no_output_____ ###Markdown Notice that if your dataset has $N$ points, the ``pyFCI.FCI()`` function will have to perform $\frac{N(N-1)}{2} \sim N^2$ operations to compute exactly the FCI.If your dataset is large, it's better to compute an approximation of the FCI by using the ``pyFCI.FCI_MC()`` method; its second argument is gives an upper bound on the number of operations allowed (500 is a san default, anything above that will practically work as good as the exact FCI for all purposes).Let's compare the two methods.(**Attention:** the first run will call the numba jit compiler and will take much longer!) ###Code N = 2000; d = 10; dataset = np.random.rand(N,d) processed_dataset = pyFCI.center_and_normalize(dataset); %time fci = pyFCI.FCI(processed_dataset) %time fciMC = pyFCI.FCI_MC(processed_dataset, 1000) fig = plt.figure() ax = fig.add_subplot() ax.plot(fci[:,0], fci[:,1], label="exact") ax.plot(fciMC[:,0], fciMC[:,1], label="approx $10^3$ samples") ax.legend(loc='upper left') ax.set_xlim([0,2]) ax.set_ylim([0,1]) ###Output _____no_output_____ ###Markdown Now that we have the FCI, we are ready to compute the ID of the dataset.For a first check, one can use the ``pyFCI.analytical_FCI()`` function (notice that we need to use $d-1$, as normalizing the dataset eats away a degree of freedom): ###Code fig = plt.figure() ax = fig.add_subplot() ax.plot(fci[:,0], fci[:,1], label="empirical exact") ax.plot(fciMC[:,0], fciMC[:,1], label="empirical approx $10^3$ samples") xs = np.linspace(0,2,100) ys = pyFCI.analytical_FCI(xs,d-1,1) ax.plot(xs, ys, label="analytical") ax.set_xlim([0,2]) ax.set_ylim([0,1]) ax.legend(loc='upper left') ###Output _____no_output_____ ###Markdown To actually fit the function and recover $d$, we use ``pyFCI.fit_FCI()``. ###Code fit_exact = pyFCI.fit_FCI(fci) fit_MC = pyFCI.fit_FCI(fciMC) print("ID estimated with exact FCI: ", fit_exact[0]) print("ID estimated with approximate FCI: ", fit_MC[0]) ###Output ID estimated with exact FCI: 10.153064067014695 ID estimated with approximate FCI: 10.619394691123722 ###Markdown Local Intrinsic Dimension Estimation (IDE)To estimate the local ID, you need to specify a local patch of your dataset.This is done by selecting a single point in the dataset, and specifing the number of nearest neighbours that define larger and larger neighbourhoods. ###Code center = np.random.randint(len(dataset)) ks = np.array([5*i for i in range(1,11)]) localFCI = pyFCI.local_FCI(dataset,center,ks) print(" ks |Max dist|loc ID| x0| MSE") with np.printoptions(precision=3, suppress=True): print(localFCI) ###Output ks |Max dist|loc ID| x0| MSE [[ 5. 0.657 22.92 1.2 0.054] [10. 0.735 10.939 1.048 0.03 ] [15. 0.793 7.238 1.034 0.02 ] [20. 0.812 10.555 1.033 0.036] [25. 0.836 10.308 1.009 0.018] [30. 0.854 8.93 0.994 0.022] [35. 0.862 10.111 1.012 0.01 ] [40. 0.878 11.345 1.016 0.015] [45. 0.889 9.565 0.991 0.009] [50. 0.895 9.33 1.017 0.012]] ###Markdown Now you can repeat for as many local centers as you like: ###Code Ncenters = 30 centers = np.random.randint(len(dataset),size=Ncenters) localFCI_multiple = np.empty(shape=(0,len(ks),5)) for i in range(Ncenters): localFCI = pyFCI.local_FCI(dataset,center,ks) localFCI_multiple = np.append( localFCI_multiple, [localFCI], axis=0 ) ###Output _____no_output_____ ###Markdown and you can reproduce the persistence plot show in our [paper](https://www.nature.com/articles/s41598-019-53549-9) ###Code fig = plt.figure() ax = fig.add_subplot() for i in range(Ncenters): ax.plot(localFCI_multiple[i,:,0],localFCI_multiple[i,:,2]) xs = np.linspace(0,50,2) ax.plot(xs,[10 for x in xs],color="black") ax.set_ylim([0,20]) N = 1000; d = 500; dataset = np.random.rand(N,d) processed_dataset = pyFCI.center_and_normalize(dataset) fci = pyFCI.FCI(processed_dataset) fciMC = pyFCI.FCI_MC(processed_dataset, 1000) #fit_exact = pyFCI.fit_FCI(fci) #fit_MC = pyFCI.fit_FCI(fciMC) #print("ID estimated with exact FCI: ", fit_exact[0]) #print("ID estimated with approximate FCI: ", fit_MC[0]) fig = plt.figure() ax = fig.add_subplot() ax.plot(fci[:,0], fci[:,1], label="empirical exact") ax.plot(fciMC[:,0], fciMC[:,1], label="empirical approx $10^3$ samples") xs = np.linspace(0,2,100) ys = pyFCI.analytical_FCI(xs,d-1,1) ax.plot(xs, ys, label="analytical") ax.set_xlim([0,2]) ax.set_ylim([0,1]) ax.legend(loc='upper left') pyFCI.analytical_FCI(xs,350,1) ###Output <ipython-input-7-207f19900e99>:1: RuntimeWarning: invalid value encountered in double_scalars pyFCI.analytical_FCI(xs,350,1) ###Markdown IntroductionAn ontology is a hierarchical arrangement of two types of nodes: (1)genes at the leaves of the hierarchy and (2) terms at intermediatelevels of the hierarchy. The hierarchy can be thought of as directedacyclic graph (DAG), in which each node can have multiple children ormultiple parent nodes. DAGs are a generalization of trees(a.k.a. dendogram), where each node has at most one parent.The DDOT Python library provides many functions for assembling,analyzing, and visualizing ontologies. The main functionalities areimplemented in an object-oriented manner by an "Ontology" class. Thisclass can handle both ontologies that are data-driven as well as thosethat are manually curated like the Gene Ontology. ###Code # Import Ontology class from DDOT package from ddot import Ontology ###Output _____no_output_____ ###Markdown Creating an Ontology objectAn object of the Ontology class can be created in several ways. To demonstratethis, we will build the following ontology Through the \_\_init\_\_ constructor ###Code # Connections from child terms to parent terms hierarchy = [('S3', 'S1'), ('S4', 'S1'), ('S5', 'S1'), ('S5', 'S2'), ('S6', 'S2'), ('S1', 'S0'), ('S2', 'S0')] # Connections from genes to terms mapping = [('A', 'S3'), ('B', 'S3'), ('C', 'S3'), ('C', 'S4'), ('D', 'S4'), ('E', 'S5'), ('F', 'S5'), ('G', 'S6'), ('H', 'S6')] # Construct ontology ont = Ontology(hierarchy, mapping) ###Output _____no_output_____ ###Markdown To and from a tab-delimited table or Pandas dataframe ###Code ont.to_table('toy_ontology.txt') ont = Ontology.from_table('toy_ontology.txt') ###Output _____no_output_____ ###Markdown From the Network Data Exchange (NDEx). Requires creating a free user account at http://ndexbio.org/ ###Code # Replace with your own NDEx user account ndex_server, ndex_user, ndex_pass = 'http://test.ndexbio.org', 'scratch', 'scratch' # ndex_user, ndex_pass = 'ddot_test', 'ddot_test' url, _ = ont.to_ndex(ndex_server=ndex_server, ndex_user=ndex_user, ndex_pass=ndex_pass) print(url) ont2 = Ontology.from_ndex(url) print(ont2) ###Output 8 genes, 7 terms, 9 gene-term relations, 7 term-term relations node_attributes: ['name', 'y_pos', 'Vis:Fill Color', 'Vis:Border Paint', 'x_pos', 'Label', 'Vis:Shape', 'NodeType', 'Size', 'Vis:Size', 'isRoot'] edge_attributes: ['EdgeType', 'Vis:Visible', 'Is_Tree_Edge', '2'] ###Markdown Inspecting the structure of an ontology An Ontology object contains seven attributes:* ``genes`` : List of gene names* ``terms`` : List of term names* ``gene_2_term`` : dictionary mapping a gene name to a list of terms connected to that gene. Terms are represented as their 0-based index in ``terms``.* ``term_2_gene`` : dictionary mapping a term name to a list or genes connected to that term. Genes are represented as their 0-based index in ``genes``.* ``child_2_parent`` : dictionary mapping a child term to its parent terms.* ``parent_2_child`` : dictionary mapping a parent term to its children terms.* ``term_sizes`` : A list of each term's size, i.e. the number of unique genes contained within this term and its descendants. The order of this list is the same as ``terms``. For every ``i``, it holds that ``term_sizes[i] = len(self.term_2_gene[self.terms[i]])`` ###Code ont.genes ont.terms ont.gene_2_term ont.term_2_gene ont.child_2_parent ont.parent_2_child ###Output _____no_output_____ ###Markdown Alternatively, the hierarchical connections can be viewed as a binary matrix, using `Ontology.connected()` ###Code conn = ont.connected() np.array(conn, dtype=np.int32) ###Output _____no_output_____ ###Markdown A summary of an Ontology’s object, i.e. the number of genes, terms, and connections, can be printed `print(ont)` ###Code print(ont) ###Output 8 genes, 7 terms, 9 gene-term relations, 7 term-term relations node_attributes: [] edge_attributes: [2] ###Markdown Manipulating the structure of an ontology DDOT provides several convenience functions for processing Ontologies into a desirable structure. Currently, there are no functions for adding genes and terms. If this is needed, then we recommend creating a new Ontology or manipulating the contents in a different library, such as NetworkX or igraph, and transforming the results into Ontology. ###Code # Renaming genes and terms. ont2 = ont.rename(genes={'A' : 'A_alias'}, terms={'S0':'S0_alias'}) ont2.to_table() ###Output _____no_output_____ ###Markdown Delete S1 and G while preserving transitive connections ###Code ont2 = ont.delete(to_delete=['S1', 'G']) print(ont2) ###Output 7 genes, 6 terms, 8 gene-term relations, 6 term-term relations node_attributes: [] edge_attributes: [2] ###Markdown Delete S1 and G (don't preserve transitive connections) ###Code ont2 = ont.delete(to_delete=['S1', 'G'], preserve_transitivity=False) print(ont2) ###Output 7 genes, 6 terms, 8 gene-term relations, 3 term-term relations node_attributes: [] edge_attributes: [2] ###Markdown Propagate gene-term connections ###Code ont2 = ont.propagate(direction='forward', gene_term=True, term_term=False) print(ont2) # Remove all transitive connections, and maintain only a parsimonious set of connections ont3 = ont2.propagate(direction='reverse', gene_term=True, term_term=False) ###Output 8 genes, 7 terms, 27 gene-term relations, 7 term-term relations node_attributes: [] edge_attributes: [2] ###Markdown Propagate term-term connections ###Code ont2 = ont.propagate(direction='forward', gene_term=False, term_term=True) print(ont2) # Remove all transitive connections, and maintain only a parsimonious set of connections ont3 = ont2.propagate(direction='reverse', gene_term=False, term_term=True) ###Output 8 genes, 7 terms, 9 gene-term relations, 11 term-term relations node_attributes: [] edge_attributes: [2] ###Markdown Take the subbranch consisting of all term and genes under S1 ###Code ont2 = ont.focus(branches=['S1']) print(ont2) ###Output Genes and Terms to keep: 10 6 genes, 4 terms, 7 gene-term relations, 3 term-term relations node_attributes: ['Original_Size'] edge_attributes: [2] ###Markdown Inferring a data-driven ontologyAn ontology can also be inferred in a data-driven manner based on an input set of node-node similarities. ###Code sim, genes = ont.flatten() print(genes) print(sim) ont2 = Ontology.run_clixo(sim, 0.0, 1.0, square=True, square_names=genes) print(ont2) ###Output 8 genes, 7 terms, 9 gene-term relations, 7 term-term relations node_attributes: [] edge_attributes: ['CLIXO_score'] ###Markdown Ontology alignment ###Code ## Make a second ontology # Connections from child terms to parent terms hierarchy = [('T3', 'T1'), ('T4', 'T1'), ('T1', 'T0'), ('T5', 'T0')] # Connections from genes to terms mapping = [('A', 'T3'), ('B', 'T3'), ('C', 'T3'), ('D', 'T4'), ('E', 'T4'), ('F', 'T4'), ('G', 'T5'), ('H', 'T5')] # Construct ontology ont_B = Ontology(hierarchy, mapping) ont.align(ont_B) ###Output collapse command: /cellar/users/mikeyu/DeepTranslate/ddot/ddot/alignOntology/collapseRedundantNodes /tmp/tmp69tzhltw collapse command: /cellar/users/mikeyu/DeepTranslate/ddot/ddot/alignOntology/collapseRedundantNodes /tmp/tmpq7jbs_ag Alignment command: /cellar/users/mikeyu/DeepTranslate/ddot/ddot/alignOntology/calculateFDRs /tmp/tmpdleaetmk /tmp/tmpwvbp55c8 0.05 criss_cross /tmp/tmp8bvabn36 100 40 gene ###Markdown Construct ontotypes ###Code # Genotypes can be represented as tuples of mutated genes genotypes = [('A', 'B'), ('A', 'E'), ('A', 'H'), ('B', 'E'), ('B', 'H'), ('C', 'F'), ('D', 'E'), ('D', 'H'), ('E', 'H'), ('G', 'H')] ontotypes = ont.get_ontotype(genotypes) print(ontotypes) # Genotypes can also be represented a genotype-by-gene matrix import pandas as pd, numpy as np genotypes_df = pd.DataFrame(np.zeros((len(genotypes), len(ont.genes)), np.float64), index=['Genotype%s' % i for i in range(len(genotypes))], columns=ont.genes) for i, (g1, g2) in enumerate(genotypes): genotypes_df.loc['Genotype%s' % i, g1] = 1.0 genotypes_df.loc['Genotype%s' % i, g2] = 1.0 print(genotypes_df) ontotypes = ont.get_ontotype(genotypes_df, input_format='matrix') print(ontotypes) ###Output A B C D E F G H Genotype0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 Genotype1 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 Genotype2 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 Genotype3 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 Genotype4 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 Genotype5 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 Genotype6 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 Genotype7 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 Genotype8 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 Genotype9 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 S0 S1 S2 S3 S4 S5 S6 Genotype0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 Genotype1 0.0 0.0 0.0 1.0 0.0 1.0 0.0 Genotype2 0.0 0.0 0.0 1.0 0.0 0.0 1.0 Genotype3 0.0 0.0 0.0 1.0 0.0 1.0 0.0 Genotype4 0.0 0.0 0.0 1.0 0.0 0.0 1.0 Genotype5 0.0 0.0 0.0 1.0 1.0 1.0 0.0 Genotype6 0.0 0.0 0.0 0.0 1.0 1.0 0.0 Genotype7 0.0 0.0 0.0 0.0 1.0 0.0 1.0 Genotype8 0.0 0.0 0.0 0.0 0.0 1.0 1.0 Genotype9 0.0 0.0 0.0 0.0 0.0 0.0 2.0 ###Markdown Conversions to NetworkX and igraph ###Code G = ont.to_igraph() print(G) G = ont.to_networkx() print(G.nodes()) print(G.edges()) ###Output ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'S0', 'S1', 'S2', 'S3', 'S4', 'S5', 'S6'] [('A', 'S3'), ('B', 'S3'), ('C', 'S3'), ('C', 'S4'), ('D', 'S4'), ('E', 'S5'), ('F', 'S5'), ('G', 'S6'), ('H', 'S6'), ('S1', 'S0'), ('S2', 'S0'), ('S3', 'S1'), ('S4', 'S1'), ('S5', 'S1'), ('S5', 'S2'), ('S6', 'S2')] ###Markdown Visualization in HiView (http://hiview.ucsd.edu) ###Code url, _ = ont.to_ndex(ndex_server=ndex_server, ndex_user=ndex_user, ndex_pass=ndex_pass, layout='bubble-collect') print('Enter this into the "NDEx Sever URL" field') print(ndex_server) print('Enter this into the "UUID of the main hierarchy" field at http://hiview.ucsd.edu:') print(url.split('/')[-1]) ###Output Enter this into the "NDEx Sever URL" field http://test.ndexbio.org Enter this into the "UUID of the main hierarchy" field at http://hiview.ucsd.edu: 23f542c5-3a0a-11e8-9da1-0660b7976219 ###Markdown funcX TutorialfuncX is a Function-as-a-Service (FaaS) platform for science that enables you to convert almost any computing resource into a high-performance function serving device. To do this, you deploy a funcX endpoint agent on the resource, which integrates it into the function serving fabric, allowing you to dynamically send, monitor, and receive results from function invocations. funcX is built on top of [Parsl](https://parsl-project.org), enabling a funcX endpoint to use large compute resources via traditional batch queues, where funcX will dynamically provision, use, and release resources on-demand to fulfill function requests. The function service fabric, which is run centrally as a service, is hosted in AWS.Here we provide an example of using funcX to register a function and run it on a publicly available tutorial endpoint. funcX ClientWe start by instantiating a funcX client as a programmatic means of communicating with the function service fabric. The client allows you to:- Register functions- Register containers and execution environments- Launch registered functions against endpoints- Check the status of launched functions- Retrieve outputs from functions AuthenticationInstantiating a client will force an authentication flow where you will be asked to authenticate with Globus Auth. Every interaction with funcX is authenticated to allow us to enforce access control on both functions and endpoints. As part of the authentication process we request access to your identity information (to retrieve your email address), Globus Groups management access, and Globus Search. We require Groups access in order to facilitate sharing. Globus Search allows funcX to add your functions to a searchable registry and make them discoverable to permitted users (as well as yourself!). ###Code from funcx.sdk.client import FuncXClient fxc = FuncXClient() ###Output _____no_output_____ ###Markdown Next we define a Python function, which we will later register with funcX. This function simply sums its input.When defining a function you can specify \*args and \*\*kwargs as inputs. Note: any dependencies for a funcX function must be specified inside the function body. ###Code def funcx_sum(items): return sum(items) ###Output _____no_output_____ ###Markdown Registering a functionTo use a function with funcX, you must first register it with the service, using `register_function`. You can optionally include a description of the function.The registration process will serialize the function body and transmit it to the funcX function service fabric.Registering a function returns a UUID for the function, which can then be used to invoke it. ###Code func_uuid = fxc.register_function(funcx_sum, description="tutorial summation", public=True) print(func_uuid) ###Output _____no_output_____ ###Markdown Searching a functionYou can search previously registered functions to which you have access using `search_function`. The first parameter `q` is searched against all the fields, such as author, description, function name, and function source. You can navigate through pages of results with the `offset` and `limit` keyword args. The object returned is simple wrapper on a list, so you can index into it, but also can have a pretty-printed table. To make use of the results, you can either just use the `function_uuid` field returned for each result, or for functions that were registered with recent versions of the service, you can load the source code using the search results object's `load_result` method. ###Code search_results = fxc.search_function("tutorial", offset=0, limit=5) print(search_results[0]) print(search_results) search_results.load_result(0) result_0_uuid = search_results[0]['function_uuid'] ###Output _____no_output_____ ###Markdown Running a functionTo invoke (perform) a function, you must provide the function's UUID, returned from the registration process, and an `endpoint_id`. Note: here we use the funcX public tutorial endpoint, which is running on AWS.The client's `run` function will serialize any \*args and \*\*kwargs, and pass them to the function when invoking it. Therefore, as our example function simply takes an arg input (items), we can specify an input arg and it will be used by the function. Here we define a small list of integers for our function to sum.The Web service will return the UUID for the invokation of the function, which we call a task. This UUID can be used to check the status of the task and retrieve the result. ###Code endpoint_uuid = '4b116d3c-1703-4f8f-9f6f-39921e5864df' # Public tutorial endpoint items = [1, 2, 3, 4, 5] res = fxc.run(items, endpoint_id=endpoint_uuid, function_id=func_uuid) print(res) ###Output _____no_output_____ ###Markdown You can now retrieve the result of the invocation using `get_result()` on the UUID of the task. Note: We remove the task from our database once the result has been retrieved, thus you can only retireve the result once. ###Code fxc.get_result(res) ###Output _____no_output_____ ###Markdown Running batchesYou might want to invoke many function calls at once. This can be easily done via the batch interface: ###Code def squared(x): return x**2 squared_uuid = fxc.register_function(squared, searchable=False) inputs = list(range(10)) batch = fxc.create_batch() for x in inputs: batch.add(x, endpoint_id=endpoint_uuid, function_id=squared_uuid) batch_res = fxc.batch_run(batch) fxc.get_batch_status(batch_res) ###Output _____no_output_____ ###Markdown Catching exceptionsWhen functions fail, the exception is captured, and reraised when you try to get the result. In the following example, the 'deterministic failure' exception is raised when `fxc.get_result` is called on the failing function. ###Code def failing(): raise Exception("deterministic failure") failing_uuid = fxc.register_function(failing, searchable=False) res = fxc.run(endpoint_id=endpoint_uuid, function_id=failing_uuid) fxc.get_result(res) ###Output _____no_output_____ ###Markdown pyFCI tutorialThis is a prototipe for a library to perform **intrinsic dimension estimation using the local full correlation integral estimator** presented in out [paper](https://www.nature.com/articles/s41598-019-53549-9). InstallationClone the repository locally git clone https://github.com/vittorioerba/pyFCI.gitand install using pip cd pyFCI pip3 install . If you want to make modifications to the source code, install by sìymlinking cd pyFCI pip3 install -e . UsageWe recommend using numpy arrays as often as you can. ###Code # imports import pyFCI import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D ###Output _____no_output_____ ###Markdown Let's generate a simple dataset to play with. ###Code N = 100; d = 3; dataset = np.random.rand(N,d) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(dataset[:,0], dataset[:,1], dataset[:,2]) ###Output _____no_output_____ ###Markdown Global Intrinsic Dimension Estimation (IDE)First of all, we need to preprocess our dataset so that it has null mean, and all vectors are normalized. ###Code processed_dataset = pyFCI.center_and_normalize(dataset) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(processed_dataset[:,0], processed_dataset[:,1], processed_dataset[:,2]) ###Output _____no_output_____ ###Markdown Then, we proceed to compute the **full correlation integral** (FCI). ###Code fci = pyFCI.FCI(processed_dataset) fig = plt.figure() ax = fig.add_subplot() ax.plot(fci[:,0], fci[:,1]) ax.set_xlim([0,2]) ax.set_ylim([0,1]) ###Output _____no_output_____ ###Markdown Notice that if your dataset has $N$ points, the ``pyFCI.FCI()`` function will have to perform $\frac{N(N-1)}{2} \sim N^2$ operations to compute exactly the FCI.If your dataset is large, it's better to compute an approximation of the FCI by using the ``pyFCI.FCI_MC()`` method; its second argument is gives an upper bound on the number of operations allowed (500 is a san default, anything above that will practically work as good as the exact FCI for all purposes).Let's compare the two methods.(**Attention:** the first run will call the numba jit compiler and will take much longer!) ###Code N = 2000; d = 10; dataset = np.random.rand(N,d) processed_dataset = pyFCI.center_and_normalize(dataset); %time fci = pyFCI.FCI(processed_dataset) %time fciMC = pyFCI.FCI_MC(processed_dataset, 1000) fig = plt.figure() ax = fig.add_subplot() ax.plot(fci[:,0], fci[:,1], label="exact") ax.plot(fciMC[:,0], fciMC[:,1], label="approx $10^3$ samples") ax.legend(loc='upper left') ax.set_xlim([0,2]) ax.set_ylim([0,1]) ###Output _____no_output_____ ###Markdown Now that we have the FCI, we are ready to compute the ID of the dataset.For a first check, one can use the ``pyFCI.analytical_FCI()`` function (notice that we need to use $d-1$, as normalizing the dataset eats away a degree of freedom): ###Code fig = plt.figure() ax = fig.add_subplot() ax.plot(fci[:,0], fci[:,1], label="empirical exact") ax.plot(fciMC[:,0], fciMC[:,1], label="empirical approx $10^3$ samples") xs = np.linspace(0,2,100) ys = pyFCI.analytical_FCI(xs,d-1,1) ax.plot(xs, ys, label="analytical") ax.set_xlim([0,2]) ax.set_ylim([0,1]) ax.legend(loc='upper left') ###Output _____no_output_____ ###Markdown To actually fit the function and recover $d$, we use ``pyFCI.fit_FCI()``. ###Code fit_exact = pyFCI.fit_FCI(fci) fit_MC = pyFCI.fit_FCI(fciMC) print("ID estimated with exact FCI: ", fit_exact[0]) print("ID estimated with approximate FCI: ", fit_MC[0]) ###Output ID estimated with exact FCI: 10.153064067014695 ID estimated with approximate FCI: 10.619394691123722 ###Markdown Local Intrinsic Dimension Estimation (IDE)To estimate the local ID, you need to specify a local patch of your dataset.This is done by selecting a single point in the dataset, and specifing the number of nearest neighbours that define larger and larger neighbourhoods. ###Code center = np.random.randint(len(dataset)) ks = np.array([5*i for i in range(1,11)]) localFCI = pyFCI.local_FCI(dataset,center,ks) print(" ks |Max dist|loc ID| x0| MSE") with np.printoptions(precision=3, suppress=True): print(localFCI) ###Output ks |Max dist|loc ID| x0| MSE [[ 5. 0.657 22.92 1.2 0.054] [10. 0.735 10.939 1.048 0.03 ] [15. 0.793 7.238 1.034 0.02 ] [20. 0.812 10.555 1.033 0.036] [25. 0.836 10.308 1.009 0.018] [30. 0.854 8.93 0.994 0.022] [35. 0.862 10.111 1.012 0.01 ] [40. 0.878 11.345 1.016 0.015] [45. 0.889 9.565 0.991 0.009] [50. 0.895 9.33 1.017 0.012]] ###Markdown Now you can repeat for as many local centers as you like: ###Code Ncenters = 30 centers = np.random.randint(len(dataset),size=Ncenters) localFCI_multiple = np.empty(shape=(0,len(ks),5)) for i in range(Ncenters): localFCI = pyFCI.local_FCI(dataset,center,ks) localFCI_multiple = np.append( localFCI_multiple, [localFCI], axis=0 ) ###Output _____no_output_____ ###Markdown and you can reproduce the persistence plot show in our [paper](https://www.nature.com/articles/s41598-019-53549-9) ###Code fig = plt.figure() ax = fig.add_subplot() for i in range(Ncenters): ax.plot(localFCI_multiple[i,:,0],localFCI_multiple[i,:,2]) xs = np.linspace(0,50,2) ax.plot(xs,[10 for x in xs],color="black") ax.set_ylim([0,20]) ###Output _____no_output_____ ###Markdown Introduction: DDOT tutorial* __What is DDOT?__ The DDOT Python package provides many functions for assembling,analyzing, and visualizing ontologies. The main functionalities areimplemented in an object-oriented manner by an "Ontology" class, which handles ontologies that are data-driven as well as thosethat are manually curated like the Gene Ontology.* __What is an ontology?__ An ontology is a hierarchical arrangement of two types of nodes: (1)genes at the leaves of the hierarchy and (2) terms at intermediatelevels of the hierarchy. The hierarchy can be thought of as directedacyclic graph (DAG), in which each node can have multiple children ormultiple parent nodes. DAGs are a generalization of trees(a.k.a. dendogram), where each node has at most one parent.* __What to do after reading this tutorial__ Check out a complete list of functions in the [Ontology class](http://ddot.readthedocs.io/en/latest/ontology.html) and a list of [utility functions](http://ddot.readthedocs.io/en/latest/utils.html) that may help you build more concise pipelines. Also check out [example Jupyter notebooks](https://github.com/michaelkyu/ddot/tree/master/examples) that contain pipelines for downloading and processing the Gene Ontology and for inferring data-driven gene ontologies of diseases ###Code # Import Ontology class from DDOT package import ddot from ddot import Ontology import numpy as np ###Output _____no_output_____ ###Markdown Creating an Ontology object* An object of the Ontology class can be created in several ways.* In this tutorial, we will construct and analyze the toy ontology shown below. Create an ontology through the \_\_init\_\_ constructor ###Code # Connections from child terms to parent terms hierarchy = [('S3', 'S1'), ('S4', 'S1'), ('S5', 'S1'), ('S5', 'S2'), ('S6', 'S2'), ('S1', 'S0'), ('S2', 'S0')] # Connections from genes to terms mapping = [('A', 'S3'), ('B', 'S3'), ('C', 'S3'), ('C', 'S4'), ('D', 'S4'), ('E', 'S5'), ('F', 'S5'), ('G', 'S6'), ('H', 'S6')] # Construct ontology ont = Ontology(hierarchy, mapping) # Prints a summary of the ontology's structure print(ont) ###Output 8 genes, 7 terms, 9 gene-term relations, 7 term-term relations node_attributes: [] edge_attributes: [] ###Markdown Create an ontology from a tab-delimited table or Pandas dataframe ###Code # Write ontology to a tab-delimited table ont.to_table('toy_ontology.txt') # Reconstruct the ontology from the table ont2 = Ontology.from_table('toy_ontology.txt') ont2 ###Output _____no_output_____ ###Markdown From the Network Data Exchange (NDEx).* It is strongly recommended that you create a free account on NDEx in order to keep track of your own ontologies.* Note that there are two NDEx servers: the main server at http://public.ndexbio.org/ and a test server for prototyping your code at http://test.ndexbio.org (also aliased as http://dev2.ndexbio.org). Each server requires a separate user account. Because the main server contains networks from publications, we recommend that you use an account on the test server while you become familiar with DDOT ###Code # Note: change the server to http://public.ndexbio.org, if this is where you created your NDEx account ndex_server = 'http://test.ndexbio.org' # Set the NDEx server and the user account (replace with your own account) ndex_user, ndex_pass = '<enter your username>', '<enter your account password>' # Upload ontology to NDEx. The string after "v2/network/" is a unique identifier, which is called the UUID, of the ontology in NDEx url, _ = ont.to_ndex(ndex_server=ndex_server, ndex_user=ndex_user, ndex_pass=ndex_pass) print(url) # Download the ontology from NDEx ont2 = Ontology.from_ndex(url) print(ont2) ###Output 8 genes, 7 terms, 9 gene-term relations, 7 term-term relations node_attributes: ['Vis:Border Paint', 'Vis:Shape', 'name', 'Vis:Fill Color'] edge_attributes: ['Vis:Visible'] ###Markdown Inspecting the structure of an ontology An Ontology object contains seven attributes:* ``genes`` : List of gene names* ``terms`` : List of term names* ``gene_2_term`` : dictionary mapping a gene name to a list of terms connected to that gene. Terms are represented as their 0-based index in ``terms``.* ``term_2_gene`` : dictionary mapping a term name to a list or genes connected to that term. Genes are represented as their 0-based index in ``genes``.* ``child_2_parent`` : dictionary mapping a child term to its parent terms.* ``parent_2_child`` : dictionary mapping a parent term to its children terms.* ``term_sizes`` : A list of each term's size, i.e. the number of unique genes contained within this term and its descendants. The order of this list is the same as ``terms``. For every ``i``, it holds that ``term_sizes[i] = len(self.term_2_gene[self.terms[i]])`` ###Code ont.genes ont.terms ont.gene_2_term ont.term_2_gene ont.child_2_parent ont.parent_2_child ###Output _____no_output_____ ###Markdown Alternatively, the hierarchical connections can be viewed as a binary matrix, using `Ontology.connected()` ###Code conn = ont.connected() np.array(conn, dtype=np.int32) ###Output _____no_output_____ ###Markdown A summary of an Ontology’s object, i.e. the number of genes, terms, and connections, can be printed `print(ont)` ###Code print(ont) ###Output 8 genes, 7 terms, 9 gene-term relations, 7 term-term relations node_attributes: [] edge_attributes: [] ###Markdown Manipulating the structure of an ontology DDOT provides several convenience functions for processing Ontologies into a desirable structure. Currently, there are no functions for adding genes and terms. If this is needed, then we recommend creating a new Ontology or manipulating the contents in a different library, such as NetworkX or igraph, and transforming the results into Ontology. Renaming nodes ###Code # Renaming genes and terms. ont2 = ont.rename(genes={'A' : 'A_alias'}, terms={'S0':'S0_alias'}) ont2.to_table() ###Output _____no_output_____ ###Markdown Delete S1 and G while preserving transitive connections ###Code ont2 = ont.delete(to_delete=['S1', 'G']) print(ont2) ###Output 7 genes, 6 terms, 8 gene-term relations, 6 term-term relations node_attributes: [] edge_attributes: [] ###Markdown Delete S1 and G (don't preserve transitive connections) ###Code ont2 = ont.delete(to_delete=['S1', 'G'], preserve_transitivity=False) print(ont2) ###Output 7 genes, 6 terms, 8 gene-term relations, 3 term-term relations node_attributes: [] edge_attributes: [] ###Markdown Propagate gene-term connections* Often times, it is convenient to explicitly include all transitive connections in the hierarchy. That is, if a hierarchy has edges A-->B and B-->C, then the hierarchy also has A-->C. This can be done by calling `Ontology.propagate(direction='forward')` function.* On the other hand, all transitive connections can be removed with `Ontology.propagate(direction='reverse')`. This is useful as a parsimonious set of connections. ###Code # Include all transitive connections between genes and terms ont2 = ont.propagate(direction='forward', gene_term=True, term_term=False) print(ont2) # Remove all transitive connections between genes and terms, retaining only a parsimonious set of connections ont3 = ont2.propagate(direction='reverse', gene_term=True, term_term=False) print(ont3) ###Output 8 genes, 7 terms, 27 gene-term relations, 7 term-term relations node_attributes: [] edge_attributes: [] 8 genes, 7 terms, 9 gene-term relations, 7 term-term relations node_attributes: [] edge_attributes: [] ###Markdown Propagate term-term connections ###Code # Include all transitive connections between terms ont2 = ont.propagate(direction='forward', gene_term=False, term_term=True) print(ont2) # Remove all transitive connections between terms, retaining only a parsimonious set of connections ont3 = ont2.propagate(direction='reverse', gene_term=False, term_term=True) print(ont3) ###Output 8 genes, 7 terms, 9 gene-term relations, 11 term-term relations node_attributes: [] edge_attributes: [] 8 genes, 7 terms, 9 gene-term relations, 7 term-term relations node_attributes: [] edge_attributes: [] ###Markdown Take the subbranch consisting of all term and genes under S1 ###Code ont2 = ont.focus(branches=['S1']) print(ont2) ###Output Genes and Terms to keep: 10 6 genes, 4 terms, 7 gene-term relations, 3 term-term relations node_attributes: [] edge_attributes: [] ###Markdown Inferring a data-driven ontology* Given a set of genes and a gene similarity network, we can hierarchically cluster the genes to infer cellular subsystems using the CliXO algorithm. The resulting hierarchy of subsystems defines a "data-driven gene ontology". For more information about the CLIXO algorithm, see Kramer et al. Bioinformatics, 30(12), pp.i34-i42. 2014.* Conversely, we can also "flatten" the ontology structure to infer a gene-by-gene similarity network. In particular, the similarity between two genes is calculated as the size of the smallest common subsystem, known as "Resnik semantic similarity".* The CLIXO algorithm has been designed to reconstruct the original hierarchy from the Resnik score. ###Code # Flatten ontology to gene-by-gene network sim, genes = ont.flatten() print('Similarity matrix') print(np.round(sim, 2)) print('Row/column names of similarity matrix') print(genes) # Reconstruct the ontology using the CLIXO algorithm. # In general, you may feed any kind of gene-gene similarities, # e.g. measurements of protein-protein interactions, gene co-expression, or genetic interactions. ont2 = Ontology.run_clixo(sim, alpha=0.0, beta=1.0, square=True, square_names=genes) print(ont2) ont2.to_table(edge_attr=True) ###Output _____no_output_____ ###Markdown Ontology alignment* The structures of two ontologies can be compared through a procedure known as ontology alignment. Ontology.align() implements the ontology alignment described in (Dutkowski et al. Nature biotechnology, 31(1), 2013), in which terms are matched if they contain similar sets of genes and if their parents and children terms are also similar.* Ontology alignment is particularly useful for annotating a data-driven gene ontology by aligning it to a curated ontology such as the Gene Ontology (GO). For instance, if a data-driven term is identified to have a similar set of genes as the GO term for DNA repair, then the data-driven subsystem can be annotated as being involved in DNA repair. Moreover, data-driven terms with no matches in the ontology alignment may represent new molecular mechanisms. ###Code ## Make a second ontology (the ontology to the right in the above diagram) # Connections from child terms to parent terms hierarchy = [('T3', 'T1'), ('T4', 'T1'), ('T1', 'T0'), ('T5', 'T0')] # Connections from genes to terms mapping = [('A', 'T3'), ('B', 'T3'), ('C', 'T3'), ('D', 'T4'), ('E', 'T4'), ('F', 'T4'), ('G', 'T5'), ('H', 'T5')] # Construct ontology ont_B = Ontology(hierarchy, mapping) ont.align(ont_B) ###Output collapse command: /cellar/users/mikeyu/anaconda2/envs/ddot_py36/lib/python3.6/site-packages/ddot/alignOntology/collapseRedundantNodes /tmp/tmpwp1dge56 collapse command: /cellar/users/mikeyu/anaconda2/envs/ddot_py36/lib/python3.6/site-packages/ddot/alignOntology/collapseRedundantNodes /tmp/tmp1lc3e9yo Alignment command: /cellar/users/mikeyu/anaconda2/envs/ddot_py36/lib/python3.6/site-packages/ddot/alignOntology/calculateFDRs /tmp/tmp9eqtgf9r /tmp/tmpwsvypmdo 0.05 criss_cross /tmp/tmp39uq4flt 100 40 gene ###Markdown Construct ontotypes* A major goal of genetics is to understand how genotype translates to phenotype. An ontology represents biological structure through which this genotype-phenotype translation happens. * Given a set of mutations comprising a genotype, DDOT allows you to propagate the impact of these mutations to the subsystems containing these genes in the ontology. In particular, the impact on a subsystem is estimated by the number of its genes that have been mutated. These subsystem activities, which we have called an “ontotype”, enables more accurate and interpretable predictions of phenotype from genotype (Yu et al. Cell Systems 2016, 2(2), pp.77-88. 2016). ###Code # Genotypes can be represented as tuples of mutated genes genotypes = [('A', 'B'), ('A', 'E'), ('A', 'H'), ('B', 'E'), ('B', 'H'), ('C', 'F'), ('D', 'E'), ('D', 'H'), ('E', 'H'), ('G', 'H')] # Calculate the ontotypes, represented a genotype-by-term matrix. Each value represents the functional impact on a term in a genotype. ontotypes = ont.get_ontotype(genotypes) print(ontotypes) # Genotypes can also be represented a genotype-by-gene matrix as an alternative input format import pandas as pd, numpy as np genotypes_df = pd.DataFrame(np.zeros((len(genotypes), len(ont.genes)), np.float64), index=['Genotype%s' % i for i in range(len(genotypes))], columns=ont.genes) for i, (g1, g2) in enumerate(genotypes): genotypes_df.loc['Genotype%s' % i, g1] = 1.0 genotypes_df.loc['Genotype%s' % i, g2] = 1.0 print('Genotype matrix') print(genotypes_df) print("") ontotypes = ont.get_ontotype(genotypes_df, input_format='matrix') print('Ontotype matrix') print(ontotypes) ###Output Genotype matrix A B C D E F G H Genotype0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 Genotype1 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 Genotype2 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 Genotype3 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 Genotype4 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 Genotype5 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 Genotype6 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 Genotype7 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 Genotype8 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 Genotype9 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 Ontotype matrix S0 S1 S2 S3 S4 S5 S6 Genotype0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 Genotype1 0.0 0.0 0.0 1.0 0.0 1.0 0.0 Genotype2 0.0 0.0 0.0 1.0 0.0 0.0 1.0 Genotype3 0.0 0.0 0.0 1.0 0.0 1.0 0.0 Genotype4 0.0 0.0 0.0 1.0 0.0 0.0 1.0 Genotype5 0.0 0.0 0.0 1.0 1.0 1.0 0.0 Genotype6 0.0 0.0 0.0 0.0 1.0 1.0 0.0 Genotype7 0.0 0.0 0.0 0.0 1.0 0.0 1.0 Genotype8 0.0 0.0 0.0 0.0 0.0 1.0 1.0 Genotype9 0.0 0.0 0.0 0.0 0.0 0.0 2.0 ###Markdown Conversions to NetworkX and igraph ###Code # Convert to an igraph object G = ont.to_igraph() print(G) # Reconstruct the Ontology object from the igraph object Ontology.from_igraph(G) # Convert to a NetworkX object G = ont.to_networkx() print(G.nodes()) print(G.edges()) # Reconstruct the Ontology object from the NetworkX object tmp = Ontology.from_networkx(G) print(tmp) ###Output 8 genes, 7 terms, 9 gene-term relations, 7 term-term relations node_attributes: [] edge_attributes: [] ###Markdown Ontology visualization using HiView (http://hiview.ucsd.edu)* HiView is a web application for general visualization of the hierarchical structure in ontologies.* To use HiView, you must first upload your ontology into NDEx using the [Ontology.to_ndex()](http://ddot.readthedocs.io/en/latest/ontology.htmlddot.Ontology.to_ndex) function, and then input the NDEx URL for the ontology to HiView* In contrast to almost all other hierarchical visualization tools, which are limited to simple tree structures, HiView also supports more complicated hierarchies in the form of directed acyclic graphs, in which nodes may have multiple parents. A simple upload to NDEx and visualization in HiView* Upload ontologies to NDEx using the `Ontology.to_ndex()` function.* Setting the parameter `layout="bubble"` (default value) will identify a spanning tree of the DAG and then lay this tree in a space-compact manner. When viewing in HiView, only the edges in the spanning tree are shown, while the other edges can be chosen to be shown. ###Code url, _ = ont.to_ndex(ndex_server=ndex_server, ndex_user=ndex_user, ndex_pass=ndex_pass, layout='bubble') print('To visualize in HiView, go to http://hiview.ucsd.edu in your web browser, and then') print('\t--Enter this into the "NDEx Sever URL" field: %s' % ddot.parse_ndex_server(url)) print('\t--Enter this into the "UUID of the main hierarchy" field: %s' % ddot.parse_ndex_uuid(url)) print('Alternatively, go to %s' % ddot.to_hiview_url(url)) ###Output To visualize in HiView, go to http://hiview.ucsd.edu in your web browser, and then --Enter this into the "NDEx Sever URL" field: http://dev2.ndexbio.org/ --Enter this into the "UUID of the main hierarchy" field: 29c16a02-fa71-11e8-ad43-0660b7976219 Alternatively, go to http://hiview.ucsd.edu/29c16a02-fa71-11e8-ad43-0660b7976219?type=test&server=http://dev2.ndexbio.org ###Markdown An alternative layout by duplicating nodes* Setting the parameter `layout="bubble-collect"` will convert the DAG into a tree by duplicating nodes.* This transformation enables the ontology structure to be visualized without edges crossing. ###Code url, _ = ont.to_ndex(ndex_server=ndex_server, ndex_user=ndex_user, ndex_pass=ndex_pass, layout='bubble-collect') print('To visualize in HiView, go to http://hiview.ucsd.edu in your web browser, and then') print('\t--Enter this into the "NDEx Sever URL" field: %s' % ddot.parse_ndex_server(url)) print('\t--Enter this into the "UUID of the main hierarchy" field: %s' % ddot.parse_ndex_uuid(url)) print('Alternatively, go to %s' % ddot.to_hiview_url(url)) ###Output To visualize in HiView, go to http://hiview.ucsd.edu in your web browser, and then --Enter this into the "NDEx Sever URL" field: http://dev2.ndexbio.org/ --Enter this into the "UUID of the main hierarchy" field: 29ec98b4-fa71-11e8-ad43-0660b7976219 Alternatively, go to http://hiview.ucsd.edu/29ec98b4-fa71-11e8-ad43-0660b7976219?type=test&server=http://dev2.ndexbio.org ###Markdown Visualizing metadata by modifying node labels, colors, and sizes* An Ontology object has a `node_attr` field that is a pandas DataFrame. The rows of the dataframe are genes or terms, and the columns are node attributes.* HiView understands special node attributes to control the node labels, colors, and sizes. ###Code # Set the node labels (default is the gene and term names, as found in Ontology.genes and Ontology.terms) ont.node_attr.loc['S4', 'Label'] = 'S4 alias' ont.node_attr.loc['S5', 'Label'] = 'S5 alias' # Set the fill color of nodes ont.node_attr.loc['C', 'Vis:Fill Color'] = '#7fc97f' ont.node_attr.loc['S1', 'Vis:Fill Color'] = '#beaed4' ont.node_attr.loc['S0', 'Vis:Fill Color'] = '#fdc086' # Set the node sizes (if not set, the default is the term size, as found in Ontology.term_sizes) ont.node_attr.loc['C', 'Size'] = 10 ont.node_attr url, _ = ont.to_ndex(ndex_server=ndex_server, ndex_user=ndex_user, ndex_pass=ndex_pass, layout='bubble-collect') print('To visualize in HiView, go to http://hiview.ucsd.edu in your web browser, and then') print('\t--Enter this into the "NDEx Sever URL" field: %s' % ddot.parse_ndex_server(url)) print('\t--Enter this into the "UUID of the main hierarchy" field: %s' % ddot.parse_ndex_uuid(url)) print('Alternatively, go to %s' % ddot.to_hiview_url(url)) # Clear node attributes (optional) ont.clear_node_attr() ont.node_attr ###Output _____no_output_____ ###Markdown Visualize gene-gene interaction networks alongside the ontology* Every term in an ontology represents a biological function shared among the term's genes. Based on this intuition, those genes should be interacting in different ways, e.g. protein-protein interactions, RNA expression, or genetic interactions.* Gene-gene interaction networks can be uploaded with the ontology to NDEx, so that they can be visualized at the same time in HiView ###Code # Calculate a gene-by-gene similarity matrix using the Resnik semantic similarity definition (see section "Inferring a data-driven ontology") sim, genes = ont.flatten() print(genes) print(np.round(sim, 2)) # Convert the gene-by-gene similarity matrix into a dataframe with a "long" format, where rows represent gene pairs. This conversion can be easily done with ddot.melt_square() import pandas as pd sim_df = pd.DataFrame(sim, index=genes, columns=genes) sim_long = ddot.melt_square(sim_df) sim_long.head() # Create other gene-gene interactions. # For example, these can represent protein-protein interactions or gene co-expression. # Here, we simulate types of interactions by adding a random noise to the Resnik similarity sim_long['example_interaction_type1'] = sim_long['similarity'] + np.random.random(sim_long.shape[0]) / 2. sim_long['example_interaction_type2'] = sim_long['similarity'] + np.random.random(sim_long.shape[0]) / 2. sim_long.head() # Include the above gene-gene interactions by setting the `network` and `main_feature` parameters. url, _ = ont.to_ndex(name="Toy Ontology", ndex_server=ndex_server, ndex_user=ndex_user, ndex_pass=ndex_pass, network=sim_long, main_feature='similarity', layout='bubble-collect') print('To visualize in HiView, go to http://hiview.ucsd.edu in your web browser, and then') print('\t--Enter this into the "NDEx Sever URL" field: %s' % ddot.parse_ndex_server(url)) print('\t--Enter this into the "UUID of the main hierarchy" field: %s' % ddot.parse_ndex_uuid(url)) print('Alternatively, go to %s' % ddot.to_hiview_url(url)) ###Output To visualize in HiView, go to http://hiview.ucsd.edu in your web browser, and then --Enter this into the "NDEx Sever URL" field: http://dev2.ndexbio.org/ --Enter this into the "UUID of the main hierarchy" field: 2b0a3dc6-fa71-11e8-ad43-0660b7976219 Alternatively, go to http://hiview.ucsd.edu/2b0a3dc6-fa71-11e8-ad43-0660b7976219?type=test&server=http://dev2.ndexbio.org ###Markdown Using **pytwanalysis** - (**TwitterAnalysis**) + [PIP Package](https://pypi.org/project/pytwanalysis/)+ [Documentation](https://lianogueira.github.io/pytwanalysis-documentation/) Initialize package ###Code import pytwanalysis as ta ###Output _____no_output_____ ###Markdown Set your mongoDB connection ###Code from pymongo import MongoClient #db connection mongoDBConnectionSTR = "mongodb://localhost:27017" client = MongoClient(mongoDBConnectionSTR) db = client.twitter_DB_API_test1 #choose your DB name here ###Output _____no_output_____ ###Markdown Set up the folder path you want to save all of the ouput files ###Code BASE_PATH = 'D:\\Data\\MyFiles3' ###Output _____no_output_____ ###Markdown Initialize your twitterAnalysis object ###Code myAnalysis = ta.TwitterAnalysis(BASE_PATH, db) ###Output _____no_output_____ ###Markdown Import data from json files into the mongoDB database ###Code # This is the folder path where all of your twitter json files should be JSON_FILES_PATH = 'D:\\Data\\tests\\my_json_files' # Load json files into mongoDB myAnalysis.loadDocFromFile(JSON_FILES_PATH) ###Output _____no_output_____ ###Markdown Request data from Twitter's 7-day Search API-API endpoint: https://api.twitter.com/1.1/search/tweets.json-[Twitter Search API documentation](https://developer.twitter.com/en/docs/twitter-api/v1/tweets/search/overview) ###Code # you authentication keys here - (you can retrive these from your Twitter's developer account) consumer_key = '[your consumer_key]' consumer_secret = '[yourconsumer_secret]' access_token = '[your access_token]' access_token_secret = '[your access_token_secret]' query='term1 OR term2 OR love' # send the request to Twitter and save data into MongoDB response = myAnalysis.search7dayapi(consumer_key, consumer_secret, access_token, access_token_secret, query, result_type= 'mixed', max_count='100', lang='en') ###Output _____no_output_____ ###Markdown Request data from Twitter's Premium Search API30-day API endpoint: https://api.twitter.com/1.1/tweets/search/30day/fullarchive API endpoint: https://api.twitter.com/1.1/tweets/search/fullarchive/-[Twitter Search API documentation](https://developer.twitter.com/en/docs/twitter-api/v1/tweets/search/overview) ###Code # options are "30day" or fullarchive api_name = "fullarchive" # the name of your dev environment - (The one associate with your Twitter developer account) dev_environment = "FullArchDev.json" # your query query = "(term1 OR term2 OR term3) lang:en" # start and end date date_start = "202002150000" date_end = "202002160000" # twitter bearear authentication - (this can be generated from your authentication keys) twitter_bearer = '[your bearer token]' # send the request to Twitter and save data into MongoDB response, next_token = myAnalysis.searchPremiumAPI(twitter_bearer, api_name, dev_environment, query, date_start, date_end, next_token=None, max_count='100') print (next_token) ###Output eyJtYXhJZCI6MTIyODgzMTI5ODU4OTk4NjgxNn0= ###Markdown Create database collections that will be used to analyse the data *Depending on the size of your data, this could take a while...* ###Code # You can set the number of tweets to load at a time. # (Large number may cause out of memory errors, low number may take a long time to run) step = 50000 # Build collections myAnalysis.build_db_collections(step) ###Output _____no_output_____ ###Markdown Export edges from MongoDB This step will create edge files that will be used for graph analysis ###Code # Set up the periods you want to analyze # Set period_arr to None if you don't want to analyze separate periods # Format: Period Name, Period Start Date, Period End Date period_arr = [['P1', '10/08/2017 00:00:00', '10/15/2017 00:00:00'], ['P2', '01/21/2018 00:00:00', '02/04/2018 00:00:00'], ['P3', '02/04/2018 00:00:00', '02/18/2018 00:00:00'], ['P4', '02/18/2018 00:00:00', '03/04/2018 00:00:00']] ## TYPE OF GRAPH EDGES ######################################################## # You can export edges for one type, or for all # Options: user_conn_all, --All user connections # user_conn_mention, --Only Mentions user connections # user_conn_retweet, --Only Retweets user connections # user_conn_reply, --Only Replies user connections # user_conn_quote, --Only Quotes user connections # ht_conn --Hashtag connects - (Hashtgs that were used together) # all --It will export all of the above options TYPE_OF_GRAPH = 'all' myAnalysis.export_mult_types_edges_for_input(period_arr=period_arr, type_of_graph=TYPE_OF_GRAPH) ###Output _____no_output_____ ###Markdown Print initial EDA this will show you the summary information about your data. ###Code myAnalysis.eda_analysis() ###Output _____no_output_____ ###Markdown Automation Analysis. It creates all folders and analysis files based on your given settings IMPORTANT STEP: Choose your settings here before running the automation analysis These variables will help you decide what files you want to see and with which parameters Running the analysis step could take a long time. If you want to run piece by piece so you can see results soon, you can change the flags to 'Y' one at the time TYPE OF GRAPH ANALYSIS ###Code ## TYPE OF GRAPH ANALYSIS ######################################################## # Type of graph analysis # Options: user_conn_all, --All user connections # user_conn_mention, --Only Mentions user connections # user_conn_retweet, --Only Retweets user connections # user_conn_reply, --Only Replies user connections # user_conn_quote, --Only Quotes user connections # ht_conn --Hashtag connects - (Hashtgs that were used together) TYPE_OF_GRAPH = 'user_conn_all' #------------------------------------------------------------ ###Output _____no_output_____ ###Markdown OUTPUT PATH, PERIOD AND BOT SETTINGS ###Code ## OUTPUT PATH, PERIOD AND BOT SETTINGS ######################################################## # Path where you want to save your output files # It will use the path you already set previously, # but you can change here in case you want a new path OUTPUT_PATH = BASE_PATH #Filter bots or not. Options: (None, '0', or '1') IS_BOT_FILTER = None # Same period array you already set previously. # You can change here in case you want something new, # just follow the same format as array in previous step PERIOD_ARR = [['P1', '10/08/2017 00:00:00', '10/15/2017 00:00:00'], ['P2', '01/21/2018 00:00:00', '02/04/2018 00:00:00'], ['P3', '02/04/2018 00:00:00', '02/18/2018 00:00:00'], ['P4', '02/18/2018 00:00:00', '03/04/2018 00:00:00']] #------------------------------------------------------------ ###Output _____no_output_____ ###Markdown FILES TO CREATE OPTIONS Choose which files you want to create ###Code ## FILES TO CREATE OPTIONS # Choose which files you want to create ######################################################## # Creates a separate folder for the top degree nodes #------------------------------------------------------------ CREATE_TOP_NODES_FILES_FLAG = 'Y' # IF you chose CREATE_TOP_NODES_FILES_FLAG='Y', you can also set these settings # We will create subfolder for the top degree nodes based on these number TOP_DEGREE_START = 1 TOP_DEGREE_END = 25 # We will create subfolders for the top degree nodes # for each period based on these numbers PERIOD_TOP_DEGREE_START = 1 PERIOD_TOP_DEGREE_END = 10 # Creates files with the edges of each folder # and a list of nodes and their degree #------------------------------------------------------------ CREATE_NODES_EDGES_FILES_FLAG = 'Y' # Creates the graph visualization files #------------------------------------------------------------ CREATE_GRAPHS_FILES_FLAG = 'Y' # Creates files for topic discovery #------------------------------------------------------------ # Tweet texts for that folder, word cloud, and LDA Model Visualization CREATE_TOPIC_MODEL_FILES_FLAG = 'Y' # If you chose CREATE_TOPIC_MODEL_FILES_FLAG='Y', you can also set this setting # This is the number of topics to send as input to LDA model (Default is 4) NUM_OF_TOPICS = 4 # Creates files with ht frequency #------------------------------------------------------------ # Text files with all hashtags used, wordcloud, and barchart CREATE_HT_FREQUENCY_FILES_FLAG = 'Y' # Creates files with word frequency #------------------------------------------------------------ # Text files with all hashtags used, wordcloud, and barchart CREATE_WORDS_FREQUENCY_FILES_FLAG = 'Y' # If you answer yes to CREATE_WORDS_FREQUENCY_FILES_FLAG, then you can choose # how many words you want to see in your list file. # The number of words to save on the frequency word list file. (Default=5000) TOP_NO_WORD_FILTER = 5000 # Creates files with time series data #------------------------------------------------------------ CREATE_TIMESERIES_FILES_FLAG = 'Y' # Creates graphs with hashtag information #------------------------------------------------------------ # This can be used when you're analyzing user connections, # but still want to see the hashtag connection graph for that group of users CREATE_HT_CONN_FILES_FLAG = 'Y' # IF you chose CREATE_HT_CONN_FILES_FLAG = 'Y', you can also set this setting # This is to ignore the top hashtags in the visualization # Sometimes ignoring the main hashtag can be helpful in visualization to # discovery other important structures within the graph TOP_HT_TO_IGNORE = 2 # Creates louvain communities folder and files #------------------------------------------------------------ CREATE_COMMUNITY_FILES_FLAG = 'N' # If set CREATE_COMMUNITY_FILES_FLAG = 'Y', then you can # set a cutoff number of edges to identify when a folder should be created # If the commty has less edges than this number, it won't create a new folder # Default is 200 COMMTY_EDGE_SIZE_CUTOFF = 200 #------------------------------------------------------------ ## GRAPH OPTIONS ####################################### ######################################################## # In case you want to print full graph, with no reduction, and without node scale CREATE_GRAPH_WITHOUT_NODE_SCALE_FLAG = 'Y' # In case you want to print full graph, with no reduction, but with node scale CREATE_GRAPH_WITH_NODE_SCALE_FLAG = 'Y' # In case you want to print reduced graph CREATE_REDUCED_GRAPH_FLAG = 'Y' # This is the cutoff number of edges to decide if we will print # the graph or not. The logic will remove nodes until it can get # to this max number of edges to plot # If you choose a large number it may take a long time to run. # If you choose a small number it may contract nodes too much or not print the graph at all GRAPH_PLOT_CUTOFF_NO_NODES = 3000 GRAPH_PLOT_CUTOFF_NO_EDGES = 10000 # Reduced Graph settings #------------------------------------------------------------ # This is a percentage number used to remove nodes # so we can be able to plot large graphs. # You can run this logic multiple times with different percentages. # Each time the logic will save the graph file with a different name # according to the parameter given REDUCED_GRAPH_COMTY_PER = 90 # Reduce graph by removing edges with weight less than this number # None if you don't want to use this reduction method REDUCED_GRAPH_REMOVE_EDGE_WEIGHT = None # Continuously reduce graph until it gets to the GRAPH_PLOT_CUTOFF numbers or to 0 REDUCED_GRAPH_REMOVE_EDGES_UNTIL_CUTOFF_FLAG = 'Y' #------------------------------------------------------------ ###Output _____no_output_____ ###Markdown UPDATE OBJECT WITH YOUR CHOICES ###Code # Set configurations myAnalysis.setConfigs(type_of_graph=TYPE_OF_GRAPH, is_bot_Filter=IS_BOT_FILTER, period_arr=PERIOD_ARR, create_nodes_edges_files_flag=CREATE_NODES_EDGES_FILES_FLAG, create_graphs_files_flag=CREATE_GRAPHS_FILES_FLAG, create_topic_model_files_flag=CREATE_TOPIC_MODEL_FILES_FLAG, create_ht_frequency_files_flag=CREATE_HT_FREQUENCY_FILES_FLAG, create_words_frequency_files_flag=CREATE_WORDS_FREQUENCY_FILES_FLAG, create_timeseries_files_flag=CREATE_TIMESERIES_FILES_FLAG, create_top_nodes_files_flag=CREATE_TOP_NODES_FILES_FLAG, create_community_files_flag=CREATE_COMMUNITY_FILES_FLAG, create_ht_conn_files_flag=CREATE_HT_CONN_FILES_FLAG, num_of_topics=NUM_OF_TOPICS, top_no_word_filter=TOP_NO_WORD_FILTER, top_ht_to_ignore=TOP_HT_TO_IGNORE, graph_plot_cutoff_no_nodes=GRAPH_PLOT_CUTOFF_NO_NODES, graph_plot_cutoff_no_edges=GRAPH_PLOT_CUTOFF_NO_EDGES, create_graph_without_node_scale_flag=CREATE_GRAPH_WITHOUT_NODE_SCALE_FLAG, create_graph_with_node_scale_flag=CREATE_GRAPH_WITH_NODE_SCALE_FLAG, create_reduced_graph_flag=CREATE_REDUCED_GRAPH_FLAG, reduced_graph_comty_contract_per=REDUCED_GRAPH_COMTY_PER, reduced_graph_remove_edge_weight=REDUCED_GRAPH_REMOVE_EDGE_WEIGHT, reduced_graph_remove_edges=REDUCED_GRAPH_REMOVE_EDGES_UNTIL_CUTOFF_FLAG, top_degree_start=TOP_DEGREE_START, top_degree_end=TOP_DEGREE_END, period_top_degree_start=PERIOD_TOP_DEGREE_START, period_top_degree_end=PERIOD_TOP_DEGREE_END, commty_edge_size_cutoff=COMMTY_EDGE_SIZE_CUTOFF ) myAnalysis.edge_files_analysis(output_path=OUTPUT_PATH) print("**** END ****") ###Output _____no_output_____ ###Markdown Manual Analysis Examples Create LDA Analysis files ###Code myAnalysis.lda_analysis_files('D:\\Data\\MyFiles', startDate_filter='09/20/2020 00:00:00', endDate_filter='03/04/2021 00:00:00') ###Output _____no_output_____ ###Markdown Create hashtag frequency Analysis files ###Code myAnalysis.ht_analysis_files('D:\\Data\\MyFiles', startDate_filter='09/20/2020 00:00:00', endDate_filter='03/04/2021 00:00:00') ###Output _____no_output_____ ###Markdown Create word frequency Analysis files ###Code myAnalysis.words_analysis_files('D:\\Data\\MyFiles', startDate_filter='09/20/2020 00:00:00', endDate_filter='03/04/2021 00:00:00') ###Output _____no_output_____ ###Markdown PART A: The temperature profile of the samples and plate is determined by detecting the edges, filling and labeling them, and monitoring the temperature at their centroids. Use the function 'edge_detection.input_file' to load the input file ###Code frames = ed.input_file('../musicalrobot/data/10_17_19_PPA_Shallow_plate.tiff') plt.imshow(frames[0]) ###Output _____no_output_____ ###Markdown Crop the input file if required to remove the noise and increase the accuracy of edge detection ###Code crop_frame = [] for frame in frames: crop_frame.append(frame[35:85,40:120]) plt.imshow(crop_frame[0]) plt.colorbar() ###Output _____no_output_____ ###Markdown Use the wrapping function edge_detection.inflection_temp ###Code # Using the wrapping function sorted_regprops, s_temp, p_temp, s_infl, result_df = ed.inflection_temp(crop_frame, 3, 3,'../musicalrobot/data/') result_df ###Output _____no_output_____ ###Markdown Plotting the locations at which the temperature was recorded ###Code # Plotting the original image with the samples # and centroid and plate location plt.imshow(crop_frame[0]) plt.scatter(sorted_regprops[0]['Plate_coord'],sorted_regprops[0]['Row'],c='orange',s=6) plt.scatter(sorted_regprops[0]['Column'],sorted_regprops[0]['Row'],s=6,c='red') plt.title('Sample centroid and plate locations at which the temperature profile is monitored') # Plotting the temperature profile of a sample against the temperature profile # of the plate at a location next to the sample. plt.plot(p_temp[5],s_temp[5]) plt.ylabel('Temperature of the sample($^\circ$C)') plt.xlabel('Temperature of the well plate($^\circ$C)') plt.title('Temperature of the sample against the temperature of the plate') ###Output _____no_output_____ ###Markdown Part B:* The temperature profile of the samples and the plate is obtained by summing the pixel values over individual rows and columns, finding the troughs in the array of all the column and row sums.* The temperature profile is then obtained by monitoring the temperature value at the intersection of peak values in the column and row sums. Load the input file as frames Use the function irtemp.pixel_temp to get the temperature of the samples and at plate locations next to the samples in every frame of the input video. ###Code result_df1 = pa.pixel_temp(crop_frame,n_columns = 3, n_rows = 3, freeze_heat=False, path='../musicalrobot/data/') # Dataframe containing sample coordinates and corresponding melting points result_df1 ###Output _____no_output_____ ###Markdown Creating a Printable Model from a 3D Medical Image A Tutorial on dicom2stl.py[https://github.com/dave3d/dicom2stl](https://github.com/dave3d/dicom2stl) ![heads](https://github.com/dave3d/dicom2stl/blob/main/examples/Data/head_diagram.jpg?raw=true) ###Code import SimpleITK as sitk %matplotlib notebook ###Output _____no_output_____ ###Markdown Digital Imaging and Communications in Medicine (DICOM)DICOM is the standard for the communication and management of **medical imaging information** and related data.DICOM is most commonly used for storing and transmitting medical images enabling the **integration of medical imaging devices** such as scanners, servers, workstations, printers, network hardware, and **picture archiving and communication systems (PACS)** from multiple manufacturers[https://en.wikipedia.org/wiki/DICOM](https://en.wikipedia.org/wiki/DICOM) Imaging Modalities * CT (computed tomography) * MRI (magnetic resonance imaging) * ultrasound * X-ray * fluoroscopy * angiography * mammography * breast tomosynthesis * PET (positron emission tomography) * SPECT (single photon emission computed tomography) * Endoscopy * microscopy and whole slide imaging * OCT (optical coherence tomography). ###Code ct_image = sitk.ReadImage('Data/ct_example.nii.gz') mri_image = sitk.ReadImage('Data/mri_t1_example.nii.gz') import gui gui.MultiImageDisplay(image_list=[ct_image, mri_image], title_list=['CT Head', 'MRI T1 Head']) ###Output _____no_output_____ ###Markdown CT Houndsfield UnitsHounsfield units (HU) are a dimensionless unit universally used in computed tomography (CT) scanning to express CT numbers in a standardized and convenient form. Hounsfield units are obtained from a linear transformation of the measured attenuation coefficients 1 * Water is 0 HU * Air is -1000 HU * Very dense bone is 2000 HU * Metal is 3000 HU [Houndsfield Wikipedia page](https://en.wikipedia.org/wiki/Hounsfield_scale) Image SegmentationThe process of partitioning an image into multiple segments.Typically used to locate objects and boundaries in images.We use thresholding (selecting a range of image intesities), but SimpleITK has a variety of algorithms[SimpleITK Notebooks](https://github.com/InsightSoftwareConsortium/SimpleITK-Notebooks/tree/master/Python) ###Code from myshow import myshow, myshow3d ct_bone = ct_image>200 # To visualize the labels image in RGB with needs a image with 0-255 range ct255_image = sitk.Cast(sitk.IntensityWindowing(ct_bone,0,500.0,0.,255.), sitk.sitkUInt8) ct255_bone = sitk.Cast(ct_bone, sitk.sitkUInt8) myshow(sitk.LabelOverlay(ct255_image, ct255_bone), "Basic Thresholding") ###Output _____no_output_____ ###Markdown Iso-surface extractionExtract a polygonal surface from a 3D image. The most well known algorithm is Marching Cubes (Lorenson & Cline, SIGGRAPH 1987). The 2D version is Marching Squares, shown below![Marching Squares](https://github.com/dave3d/dicom2stl/blob/main/examples/Data/marching_squares.png?raw=true) Marching CubesAnd here is the lookup table for Marching Cubes![Marching Cubes](https://github.com/dave3d/dicom2stl/blob/main/examples/Data/marching_cubes.png?raw=true) dicom2stl.py processing pipelineSimpleITK image processing pipeline * **Shrink** the volume to 256^3 * Apply **anisotripic smoothing** * **Threshold** - Preset tissue types: skin, bone, fat, soft tissue - User specified iso-value * **Median filter** * **Pad** the volume with black VTK mesh pipeline * Run **Marching Cubes** to extract surface * Apply **CleanMesh** filter to merge vertices * Apply **SmoothMesh** filter * Run **polygon reduction** * Write STL ###Code import itkwidgets head = sitk.ReadImage("Data/ct_head.nii.gz") itkwidgets.view(head) import sys, os # download dicom2stl if it's not here already if not os.path.isdir('dicom2stl'): !{'git clone https://github.com/dave3d/dicom2stl.git'} !{sys.executable} dicom2stl/dicom2stl.py -h !{sys.executable} dicom2stl/dicom2stl.py -i 400 -o bone.stl Data/ct_head.nii.gz from dicom2stl.utils import vtkutils mesh = vtkutils.readMesh('bone.stl') itkwidgets.view(head, geometries=[mesh]) ###Output _____no_output_____
5wk_차원축소/차원축소_문제_원본.ipynb
###Markdown 반갑습니다 13기 여러분과제를 진행해 볼게요혹시라도 도저히 모르겠거나 해결이 안되신다면 로 전화주시거나 카톡주세요!! ''' ? ''' 이 있는 부분을 채워주시면 됩니다나는 내 스타일로 하겠다 하시면 그냥 구현 하셔도 됩니다!!참고하셔야 하는 함수들은 링크 달아드렸으니 들어가서 확인해보세요 1) PCA의 과정을 한번 차근차근 밟아 볼거에요 잘 따라 오세요 ###Code import numpy as np import numpy.linalg as lin import matplotlib.pyplot as plt import pandas as pd import random # 기본 모듈들을 불러와 줍니다 x1 = [95, 91, 66, 94, 68, 63, 12, 73, 93, 51, 13, 70, 63, 63, 97, 56, 67, 96, 75, 6] x2 = [56, 27, 25, 1, 9, 80, 92, 69, 6, 25, 83, 82, 54, 97, 66, 93, 76, 59, 94, 9] x3 = [57, 34, 9, 79, 4, 77, 100, 42, 6, 96, 61, 66, 9, 25, 84, 46, 16, 63, 53, 30] # 설명변수 x1, x2, x3의 값이 이렇게 있네요 X = np.stack((x1,x2,x3),axis=0) # 설명변수들을 하나의 행렬로 만들어 줍니다 X = pd.DataFrame(X.T,columns=['x1','x2','x3']) X ###Output _____no_output_____ ###Markdown 1-1) 먼저 PCA를 시작하기 전에 항상!!!!!! 데이터를 scaling 해주어야 해요https://datascienceschool.net/view-notebook/f43be7d6515b48c0beb909826993c856/ 를 참고하시면 도움이 될거에요 ###Code from sklearn.preprocessing import StandardScaler scaler = StandardScaler() X_std = '''?''' X_std features = X_std.T features ###Output _____no_output_____ ###Markdown 1-2) 자 그럼 공분산 행렬을 구해볼게요\https://docs.scipy.org/doc/numpy/reference/generated/numpy.cov.html 를 참고하시면 도움이 될거에요 ###Code cov_matrix = '''?''' cov_matrix ###Output _____no_output_____ ###Markdown 1-3) 이제 고유값과 고유벡터를 구해볼게요방법은 실습코드에 있어요!! ###Code eigenvalues = '''?''' eigenvectors = '''?''' print(eigenvalues) print(eigenvectors) mat = np.zeros((3,3)) mat mat[0][0] = eigenvalues[0] mat[1][1] = eigenvalues[1] mat[2][2] = eigenvalues[2] mat ###Output _____no_output_____ ###Markdown 1-4) 자 이제 고유값 분해를 할 모든 준비가 되었어요 고유값 분해의 곱으로 원래 공분산 행렬을 구해보세요https://docs.scipy.org/doc/numpy/reference/generated/numpy.dot.html 를 참고해서 행렬 끼리 곱하시면 됩니다행렬 곱으로 eigenvector x mat x eigenvector.T 하면 될거에요 ###Code np.dot(np.dot(eigenvectors,mat),eigenvectors.T) ###Output _____no_output_____ ###Markdown 1-5) 마지막으로 고유 벡터 축으로 값을 변환해 볼게요함수로 한번 정의해 보았어요https://docs.scipy.org/doc/numpy/reference/generated/numpy.concatenate.html ###Code def new_coordinates(X,eigenvectors): for i in range(eigenvectors.shape[0]): if i == 0: new = [X.dot(eigenvectors.T[i])] else: new = np.concatenate((new,'''?'''),axis=0) return new.T # 모든 고유 벡터 축으로 데이터를 projection한 값입니다 new_coordinates(X_std,eigenvectors) # 새로운 축으로 변환되어 나타난 데이터들입니다 ###Output _____no_output_____ ###Markdown 2) PCA를 구현해 보세요위의 과정을 이해하셨다면 충분히 하실 수 있을거에요 ###Code from sklearn.preprocessing import StandardScaler def MYPCA(X,number): scaler = StandardScaler() x_std = '''?''' features = x_std.T cov_matrix = '''?''' eigenvalues = '''?''' eigenvectors = '''?''' new_coordinates(x_std,eigenvectors) new_coordinate = new_coordinates(x_std,eigenvectors) index = eigenvalues.argsort() index = list(index) for i in range(number): if i==0: new = [new_coordinate[:,index.index(i)]] else: new = np.concatenate(([new_coordinate[:,index.index(i)]],new),axis=0) return new.T MYPCA(X,3) # 새로운 축으로 잘 변환되어서 나타나나요? # 위에서 했던 PCA랑은 차이가 있을 수 있어요 왜냐하면 위에서는 고유값이 큰 축 순서로 정렬을 안했었거든요 ###Output _____no_output_____ ###Markdown 3) sklearn이랑 비교를 해볼까요?https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html 를 참고하시면 도움이 될거에요 ###Code from sklearn.decomposition import PCA pca = '''?''' '''?''' MYPCA(X,3) ###Output _____no_output_____ ###Markdown 4) MNIST data에 적용을 해볼게요!mnist data를 따로 내려받지 않게 압축파일에 같이 두었어요~!!!mnist-original.mat 파일과 같은 위치에서 주피터 노트북을 열어주세요~!!! ###Code import numpy as np import numpy.linalg as lin import matplotlib.pyplot as plt import pandas as pd from sklearn.datasets import fetch_mldata from scipy import io %matplotlib inline from mpl_toolkits.mplot3d import Axes3D # mnist 손글씨 데이터를 불러옵니다 mnist = io.loadmat('mnist-original.mat') X = mnist['data'].T y = mnist['label'].T # data information # 7만개의 작은 숫자 이미지 # 행 열이 반대로 되어있음 -> 전치 # grayscale 28x28 pixel = 784 feature # 각 picel은 0~255의 값 # label = 1~10 label이 총 10개인거에 주목하자 # data를 각 픽셀에 이름붙여 표현 feat_cols = [ 'pixel'+str(i) for i in range(X.shape[1]) ] df = pd.DataFrame(X,columns=feat_cols) df.head() # df에 라벨 y를 붙여서 데이터프레임 생성 df['y'] = y df ###Output _____no_output_____
matplot-tutorial.ipynb
###Markdown CW-07 matplotlib Tutorial Exercise*Lance Clifner, Eric Freda*CS-510October 11, 2016 Simple PlotIn this document, we will work through the example in section 1.4.2 in the matplotlib Tutorial. This tutorial can be found at: http://www.scipy-lectures.org/intro/matplotlib/matplotlib.htmlThe first step in the exercise is to calculate a string of sine and cosine values.The code is commented to explain what is being done in each step. ###Code # get an array of evenly-spaced values (in radians) to be used with the # sine and cosine functions. # the N-dimensional array has a total of 256 elements, # and the values include the end points of the range X = np.linspace( -np.pi, np.pi, 256, endpoint=True ) # uncomment these lines for debug purposes to see the data type and values of the X array #type( X ) #X # get the array of sine and cosine values represented by the X array of radians S = np.sin( X ) C = np.cos( X ) # uncomment these lines to see the type and contents of the S and C arrays #type( S ) #type( C ) #S, C # let's plot the sine and cosine values against the X values plt.plot( X, S ) plt.plot( X, C ) # normally, in a python script, in order to visualize the resultant plot, # we must force it to be displayed. The plt command to force the display is: #plt.show() # However, with this notebook, the magic line, %matplotlib inline, at the top of the # document causes the plot to appear automatically when plot is called. # Run this code, and note that the plot below runs from -pi to +pi, following the # contents of the X array. ###Output _____no_output_____ ###Markdown In this next segment, we will work on customizing the sine/cosine plot above. Note that the resultant plot doesn't look pretty (meaning symmetric and well-cropped), but that is by design. ###Code # Note that the global variables and values from earlier code segments persist # through subsequent code seqments. Thus we can continue working without having to # copy the code from earlier seqments. # linestyles can be found from (uncomment these lines to report the valid linestyle choices) # note that the linestyles don't say what they are (dashed, solid, etc), so you should # try them out to see what they do: #from matplotlib import lines #lines.lineStyles.keys() # create a new figure of size 8x6 inches, using 100 dots per inch fig = plt.figure( figsize=(8,6), dpi=100 ) # Note that a matplot figure is a top level container that holds all sorts of matplot elements # Note that a figure doesn't draw or display anything, is is simply a container of data. # create a new subplot from a grid of 1x1 plt.subplot( 1, 1, 1 ) # note that this creates a plot which runs from 0 to 1 on the x- and y-axes, # but because our figure is not square (it's 8x6), the subplot also appears rectangular # so the two axes are not equally scaled # now, we will plot the sine with orange and a continuous width of pi pixels plt.plot( X, S, color="orange", linewidth=np.pi, linestyle="-" ) # curiously, this plot killed our subplot and went back to the axial dimensions of our # first plot, but the pixel dimensions seem to hold true (that is 800 x 600 pixels) # now plot the cosine with a pink dashed line plt.plot( X, C, color="pink", linewidth=5.5, linestyle="--" ) # note that the most recent plot draws "on-top" of the previous plots. # set x tic marks, don't align them with the x limits, but do make them equi-spaced plt.xticks( np.linspace( -4, 4, 9, endpoint=True ) ) # set limits on the x-axis, make these smaller than the actual x-range and assymmetric plt.xlim( -3, 2.5 ) # note that we have to put the x-limit after the tics, otherwise the tics force the # xlimits to be the tic range # Set y ticks plt.yticks( np.linspace( -1, 1, 11, endpoint=True ) ) # Set y limits to be just past the min/max of the curves--note this is also asymmetric plt.ylim( -1.05, 2 ) # note that the upper y limit exceeds the range of the y tics, so there are no tics past 1 # no, the result doesn't look pretty, but it is exactly what we told it to be # save this plot as a png file, with a non-standard dpi plt.savefig( "cw_07_plot.png", dpi=58 ) # note that the file format is specified by the extension of the given filename. # thus, .pdf, .jpg, etc. ###Output _____no_output_____ ###Markdown In this next segment, we will toy with additional customization of the plot, including axes, labels, and legends. We are bypassing some of the tutorial points, as we covered those in the previous segment. For the record, we are skipping: colors & line widths, limits, and tics.We are doing tic labels, moving spines, legend, and annotating the plot. ###Code # In this cell, we will move the spines to the center of the plot, just like axes on a graph # note that the spines need to be moved before the limits and tics are set axes = plt.gca() # note that gca stands for 'get current axes', because it gets all the axes # there are 4 spines, one on each side of the plotted area # we will make two of these disappear by setting the color to nothing # we want to keep the two spines that current have labels attached to them axes.spines[ 'top' ].set_color( 'none' ) axes.spines[ 'right' ].set_color( 'none' ) axes.xaxis.set_ticks_position( 'bottom' ) # this clears the tics from the top axes.yaxis.set_ticks_position( 'left' ) # this clears the tics from the right axes.spines[ 'bottom' ].set_position( ('data', 0) ) # stick it thru the origin axes.spines[ 'left' ].set_position( ('data', 0) ) # stick it thru the origin # let's play with the tic labels # set the actual location of the ticks, then specify the labels for those tics # we need to have the same number of labels as there are tic marks specified plt.xticks( np.linspace( -np.pi, np.pi, 5, endpoint=True ), [ r'$-\pi$', r'$-\pi/2$', r'$0$', r'$\pi/2$', r'$\pi$']) # set the limits far enough out so that the tic marks are all seen plt.xlim( -4, 4 ) # we can also make a specific list of tic marks, rather than an equi-spaced generated list plt.yticks( [-1, -0.707, 0, 0.707, 1], [ r'$-1$', r'$-\sqrt{2}/2$', r'$0$', r'$\sqrt{2}/2$', r'$1$']) # let's add a legend to the most open area of the plot plt.plot( X, S, color="green", linewidth=3, linestyle='--', label="Sine") plt.plot( X, C, color="purple", linewidth=3, linestyle=':', label="Cosine") plt.legend( loc='upper left' ) # let's annotate a the points at the pi/4 annot = np.pi/4 plt.plot( [annot, annot], [0, np.cos( annot )], color='purple', linewidth=1, linestyle="--") plt.scatter( [annot ], [np.cos( annot )], 20, color='purple' ) plt.annotate( r'$sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$', xy=(annot,np.sin(annot)), xycoords='data', xytext=(-10,+40), textcoords='offset points', fontsize=12, arrowprops=dict( arrowstyle="->", color='purple', connectionstyle="arc3, rad=.2" )) ###Output _____no_output_____ ###Markdown In the next three code segments, we will look at the contour, imshow, and 3D plots. ###Code # this is the contour plot exercise def f(x, y): return (1 - x / 2 + x ** 5 + y ** 3) * np.exp(-x ** 2 -y ** 2) n = 256 x = np.linspace(-3, 3, n) y = np.linspace(-3, 3, n) X, Y = np.meshgrid(x, y) # must set axes before plotting the data plt.axes([0.025, 0.025, 0.95, 0.95]) # change to the hot map colors plt.contourf(X, Y, f(X, Y), 8, alpha=.75, cmap=plt.cm.hot) C = plt.contour(X, Y, f(X, Y), 8, colors='black', linewidth=.5) # label the contours as per the the axes plt.clabel(C, inline=1, fontsize=10) # eliminate the tics around the edges (spines) of the plot plt.xticks(()) plt.yticks(()) # this is the imshow plot exercise def f(x, y): return (1 - x / 2 + x ** 5 + y ** 3) * np.exp(-x ** 2 - y ** 2) n = 10 x = np.linspace(-3, 3, 4 * n) y = np.linspace(-3, 3, 3 * n) X, Y = np.meshgrid(x, y) # set the axes before plotting plt.axes([0.025, 0.025, 0.95, 0.95]) plt.imshow(f(X, Y), cmap='bone', interpolation='nearest', origin='lower') # add the color bar for the color map plt.colorbar(shrink=.92) # remove the tics from the spines plt.xticks(()) plt.yticks(()) # this is the 3D plot exercise from mpl_toolkits.mplot3d import Axes3D fig = plt.figure() ax = Axes3D(fig) X = np.arange(-4, 4, 0.25) Y = np.arange(-4, 4, 0.25) X, Y = np.meshgrid(X, Y) R = np.sqrt(X**2 + Y**2) Z = np.sin(R) ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='hot') # set the lower z-limit ax.set_zlim(top=2,bottom=-2) ax.set_ylim(top=3.9) ax.set_xlim(right=3.9) # draw the bottom contour colors ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=plt.cm.hot) ax.contourf(X, Y, Z, zdir='z', offset=-2, cmap=plt.cm.hot) ###Output /usr/lib/python3/dist-packages/matplotlib/collections.py:571: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison if self._edgecolors == str('face'):
tutorials/2. Introduction to Submodular Optimization.ipynb
###Markdown 2. Introduction to Submodular OptimizationSo far we've focused on looking at submodular functions in action, primarily in the context of identifying a good selection of samples for the purpose of training machine learning models. While we have covered at a high level how submodular selection works, in this tutorial we will focus on the math and mechanics behind submodular selection.As mentioned before, submodular selection is a process of greedily selecting objects from a large set of objects in such a manner that a submodular function is maximized. This general definition allows submodular selection to be applied in a wide variety of areas. In our context we'll be focusing on the selection of samples for data analysis or machine learning purpose and using terminology common to that field.The equation for a feature based function is below.\begin{equation}f(X) = \sum\limits_{u \in U} w_{u} \phi_{u} \left( \sum\limits_{x \in X} m_{u}(x) \right)\end{equation}In this equation, $U$ refers to all features in a sample, and $u$ refers to a specific feature. $X$ refers to the original data set that we are selecting from and $x$ refers to a single sample from that data set. $w$ is a vector of weights that indicate how important each feature is, with $w_{u}$ being a scalar referring to how important feature $u$ is. Frequently these weights are uniform. $\phi$ refers to a set of saturating functions, such as $sqrt(X)$ or $log(X + 1)$ that incude a property of "diminishing returns" on the feature values. These diminishing returns will become very important later.When we maximize a submodular function, our goal is to, for each iteration, select the sample that yields the largest gain when added to the growing subset. This gain is dependant on the items that are already in the subset due to the saturating function. Let's talk through an example of selecting the best subset. ###Code %pylab inline import seaborn; seaborn.set_style('whitegrid') ###Output Populating the interactive namespace from numpy and matplotlib ###Markdown Let's generate a two dimensional data set for the purposes of vissualization, where some samples are high in one of the features and some samples are high in the other feature. We do this purposefully so as to illustrate the effect that selection has on the marginal gain of each sample during the selection process. ###Code numpy.random.seed(3) X = numpy.concatenate([numpy.random.normal([0.5, 0.1], [0.3, 0.05], size=(50, 2)), numpy.random.normal([0.1, 0.5], [0.05, 0.4], size=(50, 2))]) X = numpy.abs(X) plt.figure(figsize=(8, 6)) plt.title("Randomly generated data", fontsize=16) plt.scatter(X[:,0], X[:,1], s=20) plt.xlim(0, 1.4) plt.ylim(0, 1.4) plt.show() ###Output _____no_output_____ ###Markdown Now let's implement a function that calculates the gain of each sample with respect to some growing subset. Since we are using a feature based function, the gain requires summing column-wise down each sample in the growing set and then applying the saturating function in order to squash it. We can speed this up significantly by pre-computing the column-wise sums of the current selected set, so that we only need to add in the new sample to be considered. ###Code def gains(X, z=None): concave_sums = numpy.sum(z, axis=0) if z is not None else numpy.zeros(X.shape[1]) concave_func = numpy.log(concave_sums + 1) gains = [] for x in X: gain = numpy.sum(numpy.log(concave_sums + x + 1) - concave_func).sum() gains.append(gain) return gains ###Output _____no_output_____ ###Markdown We can now use this function in order to calculate the gain of each of the samples in our set if we were to use it as the first sample in our subset. ###Code gain1 = gains(X) plt.figure(figsize=(8, 6)) plt.title("Gain if adding this item", fontsize=16) plt.scatter(X[:,0], X[:,1], c=gain1, cmap='Purples') plt.colorbar() plt.show() ###Output _____no_output_____ ###Markdown We see a clear trend that the samples with high values in either of the two dimensions have high gains, whereas those samples with small values in each dimension have small gains. Given the simplicity of the feature-based selection algorithm this makes sense---high feature values correspond to higher gains. What happens if we select the sample with the highest gain and then recalculate gains? ###Code idx = numpy.argmax(gain1) z = [X[idx]] gain2 = gains(X, z) plt.figure(figsize=(8, 6)) plt.title("Gain if adding this item", fontsize=16) plt.scatter(X[:,0], X[:,1], c=gain2, cmap='Purples') plt.colorbar() plt.scatter(X[idx, 0], X[idx, 1], c='c', s=75, label="First Selected Sample") plt.legend(fontsize=14) plt.show() ###Output _____no_output_____ ###Markdown It looks like we select a sample that has the highest magnitude single feature value. While the saturating function will flatten values as the set gets larger, with small feature values and no samples in the subset yet, the raw feature value is roughly the gain. Interestingly, it looks like all of the samples that have higher values for the y-axis now have a diminished marginal gain. The highest gain samples now look like they come from those with high x-axis values. ###Code idx = numpy.argmax(gain2) z += [X[idx]] gain3 = gains(X, z) plt.figure(figsize=(8, 6)) plt.title("Gain if adding this item", fontsize=16) plt.scatter(X[:,0], X[:,1], c=gain3, cmap='Purples') plt.colorbar() plt.scatter(X[idx, 0], X[idx, 1], c='c', s=75, label="Highest Gain") plt.legend(fontsize=14) plt.show() ###Output _____no_output_____ ###Markdown To complete the selection process, we would greedily select samples from the full set until the desired number of samples have been reached. This requires scanning over the full set (minus the samples that have been selected) one full time for each samle that we would like to select, coting $nm$ time where $n$ is the number of samples in the full set and $m$ is the number of samples that onne would like to select. Because sometimes our goal is to induce a ranking over the full set, i.e., dtermine the order of selection for each sample, this becomes quadratic time.Is it possible to do better than than this? The short answer is yes, and the reason lies in non-negativity constraint on the input data and on the saturating function. ###Code import pandas gain_table = pandas.DataFrame({"x" : X[:,0], "y" : X[:,1], "gain 1": gain1, "gain 2": gain2, "gain 3": gain3}) gain_table[['x', 'y', 'gain 1', 'gain 2', 'gain 3']].head() ###Output _____no_output_____
jupyter/orders.ipynb
###Markdown [index](./index.ipynb) | [accounts](./accounts.ipynb) | [orders](./orders.ipynb) | [trades](./trades.ipynb) | [positions](./positions.ipynb) | [historical](./historical.ipynb) | [streams](./streams.ipynb) | [errors](./exceptions.ipynb) OrdersThis notebook provides an example of + a MarketOrder + a simplyfied way for a MarketOrder by using contrib.requests.MarketOrderRequest + a LimitOrder with an expiry datetime by using *GTD* and contrib.requests.LimitOrderRequest + canceling a GTD order create a marketorder request with a TakeProfit and a StopLoss order when it gets filled. ###Code import json import oandapyV20 import oandapyV20.endpoints.orders as orders from exampleauth import exampleauth accountID, access_token = exampleauth.exampleAuth() client = oandapyV20.API(access_token=access_token) # create a market order to enter a LONG position 10000 EUR_USD, stopLoss @1.07 takeProfit @1.10 ( current: 1.055) # according to the docs at developer.oanda.com the requestbody looks like: mktOrder = { "order": { "timeInForce": "FOK", # Fill-or-kill "instrument": "EUR_USD", "positionFill": "DEFAULT", "type": "MARKET", "units": 10000, # as integer "takeProfitOnFill": { "timeInForce": "GTC", # Good-till-cancelled "price": 1.10 # as float }, "stopLossOnFill": { "timeInForce": "GTC", "price": "1.07" # as string } } } r = orders.OrderCreate(accountID=accountID, data=mktOrder) print("Request: ", r) print("MarketOrder specs: ", json.dumps(mktOrder, indent=2)) ###Output Request: v3/accounts/101-004-1435156-001/orders MarketOrder specs: { "order": { "timeInForce": "FOK", "instrument": "EUR_USD", "stopLossOnFill": { "timeInForce": "GTC", "price": "1.07" }, "positionFill": "DEFAULT", "units": 10000, "takeProfitOnFill": { "timeInForce": "GTC", "price": 1.1 }, "type": "MARKET" } } ###Markdown Well that looks fine, but constructing orderbodies that way is not really what we want. Types are not checked for instance and all the defaults need to be supplied.This kind of datastructures can become complex, are not easy to read or construct and are prone to errors. Types and definitionsOanda uses several *types* and *definitions* througout their documentation. These types are covered by the *oandapyV20.types* package and the definitions by the *oandapyV20.definitions* package. Contrib.requestsThe *oandapyV20.contrib.requests* package offers classes providing an easy way to construct the data forthe *data* parameter of the *OrderCreate* endpoint or the *TradeCRCDO* (Create/Replace/Cancel Dependent Orders). The *oandapyV20.contrib.requests* package makes use of the *oandapyV20.types* and *oandapyV20.definitions*.Let's improve the previous example by making use of *oandapyV20.contrib.requests*: ###Code import json import oandapyV20 import oandapyV20.endpoints.orders as orders from oandapyV20.contrib.requests import ( MarketOrderRequest, TakeProfitDetails, StopLossDetails) from exampleauth import exampleauth accountID, access_token = exampleauth.exampleAuth() client = oandapyV20.API(access_token=access_token) # create a market order to enter a LONG position 10000 EUR_USD mktOrder = MarketOrderRequest(instrument="EUR_USD", units=10000, takeProfitOnFill=TakeProfitDetails(price=1.10).data, stopLossOnFill=StopLossDetails(price=1.07).data ).data r = orders.OrderCreate(accountID=accountID, data=mktOrder) print("Request: ", r) print("MarketOrder specs: ", json.dumps(mktOrder, indent=2)) ###Output Request: v3/accounts/101-004-1435156-001/orders MarketOrder specs: { "order": { "timeInForce": "FOK", "instrument": "EUR_USD", "positionFill": "DEFAULT", "type": "MARKET", "units": "10000", "takeProfitOnFill": { "timeInForce": "GTC", "price": "1.10000" }, "stopLossOnFill": { "timeInForce": "GTC", "price": "1.07000" } } } ###Markdown As you can see, the specs contain price values that were converted to strings and the defaults *positionFill* and *timeInForce* were added. Using *contrib.requests* makes it very easy to construct the orderdata body for order requests. Parameters for those requests are also validated.Next step, place the order: ###Code rv = client.request(r) print("Response: {}\n{}".format(r.status_code, json.dumps(rv, indent=2))) ###Output Response: 201 { "orderCancelTransaction": { "time": "2017-03-09T13:17:59.319422181Z", "userID": 1435156, "batchID": "7576", "orderID": "7576", "id": "7577", "type": "ORDER_CANCEL", "accountID": "101-004-1435156-001", "reason": "STOP_LOSS_ON_FILL_LOSS" }, "lastTransactionID": "7577", "orderCreateTransaction": { "timeInForce": "FOK", "instrument": "EUR_USD", "batchID": "7576", "accountID": "101-004-1435156-001", "units": "10000", "takeProfitOnFill": { "timeInForce": "GTC", "price": "1.10000" }, "time": "2017-03-09T13:17:59.319422181Z", "userID": 1435156, "positionFill": "DEFAULT", "id": "7576", "type": "MARKET_ORDER", "stopLossOnFill": { "timeInForce": "GTC", "price": "1.07000" }, "reason": "CLIENT_ORDER" }, "relatedTransactionIDs": [ "7576", "7577" ] } ###Markdown Lets analyze that. We see an *orderCancelTransaction* and *reason* **STOP_LOSS_ON_FILL_LOSS**. So the order was not placed ? Well it was placed and cancelled right away. The marketprice of EUR_USD is at the moment of this writing 1.058. So the stopLoss order at 1.07 makes no sense. The status_code of 201 is as the specs say: http://developer.oanda.com/rest-live-v20/order-ep/ .Lets change the stopLoss level below the current price and place the order once again. ###Code mktOrder = MarketOrderRequest(instrument="EUR_USD", units=10000, takeProfitOnFill=TakeProfitDetails(price=1.10).data, stopLossOnFill=StopLossDetails(price=1.05).data ).data r = orders.OrderCreate(accountID=accountID, data=mktOrder) rv = client.request(r) print("Response: {}\n{}".format(r.status_code, json.dumps(rv, indent=2))) ###Output Response: 201 { "orderFillTransaction": { "accountBalance": "102107.4442", "instrument": "EUR_USD", "batchID": "7578", "pl": "0.0000", "accountID": "101-004-1435156-001", "units": "10000", "tradeOpened": { "tradeID": "7579", "units": "10000" }, "financing": "0.0000", "price": "1.05563", "userID": 1435156, "orderID": "7578", "time": "2017-03-09T13:22:13.832587780Z", "id": "7579", "type": "ORDER_FILL", "reason": "MARKET_ORDER" }, "lastTransactionID": "7581", "orderCreateTransaction": { "timeInForce": "FOK", "instrument": "EUR_USD", "batchID": "7578", "accountID": "101-004-1435156-001", "units": "10000", "takeProfitOnFill": { "timeInForce": "GTC", "price": "1.10000" }, "time": "2017-03-09T13:22:13.832587780Z", "userID": 1435156, "positionFill": "DEFAULT", "id": "7578", "type": "MARKET_ORDER", "stopLossOnFill": { "timeInForce": "GTC", "price": "1.05000" }, "reason": "CLIENT_ORDER" }, "relatedTransactionIDs": [ "7578", "7579", "7580", "7581" ] } ###Markdown We now see an *orderFillTransaction* for 10000 units EUR_USD with *reason* **MARKET_ORDER**.Lets retrieve the orders. We should see the *stopLoss* and *takeProfit* orders as *pending*: ###Code r = orders.OrdersPending(accountID=accountID) rv = client.request(r) print("Response:\n", json.dumps(rv, indent=2)) ###Output Response: { "lastTransactionID": "7581", "orders": [ { "createTime": "2017-03-09T13:22:13.832587780Z", "triggerCondition": "TRIGGER_DEFAULT", "timeInForce": "GTC", "price": "1.05000", "tradeID": "7579", "id": "7581", "state": "PENDING", "type": "STOP_LOSS" }, { "createTime": "2017-03-09T13:22:13.832587780Z", "triggerCondition": "TRIGGER_DEFAULT", "timeInForce": "GTC", "price": "1.10000", "tradeID": "7579", "id": "7580", "state": "PENDING", "type": "TAKE_PROFIT" }, { "createTime": "2017-03-09T11:45:48.928448770Z", "triggerCondition": "TRIGGER_DEFAULT", "timeInForce": "GTC", "price": "1.05000", "tradeID": "7572", "id": "7574", "state": "PENDING", "type": "STOP_LOSS" }, { "createTime": "2017-03-07T09:18:51.563637768Z", "triggerCondition": "TRIGGER_DEFAULT", "timeInForce": "GTC", "price": "1.05000", "tradeID": "7562", "id": "7564", "state": "PENDING", "type": "STOP_LOSS" }, { "createTime": "2017-03-07T09:08:04.219010730Z", "triggerCondition": "TRIGGER_DEFAULT", "timeInForce": "GTC", "price": "1.05000", "tradeID": "7558", "id": "7560", "state": "PENDING", "type": "STOP_LOSS" } ] } ###Markdown Depending on the state of your account you should see at least the orders associated with the previously executed marketorder. The *relatedTransactionIDs* should be in the *orders* output of OrdersPending().Now lets cancel all pending TAKE_PROFIT orders: ###Code r = orders.OrdersPending(accountID=accountID) rv = client.request(r) idsToCancel = [order.get('id') for order in rv['orders'] if order.get('type') == "TAKE_PROFIT"] for orderID in idsToCancel: r = orders.OrderCancel(accountID=accountID, orderID=orderID) rv = client.request(r) print("Request: {} ... response: {}".format(r, json.dumps(rv, indent=2))) ###Output Request: v3/accounts/101-004-1435156-001/orders/7580/cancel ... response: { "orderCancelTransaction": { "time": "2017-03-09T13:26:07.480994423Z", "userID": 1435156, "batchID": "7582", "orderID": "7580", "id": "7582", "type": "ORDER_CANCEL", "accountID": "101-004-1435156-001", "reason": "CLIENT_REQUEST" }, "lastTransactionID": "7582", "relatedTransactionIDs": [ "7582" ] } ###Markdown create a LimitOrder with a *GTD* "good-til-date"Create a LimitOrder and let it expire: *2018-07-02T00:00:00* using *GTD*. Make sure it is in the futurewhen you run this example! ###Code from oandapyV20.contrib.requests import LimitOrderRequest # make sure GTD_TIME is in the future # also make sure the price condition is not met # and specify GTD_TIME as UTC or local # GTD_TIME="2018-07-02T00:00:00Z" # UTC GTD_TIME="2018-07-02T00:00:00" ordr = LimitOrderRequest(instrument="EUR_USD", units=10000, timeInForce="GTD", gtdTime=GTD_TIME, price=1.08) print(json.dumps(ordr.data, indent=4)) r = orders.OrderCreate(accountID=accountID, data=ordr.data) rv = client.request(r) print(json.dumps(rv, indent=2)) ###Output { "order": { "price": "1.08000", "timeInForce": "GTD", "positionFill": "DEFAULT", "type": "LIMIT", "instrument": "EUR_USD", "gtdTime": "2018-07-02T00:00:00", "units": "10000" } } { "relatedTransactionIDs": [ "8923" ], "lastTransactionID": "8923", "orderCreateTransaction": { "price": "1.08000", "triggerCondition": "DEFAULT", "positionFill": "DEFAULT", "type": "LIMIT_ORDER", "requestID": "42440345970496965", "partialFill": "DEFAULT", "gtdTime": "2018-07-02T04:00:00.000000000Z", "batchID": "8923", "id": "8923", "userID": 1435156, "accountID": "101-004-1435156-001", "timeInForce": "GTD", "reason": "CLIENT_ORDER", "instrument": "EUR_USD", "time": "2018-06-10T12:06:30.259079220Z", "units": "10000" } } ###Markdown Request the pending orders ###Code r = orders.OrdersPending(accountID=accountID) rv = client.request(r) print(json.dumps(rv, indent=2)) ###Output { "orders": [ { "price": "1.08000", "triggerCondition": "DEFAULT", "state": "PENDING", "positionFill": "DEFAULT", "partialFill": "DEFAULT_FILL", "gtdTime": "2018-07-02T04:00:00.000000000Z", "id": "8923", "timeInForce": "GTD", "type": "LIMIT", "instrument": "EUR_USD", "createTime": "2018-06-10T12:06:30.259079220Z", "units": "10000" } ], "lastTransactionID": "8923" } ###Markdown Cancel the GTD orderFetch the *orderID* from the *pending orders* and cancel the order. ###Code r = orders.OrderCancel(accountID=accountID, orderID=8923) rv = client.request(r) print(json.dumps(rv, indent=2)) ###Output { "relatedTransactionIDs": [ "8924" ], "orderCancelTransaction": { "accountID": "101-004-1435156-001", "time": "2018-06-10T12:07:35.453416669Z", "orderID": "8923", "reason": "CLIENT_REQUEST", "requestID": "42440346243149289", "type": "ORDER_CANCEL", "batchID": "8924", "id": "8924", "userID": 1435156 }, "lastTransactionID": "8924" } ###Markdown Request pendig orders once again ... the 8923 should be gone ###Code r = orders.OrdersPending(accountID=accountID) rv = client.request(r) print(json.dumps(rv, indent=2)) ###Output { "orders": [], "lastTransactionID": "8924" } ###Markdown [index](./index.ipynb) | [accounts](./accounts.ipynb) | [orders](./orders.ipynb) | [trades](./trades.ipynb) | [positions](./positions.ipynb) | [historical](./historical.ipynb) | [streams](./streams.ipynb) | [errors](./exceptions.ipynb) OrdersThis notebook provides an example of + a MarketOrder + a simplyfied way for a MarketOrder by using contrib.requests.MarketOrderRequest + a LimitOrder with an expiry datetime by using *GTD* and contrib.requests.LimitOrderRequest + canceling a GTD order create a marketorder request with a TakeProfit and a StopLoss order when it gets filled. ###Code import json import oandapyV20 import oandapyV20.endpoints.orders as orders from exampleauth import exampleauth accountID, access_token = exampleauth.exampleAuth() client = oandapyV20.API(access_token=access_token) # create a market order to enter a LONG position 10000 EUR_USD, stopLoss @1.07 takeProfit @1.10 ( current: 1.055) # according to the docs at developer.oanda.com the requestbody looks like: mktOrder = { "order": { "timeInForce": "FOK", # Fill-or-kill "instrument": "EUR_USD", "positionFill": "DEFAULT", "type": "MARKET", "units": 10000, # as integer "takeProfitOnFill": { "timeInForce": "GTC", # Good-till-cancelled "price": 1.10 # as float }, "stopLossOnFill": { "timeInForce": "GTC", "price": "1.07" # as string } } } #try: ## rv = client.request(r) #except V20Error as err: # print("V20Error occurred: {}".format(err)) r = orders.OrderCreate(accountID=accountID, data=mktOrder) print("Request: ", r) print("MarketOrder specs: ", json.dumps(mktOrder, indent=2)) ###Output Request: v3/accounts/101-001-14065046-001/orders MarketOrder specs: { "order": { "timeInForce": "FOK", "instrument": "EUR_USD", "positionFill": "DEFAULT", "type": "MARKET", "units": 10000, "takeProfitOnFill": { "timeInForce": "GTC", "price": 1.1 }, "stopLossOnFill": { "timeInForce": "GTC", "price": "1.07" } } } ###Markdown Well that looks fine, but constructing orderbodies that way is not really what we want. Types are not checked for instance and all the defaults need to be supplied.This kind of datastructures can become complex, are not easy to read or construct and are prone to errors. Types and definitionsOanda uses several *types* and *definitions* througout their documentation. These types are covered by the *oandapyV20.types* package and the definitions by the *oandapyV20.definitions* package. Contrib.requestsThe *oandapyV20.contrib.requests* package offers classes providing an easy way to construct the data forthe *data* parameter of the *OrderCreate* endpoint or the *TradeCRCDO* (Create/Replace/Cancel Dependent Orders). The *oandapyV20.contrib.requests* package makes use of the *oandapyV20.types* and *oandapyV20.definitions*.Let's improve the previous example by making use of *oandapyV20.contrib.requests*: ###Code import json import oandapyV20 import oandapyV20.endpoints.orders as orders from oandapyV20.contrib.requests import ( MarketOrderRequest, TakeProfitDetails, StopLossDetails) from exampleauth import exampleauth accountID, access_token = exampleauth.exampleAuth() client = oandapyV20.API(access_token=access_token) # create a market order to enter a LONG position 10000 EUR_USD mktOrder = MarketOrderRequest(instrument="EUR_USD", units=10000, takeProfitOnFill=TakeProfitDetails(price=1.10).data, stopLossOnFill=StopLossDetails(price=1.07).data ).data r = orders.OrderCreate(accountID=accountID, data=mktOrder) print("Request: ", r) print("MarketOrder specs: ", json.dumps(mktOrder, indent=2)) ###Output Request: v3/accounts/101-004-1435156-001/orders MarketOrder specs: { "order": { "timeInForce": "FOK", "instrument": "EUR_USD", "positionFill": "DEFAULT", "type": "MARKET", "units": "10000", "takeProfitOnFill": { "timeInForce": "GTC", "price": "1.10000" }, "stopLossOnFill": { "timeInForce": "GTC", "price": "1.07000" } } } ###Markdown As you can see, the specs contain price values that were converted to strings and the defaults *positionFill* and *timeInForce* were added. Using *contrib.requests* makes it very easy to construct the orderdata body for order requests. Parameters for those requests are also validated.Next step, place the order: ###Code rv = client.request(r) print("Response: {}\n{}".format(r.status_code, json.dumps(rv, indent=2))) ###Output Response: 201 { "orderCancelTransaction": { "time": "2017-03-09T13:17:59.319422181Z", "userID": 1435156, "batchID": "7576", "orderID": "7576", "id": "7577", "type": "ORDER_CANCEL", "accountID": "101-004-1435156-001", "reason": "STOP_LOSS_ON_FILL_LOSS" }, "lastTransactionID": "7577", "orderCreateTransaction": { "timeInForce": "FOK", "instrument": "EUR_USD", "batchID": "7576", "accountID": "101-004-1435156-001", "units": "10000", "takeProfitOnFill": { "timeInForce": "GTC", "price": "1.10000" }, "time": "2017-03-09T13:17:59.319422181Z", "userID": 1435156, "positionFill": "DEFAULT", "id": "7576", "type": "MARKET_ORDER", "stopLossOnFill": { "timeInForce": "GTC", "price": "1.07000" }, "reason": "CLIENT_ORDER" }, "relatedTransactionIDs": [ "7576", "7577" ] } ###Markdown Lets analyze that. We see an *orderCancelTransaction* and *reason* **STOP_LOSS_ON_FILL_LOSS**. So the order was not placed ? Well it was placed and cancelled right away. The marketprice of EUR_USD is at the moment of this writing 1.058. So the stopLoss order at 1.07 makes no sense. The status_code of 201 is as the specs say: http://developer.oanda.com/rest-live-v20/order-ep/ .Lets change the stopLoss level below the current price and place the order once again. ###Code mktOrder = MarketOrderRequest(instrument="EUR_USD", units=10000, takeProfitOnFill=TakeProfitDetails(price=1.10).data, stopLossOnFill=StopLossDetails(price=1.05).data ).data r = orders.OrderCreate(accountID=accountID, data=mktOrder) rv = client.request(r) print("Response: {}\n{}".format(r.status_code, json.dumps(rv, indent=2))) ###Output Response: 201 { "orderFillTransaction": { "accountBalance": "102107.4442", "instrument": "EUR_USD", "batchID": "7578", "pl": "0.0000", "accountID": "101-004-1435156-001", "units": "10000", "tradeOpened": { "tradeID": "7579", "units": "10000" }, "financing": "0.0000", "price": "1.05563", "userID": 1435156, "orderID": "7578", "time": "2017-03-09T13:22:13.832587780Z", "id": "7579", "type": "ORDER_FILL", "reason": "MARKET_ORDER" }, "lastTransactionID": "7581", "orderCreateTransaction": { "timeInForce": "FOK", "instrument": "EUR_USD", "batchID": "7578", "accountID": "101-004-1435156-001", "units": "10000", "takeProfitOnFill": { "timeInForce": "GTC", "price": "1.10000" }, "time": "2017-03-09T13:22:13.832587780Z", "userID": 1435156, "positionFill": "DEFAULT", "id": "7578", "type": "MARKET_ORDER", "stopLossOnFill": { "timeInForce": "GTC", "price": "1.05000" }, "reason": "CLIENT_ORDER" }, "relatedTransactionIDs": [ "7578", "7579", "7580", "7581" ] } ###Markdown We now see an *orderFillTransaction* for 10000 units EUR_USD with *reason* **MARKET_ORDER**.Lets retrieve the orders. We should see the *stopLoss* and *takeProfit* orders as *pending*: ###Code r = orders.OrdersPending(accountID=accountID) rv = client.request(r) print("Response:\n", json.dumps(rv, indent=2)) ###Output Response: { "lastTransactionID": "7581", "orders": [ { "createTime": "2017-03-09T13:22:13.832587780Z", "triggerCondition": "TRIGGER_DEFAULT", "timeInForce": "GTC", "price": "1.05000", "tradeID": "7579", "id": "7581", "state": "PENDING", "type": "STOP_LOSS" }, { "createTime": "2017-03-09T13:22:13.832587780Z", "triggerCondition": "TRIGGER_DEFAULT", "timeInForce": "GTC", "price": "1.10000", "tradeID": "7579", "id": "7580", "state": "PENDING", "type": "TAKE_PROFIT" }, { "createTime": "2017-03-09T11:45:48.928448770Z", "triggerCondition": "TRIGGER_DEFAULT", "timeInForce": "GTC", "price": "1.05000", "tradeID": "7572", "id": "7574", "state": "PENDING", "type": "STOP_LOSS" }, { "createTime": "2017-03-07T09:18:51.563637768Z", "triggerCondition": "TRIGGER_DEFAULT", "timeInForce": "GTC", "price": "1.05000", "tradeID": "7562", "id": "7564", "state": "PENDING", "type": "STOP_LOSS" }, { "createTime": "2017-03-07T09:08:04.219010730Z", "triggerCondition": "TRIGGER_DEFAULT", "timeInForce": "GTC", "price": "1.05000", "tradeID": "7558", "id": "7560", "state": "PENDING", "type": "STOP_LOSS" } ] } ###Markdown Depending on the state of your account you should see at least the orders associated with the previously executed marketorder. The *relatedTransactionIDs* should be in the *orders* output of OrdersPending().Now lets cancel all pending TAKE_PROFIT orders: ###Code r = orders.OrdersPending(accountID=accountID) rv = client.request(r) idsToCancel = [order.get('id') for order in rv['orders'] if order.get('type') == "TAKE_PROFIT"] for orderID in idsToCancel: r = orders.OrderCancel(accountID=accountID, orderID=orderID) rv = client.request(r) print("Request: {} ... response: {}".format(r, json.dumps(rv, indent=2))) ###Output Request: v3/accounts/101-004-1435156-001/orders/7580/cancel ... response: { "orderCancelTransaction": { "time": "2017-03-09T13:26:07.480994423Z", "userID": 1435156, "batchID": "7582", "orderID": "7580", "id": "7582", "type": "ORDER_CANCEL", "accountID": "101-004-1435156-001", "reason": "CLIENT_REQUEST" }, "lastTransactionID": "7582", "relatedTransactionIDs": [ "7582" ] } ###Markdown create a LimitOrder with a *GTD* "good-til-date"Create a LimitOrder and let it expire: *2018-07-02T00:00:00* using *GTD*. Make sure it is in the futurewhen you run this example! ###Code from oandapyV20.contrib.requests import LimitOrderRequest # make sure GTD_TIME is in the future # also make sure the price condition is not met # and specify GTD_TIME as UTC or local # GTD_TIME="2018-07-02T00:00:00Z" # UTC GTD_TIME="2018-07-02T00:00:00" ordr = LimitOrderRequest(instrument="EUR_USD", units=10000, timeInForce="GTD", gtdTime=GTD_TIME, price=1.08) print(json.dumps(ordr.data, indent=4)) r = orders.OrderCreate(accountID=accountID, data=ordr.data) rv = client.request(r) print(json.dumps(rv, indent=2)) ###Output { "order": { "price": "1.08000", "timeInForce": "GTD", "positionFill": "DEFAULT", "type": "LIMIT", "instrument": "EUR_USD", "gtdTime": "2018-07-02T00:00:00", "units": "10000" } } { "relatedTransactionIDs": [ "8923" ], "lastTransactionID": "8923", "orderCreateTransaction": { "price": "1.08000", "triggerCondition": "DEFAULT", "positionFill": "DEFAULT", "type": "LIMIT_ORDER", "requestID": "42440345970496965", "partialFill": "DEFAULT", "gtdTime": "2018-07-02T04:00:00.000000000Z", "batchID": "8923", "id": "8923", "userID": 1435156, "accountID": "101-004-1435156-001", "timeInForce": "GTD", "reason": "CLIENT_ORDER", "instrument": "EUR_USD", "time": "2018-06-10T12:06:30.259079220Z", "units": "10000" } } ###Markdown Request the pending orders ###Code r = orders.OrdersPending(accountID=accountID) rv = client.request(r) print(json.dumps(rv, indent=2)) ###Output { "orders": [ { "price": "1.08000", "triggerCondition": "DEFAULT", "state": "PENDING", "positionFill": "DEFAULT", "partialFill": "DEFAULT_FILL", "gtdTime": "2018-07-02T04:00:00.000000000Z", "id": "8923", "timeInForce": "GTD", "type": "LIMIT", "instrument": "EUR_USD", "createTime": "2018-06-10T12:06:30.259079220Z", "units": "10000" } ], "lastTransactionID": "8923" } ###Markdown Cancel the GTD orderFetch the *orderID* from the *pending orders* and cancel the order. ###Code r = orders.OrderCancel(accountID=accountID, orderID=8923) rv = client.request(r) print(json.dumps(rv, indent=2)) ###Output { "relatedTransactionIDs": [ "8924" ], "orderCancelTransaction": { "accountID": "101-004-1435156-001", "time": "2018-06-10T12:07:35.453416669Z", "orderID": "8923", "reason": "CLIENT_REQUEST", "requestID": "42440346243149289", "type": "ORDER_CANCEL", "batchID": "8924", "id": "8924", "userID": 1435156 }, "lastTransactionID": "8924" } ###Markdown Request pendig orders once again ... the 8923 should be gone ###Code r = orders.OrdersPending(accountID=accountID) rv = client.request(r) print(json.dumps(rv, indent=2)) ###Output { "orders": [], "lastTransactionID": "8924" } ###Markdown [index](./index.ipynb) | [accounts](./accounts.ipynb) | [orders](./orders.ipynb) | [trades](./trades.ipynb) | [positions](./positions.ipynb) | [historical](./historical.ipynb) | [streams](./streams.ipynb) | [errors](./exceptions.ipynb) OrdersThis notebook provides an example of + a MarketOrder + a simplyfied way for a MarketOrder by using contrib.requests.MarketOrderRequest + a LimitOrder with an expiry datetime by using *GTD* and contrib.requests.LimitOrderRequest + canceling a GTD order create a marketorder request with a TakeProfit and a StopLoss order when it gets filled. ###Code import json import oandapyV20 import oandapyV20.endpoints.orders as orders from authenticate import Authenticate as auth accountID, access_token = auth('Demo', 'Primary') client = oandapyV20.API(access_token=access_token) # create a market order to enter a LONG position 10000 EUR_USD, stopLoss @1.07 takeProfit @1.10 ( current: 1.055) # according to the docs at developer.oanda.com the requestbody looks like: mktOrder = { "order": { "timeInForce": "FOK", # Fill-or-kill "instrument": "EUR_USD", "positionFill": "DEFAULT", "type": "MARKET", "units": 10000, # as integer "takeProfitOnFill": { "timeInForce": "GTC", # Good-till-cancelled "price": 1.10 # as float }, "stopLossOnFill": { "timeInForce": "GTC", "price": "1.07" # as string } } } r = orders.OrderCreate(accountID=accountID, data=mktOrder) print("Request: ", r) print("MarketOrder specs: ", json.dumps(mktOrder, indent=2)) ###Output Request: v3/accounts/101-004-1435156-001/orders MarketOrder specs: { "order": { "timeInForce": "FOK", "instrument": "EUR_USD", "stopLossOnFill": { "timeInForce": "GTC", "price": "1.07" }, "positionFill": "DEFAULT", "units": 10000, "takeProfitOnFill": { "timeInForce": "GTC", "price": 1.1 }, "type": "MARKET" } } ###Markdown Well that looks fine, but constructing orderbodies that way is not really what we want. Types are not checked for instance and all the defaults need to be supplied.This kind of datastructures can become complex, are not easy to read or construct and are prone to errors. Types and definitionsOanda uses several *types* and *definitions* througout their documentation. These types are covered by the *oandapyV20.types* package and the definitions by the *oandapyV20.definitions* package. Contrib.requestsThe *oandapyV20.contrib.requests* package offers classes providing an easy way to construct the data forthe *data* parameter of the *OrderCreate* endpoint or the *TradeCRCDO* (Create/Replace/Cancel Dependent Orders). The *oandapyV20.contrib.requests* package makes use of the *oandapyV20.types* and *oandapyV20.definitions*.Let's improve the previous example by making use of *oandapyV20.contrib.requests*: ###Code import json import oandapyV20 import oandapyV20.endpoints as endpoints from oandapyV20.contrib.requests import ( MarketOrderRequest, StopLossDetails) from authenticate import authorize accountID, access_token = authorize('Demo', 'Primary') client = oandapyV20.API(access_token=access_token) # create a market order to enter a LONG position 10000 EUR_USD mktOrder = MarketOrderRequest(instrument='AUD_USD', units=1, stopLossOnFill=StopLossDetails(1).data).data mktsetup = endpoints.orders.OrderCreate(accountID=accountID, data=mktOrder) place = client.request(mktsetup) print(json.dumps(place, indent=2)) ###Output { "orderCreateTransaction": { "id": "738", "accountID": "101-001-17385496-001", "userID": 17385496, "batchID": "738", "requestID": "24851611458748511", "time": "2021-08-28T02:43:16.822236103Z", "type": "MARKET_ORDER", "instrument": "AUD_USD", "units": "1", "timeInForce": "FOK", "positionFill": "DEFAULT", "stopLossOnFill": { "price": "1.00000", "timeInForce": "GTC", "triggerMode": "TOP_OF_BOOK" }, "reason": "CLIENT_ORDER" }, "orderCancelTransaction": { "id": "739", "accountID": "101-001-17385496-001", "userID": 17385496, "batchID": "738", "requestID": "24851611458748511", "time": "2021-08-28T02:43:16.822236103Z", "type": "ORDER_CANCEL", "orderID": "738", "reason": "MARKET_HALTED" }, "relatedTransactionIDs": [ "738", "739" ], "lastTransactionID": "739" } ###Markdown As you can see, the specs contain price values that were converted to strings and the defaults *positionFill* and *timeInForce* were added. Using *contrib.requests* makes it very easy to construct the orderdata body for order requests. Parameters for those requests are also validated.Next step, place the order: rv = client.request(r)print("Response: {}\n{}".format(r.status_code, json.dumps(rv, indent=2))) Lets analyze that. We see an *orderCancelTransaction* and *reason* **STOP_LOSS_ON_FILL_LOSS**. So the order was not placed ? Well it was placed and cancelled right away. The marketprice of EUR_USD is at the moment of this writing 1.058. So the stopLoss order at 1.07 makes no sense. The status_code of 201 is as the specs say: http://developer.oanda.com/rest-live-v20/order-ep/ .Lets change the stopLoss level below the current price and place the order once again. ###Code mktOrder = MarketOrderRequest(instrument="EUR_USD", units=10000, takeProfitOnFill=TakeProfitDetails(price=1.10).data, stopLossOnFill=StopLossDetails(price=1.05).data ).data r = orders.OrderCreate(accountID=accountID, data=mktOrder) rv = client.request(r) print("Response: {}\n{}".format(r.status_code, json.dumps(rv, indent=2))) ###Output Response: 201 { "orderFillTransaction": { "accountBalance": "102107.4442", "instrument": "EUR_USD", "batchID": "7578", "pl": "0.0000", "accountID": "101-004-1435156-001", "units": "10000", "tradeOpened": { "tradeID": "7579", "units": "10000" }, "financing": "0.0000", "price": "1.05563", "userID": 1435156, "orderID": "7578", "time": "2017-03-09T13:22:13.832587780Z", "id": "7579", "type": "ORDER_FILL", "reason": "MARKET_ORDER" }, "lastTransactionID": "7581", "orderCreateTransaction": { "timeInForce": "FOK", "instrument": "EUR_USD", "batchID": "7578", "accountID": "101-004-1435156-001", "units": "10000", "takeProfitOnFill": { "timeInForce": "GTC", "price": "1.10000" }, "time": "2017-03-09T13:22:13.832587780Z", "userID": 1435156, "positionFill": "DEFAULT", "id": "7578", "type": "MARKET_ORDER", "stopLossOnFill": { "timeInForce": "GTC", "price": "1.05000" }, "reason": "CLIENT_ORDER" }, "relatedTransactionIDs": [ "7578", "7579", "7580", "7581" ] } ###Markdown We now see an *orderFillTransaction* for 10000 units EUR_USD with *reason* **MARKET_ORDER**.Lets retrieve the orders. We should see the *stopLoss* and *takeProfit* orders as *pending*: ###Code r = orders.OrdersPending(accountID=accountID) rv = client.request(r) print("Response:\n", json.dumps(rv, indent=2)) ###Output Response: { "lastTransactionID": "7581", "orders": [ { "createTime": "2017-03-09T13:22:13.832587780Z", "triggerCondition": "TRIGGER_DEFAULT", "timeInForce": "GTC", "price": "1.05000", "tradeID": "7579", "id": "7581", "state": "PENDING", "type": "STOP_LOSS" }, { "createTime": "2017-03-09T13:22:13.832587780Z", "triggerCondition": "TRIGGER_DEFAULT", "timeInForce": "GTC", "price": "1.10000", "tradeID": "7579", "id": "7580", "state": "PENDING", "type": "TAKE_PROFIT" }, { "createTime": "2017-03-09T11:45:48.928448770Z", "triggerCondition": "TRIGGER_DEFAULT", "timeInForce": "GTC", "price": "1.05000", "tradeID": "7572", "id": "7574", "state": "PENDING", "type": "STOP_LOSS" }, { "createTime": "2017-03-07T09:18:51.563637768Z", "triggerCondition": "TRIGGER_DEFAULT", "timeInForce": "GTC", "price": "1.05000", "tradeID": "7562", "id": "7564", "state": "PENDING", "type": "STOP_LOSS" }, { "createTime": "2017-03-07T09:08:04.219010730Z", "triggerCondition": "TRIGGER_DEFAULT", "timeInForce": "GTC", "price": "1.05000", "tradeID": "7558", "id": "7560", "state": "PENDING", "type": "STOP_LOSS" } ] } ###Markdown Depending on the state of your account you should see at least the orders associated with the previously executed marketorder. The *relatedTransactionIDs* should be in the *orders* output of OrdersPending().Now lets cancel all pending TAKE_PROFIT orders: ###Code r = orders.OrdersPending(accountID=accountID) rv = client.request(r) idsToCancel = [order.get('id') for order in rv['orders'] if order.get('type') == "TAKE_PROFIT"] for orderID in idsToCancel: r = orders.OrderCancel(accountID=accountID, orderID=orderID) rv = client.request(r) print("Request: {} ... response: {}".format(r, json.dumps(rv, indent=2))) ###Output Request: v3/accounts/101-004-1435156-001/orders/7580/cancel ... response: { "orderCancelTransaction": { "time": "2017-03-09T13:26:07.480994423Z", "userID": 1435156, "batchID": "7582", "orderID": "7580", "id": "7582", "type": "ORDER_CANCEL", "accountID": "101-004-1435156-001", "reason": "CLIENT_REQUEST" }, "lastTransactionID": "7582", "relatedTransactionIDs": [ "7582" ] } ###Markdown create a LimitOrder with a *GTD* "good-til-date"Create a LimitOrder and let it expire: *2018-07-02T00:00:00* using *GTD*. Make sure it is in the futurewhen you run this example! ###Code from oandapyV20.contrib.requests import LimitOrderRequest # make sure GTD_TIME is in the future # also make sure the price condition is not met # and specify GTD_TIME as UTC or local # GTD_TIME="2018-07-02T00:00:00Z" # UTC GTD_TIME="2018-07-02T00:00:00" ordr = LimitOrderRequest(instrument="EUR_USD", units=10000, timeInForce="GTD", gtdTime=GTD_TIME, price=1.08) print(json.dumps(ordr.data, indent=4)) r = orders.OrderCreate(accountID=accountID, data=ordr.data) rv = client.request(r) print(json.dumps(rv, indent=2)) ###Output { "order": { "price": "1.08000", "timeInForce": "GTD", "positionFill": "DEFAULT", "type": "LIMIT", "instrument": "EUR_USD", "gtdTime": "2018-07-02T00:00:00", "units": "10000" } } { "relatedTransactionIDs": [ "8923" ], "lastTransactionID": "8923", "orderCreateTransaction": { "price": "1.08000", "triggerCondition": "DEFAULT", "positionFill": "DEFAULT", "type": "LIMIT_ORDER", "requestID": "42440345970496965", "partialFill": "DEFAULT", "gtdTime": "2018-07-02T04:00:00.000000000Z", "batchID": "8923", "id": "8923", "userID": 1435156, "accountID": "101-004-1435156-001", "timeInForce": "GTD", "reason": "CLIENT_ORDER", "instrument": "EUR_USD", "time": "2018-06-10T12:06:30.259079220Z", "units": "10000" } } ###Markdown Request the pending orders ###Code r = orders.OrdersPending(accountID=accountID) rv = client.request(r) print(json.dumps(rv, indent=2)) ###Output { "orders": [ { "price": "1.08000", "triggerCondition": "DEFAULT", "state": "PENDING", "positionFill": "DEFAULT", "partialFill": "DEFAULT_FILL", "gtdTime": "2018-07-02T04:00:00.000000000Z", "id": "8923", "timeInForce": "GTD", "type": "LIMIT", "instrument": "EUR_USD", "createTime": "2018-06-10T12:06:30.259079220Z", "units": "10000" } ], "lastTransactionID": "8923" } ###Markdown Cancel the GTD orderFetch the *orderID* from the *pending orders* and cancel the order. ###Code r = orders.OrderCancel(accountID=accountID, orderID=8923) rv = client.request(r) print(json.dumps(rv, indent=2)) ###Output { "relatedTransactionIDs": [ "8924" ], "orderCancelTransaction": { "accountID": "101-004-1435156-001", "time": "2018-06-10T12:07:35.453416669Z", "orderID": "8923", "reason": "CLIENT_REQUEST", "requestID": "42440346243149289", "type": "ORDER_CANCEL", "batchID": "8924", "id": "8924", "userID": 1435156 }, "lastTransactionID": "8924" } ###Markdown Request pendig orders once again ... the 8923 should be gone ###Code r = orders.OrdersPending(accountID=accountID) rv = client.request(r) print(json.dumps(rv, indent=2)) ###Output { "orders": [], "lastTransactionID": "8924" }
5_Sequence_Models/week01/Building a Recurrent Neural Network - Step by Step/Building a Recurrent Neural Network - Step by Step - v2(solution).ipynb
###Markdown Building your Recurrent Neural Network - Step by StepWelcome to Course 5's first assignment! In this assignment, you will implement your first Recurrent Neural Network in numpy.Recurrent Neural Networks (RNN) are very effective for Natural Language Processing and other sequence tasks because they have "memory". They can read inputs $x^{\langle t \rangle}$ (such as words) one at a time, and remember some information/context through the hidden layer activations that get passed from one time-step to the next. This allows a uni-directional RNN to take information from the past to process later inputs. A bidirection RNN can take context from both the past and the future. **Notation**:- Superscript $[l]$ denotes an object associated with the $l^{th}$ layer. - Example: $a^{[4]}$ is the $4^{th}$ layer activation. $W^{[5]}$ and $b^{[5]}$ are the $5^{th}$ layer parameters.- Superscript $(i)$ denotes an object associated with the $i^{th}$ example. - Example: $x^{(i)}$ is the $i^{th}$ training example input.- Superscript $\langle t \rangle$ denotes an object at the $t^{th}$ time-step. - Example: $x^{\langle t \rangle}$ is the input x at the $t^{th}$ time-step. $x^{(i)\langle t \rangle}$ is the input at the $t^{th}$ timestep of example $i$. - Lowerscript $i$ denotes the $i^{th}$ entry of a vector. - Example: $a^{[l]}_i$ denotes the $i^{th}$ entry of the activations in layer $l$.We assume that you are already familiar with `numpy` and/or have completed the previous courses of the specialization. Let's get started! Let's first import all the packages that you will need during this assignment. ###Code import numpy as np from rnn_utils import * ###Output _____no_output_____ ###Markdown 1 - Forward propagation for the basic Recurrent Neural NetworkLater this week, you will generate music using an RNN. The basic RNN that you will implement has the structure below. In this example, $T_x = T_y$. **Figure 1**: Basic RNN model Here's how you can implement an RNN: **Steps**:1. Implement the calculations needed for one time-step of the RNN.2. Implement a loop over $T_x$ time-steps in order to process all the inputs, one at a time. Let's go! 1.1 - RNN cellA Recurrent neural network can be seen as the repetition of a single cell. You are first going to implement the computations for a single time-step. The following figure describes the operations for a single time-step of an RNN cell. **Figure 2**: Basic RNN cell. Takes as input $x^{\langle t \rangle}$ (current input) and $a^{\langle t - 1\rangle}$ (previous hidden state containing information from the past), and outputs $a^{\langle t \rangle}$ which is given to the next RNN cell and also used to predict $y^{\langle t \rangle}$ **Exercise**: Implement the RNN-cell described in Figure (2).**Instructions**:1. Compute the hidden state with tanh activation: $a^{\langle t \rangle} = \tanh(W_{aa} a^{\langle t-1 \rangle} + W_{ax} x^{\langle t \rangle} + b_a)$.2. Using your new hidden state $a^{\langle t \rangle}$, compute the prediction $\hat{y}^{\langle t \rangle} = softmax(W_{ya} a^{\langle t \rangle} + b_y)$. We provided you a function: `softmax`.3. Store $(a^{\langle t \rangle}, a^{\langle t-1 \rangle}, x^{\langle t \rangle}, parameters)$ in cache4. Return $a^{\langle t \rangle}$ , $y^{\langle t \rangle}$ and cacheWe will vectorize over $m$ examples. Thus, $x^{\langle t \rangle}$ will have dimension $(n_x,m)$, and $a^{\langle t \rangle}$ will have dimension $(n_a,m)$. ###Code # GRADED FUNCTION: rnn_cell_forward def rnn_cell_forward(xt, a_prev, parameters): """ Implements a single forward step of the RNN-cell as described in Figure (2) Arguments: xt -- your input data at timestep "t", numpy array of shape (n_x, m). a_prev -- Hidden state at timestep "t-1", numpy array of shape (n_a, m) parameters -- python dictionary containing: Wax -- Weight matrix multiplying the input, numpy array of shape (n_a, n_x) Waa -- Weight matrix multiplying the hidden state, numpy array of shape (n_a, n_a) Wya -- Weight matrix relating the hidden-state to the output, numpy array of shape (n_y, n_a) ba -- Bias, numpy array of shape (n_a, 1) by -- Bias relating the hidden-state to the output, numpy array of shape (n_y, 1) Returns: a_next -- next hidden state, of shape (n_a, m) yt_pred -- prediction at timestep "t", numpy array of shape (n_y, m) cache -- tuple of values needed for the backward pass, contains (a_next, a_prev, xt, parameters) """ # Retrieve parameters from "parameters" Wax = parameters["Wax"] Waa = parameters["Waa"] Wya = parameters["Wya"] ba = parameters["ba"] by = parameters["by"] ### START CODE HERE ### (≈2 lines) # compute next activation state using the formula given above a_next = np.tanh(np.dot(Waa, a_prev) + np.dot(Wax, xt) + ba) # compute output of the current cell using the formula given above yt_pred = softmax(np.dot(Wya, a_next) + by) ### END CODE HERE ### # store values you need for backward propagation in cache cache = (a_next, a_prev, xt, parameters) return a_next, yt_pred, cache np.random.seed(1) xt = np.random.randn(3,10) a_prev = np.random.randn(5,10) Waa = np.random.randn(5,5) Wax = np.random.randn(5,3) Wya = np.random.randn(2,5) ba = np.random.randn(5,1) by = np.random.randn(2,1) parameters = {"Waa": Waa, "Wax": Wax, "Wya": Wya, "ba": ba, "by": by} a_next, yt_pred, cache = rnn_cell_forward(xt, a_prev, parameters) print("a_next[4] = ", a_next[4]) print("a_next.shape = ", a_next.shape) print("yt_pred[1] =", yt_pred[1]) print("yt_pred.shape = ", yt_pred.shape) ###Output a_next[4] = [ 0.59584544 0.18141802 0.61311866 0.99808218 0.85016201 0.99980978 -0.18887155 0.99815551 0.6531151 0.82872037] a_next.shape = (5, 10) yt_pred[1] = [ 0.9888161 0.01682021 0.21140899 0.36817467 0.98988387 0.88945212 0.36920224 0.9966312 0.9982559 0.17746526] yt_pred.shape = (2, 10) ###Markdown **Expected Output**: **a_next[4]**: [ 0.59584544 0.18141802 0.61311866 0.99808218 0.85016201 0.99980978 -0.18887155 0.99815551 0.6531151 0.82872037] **a_next.shape**: (5, 10) **yt[1]**: [ 0.9888161 0.01682021 0.21140899 0.36817467 0.98988387 0.88945212 0.36920224 0.9966312 0.9982559 0.17746526] **yt.shape**: (2, 10) 1.2 - RNN forward pass You can see an RNN as the repetition of the cell you've just built. If your input sequence of data is carried over 10 time steps, then you will copy the RNN cell 10 times. Each cell takes as input the hidden state from the previous cell ($a^{\langle t-1 \rangle}$) and the current time-step's input data ($x^{\langle t \rangle}$). It outputs a hidden state ($a^{\langle t \rangle}$) and a prediction ($y^{\langle t \rangle}$) for this time-step. **Figure 3**: Basic RNN. The input sequence $x = (x^{\langle 1 \rangle}, x^{\langle 2 \rangle}, ..., x^{\langle T_x \rangle})$ is carried over $T_x$ time steps. The network outputs $y = (y^{\langle 1 \rangle}, y^{\langle 2 \rangle}, ..., y^{\langle T_x \rangle})$. **Exercise**: Code the forward propagation of the RNN described in Figure (3).**Instructions**:1. Create a vector of zeros ($a$) that will store all the hidden states computed by the RNN.2. Initialize the "next" hidden state as $a_0$ (initial hidden state).3. Start looping over each time step, your incremental index is $t$ : - Update the "next" hidden state and the cache by running `rnn_cell_forward` - Store the "next" hidden state in $a$ ($t^{th}$ position) - Store the prediction in y - Add the cache to the list of caches4. Return $a$, $y$ and caches ###Code # GRADED FUNCTION: rnn_forward def rnn_forward(x, a0, parameters): """ Implement the forward propagation of the recurrent neural network described in Figure (3). Arguments: x -- Input data for every time-step, of shape (n_x, m, T_x). a0 -- Initial hidden state, of shape (n_a, m) parameters -- python dictionary containing: Waa -- Weight matrix multiplying the hidden state, numpy array of shape (n_a, n_a) Wax -- Weight matrix multiplying the input, numpy array of shape (n_a, n_x) Wya -- Weight matrix relating the hidden-state to the output, numpy array of shape (n_y, n_a) ba -- Bias numpy array of shape (n_a, 1) by -- Bias relating the hidden-state to the output, numpy array of shape (n_y, 1) Returns: a -- Hidden states for every time-step, numpy array of shape (n_a, m, T_x) y_pred -- Predictions for every time-step, numpy array of shape (n_y, m, T_x) caches -- tuple of values needed for the backward pass, contains (list of caches, x) """ # Initialize "caches" which will contain the list of all caches caches = [] # Retrieve dimensions from shapes of x and Wy n_x, m, T_x = x.shape n_y, n_a = parameters["Wya"].shape ### START CODE HERE ### # initialize "a" and "y" with zeros (≈2 lines) a = np.zeros([n_a, m, T_x]) y_pred = np.zeros([n_y, m, T_x]) # Initialize a_next (≈1 line) a_next = np.zeros([n_a, m]) # loop over all time-steps for t in range(T_x): # Update next hidden state, compute the prediction, get the cache (≈1 line) a_next, yt_pred, cache = rnn_cell_forward(x[:, :, t], a_next, parameters) # Save the value of the new "next" hidden state in a (≈1 line) a[:,:,t] = a_next # Save the value of the prediction in y (≈1 line) y_pred[:,:,t] = yt_pred # Append "cache" to "caches" (≈1 line) caches.append(cache) ### END CODE HERE ### # store values needed for backward propagation in cache caches = (caches, x) return a, y_pred, caches np.random.seed(1) x = np.random.randn(3,10,4) a0 = np.random.randn(5,10) Waa = np.random.randn(5,5) Wax = np.random.randn(5,3) Wya = np.random.randn(2,5) ba = np.random.randn(5,1) by = np.random.randn(2,1) parameters = {"Waa": Waa, "Wax": Wax, "Wya": Wya, "ba": ba, "by": by} a, y_pred, caches = rnn_forward(x, a0, parameters) print("a[4][1] = ", a[4][1]) print("a.shape = ", a.shape) print("y_pred[1][3] =", y_pred[1][3]) print("y_pred.shape = ", y_pred.shape) print("caches[1][1][3] =", caches[1][1][3]) print("len(caches) = ", len(caches)) ###Output a[4][1] = [-0.93013738 0.991315 -0.98694298 -0.99723276] a.shape = (5, 10, 4) y_pred[1][3] = [ 0.0440187 0.41032346 0.01401205 0.42558194] y_pred.shape = (2, 10, 4) caches[1][1][3] = [-1.1425182 -0.34934272 -0.20889423 0.58662319] len(caches) = 2 ###Markdown **Expected Output**: **a[4][1]**: [-0.99999375 0.77911235 -0.99861469 -0.99833267] **a.shape**: (5, 10, 4) **y[1][3]**: [ 0.79560373 0.86224861 0.11118257 0.81515947] **y.shape**: (2, 10, 4) **cache[1][1][3]**: [-1.1425182 -0.34934272 -0.20889423 0.58662319] **len(cache)**: 2 Congratulations! You've successfully built the forward propagation of a recurrent neural network from scratch. This will work well enough for some applications, but it suffers from vanishing gradient problems. So it works best when each output $y^{\langle t \rangle}$ can be estimated using mainly "local" context (meaning information from inputs $x^{\langle t' \rangle}$ where $t'$ is not too far from $t$). In the next part, you will build a more complex LSTM model, which is better at addressing vanishing gradients. The LSTM will be better able to remember a piece of information and keep it saved for many timesteps. 2 - Long Short-Term Memory (LSTM) networkThis following figure shows the operations of an LSTM-cell. **Figure 4**: LSTM-cell. This tracks and updates a "cell state" or memory variable $c^{\langle t \rangle}$ at every time-step, which can be different from $a^{\langle t \rangle}$. Similar to the RNN example above, you will start by implementing the LSTM cell for a single time-step. Then you can iteratively call it from inside a for-loop to have it process an input with $T_x$ time-steps. About the gates - Forget gateFor the sake of this illustration, lets assume we are reading words in a piece of text, and want use an LSTM to keep track of grammatical structures, such as whether the subject is singular or plural. If the subject changes from a singular word to a plural word, we need to find a way to get rid of our previously stored memory value of the singular/plural state. In an LSTM, the forget gate lets us do this: $$\Gamma_f^{\langle t \rangle} = \sigma(W_f[a^{\langle t-1 \rangle}, x^{\langle t \rangle}] + b_f)\tag{1} $$Here, $W_f$ are weights that govern the forget gate's behavior. We concatenate $[a^{\langle t-1 \rangle}, x^{\langle t \rangle}]$ and multiply by $W_f$. The equation above results in a vector $\Gamma_f^{\langle t \rangle}$ with values between 0 and 1. This forget gate vector will be multiplied element-wise by the previous cell state $c^{\langle t-1 \rangle}$. So if one of the values of $\Gamma_f^{\langle t \rangle}$ is 0 (or close to 0) then it means that the LSTM should remove that piece of information (e.g. the singular subject) in the corresponding component of $c^{\langle t-1 \rangle}$. If one of the values is 1, then it will keep the information. - Update gateOnce we forget that the subject being discussed is singular, we need to find a way to update it to reflect that the new subject is now plural. Here is the formulat for the update gate: $$\Gamma_u^{\langle t \rangle} = \sigma(W_u[a^{\langle t-1 \rangle}, x^{\{t\}}] + b_u)\tag{2} $$ Similar to the forget gate, here $\Gamma_u^{\langle t \rangle}$ is again a vector of values between 0 and 1. This will be multiplied element-wise with $\tilde{c}^{\langle t \rangle}$, in order to compute $c^{\langle t \rangle}$. - Updating the cell To update the new subject we need to create a new vector of numbers that we can add to our previous cell state. The equation we use is: $$ \tilde{c}^{\langle t \rangle} = \tanh(W_c[a^{\langle t-1 \rangle}, x^{\langle t \rangle}] + b_c)\tag{3} $$Finally, the new cell state is: $$ c^{\langle t \rangle} = \Gamma_f^{\langle t \rangle}* c^{\langle t-1 \rangle} + \Gamma_u^{\langle t \rangle} *\tilde{c}^{\langle t \rangle} \tag{4} $$ - Output gateTo decide which outputs we will use, we will use the following two formulas: $$ \Gamma_o^{\langle t \rangle}= \sigma(W_o[a^{\langle t-1 \rangle}, x^{\langle t \rangle}] + b_o)\tag{5}$$ $$ a^{\langle t \rangle} = \Gamma_o^{\langle t \rangle}* \tanh(c^{\langle t \rangle})\tag{6} $$Where in equation 5 you decide what to output using a sigmoid function and in equation 6 you multiply that by the $\tanh$ of the previous state. 2.1 - LSTM cell**Exercise**: Implement the LSTM cell described in the Figure (3).**Instructions**:1. Concatenate $a^{\langle t-1 \rangle}$ and $x^{\langle t \rangle}$ in a single matrix: $concat = \begin{bmatrix} a^{\langle t-1 \rangle} \\ x^{\langle t \rangle} \end{bmatrix}$2. Compute all the formulas 1-6. You can use `sigmoid()` (provided) and `np.tanh()`.3. Compute the prediction $y^{\langle t \rangle}$. You can use `softmax()` (provided). ###Code # GRADED FUNCTION: lstm_cell_forward def lstm_cell_forward(xt, a_prev, c_prev, parameters): """ Implement a single forward step of the LSTM-cell as described in Figure (4) Arguments: xt -- your input data at timestep "t", numpy array of shape (n_x, m). a_prev -- Hidden state at timestep "t-1", numpy array of shape (n_a, m) c_prev -- Memory state at timestep "t-1", numpy array of shape (n_a, m) parameters -- python dictionary containing: Wf -- Weight matrix of the forget gate, numpy array of shape (n_a, n_a + n_x) bf -- Bias of the forget gate, numpy array of shape (n_a, 1) Wi -- Weight matrix of the update gate, numpy array of shape (n_a, n_a + n_x) bi -- Bias of the update gate, numpy array of shape (n_a, 1) Wc -- Weight matrix of the first "tanh", numpy array of shape (n_a, n_a + n_x) bc -- Bias of the first "tanh", numpy array of shape (n_a, 1) Wo -- Weight matrix of the output gate, numpy array of shape (n_a, n_a + n_x) bo -- Bias of the output gate, numpy array of shape (n_a, 1) Wy -- Weight matrix relating the hidden-state to the output, numpy array of shape (n_y, n_a) by -- Bias relating the hidden-state to the output, numpy array of shape (n_y, 1) Returns: a_next -- next hidden state, of shape (n_a, m) c_next -- next memory state, of shape (n_a, m) yt_pred -- prediction at timestep "t", numpy array of shape (n_y, m) cache -- tuple of values needed for the backward pass, contains (a_next, c_next, a_prev, c_prev, xt, parameters) Note: ft/it/ot stand for the forget/update/output gates, cct stands for the candidate value (c tilde), c stands for the memory value """ # Retrieve parameters from "parameters" Wf = parameters["Wf"] bf = parameters["bf"] Wi = parameters["Wi"] bi = parameters["bi"] Wc = parameters["Wc"] bc = parameters["bc"] Wo = parameters["Wo"] bo = parameters["bo"] Wy = parameters["Wy"] by = parameters["by"] # Retrieve dimensions from shapes of xt and Wy n_x, m = xt.shape n_y, n_a = Wy.shape ### START CODE HERE ### # Concatenate a_prev and xt (≈3 lines) concat = np.zeros((n_x + n_a, m)) concat[: n_a, :] = a_prev concat[n_a :, :] = xt # Compute values for ft, it, cct, c_next, ot, a_next using the formulas given figure (4) (≈6 lines) ft = sigmoid(np.dot(Wf, concat) + bf) it = sigmoid(np.dot(Wi, concat) + bi) cct = np.tanh(np.dot(Wc, concat) + bc) c_next = ft * c_prev + it * cct ot = sigmoid(np.dot(Wo, concat) + bo) a_next = ot * np.tanh(c_next) # Compute prediction of the LSTM cell (≈1 line) yt_pred = softmax(np.dot(Wy, a_next) + by) ### END CODE HERE ### # store values needed for backward propagation in cache cache = (a_next, c_next, a_prev, c_prev, ft, it, cct, ot, xt, parameters) return a_next, c_next, yt_pred, cache np.random.seed(1) xt = np.random.randn(3,10) a_prev = np.random.randn(5,10) c_prev = np.random.randn(5,10) Wf = np.random.randn(5, 5+3) bf = np.random.randn(5,1) Wi = np.random.randn(5, 5+3) bi = np.random.randn(5,1) Wo = np.random.randn(5, 5+3) bo = np.random.randn(5,1) Wc = np.random.randn(5, 5+3) bc = np.random.randn(5,1) Wy = np.random.randn(2,5) by = np.random.randn(2,1) parameters = {"Wf": Wf, "Wi": Wi, "Wo": Wo, "Wc": Wc, "Wy": Wy, "bf": bf, "bi": bi, "bo": bo, "bc": bc, "by": by} a_next, c_next, yt, cache = lstm_cell_forward(xt, a_prev, c_prev, parameters) print("a_next[4] = ", a_next[4]) print("a_next.shape = ", c_next.shape) print("c_next[2] = ", c_next[2]) print("c_next.shape = ", c_next.shape) print("yt[1] =", yt[1]) print("yt.shape = ", yt.shape) print("cache[1][3] =", cache[1][3]) print("len(cache) = ", len(cache)) ###Output a_next[4] = [-0.66408471 0.0036921 0.02088357 0.22834167 -0.85575339 0.00138482 0.76566531 0.34631421 -0.00215674 0.43827275] a_next.shape = (5, 10) c_next[2] = [ 0.63267805 1.00570849 0.35504474 0.20690913 -1.64566718 0.11832942 0.76449811 -0.0981561 -0.74348425 -0.26810932] c_next.shape = (5, 10) yt[1] = [ 0.79913913 0.15986619 0.22412122 0.15606108 0.97057211 0.31146381 0.00943007 0.12666353 0.39380172 0.07828381] yt.shape = (2, 10) cache[1][3] = [-0.16263996 1.03729328 0.72938082 -0.54101719 0.02752074 -0.30821874 0.07651101 -1.03752894 1.41219977 -0.37647422] len(cache) = 10 ###Markdown **Expected Output**: **a_next[4]**: [-0.66408471 0.0036921 0.02088357 0.22834167 -0.85575339 0.00138482 0.76566531 0.34631421 -0.00215674 0.43827275] **a_next.shape**: (5, 10) **c_next[2]**: [ 0.63267805 1.00570849 0.35504474 0.20690913 -1.64566718 0.11832942 0.76449811 -0.0981561 -0.74348425 -0.26810932] **c_next.shape**: (5, 10) **yt[1]**: [ 0.79913913 0.15986619 0.22412122 0.15606108 0.97057211 0.31146381 0.00943007 0.12666353 0.39380172 0.07828381] **yt.shape**: (2, 10) **cache[1][3]**: [-0.16263996 1.03729328 0.72938082 -0.54101719 0.02752074 -0.30821874 0.07651101 -1.03752894 1.41219977 -0.37647422] **len(cache)**: 10 2.2 - Forward pass for LSTMNow that you have implemented one step of an LSTM, you can now iterate this over this using a for-loop to process a sequence of $T_x$ inputs. **Figure 4**: LSTM over multiple time-steps. **Exercise:** Implement `lstm_forward()` to run an LSTM over $T_x$ time-steps. **Note**: $c^{\langle 0 \rangle}$ is initialized with zeros. ###Code # GRADED FUNCTION: lstm_forward def lstm_forward(x, a0, parameters): """ Implement the forward propagation of the recurrent neural network using an LSTM-cell described in Figure (3). Arguments: x -- Input data for every time-step, of shape (n_x, m, T_x). a0 -- Initial hidden state, of shape (n_a, m) parameters -- python dictionary containing: Wf -- Weight matrix of the forget gate, numpy array of shape (n_a, n_a + n_x) bf -- Bias of the forget gate, numpy array of shape (n_a, 1) Wi -- Weight matrix of the update gate, numpy array of shape (n_a, n_a + n_x) bi -- Bias of the update gate, numpy array of shape (n_a, 1) Wc -- Weight matrix of the first "tanh", numpy array of shape (n_a, n_a + n_x) bc -- Bias of the first "tanh", numpy array of shape (n_a, 1) Wo -- Weight matrix of the output gate, numpy array of shape (n_a, n_a + n_x) bo -- Bias of the output gate, numpy array of shape (n_a, 1) Wy -- Weight matrix relating the hidden-state to the output, numpy array of shape (n_y, n_a) by -- Bias relating the hidden-state to the output, numpy array of shape (n_y, 1) Returns: a -- Hidden states for every time-step, numpy array of shape (n_a, m, T_x) y -- Predictions for every time-step, numpy array of shape (n_y, m, T_x) caches -- tuple of values needed for the backward pass, contains (list of all the caches, x) """ # Initialize "caches", which will track the list of all the caches caches = [] ### START CODE HERE ### # Retrieve dimensions from shapes of x and Wy (≈2 lines) n_x, m, T_x = x.shape n_y, n_a = parameters['Wy'].shape # initialize "a", "c" and "y" with zeros (≈3 lines) a = np.zeros((n_a, m, T_x)) c = np.zeros((n_a, m, T_x)) y = np.zeros((n_y, m, T_x)) # Initialize a_next and c_next (≈2 lines) a_next = a0 c_next = np.zeros((n_a, m)) # loop over all time-steps for t in range(T_x): # Update next hidden state, next memory state, compute the prediction, get the cache (≈1 line) a_next, c_next, yt, cache = lstm_cell_forward(x[:, :, t], a_next, c_next, parameters) # Save the value of the new "next" hidden state in a (≈1 line) a[:,:,t] = a_next # Save the value of the prediction in y (≈1 line) y[:,:,t] = yt # Save the value of the next cell state (≈1 line) c[:,:,t] = c_next # Append the cache into caches (≈1 line) caches.append(cache) ### END CODE HERE ### # store values needed for backward propagation in cache caches = (caches, x) return a, y, c, caches np.random.seed(1) x = np.random.randn(3,10,7) a0 = np.random.randn(5,10) Wf = np.random.randn(5, 5+3) bf = np.random.randn(5,1) Wi = np.random.randn(5, 5+3) bi = np.random.randn(5,1) Wo = np.random.randn(5, 5+3) bo = np.random.randn(5,1) Wc = np.random.randn(5, 5+3) bc = np.random.randn(5,1) Wy = np.random.randn(2,5) by = np.random.randn(2,1) parameters = {"Wf": Wf, "Wi": Wi, "Wo": Wo, "Wc": Wc, "Wy": Wy, "bf": bf, "bi": bi, "bo": bo, "bc": bc, "by": by} a, y, c, caches = lstm_forward(x, a0, parameters) print("a[4][3][6] = ", a[4][3][6]) print("a.shape = ", a.shape) print("y[1][4][3] =", y[1][4][3]) print("y.shape = ", y.shape) print("caches[1][1[1]] =", caches[1][1][1]) print("c[1][2][1]", c[1][2][1]) print("len(caches) = ", len(caches)) ###Output a[4][3][6] = 0.172117767533 a.shape = (5, 10, 7) y[1][4][3] = 0.95087346185 y.shape = (2, 10, 7) caches[1][1[1]] = [ 0.82797464 0.23009474 0.76201118 -0.22232814 -0.20075807 0.18656139 0.41005165] c[1][2][1] -0.855544916718 len(caches) = 2 ###Markdown **Expected Output**: **a[4][3][6]** = 0.172117767533 **a.shape** = (5, 10, 7) **y[1][4][3]** = 0.95087346185 **y.shape** = (2, 10, 7) **caches[1][1][1]** = [ 0.82797464 0.23009474 0.76201118 -0.22232814 -0.20075807 0.18656139 0.41005165] **c[1][2][1]** = -0.855544916718 **len(caches)** = 2 Congratulations! You have now implemented the forward passes for the basic RNN and the LSTM. When using a deep learning framework, implementing the forward pass is sufficient to build systems that achieve great performance. The rest of this notebook is optional, and will not be graded. 3 - Backpropagation in recurrent neural networks (OPTIONAL / UNGRADED)In modern deep learning frameworks, you only have to implement the forward pass, and the framework takes care of the backward pass, so most deep learning engineers do not need to bother with the details of the backward pass. If however you are an expert in calculus and want to see the details of backprop in RNNs, you can work through this optional portion of the notebook. When in an earlier course you implemented a simple (fully connected) neural network, you used backpropagation to compute the derivatives with respect to the cost to update the parameters. Similarly, in recurrent neural networks you can to calculate the derivatives with respect to the cost in order to update the parameters. The backprop equations are quite complicated and we did not derive them in lecture. However, we will briefly present them below. 3.1 - Basic RNN backward passWe will start by computing the backward pass for the basic RNN-cell. **Figure 5**: RNN-cell's backward pass. Just like in a fully-connected neural network, the derivative of the cost function $J$ backpropagates through the RNN by following the chain-rule from calculas. The chain-rule is also used to calculate $(\frac{\partial J}{\partial W_{ax}},\frac{\partial J}{\partial W_{aa}},\frac{\partial J}{\partial b})$ to update the parameters $(W_{ax}, W_{aa}, b_a)$. Deriving the one step backward functions: To compute the `rnn_cell_backward` you need to compute the following equations. It is a good exercise to derive them by hand. The derivative of $\tanh$ is $1-\tanh(x)^2$. You can find the complete proof [here](https://www.wyzant.com/resources/lessons/math/calculus/derivative_proofs/tanx). Note that: $ \sec(x)^2 = 1 - \tanh(x)^2$Similarly for $\frac{ \partial a^{\langle t \rangle} } {\partial W_{ax}}, \frac{ \partial a^{\langle t \rangle} } {\partial W_{aa}}, \frac{ \partial a^{\langle t \rangle} } {\partial b}$, the derivative of $\tanh(u)$ is $(1-\tanh(u)^2)du$. The final two equations also follow same rule and are derived using the $\tanh$ derivative. Note that the arrangement is done in a way to get the same dimensions to match. ###Code def rnn_cell_backward(da_next, cache): """ Implements the backward pass for the RNN-cell (single time-step). Arguments: da_next -- Gradient of loss with respect to next hidden state cache -- python dictionary containing useful values (output of rnn_cell_forward()) Returns: gradients -- python dictionary containing: dx -- Gradients of input data, of shape (n_x, m) da_prev -- Gradients of previous hidden state, of shape (n_a, m) dWax -- Gradients of input-to-hidden weights, of shape (n_a, n_x) dWaa -- Gradients of hidden-to-hidden weights, of shape (n_a, n_a) dba -- Gradients of bias vector, of shape (n_a, 1) """ # Retrieve values from cache (a_next, a_prev, xt, parameters) = cache # Retrieve values from parameters Wax = parameters["Wax"] Waa = parameters["Waa"] Wya = parameters["Wya"] ba = parameters["ba"] by = parameters["by"] ### START CODE HERE ### # compute the gradient of tanh with respect to a_next (≈1 line) dtanh = None # compute the gradient of the loss with respect to Wax (≈2 lines) dxt = None dWax = None # compute the gradient with respect to Waa (≈2 lines) da_prev = None dWaa = None # compute the gradient with respect to b (≈1 line) dba = None ### END CODE HERE ### # Store the gradients in a python dictionary gradients = {"dxt": dxt, "da_prev": da_prev, "dWax": dWax, "dWaa": dWaa, "dba": dba} return gradients np.random.seed(1) xt = np.random.randn(3,10) a_prev = np.random.randn(5,10) Wax = np.random.randn(5,3) Waa = np.random.randn(5,5) Wya = np.random.randn(2,5) b = np.random.randn(5,1) by = np.random.randn(2,1) parameters = {"Wax": Wax, "Waa": Waa, "Wya": Wya, "ba": ba, "by": by} a_next, yt, cache = rnn_cell_forward(xt, a_prev, parameters) da_next = np.random.randn(5,10) gradients = rnn_cell_backward(da_next, cache) print("gradients[\"dxt\"][1][2] =", gradients["dxt"][1][2]) print("gradients[\"dxt\"].shape =", gradients["dxt"].shape) print("gradients[\"da_prev\"][2][3] =", gradients["da_prev"][2][3]) print("gradients[\"da_prev\"].shape =", gradients["da_prev"].shape) print("gradients[\"dWax\"][3][1] =", gradients["dWax"][3][1]) print("gradients[\"dWax\"].shape =", gradients["dWax"].shape) print("gradients[\"dWaa\"][1][2] =", gradients["dWaa"][1][2]) print("gradients[\"dWaa\"].shape =", gradients["dWaa"].shape) print("gradients[\"dba\"][4] =", gradients["dba"][4]) print("gradients[\"dba\"].shape =", gradients["dba"].shape) ###Output _____no_output_____ ###Markdown **Expected Output**: **gradients["dxt"][1][2]** = -0.460564103059 **gradients["dxt"].shape** = (3, 10) **gradients["da_prev"][2][3]** = 0.0842968653807 **gradients["da_prev"].shape** = (5, 10) **gradients["dWax"][3][1]** = 0.393081873922 **gradients["dWax"].shape** = (5, 3) **gradients["dWaa"][1][2]** = -0.28483955787 **gradients["dWaa"].shape** = (5, 5) **gradients["dba"][4]** = [ 0.80517166] **gradients["dba"].shape** = (5, 1) Backward pass through the RNNComputing the gradients of the cost with respect to $a^{\langle t \rangle}$ at every time-step $t$ is useful because it is what helps the gradient backpropagate to the previous RNN-cell. To do so, you need to iterate through all the time steps starting at the end, and at each step, you increment the overall $db_a$, $dW_{aa}$, $dW_{ax}$ and you store $dx$.**Instructions**:Implement the `rnn_backward` function. Initialize the return variables with zeros first and then loop through all the time steps while calling the `rnn_cell_backward` at each time timestep, update the other variables accordingly. ###Code def rnn_backward(da, caches): """ Implement the backward pass for a RNN over an entire sequence of input data. Arguments: da -- Upstream gradients of all hidden states, of shape (n_a, m, T_x) caches -- tuple containing information from the forward pass (rnn_forward) Returns: gradients -- python dictionary containing: dx -- Gradient w.r.t. the input data, numpy-array of shape (n_x, m, T_x) da0 -- Gradient w.r.t the initial hidden state, numpy-array of shape (n_a, m) dWax -- Gradient w.r.t the input's weight matrix, numpy-array of shape (n_a, n_x) dWaa -- Gradient w.r.t the hidden state's weight matrix, numpy-arrayof shape (n_a, n_a) dba -- Gradient w.r.t the bias, of shape (n_a, 1) """ ### START CODE HERE ### # Retrieve values from the first cache (t=1) of caches (≈2 lines) (caches, x) = None (a1, a0, x1, parameters) = None # Retrieve dimensions from da's and x1's shapes (≈2 lines) n_a, m, T_x = None n_x, m = None # initialize the gradients with the right sizes (≈6 lines) dx = None dWax = None dWaa = None dba = None da0 = None da_prevt = None # Loop through all the time steps for t in reversed(range(None)): # Compute gradients at time step t. Choose wisely the "da_next" and the "cache" to use in the backward propagation step. (≈1 line) gradients = None # Retrieve derivatives from gradients (≈ 1 line) dxt, da_prevt, dWaxt, dWaat, dbat = gradients["dxt"], gradients["da_prev"], gradients["dWax"], gradients["dWaa"], gradients["dba"] # Increment global derivatives w.r.t parameters by adding their derivative at time-step t (≈4 lines) dx[:, :, t] = None dWax += None dWaa += None dba += None # Set da0 to the gradient of a which has been backpropagated through all time-steps (≈1 line) da0 = None ### END CODE HERE ### # Store the gradients in a python dictionary gradients = {"dx": dx, "da0": da0, "dWax": dWax, "dWaa": dWaa,"dba": dba} return gradients np.random.seed(1) x = np.random.randn(3,10,4) a0 = np.random.randn(5,10) Wax = np.random.randn(5,3) Waa = np.random.randn(5,5) Wya = np.random.randn(2,5) ba = np.random.randn(5,1) by = np.random.randn(2,1) parameters = {"Wax": Wax, "Waa": Waa, "Wya": Wya, "ba": ba, "by": by} a, y, caches = rnn_forward(x, a0, parameters) da = np.random.randn(5, 10, 4) gradients = rnn_backward(da, caches) print("gradients[\"dx\"][1][2] =", gradients["dx"][1][2]) print("gradients[\"dx\"].shape =", gradients["dx"].shape) print("gradients[\"da0\"][2][3] =", gradients["da0"][2][3]) print("gradients[\"da0\"].shape =", gradients["da0"].shape) print("gradients[\"dWax\"][3][1] =", gradients["dWax"][3][1]) print("gradients[\"dWax\"].shape =", gradients["dWax"].shape) print("gradients[\"dWaa\"][1][2] =", gradients["dWaa"][1][2]) print("gradients[\"dWaa\"].shape =", gradients["dWaa"].shape) print("gradients[\"dba\"][4] =", gradients["dba"][4]) print("gradients[\"dba\"].shape =", gradients["dba"].shape) ###Output _____no_output_____ ###Markdown **Expected Output**: **gradients["dx"][1][2]** = [-2.07101689 -0.59255627 0.02466855 0.01483317] **gradients["dx"].shape** = (3, 10, 4) **gradients["da0"][2][3]** = -0.314942375127 **gradients["da0"].shape** = (5, 10) **gradients["dWax"][3][1]** = 11.2641044965 **gradients["dWax"].shape** = (5, 3) **gradients["dWaa"][1][2]** = 2.30333312658 **gradients["dWaa"].shape** = (5, 5) **gradients["dba"][4]** = [-0.74747722] **gradients["dba"].shape** = (5, 1) 3.2 - LSTM backward pass 3.2.1 One Step backwardThe LSTM backward pass is slighltly more complicated than the forward one. We have provided you with all the equations for the LSTM backward pass below. (If you enjoy calculus exercises feel free to try deriving these from scratch yourself.) 3.2.2 gate derivatives$$d \Gamma_o^{\langle t \rangle} = da_{next}*\tanh(c_{next}) * \Gamma_o^{\langle t \rangle}*(1-\Gamma_o^{\langle t \rangle})\tag{7}$$$$d\tilde c^{\langle t \rangle} = dc_{next}*\Gamma_i^{\langle t \rangle}+ \Gamma_o^{\langle t \rangle} (1-\tanh(c_{next})^2) * i_t * da_{next} * \tilde c^{\langle t \rangle} * (1-\tanh(\tilde c)^2) \tag{8}$$$$d\Gamma_u^{\langle t \rangle} = dc_{next}*\tilde c^{\langle t \rangle} + \Gamma_o^{\langle t \rangle} (1-\tanh(c_{next})^2) * \tilde c^{\langle t \rangle} * da_{next}*\Gamma_u^{\langle t \rangle}*(1-\Gamma_u^{\langle t \rangle})\tag{9}$$$$d\Gamma_f^{\langle t \rangle} = dc_{next}*\tilde c_{prev} + \Gamma_o^{\langle t \rangle} (1-\tanh(c_{next})^2) * c_{prev} * da_{next}*\Gamma_f^{\langle t \rangle}*(1-\Gamma_f^{\langle t \rangle})\tag{10}$$ 3.2.3 parameter derivatives $$ dW_f = d\Gamma_f^{\langle t \rangle} * \begin{pmatrix} a_{prev} \\ x_t\end{pmatrix}^T \tag{11} $$$$ dW_u = d\Gamma_u^{\langle t \rangle} * \begin{pmatrix} a_{prev} \\ x_t\end{pmatrix}^T \tag{12} $$$$ dW_c = d\tilde c^{\langle t \rangle} * \begin{pmatrix} a_{prev} \\ x_t\end{pmatrix}^T \tag{13} $$$$ dW_o = d\Gamma_o^{\langle t \rangle} * \begin{pmatrix} a_{prev} \\ x_t\end{pmatrix}^T \tag{14}$$To calculate $db_f, db_u, db_c, db_o$ you just need to sum across the horizontal (axis= 1) axis on $d\Gamma_f^{\langle t \rangle}, d\Gamma_u^{\langle t \rangle}, d\tilde c^{\langle t \rangle}, d\Gamma_o^{\langle t \rangle}$ respectively. Note that you should have the `keep_dims = True` option.Finally, you will compute the derivative with respect to the previous hidden state, previous memory state, and input.$$ da_{prev} = W_f^T*d\Gamma_f^{\langle t \rangle} + W_u^T * d\Gamma_u^{\langle t \rangle}+ W_c^T * d\tilde c^{\langle t \rangle} + W_o^T * d\Gamma_o^{\langle t \rangle} \tag{15}$$Here, the weights for equations 13 are the first n_a, (i.e. $W_f = W_f[:n_a,:]$ etc...)$$ dc_{prev} = dc_{next}\Gamma_f^{\langle t \rangle} + \Gamma_o^{\langle t \rangle} * (1- \tanh(c_{next})^2)*\Gamma_f^{\langle t \rangle}*da_{next} \tag{16}$$$$ dx^{\langle t \rangle} = W_f^T*d\Gamma_f^{\langle t \rangle} + W_u^T * d\Gamma_u^{\langle t \rangle}+ W_c^T * d\tilde c_t + W_o^T * d\Gamma_o^{\langle t \rangle}\tag{17} $$where the weights for equation 15 are from n_a to the end, (i.e. $W_f = W_f[n_a:,:]$ etc...)**Exercise:** Implement `lstm_cell_backward` by implementing equations $7-17$ below. Good luck! :) ###Code def lstm_cell_backward(da_next, dc_next, cache): """ Implement the backward pass for the LSTM-cell (single time-step). Arguments: da_next -- Gradients of next hidden state, of shape (n_a, m) dc_next -- Gradients of next cell state, of shape (n_a, m) cache -- cache storing information from the forward pass Returns: gradients -- python dictionary containing: dxt -- Gradient of input data at time-step t, of shape (n_x, m) da_prev -- Gradient w.r.t. the previous hidden state, numpy array of shape (n_a, m) dc_prev -- Gradient w.r.t. the previous memory state, of shape (n_a, m, T_x) dWf -- Gradient w.r.t. the weight matrix of the forget gate, numpy array of shape (n_a, n_a + n_x) dWi -- Gradient w.r.t. the weight matrix of the update gate, numpy array of shape (n_a, n_a + n_x) dWc -- Gradient w.r.t. the weight matrix of the memory gate, numpy array of shape (n_a, n_a + n_x) dWo -- Gradient w.r.t. the weight matrix of the output gate, numpy array of shape (n_a, n_a + n_x) dbf -- Gradient w.r.t. biases of the forget gate, of shape (n_a, 1) dbi -- Gradient w.r.t. biases of the update gate, of shape (n_a, 1) dbc -- Gradient w.r.t. biases of the memory gate, of shape (n_a, 1) dbo -- Gradient w.r.t. biases of the output gate, of shape (n_a, 1) """ # Retrieve information from "cache" (a_next, c_next, a_prev, c_prev, ft, it, cct, ot, xt, parameters) = cache ### START CODE HERE ### # Retrieve dimensions from xt's and a_next's shape (≈2 lines) n_x, m = None n_a, m = None # Compute gates related derivatives, you can find their values can be found by looking carefully at equations (7) to (10) (≈4 lines) dot = None dcct = None dit = None dft = None # Code equations (7) to (10) (≈4 lines) dit = None dft = None dot = None dcct = None # Compute parameters related derivatives. Use equations (11)-(14) (≈8 lines) dWf = None dWi = None dWc = None dWo = None dbf = None dbi = None dbc = None dbo = None # Compute derivatives w.r.t previous hidden state, previous memory state and input. Use equations (15)-(17). (≈3 lines) da_prev = None dc_prev = None dxt = None ### END CODE HERE ### # Save gradients in dictionary gradients = {"dxt": dxt, "da_prev": da_prev, "dc_prev": dc_prev, "dWf": dWf,"dbf": dbf, "dWi": dWi,"dbi": dbi, "dWc": dWc,"dbc": dbc, "dWo": dWo,"dbo": dbo} return gradients np.random.seed(1) xt = np.random.randn(3,10) a_prev = np.random.randn(5,10) c_prev = np.random.randn(5,10) Wf = np.random.randn(5, 5+3) bf = np.random.randn(5,1) Wi = np.random.randn(5, 5+3) bi = np.random.randn(5,1) Wo = np.random.randn(5, 5+3) bo = np.random.randn(5,1) Wc = np.random.randn(5, 5+3) bc = np.random.randn(5,1) Wy = np.random.randn(2,5) by = np.random.randn(2,1) parameters = {"Wf": Wf, "Wi": Wi, "Wo": Wo, "Wc": Wc, "Wy": Wy, "bf": bf, "bi": bi, "bo": bo, "bc": bc, "by": by} a_next, c_next, yt, cache = lstm_cell_forward(xt, a_prev, c_prev, parameters) da_next = np.random.randn(5,10) dc_next = np.random.randn(5,10) gradients = lstm_cell_backward(da_next, dc_next, cache) print("gradients[\"dxt\"][1][2] =", gradients["dxt"][1][2]) print("gradients[\"dxt\"].shape =", gradients["dxt"].shape) print("gradients[\"da_prev\"][2][3] =", gradients["da_prev"][2][3]) print("gradients[\"da_prev\"].shape =", gradients["da_prev"].shape) print("gradients[\"dc_prev\"][2][3] =", gradients["dc_prev"][2][3]) print("gradients[\"dc_prev\"].shape =", gradients["dc_prev"].shape) print("gradients[\"dWf\"][3][1] =", gradients["dWf"][3][1]) print("gradients[\"dWf\"].shape =", gradients["dWf"].shape) print("gradients[\"dWi\"][1][2] =", gradients["dWi"][1][2]) print("gradients[\"dWi\"].shape =", gradients["dWi"].shape) print("gradients[\"dWc\"][3][1] =", gradients["dWc"][3][1]) print("gradients[\"dWc\"].shape =", gradients["dWc"].shape) print("gradients[\"dWo\"][1][2] =", gradients["dWo"][1][2]) print("gradients[\"dWo\"].shape =", gradients["dWo"].shape) print("gradients[\"dbf\"][4] =", gradients["dbf"][4]) print("gradients[\"dbf\"].shape =", gradients["dbf"].shape) print("gradients[\"dbi\"][4] =", gradients["dbi"][4]) print("gradients[\"dbi\"].shape =", gradients["dbi"].shape) print("gradients[\"dbc\"][4] =", gradients["dbc"][4]) print("gradients[\"dbc\"].shape =", gradients["dbc"].shape) print("gradients[\"dbo\"][4] =", gradients["dbo"][4]) print("gradients[\"dbo\"].shape =", gradients["dbo"].shape) ###Output _____no_output_____ ###Markdown **Expected Output**: **gradients["dxt"][1][2]** = 3.23055911511 **gradients["dxt"].shape** = (3, 10) **gradients["da_prev"][2][3]** = -0.0639621419711 **gradients["da_prev"].shape** = (5, 10) **gradients["dc_prev"][2][3]** = 0.797522038797 **gradients["dc_prev"].shape** = (5, 10) **gradients["dWf"][3][1]** = -0.147954838164 **gradients["dWf"].shape** = (5, 8) **gradients["dWi"][1][2]** = 1.05749805523 **gradients["dWi"].shape** = (5, 8) **gradients["dWc"][3][1]** = 2.30456216369 **gradients["dWc"].shape** = (5, 8) **gradients["dWo"][1][2]** = 0.331311595289 **gradients["dWo"].shape** = (5, 8) **gradients["dbf"][4]** = [ 0.18864637] **gradients["dbf"].shape** = (5, 1) **gradients["dbi"][4]** = [-0.40142491] **gradients["dbi"].shape** = (5, 1) **gradients["dbc"][4]** = [ 0.25587763] **gradients["dbc"].shape** = (5, 1) **gradients["dbo"][4]** = [ 0.13893342] **gradients["dbo"].shape** = (5, 1) 3.3 Backward pass through the LSTM RNNThis part is very similar to the `rnn_backward` function you implemented above. You will first create variables of the same dimension as your return variables. You will then iterate over all the time steps starting from the end and call the one step function you implemented for LSTM at each iteration. You will then update the parameters by summing them individually. Finally return a dictionary with the new gradients. **Instructions**: Implement the `lstm_backward` function. Create a for loop starting from $T_x$ and going backward. For each step call `lstm_cell_backward` and update the your old gradients by adding the new gradients to them. Note that `dxt` is not updated but is stored. ###Code def lstm_backward(da, caches): """ Implement the backward pass for the RNN with LSTM-cell (over a whole sequence). Arguments: da -- Gradients w.r.t the hidden states, numpy-array of shape (n_a, m, T_x) dc -- Gradients w.r.t the memory states, numpy-array of shape (n_a, m, T_x) caches -- cache storing information from the forward pass (lstm_forward) Returns: gradients -- python dictionary containing: dx -- Gradient of inputs, of shape (n_x, m, T_x) da0 -- Gradient w.r.t. the previous hidden state, numpy array of shape (n_a, m) dWf -- Gradient w.r.t. the weight matrix of the forget gate, numpy array of shape (n_a, n_a + n_x) dWi -- Gradient w.r.t. the weight matrix of the update gate, numpy array of shape (n_a, n_a + n_x) dWc -- Gradient w.r.t. the weight matrix of the memory gate, numpy array of shape (n_a, n_a + n_x) dWo -- Gradient w.r.t. the weight matrix of the save gate, numpy array of shape (n_a, n_a + n_x) dbf -- Gradient w.r.t. biases of the forget gate, of shape (n_a, 1) dbi -- Gradient w.r.t. biases of the update gate, of shape (n_a, 1) dbc -- Gradient w.r.t. biases of the memory gate, of shape (n_a, 1) dbo -- Gradient w.r.t. biases of the save gate, of shape (n_a, 1) """ # Retrieve values from the first cache (t=1) of caches. (caches, x) = caches (a1, c1, a0, c0, f1, i1, cc1, o1, x1, parameters) = caches[0] ### START CODE HERE ### # Retrieve dimensions from da's and x1's shapes (≈2 lines) n_a, m, T_x = None n_x, m = None # initialize the gradients with the right sizes (≈12 lines) dx = None da0 = None da_prevt = None dc_prevt = None dWf = None dWi = None dWc = None dWo = None dbf = None dbi = None dbc = None dbo = None # loop back over the whole sequence for t in reversed(range(None)): # Compute all gradients using lstm_cell_backward gradients = None # Store or add the gradient to the parameters' previous step's gradient dx[:,:,t] = None dWf = None dWi = None dWc = None dWo = None dbf = None dbi = None dbc = None dbo = None # Set the first activation's gradient to the backpropagated gradient da_prev. da0 = None ### END CODE HERE ### # Store the gradients in a python dictionary gradients = {"dx": dx, "da0": da0, "dWf": dWf,"dbf": dbf, "dWi": dWi,"dbi": dbi, "dWc": dWc,"dbc": dbc, "dWo": dWo,"dbo": dbo} return gradients np.random.seed(1) x = np.random.randn(3,10,7) a0 = np.random.randn(5,10) Wf = np.random.randn(5, 5+3) bf = np.random.randn(5,1) Wi = np.random.randn(5, 5+3) bi = np.random.randn(5,1) Wo = np.random.randn(5, 5+3) bo = np.random.randn(5,1) Wc = np.random.randn(5, 5+3) bc = np.random.randn(5,1) parameters = {"Wf": Wf, "Wi": Wi, "Wo": Wo, "Wc": Wc, "Wy": Wy, "bf": bf, "bi": bi, "bo": bo, "bc": bc, "by": by} a, y, c, caches = lstm_forward(x, a0, parameters) da = np.random.randn(5, 10, 4) gradients = lstm_backward(da, caches) print("gradients[\"dx\"][1][2] =", gradients["dx"][1][2]) print("gradients[\"dx\"].shape =", gradients["dx"].shape) print("gradients[\"da0\"][2][3] =", gradients["da0"][2][3]) print("gradients[\"da0\"].shape =", gradients["da0"].shape) print("gradients[\"dWf\"][3][1] =", gradients["dWf"][3][1]) print("gradients[\"dWf\"].shape =", gradients["dWf"].shape) print("gradients[\"dWi\"][1][2] =", gradients["dWi"][1][2]) print("gradients[\"dWi\"].shape =", gradients["dWi"].shape) print("gradients[\"dWc\"][3][1] =", gradients["dWc"][3][1]) print("gradients[\"dWc\"].shape =", gradients["dWc"].shape) print("gradients[\"dWo\"][1][2] =", gradients["dWo"][1][2]) print("gradients[\"dWo\"].shape =", gradients["dWo"].shape) print("gradients[\"dbf\"][4] =", gradients["dbf"][4]) print("gradients[\"dbf\"].shape =", gradients["dbf"].shape) print("gradients[\"dbi\"][4] =", gradients["dbi"][4]) print("gradients[\"dbi\"].shape =", gradients["dbi"].shape) print("gradients[\"dbc\"][4] =", gradients["dbc"][4]) print("gradients[\"dbc\"].shape =", gradients["dbc"].shape) print("gradients[\"dbo\"][4] =", gradients["dbo"][4]) print("gradients[\"dbo\"].shape =", gradients["dbo"].shape) ###Output _____no_output_____
notebooks/PART1_05_Python_101.ipynb
###Markdown Python 101 - An Introduction to Python 1. Objects ###Code print(2) print(5) print("Hello") a = 2 b = "Hello" c = True d = 2.0 e = [a,c,d] print(a,b,c,d,e) print( type(a), type(b), type(c), type(d), type(e), ) ###Output <class 'int'> <class 'str'> <class 'bool'> <class 'float'> <class 'list'> ###Markdown > __DEAL WITH ERRORS!__ 2. Operations ###Code a = 2 b = 3 # this is a comment print( a+b, # this is a comment a*b, # this is a comment a**b, # this is a comment a/b, a//b ) "Hello" + " World" "Hello "*4 #"Hello "**4 a = (1 > 3) b = (3 == 3) print(a, b) c = True print("1 ",a or b) #1 print("2 ",a and b) #2 print("3 ",b and c) #3 ###Output False True 1 True 2 False 3 True ###Markdown 3. Methods ###Code a = "hello world" type(a) print(a.capitalize()) print(a.title()) print(a.upper()) print(a.replace("o", "--")) ###Output Hello world Hello World HELLO WORLD hell-- w--rld ###Markdown 4. Indexing and Slicing ###Code a = a.upper() a a[0:2] a[2:] a[:4] a[::3] a[-5:] a[-1] a[::-1] "HELL" in a "DO" in a ###Output _____no_output_____ ###Markdown 5. Collection of things* `list`* `tuple`* `dictionary` List ###Code a = ["blueberry", "strawberry", "pineapple", 1, True] type(a) a[::-1] a[-1] a[1] a a[0] = "new fruit" print(a) a.append("a new thing") a a.pop() a.pop() a.pop() a a.sort() a a.reverse() a a = sorted(a) a a.sort() a ###Output _____no_output_____ ###Markdown > **Challenge:** Store a bunch of heights (in metres) in a list1. Ask five people around you for their heights (in metres).2. Store these in a list called `heights`.3. Append your own height to the list.4. Get the first height from the list and print it. ###Code # Solution heights = [1.72, 1.55, 1.98, 1.66, 1.78] heights.append(1.88) heights[0] ###Output _____no_output_____ ###Markdown **variable assignment:** Everytime you assign something to a variable the following happens: - Example: x = 5 > (x =) - reference: The computer assigns some space on the harddrive and creates a link between your variable name and this space > (int) - type: What you dont see is, that python automatically guesses the data type of your variable by what follows after the equal sign (try "print(int(5),str(5))") > (5) - object: Now the computer writes every information about your object in the reserved space ###Code a = 5 b = a a = 6 print(a,b) a = [1,2] b = a a.append(3) print(a,b) ###Output [1, 2, 3] [1, 2, 3] ###Markdown Basically there are two types of objects. Some are called by their value (like every Number or String) and some by their reference (like lists). - Real life comparison: Imagine having a excel sheet on a computer that multiple people use. Everytime someone changes it, it is changed for every other user. Right now you are using all the same jupyter notebook, but your changes only happen at your notebook. - By typing "a = b" you are either telling python that "b" should be assigned to the same reference as "a" (so both "a" and "b" point to the same harddrive space) or that "b" should get its own copy of whatever "a" is, depending on what is stored in "a". Tuple ###Code b = (1,2,3,4,5) type(b) b1 = [1,2,3,4,5] type(b1) b1[0] = 2 b1 #b[0] = 2 ###Output _____no_output_____ ###Markdown Dictionaries`key` $\to$ `value` pairs ###Code my_dict = {"Marry" : 22 , "Frank" : 33 } my_dict my_dict["Marry"] my_dict["Frank"] my_dict["Anne"] = 13 my_dict my_dict["Anne"] #my_dict["Heidi"] my_dict.get("Heidi", "Danger no entry found!") my_dict.items() my_dict.keys() my_dict.values() ###Output _____no_output_____ ###Markdown 6. Use functions ###Code print(type(3)) print(len('hello')) print(round(3.3)) #?round round(3.14159,3) dir(__builtins__); import math math.pi import math as m m.pi from math import pi pi from math import * math.sqrt(4) sqrt(4) math.sin(2) import copy a = [1,2] b = copy.deepcopy(a) a.append(3) print(a,b) ###Output [1, 2, 3] [1, 2] ###Markdown 7. DRY (_Dont't repeat yourself_) __`for` Loops__ ###Code wordlist = ["hi", "hello", "by"] import time for word in wordlist: print(word + "!") time.sleep(1) print("-----------") print("Done") for e, word in enumerate(wordlist): print(e, word) print("-----") ###Output 0 hi ----- 1 hello ----- 2 by ----- ###Markdown > **Challenge*** Sum all of the values in a collection using a for loop`numlist = [1, 4, 77, 3]` ###Code # solution numlist = [1, 4, 77, 3] total = 0 for mymother in numlist: total = total + mymother print(total) ###Output 85 ###Markdown > **Challenge*** Combine items from two lists and print them as one string to the console `name = ["John", "Ringo", "Paul", "George"]` `surname = ["Lennon", "Star", "McCartney", "Harrison"]` ###Code name = ["John", "Ringo", "Paul", "George"] surname = ["Lennon", "Star", "McCartney", "Harrison"] # Solution 1 for e, n in enumerate(name): print(e, n) print(n, surname[e]) print("-----") # Solution 2 for i in zip(name, surname): print(i[0], i[1]) list(zip(name, surname)) ###Output _____no_output_____ ###Markdown **`while` loop** ###Code # and want to stop once a certain condition is met. step = 0 prod = 1 while prod < 100: step = step + 1 prod = prod * 2 print(step, prod) print('Reached a product of', prod, 'at step number', step) ###Output 1 2 2 4 3 8 4 16 5 32 6 64 7 128 Reached a product of 128 at step number 7 ###Markdown list comprehensions ###Code [(y,x) for x,y in zip(name, surname)] ###Output _____no_output_____ ###Markdown 8. Control Flow ###Code x = 0 if x > 0: print("x is positive") elif x < 0: print("x is negative") else: print("x is zero") ###Output x is zero ###Markdown > **Challenge**Write a countdown! ###Code range(10) #time.sleep(1) for number in range(10): count = 10-number print(count) time.sleep(1) if count == 1: print("Engine start!") ###Output 10 9 8 7 6 5 4 3 2 1 Engine start! ###Markdown 9. IO Write a text file ###Code f = open("../datasets/my_file.txt", "w") for i in range(5): f.write("Line {}\n".format(i)) f.close() # using a context manager with open("../datasets/my_file.txt", "a") as f: for i in range(5): f.write("LINE {}\n".format(i)) ###Output _____no_output_____ ###Markdown Read a file ###Code with open ("../datasets/my_file.txt", "r") as f: print(f.read()) ###Output Line 0 Line 1 Line 2 Line 3 Line 4 LINE 0 LINE 1 LINE 2 LINE 3 LINE 4 ###Markdown >**Challenge** * Extract the numerical values of the file `my_file.txt` into a list of floating point values. ###Code my_storage = [] #list() with open ("../datasets/my_file.txt", "r") as f: for line in f: number = float(line.split()[1]) my_storage.append(number) my_storage "LINE 0".split() "LINE 0".split()[1] float("LINE 0".split()[1]) ###Output _____no_output_____ ###Markdown 10 Functions (UDFs) ###Code def my_func(a,b,c=10): rv = (a-b)*c return rv my_result = my_func(a=1, b=2) my_result ###Output _____no_output_____ ###Markdown > **Challenge** * Write a function that computes Kelvin from Fahrenheit (`fahrenheit_to_kelvin`)* Write a function that computes Celsius from Kelvin (`kelvin_to_celsius`)* Write a function that computes Celsius form Fahrenheit (`fahrenheit_to_celsius`); Resue the two functions from above. @1 ###Code def fahrenheit_to_kelvin(a): """ Function to compute Fahrenheit from Kelvin """ kelvin = (a-32.0)*5/9 + 273.15 return kelvin fahrenheit_to_kelvin(341) ###Output _____no_output_____ ###Markdown @2 ###Code def kelvin_to_celsius(temperature_K): ''' Function to compute Celsius from Kelvin ''' rv = temperature_K - 273.15 return rv kelvin_to_celsius(0) ###Output _____no_output_____ ###Markdown @3 ###Code def fahrenheit_to_celsius(temperature_F): ''' Function to compite Celsius from Fahrenheit ''' temp_K = fahrenheit_to_kelvin(temperature_F) temp_C = kelvin_to_celsius(temp_K) return temp_C ###Output _____no_output_____ ###Markdown Code refactoring ###Code %%writefile temperature_module.py def kelvin_to_celsius(temperature_K): ''' Function to compute Celsius from Kelvin ''' rv = temperature_K - 273.15 return rv def fahrenheit_to_celsius(temperature_F): ''' Function to compite Celsius from Fahrenheit ''' temp_K = fahrenheit_to_kelvin(temperature_F) temp_C = kelvin_to_celsius(temp_K) return temp_C def fahrenheit_to_kelvin(a): """ Function to compute Fahrenheit from Kelvin """ kelvin = (a-32.0)*5/9 + 273.15 return kelvin import temperature_module as tm tm.kelvin_to_celsius(100) tm.fahrenheit_to_celsius(100) tm.fahrenheit_to_kelvin(100) ###Output _____no_output_____ ###Markdown Final challenge Build rock sciscors paper__Task__ Implement the classic children's game Rock-paper-scissors, as well as a simple predictive AI (artificial intelligence) player.Rock Paper Scissors is a two player game.Each player chooses one of rock, paper or scissors, without knowing the other player's choice.The winner is decided by a set of rules: Rock beats scissors Scissors beat paper Paper beats rockIf both players choose the same thing, there is no winner for that round. If you don't konw the rules you may finde them [here](https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissors).For this task, the computer will be one of the players.The operator will select Rock, Paper or Scissors and the computer will keep a record of the choice frequency, and use that information to make a weighted random choice in an attempt to defeat its opponent.Consider the function `input()` to ask for user input. Try to implement an exit rule as well. ###Code from random import choice rules = {'rock': 'paper', 'scissors': 'rock', 'paper': 'scissors'} previous = ['rock', 'paper', 'scissors'] while True: human = input('\nchoose your weapon: ') computer = rules[choice(previous)] # choose the weapon which beats a randomly chosen weapon from "previous" if human in ('quit', 'exit'): break elif human in rules: print('the computer played', computer, end='; ') if rules[computer] == human: # if what beats the computer's choice is the human's choice... print('yay you win!') elif rules[human] == computer: # if what beats the human's choice is the computer's choice... print('the computer beat you... :(') else: print("it's a tie!") else: print("that's not a valid choice") ###Output choose your weapon: exit
Basic_Classification/basic_classification.ipynb
###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #@title MIT License # # Copyright (c) 2017 François Chollet # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. ###Output _____no_output_____ ###Markdown Train your first neural network: basic classification View on TensorFlow.org Run in Google Colab View source on GitHub This guide trains a neural network model to classify images of clothing, like sneakers and shirts. It's okay if you don't understand all the details, this is a fast-paced overview of a complete TensorFlow program with the details explained as we go.This guide uses [tf.keras](https://www.tensorflow.org/guide/keras), a high-level API to build and train models in TensorFlow. ###Code # TensorFlow and tf.keras import tensorflow as tf from tensorflow import keras # Helper libraries import numpy as np import matplotlib.pyplot as plt print(tf.__version__) ###Output _____no_output_____ ###Markdown Import the Fashion MNIST dataset This guide uses the [Fashion MNIST](https://github.com/zalandoresearch/fashion-mnist) dataset which contains 70,000 grayscale images in 10 categories. The images show individual articles of clothing at low resolution (28 by 28 pixels), as seen here: <img src="https://tensorflow.org/images/fashion-mnist-sprite.png" alt="Fashion MNIST sprite" width="600"> Figure 1. Fashion-MNIST samples (by Zalando, MIT License).&nbsp; Fashion MNIST is intended as a drop-in replacement for the classic [MNIST](http://yann.lecun.com/exdb/mnist/) dataset—often used as the "Hello, World" of machine learning programs for computer vision. The MNIST dataset contains images of handwritten digits (0, 1, 2, etc) in an identical format to the articles of clothing we'll use here.This guide uses Fashion MNIST for variety, and because it's a slightly more challenging problem than regular MNIST. Both datasets are relatively small and are used to verify that an algorithm works as expected. They're good starting points to test and debug code. We will use 60,000 images to train the network and 10,000 images to evaluate how accurately the network learned to classify images. You can access the Fashion MNIST directly from TensorFlow, just import and load the data: ###Code fashion_mnist = keras.datasets.fashion_mnist (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() ###Output _____no_output_____ ###Markdown Loading the dataset returns four NumPy arrays:* The `train_images` and `train_labels` arrays are the *training set*—the data the model uses to learn.* The model is tested against the *test set*, the `test_images`, and `test_labels` arrays.The images are 28x28 NumPy arrays, with pixel values ranging between 0 and 255. The *labels* are an array of integers, ranging from 0 to 9. These correspond to the *class* of clothing the image represents: Label Class 0 T-shirt/top 1 Trouser 2 Pullover 3 Dress 4 Coat 5 Sandal 6 Shirt 7 Sneaker 8 Bag 9 Ankle boot Each image is mapped to a single label. Since the *class names* are not included with the dataset, store them here to use later when plotting the images: ###Code class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] ###Output _____no_output_____ ###Markdown Explore the dataLet's explore the format of the dataset before training the model. The following shows there are 60,000 images in the training set, with each image represented as 28 x 28 pixels: ###Code train_images.shape ###Output _____no_output_____ ###Markdown Likewise, there are 60,000 labels in the training set: ###Code len(train_labels) ###Output _____no_output_____ ###Markdown Each label is an integer between 0 and 9: ###Code train_labels ###Output _____no_output_____ ###Markdown There are 10,000 images in the test set. Again, each image is represented as 28 x 28 pixels: ###Code test_images.shape ###Output _____no_output_____ ###Markdown And the test set contains 10,000 images labels: ###Code len(test_labels) ###Output _____no_output_____ ###Markdown Preprocess the dataThe data must be preprocessed before training the network. If you inspect the first image in the training set, you will see that the pixel values fall in the range of 0 to 255: ###Code plt.figure() plt.imshow(train_images[0]) plt.colorbar() plt.grid(False) ###Output _____no_output_____ ###Markdown We scale these values to a range of 0 to 1 before feeding to the neural network model. For this, we divide the values by 255. It's important that the *training set* and the *testing set* are preprocessed in the same way: ###Code train_images = train_images / 255.0 test_images = test_images / 255.0 ###Output _____no_output_____ ###Markdown Display the first 25 images from the *training set* and display the class name below each image. Verify that the data is in the correct format and we're ready to build and train the network. ###Code plt.figure(figsize=(10,10)) for i in range(25): plt.subplot(5,5,i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(train_images[i], cmap=plt.cm.binary) plt.xlabel(class_names[train_labels[i]]) ###Output _____no_output_____ ###Markdown Build the modelBuilding the neural network requires configuring the layers of the model, then compiling the model. Setup the layersThe basic building block of a neural network is the *layer*. Layers extract representations from the data fed into them. And, hopefully, these representations are more meaningful for the problem at hand.Most of deep learning consists of chaining together simple layers. Most layers, like `tf.keras.layers.Dense`, have parameters that are learned during training. ###Code model = keras.Sequential([ keras.layers.Flatten(input_shape=(28, 28)), keras.layers.Dense(128, activation=tf.nn.relu), keras.layers.Dense(10, activation=tf.nn.softmax) ]) ###Output _____no_output_____ ###Markdown The first layer in this network, `tf.keras.layers.Flatten`, transforms the format of the images from a 2d-array (of 28 by 28 pixels), to a 1d-array of 28 * 28 = 784 pixels. Think of this layer as unstacking rows of pixels in the image and lining them up. This layer has no parameters to learn; it only reformats the data.After the pixels are flattened, the network consists of a sequence of two `tf.keras.layers.Dense` layers. These are densely-connected, or fully-connected, neural layers. The first `Dense` layer has 128 nodes (or neurons). The second (and last) layer is a 10-node *softmax* layer—this returns an array of 10 probability scores that sum to 1. Each node contains a score that indicates the probability that the current image belongs to one of the 10 classes. Compile the modelBefore the model is ready for training, it needs a few more settings. These are added during the model's *compile* step:* *Loss function* —This measures how accurate the model is during training. We want to minimize this function to "steer" the model in the right direction.* *Optimizer* —This is how the model is updated based on the data it sees and its loss function.* *Metrics* —Used to monitor the training and testing steps. The following example uses *accuracy*, the fraction of the images that are correctly classified. ###Code model.compile(optimizer=tf.train.AdamOptimizer(), loss='sparse_categorical_crossentropy', metrics=['accuracy']) ###Output _____no_output_____ ###Markdown Train the modelTraining the neural network model requires the following steps:1. Feed the training data to the model—in this example, the `train_images` and `train_labels` arrays.2. The model learns to associate images and labels.3. We ask the model to make predictions about a test set—in this example, the `test_images` array. We verify that the predictions match the labels from the `test_labels` array. To start training, call the `model.fit` method—the model is "fit" to the training data: ###Code model.fit(train_images, train_labels, epochs=5) ###Output _____no_output_____ ###Markdown As the model trains, the loss and accuracy metrics are displayed. This model reaches an accuracy of about 0.88 (or 88%) on the training data. Evaluate accuracyNext, compare how the model performs on the test dataset: ###Code test_loss, test_acc = model.evaluate(test_images, test_labels) print('Test accuracy:', test_acc) ###Output _____no_output_____ ###Markdown It turns out, the accuracy on the test dataset is a little less than the accuracy on the training dataset. This gap between training accuracy and test accuracy is an example of *overfitting*. Overfitting is when a machine learning model performs worse on new data than on their training data. Make predictionsWith the model trained, we can use it to make predictions about some images. ###Code predictions = model.predict(test_images) ###Output _____no_output_____ ###Markdown Here, the model has predicted the label for each image in the testing set. Let's take a look at the first prediction: ###Code predictions[0] ###Output _____no_output_____ ###Markdown A prediction is an array of 10 numbers. These describe the "confidence" of the model that the image corresponds to each of the 10 different articles of clothing. We can see which label has the highest confidence value: ###Code np.argmax(predictions[0]) ###Output _____no_output_____ ###Markdown So the model is most confident that this image is an ankle boot, or `class_names[9]`. And we can check the test label to see this is correct: ###Code test_labels[0] ###Output _____no_output_____ ###Markdown We can graph this to look at the full set of 10 channels ###Code def plot_image(i, predictions_array, true_label, img): predictions_array, true_label, img = predictions_array[i], true_label[i], img[i] plt.grid(False) plt.xticks([]) plt.yticks([]) plt.imshow(img, cmap=plt.cm.binary) predicted_label = np.argmax(predictions_array) if predicted_label == true_label: color = 'blue' else: color = 'red' plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label], 100*np.max(predictions_array), class_names[true_label]), color=color) def plot_value_array(i, predictions_array, true_label): predictions_array, true_label = predictions_array[i], true_label[i] plt.grid(False) plt.xticks([]) plt.yticks([]) thisplot = plt.bar(range(10), predictions_array, color="#777777") plt.ylim([0, 1]) predicted_label = np.argmax(predictions_array) thisplot[predicted_label].set_color('red') thisplot[true_label].set_color('blue') ###Output _____no_output_____ ###Markdown Let's look at the 0th image, predictions, and prediction array. ###Code i = 0 plt.figure(figsize=(6,3)) plt.subplot(1,2,1) plot_image(i, predictions, test_labels, test_images) plt.subplot(1,2,2) plot_value_array(i, predictions, test_labels) i = 12 plt.figure(figsize=(6,3)) plt.subplot(1,2,1) plot_image(i, predictions, test_labels, test_images) plt.subplot(1,2,2) plot_value_array(i, predictions, test_labels) ###Output _____no_output_____ ###Markdown Let's plot several images with their predictions. Correct prediction labels are blue and incorrect prediction labels are red. The number gives the percent (out of 100) for the predicted label. Note that it can be wrong even when very confident. ###Code # Plot the first X test images, their predicted label, and the true label # Color correct predictions in blue, incorrect predictions in red num_rows = 5 num_cols = 3 num_images = num_rows*num_cols plt.figure(figsize=(2*2*num_cols, 2*num_rows)) for i in range(num_images): plt.subplot(num_rows, 2*num_cols, 2*i+1) plot_image(i, predictions, test_labels, test_images) plt.subplot(num_rows, 2*num_cols, 2*i+2) plot_value_array(i, predictions, test_labels) ###Output _____no_output_____ ###Markdown Finally, use the trained model to make a prediction about a single image. ###Code # Grab an image from the test dataset img = test_images[0] print(img.shape) ###Output _____no_output_____ ###Markdown `tf.keras` models are optimized to make predictions on a *batch*, or collection, of examples at once. So even though we're using a single image, we need to add it to a list: ###Code # Add the image to a batch where it's the only member. img = (np.expand_dims(img,0)) print(img.shape) ###Output _____no_output_____ ###Markdown Now predict the image: ###Code predictions_single = model.predict(img) print(predictions_single) plot_value_array(0, predictions_single, test_labels) _ = plt.xticks(range(10), class_names, rotation=45) ###Output _____no_output_____ ###Markdown `model.predict` returns a list of lists, one for each image in the batch of data. Grab the predictions for our (only) image in the batch: ###Code np.argmax(predictions_single[0]) ###Output _____no_output_____
Univariate Linear Regression/Model/House_price_prediction_Univariate.ipynb
###Markdown ***PLOT Between model price and actual price*** ###Code model_price= x*new_theta.T fig,ax = plt.subplots(figsize=(12,8)) ax.plot(data.Size,model_price,'r',label= 'Prediction') ax.scatter(data.Size,data.Price,label= 'Training data') ax.legend() ax.set_xlabel('Size') ax.set_ylabel('Price') ax.set_title('Predicted price vs Actual price') fig,ax = plt.subplots(figsize=(12,8)) ax.plot(np.arange(iters),cost,'r',label= 'Error Vs Cost') ax.legend(loc=3) ax.set_xlabel('Iterations') ax.set_ylabel('cost') ax.set_title('Error Vs Iterations') ###Output _____no_output_____ ###Markdown ***Error and Accuracy calculations*** ###Code from sklearn.metrics import mean_absolute_error Error = mean_absolute_error(model_price,y) Accuracy = 1-Error print('Error = {} %'.format(round(Error*100,2))) print('Accuracy = {} %'.format(round(Accuracy*100,2))) ###Output Error = 0.94 % Accuracy = 99.06 % ###Markdown ***Prediction*** ###Code def predict(new_theta,accuracy): #get input from the user size= float(input("Enter the size of the House in sqft.:")) #Mean Normalisation size= (size - raw_data.Size.mean())/(raw_data.Size.max()-raw_data.Size.min()) #Model price = (new_theta[0,0] + (new_theta[0,1]*size)) #Reverse Mean Normalisation Predicted_Price = (price* (raw_data.Price.max()-raw_data.Price.min())) + (raw_data.Price.mean()) Price_at_max_accuracy = (Predicted_Price*(1/accuracy)) Price_range = Price_at_max_accuracy - Predicted_Price return Predicted_Price, Price_range Predicted_price, Price_range = predict(new_theta,Accuracy) print("Your house cost is",str(round(Predicted_price)),'(+ or -)',str(Price_range)) ###Output Enter the size of the House in sqft.:1200 Your house cost is 3751161.0 (+ or -) 35691.47797277197
examples/sampling/adaptive-covariance-haario-bardenet.ipynb
###Markdown Inference: Haario-Bardenet adaptive covariance MCMCThis example shows you how to perform Bayesian inference on a time series, using a variant of [Adaptive Covariance MCMC](https://pints.readthedocs.io/en/latest/mcmc_samplers/haario_bardenet_ac_mcmc.html) detailed in supplementary materials of [1].[1] Uncertainty and variability in models of the cardiac action potential: Can we build trustworthy models? Johnstone, Chang, Bardenet, de Boer, Gavaghan, Pathmanathan, Clayton, Mirams (2015) Journal of Molecular and Cellular CardiologyIt follows on from the [first sampling example](./first-example.ipynb). ###Code import pints import pints.toy as toy import pints.plot import numpy as np import matplotlib.pyplot as plt import time # Load a forward model model = toy.LogisticModel() # Create some toy data real_parameters = [0.015, 500] times = np.linspace(0, 1000, 1000) org_values = model.simulate(real_parameters, times) # Add noise noise = 10 values = org_values + np.random.normal(0, noise, org_values.shape) real_parameters = np.array(real_parameters + [noise]) # Get properties of the noise sample noise_sample_mean = np.mean(values - org_values) noise_sample_std = np.std(values - org_values) # Create an object with links to the model and time series problem = pints.SingleOutputProblem(model, times, values) # Create a log-likelihood function (adds an extra parameter!) log_likelihood = pints.GaussianLogLikelihood(problem) # Create a uniform prior over both the parameters and the new noise variable log_prior = pints.UniformLogPrior( [0.01, 400, noise*0.1], [0.02, 600, noise*100] ) # Create a posterior log-likelihood (log(likelihood * prior)) log_posterior = pints.LogPosterior(log_likelihood, log_prior) # Choose starting points for 3 mcmc chains xs = [ real_parameters * 1.1, real_parameters * 0.9, real_parameters * 1.15, ] # Create mcmc routine with four chains mcmc = pints.MCMCController(log_posterior, 3, xs, method=pints.HaarioBardenetACMC) # Add stopping criterion mcmc.set_max_iterations(4000) # Start adapting after 1000 iterations mcmc.set_initial_phase_iterations(1000) # Disable logging mode mcmc.set_log_to_screen(False) # time start start = time.time() # Run! print('Running...') chains = mcmc.run() print('Done!') # end time end = time.time() time = end - start # Discard warm up chains = chains[:, 2000:, :] # Look at distribution across all chains pints.plot.pairwise(np.vstack(chains), kde=False) # Show graphs plt.show() ###Output Running... Done! ###Markdown Use a results object to tabulate parameter-specific results. ###Code results = pints.MCMCSummary(chains=chains, time=time, parameter_names=["r", "k", "sigma"]) print(results) ###Output param mean std. 2.5% 25% 50% 75% 97.5% rhat ess ess per sec. ------- ------ ------ ------ ------ ------ ------ ------- ------ ------ -------------- r 0.01 0.00 0.01 0.01 0.01 0.02 0.02 1.00 552.33 158.05 k 500.06 0.47 499.15 499.76 500.07 500.39 500.99 1.00 525.02 150.24 sigma 10.08 0.22 9.66 9.93 10.07 10.22 10.52 1.01 436.92 125.03
bitmex-inflow-outflow/notebooks/1.0-ea-outflow-check.ipynb
###Markdown Creates the Outflow Graph ###Code import os import json import requests import datetime import numpy as np import pandas as pd import matplotlib.pyplot as plt def start_end_time(): endTime = datetime.datetime.now() startTime = endTime - datetime.timedelta(30) endTime = str(int(endTime.timestamp())) startTime = str(int(startTime.timestamp())) return startTime, endTime def get_response(url, headers=None, queryString=None): "Get the REST response from the specified URL" if not headers: headers = {'x-api-key': api_key["AMBERDATA_API_KEY"]} if queryString: response = requests.request("GET", url, headers=headers, params=queryString) else: response = requests.request("GET", url, headers=headers) response = json.loads(response.text) try: if response["title"] == "OK": return response["payload"] except Exception: print(response) return None def reindex(data, index): """ Returns the DataFrame calculated w/ inflow & outflow :type data: DataFrame :type index: List[int] :rtype: DataFrame """ d = np.digitize(data.timestamp.values, index) g = data[["inflow", "outflow"]].groupby(d).sum() g = g.reindex(range(24*30), fill_value=0) g.index = index return g def inflow_outflow(data: dict): "Returns the inflow and outflow of the payload" # get the column names columns = data["metadata"]["columns"] # load the data, dropping timestampNano ad_hist = pd.DataFrame(data["data"], columns=columns).drop("timestampNanoseconds", axis=1) # change dtype of appropriate columns to Int ad_hist[["blockNumber", "timestamp", "value"]] = ad_hist[["blockNumber", "timestamp", "value"]].apply(pd.to_numeric) # sort by blockNum desc ad_hist = ad_hist.sort_values("timestamp").reset_index(drop=True) # calculate inflow and outflow ad_hist["diff"] = ad_hist["value"].diff() ad_hist["inflow"] = np.where(ad_hist["diff"] > 0, ad_hist["diff"], 0) ad_hist["outflow"] = np.where(ad_hist["diff"] < 0, abs(ad_hist["diff"]), 0) # return the result return ad_hist def daily_inflow_outflow(address, headers, querystring): url = "https://web3api.io/api/v2/addresses/" + address + "/account-balances/historical" try: payload = get_response(url=url, headers=headers, queryString=querystring) except Exception: return None if len(payload["data"]) > 1: # if there is activity in the period # calculate inflow / outflow data = inflow_outflow(payload) # get in the format to merge with master inflow/outflow data g = reindex(data, index) return g startTime, endTime = start_end_time() index = [10**3*(int(startTime) + i*60**2) for i in range(24*30)] querystring = {"startDate": startTime, "endDate": endTime } headers = { 'x-amberdata-blockchain-id': "bitcoin-mainnet", 'x-api-key': os.getenv("AMBERDATA_API_KEY") } df = pd.read_csv("../input/addresses_all.csv") # check if we are running the full calculation addresses = df.Address.values activ = [] i = 0 while len(activ) < 30: url = "https://web3api.io/api/v2/addresses/" + addresses[i] + "/account-balances/historical" try: payload = get_response(url=url, headers=headers, queryString=querystring) except Exception: pass i += 1 if len(payload["data"]) > 1: # if there is activity in the period # calculate inflow / outflow data = inflow_outflow(payload) # get in the format to merge with master inflow/outflow data g = reindex(data, index) g.index = [datetime.datetime.fromtimestamp(i//10**3) for i in g.index.values] activ.append(g) N = 30 data = [i.outflow for i in activ[:N]] for i in range(len(data)): plt.plot(data[i]) plt.title(f"BitMEX Outflows timing-{N} Addresses") plt.xticks(rotation=45) plt.savefig("../plots/btc_outflow.png", bbox_inches="tight") # code inspired by http://blog.josephmisiti.com/group-by-datetimes-in-pandas # load in the inflow data, rename columns combined = pd.DataFrame(data).T combined.columns = [str(i) for i in range(N)] # simply indicate if outflow > 0 combined = combined.applymap(lambda x: 1 if x > 0 else 0) # bring index to a column combined = combined.reset_index().rename({"index": "ts"}, axis=1) # making date column from timestamp combined['date'] = combined["ts"].apply(lambda df: datetime.datetime(year=df.year, month=df.month, day=df.day)) # make dates the index combined.set_index(combined["date"],inplace=True) # dropping unused date and timestamp columns combined = combined.drop(["date", "ts"], axis=1) # group by days combined = combined.resample('D').sum() # test our assumption of 1 outflow per day if combined.max(axis=1).max() == 1: print("Our assumtion is safe.") else: print("Incorrect assumption!") ###Output Our assumtion is safe.
OOPShiNetworkModelCSV.ipynb
###Markdown ###Code import json from google.colab import drive import matplotlib.pyplot as plt import numpy as np import pandas as pd import random as rnd import networkx as nx import matplotlib.pyplot as plt import math import requests import csv url = "https://ric-colasanti.github.io/ASPIREColab/Data/2009data.csv" data = requests.get(url) lines = data.content.decode('utf-8') cr = csv.reader(lines.splitlines(), delimiter=',') shi_2009 = list(cr) print(shi_2009[0]) print(len(shi_2009)) hold1 =0 hold2 = 0 hold3 =0 class Person: T_PA = 0.12 T_EI = 0.07 def __init__(self,key,data): self.id = key self.gender = int(data[0]) self.age = int(data[1]) self.height = float(data[2]) self.BW = float(data[3]) self.start_BW = self.BW self.EI = float(data[4]) self.BEE = float(data[5]) self.BW_2011 = float(data[6]) self.BMI = self.BW/(self.height * self.height) self.BEE_calc = self.calc_BEE() self.linked = [] self.is_part = False self.can_choose = False self.xpos =rnd.random() self.ypos =rnd.random() self.EE = self.EI #0.0 # Energy expenditure self.PA = 0.9 * self.EI - self.BEE# 0.0 # Physical activity self.Env = (rnd.random()*(1.08-0.82))+0.82 if self.BMI<18.5: self.BMI_catagory = 1 elif self.BMI>=18.5 and self.BMI<24: self.BMI_catagory = 2 elif self.BMI>=24 and self.BMI<28: self.BMI_catagory = 3 else: self.BMI_catagory = 4 def calc_BEE(self): if self.gender ==1: self.BEE = ((66.5 + 13.6 * self.BW + 500 * self.height - 6.8 * self.age) * 4186 / 1000000) else: self.BEE = ((655.1 + 9.5 * self.BW + 180 * self.height - 4.1 * self.age)* 4186 / 1000000) def diffuse_behavior(self):# the calculation of influence and EI/PA change global hold1, hold2, hold3 inf_PA = 0 inf_EI = 0 temp = 0 s = 0 inf_PA_Env = 0 inf_EI_Env = 0 for agent in self.linked: hold2 +=1 temp = agent.PA - self.PA s += temp inf_PA = (1 / len(self.linked)) * s temp = 0 s = 0 for agent in self.linked: temp = agent.EI - self.EI s += temp inf_EI = (1 / len(self.linked)) * s if inf_PA >= 0: inf_PA_Env = inf_PA * self.Env else: inf_PA_Env = inf_PA / self.Env if inf_EI < 0: inf_EI_Env = inf_EI * self.Env else: inf_EI_Env = inf_EI / self.Env if (inf_PA_Env > 0) and (abs(inf_PA_Env) > Person.T_PA * self.PA): self.PA *= (1 + 0.05) if (inf_PA_Env < 0) and (abs(inf_PA_Env) > Person.T_PA * self.PA): self.PA *= (1 - 0.05) if (inf_EI_Env > 0) and (abs(inf_EI_Env) > Person.T_EI * self.EI): self.EI *= (1 + 0.05) if (inf_EI_Env < 0) and (abs(inf_EI_Env) > Person.T_EI * self.EI): self.EI *= (1 - 0.05) hold1 += inf_EI hold3 += inf_PA def update(self):#the calculation of BW change EBI = 0 self.EE = self.BEE + 0.1 * self.EI + self.PA EIB = 7 * (self.EI - self.EE) / 5 self.BW += (EIB / (7 * math.log(self.BW + 1) + 5)) self.calc_BEE() def distance(self,agent): x_sqr = abs(self.xpos-agent.xpos) x_sqr*=x_sqr y_sqr = abs(self.ypos-agent.ypos) y_sqr*=y_sqr return math.sqrt(x_sqr*y_sqr) class Population: def __init__(self,selected_population): self.persons = [] self.npos ={} self.colors=[] self.graph = nx.Graph(directed=False) bcolors=["white","red","green","blue","yellow"] for i in range(len(selected_population)): new_person = Person(i,selected_population[i]) self.graph.add_node(new_person.id) self.npos[new_person.id]=(new_person.xpos,new_person.ypos) self.colors.append(bcolors[new_person.BMI_catagory]) self.persons.append(new_person) def makeLink(self,agent,choice): if self.graph.has_edge(agent.id,choice.id)==False: self.graph.add_edge(agent.id,choice.id) choice.linked.append(agent) agent.linked.append(choice) #choice.linked.append(agent) # return True # return False def linkAgentTo(self,agent): candidate = list(filter(self.chosen_not_self_filter(agent),self.persons)) sink_agent = rnd.choice(candidate) if rnd.random()>0.2: candidate = list(filter(self.homophily_filter(agent),self.persons)) choicelist =[] for agnt in candidate: for _ in range(len(agnt.linked)): choicelist.append(agnt) if len(choicelist)>0 : choice = rnd.choice(choicelist) else: choice = sink_agent self.makeLink(agent,choice) # if flag and choice in self.not_linked and len(choice.linked_to) >0: # self.not_linked.remove(choice) def makeGraph(self,ld = 0.267): i = 0 while i < len(self.persons): linkable = list(filter(self.can_choose_filter(),self.persons)) if (rnd.random()<=ld) and (len(linkable)>2): agent = rnd.choice(linkable) self.linkAgentTo(agent) else: not_linked = list(filter(self.not_chosen_filter(),self.persons)) agent = rnd.choice(not_linked) agent.can_choose = True i+=1 not_linked = list(filter(self.not_linked_to_filter(),self.persons)) for agent in not_linked: self.linkAgentTo(agent) def homophily_filter(self,agent): agent = agent def infun(x): d = x a_d = agent if x.can_choose == False: return False if x == agent: return False if (d.BMI_catagory == a_d.BMI_catagory ) and (x.gender == agent.gender) and (abs(d.age-a_d.age)<4): return True elif (x.gender == agent.gender) and (abs(d.age-a_d.age)<4) and (agent.distance(x)<0.2): return True elif (x.gender == agent.gender) and (d.BMI_catagory == a_d.BMI_catagory) and (agent.distance(x)<0.2): return True elif (abs(d.age-a_d.age)<4) and (d.BMI_catagory == a_d.BMI_catagory) and (agent.distance(x)<0.2): return True else: return False return infun def not_linked_to_filter(self): def infun(x): if len(x.linked) ==0: return True #if len(x.linked_from) == 0: # return True return False return infun def chosen_not_self_filter(self,agent): agent = agent def infun(x): if x == agent: return False elif x.can_choose: return True return False return infun def not_chosen_filter(self): def infun(x): if x.can_choose: return False return True return infun def can_choose_filter(self): def infun(x): if x.can_choose and x.is_part: return True return False return infun def run(self): for day in range(365*2): if day % 7 == 0: #print(day) for person in self.persons: person.diffuse_behavior() for person in self.persons: person.update() population = Population(shi_2009) population.makeGraph() weights2009 = [] weights2011calc = [] weights2011shi = [] population.run() for person in population.persons: weights2009.append(person.start_BW) weights_np_2009 = np.array(weights2009) for person in population.persons: weights2011calc.append(person.BW) weights_np_2011calc = np.array(weights2011calc) for person in population.persons: weights2011shi.append(person.BW_2011) weights_np_2011shi = np.array(weights2011shi) bins = [x for x in range(0,150,5)] plt.rcParams["figure.figsize"] = (12,12) plt.hist([weights_np_2011calc,weights_np_2011shi] ,bins=bins,label=["2011calc","2011"]) plt.xlabel("Body weight kg") plt.ylabel("Number of persons") plt.legend() plt.show() print(hold) print(hold3) print(hold2) count = 0 for person in population.persons: count+=len(person.linked) print(count) print(np.array(weights2009).mean()) print(np.array(weights2011shi).mean()) print(np.array(weights2011calc).mean()) from scipy.stats import ttest_ind res = ttest_ind(np.array(weights2009), np.array(weights2011shi),equal_var = True) print(res) res = ttest_ind(np.array(weights2009), np.array(weights2011calc),equal_var = True) print(res) res = ttest_ind(np.array(weights2011shi), np.array(weights2011calc),equal_var = True) print(res) # gcc = sorted(nx.connected_components(population.graph), key=len, reverse=True) # graph = population.graph.subgraph(gcc[0]) # degree_sequence = sorted([d for n, d in population.graph.degree()], reverse=True) # plt.rcParams["figure.figsize"] = (30,10) # plt.subplot(1,3,1) # nx.draw(population.graph,pos=population.npos,node_size=10,node_color=population.colors,width=0.1,arrows=False) # plt.subplot(1,3,2) # nx.draw(population.graph,node_color=population.colors,node_size=10,width=0.1,arrows=False) # plt.subplot(1,3,3) # x,y =np.unique(degree_sequence, return_counts=True) # plt.bar(x,y) # #plt.subplot(2,2,4) # #plt.plot() # plt.show() # print("Average shortest path length",nx.average_shortest_path_length(graph)) # print("Average clustering",nx.average_clustering(graph)) # print("number of nodes", graph.number_of_nodes()) # weights2009 = [] # weights2011calc = [] # weights2011shi = [] # population.run() # for person in population.persons: # weights2009.append(person.start_BW) # weights_np_2009 = np.array(weights2009) # for person in population.persons: # weights2011calc.append(person.BW) # weights_np_2011calc = np.array(weights2011calc) # for person in population.persons: # weights2011shi.append(person.BW_2011) # weights_np_2011shi = np.array(weights2011shi) # bins = [x for x in range(0,150,5)] # plt.rcParams["figure.figsize"] = (12,12) # plt.hist([weights_np_2009,weights_np_2011calc,weights_np_2011shi] ,bins=bins,label=["2009","2011calc","2011"]) # plt.xlabel("Body weight kg") # plt.ylabel("Number of persons") # plt.legend() # plt.show() ###Output _____no_output_____
PyBoss/employee_data.ipynb
###Markdown Employee Data Cleaning Process ###Code # import the dependencies import pandas as pd import re # import csv data and create dataframe employee_csv = "data/employee_data.csv" employee_df = pd.read_csv(employee_csv) # first 5 list of the dataframe employee_df.head() # last 5 list of the dataframe employee_df.tail() ###Output _____no_output_____ ###Markdown Split First and Last Name of the Employee ###Code # split the employees' names into first and last name employee_df[['First Name', 'Last Name']] = employee_df.Name.str.split(expand=True) # check the data employee_df # reorder the columns and remove unnecessary columns of the data organized_df = employee_df[['Emp ID', 'First Name', 'Last Name', 'DOB', 'SSN', 'State']] organized_df ###Output _____no_output_____ ###Markdown Rewrite `State` in abbreviation ###Code # import us state abbreviation us_state_abbrev = { 'Alabama': 'AL', 'Alaska': 'AK', 'Arizona': 'AZ', 'Arkansas': 'AR', 'California': 'CA', 'Colorado': 'CO', 'Connecticut': 'CT', 'Delaware': 'DE', 'Florida': 'FL', 'Georgia': 'GA', 'Hawaii': 'HI', 'Idaho': 'ID', 'Illinois': 'IL', 'Indiana': 'IN', 'Iowa': 'IA', 'Kansas': 'KS', 'Kentucky': 'KY', 'Louisiana': 'LA', 'Maine': 'ME', 'Maryland': 'MD', 'Massachusetts': 'MA', 'Michigan': 'MI', 'Minnesota': 'MN', 'Mississippi': 'MS', 'Missouri': 'MO', 'Montana': 'MT', 'Nebraska': 'NE', 'Nevada': 'NV', 'New Hampshire': 'NH', 'New Jersey': 'NJ', 'New Mexico': 'NM', 'New York': 'NY', 'North Carolina': 'NC', 'North Dakota': 'ND', 'Ohio': 'OH', 'Oklahoma': 'OK', 'Oregon': 'OR', 'Pennsylvania': 'PA', 'Rhode Island': 'RI', 'South Carolina': 'SC', 'South Dakota': 'SD', 'Tennessee': 'TN', 'Texas': 'TX', 'Utah': 'UT', 'Vermont': 'VT', 'Virginia': 'VA', 'Washington': 'WA', 'West Virginia': 'WV', 'Wisconsin': 'WI', 'Wyoming': 'WY', } # Tried below first, but error message still showed up # organized_df['State'] = organized_df.loc[:,'State'].map(us_state_abbrev).fillna(organized_df.loc[:,'State']) # fill all the states with abbreviation organized_df['State'] = organized_df['State'].map(us_state_abbrev).fillna(organized_df['State']) organized_df # Check the data time for organized_df organized_df.dtypes ###Output _____no_output_____ ###Markdown Rewrite Date Of Birth in `MM/DD/YYYY` (Month-Date-Year) format ###Code # Tried below first, but error message still showed up # organized_df['DOB'] = pd.to_datetime(organized_df.loc[:,'DOB'], errors='coerce', utc=True).dt.strftime('%m/%d/%Y') # reformat employees' date of birth MM/DD/YYYY organized_df['DOB'] = pd.to_datetime(organized_df['DOB'], errors='coerce', utc=True).dt.strftime('%m/%d/%Y') organized_df ###Output D:\Anaconda\envs\main-env\lib\site-packages\ipykernel_launcher.py:5: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy """ ###Markdown Hide the employees' SSN ###Code # check the dataset organized_df # check each types of columns organized_df.dtypes # overwrite SSN in the dataset organized_df.SSN = organized_df.SSN.apply(lambda x: re.sub(r'\d', '*', x, count=5)) organized_df # check the data before saving organized_df # save as a new csv file organized_df.to_csv('data/clean_employee_data.csv', index=True) ###Output _____no_output_____ ###Markdown Creating new column using apply syntax (saved for later) ###Code # Create a new column # This hides all numbers in SSN. # organized_df['SSN_hidden'] = organized_df.SSN.apply(lambda x: re.sub(r'\d', '*', x, count=5)) # organized_df ###Output _____no_output_____ ###Markdown Testing out syntaxes (saved for later): ###Code # employee_df["Name"] = employee_df["Name"].str.split(" ", n=1, expand=True) # employee_df # split_names = employee_df["Name"].str.split(" ") # names = split_names.to_list() # last_first = ["First Name", "Last Name"] # new_employee_df = pd.DataFrame(last_first, columns=names) # print(new_employee_df) # employee_df["Name"].str.split(" ", expand=True) ###Output _____no_output_____
src/user_guide/shared_variables.ipynb
###Markdown Sharing variables across steps * **Difficulty level**: intemediate* **Time need to lean**: 20 minutes or less* **Key points**: * Variables defined in steps are not accessible from other steps * Variables can be `shared` to steps that depends on it through target `sos_variable` Section option `shared` SoS executes each step in a separate process and by default does not return any result to the master SoS process. Option `shared` is used to share variables between steps. This option accepts:* A string (variable name), or* A map between variable names and expressions (strings) that will be evaluated upon the completion of the step.* A sequence of strings (variables) or maps.For example, ###Code %run -v1 [10: shared='myvar'] myvar = 100 [20] print(myvar) %run -v1 [10: shared=['v1', 'v2']] v1 = 100 v2 = 200 [20] print(v1) print(v2) ###Output 100 200 ###Markdown The `dict` format of `shared` option allows the specification of expressions to be evaluated after the completion of the step, and can be used to pass pieces of `step_output` as follows: ###Code %run -v1 [10: shared={'res': 'step_output["res"]', 'stat': 'step_output["stat"]'}] output: res='a.res', stat='a.txt' _output.touch() [20] print(res) print(stat) ###Output a.res a.txt ###Markdown `sos_variable` targets When we `shared` variables from a step, the variables will be available to the step that will be executed after it. This is why `res` and `stat` would be accessible from step `20` after the completion of step `10`. However, in a more general case, a step would need to depends on a target `sos_variable` to access the `shared` variable in a non-forward stype workflow.For example, in the following workflow, two `sos_variable` targets creates two dependencies on steps `notebookCount` and `lineCount` so that these two steps will be executed before `default` and provide the required variables. ###Code %run -v1 [notebookCount: shared='numNotebooks'] import glob numNotebooks = len(glob.glob('*.ipynb')) [lineCount: shared='lineOfThisNotebook'] with open('shared_variables.ipynb') as nb: lineOfThisNotebook = len(nb.readlines()) [default] depends: sos_variable('numNotebooks'), sos_variable('lineOfThisNotebook') print(f"There are {numNotebooks} notebooks in this directory") print(f"Current notebook has {lineOfThisNotebook} lines") ###Output There are 94 notebooks in this directory Current notebook has 632 lines ###Markdown Sharing variables from substeps When you share a variable from a step with multiple substeps, there can be multiple copies of the variable for each substep and it is uncertain which copy SoS will return. Current implementation returns the variable from the last substep, but this is not guaranteed. For example, in the following workflow multiple random seeds have been generated, but only the last `seed` is shared outside of step `1` and obtained by step `2`. ###Code %run -v1 [1: shared='seed'] input: for_each={'i': range(5)} import random seed = random.randint(0, 1000) print(seed) [2] print(f'Got seed {seed} at step 2') ###Output 50 606 267 52 701 Got seed 701 at step 2 Got seed 701 at step 2 Got seed 701 at step 2 Got seed 701 at step 2 Got seed 701 at step 2 ###Markdown If you would like to see the variable in all substeps, you can prefix the variable name with `step_`, which is a convention for option `shared` to collect variables from all substeps. ###Code %run -v1 [1: shared='step_seed'] input: for_each={'i': range(5)} import random seed = random.randint(0, 1000) [2] print(step_seed[_index]) ###Output 17 114 688 99 253 ###Markdown You can also use the `step_*` vsriables in expressions as in the following example: ###Code %run -v1 [1: shared={'summed': 'sum(step_rng)', 'rngs': 'step_rng'}] input: for_each={'i': range(10)} import random rng = random.randint(0, 10) [2] input: group_by='all' print(rngs) print(summed) ###Output [5, 2, 5, 2, 7, 10, 5, 0, 2, 2] 40 ###Markdown Here we used `group_by='all'` to collapse multiple substeps into 1. Sharing variables from tasks Variables generated by external tasks adds another layer of complexity because tasks usually do not share variables with the substep it belongs. To solve this problem, you will have to use the `shared` option of `task` to return the variable to the substep: ###Code %run -v1 -q localhost [1: shared={'summed': 'sum(step_rng)', 'rngs': 'step_rng'}] input: for_each={'i': range(5)} task: shared='rng' import random rng = random.randint(0, 10*i) [2] input: group_by='all' print(rngs) print(summed) ###Output [0, 7, 2, 23, 24] 56 ###Markdown Sharing variables across steps * **Difficulty level**: intemediate* **Time need to lean**: 20 minutes or less* **Key points**: * Variables defined in steps are not accessible from other steps * Variables can be `shared` to steps that depends on it through target `sos_variable` Section option `shared` SoS executes each step in a separate process and by default does not return any result to the master SoS process. Option `shared` is used to share variables between steps. This option accepts:* A string (variable name), or* A map between variable names and expressions (strings) that will be evaluated upon the completion of the step.* A sequence of strings (variables) or maps.For example, ###Code %run -v1 [10: shared='myvar'] myvar = 100 [20] print(myvar) %run -v1 [10: shared=['v1', 'v2']] v1 = 100 v2 = 200 [20] print(v1) print(v2) ###Output 100 200 ###Markdown The `dict` format of `shared` option allows the specification of expressions to be evaluated after the completion of the step, and can be used to pass pieces of `step_output` as follows: ###Code %run -v1 [10: shared={'res': 'step_output["res"]', 'stat': 'step_output["stat"]'}] output: res='a.res', stat='a.txt' _output.touch() [20] print(res) print(stat) ###Output a.res a.txt ###Markdown `sos_variable` targets When we `shared` variables from a step, the variables will be available to the step that will be executed after it. This is why `res` and `stat` would be accessible from step `20` after the completion of step `10`. However, in a more general case, a step would need to depends on a target `sos_variable` to access the `shared` variable in a non-forward stype workflow.For example, in the following workflow, two `sos_variable` targets creates two dependencies on steps `notebookCount` and `lineCount` so that these two steps will be executed before `default` and provide the required variables. ###Code %run -v1 [notebookCount: shared='numNotebooks'] import glob numNotebooks = len(glob.glob('*.ipynb')) [lineCount: shared='lineOfThisNotebook'] with open('shared_variables.ipynb') as nb: lineOfThisNotebook = len(nb.readlines()) [default] depends: sos_variable('numNotebooks'), sos_variable('lineOfThisNotebook') print(f"There are {numNotebooks} notebooks in this directory") print(f"Current notebook has {lineOfThisNotebook} lines") ###Output There are 94 notebooks in this directory Current notebook has 632 lines ###Markdown Sharing variables from substeps When you share a variable from a step with multiple substeps, there can be multiple copies of the variable for each substep and it is uncertain which copy SoS will return. Current implementation returns the variable from the last substep, but this is not guaranteed. For example, in the following workflow multiple random seeds have been generated, but only the last `seed` is shared outside of step `1` and obtained by step `2`. ###Code %run -v1 [1: shared='seed'] input: for_each={'i': range(5)} import random seed = random.randint(0, 1000) print(seed) [2] print(f'Got seed {seed} at step 2') ###Output 50 606 267 52 701 Got seed 701 at step 2 Got seed 701 at step 2 Got seed 701 at step 2 Got seed 701 at step 2 Got seed 701 at step 2 ###Markdown If you would like to see the variable in all substeps, you can prefix the variable name with `step_`, which is a convention for option `shared` to collect variables from all substeps. ###Code %run -v1 [1: shared='step_seed'] input: for_each={'i': range(5)} import random seed = random.randint(0, 1000) [2] print(step_seed[_index]) ###Output 17 114 688 99 253 ###Markdown You can also use the `step_*` vsriables in expressions as in the following example: ###Code %run -v1 [1: shared={'summed': 'sum(step_rng)', 'rngs': 'step_rng'}] input: for_each={'i': range(10)} import random rng = random.randint(0, 10) [2] input: group_by='all' print(rngs) print(summed) ###Output [5, 2, 5, 2, 7, 10, 5, 0, 2, 2] 40 ###Markdown Here we used `group_by='all'` to collapse multiple substeps into 1. Sharing variables from tasks Variables generated by external tasks adds another layer of complexity because tasks usually do not share variables with the substep it belongs. To solve this problem, you will have to use the `shared` option of `task` to return the variable to the substep: ###Code %run -v1 -q localhost [1: shared={'summed': 'sum(step_rng)', 'rngs': 'step_rng'}] input: for_each={'i': range(5)} task: shared='rng' import random rng = random.randint(0, 10*i) [2] input: group_by='all' print(rngs) print(summed) ###Output [0, 7, 2, 23, 24] 56 ###Markdown How to pass variables between SoS steps * **Difficulty level**: easy* **Time need to lean**: 10 minutes or less* **Key points**: Option `shared` SoS executes each step in a separate process and by default does not return any result to the master SoS process. Option `shared` is used to share variables between steps. This option accepts:* A string (variable name), or* A map between variable names and expressions (strings) that will be evaluated upon the completion of the step.* A sequence of strings (variables) or maps.For example, ###Code %run [10: shared='myvar'] myvar = 100 [20] print(myvar) ###Output 100 ###Markdown A map syntax is recommended to share `step_output` of one step with others, because the variable assignment will be evaluated only after the step is complete: ###Code %sandbox %run [1: shared = {'test_output': 'step_output'}] output: 'a.txt' sh: touch a.txt [2] print(f"Input file {test_output}") input: test_output ###Output Input file a.txt ###Markdown The map syntax is evaluated as expressions; therefore it is possible to finer control what specific output, or variations of output, to share with others. For example: ###Code %sandbox %run [1: shared={'test_output_1':'step_output[0]', 'test_output_2': 'step_output[1]'}] output: 'a.txt', 'b.txt' sh: touch a.txt b.txt [2] print(f"output 1: {test_output_1}") print(f"output 2: {test_output_2}") ###Output output 1: a.txt output 2: b.txt ###Markdown to shared the first file in `output` (filename `output[0]`) instead of the entire output file list. The `shared` option also provides a `sos_variable` target. Things becomes more complicated when there are multiple substeps. For example, when you use option `shared` on the following step with 10 substeps, only one of the random seed is returned because `rng` represent the last value of the variable after the completion of all substeps. ###Code %run [1: shared='seed'] input: for_each={'i': range(10)} import random seed = random.randint(0, 1000) [2] print(seed) ###Output 450 ###Markdown If you would like to see the variable in all substeps, you can prefix the variable name with `step_` ###Code %run [1: shared='step_seed'] input: for_each={'i': range(10)} import random seed = random.randint(0, 1000) [2] print(step_seed) ###Output [858, 513, 328, 610, 142, 275, 458, 57, 762, 981] ###Markdown You can also use the `step_*` vsriables in expressions as in the following example: ###Code %run [1: shared={'summed': 'sum(step_rng)', 'rngs': 'step_rng'}] input: for_each={'i': range(10)} import random rng = random.randint(0, 10) [2] print(rngs) print(summed) ###Output [10, 0, 8, 1, 8, 9, 6, 7, 9, 1] 59 ###Markdown Variables generated by external tasks adds another layer of complexity because tasks usually do not share variables with the substep it belongs. To solve this problem, you will have to use the `shared` option of `task` to return the variable to the substep: ###Code %run [1: shared={'summed': 'sum(step_rng)', 'rngs': 'step_rng'}] input: for_each={'i': range(10)} task: shared='rng' import random rng = random.randint(0, 10*i) [2] print(rngs) print(summed) ###Output _____no_output_____
20180109_HW1_counting.ipynb
###Markdown This notebook includes functions for both quicksort and bubblesort. Both functions track the number of assignments and conditionals generated for each sort as well as the runtime. At the bottom I have plotted each of these variables against the length of the input vector ###Code import numpy as np import random import time import matplotlib.pyplot as plt def bsort(mylist): # save starting time ts = time.process_time() # set assignment and conditional counters to 0 assign = 0 cond = 0 cond += 1 if len(mylist) > 1: for i in range(len(mylist)-1, 0,-1): for j in range(i): cond+= 1 if mylist[j] > mylist[j+1]: #saving the first value temp = mylist[j] assign += 1 # replacing first value with second (smaller) value mylist[j] = mylist[j+1] assign += 1 # replacing second value with first(larger) value mylist[j+1] = temp assign += 1 # save finish time tf = time.process_time() # get run time runtime = tf - ts return cond, assign, runtime # the partition function will partition a list around a pivotvalue one time # it returns the ending rightmark, which can then be used as a split point for further ordering def partition(mylist, start, end): p_assign = 0 p_cond = 0 pivotvalue = mylist[start] leftmark = start + 1 rightmark = end done = False p_assign += 4 while not done: # left mark moves along left side of list until leftmark is greater than either pivot value or rightmark p_cond += 2 while leftmark <= rightmark and mylist[leftmark] <= pivotvalue: leftmark = leftmark + 1 p_assign += 1 # inverse for rightmark p_cond += 2 while rightmark >= leftmark and mylist[rightmark] >= pivotvalue: rightmark = rightmark - 1 p_assign += 1 # when marks cross, end p_cond += 1 if rightmark < leftmark: done = True p_assign += 1 # otherwise, if one of marks is wrong compared to pivotvalue, swap the marks else: temp = mylist[leftmark] mylist[leftmark] = mylist[rightmark] mylist[rightmark] = temp p_assign += 3 # now we have two halves sorted around the pivot value and the marks have passed each other # lets move the pivot value to the split point (where the rightmark is now) temp = mylist[start] mylist[start] = mylist[rightmark] mylist[rightmark] = temp p_assign += 3 return (rightmark, p_assign, p_cond) def runqsort(mylist, start, end, cond, assign): cond += 1 if start < end: # run partition once to divide the list and get the splitpoint splitpoint, p_assign, p_cond = partition(mylist, start, end) assign += p_assign cond += p_cond # now run the function separately on each side of the splitpoint cond, assign = runqsort(mylist, start, splitpoint - 1, cond, assign)[1:3] cond, assign = runqsort(mylist, splitpoint + 1, end, cond, assign)[1:3] return mylist, cond, assign def qsort(mylist): ts = time.process_time() sortlist, cond, assign = runqsort(mylist, 0, (len(mylist)-1), 0, 0) tf= time.process_time() runtime = tf - ts return cond, assign, runtime lengths = list(range(100,1001,100)) b_cond = [] b_assign = [] b_runtime = [] # generate vectors of varying length for n in lengths: vectors = (list(map(lambda x: [random.randint(-1000,1000) for p in range(n)], range(10)))) tempcond = [] tempassign = [] tempruntime = [] # sort the vectors and keep track of each dependent variable for i in range(len(vectors)): c, a, t = bsort(vectors[i]) tempcond.append(c) tempassign.append(a) tempruntime.append(t) b_cond.append(tempcond) b_assign.append(tempassign) b_runtime.append(tempruntime) lengths = list(range(100,1001,100)) q_cond = [] q_assign = [] q_runtime = [] # generate vectors of varying length for n in lengths: vectors = (list(map(lambda x: [random.randint(-1000,1000) for p in range(n)], range(100)))) tempcond = [] tempassign = [] tempruntime = [] # sort the vectors and keep track of each dependent variable for i in range(len(vectors)): c, a, t = qsort(vectors[i]) tempcond.append(c) tempassign.append(a) tempruntime.append(t) q_cond.append(tempcond) q_assign.append(tempassign) q_runtime.append(tempruntime) # creating a plotting function to plot observed values and expected function for assignments, conditionals, and runtime def sort_plot(vector, number, line, scale, yscale, ylab, title): fig = plt.figure(dpi = 300) filename = title + '.png' plt.xlabel("Length of Vector") plt.ylabel(ylab) plt.title(title) for i in range(len(lengths)): x = ([lengths[i]]*number) y = (vector[i]) plt.scatter(x, y, s = 0.5, c = "blue") if line == 'square': plt.plot(lengths, list((lengths[i]**2)*scale for i in range(len(lengths))), label = 'O(n) = n^2') elif line == 'log': plt.plot(lengths, (lengths * np.log(lengths) * scale), label = 'O(n) = nlog(n)') if yscale == 'log': plt.yscale("log") plt.legend() fig.savefig(filename) # creating scaling factors ("k") for plotting the expected line qr_scale = np.mean(q_runtime[0])/(100*np.log(100)) qc_scale = np.mean(q_cond[0])/((100*np.log(100))) qa_scale = np.mean(q_assign[0])/((100*np.log(100))) br_scale = np.mean(b_runtime[0])/(100**2) bc_scale = np.mean(b_cond[0])/(100**2) ba_scale = np.mean(b_assign[0])/(100**2) # creating and saving plots sort_plot(b_cond, 10, 'square', 1, 'standard', "Number Conditionals", 'Bubblesort Conditionals') sort_plot(b_assign, 10, 'square', 1, 'standard', "Number Assignments", 'Bubblesort Assignments') sort_plot(b_runtime, 10, 'square', br_scale, 'standard', "Runtime(s)", 'Bubblesort Runtime') sort_plot(q_cond, 100, 'log', 1, 'log', "Number Conditionals", 'Quicksort Conditionals') sort_plot(q_assign, 100, 'log', 1, 'log', "Number Assignments", 'Quicksort Assignments') sort_plot(q_cond, 100, 'log', qr_scale, 'log', "Runtime (s)", 'Quicksort Runtime') ###Output _____no_output_____
_notebooks/2020-12-14-PyTorch_basics.ipynb
###Markdown "PyTorch basics"> "A simple PyTorch tutorial to fit a function with a third order polynomial"- toc: false- branch: master- badges: true- comments: true- categories: [PyTorch, Autograd]- image: images/- hide: false- search_exclude: true- metadata_key1: metadata_value1- metadata_key2: metadata_value2- use_math: true This notebook is adapted from original [tutorial](https://https://pytorch.org/tutorials/beginner/pytorch_with_examples.html) by Justin Johnson. In this notebook, we will fit a third order polynomial on `y = sin(x)`. Our polynomial have four parameters, and we will use gradient descent to fit the random data by minimizing the Euclidean distance between the predicted output and the true output. We will see three different ways of fitting our polynomial. 1. Using numpy and manually implementing the forward and backward passes using numpy operations,2. Using the concept of **PyTorch Tensor**,3. Using the **AutoGrad** package in PyTorch which uses the automatic differentiation to automate the computation of backward passes.Let's start with numpy! --- 1. NumpyNumpy is a great tool for scientific computing but is not very handy for deep learning as it does not know anything about gradients or computation graphs. Nevertheless, it is very easy to fit a third order polynomial to our sine function. Let's see how this can be done... ###Code import numpy as np import math import matplotlib.pyplot as plt x = np.linspace(-math.pi, math.pi, 2000) y = np.sin(x) # We randomly initialize weights a = np.random.randn() b = np.random.randn() c = np.random.randn() d = np.random.randn() # print randomly initialized weights print(f'a = {a}, b = {b}, c = {c}, d = {d}') # learning rate lr = 1e-6 for i in range(5000): # y = a + bx + cx^2 + dx^3 y_pred = a + b*x + c*x ** 2 + d*x ** 3 # Compute and print loss loss = np.square(y_pred -y).sum() if i%100 == 0: print(i,loss) # Backprop to compute the gradients of a, b, c, d with respect to loss #dL/da = (dL/dy_pred) * (dy_pred/da) #dL/db = (dL/dy_pred) * (dy_pred/db) #dL/dc = (dL/dy_pred) * (dy_pred/dc) #dL/dd = (dL/dy_pred) * (dy_pred/dd) grad_y_pred = 2.0 * (y_pred-y) grad_a = grad_y_pred.sum() grad_b = (grad_y_pred * x).sum() grad_c = (grad_y_pred * x ** 2).sum() grad_d = (grad_y_pred * x ** 3).sum() # Update Weights a -= lr * grad_a b -= lr * grad_b c -= lr * grad_c d -= lr * grad_d plt.plot(x,y,label = 'y = sin(x)', c = 'b') plt.plot(x, y_pred, label = 'y = a + bx + cx^2 + dx^3', c = 'r',linestyle = 'dashed') plt.xlabel('x') plt.ylabel('y') plt.ylim([-2,2]) plt.legend() plt.show() print(f'Result: y = {a} + {b} x + {c} x^2 + {d} x^3') ###Output a = 0.5212317253221784, b = -0.9805915149858428, c = -0.027376927441378273, d = -1.4262831777937377 0 703371.2506724729 100 1990.7685801408975 200 1327.0031477034922 300 885.8603635657721 400 592.5781313206602 500 397.5296011492919 600 267.7642695815589 700 181.39826161321042 800 123.89338756930366 900 85.58851940179167 1000 60.06144593380803 1100 43.041568420184774 1200 31.688032432273822 1300 24.11034884768269 1400 19.049958249677985 1500 15.668641966272823 1600 13.40788464942117 1700 11.895365287550472 1800 10.882761722859414 1900 10.204367249159688 2000 9.749544226693866 2100 9.444380518360695 2200 9.23946886344227 2300 9.101761631434972 2400 9.009139235728266 2500 8.946786269115005 2600 8.904772417197037 2700 8.876436698538871 2800 8.857307622798578 2900 8.844381063434946 3000 8.835637031893949 3100 8.8297160973774 3200 8.825702555431604 3300 8.822979021471838 3400 8.821128846547559 3500 8.819870574849652 3600 8.81901388552776 3700 8.81842995097411 3800 8.818031476578964 3900 8.81775924750458 4000 8.817573052631591 4100 8.817445555564575 4200 8.817358151641226 4300 8.817298164554096 4400 8.817256947450312 4500 8.8172285953216 4600 8.817209070954023 4700 8.817195610956425 4800 8.81718632167016 4900 8.817179903949093 ###Markdown --- 2. PyTorch: TensorsWe saw how easy it is to fit a third order polynomial using numpy. But what about modern deep neural networks? Unfortunately, numpy cannot utilize GPUs to accelerate its numerical computation. This is where PyTorch Tensor are useful. A Tensor is basically an n-dimensional array and can keep track of gradients and computational graphs. To run a PyTorch Tensor on GPU, we simply need to specify the correct device. But for now, we will stick to CPU. Let's see how we can use PyTorch Tensor to accomplish our task... ###Code import torch import math dtype = torch.float device = torch.device("cpu") #device = torch.device("cuda:0") # Uncomment this if GPU is available. # Create random input and data x = torch.linspace(-math.pi, math.pi, 2000, device=device, dtype=dtype) y = torch.sin(x) # Randomly initialize weights a = torch.randn((), device=device, dtype=dtype) b = torch.randn((), device=device, dtype=dtype) c = torch.randn((), device=device, dtype=dtype) d = torch.randn((), device=device, dtype=dtype) learning_rate = 1e-6 for t in range(5000): # Forward pass: compute predicted y y_pred = a + b * x + c * x ** 2 + d * x ** 3 # Compute and print loss loss = (y_pred - y).pow(2).sum().item() if t % 100 == 99: print(t, loss) # Backprop to compute gradients of a, b, c, d with respect to loss grad_y_pred = 2.0 * (y_pred - y) grad_a = grad_y_pred.sum() grad_b = (grad_y_pred * x).sum() grad_c = (grad_y_pred * x ** 2).sum() grad_d = (grad_y_pred * x ** 3).sum() # Update weights using gradient descent a -= learning_rate * grad_a b -= learning_rate * grad_b c -= learning_rate * grad_c d -= learning_rate * grad_d plt.plot(x,y,label = 'y = sin(x)', c = 'b') plt.plot(x, y_pred, label = 'y = a + bx + cx^2 + dx^3', c = 'r',linestyle = 'dashed') plt.xlabel('x') plt.ylabel('y') plt.ylim([-2,2]) plt.legend() plt.show() print(f'Result: y = {a.item()} + {b.item()} x + {c.item()} x^2 + {d.item()} x^3') ###Output 99 983.1625366210938 199 657.2805786132812 299 440.57037353515625 399 296.4062805175781 499 200.46615600585938 599 136.59274291992188 699 94.05044555664062 799 65.70246124267578 899 46.803749084472656 999 34.19861602783203 1099 25.786611557006836 1199 20.169822692871094 1299 16.41724967956543 1399 13.908618927001953 1499 12.230535507202148 1599 11.107256889343262 1699 10.354836463928223 1799 9.850460052490234 1899 9.512123107910156 1999 9.284987449645996 2099 9.132362365722656 2199 9.02973747253418 2299 8.960660934448242 2399 8.914128303527832 2499 8.882747650146484 2599 8.861570358276367 2699 8.847265243530273 2799 8.837589263916016 2899 8.831039428710938 2999 8.8266019821167 3099 8.823591232299805 3199 8.821544647216797 3299 8.820154190063477 3399 8.819206237792969 3499 8.818561553955078 3599 8.818121910095215 3699 8.817822456359863 3799 8.81761646270752 3899 8.817476272583008 3999 8.81737995147705 4099 8.817313194274902 4199 8.817267417907715 4299 8.817235946655273 4399 8.817214965820312 4499 8.817200660705566 4599 8.817190170288086 4699 8.817183494567871 4799 8.817177772521973 4899 8.817174911499023 4999 8.81717300415039 ###Markdown --- 3. PyTorch: Tensors and autogradWe saw above how Tensors can also be used to fit a third order polynomial to our sin function. However, we had to manually include both forward and backward passes. This is not so hard for a simple task such as fitting a polynomial but can get very messy for deep neural networks. Fortunately, PyTorch's **Autograd** package can be used to automate the computation of backward passes. Let's see how we can do this... ###Code import torch import math dtype = torch.float device = torch.device("cpu") # Create tensors to hold input and outputs # As we don't need to compute gradients with respect to these Tensors, we can set requires_grad = False. This is also the default setting. x = torch.linspace(-math.pi, math.pi, 2000) y = torch.sin(x) # Create random tensors for weights. For these Tensors, we require gradients, therefore, we can set requires_grad = True a = torch.randn((), device = device, dtype = dtype, requires_grad=True) b = torch.randn((), device = device, dtype = dtype, requires_grad=True) c = torch.randn((), device = device, dtype = dtype, requires_grad=True) d = torch.randn((), device = device, dtype = dtype, requires_grad=True) learning_rate = 1e-6 for t in range(5000): # Forward pass: we compute predicted y using operations on Tensors. y_pred = a + b * x + c * x ** 2 + d * x ** 3 # Compute and print loss using operations on Tensors. # Now loss is a Tensor of shape (1,) # loss.item() gets the scalar value held in the loss. loss = (y_pred - y).pow(2).sum() if t % 100 == 99: print(t, loss.item()) # Use autograd to compute the backward pass. This call will compute the # gradient of loss with respect to all Tensors with requires_grad=True. # After this call a.grad, b.grad. c.grad and d.grad will be Tensors holding # the gradient of the loss with respect to a, b, c, d respectively. loss.backward() # Manually update weights using gradient descent. Wrap in torch.no_grad() # because weights have requires_grad=True, but we don't need to track this # in autograd. with torch.no_grad(): a -= learning_rate * a.grad b -= learning_rate * b.grad c -= learning_rate * c.grad d -= learning_rate * d.grad # Manually zero the gradients after updating weights a.grad = None b.grad = None c.grad = None d.grad = None plt.plot(x,y,label = 'y = sin(x)', c = 'b') # We need to use tensor.detach().numpy() to convert our tensor into numpy array for plotting plt.plot(x, y_pred.detach().numpy(), label = 'y = a + bx + cx^2 + dx^3', c = 'r',linestyle = 'dashed') plt.xlabel('x') plt.ylabel('y') plt.ylim([-2,2]) plt.legend() plt.show() print(f'Result: y = {a.item()} + {b.item()} x + {c.item()} x^2 + {d.item()} x^3') ###Output 99 1246.2117919921875 199 854.2945556640625 299 587.1728515625 399 404.901123046875 499 280.38446044921875 599 195.22470092773438 699 136.91519165039062 799 96.94408416748047 899 69.5127944946289 999 50.665863037109375 1099 37.70232391357422 1199 28.77569580078125 1299 22.622011184692383 1399 18.375377655029297 1499 15.441656112670898 1599 13.412825584411621 1699 12.008347511291504 1799 11.035103797912598 1899 10.360037803649902 1999 9.891359329223633 2099 9.565652847290039 2199 9.339130401611328 2299 9.181443214416504 2399 9.07158088684082 2499 8.994975090026855 2599 8.941520690917969 2699 8.904190063476562 2799 8.878105163574219 2899 8.859864234924316 2999 8.847099304199219 3099 8.838162422180176 3199 8.831900596618652 3299 8.82751178741455 3399 8.824435234069824 3499 8.822273254394531 3599 8.820756912231445 3699 8.819692611694336 3799 8.818944931030273 3899 8.818416595458984 3999 8.818046569824219 4099 8.817787170410156 4199 8.817604064941406 4299 8.817475318908691 4399 8.817383766174316 4499 8.817319869995117 4599 8.81727409362793 4699 8.817242622375488 4799 8.817219734191895 4899 8.817205429077148 4999 8.817193031311035
recover_face.ipynb
###Markdown hyperparams: lr 0.005-0.001, sigma 1, color True, multistart 10 Face recovery iterations ###Code cosines_target = [] facenet_sims = [] iters = 0 with torch.no_grad(): for _ in range(2001): start = time() if pipeline.iters >= pipeline.N_restarts * pipeline.iters_before_restart: pipeline.lr = 0.001 recovered_face, cos_target = pipeline() cosines_target.append(cos_target) time_per_iter = round(time() - start,2) print(f"time={time_per_iter} queries={iters*pipeline.batch_size} cos_target={round(cos_target,3)} \ norm={round(pipeline.norm,4)}", end="\r") if iters % 100 == 0: clear_output(wait=True) face = np.transpose(recovered_face.cpu().detach().numpy(),(1,2,0)) face = face - np.min(face) face = face / np.max(face) facenet_sims.append(get_sim(DEVICE,path1=IMAGE, im2=face)) plt.figure(dpi=130) plt.subplot(1,2,1) plt.axis("off") plt.title(f"iterations {iters*pipeline.batch_size}") plt.imshow(face) plt.subplot(1,2,2) plt.axis("off") plt.title(f"cos_arcface={round(cos_target,3)}\ncos_facenet={round(facenet_sims[-1],3)}") plt.imshow(np.array(Image.open(IMAGE))) plt.show() plt.plot(cosines_target) plt.grid() plt.title("arcface cos with a target embedding vs iters") plt.show() plt.plot(facenet_sims) plt.grid() plt.title("facenet cos with a target embedding vs iters") plt.show() iters += 1 ###Output _____no_output_____
examples/miscellaneous/Ch 9.ipynb
###Markdown 9.1 ###Code from finance_ml.datasets import get_cls_data X, label = get_cls_data(n_features=10, n_informative=5, n_redundant=0, n_samples=10000) print(X.head()) print(label.head()) from sklearn.svm import SVC from sklearn.pipeline import Pipeline name = 'svc' params_grid = {name + '__C': [1e-2, 1e-1, 1, 10, 100], name + '__gamma': [1e-2, 1e-1, 1, 10, 100]} kernel = 'rbf' clf = SVC(kernel=kernel, probability=True) pipe_clf = Pipeline([(name, clf)]) fit_params = dict() clf = clf_hyper_fit(X, label['bin'], t1=label['t1'], pipe_clf=pipe_clf, scoring='neg_log_loss', search_params=params_grid, n_splits=3, bagging=[0, None, 1.], rnd_search_iter=0, n_jobs=-1, pct_embargo=0., **fit_params) ###Output _____no_output_____ ###Markdown 9.2 ###Code name = 'svc' params_dist = {name + '__C': log_uniform(a=1e-2, b=1e2), name + '__gamma': log_uniform(a=1e-2, b=1e2)} kernel = 'rbf' clf = SVC(kernel=kernel, probability=True) pipe_clf = Pipeline([(name, clf)]) fit_params = dict() clf = clf_hyper_fit(X, label['bin'], t1=label['t1'], pipe_clf=pipe_clf, scoring='neg_log_loss', search_params=params_grid, n_splits=3, bagging=[0, None, 1.], rnd_search_iter=25, n_jobs=-1, pct_embargo=0., **fit_params) ###Output _____no_output_____
cosine.ipynb
###Markdown Vector Spaces ###Code import logging #logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO) import gensim from gensim import corpora, models, similarities from nltk.corpus import stopwords from collections import defaultdict from pprint import pprint from six import iteritems import os import numpy as np import pandas as pd import scipy.sparse ###Output _____no_output_____ ###Markdown Load Processed Dataframe ###Code df = pd.read_pickle('pkl/df_stop_noun.pkl') df.head(3) ###Output _____no_output_____ ###Markdown Convert Series to List of Strings ###Code resumes = df['resume_nouns'].tolist() resumes[:1] ###Output _____no_output_____ ###Markdown From Strings to Vectors Tokenize the documents, remove stop words and words that only appear once ###Code # remove common words and tokenize stoplist = set('for a of the and to in'.split()) texts = [[word for word in resume.split()] for resume in resumes] # remove words that appear only once frequency = defaultdict(int) for text in texts: for token in text: frequency[token] += 1 # remove words that occur less than n times texts = [[token for token in text if frequency[token] > 2] for text in texts] ###Output _____no_output_____ ###Markdown Save Token Count Dictionary to File ###Code dictionary = corpora.Dictionary(texts) # store the dictionary, for future reference dictionary.save('pkl/resume_token.dict') print(dictionary) ###Output Dictionary(42606 unique tokens: ['blog', 'dtac', 'melmark', 'ravishankar', 'plate']...) ###Markdown Convert Tokenized Resumes to Vectors ###Code corpus = [dictionary.doc2bow(text) for text in texts] corpora.MmCorpus.serialize('pkl/resume_token.mm', corpus) # store to disk, for later use for c in corpus[:1]: print(c) ###Output [(0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 2), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), (20, 1), (21, 1), (22, 1), (23, 8), (24, 2), (25, 1), (26, 1), (27, 1), (28, 2), (29, 1), (30, 1), (31, 2), (32, 1), (33, 1), (34, 1), (35, 1), (36, 1), (37, 1), (38, 1), (39, 1), (40, 1), (41, 1), (42, 1), (43, 1), (44, 1), (45, 1), (46, 1), (47, 1), (48, 1), (49, 1), (50, 1), (51, 1), (52, 1), (53, 1), (54, 1), (55, 1), (56, 1), (57, 2)] ###Markdown Corpus Streaming – One Document at a Time ###Code # replace 'texts' with 'open(my_file.txt)' to read from files (one line in the file is a document) # or loop through and open each individual file (?) # either way, dictionary.doc2bow wants a list of words (aka - line.lower().split()) class MyCorpus(object): def __iter__(self): for line in texts: yield dictionary.doc2bow(line) # doesn't load the corpus into memory! corpus_memory_friendly = MyCorpus() ###Output _____no_output_____ ###Markdown Similarly, to construct the dictionary without loading all texts into memory ###Code _ = ''' # collect statistics about all tokens dictionary = corpora.Dictionary(line.lower().split() for line in open('mycorpus.txt')) # remove stop words and words that appear only once stop_ids = [dictionary.token2id[stopword] for stopword in stoplist if stopword in dictionary.token2id] once_ids = [tokenid for tokenid, docfreq in iteritems(dictionary.dfs) if docfreq == 1] # remove stop words and words that appear only once dictionary.filter_tokens(stop_ids + once_ids) # remove gaps in id sequence after words that were removed dictionary.compactify() print(dictionary) ''' ###Output _____no_output_____ ###Markdown Transformation Interface ###Code # load tokenized dictionary if (os.path.exists('pkl/resume_token.dict')): dictionary = corpora.Dictionary.load('pkl/resume_token.dict') print('Tokenized dictionary LOADED as \'dictionary\'') else: print('Tokenized dictionary NOT FOUND') # load sparse vector matrix if (os.path.exists('pkl/resume_token.mm')): corpus = corpora.MmCorpus('pkl/resume_token.mm') print('Sparse matrix LOADED as \'corpus\'') else: print('Sparse matrix NOT FOUND') ###Output Sparse matrix LOADED as 'corpus' ###Markdown TF-IDF Transformation ###Code # step 1 -- initialize a model tfidf_mdl = models.TfidfModel(corpus) ###Output _____no_output_____ ###Markdown Calling `model[corpus]` only creates a wrapper around the old corpus document stream – actual conversions are done on-the-fly, during document iteration. We cannot convert the entire corpus at the time of calling corpus_transformed = model[corpus], because that would mean storing the result in main memory, and that contradicts gensim’s objective of memory-indepedence. If you will be iterating over the transformed corpus_transformed multiple times, and the transformation is costly, serialize the resulting corpus to disk first and continue using that. ###Code # step 2 -- use the model to transform vectors corpus_tfidf = tfidf_mdl[corpus] # view one resume for doc in corpus_tfidf[:1]: print(doc) from sklearn.feature_extraction.text import TfidfVectorizer n_features = 1000 tfidf_vec = TfidfVectorizer(input='content', ngram_range=(1, 3), max_df=0.9, min_df=2, max_features=n_features, norm='l2', use_idf=True, smooth_idf=True, sublinear_tf=False) tfidf_vec_prep = tfidf_vec.fit_transform(resumes) from sklearn.cluster import KMeans from sklearn import metrics km = KMeans(n_clusters=8, init='k-means++', max_iter=100, n_init=1) km_mdl = km.fit_predict(tfidf_vec_prep) # Determine your k range k_range = range(1,20) # fit the kmeans model for each n_clusters = k k_means_var = [KMeans(n_clusters=k).fit(tfidf_vec_prep) for k in k_range] # pull out the cluster centers for each model centroids = [X.cluster_centers_ for X in k_means_var] from scipy.spatial.distance import cdist, pdist # calculate the euclidean distance from each point to each cluster center k_euclid = [cdist(tfidf_vec_prep.toarray(), cent, 'euclidean') for cent in centroids] dist = [np.min(ke, axis=1) for ke in k_euclid] # total within-cluster sum of squares wcss = [sum(d**2) for d in dist] # the total sum of squares tss = sum(pdist(tfidf_vec_prep.toarray())**2)/tfidf_vec_prep.shape[1] # the between-cluster sum of squares bss = tss - wcss import numpy as np from scipy.cluster.vq import kmeans,vq from scipy.spatial.distance import cdist import matplotlib.pyplot as plt ##### cluster data into K=1..10 clusters ##### K = range(1,20) # scipy.cluster.vq.kmeans KM = [kmeans(tfidf_vec_prep.toarray(),k) for k in K] centroids = [cent for (cent,var) in KM] # cluster centroids # alternative: scipy.spatial.distance.cdist D_k = [cdist(tfidf_vec_prep.toarray(), cent, 'euclidean') for cent in centroids] cIdx = [np.argmin(D,axis=1) for D in D_k] dist = [np.min(D,axis=1) for D in D_k] avgWithinSS = [sum(d)/tfidf_vec_prep.shape[0] for d in dist] ##### plot ### kIdx = 2 # elbow curve fig = plt.figure() ax = fig.add_subplot(111) ax.plot(K, avgWithinSS, 'b*-') import seaborn as sns sns.set_style("white") sns.set_context("poster", font_scale=1.25, rc={"lines.linewidth": 2.5}) sns.set_palette("Set2") colors = sns.color_palette("BrBG", 5) # make figure fig = plt.figure(figsize=(20,12)) ax = fig.add_subplot(111) # color colors = sns.color_palette("BrBG", 10) # plots ax.plot(K, avgWithinSS, marker='o', color=colors[-1], alpha=0.5) # labels/titles plt.legend(loc="best") plt.title('Elbow for K-Means') plt.xlabel('Number of Clusters') plt.ylabel('Avg. Within-Cluster Sum of Squares') # remove border ax.spines["top"].set_visible(False) ax.spines["bottom"].set_visible(False) ax.spines["right"].set_visible(False) ax.spines["left"].set_visible(False) # show grid ax.xaxis.grid(True, alpha=0.2) ax.yaxis.grid(True, alpha=0.2) # plot that biddy plt.savefig('data/pics/{0}.png'.format('KMeans_elbow'), bbox_inches='tight') plt.close(fig) import numpy as np from scipy.cluster.vq import kmeans from scipy.spatial.distance import cdist,pdist from sklearn import datasets from sklearn.decomposition import RandomizedPCA from matplotlib import pyplot as plt from matplotlib import cm # perform PCA dimensionality reduction pca = RandomizedPCA(n_components=2).fit(tfidf_vec_prep.toarray()) X = pca.transform(tfidf_vec_prep.toarray()) ##### cluster data into K=1..20 clusters ##### K_MAX = 20 KK = range(1,K_MAX+1) KM = [kmeans(X,k) for k in KK] centroids = [cent for (cent,var) in KM] D_k = [cdist(X, cent, 'euclidean') for cent in centroids] cIdx = [np.argmin(D,axis=1) for D in D_k] dist = [np.min(D,axis=1) for D in D_k] tot_withinss = [sum(d**2) for d in dist] # Total within-cluster sum of squares totss = sum(pdist(X)**2)/X.shape[0] # The total sum of squares betweenss = totss - tot_withinss # The between-cluster sum of squares ##### plots ##### kIdx = 4 # K=10 clr = cm.spectral( np.linspace(0,1,10) ).tolist() mrk = 'os^p<dvh8>+x.' # make figure fig = plt.figure(figsize=(20,12)) ax = fig.add_subplot(111) # color colors = sns.color_palette("BrBG", 5) # plots #ax.plot(K, avgWithinSS, marker='o', color=colors[-1], alpha=0.5) ax.plot(KK, betweenss/totss*100, marker='o', color=colors[-1], alpha=0.5) ax.plot(KK[kIdx], betweenss[kIdx]/totss*100, marker='o', markersize=25, color=colors[0], alpha=0.5) # labels/titles plt.legend(loc="best") plt.title('Elbow for KMeans Clustering') plt.xlabel('Number of clusters') plt.ylabel('Percentage of variance explained (%)') ax.set_xlim((-0.1,20.5)) ax.set_ylim((-0.5,100)) # remove border ax.spines["top"].set_visible(False) ax.spines["bottom"].set_visible(False) ax.spines["right"].set_visible(False) ax.spines["left"].set_visible(False) # show grid ax.xaxis.grid(True, alpha=0.2) ax.yaxis.grid(True, alpha=0.2) # plot that biddy plt.savefig('data/pics/{0}.png'.format('KMeans_elbow_var'), bbox_inches='tight') plt.close(fig) # make figure fig = plt.figure(figsize=(20,12)) ax = fig.add_subplot(111) # plots for i in range(kIdx+1): ind = (cIdx[kIdx]==i) ax.scatter(X[ind,0],X[ind,1], s=65, c=colors[i], marker=mrk[i], label='Cluster {0}'.format(i), alpha=1) # labels/titles plt.legend(loc='lower right') plt.title('K={0} Clusters'.format(KK[kIdx])) ax.set_xlim((-.5,.5)) ax.set_ylim((-.5,.5)) # remove border ax.spines["top"].set_visible(False) ax.spines["bottom"].set_visible(False) ax.spines["right"].set_visible(False) ax.spines["left"].set_visible(False) # show grid ax.xaxis.grid(True, alpha=0.2) ax.yaxis.grid(True, alpha=0.2) # plot that biddy plt.savefig('data/pics/{0}.png'.format('KMeans_{0}_clusters'.format(KK[kIdx])), bbox_inches='tight') plt.close(fig) from sklearn.cluster import DBSCAN from sklearn.preprocessing import StandardScaler dbscan = DBSCAN(eps=0.5, min_samples=5, metric='cosine', algorithm='brute', leaf_size=30, p=None, random_state=None) dbscan_mdl = dbscan.fit_predict(tfidf_vec_prep) ###Output _____no_output_____ ###Markdown Latent Semantic Indexing Topics ###Code num_topics = 100 # initialize an LSI transformation lsi = models.LsiModel(corpus_tfidf, id2word=dictionary, num_topics=num_topics) corpus_lsi = lsi[corpus_tfidf] # the topics are printed to log a = lsi.print_topics(8) a[0] for doc in corpus_lsi[800]: # both bow->tfidf and tfidf->lsi transformations are actually executed here, on the fly pass #print(doc) ###Output _____no_output_____ ###Markdown Model Save & Load ###Code lsi.save('pkl/lsi_mdl.lsi') lsi = models.LsiModel.load('pkl/lsi_mdl.lsi') ###Output _____no_output_____ ###Markdown LDA Topics ###Code lda_mdl = models.LdaModel(corpus, id2word=dictionary, num_topics=20) lda_mdl.top_topics pprint(lda_mdl.print_topics(10)) print(corpus) doc = df.iloc[0]['resume_nouns'] vec_bow = dictionary.doc2bow(doc.lower().split()) vec_lsi = lsi[vec_bow] # convert the query to LSI space print(vec_lsi) ###Output [(0, 2.374975010869965), (1, 0.51728887522253952), (2, -0.058935199530753268), (3, 0.3578493537974749), (4, 1.560417648600577), (5, -1.9931029846659232), (6, 0.58697139609914861), (7, 1.437193124041608), (8, -0.38633595032575146), (9, -2.3068352804125016), (10, 0.77482570234627612), (11, -0.66082521176920128), (12, -2.0221618401059822), (13, 1.3229424544863675), (14, -0.29408524037515837), (15, -1.0569710323996966), (16, 1.110889840043604), (17, 1.3434022602282594), (18, -0.095802335904933394), (19, -0.80089048085959047), (20, -0.64832039201675884), (21, 1.35059095621303), (22, 0.36313071163680766), (23, 0.23008512654094881), (24, -1.4704302056681957), (25, -0.51110545886820391), (26, 1.5065962351771218), (27, -0.85864630999976976), (28, -0.27005311330166226), (29, 1.3357001963834654), (30, 0.11920370036201439), (31, 0.20935482520268536), (32, 0.58140672694418549), (33, 0.86476990150558442), (34, 0.21906262257842274), (35, 1.2623527033747142), (36, 0.47122700487966684), (37, 0.14754992485952445), (38, -0.029780850257687785), (39, 0.41251322337680407), (40, 0.70805306705532289), (41, -0.17539941089750521), (42, 0.099208258486715051), (43, 0.52714882842769772), (44, -0.55353450448882024), (45, -0.48520621106869544), (46, 0.42932852481533534), (47, -1.0848551994364626), (48, -0.2278193012580656), (49, -0.86398865304435535), (50, 0.26069692321941718), (51, -0.17035678155826239), (52, 0.17694402303837284), (53, 0.38019775252075771), (54, 0.52907741665760166), (55, -0.56801027798438197), (56, -0.24289558061900623), (57, -0.53166839270636368), (58, -0.75397485089313621), (59, 0.43914810153445505), (60, -0.11539391176838343), (61, 0.28098629645010242), (62, -0.22417217147281987), (63, 0.04359834386371364), (64, 0.40124504321511811), (65, 0.74406715148428892), (66, 0.083025633287427653), (67, -0.56067477401379284), (68, 0.22243465345106417), (69, -0.39550436325219973), (70, -0.54147531866201193), (71, -0.55283044224248479), (72, -1.619913100721621), (73, -0.093405314999276637), (74, 0.30444920349708604), (75, -0.53813981022164803), (76, -0.59617088497008486), (77, -0.51219246727570034), (78, -0.13706180463557627), (79, -0.16008030773188894), (80, -0.95552532874370033), (81, -1.0713657346866474), (82, -0.39524155791968052), (83, 0.10409521414708364), (84, -0.52691807273338676), (85, 0.28081975514224211), (86, -0.93232856873163084), (87, -0.18390081515478202), (88, -0.46222984135156353), (89, 0.1668585124747386), (90, 0.87547572965713072), (91, 0.037415066391670221), (92, -0.48772947456671473), (93, -0.41313026558553678), (94, 0.85224037332425129), (95, -0.25790488005477619), (96, -0.023718854903863967), (97, 0.32059833574508628), (98, -0.24697257256407545), (99, 0.41432508817899638)] ###Markdown Cosine Similarity ###Code index = similarities.MatrixSimilarity(lsi[corpus]) # transform corpus to LSI space and index it index.save('pkl/resume_stopped.index') index = similarities.MatrixSimilarity.load('pkl/resume_stopped.index') sims = index[vec_lsi] # perform a similarity query against the corpus # (document_number, document_similarity) sim_lst = list(enumerate(sims)) import operator sim_lst.sort(key=operator.itemgetter(1), reverse=True) # comparing resumes within resumes sim_lst[1:6] ' '.join(texts[0]) ###Output _____no_output_____ ###Markdown Vector Spaces ###Code import logging #logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO) import gensim from gensim import corpora, models, similarities from nltk.corpus import stopwords from collections import defaultdict from pprint import pprint from six import iteritems import os import numpy as np import pandas as pd import scipy.sparse ###Output _____no_output_____ ###Markdown Load Processed Dataframe ###Code df = pd.read_json('data/md_contents.json') df.head() ###Output _____no_output_____ ###Markdown Convert Series to List of Strings ###Code contents = df['file_contents'].tolist() contents[:1] ###Output _____no_output_____ ###Markdown From Strings to Vectors Tokenize the documents, remove stop words and words that only appear once ###Code # remove common words and tokenize stoplist = set(stopwords.words('english')) texts = [[word.lower() for word in content.split()if word.lower() not in stoplist] for content in contents] # remove words that appear only once frequency = defaultdict(int) for text in texts: for token in text: frequency[token] += 1 # remove words that occur less than n times texts = [[token for token in text if frequency[token] > 3] for text in texts] len(texts) ###Output _____no_output_____ ###Markdown Save Token Count Dictionary to File ###Code dictionary = corpora.Dictionary(texts) # store the dictionary, for future reference dictionary.save('data/text_token.dict') print(dictionary) ###Output Dictionary(24712 unique tokens: ['connector', 'mattdesl', 'hdf', 'codrops', 'pgdata']...) ###Markdown Convert Tokenized Resumes to Vectors ###Code corpus = [dictionary.doc2bow(text) for text in texts] corpora.MmCorpus.serialize('data/text_token.mm', corpus) # store to disk, for later use for c in corpus[:1]: print(c) ###Output [(0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 2), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 2), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), (20, 1)] ###Markdown Transformation Interface ###Code # load tokenized dictionary if (os.path.exists('data/text_token.dict')): dictionary = corpora.Dictionary.load('data/text_token.dict') print('Tokenized dictionary LOADED as \'dictionary\'') else: print('Tokenized dictionary NOT FOUND') # load sparse vector matrix if (os.path.exists('data/text_token.mm')): corpus = corpora.MmCorpus('data/text_token.mm') print('Sparse matrix LOADED as \'corpus\'') else: print('Sparse matrix NOT FOUND') ###Output Sparse matrix LOADED as 'corpus' ###Markdown TF-IDF Transformation ###Code # step 1 -- initialize a model tfidf_mdl = models.TfidfModel(corpus) ###Output _____no_output_____ ###Markdown Calling `model[corpus]` only creates a wrapper around the old corpus document stream – actual conversions are done on-the-fly, during document iteration. We cannot convert the entire corpus at the time of calling corpus_transformed = model[corpus], because that would mean storing the result in main memory, and that contradicts gensim’s objective of memory-indepedence. If you will be iterating over the transformed corpus_transformed multiple times, and the transformation is costly, serialize the resulting corpus to disk first and continue using that. ###Code # step 2 -- use the model to transform vectors corpus_tfidf = tfidf_mdl[corpus] print(len(corpus_tfidf)) # view one resume for doc in corpus_tfidf[:1]: print(doc) from sklearn.feature_extraction.text import TfidfVectorizer n_features = 1500 tfidf_vec = TfidfVectorizer(input='content', ngram_range=(1, 3), max_df=0.85, min_df=0.05, max_features=n_features, norm='l2', use_idf=True, smooth_idf=True, sublinear_tf=False) tfidf_vec_prep = tfidf_vec.fit_transform(resumes) from sklearn.cluster import KMeans km = KMeans(n_clusters=5, init='k-means++', max_iter=100, n_init=1, n_jobs=-1) km_mdl = km.fit_predict(tfidf_vec_prep) len(km_mdl) # Determine your k range k_range = range(1,20) # fit the kmeans model for each n_clusters = k k_means_var = [KMeans(n_clusters=k).fit(tfidf_vec_prep) for k in k_range] # pull out the cluster centers for each model centroids = [X.cluster_centers_ for X in k_means_var] from scipy.spatial.distance import cdist, pdist # calculate the euclidean distance from each point to each cluster center k_euclid = [cdist(tfidf_vec_prep.toarray(), cent, 'euclidean') for cent in centroids] dist = [np.min(ke, axis=1) for ke in k_euclid] # total within-cluster sum of squares wcss = [sum(d**2) for d in dist] # the total sum of squares tss = sum(pdist(tfidf_vec_prep.toarray())**2)/tfidf_vec_prep.shape[1] # the between-cluster sum of squares bss = tss - wcss import seaborn as sns sns.set_style("white") sns.set_context("poster", font_scale=1.25, rc={"lines.linewidth": 2.5}) sns.set_palette("Set2") colors = sns.color_palette("BrBG", 5) # make figure fig = plt.figure(figsize=(20,12)) ax = fig.add_subplot(111) # color colors = sns.color_palette("BrBG", 5) # plots ax.plot(K, avgWithinSS, marker='o', color=colors[-1], alpha=0.5) # labels/titles plt.legend(loc="best") plt.title('Elbow for K-Means') plt.xlabel('Number of Clusters') plt.ylabel('Avg. Within-Cluster Sum of Squares') # remove border ax.spines["top"].set_visible(False) ax.spines["bottom"].set_visible(False) ax.spines["right"].set_visible(False) ax.spines["left"].set_visible(False) # show grid ax.xaxis.grid(True, alpha=0.2) ax.yaxis.grid(True, alpha=0.2) # plot that biddy plt.savefig('data/{0}.png'.format('KMeans_elbow'), bbox_inches='tight') plt.close(fig) import numpy as np from scipy.cluster.vq import kmeans from scipy.spatial.distance import cdist,pdist from sklearn import datasets from sklearn.decomposition import RandomizedPCA from matplotlib import pyplot as plt from matplotlib import cm # perform PCA dimensionality reduction pca = RandomizedPCA(n_components=2).fit(tfidf_vec_prep.toarray()) X = pca.transform(tfidf_vec_prep.toarray()) ##### cluster data into K=1..20 clusters ##### K_MAX = 20 KK = range(1,K_MAX+1) KM = [kmeans(X,k) for k in KK] centroids = [cent for (cent,var) in KM] D_k = [cdist(X, cent, 'euclidean') for cent in centroids] cIdx = [np.argmin(D,axis=1) for D in D_k] dist = [np.min(D,axis=1) for D in D_k] tot_withinss = [sum(d**2) for d in dist] # Total within-cluster sum of squares totss = sum(pdist(X)**2)/X.shape[0] # The total sum of squares betweenss = totss - tot_withinss # The between-cluster sum of squares ##### plots ##### kIdx = 4 # K=10 clr = cm.spectral( np.linspace(0,1,10) ).tolist() mrk = 'os^p<dvh8>+x.' # make figure fig = plt.figure(figsize=(20,12)) ax = fig.add_subplot(111) # color colors = sns.color_palette("BrBG", 5) # plots ax.plot(KK, betweenss/totss*100, marker='o', color=colors[-1], alpha=0.5) ax.plot(KK[kIdx], betweenss[kIdx]/totss*100, marker='o', markersize=25, color=colors[0], alpha=0.5) # labels/titles plt.legend(loc="best") plt.title('Elbow for KMeans Clustering') plt.xlabel('Number of clusters') plt.ylabel('Percentage of variance explained (%)') ax.set_xlim((-0.1,20.5)) ax.set_ylim((-0.5,100)) # remove border ax.spines["top"].set_visible(False) ax.spines["bottom"].set_visible(False) ax.spines["right"].set_visible(False) ax.spines["left"].set_visible(False) # show grid ax.xaxis.grid(True, alpha=0.2) ax.yaxis.grid(True, alpha=0.2) # plot that biddy plt.savefig('data/{0}.png'.format('KMeans_elbow_var'), bbox_inches='tight') plt.close(fig) # make figure fig = plt.figure(figsize=(20,12)) ax = fig.add_subplot(111) # plots for i in range(kIdx+1): ind = (cIdx[kIdx]==i) ax.scatter(X[ind,0],X[ind,1], s=65, c=colors[i], marker=mrk[i], label='Cluster {0}'.format(i), alpha=1) # labels/titles plt.legend(loc='upper right') plt.title('K={0} Clusters'.format(KK[kIdx])) #ax.set_xlim((-.5,.5)) #ax.set_ylim((-.3,.81)) # remove border ax.spines["top"].set_visible(False) ax.spines["bottom"].set_visible(False) ax.spines["right"].set_visible(False) ax.spines["left"].set_visible(False) # show grid ax.xaxis.grid(True, alpha=0.2) ax.yaxis.grid(True, alpha=0.2) # plot that biddy plt.savefig('data/{0}.png'.format('KMeans_{0}_clusters'.format(KK[kIdx])), bbox_inches='tight') plt.close(fig) ###Output _____no_output_____ ###Markdown Latent Semantic Indexing Topics ###Code num_topics = 100 # initialize an LSI transformation lsi = models.LsiModel(corpus_tfidf, id2word=dictionary, num_topics=num_topics) corpus_lsi = lsi[corpus_tfidf] # the topics are printed to log a = lsi.print_topics(8) a[0] for doc in corpus_lsi[800]: # both bow->tfidf and tfidf->lsi transformations are actually executed here, on the fly pass #print(doc) ###Output _____no_output_____ ###Markdown Model Save & Load ###Code lsi.save('pkl/lsi_mdl.lsi') lsi = models.LsiModel.load('pkl/lsi_mdl.lsi') ###Output _____no_output_____ ###Markdown LDA Topics ###Code lda_mdl = models.LdaModel(corpus, id2word=dictionary, num_topics=20) lda_mdl.top_topics pprint(lda_mdl.print_topics(10)) print(corpus) doc = df.iloc[0]['resume_nouns'] vec_bow = dictionary.doc2bow(doc.lower().split()) vec_lsi = lsi[vec_bow] # convert the query to LSI space print(vec_lsi) ###Output [(0, 2.374975010869965), (1, 0.51728887522253952), (2, -0.058935199530753268), (3, 0.3578493537974749), (4, 1.560417648600577), (5, -1.9931029846659232), (6, 0.58697139609914861), (7, 1.437193124041608), (8, -0.38633595032575146), (9, -2.3068352804125016), (10, 0.77482570234627612), (11, -0.66082521176920128), (12, -2.0221618401059822), (13, 1.3229424544863675), (14, -0.29408524037515837), (15, -1.0569710323996966), (16, 1.110889840043604), (17, 1.3434022602282594), (18, -0.095802335904933394), (19, -0.80089048085959047), (20, -0.64832039201675884), (21, 1.35059095621303), (22, 0.36313071163680766), (23, 0.23008512654094881), (24, -1.4704302056681957), (25, -0.51110545886820391), (26, 1.5065962351771218), (27, -0.85864630999976976), (28, -0.27005311330166226), (29, 1.3357001963834654), (30, 0.11920370036201439), (31, 0.20935482520268536), (32, 0.58140672694418549), (33, 0.86476990150558442), (34, 0.21906262257842274), (35, 1.2623527033747142), (36, 0.47122700487966684), (37, 0.14754992485952445), (38, -0.029780850257687785), (39, 0.41251322337680407), (40, 0.70805306705532289), (41, -0.17539941089750521), (42, 0.099208258486715051), (43, 0.52714882842769772), (44, -0.55353450448882024), (45, -0.48520621106869544), (46, 0.42932852481533534), (47, -1.0848551994364626), (48, -0.2278193012580656), (49, -0.86398865304435535), (50, 0.26069692321941718), (51, -0.17035678155826239), (52, 0.17694402303837284), (53, 0.38019775252075771), (54, 0.52907741665760166), (55, -0.56801027798438197), (56, -0.24289558061900623), (57, -0.53166839270636368), (58, -0.75397485089313621), (59, 0.43914810153445505), (60, -0.11539391176838343), (61, 0.28098629645010242), (62, -0.22417217147281987), (63, 0.04359834386371364), (64, 0.40124504321511811), (65, 0.74406715148428892), (66, 0.083025633287427653), (67, -0.56067477401379284), (68, 0.22243465345106417), (69, -0.39550436325219973), (70, -0.54147531866201193), (71, -0.55283044224248479), (72, -1.619913100721621), (73, -0.093405314999276637), (74, 0.30444920349708604), (75, -0.53813981022164803), (76, -0.59617088497008486), (77, -0.51219246727570034), (78, -0.13706180463557627), (79, -0.16008030773188894), (80, -0.95552532874370033), (81, -1.0713657346866474), (82, -0.39524155791968052), (83, 0.10409521414708364), (84, -0.52691807273338676), (85, 0.28081975514224211), (86, -0.93232856873163084), (87, -0.18390081515478202), (88, -0.46222984135156353), (89, 0.1668585124747386), (90, 0.87547572965713072), (91, 0.037415066391670221), (92, -0.48772947456671473), (93, -0.41313026558553678), (94, 0.85224037332425129), (95, -0.25790488005477619), (96, -0.023718854903863967), (97, 0.32059833574508628), (98, -0.24697257256407545), (99, 0.41432508817899638)] ###Markdown Cosine Similarity ###Code index = similarities.MatrixSimilarity(lsi[corpus]) # transform corpus to LSI space and index it index.save('pkl/resume_stopped.index') index = similarities.MatrixSimilarity.load('pkl/resume_stopped.index') sims = index[vec_lsi] # perform a similarity query against the corpus # (document_number, document_similarity) sim_lst = list(enumerate(sims)) import operator sim_lst.sort(key=operator.itemgetter(1), reverse=True) # comparing resumes within resumes sim_lst[1:6] ' '.join(texts[0]) ###Output _____no_output_____
Data Visualization/Seaborn/.ipynb_checkpoints/7. KDE Plot-checkpoint.ipynb
###Markdown KDE PLOT KDE Plot is used to estimate the probability density function of a continuous random variable. ###Code sns.set_style("darkgrid") fig1 , axes = plt.subplots(nrows=2,ncols=2 , figsize = (14,14)) x = np.random.normal(1,10,1000) #Simple KDE Plot axes[0,0].set_title("Simple KDE Plot") sns.kdeplot(x,ax=axes[0,0]) # Shade under the density curve using the "shade" parameter axes[0,1].set_title("KDE Plot (Shaded Area Under the Curve)") sns.kdeplot(x,shade=True,ax=axes[0,1]) # Shade under the density curve using the "shade" parameter and use a different color. axes[1,0].set_title("KDE Plot (Different Color)") sns.kdeplot(x,ax=axes[1,0],color = 'r',shade=True,cut=0) #Plotting the density on the vertical axis axes[1,1].set_title("KDE Plot (Density on Vertical Axis)") sns.kdeplot(x,vertical=True) plt.show() plt.figure(figsize=(6,8)) x = np.linspace(0, 10, 100) y = np.sin(x) sns.kdeplot(x,y,shade=True,cmap="Reds", shade_lowest=False) insurance.head() plt.figure(figsize=(6,8)) sns.kdeplot(insurance.bmi,insurance.charges,shade=True,cmap="Reds", shade_lowest=False) plt.show() iris = sns.load_dataset("iris") plt.figure(figsize=(8,6)) sns.kdeplot(iris.sepal_width, iris.sepal_length,cmap="Reds", shade=True, shade_lowest=False) plt.show() ###Output _____no_output_____
wikipedia/processing-wikipedia.ipynb
###Markdown Processing Wikipedia ###Code import textwrap import pandas as pd wikipedia = pd.read_csv('wikipedia.csv') wikipedia.columns wikipedia.sentence[0] # print body text def print_body(body_series: pd.Series) -> str: print(textwrap.fill(body_series)) print_body(wikipedia.sentence[10000]) print_body(wikipedia.proc_sentence[10000]) wikipedia.shape wikipedia.columns wikipedia.to_csv('gs://ekaba-assets/wikipedia.csv') !rm wikipedia.csv wikipedia_sel = wikipedia[['proc_sentence']] wikipedia_sel.to_csv('gs://ekaba-assets/wikipedia_proc_sentence.csv') wikipedia_sel.to_csv( "wikipedia_proc_sentence.csv", index=False, encoding='utf-8-sig') # convert csv to txt import csv import sys maxInt = sys.maxsize csv.field_size_limit(maxInt) csv_file = 'wikipedia_proc_sentence.csv' txt_file = 'wikipedia_proc_sentence.txt' with open(txt_file, "w") as my_output_file: with open(csv_file, "r") as my_input_file: [ my_output_file.write(" ".join(row)+'\n') for row in csv.reader(my_input_file)] my_output_file.close() !gsutil -m cp wikipedia_proc_sentence.txt gs://ekaba-assets/ !rm wikipedia_proc_sentence.csv !gsutil -m cp gs://ekaba-assets/processed_full_body_text_BODY.txt . !rm -rf wiki ###Output _____no_output_____ ###Markdown Combine two text files together ###Code import shutil with open('biomed_wikipedia_data.txt','wb') as wfd: for f in ['processed_full_body_text_BODY.txt','wikipedia_proc_sentence.txt']: with open(f,'rb') as fd: shutil.copyfileobj(fd, wfd) wfd.write(b"\n") !gsutil -m cp biomed_wikipedia_data.txt gs://ekaba-assets/ !rm processed_full_body_text_BODY.txt !rm wikipedia_proc_sentence.txt ###Output _____no_output_____
scripts/run_questionnaires.ipynb
###Markdown Survey A ###Code # raw data f_A = '%s/Questionnaires/surveyA_151013.csv' % data_dir df_A = pd.read_csv(f_A, sep = ",", parse_dates =[1,5]) ###Output _____no_output_____ ###Markdown Self-control scale ###Code conv.run_SelfCtrl(df_A.copy(), out_dir = '%s/SCS' % internal_dir, public = False) conv.run_SelfCtrl(df_A.copy(), out_dir = '%s/SCS' % restricted_dir, public = True) raw_A = pd.read_csv('%s/SCS/SCS.csv' % restricted_dir, sep = ",", parse_dates =[1,5], dtype={'ids':str}) sums.run_SelfCtrl(raw_A.copy(), out_dir = '%s/SCS' % open_dir) ###Output _____no_output_____ ###Markdown Internet addiction test ###Code conv.run_IAT(df_A.copy(), out_dir = '%s/IAT' % internal_dir, public = False) conv.run_IAT(df_A.copy(), out_dir = '%s/IAT' % restricted_dir, public = True) raw_A = pd.read_csv('%s/IAT/IAT.csv' % restricted_dir, sep = ",", parse_dates =[1,5], dtype={'ids':str}) sums.run_IAT(raw_A.copy(), out_dir = '%s/IAT' % open_dir) ###Output _____no_output_____ ###Markdown Varieties of inner speech ###Code conv.run_VIS(df_A.copy(), out_dir = '%s/VISQ' % internal_dir, public = False) conv.run_VIS(df_A.copy(), out_dir = '%s/VISQ' % restricted_dir, public = True) raw_A = pd.read_csv('%s/VISQ/VISQ.csv' % restricted_dir, sep = ",", parse_dates =[1,5], dtype={'ids':str}) sums.run_VIS(raw_A.copy(), out_dir = '%s/VISQ' % open_dir) ###Output _____no_output_____ ###Markdown Spontaneous and Deliberate Mind Wandering ###Code conv.run_MW_SD(df_A.copy(), out_dir = '%s/S-D-MW' % internal_dir, public = False) conv.run_MW_SD(df_A.copy(), out_dir = '%s/S-D-MW' % restricted_dir, public = True) raw_A = pd.read_csv('%s/S-D-MW/S-D-MW.csv' % restricted_dir, sep = ",", parse_dates =[1,5], dtype={'ids':str}) sums.run_MW_SD(raw_A.copy(), out_dir = '%s/S-D-MW' % open_dir) ###Output _____no_output_____ ###Markdown Short dark triad ###Code conv.run_SDT(df_A.copy(), out_dir = '%s/SD3' % internal_dir, public = False) conv.run_SDT(df_A.copy(), out_dir = '%s/SD3' % restricted_dir, public = True) raw_A = pd.read_csv('%s/SD3/SD3.csv' % restricted_dir, sep = ",", parse_dates =[1,5], dtype={'ids':str}) sums.run_SDT(raw_A.copy(), out_dir = '%s/SD3' % open_dir) ###Output _____no_output_____ ###Markdown Social desirability ###Code conv.run_SDS(df_A.copy(), out_dir = '%s/SDS' % internal_dir, public = False) conv.run_SDS(df_A.copy(), out_dir = '%s/SDS' % restricted_dir, public = True) raw_A = pd.read_csv('%s/SDS/SDS.csv' % restricted_dir, sep = ",", parse_dates =[1,5], dtype={'ids':str}) sums.run_SDS(raw_A.copy(), out_dir = '%s/SDS' % open_dir) ###Output _____no_output_____ ###Markdown Impulsivity ###Code conv.run_UPPSP(df_A.copy(), out_dir = '%s/UPPS-P' % internal_dir, public = False) conv.run_UPPSP(df_A.copy(), out_dir = '%s/UPPS-P' % restricted_dir, public = True) raw_A = pd.read_csv('%s/UPPS-P/UPPS-P.csv' % restricted_dir, sep = ",", parse_dates =[1,5], dtype={'ids':str}) sums.run_UPPSP(raw_A.copy(), out_dir = '%s/UPPS-P' % open_dir) ###Output _____no_output_____ ###Markdown Tuckmann Procrastination Scale ###Code conv.run_TPS(df_A.copy(), out_dir = '%s/TPS' % internal_dir, public = False) conv.run_TPS(df_A.copy(), out_dir = '%s/TPS' % restricted_dir, public = True) raw_A = pd.read_csv('%s/TPS/TPS.csv' % restricted_dir, sep = ",", parse_dates =[1,5], dtype={'ids':str}) sums.run_TPS(raw_A.copy(), out_dir = '%s/TPS' % open_dir) ###Output _____no_output_____ ###Markdown ASR 18 - 59 ###Code conv.run_ASR(df_A.copy(), out_dir = '%s/ASR' % internal_dir, public = False) conv.run_ASR(df_A.copy(), out_dir = '%s/ASR' % restricted_dir, public = True) raw_A = pd.read_csv('%s/ASR/ASR.csv' % restricted_dir, sep = ",", parse_dates =[1,5], dtype={'ids':str}) sums.run_ASR(raw_A.copy(), out_dir = '%s/ASR' % open_dir) ###Output _____no_output_____ ###Markdown Self-esteem scale ###Code conv.run_SE(df_A.copy(), out_dir = '%s/SE' % internal_dir, public = False) conv.run_SE(df_A.copy(), out_dir = '%s/SE' % restricted_dir, public = True) raw_A = pd.read_csv('%s/SE/SE.csv' % restricted_dir, sep = ",", parse_dates =[1,5], dtype={'ids':str}) sums.run_SE(raw_A.copy(), out_dir = '%s/SE' % open_dir) ###Output _____no_output_____ ###Markdown Involuntary Musical Imagery Scale ###Code conv.run_IMIS(df_A.copy(), out_dir = '%s/IMIS' % internal_dir, public = False) conv.run_IMIS(df_A.copy(), out_dir = '%s/IMIS' % restricted_dir, public = True) raw_A = pd.read_csv('%s/IMIS/IMIS.csv' % restricted_dir, sep = ",", parse_dates =[1,5], dtype={'ids':str}) sums.run_IMIS(raw_A.copy(), out_dir = '%s/IMIS' % open_dir) ###Output _____no_output_____ ###Markdown Goldsmiths Musical Sophistication Index ###Code conv.run_GoldMSI(df_A.copy(), out_dir = '%s/Gold-MSI' % internal_dir, public = False) conv.run_GoldMSI(df_A.copy(), out_dir = '%s/Gold-MSI' % restricted_dir, public = True) raw_A = pd.read_csv('%s/Gold-MSI/Gold-MSI.csv' % restricted_dir, sep = ",", parse_dates =[1,5], dtype={'ids':str}) sums.run_GoldMSI(raw_A.copy(), out_dir = '%s/Gold-MSI' % open_dir) ###Output _____no_output_____ ###Markdown Multi-gender identity questionnaire ###Code conv.run_MGIQ(df_A.copy(), out_dir = '%s/MGIQ' % internal_dir, public = False) conv.run_MGIQ(df_A.copy(), out_dir = '%s/MGIQ' % restricted_dir, public = True) ###Output _____no_output_____ ###Markdown Survey B ###Code # raw data f_B = '%s/Questionnaires/surveyB_151013.csv' % data_dir f2_B = '%s/Questionnaires/surveyF_151013.csv' % data_dir # due to neo ffi items df_B = pd.read_csv(f_B, sep = ",", parse_dates =[1,5]) ###Output _____no_output_____ ###Markdown NEO PI-R ###Code conv.run_NEOPIR(f_B, f2_B, out_dir = '%s/NEO-PI-R' % internal_dir, public = False) conv.run_NEOPIR(f_B, f2_B, out_dir = '%s/NEO-PI-R' % restricted_dir, public = True) raw_B = pd.read_csv('%s/NEO-PI-R/NEO-PI-R.csv' % restricted_dir, sep = ",", parse_dates =[1,5], dtype={'ids':str}) sums.run_NEOPIR(raw_B.copy(), out_dir = '%s/NEO-PI-R' % open_dir) ###Output _____no_output_____ ###Markdown Epsworth sleepiness scale ###Code conv.run_ESS(df_B.copy(), out_dir = '%s/ESS' % internal_dir, public = False) conv.run_ESS(df_B.copy(), out_dir = '%s/ESS' % restricted_dir, public = True) raw_B = pd.read_csv('%s/ESS/ESS.csv' % restricted_dir, sep = ",", parse_dates =[1,5], dtype={'ids':str}) sums.run_ESS(raw_B.copy(), out_dir = '%s/ESS' % open_dir) ###Output _____no_output_____ ###Markdown BDI ###Code conv.run_BDI(df_B.copy(), out_dir = '%s/BDI' % internal_dir, public = False) conv.run_BDI(df_B.copy(), out_dir = '%s/BDI' % restricted_dir, public = True) raw_B = pd.read_csv('%s/BDI/BDI.csv' % restricted_dir, sep = ",", parse_dates =[1,5], dtype={'ids':str}) sums.run_BDI(raw_B.copy(), out_dir = '%s/BDI' % open_dir) ###Output _____no_output_____ ###Markdown Hamilton Anxiety Depression Scale ###Code conv.run_HADS(df_B.copy(), out_dir = '%s/HADS' % internal_dir, public = False) conv.run_HADS(df_B.copy(), out_dir = '%s/HADS' % restricted_dir, public = True) raw_B = pd.read_csv('%s/HADS/HADS.csv' % restricted_dir, sep = ",", parse_dates =[1,5], dtype={'ids':str}) sums.run_HADS(raw_B.copy(), out_dir = '%s/HADS' % open_dir) ###Output _____no_output_____ ###Markdown Boredom proness scale ###Code conv.run_BPS(df_B.copy(), out_dir = '%s/BP' % internal_dir, public = False) conv.run_BPS(df_B.copy(), out_dir = '%s/BP' % restricted_dir, public = True) raw_B = pd.read_csv('%s/BP/BP.csv' % restricted_dir, sep = ",", parse_dates =[1,5], dtype={'ids':str}) sums.run_BPS(raw_B.copy(), out_dir = '%s/BP' % open_dir) ###Output _____no_output_____ ###Markdown Derryberry Attention Control Scale ###Code conv.run_ACS(df_B.copy(), out_dir = '%s/ACS' % internal_dir, public = False) conv.run_ACS(df_B.copy(), out_dir = '%s/ACS' % restricted_dir, public = True) raw_B = pd.read_csv('%s/ACS/ACS.csv' % restricted_dir, sep = ",", parse_dates =[1,5], dtype={'ids':str}) sums.run_ACS(raw_B.copy(), out_dir = '%s/ACS' % open_dir) ###Output _____no_output_____ ###Markdown PSSI - Persönlichkeitsstil- und Störungsinventar ###Code conv.run_PSSI(df_B.copy(), out_dir = '%s/PSSI' % internal_dir, public = False) conv.run_PSSI(df_B.copy(), out_dir = '%s/PSSI' % restricted_dir, public = True) raw_B = pd.read_csv('%s/PSSI/PSSI.csv' % restricted_dir, sep = ",", parse_dates =[1,5], dtype={'ids':str}) sums.run_PSSI(raw_B.copy(), out_dir = '%s/PSSI' % open_dir) ###Output _____no_output_____ ###Markdown Multi-media inventory ###Code conv.run_MMI(df_B.copy(), out_dir = '%s/MMI' % internal_dir, public = False) conv.run_MMI(df_B.copy(), out_dir = '%s/MMI' % restricted_dir, public = True) raw_B = pd.read_csv('%s/MMI/MMI.csv' % restricted_dir, sep = ",", parse_dates =[1,5], dtype={'ids':str}) sums.run_MMI(raw_B.copy(), out_dir = '%s/MMI' % open_dir) ###Output _____no_output_____ ###Markdown Mobile phone usage ###Code conv.run_mobile(df_B.copy(), out_dir = '%s/MPU' % internal_dir, public = False) conv.run_mobile(df_B.copy(), out_dir = '%s/MPU' % open_dir, public = True) ###Output _____no_output_____ ###Markdown Survey C (scanning day) ###Code # raw data f_C1 = '%s/Questionnaires/surveyCactive_151013.csv' % data_dir f_C2 = '%s/Questionnaires/surveyCinactive_151013.csv' % data_dir f_C3 = '%s/Questionnaires/surveyCcorrected_151013.csv' % data_dir df_C1 = pd.read_csv(f_C1, sep = ",", parse_dates =[1,5]) df_C1['DS14 answer codes'] = pd.Series(np.zeros(len(df_C1)), index=df_C1.index) df_C2 = pd.read_csv(f_C2, sep = ",", parse_dates =[1,5]) df_C2['DS14 answer codes'] = pd.Series(np.zeros(len(df_C2)), index=df_C2.index) df_C3 = pd.read_csv(f_C3, sep = ",", parse_dates =[1,5]) df_C3['DS14 answer codes'] = pd.Series(np.ones(len(df_C3)), index=df_C3.index) df_C = pd.concat([df_C1, df_C2, df_C3]) ###Output _____no_output_____ ###Markdown Facebook intensity scale ###Code conv.run_FIS(df_C.copy(), out_dir = '%s/FBI' % internal_dir, public = False) conv.run_FIS(df_C.copy(), out_dir = '%s/FBI' % restricted_dir, public = True) ###Output _____no_output_____ ###Markdown NYC-Q on scanning day full NYC-Q (LIMIT) ###Code # raw data f_NYCQ_postscan = '%s/Questionnaires/LIMIT -NYC-Q post Scan.ods - LIMIT_20151215.csv' % data_dir df_postscan = pd.read_csv(f_NYCQ_postscan) conv.run_NYCQ_postscan(df_postscan, out_dir = '%s/NYC-Q_postscan' % internal_dir, public = False) conv.run_NYCQ_postscan(df_postscan, out_dir = '%s/NYC-Q_postscan' % open_dir, public = True) conv.run_NYCQ_posttasks(df_C.copy(), out_dir = '%s/NYC-Q_posttasks' % internal_dir, public = False) conv.run_NYCQ_posttasks(df_C.copy(), out_dir = '%s/NYC-Q_posttasks' % open_dir, public = True) ###Output _____no_output_____ ###Markdown short NYC-Q ###Code # raw data f_NYCQ_prescan = '%s/Questionnaires/Prescan short NYC-Q_20151215.csv' % data_dir f_NYCQ_inscan = '%s/Questionnaires/NYCQ-short_inscanner.csv' % data_dir f_NYCQ_postETS = '%s/Questionnaires/NYCQ-short-slider post Win_20151215.csv' % data_dir df_prescan = pd.read_csv(f_NYCQ_prescan) df_inscan = pd.read_csv(f_NYCQ_inscan) df_postETS = pd.read_csv(f_NYCQ_postETS) conv.run_NYCQ_prescan(df_prescan.copy(), out_dir = '%s/Short-NYC_prescan' % internal_dir, public = False) conv.run_NYCQ_prescan(df_prescan.copy(), out_dir = '%s/Short-NYC_prescan' % open_dir, public = True) conv.run_NYCQ_inscan(df_inscan.copy(), scan=1, out_dir = '%s/Short-NYC_inscan1' % internal_dir, public = False) conv.run_NYCQ_inscan(df_inscan.copy(), scan=1, out_dir = '%s/Short-NYC_inscan1' % open_dir, public = True) conv.run_NYCQ_inscan(df_inscan.copy(), scan=2, out_dir = '%s/Short-NYC_inscan2' % internal_dir, public = False) conv.run_NYCQ_inscan(df_inscan.copy(), scan=2, out_dir = '%s/Short-NYC_inscan2' % open_dir, public = True) conv.run_NYCQ_inscan(df_inscan.copy(), scan=3, out_dir = '%s/Short-NYC_inscan3' % internal_dir, public = False) conv.run_NYCQ_inscan(df_inscan.copy(), scan=3, out_dir = '%s/Short-NYC_inscan3' % open_dir, public = True) conv.run_NYCQ_inscan(df_inscan.copy(), scan=4, out_dir = '%s/Short-NYC_inscan4' % internal_dir, public = False) conv.run_NYCQ_inscan(df_inscan.copy(), scan=4, out_dir = '%s/Short-NYC_inscan4' % open_dir, public = True) # where to put this conv.run_NYCQ_postETS(df_postETS.copy(), out_dir = '%s/Short-NYC_postETS' % internal_dir, public = False) conv.run_NYCQ_postETS(df_postETS.copy(), out_dir = '%s/Short-NYC_postETS' % open_dir, public = True) ###Output _____no_output_____ ###Markdown Survey F ###Code # raw data f_F = '%s/Questionnaires/surveyF_151013.csv' % data_dir df_F = pd.read_csv(f_F, sep = ",", parse_dates =[1,5]) lemon_dir = '/nobackup/adenauer2/XNAT/Emotion Battery LEMON001-229_ 1-4 Rounds_CSV files' ###Output _____no_output_____ ###Markdown STAI ###Code conv.run_STAI(df_F.copy(), out_dir = '%s/STAI-G-X2' % internal_dir, public = False) conv.run_STAI(df_F.copy(), out_dir = '%s/STAI-G-X2' % restricted_dir, public = True) raw_STAI_lsd = pd.read_csv('%s/STAI-G-X2/STAI-G-X2.csv' % restricted_dir, sep = ",", parse_dates =[1,5], dtype={'ids':str}) raw_STAI_lemon = pd.read_csv('%s/STAI/STAI_G_Form_x2__20.csv' % lemon_dir, sep = ",", dtype={'ids':str}) cols = ['STAI_1', 'STAI_2', 'STAI_3', 'STAI_4', 'STAI_5', 'STAI_6', 'STAI_7', 'STAI_8', 'STAI_9', 'STAI_10', 'STAI_11', 'STAI_12', 'STAI_13', 'STAI_14', 'STAI_15', 'STAI_16', 'STAI_17', 'STAI_18', 'STAI_19', 'STAI_20'] idx = raw_STAI_lemon[cols].dropna(how='all').index raw_STAI_lemon = raw_STAI_lemon.ix[idx] raw_STAI = pd.concat([raw_STAI_lsd, raw_STAI_lemon]) raw_STAI.set_index([range(len(raw_STAI.index))], inplace=True) sums.run_STAI(raw_STAI.copy(), out_dir = '%s/STAI-G-X2' % open_dir) ###Output _____no_output_____ ###Markdown STAXI ###Code conv.run_STAXI(df_F.copy(), out_dir = '%s/STAXI' % internal_dir, public = False) conv.run_STAXI(df_F.copy(), out_dir = '%s/STAXI' % restricted_dir, public = True) raw_STAXI_lsd = pd.read_csv('%s/STAXI/STAXI.csv' % restricted_dir, sep = ",", parse_dates =[1,5], dtype={'ids':str}) raw_STAXI_lemon = pd.read_csv('%s/STAXI/STAXI_44.csv' % lemon_dir, sep = ",", dtype={'ids':str}) cols = ['STAXI_1', 'STAXI_2', 'STAXI_3', 'STAXI_4', 'STAXI_5', 'STAXI_6', 'STAXI_7', 'STAXI_8', 'STAXI_9', 'STAXI_10', 'STAXI_11', 'STAXI_12', 'STAXI_13', 'STAXI_14', 'STAXI_15', 'STAXI_16', 'STAXI_17', 'STAXI_18', 'STAXI_19', 'STAXI_20', 'STAXI_21', 'STAXI_22', 'STAXI_23', 'STAXI_24', 'STAXI_25', 'STAXI_26', 'STAXI_27', 'STAXI_28', 'STAXI_29', 'STAXI_30', 'STAXI_31', 'STAXI_32', 'STAXI_33', 'STAXI_34', 'STAXI_35', 'STAXI_36', 'STAXI_37', 'STAXI_38', 'STAXI_39', 'STAXI_40', 'STAXI_41', 'STAXI_42', 'STAXI_43', 'STAXI_44'] idx = raw_STAXI_lemon[cols].dropna(how='all').index raw_STAXI_lemon = raw_STAXI_lemon.ix[idx] raw_STAXI = pd.concat([raw_STAXI_lsd, raw_STAXI_lemon]) raw_STAXI.set_index([range(len(raw_STAXI.index))], inplace=True) sums.run_STAXI(raw_STAXI.copy(), out_dir = '%s/STAXI' % open_dir) ###Output _____no_output_____ ###Markdown BIS BAS ###Code conv.run_BISBAS(df_F.copy(), out_dir = '%s/BISBAS' % internal_dir, public = False) conv.run_BISBAS(df_F.copy(), out_dir = '%s/BISBAS' % restricted_dir, public = True) raw_BISBAS_lsd = pd.read_csv('%s/BISBAS/BISBAS.csv' % restricted_dir, sep = ",", parse_dates =[1,5], dtype={'ids':str}) raw_BISBAS_lemon = pd.read_csv('%s/BISBAS/BISBAS_24.csv' % lemon_dir, sep = ",", dtype={'ids':str}) cols = ['BISBAS_1', 'BISBAS_2', 'BISBAS_3', 'BISBAS_4', 'BISBAS_5', 'BISBAS_6', 'BISBAS_7', 'BISBAS_8', 'BISBAS_9', 'BISBAS_10', 'BISBAS_11', 'BISBAS_12', 'BISBAS_13', 'BISBAS_14', 'BISBAS_15', 'BISBAS_16', 'BISBAS_17', 'BISBAS_18', 'BISBAS_19', 'BISBAS_20', 'BISBAS_21', 'BISBAS_22', 'BISBAS_23', 'BISBAS_24'] idx = raw_BISBAS_lemon[cols].dropna(how='all').index raw_BISBAS_lemon = raw_BISBAS_lemon.ix[idx] raw_BISBAS = pd.concat([raw_BISBAS_lsd, raw_BISBAS_lemon]) raw_BISBAS.set_index([range(len(raw_BISBAS.index))], inplace=True) sums.run_BISBAS(raw_BISBAS.copy(), out_dir = '%s/BISBAS' % open_dir) ###Output _____no_output_____ ###Markdown Survey G ###Code # raw data f_G = '%s/Questionnaires/surveyG_151013.csv' % data_dir # AMAS was part of F and G df_G = pd.read_csv(f_G, sep = ",", parse_dates =[1,5]) df_G = pd.concat([df_F, df_G]) ###Output _____no_output_____ ###Markdown Abbreviated Math Anxiety Scale ###Code conv.run_AMAS(df_G.copy(), out_dir = '%s/AMAS' % internal_dir, public = False) conv.run_AMAS(df_G.copy(), out_dir = '%s/AMAS' % restricted_dir, public = True) raw_G = pd.read_csv('%s/AMAS/AMAS.csv' % restricted_dir, sep = ",", parse_dates =[1,5], dtype={'ids':str}) sums.run_AMAS(raw_G.copy(), out_dir = '%s/AMAS' % open_dir) ###Output _____no_output_____ ###Markdown Survey Creativity ###Code # raw data f_Cr = '%s/Questionnaires/survey_creativity_metacog.csv' % data_dir f_syn = '%s/Questionnaires/synesthesia_color_picker.csv' % data_dir df_Cr = pd.read_csv(f_Cr, sep = ",", parse_dates =[1,5], encoding="utf-8-sig").rename(columns = {'IDcode' : 'ID'}) df_syn = pd.read_csv(f_syn, sep = ",", parse_dates =[1,5]).rename(columns = {'DB_ID' : 'ID'}) ###Output _____no_output_____ ###Markdown Creative achievement questionnaire ###Code conv.run_CAQ(df_Cr.copy(), out_dir = '%s/CAQ' % internal_dir, public = False) conv.run_CAQ(df_Cr.copy(), out_dir = '%s/CAQ' % restricted_dir, public = True) raw_Cr = pd.read_csv('%s/CAQ/CAQ.csv' % restricted_dir, sep = ",", parse_dates =[1,5], dtype={'ids':str}) sums.run_CAQ(raw_Cr.copy(), out_dir = '%s/CAQ' % open_dir) ###Output _____no_output_____ ###Markdown Metacognition questionnaire ###Code conv.run_MCQ30(df_Cr.copy(), out_dir = '%s/MCQ-30' % internal_dir, public = False) conv.run_MCQ30(df_Cr.copy(), out_dir = '%s/MCQ-30' % restricted_dir, public = True) raw_Cr = pd.read_csv('%s/MCQ-30/MCQ30.csv' % restricted_dir, sep = ",", parse_dates =[1,5], dtype={'ids':str}) sums.run_MCQ30(raw_Cr.copy(), out_dir = '%s/MCQ-30' % open_dir) ###Output _____no_output_____ ###Markdown Body Consciousness Questionnaire ###Code conv.run_BCQ(df_Cr.copy(), out_dir = '%s/BCQ' % internal_dir, public = False) conv.run_BCQ(df_Cr.copy(), out_dir = '%s/BCQ' % restricted_dir, public = True) raw_Cr = pd.read_csv('%s/BCQ/BCQ.csv' % restricted_dir, sep = ",", parse_dates =[1,5], dtype={'ids':str}) sums.run_BCQ(raw_Cr.copy(), out_dir = '%s/BCQ' % open_dir) ###Output _____no_output_____ ###Markdown Five Facet Mindfulness Questionnaire ###Code conv.run_FFMQ(df_Cr.copy(), out_dir = '%s/FFMQ' % internal_dir, public = False) conv.run_FFMQ(df_Cr.copy(), out_dir = '%s/FFMQ' % restricted_dir, public = True) raw_Cr = pd.read_csv('%s/FFMQ/FFMQ.csv' % restricted_dir, sep = ",", parse_dates =[1,5], dtype={'ids':str}) sums.run_FFMQ(raw_Cr.copy(), out_dir = '%s/FFMQ' % open_dir) ###Output _____no_output_____ ###Markdown Synesthesia Color picker test ###Code conv.run_syn(df_syn.copy(), out_dir = '%s/SYN' % internal_dir, public = False) conv.run_syn(df_syn.copy(), out_dir = '%s/SYN' % open_dir, public = True) ###Output _____no_output_____
deeplearning.ai/COURSE4 CNN/Week 01/Convolution model - Step by Step/Convolution+model+-+Step+by+Step+-+v2.ipynb
###Markdown Convolutional Neural Networks: Step by StepWelcome to Course 4's first assignment! In this assignment, you will implement convolutional (CONV) and pooling (POOL) layers in numpy, including both forward propagation and (optionally) backward propagation. **Notation**:- Superscript $[l]$ denotes an object of the $l^{th}$ layer. - Example: $a^{[4]}$ is the $4^{th}$ layer activation. $W^{[5]}$ and $b^{[5]}$ are the $5^{th}$ layer parameters.- Superscript $(i)$ denotes an object from the $i^{th}$ example. - Example: $x^{(i)}$ is the $i^{th}$ training example input. - Lowerscript $i$ denotes the $i^{th}$ entry of a vector. - Example: $a^{[l]}_i$ denotes the $i^{th}$ entry of the activations in layer $l$, assuming this is a fully connected (FC) layer. - $n_H$, $n_W$ and $n_C$ denote respectively the height, width and number of channels of a given layer. If you want to reference a specific layer $l$, you can also write $n_H^{[l]}$, $n_W^{[l]}$, $n_C^{[l]}$. - $n_{H_{prev}}$, $n_{W_{prev}}$ and $n_{C_{prev}}$ denote respectively the height, width and number of channels of the previous layer. If referencing a specific layer $l$, this could also be denoted $n_H^{[l-1]}$, $n_W^{[l-1]}$, $n_C^{[l-1]}$. We assume that you are already familiar with `numpy` and/or have completed the previous courses of the specialization. Let's get started! 1 - PackagesLet's first import all the packages that you will need during this assignment. - [numpy](www.numpy.org) is the fundamental package for scientific computing with Python.- [matplotlib](http://matplotlib.org) is a library to plot graphs in Python.- np.random.seed(1) is used to keep all the random function calls consistent. It will help us grade your work. ###Code import numpy as np import h5py import matplotlib.pyplot as plt %matplotlib inline plt.rcParams['figure.figsize'] = (5.0, 4.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' %load_ext autoreload %autoreload 2 np.random.seed(1) ###Output _____no_output_____ ###Markdown 2 - Outline of the AssignmentYou will be implementing the building blocks of a convolutional neural network! Each function you will implement will have detailed instructions that will walk you through the steps needed:- Convolution functions, including: - Zero Padding - Convolve window - Convolution forward - Convolution backward (optional)- Pooling functions, including: - Pooling forward - Create mask - Distribute value - Pooling backward (optional) This notebook will ask you to implement these functions from scratch in `numpy`. In the next notebook, you will use the TensorFlow equivalents of these functions to build the following model:**Note** that for every forward function, there is its corresponding backward equivalent. Hence, at every step of your forward module you will store some parameters in a cache. These parameters are used to compute gradients during backpropagation. 3 - Convolutional Neural NetworksAlthough programming frameworks make convolutions easy to use, they remain one of the hardest concepts to understand in Deep Learning. A convolution layer transforms an input volume into an output volume of different size, as shown below. In this part, you will build every step of the convolution layer. You will first implement two helper functions: one for zero padding and the other for computing the convolution function itself. 3.1 - Zero-PaddingZero-padding adds zeros around the border of an image: **Figure 1** : **Zero-Padding** Image (3 channels, RGB) with a padding of 2. The main benefits of padding are the following:- It allows you to use a CONV layer without necessarily shrinking the height and width of the volumes. This is important for building deeper networks, since otherwise the height/width would shrink as you go to deeper layers. An important special case is the "same" convolution, in which the height/width is exactly preserved after one layer. - It helps us keep more of the information at the border of an image. Without padding, very few values at the next layer would be affected by pixels as the edges of an image.**Exercise**: Implement the following function, which pads all the images of a batch of examples X with zeros. [Use np.pad](https://docs.scipy.org/doc/numpy/reference/generated/numpy.pad.html). Note if you want to pad the array "a" of shape $(5,5,5,5,5)$ with `pad = 1` for the 2nd dimension, `pad = 3` for the 4th dimension and `pad = 0` for the rest, you would do:```pythona = np.pad(a, ((0,0), (1,1), (0,0), (3,3), (0,0)), 'constant', constant_values = (..,..))``` ###Code # GRADED FUNCTION: zero_pad def zero_pad(X, pad): """ Pad with zeros all images of the dataset X. The padding is applied to the height and width of an image, as illustrated in Figure 1. Argument: X -- python numpy array of shape (m, n_H, n_W, n_C) representing a batch of m images pad -- integer, amount of padding around each image on vertical and horizontal dimensions Returns: X_pad -- padded image of shape (m, n_H + 2*pad, n_W + 2*pad, n_C) """ ### START CODE HERE ### (≈ 1 line) X_pad = np.pad(X, ((0,0), (pad, pad), (pad, pad), (0,0)), 'constant', constant_values = (0, 0)) ### END CODE HERE ### return X_pad np.random.seed(1) x = np.random.randn(4, 3, 3, 2) x_pad = zero_pad(x, 2) print ("x.shape =", x.shape) print ("x_pad.shape =", x_pad.shape) print ("x[1,1] =", x[1,1]) print ("x_pad[1,1] =", x_pad[1,1]) fig, axarr = plt.subplots(1, 2) axarr[0].set_title('x') axarr[0].imshow(x[0,:,:,0]) axarr[1].set_title('x_pad') axarr[1].imshow(x_pad[0,:,:,0]) ###Output x.shape = (4, 3, 3, 2) x_pad.shape = (4, 7, 7, 2) x[1,1] = [[ 0.90085595 -0.68372786] [-0.12289023 -0.93576943] [-0.26788808 0.53035547]] x_pad[1,1] = [[ 0. 0.] [ 0. 0.] [ 0. 0.] [ 0. 0.] [ 0. 0.] [ 0. 0.] [ 0. 0.]] ###Markdown **Expected Output**: **x.shape**: (4, 3, 3, 2) **x_pad.shape**: (4, 7, 7, 2) **x[1,1]**: [[ 0.90085595 -0.68372786] [-0.12289023 -0.93576943] [-0.26788808 0.53035547]] **x_pad[1,1]**: [[ 0. 0.] [ 0. 0.] [ 0. 0.] [ 0. 0.] [ 0. 0.] [ 0. 0.] [ 0. 0.]] 3.2 - Single step of convolution In this part, implement a single step of convolution, in which you apply the filter to a single position of the input. This will be used to build a convolutional unit, which: - Takes an input volume - Applies a filter at every position of the input- Outputs another volume (usually of different size) **Figure 2** : **Convolution operation** with a filter of 2x2 and a stride of 1 (stride = amount you move the window each time you slide) In a computer vision application, each value in the matrix on the left corresponds to a single pixel value, and we convolve a 3x3 filter with the image by multiplying its values element-wise with the original matrix, then summing them up and adding a bias. In this first step of the exercise, you will implement a single step of convolution, corresponding to applying a filter to just one of the positions to get a single real-valued output. Later in this notebook, you'll apply this function to multiple positions of the input to implement the full convolutional operation. **Exercise**: Implement conv_single_step(). [Hint](https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.sum.html). ###Code # GRADED FUNCTION: conv_single_step def conv_single_step(a_slice_prev, W, b): """ Apply one filter defined by parameters W on a single slice (a_slice_prev) of the output activation of the previous layer. Arguments: a_slice_prev -- slice of input data of shape (f, f, n_C_prev) W -- Weight parameters contained in a window - matrix of shape (f, f, n_C_prev) b -- Bias parameters contained in a window - matrix of shape (1, 1, 1) Returns: Z -- a scalar value, result of convolving the sliding window (W, b) on a slice x of the input data """ ### START CODE HERE ### (≈ 2 lines of code) # Element-wise product between a_slice and W. Do not add the bias yet. s = a_slice_prev * W # Sum over all entries of the volume s. Z = np.sum(s) # Add bias b to Z. Cast b to a float() so that Z results in a scalar value. Z = Z + b ### END CODE HERE ### return Z np.random.seed(1) a_slice_prev = np.random.randn(4, 4, 3) W = np.random.randn(4, 4, 3) b = np.random.randn(1, 1, 1) Z = conv_single_step(a_slice_prev, W, b) print("Z =", Z) ###Output Z = [[[-6.99908945]]] ###Markdown **Expected Output**: **Z** -6.99908945068 3.3 - Convolutional Neural Networks - Forward passIn the forward pass, you will take many filters and convolve them on the input. Each 'convolution' gives you a 2D matrix output. You will then stack these outputs to get a 3D volume: **Exercise**: Implement the function below to convolve the filters W on an input activation A_prev. This function takes as input A_prev, the activations output by the previous layer (for a batch of m inputs), F filters/weights denoted by W, and a bias vector denoted by b, where each filter has its own (single) bias. Finally you also have access to the hyperparameters dictionary which contains the stride and the padding. **Hint**: 1. To select a 2x2 slice at the upper left corner of a matrix "a_prev" (shape (5,5,3)), you would do:```pythona_slice_prev = a_prev[0:2,0:2,:]```This will be useful when you will define `a_slice_prev` below, using the `start/end` indexes you will define.2. To define a_slice you will need to first define its corners `vert_start`, `vert_end`, `horiz_start` and `horiz_end`. This figure may be helpful for you to find how each of the corner can be defined using h, w, f and s in the code below. **Figure 3** : **Definition of a slice using vertical and horizontal start/end (with a 2x2 filter)** This figure shows only a single channel. **Reminder**:The formulas relating the output shape of the convolution to the input shape is:$$ n_H = \lfloor \frac{n_{H_{prev}} - f + 2 \times pad}{stride} \rfloor +1 $$$$ n_W = \lfloor \frac{n_{W_{prev}} - f + 2 \times pad}{stride} \rfloor +1 $$$$ n_C = \text{number of filters used in the convolution}$$For this exercise, we won't worry about vectorization, and will just implement everything with for-loops. ###Code # GRADED FUNCTION: conv_forward def conv_forward(A_prev, W, b, hparameters): """ Implements the forward propagation for a convolution function Arguments: A_prev -- output activations of the previous layer, numpy array of shape (m, n_H_prev, n_W_prev, n_C_prev) W -- Weights, numpy array of shape (f, f, n_C_prev, n_C) b -- Biases, numpy array of shape (1, 1, 1, n_C) hparameters -- python dictionary containing "stride" and "pad" Returns: Z -- conv output, numpy array of shape (m, n_H, n_W, n_C) cache -- cache of values needed for the conv_backward() function """ ### START CODE HERE ### # Retrieve dimensions from A_prev's shape (≈1 line) (m, n_H_prev, n_W_prev, n_C_prev) = A_prev.shape[0], A_prev.shape[1], A_prev.shape[2], A_prev.shape[3] # Retrieve dimensions from W's shape (≈1 line) (f, f, n_C_prev, n_C) = W.shape[0], W.shape[1], W.shape[2], W.shape[3] # Retrieve information from "hparameters" (≈2 lines) stride = hparameters['stride'] pad = hparameters['pad'] # Compute the dimensions of the CONV output volume using the formula given above. Hint: use int() to floor. (≈2 lines) n_H = int((n_H_prev - f + 2 * pad) / 2) + 1 n_W = int((n_W_prev - f + 2 * pad) / 2) + 1 # Initialize the output volume Z with zeros. (≈1 line) Z = np.zeros((m, n_H, n_W, n_C)) # Create A_prev_pad by padding A_prev A_prev_pad = np.pad(A_prev, ((0,0), (pad,pad), (pad,pad), (0,0)), 'constant', constant_values = (0, 0)) for i in range(m): # loop over the batch of training examples a_prev_pad = A_prev_pad[i] # Select ith training example's padded activation for h in range(n_H): # loop over vertical axis of the output volume for w in range(n_W): # loop over horizontal axis of the output volume for c in range(n_C): # loop over channels (= #filters) of the output volume # Find the corners of the current "slice" (≈4 lines) vert_start = h * stride vert_end = vert_start + f horiz_start = w * stride horiz_end = horiz_start + f # Use the corners to define the (3D) slice of a_prev_pad (See Hint above the cell). (≈1 line) a_slice_prev = a_prev_pad[vert_start:vert_end, horiz_start:horiz_end, :] # Convolve the (3D) slice with the correct filter W and bias b, to get back one output neuron. (≈1 line) Z[i, h, w, c] = np.sum(a_slice_prev * W[:,:,:,c]) + b[:,:,:,c] ### END CODE HERE ### # Making sure your output shape is correct assert(Z.shape == (m, n_H, n_W, n_C)) # Save information in "cache" for the backprop cache = (A_prev, W, b, hparameters) return Z, cache np.random.seed(1) A_prev = np.random.randn(10,4,4,3) W = np.random.randn(2,2,3,8) b = np.random.randn(1,1,1,8) hparameters = {"pad" : 2, "stride": 2} Z, cache_conv = conv_forward(A_prev, W, b, hparameters) print("Z's mean =", np.mean(Z)) print("Z[3,2,1] =", Z[3,2,1]) print("cache_conv[0][1][2][3] =", cache_conv[0][1][2][3]) ###Output Z's mean = 0.0489952035289 Z[3,2,1] = [-0.61490741 -6.7439236 -2.55153897 1.75698377 3.56208902 0.53036437 5.18531798 8.75898442] cache_conv[0][1][2][3] = [-0.20075807 0.18656139 0.41005165] ###Markdown **Expected Output**: **Z's mean** 0.0489952035289 **Z[3,2,1]** [-0.61490741 -6.7439236 -2.55153897 1.75698377 3.56208902 0.53036437 5.18531798 8.75898442] **cache_conv[0][1][2][3]** [-0.20075807 0.18656139 0.41005165] Finally, CONV layer should also contain an activation, in which case we would add the following line of code:```python Convolve the window to get back one output neuronZ[i, h, w, c] = ... Apply activationA[i, h, w, c] = activation(Z[i, h, w, c])```You don't need to do it here. 4 - Pooling layer The pooling (POOL) layer reduces the height and width of the input. It helps reduce computation, as well as helps make feature detectors more invariant to its position in the input. The two types of pooling layers are: - Max-pooling layer: slides an ($f, f$) window over the input and stores the max value of the window in the output.- Average-pooling layer: slides an ($f, f$) window over the input and stores the average value of the window in the output.These pooling layers have no parameters for backpropagation to train. However, they have hyperparameters such as the window size $f$. This specifies the height and width of the fxf window you would compute a max or average over. 4.1 - Forward PoolingNow, you are going to implement MAX-POOL and AVG-POOL, in the same function. **Exercise**: Implement the forward pass of the pooling layer. Follow the hints in the comments below.**Reminder**:As there's no padding, the formulas binding the output shape of the pooling to the input shape is:$$ n_H = \lfloor \frac{n_{H_{prev}} - f}{stride} \rfloor +1 $$$$ n_W = \lfloor \frac{n_{W_{prev}} - f}{stride} \rfloor +1 $$$$ n_C = n_{C_{prev}}$$ ###Code # GRADED FUNCTION: pool_forward def pool_forward(A_prev, hparameters, mode = "max"): """ Implements the forward pass of the pooling layer Arguments: A_prev -- Input data, numpy array of shape (m, n_H_prev, n_W_prev, n_C_prev) hparameters -- python dictionary containing "f" and "stride" mode -- the pooling mode you would like to use, defined as a string ("max" or "average") Returns: A -- output of the pool layer, a numpy array of shape (m, n_H, n_W, n_C) cache -- cache used in the backward pass of the pooling layer, contains the input and hparameters """ # Retrieve dimensions from the input shape (m, n_H_prev, n_W_prev, n_C_prev) = A_prev.shape # Retrieve hyperparameters from "hparameters" f = hparameters["f"] stride = hparameters["stride"] # Define the dimensions of the output n_H = int(1 + (n_H_prev - f) / stride) n_W = int(1 + (n_W_prev - f) / stride) n_C = n_C_prev # Initialize output matrix A A = np.zeros((m, n_H, n_W, n_C)) ### START CODE HERE ### for i in range(m): # loop over the training examples for h in range(n_H): # loop on the vertical axis of the output volume for w in range(n_W): # loop on the horizontal axis of the output volume for c in range (n_C): # loop over the channels of the output volume # Find the corners of the current "slice" (≈4 lines) vert_start = h * stride vert_end = vert_start + f horiz_start = w * stride horiz_end = horiz_start + f # Use the corners to define the current slice on the ith training example of A_prev, channel c. (≈1 line) a_prev_slice = A_prev[i, vert_start:vert_end, horiz_start:horiz_end, c] # Compute the pooling operation on the slice. Use an if statment to differentiate the modes. Use np.max/np.mean. if mode == "max": A[i, h, w, c] = np.max(a_prev_slice) elif mode == "average": A[i, h, w, c] = np.average(a_prev_slice) ### END CODE HERE ### # Store the input and hparameters in "cache" for pool_backward() cache = (A_prev, hparameters) # Making sure your output shape is correct assert(A.shape == (m, n_H, n_W, n_C)) return A, cache np.random.seed(1) A_prev = np.random.randn(2, 4, 4, 3) hparameters = {"stride" : 2, "f": 3} A, cache = pool_forward(A_prev, hparameters) print("mode = max") print("A =", A) print() A, cache = pool_forward(A_prev, hparameters, mode = "average") print("mode = average") print("A =", A) ###Output mode = max A = [[[[ 1.74481176 0.86540763 1.13376944]]] [[[ 1.13162939 1.51981682 2.18557541]]]] mode = average A = [[[[ 0.02105773 -0.20328806 -0.40389855]]] [[[-0.22154621 0.51716526 0.48155844]]]] ###Markdown **Expected Output:** A = [[[[ 1.74481176 0.86540763 1.13376944]]] [[[ 1.13162939 1.51981682 2.18557541]]]] A = [[[[ 0.02105773 -0.20328806 -0.40389855]]] [[[-0.22154621 0.51716526 0.48155844]]]] Congratulations! You have now implemented the forward passes of all the layers of a convolutional network. The remainer of this notebook is optional, and will not be graded. 5 - Backpropagation in convolutional neural networks (OPTIONAL / UNGRADED)In modern deep learning frameworks, you only have to implement the forward pass, and the framework takes care of the backward pass, so most deep learning engineers don't need to bother with the details of the backward pass. The backward pass for convolutional networks is complicated. If you wish however, you can work through this optional portion of the notebook to get a sense of what backprop in a convolutional network looks like. When in an earlier course you implemented a simple (fully connected) neural network, you used backpropagation to compute the derivatives with respect to the cost to update the parameters. Similarly, in convolutional neural networks you can to calculate the derivatives with respect to the cost in order to update the parameters. The backprop equations are not trivial and we did not derive them in lecture, but we briefly presented them below. 5.1 - Convolutional layer backward pass Let's start by implementing the backward pass for a CONV layer. 5.1.1 - Computing dA:This is the formula for computing $dA$ with respect to the cost for a certain filter $W_c$ and a given training example:$$ dA += \sum _{h=0} ^{n_H} \sum_{w=0} ^{n_W} W_c \times dZ_{hw} \tag{1}$$Where $W_c$ is a filter and $dZ_{hw}$ is a scalar corresponding to the gradient of the cost with respect to the output of the conv layer Z at the hth row and wth column (corresponding to the dot product taken at the ith stride left and jth stride down). Note that at each time, we multiply the the same filter $W_c$ by a different dZ when updating dA. We do so mainly because when computing the forward propagation, each filter is dotted and summed by a different a_slice. Therefore when computing the backprop for dA, we are just adding the gradients of all the a_slices. In code, inside the appropriate for-loops, this formula translates into:```pythonda_prev_pad[vert_start:vert_end, horiz_start:horiz_end, :] += W[:,:,:,c] * dZ[i, h, w, c]``` 5.1.2 - Computing dW:This is the formula for computing $dW_c$ ($dW_c$ is the derivative of one filter) with respect to the loss:$$ dW_c += \sum _{h=0} ^{n_H} \sum_{w=0} ^ {n_W} a_{slice} \times dZ_{hw} \tag{2}$$Where $a_{slice}$ corresponds to the slice which was used to generate the acitivation $Z_{ij}$. Hence, this ends up giving us the gradient for $W$ with respect to that slice. Since it is the same $W$, we will just add up all such gradients to get $dW$. In code, inside the appropriate for-loops, this formula translates into:```pythondW[:,:,:,c] += a_slice * dZ[i, h, w, c]``` 5.1.3 - Computing db:This is the formula for computing $db$ with respect to the cost for a certain filter $W_c$:$$ db = \sum_h \sum_w dZ_{hw} \tag{3}$$As you have previously seen in basic neural networks, db is computed by summing $dZ$. In this case, you are just summing over all the gradients of the conv output (Z) with respect to the cost. In code, inside the appropriate for-loops, this formula translates into:```pythondb[:,:,:,c] += dZ[i, h, w, c]```**Exercise**: Implement the `conv_backward` function below. You should sum over all the training examples, filters, heights, and widths. You should then compute the derivatives using formulas 1, 2 and 3 above. ###Code def conv_backward(dZ, cache): """ Implement the backward propagation for a convolution function Arguments: dZ -- gradient of the cost with respect to the output of the conv layer (Z), numpy array of shape (m, n_H, n_W, n_C) cache -- cache of values needed for the conv_backward(), output of conv_forward() Returns: dA_prev -- gradient of the cost with respect to the input of the conv layer (A_prev), numpy array of shape (m, n_H_prev, n_W_prev, n_C_prev) dW -- gradient of the cost with respect to the weights of the conv layer (W) numpy array of shape (f, f, n_C_prev, n_C) db -- gradient of the cost with respect to the biases of the conv layer (b) numpy array of shape (1, 1, 1, n_C) """ ### START CODE HERE ### # Retrieve information from "cache" (A_prev, W, b, hparameters) = cache[0], cache[1], cache[2], cache[3] # Retrieve dimensions from A_prev's shape (m, n_H_prev, n_W_prev, n_C_prev) = A_prev.shape # Retrieve dimensions from W's shape (f, f, n_C_prev, n_C) = W.shape # Retrieve information from "hparameters" stride = hparameters['stride'] pad = hparameters['pad'] # Retrieve dimensions from dZ's shape (m, n_H, n_W, n_C) = dZ.shape # Initialize dA_prev, dW, db with the correct shapes dA_prev = np.zeros((m, n_H_prev, n_W_prev, n_C_prev)) dW = np.zeros((f, f, n_C_prev, n_C)) db = np.zeros((1, 1, 1, n_C)) # Pad A_prev and dA_prev A_prev_pad = np.pad(A_prev, ((0,0), (pad,pad), (pad,pad), (0,0)), 'constant', constant_values = (0, 0)) dA_prev_pad = np.pad(dA_prev, ((0,0), (pad,pad), (pad,pad), (0,0)), 'constant', constant_values = (0, 0)) for i in range(m): # loop over the training examples # select ith training example from A_prev_pad and dA_prev_pad a_prev_pad = A_prev_pad[i] da_prev_pad = dA_prev_pad[i] for h in range(n_H): # loop over vertical axis of the output volume for w in range(n_W): # loop over horizontal axis of the output volume for c in range(n_C): # loop over the channels of the output volume # Find the corners of the current "slice" vert_start = h * stride vert_end = vert_start + f horiz_start = w * stride horiz_end = horiz_start + f # Use the corners to define the slice from a_prev_pad a_slice = a_prev_pad[vert_start:vert_end, horiz_start:horiz_end, :] # Update gradients for the window and the filter's parameters using the code formulas given above da_prev_pad[vert_start:vert_end, horiz_start:horiz_end, :] += W[:,:,:,c] * dZ[i, h, w, c] dW[:,:,:,c] += a_slice * dZ[i, h, w, c] db[:,:,:,c] += dZ[i, h, w, c] # Set the ith training example's dA_prev to the unpaded da_prev_pad (Hint: use X[pad:-pad, pad:-pad, :]) dA_prev[i, :, :, :] = dA_prev_pad[i, pad:-pad, pad:-pad, :] ### END CODE HERE ### # Making sure your output shape is correct assert(dA_prev.shape == (m, n_H_prev, n_W_prev, n_C_prev)) return dA_prev, dW, db np.random.seed(1) dA, dW, db = conv_backward(Z, cache_conv) print("dA_mean =", np.mean(dA)) print("dW_mean =", np.mean(dW)) print("db_mean =", np.mean(db)) ###Output dA_mean = 1.45243777754 dW_mean = 1.72699145831 db_mean = 7.83923256462 ###Markdown ** Expected Output: ** **dA_mean** 1.45243777754 **dW_mean** 1.72699145831 **db_mean** 7.83923256462 5.2 Pooling layer - backward passNext, let's implement the backward pass for the pooling layer, starting with the MAX-POOL layer. Even though a pooling layer has no parameters for backprop to update, you still need to backpropagation the gradient through the pooling layer in order to compute gradients for layers that came before the pooling layer. 5.2.1 Max pooling - backward pass Before jumping into the backpropagation of the pooling layer, you are going to build a helper function called `create_mask_from_window()` which does the following: $$ X = \begin{bmatrix}1 && 3 \\4 && 2\end{bmatrix} \quad \rightarrow \quad M =\begin{bmatrix}0 && 0 \\1 && 0\end{bmatrix}\tag{4}$$As you can see, this function creates a "mask" matrix which keeps track of where the maximum of the matrix is. True (1) indicates the position of the maximum in X, the other entries are False (0). You'll see later that the backward pass for average pooling will be similar to this but using a different mask. **Exercise**: Implement `create_mask_from_window()`. This function will be helpful for pooling backward. Hints:- [np.max()]() may be helpful. It computes the maximum of an array.- If you have a matrix X and a scalar x: `A = (X == x)` will return a matrix A of the same size as X such that:```A[i,j] = True if X[i,j] = xA[i,j] = False if X[i,j] != x```- Here, you don't need to consider cases where there are several maxima in a matrix. ###Code def create_mask_from_window(x): """ Creates a mask from an input matrix x, to identify the max entry of x. Arguments: x -- Array of shape (f, f) Returns: mask -- Array of the same shape as window, contains a True at the position corresponding to the max entry of x. """ ### START CODE HERE ### (≈1 line) mask = x >= np.max(x) ### END CODE HERE ### return mask np.random.seed(1) x = np.random.randn(2,3) mask = create_mask_from_window(x) print('x = ', x) print("mask = ", mask) ###Output x = [[ 1.62434536 -0.61175641 -0.52817175] [-1.07296862 0.86540763 -2.3015387 ]] mask = [[ True False False] [False False False]] ###Markdown **Expected Output:** **x =**[[ 1.62434536 -0.61175641 -0.52817175] [-1.07296862 0.86540763 -2.3015387 ]] **mask =**[[ True False False] [False False False]] Why do we keep track of the position of the max? It's because this is the input value that ultimately influenced the output, and therefore the cost. Backprop is computing gradients with respect to the cost, so anything that influences the ultimate cost should have a non-zero gradient. So, backprop will "propagate" the gradient back to this particular input value that had influenced the cost. 5.2.2 - Average pooling - backward pass In max pooling, for each input window, all the "influence" on the output came from a single input value--the max. In average pooling, every element of the input window has equal influence on the output. So to implement backprop, you will now implement a helper function that reflects this.For example if we did average pooling in the forward pass using a 2x2 filter, then the mask you'll use for the backward pass will look like: $$ dZ = 1 \quad \rightarrow \quad dZ =\begin{bmatrix}1/4 && 1/4 \\1/4 && 1/4\end{bmatrix}\tag{5}$$This implies that each position in the $dZ$ matrix contributes equally to output because in the forward pass, we took an average. **Exercise**: Implement the function below to equally distribute a value dz through a matrix of dimension shape. [Hint](https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.ones.html) ###Code def distribute_value(dz, shape): """ Distributes the input value in the matrix of dimension shape Arguments: dz -- input scalar shape -- the shape (n_H, n_W) of the output matrix for which we want to distribute the value of dz Returns: a -- Array of size (n_H, n_W) for which we distributed the value of dz """ ### START CODE HERE ### # Retrieve dimensions from shape (≈1 line) (n_H, n_W) = shape[0], shape[1] # Compute the value to distribute on the matrix (≈1 line) average = dz / (n_H * n_W) # Create a matrix where every entry is the "average" value (≈1 line) a = average * np.ones((n_H, n_W)) ### END CODE HERE ### return a a = distribute_value(2, (2,2)) print('distributed value =', a) ###Output distributed value = [[ 0.5 0.5] [ 0.5 0.5]] ###Markdown **Expected Output**: distributed_value =[[ 0.5 0.5] [ 0.5 0.5]] 5.2.3 Putting it together: Pooling backward You now have everything you need to compute backward propagation on a pooling layer.**Exercise**: Implement the `pool_backward` function in both modes (`"max"` and `"average"`). You will once again use 4 for-loops (iterating over training examples, height, width, and channels). You should use an `if/elif` statement to see if the mode is equal to `'max'` or `'average'`. If it is equal to 'average' you should use the `distribute_value()` function you implemented above to create a matrix of the same shape as `a_slice`. Otherwise, the mode is equal to '`max`', and you will create a mask with `create_mask_from_window()` and multiply it by the corresponding value of dZ. ###Code def pool_backward(dA, cache, mode = "max"): """ Implements the backward pass of the pooling layer Arguments: dA -- gradient of cost with respect to the output of the pooling layer, same shape as A cache -- cache output from the forward pass of the pooling layer, contains the layer's input and hparameters mode -- the pooling mode you would like to use, defined as a string ("max" or "average") Returns: dA_prev -- gradient of cost with respect to the input of the pooling layer, same shape as A_prev """ ### START CODE HERE ### # Retrieve information from cache (≈1 line) (A_prev, hparameters) = cache[0], cache[1] # Retrieve hyperparameters from "hparameters" (≈2 lines) stride = hparameters['stride'] f = hparameters['f'] # Retrieve dimensions from A_prev's shape and dA's shape (≈2 lines) m, n_H_prev, n_W_prev, n_C_prev = A_prev.shape m, n_H, n_W, n_C = dA.shape # Initialize dA_prev with zeros (≈1 line) dA_prev = np.zeros((m, n_H_prev, n_W_prev, n_C_prev)) for i in range(m): # loop over the training examples # select training example from A_prev (≈1 line) a_prev = A_prev[i] for h in range(n_H): # loop on the vertical axis for w in range(n_W): # loop on the horizontal axis for c in range(n_C): # loop over the channels (depth) # Find the corners of the current "slice" (≈4 lines) vert_start = h * stride vert_end = vert_start + f horiz_start = w * stride horiz_end = horiz_start + f # Compute the backward propagation in both modes. if mode == "max": # Use the corners and "c" to define the current slice from a_prev (≈1 line) a_prev_slice = a_prev[vert_start: vert_end, horiz_start: horiz_end, c] # Create the mask from a_prev_slice (≈1 line) mask = a_prev_slice >= np.max(a_prev_slice) # Set dA_prev to be dA_prev + (the mask multiplied by the correct entry of dA) (≈1 line) dA_prev[i, vert_start: vert_end, horiz_start: horiz_end, c] += dA[i, h, w, c] * mask elif mode == "average": # Get the value a from dA (≈1 line) da = dA[i, h, w, c] # Define the shape of the filter as fxf (≈1 line) shape = (f, f) # Distribute it to get the correct slice of dA_prev. i.e. Add the distributed value of da. (≈1 line) dA_prev[i, vert_start: vert_end, horiz_start: horiz_end, c] += distribute_value(da, shape) ### END CODE ### # Making sure your output shape is correct assert(dA_prev.shape == A_prev.shape) return dA_prev np.random.seed(1) A_prev = np.random.randn(5, 5, 3, 2) hparameters = {"stride" : 1, "f": 2} A, cache = pool_forward(A_prev, hparameters) dA = np.random.randn(5, 4, 2, 2) dA_prev = pool_backward(dA, cache, mode = "max") print("mode = max") print('mean of dA = ', np.mean(dA)) print('dA_prev[1,1] = ', dA_prev[1,1]) print() dA_prev = pool_backward(dA, cache, mode = "average") print("mode = average") print('mean of dA = ', np.mean(dA)) print('dA_prev[1,1] = ', dA_prev[1,1]) ###Output mode = max mean of dA = 0.145713902729 dA_prev[1,1] = [[ 0. 0. ] [ 5.05844394 -1.68282702] [ 0. 0. ]] mode = average mean of dA = 0.145713902729 dA_prev[1,1] = [[ 0.08485462 0.2787552 ] [ 1.26461098 -0.25749373] [ 1.17975636 -0.53624893]]
circuits/plots/exp_004_complexity_analysis.ipynb
###Markdown Data Paths ###Code # AES aes_dir = '../aes' aes_log_file = aes_dir + '/aes.-1.ac.log' aes_dot_log_file = aes_dir + '/aes.dot.log' aes_vcd_log_file = aes_dir + '/aes.vcd.log' aes_fanin_json = aes_dir + '/aes.fanin.json' aes_reg2reg_json = aes_dir + '/aes.reg2reg.json' # UART uart_dir = '../uart' uart_log_file = uart_dir + '/uart.-1.ac.log' uart_dot_log_file = uart_dir + '/uart.dot.log' uart_vcd_log_file = uart_dir + '/uart.vcd.log' uart_fanin_json = uart_dir + '/uart.fanin.json' uart_reg2reg_json = uart_dir + '/uart.reg2reg.json' # OR1200 or1200_dir = '../or1200' or1200_log_file = or1200_dir + '/or1200.-1.ac.log' or1200_dot_log_file = or1200_dir + '/or1200.dot.log' or1200_vcd_log_file = or1200_dir + '/or1200.vcd.log' or1200_fanin_json = or1200_dir + '/or1200.fanin.json' or1200_reg2reg_json = or1200_dir + '/or1200.reg2reg.json' # PICORV32 picorv32_dir = '../picorv32' picorv32_log_file = picorv32_dir + '/testbench.-1.ac.log' picorv32_dot_log_file = picorv32_dir + '/testbench.dot.log' picorv32_vcd_log_file = picorv32_dir + '/testbench.vcd.log' picorv32_fanin_json = picorv32_dir + '/testbench.fanin.json' picorv32_reg2reg_json = picorv32_dir + '/testbench.reg2reg.json' # # CORTEX-M0 # cortex_m0_dir = '../arm_cortex_m0/output.bk' # cortex_m0_log_file = cortex_m0_dir + '/cortexm0ds_logic.-1.ac.log' # # cortex_m0_dot_log_file = cortex_m0_dir + '/cortexm0ds_logic.dot.log' # # cortex_m0_vcd_log_file = cortex_m0_dir + '/cortexm0ds_logic.vcd.log' # cortex_m0_fanin_json = cortex_m0_dir + '/cortexm0ds_logic.fanin.json' # cortex_m0_reg2reg_json = cortex_m0_dir + '/cortexm0ds_logic.reg2reg.json' ###Output _____no_output_____ ###Markdown Load Overall Fan-in/Reg2Reg Data ###Code DESIGN_STR = 'Design' TYPE_STR = 'Type' FANIN_STR = 'Fan-in' REG2REG_STR = 'Reg2Reg Distance' fanin_data_dict = { DESIGN_STR: [], TYPE_STR: [], FANIN_STR: [] } reg2reg_data_dict = { DESIGN_STR: [], TYPE_STR: [], REG2REG_STR: [] } def load_stats(design, log_file): avg_fanin = -1 max_fanin = -1 avg_reg2reg_path = -1 max_reg2reg_path = -1 with open(log_file, "r") as f: for line in f: if "Average Fan-in" in line: avg_fanin = float(line.split('=')[-1].lstrip().rstrip()) if "Max Fan-in" in line: max_fanin = int(line.split('=')[-1].lstrip().rstrip()) if "Average Reg2Reg" in line: avg_reg2reg_path = float(line.split('=')[-1].lstrip().rstrip()) if "Max Reg2Reg" in line: max_reg2reg_path = int(line.split('=')[-1].lstrip().rstrip()) f.close() fanin_data_dict[DESIGN_STR].append(design) fanin_data_dict[DESIGN_STR].append(design) fanin_data_dict[TYPE_STR].append('Avg') fanin_data_dict[TYPE_STR].append('Max') fanin_data_dict[FANIN_STR].append(avg_fanin) fanin_data_dict[FANIN_STR].append(max_fanin) reg2reg_data_dict[DESIGN_STR].append(design) reg2reg_data_dict[DESIGN_STR].append(design) reg2reg_data_dict[TYPE_STR].append('Avg') reg2reg_data_dict[TYPE_STR].append('Max') reg2reg_data_dict[REG2REG_STR].append(avg_reg2reg_path) reg2reg_data_dict[REG2REG_STR].append(max_reg2reg_path) load_stats('AES', aes_log_file) load_stats('UART', uart_log_file) load_stats('OR1200', or1200_log_file) load_stats('RISC-V', picorv32_log_file) # load_stats('ARM CORTEX-M0', cortex_m0_log_file) fanin_df = pd.DataFrame(fanin_data_dict) reg2reg_df = pd.DataFrame(reg2reg_data_dict) reg2reg_df ###Output _____no_output_____ ###Markdown Load Local Fan-in/Reg2Reg Data ###Code local_fanin_dict = { FANIN_STR: [], DESIGN_STR: [] } local_reg2reg_dict = { REG2REG_STR: [], DESIGN_STR: [] } # AES with open(aes_fanin_json, "r") as jf: aes_fanin_dict = json.load(jf) local_fanin_dict[FANIN_STR].extend(aes_fanin_dict['Fan-in']) local_fanin_dict[DESIGN_STR].extend(['AES'] * len(aes_fanin_dict['Fan-in'])) jf.close() with open(aes_reg2reg_json, "r") as jf: aes_reg2reg_dict = json.load(jf) local_reg2reg_dict[REG2REG_STR].extend(aes_reg2reg_dict['Reg2Reg Path Length']) local_reg2reg_dict[DESIGN_STR].extend(['AES'] * len(aes_reg2reg_dict['Reg2Reg Path Length'])) jf.close() # UART with open(uart_fanin_json, "r") as jf: uart_fanin_dict = json.load(jf) local_fanin_dict[FANIN_STR].extend(uart_fanin_dict['Fan-in']) local_fanin_dict[DESIGN_STR].extend(['UART'] * len(uart_fanin_dict['Fan-in'])) jf.close() with open(uart_reg2reg_json, "r") as jf: uart_reg2reg_dict = json.load(jf) local_reg2reg_dict[REG2REG_STR].extend(uart_reg2reg_dict['Reg2Reg Path Length']) local_reg2reg_dict[DESIGN_STR].extend(['UART'] * len(uart_reg2reg_dict['Reg2Reg Path Length'])) jf.close() # OR1200 with open(or1200_fanin_json, "r") as jf: or1200_fanin_dict = json.load(jf) local_fanin_dict[FANIN_STR].extend(or1200_fanin_dict['Fan-in']) local_fanin_dict[DESIGN_STR].extend(['OR1200'] * len(or1200_fanin_dict['Fan-in'])) jf.close() with open(or1200_reg2reg_json, "r") as jf: or1200_reg2reg_dict = json.load(jf) local_reg2reg_dict[REG2REG_STR].extend(or1200_reg2reg_dict['Reg2Reg Path Length']) local_reg2reg_dict[DESIGN_STR].extend(['OR1200'] * len(or1200_reg2reg_dict['Reg2Reg Path Length'])) jf.close() # RISC-V with open(picorv32_fanin_json, "r") as jf: picorv32_fanin_dict = json.load(jf) local_fanin_dict[FANIN_STR].extend(picorv32_fanin_dict['Fan-in']) local_fanin_dict[DESIGN_STR].extend(['RISC-V'] * len(picorv32_fanin_dict['Fan-in'])) jf.close() with open(picorv32_reg2reg_json, "r") as jf: picorv32_reg2reg_dict = json.load(jf) local_reg2reg_dict[REG2REG_STR].extend(picorv32_reg2reg_dict['Reg2Reg Path Length']) local_reg2reg_dict[DESIGN_STR].extend(['RISC-V'] * len(picorv32_reg2reg_dict['Reg2Reg Path Length'])) jf.close() # # ARM CORTEX M0 # with open(cortex_m0_fanin_json, "r") as jf: # cortex_m0_fanin_dict = json.load(jf) # local_fanin_dict[FANIN_STR].extend(cortex_m0_fanin_dict['Fan-in']) # local_fanin_dict[DESIGN_STR].extend(['ARM CORTEX-M0'] * len(cortex_m0_fanin_dict['Fan-in'])) # jf.close() # with open(cortex_m0_reg2reg_json, "r") as jf: # cortex_m0_reg2reg_dict = json.load(jf) # local_reg2reg_dict[REG2REG_STR].extend(cortex_m0_reg2reg_dict['Reg2Reg Path Length']) # local_reg2reg_dict[DESIGN_STR].extend(['ARM CORTEX-M0'] * len(cortex_m0_reg2reg_dict['Reg2Reg Path Length'])) # jf.close() local_fanin_df = pd.DataFrame(local_fanin_dict) local_reg2reg_df = pd.DataFrame(local_reg2reg_dict) # Remove Outliers local_fanin_df[FANIN_STR] = np.where(local_fanin_df[FANIN_STR] > 50, 50, local_fanin_df[FANIN_STR]) ###Output _____no_output_____ ###Markdown Load Run-time Data ###Code SIM_RUNTIME_STR = 'Simulation Runtime (s)' SSCCLASS_RUNTIME_STR = 'SSC Classification (s)' SSCENUM_RUNTIME_STR = 'SSC Enumeration (s)' DFGGEN_RUNTIME_STR = 'DFG Generation (s)' TOTAL_RUNTIME_STR = 'Bomberman Runtime (s)' SIZE_STR = 'Num. Regs' runtime_data_dict = { DESIGN_STR: [], DFGGEN_RUNTIME_STR: [], SIM_RUNTIME_STR: [], SSCENUM_RUNTIME_STR: [], SSCCLASS_RUNTIME_STR: [], TOTAL_RUNTIME_STR: [], SIZE_STR: [] } def convert_time_str_2_seconds(t_str): (seconds, frac_seconds) = t_str.split('.') x = time.strptime(seconds.split('.')[0], '%H:%M:%S') x = datetime.timedelta(hours=x.tm_hour,minutes=x.tm_min,seconds=x.tm_sec).total_seconds() x += (float(frac_seconds) / 100.0) return x def load_runtimes(design, log_file, dot_log_file, vcd_log_file): runtime_data_dict[DESIGN_STR].append(design) # IVL Stats with open(vcd_log_file, "r") as f: for line in f: if "real" in line: (seconds, frac_seconds) = line.split()[-1].rstrip().split('.') frac_seconds = float(frac_seconds.rstrip('s')) / 1000.0 t = time.strptime(seconds, '%Mm%S') t = datetime.timedelta(hours=t.tm_hour,minutes=t.tm_min,seconds=t.tm_sec).total_seconds() sim_runtime = t + frac_seconds runtime_data_dict[SIM_RUNTIME_STR].append(sim_runtime) f.close() # DFG Stats with open(dot_log_file, "r") as f: for line in f: if "real" in line: (seconds, frac_seconds) = line.split()[-1].rstrip().split('.') frac_seconds = float(frac_seconds.rstrip('s')) / 1000.0 t = time.strptime(seconds, '%Mm%S') t = datetime.timedelta(hours=t.tm_hour,minutes=t.tm_min,seconds=t.tm_sec).total_seconds() dfg_runtime = t + frac_seconds runtime_data_dict[DFGGEN_RUNTIME_STR].append(dfg_runtime) f.close() # Python Script Stats with open(log_file, "r") as f: for line in f: if "Num. Total FFs/Inputs:" in line: num_regs = int(line.split()[-1].rstrip()) runtime_data_dict[SIZE_STR].append(num_regs) if "Identifying Coalesced Counter Candidates..." in line: for _ in range(5): line = f.readline() ct_enum = convert_time_str_2_seconds(line.split()[-1].rstrip()) for _ in range(7): line = f.readline() dt_enum = convert_time_str_2_seconds(line.split()[-1].rstrip()) total_enum = ct_enum + dt_enum runtime_data_dict[SSCENUM_RUNTIME_STR].append(total_enum) if "Finding malicious coalesced signals..." in line: while "Execution Time:" not in line: line = f.readline() ct_class = convert_time_str_2_seconds(line.split()[-1].rstrip()) while "Execution Time:" not in line: line = f.readline() dt_class = convert_time_str_2_seconds(line.split()[-1].rstrip()) total_class = ct_class + dt_class runtime_data_dict[SSCCLASS_RUNTIME_STR].append(total_class) # if "Analysis complete." in line: # line = f.readline() # line = f.readline() # t = convert_time_str_2_seconds(line.split()[-1].rstrip()) # break f.close() total_bm_runtime = dfg_runtime + total_enum + total_class runtime_data_dict[TOTAL_RUNTIME_STR].append(total_bm_runtime) dfg_runtime_percentage = (float(dfg_runtime) / float(total_bm_runtime)) * 100.0 total_enum_percentage = (float(total_enum) / float(total_bm_runtime)) * 100.0 total_class_percentage = (float(total_class) / float(total_bm_runtime)) * 100.0 percentages = [dfg_runtime_percentage, total_enum_percentage, total_class_percentage] return percentages aes_runtime_percentages = load_runtimes('AES', aes_log_file, aes_dot_log_file, aes_vcd_log_file) uart_runtime_percentages = load_runtimes('UART', uart_log_file, uart_dot_log_file, uart_vcd_log_file) or1200_runtime_percentages = load_runtimes('OR1200', or1200_log_file, or1200_dot_log_file, or1200_vcd_log_file) picorv32_runtime_percentages = load_runtimes('RISC-V', picorv32_log_file, picorv32_dot_log_file, picorv32_vcd_log_file) runtime_df = pd.DataFrame(runtime_data_dict) print(runtime_df) ###Output Design DFG Generation (s) Simulation Runtime (s) SSC Enumeration (s) \ 0 AES 5.017 3.658 0.24 1 UART 0.412 3.972 0.60 2 OR1200 14.290 27.602 7.00 3 RISC-V 0.360 5.572 9.28 SSC Classification (s) Bomberman Runtime (s) Num. Regs 0 0.20 5.457 2440 1 3.90 4.912 340 2 1.28 22.570 814 3 1.20 10.840 317 ###Markdown Plot Settings ###Code # Set Color Scheme sns.set() ###Output _____no_output_____ ###Markdown Plot Runtime Breakdown ###Code fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(8, 8)) plt.rcParams['font.sans-serif'] = 'Arial' plt.rcParams['font.family'] = 'sans-serif' plt.rcParams['text.color'] = '#000000' plt.rcParams['axes.labelcolor'] = '#000000' plt.rcParams['xtick.color'] = '#909090' plt.rcParams['ytick.color'] = '#909090' plt.rcParams['font.size'] = 12 color_palette_list = sns.color_palette() # color_palette_list = ['#009ACD', '#ADD8E6', '#63D1F4', '#0EBFE9', '#C1F0F6', '#0099CC'] labels = ['DFG Generation', 'SSC Enumeration', 'SSC Classification'] explode = (0, 0, 0) PERCENTAGE_DIST = 1.15 # AES ax1.pie(aes_runtime_percentages, explode=explode, colors=color_palette_list[0:3], autopct='%1.0f%%', shadow=False, startangle=0, pctdistance=PERCENTAGE_DIST) ax1.axis('equal') ax1.set_title("AES") # UART ax2.pie(uart_runtime_percentages, explode=explode, colors=color_palette_list[0:3], autopct='%1.0f%%', shadow=False, startangle=0, pctdistance=PERCENTAGE_DIST) ax2.axis('equal') ax2.set_title("UART") # OR1200 ax3.pie(or1200_runtime_percentages, explode=explode, colors=color_palette_list[0:3], autopct='%1.0f%%', shadow=False, startangle=0, pctdistance=PERCENTAGE_DIST) ax3.axis('equal') ax3.set_title("OR1200") # RISC-V ax4.pie(picorv32_runtime_percentages, explode=explode, colors=color_palette_list[0:3], autopct='%1.0f%%', shadow=False, startangle=0, pctdistance=PERCENTAGE_DIST) ax4.axis('equal') ax4.set_title("RISC-V") ax4.legend(frameon=False, labels=labels, bbox_to_anchor=(0.3,1.25)) plt.savefig('bomberman_runtime_breakdown.pdf', format='pdf') ###Output _____no_output_____ ###Markdown Plot Fan-in & Reg2Reg Path ###Code sns.set() fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(12, 8)) sns.boxenplot(x=DESIGN_STR, y=FANIN_STR, data=local_fanin_df, linewidth=2.5, ax=ax1) ax1.set_ylim([0,50]) sns.boxenplot(x=DESIGN_STR, y=REG2REG_STR, data=local_reg2reg_df, linewidth=2.5, ax=ax2) ax2.set_ylim([0,8]) sns.barplot(x=DESIGN_STR, y=SIM_RUNTIME_STR, data=runtime_df, ax=ax3) ax3.set_ylim([0,30]) sns.barplot(x=DESIGN_STR, y=TOTAL_RUNTIME_STR, data=runtime_df, ax=ax4) ax4.set_ylim([0,30]) plt.tight_layout() plt.savefig('bomberman_complexity_analysis.pdf', format='pdf') sns.set() fig, ax_r2r = plt.subplots(1, 1, figsize=(6, 3)) # sns.boxenplot(x=DESIGN_STR, y=REG2REG_STR, data=local_reg2reg_df, linewidth=2.5, ax=ax_r2r) # sns.swarmplot(x=DESIGN_STR, y=REG2REG_STR, data=local_reg2reg_df, ax=ax_r2r) sns.boxenplot(x=REG2REG_STR, y=DESIGN_STR, data=local_reg2reg_df, linewidth=2.5, ax=ax_r2r) # sns.swarmplot(x=REG2REG_STR, y=DESIGN_STR, data=local_reg2reg_df, ax=ax_r2r) ax_r2r.set_xlim([0,50]) ax_r2r.set_xlabel('Pipeline Logic Depth') ax_r2r.set_ylabel('Design') plt.tight_layout() ax_r2r.text(23, 0.1, 'Bomberman RT: 5.457s', style='italic', bbox={'facecolor': 'white', 'alpha': 1.0, 'pad': 2}) ax_r2r.text(23, 1.1, 'Bomberman RT: 4.912s', style='italic', bbox={'facecolor': 'white', 'alpha': 1.0, 'pad': 2}) ax_r2r.text(23, 2.1, 'Bomberman RT: 22.570s', style='italic', bbox={'facecolor': 'white', 'alpha': 1.0, 'pad': 2}) ax_r2r.text(23, 3.1, 'Bomberman RT: 10.840s', style='italic', bbox={'facecolor': 'white', 'alpha': 1.0, 'pad': 2}) ax_r2r.text(23, 4.1, 'Bomberman RT: 643.568s', style='italic', bbox={'facecolor': 'white', 'alpha': 1.0, 'pad': 2}) plt.savefig('bomberman_reg2reg_analysis_warm_rts.pdf', format='pdf') sns.set() fig, ax_runtime = plt.subplots(1, 1, figsize=(6, 4)) sns.barplot(x=DESIGN_STR, y=TOTAL_RUNTIME_STR, data=runtime_df, ax=ax_runtime) ax_r2r.set_ylim([0,30]) # ax_r2r.set_ylabel('Pipeline Logic Depth\n(# stages)') # ax_r2r.set_xlabel('Design\n(Max. Clock Frequency)') plt.tight_layout() plt.savefig('bomberman_runtimes.pdf', format='pdf') print runtime_df ###Output Bomberman Runtime (s) DFG Generation (s) Design Num. Regs \ 0 5.457 5.017 AES 2440 1 4.912 0.412 UART 340 2 22.570 14.290 OR1200 814 3 10.840 0.360 RISC-V 317 SSC Classification (s) SSC Enumeration (s) Simulation Runtime (s) 0 0.20 0.24 3.658 1 3.90 0.60 3.972 2 1.28 7.00 27.602 3 1.20 9.28 5.572
Muro_FinalsNumMeth.ipynb
###Markdown ###Code import math def f(x): return(math.exp(x)) a = -1 b = 1 n = 10 h = (b-a)/n S = h* (f(a)+f(b)) for i in range(1,n): S+=f(a+i*h) Integral = S*h print('Integral = %0.4f' %Integral) ###Output Integral = 2.1731
Assignment_10_Pascual_Dulay.ipynb
###Markdown Laboratory 10 : Linear Combination and Vector Spaces ObjectivesAt the end of this activity you will be able to:* Be familiar with representing linear combinations in the 2-dimensional plane.* Visualize spans using vector fields in Python.* Perform vector fields operations using scientific programming. Discussion ###Code import numpy as np import matplotlib.pyplot as plt %matplotlib inline ###Output _____no_output_____ ###Markdown Linear CombinationIn linear algebra, a linear combination is an arrangement created by multiplying each term by a variable and then summing up the outcomes. Let's first try the vectors below:$$R = \begin{bmatrix} 6\\-1 \\\end{bmatrix} , M = \begin{bmatrix} 4\\3 \\\end{bmatrix} $$ ###Code vectR = np.array([6,-1]) vectM = np.array([4,3]) ###Output _____no_output_____ ###Markdown Span of single vectorsIt's the collection of all numerical vector state variables. One vector with a scalar is always on the similar plane, no matter how much it expands or reduces, because the orientation or slope does not change. Let's take vector X as an example. $$X = c\cdot \begin{bmatrix} 6\\-1 \\\end{bmatrix} $$ ###Code c = np.arange(-5,20,0.5) plt.scatter(c*vectR[0],c*vectR[1]) plt.xlim(-20,20) plt.ylim(-20,20) plt.axhline(y=0, color='red') plt.axvline(x=0, color='red') plt.grid() plt.show() c = np.arange(-40,40,1.5) plt.scatter(c*vectM[0],c*vectM[1]) plt.xlim(-50,50) plt.ylim(-50,50) plt.axhline(y=0, color='green') plt.axvline(x=0, color='green') plt.grid() plt.show() ###Output _____no_output_____ ###Markdown Span of a linear combination of vectorsThe range of all linear combinations of v, termed the multiples, is the span of linear combination. Each location on the diagonal line is a viable linear combination of v. The span seems to be an endless line that travels through v. Let's take the span of the linear combination below: $$S = \begin{Bmatrix} c_1 \cdot\begin{bmatrix} -4\\1 \\\end{bmatrix}, c_2 \cdot \begin{bmatrix} 3\\7 \\\end{bmatrix}\end{Bmatrix} $$ ###Code vectA = np.array([-4,1]) vectB = np.array([3,7]) R = np.arange(-20,20,2.5) c1, c2 = np.meshgrid(R,R) vectR = vectA + vectB spanRx = c1*vectA[0] + c2*vectB[0] spanRy = c1*vectA[1] + c2*vectB[1] ##plt.scatter(R*vectA[0],R*vectA[1]) ##plt.scatter(R*vectB[0],R*vectB[1]) plt.scatter(spanRx,spanRy, s=5, alpha=0.75) plt.axhline(y=0, color='blue') plt.axvline(x=0, color='blue') plt.grid() plt.show() vectP = np.array([7,-12]) vectQ = np.array([-4,11]) R = np.arange(-50,50,5) c1, c2 = np.meshgrid(R,R) vectR = vectP + vectQ spanRx = c1*vectP[0] + c2*vectQ[0] spanRy = c1*vectP[1] + c2*vectQ[1] ##plt.scatter(R*vectA[0],R*vectA[1]) ##plt.scatter(R*vectB[0],R*vectB[1]) plt.scatter(spanRx,spanRy, s=5, alpha=0.75) plt.axhline(y=0, color='orange') plt.axvline(x=0, color='orange') plt.grid() plt.show() ###Output _____no_output_____ ###Markdown ActivityTry different linear combinations using different scalar values. In your methodology discuss the different functions that you have used, the linear equation and vector form of the linear combination, and the flowchart for declaring and displaying linear combinations. Please make sure that your flowchart has only few words and not putting the entire code as it is bad practice. In your results, display and discuss the linear combination visualization you made. You should use the cells below for displaying the equation markdows using LaTeX and your code. ###Code vectR = np.array([10,-5]) vectM = np.array([20,40]) ###Output _____no_output_____ ###Markdown $$R = 6x - 12y$$$$M = -10 + 40y$$ $$R = \begin{bmatrix} 6\\-1 \\\end{bmatrix} ,\ M = \begin{bmatrix} 4\\3 \\\end{bmatrix} $$$$X_{R} = c\cdot \begin{bmatrix} 6\\-12 \\\end{bmatrix} $$ $$X_{M} = c\cdot \begin{bmatrix} -10\\40 \\\end{bmatrix} $$ ###Code c = np.arange(-10,10,0.5) plt.scatter(c*vectR[0],c*vectR[1]) plt.xlim(-20,20) plt.ylim(-20,20) plt.axhline(y=0, color='green') plt.axvline(x=0, color='red') plt.grid() plt.show() c = np.arange(0,20,1) plt.scatter(c*vectM[0],c*vectM[1]) plt.xlim(-50,50) plt.ylim(-50,50) plt.axhline(y=0, color='green') plt.axvline(x=0, color='red') plt.grid() plt.show() ###Output _____no_output_____ ###Markdown $$D = -8x + 2y$$$$P = 6x + 14y$$ $$S = \begin{Bmatrix} c_1 \cdot\begin{bmatrix} -8\\2 \\\end{bmatrix}, c_2 \cdot \begin{bmatrix} 6\\14 \\\end{bmatrix}\end{Bmatrix} $$ ###Code vectD = np.array([-8,2]) vectP = np.array([6,14]) R = np.arange(-20,20,1.5) c1, c2 = np.meshgrid(R,R) vectR = vectD + vectP spanRx = c1*vectD[0] + c2*vectP[0] spanRy = c1*vectD[1] + c2*vectP[1] plt.scatter(spanRx,spanRy, s=5, alpha=0.75) plt.axhline(y=0, color='pink') plt.axvline(x=0, color='pink') plt.grid() ###Output _____no_output_____ ###Markdown $$P = 2x + 12y$$$$Q = 4x + 16y$$ $$S = \begin{Bmatrix} c_1 \cdot\begin{bmatrix} 2\\12 \\\end{bmatrix}, c_2 \cdot \begin{bmatrix} 4\\16 \\\end{bmatrix}\end{Bmatrix} $$ ###Code vectP = np.array([2,12]) vectQ = np.array([4,16]) R = np.arange(-50,50,2.5) c1, c2 = np.meshgrid(R,R) vectR = vectP + vectQ spanRx = c1*vectP[0] + c2*vectQ[0] spanRy = c1*vectP[1] + c2*vectQ[1] plt.scatter(spanRx,spanRy, s=5, alpha=0.75) plt.axhline(y=0, color='brown') plt.axvline(x=0, color='orange') plt.grid() plt.show() ###Output _____no_output_____ ###Markdown Laboratory 10 : Linear Combination and Vector Spaces ObjectivesAt the end of this activity you will be able to:* Be familiar with representing linear combinations in the 2-dimensional plane.* Visualize spans using vector fields in Python.* Perform vector fields operations using scientific programming. Discussion ###Code import numpy as np import matplotlib.pyplot as plt %matplotlib inline ###Output _____no_output_____ ###Markdown Linear CombinationIn linear algebra, a linear combination is an arrangement created by multiplying each term by a variable and then summing up the outcomes. Let's first try the vectors below:$$R = \begin{bmatrix} 6\\-1 \\\end{bmatrix} , M = \begin{bmatrix} 4\\3 \\\end{bmatrix} $$ ###Code vectR = np.array([6,-1]) vectM = np.array([4,3]) ###Output _____no_output_____ ###Markdown Span of single vectorsIt's the collection of all numerical vector state variables. One vector with a scalar is always on the similar plane, no matter how much it expands or reduces, because the orientation or slope does not change. Let's take vector X as an example. $$X = c\cdot \begin{bmatrix} 6\\-1 \\\end{bmatrix} $$ ###Code c = np.arange(-5,20,0.5) plt.scatter(c*vectR[0],c*vectR[1]) plt.xlim(-20,20) plt.ylim(-20,20) plt.axhline(y=0, color='red') plt.axvline(x=0, color='red') plt.grid() plt.show() c = np.arange(-40,40,1.5) plt.scatter(c*vectM[0],c*vectM[1]) plt.xlim(-50,50) plt.ylim(-50,50) plt.axhline(y=0, color='green') plt.axvline(x=0, color='green') plt.grid() plt.show() ###Output _____no_output_____ ###Markdown Span of a linear combination of vectorsThe range of all linear combinations of v, termed the multiples, is the span of linear combination. Each location on the diagonal line is a viable linear combination of v. The span seems to be an endless line that travels through v. Let's take the span of the linear combination below: $$S = \begin{Bmatrix} c_1 \cdot\begin{bmatrix} -4\\1 \\\end{bmatrix}, c_2 \cdot \begin{bmatrix} 3\\7 \\\end{bmatrix}\end{Bmatrix} $$ ###Code vectA = np.array([-4,1]) vectB = np.array([3,7]) R = np.arange(-20,20,2.5) c1, c2 = np.meshgrid(R,R) vectR = vectA + vectB spanRx = c1*vectA[0] + c2*vectB[0] spanRy = c1*vectA[1] + c2*vectB[1] ##plt.scatter(R*vectA[0],R*vectA[1]) ##plt.scatter(R*vectB[0],R*vectB[1]) plt.scatter(spanRx,spanRy, s=5, alpha=0.75) plt.axhline(y=0, color='blue') plt.axvline(x=0, color='blue') plt.grid() plt.show() vectP = np.array([7,-12]) vectQ = np.array([-4,11]) R = np.arange(-50,50,5) c1, c2 = np.meshgrid(R,R) vectR = vectP + vectQ spanRx = c1*vectP[0] + c2*vectQ[0] spanRy = c1*vectP[1] + c2*vectQ[1] ##plt.scatter(R*vectA[0],R*vectA[1]) ##plt.scatter(R*vectB[0],R*vectB[1]) plt.scatter(spanRx,spanRy, s=5, alpha=0.75) plt.axhline(y=0, color='orange') plt.axvline(x=0, color='orange') plt.grid() plt.show() ###Output _____no_output_____ ###Markdown ActivityTry different linear combinations using different scalar values. In your methodology discuss the different functions that you have used, the linear equation and vector form of the linear combination, and the flowchart for declaring and displaying linear combinations. Please make sure that your flowchart has only few words and not putting the entire code as it is bad practice. In your results, display and discuss the linear combination visualization you made. You should use the cells below for displaying the equation markdows using LaTeX and your code. ###Code vectR = np.array([10,-5]) vectM = np.array([20,40]) ###Output _____no_output_____ ###Markdown $$R = 6x - 12y$$$$M = -10 + 40y$$ $$R = \begin{bmatrix} 6\\-1 \\\end{bmatrix} ,\ M = \begin{bmatrix} 4\\3 \\\end{bmatrix} $$$$X_{R} = c\cdot \begin{bmatrix} 6\\-12 \\\end{bmatrix} $$ $$X_{M} = c\cdot \begin{bmatrix} -10\\40 \\\end{bmatrix} $$ ###Code c = np.arange(-10,10,0.5) plt.scatter(c*vectR[0],c*vectR[1]) plt.xlim(-20,20) plt.ylim(-20,20) plt.axhline(y=0, color='green') plt.axvline(x=0, color='red') plt.grid() plt.show() c = np.arange(0,20,1) plt.scatter(c*vectM[0],c*vectM[1]) plt.xlim(-50,50) plt.ylim(-50,50) plt.axhline(y=0, color='green') plt.axvline(x=0, color='red') plt.grid() plt.show() ###Output _____no_output_____ ###Markdown $$D = -8x + 2y$$$$P = 6x + 14y$$ $$S = \begin{Bmatrix} c_1 \cdot\begin{bmatrix} -8\\2 \\\end{bmatrix}, c_2 \cdot \begin{bmatrix} 6\\14 \\\end{bmatrix}\end{Bmatrix} $$ ###Code vectD = np.array([-8,2]) vectP = np.array([6,14]) R = np.arange(-20,20,1.5) c1, c2 = np.meshgrid(R,R) vectR = vectD + vectP spanRx = c1*vectD[0] + c2*vectP[0] spanRy = c1*vectD[1] + c2*vectP[1] plt.scatter(spanRx,spanRy, s=5, alpha=0.75) plt.axhline(y=0, color='pink') plt.axvline(x=0, color='pink') plt.grid() ###Output _____no_output_____ ###Markdown $$P = 2x + 12y$$$$Q = 4x + 16y$$ $$S = \begin{Bmatrix} c_1 \cdot\begin{bmatrix} 2\\12 \\\end{bmatrix}, c_2 \cdot \begin{bmatrix} 4\\16 \\\end{bmatrix}\end{Bmatrix} $$ ###Code vectP = np.array([2,12]) vectQ = np.array([4,16]) R = np.arange(-50,50,2.5) c1, c2 = np.meshgrid(R,R) vectR = vectP + vectQ spanRx = c1*vectP[0] + c2*vectQ[0] spanRy = c1*vectP[1] + c2*vectQ[1] plt.scatter(spanRx,spanRy, s=5, alpha=0.75) plt.axhline(y=0, color='brown') plt.axvline(x=0, color='orange') plt.grid() plt.show() ###Output _____no_output_____
features_final.ipynb
###Markdown Features considered in this notebook:Total number of features considered = 11- Mean- Standard Deviation- Kurtosis- Skewness- Shannon Entropy- Activity- Mobility- Complexity- Permutation Entropy- Sample Entropy- Approximate Entropy ###Code # Hyperparams window_length = 32 # %%time # class NeonatalSeizureFeatures: # def __init__(self, row): # self.row = row # def skewness(self): # row = np.array(self.row) # row = row[:-1] # row = np.reshape(row, (21, window_length)) # return (pd.Series(scipy.stats.skew(x, axis = 0, bias = False) for x in row)) # df_new = df.apply(lambda row: NeonatalSeizureFeatures(row).skewness(), axis = 1) # df_new ###Output Wall time: 5min 9s ###Markdown Helper Methods: ###Code def hMob(x): row = np.array(x) return (np.sqrt(np.var(np.gradient(x)) / np.var(x))) ###Output _____no_output_____ ###Markdown Feature Methods: ###Code # Feature Methods def feature_mean(row): row = np.array(row) row = row[:-1] row = np.reshape(row, (21, window_length)) return (pd.Series(np.mean(x, axis = 0) for x in row)) def feature_stddev(row): row = np.array(row) row = row[:-1] row = np.reshape(row, (21, window_length)) return (pd.Series(np.std(x, axis = 0) for x in row)) def kurtosis(row): row = np.array(row) annotation = row[-1] row = row[:-1] row = np.reshape(row, (21, window_length)) return (pd.Series(scipy.stats.kurtosis(x, axis = 0, bias = False) for x in row)) def skewness(row): row = np.array(row) row = row[:-1] row = np.reshape(row, (21, window_length)) return (pd.Series(scipy.stats.skew(x, axis = 0, bias = False) for x in row)) def spectral_entropy(row, sf = 32, nperseg = window_length, axis = 1): row = np.array(row) annotation = row[-1] row = row[:-1] row = np.reshape(row, (21, window_length)) _, psd = welch(row, sf, nperseg=nperseg, axis=axis) psd_norm = psd / psd.sum(axis=axis, keepdims=True) se = - np.where(psd_norm == 0, 0, psd_norm * np.log(psd_norm) / np.log(2)).sum(axis=axis) return pd.Series(se) def hjorthActivity(row): row = np.array(row) row = row[:-1] row = np.reshape(row, (21, window_length)) return (pd.Series(np.var(x, axis = 0) for x in row)) def hjorthMobility(row): row = np.array(row) row = row[:-1] row = np.reshape(row, (21, window_length)) return (pd.Series(np.sqrt(np.var(np.gradient(x)) / np.var(x)) for x in row)) def hjorthComplexity(row): row = np.array(row) row = row[:-1] row = np.reshape(row, (21, window_length)) return (pd.Series((hMob(np.gradient(x)) / hMob(x)) for x in row)) def permutation_entropy(row): row = np.array(row) row = row[:-1] row = np.reshape(row, (21, window_length)) return (pd.Series(entropy.perm_entropy(x) for x in row)) def sample_entropy(row): row = np.array(row) row = row[:-1] row = np.reshape(row, (21, window_length)) return (pd.Series(entropy.sample_entropy(x) for x in row)) def approximate_entropy(row): row = np.array(row) row = row[:-1] row = np.reshape(row, (21, window_length)) return (pd.Series(entropy.app_entropy(x) for x in row)) list_of_feature_methods = [feature_mean, feature_stddev, kurtosis, skewness, spectral_entropy, hjorthActivity, hjorthMobility, hjorthComplexity, permutation_entropy, sample_entropy, approximate_entropy] %%time df_list = list() for i, j in zip(list_of_feature_methods, range(len(list_of_feature_methods))): print("Epoch %d ..." % (j+1)) df_temp = df.apply(lambda row: i(row), axis = 1) df_list.append(df_temp) new_df = pd.concat(df_list, axis = 1) new_df feature_df = pd.concat([new_df, df[df.columns[-1]]], axis = 1) feature_df feature_df.to_csv('Full_feature_data1sec.csv', index = False) feature_df1.columns = [i for i in range(232)] feature_df1.columns np.isinf(feature_df1).values.any() feature_df1 = feature_df.replace([np.inf, -np.inf], np.nan) feature_df1.dropna(inplace = True) feature_df1.reset_index(drop = True, inplace = True) ###Output _____no_output_____ ###Markdown Principal Component Analysis (PCA): ###Code # Imports from sklearn.decomposition import PCA # Set hyperparams for PCA n_components = 20 random_state = 32 ###Output _____no_output_____ ###Markdown PCA 20 ###Code pca_20 = PCA(n_components = n_components, random_state = random_state) feature_df_20 = pca_20.fit_transform(feature_df1[feature_df1.columns[:-1]]) # feature_df_20 = pca_20.fit_transform(feature_df1[feature_df1[[-1]]]) pca_20_df = pd.DataFrame(data = feature_df_20) pca_20_df = pd.concat([pca_20_df, feature_df1[feature_df1.columns[-1]]], axis = 1) pca_20_df pca_20_df.to_csv('1sec/PCA_20_features.csv', index = False) ###Output _____no_output_____ ###Markdown PCA 50 ###Code n_components = 50 pca_50 = PCA(n_components = n_components, random_state = random_state) feature_df_50 = pca_50.fit_transform(feature_df1[feature_df1.columns[:-1]]) pca_50_df = pd.DataFrame(data = feature_df_50) pca_50_df = pd.concat([pca_50_df, feature_df1[feature_df1.columns[-1]]], axis = 1) pca_50_df pca_50_df.to_csv('1sec/PCA_50_features.csv', index = False) ###Output _____no_output_____ ###Markdown PCA 70 ###Code n_components = 70 pca_70 = PCA(n_components = n_components, random_state = random_state) feature_df_70 = pca_70.fit_transform(feature_df1[feature_df1.columns[:-1]]) pca_70_df = pd.DataFrame(data = feature_df_70) pca_70_df = pd.concat([pca_70_df, feature_df1[feature_df1.columns[-1]]], axis = 1) pca_70_df.to_csv('1sec/PCA_70_features.csv', index = False) ###Output _____no_output_____ ###Markdown PCA 100 ###Code n_components = 100 pca_100 = PCA(n_components = n_components, random_state = random_state) feature_df_100 = pca_100.fit_transform(feature_df1[feature_df1.columns[:-1]]) pca_100_df = pd.DataFrame(data = feature_df_100) pca_100_df = pd.concat([pca_100_df, feature_df1[feature_df1.columns[-1]]], axis = 1) pca_100_df.to_csv('1sec/PCA_100_features.csv', index = False) ###Output _____no_output_____
examples/YutaMouse41-ephys-viz.ipynb
###Markdown YutaMouse41-ephys-vizTo use this notebook you will need to install the ephys_viz package.Roughly speaking that involves installing ephys_viz from PyPI and installing the reactpoya_jup notebook and/or lab extensions.See: https://github.com/flatironinstitute/ephys-viz ###Code # Imports and initialization of ephys-viz in this notebook import pynwb from pynwb import NWBHDF5IO from nwbwidgets import nwb2widget import ephys_viz as ev from nwbwidgets.ephys_viz_interface import ephys_viz_neurodata_vis_spec as vis_spec ev.init_jupyter() # You need to have an .nwb file on your computer file_name = 'YutaMouse41-150903.nwb' # Lazy-load the nwb file nwb_io = NWBHDF5IO(file_name, mode='r') nwb = nwb_io.read() # Display the LFP using ephys-viz nwb2widget(nwb.fields['processing']['ecephys']['LFP'], vis_spec) # The ephys-viz widget is integrated into nwbwidgets nwb2widget(nwb, vis_spec) ###Output _____no_output_____
courses/machine_learning/deepdive2/image_classification/labs/2_mnist_models.ipynb
###Markdown MNIST Image Classification with TensorFlow on Cloud AI PlatformThis notebook demonstrates how to implement different image models on MNIST using the [tf.keras API](https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras). Learning Objectives1. Understand how to build a Dense Neural Network (DNN) for image classification2. Understand how to use dropout (DNN) for image classification3. Understand how to use Convolutional Neural Networks (CNN)4. Know how to deploy and use an image classification model using Google Cloud's [AI Platform](https://cloud.google.com/ai-platform/)Each learning objective will correspond to a __TODO__ in the notebook, where you will complete the notebook cell's code before running the cell. Refer to the [solution notebook](../solutions/2_mnist_models.ipynb))for reference.First things first. Configure the parameters below to match your own Google Cloud project details. ###Code !sudo chown -R jupyter:jupyter /home/jupyter/training-data-analyst # Here we'll show the currently installed version of TensorFlow import tensorflow as tf print(tf.__version__) from datetime import datetime import os PROJECT = "your-project-id-here" # REPLACE WITH YOUR PROJECT ID BUCKET = "your-bucket-id-here" # REPLACE WITH YOUR BUCKET NAME REGION = "us-central1" # REPLACE WITH YOUR BUCKET REGION e.g. us-central1 MODEL_TYPE = "cnn" # "linear", "cnn", "dnn_dropout", or "dnn" # Do not change these os.environ["PROJECT"] = PROJECT os.environ["BUCKET"] = BUCKET os.environ["REGION"] = REGION os.environ["MODEL_TYPE"] = MODEL_TYPE os.environ["TFVERSION"] = "2.6" # Tensorflow version os.environ["IMAGE_URI"] = os.path.join("gcr.io", PROJECT, "mnist_models") ###Output _____no_output_____ ###Markdown Building a dynamic modelIn the previous notebook, 1_mnist_linear.ipynb, we ran our code directly from the notebook. In order to run it on the AI Platform, it needs to be packaged as a python module.The boilerplate structure for this module has already been set up in the folder `mnist_models`. The module lives in the sub-folder, `trainer`, and is designated as a python package with the empty `__init__.py` (`mnist_models/trainer/__init__.py`) file. It still needs the model and a trainer to run it, so let's make them.Let's start with the trainer file first. This file parses command line arguments to feed into the model. ###Code %%writefile mnist_models/trainer/task.py import argparse import json import os import sys from . import model def _parse_arguments(argv): """Parses command-line arguments.""" parser = argparse.ArgumentParser() parser.add_argument( '--model_type', help='Which model type to use', type=str, default='linear') parser.add_argument( '--epochs', help='The number of epochs to train', type=int, default=10) parser.add_argument( '--steps_per_epoch', help='The number of steps per epoch to train', type=int, default=100) parser.add_argument( '--job-dir', help='Directory where to save the given model', type=str, default='mnist_models/') return parser.parse_known_args(argv) def main(): """Parses command line arguments and kicks off model training.""" args = _parse_arguments(sys.argv[1:])[0] # Configure path for hyperparameter tuning. trial_id = json.loads( os.environ.get('TF_CONFIG', '{}')).get('task', {}).get('trial', '') output_path = args.job_dir if not trial_id else args.job_dir + '/' model_layers = model.get_layers(args.model_type) image_model = model.build_model(model_layers, args.job_dir) model_history = model.train_and_evaluate( image_model, args.epochs, args.steps_per_epoch, args.job_dir) if __name__ == '__main__': main() ###Output _____no_output_____ ###Markdown Next, let's group non-model functions into a util file to keep the model file simple. We'll copy over the `scale` and `load_dataset` functions from the previous lab. ###Code %%writefile mnist_models/trainer/util.py import tensorflow as tf def scale(image, label): """Scales images from a 0-255 int range to a 0-1 float range""" image = tf.cast(image, tf.float32) image /= 255 image = tf.expand_dims(image, -1) return image, label def load_dataset( data, training=True, buffer_size=5000, batch_size=100, nclasses=10): """Loads MNIST dataset into a tf.data.Dataset""" (x_train, y_train), (x_test, y_test) = data x = x_train if training else x_test y = y_train if training else y_test # One-hot encode the classes y = tf.keras.utils.to_categorical(y, nclasses) dataset = tf.data.Dataset.from_tensor_slices((x, y)) dataset = dataset.map(scale).batch(batch_size) if training: dataset = dataset.shuffle(buffer_size).repeat() return dataset ###Output _____no_output_____ ###Markdown Finally, let's code the models! The [tf.keras API](https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras) accepts an array of [layers](https://www.tensorflow.org/api_docs/python/tf/keras/layers) into a [model object](https://www.tensorflow.org/api_docs/python/tf/keras/Model), so we can create a dictionary of layers based on the different model types we want to use. The below file has two functions: `get_layers` and `create_and_train_model`. We will build the structure of our model in `get_layers`. Last but not least, we'll copy over the training code from the previous lab into `train_and_evaluate`.**TODO 1**: Define the Keras layers for a DNN model **TODO 2**: Define the Keras layers for a dropout model **TODO 3**: Define the Keras layers for a CNN model Hint: These models progressively build on each other. Look at the imported `tensorflow.keras.layers` modules and the default values for the variables defined in `get_layers` for guidance. ###Code %%writefile mnist_models/trainer/model.py import os import shutil import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from tensorflow.keras import Sequential from tensorflow.keras.callbacks import TensorBoard from tensorflow.keras.layers import ( Conv2D, Dense, Dropout, Flatten, MaxPooling2D, Softmax) from . import util # Image Variables WIDTH = 28 HEIGHT = 28 def get_layers( model_type, nclasses=10, hidden_layer_1_neurons=400, hidden_layer_2_neurons=100, dropout_rate=0.25, num_filters_1=64, kernel_size_1=3, pooling_size_1=2, num_filters_2=32, kernel_size_2=3, pooling_size_2=2): """Constructs layers for a keras model based on a dict of model types.""" model_layers = { 'linear': [ Flatten(), Dense(nclasses), Softmax() ], 'dnn': [ # TODO ], 'dnn_dropout': [ # TODO ], 'cnn': [ # TODO ] } return model_layers[model_type] def build_model(layers, output_dir): """Compiles keras model for image classification.""" model = Sequential(layers) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) return model def train_and_evaluate(model, num_epochs, steps_per_epoch, output_dir): """Compiles keras model and loads data into it for training.""" mnist = tf.keras.datasets.mnist.load_data() train_data = util.load_dataset(mnist) validation_data = util.load_dataset(mnist, training=False) callbacks = [] if output_dir: tensorboard_callback = TensorBoard(log_dir=output_dir) callbacks = [tensorboard_callback] history = model.fit( train_data, validation_data=validation_data, epochs=num_epochs, steps_per_epoch=steps_per_epoch, verbose=2, callbacks=callbacks) if output_dir: export_path = os.path.join(output_dir, 'keras_export') model.save(export_path, save_format='tf') return history ###Output _____no_output_____ ###Markdown Local TrainingWith everything set up, let's run locally to test the code. Some of the previous tests have been copied over into a testing script `mnist_models/trainer/test.py` to make sure the model still passes our previous checks. On `line 13`, you can specify which model types you would like to check. `line 14` and `line 15` has the number of epochs and steps per epoch respectively.Moment of truth! Run the code below to check your models against the unit tests. If you see "OK" at the end when it's finished running, congrats! You've passed the tests! ###Code !python3 -m mnist_models.trainer.test ###Output _____no_output_____ ###Markdown Now that we know that our models are working as expected, let's run it on the [Google Cloud AI Platform](https://cloud.google.com/ml-engine/docs/). We can run it as a python module locally first using the command line.The below cell transfers some of our variables to the command line as well as create a job directory including a timestamp. ###Code current_time = datetime.now().strftime("%y%m%d_%H%M%S") model_type = 'cnn' # "linear", "cnn", "dnn_dropout", or "dnn" os.environ["MODEL_TYPE"] = model_type os.environ["JOB_DIR"] = "mnist_models/models/{}_{}/".format( model_type, current_time) ###Output _____no_output_____ ###Markdown The cell below runs the local version of the code. The epochs and steps_per_epoch flag can be changed to run for longer or shorter, as defined in our `mnist_models/trainer/task.py` file. ###Code %%bash python3 -m mnist_models.trainer.task \ --job-dir=$JOB_DIR \ --epochs=5 \ --steps_per_epoch=50 \ --model_type=$MODEL_TYPE ###Output _____no_output_____ ###Markdown Training on the cloudSince we're using an unreleased version of TensorFlow on AI Platform, we can instead use a [Deep Learning Container](https://cloud.google.com/ai-platform/deep-learning-containers/docs/overview) in order to take advantage of libraries and applications not normally packaged with AI Platform. Below is a simple [Dockerlife](https://docs.docker.com/engine/reference/builder/) which copies our code to be used in a TF2 environment. ###Code %%writefile mnist_models/Dockerfile FROM gcr.io/deeplearning-platform-release/tf2-cpu COPY mnist_models/trainer /mnist_models/trainer ENTRYPOINT ["python3", "-m", "mnist_models.trainer.task"] ###Output _____no_output_____ ###Markdown The below command builds the image and ships it off to Google Cloud so it can be used for AI Platform. When built, it will show up [here](http://console.cloud.google.com/gcr) with the name `mnist_models`. ([Click here](https://console.cloud.google.com/cloud-build) to enable Cloud Build) ###Code !docker build -f mnist_models/Dockerfile -t $IMAGE_URI ./ !docker push $IMAGE_URI ###Output _____no_output_____ ###Markdown Finally, we can kickoff the [AI Platform training job](https://cloud.google.com/sdk/gcloud/reference/ai-platform/jobs/submit/training). We can pass in our docker image using the `master-image-uri` flag. ###Code current_time = datetime.now().strftime("%y%m%d_%H%M%S") model_type = 'cnn' # "linear", "cnn", "dnn_dropout", or "dnn" os.environ["MODEL_TYPE"] = model_type os.environ["JOB_DIR"] = "gs://{}/mnist_{}_{}/".format( BUCKET, model_type, current_time) os.environ["JOB_NAME"] = "mnist_{}_{}".format( model_type, current_time) %%bash echo $JOB_DIR $REGION $JOB_NAME gcloud ai-platform jobs submit training $JOB_NAME \ --staging-bucket=gs://$BUCKET \ --region=$REGION \ --master-image-uri=$IMAGE_URI \ --scale-tier=BASIC_GPU \ --job-dir=$JOB_DIR \ -- \ --model_type=$MODEL_TYPE ###Output _____no_output_____ ###Markdown Deploying and predicting with modelOnce you have a model you're proud of, let's deploy it! All we need to do is give AI Platform the location of the model. Below uses the keras export path of the previous job, but `${JOB_DIR}keras_export/` can always be changed to a different path.Uncomment the delete commands below if you are getting an "already exists error" and want to deploy a new model. ###Code %%bash MODEL_NAME="mnist" MODEL_VERSION=${MODEL_TYPE} MODEL_LOCATION=${JOB_DIR}keras_export/ echo "Deleting and deploying $MODEL_NAME $MODEL_VERSION from $MODEL_LOCATION ... this will take a few minutes" #yes | gcloud ai-platform versions delete ${MODEL_VERSION} --model ${MODEL_NAME} #yes | gcloud ai-platform models delete ${MODEL_NAME} gcloud config set ai_platform/region global gcloud ai-platform models create ${MODEL_NAME} --regions $REGION gcloud ai-platform versions create ${MODEL_VERSION} \ --model ${MODEL_NAME} \ --origin ${MODEL_LOCATION} \ --framework tensorflow \ --runtime-version=2.6 ###Output _____no_output_____ ###Markdown To predict with the model, let's take one of the example images.**TODO 4**: Write a `.json` file with image data to send to an AI Platform deployed model ###Code import json, codecs import tensorflow as tf import matplotlib.pyplot as plt from mnist_models.trainer import util HEIGHT = 28 WIDTH = 28 IMGNO = 12 mnist = tf.keras.datasets.mnist.load_data() (x_train, y_train), (x_test, y_test) = mnist test_image = x_test[IMGNO] jsondata = test_image.reshape(HEIGHT, WIDTH, 1).tolist() json.dump(jsondata, codecs.open("test.json", "w", encoding = "utf-8")) plt.imshow(test_image.reshape(HEIGHT, WIDTH)); ###Output _____no_output_____ ###Markdown Finally, we can send it to the prediction service. The output will have a 1 in the index of the corresponding digit it is predicting. Congrats! You've completed the lab! ###Code %%bash gcloud ai-platform predict \ --model=mnist \ --version=${MODEL_TYPE} \ --json-instances=./test.json ###Output _____no_output_____ ###Markdown MNIST Image Classification with TensorFlow on Cloud ML EngineThis notebook demonstrates how to implement different image models on MNIST using the [tf.keras API](https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras). Learning Objectives1. Understand how to build a Dense Neural Network (DNN) for image classification2. Understand how to use dropout (DNN) for image classification3. Understand how to use Convolutional Neural Networks (CNN)4. Know how to deploy and use an image classifcation model using Google Cloud's [AI Platform](https://cloud.google.com/ai-platform/)First things first. Configure the parameters below to match your own Google Cloud project details. ###Code from datetime import datetime import os PROJECT = "your-project-id-here" # REPLACE WITH YOUR PROJECT ID BUCKET = "your-bucket-id-here" # REPLACE WITH YOUR BUCKET NAME REGION = "us-central1" # REPLACE WITH YOUR BUCKET REGION e.g. us-central1 # Do not change these os.environ["PROJECT"] = PROJECT os.environ["BUCKET"] = BUCKET os.environ["REGION"] = REGION os.environ["IMAGE_URI"] = os.path.join("gcr.io", PROJECT, "mnist_models") ###Output _____no_output_____ ###Markdown Building a dynamic modelIn the previous notebook, mnist_linear.ipynb, we ran our code directly from the notebook. In order to run it on the AI Platform, it needs to be packaged as a python module.The boilerplate structure for this module has already been set up in the folder `mnist_models`. The module lives in the sub-folder, `trainer`, and is designated as a python package with the empty `__init__.py` (`mnist_models/trainer/__init__.py`) file. It still needs the model and a trainer to run it, so let's make them.Let's start with the trainer file first. This file parses command line arguments to feed into the model. ###Code %%writefile mnist_models/trainer/task.py import argparse import json import os import sys from . import model def _parse_arguments(argv): """Parses command-line arguments.""" parser = argparse.ArgumentParser() parser.add_argument( '--model_type', help='Which model type to use', type=str, default='linear') parser.add_argument( '--epochs', help='The number of epochs to train', type=int, default=10) parser.add_argument( '--steps_per_epoch', help='The number of steps per epoch to train', type=int, default=100) parser.add_argument( '--job-dir', help='Directory where to save the given model', type=str, default='mnist_models/') return parser.parse_known_args(argv) def main(): """Parses command line arguments and kicks off model training.""" args = _parse_arguments(sys.argv[1:])[0] # Configure path for hyperparameter tuning. trial_id = json.loads( os.environ.get('TF_CONFIG', '{}')).get('task', {}).get('trial', '') output_path = args.job_dir if not trial_id else args.job_dir + '/' model_layers = model.get_layers(args.model_type) image_model = model.build_model(model_layers, args.job_dir) model_history = model.train_and_evaluate( image_model, args.epochs, args.steps_per_epoch, args.job_dir) if __name__ == '__main__': main() ###Output _____no_output_____ ###Markdown Next, let's group non-model functions into a util file to keep the model file simple. We'll copy over the `scale` and `load_dataset` functions from the previous lab. ###Code %%writefile mnist_models/trainer/util.py import tensorflow as tf def scale(image, label): """Scales images from a 0-255 int range to a 0-1 float range""" image = tf.cast(image, tf.float32) image /= 255 image = tf.expand_dims(image, -1) return image, label def load_dataset( data, training=True, buffer_size=5000, batch_size=100, nclasses=10): """Loads MNIST dataset into a tf.data.Dataset""" (x_train, y_train), (x_test, y_test) = data x = x_train if training else x_test y = y_train if training else y_test # One-hot encode the classes y = tf.keras.utils.to_categorical(y, nclasses) dataset = tf.data.Dataset.from_tensor_slices((x, y)) dataset = dataset.map(scale).batch(batch_size) if training: dataset = dataset.shuffle(buffer_size).repeat() return dataset ###Output _____no_output_____ ###Markdown Finally, let's code the models! The [tf.keras API](https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras) accepts an array of [layers](https://www.tensorflow.org/api_docs/python/tf/keras/layers) into a [model object](https://www.tensorflow.org/api_docs/python/tf/keras/Model), so we can create a dictionary of layers based on the different model types we want to use. The below file has two functions: `get_layers` and `create_and_train_model`. We will build the structure of our model in `get_layers`. Last but not least, we'll copy over the training code from the previous lab into `train_and_evaluate`.**TODO 1**: Define the Keras layers for a DNN model **TODO 2**: Define the Keras layers for a dropout model **TODO 3**: Define the Keras layers for a CNN model Hint: These models progressively build on each other. Look at the imported `tensorflow.keras.layers` modules and the default values for the variables defined in `get_layers` for guidance. ###Code %%writefile mnist_models/trainer/model.py import os import shutil import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from tensorflow.keras import Sequential from tensorflow.keras.callbacks import TensorBoard from tensorflow.keras.layers import ( Conv2D, Dense, Dropout, Flatten, MaxPooling2D, Softmax) from . import util # Image Variables WIDTH = 28 HEIGHT = 28 def get_layers( model_type, nclasses=10, hidden_layer_1_neurons=400, hidden_layer_2_neurons=100, dropout_rate=0.25, num_filters_1=64, kernel_size_1=3, pooling_size_1=2, num_filters_2=32, kernel_size_2=3, pooling_size_2=2): """Constructs layers for a keras model based on a dict of model types.""" model_layers = { 'linear': [ Flatten(), Dense(nclasses), Softmax() ], 'dnn': [ # TODO ], 'dnn_dropout': [ # TODO ], 'cnn': [ # TODO ] } return model_layers[model_type] def build_model(layers, output_dir): """Compiles keras model for image classification.""" model = Sequential(layers) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) return model def train_and_evaluate(model, num_epochs, steps_per_epoch, output_dir): """Compiles keras model and loads data into it for training.""" mnist = tf.keras.datasets.mnist.load_data() train_data = util.load_dataset(mnist) validation_data = util.load_dataset(mnist, training=False) callbacks = [] if output_dir: tensorboard_callback = TensorBoard(log_dir=output_dir) callbacks = [tensorboard_callback] history = model.fit( train_data, validation_data=validation_data, epochs=num_epochs, steps_per_epoch=steps_per_epoch, verbose=2, callbacks=callbacks) if output_dir: export_path = os.path.join(output_dir, 'keras_export') model.save(export_path, save_format='tf') return history ###Output _____no_output_____ ###Markdown Local TrainingWith everything set up, let's run locally to test the code. Some of the previous tests have been copied over into a testing script `mnist_models/trainer/test.py` to make sure the model still passes our previous checks. On `line 13`, you can specify which model types you would like to check. `line 14` and `line 15` has the number of epochs and steps per epoch respectively.Moment of truth! Run the code below to check your models against the unit tests. If you see "OK" at the end when it's finished running, congrats! You've passed the tests! ###Code !python3 -m mnist_models.trainer.test ###Output _____no_output_____ ###Markdown Now that we know that our models are working as expected, let's run it on the [Google Cloud AI Platform](https://cloud.google.com/ml-engine/docs/). We can run it as a python module locally first using the command line.The below cell transfers some of our variables to the command line as well as create a job directory including a timestamp. This is where our model and tensorboard data will be stored. ###Code current_time = datetime.now().strftime("%y%m%d_%H%M%S") model_type = 'cnn' os.environ["MODEL_TYPE"] = model_type os.environ["JOB_DIR"] = "mnist_models/models/{}_{}/".format( model_type, current_time) ###Output _____no_output_____ ###Markdown The cell below runs the local version of the code. The epochs and steps_per_epoch flag can be changed to run for longer or shorther, as defined in our `mnist_models/trainer/task.py` file. ###Code %%bash python3 -m mnist_models.trainer.task \ --job-dir=$JOB_DIR \ --epochs=5 \ --steps_per_epoch=50 \ --model_type=$MODEL_TYPE ###Output _____no_output_____ ###Markdown Training on the cloudSince we're using an unreleased version of TensorFlow on AI Platform, we can instead use a [Deep Learning Container](https://cloud.google.com/ai-platform/deep-learning-containers/docs/overview) in order to take advantage of libraries and applications not normally packaged with AI Platform. Below is a simple [Dockerlife](https://docs.docker.com/engine/reference/builder/) which copies our code to be used in a TF2 environment. ###Code %%writefile mnist_models/Dockerfile FROM gcr.io/deeplearning-platform-release/tf2-cpu COPY mnist_models/trainer /mnist_models/trainer ENTRYPOINT ["python3", "-m", "mnist_models.trainer.task"] ###Output _____no_output_____ ###Markdown The below command builds the image and ships it off to Google Cloud so it can be used for AI Platform. When built, it will show up [here](http://console.cloud.google.com/gcr) with the name `mnist_models`. ([Click here](https://console.cloud.google.com/cloud-build) to enable Cloud Build) ###Code !docker build -f mnist_models/Dockerfile -t $IMAGE_URI ./ !docker push $IMAGE_URI ###Output _____no_output_____ ###Markdown Finally, we can kickoff the [AI Platform training job](https://cloud.google.com/sdk/gcloud/reference/ai-platform/jobs/submit/training). We can pass in our docker image using the `master-image-uri` flag. ###Code current_time = datetime.now().strftime("%y%m%d_%H%M%S") model_type = 'cnn' os.environ["MODEL_TYPE"] = model_type os.environ["JOB_DIR"] = "gs://{}/mnist_{}_{}/".format( BUCKET, model_type, current_time) os.environ["JOB_NAME"] = "mnist_{}_{}".format( model_type, current_time) %%bash echo $JOB_DIR $REGION $JOB_NAME gcloud ai-platform jobs submit training $JOB_NAME \ --staging-bucket=gs://$BUCKET \ --region=$REGION \ --master-image-uri=$IMAGE_URI \ --scale-tier=BASIC_GPU \ --job-dir=$JOB_DIR \ -- \ --model_type=$MODEL_TYPE ###Output _____no_output_____ ###Markdown Can't wait to see the results? Run the code below and copy the output into the [Google Cloud Shell](https://console.cloud.google.com/home/dashboard?cloudshell=true) to follow along with TensorBoard. Look at the web preview on port 6006. ###Code !echo "tensorboard --logdir $JOB_DIR" ###Output _____no_output_____ ###Markdown Deploying and predicting with modelOnce you have a model you're proud of, let's deploy it! All we need to do is give AI Platform the location of the model. Below uses the keras export path of the previous job, but `${JOB_DIR}keras_export/` can always be changed to a different path.Even though we're using a 1.14 runtime, it's compatable with TF2 exported models. Phew!Uncomment the delete commands below if you are getting an "already exists error" and want to deploy a new model. ###Code %%bash MODEL_NAME="mnist" MODEL_VERSION=${MODEL_TYPE} MODEL_LOCATION=${JOB_DIR}keras_export/ echo "Deleting and deploying $MODEL_NAME $MODEL_VERSION from $MODEL_LOCATION ... this will take a few minutes" #yes | gcloud ai-platform versions delete ${MODEL_VERSION} --model ${MODEL_NAME} #yes | gcloud ai-platform models delete ${MODEL_NAME} gcloud ai-platform models create ${MODEL_NAME} --regions $REGION gcloud ai-platform versions create ${MODEL_VERSION} \ --model ${MODEL_NAME} \ --origin ${MODEL_LOCATION} \ --framework tensorflow \ --runtime-version=1.14 ###Output _____no_output_____ ###Markdown To predict with the model, let's take one of the example images.**TODO 4**: Write a `.json` file with image data to send to an AI Platform deployed model ###Code import json, codecs import tensorflow as tf import matplotlib.pyplot as plt from mnist_models.trainer import util HEIGHT = 28 WIDTH = 28 IMGNO = 12 mnist = tf.keras.datasets.mnist.load_data() (x_train, y_train), (x_test, y_test) = mnist test_image = x_test[IMGNO] jsondata = test_image.reshape(HEIGHT, WIDTH, 1).tolist() json.dump(jsondata, codecs.open("test.json", "w", encoding = "utf-8")) plt.imshow(test_image.reshape(HEIGHT, WIDTH)); ###Output _____no_output_____ ###Markdown Finally, we can send it to the prediction service. The output will have a 1 in the index of the corresponding digit it is predicting. Congrats! You've completed the lab! ###Code %%bash gcloud ai-platform predict \ --model=mnist \ --version=${MODEL_TYPE} \ --json-instances=./test.json ###Output _____no_output_____ ###Markdown MNIST Image Classification with TensorFlow on Cloud AI PlatformThis notebook demonstrates how to implement different image models on MNIST using the [tf.keras API](https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras). Learning Objectives1. Understand how to build a Dense Neural Network (DNN) for image classification2. Understand how to use dropout (DNN) for image classification3. Understand how to use Convolutional Neural Networks (CNN)4. Know how to deploy and use an image classification model using Google Cloud's [AI Platform](https://cloud.google.com/ai-platform/)Each learning objective will correspond to a __TODO__ in the notebook, where you will complete the notebook cell's code before running the cell. Refer to the [solution notebook](training-data-analyst/courses/machine_learning/deepdive2/image_classification/solutions/2_mnist_models.ipynb))for reference.First things first. Configure the parameters below to match your own Google Cloud project details. ###Code !sudo chown -R jupyter:jupyter /home/jupyter/training-data-analyst # Here we'll show the currently installed version of TensorFlow import tensorflow as tf print(tf.__version__) from datetime import datetime import os PROJECT = "your-project-id-here" # REPLACE WITH YOUR PROJECT ID BUCKET = "your-bucket-id-here" # REPLACE WITH YOUR BUCKET NAME REGION = "us-central1" # REPLACE WITH YOUR BUCKET REGION e.g. us-central1 MODEL_TYPE = "cnn" # "linear", "cnn", "dnn_dropout", or "dnn" # Do not change these os.environ["PROJECT"] = PROJECT os.environ["BUCKET"] = BUCKET os.environ["REGION"] = REGION os.environ["MODEL_TYPE"] = MODEL_TYPE os.environ["TFVERSION"] = "2.5" # Tensorflow version os.environ["IMAGE_URI"] = os.path.join("gcr.io", PROJECT, "mnist_models") ###Output _____no_output_____ ###Markdown Building a dynamic modelIn the previous notebook, mnist_linear.ipynb, we ran our code directly from the notebook. In order to run it on the AI Platform, it needs to be packaged as a python module.The boilerplate structure for this module has already been set up in the folder `mnist_models`. The module lives in the sub-folder, `trainer`, and is designated as a python package with the empty `__init__.py` (`mnist_models/trainer/__init__.py`) file. It still needs the model and a trainer to run it, so let's make them.Let's start with the trainer file first. This file parses command line arguments to feed into the model. ###Code %%writefile mnist_models/trainer/task.py import argparse import json import os import sys from . import model def _parse_arguments(argv): """Parses command-line arguments.""" parser = argparse.ArgumentParser() parser.add_argument( '--model_type', help='Which model type to use', type=str, default='linear') parser.add_argument( '--epochs', help='The number of epochs to train', type=int, default=10) parser.add_argument( '--steps_per_epoch', help='The number of steps per epoch to train', type=int, default=100) parser.add_argument( '--job-dir', help='Directory where to save the given model', type=str, default='mnist_models/') return parser.parse_known_args(argv) def main(): """Parses command line arguments and kicks off model training.""" args = _parse_arguments(sys.argv[1:])[0] # Configure path for hyperparameter tuning. trial_id = json.loads( os.environ.get('TF_CONFIG', '{}')).get('task', {}).get('trial', '') output_path = args.job_dir if not trial_id else args.job_dir + '/' model_layers = model.get_layers(args.model_type) image_model = model.build_model(model_layers, args.job_dir) model_history = model.train_and_evaluate( image_model, args.epochs, args.steps_per_epoch, args.job_dir) if __name__ == '__main__': main() ###Output _____no_output_____ ###Markdown Next, let's group non-model functions into a util file to keep the model file simple. We'll copy over the `scale` and `load_dataset` functions from the previous lab. ###Code %%writefile mnist_models/trainer/util.py import tensorflow as tf def scale(image, label): """Scales images from a 0-255 int range to a 0-1 float range""" image = tf.cast(image, tf.float32) image /= 255 image = tf.expand_dims(image, -1) return image, label def load_dataset( data, training=True, buffer_size=5000, batch_size=100, nclasses=10): """Loads MNIST dataset into a tf.data.Dataset""" (x_train, y_train), (x_test, y_test) = data x = x_train if training else x_test y = y_train if training else y_test # One-hot encode the classes y = tf.keras.utils.to_categorical(y, nclasses) dataset = tf.data.Dataset.from_tensor_slices((x, y)) dataset = dataset.map(scale).batch(batch_size) if training: dataset = dataset.shuffle(buffer_size).repeat() return dataset ###Output _____no_output_____ ###Markdown Finally, let's code the models! The [tf.keras API](https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras) accepts an array of [layers](https://www.tensorflow.org/api_docs/python/tf/keras/layers) into a [model object](https://www.tensorflow.org/api_docs/python/tf/keras/Model), so we can create a dictionary of layers based on the different model types we want to use. The below file has two functions: `get_layers` and `create_and_train_model`. We will build the structure of our model in `get_layers`. Last but not least, we'll copy over the training code from the previous lab into `train_and_evaluate`.**TODO 1**: Define the Keras layers for a DNN model **TODO 2**: Define the Keras layers for a dropout model **TODO 3**: Define the Keras layers for a CNN model Hint: These models progressively build on each other. Look at the imported `tensorflow.keras.layers` modules and the default values for the variables defined in `get_layers` for guidance. ###Code %%writefile mnist_models/trainer/model.py import os import shutil import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from tensorflow.keras import Sequential from tensorflow.keras.callbacks import TensorBoard from tensorflow.keras.layers import ( Conv2D, Dense, Dropout, Flatten, MaxPooling2D, Softmax) from . import util # Image Variables WIDTH = 28 HEIGHT = 28 def get_layers( model_type, nclasses=10, hidden_layer_1_neurons=400, hidden_layer_2_neurons=100, dropout_rate=0.25, num_filters_1=64, kernel_size_1=3, pooling_size_1=2, num_filters_2=32, kernel_size_2=3, pooling_size_2=2): """Constructs layers for a keras model based on a dict of model types.""" model_layers = { 'linear': [ Flatten(), Dense(nclasses), Softmax() ], 'dnn': [ # TODO ], 'dnn_dropout': [ # TODO ], 'cnn': [ # TODO ] } return model_layers[model_type] def build_model(layers, output_dir): """Compiles keras model for image classification.""" model = Sequential(layers) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) return model def train_and_evaluate(model, num_epochs, steps_per_epoch, output_dir): """Compiles keras model and loads data into it for training.""" mnist = tf.keras.datasets.mnist.load_data() train_data = util.load_dataset(mnist) validation_data = util.load_dataset(mnist, training=False) callbacks = [] if output_dir: tensorboard_callback = TensorBoard(log_dir=output_dir) callbacks = [tensorboard_callback] history = model.fit( train_data, validation_data=validation_data, epochs=num_epochs, steps_per_epoch=steps_per_epoch, verbose=2, callbacks=callbacks) if output_dir: export_path = os.path.join(output_dir, 'keras_export') model.save(export_path, save_format='tf') return history ###Output _____no_output_____ ###Markdown Local TrainingWith everything set up, let's run locally to test the code. Some of the previous tests have been copied over into a testing script `mnist_models/trainer/test.py` to make sure the model still passes our previous checks. On `line 13`, you can specify which model types you would like to check. `line 14` and `line 15` has the number of epochs and steps per epoch respectively.Moment of truth! Run the code below to check your models against the unit tests. If you see "OK" at the end when it's finished running, congrats! You've passed the tests! ###Code !python3 -m mnist_models.trainer.test ###Output _____no_output_____ ###Markdown Now that we know that our models are working as expected, let's run it on the [Google Cloud AI Platform](https://cloud.google.com/ml-engine/docs/). We can run it as a python module locally first using the command line.The below cell transfers some of our variables to the command line as well as create a job directory including a timestamp. ###Code current_time = datetime.now().strftime("%y%m%d_%H%M%S") model_type = 'cnn' # "linear", "cnn", "dnn_dropout", or "dnn" os.environ["MODEL_TYPE"] = model_type os.environ["JOB_DIR"] = "mnist_models/models/{}_{}/".format( model_type, current_time) ###Output _____no_output_____ ###Markdown The cell below runs the local version of the code. The epochs and steps_per_epoch flag can be changed to run for longer or shorter, as defined in our `mnist_models/trainer/task.py` file. ###Code %%bash python3 -m mnist_models.trainer.task \ --job-dir=$JOB_DIR \ --epochs=5 \ --steps_per_epoch=50 \ --model_type=$MODEL_TYPE ###Output _____no_output_____ ###Markdown Training on the cloudSince we're using an unreleased version of TensorFlow on AI Platform, we can instead use a [Deep Learning Container](https://cloud.google.com/ai-platform/deep-learning-containers/docs/overview) in order to take advantage of libraries and applications not normally packaged with AI Platform. Below is a simple [Dockerlife](https://docs.docker.com/engine/reference/builder/) which copies our code to be used in a TF2 environment. ###Code %%writefile mnist_models/Dockerfile FROM gcr.io/deeplearning-platform-release/tf2-cpu COPY mnist_models/trainer /mnist_models/trainer ENTRYPOINT ["python3", "-m", "mnist_models.trainer.task"] ###Output _____no_output_____ ###Markdown The below command builds the image and ships it off to Google Cloud so it can be used for AI Platform. When built, it will show up [here](http://console.cloud.google.com/gcr) with the name `mnist_models`. ([Click here](https://console.cloud.google.com/cloud-build) to enable Cloud Build) ###Code !docker build -f mnist_models/Dockerfile -t $IMAGE_URI ./ !docker push $IMAGE_URI ###Output _____no_output_____ ###Markdown Finally, we can kickoff the [AI Platform training job](https://cloud.google.com/sdk/gcloud/reference/ai-platform/jobs/submit/training). We can pass in our docker image using the `master-image-uri` flag. ###Code current_time = datetime.now().strftime("%y%m%d_%H%M%S") model_type = 'cnn' # "linear", "cnn", "dnn_dropout", or "dnn" os.environ["MODEL_TYPE"] = model_type os.environ["JOB_DIR"] = "gs://{}/mnist_{}_{}/".format( BUCKET, model_type, current_time) os.environ["JOB_NAME"] = "mnist_{}_{}".format( model_type, current_time) %%bash echo $JOB_DIR $REGION $JOB_NAME gcloud ai-platform jobs submit training $JOB_NAME \ --staging-bucket=gs://$BUCKET \ --region=$REGION \ --master-image-uri=$IMAGE_URI \ --scale-tier=BASIC_GPU \ --job-dir=$JOB_DIR \ -- \ --model_type=$MODEL_TYPE ###Output _____no_output_____ ###Markdown Deploying and predicting with modelOnce you have a model you're proud of, let's deploy it! All we need to do is give AI Platform the location of the model. Below uses the keras export path of the previous job, but `${JOB_DIR}keras_export/` can always be changed to a different path.Uncomment the delete commands below if you are getting an "already exists error" and want to deploy a new model. ###Code %%bash MODEL_NAME="mnist" MODEL_VERSION=${MODEL_TYPE} MODEL_LOCATION=${JOB_DIR}keras_export/ echo "Deleting and deploying $MODEL_NAME $MODEL_VERSION from $MODEL_LOCATION ... this will take a few minutes" #yes | gcloud ai-platform versions delete ${MODEL_VERSION} --model ${MODEL_NAME} #yes | gcloud ai-platform models delete ${MODEL_NAME} gcloud config set ai_platform/region global gcloud ai-platform models create ${MODEL_NAME} --regions $REGION gcloud ai-platform versions create ${MODEL_VERSION} \ --model ${MODEL_NAME} \ --origin ${MODEL_LOCATION} \ --framework tensorflow \ --runtime-version=2.5 ###Output _____no_output_____ ###Markdown To predict with the model, let's take one of the example images.**TODO 4**: Write a `.json` file with image data to send to an AI Platform deployed model ###Code import json, codecs import tensorflow as tf import matplotlib.pyplot as plt from mnist_models.trainer import util HEIGHT = 28 WIDTH = 28 IMGNO = 12 mnist = tf.keras.datasets.mnist.load_data() (x_train, y_train), (x_test, y_test) = mnist test_image = x_test[IMGNO] jsondata = test_image.reshape(HEIGHT, WIDTH, 1).tolist() json.dump(jsondata, codecs.open("test.json", "w", encoding = "utf-8")) plt.imshow(test_image.reshape(HEIGHT, WIDTH)); ###Output _____no_output_____ ###Markdown Finally, we can send it to the prediction service. The output will have a 1 in the index of the corresponding digit it is predicting. Congrats! You've completed the lab! ###Code %%bash gcloud ai-platform predict \ --model=mnist \ --version=${MODEL_TYPE} \ --json-instances=./test.json ###Output _____no_output_____ ###Markdown MNIST Image Classification with TensorFlow on Cloud ML EngineThis notebook demonstrates how to implement different image models on MNIST using the [tf.keras API](https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras). Learning Objectives1. Understand how to build a Dense Neural Network (DNN) for image classification2. Understand how to use dropout (DNN) for image classification3. Understand how to use Convolutional Neural Networks (CNN)4. Know how to deploy and use an image classifcation model using Google Cloud's [AI Platform](https://cloud.google.com/ai-platform/)First things first. Configure the parameters below to match your own Google Cloud project details. ###Code from datetime import datetime import os PROJECT = "your-project-id-here" # REPLACE WITH YOUR PROJECT ID BUCKET = "your-bucket-id-here" # REPLACE WITH YOUR BUCKET NAME REGION = "us-central1" # REPLACE WITH YOUR BUCKET REGION e.g. us-central1 # Do not change these os.environ["PROJECT"] = PROJECT os.environ["BUCKET"] = BUCKET os.environ["REGION"] = REGION os.environ["IMAGE_URI"] = os.path.join("gcr.io", PROJECT, "mnist_trainer") ###Output _____no_output_____ ###Markdown Building a dynamic modelIn the previous notebook, mnist_linear.ipynb, we ran our code directly from the notebook. In order to run it on the AI Platform, it needs to be packaged as a python module.The boilerplate structure for this module has already been set up in the folder `mnist_models`. The module lives in the sub-folder, `trainer`, and is designated as a python package with the empty `__init__.py` (`mnist_models/trainer/__init__.py`) file. It still needs the model and a trainer to run it, so let's make them.Let's start with the trainer file first. This file parses command line arguments to feed into model. ###Code %%writefile mnist_trainer/trainer/task.py import argparse import json import os import sys import model def _parse_arguments(argv): """Parses command-line arguments.""" parser = argparse.ArgumentParser() parser.add_argument( '--model_type', help='Which model type to use', type=str, default='linear') parser.add_argument( '--epochs', help='The number of epochs to train', type=int, default=10) parser.add_argument( '--steps_per_epoch', help='The number of steps per epoch to train', type=int, default=100) parser.add_argument( '--job-dir', help='Directory where to save the given model', type=str, default='mnist_models/') return parser.parse_known_args(argv) def main(): """Parses command line arguments and kicks off model training.""" args = _parse_arguments(sys.argv[1:])[0] # Configure path for hyperparameter tuning. trial_id = json.loads( os.environ.get('TF_CONFIG', '{}')).get('task', {}).get('trial', '') output_path = args.job_dir if not trial_id else args.job_dir + '/' model_layers = model.get_layers(args.model_type) image_model = model.build_model(model_layers, args.job_dir) model_history = model.train_and_evaluate( image_model, args.epochs, args.steps_per_epoch, args.job_dir) if __name__ == '__main__': main() ###Output _____no_output_____ ###Markdown Next, let's group non-model functions into a util file to keep the model file simple. We'll copy over the `scale` and `load_dataset` functions from the previous lab. ###Code %%writefile mnist_trainer/trainer/util.py import tensorflow as tf def scale(image, label): """Scales images from a 0-255 int range to a 0-1 float range""" image = tf.cast(image, tf.float32) image /= 255 image = tf.expand_dims(image, -1) return image, label def load_dataset( data, training=True, buffer_size=5000, batch_size=100, nclasses=10): """Loads MNIST dataset into a tf.data.Dataset""" (x_train, y_train), (x_test, y_test) = data x = x_train if training else x_test y = y_train if training else y_test # One-hot encode the classes y = tf.keras.utils.to_categorical(y, nclasses) dataset = tf.data.Dataset.from_tensor_slices((x, y)) dataset = dataset.map(scale).batch(batch_size) if training: dataset = dataset.shuffle(buffer_size).repeat() return dataset ###Output _____no_output_____ ###Markdown Finally, let's code the models! The [tf.keras API](https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras) accepts an array of [layers](https://www.tensorflow.org/api_docs/python/tf/keras/layers) into a [model object](https://www.tensorflow.org/api_docs/python/tf/keras/Model), so we can create a dictionary of layers based on the different model types we want to use. The below file has two functions: `get_layers` and `create_and_train_model`. We will build the structure of our model in `get_layers`. Last but not least, we'll copy over the training code from the previous lab into `train_and_evaluate`.**TODO 1**: Define the Keras layers for a DNN model **TODO 2**: Define the Keras layers for a dropout model **TODO 3**: Define the Keras layers for a CNN model Hint: These models progressively build on each other. Look at the imported `tensorflow.keras.layers` modules and the default values for the variables defined in `get_layers` for guidance. ###Code %%writefile mnist_trainer/trainer/model.py import os import shutil import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from tensorflow.keras import Sequential from tensorflow.keras.callbacks import TensorBoard from tensorflow.keras.layers import ( Conv2D, Dense, Dropout, Flatten, MaxPooling2D, Softmax) import util # Image Variables WIDTH = 28 HEIGHT = 28 def get_layers( model_type, nclasses=10, hidden_layer_1_neurons=400, hidden_layer_2_neurons=100, dropout_rate=0.25, num_filters_1=64, kernel_size_1=3, pooling_size_1=2, num_filters_2=32, kernel_size_2=3, pooling_size_2=2): """Constructs layers for a keras model based on a dict of model types.""" model_layers = { 'linear': [ Flatten(), Dense(nclasses), Softmax() ], 'dnn': [ # TODO ], 'dnn_dropout': [ # TODO ], 'cnn': [ # TODO ] } return model_layers[model_type] def build_model(layers, output_dir): """Compiles keras model for image classification.""" model = Sequential(layers) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) return model def train_and_evaluate(model, num_epochs, steps_per_epoch, output_dir): """Compiles keras model and loads data into it for training.""" mnist = tf.keras.datasets.mnist.load_data() train_data = util.load_dataset(mnist) validation_data = util.load_dataset(mnist, training=False) callbacks = [] if output_dir: tensorboard_callback = TensorBoard(log_dir=output_dir) callbacks = [tensorboard_callback] history = model.fit( train_data, validation_data=validation_data, epochs=num_epochs, steps_per_epoch=steps_per_epoch, verbose=2, callbacks=callbacks) if output_dir: export_path = os.path.join(output_dir, 'keras_export') model.save(export_path, save_format='tf') return history ###Output _____no_output_____ ###Markdown Local TrainingWith everything set up, let's run locally to test the code. Some of the previous tests have been copied over into a testing script `mnist_models/trainer/test.py` to make sure the model still passes our previous checks. On `line 34`, you can specify which model types you would like to check. `line 37` and `line 38` has the number of epochs and steps per epoch respectively. Now that we know that our models are working as expected, let's run it on the [Google Cloud AI Platform](https://cloud.google.com/ml-engine/docs/). We can run it as a python module locally first using the command line.The below cell transfers some of our variables to the command line as well as create a job directory including a timestamp. This is where our model and tensorboard data will be stored. ###Code current_time = datetime.now().strftime("%y%m%d_%H%M%S") model_type = 'cnn' os.environ["MODEL_TYPE"] = model_type os.environ["JOB_DIR"] = "mnist_trainer/models/{}_{}/".format( model_type, current_time) ###Output _____no_output_____ ###Markdown The cell below runs the local version of the code. The epochs and steps_per_epoch flag can be changed to run for longer or shorther, as defined in our `mnist_models/trainer/task.py` file. ###Code %%bash mkdir $JOB_DIR python3 mnist_trainer/trainer/task.py \ --job-dir=$JOB_DIR \ --epochs=5 \ --steps_per_epoch=50 \ --model_type=$MODEL_TYPE ###Output _____no_output_____ ###Markdown Let's check out how the model did in tensorboard and confirm that it's good to go before kicking it off to train on the cloud. If running on a Deep Learning VM, open the folder corresponding to the `--job-dir` above. Then, go to File > New Launcher. Click on Tensorboard under "Other".If runnining locally, the following command can be run in a terminal:`tensorboard --logdir=` Training on the cloudSince we're using an unreleased version of TensorFlow on AI Platform, we can instead use a [Deep Learning Container](https://cloud.google.com/ai-platform/deep-learning-containers/docs/overview) in order to take advantage of libraries and applications not normally packaged with AI Platform. Below is a simple [Dockerlife](https://docs.docker.com/engine/reference/builder/) which copies our code to be used in a TF2 environment. ###Code %%writefile mnist_trainer/Dockerfile FROM gcr.io/deeplearning-platform-release/tf2-cpu COPY mnist_trainer/trainer /mnist_trainer/trainer ENTRYPOINT ["python3", "mnist_trainer/trainer/task.py"] ###Output _____no_output_____ ###Markdown The below command builds the image and ships it off to Google Cloud so it can be used for AI Platform. When built, it will show up [here](http://console.cloud.google.com/gcr) with the name `mnist_trainer`. ([Click here](https://console.cloud.google.com/cloud-build) to enable Cloud Build) ###Code !docker build -f mnist_trainer/Dockerfile -t $IMAGE_URI ./ !docker push $IMAGE_URI ###Output _____no_output_____ ###Markdown Finally, we can kickoff the [AI Platform training job](https://cloud.google.com/sdk/gcloud/reference/ai-platform/jobs/submit/training). We can pass in our docker image using the `master-image-uri` flag. ###Code current_time = datetime.now().strftime("%y%m%d_%H%M%S") model_type = 'cnn' os.environ["MODEL_TYPE"] = model_type os.environ["JOB_DIR"] = "gs://{}/mnist_{}_{}/".format( BUCKET, model_type, current_time) os.environ["JOB_NAME"] = "mnist_{}_{}".format( model_type, current_time) %%bash echo $JOB_DIR $REGION $JOB_NAME gcloud ai-platform jobs submit training $JOB_NAME \ --staging-bucket=gs://$BUCKET \ --region=$REGION \ --master-image-uri=$IMAGE_URI \ --scale-tier=BASIC_GPU \ --job-dir=$JOB_DIR \ -- \ --model_type=$MODEL_TYPE ###Output _____no_output_____ ###Markdown Can't wait to see the results? Run the code below and copy the output into the [Google Cloud Shell](https://console.cloud.google.com/home/dashboard?cloudshell=true) to follow along with TensorBoard. Look at the web preview on port 6006. ###Code !echo "tensorboard --logdir $JOB_DIR" ###Output _____no_output_____ ###Markdown Deploying and predicting with modelOnce you have a model you're proud of, let's deploy it! All we need to do is give AI Platform the location of the model. Below uses the keras export path of the previous job, but `${JOB_DIR}keras_export/` can always be changed to a different path.Even though we're using a 1.14 runtime, it's compatable with TF2 exported models. Phew!Uncomment the delete commands below if you are getting an "already exists error" and want to deploy a new model. ###Code %%bash MODEL_NAME="mnist" MODEL_VERSION=${MODEL_TYPE} MODEL_LOCATION=${JOB_DIR}keras_export/ echo "Deleting and deploying $MODEL_NAME $MODEL_VERSION from $MODEL_LOCATION ... this will take a few minutes" #yes | gcloud ai-platform versions delete ${MODEL_VERSION} --model ${MODEL_NAME} #yes | gcloud ai-platform models delete ${MODEL_NAME} gcloud ai-platform models create ${MODEL_NAME} --regions $REGION gcloud ai-platform versions create ${MODEL_VERSION} \ --model ${MODEL_NAME} \ --origin ${MODEL_LOCATION} \ --framework tensorflow \ --runtime-version=1.14 ###Output _____no_output_____ ###Markdown To predict with the model, let's take one of the example images.**TODO 4**: Write a `.json` file with image data to send to an AI Platform deployed model ###Code import json, codecs import tensorflow as tf import matplotlib.pyplot as plt from mnist_trainer.trainer import util HEIGHT = 28 WIDTH = 28 IMGNO = 12 mnist = tf.keras.datasets.mnist.load_data() (x_train, y_train), (x_test, y_test) = mnist test_image = x_test[IMGNO] jsondata = test_image.reshape(HEIGHT, WIDTH, 1).tolist() json.dump(jsondata, codecs.open("test.json", "w", encoding = "utf-8")) plt.imshow(test_image.reshape(HEIGHT, WIDTH)); ###Output _____no_output_____ ###Markdown Finally, we can send it to the prediction service. The output will have a 1 in the index of the corresponding digit it is predicting. Congrats! You've completed the lab! ###Code %%bash gcloud ai-platform predict \ --model=mnist \ --version=${MODEL_TYPE} \ --json-instances=./test.json ###Output _____no_output_____ ###Markdown MNIST Image Classification with TensorFlow on Cloud AI PlatformThis notebook demonstrates how to implement different image models on MNIST using the [tf.keras API](https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras). Learning Objectives1. Understand how to build a Dense Neural Network (DNN) for image classification2. Understand how to use dropout (DNN) for image classification3. Understand how to use Convolutional Neural Networks (CNN)4. Know how to deploy and use an image classification model using Google Cloud's [AI Platform](https://cloud.google.com/ai-platform/)Each learning objective will correspond to a __TODO__ in the notebook, where you will complete the notebook cell's code before running the cell. Refer to the [solution notebook](../solutions/2_mnist_models.ipynb))for reference.First things first. Configure the parameters below to match your own Google Cloud project details. ###Code !sudo chown -R jupyter:jupyter /home/jupyter/training-data-analyst # Here we'll show the currently installed version of TensorFlow import tensorflow as tf print(tf.__version__) from datetime import datetime import os PROJECT = "your-project-id-here" # REPLACE WITH YOUR PROJECT ID BUCKET = "your-bucket-id-here" # REPLACE WITH YOUR BUCKET NAME REGION = "us-central1" # REPLACE WITH YOUR BUCKET REGION e.g. us-central1 MODEL_TYPE = "cnn" # "linear", "cnn", "dnn_dropout", or "dnn" # Do not change these os.environ["PROJECT"] = PROJECT os.environ["BUCKET"] = BUCKET os.environ["REGION"] = REGION os.environ["MODEL_TYPE"] = MODEL_TYPE os.environ["TFVERSION"] = "2.6" # Tensorflow version os.environ["IMAGE_URI"] = os.path.join("gcr.io", PROJECT, "mnist_models") ###Output _____no_output_____ ###Markdown Building a dynamic modelIn the previous notebook, 1_mnist_linear.ipynb, we ran our code directly from the notebook. In order to run it on the AI Platform, it needs to be packaged as a python module.The boilerplate structure for this module has already been set up in the folder `mnist_models`. The module lives in the sub-folder, `trainer`, and is designated as a python package with the empty `__init__.py` (`mnist_models/trainer/__init__.py`) file. It still needs the model and a trainer to run it, so let's make them.Let's start with the trainer file first. This file parses command line arguments to feed into the model. ###Code %%writefile mnist_models/trainer/task.py import argparse import json import os import sys from . import model def _parse_arguments(argv): """Parses command-line arguments.""" parser = argparse.ArgumentParser() parser.add_argument( '--model_type', help='Which model type to use', type=str, default='linear') parser.add_argument( '--epochs', help='The number of epochs to train', type=int, default=10) parser.add_argument( '--steps_per_epoch', help='The number of steps per epoch to train', type=int, default=100) parser.add_argument( '--job-dir', help='Directory where to save the given model', type=str, default='mnist_models/') return parser.parse_known_args(argv) def main(): """Parses command line arguments and kicks off model training.""" args = _parse_arguments(sys.argv[1:])[0] # Configure path for hyperparameter tuning. trial_id = json.loads( os.environ.get('TF_CONFIG', '{}')).get('task', {}).get('trial', '') output_path = args.job_dir if not trial_id else args.job_dir + '/' model_layers = model.get_layers(args.model_type) image_model = model.build_model(model_layers, args.job_dir) model_history = model.train_and_evaluate( image_model, args.epochs, args.steps_per_epoch, args.job_dir) if __name__ == '__main__': main() ###Output _____no_output_____ ###Markdown Next, let's group non-model functions into a util file to keep the model file simple. We'll copy over the `scale` and `load_dataset` functions from the previous lab. ###Code %%writefile mnist_models/trainer/util.py import tensorflow as tf def scale(image, label): """Scales images from a 0-255 int range to a 0-1 float range""" image = tf.cast(image, tf.float32) image /= 255 image = tf.expand_dims(image, -1) return image, label def load_dataset( data, training=True, buffer_size=5000, batch_size=100, nclasses=10): """Loads MNIST dataset into a tf.data.Dataset""" (x_train, y_train), (x_test, y_test) = data x = x_train if training else x_test y = y_train if training else y_test # One-hot encode the classes y = tf.keras.utils.to_categorical(y, nclasses) dataset = tf.data.Dataset.from_tensor_slices((x, y)) dataset = dataset.map(scale).batch(batch_size) if training: dataset = dataset.shuffle(buffer_size).repeat() return dataset ###Output _____no_output_____ ###Markdown Finally, let's code the models! The [tf.keras API](https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras) accepts an array of [layers](https://www.tensorflow.org/api_docs/python/tf/keras/layers) into a [model object](https://www.tensorflow.org/api_docs/python/tf/keras/Model), so we can create a dictionary of layers based on the different model types we want to use. The below file has two functions: `get_layers` and `create_and_train_model`. We will build the structure of our model in `get_layers`. Last but not least, we'll copy over the training code from the previous lab into `train_and_evaluate`.**TODO 1**: Define the Keras layers for a DNN model **TODO 2**: Define the Keras layers for a dropout model **TODO 3**: Define the Keras layers for a CNN model Hint: These models progressively build on each other. Look at the imported `tensorflow.keras.layers` modules and the default values for the variables defined in `get_layers` for guidance. ###Code %%writefile mnist_models/trainer/model.py import os import shutil import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from tensorflow.keras import Sequential from tensorflow.keras.callbacks import TensorBoard from tensorflow.keras.layers import ( Conv2D, Dense, Dropout, Flatten, MaxPooling2D, Softmax) from . import util # Image Variables WIDTH = 28 HEIGHT = 28 def get_layers( model_type, nclasses=10, hidden_layer_1_neurons=400, hidden_layer_2_neurons=100, dropout_rate=0.25, num_filters_1=64, kernel_size_1=3, pooling_size_1=2, num_filters_2=32, kernel_size_2=3, pooling_size_2=2): """Constructs layers for a keras model based on a dict of model types.""" model_layers = { 'linear': [ Flatten(), Dense(nclasses), Softmax() ], 'dnn': [ # TODO ], 'dnn_dropout': [ # TODO ], 'cnn': [ # TODO ] } return model_layers[model_type] def build_model(layers, output_dir): """Compiles keras model for image classification.""" model = Sequential(layers) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) return model def train_and_evaluate(model, num_epochs, steps_per_epoch, output_dir): """Compiles keras model and loads data into it for training.""" mnist = tf.keras.datasets.mnist.load_data() train_data = util.load_dataset(mnist) validation_data = util.load_dataset(mnist, training=False) callbacks = [] if output_dir: tensorboard_callback = TensorBoard(log_dir=output_dir) callbacks = [tensorboard_callback] history = model.fit( train_data, validation_data=validation_data, epochs=num_epochs, steps_per_epoch=steps_per_epoch, verbose=2, callbacks=callbacks) if output_dir: export_path = os.path.join(output_dir, 'keras_export') model.save(export_path, save_format='tf') return history ###Output _____no_output_____ ###Markdown Local TrainingWith everything set up, let's run locally to test the code. Some of the previous tests have been copied over into a testing script `mnist_models/trainer/test.py` to make sure the model still passes our previous checks. On `line 13`, you can specify which model types you would like to check. `line 14` and `line 15` has the number of epochs and steps per epoch respectively.Moment of truth! Run the code below to check your models against the unit tests. If you see "OK" at the end when it's finished running, congrats! You've passed the tests! ###Code !python3 -m mnist_models.trainer.test ###Output _____no_output_____ ###Markdown Now that we know that our models are working as expected, let's run it on the [Google Cloud AI Platform](https://cloud.google.com/ml-engine/docs/). We can run it as a python module locally first using the command line.The below cell transfers some of our variables to the command line as well as create a job directory including a timestamp. ###Code current_time = datetime.now().strftime("%y%m%d_%H%M%S") model_type = 'cnn' # "linear", "cnn", "dnn_dropout", or "dnn" os.environ["MODEL_TYPE"] = model_type os.environ["JOB_DIR"] = "mnist_models/models/{}_{}/".format( model_type, current_time) ###Output _____no_output_____ ###Markdown The cell below runs the local version of the code. The epochs and steps_per_epoch flag can be changed to run for longer or shorter, as defined in our `mnist_models/trainer/task.py` file. ###Code %%bash python3 -m mnist_models.trainer.task \ --job-dir=$JOB_DIR \ --epochs=5 \ --steps_per_epoch=50 \ --model_type=$MODEL_TYPE ###Output _____no_output_____ ###Markdown Training on the cloudSince we're using an unreleased version of TensorFlow on AI Platform, we can instead use a [Deep Learning Container](https://cloud.google.com/ai-platform/deep-learning-containers/docs/overview) in order to take advantage of libraries and applications not normally packaged with AI Platform. Below is a simple [Dockerlife](https://docs.docker.com/engine/reference/builder/) which copies our code to be used in a TF2 environment. ###Code %%writefile mnist_models/Dockerfile FROM gcr.io/deeplearning-platform-release/tf2-cpu COPY mnist_models/trainer /mnist_models/trainer ENTRYPOINT ["python3", "-m", "mnist_models.trainer.task"] ###Output _____no_output_____ ###Markdown The below command builds the image and ships it off to Google Cloud so it can be used for AI Platform. When built, it will show up [here](http://console.cloud.google.com/gcr) with the name `mnist_models`. ([Click here](https://console.cloud.google.com/cloud-build) to enable Cloud Build) ###Code !docker build -f mnist_models/Dockerfile -t $IMAGE_URI ./ !docker push $IMAGE_URI ###Output _____no_output_____ ###Markdown Finally, we can kickoff the [AI Platform training job](https://cloud.google.com/sdk/gcloud/reference/ai-platform/jobs/submit/training). We can pass in our docker image using the `master-image-uri` flag. ###Code current_time = datetime.now().strftime("%y%m%d_%H%M%S") model_type = 'cnn' # "linear", "cnn", "dnn_dropout", or "dnn" os.environ["MODEL_TYPE"] = model_type os.environ["JOB_DIR"] = "gs://{}/mnist_{}_{}/".format( BUCKET, model_type, current_time) os.environ["JOB_NAME"] = "mnist_{}_{}".format( model_type, current_time) %%bash echo $JOB_DIR $REGION $JOB_NAME gcloud ai-platform jobs submit training $JOB_NAME \ --staging-bucket=gs://$BUCKET \ --region=$REGION \ --master-image-uri=$IMAGE_URI \ --scale-tier=BASIC_GPU \ --job-dir=$JOB_DIR \ -- \ --model_type=$MODEL_TYPE ###Output _____no_output_____ ###Markdown Deploying and predicting with modelOnce you have a model you're proud of, let's deploy it! All we need to do is give AI Platform the location of the model. Below uses the keras export path of the previous job, but `${JOB_DIR}keras_export/` can always be changed to a different path.Uncomment the delete commands below if you are getting an "already exists error" and want to deploy a new model. ###Code %%bash MODEL_NAME="mnist" MODEL_VERSION=${MODEL_TYPE} MODEL_LOCATION=${JOB_DIR}keras_export/ echo "Deleting and deploying $MODEL_NAME $MODEL_VERSION from $MODEL_LOCATION ... this will take a few minutes" #yes | gcloud ai-platform versions delete ${MODEL_VERSION} --model ${MODEL_NAME} #yes | gcloud ai-platform models delete ${MODEL_NAME} gcloud config set ai_platform/region global gcloud ai-platform models create ${MODEL_NAME} --regions $REGION gcloud ai-platform versions create ${MODEL_VERSION} \ --model ${MODEL_NAME} \ --origin ${MODEL_LOCATION} \ --framework tensorflow \ --runtime-version=2.6 ###Output _____no_output_____ ###Markdown To predict with the model, let's take one of the example images.**TODO 4**: Write a `.json` file with image data to send to an AI Platform deployed model ###Code import json, codecs import tensorflow as tf import matplotlib.pyplot as plt from mnist_models.trainer import util HEIGHT = 28 WIDTH = 28 IMGNO = 12 mnist = tf.keras.datasets.mnist.load_data() (x_train, y_train), (x_test, y_test) = mnist test_image = x_test[IMGNO] jsondata = test_image.reshape(HEIGHT, WIDTH, 1).tolist() json.dump(jsondata, codecs.open("test.json", "w", encoding = "utf-8")) plt.imshow(test_image.reshape(HEIGHT, WIDTH)); ###Output _____no_output_____ ###Markdown Finally, we can send it to the prediction service. The output will have a 1 in the index of the corresponding digit it is predicting. Congrats! You've completed the lab! ###Code %%bash gcloud ai-platform predict \ --model=mnist \ --version=${MODEL_TYPE} \ --json-instances=./test.json ###Output _____no_output_____ ###Markdown MNIST Image Classification with TensorFlow on Cloud ML EngineThis notebook demonstrates how to implement different image models on MNIST using the [tf.keras API](https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras). Learning Objectives1. Understand how to build a Dense Neural Network (DNN) for image classification2. Understand how to use dropout (DNN) for image classification3. Understand how to use Convolutional Neural Networks (CNN)4. Know how to deploy and use an image classifcation model using Google Cloud's [AI Platform](https://cloud.google.com/ai-platform/)First things first. Configure the parameters below to match your own Google Cloud project details. ###Code from datetime import datetime import os PROJECT = "your-project-id-here" # REPLACE WITH YOUR PROJECT ID BUCKET = "your-bucket-id-here" # REPLACE WITH YOUR BUCKET NAME REGION = "us-central1" # REPLACE WITH YOUR BUCKET REGION e.g. us-central1 # Do not change these os.environ["PROJECT"] = PROJECT os.environ["BUCKET"] = BUCKET os.environ["REGION"] = REGION os.environ["IMAGE_URI"] = os.path.join("gcr.io", PROJECT, "mnist_models") ###Output _____no_output_____ ###Markdown Building a dynamic modelIn the previous notebook, mnist_linear.ipynb, we ran our code directly from the notebook. In order to run it on the AI Platform, it needs to be packaged as a python module.The boilerplate structure for this module has already been set up in the folder `mnist_models`. The module lives in the sub-folder, `trainer`, and is designated as a python package with the empty `__init__.py` (`mnist_models/trainer/__init__.py`) file. It still needs the model and a trainer to run it, so let's make them.Let's start with the trainer file first. This file parses command line arguments to feed into the model. ###Code %%writefile mnist_models/trainer/task.py import argparse import json import os import sys from . import model def _parse_arguments(argv): """Parses command-line arguments.""" parser = argparse.ArgumentParser() parser.add_argument( '--model_type', help='Which model type to use', type=str, default='linear') parser.add_argument( '--epochs', help='The number of epochs to train', type=int, default=10) parser.add_argument( '--steps_per_epoch', help='The number of steps per epoch to train', type=int, default=100) parser.add_argument( '--job-dir', help='Directory where to save the given model', type=str, default='mnist_models/') return parser.parse_known_args(argv) def main(): """Parses command line arguments and kicks off model training.""" args = _parse_arguments(sys.argv[1:])[0] # Configure path for hyperparameter tuning. trial_id = json.loads( os.environ.get('TF_CONFIG', '{}')).get('task', {}).get('trial', '') output_path = args.job_dir if not trial_id else args.job_dir + '/' model_layers = model.get_layers(args.model_type) image_model = model.build_model(model_layers, args.job_dir) model_history = model.train_and_evaluate( image_model, args.epochs, args.steps_per_epoch, args.job_dir) if __name__ == '__main__': main() ###Output _____no_output_____ ###Markdown Next, let's group non-model functions into a util file to keep the model file simple. We'll copy over the `scale` and `load_dataset` functions from the previous lab. ###Code %%writefile mnist_models/trainer/util.py import tensorflow as tf def scale(image, label): """Scales images from a 0-255 int range to a 0-1 float range""" image = tf.cast(image, tf.float32) image /= 255 image = tf.expand_dims(image, -1) return image, label def load_dataset( data, training=True, buffer_size=5000, batch_size=100, nclasses=10): """Loads MNIST dataset into a tf.data.Dataset""" (x_train, y_train), (x_test, y_test) = data x = x_train if training else x_test y = y_train if training else y_test # One-hot encode the classes y = tf.keras.utils.to_categorical(y, nclasses) dataset = tf.data.Dataset.from_tensor_slices((x, y)) dataset = dataset.map(scale).batch(batch_size) if training: dataset = dataset.shuffle(buffer_size).repeat() return dataset ###Output _____no_output_____ ###Markdown Finally, let's code the models! The [tf.keras API](https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras) accepts an array of [layers](https://www.tensorflow.org/api_docs/python/tf/keras/layers) into a [model object](https://www.tensorflow.org/api_docs/python/tf/keras/Model), so we can create a dictionary of layers based on the different model types we want to use. The below file has two functions: `get_layers` and `create_and_train_model`. We will build the structure of our model in `get_layers`. Last but not least, we'll copy over the training code from the previous lab into `train_and_evaluate`.**TODO 1**: Define the Keras layers for a DNN model **TODO 2**: Define the Keras layers for a dropout model **TODO 3**: Define the Keras layers for a CNN model Hint: These models progressively build on each other. Look at the imported `tensorflow.keras.layers` modules and the default values for the variables defined in `get_layers` for guidance. ###Code %%writefile mnist_models/trainer/model.py import os import shutil import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from tensorflow.keras import Sequential from tensorflow.keras.callbacks import TensorBoard from tensorflow.keras.layers import ( Conv2D, Dense, Dropout, Flatten, MaxPooling2D, Softmax) from . import util # Image Variables WIDTH = 28 HEIGHT = 28 def get_layers( model_type, nclasses=10, hidden_layer_1_neurons=400, hidden_layer_2_neurons=100, dropout_rate=0.25, num_filters_1=64, kernel_size_1=3, pooling_size_1=2, num_filters_2=32, kernel_size_2=3, pooling_size_2=2): """Constructs layers for a keras model based on a dict of model types.""" model_layers = { 'linear': [ Flatten(), Dense(nclasses), Softmax() ], 'dnn': [ # TODO ], 'dnn_dropout': [ # TODO ], 'cnn': [ # TODO ] } return model_layers[model_type] def build_model(layers, output_dir): """Compiles keras model for image classification.""" model = Sequential(layers) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) return model def train_and_evaluate(model, num_epochs, steps_per_epoch, output_dir): """Compiles keras model and loads data into it for training.""" mnist = tf.keras.datasets.mnist.load_data() train_data = util.load_dataset(mnist) validation_data = util.load_dataset(mnist, training=False) callbacks = [] if output_dir: tensorboard_callback = TensorBoard(log_dir=output_dir) callbacks = [tensorboard_callback] history = model.fit( train_data, validation_data=validation_data, epochs=num_epochs, steps_per_epoch=steps_per_epoch, verbose=2, callbacks=callbacks) if output_dir: export_path = os.path.join(output_dir, 'keras_export') model.save(export_path, save_format='tf') return history ###Output _____no_output_____ ###Markdown Local TrainingWith everything set up, let's run locally to test the code. Some of the previous tests have been copied over into a testing script `mnist_models/trainer/test.py` to make sure the model still passes our previous checks. On `line 13`, you can specify which model types you would like to check. `line 14` and `line 15` has the number of epochs and steps per epoch respectively.Moment of truth! Run the code below to check your models against the unit tests. If you see "OK" at the end when it's finished running, congrats! You've passed the tests! ###Code !python3 -m mnist_models.trainer.test ###Output _____no_output_____ ###Markdown Now that we know that our models are working as expected, let's run it on the [Google Cloud AI Platform](https://cloud.google.com/ml-engine/docs/). We can run it as a python module locally first using the command line.The below cell transfers some of our variables to the command line as well as create a job directory including a timestamp. This is where our model and tensorboard data will be stored. ###Code current_time = datetime.now().strftime("%y%m%d_%H%M%S") model_type = 'cnn' os.environ["MODEL_TYPE"] = model_type os.environ["JOB_DIR"] = "mnist_models/models/{}_{}/".format( model_type, current_time) ###Output _____no_output_____ ###Markdown The cell below runs the local version of the code. The epochs and steps_per_epoch flag can be changed to run for longer or shorther, as defined in our `mnist_models/trainer/task.py` file. ###Code %%bash python3 -m mnist_models.trainer.task \ --job-dir=$JOB_DIR \ --epochs=5 \ --steps_per_epoch=50 \ --model_type=$MODEL_TYPE ###Output _____no_output_____ ###Markdown Let's check out how the model did in tensorboard and confirm that it's good to go before kicking it off to train on the cloud. If running on a Deep Learning VM, open the folder corresponding to the `--job-dir` above. Then, go to File > New Launcher. Click on Tensorboard under "Other".If runnining locally, the following command can be run in a terminal:`tensorboard --logdir=` Training on the cloudSince we're using an unreleased version of TensorFlow on AI Platform, we can instead use a [Deep Learning Container](https://cloud.google.com/ai-platform/deep-learning-containers/docs/overview) in order to take advantage of libraries and applications not normally packaged with AI Platform. Below is a simple [Dockerlife](https://docs.docker.com/engine/reference/builder/) which copies our code to be used in a TF2 environment. ###Code %%writefile mnist_models/Dockerfile FROM gcr.io/deeplearning-platform-release/tf2-cpu COPY mnist_models/trainer /mnist_models/trainer ENTRYPOINT ["python3", "-m", "mnist_models.trainer.task"] ###Output _____no_output_____ ###Markdown The below command builds the image and ships it off to Google Cloud so it can be used for AI Platform. When built, it will show up [here](http://console.cloud.google.com/gcr) with the name `mnist_models`. ([Click here](https://console.cloud.google.com/cloud-build) to enable Cloud Build) ###Code !docker build -f mnist_models/Dockerfile -t $IMAGE_URI ./ !docker push $IMAGE_URI ###Output _____no_output_____ ###Markdown Finally, we can kickoff the [AI Platform training job](https://cloud.google.com/sdk/gcloud/reference/ai-platform/jobs/submit/training). We can pass in our docker image using the `master-image-uri` flag. ###Code current_time = datetime.now().strftime("%y%m%d_%H%M%S") model_type = 'cnn' os.environ["MODEL_TYPE"] = model_type os.environ["JOB_DIR"] = "gs://{}/mnist_{}_{}/".format( BUCKET, model_type, current_time) os.environ["JOB_NAME"] = "mnist_{}_{}".format( model_type, current_time) %%bash echo $JOB_DIR $REGION $JOB_NAME gcloud ai-platform jobs submit training $JOB_NAME \ --staging-bucket=gs://$BUCKET \ --region=$REGION \ --master-image-uri=$IMAGE_URI \ --scale-tier=BASIC_GPU \ --job-dir=$JOB_DIR \ -- \ --model_type=$MODEL_TYPE ###Output _____no_output_____ ###Markdown Can't wait to see the results? Run the code below and copy the output into the [Google Cloud Shell](https://console.cloud.google.com/home/dashboard?cloudshell=true) to follow along with TensorBoard. Look at the web preview on port 6006. ###Code !echo "tensorboard --logdir $JOB_DIR" ###Output _____no_output_____ ###Markdown Deploying and predicting with modelOnce you have a model you're proud of, let's deploy it! All we need to do is give AI Platform the location of the model. Below uses the keras export path of the previous job, but `${JOB_DIR}keras_export/` can always be changed to a different path.Even though we're using a 1.14 runtime, it's compatable with TF2 exported models. Phew!Uncomment the delete commands below if you are getting an "already exists error" and want to deploy a new model. ###Code %%bash MODEL_NAME="mnist" MODEL_VERSION=${MODEL_TYPE} MODEL_LOCATION=${JOB_DIR}keras_export/ echo "Deleting and deploying $MODEL_NAME $MODEL_VERSION from $MODEL_LOCATION ... this will take a few minutes" #yes | gcloud ai-platform versions delete ${MODEL_VERSION} --model ${MODEL_NAME} #yes | gcloud ai-platform models delete ${MODEL_NAME} gcloud ai-platform models create ${MODEL_NAME} --regions $REGION gcloud ai-platform versions create ${MODEL_VERSION} \ --model ${MODEL_NAME} \ --origin ${MODEL_LOCATION} \ --framework tensorflow \ --runtime-version=1.14 ###Output _____no_output_____ ###Markdown To predict with the model, let's take one of the example images.**TODO 4**: Write a `.json` file with image data to send to an AI Platform deployed model ###Code import json, codecs import tensorflow as tf import matplotlib.pyplot as plt from mnist_models.trainer import util HEIGHT = 28 WIDTH = 28 IMGNO = 12 mnist = tf.keras.datasets.mnist.load_data() (x_train, y_train), (x_test, y_test) = mnist test_image = x_test[IMGNO] jsondata = test_image.reshape(HEIGHT, WIDTH, 1).tolist() json.dump(jsondata, codecs.open("test.json", "w", encoding = "utf-8")) plt.imshow(test_image.reshape(HEIGHT, WIDTH)); ###Output _____no_output_____ ###Markdown Finally, we can send it to the prediction service. The output will have a 1 in the index of the corresponding digit it is predicting. Congrats! You've completed the lab! ###Code %%bash gcloud ai-platform predict \ --model=mnist \ --version=${MODEL_TYPE} \ --json-instances=./test.json ###Output _____no_output_____ ###Markdown MNIST Image Classification with TensorFlow on Cloud AI PlatformThis notebook demonstrates how to implement different image models on MNIST using the [tf.keras API](https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras). Learning objectives1. Understand how to build a Dense Neural Network (DNN) for image classification2. Understand how to use dropout (DNN) for image classification3. Understand how to use Convolutional Neural Networks (CNN)4. Know how to deploy and use an image classification model using Google Cloud's [Vertex AI](https://cloud.google.com/vertex-ai/)Each learning objective will correspond to a __TODO__ in the notebook, where you will complete the notebook cell's code before running the cell. Refer to the [solution notebook](../solutions/2_mnist_models.ipynb))for reference.First things first. Configure the parameters below to match your own Google Cloud project details. ###Code !sudo chown -R jupyter:jupyter /home/jupyter/training-data-analyst # Here we'll show the currently installed version of TensorFlow import tensorflow as tf print(tf.__version__) from datetime import datetime import os PROJECT = "your-project-id-here" # REPLACE WITH YOUR PROJECT ID BUCKET = "your-bucket-id-here" # REPLACE WITH YOUR BUCKET NAME REGION = "us-central1" # REPLACE WITH YOUR BUCKET REGION e.g. us-central1 MODEL_TYPE = "cnn" # "linear", "cnn", "dnn_dropout", or "dnn" # Do not change these os.environ["PROJECT"] = PROJECT os.environ["BUCKET"] = BUCKET os.environ["REGION"] = REGION os.environ["MODEL_TYPE"] = MODEL_TYPE os.environ["TFVERSION"] = "2.6" # Tensorflow version os.environ["IMAGE_URI"] = os.path.join("gcr.io", PROJECT, "mnist_models") ###Output _____no_output_____ ###Markdown Building a dynamic modelIn the previous notebook, 1_mnist_linear.ipynb, we ran our code directly from the notebook. In order to run it on the AI Platform, it needs to be packaged as a python module.The boilerplate structure for this module has already been set up in the folder `mnist_models`. The module lives in the sub-folder, `trainer`, and is designated as a python package with the empty `__init__.py` (`mnist_models/trainer/__init__.py`) file. It still needs the model and a trainer to run it, so let's make them.Let's start with the trainer file first. This file parses command line arguments to feed into the model. ###Code %%writefile mnist_models/trainer/task.py import argparse import json import os import sys from . import model def _parse_arguments(argv): """Parses command-line arguments.""" parser = argparse.ArgumentParser() parser.add_argument( '--model_type', help='Which model type to use', type=str, default='linear') parser.add_argument( '--epochs', help='The number of epochs to train', type=int, default=10) parser.add_argument( '--steps_per_epoch', help='The number of steps per epoch to train', type=int, default=100) parser.add_argument( '--job-dir', help='Directory where to save the given model', type=str, default='mnist_models/') return parser.parse_known_args(argv) def main(): """Parses command line arguments and kicks off model training.""" args = _parse_arguments(sys.argv[1:])[0] # Configure path for hyperparameter tuning. trial_id = json.loads( os.environ.get('TF_CONFIG', '{}')).get('task', {}).get('trial', '') output_path = args.job_dir if not trial_id else args.job_dir + '/' model_layers = model.get_layers(args.model_type) image_model = model.build_model(model_layers, args.job_dir) model_history = model.train_and_evaluate( image_model, args.epochs, args.steps_per_epoch, args.job_dir) if __name__ == '__main__': main() ###Output _____no_output_____ ###Markdown Next, let's group non-model functions into a util file to keep the model file simple. We'll copy over the `scale` and `load_dataset` functions from the previous lab. ###Code %%writefile mnist_models/trainer/util.py import tensorflow as tf def scale(image, label): """Scales images from a 0-255 int range to a 0-1 float range""" image = tf.cast(image, tf.float32) image /= 255 image = tf.expand_dims(image, -1) return image, label def load_dataset( data, training=True, buffer_size=5000, batch_size=100, nclasses=10): """Loads MNIST dataset into a tf.data.Dataset""" (x_train, y_train), (x_test, y_test) = data x = x_train if training else x_test y = y_train if training else y_test # One-hot encode the classes y = tf.keras.utils.to_categorical(y, nclasses) dataset = tf.data.Dataset.from_tensor_slices((x, y)) dataset = dataset.map(scale).batch(batch_size) if training: dataset = dataset.shuffle(buffer_size).repeat() return dataset ###Output _____no_output_____ ###Markdown Finally, let's code the models! The [tf.keras API](https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras) accepts an array of [layers](https://www.tensorflow.org/api_docs/python/tf/keras/layers) into a [model object](https://www.tensorflow.org/api_docs/python/tf/keras/Model), so we can create a dictionary of layers based on the different model types we want to use. The below file has two functions: `get_layers` and `create_and_train_model`. We will build the structure of our model in `get_layers`. Last but not least, we'll copy over the training code from the previous lab into `train_and_evaluate`.**TODO 1**: Define the Keras layers for a DNN model **TODO 2**: Define the Keras layers for a dropout model **TODO 3**: Define the Keras layers for a CNN model Hint: These models progressively build on each other. Look at the imported `tensorflow.keras.layers` modules and the default values for the variables defined in `get_layers` for guidance. ###Code %%writefile mnist_models/trainer/model.py import os import shutil import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from tensorflow.keras import Sequential from tensorflow.keras.callbacks import TensorBoard from tensorflow.keras.layers import ( Conv2D, Dense, Dropout, Flatten, MaxPooling2D, Softmax) from . import util # Image Variables WIDTH = 28 HEIGHT = 28 def get_layers( model_type, nclasses=10, hidden_layer_1_neurons=400, hidden_layer_2_neurons=100, dropout_rate=0.25, num_filters_1=64, kernel_size_1=3, pooling_size_1=2, num_filters_2=32, kernel_size_2=3, pooling_size_2=2): """Constructs layers for a keras model based on a dict of model types.""" model_layers = { 'linear': [ Flatten(), Dense(nclasses), Softmax() ], 'dnn': [ # TODO ], 'dnn_dropout': [ # TODO ], 'cnn': [ # TODO ] } return model_layers[model_type] def build_model(layers, output_dir): """Compiles keras model for image classification.""" model = Sequential(layers) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) return model def train_and_evaluate(model, num_epochs, steps_per_epoch, output_dir): """Compiles keras model and loads data into it for training.""" mnist = tf.keras.datasets.mnist.load_data() train_data = util.load_dataset(mnist) validation_data = util.load_dataset(mnist, training=False) callbacks = [] if output_dir: tensorboard_callback = TensorBoard(log_dir=output_dir) callbacks = [tensorboard_callback] history = model.fit( train_data, validation_data=validation_data, epochs=num_epochs, steps_per_epoch=steps_per_epoch, verbose=2, callbacks=callbacks) if output_dir: export_path = os.path.join(output_dir, 'keras_export') model.save(export_path, save_format='tf') return history ###Output _____no_output_____ ###Markdown Local TrainingWith everything set up, let's run locally to test the code. Some of the previous tests have been copied over into a testing script `mnist_models/trainer/test.py` to make sure the model still passes our previous checks. On `line 13`, you can specify which model types you would like to check. `line 14` and `line 15` has the number of epochs and steps per epoch respectively.Moment of truth! Run the code below to check your models against the unit tests. If you see "OK" at the end when it's finished running, congrats! You've passed the tests! ###Code !python3 -m mnist_models.trainer.test ###Output _____no_output_____ ###Markdown Now that we know that our models are working as expected, let's run it on the [Google Cloud AI Platform](https://cloud.google.com/ml-engine/docs/). We can run it as a python module locally first using the command line.The below cell transfers some of our variables to the command line as well as create a job directory including a timestamp. ###Code current_time = datetime.now().strftime("%y%m%d_%H%M%S") model_type = 'cnn' # "linear", "cnn", "dnn_dropout", or "dnn" os.environ["MODEL_TYPE"] = model_type os.environ["JOB_DIR"] = "mnist_models/models/{}_{}/".format( model_type, current_time) ###Output _____no_output_____ ###Markdown The cell below runs the local version of the code. The epochs and steps_per_epoch flag can be changed to run for longer or shorter, as defined in our `mnist_models/trainer/task.py` file. ###Code %%bash python3 -m mnist_models.trainer.task \ --job-dir=$JOB_DIR \ --epochs=5 \ --steps_per_epoch=50 \ --model_type=$MODEL_TYPE ###Output _____no_output_____ ###Markdown Training on the cloudSince we're using an unreleased version of TensorFlow on AI Platform, we can instead use a [Deep Learning Container](https://cloud.google.com/ai-platform/deep-learning-containers/docs/overview) in order to take advantage of libraries and applications not normally packaged with AI Platform. Below is a simple [Dockerlife](https://docs.docker.com/engine/reference/builder/) which copies our code to be used in a TF2 environment. ###Code %%writefile mnist_models/Dockerfile FROM gcr.io/deeplearning-platform-release/tf2-cpu COPY mnist_models/trainer /mnist_models/trainer ENTRYPOINT ["python3", "-m", "mnist_models.trainer.task"] ###Output _____no_output_____ ###Markdown The below command builds the image and ships it off to Google Cloud so it can be used for AI Platform. When built, it will show up [here](http://console.cloud.google.com/gcr) with the name `mnist_models`. ([Click here](https://console.cloud.google.com/cloud-build) to enable Cloud Build) ###Code !docker build -f mnist_models/Dockerfile -t $IMAGE_URI ./ !docker push $IMAGE_URI ###Output _____no_output_____ ###Markdown Finally, we can kickoff the [AI Platform training job](https://cloud.google.com/sdk/gcloud/reference/ai-platform/jobs/submit/training). We can pass in our docker image using the `master-image-uri` flag. ###Code current_time = datetime.now().strftime("%y%m%d_%H%M%S") model_type = 'cnn' # "linear", "cnn", "dnn_dropout", or "dnn" os.environ["MODEL_TYPE"] = model_type os.environ["JOB_DIR"] = "gs://{}/mnist_{}_{}/".format( BUCKET, model_type, current_time) os.environ["JOB_NAME"] = "mnist_{}_{}".format( model_type, current_time) ###Output _____no_output_____ ###Markdown AI platform job could take around 10 minutes to complete. Enable the **AI Platform Training & Prediction API**, if required. ###Code %%bash echo $JOB_DIR $REGION $JOB_NAME gcloud ai-platform jobs submit training $JOB_NAME \ --staging-bucket=gs://$BUCKET \ --region=$REGION \ --master-image-uri=$IMAGE_URI \ --scale-tier=BASIC_GPU \ --job-dir=$JOB_DIR \ -- \ --model_type=$MODEL_TYPE ###Output _____no_output_____ ###Markdown Deploying and predicting with modelOnce you have a model you're proud of, let's deploy it! All we need to do is give AI Platform the location of the model. Below uses the keras export path of the previous job, but `${JOB_DIR}keras_export/` can always be changed to a different path.Uncomment the delete commands below if you are getting an "already exists error" and want to deploy a new model. ###Code %%bash gcloud config set ai_platform/region global %%bash MODEL_NAME="mnist" MODEL_VERSION=${MODEL_TYPE} MODEL_LOCATION=${JOB_DIR}keras_export/ echo "Deleting and deploying $MODEL_NAME $MODEL_VERSION from $MODEL_LOCATION ... this will take a few minutes" #yes | gcloud ai-platform versions delete ${MODEL_VERSION} --model ${MODEL_NAME} #yes | gcloud ai-platform models delete ${MODEL_NAME} gcloud ai-platform models create ${MODEL_NAME} --regions $REGION gcloud ai-platform versions create ${MODEL_VERSION} \ --model ${MODEL_NAME} \ --origin ${MODEL_LOCATION} \ --framework tensorflow \ --runtime-version=2.6 ###Output _____no_output_____ ###Markdown To predict with the model, let's take one of the example images.**TODO 4**: Write a `.json` file with image data to send to an AI Platform deployed model ###Code import json, codecs import tensorflow as tf import matplotlib.pyplot as plt from mnist_models.trainer import util HEIGHT = 28 WIDTH = 28 IMGNO = 12 mnist = tf.keras.datasets.mnist.load_data() (x_train, y_train), (x_test, y_test) = mnist test_image = x_test[IMGNO] jsondata = test_image.reshape(HEIGHT, WIDTH, 1).tolist() json.dump(jsondata, codecs.open("test.json", "w", encoding = "utf-8")) plt.imshow(test_image.reshape(HEIGHT, WIDTH)); ###Output _____no_output_____ ###Markdown Finally, we can send it to the prediction service. The output will have a 1 in the index of the corresponding digit it is predicting. Congrats! You've completed the lab! ###Code %%bash gcloud ai-platform predict \ --model=mnist \ --version=${MODEL_TYPE} \ --json-instances=./test.json ###Output _____no_output_____ ###Markdown MNIST Image Classification with TensorFlow on Cloud AI PlatformThis notebook demonstrates how to implement different image models on MNIST using the [tf.keras API](https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras). Learning objectives1. Understand how to build a Dense Neural Network (DNN) for image classification2. Understand how to use dropout (DNN) for image classification3. Understand how to use Convolutional Neural Networks (CNN)4. Know how to deploy and use an image classification model using Google Cloud's [Vertex AI](https://cloud.google.com/vertex-ai/)Each learning objective will correspond to a __TODO__ in the notebook, where you will complete the notebook cell's code before running the cell. Refer to the [solution notebook](../solutions/2_mnist_models.ipynb))for reference.First things first. Configure the parameters below to match your own Google Cloud project details. ###Code !sudo chown -R jupyter:jupyter /home/jupyter/training-data-analyst # Here we'll show the currently installed version of TensorFlow import tensorflow as tf print(tf.__version__) from datetime import datetime import os PROJECT = "your-project-id-here" # REPLACE WITH YOUR PROJECT ID BUCKET = "your-bucket-id-here" # REPLACE WITH YOUR BUCKET NAME REGION = "us-central1" # REPLACE WITH YOUR BUCKET REGION e.g. us-central1 MODEL_TYPE = "cnn" # "linear", "cnn", "dnn_dropout", or "dnn" # Do not change these os.environ["PROJECT"] = PROJECT os.environ["BUCKET"] = BUCKET os.environ["REGION"] = REGION os.environ["MODEL_TYPE"] = MODEL_TYPE os.environ["TFVERSION"] = "2.6" # Tensorflow version os.environ["IMAGE_URI"] = os.path.join("gcr.io", PROJECT, "mnist_models") ###Output _____no_output_____ ###Markdown Building a dynamic modelIn the previous notebook, 1_mnist_linear.ipynb, we ran our code directly from the notebook. In order to run it on the AI Platform, it needs to be packaged as a python module.The boilerplate structure for this module has already been set up in the folder `mnist_models`. The module lives in the sub-folder, `trainer`, and is designated as a python package with the empty `__init__.py` (`mnist_models/trainer/__init__.py`) file. It still needs the model and a trainer to run it, so let's make them.Let's start with the trainer file first. This file parses command line arguments to feed into the model. ###Code %%writefile mnist_models/trainer/task.py import argparse import json import os import sys from . import model def _parse_arguments(argv): """Parses command-line arguments.""" parser = argparse.ArgumentParser() parser.add_argument( '--model_type', help='Which model type to use', type=str, default='linear') parser.add_argument( '--epochs', help='The number of epochs to train', type=int, default=10) parser.add_argument( '--steps_per_epoch', help='The number of steps per epoch to train', type=int, default=100) parser.add_argument( '--job-dir', help='Directory where to save the given model', type=str, default='mnist_models/') return parser.parse_known_args(argv) def main(): """Parses command line arguments and kicks off model training.""" args = _parse_arguments(sys.argv[1:])[0] # Configure path for hyperparameter tuning. trial_id = json.loads( os.environ.get('TF_CONFIG', '{}')).get('task', {}).get('trial', '') output_path = args.job_dir if not trial_id else args.job_dir + '/' model_layers = model.get_layers(args.model_type) image_model = model.build_model(model_layers, args.job_dir) model_history = model.train_and_evaluate( image_model, args.epochs, args.steps_per_epoch, args.job_dir) if __name__ == '__main__': main() ###Output _____no_output_____ ###Markdown Next, let's group non-model functions into a util file to keep the model file simple. We'll copy over the `scale` and `load_dataset` functions from the previous lab. ###Code %%writefile mnist_models/trainer/util.py import tensorflow as tf def scale(image, label): """Scales images from a 0-255 int range to a 0-1 float range""" image = tf.cast(image, tf.float32) image /= 255 image = tf.expand_dims(image, -1) return image, label def load_dataset( data, training=True, buffer_size=5000, batch_size=100, nclasses=10): """Loads MNIST dataset into a tf.data.Dataset""" (x_train, y_train), (x_test, y_test) = data x = x_train if training else x_test y = y_train if training else y_test # One-hot encode the classes y = tf.keras.utils.to_categorical(y, nclasses) dataset = tf.data.Dataset.from_tensor_slices((x, y)) dataset = dataset.map(scale).batch(batch_size) if training: dataset = dataset.shuffle(buffer_size).repeat() return dataset ###Output _____no_output_____ ###Markdown Finally, let's code the models! The [tf.keras API](https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras) accepts an array of [layers](https://www.tensorflow.org/api_docs/python/tf/keras/layers) into a [model object](https://www.tensorflow.org/api_docs/python/tf/keras/Model), so we can create a dictionary of layers based on the different model types we want to use. The below file has two functions: `get_layers` and `create_and_train_model`. We will build the structure of our model in `get_layers`. Last but not least, we'll copy over the training code from the previous lab into `train_and_evaluate`.**TODO 1**: Define the Keras layers for a DNN model **TODO 2**: Define the Keras layers for a dropout model **TODO 3**: Define the Keras layers for a CNN model Hint: These models progressively build on each other. Look at the imported `tensorflow.keras.layers` modules and the default values for the variables defined in `get_layers` for guidance. ###Code %%writefile mnist_models/trainer/model.py import os import shutil import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from tensorflow.keras import Sequential from tensorflow.keras.callbacks import TensorBoard from tensorflow.keras.layers import ( Conv2D, Dense, Dropout, Flatten, MaxPooling2D, Softmax) from . import util # Image Variables WIDTH = 28 HEIGHT = 28 def get_layers( model_type, nclasses=10, hidden_layer_1_neurons=400, hidden_layer_2_neurons=100, dropout_rate=0.25, num_filters_1=64, kernel_size_1=3, pooling_size_1=2, num_filters_2=32, kernel_size_2=3, pooling_size_2=2): """Constructs layers for a keras model based on a dict of model types.""" model_layers = { 'linear': [ Flatten(), Dense(nclasses), Softmax() ], 'dnn': [ # TODO ], 'dnn_dropout': [ # TODO ], 'cnn': [ # TODO ] } return model_layers[model_type] def build_model(layers, output_dir): """Compiles keras model for image classification.""" model = Sequential(layers) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) return model def train_and_evaluate(model, num_epochs, steps_per_epoch, output_dir): """Compiles keras model and loads data into it for training.""" mnist = tf.keras.datasets.mnist.load_data() train_data = util.load_dataset(mnist) validation_data = util.load_dataset(mnist, training=False) callbacks = [] if output_dir: tensorboard_callback = TensorBoard(log_dir=output_dir) callbacks = [tensorboard_callback] history = model.fit( train_data, validation_data=validation_data, epochs=num_epochs, steps_per_epoch=steps_per_epoch, verbose=2, callbacks=callbacks) if output_dir: export_path = os.path.join(output_dir, 'keras_export') model.save(export_path, save_format='tf') return history ###Output _____no_output_____ ###Markdown Local TrainingWith everything set up, let's run locally to test the code. Some of the previous tests have been copied over into a testing script `mnist_models/trainer/test.py` to make sure the model still passes our previous checks. On `line 13`, you can specify which model types you would like to check. `line 14` and `line 15` has the number of epochs and steps per epoch respectively.Moment of truth! Run the code below to check your models against the unit tests. If you see "OK" at the end when it's finished running, congrats! You've passed the tests! ###Code !python3 -m mnist_models.trainer.test ###Output _____no_output_____ ###Markdown Now that we know that our models are working as expected, let's run it on the [Google Cloud AI Platform](https://cloud.google.com/ml-engine/docs/). We can run it as a python module locally first using the command line.The below cell transfers some of our variables to the command line as well as create a job directory including a timestamp. ###Code current_time = datetime.now().strftime("%y%m%d_%H%M%S") model_type = 'cnn' # "linear", "cnn", "dnn_dropout", or "dnn" os.environ["MODEL_TYPE"] = model_type os.environ["JOB_DIR"] = "mnist_models/models/{}_{}/".format( model_type, current_time) ###Output _____no_output_____ ###Markdown The cell below runs the local version of the code. The epochs and steps_per_epoch flag can be changed to run for longer or shorter, as defined in our `mnist_models/trainer/task.py` file. ###Code %%bash python3 -m mnist_models.trainer.task \ --job-dir=$JOB_DIR \ --epochs=5 \ --steps_per_epoch=50 \ --model_type=$MODEL_TYPE ###Output _____no_output_____ ###Markdown Training on the cloudSince we're using an unreleased version of TensorFlow on AI Platform, we can instead use a [Deep Learning Container](https://cloud.google.com/ai-platform/deep-learning-containers/docs/overview) in order to take advantage of libraries and applications not normally packaged with AI Platform. Below is a simple [Dockerlife](https://docs.docker.com/engine/reference/builder/) which copies our code to be used in a TF2 environment. ###Code %%writefile mnist_models/Dockerfile FROM gcr.io/deeplearning-platform-release/tf2-cpu COPY mnist_models/trainer /mnist_models/trainer ENTRYPOINT ["python3", "-m", "mnist_models.trainer.task"] ###Output _____no_output_____ ###Markdown The below command builds the image and ships it off to Google Cloud so it can be used for AI Platform. When built, it will show up [here](http://console.cloud.google.com/gcr) with the name `mnist_models`. ([Click here](https://console.cloud.google.com/cloud-build) to enable Cloud Build) ###Code !docker build -f mnist_models/Dockerfile -t $IMAGE_URI ./ !docker push $IMAGE_URI ###Output _____no_output_____ ###Markdown Finally, we can kickoff the [AI Platform training job](https://cloud.google.com/sdk/gcloud/reference/ai-platform/jobs/submit/training). We can pass in our docker image using the `master-image-uri` flag. ###Code current_time = datetime.now().strftime("%y%m%d_%H%M%S") model_type = 'cnn' # "linear", "cnn", "dnn_dropout", or "dnn" os.environ["MODEL_TYPE"] = model_type os.environ["JOB_DIR"] = "gs://{}/mnist_{}_{}/".format( BUCKET, model_type, current_time) os.environ["JOB_NAME"] = "mnist_{}_{}".format( model_type, current_time) ###Output _____no_output_____ ###Markdown AI platform job could take around 10 minutes to complete. Enable the **AI Platform Training & Prediction API**, if required. ###Code %%bash echo $JOB_DIR $REGION $JOB_NAME gcloud ai-platform jobs submit training $JOB_NAME \ --staging-bucket=gs://$BUCKET \ --region=$REGION \ --master-image-uri=$IMAGE_URI \ --scale-tier=BASIC_GPU \ --job-dir=$JOB_DIR \ -- \ --model_type=$MODEL_TYPE ###Output _____no_output_____ ###Markdown Deploying and predicting with modelOnce you have a model you're proud of, let's deploy it! All we need to do is give AI Platform the location of the model. Below uses the keras export path of the previous job, but `${JOB_DIR}keras_export/` can always be changed to a different path.Uncomment the delete commands below if you are getting an "already exists error" and want to deploy a new model. ###Code %%bash MODEL_NAME="mnist" MODEL_VERSION=${MODEL_TYPE} MODEL_LOCATION=${JOB_DIR}keras_export/ echo "Deleting and deploying $MODEL_NAME $MODEL_VERSION from $MODEL_LOCATION ... this will take a few minutes" #yes | gcloud ai-platform versions delete ${MODEL_VERSION} --model ${MODEL_NAME} #yes | gcloud ai-platform models delete ${MODEL_NAME} gcloud config set ai_platform/region global gcloud ai-platform models create ${MODEL_NAME} --regions $REGION gcloud ai-platform versions create ${MODEL_VERSION} \ --model ${MODEL_NAME} \ --origin ${MODEL_LOCATION} \ --framework tensorflow \ --runtime-version=2.6 ###Output _____no_output_____ ###Markdown To predict with the model, let's take one of the example images.**TODO 4**: Write a `.json` file with image data to send to an AI Platform deployed model ###Code import json, codecs import tensorflow as tf import matplotlib.pyplot as plt from mnist_models.trainer import util HEIGHT = 28 WIDTH = 28 IMGNO = 12 mnist = tf.keras.datasets.mnist.load_data() (x_train, y_train), (x_test, y_test) = mnist test_image = x_test[IMGNO] jsondata = test_image.reshape(HEIGHT, WIDTH, 1).tolist() json.dump(jsondata, codecs.open("test.json", "w", encoding = "utf-8")) plt.imshow(test_image.reshape(HEIGHT, WIDTH)); ###Output _____no_output_____ ###Markdown Finally, we can send it to the prediction service. The output will have a 1 in the index of the corresponding digit it is predicting. Congrats! You've completed the lab! ###Code %%bash gcloud ai-platform predict \ --model=mnist \ --version=${MODEL_TYPE} \ --json-instances=./test.json ###Output _____no_output_____ ###Markdown MNIST Image Classification with TensorFlow on Cloud ML EngineThis notebook demonstrates how to implement different image models on MNIST using the [tf.keras API](https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras). Learning Objectives1. Understand how to build a Dense Neural Network (DNN) for image classification2. Understand how to use dropout (DNN) for image classification3. Understand how to use Convolutional Neural Networks (CNN)4. Know how to deploy and use an image classifcation model using Google Cloud's [AI Platform](https://cloud.google.com/ai-platform/)First things first. Configure the parameters below to match your own Google Cloud project details. ###Code from datetime import datetime import os PROJECT = "your-project-id-here" # REPLACE WITH YOUR PROJECT ID BUCKET = "your-bucket-id-here" # REPLACE WITH YOUR BUCKET NAME REGION = "us-central1" # REPLACE WITH YOUR BUCKET REGION e.g. us-central1 # Do not change these os.environ["PROJECT"] = PROJECT os.environ["BUCKET"] = BUCKET os.environ["REGION"] = REGION os.environ["IMAGE_URI"] = os.path.join("gcr.io", PROJECT, "mnist_models") ###Output _____no_output_____ ###Markdown Building a dynamic modelIn the previous notebook, mnist_linear.ipynb, we ran our code directly from the notebook. In order to run it on the AI Platform, it needs to be packaged as a python module.The boilerplate structure for this module has already been set up in the folder `mnist_models`. The module lives in the sub-folder, `trainer`, and is designated as a python package with the empty `__init__.py` (`mnist_models/trainer/__init__.py`) file. It still needs the model and a trainer to run it, so let's make them.Let's start with the trainer file first. This file parses command line arguments to feed into model. ###Code %%writefile mnist_models/trainer/task.py import argparse import json import os import sys from . import model def _parse_arguments(argv): """Parses command-line arguments.""" parser = argparse.ArgumentParser() parser.add_argument( '--model_type', help='Which model type to use', type=str, default='linear') parser.add_argument( '--epochs', help='The number of epochs to train', type=int, default=10) parser.add_argument( '--steps_per_epoch', help='The number of steps per epoch to train', type=int, default=100) parser.add_argument( '--job-dir', help='Directory where to save the given model', type=str, default='mnist_models/') return parser.parse_known_args(argv) def main(): """Parses command line arguments and kicks off model training.""" args = _parse_arguments(sys.argv[1:])[0] # Configure path for hyperparameter tuning. trial_id = json.loads( os.environ.get('TF_CONFIG', '{}')).get('task', {}).get('trial', '') output_path = args.job_dir if not trial_id else args.job_dir + '/' model_layers = model.get_layers(args.model_type) image_model = model.build_model(model_layers, args.job_dir) model_history = model.train_and_evaluate( image_model, args.epochs, args.steps_per_epoch, args.job_dir) if __name__ == '__main__': main() ###Output _____no_output_____ ###Markdown Next, let's group non-model functions into a util file to keep the model file simple. We'll copy over the `scale` and `load_dataset` functions from the previous lab. ###Code %%writefile mnist_models/trainer/util.py import tensorflow as tf def scale(image, label): """Scales images from a 0-255 int range to a 0-1 float range""" image = tf.cast(image, tf.float32) image /= 255 image = tf.expand_dims(image, -1) return image, label def load_dataset( data, training=True, buffer_size=5000, batch_size=100, nclasses=10): """Loads MNIST dataset into a tf.data.Dataset""" (x_train, y_train), (x_test, y_test) = data x = x_train if training else x_test y = y_train if training else y_test # One-hot encode the classes y = tf.keras.utils.to_categorical(y, nclasses) dataset = tf.data.Dataset.from_tensor_slices((x, y)) dataset = dataset.map(scale).batch(batch_size) if training: dataset = dataset.shuffle(buffer_size).repeat() return dataset ###Output _____no_output_____ ###Markdown Finally, let's code the models! The [tf.keras API](https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras) accepts an array of [layers](https://www.tensorflow.org/api_docs/python/tf/keras/layers) into a [model object](https://www.tensorflow.org/api_docs/python/tf/keras/Model), so we can create a dictionary of layers based on the different model types we want to use. The below file has two functions: `get_layers` and `create_and_train_model`. We will build the structure of our model in `get_layers`. Last but not least, we'll copy over the training code from the previous lab into `train_and_evaluate`.**TODO 1**: Define the Keras layers for a DNN model **TODO 2**: Define the Keras layers for a dropout model **TODO 3**: Define the Keras layers for a CNN model Hint: These models progressively build on each other. Look at the imported `tensorflow.keras.layers` modules and the default values for the variables defined in `get_layers` for guidance. ###Code %%writefile mnist_models/trainer/model.py import os import shutil import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from tensorflow.keras import Sequential from tensorflow.keras.callbacks import TensorBoard from tensorflow.keras.layers import ( Conv2D, Dense, Dropout, Flatten, MaxPooling2D, Softmax) from . import util # Image Variables WIDTH = 28 HEIGHT = 28 def get_layers( model_type, nclasses=10, hidden_layer_1_neurons=400, hidden_layer_2_neurons=100, dropout_rate=0.25, num_filters_1=64, kernel_size_1=3, pooling_size_1=2, num_filters_2=32, kernel_size_2=3, pooling_size_2=2): """Constructs layers for a keras model based on a dict of model types.""" model_layers = { 'linear': [ Flatten(), Dense(nclasses), Softmax() ], 'dnn': [ # TODO ], 'dnn_dropout': [ # TODO ], 'cnn': [ # TODO ] } return model_layers[model_type] def build_model(layers, output_dir): """Compiles keras model for image classification.""" model = Sequential(layers) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) return model def train_and_evaluate(model, num_epochs, steps_per_epoch, output_dir): """Compiles keras model and loads data into it for training.""" mnist = tf.keras.datasets.mnist.load_data() train_data = util.load_dataset(mnist) validation_data = util.load_dataset(mnist, training=False) callbacks = [] if output_dir: tensorboard_callback = TensorBoard(log_dir=output_dir) callbacks = [tensorboard_callback] history = model.fit( train_data, validation_data=validation_data, epochs=num_epochs, steps_per_epoch=steps_per_epoch, verbose=2, callbacks=callbacks) if output_dir: export_path = os.path.join(output_dir, 'keras_export') model.save(export_path, save_format='tf') return history ###Output _____no_output_____ ###Markdown Local TrainingWith everything set up, let's run locally to test the code. We can run it as a python module locally first using the command line. The below cell transfers some of our variables to the command line as well as create a job directory including a timestamp. This is where our model and tensorboard data will be stored. ###Code current_time = datetime.now().strftime("%y%m%d_%H%M%S") model_type = 'cnn' os.environ["MODEL_TYPE"] = model_type os.environ["JOB_DIR"] = "mnist_trained/models/{}_{}/".format( model_type, current_time) ###Output _____no_output_____ ###Markdown Create local directory to store our model files. ###Code %%bash mkdir mnist_trained mkdir mnist_trained/models ###Output _____no_output_____ ###Markdown The cell below runs the local version of the code. The epochs and steps_per_epoch flag can be changed to run for longer or shorther, as defined in our `mnist_models/trainer/task.py` file. ###Code %%bash mkdir $JOB_DIR export PYTHONPATH=$PYTHONPATH:$PWD/mnist_models python3 -m trainer.task \ --job-dir=$JOB_DIR \ --epochs=5 \ --steps_per_epoch=50 \ --model_type=$MODEL_TYPE ###Output _____no_output_____ ###Markdown Let's check out how the model did in tensorboard and confirm that it's good to go before kicking it off to train on the cloud. If running on a Deep Learning VM, open the folder corresponding to the `--job-dir` above. Then, go to File > New Launcher. Click on Tensorboard under "Other".If runnining locally, the following command can be run in a terminal:`tensorboard --logdir=` Training on the cloudSince we're using an unreleased version of TensorFlow on AI Platform, we can instead use a [Deep Learning Container](https://cloud.google.com/ai-platform/deep-learning-containers/docs/overview) in order to take advantage of libraries and applications not normally packaged with AI Platform. Below is a simple [Dockerlife](https://docs.docker.com/engine/reference/builder/) which copies our code to be used in a TF2 environment. ###Code %%writefile mnist_models/Dockerfile FROM gcr.io/deeplearning-platform-release/tf2-cpu COPY mnist_models/trainer /mnist_models/trainer ENTRYPOINT ["python3", "mnist_models/trainer/task.py"] ###Output _____no_output_____ ###Markdown The below command builds the image and ships it off to Google Cloud so it can be used for AI Platform. When built, it will show up [here](http://console.cloud.google.com/gcr) with the name `mnist_models`. ([Click here](https://console.cloud.google.com/cloud-build) to enable Cloud Build) ###Code !docker build -f mnist_models/Dockerfile -t $IMAGE_URI ./ !docker push $IMAGE_URI ###Output _____no_output_____ ###Markdown Finally, we can kickoff the [AI Platform training job](https://cloud.google.com/sdk/gcloud/reference/ai-platform/jobs/submit/training). We can pass in our docker image using the `master-image-uri` flag. ###Code current_time = datetime.now().strftime("%y%m%d_%H%M%S") model_type = 'cnn' os.environ["MODEL_TYPE"] = model_type os.environ["JOB_DIR"] = "gs://{}/mnist_{}_{}/".format( BUCKET, model_type, current_time) os.environ["JOB_NAME"] = "mnist_{}_{}".format( model_type, current_time) %%bash echo $JOB_DIR $REGION $JOB_NAME gcloud ai-platform jobs submit training $JOB_NAME \ --staging-bucket=gs://$BUCKET \ --region=$REGION \ --master-image-uri=$IMAGE_URI \ --scale-tier=BASIC_GPU \ --job-dir=$JOB_DIR \ -- \ --model_type=$MODEL_TYPE ###Output _____no_output_____ ###Markdown Can't wait to see the results? Run the code below and copy the output into the [Google Cloud Shell](https://console.cloud.google.com/home/dashboard?cloudshell=true) to follow along with TensorBoard. Look at the web preview on port 6006. ###Code !echo "tensorboard --logdir $JOB_DIR" ###Output _____no_output_____ ###Markdown Deploying and predicting with modelOnce you have a model you're proud of, let's deploy it! All we need to do is give AI Platform the location of the model. Below uses the keras export path of the previous job, but `${JOB_DIR}keras_export/` can always be changed to a different path.Even though we're using a 1.14 runtime, it's compatable with TF2 exported models. Phew!Uncomment the delete commands below if you are getting an "already exists error" and want to deploy a new model. ###Code %%bash MODEL_NAME="mnist" MODEL_VERSION=${MODEL_TYPE} MODEL_LOCATION=${JOB_DIR}keras_export/ echo "Deleting and deploying $MODEL_NAME $MODEL_VERSION from $MODEL_LOCATION ... this will take a few minutes" #yes | gcloud ai-platform versions delete ${MODEL_VERSION} --model ${MODEL_NAME} #yes | gcloud ai-platform models delete ${MODEL_NAME} gcloud ai-platform models create ${MODEL_NAME} --regions $REGION gcloud ai-platform versions create ${MODEL_VERSION} \ --model ${MODEL_NAME} \ --origin ${MODEL_LOCATION} \ --framework tensorflow \ --runtime-version=1.14 ###Output _____no_output_____ ###Markdown To predict with the model, let's take one of the example images.**TODO 4**: Write a `.json` file with image data to send to an AI Platform deployed model ###Code import json, codecs import tensorflow as tf import matplotlib.pyplot as plt from mnist_models.trainer import util HEIGHT = 28 WIDTH = 28 IMGNO = 12 mnist = tf.keras.datasets.mnist.load_data() (x_train, y_train), (x_test, y_test) = mnist test_image = x_test[IMGNO] jsondata = test_image.reshape(HEIGHT, WIDTH, 1).tolist() json.dump(jsondata, codecs.open("test.json", "w", encoding = "utf-8")) plt.imshow(test_image.reshape(HEIGHT, WIDTH)); ###Output _____no_output_____ ###Markdown Finally, we can send it to the prediction service. The output will have a 1 in the index of the corresponding digit it is predicting. Congrats! You've completed the lab! ###Code %%bash gcloud ai-platform predict \ --model=mnist \ --version=${MODEL_TYPE} \ --json-instances=./test.json ###Output _____no_output_____ ###Markdown MNIST Image Classification with TensorFlow on Cloud AI PlatformThis notebook demonstrates how to implement different image models on MNIST using the [tf.keras API](https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras). Learning Objectives1. Understand how to build a Dense Neural Network (DNN) for image classification2. Understand how to use dropout (DNN) for image classification3. Understand how to use Convolutional Neural Networks (CNN)4. Know how to deploy and use an image classifcation model using Google Cloud's [AI Platform](https://cloud.google.com/ai-platform/)First things first. Configure the parameters below to match your own Google Cloud project details. ###Code from datetime import datetime import os PROJECT = "your-project-id-here" # REPLACE WITH YOUR PROJECT ID BUCKET = "your-bucket-id-here" # REPLACE WITH YOUR BUCKET NAME REGION = "us-central1" # REPLACE WITH YOUR BUCKET REGION e.g. us-central1 MODEL_TYPE = "cnn" # "linear", "dnn", "dnn_dropout", or "dnn" # Do not change these os.environ["PROJECT"] = PROJECT os.environ["BUCKET"] = BUCKET os.environ["REGION"] = REGION os.environ["MODEL_TYPE"] = MODEL_TYPE os.environ["TFVERSION"] = "2.1" # Tensorflow version os.environ["IMAGE_URI"] = os.path.join("gcr.io", PROJECT, "mnist_models") ###Output _____no_output_____ ###Markdown Building a dynamic modelIn the previous notebook, mnist_linear.ipynb, we ran our code directly from the notebook. In order to run it on the AI Platform, it needs to be packaged as a python module.The boilerplate structure for this module has already been set up in the folder `mnist_models`. The module lives in the sub-folder, `trainer`, and is designated as a python package with the empty `__init__.py` (`mnist_models/trainer/__init__.py`) file. It still needs the model and a trainer to run it, so let's make them.Let's start with the trainer file first. This file parses command line arguments to feed into the model. ###Code %%writefile mnist_models/trainer/task.py import argparse import json import os import sys from . import model def _parse_arguments(argv): """Parses command-line arguments.""" parser = argparse.ArgumentParser() parser.add_argument( '--model_type', help='Which model type to use', type=str, default='linear') parser.add_argument( '--epochs', help='The number of epochs to train', type=int, default=10) parser.add_argument( '--steps_per_epoch', help='The number of steps per epoch to train', type=int, default=100) parser.add_argument( '--job-dir', help='Directory where to save the given model', type=str, default='mnist_models/') return parser.parse_known_args(argv) def main(): """Parses command line arguments and kicks off model training.""" args = _parse_arguments(sys.argv[1:])[0] # Configure path for hyperparameter tuning. trial_id = json.loads( os.environ.get('TF_CONFIG', '{}')).get('task', {}).get('trial', '') output_path = args.job_dir if not trial_id else args.job_dir + '/' model_layers = model.get_layers(args.model_type) image_model = model.build_model(model_layers, args.job_dir) model_history = model.train_and_evaluate( image_model, args.epochs, args.steps_per_epoch, args.job_dir) if __name__ == '__main__': main() ###Output _____no_output_____ ###Markdown Next, let's group non-model functions into a util file to keep the model file simple. We'll copy over the `scale` and `load_dataset` functions from the previous lab. ###Code %%writefile mnist_models/trainer/util.py import tensorflow as tf def scale(image, label): """Scales images from a 0-255 int range to a 0-1 float range""" image = tf.cast(image, tf.float32) image /= 255 image = tf.expand_dims(image, -1) return image, label def load_dataset( data, training=True, buffer_size=5000, batch_size=100, nclasses=10): """Loads MNIST dataset into a tf.data.Dataset""" (x_train, y_train), (x_test, y_test) = data x = x_train if training else x_test y = y_train if training else y_test # One-hot encode the classes y = tf.keras.utils.to_categorical(y, nclasses) dataset = tf.data.Dataset.from_tensor_slices((x, y)) dataset = dataset.map(scale).batch(batch_size) if training: dataset = dataset.shuffle(buffer_size).repeat() return dataset ###Output _____no_output_____ ###Markdown Finally, let's code the models! The [tf.keras API](https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras) accepts an array of [layers](https://www.tensorflow.org/api_docs/python/tf/keras/layers) into a [model object](https://www.tensorflow.org/api_docs/python/tf/keras/Model), so we can create a dictionary of layers based on the different model types we want to use. The below file has two functions: `get_layers` and `create_and_train_model`. We will build the structure of our model in `get_layers`. Last but not least, we'll copy over the training code from the previous lab into `train_and_evaluate`.**TODO 1**: Define the Keras layers for a DNN model **TODO 2**: Define the Keras layers for a dropout model **TODO 3**: Define the Keras layers for a CNN model Hint: These models progressively build on each other. Look at the imported `tensorflow.keras.layers` modules and the default values for the variables defined in `get_layers` for guidance. ###Code %%writefile mnist_models/trainer/model.py import os import shutil import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from tensorflow.keras import Sequential from tensorflow.keras.callbacks import TensorBoard from tensorflow.keras.layers import ( Conv2D, Dense, Dropout, Flatten, MaxPooling2D, Softmax) from . import util # Image Variables WIDTH = 28 HEIGHT = 28 def get_layers( model_type, nclasses=10, hidden_layer_1_neurons=400, hidden_layer_2_neurons=100, dropout_rate=0.25, num_filters_1=64, kernel_size_1=3, pooling_size_1=2, num_filters_2=32, kernel_size_2=3, pooling_size_2=2): """Constructs layers for a keras model based on a dict of model types.""" model_layers = { 'linear': [ Flatten(), Dense(nclasses), Softmax() ], 'dnn': [ # TODO ], 'dnn_dropout': [ # TODO ], 'cnn': [ # TODO ] } return model_layers[model_type] def build_model(layers, output_dir): """Compiles keras model for image classification.""" model = Sequential(layers) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) return model def train_and_evaluate(model, num_epochs, steps_per_epoch, output_dir): """Compiles keras model and loads data into it for training.""" mnist = tf.keras.datasets.mnist.load_data() train_data = util.load_dataset(mnist) validation_data = util.load_dataset(mnist, training=False) callbacks = [] if output_dir: tensorboard_callback = TensorBoard(log_dir=output_dir) callbacks = [tensorboard_callback] history = model.fit( train_data, validation_data=validation_data, epochs=num_epochs, steps_per_epoch=steps_per_epoch, verbose=2, callbacks=callbacks) if output_dir: export_path = os.path.join(output_dir, 'keras_export') model.save(export_path, save_format='tf') return history ###Output _____no_output_____ ###Markdown Local TrainingWith everything set up, let's run locally to test the code. Some of the previous tests have been copied over into a testing script `mnist_models/trainer/test.py` to make sure the model still passes our previous checks. On `line 13`, you can specify which model types you would like to check. `line 14` and `line 15` has the number of epochs and steps per epoch respectively.Moment of truth! Run the code below to check your models against the unit tests. If you see "OK" at the end when it's finished running, congrats! You've passed the tests! ###Code !python3 -m mnist_models.trainer.test ###Output _____no_output_____ ###Markdown Now that we know that our models are working as expected, let's run it on the [Google Cloud AI Platform](https://cloud.google.com/ml-engine/docs/). We can run it as a python module locally first using the command line.The below cell transfers some of our variables to the command line as well as create a job directory including a timestamp. ###Code current_time = datetime.now().strftime("%y%m%d_%H%M%S") model_type = 'cnn' os.environ["MODEL_TYPE"] = model_type os.environ["JOB_DIR"] = "mnist_models/models/{}_{}/".format( model_type, current_time) ###Output _____no_output_____ ###Markdown The cell below runs the local version of the code. The epochs and steps_per_epoch flag can be changed to run for longer or shorther, as defined in our `mnist_models/trainer/task.py` file. ###Code %%bash python3 -m mnist_models.trainer.task \ --job-dir=$JOB_DIR \ --epochs=5 \ --steps_per_epoch=50 \ --model_type=$MODEL_TYPE ###Output _____no_output_____ ###Markdown Training on the cloudSince we're using an unreleased version of TensorFlow on AI Platform, we can instead use a [Deep Learning Container](https://cloud.google.com/ai-platform/deep-learning-containers/docs/overview) in order to take advantage of libraries and applications not normally packaged with AI Platform. Below is a simple [Dockerlife](https://docs.docker.com/engine/reference/builder/) which copies our code to be used in a TF2 environment. ###Code %%writefile mnist_models/Dockerfile FROM gcr.io/deeplearning-platform-release/tf2-cpu COPY mnist_models/trainer /mnist_models/trainer ENTRYPOINT ["python3", "-m", "mnist_models.trainer.task"] ###Output _____no_output_____ ###Markdown The below command builds the image and ships it off to Google Cloud so it can be used for AI Platform. When built, it will show up [here](http://console.cloud.google.com/gcr) with the name `mnist_models`. ([Click here](https://console.cloud.google.com/cloud-build) to enable Cloud Build) ###Code !docker build -f mnist_models/Dockerfile -t $IMAGE_URI ./ !docker push $IMAGE_URI ###Output _____no_output_____ ###Markdown Finally, we can kickoff the [AI Platform training job](https://cloud.google.com/sdk/gcloud/reference/ai-platform/jobs/submit/training). We can pass in our docker image using the `master-image-uri` flag. ###Code current_time = datetime.now().strftime("%y%m%d_%H%M%S") model_type = 'cnn' os.environ["MODEL_TYPE"] = model_type os.environ["JOB_DIR"] = "gs://{}/mnist_{}_{}/".format( BUCKET, model_type, current_time) os.environ["JOB_NAME"] = "mnist_{}_{}".format( model_type, current_time) %%bash echo $JOB_DIR $REGION $JOB_NAME gcloud ai-platform jobs submit training $JOB_NAME \ --staging-bucket=gs://$BUCKET \ --region=$REGION \ --master-image-uri=$IMAGE_URI \ --scale-tier=BASIC_GPU \ --job-dir=$JOB_DIR \ -- \ --model_type=$MODEL_TYPE ###Output _____no_output_____ ###Markdown Deploying and predicting with modelOnce you have a model you're proud of, let's deploy it! All we need to do is give AI Platform the location of the model. Below uses the keras export path of the previous job, but `${JOB_DIR}keras_export/` can always be changed to a different path.Uncomment the delete commands below if you are getting an "already exists error" and want to deploy a new model. ###Code %%bash MODEL_NAME="mnist" MODEL_VERSION=${MODEL_TYPE} MODEL_LOCATION=${JOB_DIR}keras_export/ echo "Deleting and deploying $MODEL_NAME $MODEL_VERSION from $MODEL_LOCATION ... this will take a few minutes" #yes | gcloud ai-platform versions delete ${MODEL_VERSION} --model ${MODEL_NAME} #yes | gcloud ai-platform models delete ${MODEL_NAME} gcloud ai-platform models create ${MODEL_NAME} --regions $REGION gcloud ai-platform versions create ${MODEL_VERSION} \ --model ${MODEL_NAME} \ --origin ${MODEL_LOCATION} \ --framework tensorflow \ --runtime-version=2.1 ###Output _____no_output_____ ###Markdown To predict with the model, let's take one of the example images.**TODO 4**: Write a `.json` file with image data to send to an AI Platform deployed model ###Code import json, codecs import tensorflow as tf import matplotlib.pyplot as plt from mnist_models.trainer import util HEIGHT = 28 WIDTH = 28 IMGNO = 12 mnist = tf.keras.datasets.mnist.load_data() (x_train, y_train), (x_test, y_test) = mnist test_image = x_test[IMGNO] jsondata = test_image.reshape(HEIGHT, WIDTH, 1).tolist() json.dump(jsondata, codecs.open("test.json", "w", encoding = "utf-8")) plt.imshow(test_image.reshape(HEIGHT, WIDTH)); ###Output _____no_output_____ ###Markdown Finally, we can send it to the prediction service. The output will have a 1 in the index of the corresponding digit it is predicting. Congrats! You've completed the lab! ###Code %%bash gcloud ai-platform predict \ --model=mnist \ --version=${MODEL_TYPE} \ --json-instances=./test.json ###Output _____no_output_____ ###Markdown MNIST Image Classification with TensorFlow on Cloud AI PlatformThis notebook demonstrates how to implement different image models on MNIST using the [tf.keras API](https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras). Learning Objectives1. Understand how to build a Dense Neural Network (DNN) for image classification2. Understand how to use dropout (DNN) for image classification3. Understand how to use Convolutional Neural Networks (CNN)4. Know how to deploy and use an image classifcation model using Google Cloud's [AI Platform](https://cloud.google.com/ai-platform/)First things first. Configure the parameters below to match your own Google Cloud project details. ###Code !sudo chown -R jupyter:jupyter /home/jupyter/training-data-analyst from datetime import datetime import os PROJECT = "your-project-id-here" # REPLACE WITH YOUR PROJECT ID BUCKET = "your-bucket-id-here" # REPLACE WITH YOUR BUCKET NAME REGION = "us-central1" # REPLACE WITH YOUR BUCKET REGION e.g. us-central1 MODEL_TYPE = "cnn" # "linear", "dnn", "dnn_dropout", or "dnn" # Do not change these os.environ["PROJECT"] = PROJECT os.environ["BUCKET"] = BUCKET os.environ["REGION"] = REGION os.environ["MODEL_TYPE"] = MODEL_TYPE os.environ["TFVERSION"] = "2.1" # Tensorflow version os.environ["IMAGE_URI"] = os.path.join("gcr.io", PROJECT, "mnist_models") ###Output _____no_output_____ ###Markdown Building a dynamic modelIn the previous notebook, mnist_linear.ipynb, we ran our code directly from the notebook. In order to run it on the AI Platform, it needs to be packaged as a python module.The boilerplate structure for this module has already been set up in the folder `mnist_models`. The module lives in the sub-folder, `trainer`, and is designated as a python package with the empty `__init__.py` (`mnist_models/trainer/__init__.py`) file. It still needs the model and a trainer to run it, so let's make them.Let's start with the trainer file first. This file parses command line arguments to feed into the model. ###Code %%writefile mnist_models/trainer/task.py import argparse import json import os import sys from . import model def _parse_arguments(argv): """Parses command-line arguments.""" parser = argparse.ArgumentParser() parser.add_argument( '--model_type', help='Which model type to use', type=str, default='linear') parser.add_argument( '--epochs', help='The number of epochs to train', type=int, default=10) parser.add_argument( '--steps_per_epoch', help='The number of steps per epoch to train', type=int, default=100) parser.add_argument( '--job-dir', help='Directory where to save the given model', type=str, default='mnist_models/') return parser.parse_known_args(argv) def main(): """Parses command line arguments and kicks off model training.""" args = _parse_arguments(sys.argv[1:])[0] # Configure path for hyperparameter tuning. trial_id = json.loads( os.environ.get('TF_CONFIG', '{}')).get('task', {}).get('trial', '') output_path = args.job_dir if not trial_id else args.job_dir + '/' model_layers = model.get_layers(args.model_type) image_model = model.build_model(model_layers, args.job_dir) model_history = model.train_and_evaluate( image_model, args.epochs, args.steps_per_epoch, args.job_dir) if __name__ == '__main__': main() ###Output _____no_output_____ ###Markdown Next, let's group non-model functions into a util file to keep the model file simple. We'll copy over the `scale` and `load_dataset` functions from the previous lab. ###Code %%writefile mnist_models/trainer/util.py import tensorflow as tf def scale(image, label): """Scales images from a 0-255 int range to a 0-1 float range""" image = tf.cast(image, tf.float32) image /= 255 image = tf.expand_dims(image, -1) return image, label def load_dataset( data, training=True, buffer_size=5000, batch_size=100, nclasses=10): """Loads MNIST dataset into a tf.data.Dataset""" (x_train, y_train), (x_test, y_test) = data x = x_train if training else x_test y = y_train if training else y_test # One-hot encode the classes y = tf.keras.utils.to_categorical(y, nclasses) dataset = tf.data.Dataset.from_tensor_slices((x, y)) dataset = dataset.map(scale).batch(batch_size) if training: dataset = dataset.shuffle(buffer_size).repeat() return dataset ###Output _____no_output_____ ###Markdown Finally, let's code the models! The [tf.keras API](https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras) accepts an array of [layers](https://www.tensorflow.org/api_docs/python/tf/keras/layers) into a [model object](https://www.tensorflow.org/api_docs/python/tf/keras/Model), so we can create a dictionary of layers based on the different model types we want to use. The below file has two functions: `get_layers` and `create_and_train_model`. We will build the structure of our model in `get_layers`. Last but not least, we'll copy over the training code from the previous lab into `train_and_evaluate`.**TODO 1**: Define the Keras layers for a DNN model **TODO 2**: Define the Keras layers for a dropout model **TODO 3**: Define the Keras layers for a CNN model Hint: These models progressively build on each other. Look at the imported `tensorflow.keras.layers` modules and the default values for the variables defined in `get_layers` for guidance. ###Code %%writefile mnist_models/trainer/model.py import os import shutil import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from tensorflow.keras import Sequential from tensorflow.keras.callbacks import TensorBoard from tensorflow.keras.layers import ( Conv2D, Dense, Dropout, Flatten, MaxPooling2D, Softmax) from . import util # Image Variables WIDTH = 28 HEIGHT = 28 def get_layers( model_type, nclasses=10, hidden_layer_1_neurons=400, hidden_layer_2_neurons=100, dropout_rate=0.25, num_filters_1=64, kernel_size_1=3, pooling_size_1=2, num_filters_2=32, kernel_size_2=3, pooling_size_2=2): """Constructs layers for a keras model based on a dict of model types.""" model_layers = { 'linear': [ Flatten(), Dense(nclasses), Softmax() ], 'dnn': [ # TODO ], 'dnn_dropout': [ # TODO ], 'cnn': [ # TODO ] } return model_layers[model_type] def build_model(layers, output_dir): """Compiles keras model for image classification.""" model = Sequential(layers) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) return model def train_and_evaluate(model, num_epochs, steps_per_epoch, output_dir): """Compiles keras model and loads data into it for training.""" mnist = tf.keras.datasets.mnist.load_data() train_data = util.load_dataset(mnist) validation_data = util.load_dataset(mnist, training=False) callbacks = [] if output_dir: tensorboard_callback = TensorBoard(log_dir=output_dir) callbacks = [tensorboard_callback] history = model.fit( train_data, validation_data=validation_data, epochs=num_epochs, steps_per_epoch=steps_per_epoch, verbose=2, callbacks=callbacks) if output_dir: export_path = os.path.join(output_dir, 'keras_export') model.save(export_path, save_format='tf') return history ###Output _____no_output_____ ###Markdown Local TrainingWith everything set up, let's run locally to test the code. Some of the previous tests have been copied over into a testing script `mnist_models/trainer/test.py` to make sure the model still passes our previous checks. On `line 13`, you can specify which model types you would like to check. `line 14` and `line 15` has the number of epochs and steps per epoch respectively.Moment of truth! Run the code below to check your models against the unit tests. If you see "OK" at the end when it's finished running, congrats! You've passed the tests! ###Code !python3 -m mnist_models.trainer.test ###Output _____no_output_____ ###Markdown Now that we know that our models are working as expected, let's run it on the [Google Cloud AI Platform](https://cloud.google.com/ml-engine/docs/). We can run it as a python module locally first using the command line.The below cell transfers some of our variables to the command line as well as create a job directory including a timestamp. ###Code current_time = datetime.now().strftime("%y%m%d_%H%M%S") model_type = 'cnn' os.environ["MODEL_TYPE"] = model_type os.environ["JOB_DIR"] = "mnist_models/models/{}_{}/".format( model_type, current_time) ###Output _____no_output_____ ###Markdown The cell below runs the local version of the code. The epochs and steps_per_epoch flag can be changed to run for longer or shorther, as defined in our `mnist_models/trainer/task.py` file. ###Code %%bash python3 -m mnist_models.trainer.task \ --job-dir=$JOB_DIR \ --epochs=5 \ --steps_per_epoch=50 \ --model_type=$MODEL_TYPE ###Output _____no_output_____ ###Markdown Training on the cloudSince we're using an unreleased version of TensorFlow on AI Platform, we can instead use a [Deep Learning Container](https://cloud.google.com/ai-platform/deep-learning-containers/docs/overview) in order to take advantage of libraries and applications not normally packaged with AI Platform. Below is a simple [Dockerlife](https://docs.docker.com/engine/reference/builder/) which copies our code to be used in a TF2 environment. ###Code %%writefile mnist_models/Dockerfile FROM gcr.io/deeplearning-platform-release/tf2-cpu COPY mnist_models/trainer /mnist_models/trainer ENTRYPOINT ["python3", "-m", "mnist_models.trainer.task"] ###Output _____no_output_____ ###Markdown The below command builds the image and ships it off to Google Cloud so it can be used for AI Platform. When built, it will show up [here](http://console.cloud.google.com/gcr) with the name `mnist_models`. ([Click here](https://console.cloud.google.com/cloud-build) to enable Cloud Build) ###Code !docker build -f mnist_models/Dockerfile -t $IMAGE_URI ./ !docker push $IMAGE_URI ###Output _____no_output_____ ###Markdown Finally, we can kickoff the [AI Platform training job](https://cloud.google.com/sdk/gcloud/reference/ai-platform/jobs/submit/training). We can pass in our docker image using the `master-image-uri` flag. ###Code current_time = datetime.now().strftime("%y%m%d_%H%M%S") model_type = 'cnn' os.environ["MODEL_TYPE"] = model_type os.environ["JOB_DIR"] = "gs://{}/mnist_{}_{}/".format( BUCKET, model_type, current_time) os.environ["JOB_NAME"] = "mnist_{}_{}".format( model_type, current_time) %%bash echo $JOB_DIR $REGION $JOB_NAME gcloud ai-platform jobs submit training $JOB_NAME \ --staging-bucket=gs://$BUCKET \ --region=$REGION \ --master-image-uri=$IMAGE_URI \ --scale-tier=BASIC_GPU \ --job-dir=$JOB_DIR \ -- \ --model_type=$MODEL_TYPE ###Output _____no_output_____ ###Markdown Deploying and predicting with modelOnce you have a model you're proud of, let's deploy it! All we need to do is give AI Platform the location of the model. Below uses the keras export path of the previous job, but `${JOB_DIR}keras_export/` can always be changed to a different path.Uncomment the delete commands below if you are getting an "already exists error" and want to deploy a new model. ###Code %%bash MODEL_NAME="mnist" MODEL_VERSION=${MODEL_TYPE} MODEL_LOCATION=${JOB_DIR}keras_export/ echo "Deleting and deploying $MODEL_NAME $MODEL_VERSION from $MODEL_LOCATION ... this will take a few minutes" #yes | gcloud ai-platform versions delete ${MODEL_VERSION} --model ${MODEL_NAME} #yes | gcloud ai-platform models delete ${MODEL_NAME} gcloud config set ai_platform/region global gcloud ai-platform models create ${MODEL_NAME} --regions $REGION gcloud ai-platform versions create ${MODEL_VERSION} \ --model ${MODEL_NAME} \ --origin ${MODEL_LOCATION} \ --framework tensorflow \ --runtime-version=2.1 ###Output _____no_output_____ ###Markdown To predict with the model, let's take one of the example images.**TODO 4**: Write a `.json` file with image data to send to an AI Platform deployed model ###Code import json, codecs import tensorflow as tf import matplotlib.pyplot as plt from mnist_models.trainer import util HEIGHT = 28 WIDTH = 28 IMGNO = 12 mnist = tf.keras.datasets.mnist.load_data() (x_train, y_train), (x_test, y_test) = mnist test_image = x_test[IMGNO] jsondata = test_image.reshape(HEIGHT, WIDTH, 1).tolist() json.dump(jsondata, codecs.open("test.json", "w", encoding = "utf-8")) plt.imshow(test_image.reshape(HEIGHT, WIDTH)); ###Output _____no_output_____ ###Markdown Finally, we can send it to the prediction service. The output will have a 1 in the index of the corresponding digit it is predicting. Congrats! You've completed the lab! ###Code %%bash gcloud ai-platform predict \ --model=mnist \ --version=${MODEL_TYPE} \ --json-instances=./test.json ###Output _____no_output_____ ###Markdown MNIST Image Classification with TensorFlow on Cloud ML EngineThis notebook demonstrates how to implement different image models on MNIST using the [tf.keras API](https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras). Learning Objectives1. Understand how to build a Dense Neural Network (DNN) for image classification2. Understand how to use dropout (DNN) for image classification3. Understand how to use Convolutional Neural Networks (CNN)4. Know how to deploy and use an image classifcation model using Google Cloud's [AI Platform](https://cloud.google.com/ai-platform/)First things first. Configure the parameters below to match your own Google Cloud project details. ###Code from datetime import datetime import os PROJECT = "your-project-id-here" # REPLACE WITH YOUR PROJECT ID BUCKET = "your-bucket-id-here" # REPLACE WITH YOUR BUCKET NAME REGION = "us-central1" # REPLACE WITH YOUR BUCKET REGION e.g. us-central1 # Do not change these os.environ["PROJECT"] = PROJECT os.environ["BUCKET"] = BUCKET os.environ["REGION"] = REGION os.environ["IMAGE_URI"] = os.path.join("gcr.io", PROJECT, "mnist_models") ###Output _____no_output_____ ###Markdown Building a dynamic modelIn the previous notebook, mnist_linear.ipynb, we ran our code directly from the notebook. In order to run it on the AI Platform, it needs to be packaged as a python module.The boilerplate structure for this module has already been set up in the folder `mnist_models`. The module lives in the sub-folder, `trainer`, and is designated as a python package with the empty `__init__.py` (`mnist_models/trainer/__init__.py`) file. It still needs the model and a trainer to run it, so let's make them.Let's start with the trainer file first. This file parses command line arguments to feed into model. ###Code %%writefile mnist_models/trainer/task.py import argparse import json import os import sys import model def _parse_arguments(argv): """Parses command-line arguments.""" parser = argparse.ArgumentParser() parser.add_argument( '--model_type', help='Which model type to use', type=str, default='linear') parser.add_argument( '--epochs', help='The number of epochs to train', type=int, default=10) parser.add_argument( '--steps_per_epoch', help='The number of steps per epoch to train', type=int, default=100) parser.add_argument( '--job-dir', help='Directory where to save the given model', type=str, default='mnist_models/') return parser.parse_known_args(argv) def main(): """Parses command line arguments and kicks off model training.""" args = _parse_arguments(sys.argv[1:])[0] # Configure path for hyperparameter tuning. trial_id = json.loads( os.environ.get('TF_CONFIG', '{}')).get('task', {}).get('trial', '') output_path = args.job_dir if not trial_id else args.job_dir + '/' model_layers = model.get_layers(args.model_type) image_model = model.build_model(model_layers, args.job_dir) model_history = model.train_and_evaluate( image_model, args.epochs, args.steps_per_epoch, args.job_dir) if __name__ == '__main__': main() ###Output _____no_output_____ ###Markdown Next, let's group non-model functions into a util file to keep the model file simple. We'll copy over the `scale` and `load_dataset` functions from the previous lab. ###Code %%writefile mnist_models/trainer/util.py import tensorflow as tf def scale(image, label): """Scales images from a 0-255 int range to a 0-1 float range""" image = tf.cast(image, tf.float32) image /= 255 image = tf.expand_dims(image, -1) return image, label def load_dataset( data, training=True, buffer_size=5000, batch_size=100, nclasses=10): """Loads MNIST dataset into a tf.data.Dataset""" (x_train, y_train), (x_test, y_test) = data x = x_train if training else x_test y = y_train if training else y_test # One-hot encode the classes y = tf.keras.utils.to_categorical(y, nclasses) dataset = tf.data.Dataset.from_tensor_slices((x, y)) dataset = dataset.map(scale).batch(batch_size) if training: dataset = dataset.shuffle(buffer_size).repeat() return dataset ###Output _____no_output_____ ###Markdown Finally, let's code the models! The [tf.keras API](https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras) accepts an array of [layers](https://www.tensorflow.org/api_docs/python/tf/keras/layers) into a [model object](https://www.tensorflow.org/api_docs/python/tf/keras/Model), so we can create a dictionary of layers based on the different model types we want to use. The below file has two functions: `get_layers` and `create_and_train_model`. We will build the structure of our model in `get_layers`. Last but not least, we'll copy over the training code from the previous lab into `train_and_evaluate`.**TODO 1**: Define the Keras layers for a DNN model **TODO 2**: Define the Keras layers for a dropout model **TODO 3**: Define the Keras layers for a CNN model Hint: These models progressively build on each other. Look at the imported `tensorflow.keras.layers` modules and the default values for the variables defined in `get_layers` for guidance. ###Code %%writefile mnist_models/trainer/model.py import os import shutil import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from tensorflow.keras import Sequential from tensorflow.keras.callbacks import TensorBoard from tensorflow.keras.layers import ( Conv2D, Dense, Dropout, Flatten, MaxPooling2D, Softmax) import util # Image Variables WIDTH = 28 HEIGHT = 28 def get_layers( model_type, nclasses=10, hidden_layer_1_neurons=400, hidden_layer_2_neurons=100, dropout_rate=0.25, num_filters_1=64, kernel_size_1=3, pooling_size_1=2, num_filters_2=32, kernel_size_2=3, pooling_size_2=2): """Constructs layers for a keras model based on a dict of model types.""" model_layers = { 'linear': [ Flatten(), Dense(nclasses), Softmax() ], 'dnn': [ # TODO ], 'dnn_dropout': [ # TODO ], 'cnn': [ # TODO ] } return model_layers[model_type] def build_model(layers, output_dir): """Compiles keras model for image classification.""" model = Sequential(layers) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) return model def train_and_evaluate(model, num_epochs, steps_per_epoch, output_dir): """Compiles keras model and loads data into it for training.""" mnist = tf.keras.datasets.mnist.load_data() train_data = util.load_dataset(mnist) validation_data = util.load_dataset(mnist, training=False) callbacks = [] if output_dir: tensorboard_callback = TensorBoard(log_dir=output_dir) callbacks = [tensorboard_callback] history = model.fit( train_data, validation_data=validation_data, epochs=num_epochs, steps_per_epoch=steps_per_epoch, verbose=2, callbacks=callbacks) if output_dir: export_path = os.path.join(output_dir, 'keras_export') model.save(export_path, save_format='tf') return history ###Output _____no_output_____ ###Markdown Local TrainingWith everything set up, let's run locally to test the code. Some of the previous tests have been copied over into a testing script `mnist_models/trainer/test.py` to make sure the model still passes our previous checks. On `line 34`, you can specify which model types you would like to check. `line 37` and `line 38` has the number of epochs and steps per epoch respectively. Now that we know that our models are working as expected, let's run it on the [Google Cloud AI Platform](https://cloud.google.com/ml-engine/docs/). We can run it as a python module locally first using the command line.The below cell transfers some of our variables to the command line as well as create a job directory including a timestamp. This is where our model and tensorboard data will be stored. ###Code current_time = datetime.now().strftime("%y%m%d_%H%M%S") model_type = 'cnn' os.environ["MODEL_TYPE"] = model_type os.environ["JOB_DIR"] = "mnist_trained/models/{}_{}/".format( model_type, current_time) ###Output _____no_output_____ ###Markdown The cell below runs the local version of the code. The epochs and steps_per_epoch flag can be changed to run for longer or shorther, as defined in our `mnist_models/trainer/task.py` file. ###Code %%bash mkdir $JOB_DIR python3 mnist_models/trainer/task.py \ --job-dir=$JOB_DIR \ --epochs=5 \ --steps_per_epoch=50 \ --model_type=$MODEL_TYPE ###Output _____no_output_____ ###Markdown Let's check out how the model did in tensorboard and confirm that it's good to go before kicking it off to train on the cloud. If running on a Deep Learning VM, open the folder corresponding to the `--job-dir` above. Then, go to File > New Launcher. Click on Tensorboard under "Other".If runnining locally, the following command can be run in a terminal:`tensorboard --logdir=` Training on the cloudSince we're using an unreleased version of TensorFlow on AI Platform, we can instead use a [Deep Learning Container](https://cloud.google.com/ai-platform/deep-learning-containers/docs/overview) in order to take advantage of libraries and applications not normally packaged with AI Platform. Below is a simple [Dockerlife](https://docs.docker.com/engine/reference/builder/) which copies our code to be used in a TF2 environment. ###Code %%writefile mnist_models/Dockerfile FROM gcr.io/deeplearning-platform-release/tf2-cpu COPY mnist_models/trainer /mnist_models/trainer ENTRYPOINT ["python3", "mnist_models/trainer/task.py"] ###Output _____no_output_____ ###Markdown The below command builds the image and ships it off to Google Cloud so it can be used for AI Platform. When built, it will show up [here](http://console.cloud.google.com/gcr) with the name `mnist_models`. ([Click here](https://console.cloud.google.com/cloud-build) to enable Cloud Build) ###Code !docker build -f mnist_models/Dockerfile -t $IMAGE_URI ./ !docker push $IMAGE_URI ###Output _____no_output_____ ###Markdown Finally, we can kickoff the [AI Platform training job](https://cloud.google.com/sdk/gcloud/reference/ai-platform/jobs/submit/training). We can pass in our docker image using the `master-image-uri` flag. ###Code current_time = datetime.now().strftime("%y%m%d_%H%M%S") model_type = 'cnn' os.environ["MODEL_TYPE"] = model_type os.environ["JOB_DIR"] = "gs://{}/mnist_{}_{}/".format( BUCKET, model_type, current_time) os.environ["JOB_NAME"] = "mnist_{}_{}".format( model_type, current_time) %%bash echo $JOB_DIR $REGION $JOB_NAME gcloud ai-platform jobs submit training $JOB_NAME \ --staging-bucket=gs://$BUCKET \ --region=$REGION \ --master-image-uri=$IMAGE_URI \ --scale-tier=BASIC_GPU \ --job-dir=$JOB_DIR \ -- \ --model_type=$MODEL_TYPE ###Output _____no_output_____ ###Markdown Can't wait to see the results? Run the code below and copy the output into the [Google Cloud Shell](https://console.cloud.google.com/home/dashboard?cloudshell=true) to follow along with TensorBoard. Look at the web preview on port 6006. ###Code !echo "tensorboard --logdir $JOB_DIR" ###Output _____no_output_____ ###Markdown Deploying and predicting with modelOnce you have a model you're proud of, let's deploy it! All we need to do is give AI Platform the location of the model. Below uses the keras export path of the previous job, but `${JOB_DIR}keras_export/` can always be changed to a different path.Even though we're using a 1.14 runtime, it's compatable with TF2 exported models. Phew!Uncomment the delete commands below if you are getting an "already exists error" and want to deploy a new model. ###Code %%bash MODEL_NAME="mnist" MODEL_VERSION=${MODEL_TYPE} MODEL_LOCATION=${JOB_DIR}keras_export/ echo "Deleting and deploying $MODEL_NAME $MODEL_VERSION from $MODEL_LOCATION ... this will take a few minutes" #yes | gcloud ai-platform versions delete ${MODEL_VERSION} --model ${MODEL_NAME} #yes | gcloud ai-platform models delete ${MODEL_NAME} gcloud ai-platform models create ${MODEL_NAME} --regions $REGION gcloud ai-platform versions create ${MODEL_VERSION} \ --model ${MODEL_NAME} \ --origin ${MODEL_LOCATION} \ --framework tensorflow \ --runtime-version=1.14 ###Output _____no_output_____ ###Markdown To predict with the model, let's take one of the example images.**TODO 4**: Write a `.json` file with image data to send to an AI Platform deployed model ###Code import json, codecs import tensorflow as tf import matplotlib.pyplot as plt from mnist_models.trainer import util HEIGHT = 28 WIDTH = 28 IMGNO = 12 mnist = tf.keras.datasets.mnist.load_data() (x_train, y_train), (x_test, y_test) = mnist test_image = x_test[IMGNO] jsondata = test_image.reshape(HEIGHT, WIDTH, 1).tolist() json.dump(jsondata, codecs.open("test.json", "w", encoding = "utf-8")) plt.imshow(test_image.reshape(HEIGHT, WIDTH)); ###Output _____no_output_____ ###Markdown Finally, we can send it to the prediction service. The output will have a 1 in the index of the corresponding digit it is predicting. Congrats! You've completed the lab! ###Code %%bash gcloud ai-platform predict \ --model=mnist \ --version=${MODEL_TYPE} \ --json-instances=./test.json ###Output _____no_output_____ ###Markdown MNIST Image Classification with TensorFlow on Cloud AI PlatformThis notebook demonstrates how to implement different image models on MNIST using the [tf.keras API](https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras). Learning Objectives1. Understand how to build a Dense Neural Network (DNN) for image classification2. Understand how to use dropout (DNN) for image classification3. Understand how to use Convolutional Neural Networks (CNN)4. Know how to deploy and use an image classifcation model using Google Cloud's [AI Platform](https://cloud.google.com/ai-platform/)First things first. Configure the parameters below to match your own Google Cloud project details. ###Code !sudo chown -R jupyter:jupyter /home/jupyter/training-data-analyst from datetime import datetime import os PROJECT = "your-project-id-here" # REPLACE WITH YOUR PROJECT ID BUCKET = "your-bucket-id-here" # REPLACE WITH YOUR BUCKET NAME REGION = "us-central1" # REPLACE WITH YOUR BUCKET REGION e.g. us-central1 MODEL_TYPE = "cnn" # "linear", "dnn", "dnn_dropout", or "dnn" # Do not change these os.environ["PROJECT"] = PROJECT os.environ["BUCKET"] = BUCKET os.environ["REGION"] = REGION os.environ["MODEL_TYPE"] = MODEL_TYPE os.environ["TFVERSION"] = "2.1" # Tensorflow version os.environ["IMAGE_URI"] = os.path.join("gcr.io", PROJECT, "mnist_models") ###Output _____no_output_____ ###Markdown Building a dynamic modelIn the previous notebook, mnist_linear.ipynb, we ran our code directly from the notebook. In order to run it on the AI Platform, it needs to be packaged as a python module.The boilerplate structure for this module has already been set up in the folder `mnist_models`. The module lives in the sub-folder, `trainer`, and is designated as a python package with the empty `__init__.py` (`mnist_models/trainer/__init__.py`) file. It still needs the model and a trainer to run it, so let's make them.Let's start with the trainer file first. This file parses command line arguments to feed into the model. ###Code %%writefile mnist_models/trainer/task.py import argparse import json import os import sys from . import model def _parse_arguments(argv): """Parses command-line arguments.""" parser = argparse.ArgumentParser() parser.add_argument( '--model_type', help='Which model type to use', type=str, default='linear') parser.add_argument( '--epochs', help='The number of epochs to train', type=int, default=10) parser.add_argument( '--steps_per_epoch', help='The number of steps per epoch to train', type=int, default=100) parser.add_argument( '--job-dir', help='Directory where to save the given model', type=str, default='mnist_models/') return parser.parse_known_args(argv) def main(): """Parses command line arguments and kicks off model training.""" args = _parse_arguments(sys.argv[1:])[0] # Configure path for hyperparameter tuning. trial_id = json.loads( os.environ.get('TF_CONFIG', '{}')).get('task', {}).get('trial', '') output_path = args.job_dir if not trial_id else args.job_dir + '/' model_layers = model.get_layers(args.model_type) image_model = model.build_model(model_layers, args.job_dir) model_history = model.train_and_evaluate( image_model, args.epochs, args.steps_per_epoch, args.job_dir) if __name__ == '__main__': main() ###Output _____no_output_____ ###Markdown Next, let's group non-model functions into a util file to keep the model file simple. We'll copy over the `scale` and `load_dataset` functions from the previous lab. ###Code %%writefile mnist_models/trainer/util.py import tensorflow as tf def scale(image, label): """Scales images from a 0-255 int range to a 0-1 float range""" image = tf.cast(image, tf.float32) image /= 255 image = tf.expand_dims(image, -1) return image, label def load_dataset( data, training=True, buffer_size=5000, batch_size=100, nclasses=10): """Loads MNIST dataset into a tf.data.Dataset""" (x_train, y_train), (x_test, y_test) = data x = x_train if training else x_test y = y_train if training else y_test # One-hot encode the classes y = tf.keras.utils.to_categorical(y, nclasses) dataset = tf.data.Dataset.from_tensor_slices((x, y)) dataset = dataset.map(scale).batch(batch_size) if training: dataset = dataset.shuffle(buffer_size).repeat() return dataset ###Output _____no_output_____ ###Markdown Finally, let's code the models! The [tf.keras API](https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras) accepts an array of [layers](https://www.tensorflow.org/api_docs/python/tf/keras/layers) into a [model object](https://www.tensorflow.org/api_docs/python/tf/keras/Model), so we can create a dictionary of layers based on the different model types we want to use. The below file has two functions: `get_layers` and `create_and_train_model`. We will build the structure of our model in `get_layers`. Last but not least, we'll copy over the training code from the previous lab into `train_and_evaluate`.**TODO 1**: Define the Keras layers for a DNN model **TODO 2**: Define the Keras layers for a dropout model **TODO 3**: Define the Keras layers for a CNN model Hint: These models progressively build on each other. Look at the imported `tensorflow.keras.layers` modules and the default values for the variables defined in `get_layers` for guidance. ###Code %%writefile mnist_models/trainer/model.py import os import shutil import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from tensorflow.keras import Sequential from tensorflow.keras.callbacks import TensorBoard from tensorflow.keras.layers import ( Conv2D, Dense, Dropout, Flatten, MaxPooling2D, Softmax) from . import util # Image Variables WIDTH = 28 HEIGHT = 28 def get_layers( model_type, nclasses=10, hidden_layer_1_neurons=400, hidden_layer_2_neurons=100, dropout_rate=0.25, num_filters_1=64, kernel_size_1=3, pooling_size_1=2, num_filters_2=32, kernel_size_2=3, pooling_size_2=2): """Constructs layers for a keras model based on a dict of model types.""" model_layers = { 'linear': [ Flatten(), Dense(nclasses), Softmax() ], 'dnn': [ # TODO ], 'dnn_dropout': [ # TODO ], 'cnn': [ # TODO ] } return model_layers[model_type] def build_model(layers, output_dir): """Compiles keras model for image classification.""" model = Sequential(layers) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) return model def train_and_evaluate(model, num_epochs, steps_per_epoch, output_dir): """Compiles keras model and loads data into it for training.""" mnist = tf.keras.datasets.mnist.load_data() train_data = util.load_dataset(mnist) validation_data = util.load_dataset(mnist, training=False) callbacks = [] if output_dir: tensorboard_callback = TensorBoard(log_dir=output_dir) callbacks = [tensorboard_callback] history = model.fit( train_data, validation_data=validation_data, epochs=num_epochs, steps_per_epoch=steps_per_epoch, verbose=2, callbacks=callbacks) if output_dir: export_path = os.path.join(output_dir, 'keras_export') model.save(export_path, save_format='tf') return history ###Output _____no_output_____ ###Markdown Local TrainingWith everything set up, let's run locally to test the code. Some of the previous tests have been copied over into a testing script `mnist_models/trainer/test.py` to make sure the model still passes our previous checks. On `line 13`, you can specify which model types you would like to check. `line 14` and `line 15` has the number of epochs and steps per epoch respectively.Moment of truth! Run the code below to check your models against the unit tests. If you see "OK" at the end when it's finished running, congrats! You've passed the tests! ###Code !python3 -m mnist_models.trainer.test ###Output _____no_output_____ ###Markdown Now that we know that our models are working as expected, let's run it on the [Google Cloud AI Platform](https://cloud.google.com/ml-engine/docs/). We can run it as a python module locally first using the command line.The below cell transfers some of our variables to the command line as well as create a job directory including a timestamp. ###Code current_time = datetime.now().strftime("%y%m%d_%H%M%S") model_type = 'cnn' os.environ["MODEL_TYPE"] = model_type os.environ["JOB_DIR"] = "mnist_models/models/{}_{}/".format( model_type, current_time) ###Output _____no_output_____ ###Markdown The cell below runs the local version of the code. The epochs and steps_per_epoch flag can be changed to run for longer or shorther, as defined in our `mnist_models/trainer/task.py` file. ###Code %%bash python3 -m mnist_models.trainer.task \ --job-dir=$JOB_DIR \ --epochs=5 \ --steps_per_epoch=50 \ --model_type=$MODEL_TYPE ###Output _____no_output_____ ###Markdown Training on the cloudSince we're using an unreleased version of TensorFlow on AI Platform, we can instead use a [Deep Learning Container](https://cloud.google.com/ai-platform/deep-learning-containers/docs/overview) in order to take advantage of libraries and applications not normally packaged with AI Platform. Below is a simple [Dockerlife](https://docs.docker.com/engine/reference/builder/) which copies our code to be used in a TF2 environment. ###Code %%writefile mnist_models/Dockerfile FROM gcr.io/deeplearning-platform-release/tf2-cpu COPY mnist_models/trainer /mnist_models/trainer ENTRYPOINT ["python3", "-m", "mnist_models.trainer.task"] ###Output _____no_output_____ ###Markdown The below command builds the image and ships it off to Google Cloud so it can be used for AI Platform. When built, it will show up [here](http://console.cloud.google.com/gcr) with the name `mnist_models`. ([Click here](https://console.cloud.google.com/cloud-build) to enable Cloud Build) ###Code !docker build -f mnist_models/Dockerfile -t $IMAGE_URI ./ !docker push $IMAGE_URI ###Output _____no_output_____ ###Markdown Finally, we can kickoff the [AI Platform training job](https://cloud.google.com/sdk/gcloud/reference/ai-platform/jobs/submit/training). We can pass in our docker image using the `master-image-uri` flag. ###Code current_time = datetime.now().strftime("%y%m%d_%H%M%S") model_type = 'cnn' os.environ["MODEL_TYPE"] = model_type os.environ["JOB_DIR"] = "gs://{}/mnist_{}_{}/".format( BUCKET, model_type, current_time) os.environ["JOB_NAME"] = "mnist_{}_{}".format( model_type, current_time) %%bash echo $JOB_DIR $REGION $JOB_NAME gcloud ai-platform jobs submit training $JOB_NAME \ --staging-bucket=gs://$BUCKET \ --region=$REGION \ --master-image-uri=$IMAGE_URI \ --scale-tier=BASIC_GPU \ --job-dir=$JOB_DIR \ -- \ --model_type=$MODEL_TYPE ###Output _____no_output_____ ###Markdown Deploying and predicting with modelOnce you have a model you're proud of, let's deploy it! All we need to do is give AI Platform the location of the model. Below uses the keras export path of the previous job, but `${JOB_DIR}keras_export/` can always be changed to a different path.Uncomment the delete commands below if you are getting an "already exists error" and want to deploy a new model. ###Code %%bash MODEL_NAME="mnist" MODEL_VERSION=${MODEL_TYPE} MODEL_LOCATION=${JOB_DIR}keras_export/ echo "Deleting and deploying $MODEL_NAME $MODEL_VERSION from $MODEL_LOCATION ... this will take a few minutes" #yes | gcloud ai-platform versions delete ${MODEL_VERSION} --model ${MODEL_NAME} #yes | gcloud ai-platform models delete ${MODEL_NAME} gcloud ai-platform models create ${MODEL_NAME} --regions $REGION gcloud ai-platform versions create ${MODEL_VERSION} \ --model ${MODEL_NAME} \ --origin ${MODEL_LOCATION} \ --framework tensorflow \ --runtime-version=2.1 ###Output _____no_output_____ ###Markdown To predict with the model, let's take one of the example images.**TODO 4**: Write a `.json` file with image data to send to an AI Platform deployed model ###Code import json, codecs import tensorflow as tf import matplotlib.pyplot as plt from mnist_models.trainer import util HEIGHT = 28 WIDTH = 28 IMGNO = 12 mnist = tf.keras.datasets.mnist.load_data() (x_train, y_train), (x_test, y_test) = mnist test_image = x_test[IMGNO] jsondata = test_image.reshape(HEIGHT, WIDTH, 1).tolist() json.dump(jsondata, codecs.open("test.json", "w", encoding = "utf-8")) plt.imshow(test_image.reshape(HEIGHT, WIDTH)); ###Output _____no_output_____ ###Markdown Finally, we can send it to the prediction service. The output will have a 1 in the index of the corresponding digit it is predicting. Congrats! You've completed the lab! ###Code %%bash gcloud ai-platform predict \ --model=mnist \ --version=${MODEL_TYPE} \ --json-instances=./test.json ###Output _____no_output_____
quantization.ipynb
###Markdown Signal QuantizationQuantize the given data source "Dat_2.mat" using both uniform quantization and Lloyd–Max quantization method. >1)quantize into 16 and 64 levels 2)boundary = (-6, 6) 3)Analyze the quantization noise. ###Code import numpy as np import scipy.io as sio import scipy.integrate as integrate import matplotlib.pyplot as plt from scipy.interpolate import interp1d import warnings warnings.filterwarnings('ignore') ###Output _____no_output_____ ###Markdown Load the data file into numpy array ###Code mat_content = sio.loadmat("Dat_2.mat") data = mat_content['X'].reshape(10000) bound = (-6, 6) ###Output _____no_output_____ ###Markdown Have a look at the data ###Code plt.plot(data) plt.grid() ###Output _____no_output_____ ###Markdown Define the distortion function(Mean square error) ###Code def distortion(x, y): return(((y - x) ** 2).sum()) ###Output _____no_output_____ ###Markdown Uniform quantization ###Code def uniform_quanti(data, n, bound=(min(data), max(data))): data[data < bound[0]] = bound[0] data[data > bound[1]] = bound[1] delta = (bound[1] - bound[0])/n return(delta * ((data/delta + 1/2) // 1)) uni_quan16 = uniform_quanti(data, 16, (-6, 6)) uni_quan64 = uniform_quanti(data, 64, (-6, 6)) uni_distortion16 = distortion(data, uni_quan16) uni_distortion64 = distortion(data, uni_quan64) print("4-bit distortion:", uni_distortion16) print("6-bit distortion:", uni_distortion64) ###Output 4-bit distortion: 463.4149198485427 6-bit distortion: 29.585591761753818 ###Markdown Lloyd–Max quantizationGiven the fixed code length(4/6-bit), the optimization goal is to minimize the distortion. The distortion $D(b, y)$ is continuous and differentiable with respect to both $b$ and $y$. Thus the miminum points satisfies: $\displaystyle \frac{\partial D}{\partial b_k} = 0 \Rightarrow b_k = \frac{y_{k-1} + y_k}{2}$ $\displaystyle \frac{\partial D}{\partial y_k} = 0 \Rightarrow y_k = \frac{\int_{b_k}^{b_{k+1}} x \cdot \text{pdf}(x)dx}{\int_{b_k}^{b_{k+1}}\text{pdf}(x)dx}$ Iterate to optimize the result. Estimate the PDF from the sample data ###Code def count_freq(data, n=10000, bound=(min(data), max(data))): delta = (bound[1] - bound[0]) / n freq = np.array([(((i*delta + bound[0]) <= data) & (data < ((i+1)*delta + bound[0]))).sum() for i in range(n)]) return((freq/data.size, delta)) n = 50 (freq, delta) = count_freq(data, n, bound) x = np.linspace(bound[0], bound[1], n) # Using a cubic interpolation to approximate the PDF # Curve fitting should be a better approach, but considering # the programming complexity, leave it for another time. pdf = interp1d(x, freq/delta, kind="cubic") xpdf = interp1d(x, x*freq/delta, kind="cubic") plt.plot(x, pdf(x), '-', label='PDF') plt.fill_between(x, pdf(x), 0, facecolor='orange') plt.title("PDF of the data") plt.text(-6, 0.2, "$\int_{-6} ^{6} pdf(x)dx = $ %.5f"%(integrate.quad(pdf, -6, 6)[0]), fontsize=14) plt.grid() def LM_iterate(b, y, n, pdf, xpdf): B_Y = [] for _ in range(max(n) + 1): b[1 : -1] = (y[1:] + y[0:-1]) / 2 for i in range(y.size): num, err = integrate.quad(xpdf, b[i], b[i+1]) den, err = integrate.quad(pdf, b[i], b[i+1]) y[i] = num/den if(_ in n): B_Y.append([b.copy(), y.copy()]) return(B_Y) def quantify(data, b, y): data[data < b[0]] = b[0] data[data > b[-1]] = b[-1] q_data = np.array([y[np.argmax(b >= data[i]) - 1] for i in range(data.size)]) return(q_data.copy()) y16 = np.sort(((np.random.rand(16)- 1/2) * 2 * 6)) b16 = np.zeros(16 + 1) y64 = np.sort(((np.random.rand(64)- 1/2) * 2 * 6)) b64 = np.zeros(64 + 1) b16[0] = -6 b16[-1] = 6 b64[0] = -6 b64[-1] = 6 n = [5, 10, 20, 30, 40, 50, 60, 80, 100] B_Y16 = LM_iterate(b16, y16, n, pdf, xpdf) B_Y64 = LM_iterate(b64, y64, n, pdf, xpdf) q_data16 = [] q_data64 = [] for b, y in B_Y16: q_data16.append(quantify(data, b, y)) for b, y in B_Y64: q_data64.append(quantify(data, b, y)) distortions16 = [] distortions64 = [] for qd in q_data16: distortions16.append(distortion(data, qd)) for qd in q_data64: distortions64.append(distortion(data, qd)) plt.figure(figsize=(16, 5)) plt.subplot(1, 2, 1) plt.plot(n, distortions16, '-o') plt.title("4-bit quantization distortion") plt.xticks(n) plt.yticks(distortions16) plt.ylabel("Distortion") plt.xlabel("Number of iteration(n)") plt.text(25, 293, "4-bit uniform quantization distortion: %.1f"%(uni_distortion16)) plt.grid() plt.subplot(1, 2, 2) plt.plot(n, distortions64, '-o') plt.title("6-bit quantization distortion") plt.xticks(n) plt.yticks(distortions64) plt.ylabel("Distortion") plt.xlabel("Number of iteration(n)") plt.text(25, 42, "6-bit uniform quantization distortion: %.1f"%(uni_distortion64)) plt.grid() #plt.savefig("distortion.png", dpi=200) ###Output _____no_output_____
universal-computation/universal_computation/Split_EuroSAT.ipynb
###Markdown This code is to split the EuroSAT dataset to train / test split ###Code from google.colab import drive drive.mount('/content/drive', force_remount=True) ############################# import sys sys.path.insert(0, '/content/drive/GoogleDrive/MyDrive/GitHub/TransformerRS/RSdataset/') import os import numpy as np import shutil import pandas as pd print("########### Train Test Val Script started ###########") #data_csv = pd.read_csv("DataSet_Final.csv") ##Use if you have classes saved in any .csv file root_dir = '/content/drive/MyDrive/GitHub/RSdataset/data/eurosat-rgb/split/' classes_dir = ['AnnualCrop', 'Forest', 'HerbaceousVegetation', 'Highway', 'Industrial' , 'Pasture', 'PermanentCrop', 'Residential', 'River' , 'SeaLake'] processed_dir = '/content/drive/MyDrive/GitHub/RSdataset/data/eurosat-rgb/2750' val_ratio = 0.0 test_ratio = 0.20 for cls in classes_dir: folder_name = cls print("$$$$$$$ Class Name " + folder_name + " $$$$$$$") src = processed_dir +"/" + folder_name # Folder to copy images from allFileNames = os.listdir(src) np.random.shuffle(allFileNames) train_FileNames, test_FileNames, val_FileNames = np.split(np.array(allFileNames), [int(len(allFileNames) * (1 - (val_ratio + test_ratio))), int(len(allFileNames) * (1 - val_ratio)), ]) train_FileNames = [src + '/' + name for name in train_FileNames.tolist()] val_FileNames = [src + '/' + name for name in val_FileNames.tolist()] test_FileNames = [src + '/' + name for name in test_FileNames.tolist()] print('Total images: '+ str(len(allFileNames))) print('Training: '+ str(len(train_FileNames))) print('Validation: '+ str(len(val_FileNames))) print('Testing: '+ str(len(test_FileNames))) # # Creating Train / Val / Test folders (One time use) os.makedirs(root_dir + 'train/' + folder_name) os.makedirs(root_dir + 'val/' + folder_name) os.makedirs(root_dir + 'test/' + folder_name) # Copy-pasting images for name in train_FileNames: shutil.copy(name, root_dir + 'train/' + folder_name) for name in val_FileNames: shutil.copy(name, root_dir + 'val/' + folder_name) for name in test_FileNames: shutil.copy(name, root_dir + 'test/' + folder_name) print("########### Train Test Val Script Ended ###########") ###Output $$$$$$$ Class Name AnnualCrop $$$$$$$ Total images: 3000 Training: 2400 Validation: 0 Testing: 600 $$$$$$$ Class Name Forest $$$$$$$ Total images: 3000 Training: 2400 Validation: 0 Testing: 600 $$$$$$$ Class Name HerbaceousVegetation $$$$$$$ Total images: 3000 Training: 2400 Validation: 0 Testing: 600 $$$$$$$ Class Name Highway $$$$$$$ Total images: 2500 Training: 2000 Validation: 0 Testing: 500 $$$$$$$ Class Name Industrial $$$$$$$ Total images: 2500 Training: 2000 Validation: 0 Testing: 500 $$$$$$$ Class Name Pasture $$$$$$$ Total images: 2000 Training: 1600 Validation: 0 Testing: 400 $$$$$$$ Class Name PermanentCrop $$$$$$$ Total images: 2500 Training: 2000 Validation: 0 Testing: 500 $$$$$$$ Class Name Residential $$$$$$$ Total images: 3000 Training: 2400 Validation: 0 Testing: 600 $$$$$$$ Class Name River $$$$$$$ Total images: 2500 Training: 2000 Validation: 0 Testing: 500 $$$$$$$ Class Name SeaLake $$$$$$$ Total images: 3000 Training: 2400 Validation: 0 Testing: 600
examples/screenshot.ipynb
###Markdown **Note**: this operation is asynchronous.We need to wait for the widgets to synchronize behind the scenes... ###Code from IPython.display import Image with open('screenshot.png', 'wb') as f: try: out = plot.screenshot.decode('base64') except: # Python 3 from base64 import b64decode out = b64decode(plot.screenshot) f.write(out) Image(url='screenshot.png') ###Output _____no_output_____ ###Markdown Expected result:![Possible screenshot](assets/screenshot.png "Possible screenshot") ###Code plot.screenshot_scale = 4.0 plot.fetch_screenshot() ###Output _____no_output_____ ###Markdown **Note**: this operation is asynchronous.We need to wait for the widgets to synchronize behind the scenes... ###Code with open('screenshot_upscale.png', 'wb') as f: try: out = plot.screenshot.decode('base64') except: # Python 3 from base64 import b64decode out = b64decode(plot.screenshot) f.write(out) from scipy import misc print(misc.imread('screenshot.png').shape, misc.imread('screenshot_upscale.png').shape) ###Output _____no_output_____ ###Markdown **Note**: this operation is asynchronous.We need to wait for the widgets to synchronize behind the scenes... ###Code from IPython.display import Image with open('screenshot.png', 'wb') as f: try: out = plot.screenshot.decode('base64') except: # Python 3 from base64 import b64decode out = b64decode(plot.screenshot) f.write(out) Image(url='screenshot.png') ###Output _____no_output_____ ###Markdown Expected result:![Possible screenshot](assets/screenshot.png "Possible screenshot") ###Code plot.screenshot_scale = 4.0 plot.fetch_screenshot() ###Output _____no_output_____ ###Markdown **Note**: this operation is asynchronous.We need to wait for the widgets to synchronize behind the scenes... ###Code with open('screenshot_upscale.png', 'wb') as f: try: out = plot.screenshot.decode('base64') except: # Python 3 from base64 import b64decode out = b64decode(plot.screenshot) f.write(out) import imageio print(imageio.imread('screenshot.png').shape, imageio.imread('screenshot_upscale.png').shape) ###Output _____no_output_____ ###Markdown **Note**: this operation is asynchronous.We need to wait for the widgets to synchronize behind the scenes... ###Code from IPython.display import Image with open('screenshot.png', 'wb') as f: try: out = plot.screenshot.decode('base64') except: # Python 3 from base64 import b64decode out = b64decode(plot.screenshot) f.write(out) Image(url='screenshot.png') ###Output _____no_output_____ ###Markdown Expected result:![Possible screenshot](assets/screenshot.png "Possible screenshot") ###Code plot.screenshot_scale = 4.0 plot.fetch_screenshot() ###Output _____no_output_____ ###Markdown **Note**: this operation is asynchronous.We need to wait for the widgets to synchronize behind the scenes... ###Code with open('screenshot_upscale.png', 'wb') as f: try: out = plot.screenshot.decode('base64') except: # Python 3 from base64 import b64decode out = b64decode(plot.screenshot) f.write(out) import imageio print(imageio.imread('screenshot.png').shape, imageio.imread('screenshot_upscale.png').shape) ###Output _____no_output_____ ###Markdown Taking a screenshot ###Code import jupyterlab_dosbox import matplotlib.pyplot as plt db = jupyterlab_dosbox.DosboxModel() ###Output _____no_output_____ ###Markdown Now we have to wait a moment, because I don't know yet how to make the spin-up be communicated back to python. ###Code db.send_command("dir") db.screenshot() plt.imshow(db.last_screenshot) ###Output _____no_output_____ ###Markdown **Note**: this operation is asynchronous.We need to wait for the widgets to synchronize behind the scenes... ###Code from IPython.display import Image with open('screenshot.png', 'wb') as f: try: out = plot.screenshot.decode('base64') except: # Python 3 from base64 import b64decode out = b64decode(plot.screenshot) f.write(out) Image(url='screenshot.png') ###Output _____no_output_____ ###Markdown Expected result:![Possible screenshot](assets/screenshot.png "Possible screenshot") ###Code plot.screenshot_scale = 4.0 plot.fetch_screenshot() ###Output _____no_output_____ ###Markdown **Note**: this operation is asynchronous.We need to wait for the widgets to synchronize behind the scenes... ###Code with open('screenshot_upscale.png', 'wb') as f: try: out = plot.screenshot.decode('base64') except: # Python 3 from base64 import b64decode out = b64decode(plot.screenshot) f.write(out) import imageio print(imageio.imread('screenshot.png').shape, imageio.imread('screenshot_upscale.png').shape) ###Output _____no_output_____
lab3/solutions/RL_Solution.ipynb
###Markdown Now that we have defined the core network architecture, we will define an *action function* that executes a forward pass through the network, given a set of observations, and samples from the output. This sampling from the output probabilities will be used to select the next action for the agent. **Critically, this action function is totally general -- we will use this function for both Cartpole and Pong, and it is applicable to other RL tasks, as well!** ###Code ### Define the agent's action function ### # Function that takes observations as input, executes a forward pass through model, # and outputs a sampled action. # Arguments: # model: the network that defines our agent # observation: observation which is fed as input to the model # Returns: # action: choice of agent action def choose_action(model, observation): # add batch dimension to the observation observation = np.expand_dims(observation, axis=0) """TODO: feed the observations through the model to predict the log probabilities of each possible action.""" logits = model.predict(observation) # TODO # logits = model.predict('''TODO''') # pass the log probabilities through a softmax to compute true probabilities prob_weights = tf.nn.softmax(logits).numpy() """TODO: randomly sample from the prob_weights to pick an action. Hint: carefully consider the dimensionality of the input probabilities (vector) and the output action (scalar)""" action = np.random.choice(n_actions, size=1, p=prob_weights.flatten())[0] # TODO # action = np.random.choice('''TODO''', size=1, p=''''TODO''')['''TODO'''] return action ###Output _____no_output_____ ###Markdown 3.2 Define the agent's memoryNow that we have instantiated the environment and defined the agent network architecture and action function, we are ready to move on to the next step in our RL workflow:1. **Initialize our environment and our agent**: here we will describe the different observations and actions the agent can make in the environemnt.2. **Define our agent's memory**: this will enable the agent to remember its past actions, observations, and rewards.3. **Define the learning algorithm**: this will be used to reinforce the agent's good behaviors and discourage bad behaviors.In reinforcement learning, training occurs alongside the agent's acting in the environment; an *episode* refers to a sequence of actions that ends in some terminal state, such as the pole falling down or the cart crashing. The agent will need to remember all of its observations and actions, such that once an episode ends, it can learn to "reinforce" the good actions and punish the undesirable actions via training. Our first step is to define a simple memory buffer that contains the agent's observations, actions, and received rewards from a given episode. **Once again, note the modularity of this memory buffer -- it can and will be applied to other RL tasks as well!** ###Code ### Agent Memory ### class Memory: def __init__(self): self.clear() # Resets/restarts the memory buffer def clear(self): self.observations = [] self.actions = [] self.rewards = [] # Add observations, actions, rewards to memory def add_to_memory(self, new_observation, new_action, new_reward): self.observations.append(new_observation) """TODO: update the list of actions with new action""" self.actions.append(new_action) # TODO # ['''TODO'''] """TODO: update the list of rewards with new reward""" self.rewards.append(new_reward) # TODO # ['''TODO'''] memory = Memory() ###Output _____no_output_____ ###Markdown 3.3 Reward functionWe're almost ready to begin the learning algorithm for our agent! The next step is to compute the rewards of our agent as it acts in the environment. Since we (and the agent) is uncertain about if and when the game or task will end (i.e., when the pole will fall), it is useful to emphasize getting rewards **now** rather than later in the future -- this is the idea of discounting. This is a similar concept to discounting money in the case of interest. ecall from lecture, we use reward discount to give more preference at getting rewards now rather than later in the future. The idea of discounting rewards is similar to discounting money in the case of interest.To compute the expected cumulative reward, known as the **return**, at a given timestep in a learning episode, we sum the discounted rewards expected at that time step $t$, within a learning episode, and projecting into the future. We define the return (cumulative reward) at a time step $t$, $R_{t}$ as:>$R_{t}=\sum_{k=0}^\infty\gamma^kr_{t+k}$where $0 < \gamma < 1$ is the discount factor and $r_{t}$ is the reward at time step $t$, and the index $k$ increments projection into the future within a single learning episode. Intuitively, you can think of this function as depreciating any rewards received at later time steps, which will force the agent prioritize getting rewards now. Since we can't extend episodes to infinity, in practice the computation will be limited to the number of timesteps in an episode -- after that the reward is assumed to be zero.Take note of the form of this sum -- we'll have to be clever about how we implement this function. Specifically, we'll need to initialize an array of zeros, with length of the number of time steps, and fill it with the real discounted reward values as we loop through the rewards from the episode, which will have been saved in the agents memory. What we ultimately care about is which actions are better relative to other actions taken in that episode -- so, we'll normalize our computed rewards, using the mean and standard deviation of the rewards across the learning episode. ###Code ### Reward function ### # Helper function that normalizes an np.array x def normalize(x): x -= np.mean(x) x /= np.std(x) return x.astype(np.float32) # Compute normalized, discounted, cumulative rewards (i.e., return) # Arguments: # rewards: reward at timesteps in episode # gamma: discounting factor # Returns: # normalized discounted reward def discount_rewards(rewards, gamma=0.95): discounted_rewards = np.zeros_like(rewards) R = 0 for t in reversed(range(0, len(rewards))): # update the total discounted reward R = R * gamma + rewards[t] discounted_rewards[t] = R return normalize(discounted_rewards) ###Output _____no_output_____ ###Markdown 3.4 Learning algorithmNow we can start to define the learing algorithm which will be used to reinforce good behaviors of the agent and discourage bad behaviours. In this lab, we will focus on *policy gradient* methods which aim to **maximize** the likelihood of actions that result in large rewards. Equivalently, this means that we want to **minimize** the negative likelihood of these same actions. We achieve this by simply **scaling** the probabilities by their associated rewards -- effectively amplifying the likelihood of actions that resujlt in large rewards.Since the log function is monotonically increasing, this means that minimizing **negative likelihood** is equivalent to minimizing **negative log-likelihood**. Recall that we can easily compute the negative log-likelihood of a discrete action by evaluting its [softmax cross entropy](https://www.tensorflow.org/api_docs/python/tf/nn/sparse_softmax_cross_entropy_with_logits). Like in supervised learning, we can use stochastic gradient descent methods to achieve the desired minimization. Let's begin by defining the loss function. ###Code ### Loss function ### # Arguments: # logits: network's predictions for actions to take # actions: the actions the agent took in an episode # rewards: the rewards the agent received in an episode # Returns: # loss def compute_loss(logits, actions, rewards): """TODO: complete the function call to compute the negative log probabilities""" neg_logprob = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=actions) # TODO # neg_logprob = tf.nn.sparse_softmax_cross_entropy_with_logits(logits='''TODO''', labels='''TODO''') """TODO: scale the negative log probability by the rewards""" loss = tf.reduce_mean(neg_logprob * rewards) # TODO # loss = tf.reduce_mean('''TODO''') return loss ###Output _____no_output_____ ###Markdown Now let's use the loss function to define a training step of our learning algorithm: ###Code ### Training step (forward and backpropagation) ### def train_step(model, optimizer, observations, actions, discounted_rewards): with tf.GradientTape() as tape: # Forward propagate through the agent network logits = model(observations) """TODO: call the compute_loss function to compute the loss""" loss = compute_loss(logits, actions, discounted_rewards) # TODO # loss = compute_loss('''TODO''', '''TODO''', '''TODO''') """TODO: run backpropagation to minimize the loss using the tape.gradient method""" grads = tape.gradient(loss, model.trainable_variables) # TODO # grads = tape.gradient('''TODO''', model.trainable_variables) optimizer.apply_gradients(zip(grads, model.trainable_variables)) ###Output _____no_output_____ ###Markdown 3.5 Run cartpole!Having had no prior knowledge of the environment, the agent will begin to learn how to balance the pole on the cart based only on the feedback received from the environment! Having defined how our agent can move, how it takes in new observations, and how it updates its state, we'll see how it gradually learns a policy of actions to optimize balancing the pole as long as possible. To do this, we'll track how the rewards evolve as a function of training -- how should the rewards change as training progresses? ###Code ### Cartpole training! ### # Learning rate and optimizer learning_rate = 1e-3 optimizer = tf.keras.optimizers.Adam(learning_rate) # instantiate cartpole agent cartpole_model = create_cartpole_model() # to track our progress smoothed_reward = mdl.util.LossHistory(smoothing_factor=0.9) plotter = mdl.util.PeriodicPlotter(sec=2, xlabel="Iterations", ylabel="Rewards") if hasattr(tqdm, "_instances"): tqdm._instances.clear() # clear if it exists for i_episode in range(500): plotter.plot(smoothed_reward.get()) # Restart the environment observation = env.reset() memory.clear() while True: # using our observation, choose an action and take it in the environment action = choose_action(cartpole_model, observation) next_observation, reward, done, info = env.step(action) # add to memory memory.add_to_memory(observation, action, reward) # is the episode over? did you crash or do so well that you're done? if done: # determine total reward and keep a record of this total_reward = sum(memory.rewards) smoothed_reward.append(total_reward) # initiate training - remember we don't know anything about how the # agent is doing until it has crashed! train_step( cartpole_model, optimizer, observations=np.vstack(memory.observations), actions=np.array(memory.actions), discounted_rewards=discount_rewards(memory.rewards), ) # reset the memory memory.clear() break # update our observatons observation = next_observation ###Output _____no_output_____ ###Markdown To get a sense of how our agent did, we can save a video of the trained model working on balancing the pole. Realize that this is a brand new environment that the agent has not seen before!Let's display the saved video to watch how our agent did! ###Code saved_cartpole = mdl.lab3.save_video_of_model(cartpole_model, "CartPole-v0") mdl.lab3.play_video(saved_cartpole) ###Output _____no_output_____ ###Markdown How does the agent perform? Could you train it for shorter amounts of time and still perform well? Do you think that training longer would help even more? Part 2: PongIn Cartpole, we dealt with an environment that was static -- in other words, it didn't change over time. What happens if our environment is dynamic and unpredictable? Well that's exactly the case in [Pong](https://en.wikipedia.org/wiki/Pong), since part of the environment is the opposing player. We don't know how our opponent will act or react to our actions, so the complexity of our problem increases. It also becomes much more interesting, since we can compete to beat our opponent. RL provides a powerful framework for training AI systems with the ability to handle and interact with dynamic, unpredictable environments. In this part of the lab, we'll use the tools and workflow we explored in Part 1 to build an RL agent capable of playing the game of Pong. 3.6 Define and inspect the Pong environmentAs with Cartpole, we'll instantiate the Pong environment in the OpenAI gym, using a seed of 1. ###Code env = gym.make("Pong-v0", frameskip=5) env.seed(1) # for reproducibility ###Output _____no_output_____ ###Markdown Let's next consider the observation space for the Pong environment. Instead of four physical descriptors of the cart-pole setup, in the case of Pong our observations are the individual video frames (i.e., images) that depict the state of the board. Thus, the observations are 210x160 RGB images (arrays of shape (210,160,3)).We can again confirm the size of the observation space by query: ###Code print("Environment has observation space =", env.observation_space) ###Output _____no_output_____ ###Markdown In Pong, at every time step, the agent (which controls the paddle) has six actions to choose from: no-op (no operation), move right, move left, fire, fire right, and fire left. Let's confirm the size of the action space by querying the environment: ###Code n_actions = env.action_space.n print("Number of possible actions that the agent can choose from =", n_actions) ###Output _____no_output_____ ###Markdown 3.7 Define the Pong agentAs before, we'll use a neural network to define our agent. What network architecture do you think would be especially well suited to this game? Since our observations are now in the form of images, we'll add convolutional layers to the network to increase the learning capacity of our network. ###Code ### Define the Pong agent ### # Functionally define layers for convenience # All convolutional layers will have ReLu activation Conv2D = functools.partial(tf.keras.layers.Conv2D, padding="same", activation="relu") Flatten = tf.keras.layers.Flatten Dense = tf.keras.layers.Dense # Defines a CNN for the Pong agent def create_pong_model(): model = tf.keras.models.Sequential( [ # Convolutional layers # First, 16 7x7 filters and 4x4 stride Conv2D(filters=16, kernel_size=7, strides=4), # TODO: define convolutional layers with 32 5x5 filters and 2x2 stride Conv2D(filters=32, kernel_size=5, strides=2), # TODO # Conv2D('''TODO'''), # TODO: define convolutional layers with 48 3x3 filters and 2x2 stride Conv2D(filters=48, kernel_size=3, strides=2), # TODO # Conv2D('''TODO'''), Flatten(), # Fully connected layer and output Dense(units=64, activation="relu"), # TODO: define the output dimension of the last Dense layer. # Pay attention to the space the agent needs to act in Dense(units=n_actions, activation=None) # TODO # Dense('''TODO''') ] ) return model pong_model = create_pong_model() ###Output _____no_output_____ ###Markdown Since we've already defined the action function, `choose_action(model, observation)`, we don't need to define it again. Instead, we'll be able to reuse it later on by passing in our new model we've just created, `pong_model`. This is awesome because our action function provides a modular and generalizable method for all sorts of RL agents! 3.8 Pong-specific functionsIn Part 1 (Cartpole), we implemented some key functions and classes to build and train our RL agent -- `choose_action(model, observation)` and the `Memory` class, for example. However, in getting ready to apply these to a new game like Pong, we might need to make some slight modifications. Namely, we need to think about what happens when a game ends. In Pong, we know a game has ended if the reward is +1 (we won!) or -1 (we lost unfortunately). Otherwise, we expect the reward at a timestep to be zero -- the players (or agents) are just playing eachother. So, after a game ends, we will need to reset the reward to zero when a game ends. This will result in a modified reward function. ###Code ### Pong reward function ### # Compute normalized, discounted rewards for Pong (i.e., return) # Arguments: # rewards: reward at timesteps in episode # gamma: discounting factor. Note increase to 0.99 -- rate of depreciation will be slower. # Returns: # normalized discounted reward def discount_rewards(rewards, gamma=0.99): discounted_rewards = np.zeros_like(rewards) R = 0 for t in reversed(range(0, len(rewards))): # NEW: Reset the sum if the reward is not 0 (the game has ended!) if rewards[t] != 0: R = 0 # update the total discounted reward as before R = R * gamma + rewards[t] discounted_rewards[t] = R return normalize(discounted_rewards) ###Output _____no_output_____ ###Markdown Additionally, we have to consider the nature of the observations in the Pong environment, and how they will be fed into our network. Our observations in this case are images. Before we input an image into our network, we'll do a bit of pre-processing to crop and scale, clean up the background colors to a single color, and set the important game elements to a single color. Let's use this function to visualize what an observation might look like before and after pre-processing. ###Code observation = env.reset() for i in range(30): observation, _, _, _ = env.step(0) observation_pp = mdl.lab3.preprocess_pong(observation) f = plt.figure(figsize=(10, 3)) ax = f.add_subplot(121) ax2 = f.add_subplot(122) ax.imshow(observation) ax.grid(False) ax2.imshow(np.squeeze(observation_pp)) ax2.grid(False) plt.title("Preprocessed Observation") ; ###Output _____no_output_____ ###Markdown What do you notice? How might these changes be important for training our RL algorithm? 3.9 Training PongWe're now all set up to start training our RL algorithm and agent for the game of Pong! We've already defined our loss function with `compute_loss`, which employs policy gradient learning, as well as our backpropagation step with `train_step` which is beautiful! We will use these functions to execute training the Pong agent. Let's walk through the training block.In Pong, rather than feeding our network one image at a time, it can actually improve performance to input the difference between two consecutive observations, which really gives us information about the movement between frames -- how the game is changing. We'll first pre-process the raw observation, `x`, and then we'll compute the difference with the image frame we saw one timestep before. This observation change will be forward propagated through our Pong agent, the CNN network model, which will then predict the next action to take based on this observation. The raw reward will be computed, and the observation, action, and reward will be recorded into memory. This will continue until a training episode, i.e., a game, ends.Then, we will compute the discounted rewards, and use this information to execute a training step. Memory will be cleared, and we will do it all over again!Let's run the code block to train our Pong agent. Note that completing training will take quite a bit of time (estimated at least a couple of hours). We will again visualize the evolution of the total reward as a function of training to get a sense of how the agent is learning. ###Code ### Training Pong ### # Hyperparameters learning_rate = 1e-4 MAX_ITERS = 10000 # increase the maximum number of episodes, since Pong is more complex! # Model and optimizer pong_model = create_pong_model() optimizer = tf.keras.optimizers.Adam(learning_rate) # plotting smoothed_reward = mdl.util.LossHistory(smoothing_factor=0.9) plotter = mdl.util.PeriodicPlotter(sec=5, xlabel="Iterations", ylabel="Rewards") memory = Memory() for i_episode in range(MAX_ITERS): plotter.plot(smoothed_reward.get()) # Restart the environment observation = env.reset() previous_frame = mdl.lab3.preprocess_pong(observation) while True: # Pre-process image current_frame = mdl.lab3.preprocess_pong(observation) """TODO: determine the observation change Hint: this is the difference between the past two frames""" obs_change = current_frame - previous_frame # TODO # obs_change = # TODO """TODO: choose an action for the pong model, using the frame difference, and evaluate""" action = choose_action(pong_model, obs_change) # TODO # action = # TODO # Take the chosen action next_observation, reward, done, info = env.step(action) """TODO: save the observed frame difference, the action that was taken, and the resulting reward!""" memory.add_to_memory(obs_change, action, reward) # TODO # is the episode over? did you crash or do so well that you're done? if done: # determine total reward and keep a record of this total_reward = sum(memory.rewards) smoothed_reward.append(total_reward) # begin training train_step( pong_model, optimizer, observations=np.stack(memory.observations, 0), actions=np.array(memory.actions), discounted_rewards=discount_rewards(memory.rewards), ) memory.clear() break observation = next_observation previous_frame = current_frame ###Output _____no_output_____ ###Markdown Finally we can put our trained agent to the test! It will play in a newly instantiated Pong environment against the "computer", a base AI system for Pong. Your agent plays as the green paddle. Let's watch the match instant replay! ###Code saved_pong = mdl.lab3.save_video_of_model(pong_model, "Pong-v0", obs_diff=True, pp_fn=mdl.lab3.preprocess_pong) mdl.lab3.play_video(saved_pong) ###Output _____no_output_____ ###Markdown Visit MIT Deep Learning Run in Google Colab View Source on GitHub Copyright Information ###Code # Copyright 2022 MIT 6.S191 Introduction to Deep Learning. All Rights Reserved. # # Licensed under the MIT License. You may not use this file except in compliance # with the License. Use and/or modification of this code outside of 6.S191 must # reference: # # © MIT 6.S191: Introduction to Deep Learning # http://introtodeeplearning.com # ###Output _____no_output_____ ###Markdown Laboratory 3: Reinforcement LearningReinforcement learning (RL) is a subset of machine learning which poses learning problems as interactions between agents and environments. It often assumes agents have no prior knowledge of a world, so they must learn to navigate environments by optimizing a reward function. Within an environment, an agent can take certain actions and receive feedback, in the form of positive or negative rewards, with respect to their decision. As such, an agent's feedback loop is somewhat akin to the idea of "trial and error", or the manner in which a child might learn to distinguish between "good" and "bad" actions.In practical terms, our RL agent will interact with the environment by taking an action at each timestep, receiving a corresponding reward, and updating its state according to what it has "learned". ![alt text](https://www.kdnuggets.com/images/reinforcement-learning-fig1-700.jpg)While the ultimate goal of reinforcement learning is to teach agents to act in the real, physical world, simulated environments -- like games and simulation engines -- provide a convenient proving ground for developing RL algorithms and agents.In previous labs, we have explored both supervised (with LSTMs, CNNs) and unsupervised / semi-supervised (with VAEs) learning tasks. Reinforcement learning is fundamentally different, in that we are training a deep learning algorithm to govern the actions of our RL agent, that is trying, within its environment, to find the optimal way to achieve a goal. The goal of training an RL agent is to determine the best next step to take to earn the greatest final payoff or return. In this lab, we focus on building a reinforcement learning algorithm to master two different environments with varying complexity. 1. **Cartpole**: Balance a pole, protruding from a cart, in an upright position by only moving the base left or right. Environment with a low-dimensional observation space.2. [**Driving in VISTA**](https://www.mit.edu/~amini/pubs/pdf/learning-in-simulation-vista.pdf): Learn a driving control policy for an autonomous vehicle, end-to-end from raw pixel inputs and entirely in the data-driven simulation environment of VISTA. Environment with a high-dimensional observation space -- learning directly from raw pixels.Let's get started! First we'll import TensorFlow, the course package, and some dependencies. ###Code # Import Tensorflow 2.0 %tensorflow_version 2.x import tensorflow as tf gpus = tf.config.experimental.list_physical_devices('GPU') if gpus: for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) # Download and import the MIT 6.S191 package !printf "Installing MIT deep learning package... " !pip install --upgrade git+https://github.com/aamini/introtodeeplearning.git &> /dev/null !echo "Done" #Install some dependencies for visualizing the agents !apt-get install -y xvfb python-opengl x11-utils &> /dev/null !pip install gym pyvirtualdisplay scikit-video ffio pyrender &> /dev/null !pip install tensorflow_probability==0.12.0 &> /dev/null import os os.environ['PYOPENGL_PLATFORM'] = 'egl' import numpy as np import matplotlib, cv2 import matplotlib.pyplot as plt import base64, io, os, time, gym import IPython, functools import time from tqdm import tqdm import tensorflow_probability as tfp import mitdeeplearning as mdl ###Output _____no_output_____ ###Markdown Before we dive in, let's take a step back and outline our approach, which is generally applicable to reinforcement learning problems in general:1. **Initialize our environment and our agent**: here we will describe the different observations and actions the agent can make in the environemnt.2. **Define our agent's memory**: this will enable the agent to remember its past actions, observations, and rewards.3. **Define a reward function**: describes the reward associated with an action or sequence of actions.4. **Define the learning algorithm**: this will be used to reinforce the agent's good behaviors and discourage bad behaviors. Part 1: Cartpole 3.1 Define the Cartpole environment and agent Environment In order to model the environment for the Cartpole task, we'll be using a toolkit developed by OpenAI called [OpenAI Gym](https://gym.openai.com/). It provides several pre-defined environments for training and testing reinforcement learning agents, including those for classic physics control tasks, Atari video games, and robotic simulations. To access the Cartpole environment, we can use `env = gym.make("CartPole-v0")`, which we gained access to when we imported the `gym` package. We can instantiate different [environments](https://gym.openai.com/envs/classic_control) by passing the enivronment name to the `make` function.One issue we might experience when developing RL algorithms is that many aspects of the learning process are inherently random: initializing game states, changes in the environment, and the agent's actions. As such, it can be helpful to set a initial "seed" for the environment to ensure some level of reproducibility. Much like you might use `numpy.random.seed`, we can call the comparable function in gym, `seed`, with our defined environment to ensure the environment's random variables are initialized the same each time. ###Code ### Instantiate the Cartpole environment ### env = gym.make("CartPole-v1") env.seed(1) ###Output _____no_output_____ ###Markdown In Cartpole, a pole is attached by an un-actuated joint to a cart, which moves along a frictionless track. The pole starts upright, and the goal is to prevent it from falling over. The system is controlled by applying a force of +1 or -1 to the cart. A reward of +1 is provided for every timestep that the pole remains upright. The episode ends when the pole is more than 15 degrees from vertical, or the cart moves more than 2.4 units from the center of the track. A visual summary of the cartpole environment is depicted below:Given this setup for the environment and the objective of the game, we can think about: 1) what observations help define the environment's state; 2) what actions the agent can take. First, let's consider the observation space. In this Cartpole environment our observations are:1. Cart position2. Cart velocity3. Pole angle4. Pole rotation rateWe can confirm the size of the space by querying the environment's observation space: ###Code n_observations = env.observation_space print("Environment has observation space =", n_observations) ###Output _____no_output_____ ###Markdown Second, we consider the action space. At every time step, the agent can move either right or left. Again we can confirm the size of the action space by querying the environment: ###Code n_actions = env.action_space.n print("Number of possible actions that the agent can choose from =", n_actions) ###Output _____no_output_____ ###Markdown Cartpole agentNow that we have instantiated the environment and understood the dimensionality of the observation and action spaces, we are ready to define our agent. In deep reinforcement learning, a deep neural network defines the agent. This network will take as input an observation of the environment and output the probability of taking each of the possible actions. Since Cartpole is defined by a low-dimensional observation space, a simple feed-forward neural network should work well for our agent. We will define this using the `Sequential` API. ###Code ### Define the Cartpole agent ### # Defines a feed-forward neural network def create_cartpole_model(): model = tf.keras.models.Sequential([ # First Dense layer tf.keras.layers.Dense(units=32, activation='relu'), # TODO: Define the last Dense layer, which will provide the network's output. # Think about the space the agent needs to act in! tf.keras.layers.Dense(units=n_actions, activation=None) # TODO # ['''TODO''' Dense layer to output action probabilities] ]) return model cartpole_model = create_cartpole_model() ###Output _____no_output_____ ###Markdown Now that we have defined the core network architecture, we will define an *action function* that executes a forward pass through the network, given a set of observations, and samples from the output. This sampling from the output probabilities will be used to select the next action for the agent. We will also add support so that the `choose_action` function can handle either a single observation or a batch of observations.**Critically, this action function is totally general -- we will use this function for learning control algorithms for Cartpole, but it is applicable to other RL tasks, as well!** ###Code ### Define the agent's action function ### # Function that takes observations as input, executes a forward pass through model, # and outputs a sampled action. # Arguments: # model: the network that defines our agent # observation: observation(s) which is/are fed as input to the model # single: flag as to whether we are handling a single observation or batch of # observations, provided as an np.array # Returns: # action: choice of agent action def choose_action(model, observation, single=True): # add batch dimension to the observation if only a single example was provided observation = np.expand_dims(observation, axis=0) if single else observation '''TODO: feed the observations through the model to predict the log probabilities of each possible action.''' logits = model.predict(observation) # TODO # logits = model.predict('''TODO''') '''TODO: Choose an action from the categorical distribution defined by the log probabilities of each possible action.''' action = tf.random.categorical(logits, num_samples=1) # action = ['''TODO'''] action = action.numpy().flatten() return action[0] if single else action ###Output _____no_output_____ ###Markdown 3.2 Define the agent's memoryNow that we have instantiated the environment and defined the agent network architecture and action function, we are ready to move on to the next step in our RL workflow:1. **Initialize our environment and our agent**: here we will describe the different observations and actions the agent can make in the environemnt.2. **Define our agent's memory**: this will enable the agent to remember its past actions, observations, and rewards.3. **Define the learning algorithm**: this will be used to reinforce the agent's good behaviors and discourage bad behaviors.In reinforcement learning, training occurs alongside the agent's acting in the environment; an *episode* refers to a sequence of actions that ends in some terminal state, such as the pole falling down or the cart crashing. The agent will need to remember all of its observations and actions, such that once an episode ends, it can learn to "reinforce" the good actions and punish the undesirable actions via training. Our first step is to define a simple `Memory` buffer that contains the agent's observations, actions, and received rewards from a given episode. We will also add support to combine a list of `Memory` objects into a single `Memory`. This will be very useful for batching, which will help you accelerate training later on in the lab.**Once again, note the modularity of this memory buffer -- it can and will be applied to other RL tasks as well!** ###Code ### Agent Memory ### class Memory: def __init__(self): self.clear() # Resets/restarts the memory buffer def clear(self): self.observations = [] self.actions = [] self.rewards = [] # Add observations, actions, rewards to memory def add_to_memory(self, new_observation, new_action, new_reward): self.observations.append(new_observation) '''TODO: update the list of actions with new action''' self.actions.append(new_action) # TODO # ['''TODO'''] '''TODO: update the list of rewards with new reward''' self.rewards.append(new_reward) # TODO # ['''TODO'''] def __len__(self): return len(self.actions) # Instantiate a single Memory buffer memory = Memory() ###Output _____no_output_____ ###Markdown 3.3 Reward functionWe're almost ready to begin the learning algorithm for our agent! The next step is to compute the rewards of our agent as it acts in the environment. Since we (and the agent) is uncertain about if and when the game or task will end (i.e., when the pole will fall), it is useful to emphasize getting rewards **now** rather than later in the future -- this is the idea of discounting. This is a similar concept to discounting money in the case of interest. Recall from lecture, we use reward discount to give more preference at getting rewards now rather than later in the future. The idea of discounting rewards is similar to discounting money in the case of interest.To compute the expected cumulative reward, known as the **return**, at a given timestep in a learning episode, we sum the discounted rewards expected at that time step $t$, within a learning episode, and projecting into the future. We define the return (cumulative reward) at a time step $t$, $R_{t}$ as:>$R_{t}=\sum_{k=0}^\infty\gamma^kr_{t+k}$where $0 < \gamma < 1$ is the discount factor and $r_{t}$ is the reward at time step $t$, and the index $k$ increments projection into the future within a single learning episode. Intuitively, you can think of this function as depreciating any rewards received at later time steps, which will force the agent prioritize getting rewards now. Since we can't extend episodes to infinity, in practice the computation will be limited to the number of timesteps in an episode -- after that the reward is assumed to be zero.Take note of the form of this sum -- we'll have to be clever about how we implement this function. Specifically, we'll need to initialize an array of zeros, with length of the number of time steps, and fill it with the real discounted reward values as we loop through the rewards from the episode, which will have been saved in the agents memory. What we ultimately care about is which actions are better relative to other actions taken in that episode -- so, we'll normalize our computed rewards, using the mean and standard deviation of the rewards across the learning episode.We will use this definition of the reward function in both parts of the lab so make sure you have it executed! ###Code ### Reward function ### # Helper function that normalizes an np.array x def normalize(x): x -= np.mean(x) x /= np.std(x) return x.astype(np.float32) # Compute normalized, discounted, cumulative rewards (i.e., return) # Arguments: # rewards: reward at timesteps in episode # gamma: discounting factor # Returns: # normalized discounted reward def discount_rewards(rewards, gamma=0.95): discounted_rewards = np.zeros_like(rewards) R = 0 for t in reversed(range(0, len(rewards))): # update the total discounted reward R = R * gamma + rewards[t] discounted_rewards[t] = R return normalize(discounted_rewards) ###Output _____no_output_____ ###Markdown 3.4 Learning algorithmNow we can start to define the learing algorithm which will be used to reinforce good behaviors of the agent and discourage bad behaviours. In this lab, we will focus on *policy gradient* methods which aim to **maximize** the likelihood of actions that result in large rewards. Equivalently, this means that we want to **minimize** the negative likelihood of these same actions. We achieve this by simply **scaling** the probabilities by their associated rewards -- effectively amplifying the likelihood of actions that resujlt in large rewards.Since the log function is monotonically increasing, this means that minimizing **negative likelihood** is equivalent to minimizing **negative log-likelihood**. Recall that we can easily compute the negative log-likelihood of a discrete action by evaluting its [softmax cross entropy](https://www.tensorflow.org/api_docs/python/tf/nn/sparse_softmax_cross_entropy_with_logits). Like in supervised learning, we can use stochastic gradient descent methods to achieve the desired minimization. Let's begin by defining the loss function. ###Code ### Loss function ### # Arguments: # logits: network's predictions for actions to take # actions: the actions the agent took in an episode # rewards: the rewards the agent received in an episode # Returns: # loss def compute_loss(logits, actions, rewards): '''TODO: complete the function call to compute the negative log probabilities''' neg_logprob = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=logits, labels=actions) # TODO # neg_logprob = tf.nn.sparse_softmax_cross_entropy_with_logits( # logits='''TODO''', labels='''TODO''') '''TODO: scale the negative log probability by the rewards''' loss = tf.reduce_mean( neg_logprob * rewards ) # TODO # loss = tf.reduce_mean('''TODO''') return loss ###Output _____no_output_____ ###Markdown Now let's use the loss function to define a training step of our learning algorithm. This is a very generalizable definition which we will use ###Code ### Training step (forward and backpropagation) ### def train_step(model, loss_function, optimizer, observations, actions, discounted_rewards, custom_fwd_fn=None): with tf.GradientTape() as tape: # Forward propagate through the agent network if custom_fwd_fn is not None: prediction = custom_fwd_fn(observations) else: prediction = model(observations) '''TODO: call the compute_loss function to compute the loss''' loss = loss_function(prediction, actions, discounted_rewards) # TODO # loss = loss_function('''TODO''', '''TODO''', '''TODO''') '''TODO: run backpropagation to minimize the loss using the tape.gradient method. Unlike supervised learning, RL is *extremely* noisy, so you will benefit from additionally clipping your gradients to avoid falling into dangerous local minima. After computing your gradients try also clipping by a global normalizer. Try different clipping values, usually clipping between 0.5 and 5 provides reasonable results. ''' grads = tape.gradient(loss, model.trainable_variables) # TODO # grads = tape.gradient('''TODO''', '''TODO''') grads, _ = tf.clip_by_global_norm(grads, 2) # grads, _ = tf.clip_by_global_norm(grads, '''TODO''') optimizer.apply_gradients(zip(grads, model.trainable_variables)) ###Output _____no_output_____ ###Markdown 3.5 Run cartpole!Having had no prior knowledge of the environment, the agent will begin to learn how to balance the pole on the cart based only on the feedback received from the environment! Having defined how our agent can move, how it takes in new observations, and how it updates its state, we'll see how it gradually learns a policy of actions to optimize balancing the pole as long as possible. To do this, we'll track how the rewards evolve as a function of training -- how should the rewards change as training progresses? ###Code ## Training parameters ## ## Re-run this cell to restart training from scratch ## # TODO: Learning rate and optimizer learning_rate = 1e-3 # learning_rate = '''TODO''' optimizer = tf.keras.optimizers.Adam(learning_rate) # optimizer = '''TODO''' # instantiate cartpole agent cartpole_model = create_cartpole_model() # to track our progress smoothed_reward = mdl.util.LossHistory(smoothing_factor=0.95) plotter = mdl.util.PeriodicPlotter(sec=2, xlabel='Iterations', ylabel='Rewards') ## Cartpole training! ## ## Note: stoping and restarting this cell will pick up training where you # left off. To restart training you need to rerun the cell above as # well (to re-initialize the model and optimizer) if hasattr(tqdm, '_instances'): tqdm._instances.clear() # clear if it exists for i_episode in range(500): plotter.plot(smoothed_reward.get()) # Restart the environment observation = env.reset() memory.clear() while True: # using our observation, choose an action and take it in the environment action = choose_action(cartpole_model, observation) next_observation, reward, done, info = env.step(action) # add to memory memory.add_to_memory(observation, action, reward) # is the episode over? did you crash or do so well that you're done? if done: # determine total reward and keep a record of this total_reward = sum(memory.rewards) smoothed_reward.append(total_reward) # initiate training - remember we don't know anything about how the # agent is doing until it has crashed! g = train_step(cartpole_model, compute_loss, optimizer, observations=np.vstack(memory.observations), actions=np.array(memory.actions), discounted_rewards = discount_rewards(memory.rewards)) # reset the memory memory.clear() break # update our observatons observation = next_observation ###Output _____no_output_____ ###Markdown To get a sense of how our agent did, we can save a video of the trained model working on balancing the pole. Realize that this is a brand new environment that the agent has not seen before!Let's display the saved video to watch how our agent did! ###Code matplotlib.use('Agg') saved_cartpole = mdl.lab3.save_video_of_model(cartpole_model, "CartPole-v1") mdl.lab3.play_video(saved_cartpole) ###Output _____no_output_____ ###Markdown How does the agent perform? Could you train it for shorter amounts of time and still perform well? Do you think that training longer would help even more? Part 2: Training Autonomous Driving Policies in VISTAAutonomous control has traditionally be dominated by algorithms that explicitly decompose individual aspects of the control pipeline. For example, in autonomous driving, traditional methods work by first detecting road and lane boundaries, and then using path planning and rule-based methods to derive a control policy. Deep learning offers something very different -- the possibility of optimizing all these steps simultaneously, learning control end-to-end directly from raw sensory inputs.**You will explore the power of deep learning to learn autonomous control policies that are trained *end-to-end, directly from raw sensory data, and entirely within a simulated world*.**We will use the data-driven simulation engine [VISTA](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8957584&tag=1), which uses techniques in computer vision to synthesize new photorealistic trajectories and driving viewpoints, that are still consistent with the world's appearance and fall within the envelope of a real driving scene. This is a powerful approach -- we can synthesize data that is photorealistic, grounded in the real world, and then use this data for training and testing autonomous vehicle control policies within this simulator.In this part of the lab, you will use reinforcement lerning to build a self-driving agent with a neural network-based controller trained on RGB camera data. We will train the self-driving agent for the task of lane following. Beyond this data modality and control task, VISTA also supports [different data modalities](https://arxiv.org/pdf/2111.12083.pdf) (such as LiDAR data) and [different learning tasks](https://arxiv.org/pdf/2111.12137.pdf) (such as multi-car interactions).You will put your agent to the test in the VISTA environment, and potentially, on board a full-scale autonomous vehicle! Specifically, as part of the MIT lab competitions, high-performing agents -- evaluated based on the maximum distance they can travel without crashing -- will have the opportunity to be put to the ***real*** test onboard a full-scale autonomous vehicle!!! We start by installing dependencies. This includes installing the VISTA package itself. ###Code !pip install --upgrade git+https://github.com/vista-simulator/vista-6s191.git import vista from vista.utils import logging logging.setLevel(logging.ERROR) ###Output _____no_output_____ ###Markdown VISTA provides some documentation which will be very helpful to completing this lab. You can always use the `?vista` command to access the package documentation. ###Code ### Access documentation for VISTA ### Run ?vista.<[name of module or function]> ?vista.Display ###Output _____no_output_____ ###Markdown 3.6 Create an environment in VISTAEnvironments in VISTA are based on and built from human-collected driving *traces*. A trace is the data from a single driving run. In this case we'll be working with RGB camera data, from the viewpoint of the driver looking out at the road: the camera collects this data as the car drives around!We will start by accessing a trace. We use that trace to instantiate an environment within VISTA. This is our `World` and defines the environment we will use for reinforcement learning. The trace itself helps to define a space for the environment; with VISTA, we can use the trace to generate new photorealistic viewpoints anywhere within that space. This provides valuable new training data as well as a robust testing environment.The simulated environment of VISTA will serve as our training ground and testbed for reinforcement learning. We also define an `Agent` -- a car -- that will actually move around in the environmnet, and make and carry out *actions* in this world. Because this is an entirely simulated environment, our car agent will also be simulated! ###Code # Download and extract the data for vista (auto-skip if already downloaded) !wget -nc -q --show-progress https://www.dropbox.com/s/3qogfzuugi852du/vista_traces.zip print("Unzipping data...") !unzip -o -q vista_traces.zip print("Done downloading and unzipping data!") trace_root = "./vista_traces" trace_path = [ "20210726-154641_lexus_devens_center", "20210726-155941_lexus_devens_center_reverse", "20210726-184624_lexus_devens_center", "20210726-184956_lexus_devens_center_reverse", ] trace_path = [os.path.join(trace_root, p) for p in trace_path] # Create a virtual world with VISTA, the world is defined by a series of data traces world = vista.World(trace_path, trace_config={'road_width': 4}) # Create a car in our virtual world. The car will be able to step and take different # control actions. As the car moves, its sensors will simulate any changes it environment car = world.spawn_agent( config={ 'length': 5., 'width': 2., 'wheel_base': 2.78, 'steering_ratio': 14.7, 'lookahead_road': True }) # Create a camera on the car for synthesizing the sensor data that we can use to train with! camera = car.spawn_camera(config={'size': (200, 320)}) # Define a rendering display so we can visualize the simulated car camera stream and also # get see its physical location with respect to the road in its environment. display = vista.Display(world, display_config={"gui_scale": 2, "vis_full_frame": False}) # Define a simple helper function that allows us to reset VISTA and the rendering display def vista_reset(): world.reset() display.reset() vista_reset() ###Output _____no_output_____ ###Markdown If successful, you should see a blank black screen at this point. Your rendering display has been initialized. 3.7 Our virtual agent: the carOur goal is to learn a control policy for our agent, our (hopefully) autonomous vehicle, end-to-end directly from RGB camera sensory input. As in Cartpole, we need to define how our virtual agent will interact with its environment. Define agent's action functionsIn the case of driving, the car agent can act -- taking a step in the VISTA environment -- according to a given control command. This amounts to moving with a desired speed and a desired *curvature*, which reflects the car's turn radius. Curvature has units $\frac{1}{meter}$. So, if a car is traversing a circle of radius $r$ meters, then it is turning with a curvature $\frac{1}{r}$. The curvature is therefore correlated with the car's steering wheel angle, which actually controls its turn radius. Let's define the car agent's step function to capture the action of moving with a desired speed and desired curvature. ###Code # First we define a step function, to allow our virtual agent to step # with a given control command through the environment # agent can act with a desired curvature (turning radius, like steering angle) # and desired speed. if either is not provided then this step function will # use whatever the human executed at that time in the real data. def vista_step(curvature=None, speed=None): # Arguments: # curvature: curvature to step with # speed: speed to step with if curvature is None: curvature = car.trace.f_curvature(car.timestamp) if speed is None: speed = car.trace.f_speed(car.timestamp) car.step_dynamics(action=np.array([curvature, speed]), dt=1/15.) car.step_sensors() ###Output _____no_output_____ ###Markdown Inspect driving trajectories in VISTARecall that our VISTA environment is based off an initial human-collected driving trace. Also, we defined the agent's step function to defer to what the human executed if it is not provided with a desired speed and curvature with which to move.Thus, we can further inspect our environment by using the step function for the driving agent to move through the environment by following the human path. The stepping and iteration will take about 1 iteration per second. We will then observe the data that comes out to see the agent's traversal of the environment. ###Code import shutil, os, subprocess, cv2 # Create a simple helper class that will assist us in storing videos of the render class VideoStream(): def __init__(self): self.tmp = "./tmp" if os.path.exists(self.tmp) and os.path.isdir(self.tmp): shutil.rmtree(self.tmp) os.mkdir(self.tmp) def write(self, image, index): cv2.imwrite(os.path.join(self.tmp, f"{index:04}.png"), image) def save(self, fname): cmd = f"/usr/bin/ffmpeg -f image2 -i {self.tmp}/%04d.png -crf 0 -y {fname}" subprocess.call(cmd, shell=True) ## Render and inspect a human trace ## vista_reset() stream = VideoStream() for i in tqdm(range(100)): vista_step() # Render and save the display vis_img = display.render() stream.write(vis_img[:, :, ::-1], index=i) if car.done: break print("Saving trajectory of human following...") stream.save("human_follow.mp4") mdl.lab3.play_video("human_follow.mp4") ###Output _____no_output_____ ###Markdown Check out the simulated VISTA environment. What do you notice about the environment, the agent, and the setup of the simulation engine? How could these aspects useful for training models? Define terminal states: crashing! (oh no)Recall from Cartpole, our training episodes ended when the pole toppled, i.e., the agent crashed and failed. Similarly for training vehicle control policies in VISTA, we have to define what a ***crash*** means. We will define a crash as any time the car moves out of its lane or exceeds its maximum rotation. This will define the end of a training episode. ###Code ## Define terminal states and crashing conditions ## def check_out_of_lane(car): distance_from_center = np.abs(car.relative_state.x) road_width = car.trace.road_width half_road_width = road_width / 2 return distance_from_center > half_road_width def check_exceed_max_rot(car): maximal_rotation = np.pi / 10. current_rotation = np.abs(car.relative_state.yaw) return current_rotation > maximal_rotation def check_crash(car): return check_out_of_lane(car) or check_exceed_max_rot(car) or car.done ###Output _____no_output_____ ###Markdown Quick check: acting with a random control policyAt this point, we have (1) an environment; (2) an agent, with a step function. Before we start learning a control policy for our vehicle agent, we start by testing out the behavior of the agent in the virtual world by providing it with a completely random control policy. Naturally we expect that the behavior will not be very robust! Let's take a look. ###Code ## Behavior with random control policy ## i = 0 num_crashes = 5 stream = VideoStream() for _ in range(num_crashes): vista_reset() while not check_crash(car): # Sample a random curvature (between +/- 1/3), keep speed constant curvature = np.random.uniform(-1/3, 1/3) # Step the simulated car with the same action vista_step(curvature=curvature) # Render and save the display vis_img = display.render() stream.write(vis_img[:, :, ::-1], index=i) i += 1 print(f"Car crashed on step {i}") for _ in range(5): stream.write(vis_img[:, :, ::-1], index=i) i += 1 print("Saving trajectory with random policy...") stream.save("random_policy.mp4") mdl.lab3.play_video("random_policy.mp4") ###Output _____no_output_____ ###Markdown 3.8 Preparing to learn a control policy: data preprocessingSo, hopefully you saw that the random control policy was, indeed, not very robust. Yikes. Our overall goal in this lab is to build a self-driving agent using a neural network controller trained entirely in the simulator VISTA. This means that the data used to train and test the self-driving agent will be supplied by VISTA. As a step towards this, we will do some data preprocessing to make it easier for the network to learn from these visual data.Previously we rendered the data with a display as a quick check that the environment was working properly. For training the agent, we will directly access the car's observations, extract Regions Of Interest (ROI) from those observations, crop them out, and use these crops as training data for our self-driving agent controller. Observe both the full observation and the extracted ROI. ###Code from google.colab.patches import cv2_imshow # Directly access the raw sensor observations of the simulated car vista_reset() full_obs = car.observations[camera.name] cv2_imshow(full_obs) ## ROIs ## # Crop a smaller region of interest (ROI). This is necessary because: # 1. The full observation will have distortions on the edge as the car deviates from the human # 2. A smaller image of the environment will be easier for our model to learn from region_of_interest = camera.camera_param.get_roi() i1, j1, i2, j2 = region_of_interest cropped_obs = full_obs[i1:i2, j1:j2] cv2_imshow(cropped_obs) ###Output _____no_output_____ ###Markdown We will group these steps into some helper functions that we can use during training: 1. `preprocess`: takes a full observation as input and returns a preprocessed version. This can include whatever preprocessing steps you would like! For example, ROI extraction, cropping, augmentations, and so on. You are welcome to add and modify this function as you seek to optimize your self-driving agent!2. `grab_and_preprocess`: grab the car's current observation (i.e., image view from its perspective), and then call the `preprocess` function on that observation. ###Code ## Data preprocessing functions ## def preprocess(full_obs): # Extract ROI i1, j1, i2, j2 = camera.camera_param.get_roi() obs = full_obs[i1:i2, j1:j2] # Rescale to [0, 1] obs = obs / 255. return obs def grab_and_preprocess_obs(car): full_obs = car.observations[camera.name] obs = preprocess(full_obs) return obs ###Output _____no_output_____ ###Markdown 3.9 Define the self-driving agent and learning algorithmAs before, we'll use a neural network to define our agent and output actions that it will take. Fixing the agent's driving speed, we will train this network to predict a curvature -- a continuous value -- that will relate to the car's turn radius. Specifically, define the model to output a prediction of a continuous distribution of curvature, defined by a mean $\mu$ and standard deviation $\sigma$. These parameters will define a Normal distribution over curvature.What network architecture do you think would be especially well suited to the task of end-to-end control learning from RGB images? Since our observations are in the form of RGB images, we'll start with a convolutional network. Note that you will be tasked with completing a template CNN architecture for the self-driving car agent -- but you should certainly experiment beyond this template to try to optimize performance! ###Code ### Define the self-driving agent ### # Note: we start with a template CNN architecture -- experiment away as you # try to optimize your agent! # Functionally define layers for convenience # All convolutional layers will have ReLu activation act = tf.keras.activations.swish Conv2D = functools.partial(tf.keras.layers.Conv2D, padding='valid', activation=act) Flatten = tf.keras.layers.Flatten Dense = tf.keras.layers.Dense # Defines a CNN for the self-driving agent def create_driving_model(): model = tf.keras.models.Sequential([ # Convolutional layers # First, 32 5x5 filters and 2x2 stride Conv2D(filters=32, kernel_size=5, strides=2), # TODO: define convolutional layers with 48 5x5 filters and 2x2 stride Conv2D(filters=48, kernel_size=5, strides=2), # TODO # Conv2D('''TODO'''), # TODO: define two convolutional layers with 64 3x3 filters and 2x2 stride Conv2D(filters=64, kernel_size=3, strides=2), # TODO Conv2D(filters=64, kernel_size=3, strides=2), # TODO # Conv2D('''TODO'''), Flatten(), # Fully connected layer and output Dense(units=128, activation=act), # TODO: define the output dimension of the last Dense layer. # Pay attention to the space the agent needs to act in. # Remember that this model is outputing a distribution of *continuous* # actions, which take a different shape than discrete actions. # How many outputs should there be to define a distribution?''' Dense(units=2, activation=None) # TODO # Dense('''TODO''') ]) return model driving_model = create_driving_model() ###Output _____no_output_____ ###Markdown Now we will define the learing algorithm which will be used to reinforce good behaviors of the agent and discourage bad behaviours. As with Cartpole, we will use a *policy gradient* method that aims to **maximize** the likelihood of actions that result in large rewards. However, there are some key differences. In Cartpole, the agent's action space was discrete: it could only move left or right. In driving, the agent's action space is continuous: the control network is outputting a curvature, which is a continuous variable. We will define a probability distribution, defined by a mean and variance, over this continuous action space to define the possible actions the self-driving agent can take.You will define three functions that reflect these changes and form the core of the the learning algorithm:1. `run_driving_model`: takes an input image, and outputs a prediction of a continuous distribution of curvature. This will take the form of a Normal distribuion and will be defined using TensorFlow probability's [`tfp.distributions.Normal`](https://www.tensorflow.org/probability/api_docs/python/tfp/distributions/Normal) function, so the model's prediction will include both a mean and variance. Operates on an instance `driving_model` defined above.2. `compute_driving_loss`: computes the loss for a prediction that is in the form of a continuous Normal distribution. Recall as in Cartpole, computing the loss involves multiplying the predicted log probabilities by the discounted rewards. Similar to `compute_loss` in Cartpole.The `train_step` function to use the loss function to execute a training step will be the same as we used in Cartpole! This will have to be executed abov in order for the driving agent to train properly. ###Code ## The self-driving learning algorithm ## # hyperparameters max_curvature = 1/8. max_std = 0.1 def run_driving_model(image): # Arguments: # image: an input image # Returns: # pred_dist: predicted distribution of control actions single_image_input = tf.rank(image) == 3 # missing 4th batch dimension if single_image_input: image = tf.expand_dims(image, axis=0) '''TODO: get the prediction of the model given the current observation.''' distribution = driving_model(image) # TODO # distribution = ''' TODO ''' mu, logsigma = tf.split(distribution, 2, axis=1) mu = max_curvature * tf.tanh(mu) # conversion sigma = max_std * tf.sigmoid(logsigma) + 0.005 # conversion '''TODO: define the predicted distribution of curvature, given the predicted mean mu and standard deviation sigma. Use a Normal distribution as defined in TF probability (hint: tfp.distributions)''' pred_dist = tfp.distributions.Normal(mu, sigma) # TODO # pred_dist = ''' TODO ''' return pred_dist def compute_driving_loss(dist, actions, rewards): # Arguments: # logits: network's predictions for actions to take # actions: the actions the agent took in an episode # rewards: the rewards the agent received in an episode # Returns: # loss '''TODO: complete the function call to compute the negative log probabilities of the agent's actions.''' neg_logprob = -1 * dist.log_prob(actions) # neg_logprob = '''TODO''' '''TODO: scale the negative log probability by the rewards.''' loss = tf.reduce_mean( neg_logprob * rewards ) # TODO # loss = tf.reduce_mean('''TODO''') return loss ###Output _____no_output_____ ###Markdown 3.10 Train the self-driving agentWe're now all set up to start training our RL algorithm and agent for autonomous driving!We begin be initializing an opitimizer, environment, a new driving agent, and `Memory` buffer. This will be in the first code block. To restart training completely, you will need to re-run this cell to re-initiailize everything.The second code block is the main training script. Here reinforcement learning episodes will be executed by agents in the VISTA environment. Since the self-driving agent starts out with literally zero knowledge of its environment, it can often take a long time to train and achieve stable behavior -- keep this in mind! For convenience, stopping and restarting the second cell will pick up training where you left off.The training block will execute a policy in the environment until the agent crashes. When the agent crashes, the (state, action, reward) triplet `(s,a,r)` of the agent at the end of the episode will be saved into the `Memory` buffer, and then provided as input to the policy gradient loss function. This information will be used to execute optimization within the training step. Memory will be cleared, and we will then do it all over again!Let's run the code block to train our self-driving agent. We will again visualize the evolution of the total reward as a function of training to get a sense of how the agent is learning. **You should reach a reward of at least 100 to get bare minimum stable behavior.** ###Code ## Training parameters and initialization ## ## Re-run this cell to restart training from scratch ## ''' TODO: Learning rate and optimizer ''' learning_rate = 5e-4 # learning_rate = '''TODO''' optimizer = tf.keras.optimizers.Adam(learning_rate) # optimizer = '''TODO''' # instantiate driving agent vista_reset() driving_model = create_driving_model() # NOTE: the variable driving_model will be used in run_driving_model execution # to track our progress smoothed_reward = mdl.util.LossHistory(smoothing_factor=0.9) plotter = mdl.util.PeriodicPlotter(sec=2, xlabel='Iterations', ylabel='Rewards') # instantiate Memory buffer memory = Memory() ## Driving training! Main training block. ## ## Note: stopping and restarting this cell will pick up training where you # left off. To restart training you need to rerun the cell above as # well (to re-initialize the model and optimizer) max_batch_size = 300 max_reward = float('-inf') # keep track of the maximum reward acheived during training if hasattr(tqdm, '_instances'): tqdm._instances.clear() # clear if it exists for i_episode in range(500): plotter.plot(smoothed_reward.get()) # Restart the environment vista_reset() memory.clear() observation = grab_and_preprocess_obs(car) while True: # TODO: using the car's current observation compute the desired # action (curvature) distribution by feeding it into our # driving model (use the function you already built to do this!) ''' curvature_dist = run_driving_model(observation) # curvature_dist = '''TODO''' # TODO: sample from the action *distribution* to decide how to step # the car in the environment. You may want to check the documentation # for tfp.distributions.Normal online. Remember that the sampled action # should be a single scalar value after this step. curvature_action = curvature_dist.sample()[0,0] # curvature_action = '''TODO''' # Step the simulated car with the same action vista_step(curvature_action) observation = grab_and_preprocess_obs(car) # TODO: Compute the reward for this iteration. You define # the reward function for this policy, start with something # simple - for example, give a reward of 1 if the car did not # crash and a reward of 0 if it did crash. reward = 1.0 if not check_crash(car) else 0.0 # reward = '''TODO''' # add to memory memory.add_to_memory(observation, curvature_action, reward) # is the episode over? did you crash or do so well that you're done? if reward == 0.0: # determine total reward and keep a record of this total_reward = sum(memory.rewards) smoothed_reward.append(total_reward) # execute training step - remember we don't know anything about how the # agent is doing until it has crashed! if the training step is too large # we need to sample a mini-batch for this step. batch_size = min(len(memory), max_batch_size) i = np.random.choice(len(memory), batch_size, replace=False) train_step(driving_model, compute_driving_loss, optimizer, observations=np.array(memory.observations)[i], actions=np.array(memory.actions)[i], discounted_rewards = discount_rewards(memory.rewards)[i], custom_fwd_fn=run_driving_model) # reset the memory memory.clear() break ###Output _____no_output_____ ###Markdown 3.11 Evaluate the self-driving agentFinally we can put our trained self-driving agent to the test! It will execute autonomous control, in VISTA, based on the learned controller. We will evaluate how well it does based on this distance the car travels without crashing. We await the result... ###Code ## Evaluation block!## i_step = 0 num_episodes = 5 num_reset = 5 stream = VideoStream() for i_episode in range(num_episodes): # Restart the environment vista_reset() observation = grab_and_preprocess_obs(car) print("rolling out in env") episode_step = 0 while not check_crash(car) and episode_step < 100: # using our observation, choose an action and take it in the environment curvature_dist = run_driving_model(observation) curvature = curvature_dist.mean()[0,0] # Step the simulated car with the same action vista_step(curvature) observation = grab_and_preprocess_obs(car) vis_img = display.render() stream.write(vis_img[:, :, ::-1], index=i_step) i_step += 1 episode_step += 1 for _ in range(num_reset): stream.write(np.zeros_like(vis_img), index=i_step) i_step += 1 print(f"Average reward: {(i_step - (num_reset*num_episodes)) / num_episodes}") print("Saving trajectory with trained policy...") stream.save("trained_policy.mp4") mdl.lab3.play_video("trained_policy.mp4") ###Output _____no_output_____ ###Markdown Visit MIT Deep Learning Run in Google Colab View Source on GitHub Copyright Information ###Code # Copyright 2020 MIT 6.S191 Introduction to Deep Learning. All Rights Reserved. # # Licensed under the MIT License. You may not use this file except in compliance # with the License. Use and/or modification of this code outside of 6.S191 must # reference: # # © MIT 6.S191: Introduction to Deep Learning # http://introtodeeplearning.com # ###Output _____no_output_____ ###Markdown Laboratory 3: Reinforcement LearningReinforcement learning (RL) is a subset of machine learning which poses learning problems as interactions between agents and environments. It often assumes agents have no prior knowledge of a world, so they must learn to navigate environments by optimizing a reward function. Within an environment, an agent can take certain actions and receive feedback, in the form of positive or negative rewards, with respect to their decision. As such, an agent's feedback loop is somewhat akin to the idea of "trial and error", or the manner in which a child might learn to distinguish between "good" and "bad" actions.In practical terms, our RL agent will interact with the environment by taking an action at each timestep, receiving a corresponding reward, and updating its state according to what it has "learned". ![alt text](https://www.kdnuggets.com/images/reinforcement-learning-fig1-700.jpg)While the ultimate goal of reinforcement learning is to teach agents to act in the real, physical world, games provide a convenient proving ground for developing RL algorithms and agents. Games have some properties that make them particularly well suited for RL: 1. In many cases, games have perfectly describable environments. For example, all rules of chess can be formally written and programmed into a chess game simulator;2. Games are massively parallelizable. Since they do not require running in the real world, simultaneous environments can be run on large data clusters; 3. Simpler scenarios in games enable fast prototyping. This speeds up the development of algorithms that could eventually run in the real-world; and4. ... Games are fun! In previous labs, we have explored both supervised (with LSTMs, CNNs) and unsupervised / semi-supervised (with VAEs) learning tasks. Reinforcement learning is fundamentally different, in that we are training a deep learning algorithm to govern the actions of our RL agent, that is trying, within its environment, to find the optimal way to achieve a goal. The goal of training an RL agent is to determine the best next step to take to earn the greatest final payoff or return. In this lab, we focus on building a reinforcement learning algorithm to master two different environments with varying complexity. 1. **Cartpole**: Balance a pole, protruding from a cart, in an upright position by only moving the base left or right. Environment with a low-dimensional observation space.2. [**Pong**](https://en.wikipedia.org/wiki/Pong): Beat your competitors (whether other AI or humans!) at the game of Pong. Environment with a high-dimensional observation space -- learning directly from raw pixels.Let's get started! First we'll import TensorFlow, the course package, and some dependencies. ###Code !apt-get install -y xvfb python-opengl x11-utils > /dev/null 2>&1 !pip install gym pyvirtualdisplay scikit-video > /dev/null 2>&1 %tensorflow_version 2.x import tensorflow as tf import numpy as np import base64, io, time, gym import IPython, functools import matplotlib.pyplot as plt from tqdm import tqdm !pip install mitdeeplearning import mitdeeplearning as mdl ###Output _____no_output_____ ###Markdown Before we dive in, let's take a step back and outline our approach, which is generally applicable to reinforcement learning problems in general:1. **Initialize our environment and our agent**: here we will describe the different observations and actions the agent can make in the environemnt.2. **Define our agent's memory**: this will enable the agent to remember its past actions, observations, and rewards.3. **Define a reward function**: describes the reward associated with an action or sequence of actions.4. **Define the learning algorithm**: this will be used to reinforce the agent's good behaviors and discourage bad behaviors. Part 1: Cartpole 3.1 Define the Cartpole environment and agent Environment In order to model the environment for both the Cartpole and Pong tasks, we'll be using a toolkit developed by OpenAI called [OpenAI Gym](https://gym.openai.com/). It provides several pre-defined environments for training and testing reinforcement learning agents, including those for classic physics control tasks, Atari video games, and robotic simulations. To access the Cartpole environment, we can use `env = gym.make("CartPole-v0")`, which we gained access to when we imported the `gym` package. We can instantiate different [environments](https://gym.openai.com/envs/classic_control) by passing the enivronment name to the `make` function.One issue we might experience when developing RL algorithms is that many aspects of the learning process are inherently random: initializing game states, changes in the environment, and the agent's actions. As such, it can be helpful to set a initial "seed" for the environment to ensure some level of reproducibility. Much like you might use `numpy.random.seed`, we can call the comparable function in gym, `seed`, with our defined environment to ensure the environment's random variables are initialized the same each time. ###Code ### Instantiate the Cartpole environment ### env = gym.make("CartPole-v0") env.seed(1) ###Output _____no_output_____ ###Markdown In Cartpole, a pole is attached by an un-actuated joint to a cart, which moves along a frictionless track. The pole starts upright, and the goal is to prevent it from falling over. The system is controlled by applying a force of +1 or -1 to the cart. A reward of +1 is provided for every timestep that the pole remains upright. The episode ends when the pole is more than 15 degrees from vertical, or the cart moves more than 2.4 units from the center of the track. A visual summary of the cartpole environment is depicted below:Given this setup for the environment and the objective of the game, we can think about: 1) what observations help define the environment's state; 2) what actions the agent can take. First, let's consider the observation space. In this Cartpole environment our observations are:1. Cart position2. Cart velocity3. Pole angle4. Pole rotation rateWe can confirm the size of the space by querying the environment's observation space: ###Code n_observations = env.observation_space print("Environment has observation space =", n_observations) ###Output _____no_output_____ ###Markdown Second, we consider the action space. At every time step, the agent can move either right or left. Again we can confirm the size of the action space by querying the environment: ###Code n_actions = env.action_space.n print("Number of possible actions that the agent can choose from =", n_actions) ###Output _____no_output_____ ###Markdown Cartpole agentNow that we have instantiated the environment and understood the dimensionality of the observation and action spaces, we are ready to define our agent. In deep reinforcement learning, a deep neural network defines the agent. This network will take as input an observation of the environment and output the probability of taking each of the possible actions. Since Cartpole is defined by a low-dimensional observation space, a simple feed-forward neural network should work well for our agent. We will define this using the `Sequential` API. ###Code ### Define the Cartpole agent ### # Defines a feed-forward neural network def create_cartpole_model(): model = tf.keras.models.Sequential([ # First Dense layer tf.keras.layers.Dense(units=32, activation='relu'), # TODO: Define the last Dense layer, which will provide the network's output. # Think about the space the agent needs to act in! tf.keras.layers.Dense(units=n_actions, activation=None) # TODO # [TODO Dense layer to output action probabilities] ]) return model cartpole_model = create_cartpole_model() ###Output _____no_output_____ ###Markdown Now that we have defined the core network architecture, we will define an *action function* that executes a forward pass through the network, given a set of observations, and samples from the output. This sampling from the output probabilities will be used to select the next action for the agent. **Critically, this action function is totally general -- we will use this function for both Cartpole and Pong, and it is applicable to other RL tasks, as well!** ###Code ### Define the agent's action function ### # Function that takes observations as input, executes a forward pass through model, # and outputs a sampled action. # Arguments: # model: the network that defines our agent # observation: observation which is fed as input to the model # Returns: # action: choice of agent action def choose_action(model, observation): # add batch dimension to the observation observation = np.expand_dims(observation, axis=0) '''TODO: feed the observations through the model to predict the log probabilities of each possible action.''' logits = model.predict(observation) # TODO # logits = model.predict('''TODO''') # pass the log probabilities through a softmax to compute true probabilities prob_weights = tf.nn.softmax(logits).numpy() '''TODO: randomly sample from the prob_weights to pick an action. Hint: carefully consider the dimensionality of the input probabilities (vector) and the output action (scalar)''' action = np.random.choice(n_actions, size=1, p=prob_weights.flatten())[0] # TODO # action = np.random.choice('''TODO''', size=1, p=''''TODO''')['''TODO'''] return action ###Output _____no_output_____ ###Markdown 3.2 Define the agent's memoryNow that we have instantiated the environment and defined the agent network architecture and action function, we are ready to move on to the next step in our RL workflow:1. **Initialize our environment and our agent**: here we will describe the different observations and actions the agent can make in the environemnt.2. **Define our agent's memory**: this will enable the agent to remember its past actions, observations, and rewards.3. **Define the learning algorithm**: this will be used to reinforce the agent's good behaviors and discourage bad behaviors.In reinforcement learning, training occurs alongside the agent's acting in the environment; an *episode* refers to a sequence of actions that ends in some terminal state, such as the pole falling down or the cart crashing. The agent will need to remember all of its observations and actions, such that once an episode ends, it can learn to "reinforce" the good actions and punish the undesirable actions via training. Our first step is to define a simple memory buffer that contains the agent's observations, actions, and received rewards from a given episode. **Once again, note the modularity of this memory buffer -- it can and will be applied to other RL tasks as well!** ###Code ### Agent Memory ### class Memory: def __init__(self): self.clear() # Resets/restarts the memory buffer def clear(self): self.observations = [] self.actions = [] self.rewards = [] # Add observations, actions, rewards to memory def add_to_memory(self, new_observation, new_action, new_reward): self.observations.append(new_observation) '''TODO: update the list of actions with new action''' self.actions.append(new_action) # TODO # ['''TODO'''] '''TODO: update the list of rewards with new reward''' self.rewards.append(new_reward) # TODO # ['''TODO'''] memory = Memory() ###Output _____no_output_____ ###Markdown 3.3 Reward functionWe're almost ready to begin the learning algorithm for our agent! The next step is to compute the rewards of our agent as it acts in the environment. Since we (and the agent) is uncertain about if and when the game or task will end (i.e., when the pole will fall), it is useful to emphasize getting rewards **now** rather than later in the future -- this is the idea of discounting. This is a similar concept to discounting money in the case of interest. ecall from lecture, we use reward discount to give more preference at getting rewards now rather than later in the future. The idea of discounting rewards is similar to discounting money in the case of interest.To compute the expected cumulative reward, known as the **return**, at a given timestep in a learning episode, we sum the discounted rewards expected at that time step $t$, within a learning episode, and projecting into the future. We define the return (cumulative reward) at a time step $t$, $R_{t}$ as:>$R_{t}=\sum_{k=0}^\infty\gamma^kr_{t+k}$where $0 < \gamma < 1$ is the discount factor and $r_{t}$ is the reward at time step $t$, and the index $k$ increments projection into the future within a single learning episode. Intuitively, you can think of this function as depreciating any rewards received at later time steps, which will force the agent prioritize getting rewards now. Since we can't extend episodes to infinity, in practice the computation will be limited to the number of timesteps in an episode -- after that the reward is assumed to be zero.Take note of the form of this sum -- we'll have to be clever about how we implement this function. Specifically, we'll need to initialize an array of zeros, with length of the number of time steps, and fill it with the real discounted reward values as we loop through the rewards from the episode, which will have been saved in the agents memory. What we ultimately care about is which actions are better relative to other actions taken in that episode -- so, we'll normalize our computed rewards, using the mean and standard deviation of the rewards across the learning episode. ###Code ### Reward function ### # Helper function that normalizes an np.array x def normalize(x): x -= np.mean(x) x /= np.std(x) return x.astype(np.float32) # Compute normalized, discounted, cumulative rewards (i.e., return) # Arguments: # rewards: reward at timesteps in episode # gamma: discounting factor # Returns: # normalized discounted reward def discount_rewards(rewards, gamma=0.95): discounted_rewards = np.zeros_like(rewards) R = 0 for t in reversed(range(0, len(rewards))): # update the total discounted reward R = R * gamma + rewards[t] discounted_rewards[t] = R return normalize(discounted_rewards) ###Output _____no_output_____ ###Markdown 3.4 Learning algorithmNow we can start to define the learing algorithm which will be used to reinforce good behaviors of the agent and discourage bad behaviours. In this lab, we will focus on *policy gradient* methods which aim to **maximize** the likelihood of actions that result in large rewards. Equivalently, this means that we want to **minimize** the negative likelihood of these same actions. We achieve this by simply **scaling** the probabilities by their associated rewards -- effectively amplifying the likelihood of actions that resujlt in large rewards.Since the log function is monotonically increasing, this means that minimizing **negative likelihood** is equivalent to minimizing **negative log-likelihood**. Recall that we can easily compute the negative log-likelihood of a discrete action by evaluting its [softmax cross entropy](https://www.tensorflow.org/api_docs/python/tf/nn/sparse_softmax_cross_entropy_with_logits). Like in supervised learning, we can use stochastic gradient descent methods to achieve the desired minimization. Let's begin by defining the loss function. ###Code ### Loss function ### # Arguments: # logits: network's predictions for actions to take # actions: the actions the agent took in an episode # rewards: the rewards the agent received in an episode # Returns: # loss def compute_loss(logits, actions, rewards): '''TODO: complete the function call to compute the negative log probabilities''' neg_logprob = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=actions) # TODO # neg_logprob = tf.nn.sparse_softmax_cross_entropy_with_logits(logits='''TODO''', labels='''TODO''') '''TODO: scale the negative log probability by the rewards''' loss = tf.reduce_mean( neg_logprob * rewards ) # TODO # loss = tf.reduce_mean('''TODO''') return loss ###Output _____no_output_____ ###Markdown Now let's use the loss function to define a training step of our learning algorithm: ###Code ### Training step (forward and backpropagation) ### def train_step(model, optimizer, observations, actions, discounted_rewards): with tf.GradientTape() as tape: # Forward propagate through the agent network logits = model(observations) '''TODO: call the compute_loss function to compute the loss''' loss = compute_loss(logits, actions, discounted_rewards) # TODO # loss = compute_loss('''TODO''', '''TODO''', '''TODO''') '''TODO: run backpropagation to minimize the loss using the tape.gradient method''' grads = tape.gradient(loss, model.trainable_variables) # TODO # grads = tape.gradient('''TODO''', model.trainable_variables) optimizer.apply_gradients(zip(grads, model.trainable_variables)) ###Output _____no_output_____ ###Markdown 3.5 Run cartpole!Having had no prior knowledge of the environment, the agent will begin to learn how to balance the pole on the cart based only on the feedback received from the environment! Having defined how our agent can move, how it takes in new observations, and how it updates its state, we'll see how it gradually learns a policy of actions to optimize balancing the pole as long as possible. To do this, we'll track how the rewards evolve as a function of training -- how should the rewards change as training progresses? ###Code ### Cartpole training! ### # Learning rate and optimizer learning_rate = 1e-3 optimizer = tf.keras.optimizers.Adam(learning_rate) # instantiate cartpole agent cartpole_model = create_cartpole_model() # to track our progress smoothed_reward = mdl.util.LossHistory(smoothing_factor=0.9) plotter = mdl.util.PeriodicPlotter(sec=2, xlabel='Iterations', ylabel='Rewards') if hasattr(tqdm, '_instances'): tqdm._instances.clear() # clear if it exists for i_episode in range(500): plotter.plot(smoothed_reward.get()) # Restart the environment observation = env.reset() memory.clear() while True: # using our observation, choose an action and take it in the environment action = choose_action(cartpole_model, observation) next_observation, reward, done, info = env.step(action) # add to memory memory.add_to_memory(observation, action, reward) # is the episode over? did you crash or do so well that you're done? if done: # determine total reward and keep a record of this total_reward = sum(memory.rewards) smoothed_reward.append(total_reward) # initiate training - remember we don't know anything about how the # agent is doing until it has crashed! train_step(cartpole_model, optimizer, observations=np.vstack(memory.observations), actions=np.array(memory.actions), discounted_rewards = discount_rewards(memory.rewards)) # reset the memory memory.clear() break # update our observatons observation = next_observation ###Output _____no_output_____ ###Markdown To get a sense of how our agent did, we can save a video of the trained model working on balancing the pole. Realize that this is a brand new environment that the agent has not seen before!Let's display the saved video to watch how our agent did! ###Code saved_cartpole = mdl.lab3.save_video_of_model(cartpole_model, "CartPole-v0") mdl.lab3.play_video(saved_cartpole) ###Output _____no_output_____ ###Markdown How does the agent perform? Could you train it for shorter amounts of time and still perform well? Do you think that training longer would help even more? Part 2: PongIn Cartpole, we dealt with an environment that was static -- in other words, it didn't change over time. What happens if our environment is dynamic and unpredictable? Well that's exactly the case in [Pong](https://en.wikipedia.org/wiki/Pong), since part of the environment is the opposing player. We don't know how our opponent will act or react to our actions, so the complexity of our problem increases. It also becomes much more interesting, since we can compete to beat our opponent. RL provides a powerful framework for training AI systems with the ability to handle and interact with dynamic, unpredictable environments. In this part of the lab, we'll use the tools and workflow we explored in Part 1 to build an RL agent capable of playing the game of Pong. 3.6 Define and inspect the Pong environmentAs with Cartpole, we'll instantiate the Pong environment in the OpenAI gym, using a seed of 1. ###Code env = gym.make("Pong-v0", frameskip=5) env.seed(1); # for reproducibility ###Output _____no_output_____ ###Markdown Let's next consider the observation space for the Pong environment. Instead of four physical descriptors of the cart-pole setup, in the case of Pong our observations are the individual video frames (i.e., images) that depict the state of the board. Thus, the observations are 210x160 RGB images (arrays of shape (210,160,3)).We can again confirm the size of the observation space by query: ###Code print("Environment has observation space =", env.observation_space) ###Output _____no_output_____ ###Markdown In Pong, at every time step, the agent (which controls the paddle) has six actions to choose from: no-op (no operation), move right, move left, fire, fire right, and fire left. Let's confirm the size of the action space by querying the environment: ###Code n_actions = env.action_space.n print("Number of possible actions that the agent can choose from =", n_actions) ###Output _____no_output_____ ###Markdown 3.7 Define the Pong agentAs before, we'll use a neural network to define our agent. What network architecture do you think would be especially well suited to this game? Since our observations are now in the form of images, we'll add convolutional layers to the network to increase the learning capacity of our network. ###Code ### Define the Pong agent ### # Functionally define layers for convenience # All convolutional layers will have ReLu activation Conv2D = functools.partial(tf.keras.layers.Conv2D, padding='same', activation='relu') Flatten = tf.keras.layers.Flatten Dense = tf.keras.layers.Dense # Defines a CNN for the Pong agent def create_pong_model(): model = tf.keras.models.Sequential([ # Convolutional layers # First, 16 7x7 filters and 4x4 stride Conv2D(filters=16, kernel_size=7, strides=4), # TODO: define convolutional layers with 32 5x5 filters and 2x2 stride Conv2D(filters=32, kernel_size=5, strides=2), # TODO # Conv2D('''TODO'''), # TODO: define convolutional layers with 48 3x3 filters and 2x2 stride Conv2D(filters=48, kernel_size=3, strides=2), # TODO # Conv2D('''TODO'''), Flatten(), # Fully connected layer and output Dense(units=64, activation='relu'), # TODO: define the output dimension of the last Dense layer. # Pay attention to the space the agent needs to act in Dense(units=n_actions, activation=None) # TODO # Dense('''TODO''') ]) return model pong_model = create_pong_model() ###Output _____no_output_____ ###Markdown Since we've already defined the action function, `choose_action(model, observation)`, we don't need to define it again. Instead, we'll be able to reuse it later on by passing in our new model we've just created, `pong_model`. This is awesome because our action function provides a modular and generalizable method for all sorts of RL agents! 3.8 Pong-specific functionsIn Part 1 (Cartpole), we implemented some key functions and classes to build and train our RL agent -- `choose_action(model, observation)` and the `Memory` class, for example. However, in getting ready to apply these to a new game like Pong, we might need to make some slight modifications. Namely, we need to think about what happens when a game ends. In Pong, we know a game has ended if the reward is +1 (we won!) or -1 (we lost unfortunately). Otherwise, we expect the reward at a timestep to be zero -- the players (or agents) are just playing eachother. So, after a game ends, we will need to reset the reward to zero when a game ends. This will result in a modified reward function. ###Code ### Pong reward function ### # Compute normalized, discounted rewards for Pong (i.e., return) # Arguments: # rewards: reward at timesteps in episode # gamma: discounting factor. Note increase to 0.99 -- rate of depreciation will be slower. # Returns: # normalized discounted reward def discount_rewards(rewards, gamma=0.99): discounted_rewards = np.zeros_like(rewards) R = 0 for t in reversed(range(0, len(rewards))): # NEW: Reset the sum if the reward is not 0 (the game has ended!) if rewards[t] != 0: R = 0 # update the total discounted reward as before R = R * gamma + rewards[t] discounted_rewards[t] = R return normalize(discounted_rewards) ###Output _____no_output_____ ###Markdown Additionally, we have to consider the nature of the observations in the Pong environment, and how they will be fed into our network. Our observations in this case are images. Before we input an image into our network, we'll do a bit of pre-processing to crop and scale, clean up the background colors to a single color, and set the important game elements to a single color. Let's use this function to visualize what an observation might look like before and after pre-processing. ###Code observation = env.reset() for i in range(30): observation, _,_,_ = env.step(0) observation_pp = mdl.lab3.preprocess_pong(observation) f = plt.figure(figsize=(10,3)) ax = f.add_subplot(121) ax2 = f.add_subplot(122) ax.imshow(observation); ax.grid(False); ax2.imshow(np.squeeze(observation_pp)); ax2.grid(False); plt.title('Preprocessed Observation'); ###Output _____no_output_____ ###Markdown What do you notice? How might these changes be important for training our RL algorithm? 3.9 Training PongWe're now all set up to start training our RL algorithm and agent for the game of Pong! We've already defined our loss function with `compute_loss`, which employs policy gradient learning, as well as our backpropagation step with `train_step` which is beautiful! We will use these functions to execute training the Pong agent. Let's walk through the training block.In Pong, rather than feeding our network one image at a time, it can actually improve performance to input the difference between two consecutive observations, which really gives us information about the movement between frames -- how the game is changing. We'll first pre-process the raw observation, `x`, and then we'll compute the difference with the image frame we saw one timestep before. This observation change will be forward propagated through our Pong agent, the CNN network model, which will then predict the next action to take based on this observation. The raw reward will be computed, and the observation, action, and reward will be recorded into memory. This will continue until a training episode, i.e., a game, ends.Then, we will compute the discounted rewards, and use this information to execute a training step. Memory will be cleared, and we will do it all over again!Let's run the code block to train our Pong agent. Note that completing training will take quite a bit of time (estimated at least a couple of hours). We will again visualize the evolution of the total reward as a function of training to get a sense of how the agent is learning. ###Code ### Training Pong ### # Hyperparameters learning_rate=1e-4 MAX_ITERS = 10000 # increase the maximum number of episodes, since Pong is more complex! # Model and optimizer pong_model = create_pong_model() optimizer = tf.keras.optimizers.Adam(learning_rate) # plotting smoothed_reward = mdl.util.LossHistory(smoothing_factor=0.9) plotter = mdl.util.PeriodicPlotter(sec=5, xlabel='Iterations', ylabel='Rewards') memory = Memory() for i_episode in range(MAX_ITERS): plotter.plot(smoothed_reward.get()) # Restart the environment observation = env.reset() previous_frame = mdl.lab3.preprocess_pong(observation) while True: # Pre-process image current_frame = mdl.lab3.preprocess_pong(observation) '''TODO: determine the observation change Hint: this is the difference between the past two frames''' obs_change = current_frame - previous_frame # TODO # obs_change = # TODO '''TODO: choose an action for the pong model, using the frame difference, and evaluate''' action = choose_action(pong_model, obs_change) # TODO # action = # TODO # Take the chosen action next_observation, reward, done, info = env.step(action) '''TODO: save the observed frame difference, the action that was taken, and the resulting reward!''' memory.add_to_memory(obs_change, action, reward) # TODO # is the episode over? did you crash or do so well that you're done? if done: # determine total reward and keep a record of this total_reward = sum(memory.rewards) smoothed_reward.append( total_reward ) # begin training train_step(pong_model, optimizer, observations = np.stack(memory.observations, 0), actions = np.array(memory.actions), discounted_rewards = discount_rewards(memory.rewards)) memory.clear() break observation = next_observation previous_frame = current_frame ###Output _____no_output_____ ###Markdown Finally we can put our trained agent to the test! It will play in a newly instantiated Pong environment against the "computer", a base AI system for Pong. Your agent plays as the green paddle. Let's watch the match instant replay! ###Code saved_pong = mdl.lab3.save_video_of_model( pong_model, "Pong-v0", obs_diff=True, pp_fn=mdl.lab3.preprocess_pong) mdl.lab3.play_video(saved_pong) ###Output _____no_output_____ ###Markdown Visit MIT Deep Learning Run in Google Colab View Source on GitHub Copyright Information ###Code # Copyright 2020 MIT 6.S191 Introduction to Deep Learning. All Rights Reserved. # # Licensed under the MIT License. You may not use this file except in compliance # with the License. Use and/or modification of this code outside of 6.S191 must # reference: # # © MIT 6.S191: Introduction to Deep Learning # http://introtodeeplearning.com # ###Output _____no_output_____ ###Markdown Laboratory 3: Reinforcement LearningReinforcement learning (RL) is a subset of machine learning which poses learning problems as interactions between agents and environments. It often assumes agents have no prior knowledge of a world, so they must learn to navigate environments by optimizing a reward function. Within an environment, an agent can take certain actions and receive feedback, in the form of positive or negative rewards, with respect to their decision. As such, an agent's feedback loop is somewhat akin to the idea of "trial and error", or the manner in which a child might learn to distinguish between "good" and "bad" actions.In practical terms, our RL agent will interact with the environment by taking an action at each timestep, receiving a corresponding reward, and updating its state according to what it has "learned". ![alt text](https://www.kdnuggets.com/images/reinforcement-learning-fig1-700.jpg)While the ultimate goal of reinforcement learning is to teach agents to act in the real, physical world, games provide a convenient proving ground for developing RL algorithms and agents. Games have some properties that make them particularly well suited for RL: 1. In many cases, games have perfectly describable environments. For example, all rules of chess can be formally written and programmed into a chess game simulator;2. Games are massively parallelizable. Since they do not require running in the real world, simultaneous environments can be run on large data clusters; 3. Simpler scenarios in games enable fast prototyping. This speeds up the development of algorithms that could eventually run in the real-world; and4. ... Games are fun! In previous labs, we have explored both supervised (with LSTMs, CNNs) and unsupervised / semi-supervised (with VAEs) learning tasks. Reinforcement learning is fundamentally different, in that we are training a deep learning algorithm to govern the actions of our RL agent, that is trying, within its environment, to find the optimal way to achieve a goal. The goal of training an RL agent is to determine the best next step to take to earn the greatest final payoff or return. In this lab, we focus on building a reinforcement learning algorithm to master two different environments with varying complexity. 1. **Cartpole**: Balance a pole, protruding from a cart, in an upright position by only moving the base left or right. Environment with a low-dimensional observation space.2. [**Pong**](https://en.wikipedia.org/wiki/Pong): Beat your competitors (whether other AI or humans!) at the game of Pong. Environment with a high-dimensional observation space -- learning directly from raw pixels.Let's get started! First we'll import TensorFlow, the course package, and some dependencies. ###Code # !apt-get install -y xvfb python-opengl x11-utils > /dev/null 2>&1 # !pip install gym pyvirtualdisplay scikit-video > /dev/null 2>&1 # %tensorflow_version 2.x import tensorflow as tf import numpy as np import base64, io, time, gym import IPython, functools import matplotlib.pyplot as plt from tqdm import tqdm # !pip install mitdeeplearning import mitdeeplearning as mdl ###Output _____no_output_____ ###Markdown Before we dive in, let's take a step back and outline our approach, which is generally applicable to reinforcement learning problems in general:1. **Initialize our environment and our agent**: here we will describe the different observations and actions the agent can make in the environemnt.2. **Define our agent's memory**: this will enable the agent to remember its past actions, observations, and rewards.3. **Define a reward function**: describes the reward associated with an action or sequence of actions.4. **Define the learning algorithm**: this will be used to reinforce the agent's good behaviors and discourage bad behaviors. Part 1: Cartpole 3.1 Define the Cartpole environment and agent Environment In order to model the environment for both the Cartpole and Pong tasks, we'll be using a toolkit developed by OpenAI called [OpenAI Gym](https://gym.openai.com/). It provides several pre-defined environments for training and testing reinforcement learning agents, including those for classic physics control tasks, Atari video games, and robotic simulations. To access the Cartpole environment, we can use `env = gym.make("CartPole-v0")`, which we gained access to when we imported the `gym` package. We can instantiate different [environments](https://gym.openai.com/envs/classic_control) by passing the enivronment name to the `make` function.One issue we might experience when developing RL algorithms is that many aspects of the learning process are inherently random: initializing game states, changes in the environment, and the agent's actions. As such, it can be helpful to set a initial "seed" for the environment to ensure some level of reproducibility. Much like you might use `numpy.random.seed`, we can call the comparable function in gym, `seed`, with our defined environment to ensure the environment's random variables are initialized the same each time. ###Code ### Instantiate the Cartpole environment ### env = gym.make("CartPole-v0") env.seed(1) ###Output _____no_output_____ ###Markdown In Cartpole, a pole is attached by an un-actuated joint to a cart, which moves along a frictionless track. The pole starts upright, and the goal is to prevent it from falling over. The system is controlled by applying a force of +1 or -1 to the cart. A reward of +1 is provided for every timestep that the pole remains upright. The episode ends when the pole is more than 15 degrees from vertical, or the cart moves more than 2.4 units from the center of the track. A visual summary of the cartpole environment is depicted below:Given this setup for the environment and the objective of the game, we can think about: 1) what observations help define the environment's state; 2) what actions the agent can take. First, let's consider the observation space. In this Cartpole environment our observations are:1. Cart position2. Cart velocity3. Pole angle4. Pole rotation rateWe can confirm the size of the space by querying the environment's observation space: ###Code n_observations = env.observation_space print("Environment has observation space =", n_observations) ###Output Environment has observation space = Box(4,) ###Markdown Second, we consider the action space. At every time step, the agent can move either right or left. Again we can confirm the size of the action space by querying the environment: ###Code n_actions = env.action_space.n print("Number of possible actions that the agent can choose from =", n_actions) ###Output Number of possible actions that the agent can choose from = 2 ###Markdown Cartpole agentNow that we have instantiated the environment and understood the dimensionality of the observation and action spaces, we are ready to define our agent. In deep reinforcement learning, a deep neural network defines the agent. This network will take as input an observation of the environment and output the probability of taking each of the possible actions. Since Cartpole is defined by a low-dimensional observation space, a simple feed-forward neural network should work well for our agent. We will define this using the `Sequential` API. ###Code ### Define the Cartpole agent ### # Defines a feed-forward neural network def create_cartpole_model(): model = tf.keras.models.Sequential( [ # First Dense layer tf.keras.layers.Dense(units=32, activation="relu"), # TODO: Define the last Dense layer, which will provide the network's output. # Think about the space the agent needs to act in! tf.keras.layers.Dense(units=n_actions, activation=None) # TODO # [TODO Dense layer to output action probabilities] ] ) return model cartpole_model = create_cartpole_model() ###Output _____no_output_____ ###Markdown Visit MIT Deep Learning Run in Google Colab View Source on GitHub Copyright Information ###Code # Copyright 2020 MIT 6.S191 Introduction to Deep Learning. All Rights Reserved. # # Licensed under the MIT License. You may not use this file except in compliance # with the License. Use and/or modification of this code outside of 6.S191 must # reference: # # © MIT 6.S191: Introduction to Deep Learning # http://introtodeeplearning.com # ###Output _____no_output_____ ###Markdown Laboratory 3: Reinforcement LearningReinforcement learning (RL) is a subset of machine learning which poses learning problems as interactions between agents and environments. It often assumes agents have no prior knowledge of a world, so they must learn to navigate environments by optimizing a reward function. Within an environment, an agent can take certain actions and receive feedback, in the form of positive or negative rewards, with respect to their decision. As such, an agent's feedback loop is somewhat akin to the idea of "trial and error", or the manner in which a child might learn to distinguish between "good" and "bad" actions.In practical terms, our RL agent will interact with the environment by taking an action at each timestep, receiving a corresponding reward, and updating its state according to what it has "learned". ![alt text](https://www.kdnuggets.com/images/reinforcement-learning-fig1-700.jpg)While the ultimate goal of reinforcement learning is to teach agents to act in the real, physical world, games provide a convenient proving ground for developing RL algorithms and agents. Games have some properties that make them particularly well suited for RL: 1. In many cases, games have perfectly describable environments. For example, all rules of chess can be formally written and programmed into a chess game simulator;2. Games are massively parallelizable. Since they do not require running in the real world, simultaneous environments can be run on large data clusters; 3. Simpler scenarios in games enable fast prototyping. This speeds up the development of algorithms that could eventually run in the real-world; and4. ... Games are fun! In previous labs, we have explored both supervised (with LSTMs, CNNs) and unsupervised / semi-supervised (with VAEs) learning tasks. Reinforcement learning is fundamentally different, in that we are training a deep learning algorithm to govern the actions of our RL agent, that is trying, within its environment, to find the optimal way to achieve a goal. The goal of training an RL agent is to determine the best next step to take to earn the greatest final payoff or return. In this lab, we focus on building a reinforcement learning algorithm to master two different environments with varying complexity. 1. **Cartpole**: Balance a pole, protruding from a cart, in an upright position by only moving the base left or right. Environment with a low-dimensional observation space.2. [**Pong**](https://en.wikipedia.org/wiki/Pong): Beat your competitors (whether other AI or humans!) at the game of Pong. Environment with a high-dimensional observation space -- learning directly from raw pixels.Let's get started! First we'll import TensorFlow, the course package, and some dependencies. ###Code !apt-get install -y xvfb python-opengl x11-utils > /dev/null 2>&1 !pip install gym pyvirtualdisplay scikit-video > /dev/null 2>&1 %tensorflow_version 2.x import tensorflow as tf import numpy as np import base64, io, time, gym import IPython, functools import matplotlib.pyplot as plt from tqdm import tqdm !pip install mitdeeplearning import mitdeeplearning as mdl ###Output _____no_output_____ ###Markdown Before we dive in, let's take a step back and outline our approach, which is generally applicable to reinforcement learning problems in general:1. **Initialize our environment and our agent**: here we will describe the different observations and actions the agent can make in the environemnt.2. **Define our agent's memory**: this will enable the agent to remember its past actions, observations, and rewards.3. **Define a reward function**: describes the reward associated with an action or sequence of actions.4. **Define the learning algorithm**: this will be used to reinforce the agent's good behaviors and discourage bad behaviors. Part 1: Cartpole 3.1 Define the Cartpole environment and agent Environment In order to model the environment for both the Cartpole and Pong tasks, we'll be using a toolkit developed by OpenAI called [OpenAI Gym](https://gym.openai.com/). It provides several pre-defined environments for training and testing reinforcement learning agents, including those for classic physics control tasks, Atari video games, and robotic simulations. To access the Cartpole environment, we can use `env = gym.make("CartPole-v0")`, which we gained access to when we imported the `gym` package. We can instantiate different [environments](https://gym.openai.com/envs/classic_control) by passing the enivronment name to the `make` function.One issue we might experience when developing RL algorithms is that many aspects of the learning process are inherently random: initializing game states, changes in the environment, and the agent's actions. As such, it can be helpful to set a initial "seed" for the environment to ensure some level of reproducibility. Much like you might use `numpy.random.seed`, we can call the comparable function in gym, `seed`, with our defined environment to ensure the environment's random variables are initialized the same each time. ###Code ### Instantiate the Cartpole environment ### env = gym.make("CartPole-v0") env.seed(1) ###Output _____no_output_____ ###Markdown In Cartpole, a pole is attached by an un-actuated joint to a cart, which moves along a frictionless track. The pole starts upright, and the goal is to prevent it from falling over. The system is controlled by applying a force of +1 or -1 to the cart. A reward of +1 is provided for every timestep that the pole remains upright. The episode ends when the pole is more than 15 degrees from vertical, or the cart moves more than 2.4 units from the center of the track. A visual summary of the cartpole environment is depicted below:Given this setup for the environment and the objective of the game, we can think about: 1) what observations help define the environment's state; 2) what actions the agent can take. First, let's consider the observation space. In this Cartpole environment our observations are:1. Cart position2. Cart velocity3. Pole angle4. Pole rotation rateWe can confirm the size of the space by querying the environment's observation space: ###Code n_observations = env.observation_space print("Environment has observation space =", n_observations) ###Output _____no_output_____ ###Markdown Second, we consider the action space. At every time step, the agent can move either right or left. Again we can confirm the size of the action space by querying the environment: ###Code n_actions = env.action_space.n print("Number of possible actions that the agent can choose from =", n_actions) ###Output _____no_output_____ ###Markdown Cartpole agentNow that we have instantiated the environment and understood the dimensionality of the observation and action spaces, we are ready to define our agent. In deep reinforcement learning, a deep neural network defines the agent. This network will take as input an observation of the environment and output the probability of taking each of the possible actions. Since Cartpole is defined by a low-dimensional observation space, a simple feed-forward neural network should work well for our agent. We will define this using the `Sequential` API. ###Code ### Define the Cartpole agent ### # Defines a feed-forward neural network def create_cartpole_model(): model = tf.keras.models.Sequential([ # First Dense layer tf.keras.layers.Dense(units=32, activation='relu'), # TODO: Define the last Dense layer, which will provide the network's output. # Think about the space the agent needs to act in! tf.keras.layers.Dense(units=n_actions, activation=None) # TODO # [TODO Dense layer to output action probabilities] ]) return model cartpole_model = create_cartpole_model() ###Output _____no_output_____ ###Markdown Now that we have defined the core network architecture, we will define an *action function* that executes a forward pass through the network, given a set of observations, and samples from the output. This sampling from the output probabilities will be used to select the next action for the agent. **Critically, this action function is totally general -- we will use this function for both Cartpole and Pong, and it is applicable to other RL tasks, as well!** ###Code ### Define the agent's action function ### # Function that takes observations as input, executes a forward pass through model, # and outputs a sampled action. # Arguments: # model: the network that defines our agent # observation: observation which is fed as input to the model # Returns: # action: choice of agent action def choose_action(model, observation): # add batch dimension to the observation observation = np.expand_dims(observation, axis=0) '''TODO: feed the observations through the model to predict the log probabilities of each possible action.''' logits = model.predict(observation) # TODO # logits = model.predict('''TODO''') # pass the log probabilities through a softmax to compute true probabilities prob_weights = tf.nn.softmax(logits).numpy() '''TODO: randomly sample from the prob_weights to pick an action. Hint: carefully consider the dimensionality of the input probabilities (vector) and the output action (scalar)''' action = np.random.choice(n_actions, size=1, p=prob_weights.flatten())[0] # TODO # action = np.random.choice('''TODO''', size=1, p=''''TODO''')['''TODO'''] return action ###Output _____no_output_____ ###Markdown 3.2 Define the agent's memoryNow that we have instantiated the environment and defined the agent network architecture and action function, we are ready to move on to the next step in our RL workflow:1. **Initialize our environment and our agent**: here we will describe the different observations and actions the agent can make in the environemnt.2. **Define our agent's memory**: this will enable the agent to remember its past actions, observations, and rewards.3. **Define the learning algorithm**: this will be used to reinforce the agent's good behaviors and discourage bad behaviors.In reinforcement learning, training occurs alongside the agent's acting in the environment; an *episode* refers to a sequence of actions that ends in some terminal state, such as the pole falling down or the cart crashing. The agent will need to remember all of its observations and actions, such that once an episode ends, it can learn to "reinforce" the good actions and punish the undesirable actions via training. Our first step is to define a simple memory buffer that contains the agent's observations, actions, and received rewards from a given episode. **Once again, note the modularity of this memory buffer -- it can and will be applied to other RL tasks as well!** ###Code ### Agent Memory ### class Memory: def __init__(self): self.clear() # Resets/restarts the memory buffer def clear(self): self.observations = [] self.actions = [] self.rewards = [] # Add observations, actions, rewards to memory def add_to_memory(self, new_observation, new_action, new_reward): self.observations.append(new_observation) '''TODO: update the list of actions with new action''' self.actions.append(new_action) # TODO # ['''TODO'''] '''TODO: update the list of rewards with new reward''' self.rewards.append(new_reward) # TODO # ['''TODO'''] memory = Memory() ###Output _____no_output_____ ###Markdown 3.3 Reward functionWe're almost ready to begin the learning algorithm for our agent! The next step is to compute the rewards of our agent as it acts in the environment. Since we (and the agent) is uncertain about if and when the game or task will end (i.e., when the pole will fall), it is useful to emphasize getting rewards **now** rather than later in the future -- this is the idea of discounting. This is a similar concept to discounting money in the case of interest. ecall from lecture, we use reward discount to give more preference at getting rewards now rather than later in the future. The idea of discounting rewards is similar to discounting money in the case of interest.To compute the expected cumulative reward, known as the **return**, at a given timestep in a learning episode, we sum the discounted rewards expected at that time step $t$, within a learning episode, and projecting into the future. We define the return (cumulative reward) at a time step $t$, $R_{t}$ as:>$R_{t}=\sum_{k=0}^\infty\gamma^kr_{t+k}$where $0 < \gamma < 1$ is the discount factor and $r_{t}$ is the reward at time step $t$, and the index $k$ increments projection into the future within a single learning episode. Intuitively, you can think of this function as depreciating any rewards received at later time steps, which will force the agent prioritize getting rewards now. Since we can't extend episodes to infinity, in practice the computation will be limited to the number of timesteps in an episode -- after that the reward is assumed to be zero.Take note of the form of this sum -- we'll have to be clever about how we implement this function. Specifically, we'll need to initialize an array of zeros, with length of the number of time steps, and fill it with the real discounted reward values as we loop through the rewards from the episode, which will have been saved in the agents memory. What we ultimately care about is which actions are better relative to other actions taken in that episode -- so, we'll normalize our computed rewards, using the mean and standard deviation of the rewards across the learning episode. ###Code ### Reward function ### # Helper function that normalizes an np.array x def normalize(x): x -= np.mean(x) x /= np.std(x) return x.astype(np.float32) # Compute normalized, discounted, cumulative rewards (i.e., return) # Arguments: # rewards: reward at timesteps in episode # gamma: discounting factor # Returns: # normalized discounted reward def discount_rewards(rewards, gamma=0.95): discounted_rewards = np.zeros_like(rewards) R = 0 for t in reversed(range(0, len(rewards))): # update the total discounted reward R = R * gamma + rewards[t] discounted_rewards[t] = R return normalize(discounted_rewards) ###Output _____no_output_____ ###Markdown 3.4 Learning algorithmNow we can start to define the learing algorithm which will be used to reinforce good behaviors of the agent and discourage bad behaviours. In this lab, we will focus on *policy gradient* methods which aim to **maximize** the likelihood of actions that result in large rewards. Equivalently, this means that we want to **minimize** the negative likelihood of these same actions. We achieve this by simply **scaling** the probabilities by their associated rewards -- effectively amplifying the likelihood of actions that resujlt in large rewards.Since the log function is monotonically increasing, this means that minimizing **negative likelihood** is equivalent to minimizing **negative log-likelihood**. Recall that we can easily compute the negative log-likelihood of a discrete action by evaluting its [softmax cross entropy](https://www.tensorflow.org/api_docs/python/tf/nn/sparse_softmax_cross_entropy_with_logits). Like in supervised learning, we can use stochastic gradient descent methods to achieve the desired minimization. Let's begin by defining the loss function. ###Code ### Loss function ### # Arguments: # logits: network's predictions for actions to take # actions: the actions the agent took in an episode # rewards: the rewards the agent received in an episode # Returns: # loss def compute_loss(logits, actions, rewards): '''TODO: complete the function call to compute the negative log probabilities''' neg_logprob = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=actions) # TODO # neg_logprob = tf.nn.sparse_softmax_cross_entropy_with_logits(logits='''TODO''', labels='''TODO''') '''TODO: scale the negative log probability by the rewards''' loss = tf.reduce_mean( neg_logprob * rewards ) # TODO # loss = tf.reduce_mean('''TODO''') return loss ###Output _____no_output_____ ###Markdown Now let's use the loss function to define a training step of our learning algorithm: ###Code ### Training step (forward and backpropagation) ### def train_step(model, optimizer, observations, actions, discounted_rewards): with tf.GradientTape() as tape: # Forward propagate through the agent network logits = model(observations) '''TODO: call the compute_loss function to compute the loss''' loss = compute_loss(logits, actions, discounted_rewards) # TODO # loss = compute_loss('''TODO''', '''TODO''', '''TODO''') '''TODO: run backpropagation to minimize the loss using the tape.gradient method''' grads = tape.gradient(loss, model.trainable_variables) # TODO # grads = tape.gradient('''TODO''', model.trainable_variables) optimizer.apply_gradients(zip(grads, model.trainable_variables)) ###Output _____no_output_____ ###Markdown 3.5 Run cartpole!Having had no prior knowledge of the environment, the agent will begin to learn how to balance the pole on the cart based only on the feedback received from the environment! Having defined how our agent can move, how it takes in new observations, and how it updates its state, we'll see how it gradually learns a policy of actions to optimize balancing the pole as long as possible. To do this, we'll track how the rewards evolve as a function of training -- how should the rewards change as training progresses? ###Code ### Cartpole training! ### # Learning rate and optimizer learning_rate = 1e-3 optimizer = tf.keras.optimizers.Adam(learning_rate) # instantiate cartpole agent cartpole_model = create_cartpole_model() # to track our progress smoothed_reward = mdl.util.LossHistory(smoothing_factor=0.9) plotter = mdl.util.PeriodicPlotter(sec=2, xlabel='Iterations', ylabel='Rewards') if hasattr(tqdm, '_instances'): tqdm._instances.clear() # clear if it exists for i_episode in range(500): plotter.plot(smoothed_reward.get()) # Restart the environment observation = env.reset() memory.clear() while True: # using our observation, choose an action and take it in the environment action = choose_action(cartpole_model, observation) next_observation, reward, done, info = env.step(action) # add to memory memory.add_to_memory(observation, action, reward) # is the episode over? did you crash or do so well that you're done? if done: # determine total reward and keep a record of this total_reward = sum(memory.rewards) smoothed_reward.append(total_reward) # initiate training - remember we don't know anything about how the # agent is doing until it has crashed! train_step(cartpole_model, optimizer, observations=np.vstack(memory.observations), actions=np.array(memory.actions), discounted_rewards = discount_rewards(memory.rewards)) # reset the memory memory.clear() break # update our observatons observation = next_observation ###Output _____no_output_____ ###Markdown To get a sense of how our agent did, we can save a video of the trained model working on balancing the pole. Realize that this is a brand new environment that the agent has not seen before!Let's display the saved video to watch how our agent did! ###Code saved_cartpole = mdl.lab3.save_video_of_model(cartpole_model, "CartPole-v0") mdl.lab3.play_video(saved_cartpole) ###Output _____no_output_____ ###Markdown How does the agent perform? Could you train it for shorter amounts of time and still perform well? Do you think that training longer would help even more? Part 2: PongIn Cartpole, we dealt with an environment that was static -- in other words, it didn't change over time. What happens if our environment is dynamic and unpredictable? Well that's exactly the case in [Pong](https://en.wikipedia.org/wiki/Pong), since part of the environment is the opposing player. We don't know how our opponent will act or react to our actions, so the complexity of our problem increases. It also becomes much more interesting, since we can compete to beat our opponent. RL provides a powerful framework for training AI systems with the ability to handle and interact with dynamic, unpredictable environments. In this part of the lab, we'll use the tools and workflow we explored in Part 1 to build an RL agent capable of playing the game of Pong. 3.6 Define and inspect the Pong environmentAs with Cartpole, we'll instantiate the Pong environment in the OpenAI gym, using a seed of 1. ###Code env = gym.make("Pong-v0", frameskip=5) env.seed(1); # for reproducibility ###Output _____no_output_____ ###Markdown Let's next consider the observation space for the Pong environment. Instead of four physical descriptors of the cart-pole setup, in the case of Pong our observations are the individual video frames (i.e., images) that depict the state of the board. Thus, the observations are 210x160 RGB images (arrays of shape (210,160,3)).We can again confirm the size of the observation space by query: ###Code print("Environment has observation space =", env.observation_space) ###Output _____no_output_____ ###Markdown In Pong, at every time step, the agent (which controls the paddle) has six actions to choose from: no-op (no operation), move right, move left, fire, fire right, and fire left. Let's confirm the size of the action space by querying the environment: ###Code n_actions = env.action_space.n print("Number of possible actions that the agent can choose from =", n_actions) ###Output _____no_output_____ ###Markdown 3.7 Define the Pong agentAs before, we'll use a neural network to define our agent. What network architecture do you think would be especially well suited to this game? Since our observations are now in the form of images, we'll add convolutional layers to the network to increase the learning capacity of our network. ###Code ### Define the Pong agent ### # Functionally define layers for convenience # All convolutional layers will have ReLu activation Conv2D = functools.partial(tf.keras.layers.Conv2D, padding='same', activation='relu') Flatten = tf.keras.layers.Flatten Dense = tf.keras.layers.Dense # Defines a CNN for the Pong agent def create_pong_model(): model = tf.keras.models.Sequential([ # Convolutional layers # First, 16 7x7 filters and 4x4 stride Conv2D(filters=16, kernel_size=7, strides=4), # TODO: define convolutional layers with 32 5x5 filters and 2x2 stride Conv2D(filters=32, kernel_size=5, strides=2), # TODO # Conv2D('''TODO'''), # TODO: define convolutional layers with 48 3x3 filters and 2x2 stride Conv2D(filters=48, kernel_size=3, strides=2), # TODO # Conv2D('''TODO'''), Flatten(), # Fully connected layer and output Dense(units=64, activation='relu'), # TODO: define the output dimension of the last Dense layer. # Pay attention to the space the agent needs to act in Dense(units=n_actions, activation=None) # TODO # Dense('''TODO''') ]) return model pong_model = create_pong_model() ###Output _____no_output_____ ###Markdown Since we've already defined the action function, `choose_action(model, observation)`, we don't need to define it again. Instead, we'll be able to reuse it later on by passing in our new model we've just created, `pong_model`. This is awesome because our action function provides a modular and generalizable method for all sorts of RL agents! 3.8 Pong-specific functionsIn Part 1 (Cartpole), we implemented some key functions and classes to build and train our RL agent -- `choose_action(model, observation)` and the `Memory` class, for example. However, in getting ready to apply these to a new game like Pong, we might need to make some slight modifications. Namely, we need to think about what happens when a game ends. In Pong, we know a game has ended if the reward is +1 (we won!) or -1 (we lost unfortunately). Otherwise, we expect the reward at a timestep to be zero -- the players (or agents) are just playing eachother. So, after a game ends, we will need to reset the reward to zero when a game ends. This will result in a modified reward function. ###Code ### Pong reward function ### # Compute normalized, discounted rewards for Pong (i.e., return) # Arguments: # rewards: reward at timesteps in episode # gamma: discounting factor. Note increase to 0.99 -- rate of depreciation will be slower. # Returns: # normalized discounted reward def discount_rewards(rewards, gamma=0.99): discounted_rewards = np.zeros_like(rewards) R = 0 for t in reversed(range(0, len(rewards))): # NEW: Reset the sum if the reward is not 0 (the game has ended!) if rewards[t] != 0: R = 0 # update the total discounted reward as before R = R * gamma + rewards[t] discounted_rewards[t] = R return normalize(discounted_rewards) ###Output _____no_output_____ ###Markdown Additionally, we have to consider the nature of the observations in the Pong environment, and how they will be fed into our network. Our observations in this case are images. Before we input an image into our network, we'll do a bit of pre-processing to crop and scale, clean up the background colors to a single color, and set the important game elements to a single color. Let's use this function to visualize what an observation might look like before and after pre-processing. ###Code observation = env.reset() for i in range(30): observation, _,_,_ = env.step(0) observation_pp = mdl.lab3.preprocess_pong(observation) f = plt.figure(figsize=(10,3)) ax = f.add_subplot(121) ax2 = f.add_subplot(122) ax.imshow(observation); ax.grid(False); ax2.imshow(np.squeeze(observation_pp)); ax2.grid(False); plt.title('Preprocessed Observation'); ###Output _____no_output_____ ###Markdown What do you notice? How might these changes be important for training our RL algorithm? 3.9 Training PongWe're now all set up to start training our RL algorithm and agent for the game of Pong! We've already defined our loss function with `compute_loss`, which employs policy gradient learning, as well as our backpropagation step with `train_step` which is beautiful! We will use these functions to execute training the Pong agent. Let's walk through the training block.In Pong, rather than feeding our network one image at a time, it can actually improve performance to input the difference between two consecutive observations, which really gives us information about the movement between frames -- how the game is changing. We'll first pre-process the raw observation, `x`, and then we'll compute the difference with the image frame we saw one timestep before. This observation change will be forward propagated through our Pong agent, the CNN network model, which will then predict the next action to take based on this observation. The raw reward will be computed, and the observation, action, and reward will be recorded into memory. This will continue until a training episode, i.e., a game, ends.Then, we will compute the discounted rewards, and use this information to execute a training step. Memory will be cleared, and we will do it all over again!Let's run the code block to train our Pong agent. Note that completing training will take quite a bit of time (estimated at least a couple of hours). We will again visualize the evolution of the total reward as a function of training to get a sense of how the agent is learning. ###Code ### Training Pong ### # Hyperparameters learning_rate=1e-4 MAX_ITERS = 10000 # increase the maximum number of episodes, since Pong is more complex! # Model and optimizer pong_model = create_pong_model() optimizer = tf.keras.optimizers.Adam(learning_rate) # plotting smoothed_reward = mdl.util.LossHistory(smoothing_factor=0.9) plotter = mdl.util.PeriodicPlotter(sec=5, xlabel='Iterations', ylabel='Rewards') memory = Memory() for i_episode in range(MAX_ITERS): plotter.plot(smoothed_reward.get()) # Restart the environment observation = env.reset() previous_frame = mdl.lab3.preprocess_pong(observation) while True: # Pre-process image current_frame = mdl.lab3.preprocess_pong(observation) '''TODO: determine the observation change Hint: this is the difference between the past two frames''' obs_change = current_frame - previous_frame # TODO # obs_change = # TODO '''TODO: choose an action for the pong model, using the frame difference, and evaluate''' action = choose_action(pong_model, obs_change) # TODO # action = # TODO # Take the chosen action next_observation, reward, done, info = env.step(action) '''TODO: save the observed frame difference, the action that was taken, and the resulting reward!''' memory.add_to_memory(obs_change, action, reward) # TODO # is the episode over? did you crash or do so well that you're done? if done: # determine total reward and keep a record of this total_reward = sum(memory.rewards) smoothed_reward.append( total_reward ) # begin training train_step(pong_model, optimizer, observations = np.stack(memory.observations, 0), actions = np.array(memory.actions), discounted_rewards = discount_rewards(memory.rewards)) memory.clear() break observation = next_observation previous_frame = current_frame ###Output _____no_output_____ ###Markdown Finally we can put our trained agent to the test! It will play in a newly instantiated Pong environment against the "computer", a base AI system for Pong. Your agent plays as the green paddle. Let's watch the match instant replay! ###Code saved_pong = mdl.lab3.save_video_of_model( pong_model, "Pong-v0", obs_diff=True, pp_fn=mdl.lab3.preprocess_pong) mdl.lab3.play_video(saved_pong) ###Output _____no_output_____ ###Markdown Visit MIT Deep Learning Run in Google Colab View Source on GitHub Copyright Information ###Code # Copyright 2021 MIT 6.S191 Introduction to Deep Learning. All Rights Reserved. # # Licensed under the MIT License. You may not use this file except in compliance # with the License. Use and/or modification of this code outside of 6.S191 must # reference: # # © MIT 6.S191: Introduction to Deep Learning # http://introtodeeplearning.com # ###Output _____no_output_____ ###Markdown Laboratory 3: Reinforcement LearningReinforcement learning (RL) is a subset of machine learning which poses learning problems as interactions between agents and environments. It often assumes agents have no prior knowledge of a world, so they must learn to navigate environments by optimizing a reward function. Within an environment, an agent can take certain actions and receive feedback, in the form of positive or negative rewards, with respect to their decision. As such, an agent's feedback loop is somewhat akin to the idea of "trial and error", or the manner in which a child might learn to distinguish between "good" and "bad" actions.In practical terms, our RL agent will interact with the environment by taking an action at each timestep, receiving a corresponding reward, and updating its state according to what it has "learned". ![alt text](https://www.kdnuggets.com/images/reinforcement-learning-fig1-700.jpg)While the ultimate goal of reinforcement learning is to teach agents to act in the real, physical world, games provide a convenient proving ground for developing RL algorithms and agents. Games have some properties that make them particularly well suited for RL: 1. In many cases, games have perfectly describable environments. For example, all rules of chess can be formally written and programmed into a chess game simulator;2. Games are massively parallelizable. Since they do not require running in the real world, simultaneous environments can be run on large data clusters; 3. Simpler scenarios in games enable fast prototyping. This speeds up the development of algorithms that could eventually run in the real-world; and4. ... Games are fun! In previous labs, we have explored both supervised (with LSTMs, CNNs) and unsupervised / semi-supervised (with VAEs) learning tasks. Reinforcement learning is fundamentally different, in that we are training a deep learning algorithm to govern the actions of our RL agent, that is trying, within its environment, to find the optimal way to achieve a goal. The goal of training an RL agent is to determine the best next step to take to earn the greatest final payoff or return. In this lab, we focus on building a reinforcement learning algorithm to master two different environments with varying complexity. 1. **Cartpole**: Balance a pole, protruding from a cart, in an upright position by only moving the base left or right. Environment with a low-dimensional observation space.2. [**Pong**](https://en.wikipedia.org/wiki/Pong): Beat your competitors (whether other AI or humans!) at the game of Pong. Environment with a high-dimensional observation space -- learning directly from raw pixels.Let's get started! First we'll import TensorFlow, the course package, and some dependencies. ###Code #Install some dependencies for visualizing the agents !apt-get install -y xvfb python-opengl x11-utils > /dev/null 2>&1 !pip install gym pyvirtualdisplay scikit-video > /dev/null 2>&1 # Import Tensorflow 2.0 %tensorflow_version 2.x import tensorflow as tf import numpy as np import base64, io, time, gym import IPython, functools import matplotlib.pyplot as plt import time from tqdm import tqdm # Download and import the MIT 6.S191 package !pip install mitdeeplearning import mitdeeplearning as mdl ###Output _____no_output_____ ###Markdown Before we dive in, let's take a step back and outline our approach, which is generally applicable to reinforcement learning problems in general:1. **Initialize our environment and our agent**: here we will describe the different observations and actions the agent can make in the environemnt.2. **Define our agent's memory**: this will enable the agent to remember its past actions, observations, and rewards.3. **Define a reward function**: describes the reward associated with an action or sequence of actions.4. **Define the learning algorithm**: this will be used to reinforce the agent's good behaviors and discourage bad behaviors. Part 1: Cartpole 3.1 Define the Cartpole environment and agent Environment In order to model the environment for both the Cartpole and Pong tasks, we'll be using a toolkit developed by OpenAI called [OpenAI Gym](https://gym.openai.com/). It provides several pre-defined environments for training and testing reinforcement learning agents, including those for classic physics control tasks, Atari video games, and robotic simulations. To access the Cartpole environment, we can use `env = gym.make("CartPole-v0")`, which we gained access to when we imported the `gym` package. We can instantiate different [environments](https://gym.openai.com/envs/classic_control) by passing the enivronment name to the `make` function.One issue we might experience when developing RL algorithms is that many aspects of the learning process are inherently random: initializing game states, changes in the environment, and the agent's actions. As such, it can be helpful to set a initial "seed" for the environment to ensure some level of reproducibility. Much like you might use `numpy.random.seed`, we can call the comparable function in gym, `seed`, with our defined environment to ensure the environment's random variables are initialized the same each time. ###Code ### Instantiate the Cartpole environment ### env = gym.make("CartPole-v0") env.seed(1) ###Output _____no_output_____ ###Markdown In Cartpole, a pole is attached by an un-actuated joint to a cart, which moves along a frictionless track. The pole starts upright, and the goal is to prevent it from falling over. The system is controlled by applying a force of +1 or -1 to the cart. A reward of +1 is provided for every timestep that the pole remains upright. The episode ends when the pole is more than 15 degrees from vertical, or the cart moves more than 2.4 units from the center of the track. A visual summary of the cartpole environment is depicted below:Given this setup for the environment and the objective of the game, we can think about: 1) what observations help define the environment's state; 2) what actions the agent can take. First, let's consider the observation space. In this Cartpole environment our observations are:1. Cart position2. Cart velocity3. Pole angle4. Pole rotation rateWe can confirm the size of the space by querying the environment's observation space: ###Code n_observations = env.observation_space print("Environment has observation space =", n_observations) ###Output _____no_output_____ ###Markdown Second, we consider the action space. At every time step, the agent can move either right or left. Again we can confirm the size of the action space by querying the environment: ###Code n_actions = env.action_space.n print("Number of possible actions that the agent can choose from =", n_actions) ###Output _____no_output_____ ###Markdown Cartpole agentNow that we have instantiated the environment and understood the dimensionality of the observation and action spaces, we are ready to define our agent. In deep reinforcement learning, a deep neural network defines the agent. This network will take as input an observation of the environment and output the probability of taking each of the possible actions. Since Cartpole is defined by a low-dimensional observation space, a simple feed-forward neural network should work well for our agent. We will define this using the `Sequential` API. ###Code ### Define the Cartpole agent ### # Defines a feed-forward neural network def create_cartpole_model(): model = tf.keras.models.Sequential([ # First Dense layer tf.keras.layers.Dense(units=32, activation='relu'), # TODO: Define the last Dense layer, which will provide the network's output. # Think about the space the agent needs to act in! tf.keras.layers.Dense(units=n_actions, activation=None) # TODO # [TODO Dense layer to output action probabilities] ]) return model cartpole_model = create_cartpole_model() ###Output _____no_output_____ ###Markdown Now that we have defined the core network architecture, we will define an *action function* that executes a forward pass through the network, given a set of observations, and samples from the output. This sampling from the output probabilities will be used to select the next action for the agent. We will also add support so that the `choose_action` function can handle either a single observation or a batch of observations.**Critically, this action function is totally general -- we will use this function for both Cartpole and Pong, and it is applicable to other RL tasks, as well!** ###Code ### Define the agent's action function ### # Function that takes observations as input, executes a forward pass through model, # and outputs a sampled action. # Arguments: # model: the network that defines our agent # observation: observation(s) which is/are fed as input to the model # single: flag as to whether we are handling a single observation or batch of # observations, provided as an np.array # Returns: # action: choice of agent action def choose_action(model, observation, single=True): # add batch dimension to the observation if only a single example was provided observation = np.expand_dims(observation, axis=0) if single else observation '''TODO: feed the observations through the model to predict the log probabilities of each possible action.''' logits = model.predict(observation) # TODO # logits = model.predict('''TODO''') '''TODO: Choose an action from the categorical distribution defined by the log probabilities of each possible action.''' action = tf.random.categorical(logits, num_samples=1) # action = ['''TODO'''] action = action.numpy().flatten() return action[0] if single else action ###Output _____no_output_____ ###Markdown 3.2 Define the agent's memoryNow that we have instantiated the environment and defined the agent network architecture and action function, we are ready to move on to the next step in our RL workflow:1. **Initialize our environment and our agent**: here we will describe the different observations and actions the agent can make in the environemnt.2. **Define our agent's memory**: this will enable the agent to remember its past actions, observations, and rewards.3. **Define the learning algorithm**: this will be used to reinforce the agent's good behaviors and discourage bad behaviors.In reinforcement learning, training occurs alongside the agent's acting in the environment; an *episode* refers to a sequence of actions that ends in some terminal state, such as the pole falling down or the cart crashing. The agent will need to remember all of its observations and actions, such that once an episode ends, it can learn to "reinforce" the good actions and punish the undesirable actions via training. Our first step is to define a simple `Memory` buffer that contains the agent's observations, actions, and received rewards from a given episode. We will also add support to combine a list of `Memory` objects into a single `Memory`. This will be very useful for batching, which will help you accelerate training later on in the lab.**Once again, note the modularity of this memory buffer -- it can and will be applied to other RL tasks as well!** ###Code ### Agent Memory ### class Memory: def __init__(self): self.clear() # Resets/restarts the memory buffer def clear(self): self.observations = [] self.actions = [] self.rewards = [] # Add observations, actions, rewards to memory def add_to_memory(self, new_observation, new_action, new_reward): self.observations.append(new_observation) '''TODO: update the list of actions with new action''' self.actions.append(new_action) # TODO # ['''TODO'''] '''TODO: update the list of rewards with new reward''' self.rewards.append(new_reward) # TODO # ['''TODO'''] # Helper function to combine a list of Memory objects into a single Memory. # This will be very useful for batching. def aggregate_memories(memories): batch_memory = Memory() for memory in memories: for step in zip(memory.observations, memory.actions, memory.rewards): batch_memory.add_to_memory(*step) return batch_memory # Instantiate a single Memory buffer memory = Memory() ###Output _____no_output_____ ###Markdown 3.3 Reward functionWe're almost ready to begin the learning algorithm for our agent! The next step is to compute the rewards of our agent as it acts in the environment. Since we (and the agent) is uncertain about if and when the game or task will end (i.e., when the pole will fall), it is useful to emphasize getting rewards **now** rather than later in the future -- this is the idea of discounting. This is a similar concept to discounting money in the case of interest. Recall from lecture, we use reward discount to give more preference at getting rewards now rather than later in the future. The idea of discounting rewards is similar to discounting money in the case of interest.To compute the expected cumulative reward, known as the **return**, at a given timestep in a learning episode, we sum the discounted rewards expected at that time step $t$, within a learning episode, and projecting into the future. We define the return (cumulative reward) at a time step $t$, $R_{t}$ as:>$R_{t}=\sum_{k=0}^\infty\gamma^kr_{t+k}$where $0 < \gamma < 1$ is the discount factor and $r_{t}$ is the reward at time step $t$, and the index $k$ increments projection into the future within a single learning episode. Intuitively, you can think of this function as depreciating any rewards received at later time steps, which will force the agent prioritize getting rewards now. Since we can't extend episodes to infinity, in practice the computation will be limited to the number of timesteps in an episode -- after that the reward is assumed to be zero.Take note of the form of this sum -- we'll have to be clever about how we implement this function. Specifically, we'll need to initialize an array of zeros, with length of the number of time steps, and fill it with the real discounted reward values as we loop through the rewards from the episode, which will have been saved in the agents memory. What we ultimately care about is which actions are better relative to other actions taken in that episode -- so, we'll normalize our computed rewards, using the mean and standard deviation of the rewards across the learning episode. ###Code ### Reward function ### # Helper function that normalizes an np.array x def normalize(x): x -= np.mean(x) x /= np.std(x) return x.astype(np.float32) # Compute normalized, discounted, cumulative rewards (i.e., return) # Arguments: # rewards: reward at timesteps in episode # gamma: discounting factor # Returns: # normalized discounted reward def discount_rewards(rewards, gamma=0.95): discounted_rewards = np.zeros_like(rewards) R = 0 for t in reversed(range(0, len(rewards))): # update the total discounted reward R = R * gamma + rewards[t] discounted_rewards[t] = R return normalize(discounted_rewards) ###Output _____no_output_____ ###Markdown 3.4 Learning algorithmNow we can start to define the learing algorithm which will be used to reinforce good behaviors of the agent and discourage bad behaviours. In this lab, we will focus on *policy gradient* methods which aim to **maximize** the likelihood of actions that result in large rewards. Equivalently, this means that we want to **minimize** the negative likelihood of these same actions. We achieve this by simply **scaling** the probabilities by their associated rewards -- effectively amplifying the likelihood of actions that resujlt in large rewards.Since the log function is monotonically increasing, this means that minimizing **negative likelihood** is equivalent to minimizing **negative log-likelihood**. Recall that we can easily compute the negative log-likelihood of a discrete action by evaluting its [softmax cross entropy](https://www.tensorflow.org/api_docs/python/tf/nn/sparse_softmax_cross_entropy_with_logits). Like in supervised learning, we can use stochastic gradient descent methods to achieve the desired minimization. Let's begin by defining the loss function. ###Code ### Loss function ### # Arguments: # logits: network's predictions for actions to take # actions: the actions the agent took in an episode # rewards: the rewards the agent received in an episode # Returns: # loss def compute_loss(logits, actions, rewards): '''TODO: complete the function call to compute the negative log probabilities''' neg_logprob = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=logits, labels=actions) # TODO # neg_logprob = tf.nn.sparse_softmax_cross_entropy_with_logits( # logits='''TODO''', labels='''TODO''') '''TODO: scale the negative log probability by the rewards''' loss = tf.reduce_mean( neg_logprob * rewards ) # TODO # loss = tf.reduce_mean('''TODO''') return loss ###Output _____no_output_____ ###Markdown Now let's use the loss function to define a training step of our learning algorithm: ###Code ### Training step (forward and backpropagation) ### def train_step(model, optimizer, observations, actions, discounted_rewards): with tf.GradientTape() as tape: # Forward propagate through the agent network logits = model(observations) '''TODO: call the compute_loss function to compute the loss''' loss = compute_loss(logits, actions, discounted_rewards) # TODO # loss = compute_loss('''TODO''', '''TODO''', '''TODO''') '''TODO: run backpropagation to minimize the loss using the tape.gradient method''' grads = tape.gradient(loss, model.trainable_variables) # TODO # grads = tape.gradient('''TODO''', model.trainable_variables) optimizer.apply_gradients(zip(grads, model.trainable_variables)) ###Output _____no_output_____ ###Markdown 3.5 Run cartpole!Having had no prior knowledge of the environment, the agent will begin to learn how to balance the pole on the cart based only on the feedback received from the environment! Having defined how our agent can move, how it takes in new observations, and how it updates its state, we'll see how it gradually learns a policy of actions to optimize balancing the pole as long as possible. To do this, we'll track how the rewards evolve as a function of training -- how should the rewards change as training progresses? ###Code ### Cartpole training! ### # Learning rate and optimizer learning_rate = 1e-3 optimizer = tf.keras.optimizers.Adam(learning_rate) # instantiate cartpole agent cartpole_model = create_cartpole_model() # to track our progress smoothed_reward = mdl.util.LossHistory(smoothing_factor=0.9) plotter = mdl.util.PeriodicPlotter(sec=2, xlabel='Iterations', ylabel='Rewards') if hasattr(tqdm, '_instances'): tqdm._instances.clear() # clear if it exists for i_episode in range(500): plotter.plot(smoothed_reward.get()) # Restart the environment observation = env.reset() memory.clear() while True: # using our observation, choose an action and take it in the environment action = choose_action(cartpole_model, observation) next_observation, reward, done, info = env.step(action) # add to memory memory.add_to_memory(observation, action, reward) # is the episode over? did you crash or do so well that you're done? if done: # determine total reward and keep a record of this total_reward = sum(memory.rewards) smoothed_reward.append(total_reward) # initiate training - remember we don't know anything about how the # agent is doing until it has crashed! train_step(cartpole_model, optimizer, observations=np.vstack(memory.observations), actions=np.array(memory.actions), discounted_rewards = discount_rewards(memory.rewards)) # reset the memory memory.clear() break # update our observatons observation = next_observation ###Output _____no_output_____ ###Markdown To get a sense of how our agent did, we can save a video of the trained model working on balancing the pole. Realize that this is a brand new environment that the agent has not seen before!Let's display the saved video to watch how our agent did! ###Code saved_cartpole = mdl.lab3.save_video_of_model(cartpole_model, "CartPole-v0") mdl.lab3.play_video(saved_cartpole) ###Output _____no_output_____ ###Markdown How does the agent perform? Could you train it for shorter amounts of time and still perform well? Do you think that training longer would help even more? Part 2: PongIn Cartpole, we dealt with an environment that was static -- in other words, it didn't change over time. What happens if our environment is dynamic and unpredictable? Well that's exactly the case in [Pong](https://en.wikipedia.org/wiki/Pong), since part of the environment is the opposing player. We don't know how our opponent will act or react to our actions, so the complexity of our problem increases. It also becomes much more interesting, since we can compete to beat our opponent. RL provides a powerful framework for training AI systems with the ability to handle and interact with dynamic, unpredictable environments. In this part of the lab, we'll use the tools and workflow we explored in Part 1 to build an RL agent capable of playing the game of Pong. 3.6 Define and inspect the Pong environmentAs with Cartpole, we'll instantiate the Pong environment in the OpenAI gym, using a seed of 1. ###Code def create_pong_env(): return gym.make("Pong-v0", frameskip=5) env = create_pong_env() env.seed(1); # for reproducibility ###Output _____no_output_____ ###Markdown Let's next consider the observation space for the Pong environment. Instead of four physical descriptors of the cart-pole setup, in the case of Pong our observations are the individual video frames (i.e., images) that depict the state of the board. Thus, the observations are 210x160 RGB images (arrays of shape (210,160,3)).We can again confirm the size of the observation space by query: ###Code print("Environment has observation space =", env.observation_space) ###Output _____no_output_____ ###Markdown In Pong, at every time step, the agent (which controls the paddle) has six actions to choose from: no-op (no operation), move right, move left, fire, fire right, and fire left. Let's confirm the size of the action space by querying the environment: ###Code n_actions = env.action_space.n print("Number of possible actions that the agent can choose from =", n_actions) ###Output _____no_output_____ ###Markdown 3.7 Define the Pong agentAs before, we'll use a neural network to define our agent. What network architecture do you think would be especially well suited to this game? Since our observations are now in the form of images, we'll add convolutional layers to the network to increase the learning capacity of our network. Note that you will be tasked with completing a template CNN architecture for the Pong agent -- but you should certainly experiment beyond this template to try to optimize performance! ###Code ### Define the Pong agent ### # Functionally define layers for convenience # All convolutional layers will have ReLu activation Conv2D = functools.partial(tf.keras.layers.Conv2D, padding='same', activation='relu') Flatten = tf.keras.layers.Flatten Dense = tf.keras.layers.Dense # Defines a CNN for the Pong agent def create_pong_model(): model = tf.keras.models.Sequential([ # Convolutional layers # First, 32 5x5 filters and 2x2 stride Conv2D(filters=32, kernel_size=5, strides=2), # TODO: define convolutional layers with 48 5x5 filters and 2x2 stride Conv2D(filters=48, kernel_size=5, strides=2), # TODO # Conv2D('''TODO'''), # TODO: define two convolutional layers with 64 3x3 filters and 2x2 stride Conv2D(filters=64, kernel_size=3, strides=2), # TODO Conv2D(filters=64, kernel_size=3, strides=2), # Conv2D('''TODO'''), Flatten(), # Fully connected layer and output Dense(units=128, activation='relu'), # TODO: define the output dimension of the last Dense layer. # Pay attention to the space the agent needs to act in Dense(units=n_actions, activation=None) # TODO # Dense('''TODO''') ]) return model pong_model = create_pong_model() ###Output _____no_output_____ ###Markdown Since we've already defined the action function, `choose_action(model, observation)`, we don't need to define it again. Instead, we'll be able to reuse it later on by passing in our new model we've just created, `pong_model`. This is awesome because our action function provides a modular and generalizable method for all sorts of RL agents! 3.8 Pong-specific functionsIn Part 1 (Cartpole), we implemented some key functions and classes to build and train our RL agent -- `choose_action(model, observation)` and the `Memory` class, for example. However, in getting ready to apply these to a new game like Pong, we might need to make some slight modifications. Namely, we need to think about what happens when a game ends. In Pong, we know a game has ended if the reward is +1 (we won!) or -1 (we lost unfortunately). Otherwise, we expect the reward at a timestep to be zero -- the players (or agents) are just playing eachother. So, after a game ends, we will need to reset the reward to zero when a game ends. This will result in a modified reward function. ###Code ### Pong reward function ### # Compute normalized, discounted rewards for Pong (i.e., return) # Arguments: # rewards: reward at timesteps in episode # gamma: discounting factor. Note increase to 0.99 -- rate of depreciation will be slower. # Returns: # normalized discounted reward def discount_rewards(rewards, gamma=0.99): discounted_rewards = np.zeros_like(rewards) R = 0 for t in reversed(range(0, len(rewards))): # NEW: Reset the sum if the reward is not 0 (the game has ended!) if rewards[t] != 0: R = 0 # update the total discounted reward as before R = R * gamma + rewards[t] discounted_rewards[t] = R return normalize(discounted_rewards) ###Output _____no_output_____ ###Markdown Additionally, we have to consider the nature of the observations in the Pong environment, and how they will be fed into our network. Our observations in this case are images. Before we input an image into our network, we'll do a bit of pre-processing to crop and scale, clean up the background colors to a single color, and set the important game elements to a single color. Let's use this function to visualize what a single observation might look like before and after pre-processing. ###Code observation = env.reset() for i in range(30): action = np.random.choice(n_actions) observation, _,_,_ = env.step(action) observation_pp = mdl.lab3.preprocess_pong(observation) f = plt.figure(figsize=(10,3)) ax = f.add_subplot(121) ax2 = f.add_subplot(122) ax.imshow(observation); ax.grid(False); ax2.imshow(np.squeeze(observation_pp)); ax2.grid(False); plt.title('Preprocessed Observation'); ###Output _____no_output_____ ###Markdown Let's also consider the fact that, unlike CartPole, the Pong environment has an additional element of uncertainty -- regardless of what action the agent takes, we don't know how the opponent will play. That is, the environment is changing over time, based on *both* the actions we take and the actions of the opponent, which result in motion of the ball and motion of the paddles. Therefore, to capture the dynamics, we also consider how the environment changes by looking at the difference between a previous observation (image frame) and the current observation (image frame). We've implemented a helper function, `pong_change`, that pre-processes two frames, calculates the change between the two, and then re-normalizes the values. Let's inspect this to visualize how the environment can change: ###Code next_observation, _,_,_ = env.step(np.random.choice(n_actions)) diff = mdl.lab3.pong_change(observation, next_observation) f, ax = plt.subplots(1, 3, figsize=(15,15)) for a in ax: a.grid(False) a.axis("off") ax[0].imshow(observation); ax[0].set_title('Previous Frame'); ax[1].imshow(next_observation); ax[1].set_title('Current Frame'); ax[2].imshow(np.squeeze(diff)); ax[2].set_title('Difference (Model Input)'); ###Output _____no_output_____ ###Markdown What do you notice? How and why might these pre-processing changes be important for training our RL algorithm? How and why might consideration of the difference between frames be important for training and performance? Rollout function We're now set up to define our key action algorithm for the game of Pong, which will ultimately be used to train our Pong agent. This function can be thought of as a "rollout", where the agent will 1) make an observation of the environment, 2) select an action based on its state in the environment, 3) execute a policy based on that action, resulting in some reward and a change to the environment, and 4) finally add memory of that action-reward to its `Memory` buffer. We will define this algorithm in the `collect_rollout` function below, and use it soon within a training block. Earlier you visually inspected the raw environment frames, the pre-processed frames, and the difference between previous and current frames. As you may have gathered, in a dynamic game like Pong, it can actually be helpful to consider the difference between two consecutive observations. This gives us information about the movement between frames -- how the game is changing. We will do this using the `pong_change` function we explored above (which also pre-processes frames for us). We will use differences between frames as the input on which actions will be selected. These observation changes will be forward propagated through our Pong agent, the CNN network model, which will then predict the next action to take based on this observation. The raw reward will be computed. The observation, action, and reward will be recorded into memory. This will loop until a particular game ends -- the rollout is completed. For now, we will define `collect_rollout` such that a batch of observations (i.e., from a batch of agent-environment worlds) can be processed serially (i.e., one at a time, in sequence). We will later utilize a parallelized version of this function that will parallelize batch processing to help speed up training! Let's get to it. ###Code ### Rollout function ### # Key steps for agent's operation in the environment, until completion of a rollout. # An observation is drawn; the agent (controlled by model) selects an action; # the agent executes that action in the environment and collects rewards; # information is added to memory. # This is repeated until the completion of the rollout -- the Pong game ends. # Processes multiple batches serially. # # Arguments: # batch_size: number of batches, to be processed serially # env: environment # model: Pong agent model # choose_action: choose_action function # Returns: # memories: array of Memory buffers, of length batch_size, corresponding to the # episode executions from the rollout def collect_rollout(batch_size, env, model, choose_action): # Holder array for the Memory buffers memories = [] # Process batches serially by iterating through them for b in range(batch_size): # Instantiate Memory buffer, restart the environment memory = Memory() next_observation = env.reset() previous_frame = next_observation done = False # tracks whether the episode (game) is done or not while not done: current_frame = next_observation '''TODO: determine the observation change. Hint: this is the difference between the past two frames''' frame_diff = mdl.lab3.pong_change(previous_frame, current_frame) # TODO # frame_diff = # TODO '''TODO: choose an action for the pong model, using the frame difference, and evaluate''' action = choose_action(model, frame_diff) # TODO # action = # TODO # Take the chosen action next_observation, reward, done, info = env.step(action) '''TODO: save the observed frame difference, the action that was taken, and the resulting reward!''' memory.add_to_memory(frame_diff, action, reward) # TODO previous_frame = current_frame # Add the memory from this batch to the array of all Memory buffers memories.append(memory) return memories ###Output _____no_output_____ ###Markdown To get a sense of what is encapsulated by `collect_rollout`, we will instantiate an *untrained* Pong model, run a single rollout using this model, save the memory, and play back the observations the model sees. Note that these will be frame *differences*. ###Code ### Rollout with untrained Pong model ### # Model test_model = create_pong_model() # Rollout with single batch single_batch_size = 1 memories = collect_rollout(single_batch_size, env, test_model, choose_action) rollout_video = mdl.lab3.save_video_of_memory(memories[0], "Pong-Random-Agent.mp4") # Play back video of memories mdl.lab3.play_video(rollout_video) ###Output _____no_output_____ ###Markdown 3.9 Training PongWe're now all set up to start training our RL algorithm and agent for the game of Pong! We've already defined the following:1. Loss function, `compute_loss`, and backpropagation step, `train_step`. Our loss function employs policy gradient learning. `train_step` executes a single forward pass and backpropagation gradient update.2. RL agent algorithm: `collect_rollout`. Serially processes batches of episodes, executing actions in the environment, collecting rewards, and saving these to `Memory`.We will use these functions to train the Pong agent.In the training block, episodes will be executed by agents in the environment via the RL algorithm defined in the `collect_rollout` function. Since RL agents start off with literally zero knowledge of their environment, it can often take a long time to train them and achieve stable behavior. To alleviate this, we have implemented a parallelized version of the RL algorithm, `parallelized_collect_rollout`, which you can use to accelerate training across multiple parallel batches.For training, information in the `Memory` buffer from all these batches will be aggregated (after all episodes, i.e., games, end). Discounted rewards will be computed, and this information will be used to execute a training step. Memory will be cleared, and we will do it all over again!Let's run the code block to train our Pong agent. Note that, even with parallelization, completing training and getting stable behavior will take quite a bit of time (estimated at least a couple of hours). We will again visualize the evolution of the total reward as a function of training to get a sense of how the agent is learning. ###Code ### Hyperparameters and setup for training ### # Rerun this cell if you want to re-initialize the training process # (i.e., create new model, reset loss, etc) # Hyperparameters learning_rate = 1e-3 MAX_ITERS = 1000 # increase the maximum to train longer batch_size = 5 # number of batches to run # Model, optimizer pong_model = create_pong_model() optimizer = tf.keras.optimizers.Adam(learning_rate) iteration = 0 # counter for training steps # Plotting smoothed_reward = mdl.util.LossHistory(smoothing_factor=0.9) smoothed_reward.append(0) # start the reward at zero for baseline comparison plotter = mdl.util.PeriodicPlotter(sec=15, xlabel='Iterations', ylabel='Win Percentage (%)') # Batches and environment # To parallelize batches, we need to make multiple copies of the environment. envs = [create_pong_env() for _ in range(batch_size)] # For parallelization ### Training Pong ### # You can run this cell and stop it anytime in the middle of training to save # a progress video (see next codeblock). To continue training, simply run this # cell again, your model will pick up right where it left off. To reset training, # you need to run the cell above. games_to_win_episode = 21 # this is set by OpenAI gym and cannot be changed. # Main training loop while iteration < MAX_ITERS: plotter.plot(smoothed_reward.get()) tic = time.time() # RL agent algorithm. By default, uses serial batch processing. # memories = collect_rollout(batch_size, env, pong_model, choose_action) # Parallelized version. Uncomment line below (and comment out line above) to parallelize memories = mdl.lab3.parallelized_collect_rollout(batch_size, envs, pong_model, choose_action) print(time.time()-tic) # Aggregate memories from multiple batches batch_memory = aggregate_memories(memories) # Track performance based on win percentage (calculated from rewards) total_wins = sum(np.array(batch_memory.rewards) == 1) total_games = sum(np.abs(np.array(batch_memory.rewards))) win_rate = total_wins / total_games smoothed_reward.append(100 * win_rate) # Training! train_step( pong_model, optimizer, observations = np.stack(batch_memory.observations, 0), actions = np.array(batch_memory.actions), discounted_rewards = discount_rewards(batch_memory.rewards) ) # Save a video of progress -- this can be played back later if iteration % 100 == 0: mdl.lab3.save_video_of_model(pong_model, "Pong-v0", suffix="_"+str(iteration)) iteration += 1 # Mark next episode ###Output _____no_output_____ ###Markdown Finally we can put our trained agent to the test! It will play in a newly instantiated Pong environment against the "computer", a base AI system for Pong. Your agent plays as the green paddle. Let's watch the match instant replay! ###Code latest_pong = mdl.lab3.save_video_of_model( pong_model, "Pong-v0", suffix="_latest") mdl.lab3.play_video(latest_pong, width=400) ###Output _____no_output_____ ###Markdown Visit MIT Deep Learning Run in Google Colab View Source on GitHub Copyright Information ###Code # Copyright 2022 MIT 6.S191 Introduction to Deep Learning. All Rights Reserved. # # Licensed under the MIT License. You may not use this file except in compliance # with the License. Use and/or modification of this code outside of 6.S191 must # reference: # # © MIT 6.S191: Introduction to Deep Learning # http://introtodeeplearning.com # ###Output _____no_output_____ ###Markdown Laboratory 3: Reinforcement LearningReinforcement learning (RL) is a subset of machine learning which poses learning problems as interactions between agents and environments. It often assumes agents have no prior knowledge of a world, so they must learn to navigate environments by optimizing a reward function. Within an environment, an agent can take certain actions and receive feedback, in the form of positive or negative rewards, with respect to their decision. As such, an agent's feedback loop is somewhat akin to the idea of "trial and error", or the manner in which a child might learn to distinguish between "good" and "bad" actions.In practical terms, our RL agent will interact with the environment by taking an action at each timestep, receiving a corresponding reward, and updating its state according to what it has "learned". ![alt text](https://www.kdnuggets.com/images/reinforcement-learning-fig1-700.jpg)While the ultimate goal of reinforcement learning is to teach agents to act in the real, physical world, simulated environments -- like games and simulation engines -- provide a convenient proving ground for developing RL algorithms and agents.In previous labs, we have explored both supervised (with LSTMs, CNNs) and unsupervised / semi-supervised (with VAEs) learning tasks. Reinforcement learning is fundamentally different, in that we are training a deep learning algorithm to govern the actions of our RL agent, that is trying, within its environment, to find the optimal way to achieve a goal. The goal of training an RL agent is to determine the best next step to take to earn the greatest final payoff or return. In this lab, we focus on building a reinforcement learning algorithm to master two different environments with varying complexity. 1. **Cartpole**: Balance a pole, protruding from a cart, in an upright position by only moving the base left or right. Environment with a low-dimensional observation space.2. [**Driving in VISTA**](https://www.mit.edu/~amini/pubs/pdf/learning-in-simulation-vista.pdf): Learn a driving control policy for an autonomous vehicle, end-to-end from raw pixel inputs and entirely in the data-driven simulation environment of VISTA. Environment with a high-dimensional observation space -- learning directly from raw pixels.Let's get started! First we'll import TensorFlow, the course package, and some dependencies. ###Code # Import Tensorflow 2.0 %tensorflow_version 2.x import tensorflow as tf gpus = tf.config.experimental.list_physical_devices('GPU') if gpus: for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) # Download and import the MIT 6.S191 package !printf "Installing MIT deep learning package... " !pip install --upgrade git+https://github.com/aamini/introtodeeplearning.git &> /dev/null !echo "Done" #Install some dependencies for visualizing the agents !apt-get install -y xvfb python-opengl x11-utils &> /dev/null !pip install gym pyvirtualdisplay scikit-video ffio pyrender &> /dev/null !pip install tensorflow_probability==0.12.0 &> /dev/null import os os.environ['PYOPENGL_PLATFORM'] = 'egl' import numpy as np import matplotlib, cv2 import matplotlib.pyplot as plt import base64, io, os, time, gym import IPython, functools import time from tqdm import tqdm import tensorflow_probability as tfp import mitdeeplearning as mdl ###Output _____no_output_____ ###Markdown Before we dive in, let's take a step back and outline our approach, which is generally applicable to reinforcement learning problems in general:1. **Initialize our environment and our agent**: here we will describe the different observations and actions the agent can make in the environemnt.2. **Define our agent's memory**: this will enable the agent to remember its past actions, observations, and rewards.3. **Define a reward function**: describes the reward associated with an action or sequence of actions.4. **Define the learning algorithm**: this will be used to reinforce the agent's good behaviors and discourage bad behaviors. Part 1: Cartpole 3.1 Define the Cartpole environment and agent Environment In order to model the environment for the Cartpole task, we'll be using a toolkit developed by OpenAI called [OpenAI Gym](https://gym.openai.com/). It provides several pre-defined environments for training and testing reinforcement learning agents, including those for classic physics control tasks, Atari video games, and robotic simulations. To access the Cartpole environment, we can use `env = gym.make("CartPole-v0")`, which we gained access to when we imported the `gym` package. We can instantiate different [environments](https://gym.openai.com/envs/classic_control) by passing the enivronment name to the `make` function.One issue we might experience when developing RL algorithms is that many aspects of the learning process are inherently random: initializing game states, changes in the environment, and the agent's actions. As such, it can be helpful to set a initial "seed" for the environment to ensure some level of reproducibility. Much like you might use `numpy.random.seed`, we can call the comparable function in gym, `seed`, with our defined environment to ensure the environment's random variables are initialized the same each time. ###Code ### Instantiate the Cartpole environment ### env = gym.make("CartPole-v1") env.seed(1) ###Output _____no_output_____ ###Markdown In Cartpole, a pole is attached by an un-actuated joint to a cart, which moves along a frictionless track. The pole starts upright, and the goal is to prevent it from falling over. The system is controlled by applying a force of +1 or -1 to the cart. A reward of +1 is provided for every timestep that the pole remains upright. The episode ends when the pole is more than 15 degrees from vertical, or the cart moves more than 2.4 units from the center of the track. A visual summary of the cartpole environment is depicted below:Given this setup for the environment and the objective of the game, we can think about: 1) what observations help define the environment's state; 2) what actions the agent can take. First, let's consider the observation space. In this Cartpole environment our observations are:1. Cart position2. Cart velocity3. Pole angle4. Pole rotation rateWe can confirm the size of the space by querying the environment's observation space: ###Code n_observations = env.observation_space print("Environment has observation space =", n_observations) ###Output _____no_output_____ ###Markdown Second, we consider the action space. At every time step, the agent can move either right or left. Again we can confirm the size of the action space by querying the environment: ###Code n_actions = env.action_space.n print("Number of possible actions that the agent can choose from =", n_actions) ###Output _____no_output_____ ###Markdown Cartpole agentNow that we have instantiated the environment and understood the dimensionality of the observation and action spaces, we are ready to define our agent. In deep reinforcement learning, a deep neural network defines the agent. This network will take as input an observation of the environment and output the probability of taking each of the possible actions. Since Cartpole is defined by a low-dimensional observation space, a simple feed-forward neural network should work well for our agent. We will define this using the `Sequential` API. ###Code ### Define the Cartpole agent ### # Defines a feed-forward neural network def create_cartpole_model(): model = tf.keras.models.Sequential([ # First Dense layer tf.keras.layers.Dense(units=32, activation='relu'), # TODO: Define the last Dense layer, which will provide the network's output. # Think about the space the agent needs to act in! tf.keras.layers.Dense(units=n_actions, activation=None) # TODO # ['''TODO''' Dense layer to output action probabilities] ]) return model cartpole_model = create_cartpole_model() ###Output _____no_output_____ ###Markdown Now that we have defined the core network architecture, we will define an *action function* that executes a forward pass through the network, given a set of observations, and samples from the output. This sampling from the output probabilities will be used to select the next action for the agent. We will also add support so that the `choose_action` function can handle either a single observation or a batch of observations.**Critically, this action function is totally general -- we will use this function for learning control algorithms for Cartpole, but it is applicable to other RL tasks, as well!** ###Code ### Define the agent's action function ### # Function that takes observations as input, executes a forward pass through model, # and outputs a sampled action. # Arguments: # model: the network that defines our agent # observation: observation(s) which is/are fed as input to the model # single: flag as to whether we are handling a single observation or batch of # observations, provided as an np.array # Returns: # action: choice of agent action def choose_action(model, observation, single=True): # add batch dimension to the observation if only a single example was provided observation = np.expand_dims(observation, axis=0) if single else observation '''TODO: feed the observations through the model to predict the log probabilities of each possible action.''' logits = model.predict(observation) # TODO # logits = model.predict('''TODO''') '''TODO: Choose an action from the categorical distribution defined by the log probabilities of each possible action.''' action = tf.random.categorical(logits, num_samples=1) # action = ['''TODO'''] action = action.numpy().flatten() return action[0] if single else action ###Output _____no_output_____ ###Markdown 3.2 Define the agent's memoryNow that we have instantiated the environment and defined the agent network architecture and action function, we are ready to move on to the next step in our RL workflow:1. **Initialize our environment and our agent**: here we will describe the different observations and actions the agent can make in the environemnt.2. **Define our agent's memory**: this will enable the agent to remember its past actions, observations, and rewards.3. **Define the learning algorithm**: this will be used to reinforce the agent's good behaviors and discourage bad behaviors.In reinforcement learning, training occurs alongside the agent's acting in the environment; an *episode* refers to a sequence of actions that ends in some terminal state, such as the pole falling down or the cart crashing. The agent will need to remember all of its observations and actions, such that once an episode ends, it can learn to "reinforce" the good actions and punish the undesirable actions via training. Our first step is to define a simple `Memory` buffer that contains the agent's observations, actions, and received rewards from a given episode. We will also add support to combine a list of `Memory` objects into a single `Memory`. This will be very useful for batching, which will help you accelerate training later on in the lab.**Once again, note the modularity of this memory buffer -- it can and will be applied to other RL tasks as well!** ###Code ### Agent Memory ### class Memory: def __init__(self): self.clear() # Resets/restarts the memory buffer def clear(self): self.observations = [] self.actions = [] self.rewards = [] # Add observations, actions, rewards to memory def add_to_memory(self, new_observation, new_action, new_reward): self.observations.append(new_observation) '''TODO: update the list of actions with new action''' self.actions.append(new_action) # TODO # ['''TODO'''] '''TODO: update the list of rewards with new reward''' self.rewards.append(new_reward) # TODO # ['''TODO'''] def __len__(self): return len(self.actions) # Instantiate a single Memory buffer memory = Memory() ###Output _____no_output_____ ###Markdown 3.3 Reward functionWe're almost ready to begin the learning algorithm for our agent! The next step is to compute the rewards of our agent as it acts in the environment. Since we (and the agent) is uncertain about if and when the game or task will end (i.e., when the pole will fall), it is useful to emphasize getting rewards **now** rather than later in the future -- this is the idea of discounting. This is a similar concept to discounting money in the case of interest. Recall from lecture, we use reward discount to give more preference at getting rewards now rather than later in the future. The idea of discounting rewards is similar to discounting money in the case of interest.To compute the expected cumulative reward, known as the **return**, at a given timestep in a learning episode, we sum the discounted rewards expected at that time step $t$, within a learning episode, and projecting into the future. We define the return (cumulative reward) at a time step $t$, $R_{t}$ as:>$R_{t}=\sum_{k=0}^\infty\gamma^kr_{t+k}$where $0 < \gamma < 1$ is the discount factor and $r_{t}$ is the reward at time step $t$, and the index $k$ increments projection into the future within a single learning episode. Intuitively, you can think of this function as depreciating any rewards received at later time steps, which will force the agent prioritize getting rewards now. Since we can't extend episodes to infinity, in practice the computation will be limited to the number of timesteps in an episode -- after that the reward is assumed to be zero.Take note of the form of this sum -- we'll have to be clever about how we implement this function. Specifically, we'll need to initialize an array of zeros, with length of the number of time steps, and fill it with the real discounted reward values as we loop through the rewards from the episode, which will have been saved in the agents memory. What we ultimately care about is which actions are better relative to other actions taken in that episode -- so, we'll normalize our computed rewards, using the mean and standard deviation of the rewards across the learning episode.We will use this definition of the reward function in both parts of the lab so make sure you have it executed! ###Code ### Reward function ### # Helper function that normalizes an np.array x def normalize(x): x -= np.mean(x) x /= np.std(x) return x.astype(np.float32) # Compute normalized, discounted, cumulative rewards (i.e., return) # Arguments: # rewards: reward at timesteps in episode # gamma: discounting factor # Returns: # normalized discounted reward def discount_rewards(rewards, gamma=0.95): discounted_rewards = np.zeros_like(rewards) R = 0 for t in reversed(range(0, len(rewards))): # update the total discounted reward R = R * gamma + rewards[t] discounted_rewards[t] = R return normalize(discounted_rewards) ###Output _____no_output_____ ###Markdown 3.4 Learning algorithmNow we can start to define the learing algorithm which will be used to reinforce good behaviors of the agent and discourage bad behaviours. In this lab, we will focus on *policy gradient* methods which aim to **maximize** the likelihood of actions that result in large rewards. Equivalently, this means that we want to **minimize** the negative likelihood of these same actions. We achieve this by simply **scaling** the probabilities by their associated rewards -- effectively amplifying the likelihood of actions that resujlt in large rewards.Since the log function is monotonically increasing, this means that minimizing **negative likelihood** is equivalent to minimizing **negative log-likelihood**. Recall that we can easily compute the negative log-likelihood of a discrete action by evaluting its [softmax cross entropy](https://www.tensorflow.org/api_docs/python/tf/nn/sparse_softmax_cross_entropy_with_logits). Like in supervised learning, we can use stochastic gradient descent methods to achieve the desired minimization. Let's begin by defining the loss function. ###Code ### Loss function ### # Arguments: # logits: network's predictions for actions to take # actions: the actions the agent took in an episode # rewards: the rewards the agent received in an episode # Returns: # loss def compute_loss(logits, actions, rewards): '''TODO: complete the function call to compute the negative log probabilities''' neg_logprob = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=logits, labels=actions) # TODO # neg_logprob = tf.nn.sparse_softmax_cross_entropy_with_logits( # logits='''TODO''', labels='''TODO''') '''TODO: scale the negative log probability by the rewards''' loss = tf.reduce_mean( neg_logprob * rewards ) # TODO # loss = tf.reduce_mean('''TODO''') return loss ###Output _____no_output_____ ###Markdown Now let's use the loss function to define a training step of our learning algorithm. This is a very generalizable definition which we will use ###Code ### Training step (forward and backpropagation) ### def train_step(model, loss_function, optimizer, observations, actions, discounted_rewards, custom_fwd_fn=None): with tf.GradientTape() as tape: # Forward propagate through the agent network if custom_fwd_fn is not None: prediction = custom_fwd_fn(observations) else: prediction = model(observations) '''TODO: call the compute_loss function to compute the loss''' loss = loss_function(prediction, actions, discounted_rewards) # TODO # loss = loss_function('''TODO''', '''TODO''', '''TODO''') '''TODO: run backpropagation to minimize the loss using the tape.gradient method. Unlike supervised learning, RL is *extremely* noisy, so you will benefit from additionally clipping your gradients to avoid falling into dangerous local minima. After computing your gradients try also clipping by a global normalizer. Try different clipping values, usually clipping between 0.5 and 5 provides reasonable results. ''' grads = tape.gradient(loss, model.trainable_variables) # TODO # grads = tape.gradient('''TODO''', '''TODO''') grads, _ = tf.clip_by_global_norm(grads, 2) # grads, _ = tf.clip_by_global_norm(grads, '''TODO''') optimizer.apply_gradients(zip(grads, model.trainable_variables)) ###Output _____no_output_____ ###Markdown 3.5 Run cartpole!Having had no prior knowledge of the environment, the agent will begin to learn how to balance the pole on the cart based only on the feedback received from the environment! Having defined how our agent can move, how it takes in new observations, and how it updates its state, we'll see how it gradually learns a policy of actions to optimize balancing the pole as long as possible. To do this, we'll track how the rewards evolve as a function of training -- how should the rewards change as training progresses? ###Code ## Training parameters ## ## Re-run this cell to restart training from scratch ## # TODO: Learning rate and optimizer learning_rate = 1e-3 # learning_rate = '''TODO''' optimizer = tf.keras.optimizers.Adam(learning_rate) # optimizer = '''TODO''' # instantiate cartpole agent cartpole_model = create_cartpole_model() # to track our progress smoothed_reward = mdl.util.LossHistory(smoothing_factor=0.95) plotter = mdl.util.PeriodicPlotter(sec=2, xlabel='Iterations', ylabel='Rewards') ## Cartpole training! ## ## Note: stoping and restarting this cell will pick up training where you # left off. To restart training you need to rerun the cell above as # well (to re-initialize the model and optimizer) if hasattr(tqdm, '_instances'): tqdm._instances.clear() # clear if it exists for i_episode in range(500): plotter.plot(smoothed_reward.get()) # Restart the environment observation = env.reset() memory.clear() while True: # using our observation, choose an action and take it in the environment action = choose_action(cartpole_model, observation) next_observation, reward, done, info = env.step(action) # add to memory memory.add_to_memory(observation, action, reward) # is the episode over? did you crash or do so well that you're done? if done: # determine total reward and keep a record of this total_reward = sum(memory.rewards) smoothed_reward.append(total_reward) # initiate training - remember we don't know anything about how the # agent is doing until it has crashed! g = train_step(cartpole_model, compute_loss, optimizer, observations=np.vstack(memory.observations), actions=np.array(memory.actions), discounted_rewards = discount_rewards(memory.rewards)) # reset the memory memory.clear() break # update our observatons observation = next_observation ###Output _____no_output_____ ###Markdown To get a sense of how our agent did, we can save a video of the trained model working on balancing the pole. Realize that this is a brand new environment that the agent has not seen before!Let's display the saved video to watch how our agent did! ###Code matplotlib.use('Agg') saved_cartpole = mdl.lab3.save_video_of_model(cartpole_model, "CartPole-v1") mdl.lab3.play_video(saved_cartpole) ###Output _____no_output_____ ###Markdown How does the agent perform? Could you train it for shorter amounts of time and still perform well? Do you think that training longer would help even more? Part 2: Training Autonomous Driving Policies in VISTAAutonomous control has traditionally be dominated by algorithms that explicitly decompose individual aspects of the control pipeline. For example, in autonomous driving, traditional methods work by first detecting road and lane boundaries, and then using path planning and rule-based methods to derive a control policy. Deep learning offers something very different -- the possibility of optimizing all these steps simultaneously, learning control end-to-end directly from raw sensory inputs.**You will explore the power of deep learning to learn autonomous control policies that are trained *end-to-end, directly from raw sensory data, and entirely within a simulated world*.**We will use the data-driven simulation engine [VISTA](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8957584&tag=1), which uses techniques in computer vision to synthesize new photorealistic trajectories and driving viewpoints, that are still consistent with the world's appearance and fall within the envelope of a real driving scene. This is a powerful approach -- we can synthesize data that is photorealistic, grounded in the real world, and then use this data for training and testing autonomous vehicle control policies within this simulator.In this part of the lab, you will use reinforcement lerning to build a self-driving agent with a neural network-based controller trained on RGB camera data. We will train the self-driving agent for the task of lane following. Beyond this data modality and control task, VISTA also supports [different data modalities](https://arxiv.org/pdf/2111.12083.pdf) (such as LiDAR data) and [different learning tasks](https://arxiv.org/pdf/2111.12137.pdf) (such as multi-car interactions).You will put your agent to the test in the VISTA environment, and potentially, on board a full-scale autonomous vehicle! Specifically, as part of the MIT lab competitions, high-performing agents -- evaluated based on the maximum distance they can travel without crashing -- will have the opportunity to be put to the ***real*** test onboard a full-scale autonomous vehicle!!! We start by installing dependencies. This includes installing the VISTA package itself. ###Code !pip install --upgrade git+https://github.com/vista-simulator/vista-6s191.git import vista from vista.utils import logging logging.setLevel(logging.ERROR) ###Output _____no_output_____ ###Markdown VISTA provides some documentation which will be very helpful to completing this lab. You can always use the `?vista` command to access the package documentation. ###Code ### Access documentation for VISTA ### Run ?vista.<[name of module or function]> ?vista.Display ###Output _____no_output_____ ###Markdown 3.6 Create an environment in VISTAEnvironments in VISTA are based on and built from human-collected driving *traces*. A trace is the data from a single driving run. In this case we'll be working with RGB camera data, from the viewpoint of the driver looking out at the road: the camera collects this data as the car drives around!We will start by accessing a trace. We use that trace to instantiate an environment within VISTA. This is our `World` and defines the environment we will use for reinforcement learning. The trace itself helps to define a space for the environment; with VISTA, we can use the trace to generate new photorealistic viewpoints anywhere within that space. This provides valuable new training data as well as a robust testing environment.The simulated environment of VISTA will serve as our training ground and testbed for reinforcement learning. We also define an `Agent` -- a car -- that will actually move around in the environmnet, and make and carry out *actions* in this world. Because this is an entirely simulated environment, our car agent will also be simulated! ###Code # Download and extract the data for vista (auto-skip if already downloaded) !wget -nc -q --show-progress https://www.dropbox.com/s/62pao4mipyzk3xu/vista_traces.zip print("Unzipping data...") !unzip -o -q vista_traces.zip print("Done downloading and unzipping data!") trace_root = "./vista_traces" trace_path = [ "20210726-154641_lexus_devens_center", "20210726-155941_lexus_devens_center_reverse", "20210726-184624_lexus_devens_center", "20210726-184956_lexus_devens_center_reverse", ] trace_path = [os.path.join(trace_root, p) for p in trace_path] # Create a virtual world with VISTA, the world is defined by a series of data traces world = vista.World(trace_path, trace_config={'road_width': 4}) # Create a car in our virtual world. The car will be able to step and take different # control actions. As the car moves, its sensors will simulate any changes it environment car = world.spawn_agent( config={ 'length': 5., 'width': 2., 'wheel_base': 2.78, 'steering_ratio': 14.7, 'lookahead_road': True }) # Create a camera on the car for synthesizing the sensor data that we can use to train with! camera = car.spawn_camera(config={'size': (200, 320)}) # Define a rendering display so we can visualize the simulated car camera stream and also # get see its physical location with respect to the road in its environment. display = vista.Display(world, display_config={"gui_scale": 2, "vis_full_frame": False}) # Define a simple helper function that allows us to reset VISTA and the rendering display def vista_reset(): world.reset() display.reset() vista_reset() ###Output _____no_output_____ ###Markdown If successful, you should see a blank black screen at this point. Your rendering display has been initialized. 3.7 Our virtual agent: the carOur goal is to learn a control policy for our agent, our (hopefully) autonomous vehicle, end-to-end directly from RGB camera sensory input. As in Cartpole, we need to define how our virtual agent will interact with its environment. Define agent's action functionsIn the case of driving, the car agent can act -- taking a step in the VISTA environment -- according to a given control command. This amounts to moving with a desired speed and a desired *curvature*, which reflects the car's turn radius. Curvature has units $\frac{1}{meter}$. So, if a car is traversing a circle of radius $r$ meters, then it is turning with a curvature $\frac{1}{r}$. The curvature is therefore correlated with the car's steering wheel angle, which actually controls its turn radius. Let's define the car agent's step function to capture the action of moving with a desired speed and desired curvature. ###Code # First we define a step function, to allow our virtual agent to step # with a given control command through the environment # agent can act with a desired curvature (turning radius, like steering angle) # and desired speed. if either is not provided then this step function will # use whatever the human executed at that time in the real data. def vista_step(curvature=None, speed=None): # Arguments: # curvature: curvature to step with # speed: speed to step with if curvature is None: curvature = car.trace.f_curvature(car.timestamp) if speed is None: speed = car.trace.f_speed(car.timestamp) car.step_dynamics(action=np.array([curvature, speed]), dt=1/15.) car.step_sensors() ###Output _____no_output_____ ###Markdown Inspect driving trajectories in VISTARecall that our VISTA environment is based off an initial human-collected driving trace. Also, we defined the agent's step function to defer to what the human executed if it is not provided with a desired speed and curvature with which to move.Thus, we can further inspect our environment by using the step function for the driving agent to move through the environment by following the human path. The stepping and iteration will take about 1 iteration per second. We will then observe the data that comes out to see the agent's traversal of the environment. ###Code import shutil, os, subprocess, cv2 # Create a simple helper class that will assist us in storing videos of the render class VideoStream(): def __init__(self): self.tmp = "./tmp" if os.path.exists(self.tmp) and os.path.isdir(self.tmp): shutil.rmtree(self.tmp) os.mkdir(self.tmp) def write(self, image, index): cv2.imwrite(os.path.join(self.tmp, f"{index:04}.png"), image) def save(self, fname): cmd = f"/usr/bin/ffmpeg -f image2 -i {self.tmp}/%04d.png -crf 0 -y {fname}" subprocess.call(cmd, shell=True) ## Render and inspect a human trace ## vista_reset() stream = VideoStream() for i in tqdm(range(100)): vista_step() # Render and save the display vis_img = display.render() stream.write(vis_img[:, :, ::-1], index=i) if car.done: break print("Saving trajectory of human following...") stream.save("human_follow.mp4") mdl.lab3.play_video("human_follow.mp4") ###Output _____no_output_____ ###Markdown Check out the simulated VISTA environment. What do you notice about the environment, the agent, and the setup of the simulation engine? How could these aspects useful for training models? Define terminal states: crashing! (oh no)Recall from Cartpole, our training episodes ended when the pole toppled, i.e., the agent crashed and failed. Similarly for training vehicle control policies in VISTA, we have to define what a ***crash*** means. We will define a crash as any time the car moves out of its lane or exceeds its maximum rotation. This will define the end of a training episode. ###Code ## Define terminal states and crashing conditions ## def check_out_of_lane(car): distance_from_center = np.abs(car.relative_state.x) road_width = car.trace.road_width half_road_width = road_width / 2 return distance_from_center > half_road_width def check_exceed_max_rot(car): maximal_rotation = np.pi / 10. current_rotation = np.abs(car.relative_state.yaw) return current_rotation > maximal_rotation def check_crash(car): return check_out_of_lane(car) or check_exceed_max_rot(car) or car.done ###Output _____no_output_____ ###Markdown Quick check: acting with a random control policyAt this point, we have (1) an environment; (2) an agent, with a step function. Before we start learning a control policy for our vehicle agent, we start by testing out the behavior of the agent in the virtual world by providing it with a completely random control policy. Naturally we expect that the behavior will not be very robust! Let's take a look. ###Code ## Behavior with random control policy ## i = 0 num_crashes = 5 stream = VideoStream() for _ in range(num_crashes): vista_reset() while not check_crash(car): # Sample a random curvature (between +/- 1/3), keep speed constant curvature = np.random.uniform(-1/3, 1/3) # Step the simulated car with the same action vista_step(curvature=curvature) # Render and save the display vis_img = display.render() stream.write(vis_img[:, :, ::-1], index=i) i += 1 print(f"Car crashed on step {i}") for _ in range(5): stream.write(vis_img[:, :, ::-1], index=i) i += 1 print("Saving trajectory with random policy...") stream.save("random_policy.mp4") mdl.lab3.play_video("random_policy.mp4") ###Output _____no_output_____ ###Markdown 3.8 Preparing to learn a control policy: data preprocessingSo, hopefully you saw that the random control policy was, indeed, not very robust. Yikes. Our overall goal in this lab is to build a self-driving agent using a neural network controller trained entirely in the simulator VISTA. This means that the data used to train and test the self-driving agent will be supplied by VISTA. As a step towards this, we will do some data preprocessing to make it easier for the network to learn from these visual data.Previously we rendered the data with a display as a quick check that the environment was working properly. For training the agent, we will directly access the car's observations, extract Regions Of Interest (ROI) from those observations, crop them out, and use these crops as training data for our self-driving agent controller. Observe both the full observation and the extracted ROI. ###Code from google.colab.patches import cv2_imshow # Directly access the raw sensor observations of the simulated car vista_reset() full_obs = car.observations[camera.name] cv2_imshow(full_obs) ## ROIs ## # Crop a smaller region of interest (ROI). This is necessary because: # 1. The full observation will have distortions on the edge as the car deviates from the human # 2. A smaller image of the environment will be easier for our model to learn from region_of_interest = camera.camera_param.get_roi() i1, j1, i2, j2 = region_of_interest cropped_obs = full_obs[i1:i2, j1:j2] cv2_imshow(cropped_obs) ###Output _____no_output_____ ###Markdown We will group these steps into some helper functions that we can use during training: 1. `preprocess`: takes a full observation as input and returns a preprocessed version. This can include whatever preprocessing steps you would like! For example, ROI extraction, cropping, augmentations, and so on. You are welcome to add and modify this function as you seek to optimize your self-driving agent!2. `grab_and_preprocess`: grab the car's current observation (i.e., image view from its perspective), and then call the `preprocess` function on that observation. ###Code ## Data preprocessing functions ## def preprocess(full_obs): # Extract ROI i1, j1, i2, j2 = camera.camera_param.get_roi() obs = full_obs[i1:i2, j1:j2] # Rescale to [0, 1] obs = obs / 255. return obs def grab_and_preprocess_obs(car): full_obs = car.observations[camera.name] obs = preprocess(full_obs) return obs ###Output _____no_output_____ ###Markdown 3.9 Define the self-driving agent and learning algorithmAs before, we'll use a neural network to define our agent and output actions that it will take. Fixing the agent's driving speed, we will train this network to predict a curvature -- a continuous value -- that will relate to the car's turn radius. Specifically, define the model to output a prediction of a continuous distribution of curvature, defined by a mean $\mu$ and standard deviation $\sigma$. These parameters will define a Normal distribution over curvature.What network architecture do you think would be especially well suited to the task of end-to-end control learning from RGB images? Since our observations are in the form of RGB images, we'll start with a convolutional network. Note that you will be tasked with completing a template CNN architecture for the self-driving car agent -- but you should certainly experiment beyond this template to try to optimize performance! ###Code ### Define the self-driving agent ### # Note: we start with a template CNN architecture -- experiment away as you # try to optimize your agent! # Functionally define layers for convenience # All convolutional layers will have ReLu activation act = tf.keras.activations.swish Conv2D = functools.partial(tf.keras.layers.Conv2D, padding='valid', activation=act) Flatten = tf.keras.layers.Flatten Dense = tf.keras.layers.Dense # Defines a CNN for the self-driving agent def create_driving_model(): model = tf.keras.models.Sequential([ # Convolutional layers # First, 32 5x5 filters and 2x2 stride Conv2D(filters=32, kernel_size=5, strides=2), # TODO: define convolutional layers with 48 5x5 filters and 2x2 stride Conv2D(filters=48, kernel_size=5, strides=2), # TODO # Conv2D('''TODO'''), # TODO: define two convolutional layers with 64 3x3 filters and 2x2 stride Conv2D(filters=64, kernel_size=3, strides=2), # TODO Conv2D(filters=64, kernel_size=3, strides=2), # TODO # Conv2D('''TODO'''), Flatten(), # Fully connected layer and output Dense(units=128, activation=act), # TODO: define the output dimension of the last Dense layer. # Pay attention to the space the agent needs to act in. # Remember that this model is outputing a distribution of *continuous* # actions, which take a different shape than discrete actions. # How many outputs should there be to define a distribution?''' Dense(units=2, activation=None) # TODO # Dense('''TODO''') ]) return model driving_model = create_driving_model() ###Output _____no_output_____ ###Markdown Now we will define the learing algorithm which will be used to reinforce good behaviors of the agent and discourage bad behaviours. As with Cartpole, we will use a *policy gradient* method that aims to **maximize** the likelihood of actions that result in large rewards. However, there are some key differences. In Cartpole, the agent's action space was discrete: it could only move left or right. In driving, the agent's action space is continuous: the control network is outputting a curvature, which is a continuous variable. We will define a probability distribution, defined by a mean and variance, over this continuous action space to define the possible actions the self-driving agent can take.You will define three functions that reflect these changes and form the core of the the learning algorithm:1. `run_driving_model`: takes an input image, and outputs a prediction of a continuous distribution of curvature. This will take the form of a Normal distribuion and will be defined using TensorFlow probability's [`tfp.distributions.Normal`](https://www.tensorflow.org/probability/api_docs/python/tfp/distributions/Normal) function, so the model's prediction will include both a mean and variance. Operates on an instance `driving_model` defined above.2. `compute_driving_loss`: computes the loss for a prediction that is in the form of a continuous Normal distribution. Recall as in Cartpole, computing the loss involves multiplying the predicted log probabilities by the discounted rewards. Similar to `compute_loss` in Cartpole.The `train_step` function to use the loss function to execute a training step will be the same as we used in Cartpole! This will have to be executed abov in order for the driving agent to train properly. ###Code ## The self-driving learning algorithm ## # hyperparameters max_curvature = 1/8. max_std = 0.1 def run_driving_model(image): # Arguments: # image: an input image # Returns: # pred_dist: predicted distribution of control actions single_image_input = tf.rank(image) == 3 # missing 4th batch dimension if single_image_input: image = tf.expand_dims(image, axis=0) '''TODO: get the prediction of the model given the current observation.''' distribution = driving_model(image) # TODO # distribution = ''' TODO ''' mu, logsigma = tf.split(distribution, 2, axis=1) mu = max_curvature * tf.tanh(mu) # conversion sigma = max_std * tf.sigmoid(logsigma) + 0.005 # conversion '''TODO: define the predicted distribution of curvature, given the predicted mean mu and standard deviation sigma. Use a Normal distribution as defined in TF probability (hint: tfp.distributions)''' pred_dist = tfp.distributions.Normal(mu, sigma) # TODO # pred_dist = ''' TODO ''' return pred_dist def compute_driving_loss(dist, actions, rewards): # Arguments: # logits: network's predictions for actions to take # actions: the actions the agent took in an episode # rewards: the rewards the agent received in an episode # Returns: # loss '''TODO: complete the function call to compute the negative log probabilities of the agent's actions.''' neg_logprob = -1 * dist.log_prob(actions) # neg_logprob = '''TODO''' '''TODO: scale the negative log probability by the rewards.''' loss = tf.reduce_mean( neg_logprob * rewards ) # TODO # loss = tf.reduce_mean('''TODO''') return loss ###Output _____no_output_____ ###Markdown 3.10 Train the self-driving agentWe're now all set up to start training our RL algorithm and agent for autonomous driving!We begin be initializing an opitimizer, environment, a new driving agent, and `Memory` buffer. This will be in the first code block. To restart training completely, you will need to re-run this cell to re-initiailize everything.The second code block is the main training script. Here reinforcement learning episodes will be executed by agents in the VISTA environment. Since the self-driving agent starts out with literally zero knowledge of its environment, it can often take a long time to train and achieve stable behavior -- keep this in mind! For convenience, stopping and restarting the second cell will pick up training where you left off.The training block will execute a policy in the environment until the agent crashes. When the agent crashes, the (state, action, reward) triplet `(s,a,r)` of the agent at the end of the episode will be saved into the `Memory` buffer, and then provided as input to the policy gradient loss function. This information will be used to execute optimization within the training step. Memory will be cleared, and we will then do it all over again!Let's run the code block to train our self-driving agent. We will again visualize the evolution of the total reward as a function of training to get a sense of how the agent is learning. **You should reach a reward of at least 100 to get bare minimum stable behavior.** ###Code ## Training parameters and initialization ## ## Re-run this cell to restart training from scratch ## ''' TODO: Learning rate and optimizer ''' learning_rate = 5e-4 # learning_rate = '''TODO''' optimizer = tf.keras.optimizers.Adam(learning_rate) # optimizer = '''TODO''' # instantiate driving agent vista_reset() driving_model = create_driving_model() # NOTE: the variable driving_model will be used in run_driving_model execution # to track our progress smoothed_reward = mdl.util.LossHistory(smoothing_factor=0.9) plotter = mdl.util.PeriodicPlotter(sec=2, xlabel='Iterations', ylabel='Rewards') # instantiate Memory buffer memory = Memory() ## Driving training! Main training block. ## ## Note: stopping and restarting this cell will pick up training where you # left off. To restart training you need to rerun the cell above as # well (to re-initialize the model and optimizer) max_batch_size = 300 max_reward = float('-inf') # keep track of the maximum reward acheived during training if hasattr(tqdm, '_instances'): tqdm._instances.clear() # clear if it exists for i_episode in range(500): plotter.plot(smoothed_reward.get()) # Restart the environment vista_reset() memory.clear() observation = grab_and_preprocess_obs(car) while True: # TODO: using the car's current observation compute the desired # action (curvature) distribution by feeding it into our # driving model (use the function you already built to do this!) ''' curvature_dist = run_driving_model(observation) # curvature_dist = '''TODO''' # TODO: sample from the action *distribution* to decide how to step # the car in the environment. You may want to check the documentation # for tfp.distributions.Normal online. Remember that the sampled action # should be a single scalar value after this step. curvature_action = curvature_dist.sample()[0,0] # curvature_action = '''TODO''' # Step the simulated car with the same action vista_step(curvature_action) observation = grab_and_preprocess_obs(car) # TODO: Compute the reward for this iteration. You define # the reward function for this policy, start with something # simple - for example, give a reward of 1 if the car did not # crash and a reward of 0 if it did crash. reward = 1.0 if not check_crash(car) else 0.0 # reward = '''TODO''' # add to memory memory.add_to_memory(observation, curvature_action, reward) # is the episode over? did you crash or do so well that you're done? if reward == 0.0: # determine total reward and keep a record of this total_reward = sum(memory.rewards) smoothed_reward.append(total_reward) # execute training step - remember we don't know anything about how the # agent is doing until it has crashed! if the training step is too large # we need to sample a mini-batch for this step. batch_size = min(len(memory), max_batch_size) i = np.random.choice(len(memory), batch_size, replace=False) train_step(driving_model, compute_driving_loss, optimizer, observations=np.array(memory.observations)[i], actions=np.array(memory.actions)[i], discounted_rewards = discount_rewards(memory.rewards)[i], custom_fwd_fn=run_driving_model) # reset the memory memory.clear() break ###Output _____no_output_____ ###Markdown 3.11 Evaluate the self-driving agentFinally we can put our trained self-driving agent to the test! It will execute autonomous control, in VISTA, based on the learned controller. We will evaluate how well it does based on this distance the car travels without crashing. We await the result... ###Code ## Evaluation block!## i_step = 0 num_episodes = 5 num_reset = 5 stream = VideoStream() for i_episode in range(num_episodes): # Restart the environment vista_reset() observation = grab_and_preprocess_obs(car) print("rolling out in env") episode_step = 0 while not check_crash(car) and episode_step < 100: # using our observation, choose an action and take it in the environment curvature_dist = run_driving_model(observation) curvature = curvature_dist.mean()[0,0] # Step the simulated car with the same action vista_step(curvature) observation = grab_and_preprocess_obs(car) vis_img = display.render() stream.write(vis_img[:, :, ::-1], index=i_step) i_step += 1 episode_step += 1 for _ in range(num_reset): stream.write(np.zeros_like(vis_img), index=i_step) i_step += 1 print(f"Average reward: {(i_step - (num_reset*num_episodes)) / num_episodes}") print("Saving trajectory with trained policy...") stream.save("trained_policy.mp4") mdl.lab3.play_video("trained_policy.mp4") ###Output _____no_output_____ ###Markdown Visit MIT Deep Learning Run in Google Colab View Source on GitHub Copyright Information ###Code # Copyright 2021 MIT 6.S191 Introduction to Deep Learning. All Rights Reserved. # # Licensed under the MIT License. You may not use this file except in compliance # with the License. Use and/or modification of this code outside of 6.S191 must # reference: # # © MIT 6.S191: Introduction to Deep Learning # http://introtodeeplearning.com # ###Output _____no_output_____ ###Markdown Laboratory 3: Reinforcement LearningReinforcement learning (RL) is a subset of machine learning which poses learning problems as interactions between agents and environments. It often assumes agents have no prior knowledge of a world, so they must learn to navigate environments by optimizing a reward function. Within an environment, an agent can take certain actions and receive feedback, in the form of positive or negative rewards, with respect to their decision. As such, an agent's feedback loop is somewhat akin to the idea of "trial and error", or the manner in which a child might learn to distinguish between "good" and "bad" actions.In practical terms, our RL agent will interact with the environment by taking an action at each timestep, receiving a corresponding reward, and updating its state according to what it has "learned". ![alt text](https://www.kdnuggets.com/images/reinforcement-learning-fig1-700.jpg)While the ultimate goal of reinforcement learning is to teach agents to act in the real, physical world, games provide a convenient proving ground for developing RL algorithms and agents. Games have some properties that make them particularly well suited for RL: 1. In many cases, games have perfectly describable environments. For example, all rules of chess can be formally written and programmed into a chess game simulator;2. Games are massively parallelizable. Since they do not require running in the real world, simultaneous environments can be run on large data clusters; 3. Simpler scenarios in games enable fast prototyping. This speeds up the development of algorithms that could eventually run in the real-world; and4. ... Games are fun! In previous labs, we have explored both supervised (with LSTMs, CNNs) and unsupervised / semi-supervised (with VAEs) learning tasks. Reinforcement learning is fundamentally different, in that we are training a deep learning algorithm to govern the actions of our RL agent, that is trying, within its environment, to find the optimal way to achieve a goal. The goal of training an RL agent is to determine the best next step to take to earn the greatest final payoff or return. In this lab, we focus on building a reinforcement learning algorithm to master two different environments with varying complexity. 1. **Cartpole**: Balance a pole, protruding from a cart, in an upright position by only moving the base left or right. Environment with a low-dimensional observation space.2. [**Pong**](https://en.wikipedia.org/wiki/Pong): Beat your competitors (whether other AI or humans!) at the game of Pong. Environment with a high-dimensional observation space -- learning directly from raw pixels.Let's get started! First we'll import TensorFlow, the course package, and some dependencies. ###Code # Import Tensorflow 2.0 %tensorflow_version 2.x import tensorflow as tf import numpy as np import base64, io, time, gym import IPython, functools import matplotlib.pyplot as plt import time from tqdm import tqdm # Download and import the MIT 6.S191 package !pip install mitdeeplearning import mitdeeplearning as mdl ###Output _____no_output_____ ###Markdown Before we dive in, let's take a step back and outline our approach, which is generally applicable to reinforcement learning problems in general:1. **Initialize our environment and our agent**: here we will describe the different observations and actions the agent can make in the environemnt.2. **Define our agent's memory**: this will enable the agent to remember its past actions, observations, and rewards.3. **Define a reward function**: describes the reward associated with an action or sequence of actions.4. **Define the learning algorithm**: this will be used to reinforce the agent's good behaviors and discourage bad behaviors. Part 1: Cartpole 3.1 Define the Cartpole environment and agent Environment In order to model the environment for both the Cartpole and Pong tasks, we'll be using a toolkit developed by OpenAI called [OpenAI Gym](https://gym.openai.com/). It provides several pre-defined environments for training and testing reinforcement learning agents, including those for classic physics control tasks, Atari video games, and robotic simulations. To access the Cartpole environment, we can use `env = gym.make("CartPole-v0")`, which we gained access to when we imported the `gym` package. We can instantiate different [environments](https://gym.openai.com/envs/classic_control) by passing the enivronment name to the `make` function.One issue we might experience when developing RL algorithms is that many aspects of the learning process are inherently random: initializing game states, changes in the environment, and the agent's actions. As such, it can be helpful to set a initial "seed" for the environment to ensure some level of reproducibility. Much like you might use `numpy.random.seed`, we can call the comparable function in gym, `seed`, with our defined environment to ensure the environment's random variables are initialized the same each time. ###Code ### Instantiate the Cartpole environment ### env = gym.make("CartPole-v0") env.seed(1) ###Output _____no_output_____ ###Markdown In Cartpole, a pole is attached by an un-actuated joint to a cart, which moves along a frictionless track. The pole starts upright, and the goal is to prevent it from falling over. The system is controlled by applying a force of +1 or -1 to the cart. A reward of +1 is provided for every timestep that the pole remains upright. The episode ends when the pole is more than 15 degrees from vertical, or the cart moves more than 2.4 units from the center of the track. A visual summary of the cartpole environment is depicted below:Given this setup for the environment and the objective of the game, we can think about: 1) what observations help define the environment's state; 2) what actions the agent can take. First, let's consider the observation space. In this Cartpole environment our observations are:1. Cart position2. Cart velocity3. Pole angle4. Pole rotation rateWe can confirm the size of the space by querying the environment's observation space: ###Code n_observations = env.observation_space print("Environment has observation space =", n_observations) ###Output _____no_output_____ ###Markdown Second, we consider the action space. At every time step, the agent can move either right or left. Again we can confirm the size of the action space by querying the environment: ###Code n_actions = env.action_space.n print("Number of possible actions that the agent can choose from =", n_actions) ###Output _____no_output_____ ###Markdown Cartpole agentNow that we have instantiated the environment and understood the dimensionality of the observation and action spaces, we are ready to define our agent. In deep reinforcement learning, a deep neural network defines the agent. This network will take as input an observation of the environment and output the probability of taking each of the possible actions. Since Cartpole is defined by a low-dimensional observation space, a simple feed-forward neural network should work well for our agent. We will define this using the `Sequential` API. ###Code ### Define the Cartpole agent ### # Defines a feed-forward neural network def create_cartpole_model(): model = tf.keras.models.Sequential([ # First Dense layer tf.keras.layers.Dense(units=32, activation='relu'), # TODO: Define the last Dense layer, which will provide the network's output. # Think about the space the agent needs to act in! tf.keras.layers.Dense(units=n_actions, activation=None) # TODO # [TODO Dense layer to output action probabilities] ]) return model cartpole_model = create_cartpole_model() ###Output _____no_output_____ ###Markdown Now that we have defined the core network architecture, we will define an *action function* that executes a forward pass through the network, given a set of observations, and samples from the output. This sampling from the output probabilities will be used to select the next action for the agent. We will also add support so that the `choose_action` function can handle either a single observation or a batch of observations.**Critically, this action function is totally general -- we will use this function for both Cartpole and Pong, and it is applicable to other RL tasks, as well!** ###Code ### Define the agent's action function ### # Function that takes observations as input, executes a forward pass through model, # and outputs a sampled action. # Arguments: # model: the network that defines our agent # observation: observation(s) which is/are fed as input to the model # single: flag as to whether we are handling a single observation or batch of # observations, provided as an np.array # Returns: # action: choice of agent action def choose_action(model, observation, single=True): # add batch dimension to the observation if only a single example was provided observation = np.expand_dims(observation, axis=0) if single else observation '''TODO: feed the observations through the model to predict the log probabilities of each possible action.''' logits = model.predict(observation) # TODO # logits = model.predict('''TODO''') '''TODO: Choose an action from the categorical distribution defined by the log probabilities of each possible action.''' action = tf.random.categorical(logits, num_samples=1) # action = ['''TODO'''] action = action.numpy().flatten() return action[0] if single else action ###Output _____no_output_____ ###Markdown 3.2 Define the agent's memoryNow that we have instantiated the environment and defined the agent network architecture and action function, we are ready to move on to the next step in our RL workflow:1. **Initialize our environment and our agent**: here we will describe the different observations and actions the agent can make in the environemnt.2. **Define our agent's memory**: this will enable the agent to remember its past actions, observations, and rewards.3. **Define the learning algorithm**: this will be used to reinforce the agent's good behaviors and discourage bad behaviors.In reinforcement learning, training occurs alongside the agent's acting in the environment; an *episode* refers to a sequence of actions that ends in some terminal state, such as the pole falling down or the cart crashing. The agent will need to remember all of its observations and actions, such that once an episode ends, it can learn to "reinforce" the good actions and punish the undesirable actions via training. Our first step is to define a simple `Memory` buffer that contains the agent's observations, actions, and received rewards from a given episode. We will also add support to combine a list of `Memory` objects into a single `Memory`. This will be very useful for batching, which will help you accelerate training later on in the lab.**Once again, note the modularity of this memory buffer -- it can and will be applied to other RL tasks as well!** ###Code ### Agent Memory ### class Memory: def __init__(self): self.clear() # Resets/restarts the memory buffer def clear(self): self.observations = [] self.actions = [] self.rewards = [] # Add observations, actions, rewards to memory def add_to_memory(self, new_observation, new_action, new_reward): self.observations.append(new_observation) '''TODO: update the list of actions with new action''' self.actions.append(new_action) # TODO # ['''TODO'''] '''TODO: update the list of rewards with new reward''' self.rewards.append(new_reward) # TODO # ['''TODO'''] # Helper function to combine a list of Memory objects into a single Memory. # This will be very useful for batching. def aggregate_memories(memories): batch_memory = Memory() for memory in memories: for step in zip(memory.observations, memory.actions, memory.rewards): batch_memory.add_to_memory(*step) return batch_memory # Instantiate a single Memory buffer memory = Memory() ###Output _____no_output_____ ###Markdown 3.3 Reward functionWe're almost ready to begin the learning algorithm for our agent! The next step is to compute the rewards of our agent as it acts in the environment. Since we (and the agent) is uncertain about if and when the game or task will end (i.e., when the pole will fall), it is useful to emphasize getting rewards **now** rather than later in the future -- this is the idea of discounting. This is a similar concept to discounting money in the case of interest. Recall from lecture, we use reward discount to give more preference at getting rewards now rather than later in the future. The idea of discounting rewards is similar to discounting money in the case of interest.To compute the expected cumulative reward, known as the **return**, at a given timestep in a learning episode, we sum the discounted rewards expected at that time step $t$, within a learning episode, and projecting into the future. We define the return (cumulative reward) at a time step $t$, $R_{t}$ as:>$R_{t}=\sum_{k=0}^\infty\gamma^kr_{t+k}$where $0 < \gamma < 1$ is the discount factor and $r_{t}$ is the reward at time step $t$, and the index $k$ increments projection into the future within a single learning episode. Intuitively, you can think of this function as depreciating any rewards received at later time steps, which will force the agent prioritize getting rewards now. Since we can't extend episodes to infinity, in practice the computation will be limited to the number of timesteps in an episode -- after that the reward is assumed to be zero.Take note of the form of this sum -- we'll have to be clever about how we implement this function. Specifically, we'll need to initialize an array of zeros, with length of the number of time steps, and fill it with the real discounted reward values as we loop through the rewards from the episode, which will have been saved in the agents memory. What we ultimately care about is which actions are better relative to other actions taken in that episode -- so, we'll normalize our computed rewards, using the mean and standard deviation of the rewards across the learning episode. ###Code ### Reward function ### # Helper function that normalizes an np.array x def normalize(x): x -= np.mean(x) x /= np.std(x) return x.astype(np.float32) # Compute normalized, discounted, cumulative rewards (i.e., return) # Arguments: # rewards: reward at timesteps in episode # gamma: discounting factor # Returns: # normalized discounted reward def discount_rewards(rewards, gamma=0.95): discounted_rewards = np.zeros_like(rewards) R = 0 for t in reversed(range(0, len(rewards))): # update the total discounted reward R = R * gamma + rewards[t] discounted_rewards[t] = R return normalize(discounted_rewards) ###Output _____no_output_____ ###Markdown 3.4 Learning algorithmNow we can start to define the learing algorithm which will be used to reinforce good behaviors of the agent and discourage bad behaviours. In this lab, we will focus on *policy gradient* methods which aim to **maximize** the likelihood of actions that result in large rewards. Equivalently, this means that we want to **minimize** the negative likelihood of these same actions. We achieve this by simply **scaling** the probabilities by their associated rewards -- effectively amplifying the likelihood of actions that resujlt in large rewards.Since the log function is monotonically increasing, this means that minimizing **negative likelihood** is equivalent to minimizing **negative log-likelihood**. Recall that we can easily compute the negative log-likelihood of a discrete action by evaluting its [softmax cross entropy](https://www.tensorflow.org/api_docs/python/tf/nn/sparse_softmax_cross_entropy_with_logits). Like in supervised learning, we can use stochastic gradient descent methods to achieve the desired minimization. Let's begin by defining the loss function. ###Code ### Loss function ### # Arguments: # logits: network's predictions for actions to take # actions: the actions the agent took in an episode # rewards: the rewards the agent received in an episode # Returns: # loss def compute_loss(logits, actions, rewards): '''TODO: complete the function call to compute the negative log probabilities''' neg_logprob = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=logits, labels=actions) # TODO # neg_logprob = tf.nn.sparse_softmax_cross_entropy_with_logits( # logits='''TODO''', labels='''TODO''') '''TODO: scale the negative log probability by the rewards''' loss = tf.reduce_mean( neg_logprob * rewards ) # TODO # loss = tf.reduce_mean('''TODO''') return loss ###Output _____no_output_____ ###Markdown Now let's use the loss function to define a training step of our learning algorithm: ###Code ### Training step (forward and backpropagation) ### def train_step(model, optimizer, observations, actions, discounted_rewards): with tf.GradientTape() as tape: # Forward propagate through the agent network logits = model(observations) '''TODO: call the compute_loss function to compute the loss''' loss = compute_loss(logits, actions, discounted_rewards) # TODO # loss = compute_loss('''TODO''', '''TODO''', '''TODO''') '''TODO: run backpropagation to minimize the loss using the tape.gradient method''' grads = tape.gradient(loss, model.trainable_variables) # TODO # grads = tape.gradient('''TODO''', model.trainable_variables) optimizer.apply_gradients(zip(grads, model.trainable_variables)) ###Output _____no_output_____ ###Markdown 3.5 Run cartpole!Having had no prior knowledge of the environment, the agent will begin to learn how to balance the pole on the cart based only on the feedback received from the environment! Having defined how our agent can move, how it takes in new observations, and how it updates its state, we'll see how it gradually learns a policy of actions to optimize balancing the pole as long as possible. To do this, we'll track how the rewards evolve as a function of training -- how should the rewards change as training progresses? ###Code ### Cartpole training! ### # Learning rate and optimizer learning_rate = 1e-3 optimizer = tf.keras.optimizers.Adam(learning_rate) # instantiate cartpole agent cartpole_model = create_cartpole_model() # to track our progress smoothed_reward = mdl.util.LossHistory(smoothing_factor=0.9) plotter = mdl.util.PeriodicPlotter(sec=2, xlabel='Iterations', ylabel='Rewards') if hasattr(tqdm, '_instances'): tqdm._instances.clear() # clear if it exists for i_episode in range(500): plotter.plot(smoothed_reward.get()) # Restart the environment observation = env.reset() memory.clear() while True: # using our observation, choose an action and take it in the environment action = choose_action(cartpole_model, observation) next_observation, reward, done, info = env.step(action) # add to memory memory.add_to_memory(observation, action, reward) # is the episode over? did you crash or do so well that you're done? if done: # determine total reward and keep a record of this total_reward = sum(memory.rewards) smoothed_reward.append(total_reward) # initiate training - remember we don't know anything about how the # agent is doing until it has crashed! train_step(cartpole_model, optimizer, observations=np.vstack(memory.observations), actions=np.array(memory.actions), discounted_rewards = discount_rewards(memory.rewards)) # reset the memory memory.clear() break # update our observatons observation = next_observation ###Output _____no_output_____ ###Markdown To get a sense of how our agent did, we can save a video of the trained model working on balancing the pole. Realize that this is a brand new environment that the agent has not seen before!Let's display the saved video to watch how our agent did! ###Code saved_cartpole = mdl.lab3.save_video_of_model(cartpole_model, "CartPole-v0") mdl.lab3.play_video(saved_cartpole) ###Output _____no_output_____ ###Markdown How does the agent perform? Could you train it for shorter amounts of time and still perform well? Do you think that training longer would help even more? Part 2: PongIn Cartpole, we dealt with an environment that was static -- in other words, it didn't change over time. What happens if our environment is dynamic and unpredictable? Well that's exactly the case in [Pong](https://en.wikipedia.org/wiki/Pong), since part of the environment is the opposing player. We don't know how our opponent will act or react to our actions, so the complexity of our problem increases. It also becomes much more interesting, since we can compete to beat our opponent. RL provides a powerful framework for training AI systems with the ability to handle and interact with dynamic, unpredictable environments. In this part of the lab, we'll use the tools and workflow we explored in Part 1 to build an RL agent capable of playing the game of Pong. 3.6 Define and inspect the Pong environmentAs with Cartpole, we'll instantiate the Pong environment in the OpenAI gym, using a seed of 1. ###Code def create_pong_env(): return gym.make("Pong-v0", frameskip=5) env = create_pong_env() env.seed(1); # for reproducibility ###Output _____no_output_____ ###Markdown Let's next consider the observation space for the Pong environment. Instead of four physical descriptors of the cart-pole setup, in the case of Pong our observations are the individual video frames (i.e., images) that depict the state of the board. Thus, the observations are 210x160 RGB images (arrays of shape (210,160,3)).We can again confirm the size of the observation space by query: ###Code print("Environment has observation space =", env.observation_space) ###Output _____no_output_____ ###Markdown In Pong, at every time step, the agent (which controls the paddle) has six actions to choose from: no-op (no operation), move right, move left, fire, fire right, and fire left. Let's confirm the size of the action space by querying the environment: ###Code n_actions = env.action_space.n print("Number of possible actions that the agent can choose from =", n_actions) ###Output _____no_output_____ ###Markdown 3.7 Define the Pong agentAs before, we'll use a neural network to define our agent. What network architecture do you think would be especially well suited to this game? Since our observations are now in the form of images, we'll add convolutional layers to the network to increase the learning capacity of our network. Note that you will be tasked with completing a template CNN architecture for the Pong agent -- but you should certainly experiment beyond this template to try to optimize performance! ###Code ### Define the Pong agent ### # Functionally define layers for convenience # All convolutional layers will have ReLu activation Conv2D = functools.partial(tf.keras.layers.Conv2D, padding='same', activation='relu') Flatten = tf.keras.layers.Flatten Dense = tf.keras.layers.Dense # Defines a CNN for the Pong agent def create_pong_model(): model = tf.keras.models.Sequential([ # Convolutional layers # First, 32 5x5 filters and 2x2 stride Conv2D(filters=32, kernel_size=5, strides=2), # TODO: define convolutional layers with 48 5x5 filters and 2x2 stride Conv2D(filters=48, kernel_size=5, strides=2), # TODO # Conv2D('''TODO'''), # TODO: define two convolutional layers with 64 3x3 filters and 2x2 stride Conv2D(filters=64, kernel_size=3, strides=2), # TODO Conv2D(filters=64, kernel_size=3, strides=2), # Conv2D('''TODO'''), Flatten(), # Fully connected layer and output Dense(units=128, activation='relu'), # TODO: define the output dimension of the last Dense layer. # Pay attention to the space the agent needs to act in Dense(units=n_actions, activation=None) # TODO # Dense('''TODO''') ]) return model pong_model = create_pong_model() ###Output _____no_output_____ ###Markdown Since we've already defined the action function, `choose_action(model, observation)`, we don't need to define it again. Instead, we'll be able to reuse it later on by passing in our new model we've just created, `pong_model`. This is awesome because our action function provides a modular and generalizable method for all sorts of RL agents! 3.8 Pong-specific functionsIn Part 1 (Cartpole), we implemented some key functions and classes to build and train our RL agent -- `choose_action(model, observation)` and the `Memory` class, for example. However, in getting ready to apply these to a new game like Pong, we might need to make some slight modifications. Namely, we need to think about what happens when a game ends. In Pong, we know a game has ended if the reward is +1 (we won!) or -1 (we lost unfortunately). Otherwise, we expect the reward at a timestep to be zero -- the players (or agents) are just playing eachother. So, after a game ends, we will need to reset the reward to zero when a game ends. This will result in a modified reward function. ###Code ### Pong reward function ### # Compute normalized, discounted rewards for Pong (i.e., return) # Arguments: # rewards: reward at timesteps in episode # gamma: discounting factor. Note increase to 0.99 -- rate of depreciation will be slower. # Returns: # normalized discounted reward def discount_rewards(rewards, gamma=0.99): discounted_rewards = np.zeros_like(rewards) R = 0 for t in reversed(range(0, len(rewards))): # NEW: Reset the sum if the reward is not 0 (the game has ended!) if rewards[t] != 0: R = 0 # update the total discounted reward as before R = R * gamma + rewards[t] discounted_rewards[t] = R return normalize(discounted_rewards) ###Output _____no_output_____ ###Markdown Additionally, we have to consider the nature of the observations in the Pong environment, and how they will be fed into our network. Our observations in this case are images. Before we input an image into our network, we'll do a bit of pre-processing to crop and scale, clean up the background colors to a single color, and set the important game elements to a single color. Let's use this function to visualize what a single observation might look like before and after pre-processing. ###Code observation = env.reset() for i in range(30): action = np.random.choice(n_actions) observation, _,_,_ = env.step(action) observation_pp = mdl.lab3.preprocess_pong(observation) f = plt.figure(figsize=(10,3)) ax = f.add_subplot(121) ax2 = f.add_subplot(122) ax.imshow(observation); ax.grid(False); ax2.imshow(np.squeeze(observation_pp)); ax2.grid(False); plt.title('Preprocessed Observation'); ###Output _____no_output_____ ###Markdown Let's also consider the fact that, unlike CartPole, the Pong environment has an additional element of uncertainty -- regardless of what action the agent takes, we don't know how the opponent will play. That is, the environment is changing over time, based on *both* the actions we take and the actions of the opponent, which result in motion of the ball and motion of the paddles. Therefore, to capture the dynamics, we also consider how the environment changes by looking at the difference between a previous observation (image frame) and the current observation (image frame). We've implemented a helper function, `pong_change`, that pre-processes two frames, calculates the change between the two, and then re-normalizes the values. Let's inspect this to visualize how the environment can change: ###Code next_observation, _,_,_ = env.step(np.random.choice(n_actions)) diff = mdl.lab3.pong_change(observation, next_observation) f, ax = plt.subplots(1, 3, figsize=(15,15)) for a in ax: a.grid(False) a.axis("off") ax[0].imshow(observation); ax[0].set_title('Previous Frame'); ax[1].imshow(next_observation); ax[1].set_title('Current Frame'); ax[2].imshow(np.squeeze(diff)); ax[2].set_title('Difference (Model Input)'); ###Output _____no_output_____ ###Markdown What do you notice? How and why might these pre-processing changes be important for training our RL algorithm? How and why might consideration of the difference between frames be important for training and performance? Rollout function We're now set up to define our key action algorithm for the game of Pong, which will ultimately be used to train our Pong agent. This function can be thought of as a "rollout", where the agent will 1) make an observation of the environment, 2) select an action based on its state in the environment, 3) execute a policy based on that action, resulting in some reward and a change to the environment, and 4) finally add memory of that action-reward to its `Memory` buffer. We will define this algorithm in the `collect_rollout` function below, and use it soon within a training block. Earlier you visually inspected the raw environment frames, the pre-processed frames, and the difference between previous and current frames. As you may have gathered, in a dynamic game like Pong, it can actually be helpful to consider the difference between two consecutive observations. This gives us information about the movement between frames -- how the game is changing. We will do this using the `pong_change` function we explored above (which also pre-processes frames for us). We will use differences between frames as the input on which actions will be selected. These observation changes will be forward propagated through our Pong agent, the CNN network model, which will then predict the next action to take based on this observation. The raw reward will be computed. The observation, action, and reward will be recorded into memory. This will loop until a particular game ends -- the rollout is completed. For now, we will define `collect_rollout` such that a batch of observations (i.e., from a batch of agent-environment worlds) can be processed serially (i.e., one at a time, in sequence). We will later utilize a parallelized version of this function that will parallelize batch processing to help speed up training! Let's get to it. ###Code ### Rollout function ### # Key steps for agent's operation in the environment, until completion of a rollout. # An observation is drawn; the agent (controlled by model) selects an action; # the agent executes that action in the environment and collects rewards; # information is added to memory. # This is repeated until the completion of the rollout -- the Pong game ends. # Processes multiple batches serially. # # Arguments: # batch_size: number of batches, to be processed serially # env: environment # model: Pong agent model # choose_action: choose_action function # Returns: # memories: array of Memory buffers, of length batch_size, corresponding to the # episode executions from the rollout def collect_rollout(batch_size, env, model, choose_action): # Holder array for the Memory buffers memories = [] # Process batches serially by iterating through them for b in range(batch_size): # Instantiate Memory buffer, restart the environment memory = Memory() next_observation = env.reset() previous_frame = next_observation done = False # tracks whether the episode (game) is done or not while not done: current_frame = next_observation '''TODO: determine the observation change. Hint: this is the difference between the past two frames''' frame_diff = mdl.lab3.pong_change(previous_frame, current_frame) # TODO # frame_diff = # TODO '''TODO: choose an action for the pong model, using the frame difference, and evaluate''' action = choose_action(model, frame_diff) # TODO # action = # TODO # Take the chosen action next_observation, reward, done, info = env.step(action) '''TODO: save the observed frame difference, the action that was taken, and the resulting reward!''' memory.add_to_memory(frame_diff, action, reward) # TODO previous_frame = current_frame # Add the memory from this batch to the array of all Memory buffers memories.append(memory) return memories ###Output _____no_output_____ ###Markdown To get a sense of what is encapsulated by `collect_rollout`, we will instantiate an *untrained* Pong model, run a single rollout using this model, save the memory, and play back the observations the model sees. Note that these will be frame *differences*. ###Code ### Rollout with untrained Pong model ### # Model test_model = create_pong_model() # Rollout with single batch single_batch_size = 1 memories = collect_rollout(single_batch_size, env, test_model, choose_action) rollout_video = mdl.lab3.save_video_of_memory(memories[0], "Pong-Random-Agent.mp4") # Play back video of memories mdl.lab3.play_video(rollout_video) ###Output _____no_output_____ ###Markdown 3.9 Training PongWe're now all set up to start training our RL algorithm and agent for the game of Pong! We've already defined the following:1. Loss function, `compute_loss`, and backpropagation step, `train_step`. Our loss function employs policy gradient learning. `train_step` executes a single forward pass and backpropagation gradient update.2. RL agent algorithm: `collect_rollout`. Serially processes batches of episodes, executing actions in the environment, collecting rewards, and saving these to `Memory`.We will use these functions to train the Pong agent.In the training block, episodes will be executed by agents in the environment via the RL algorithm defined in the `collect_rollout` function. Since RL agents start off with literally zero knowledge of their environment, it can often take a long time to train them and achieve stable behavior. To alleviate this, we have implemented a parallelized version of the RL algorithm, `parallelized_collect_rollout`, which you can use to accelerate training across multiple parallel batches.For training, information in the `Memory` buffer from all these batches will be aggregated (after all episodes, i.e., games, end). Discounted rewards will be computed, and this information will be used to execute a training step. Memory will be cleared, and we will do it all over again!Let's run the code block to train our Pong agent. Note that, even with parallelization, completing training and getting stable behavior will take quite a bit of time (estimated at least a couple of hours). We will again visualize the evolution of the total reward as a function of training to get a sense of how the agent is learning. ###Code ### Hyperparameters and setup for training ### # Rerun this cell if you want to re-initialize the training process # (i.e., create new model, reset loss, etc) # Hyperparameters learning_rate = 1e-3 MAX_ITERS = 1000 # increase the maximum to train longer batch_size = 5 # number of batches to run # Model, optimizer pong_model = create_pong_model() optimizer = tf.keras.optimizers.Adam(learning_rate) iteration = 0 # counter for training steps # Plotting smoothed_reward = mdl.util.LossHistory(smoothing_factor=0.9) smoothed_reward.append(0) # start the reward at zero for baseline comparison plotter = mdl.util.PeriodicPlotter(sec=15, xlabel='Iterations', ylabel='Win Percentage (%)') # Batches and environment # To parallelize batches, we need to make multiple copies of the environment. envs = [create_pong_env() for _ in range(batch_size)] # For parallelization ### Training Pong ### # You can run this cell and stop it anytime in the middle of training to save # a progress video (see next codeblock). To continue training, simply run this # cell again, your model will pick up right where it left off. To reset training, # you need to run the cell above. games_to_win_episode = 21 # this is set by OpenAI gym and cannot be changed. # Main training loop while iteration < MAX_ITERS: plotter.plot(smoothed_reward.get()) tic = time.time() # RL agent algorithm. By default, uses serial batch processing. # memories = collect_rollout(batch_size, env, pong_model, choose_action) # Parallelized version. Uncomment line below (and comment out line above) to parallelize memories = mdl.lab3.parallelized_collect_rollout(batch_size, envs, pong_model, choose_action) print(time.time()-tic) # Aggregate memories from multiple batches batch_memory = aggregate_memories(memories) # Track performance based on win percentage (calculated from rewards) total_wins = sum(np.array(batch_memory.rewards) == 1) total_games = sum(np.abs(np.array(batch_memory.rewards))) win_rate = total_wins / total_games smoothed_reward.append(100 * win_rate) # Training! train_step( pong_model, optimizer, observations = np.stack(batch_memory.observations, 0), actions = np.array(batch_memory.actions), discounted_rewards = discount_rewards(batch_memory.rewards) ) # Save a video of progress -- this can be played back later if iteration % 100 == 0: mdl.lab3.save_video_of_model(pong_model, "Pong-v0", suffix="_"+str(iteration)) iteration += 1 # Mark next episode ###Output _____no_output_____ ###Markdown Finally we can put our trained agent to the test! It will play in a newly instantiated Pong environment against the "computer", a base AI system for Pong. Your agent plays as the green paddle. Let's watch the match instant replay! ###Code latest_pong = mdl.lab3.save_video_of_model( pong_model, "Pong-v0", suffix="_latest") mdl.lab3.play_video(latest_pong, width=400) ###Output _____no_output_____ ###Markdown Visit MIT Deep Learning Run in Google Colab View Source on GitHub Copyright Information ###Code # Copyright 2021 MIT 6.S191 Introduction to Deep Learning. All Rights Reserved. # # Licensed under the MIT License. You may not use this file except in compliance # with the License. Use and/or modification of this code outside of 6.S191 must # reference: # # © MIT 6.S191: Introduction to Deep Learning # http://introtodeeplearning.com # ###Output _____no_output_____ ###Markdown Laboratory 3: Reinforcement LearningReinforcement learning (RL) is a subset of machine learning which poses learning problems as interactions between agents and environments. It often assumes agents have no prior knowledge of a world, so they must learn to navigate environments by optimizing a reward function. Within an environment, an agent can take certain actions and receive feedback, in the form of positive or negative rewards, with respect to their decision. As such, an agent's feedback loop is somewhat akin to the idea of "trial and error", or the manner in which a child might learn to distinguish between "good" and "bad" actions.In practical terms, our RL agent will interact with the environment by taking an action at each timestep, receiving a corresponding reward, and updating its state according to what it has "learned". ![alt text](https://www.kdnuggets.com/images/reinforcement-learning-fig1-700.jpg)While the ultimate goal of reinforcement learning is to teach agents to act in the real, physical world, games provide a convenient proving ground for developing RL algorithms and agents. Games have some properties that make them particularly well suited for RL: 1. In many cases, games have perfectly describable environments. For example, all rules of chess can be formally written and programmed into a chess game simulator;2. Games are massively parallelizable. Since they do not require running in the real world, simultaneous environments can be run on large data clusters; 3. Simpler scenarios in games enable fast prototyping. This speeds up the development of algorithms that could eventually run in the real-world; and4. ... Games are fun! In previous labs, we have explored both supervised (with LSTMs, CNNs) and unsupervised / semi-supervised (with VAEs) learning tasks. Reinforcement learning is fundamentally different, in that we are training a deep learning algorithm to govern the actions of our RL agent, that is trying, within its environment, to find the optimal way to achieve a goal. The goal of training an RL agent is to determine the best next step to take to earn the greatest final payoff or return. In this lab, we focus on building a reinforcement learning algorithm to master two different environments with varying complexity. 1. **Cartpole**: Balance a pole, protruding from a cart, in an upright position by only moving the base left or right. Environment with a low-dimensional observation space.2. [**Pong**](https://en.wikipedia.org/wiki/Pong): Beat your competitors (whether other AI or humans!) at the game of Pong. Environment with a high-dimensional observation space -- learning directly from raw pixels.Let's get started! First we'll import TensorFlow, the course package, and some dependencies. ###Code # Import Tensorflow 2.0 %tensorflow_version 2.x import tensorflow as tf import numpy as np import base64, io, time, gym import IPython, functools import matplotlib.pyplot as plt import time from tqdm import tqdm # Download and import the MIT 6.S191 package !pip install mitdeeplearning import mitdeeplearning as mdl ###Output _____no_output_____ ###Markdown Before we dive in, let's take a step back and outline our approach, which is generally applicable to reinforcement learning problems in general:1. **Initialize our environment and our agent**: here we will describe the different observations and actions the agent can make in the environemnt.2. **Define our agent's memory**: this will enable the agent to remember its past actions, observations, and rewards.3. **Define a reward function**: describes the reward associated with an action or sequence of actions.4. **Define the learning algorithm**: this will be used to reinforce the agent's good behaviors and discourage bad behaviors. Part 1: Cartpole 3.1 Define the Cartpole environment and agent Environment In order to model the environment for both the Cartpole and Pong tasks, we'll be using a toolkit developed by OpenAI called [OpenAI Gym](https://gym.openai.com/). It provides several pre-defined environments for training and testing reinforcement learning agents, including those for classic physics control tasks, Atari video games, and robotic simulations. To access the Cartpole environment, we can use `env = gym.make("CartPole-v0")`, which we gained access to when we imported the `gym` package. We can instantiate different [environments](https://gym.openai.com/envs/classic_control) by passing the enivronment name to the `make` function.One issue we might experience when developing RL algorithms is that many aspects of the learning process are inherently random: initializing game states, changes in the environment, and the agent's actions. As such, it can be helpful to set a initial "seed" for the environment to ensure some level of reproducibility. Much like you might use `numpy.random.seed`, we can call the comparable function in gym, `seed`, with our defined environment to ensure the environment's random variables are initialized the same each time. ###Code ### Instantiate the Cartpole environment ### env = gym.make("CartPole-v0") env.seed(1) ###Output _____no_output_____ ###Markdown In Cartpole, a pole is attached by an un-actuated joint to a cart, which moves along a frictionless track. The pole starts upright, and the goal is to prevent it from falling over. The system is controlled by applying a force of +1 or -1 to the cart. A reward of +1 is provided for every timestep that the pole remains upright. The episode ends when the pole is more than 15 degrees from vertical, or the cart moves more than 2.4 units from the center of the track. A visual summary of the cartpole environment is depicted below:Given this setup for the environment and the objective of the game, we can think about: 1) what observations help define the environment's state; 2) what actions the agent can take. First, let's consider the observation space. In this Cartpole environment our observations are:1. Cart position2. Cart velocity3. Pole angle4. Pole rotation rateWe can confirm the size of the space by querying the environment's observation space: ###Code n_observations = env.observation_space print("Environment has observation space =", n_observations) ###Output _____no_output_____ ###Markdown Second, we consider the action space. At every time step, the agent can move either right or left. Again we can confirm the size of the action space by querying the environment: ###Code n_actions = env.action_space.n print("Number of possible actions that the agent can choose from =", n_actions) ###Output _____no_output_____ ###Markdown Cartpole agentNow that we have instantiated the environment and understood the dimensionality of the observation and action spaces, we are ready to define our agent. In deep reinforcement learning, a deep neural network defines the agent. This network will take as input an observation of the environment and output the probability of taking each of the possible actions. Since Cartpole is defined by a low-dimensional observation space, a simple feed-forward neural network should work well for our agent. We will define this using the `Sequential` API. ###Code ### Define the Cartpole agent ### # Defines a feed-forward neural network def create_cartpole_model(): model = tf.keras.models.Sequential([ # First Dense layer tf.keras.layers.Dense(units=32, activation='relu'), # TODO: Define the last Dense layer, which will provide the network's output. # Think about the space the agent needs to act in! tf.keras.layers.Dense(units=n_actions, activation=None) # TODO # [TODO Dense layer to output action probabilities] ]) return model cartpole_model = create_cartpole_model() ###Output _____no_output_____ ###Markdown Now that we have defined the core network architecture, we will define an *action function* that executes a forward pass through the network, given a set of observations, and samples from the output. This sampling from the output probabilities will be used to select the next action for the agent. We will also add support so that the `choose_action` function can handle either a single observation or a batch of observations.**Critically, this action function is totally general -- we will use this function for both Cartpole and Pong, and it is applicable to other RL tasks, as well!** ###Code ### Define the agent's action function ### # Function that takes observations as input, executes a forward pass through model, # and outputs a sampled action. # Arguments: # model: the network that defines our agent # observation: observation(s) which is/are fed as input to the model # single: flag as to whether we are handling a single observation or batch of # observations, provided as an np.array # Returns: # action: choice of agent action def choose_action(model, observation, single=True): # add batch dimension to the observation if only a single example was provided observation = np.expand_dims(observation, axis=0) if single else observation '''TODO: feed the observations through the model to predict the log probabilities of each possible action.''' logits = model.predict(observation) # TODO # logits = model.predict('''TODO''') '''TODO: Choose an action from the categorical distribution defined by the log probabilities of each possible action.''' action = tf.random.categorical(logits, num_samples=1) # action = ['''TODO'''] action = action.numpy().flatten() return action[0] if single else action ###Output _____no_output_____ ###Markdown 3.2 Define the agent's memoryNow that we have instantiated the environment and defined the agent network architecture and action function, we are ready to move on to the next step in our RL workflow:1. **Initialize our environment and our agent**: here we will describe the different observations and actions the agent can make in the environemnt.2. **Define our agent's memory**: this will enable the agent to remember its past actions, observations, and rewards.3. **Define the learning algorithm**: this will be used to reinforce the agent's good behaviors and discourage bad behaviors.In reinforcement learning, training occurs alongside the agent's acting in the environment; an *episode* refers to a sequence of actions that ends in some terminal state, such as the pole falling down or the cart crashing. The agent will need to remember all of its observations and actions, such that once an episode ends, it can learn to "reinforce" the good actions and punish the undesirable actions via training. Our first step is to define a simple `Memory` buffer that contains the agent's observations, actions, and received rewards from a given episode. We will also add support to combine a list of `Memory` objects into a single `Memory`. This will be very useful for batching, which will help you accelerate training later on in the lab.**Once again, note the modularity of this memory buffer -- it can and will be applied to other RL tasks as well!** ###Code ### Agent Memory ### class Memory: def __init__(self): self.clear() # Resets/restarts the memory buffer def clear(self): self.observations = [] self.actions = [] self.rewards = [] # Add observations, actions, rewards to memory def add_to_memory(self, new_observation, new_action, new_reward): self.observations.append(new_observation) '''TODO: update the list of actions with new action''' self.actions.append(new_action) # TODO # ['''TODO'''] '''TODO: update the list of rewards with new reward''' self.rewards.append(new_reward) # TODO # ['''TODO'''] # Helper function to combine a list of Memory objects into a single Memory. # This will be very useful for batching. def aggregate_memories(memories): batch_memory = Memory() for memory in memories: for step in zip(memory.observations, memory.actions, memory.rewards): batch_memory.add_to_memory(*step) return batch_memory # Instantiate a single Memory buffer memory = Memory() ###Output _____no_output_____ ###Markdown 3.3 Reward functionWe're almost ready to begin the learning algorithm for our agent! The next step is to compute the rewards of our agent as it acts in the environment. Since we (and the agent) is uncertain about if and when the game or task will end (i.e., when the pole will fall), it is useful to emphasize getting rewards **now** rather than later in the future -- this is the idea of discounting. This is a similar concept to discounting money in the case of interest. Recall from lecture, we use reward discount to give more preference at getting rewards now rather than later in the future. The idea of discounting rewards is similar to discounting money in the case of interest.To compute the expected cumulative reward, known as the **return**, at a given timestep in a learning episode, we sum the discounted rewards expected at that time step $t$, within a learning episode, and projecting into the future. We define the return (cumulative reward) at a time step $t$, $R_{t}$ as:>$R_{t}=\sum_{k=0}^\infty\gamma^kr_{t+k}$where $0 < \gamma < 1$ is the discount factor and $r_{t}$ is the reward at time step $t$, and the index $k$ increments projection into the future within a single learning episode. Intuitively, you can think of this function as depreciating any rewards received at later time steps, which will force the agent prioritize getting rewards now. Since we can't extend episodes to infinity, in practice the computation will be limited to the number of timesteps in an episode -- after that the reward is assumed to be zero.Take note of the form of this sum -- we'll have to be clever about how we implement this function. Specifically, we'll need to initialize an array of zeros, with length of the number of time steps, and fill it with the real discounted reward values as we loop through the rewards from the episode, which will have been saved in the agents memory. What we ultimately care about is which actions are better relative to other actions taken in that episode -- so, we'll normalize our computed rewards, using the mean and standard deviation of the rewards across the learning episode. ###Code ### Reward function ### # Helper function that normalizes an np.array x def normalize(x): x -= np.mean(x) x /= np.std(x) return x.astype(np.float32) # Compute normalized, discounted, cumulative rewards (i.e., return) # Arguments: # rewards: reward at timesteps in episode # gamma: discounting factor # Returns: # normalized discounted reward def discount_rewards(rewards, gamma=0.95): discounted_rewards = np.zeros_like(rewards) R = 0 for t in reversed(range(0, len(rewards))): # update the total discounted reward R = R * gamma + rewards[t] discounted_rewards[t] = R return normalize(discounted_rewards) ###Output _____no_output_____ ###Markdown 3.4 Learning algorithmNow we can start to define the learing algorithm which will be used to reinforce good behaviors of the agent and discourage bad behaviours. In this lab, we will focus on *policy gradient* methods which aim to **maximize** the likelihood of actions that result in large rewards. Equivalently, this means that we want to **minimize** the negative likelihood of these same actions. We achieve this by simply **scaling** the probabilities by their associated rewards -- effectively amplifying the likelihood of actions that resujlt in large rewards.Since the log function is monotonically increasing, this means that minimizing **negative likelihood** is equivalent to minimizing **negative log-likelihood**. Recall that we can easily compute the negative log-likelihood of a discrete action by evaluting its [softmax cross entropy](https://www.tensorflow.org/api_docs/python/tf/nn/sparse_softmax_cross_entropy_with_logits). Like in supervised learning, we can use stochastic gradient descent methods to achieve the desired minimization. Let's begin by defining the loss function. ###Code ### Loss function ### # Arguments: # logits: network's predictions for actions to take # actions: the actions the agent took in an episode # rewards: the rewards the agent received in an episode # Returns: # loss def compute_loss(logits, actions, rewards): '''TODO: complete the function call to compute the negative log probabilities''' neg_logprob = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=logits, labels=actions) # TODO # neg_logprob = tf.nn.sparse_softmax_cross_entropy_with_logits( # logits='''TODO''', labels='''TODO''') '''TODO: scale the negative log probability by the rewards''' loss = tf.reduce_mean( neg_logprob * rewards ) # TODO # loss = tf.reduce_mean('''TODO''') return loss ###Output _____no_output_____ ###Markdown Now let's use the loss function to define a training step of our learning algorithm: ###Code ### Training step (forward and backpropagation) ### def train_step(model, optimizer, observations, actions, discounted_rewards): with tf.GradientTape() as tape: # Forward propagate through the agent network logits = model(observations) '''TODO: call the compute_loss function to compute the loss''' loss = compute_loss(logits, actions, discounted_rewards) # TODO # loss = compute_loss('''TODO''', '''TODO''', '''TODO''') '''TODO: run backpropagation to minimize the loss using the tape.gradient method''' grads = tape.gradient(loss, model.trainable_variables) # TODO # grads = tape.gradient('''TODO''', model.trainable_variables) optimizer.apply_gradients(zip(grads, model.trainable_variables)) ###Output _____no_output_____ ###Markdown 3.5 Run cartpole!Having had no prior knowledge of the environment, the agent will begin to learn how to balance the pole on the cart based only on the feedback received from the environment! Having defined how our agent can move, how it takes in new observations, and how it updates its state, we'll see how it gradually learns a policy of actions to optimize balancing the pole as long as possible. To do this, we'll track how the rewards evolve as a function of training -- how should the rewards change as training progresses? ###Code ### Cartpole training! ### # Learning rate and optimizer learning_rate = 1e-3 optimizer = tf.keras.optimizers.Adam(learning_rate) # instantiate cartpole agent cartpole_model = create_cartpole_model() # to track our progress smoothed_reward = mdl.util.LossHistory(smoothing_factor=0.9) plotter = mdl.util.PeriodicPlotter(sec=2, xlabel='Iterations', ylabel='Rewards') if hasattr(tqdm, '_instances'): tqdm._instances.clear() # clear if it exists for i_episode in range(500): plotter.plot(smoothed_reward.get()) # Restart the environment observation = env.reset() memory.clear() while True: # using our observation, choose an action and take it in the environment action = choose_action(cartpole_model, observation) next_observation, reward, done, info = env.step(action) # add to memory memory.add_to_memory(observation, action, reward) # is the episode over? did you crash or do so well that you're done? if done: # determine total reward and keep a record of this total_reward = sum(memory.rewards) smoothed_reward.append(total_reward) # initiate training - remember we don't know anything about how the # agent is doing until it has crashed! train_step(cartpole_model, optimizer, observations=np.vstack(memory.observations), actions=np.array(memory.actions), discounted_rewards = discount_rewards(memory.rewards)) # reset the memory memory.clear() break # update our observatons observation = next_observation ###Output _____no_output_____ ###Markdown To get a sense of how our agent did, we can save a video of the trained model working on balancing the pole. Realize that this is a brand new environment that the agent has not seen before!Let's display the saved video to watch how our agent did! ###Code saved_cartpole = mdl.lab3.save_video_of_model(cartpole_model, "CartPole-v0") mdl.lab3.play_video(saved_cartpole) ###Output _____no_output_____ ###Markdown How does the agent perform? Could you train it for shorter amounts of time and still perform well? Do you think that training longer would help even more? Part 2: PongIn Cartpole, we dealt with an environment that was static -- in other words, it didn't change over time. What happens if our environment is dynamic and unpredictable? Well that's exactly the case in [Pong](https://en.wikipedia.org/wiki/Pong), since part of the environment is the opposing player. We don't know how our opponent will act or react to our actions, so the complexity of our problem increases. It also becomes much more interesting, since we can compete to beat our opponent. RL provides a powerful framework for training AI systems with the ability to handle and interact with dynamic, unpredictable environments. In this part of the lab, we'll use the tools and workflow we explored in Part 1 to build an RL agent capable of playing the game of Pong. 3.6 Define and inspect the Pong environmentAs with Cartpole, we'll instantiate the Pong environment in the OpenAI gym, using a seed of 1. ###Code def create_pong_env(): return gym.make("Pong-v0", frameskip=5) env = create_pong_env() env.seed(1); # for reproducibility ###Output _____no_output_____ ###Markdown Let's next consider the observation space for the Pong environment. Instead of four physical descriptors of the cart-pole setup, in the case of Pong our observations are the individual video frames (i.e., images) that depict the state of the board. Thus, the observations are 210x160 RGB images (arrays of shape (210,160,3)).We can again confirm the size of the observation space by query: ###Code print("Environment has observation space =", env.observation_space) ###Output _____no_output_____ ###Markdown In Pong, at every time step, the agent (which controls the paddle) has six actions to choose from: no-op (no operation), move right, move left, fire, fire right, and fire left. Let's confirm the size of the action space by querying the environment: ###Code n_actions = env.action_space.n print("Number of possible actions that the agent can choose from =", n_actions) ###Output _____no_output_____ ###Markdown 3.7 Define the Pong agentAs before, we'll use a neural network to define our agent. What network architecture do you think would be especially well suited to this game? Since our observations are now in the form of images, we'll add convolutional layers to the network to increase the learning capacity of our network. Note that you will be tasked with completing a template CNN architecture for the Pong agent -- but you should certainly experiment beyond this template to try to optimize performance! ###Code ### Define the Pong agent ### # Functionally define layers for convenience # All convolutional layers will have ReLu activation Conv2D = functools.partial(tf.keras.layers.Conv2D, padding='same', activation='relu') Flatten = tf.keras.layers.Flatten Dense = tf.keras.layers.Dense # Defines a CNN for the Pong agent def create_pong_model(): model = tf.keras.models.Sequential([ # Convolutional layers # First, 32 5x5 filters and 2x2 stride Conv2D(filters=32, kernel_size=5, strides=2), # TODO: define convolutional layers with 48 5x5 filters and 2x2 stride Conv2D(filters=48, kernel_size=5, strides=2), # TODO # Conv2D('''TODO'''), # TODO: define two convolutional layers with 64 3x3 filters and 2x2 stride Conv2D(filters=64, kernel_size=3, strides=2), # TODO Conv2D(filters=64, kernel_size=3, strides=2), # Conv2D('''TODO'''), Flatten(), # Fully connected layer and output Dense(units=128, activation='relu'), # TODO: define the output dimension of the last Dense layer. # Pay attention to the space the agent needs to act in Dense(units=n_actions, activation=None) # TODO # Dense('''TODO''') ]) return model pong_model = create_pong_model() ###Output _____no_output_____ ###Markdown Since we've already defined the action function, `choose_action(model, observation)`, we don't need to define it again. Instead, we'll be able to reuse it later on by passing in our new model we've just created, `pong_model`. This is awesome because our action function provides a modular and generalizable method for all sorts of RL agents! 3.8 Pong-specific functionsIn Part 1 (Cartpole), we implemented some key functions and classes to build and train our RL agent -- `choose_action(model, observation)` and the `Memory` class, for example. However, in getting ready to apply these to a new game like Pong, we might need to make some slight modifications. Namely, we need to think about what happens when a game ends. In Pong, we know a game has ended if the reward is +1 (we won!) or -1 (we lost unfortunately). Otherwise, we expect the reward at a timestep to be zero -- the players (or agents) are just playing eachother. So, after a game ends, we will need to reset the reward to zero when a game ends. This will result in a modified reward function. ###Code ### Pong reward function ### # Compute normalized, discounted rewards for Pong (i.e., return) # Arguments: # rewards: reward at timesteps in episode # gamma: discounting factor. Note increase to 0.99 -- rate of depreciation will be slower. # Returns: # normalized discounted reward def discount_rewards(rewards, gamma=0.99): discounted_rewards = np.zeros_like(rewards) R = 0 for t in reversed(range(0, len(rewards))): # NEW: Reset the sum if the reward is not 0 (the game has ended!) if rewards[t] != 0: R = 0 # update the total discounted reward as before R = R * gamma + rewards[t] discounted_rewards[t] = R return normalize(discounted_rewards) ###Output _____no_output_____ ###Markdown Additionally, we have to consider the nature of the observations in the Pong environment, and how they will be fed into our network. Our observations in this case are images. Before we input an image into our network, we'll do a bit of pre-processing to crop and scale, clean up the background colors to a single color, and set the important game elements to a single color. Let's use this function to visualize what a single observation might look like before and after pre-processing. ###Code observation = env.reset() for i in range(30): action = np.random.choice(n_actions) observation, _,_,_ = env.step(action) observation_pp = mdl.lab3.preprocess_pong(observation) f = plt.figure(figsize=(10,3)) ax = f.add_subplot(121) ax2 = f.add_subplot(122) ax.imshow(observation); ax.grid(False); ax2.imshow(np.squeeze(observation_pp)); ax2.grid(False); plt.title('Preprocessed Observation'); ###Output _____no_output_____ ###Markdown Let's also consider the fact that, unlike CartPole, the Pong environment has an additional element of uncertainty -- regardless of what action the agent takes, we don't know how the opponent will play. That is, the environment is changing over time, based on *both* the actions we take and the actions of the opponent, which result in motion of the ball and motion of the paddles. Therefore, to capture the dynamics, we also consider how the environment changes by looking at the difference between a previous observation (image frame) and the current observation (image frame). We've implemented a helper function, `pong_change`, that pre-processes two frames, calculates the change between the two, and then re-normalizes the values. Let's inspect this to visualize how the environment can change: ###Code next_observation, _,_,_ = env.step(np.random.choice(n_actions)) diff = mdl.lab3.pong_change(observation, next_observation) f, ax = plt.subplots(1, 3, figsize=(15,15)) for a in ax: a.grid(False) a.axis("off") ax[0].imshow(observation); ax[0].set_title('Previous Frame'); ax[1].imshow(next_observation); ax[1].set_title('Current Frame'); ax[2].imshow(np.squeeze(diff)); ax[2].set_title('Difference (Model Input)'); ###Output _____no_output_____ ###Markdown What do you notice? How and why might these pre-processing changes be important for training our RL algorithm? How and why might consideration of the difference between frames be important for training and performance? Rollout function We're now set up to define our key action algorithm for the game of Pong, which will ultimately be used to train our Pong agent. This function can be thought of as a "rollout", where the agent will 1) make an observation of the environment, 2) select an action based on its state in the environment, 3) execute a policy based on that action, resulting in some reward and a change to the environment, and 4) finally add memory of that action-reward to its `Memory` buffer. We will define this algorithm in the `collect_rollout` function below, and use it soon within a training block. Earlier you visually inspected the raw environment frames, the pre-processed frames, and the difference between previous and current frames. As you may have gathered, in a dynamic game like Pong, it can actually be helpful to consider the difference between two consecutive observations. This gives us information about the movement between frames -- how the game is changing. We will do this using the `pong_change` function we explored above (which also pre-processes frames for us). We will use differences between frames as the input on which actions will be selected. These observation changes will be forward propagated through our Pong agent, the CNN network model, which will then predict the next action to take based on this observation. The raw reward will be computed. The observation, action, and reward will be recorded into memory. This will loop until a particular game ends -- the rollout is completed. For now, we will define `collect_rollout` such that a batch of observations (i.e., from a batch of agent-environment worlds) can be processed serially (i.e., one at a time, in sequence). We will later utilize a parallelized version of this function that will parallelize batch processing to help speed up training! Let's get to it. ###Code ### Rollout function ### # Key steps for agent's operation in the environment, until completion of a rollout. # An observation is drawn; the agent (controlled by model) selects an action; # the agent executes that action in the environment and collects rewards; # information is added to memory. # This is repeated until the completion of the rollout -- the Pong game ends. # Processes multiple batches serially. # # Arguments: # batch_size: number of batches, to be processed serially # env: environment # model: Pong agent model # choose_action: choose_action function # Returns: # memories: array of Memory buffers, of length batch_size, corresponding to the # episode executions from the rollout def collect_rollout(batch_size, env, model, choose_action): # Holder array for the Memory buffers memories = [] # Process batches serially by iterating through them for b in range(batch_size): # Instantiate Memory buffer, restart the environment memory = Memory() next_observation = env.reset() previous_frame = next_observation done = False # tracks whether the episode (game) is done or not while not done: current_frame = next_observation '''TODO: determine the observation change. Hint: this is the difference between the past two frames''' frame_diff = mdl.lab3.pong_change(previous_frame, current_frame) # TODO # frame_diff = # TODO '''TODO: choose an action for the pong model, using the frame difference, and evaluate''' action = choose_action(model, frame_diff) # TODO # action = # TODO # Take the chosen action next_observation, reward, done, info = env.step(action) '''TODO: save the observed frame difference, the action that was taken, and the resulting reward!''' memory.add_to_memory(frame_diff, action, reward) # TODO previous_frame = current_frame # Add the memory from this batch to the array of all Memory buffers memories.append(memory) return memories ###Output _____no_output_____ ###Markdown To get a sense of what is encapsulated by `collect_rollout`, we will instantiate an *untrained* Pong model, run a single rollout using this model, save the memory, and play back the observations the model sees. Note that these will be frame *differences*. ###Code ### Rollout with untrained Pong model ### # Model test_model = create_pong_model() # Rollout with single batch single_batch_size = 1 memories = collect_rollout(single_batch_size, env, test_model, choose_action) rollout_video = mdl.lab3.save_video_of_memory(memories[0], "Pong-Random-Agent.mp4") # Play back video of memories mdl.lab3.play_video(rollout_video) ###Output _____no_output_____ ###Markdown 3.9 Training PongWe're now all set up to start training our RL algorithm and agent for the game of Pong! We've already defined the following:1. Loss function, `compute_loss`, and backpropagation step, `train_step`. Our loss function employs policy gradient learning. `train_step` executes a single forward pass and backpropagation gradient update.2. RL agent algorithm: `collect_rollout`. Serially processes batches of episodes, executing actions in the environment, collecting rewards, and saving these to `Memory`.We will use these functions to train the Pong agent.In the training block, episodes will be executed by agents in the environment via the RL algorithm defined in the `collect_rollout` function. Since RL agents start off with literally zero knowledge of their environment, it can often take a long time to train them and achieve stable behavior. To alleviate this, we have implemented a parallelized version of the RL algorithm, `parallelized_collect_rollout`, which you can use to accelerate training across multiple parallel batches.For training, information in the `Memory` buffer from all these batches will be aggregated (after all episodes, i.e., games, end). Discounted rewards will be computed, and this information will be used to execute a training step. Memory will be cleared, and we will do it all over again!Let's run the code block to train our Pong agent. Note that, even with parallelization, completing training and getting stable behavior will take quite a bit of time (estimated at least a couple of hours). We will again visualize the evolution of the total reward as a function of training to get a sense of how the agent is learning. ###Code ### Hyperparameters and setup for training ### # Rerun this cell if you want to re-initialize the training process # (i.e., create new model, reset loss, etc) # Hyperparameters learning_rate = 1e-3 MAX_ITERS = 1000 # increase the maximum to train longer batch_size = 5 # number of batches to run # Model, optimizer pong_model = create_pong_model() optimizer = tf.keras.optimizers.Adam(learning_rate) iteration = 0 # counter for training steps # Plotting smoothed_reward = mdl.util.LossHistory(smoothing_factor=0.9) smoothed_reward.append(0) # start the reward at zero for baseline comparison plotter = mdl.util.PeriodicPlotter(sec=15, xlabel='Iterations', ylabel='Win Percentage (%)') # Batches and environment # To parallelize batches, we need to make multiple copies of the environment. envs = [create_pong_env() for _ in range(batch_size)] # For parallelization ### Training Pong ### # You can run this cell and stop it anytime in the middle of training to save # a progress video (see next codeblock). To continue training, simply run this # cell again, your model will pick up right where it left off. To reset training, # you need to run the cell above. games_to_win_episode = 21 # this is set by OpenAI gym and cannot be changed. # Main training loop while iteration < MAX_ITERS: plotter.plot(smoothed_reward.get()) tic = time.time() # RL agent algorithm. By default, uses serial batch processing. # memories = collect_rollout(batch_size, env, pong_model, choose_action) # Parallelized version. Uncomment line below (and comment out line above) to parallelize memories = mdl.lab3.parallelized_collect_rollout(batch_size, envs, pong_model, choose_action) print(time.time()-tic) # Aggregate memories from multiple batches batch_memory = aggregate_memories(memories) # Track performance based on win percentage (calculated from rewards) total_wins = sum(np.array(batch_memory.rewards) == 1) total_games = sum(np.abs(np.array(batch_memory.rewards))) win_rate = total_wins / total_games smoothed_reward.append(100 * win_rate) # Training! train_step( pong_model, optimizer, observations = np.stack(batch_memory.observations, 0), actions = np.array(batch_memory.actions), discounted_rewards = discount_rewards(batch_memory.rewards) ) # Save a video of progress -- this can be played back later if iteration % 100 == 0: mdl.lab3.save_video_of_model(pong_model, "Pong-v0", suffix="_"+str(iteration)) iteration += 1 # Mark next episode ###Output _____no_output_____ ###Markdown Finally we can put our trained agent to the test! It will play in a newly instantiated Pong environment against the "computer", a base AI system for Pong. Your agent plays as the green paddle. Let's watch the match instant replay! ###Code latest_pong = mdl.lab3.save_video_of_model( pong_model, "Pong-v0", suffix="_latest") mdl.lab3.play_video(latest_pong, width=400) ###Output _____no_output_____
.ipynb_checkpoints/Project_02_Group_Bimbo_Inventory_Demand-checkpoint.ipynb
###Markdown **Grupo Bimbo Inventory Demand***06 de março, 2020* **1. Descrição geral do problema** ---![Grupo Bimbo](https://storage.googleapis.com/kaggle-competitions/kaggle/5260/logos/front_page.png)O [Grupo Bimbo](https://www.grupobimbo.com), se esforça para atender a demanda diária dos consumidores por produtos frescos de panificação nas prateleiras de mais de 1 milhão de lojas ao longo das suas 45.000 lojas em todo o México.Atualmente, os cálculos diários de estoque são realizados por funcionários de vendas de entregas diretas, que devem, sozinhos, prever a necessidade de estoque dos produtos e demanda com base em suas experiências pessoais em cada loja. Como alguns pães têm uma vida útil de uma semana, a margem aceitável para o erro é pequena.**Objetivo:** neste projeto de aprendizado de máquina, vamos desenvolver um modelo para prever com precisão a demanda de estoque com base nos dados históricos de vendas. Isso fará com que os consumidores dos mais de 100 produtos de panificação não fiquem olhando para as prateleiras vazias, além de reduzir o valor gasto com reembolsos para os proprietários de lojas com produtos excedentes impróprios para venda. Para a construção desse projeto, utilizaremos a linguagem R e os datasets disponíveis no Kaggle em:* https://www.kaggle.com/c/grupo-bimbo-inventory-demand--- **2. Carregando dados** **2.1 Importando bibliotecas necessárias** Vamos começar nosso projeto importanto todas as bilbiotecas necessárias para a realização das fases iniciais de exploração e transformação dos dados (*Data Munging*). ###Code # Caso não possua uma das bibliotecas importadas abaixo, a instale com um dos comandos a seguir: install.packages(c( 'data.table', 'bigreadr', 'dplyr', 'ggplot2', 'fasttime', 'lubridate', 'corrplot', 'anomalize', 'stringr' )) # Definindo a oculatação de warnings. options(warn = -1) # Importando bibliotecas. library(data.table) library(bigreadr) library(dplyr) library(ggplot2) library(fasttime) library(lubridate) library(corrplot) library(anomalize) library(stringr) ###Output _____no_output_____ ###Markdown **2.2 Carregando dados do dataset *cliente_tabla*** ###Code # Importando dataset. client <- fread('/content/datasets/cliente_tabla.csv') # Verificando as primeiras linhas do dataset. head(client) ###Output _____no_output_____ ###Markdown **2.3 Carregando dados do dataset *producto_tabla*** ###Code # Importando dataset. product <- fread('/content/datasets/producto_tabla.csv') # Verificando as primeiras linhas do dataset. head(product) ###Output _____no_output_____ ###Markdown **2.4 Carregando dados do dataset *town_state*** ###Code # Importando dataset. town <- fread('/content/datasets/town_state.csv') # Verificando as primeiras linhas do dataset. head(town) ###Output _____no_output_____ ###Markdown **2.5 Carregando dados de treino** ###Code # Importando dataset. train <- fread('/content/datasets/train.csv') # Verificando as primeiras linhas do dataset. head(train) ###Output _____no_output_____ ###Markdown **2.6 Carregando dados de teste** ###Code # Importando dataset. test <- fread('/content/datasets/test.csv') # Verificando as primeiras linhas do dataset. head(test) ###Output _____no_output_____ ###Markdown **3. Data Munging - Eliminando inconsistências nos datasets** A [documentação](https://www.kaggle.com/c/grupo-bimbo-inventory-demand/data) nos alerta para a existência de alguns problemas que devem ser tratados dentro do conjunto de dados, como por exemplo registros duplicados. Por isso, iremos fazer uma breve exploração dos datasets para eliminar todas as inconsistências que possuam. **3.1 Dataset *client*** ###Code # Visualizando as primeiras 10 linhas do dataset. head(client, 10) ###Output _____no_output_____ ###Markdown Podemos observar que existem *IDs* que se repetem e nomes de clientes desconhecidos (denominados como **"SIN NOMBRE"**) no conjunto de dados que precisarão ser tratados.Vamos contabilizar o número de registros duplicados no dataset. ###Code # Verificando linhas duplicadas no dataset. table(duplicated(client)) ###Output _____no_output_____ ###Markdown Não encontramos nenhum registro duplicado o que nos leva a crer que a variável **NombreCliente** apresenta strings com diferentes tamanhos para cada ID duplicado. Vamos confirmar esta teoria.Ao listar as primeira linhas do conjunto de dados, vimos que o *ID* **4** se repete duas vezes. Com base nisso, vamos capturar e analisar o valor da variável **NombreCliente** associado a este *ID* em cada observação. ###Code # Definindo o número do ID que deve ser capturado. id <- 4 # Capturando linhas que contenham o ID especificado. client[client$Cliente_ID == id,] # Capturando nomes associados a cada um dos registros duplicados. fName <- client[client$Cliente_ID == id,][1, 'NombreCliente'] sName <- client[client$Cliente_ID == id,][2, 'NombreCliente'] # Definindo o número de caracteres de cada um dos nomes dos registros duplicados. nchar(fName) nchar(sName) ###Output _____no_output_____ ###Markdown A partir deste resultado podemos confirmar que há uma diferença entre os valores das variáveis **NombreCliente** de cada registro duplicado. Isto provavelmente ocorre devido a diferença do número de espaços existentes em cada nome. Iremos contabilizar o número de registros duplicados a partir da variável **Cliente_ID**. ###Code # Verificando número de IDs duplicados no dataset. table(duplicated(client$Cliente_ID)) # Removendo registros com número de ID duplicado. client <- client[!duplicated(client$Cliente_ID),] ###Output _____no_output_____ ###Markdown Definiremos o número de registros sem o nome do cliente. ###Code # Verificando número de registros sem o nome do cliente. nrow(client[client$NombreCliente == 'SIN NOMBRE', ]) ###Output _____no_output_____ ###Markdown Há **356 observações** sem o nome do cliente. ###Code # Verificando se existem valores nulos no dataset. anyNA(client) ###Output _____no_output_____ ###Markdown Não há valores nulos no dataset. ###Code # Verificando o tipo de dado das variáveis do dataset. glimpse(client) ###Output Rows: 930,500 Columns: 2 $ Cliente_ID <int> 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1… $ NombreCliente <chr> "SIN NOMBRE", "OXXO XINANTECATL", "SIN NOMBRE", "EL MOR… ###Markdown O conjunto de dados contém registros de **930.500** clientes. **3.2 Dataset *product*** ###Code # Visualizando as primeiras 10 linhas do dataset. head(product, 10) ###Output _____no_output_____ ###Markdown Vamos contabilizar o número de registros duplicados no dataset. ###Code # Verificando linhas duplicadas no dataset. table(duplicated(product)) ###Output _____no_output_____ ###Markdown Nenhuma observação duplicada foi encontrada. ###Code # Verificando número de IDs duplicados no dataset. table(duplicated(product$Producto_ID)) ###Output _____no_output_____ ###Markdown Nenhum número de *ID* duplicado foi encontrado. Porém, o produto com o *ID* **0** não possui o nome do produto (possui o valor **"NO IDENTIFICADO"**). Iremos verificar se isto só ocorre neste registro. ###Code # Capturando a substring especificada. pattern <- "NO IDENTIFICADO" # Definindo linhas que não identifiquem o nome do produto. rows <- grep(pattern, product[, 'NombreProducto'], value = F) # Visualizando linhas que não contenham o nome do produto. product[rows, ] ###Output _____no_output_____ ###Markdown Concluímos que apenas o *ID* **0** não apresenta um nome de produto. Talvez vez isto ocorra porque um único *ID* pode estar sendo utilizado para identificar produtos que ainda não foram devidamente registrados no conjunto de dados. ###Code # Verificando se existem valores nulos no dataset. anyNA(product) ###Output _____no_output_____ ###Markdown Não há valores nulos no dataset. ###Code # Verificando o tipo de dado das variáveis do dataset. glimpse(product) ###Output Rows: 2,592 Columns: 2 $ Producto_ID <int> 0, 9, 41, 53, 72, 73, 98, 99, 100, 106, 107, 108, 109,… $ NombreProducto <chr> "NO IDENTIFICADO 0", "Capuccino Moka 750g NES 9", "Bim… ###Markdown O conjunto de dados contém registros de **2.592 produtos**. Repare que a variável **NombreProducto** contém outras informações além do nome do produto. Parece que a string segue o seguinte padrão:| | | | | | ||:------------------------------|:------------------|:------------------|:-------|:----------------------|:---------------|| **NombreProducto** | *Nome do produto* | *Número de peças* | *Peso* | *Sigla do fabricante* | *ID do produto*|Veja que este padrão não está presente em todos os valores da variável, mas predomina em grande parte dos dados. Bom, não precisamos de todas estas informações para a análise que iremos fazer e por isso iremos extair apenas o **nome**, o **peso** e a **sigla do fabricante** de cada produto. ###Code ## Extraindo a unidade de medida de massa do produto. # Extraindo a substring com as informações brutas para uma variável temporária. tmp <- str_extract(product$NombreProducto, "([0-9 ] |[0-9])+(G|g|Kg|kg|ml)") # Criando uma varíavel para armazenar o número associado ao peso do produto. product$Npeso <- as.integer(str_extract(tmp, "[0-9]+")) # Criando uma varíavel para armazenar a unidade de medida do peso do produto. product$UniPeso <- tolower(str_extract(tmp, "[A-z]+")) # Criando uma variável para armazenar a sigla referente ao fabricante. product$Productor <- toupper(str_extract( str_extract(product$NombreProducto, "( [A-Z]+[a-z ]+[A-Z]+ [A-Z ]+ [0-9]+$| [A-Z ]+[A-Z ]+ [0-9]+$)"), "( [A-Z]+[a-z ]+[A-Z]+ [A-Z ]+ | [A-Z ]+[A-Z ]+ )" )) # Extraindo o nome do produto. product$NombreProducto <- str_extract(product$NombreProducto, "[A-z ]+") # Visualizando dataset após a extração das informações desejadas. head(product) # Verificando se existem valores nulos em cada variável do dataset. sapply(product, function(v){ table(is.na(v)) }) ###Output _____no_output_____ ###Markdown Como resultado final, verificamos que não foi possível determinar o peso de **51 produtos** e nem o sigla de **1 fabricante**. **3.3 Dataset *town*** ###Code # Visualizando as primeiras 10 linhas do dataset. head(town, 10) ###Output _____no_output_____ ###Markdown Vamos verificar se há registros ou *IDs* de agência duplicados no dataset. ###Code # Verificando linhas duplicadas no dataset. table(duplicated(town)) ###Output _____no_output_____ ###Markdown Nenhum registro duplicado foi encontrado. ###Code # Verificando número de IDs duplicados no dataset. table(duplicated(town$Agencia_ID)) ###Output _____no_output_____ ###Markdown Nenhum registro contém um número de *ID* duplicado. ###Code # Verificando se existem valores nulos no dataset. anyNA(town) ###Output _____no_output_____ ###Markdown Não há valores nulos no dataset. ###Code # Verificando o tipo de dado das variáveis do dataset. glimpse(town) ###Output Rows: 790 Columns: 3 $ Agencia_ID <int> 1110, 1111, 1112, 1113, 1114, 1116, 1117, 1118, 1119, 1120… $ Town <chr> "2008 AG. LAGO FILT", "2002 AG. AZCAPOTZALCO", "2004 AG. C… $ State <chr> "MÉXICO, D.F.", "MÉXICO, D.F.", "ESTADO DE MÉXICO", "MÉXIC… ###Markdown O conjunto de dados contém registros de **790 cidades** e seus respectivos estados. **3.4 Dataset *train*** ###Code # Visualizando as primeiras 10 linhas do dataset. head(train, 10) # Verificando linhas duplicadas no dataset. table(duplicated(train)) ###Output _____no_output_____ ###Markdown Não há registros duplicados no dataset. ###Code # Verificando se existem valores nulos no dataset. anyNA(train) ###Output _____no_output_____ ###Markdown Não há valores nulos no dataset. ###Code # Verificando o tipo de dado das variáveis do dataset. glimpse(train) ###Output Rows: 74,180,464 Columns: 11 $ Semana <int> 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, … $ Agencia_ID <int> 1110, 1110, 1110, 1110, 1110, 1110, 1110, 1110, 111… $ Canal_ID <int> 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, … $ Ruta_SAK <int> 3301, 3301, 3301, 3301, 3301, 3301, 3301, 3301, 330… $ Cliente_ID <int> 15766, 15766, 15766, 15766, 15766, 15766, 15766, 15… $ Producto_ID <int> 1212, 1216, 1238, 1240, 1242, 1250, 1309, 3894, 408… $ Venta_uni_hoy <int> 3, 4, 4, 4, 3, 5, 3, 6, 4, 6, 8, 4, 12, 7, 10, 5, 3… $ Venta_hoy <dbl> 25.14, 33.52, 39.32, 33.52, 22.92, 38.20, 20.28, 56… $ Dev_uni_proxima <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, … $ Dev_proxima <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, … $ Demanda_uni_equil <int> 3, 4, 4, 4, 3, 5, 3, 6, 4, 6, 8, 4, 12, 7, 10, 5, 3… ###Markdown O conjunto de dados de treino contém **74.180.464 registros** e **11 colunas**. **3.5 Dataset *test*** ###Code # Visualizando as primeiras 10 linhas do dataset. head(test, 10) # Verificando linhas duplicadas no dataset. table(duplicated(test)) ###Output _____no_output_____ ###Markdown Não há registros duplicados no dataset. ###Code # Verificando se existem valores nulos no dataset. anyNA(test) ###Output _____no_output_____ ###Markdown Não há valores nulos no dataset. ###Code # Verificando o tipo de dado das variáveis do dataset. glimpse(test) ###Output Rows: 6,999,251 Columns: 7 $ id <int> 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,… $ Semana <int> 11, 11, 10, 11, 11, 11, 11, 10, 10, 11, 11, 10, 11, 10, 1… $ Agencia_ID <int> 4037, 2237, 2045, 1227, 1219, 1146, 2057, 1612, 1349, 146… $ Canal_ID <int> 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, … $ Ruta_SAK <int> 2209, 1226, 2831, 4448, 1130, 6601, 4507, 2837, 1223, 120… $ Cliente_ID <int> 4639078, 4705135, 4549769, 4717855, 966351, 1741414, 4659… $ Producto_ID <int> 35305, 1238, 32940, 43066, 1277, 972, 1232, 35305, 1240, … ###Markdown O conjunto de dados de treino contém **6.999.251 registros** e **7 colunas**. **4. Análise exploratória dos dados** **4.1 Visão geral** Segundo a [documentação](https://www.kaggle.com/c/grupo-bimbo-inventory-demand/data) referente ao projeto, cada linha dos dados de treinamento contém um registro de vendas com as seguintes variáveis:| Variável | Descrição ||:------------------------------|:-----------------------------------------------------------------------|| **Semana** | é o número da semana *(de quinta a quarta-feira)*; || **Agencia_ID** | é o *ID* do depósito de vendas; || **Canal_ID** | é o *ID* do canal de vendas; || **Ruta_SAK** | é o *ID* da rota *(várias rotas = depósito de vendas)*; || **Cliente_ID** | é o *ID* do cliente; || **NombreCliente** | é o nome do cliente; || **Producto_ID** | é o *ID* do produto; || **NombreProducto** | é o nome do produto; || **Venta_uni_hoy** | é o número de unidades vendidas na semana; || **Venta_hoy** | é o valor de venda na semana *(unidade monetária: pesos)*; || **Dev_uni_proxima** | é o número de unidades retornadas na próxima semana; || **Dev_proxima** | é o valor retornado na próxima semana e *(unidade monetária: pesos)* e;|| **Demanda_uni_equil (Target)**| *é a variável a ser prevista*, define a demanda ajustada. |Nesta etapa vamos buscar entender a disposição e as características dos dados dentro do dataset de treino além de extrair insigths que possam auxiliar no processo de criação do modelo preditivo. ###Code # Verificando o tipo de dado das variáveis do dataset. glimpse(train) ###Output Rows: 74,180,464 Columns: 11 $ Semana <int> 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, … $ Agencia_ID <int> 1110, 1110, 1110, 1110, 1110, 1110, 1110, 1110, 111… $ Canal_ID <int> 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, … $ Ruta_SAK <int> 3301, 3301, 3301, 3301, 3301, 3301, 3301, 3301, 330… $ Cliente_ID <int> 15766, 15766, 15766, 15766, 15766, 15766, 15766, 15… $ Producto_ID <int> 1212, 1216, 1238, 1240, 1242, 1250, 1309, 3894, 408… $ Venta_uni_hoy <int> 3, 4, 4, 4, 3, 5, 3, 6, 4, 6, 8, 4, 12, 7, 10, 5, 3… $ Venta_hoy <dbl> 25.14, 33.52, 39.32, 33.52, 22.92, 38.20, 20.28, 56… $ Dev_uni_proxima <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, … $ Dev_proxima <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, … $ Demanda_uni_equil <int> 3, 4, 4, 4, 3, 5, 3, 6, 4, 6, 8, 4, 12, 7, 10, 5, 3… ###Markdown O conjunto de dados de treino contém **74.180.464 registros** e **11 colunas**. Todas as variáveis apresentam o tipo de dado numérico. ###Code # Verificando o número de valores únicos para cada variável do dataset. t <- sapply(train, function(c) { length(unique(c)) }) # Exibindo os resultados. print(t) ###Output Semana Agencia_ID Canal_ID Ruta_SAK 7 552 9 3603 Cliente_ID Producto_ID Venta_uni_hoy Venta_hoy 880604 1799 2116 78140 Dev_uni_proxima Dev_proxima Demanda_uni_equil 558 14707 2091 ###Markdown Estes resultados são interessantes. Destacamos que podemos observar a existência de registros de **7 semanas**; **880604 IDs de clientes** e; **1799 IDs de Produtos** diferentes no dataset. **4.2 Analisando cada variável separadamente** **4.2.1 Criando funções auxiliares** Criaremos algumas funções para padronizar as plotagens de gráficos que efetuaremos. ###Code # Definindo uma função para criar gráficos de barra. barPlot <- function(col, data) { data %>% mutate_at(c(var = col), as.factor) %>% group_by(var) %>% summarise(absFreq = n()) %>% ggplot(aes(x = var, y = absFreq)) + geom_bar(stat = 'identity', alpha = 0.75, fill = '#086788') + ylab('Frequency') + xlab(col) + labs(title = paste('Bar plot for variable:', col)) + theme_bw() } # Definindo uma função para criar gráficos de boxplot. boxPlot <- function(col, data) { data %>% group_by_at(col) %>% summarise(absFreq = n()) %>% ggplot(aes(x = absFreq)) + geom_boxplot(fill = '#566E3D', color = '#373D20', alpha = 0.8) + theme_bw() + theme(axis.text.y = element_blank()) + xlab(paste(col, 'frequency')) + labs(title = paste('Boxplot for variable:', col)) } ###Output _____no_output_____ ###Markdown **4.2.2 Variável Semana** ###Code # Definindo o nome da variável a ser analisada. col <- 'Semana' # Criando um gráfico de barras para a variável especificada. barPlot(col, train) ###Output _____no_output_____ ###Markdown O gráfico nos permite observar há existênica de uma distribuição aproximadamente uniforme dos registros entre as semanas. ###Code # Contabilizando o número de registros por semana. table(Semana = train$Semana) ###Output _____no_output_____ ###Markdown **4.2.3 Variável Agencia_ID** ###Code # Criando um boxplot com as frequências com que os ID das agências aparecem no conjunto de dados. # Definindo o nome da variável a ser analisada. col <- 'Agencia_ID' # Criando um gráfico boxplot para a variável especificada. boxPlot(col, train) ###Output _____no_output_____ ###Markdown Vemos que há outliers nas frequências com que os *IDs* das agências aparecem no conjunto de dados. Vamos determinar a cidade e o estado destas agências com que a frequência do *ID* foi discrepante. ###Code # Determinando o endereço, o estado e ordenando de forma decrescente a frequência dos IDs das agências no dataset. AgencyIdFreq <- train %>% select(Agencia_ID) %>% group_by(Agencia_ID) %>% summarise(absFreq = n()) %>% arrange(desc(absFreq)) %>% inner_join(town, by = 'Agencia_ID') # Visualizando os 5 IDs de agências mais frequentes. head(AgencyIdFreq) # Extraindo outliers do dataset. AgencyIdStates <- AgencyIdFreq %>% anomalize(absFreq, method = 'iqr', alpha = 0.10) %>% filter(anomaly == 'Yes') %>% select(-c(absFreq_l1, absFreq_l2, anomaly)) # Visualizando as informações dos outliers. AgencyIdStates ###Output _____no_output_____ ###Markdown Parece haver um grupo de estados mais frequente dentro das informações destas agências discrepantes. Para facilitar esta análise, iremos criar um gráfico de barras. ###Code # Criando um gráfico de barras para os estados das agências que apresentaram uma frequência discrepante. # Definindo o nome da variável a ser analisada. col <- 'State' # Criando um gráfico de barras para a variável especificada. barPlot(col, AgencyIdStates) # Determinando a proporção dos estados identificados entre os IDs das agências que apresentaram uma frequência discrepante. prop.table(table(AgencyIdStates$State)) ###Output _____no_output_____ ###Markdown Concluímos que o **Estado do México** apresenta 6 das agências mais recorrentes no conjunto de dados e que o estado de **Jalisco** é o que possui a agência mais frequente. **4.2.4 Variável Canal_ID** ###Code # Plotando um gráfico de barras para o conjunto de dados da variável. # Definindo o nome da variável a ser analisada. col <- 'Canal_ID' # Criando um gráfico de barras para a variável especificada. barPlot(col, train) ###Output _____no_output_____ ###Markdown Observamos que o canal de vendas com *ID* **1** é o mais frequente. Determinaremos a proporção da frequência de cada um destes canais dentro do conjunto de dados. ###Code # Determinando a propoção de cada um dos canais. train %>% mutate(Canal_ID = as.factor(Canal_ID)) %>% group_by(Canal_ID) %>% summarise(Prop = round(n() / length(train$Canal_ID) * 100, digits = 3)) ###Output _____no_output_____ ###Markdown Concluímos que aproximadamente **91%** dos registros do conjunto de dados está associado ao **Canal com ID = 1**. **4.2.5 Variável Ruta_SAK** ###Code # Criando um boxplot com as frequências com que as rotas usadas aparecem no conjunto de dados. # Definindo o nome da variável a ser analisada. col <- 'Ruta_SAK' # Criando um gráfico de boxplot para a variável especificada. boxPlot(col, train) ###Output _____no_output_____ ###Markdown Há um grande número de outliers dentro desta variável. Pode ser interessante extraí-los e análisá-los separadamente. ###Code # Determinando em ordem decrescente as rotas mais frequentes dentro do conjunto de dados. routeFreq <- train %>% group_by(Ruta_SAK) %>% summarise(absFreq = n()) %>% arrange(desc(absFreq)) # Visualizando as primeiras linhas do dataset. head(routeFreq) # Extraindo outliers do dataset. routeOutFreq <- routeFreq %>% anomalize(absFreq, method = 'iqr', alpha = 0.10) %>% filter(anomaly == 'Yes') %>% select(-c(absFreq_l1, absFreq_l2, anomaly)) # Determinando número de outliers. nrow(routeOutFreq) ###Output _____no_output_____ ###Markdown Bom, detectamos a existência de **605 rotas** com frequências discrepantes dentro do conjunto de dados. ###Code # Determinando a rota mais frequente dentro do conjunto de dados. routeOutFreq[routeOutFreq$absFreq == max(routeOutFreq$absFreq), ] ###Output _____no_output_____ ###Markdown Constatamos que **a rota 1201 é a mais recorrente** no dataset. ###Code # Determinando a proporção de rotas com frequências discrepantes. length(routeOutFreq$Ruta_SAK) / length(unique(train$Ruta_SAK)) * 100 # Determinando a proporção de registros associados as rotas discrepantes. sum(routeOutFreq$absFreq) / length(train$Ruta_SAK) * 100 ###Output _____no_output_____ ###Markdown Por fim, concluímos que aproximadamente **16.8%** das rotas apresentam frequências discrepantes e são responsáveis por **86.38%** das entregas. **4.2.6 Variável Cliente_ID** ###Code # Criando um boxplot com as frequências com que os IDs dos clientes que estão presentes no dataset aparecem. # Definindo o nome da variável a ser analisada. col <- 'Cliente_ID' # Criando um gráfico de boxplot para a variável especificada. boxPlot(col, train) ###Output _____no_output_____ ###Markdown Veja que interessante, há um cliente que apresenta uma frequência extremamente alta em relação aos demais e acaba distorcendo o gráfico. Vamos identificar o nome deste cliente junto com os dos demais outliers. ###Code # Determinando em ordem decrescente os clientes mais frequentes dentro do conjunto de dados. clientFreq <- train %>% select(Cliente_ID) %>% group_by(Cliente_ID) %>% summarise(absFreq = n()) %>% arrange(desc(absFreq)) %>% inner_join(client, by = 'Cliente_ID') # Visualizando as primeiras linhas do dataset. head(clientFreq) ###Output _____no_output_____ ###Markdown O cliente mais discrepante possui uma frequência que é aproximadamente **23.4 vezes maior** do que a do cliente que ocupa a segunda posição nos dando uma breve noção do quão distante este primeiro colocado está dos demais. ###Code # Extraindo outliers do dataset. clientOutFreq <- clientFreq %>% anomalize(absFreq, method = 'iqr', alpha = 0.0415) %>% filter(anomaly == 'Yes') %>% select(-c(absFreq_l1, absFreq_l2, anomaly)) # Determinando número de outliers. nrow(clientOutFreq) ###Output _____no_output_____ ###Markdown Verificamos a existência de **1622** *IDs* de clientes com frequências discrepantes dentro do conjunto de dados. ###Code # Determinando o cliente mais frequente dentro do conjunto de dados. mostFrequentClient <- clientOutFreq[clientOutFreq$absFreq == max(clientOutFreq$absFreq), ] # Visualizando o cliente mais frequente dentro do conjunto de dados. mostFrequentClient ###Output _____no_output_____ ###Markdown Identificamos que o nome do cliente que possuí o *ID* mais recorrente dentro do dataset é **"Puebla Remision"**. ###Code # Determinando a proporção de registros que contém o ID do Cliente com a frequência mais discrepante. mostFrequentClient$absFreq / length(train$Cliente_ID) * 100 ###Output _____no_output_____ ###Markdown O cliente **"Puebla Remision"** está associado a aproximadamente **0.167%** dos registros do conjunto de dados. ###Code # Determinando a proporção de registros que contém os IDs dos Clientes com as frequências mais discrepantes. sum(clientOutFreq$absFreq) / length(train$Cliente_ID) * 100 ###Output _____no_output_____ ###Markdown Todos os registros associados a *IDs* de clientes que possuem uma frequência discrepante correspondem a aproximadamente **1.37%** do total. Isto nos indica que a maior parte dos dados que estamos manipulando estão relacionados a muitos clientes que efetuam compras com uma frequência que não foge do padrão. **4.2.7 Variável Producto_ID** ###Code # Criando um boxplot com as frequências com que os IDs dos produtos que estão presentes no dataset aparecem. # Definindo o nome da variável a ser analisada. col <- 'Producto_ID' # Criando um gráfico de boxplot para a variável especificada. boxPlot(col, train) ###Output _____no_output_____ ###Markdown Existem muitos outliers entre as frequências dos produtos. Isto indica que há um subconjunto de itens que fogem do padrão de venda do resto dos demais produtos. ###Code # Determinando em ordem decrescente os produtos mais frequentes dentro do conjunto de dados. productFreq <- train %>% select(Producto_ID) %>% group_by(Producto_ID) %>% summarise(absFreq = n()) %>% arrange(desc(absFreq)) %>% inner_join(product, by = 'Producto_ID') # Visualizando as primeiras linhas do dataset. head(productFreq) # Extraindo outliers do dataset. productOutFreq <- productFreq %>% anomalize(absFreq, method = 'iqr', alpha = 0.1) %>% filter(anomaly == 'Yes') %>% select(-c(absFreq_l1, absFreq_l2, anomaly)) # Determinando número de outliers. nrow(productOutFreq) ###Output _____no_output_____ ###Markdown Observamos que existem **333 frequências** de produtos discreprantes. ###Code # Determinando o produto mais frequente dentro do conjunto de dados. mostFrequentProduct <- productOutFreq[productOutFreq$absFreq == max(productOutFreq$absFreq), ] # Visualizando o produto mais frequente dentro do conjunto de dados. mostFrequentProduct ###Output _____no_output_____ ###Markdown Detectamos que o produto que mais apresenta registros de vendas dentro do nosso conjunto de dados é denominado **"Mantecadas Vainilla"**. ###Code # Determinando a proporção de registros que contém os IDs dos produtos com as frequências discrepantes. sum(productOutFreq$absFreq) / length(train$Producto_ID) * 100 ###Output _____no_output_____ ###Markdown Os produtos que apresentam uma frequência discrepante dentro do conjunto de dados são responsáveis por aproximadamente **96.76%** dos registros. ###Code # Determinando a sigla do fabricante mais recorrente dentro do conjunto de dados que contém os IDs dos produtos com as frequências discrepantes. manufacturersOut <- productOutFreq %>% group_by(Productor) %>% summarise(absFreq = n()) %>% arrange(desc(absFreq)) # Visualizando as primeiras linhas do dataset. head(manufacturersOut) ###Output _____no_output_____ ###Markdown Concluímos que o fabricante identificado pela sigla **BIM** é o mais recorrente dentro dos produtos que apresentam uma frequência discrepante. **4.2.8 Variável Venta_uni_hoy** ###Code # Verificando a distribuição dos dados. summary(train$Venta_uni_hoy) # Verificando a frequência com que cada número de unidades aparece no dataset. t <- train %>% group_by(Venta_uni_hoy) %>% summarise(absFreq = n()) # Ordenando dados das frequências em ordem decrescente. t <- t[order(t$absFreq, decreasing = T), ] # Visualizando o número de unidades mais frequentes no dataset. head(t, 10) ###Output _____no_output_____ ###Markdown Concluímos que as vendas com **2 unidades** são as mais frequentes dentro do conjunto de dados e que o número das 10 unidades mais frequentes varia entre **1 e 10**. **4.2.9 Variável Venta_hoy** ###Code # Verificando a distribuição dos dados. summary(train$Venta_hoy) # Definindo o valor total de vendas por semana. train %>% group_by(Semana) %>% summarise(total_Venta_hoy = sum(Venta_hoy)) # Definindo o valor total de vendas por cliente. train %>% group_by(Cliente_ID ) %>% summarise(total_Venta_hoy = sum(Venta_hoy)) %>% arrange(desc(total_Venta_hoy)) %>% head(10) ###Output _____no_output_____ ###Markdown **4.2.10 Variável Dev_uni_proxima** ###Code # Verificando a distribuição dos dados. summary(train$Dev_uni_proxima) # Definindo o número total de unidades retornadas na próxima semana. train %>% group_by(Semana) %>% summarise(total_Dev_uni_proxima = sum(Dev_uni_proxima)) # Definindo o número total de unidades retornadas na próxima semana por cliente. train %>% group_by(Cliente_ID) %>% summarise(total_Dev_uni_proxima = sum(Dev_uni_proxima)) %>% arrange(desc(total_Dev_uni_proxima)) %>% head() ###Output _____no_output_____ ###Markdown **4.2.11 Variável Dev_proxima** ###Code # Verificando a distribuição dos dados. summary(train$Dev_proxima) # Definindo o valor total retornado na próxima semana. train %>% group_by(Semana) %>% summarise(total_Dev_proxima = sum(Dev_proxima)) # Definindo o valor total retornado na próxima semana por cliente. train %>% group_by(Cliente_ID) %>% summarise(total_Dev_proxima = sum(Dev_proxima)) %>% arrange(desc(total_Dev_proxima)) %>% head() ###Output _____no_output_____ ###Markdown **4.2.12 Variável Demanda_uni_equil** ###Code # Criando um boxplot para visualizar a distribuição dos dados da variável Demanda_uni_equil. # Definindo o nome da variável a ser analisada. col <- 'Demanda_uni_equil' # Criando um gráfico de boxplot para a variável especificada. train %>% ggplot(aes(x = Demanda_uni_equil)) + geom_boxplot(fill = '#566E3D', color = '#373D20', alpha = 0.8) + theme_bw() + theme(axis.text.y = element_blank()) + xlab('Values') + labs(title = 'Boxplot for variable: Demanda uni equil') ###Output _____no_output_____ ###Markdown Vemos que há uma distorção muito grande dentro dos valores da variável a ser prevista devido a presença de outliers muito discrepantes. Deveremos tratar este problema para conseguirmos aumentar a performance dos modelos preditivos que criarmos. **4.2.13 Variável Town** Agora, iremos verificar quantos e quais são os estados e as agências por cidades presentes no conjunto de dados. ###Code # Contabilizando a frequência de agências por cidade dentro do dataset. t <- town %>% group_by(Town) %>% summarise(absFreq = n()) # Ordenando resultados. t <- t[order(t$absFreq, decreasing = T),] # Visualizando as primeiras 10 linhas da tabela. head(t, 10) # Determinando o número de agências por cidade atendidas. nrow(t) ###Output _____no_output_____ ###Markdown Detectamos **260** agências por cidades atendidas.Criaremos um boxplot para verificar se existem outliers dentro das frequências de agências por cidade. ###Code # Definindo o nome da variável a ser analisada. col <- 'Town' # Criando um gráfico de boxplot para a variável especificada. boxPlot(col, town) ###Output _____no_output_____ ###Markdown Concluímos que a agência ***2013 AG. MEGA NAUCALPAN*** apresenta um frequência absoluta que saí do pradrão das demais presentes no conjunto de dados. **4.2.14 Variável State** ###Code # Contabilizando a frequência de cada estado dentro do dataset. t <- town %>% group_by(State) %>% summarise(absFreq = n()) # Ordenando resultados. t <- t[order(t$absFreq, decreasing = T),] # Visualizando as primeiras 10 linhas da tabela. head(t, 10) # Determinando o número de estados atendidos. nrow(t) ###Output _____no_output_____ ###Markdown Detectamos que **33 estados** são atendidos. ###Code # Definindo o nome da variável a ser analisada. col <- 'State' # Criando um gráfico de boxplot para a variável especificada. boxPlot(col, town) ###Output _____no_output_____ ###Markdown Concluímos que o ***ESTADO DE MÉXICO*** apresenta um frequência absoluta que saí do pradrão dos demais presentes no conjunto de dados. **5. Análise Preditiva** **5.1 Importando bibliotecas necessárias** Importaremos todas as bilbiotecas necessárias para a realização dos processos de modelagem preditiva. ###Code # Caso não possua uma das bibliotecas importadas abaixo, a instale com um dos comandos a seguir: install.packages(c( 'Metrics', 'xgboost', 'randomForest', 'caret' )) # Importando bibliotecas. library(Metrics) library(xgboost) library(randomForest) library(caret) ###Output _____no_output_____ ###Markdown **5.2 Feature Selection** Observe que as variáveis **Venta_uni_hoy**, **Venta_hoy**, **Dev_uni_proxima** e **Dev_proxima** não estão presentes no conjunto de dados de teste e por isso iremos excluí-las do conjunto de dados de treino. ###Code # Selecionando as variáveis que serão utilizadas na fase de modelagem preditiva dentro do dataset de treino. train <- train %>% select(Semana, Agencia_ID, Canal_ID, Ruta_SAK, Cliente_ID, Producto_ID, Demanda_uni_equil) ###Output _____no_output_____ ###Markdown **5.3 Feature Engineering I - Transformando variável Target** Agora, iremos retornar ao problema da distorção dos valores do conjunto de dados da variável alvo. Criaremos mais uma vez um boxplot para visualizar a distribuição dos dados bem como um gráfico de densidade. ###Code # Criando um boxplot para visualizar a distribuição dos dados da variável Demanda_uni_equil. train %>% ggplot(aes(x = Demanda_uni_equil)) + geom_boxplot(fill = '#566E3D', color = '#373D20', alpha = 0.8) + theme_bw() + theme(axis.text.y = element_blank()) + xlab('Values') + labs(title = 'Boxplot for variable: Demanda uni equil') # Criando um gráfico de densidade para visualizar a distribuição dos dados da variável Demanda_uni_equil. train %>% ggplot(aes(x = Demanda_uni_equil)) + geom_density(fill = '#A6EBC9') + theme_bw() + labs(title = 'Density graph for variable: Demanda uni equil') + xlab('Demanda uni equil') ###Output _____no_output_____ ###Markdown Muito bem, para contornar este problema da distorção nos dados usaremos a função de transformação **log1p (ou log(x + 1))** para diminuir a irregularidade nos dados e tornar os padrões que esta variável possuí mais visíveis. Também utilizaremos a função **expm1 (ou exp(x) - 1)** para realizar o processo inverso de transformação dos resultados obtidos ao se aplicar a função **log1p**. Ou seja, transformaremos a variável a ser prevista para realizar a execução da análise preditiva e no final converteremos os resultados gerados para a sua escala original. Para mais informações sobre como a função **log** atua sobre dados distorcidos [consulte este link](http://onlinestatbook.com/2/transformations/log.html). Para entender melhor as funções **log1p e expm1** [consulte este link](https://www.johndcook.com/blog/2010/06/07/math-library-functions-that-seem-unnecessary/).Destacamos que o principal motivo de utilizarmos a função **log1p** é há existência de valores nulos dentro dos dados da variável o que inviabiliza o uso da função **log** pois o [log(0) é um valor indefinido](https://www.rapidtables.com/math/algebra/logarithm/Logarithm_of_0.html). ###Code # Verificando a existência de valores nulos dentro do conjunto de dados da variável Demanda_uni_equil. prop.table(table(train$Demanda_uni_equil == 0)) ###Output _____no_output_____ ###Markdown Detectamos que aproximadamente **1.8%** dos dados da variável a ser prevista são iguais a **0**.Vamos aplicar a função **log1p** ao conjunto de dados. ###Code # Calcula o logaritmo natural de cada valor da variável Demanda_uni_equil acrescido de 1 unidade, ou seja, log(Demanda_uni_equil + 1). train$Demanda_uni_equil <- log1p(train$Demanda_uni_equil) ###Output _____no_output_____ ###Markdown Criaremos mais uma vez um gráfico de boxplot e um gráfico de densidade para visualizar o efeito da transformação aplicada sobre os dados. ###Code # Criando um boxplot para visualizar a distribuição dos dados da variável Demanda_uni_equil transformada. train %>% ggplot(aes(x = Demanda_uni_equil)) + geom_boxplot(fill = '#566E3D', color = '#373D20', alpha = 0.8) + theme_bw() + theme(axis.text.y = element_blank()) + xlab('log(Demanda uni equil + 1)') + labs(title = 'Boxplot for variable: Demanda uni equil') # Criando um gráfico de densidade para visualizar a distribuição dos dados da variável Demanda_uni_equil transformada. train %>% ggplot(aes(x = Demanda_uni_equil)) + geom_density(fill = '#A6EBC9') + theme_bw() + labs(title = 'Density graph for variable: Demanda uni equil') + xlab('log(Demanda uni equil + 1)') ###Output _____no_output_____ ###Markdown Concluímos que a aplicação da função **log1p** diminuiu a distorção causada pelos valores discrepantes dentro do conjunto de dados da variável a ser prevista e isso nos ajudará a alçancar valores de acurácia melhores nos modelos que criarmos. **5.4 Unindo dados de treino e de teste em um mesmo dataset** Nosso objetivo nesta etapa é criar um único dataset contendo tanto os dados de treino quanto os dados de teste. Mas, antes de executarmos esta ação devemos observar que há variáveis excluivas para cada um destes conjuntos de dados.O dataset de teste possui a variável **id** que não está contida nos dados de treino e por isso a criaremos para este conjunto de dados. O mesmo processo será efetuado para a variável **Demanda_uni_equil** no dataset de teste.Para distinguir os registros que pertencem ao conjunto de dados de treino dos que pertencem aos dados de teste criaremos uma variável binária denominada **toTest** (**0**: são dados de treino; **1**: são dados de teste). ###Code # Criando variável ID para o conjunto de dados de treino com um valor auxiliar. train$id <- 0 # Criando a variável para indicar se o registro pertence ou não ao dados de treino ou aos dados de teste. train$toTest <- 0 # Criando variável Demanda_uni_equil para o conjunto de dados de teste com um valor auxiliar. test$Demanda_uni_equil <- 0 # Criando a variável para indicar se o registro pertence ou não ao dados de treino ou aos dados de teste. test$toTest <- 1 ###Output _____no_output_____ ###Markdown Para começar esta junção entre os datasets, iremos capturar os registros de apenas uma das semanas presentes no dataset de treino e unir com os dados de teste.Os registros dos dados de treino que não irão ser manipulados nesta etapa serão utilizados na etapa a seguir de **Feature Engennier**. ###Code # Unindo os registros do dataset de treino em que a variável Semana é igual a 9 com todos os registros de teste. data <- rbind(train[Semana == 9], test) ###Output _____no_output_____ ###Markdown Como já mesclamos todos os registros do dataset de teste, podemos liberar memória excluindo a variável *test*. ###Code # Removendo o dataset test. rm(test) ###Output _____no_output_____ ###Markdown **5.4.1 Feature Engennier II - Criando novas variáveis preditoras** Os registros de treino das semanas que não foram usados na etapa anterior serão agrupados ao novo dataset que estamos gerando para criar novas variáveis. ###Code # Determinando a média da demanda ajustada de clientes por produto e a quantidade de registros de clientes por produto. train[Semana <= 8][ , .(meanClientProd = mean(Demanda_uni_equil), countClientProd = .N), by = .(Producto_ID, Cliente_ID)] %>% merge(data, all.y = TRUE, by = c("Producto_ID", "Cliente_ID")) -> data # Determinando a média da demanda ajustada por produto e a quantidade de registros por produto. train[Semana <= 8][ , .(meanProd = mean(Demanda_uni_equil), countProd = .N), by = .(Producto_ID)] %>% merge(data, all.y = TRUE, by = c("Producto_ID")) -> data # Determinando a média da demanda ajustada por cliente e a quantidade de registros por cliente. train[Semana <= 8][ , .(meanClient = mean(Demanda_uni_equil), countCliente = .N), by = .(Cliente_ID)] %>% merge(data, all.y = TRUE, by = c("Cliente_ID")) -> data # Visualizando as primeiras linhas do dataset. head(data) ###Output _____no_output_____ ###Markdown Observe que a partir da execução desta fase conseguimos eliminar o problema da existência de produtos dentro dos dados de teste que não estão presentes dentro dos dados de treino, pois passamos a avaliar os valores médios e quantidades de cada variável por agrupamentos.Agora também podemos eliminar a variável *train*. ###Code # Removendo o dataset train. rm(train) ###Output _____no_output_____ ###Markdown **5.5 Feature Engineering III - Transformando variáveis preditoras** Nesta etapa vamos escalar os valores das variáveis preditoras entre 0 e 1. ###Code # Definindo método de pré-processamento. params <- preProcess(data[, !c('id', 'Demanda_uni_equil', 'toTest')], method = 'range') # Transformando os dados. data <- predict(params, data) # Visualizando as primeiras linhas do dataset. head(data) ###Output _____no_output_____ ###Markdown **5.6 Segmentando dados de treino e de teste** Iremos separar os dados de treino e de teste do conjunto de dados que criamos nas etapas anteriores. ###Code # Extraindo registros de treino. train <- data %>% filter(toTest == 0) %>% select(-c(id, toTest)) # Visualizando as primeiras linhas do dataset. head(train) # Extraindo registros de teste. test <- data %>% filter(toTest == 1) %>% select(-c(Demanda_uni_equil, toTest)) # Visualizando as primeiras linhas do dataset. head(test) ###Output _____no_output_____ ###Markdown Agora podemos remover a variável *data*. ###Code # Removendo o dataset data. rm(data) ###Output _____no_output_____ ###Markdown **5.7 Criando função para gerar modelos com diferentes valores de parametrização baseados no algoritmo XGboost** Bom, optamos por utilizar o algoritmo **XGboost** para a criação do nosso modelo preditivo por apresentar uma boa performance para gerar os **scores** da métrica de avaliação a ser utilizada e por ser consideravelmente mais rápido quando comparado a outros algoritmos.Como não sabemos quais valores utilizar para sua configuração, criaremos uma função que gere diferentes modelos com diferentes ajustes e selecionaremos aquele que obtiver o melhor desempenho para os dados de teste.Iremos avaliar a performance dos modelos a serem criados com base nos dados de treino e por isso deveremos ter atenção ao *overfitting* quando formos selecionar qual deverá ser utilizado para fazer as previsões dos dados de teste.Adotando esta estratégia conseguiremos extrair o melhor que este algoritmo pode nos oferecer. ###Code # Definindo uma função para gerar diferentes modelos com diferentes valores de parametrização baseados no algoritmo XGboost. getBetterXGboostParameters <- function(data, label, maxDepth = 13, nEta = 0.2, nRounds = 86, subsample = 0.85, colsample = 0.7, statusPrint = F) { # Criando o dataframe para salvar os resultados dos modelos. featuresXGboost <- data.frame() # Define uma varíavel auxiliar para permitir o acompanhamento do progresso na avaliação dos modelos criados. count <- 0 # Define o número total de modelos a serem criados. total <- length(maxDepth) * length(nEta) * length(nRounds) * length(subsample) * length(colsample) # Convertendo os dados das variáveis do dataset para o tipo DMatrix (uma matriz densa). dTrain <- xgb.DMatrix( data = data, # Define as variáveis preditoras. label = label # Define a variável a ser prevista. ) for(m in maxDepth) { for(e in nEta) { for(r in nRounds) { for(s in subsample) { for(c in colsample) { # Define um seed para permitir que o mesmo resultado do experimento seja reproduzível. set.seed(100) # Criando o modelo baseado no algoritmo XGboost. model_xgb <- xgb.train( params = list( objective = "reg:linear", # Define que o modelo deve ser baseado em uma regressão logistica linear. booster = "gbtree", # Definindo o booster a ser utilizado. eta = e, # Define a taxa de aprendizado do modelo. max_depth = m, # Define o tamanho máximo da árvore. subsample = s, # Define a proporção de subamostra da instância de treinamento. colsample_bytree = c # Define a proporção da subamostra de colunas ao construir cada árvore. ), data = dTrain, # Define as variáveis preditoras e a variável a ser prevista. feval = rmsle, # Define a função de avaliação a ser utilizada. nrounds = r, # Define o número de iterações que o algoritmo deve executar. verbose = F, # Define a exibição da queda da taxa de erro durante o treinamento. maximize = FALSE, # Define que a pontuação da avaliação deve ser minimizada. nthread = 16 # Define o número de threads que devem ser usadas. Quanto maior for esse número, mais rápido será o treinamento. ) # Realizando as previsões com o modelo baseado no algoritmo XGboost. pred <- predict(model_xgb, data) # Armazena os parâmetros utilizados para criação do modelo e o score da métrica RMSLE obtido em um dataframe. featuresXGboost <- rbind(featuresXGboost, data.frame( maxDepth = m, eta = e, nRounds = r, s = s, c = c, rmsle = rmsle(label, pred) )) # Incrementa o número de modelos avaliados. count <- count + 1 # Imprime a porcetagem de progresso do treinamento e o melhor score da métrica RMSLE já alcançado. print(paste(100 * count / total, '%, best rmsle: ', min(featuresXGboost$rmsle))) # Salvando dataframe com os resultados gerados em um arquivo .csv. write.csv( x = featuresXGboost, # Determinando o conjunto de dados a ser salvo. file = "/content/outputs/featuresXGboost.csv", # Define o nome com o qual o conjunto de dados deve ser salvo. row.names = FALSE # Indica que o nome das linhas não deve ser gravado no arquivo a ser salvo. ) } } } } } # Retorna o dataframe com os resultados obtidos pelo treinamento de cada modelo. featuresXGboost } ###Output _____no_output_____ ###Markdown **5.8 Criando modelo XGboost** O algoritmo **XGboost** tem a capacidade de lidar com valores *NA* e por isso não vamos transformar os dados para tratar estas aparições.Dito isto, podemos criar nosso modelo. ###Code # Gerando diferentes modelos baseados no algoritmo XGboost e determinando os scores para a métrica RMSLE de cada um. featuresXGboost <- getBetterXGboostParameters( data = as.matrix(train %>% select(- Demanda_uni_equil)), label = train$Demanda_uni_equil, maxDepth = 12:14, nEta = 0.2, nRounds = 85:87, subsample = 0.85, colsample = 0.7, statusPrint = F ) # Salvando dataframe com os resultados gerados em um arquivo .csv. fwrite(featuresXGboost, '/content/outputs/featuresXGboost.csv') ###Output _____no_output_____ ###Markdown Caso deseje pular a execução do bloco de código anterior, basta carregar os resultados já processados que estão salvos no arquivo CSV abaixo: ###Code # Carregando dataframe com os resultados obtidos para cada modelo XGboost criado. featuresXGboost <- fread('/content/outputs/featuresXGboost.csv') ###Output _____no_output_____ ###Markdown Imprimiremos os registros dos modelos criados. ###Code # Visualizando dataframe com os resultados obtidos no treinamento. featuresXGboost ###Output _____no_output_____ ###Markdown Após utilizar cada uma das configurações acima para realizar as previsões dos dados de teste, observamos que aquela que obteve o melhor resultado está descrita na **linha 5**. Os modelos registrados após está linha apresentam desempenhos inferiores pois começam a apresentar *overfitting*. ###Code # Visualizando a melhor configuração para realizar as previsões dos dados de teste. bestXGboost <- featuresXGboost[5, ] bestXGboost # Convertendo os dados das variáveis do dataset para o tipo DMatrix (uma matriz densa). dTrain <- xgb.DMatrix( data = as.matrix(train %>% select(- Demanda_uni_equil)), # Define as variáveis preditoras. label = train$Demanda_uni_equil # Define a variável a ser prevista. ) # Define um seed para permitir que o mesmo resultado do experimento seja reproduzível. set.seed(100) # Criando o modelo baseado no algoritmo XGboost. model_xgb <- xgb.train( params = list( objective = "reg:linear", # Define que o modelo deve ser baseado em uma regressão logistica linear. booster = "gbtree", # Definindo o booster a ser utilizado. eta = bestXGboost$eta, # Define a taxa de aprendizado do modelo. max_depth = bestXGboost$maxDepth, # Define o tamanho máximo da árvore. subsample = bestXGboost$s, # Define a proporção de subamostra da instância de treinamento. colsample_bytree = bestXGboost$c # Define a proporção da subamostra de colunas ao construir cada árvore. ), data = dTrain, # Define as variáveis preditoras e a variável a ser prevista. feval = rmsle, # Define a função de avaliação a ser utilizada. nrounds = bestXGboost$nRounds, # Define o número de iterações que o algoritmo deve executar. verbose = T, # Define a exibição da queda da taxa de erro durante o treinamento. print_every_n = 5, # Define o número de iterações que devem ocorrer para que a impressão da mensagem de avaliação seja efetuada. maximize = FALSE, # Define que a pontuação da avaliação deve ser minimizada. nthread = 16 # Define o número de threads que devem ser usadas. Quanto maior for esse número, mais rápido será o treinamento. ) # Realizando as previsões com o modelo baseado no algoritmo XGboost. pred <- predict(model_xgb, as.matrix(test %>% select(- id))) # Convertendo os resultados previsto para a escala original da variável alvo (exp(Demanda_uni_equil) - 1). pred <- expm1(pred) # Transformando qualquer previsão negativa em um valor nulo. pred[pred < 0] <- 0 # Salvando os resultados gerados em um arquivo CSV. write.csv( x = data.frame(id = as.integer(test$id), Demanda_uni_equil = pred), # Determinando o conjunto de dados a ser salvo. file = "/content/outputs/results.csv", # Define o nome com o qual o conjunto de dados deve ser salvo. row.names = FALSE # Indica que o nome das linhas não deve ser gravado no arquivo a ser salvo. ) ###Output _____no_output_____
1220-base_feature.ipynb
###Markdown 测试下仅仅在base feature条件下准确率 ###Code import codecs from itertools import * import numpy as np def load_data(filename): file = codecs.open(filename,'r','utf-8') data = [] label = [] for line in islice(file,0,None): line = line.strip().split(',') #print ("reading data....") data.append([float(i) for i in line[0:-1]]) label.append(line[-1]) x = np.array(data) y = np.array(label) print (x) print (y) return x,y import pylab as pl from itertools import * from sklearn import svm from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn import tree from sklearn import model_selection from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier def train(x_train,y_label): ####为保证分类结果的准确度可靠,采用十折交叉验证 ##########logisticRegression################ clf1 = LogisticRegression() score1 = model_selection.cross_val_score(clf1,x_train,y_label,cv=10,scoring="accuracy") x = [int(i) for i in range(1,11)] y = score1 pl.ylabel(u'Accuracy') pl.xlabel(u'times') pl.plot(x,y,label='LR') pl.legend() pl.savefig("1_LR.png") #pl.show() print ('The accuracy of LogisticRegression:') print (np.mean(score1)) ###############SVM(linear)################### clf2 = svm.LinearSVC(random_state=2016) score2 = model_selection.cross_val_score(clf2,x_train,y_label,cv=10,scoring='accuracy') #print score2 print ('The accuracy of linearSVM:') print ((np.mean(score2))) x = [int(i) for i in range(1, 11)] y = score2 pl.ylabel(u'Accuracy') pl.xlabel(u'times') pl.plot(x, y,label='SVM') pl.legend() pl.savefig("2_SVM.png") #pl.show() #################Naive Bayes################ clf3 = GaussianNB() score3 = model_selection.cross_val_score(clf3,x_train,y_label,cv=10,scoring='accuracy') print ("The accuracy of Naive Bayes:") print ((np.mean(score3))) x = [int(i) for i in range(1, 11)] y = score3 pl.ylabel(u'Accuracy') pl.xlabel(u'times') pl.plot(x, y,label='NB') pl.legend() pl.savefig("3_NB.png") #pl.show() ################DecidionTree############### clf4 = tree.DecisionTreeClassifier() score4 = model_selection.cross_val_score(clf4,x_train,y_label,cv=10,scoring="accuracy") print ('The accuracy of DB:') print (np.mean(score4)) x = [int(i) for i in range(1, 11)] y = score4 pl.ylabel(u'Accuracy') pl.xlabel(u'times') pl.plot(x, y,label='DB') pl.legend() pl.savefig("4_DB.png") #pl.show() X,Y = load_data('base_feature/feature_ATGC_freq.csv') train(X,Y) ###Output The accuracy of LogisticRegression: 0.610124610592 The accuracy of linearSVM: 0.619496365524 The accuracy of Naive Bayes: 0.546936656282 The accuracy of DB: 0.574852890273
examples/Convallaria/Convallaria-Training.ipynb
###Markdown DivNoising - TrainingThis notebook contains an example on how to train a DivNoising VAE. This requires having a noise model (model of the imaging noise) which can be either measured from calibration data or estimated from raw noisy images themselves. If you haven't done so, please first run 'Convallaria-CreateNoiseModel.ipynb', which will download the data and create a noise model. ###Code # We import all our dependencies. import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.utils.data import TensorDataset from torch.utils.data import Dataset, DataLoader from torch.nn import init import os import glob from tifffile import imread from matplotlib import pyplot as plt import sys sys.path.append('../../') from divnoising import dataLoader from divnoising import utils from divnoising import training from nets import model from divnoising import histNoiseModel from divnoising.gaussianMixtureNoiseModel import GaussianMixtureNoiseModel import urllib import os import zipfile from tqdm import tqdm device = torch.device("cuda:0") ###Output _____no_output_____ ###Markdown Specify ```path``` to load dataYour data should be stored in the directory indicated by ```path```. ###Code path="./data/Convallaria_diaphragm/" observation= imread(path+'20190520_tl_25um_50msec_05pc_488_130EM_Conv.tif') ###Output _____no_output_____ ###Markdown Training Data Preparation For training we need to follow some preprocessing steps first which will prepare the data for training purposes. Data preprocessingWe first divide the data into training and validation sets with 85% images allocated to training set and rest to validation set. Then we augment the training data 8-fold by 90 degree rotations and flips. ###Code train_images = observation[:int(0.85*observation.shape[0])] val_images = observation[int(0.85*observation.shape[0]):] print("Shape of training images:", train_images.shape, "Shape of validation images:", val_images.shape) train_images = utils.augment_data(train_images) ###Output Shape of training images: (85, 1024, 1024) Shape of validation images: (15, 1024, 1024) Raw image size after augmentation (680, 1024, 1024) ###Markdown We extract overlapping patches of size ```patch_size x patch_size``` from training and validation images. Specify the parameter ```patch_size```. The number of patches to be extracted is automatically determined depending on the size of images. ###Code patch_size = 128 img_width = observation.shape[2] img_height = observation.shape[1] num_patches = int(float(img_width*img_height)/float(patch_size**2)*2) x_train_crops = utils.extract_patches(train_images, patch_size, num_patches) x_val_crops = utils.extract_patches(val_images, patch_size, num_patches) ###Output 100%|██████████| 680/680 [00:04<00:00, 151.58it/s] 100%|██████████| 15/15 [00:00<00:00, 157.53it/s] ###Markdown Finally, we compute the mean and standard deviation of our combined train and validation sets and do some additional preprocessing. ###Code data_mean, data_std = utils.getMeanStdData(train_images, val_images) x_train, x_val = utils.convertToFloat32(x_train_crops, x_val_crops) x_train_extra_axis = x_train[:,np.newaxis] x_val_extra_axis = x_val[:,np.newaxis] x_train_tensor = utils.convertNumpyToTensor(x_train_extra_axis) x_val_tensor = utils.convertNumpyToTensor(x_val_extra_axis) print("Shape of training tensor:", x_train_tensor.shape) ###Output Shape of training tensor: torch.Size([87040, 1, 128, 128]) ###Markdown Configure DivNoising model Here we specify some parameters of our DivNoising network needed for training. The parameter z_dim specifies the size of the bottleneck dimension corresponding to each pixel. The parameter in_channels specifies the number of input channels which for this dataset is 1. We currently have support for only 1 channel input but it may be extended to arbitrary number of channels in the future. The parameter init_filters specifies the number of filters in the first layer of the network. The parameter n_depth specifies the depth of the network. The parameter batch_size specifies the batch size used for training. The parameter n_filters_per_depth specifies the number of convolutions per depth. The parameter directory_path specifies the directory where the model will be saved. The parameter n_epochs specifies the number of training epochs. The parameter lr specifies the learning rate. The parameter val_loss_patience specifies the number of epochs after which training will be terminated if the validation loss does not decrease by a factor of 1e-6. The parameter noiseModel is the noise model you want to use. Run the notebook ```Convallaria-CreateNoiseModel.ipynb```, if you have not yet generated the noise model for this dataset yet. If set to None a Gaussian noise model is used.The parameter gaussian_noise_std is the standard deviation of the Gaussian noise model. This should only be set if 'noiseModel' is None. Otherwise, if you have created a noise model already, set it to ```None```. The parameter model_name specifies the name of the model with which the weights will be saved for prediction later.__Note:__ We observed good performance of the DivNosing network for most datasets with the default settings in the next cell. However, we also observed that playing with the paramaters sensibly can also improve performance. ###Code z_dim=64 in_channels = 1 init_filters = 32 n_filters_per_depth=2 n_depth=2 batch_size=32 directory_path = "./" n_epochs = int(22000000/(x_train_tensor.shape[0])) # A heurisitc to set the number of epochs lr=0.001 val_loss_patience = 100 gaussian_noise_std = None #noise_model_params= np.load("/home/krull/fileserver/experiments/ReDo/convallaria/GMMNoiseModel_convallaria_3_2_calibration.npz") noise_model_params= np.load("data/Convallaria_diaphragm/GMMNoiseModel_convallaria_3_2_calibration.npz") noiseModel = GaussianMixtureNoiseModel(params = noise_model_params, device = device) model_name = "convallaria-" ###Output _____no_output_____ ###Markdown Train network__Note:__ We observed that for certain datasets, the KL loss goes towards 0. This phenomenon is called ```posterior collapse``` and is undesirable.We prevent it by aborting and restarting the training once the KL dropy below a threshold (```kl_min```).An alternative approach is a technique called *KL Annealing* where we increase the weight on KL divergence loss term from 0 to 1 gradually in a numer of steps.This cann be activated by setting the parameter ```kl_annealing``` to ```True```. The parameter ```kl_start``` specifies the epoch when KL annelaing will start. The parameter ```kl_annealtime``` specifies until which epoch KL annealing will be operational. If the parameter ```kl_annealing``` is set to ```False```, the values of ```kl_start``` and ```kl_annealtime``` are ignored. ###Code train_dataset = dataLoader.MyDataset(x_train_tensor,x_train_tensor) val_dataset = dataLoader.MyDataset(x_val_tensor,x_val_tensor) trainHist, reconHist, klHist, valHist = None, None, None, None attempts=0 while trainHist is None: attempts+=1 print('start training: attempt '+ str(attempts)) vae = model.VAE(z_dim=z_dim, in_channels=in_channels, init_filters = init_filters, n_filters_per_depth=n_filters_per_depth, n_depth=n_depth) train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=True) trainHist, reconHist, klHist, valHist = training.trainNetwork(net=vae, train_loader=train_loader, val_loader=val_loader, device=device,directory_path=directory_path, model_name=model_name, n_epochs=n_epochs, batch_size=batch_size,lr=lr, val_loss_patience = val_loss_patience, kl_annealing = False, kl_start = 0, kl_annealtime = 3, kl_min=1e-5, data_mean =data_mean,data_std=data_std, noiseModel = noiseModel, gaussian_noise_std = gaussian_noise_std) ###Output start training: attempt 1 postersior collapse: aborting start training: attempt 2 postersior collapse: aborting start training: attempt 3 Epoch[1/252] Training Loss: 6.474 Reconstruction Loss: 6.306 KL Loss: 0.167 kl_weight: 1.0 saving ./convallaria-last_vae.net saving ./convallaria-best_vae.net Patience: 0 Validation Loss: 6.30342960357666 Min validation loss: 6.30342960357666 Time for epoch: 151seconds Est remaining time: 10:31:41 or 37901 seconds ---------------------------------------- ###Markdown Plotting losses ###Code trainHist=np.load(directory_path+"/train_loss.npy") reconHist=np.load(directory_path+"/train_reco_loss.npy") klHist=np.load(directory_path+"/train_kl_loss.npy") valHist=np.load(directory_path+"/val_loss.npy") plt.figure(figsize=(18, 3)) plt.subplot(1,3,1) plt.plot(trainHist,label='training') plt.plot(valHist,label='validation') plt.xlabel("epochs") plt.ylabel("loss") plt.legend() plt.subplot(1,3,2) plt.plot(reconHist,label='training') plt.xlabel("epochs") plt.ylabel("reconstruction loss") plt.legend() plt.subplot(1,3,3) plt.plot(klHist,label='training') plt.xlabel("epochs") plt.ylabel("KL loss") plt.legend() plt.show() ###Output _____no_output_____
docs/apis/python-bindings/tutorials/ClassAds-Introduction.ipynb
###Markdown ClassAds IntroductionLaunch this tutorial in a Jupyter Notebook on Binder: [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/htcondor/htcondor-python-bindings-tutorials/master?urlpath=lab/tree/ClassAds-Introduction.ipynb)In this tutorial, we will learn the basics of the [ClassAd language](https://research.cs.wisc.edu/htcondor/classad/classad.html),the policy and data exchange language that underpins all of HTCondor.ClassAds are fundamental in the HTCondor ecosystem, so understanding them will be good preparation for future tutorials.The Python implementation of the ClassAd language is in the `classad` module: ###Code import classad ###Output _____no_output_____ ###Markdown Expressions The ClassAd language is built around _values_ and _expressions_. If you know Python, both concepts are familiar. Examples of familiar values include:- Integers (`1`, `2`, `3`),- Floating point numbers (`3.145`, `-1e-6`)- Booleans (`true` and `false`).Examples of expressions are:- Attribute references: `foo`- Boolean expressions: `a && b`- Arithmetic expressions: `123 + c`- Function calls: `ifThenElse(foo == 123, 3.14, 5.2)`Expressions can be evaluated to values.Unlike many programming languages, expressions are lazily-evaluated: they are kept in memory as expressions until a value is explicitly requested.ClassAds holding expressions to be evaluated later are how many internal parts of HTCondor, like job requirements, are expressed.Expressions are represented in Python with `ExprTree` objects.The desired ClassAd expression is passed as a string to the constructor: ###Code arith_expr = classad.ExprTree("1 + 4") print(f"ClassAd arithemetic expression: {arith_expr} (of type {type(arith_expr)})") ###Output ClassAd arithemetic expression: 1 + 4 (of type <class 'classad.classad.ExprTree'>) ###Markdown Expressions can be evaluated on-demand: ###Code print(arith_expr.eval()) ###Output 5 ###Markdown Here's an expression that includes a ClassAd function: ###Code function_expr = classad.ExprTree("ifThenElse(4 > 6, 123, 456)") print(f"Function expression: {function_expr}") value = function_expr.eval() print(f"Corresponding value: {value} (of type {type(value)})") ###Output Function expression: ifThenElse(4 > 6,123,456) Corresponding value: 456 (of type <class 'int'>) ###Markdown Notice that, when possible, we convert ClassAd values to Python values. Hence, the result of evaluating the expression above is the Python `int` `456`.There are two important values in the ClassAd language that have no direct equivalent in Python: `Undefined` and `Error`.`Undefined` occurs when a reference occurs to an attribute that is not defined; it is analogous to a `NameError` exception in Python (but there is no concept of an exception in ClassAds).For example, evaluating an unset attribute produces `Undefined`: ###Code print(classad.ExprTree("foo").eval()) ###Output Undefined ###Markdown `Error` occurs primarily when an expression combines two different types or when a function call occurs with the incorrect arguments.Note that even in this case, no Python exception is raised! ###Code print(classad.ExprTree('5 + "bar"').eval()) print(classad.ExprTree('ifThenElse(1, 2, 3, 4, 5)').eval()) ###Output Error Error ###Markdown ClassAds The concept that makes the ClassAd language special is, of course, the _ClassAd_!The ClassAd is analogous to a Python or JSON dictionary. _Unlike_ a dictionary, which is a set of unique key-value pairs, the ClassAd object is a set of key-_expression_ pairs.The expressions in the ad can contain attribute references to other keys in the ad, which will be followed when evaluated.There are two common ways to represent ClassAds in text.The "new ClassAd" format:```[ a = 1; b = "foo"; c = b]```And the "old ClassAd" format:```a = 1b = "foo"c = b```Despite the "new" and "old" monikers, "new" is over a decade old.HTCondor command line tools utilize the "old" representation.The Python bindings default to "new".A `ClassAd` object may be initialized via a string in either of the above representation.As a ClassAd is so similar to a Python dictionary, they may also be constructed from a dictionary.Let's construct some ClassAds! ###Code ad1 = classad.ClassAd(""" [ a = 1; b = "foo"; c = b; d = a + 4; ]""") print(ad1) ###Output [ a = 1; b = "foo"; c = b; d = a + 4 ] ###Markdown We can construct the same ClassAd from a dictionary: ###Code ad_from_dict = classad.ClassAd( { "a": 1, "b": "foo", "c": classad.ExprTree("b"), "d": classad.ExprTree("a + 4"), }) print(ad_from_dict) ###Output [ d = a + 4; c = b; b = "foo"; a = 1 ] ###Markdown ClassAds are quite similar to dictionaries; in Python, the `ClassAd` object behaves similarly to a dictionary and has similar convenience methods: ###Code print(ad1["a"]) print(ad1["not_here"]) print(ad1.get("not_here", 5)) ad1.update({"e": 8, "f": True}) print(ad1) ###Output [ f = true; e = 8; a = 1; b = "foo"; c = b; d = a + 4 ] ###Markdown Remember our example of an `Undefined` attribute above? We now can evaluate references within the context of the ad: ###Code print(ad1.eval("d")) ###Output 5 ###Markdown Note that an expression is still not evaluated until requested, even if it is invalid: ###Code ad1["g"] = classad.ExprTree("b + 5") print(ad1["g"]) print(type(ad1["g"])) print(ad1.eval("g")) ###Output b + 5 <class 'classad.classad.ExprTree'> Error ###Markdown ClassAds IntroductionLaunch this tutorial in a Jupyter Notebook on Binder: [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/htcondor/htcondor-python-bindings-tutorials/master?urlpath=lab/tree/ClassAds-Introduction.ipynb)In this tutorial, we will learn the basics of the [ClassAd language](https://research.cs.wisc.edu/htcondor/classad/classad.html),the policy and data exchange language that underpins all of HTCondor.ClassAds are fundamental in the HTCondor ecosystem, so understanding them will be good preparation for future tutorials.The Python implementation of the ClassAd language is in the `classad` module: ###Code import classad ###Output _____no_output_____ ###Markdown Expressions The ClassAd language is built around _values_ and _expressions_. If you know Python, both concepts are familiar. Examples of familiar values include:- Integers (`1`, `2`, `3`),- Floating point numbers (`3.145`, `-1e-6`)- Booleans (`true` and `false`).Examples of expressions are:- Attribute references: `foo`- Boolean expressions: `a && b`- Arithmetic expressions: `123 + c`- Function calls: `ifThenElse(foo == 123, 3.14, 5.2)`Expressions can be evaluated to values.Unlike many programming languages, expressions are lazily-evaluated: they are kept in memory as expressions until a value is explicitly requested.ClassAds holding expressions to be evaluated later are how many internal parts of HTCondor, like job requirements, are expressed.Expressions are represented in Python with `ExprTree` objects.The desired ClassAd expression is passed as a string to the constructor: ###Code arith_expr = classad.ExprTree("1 + 4") print(f"ClassAd arithemetic expression: {arith_expr} (of type {type(arith_expr)})") ###Output ClassAd arithemetic expression: 1 + 4 (of type <class 'classad.classad.ExprTree'>) ###Markdown Expressions can be evaluated on-demand: ###Code print(arith_expr.eval()) ###Output 5 ###Markdown Here's an expression that includes a ClassAd function: ###Code function_expr = classad.ExprTree("ifThenElse(4 > 6, 123, 456)") print(f"Function expression: {function_expr}") value = function_expr.eval() print(f"Corresponding value: {value} (of type {type(value)})") ###Output Function expression: ifThenElse(4 > 6,123,456) Corresponding value: 456 (of type <class 'int'>) ###Markdown Notice that, when possible, we convert ClassAd values to Python values. Hence, the result of evaluating the expression above is the Python `int` `456`.There are two important values in the ClassAd language that have no direct equivalent in Python: `Undefined` and `Error`.`Undefined` occurs when a reference occurs to an attribute that is not defined; it is analogous to a `NameError` exception in Python (but there is no concept of an exception in ClassAds).For example, evaluating an unset attribute produces `Undefined`: ###Code print(classad.ExprTree("foo").eval()) ###Output Undefined ###Markdown `Error` occurs primarily when an expression combines two different types or when a function call occurs with the incorrect arguments.Note that even in this case, no Python exception is raised! ###Code print(classad.ExprTree('5 + "bar"').eval()) print(classad.ExprTree('ifThenElse(1, 2, 3, 4, 5)').eval()) ###Output Error Error ###Markdown ClassAds The concept that makes the ClassAd language special is, of course, the _ClassAd_!The ClassAd is analogous to a Python or JSON dictionary. _Unlike_ a dictionary, which is a set of unique key-value pairs, the ClassAd object is a set of key-_expression_ pairs.The expressions in the ad can contain attribute references to other keys in the ad, which will be followed when evaluated.There are two common ways to represent ClassAds in text.The "new ClassAd" format:```[ a = 1; b = "foo"; c = b]```And the "old ClassAd" format:```a = 1b = "foo"c = b```Despite the "new" and "old" monikers, "new" is over a decade old.HTCondor command line tools utilize the "old" representation.The Python bindings default to "new".A `ClassAd` object may be initialized via a string in either of the above representation.As a ClassAd is so similar to a Python dictionary, they may also be constructed from a dictionary.Let's construct some ClassAds! ###Code ad1 = classad.ClassAd(""" [ a = 1; b = "foo"; c = b; d = a + 4; ]""") print(ad1) ###Output [ a = 1; b = "foo"; c = b; d = a + 4 ] ###Markdown We can construct the same ClassAd from a dictionary: ###Code ad_from_dict = classad.ClassAd( { "a": 1, "b": "foo", "c": classad.ExprTree("b"), "d": classad.ExprTree("a + 4"), }) print(ad_from_dict) ###Output [ d = a + 4; c = b; b = "foo"; a = 1 ] ###Markdown ClassAds are quite similar to dictionaries; in Python, the `ClassAd` object behaves similarly to a dictionary and has similar convenience methods: ###Code print(ad1["a"]) print(ad1["not_here"]) print(ad1.get("not_here", 5)) ad1.update({"e": 8, "f": True}) print(ad1) ###Output [ f = true; e = 8; a = 1; b = "foo"; c = b; d = a + 4 ] ###Markdown Remember our example of an `Undefined` attribute above? We now can evaluate references within the context of the ad: ###Code print(ad1.eval("d")) ###Output 5 ###Markdown Note that an expression is still not evaluated until requested, even if it is invalid: ###Code ad1["g"] = classad.ExprTree("b + 5") print(ad1["g"]) print(type(ad1["g"])) print(ad1.eval("g")) ###Output b + 5 <class 'classad.classad.ExprTree'> Error ###Markdown ClassAds IntroductionLaunch this tutorial in a Jupyter Notebook on Binder: [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/htcondor/htcondor-python-bindings-tutorials/master?urlpath=lab/tree/ClassAds-Introduction.ipynb)In this tutorial, we will learn the basics of the [ClassAd language](https://research.cs.wisc.edu/htcondor/classad/classad.html),the policy and data exchange language that underpins all of HTCondor.ClassAds are fundamental in the HTCondor ecosystem, so understanding them will be good preparation for future tutorials.The Python implementation of the ClassAd language is in the `classad` module: ###Code import classad ###Output _____no_output_____ ###Markdown Expressions The ClassAd language is built around _values_ and _expressions_. If you know Python, both concepts are familiar. Examples of familiar values include:- Integers (`1`, `2`, `3`),- Floating point numbers (`3.145`, `-1e-6`)- Booleans (`true` and `false`).Examples of expressions are:- Attribute references: `foo`- Boolean expressions: `a && b`- Arithmetic expressions: `123 + c`- Function calls: `ifThenElse(foo == 123, 3.14, 5.2)`Expressions can be evaluated to values.Unlike many programming languages, expressions are lazily-evaluated: they are kept in memory as expressions until a value is explicitly requested.ClassAds holding expressions to be evaluated later are how many internal parts of HTCondor, like job requirements, are expressed.Expressions are represented in Python with `ExprTree` objects.The desired ClassAd expression is passed as a string to the constructor: ###Code arith_expr = classad.ExprTree("1 + 4") print(f"ClassAd arithemetic expression: {arith_expr} (of type {type(arith_expr)})") ###Output ClassAd arithemetic expression: 1 + 4 (of type <class 'classad.classad.ExprTree'>) ###Markdown Expressions can be evaluated on-demand: ###Code print(arith_expr.eval()) ###Output 5 ###Markdown Here's an expression that includes a ClassAd function: ###Code function_expr = classad.ExprTree("ifThenElse(4 > 6, 123, 456)") print(f"Function expression: {function_expr}") value = function_expr.eval() print(f"Corresponding value: {value} (of type {type(value)})") ###Output Function expression: ifThenElse(4 > 6,123,456) Corresponding value: 456 (of type <class 'int'>) ###Markdown Notice that, when possible, we convert ClassAd values to Python values. Hence, the result of evaluating the expression above is the Python `int` `456`.There are two important values in the ClassAd language that have no direct equivalent in Python: `Undefined` and `Error`.`Undefined` occurs when a reference occurs to an attribute that is not defined; it is analogous to a `NameError` exception in Python (but there is no concept of an exception in ClassAds).For example, evaluating an unset attribute produces `Undefined`: ###Code print(classad.ExprTree("foo").eval()) ###Output Undefined ###Markdown `Error` occurs primarily when an expression combines two different types or when a function call occurs with the incorrect arguments.Note that even in this case, no Python exception is raised! ###Code print(classad.ExprTree('5 + "bar"').eval()) print(classad.ExprTree('ifThenElse(1, 2, 3, 4, 5)').eval()) ###Output Error Error ###Markdown ClassAds The concept that makes the ClassAd language special is, of course, the _ClassAd_!The ClassAd is analogous to a Python or JSON dictionary. _Unlike_ a dictionary, which is a set of unique key-value pairs, the ClassAd object is a set of key-_expression_ pairs.The expressions in the ad can contain attribute references to other keys in the ad, which will be followed when evaluated.There are two common ways to represent ClassAds in text.The "new ClassAd" format:```[ a = 1; b = "foo"; c = b]```And the "old ClassAd" format:```a = 1b = "foo"c = b```Despite the "new" and "old" monikers, "new" is over a decade old.HTCondor command line tools utilize the "old" representation.The Python bindings default to "new".A `ClassAd` object may be initialized via a string in either of the above representation.As a ClassAd is so similar to a Python dictionary, they may also be constructed from a dictionary.Let's construct some ClassAds! ###Code ad1 = classad.ClassAd(""" [ a = 1; b = "foo"; c = b; d = a + 4; ]""") print(ad1) ###Output [ a = 1; b = "foo"; c = b; d = a + 4 ] ###Markdown We can construct the same ClassAd from a dictionary: ###Code ad_from_dict = classad.ClassAd( { "a": 1, "b": "foo", "c": classad.ExprTree("b"), "d": classad.ExprTree("a + 4"), }) print(ad_from_dict) ###Output [ d = a + 4; c = b; b = "foo"; a = 1 ] ###Markdown ClassAds are quite similar to dictionaries; in Python, the `ClassAd` object behaves similarly to a dictionary and has similar convenience methods: ###Code print(ad1["a"]) print(ad1["not_here"]) print(ad1.get("not_here", 5)) ad1.update({"e": 8, "f": True}) print(ad1) ###Output [ f = true; e = 8; a = 1; b = "foo"; c = b; d = a + 4 ] ###Markdown Remember our example of an `Undefined` attribute above? We now can evaluate references within the context of the ad: ###Code print(ad1.eval("d")) ###Output 5 ###Markdown Note that an expression is still not evaluated until requested, even if it is invalid: ###Code ad1["g"] = classad.ExprTree("b + 5") print(ad1["g"]) print(type(ad1["g"])) print(ad1.eval("g")) ###Output b + 5 <class 'classad.classad.ExprTree'> Error ###Markdown ClassAds IntroductionLaunch this tutorial in a Jupyter Notebook on Binder: [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/htcondor/htcondor-python-bindings-tutorials/master?urlpath=lab/tree/ClassAds-Introduction.ipynb)In this tutorial, we will learn the basics of the [ClassAd language](https://research.cs.wisc.edu/htcondor/classad/classad.html),the policy and data exchange language that underpins all of HTCondor.ClassAds are fundamental in the HTCondor ecosystem, so understanding them will be good preparation for future tutorials.The Python implementation of the ClassAd language is in the `classad` module: ###Code import classad ###Output _____no_output_____ ###Markdown Expressions The ClassAd language is built around _values_ and _expressions_. If you know Python, both concepts are familiar. Examples of familiar values include:- Integers (`1`, `2`, `3`),- Floating point numbers (`3.145`, `-1e-6`)- Booleans (`true` and `false`).Examples of expressions are:- Attribute references: `foo`- Boolean expressions: `a && b`- Arithmetic expressions: `123 + c`- Function calls: `ifThenElse(foo == 123, 3.14, 5.2)`Expressions can be evaluated to values.Unlike many programming languages, expressions are lazily-evaluated: they are kept in memory as expressions until a value is explicitly requested.ClassAds holding expressions to be evaluated later are how many internal parts of HTCondor, like job requirements, are expressed.Expressions are represented in Python with `ExprTree` objects.The desired ClassAd expression is passed as a string to the constructor: ###Code arith_expr = classad.ExprTree("1 + 4") print(f"ClassAd arithemetic expression: {arith_expr} (of type {type(arith_expr)})") ###Output ClassAd arithemetic expression: 1 + 4 (of type <class 'classad.classad.ExprTree'>) ###Markdown Expressions can be evaluated on-demand: ###Code print(arith_expr.eval()) ###Output 5 ###Markdown Here's an expression that includes a ClassAd function: ###Code function_expr = classad.ExprTree("ifThenElse(4 > 6, 123, 456)") print(f"Function expression: {function_expr}") value = function_expr.eval() print(f"Corresponding value: {value} (of type {type(value)})") ###Output Function expression: ifThenElse(4 > 6,123,456) Corresponding value: 456 (of type <class 'int'>) ###Markdown Notice that, when possible, we convert ClassAd values to Python values. Hence, the result of evaluating the expression above is the Python `int` `456`.There are two important values in the ClassAd language that have no direct equivalent in Python: `Undefined` and `Error`.`Undefined` occurs when a reference occurs to an attribute that is not defined; it is analogous to a `NameError` exception in Python (but there is no concept of an exception in ClassAds).For example, evaluating an unset attribute produces `Undefined`: ###Code print(classad.ExprTree("foo").eval()) ###Output Undefined ###Markdown `Error` occurs primarily when an expression combines two different types or when a function call occurs with the incorrect arguments.Note that even in this case, no Python exception is raised! ###Code print(classad.ExprTree('5 + "bar"').eval()) print(classad.ExprTree('ifThenElse(1, 2, 3, 4, 5)').eval()) ###Output Error Error ###Markdown ClassAds The concept that makes the ClassAd language special is, of course, the _ClassAd_!The ClassAd is analogous to a Python or JSON dictionary. _Unlike_ a dictionary, which is a set of unique key-value pairs, the ClassAd object is a set of key-_expression_ pairs.The expressions in the ad can contain attribute references to other keys in the ad, which will be followed when evaluated.There are two common ways to represent ClassAds in text.The "new ClassAd" format:```[ a = 1; b = "foo"; c = b]```And the "old ClassAd" format:```a = 1b = "foo"c = b```Despite the "new" and "old" monikers, "new" is over a decade old.HTCondor command line tools utilize the "old" representation.The Python bindings default to "new".A `ClassAd` object may be initialized via a string in either of the above representation.As a ClassAd is so similar to a Python dictionary, they may also be constructed from a dictionary.Let's construct some ClassAds! ###Code ad1 = classad.ClassAd(""" [ a = 1; b = "foo"; c = b; d = a + 4; ]""") print(ad1) ###Output [ a = 1; b = "foo"; c = b; d = a + 4 ] ###Markdown We can construct the same ClassAd from a dictionary: ###Code ad_from_dict = classad.ClassAd( { "a": 1, "b": "foo", "c": classad.ExprTree("b"), "d": classad.ExprTree("a + 4"), }) print(ad_from_dict) ###Output [ d = a + 4; c = b; b = "foo"; a = 1 ] ###Markdown ClassAds are quite similar to dictionaries; in Python, the `ClassAd` object behaves similarly to a dictionary and has similar convenience methods: ###Code print(ad1["a"]) print(ad1["not_here"]) print(ad1.get("not_here", 5)) ad1.update({"e": 8, "f": True}) print(ad1) ###Output [ f = true; e = 8; a = 1; b = "foo"; c = b; d = a + 4 ] ###Markdown Remember our example of an `Undefined` attribute above? We now can evaluate references within the context of the ad: ###Code print(ad1.eval("d")) ###Output 5 ###Markdown Note that an expression is still not evaluated until requested, even if it is invalid: ###Code ad1["g"] = classad.ExprTree("b + 5") print(ad1["g"]) print(type(ad1["g"])) print(ad1.eval("g")) ###Output b + 5 <class 'classad.classad.ExprTree'> Error
code/data/make_events.ipynb
###Markdown Overview This script takes as input the in-MEG behavioral data (which is trial based) and transforms it as events for MNE processing.Each trial has several distinct events: - trial onset - precue - each RSVP image (including the target on 'present' trials) - postcue - response - etc. Each of these has a corresponding MEG code:| Event | Code Value ||-------------------------|------------|| precue - cue shown | 81 || precue - cue not shown | 80 || object - flower | 11 || object - car | 12 || object - shoe | 13 || object - chair | 14 || scene - woods | 21 || scene - bathroom | 22 || scene - desert | 23 || scene - coast | 24 || target image | 9 || postcue - cue shown | 181 || postcue - cue not shown | 180 || response screen | 77 | This structure makes it easy to categorize events by the type of condition they were a part of. Below is an example of a precued, target-present trial, for which the target was a flower, and that the subjct got correct: | subject | trial_num | response_correct | cue_type | precue_type | postcue_type | target_identity | target_category | variable | value ||---------|-----------|------------------|----------|:-----------:|--------------|-----------------|-----------------|----------------|-------|| s002 | 1 | 1 | precue | precue | nocue | flower | object | precue | 81 || s002 | 1 | 1 | precue | precue | nocue | flower | object | picture1_value | 24 || s002 | 1 | 1 | precue | precue | nocue | flower | object | picture2_value | 119 || s002 | 1 | 1 | precue | precue | nocue | flower | object | picture3_value | 14 || s002 | 1 | 1 | precue | precue | nocue | flower | object | picture4_value | 12 || s002 | 1 | 1 | precue | precue | nocue | flower | object | picture5_value | 22 || s002 | 1 | 1 | precue | precue | nocue | flower | object | picture6_value | 21 || s002 | 1 | 1 | precue | precue | nocue | flower | object | postcue | 180 |It may seem redundant, but I can easily subset the MEG data into epochs for "picture 5" for which the target category was an object. All of the event/trial categorization should take place in this script. For example, if I wanted to look at the first half of trials, I'd add a column to the resulting events file for "exp_half [1/2]". ###Code import os import pandas as pd data_path = '../../data/raw/' infiles = [item for item in os.listdir(data_path) if item.endswith('txt')] columns = ['trial_num','cue_type','target_identity','target_category','choices','target_presence', 'response','response_correct','response_time','total_trial_time', 'precue_value','IDUNNOpre1','IDUNNOpre2','precue_time','precue_time_actual','precue_position', 'picture1_value','IDUNNO1','picture1_stim','picture1_time','picture1_time_actual', 'picture1_posititon', 'picture2_value','IDUNNO2','picture2_stim','picture2_time','picture2_time_actual', 'picture2_posititon', 'picture3_value','IDUNNO3','picture3_stim','picture3_time','picture3_time_actual', 'picture3_posititon', 'picture4_value','IDUNNO4','picture4_stim','picture4_time','picture4_time_actual', 'picture4_posititon', 'picture5_value','IDUNNO5','picture5_stim','picture5_time','picture5_time_actual', 'picture5_posititon', 'picture6_value','IDUNNO6','picture6_stim','picture6_time','picture6_time_actual', 'picture6_posititon', 'postcue_value','IDUNNOpost1','IDUNNOpost2','postcue_time','postcue_time_actual','postcue_position'] df_all = [] for infile in infiles: subject = infile[:4] if subject not in ['s002','s008']: #s002 is ok, just not the same format df = pd.read_csv(data_path+infile, sep="\t", header = None) df.columns = columns df['subject'] = subject df_all.append(df) elif subject == 's002': df2 = pd.read_csv(data_path+infile, sep="\t") df2['subject'] = subject df2.columns = columns+['subject'] df_all.append(df2) result = pd.concat(df_all) result = result.reset_index(drop=True) result.head(10) Take the RSVP images and stimlist = result[['subject','picture1_value','picture2_value','picture3_value','picture4_value','picture5_value','picture6_value']] stimlist = stimlist.apply(lambda x: x.astype(str).str.replace('[','')) stimlist = stimlist.apply(lambda x: x.astype(str).str.replace(']','')) stimlist = stimlist.apply(lambda x: x.astype(str).str.replace("'",'')) scene_dict = {'woods':1,'bathroom':2,'desert':3,'coast':4} object_dict = {'flower':1,'car':2,'shoe':3,'chair':4} stimlist.replace(r'\bwoods_\d*\b', 'woods', regex=True,inplace=True) stimlist.replace(r'\bbathroom_\d*\b', 'bathroom', regex=True,inplace=True) stimlist.replace(r'\bdesert_\d*\b', 'desert', regex=True,inplace=True) stimlist.replace(r'\bcoast_\d*\b', 'coast', regex=True,inplace=True) stimlist.replace(r'\bflower_\d*\b', 'flower', regex=True,inplace=True) stimlist.replace(r'\bcar_\d*\b', 'car', regex=True,inplace=True) stimlist.replace(r'\bshoe_\d*\b', 'shoe', regex=True,inplace=True) stimlist.replace(r'\bchair_\d*\b', 'chair', regex=True,inplace=True) stimlist['target_identity'] = result['target_identity'] stimlist.replace({'woods':21,'bathroom':22,'desert':23,'coast':24},inplace=True) stimlist.replace({'flower':11,'car':12,'shoe':13,'chair':14},inplace=True) stimlist = stimlist.reset_index(drop=True) stimlist1 = pd.DataFrame(stimlist) for i,row in stimlist1.iterrows(): for item,key in zip(row.values[:6],stimlist1.columns[:6]): if item == row.values[7]: stimlist1.loc[i,key] = int(str(item)+'9') stimlist1['cue_type'] = result['cue_type'] stimlist1['trial_num'] = result['trial_num'] stimlist1['response_correct'] = result['response_correct'] stimlist1['target_identity'] = result['target_identity'] stimlist1['target_category'] = result['target_category'] stimlist1['precue'] = 80 stimlist1['postcue'] = 180 stimlist1.loc[stimlist1.cue_type == 'precue','precue'] = 81 stimlist1.loc[stimlist1.cue_type == 'postcue','postcue'] = 181 stimlist1.loc[stimlist1.cue_type == 'doublecue','precue'] = 81 stimlist1.loc[stimlist1.cue_type == 'doublecue','postcue'] = 181 stimList_final = stimlist1[['subject','trial_num','response_correct','cue_type','target_identity','target_category', 'precue','picture1_value','picture2_value','picture3_value','picture4_value', 'picture5_value','picture6_value','postcue']] stimList_final.head() stimList_final.loc[stimList_final.cue_type == 'precue','precue_type'] = 'precue' stimList_final.loc[stimList_final.cue_type == 'postcue','precue_type'] = 'nocue' stimList_final.loc[stimList_final.cue_type == 'nocue','precue_type'] = 'nocue' stimList_final.loc[stimList_final.cue_type == 'doublecue','precue_type'] = 'precue' stimList_final.loc[stimList_final.cue_type == 'precue','postcue_type'] = 'nocue' stimList_final.loc[stimList_final.cue_type == 'postcue','postcue_type'] = 'postcue' stimList_final.loc[stimList_final.cue_type == 'nocue','postcue_type'] = 'nocue' stimList_final.loc[stimList_final.cue_type == 'doublecue','postcue_type'] = 'postcue' df_list = pd.melt(stimList_final, id_vars=['subject','trial_num','response_correct','cue_type', 'precue_type','postcue_type','target_identity', 'target_category'], value_vars=['precue','picture1_value','picture2_value','picture3_value', 'picture4_value','picture5_value','picture6_value', 'postcue']) df_list = df_list.sort(['subject','trial_num']).reset_index(drop=True) df_list.head(10) data_path_events = '../../data/processed/events/' for subject in df_list.subject.unique(): df_list[df_list.subject == subject][['response_correct','cue_type','precue_type','postcue_type', 'target_identity','target_category','value']].to_csv(data_path_events+subject+'_events.txt', header=None, index=None) ###Output _____no_output_____
practical_ai/archive/07-Deep-Q-Learning/01-Manual-DQN.ipynb
###Markdown ______Copyright by Pierian Data Inc.For more information, visit us at www.pieriandata.com Manually Creating a DQN Model Deep-Q-LearningIn this notebook we will create our first Deep Reeinforcement Learning model, called Deep-Q-Network (DQN)We are again using a simple environment from openai gym. However, you will soon see the enormous gain we will get by switching from standard Q-Learning to Deep Q Learning.In this notebook we again take a look at the CartPole problem (https://gym.openai.com/envs/CartPole-v1/) Let us start by importing the necessary packages Part 0: ImportsNotice how we're importing the TF libraries here at the top together, in some rare instances, if you import them later on, you get strange bugs, so best just to import everything from Tensorflow here at the top. ###Code from collections import deque import random import numpy as np import gym # Contains the game we want to play from tensorflow.keras.models import Sequential # To compose multiple Layers from tensorflow.keras.layers import Dense # Fully-Connected layer from tensorflow.keras.layers import Activation # Activation functions from tensorflow.keras.optimizers import Adam from tensorflow.keras.models import clone_model ###Output _____no_output_____ ###Markdown Part 1: The Environment ###Code env_name = 'CartPole-v1' env = gym.make(env_name) # create the environment ###Output _____no_output_____ ###Markdown Remember, the goal of the CartPole challenge was to balance the stick upright ###Code env.reset() # reset the environment to the initial state for _ in range(200): # play for max 200 iterations env.render(mode="human") # render the current game state on your screen random_action = env.action_space.sample() # chose a random action env.step(random_action) # execute that action env.close() # close the environment ###Output c:\users\marcial\anaconda_new\envs\rl_recording\lib\site-packages\gym\logger.py:30: UserWarning: WARN: You are calling 'step()' even though this environment has already returned done = True. You should always call 'reset()' once you receive 'done = True' -- any further steps are undefined behavior. warnings.warn(colorize('%s: %s'%('WARN', msg % args), 'yellow')) ###Markdown Part 2: The Artificial Neural Network Let us build our first Neural NetworkTo build our network, we first need to find out how many actions and observation our environment has.We can either get those information from the source code (https://github.com/openai/gym/blob/master/gym/envs/classic_control/cartpole.py) or via the following commands: ###Code num_actions = env.action_space.n num_observations = env.observation_space.shape[0] # You can use this command to get the number of observations print(f"There are {num_actions} possible actions and {num_observations} observations") ###Output There are 2 possible actions and 4 observations ###Markdown So our network needs to have an input dimension of 4 and an output dimension of 2.In between we are free to chose.Let's just say we want to use a four layer architecture:1. The first layer has 16 neurons2. The second layer has 32 neurons4. The fourth layer (output layer) has 2 neuronsThis yields 690 parameters$$ \text{4 observations} * 16 (\text{neurons}) + 16 (\text{bias}) + (16*32) + 32 + (32*2)+2 = 690$$ ###Code model = Sequential() model.add(Dense(16, input_shape=(1, num_observations))) model.add(Activation('relu')) model.add(Dense(32)) model.add(Activation('relu')) model.add(Dense(num_actions)) model.add(Activation('linear')) print(model.summary()) ###Output Model: "sequential" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= dense (Dense) (None, 1, 16) 80 _________________________________________________________________ activation (Activation) (None, 1, 16) 0 _________________________________________________________________ dense_1 (Dense) (None, 1, 32) 544 _________________________________________________________________ activation_1 (Activation) (None, 1, 32) 0 _________________________________________________________________ dense_2 (Dense) (None, 1, 2) 66 _________________________________________________________________ activation_2 (Activation) (None, 1, 2) 0 ================================================================= Total params: 690 Trainable params: 690 Non-trainable params: 0 _________________________________________________________________ None ###Markdown Now we have our model which takes an observation as input and outputs a value for each action.The higher the value, the more likely that this value is a suitable action for the current observationAs stated in the lecture, Deep-Q-Learning works better when using a target network.So let's just copy the above network ###Code #model.load_weights("34.ckt") target_model = clone_model(model) ###Output _____no_output_____ ###Markdown Now it is time to define our hyperparameters. Part 3: Hyperparameters and Update Function ###Code EPOCHS = 1000 epsilon = 1.0 EPSILON_REDUCE = 0.995 # is multiplied with epsilon each epoch to reduce it LEARNING_RATE = 0.001 #NOT THE SAME AS ALPHA FROM Q-LEARNING FROM BEFORE!! GAMMA = 0.95 ###Output _____no_output_____ ###Markdown Let us use the epsilon greedy action selection function once again: ###Code def epsilon_greedy_action_selection(model, epsilon, observation): if np.random.random() > epsilon: prediction = model.predict(observation) # perform the prediction on the observation action = np.argmax(prediction) # Chose the action with the higher value else: action = np.random.randint(0, env.action_space.n) # Else use random action return action ###Output _____no_output_____ ###Markdown As shown in the lecture, we need a replay buffer.We can use the **deque** data structure for this, which already implements the circular behavior.The *maxlen* argument specifies the number of elements the buffer can store between he overwrites them at the beginningThe following cell shows an example usage of the deque function. You can see, that in the first example all values fit into the deque, so nothing is overwritten. In the second example, the deque is printed in each iteration. It can hold all values in the first five iterations but then needs to delete the oldest value in the deque to make room for the new value ###Code ### deque examples deque_1 = deque(maxlen=5) for i in range(5): # all values fit into the deque, no overwriting deque_1.append(i) print(deque_1) print("---------------------") deque_2 = deque(maxlen=5) # after the first 5 values are stored, it needs to overwrite the oldest value to store the new one for i in range(10): deque_2.append(i) print(deque_2) ###Output deque([0, 1, 2, 3, 4], maxlen=5) --------------------- deque([0], maxlen=5) deque([0, 1], maxlen=5) deque([0, 1, 2], maxlen=5) deque([0, 1, 2, 3], maxlen=5) deque([0, 1, 2, 3, 4], maxlen=5) deque([1, 2, 3, 4, 5], maxlen=5) deque([2, 3, 4, 5, 6], maxlen=5) deque([3, 4, 5, 6, 7], maxlen=5) deque([4, 5, 6, 7, 8], maxlen=5) deque([5, 6, 7, 8, 9], maxlen=5) ###Markdown Let's say we allow our replay buffer a maximum size of 20000 ###Code replay_buffer = deque(maxlen=20000) update_target_model = 10 ###Output _____no_output_____ ###Markdown As mentioned in the lecture, action replaying is crucial for Deep Q-Learning. The following cell implements one version of the action replay algorithm. It uses the zip statement paired with the * (Unpacking Argument Lists) operator to create batches from the samples for efficient prediction and training.The zip statement returns all corresponding pairs from each entry. It might look confusing but the following example should clarify it ###Code test_tuple = [(1, 2, 3), (4, 5, 6), (7, 8, 9)] zipped_list = list(zip(*test_tuple)) a, b, c = zipped_list print(a, b, c) ###Output (1, 4, 7) (2, 5, 8) (3, 6, 9) ###Markdown Now it's time to write the replay function ###Code def replay(replay_buffer, batch_size, model, target_model): # As long as the buffer has not enough elements we do nothing if len(replay_buffer) < batch_size: return # Take a random sample from the buffer with size batch_size samples = random.sample(replay_buffer, batch_size) # to store the targets predicted by the target network for training target_batch = [] # Efficient way to handle the sample by using the zip functionality zipped_samples = list(zip(*samples)) states, actions, rewards, new_states, dones = zipped_samples # Predict targets for all states from the sample targets = target_model.predict(np.array(states)) # Predict Q-Values for all new states from the sample q_values = model.predict(np.array(new_states)) # Now we loop over all predicted values to compute the actual targets for i in range(batch_size): # Take the maximum Q-Value for each sample q_value = max(q_values[i][0]) # Store the ith target in order to update it according to the formula target = targets[i].copy() if dones[i]: target[0][actions[i]] = rewards[i] else: target[0][actions[i]] = rewards[i] + q_value * GAMMA target_batch.append(target) # Fit the model based on the states and the updated targets for 1 epoch model.fit(np.array(states), np.array(target_batch), epochs=1, verbose=0) ###Output _____no_output_____ ###Markdown We need to update our target network every once in a while. Keras provides the *set_weights()* and *get_weights()* methods which do the work for us, so we only need to check whether we hit an update epoch ###Code def update_model_handler(epoch, update_target_model, model, target_model): if epoch > 0 and epoch % update_target_model == 0: target_model.set_weights(model.get_weights()) ###Output _____no_output_____ ###Markdown Part 4: Training the Model Now it is time to write the training loop! First we compile the model ###Code model.compile(loss='mse', optimizer=Adam(lr=LEARNING_RATE)) ###Output _____no_output_____ ###Markdown Then we perform the training routine. This might take some time, so make sure to grab your favorite beverage and watch your model learn. Feel free to use our provided chekpoints as a starting point ###Code best_so_far = 0 for epoch in range(EPOCHS): observation = env.reset() # Get inital state # Keras expects the input to be of shape [1, X] thus we have to reshape observation = observation.reshape([1, 4]) done = False points = 0 while not done: # as long current run is active # Select action acc. to strategy action = epsilon_greedy_action_selection(model, epsilon, observation) # Perform action and get next state next_observation, reward, done, info = env.step(action) next_observation = next_observation.reshape([1, 4]) # Reshape!! replay_buffer.append((observation, action, reward, next_observation, done)) # Update the replay buffer observation = next_observation # update the observation points+=1 # Most important step! Training the model by replaying replay(replay_buffer, 32, model, target_model) epsilon *= EPSILON_REDUCE # Reduce epsilon # Check if we need to update the target model update_model_handler(epoch, update_target_model, model, target_model) if points > best_so_far: best_so_far = points if epoch %25 == 0: print(f"{epoch}: Points reached: {points} - epsilon: {epsilon} - Best: {best_so_far}") ###Output 0: Points reached: 18 - epsilon: 0.995 - Best: 18 WARNING:tensorflow:Model was constructed with shape (None, 1, 4) for input KerasTensor(type_spec=TensorSpec(shape=(None, 1, 4), dtype=tf.float32, name='dense_input'), name='dense_input', description="created by layer 'dense_input'"), but it was called on an input with incompatible shape (None, 4). 25: Points reached: 13 - epsilon: 0.8778091417340573 - Best: 53 50: Points reached: 25 - epsilon: 0.7744209942832988 - Best: 80 75: Points reached: 32 - epsilon: 0.6832098777212641 - Best: 80 100: Points reached: 79 - epsilon: 0.6027415843082742 - Best: 118 125: Points reached: 39 - epsilon: 0.531750826943791 - Best: 151 150: Points reached: 24 - epsilon: 0.46912134373457726 - Best: 191 175: Points reached: 160 - epsilon: 0.41386834584198684 - Best: 191 200: Points reached: 148 - epsilon: 0.36512303261753626 - Best: 287 225: Points reached: 130 - epsilon: 0.322118930542046 - Best: 287 250: Points reached: 205 - epsilon: 0.28417984116121187 - Best: 287 275: Points reached: 139 - epsilon: 0.2507092085103961 - Best: 299 300: Points reached: 169 - epsilon: 0.2211807388415433 - Best: 351 325: Points reached: 184 - epsilon: 0.19513012515638165 - Best: 351 350: Points reached: 230 - epsilon: 0.17214774642209296 - Best: 351 375: Points reached: 175 - epsilon: 0.1518722266715875 - Best: 380 400: Points reached: 143 - epsilon: 0.13398475271138335 - Best: 380 425: Points reached: 152 - epsilon: 0.11820406108847166 - Best: 380 450: Points reached: 176 - epsilon: 0.1042820154910064 - Best: 380 475: Points reached: 161 - epsilon: 0.09199970504166631 - Best: 380 500: Points reached: 185 - epsilon: 0.0811640021330769 - Best: 380 525: Points reached: 158 - epsilon: 0.0716045256805401 - Best: 380 550: Points reached: 139 - epsilon: 0.06317096204211972 - Best: 380 575: Points reached: 148 - epsilon: 0.05573070148010834 - Best: 380 600: Points reached: 156 - epsilon: 0.04916675299948831 - Best: 380 625: Points reached: 141 - epsilon: 0.043375904776212296 - Best: 380 650: Points reached: 159 - epsilon: 0.03826710124979409 - Best: 380 675: Points reached: 167 - epsilon: 0.033760011361539714 - Best: 380 700: Points reached: 135 - epsilon: 0.029783765425331846 - Best: 380 725: Points reached: 169 - epsilon: 0.026275840769466357 - Best: 380 750: Points reached: 157 - epsilon: 0.023181078627322618 - Best: 380 775: Points reached: 146 - epsilon: 0.020450816818411825 - Best: 380 ###Markdown Part 5: Using Trained Model ###Code observation = env.reset() for counter in range(300): env.render() # TODO: Get discretized observation action = np.argmax(model.predict(observation.reshape([1,4]))) # TODO: Perform the action observation, reward, done, info = env.step(action) # Finally perform the action if done: print(f"done") break env.close() ###Output _____no_output_____
jupyter_russian/topic04_linear_models/topic4_linear_models_part5_valid_learning_curves.ipynb
###Markdown Открытый курс по машинному обучениюАвтор материала: программист-исследователь Mail.ru Group, старший преподаватель Факультета Компьютерных Наук ВШЭ Юрий Кашницкий. Материал распространяется на условиях лицензии [Creative Commons CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/). Можно использовать в любых целях (редактировать, поправлять и брать за основу), кроме коммерческих, но с обязательным упоминанием автора материала. Тема 4. Линейные модели классификации и регрессии Часть 5. Кривые валидации и обучения ###Code from __future__ import division, print_function # отключим всякие предупреждения Anaconda import warnings warnings.filterwarnings("ignore") %matplotlib inline import numpy as np import pandas as pd import seaborn as sns from matplotlib import pyplot as plt from sklearn.linear_model import LogisticRegression, LogisticRegressionCV, SGDClassifier from sklearn.model_selection import validation_curve from sklearn.pipeline import Pipeline from sklearn.preprocessing import PolynomialFeatures, StandardScaler ###Output _____no_output_____ ###Markdown Мы уже получили представление о проверке модели, кросс-валидации и регуляризации.Теперь рассмотрим главный вопрос:**Если качество модели нас не устраивает, что делать?**- Сделать модель сложнее или упростить?- Добавить больше признаков?- Или нам просто нужно больше данных для обучения?Ответы на данные вопросы не всегда лежат на поверхности. В частности, иногда использование более сложной модели приведет к ухудшению показателей. Либо добавление наблюдений не приведет к ощутимым изменениям. Способность принять правильное решение и выбрать правильный способ улучшения модели, собственно говоря, и отличает хорошего специалиста от плохого. Будем работать со знакомыми данными по оттоку клиентов телеком-оператора. ###Code data = pd.read_csv("../../data/telecom_churn.csv").drop("State", axis=1) data["International plan"] = data["International plan"].map({"Yes": 1, "No": 0}) data["Voice mail plan"] = data["Voice mail plan"].map({"Yes": 1, "No": 0}) y = data["Churn"].astype("int").values X = data.drop("Churn", axis=1).values ###Output _____no_output_____ ###Markdown **Логистическую регрессию будем обучать стохастическим градиентным спуском. Пока объясним это тем, что так быстрее, но далее в программе у нас отдельная статья про это дело.** ###Code alphas = np.logspace(-2, 0, 20) sgd_logit = SGDClassifier(loss="log", n_jobs=-1, random_state=17) logit_pipe = Pipeline( [ ("scaler", StandardScaler()), ("poly", PolynomialFeatures(degree=2)), ("sgd_logit", sgd_logit), ] ) val_train, val_test = validation_curve( logit_pipe, X, y, "sgd_logit__alpha", alphas, cv=5, scoring="roc_auc" ) ###Output _____no_output_____ ###Markdown **Построим валидационные кривые, показывающие, как качество (ROC AUC) на обучающей и проверочной выборке меняется с изменением параметра регуляризации.** ###Code def plot_with_err(x, data, **kwargs): mu, std = data.mean(1), data.std(1) lines = plt.plot(x, mu, "-", **kwargs) plt.fill_between( x, mu - std, mu + std, edgecolor="none", facecolor=lines[0].get_color(), alpha=0.2, ) plot_with_err(alphas, val_train, label="training scores") plot_with_err(alphas, val_test, label="validation scores") plt.xlabel(r"$\alpha$") plt.ylabel("ROC AUC") plt.legend(); ###Output _____no_output_____ ###Markdown Тенденция видна сразу, и она очень часто встречается.1. Для простых моделей тренировочная и валидационная ошибка находятся где-то рядом, и они велики. Это говорит о том, что модель **недообучилась**: то есть она не имеет достаточное кол-во параметров.2. Для сильно усложненных моделей тренировочная и валидационная ошибки значительно отличаются. Это можно объяснить **переобучением**: когда параметров слишком много либо не хватает регуляризации, алгоритм может "отвлекаться" на шум в данных и упускать основной тренд. Сколько нужно данных?Известно, что чем больше данных использует модель, тем лучше. Но как нам понять в конкретной ситуации, помогут ли новые данные? Скажем, целесообразно ли нам потратить \$ N на труд асессоров, чтобы увеличить выборку вдвое?Поскольку новых данных пока может и не быть, разумно поварьировать размер имеющейся обучающей выборки и посмотреть, как качество решения задачи зависит от объема данных, на которм мы обучали модель. Так получаются **кривые обучения** (**learning curves**).Идея простая: мы отображаем ошибку как функцию от количества примеров, используемых для обучения. При этом параметры модели фиксируются заранее. ###Code from sklearn.model_selection import learning_curve def plot_learning_curve(degree=2, alpha=0.01): train_sizes = np.linspace(0.05, 1, 20) logit_pipe = Pipeline( [ ("scaler", StandardScaler()), ("poly", PolynomialFeatures(degree=degree)), ("sgd_logit", SGDClassifier(n_jobs=-1, random_state=17, alpha=alpha)), ] ) N_train, val_train, val_test = learning_curve( logit_pipe, X, y, train_sizes=train_sizes, cv=5, scoring="roc_auc" ) plot_with_err(N_train, val_train, label="training scores") plot_with_err(N_train, val_test, label="validation scores") plt.xlabel("Training Set Size") plt.ylabel("AUC") plt.legend() ###Output _____no_output_____ ###Markdown Давайте посмотрим, что мы получим для линейной модели. Коэффициент регуляризации выставим большим. ###Code plot_learning_curve(degree=2, alpha=10) ###Output _____no_output_____ ###Markdown Типичная ситуация: для небольшого объема данных ошибки на обучающей выборке и в процессе кросс-валидации довольно сильно отличаются, что указывает на переобучение. Для той же модели, но с большим объемом данных ошибки "сходятся", что указывается на недообучение.Если добавить еще данные, ошибка на обучающей выборке не будет расти, но с другой стороны, ошибка на тестовых данных не будет уменьшаться. Получается, ошибки "сошлись", и добавление новых данных не поможет. Собственно, это случай – самый интересный для бизнеса. Возможна ситуация, когда мы увеличиваем выборку в 10 раз. Но если не менять сложность модели, это может и не помочь. То есть стратегия "настроил один раз – дальше использую 10 раз" может и не работать. Что будет, если изменить коэффициент регуляризации?Видим хорошую тенденцию – кривые постепенно сходятся, и если дальше двигаться направо (добавлять в модель данные), можно еще повысить качество на валидации. ###Code plot_learning_curve(degree=2, alpha=0.05) ###Output _____no_output_____ ###Markdown А если усложнить ещё больше?Проявляется переобучение - AUC падает как на обучении, так и на валидации. ###Code plot_learning_curve(degree=2, alpha=1e-4) ###Output _____no_output_____
09-NeuralWordEmbedding/Multi_class_Sentiment_Analysis_Deployment.ipynb
###Markdown 5 - Multi-class Sentiment AnalysisIn all of the previous notebooks we have performed sentiment analysis on a dataset with only two classes, positive or negative. When we have only two classes our output can be a single scalar, bound between 0 and 1, that indicates what class an example belongs to. When we have more than 2 examples, our output must be a $C$ dimensional vector, where $C$ is the number of classes.In this notebook, we'll be performing classification on a dataset with 6 classes. Note that this dataset isn't actually a sentiment analysis dataset, it's a dataset of questions and the task is to classify what category the question belongs to. However, everything covered in this notebook applies to any dataset with examples that contain an input sequence belonging to one of $C$ classes.Below, we setup the fields, and load the dataset. The first difference is that we do not need to set the `dtype` in the `LABEL` field. When doing a mutli-class problem, PyTorch expects the labels to be numericalized `LongTensor`s. The second different is that we use `TREC` instead of `IMDB` to load the `TREC` dataset. The `fine_grained` argument allows us to use the fine-grained labels (of which there are 50 classes) or not (in which case they'll be 6 classes). You can change this how you please. Also update to torchtext 0.7.0 ###Code ! pip install torchtext==0.7.0 import torchtext torchtext.__version__ import torch from torchtext import data from torchtext import datasets import random SEED = 1234 torch.manual_seed(SEED) torch.backends.cudnn.deterministic = True TEXT = data.Field(tokenize = 'spacy') LABEL = data.LabelField() train_data, test_data = datasets.TREC.splits(TEXT, LABEL, fine_grained=False) train_data, valid_data = train_data.split(random_state = random.seed(SEED)) ###Output /usr/local/lib/python3.6/dist-packages/torchtext/data/field.py:150: UserWarning: Field class will be retired in the 0.8.0 release and moved to torchtext.legacy. Please see 0.7.0 release notes for further information. warnings.warn('{} class will be retired in the 0.8.0 release and moved to torchtext.legacy. Please see 0.7.0 release notes for further information.'.format(self.__class__.__name__), UserWarning) /usr/local/lib/python3.6/dist-packages/torchtext/data/field.py:150: UserWarning: LabelField class will be retired in the 0.8.0 release and moved to torchtext.legacy. Please see 0.7.0 release notes for further information. warnings.warn('{} class will be retired in the 0.8.0 release and moved to torchtext.legacy. Please see 0.7.0 release notes for further information.'.format(self.__class__.__name__), UserWarning) ###Markdown Let's look at one of the examples in the training set. ###Code vars(train_data[-1]) ###Output _____no_output_____ ###Markdown Next, we'll build the vocabulary. As this dataset is small (only ~3800 training examples) it also has a very small vocabulary (~7500 unique tokens), this means we do not need to set a `max_size` on the vocabulary as before. ###Code MAX_VOCAB_SIZE = 25_000 TEXT.build_vocab(train_data, max_size = MAX_VOCAB_SIZE, vectors = "glove.6B.100d", unk_init = torch.Tensor.normal_) LABEL.build_vocab(train_data) ###Output _____no_output_____ ###Markdown Next, we can check the labels.The 6 labels (for the non-fine-grained case) correspond to the 6 types of questions in the dataset:- `HUM` for questions about humans- `ENTY` for questions about entities- `DESC` for questions asking you for a description - `NUM` for questions where the answer is numerical- `LOC` for questions where the answer is a location- `ABBR` for questions asking about abbreviations ###Code TEXT.vocab.freqs.most_common(10) print(LABEL.vocab.stoi) ###Output defaultdict(None, {'HUM': 0, 'ENTY': 1, 'DESC': 2, 'NUM': 3, 'LOC': 4, 'ABBR': 5}) ###Markdown As always, we set up the iterators. ###Code BATCH_SIZE = 64 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') train_iterator, valid_iterator, test_iterator = data.BucketIterator.splits( (train_data, valid_data, test_data), batch_size = BATCH_SIZE, device = device) ###Output /usr/local/lib/python3.6/dist-packages/torchtext/data/iterator.py:48: UserWarning: BucketIterator class will be retired in the 0.8.0 release and moved to torchtext.legacy. Please see 0.7.0 release notes for further information. warnings.warn('{} class will be retired in the 0.8.0 release and moved to torchtext.legacy. Please see 0.7.0 release notes for further information.'.format(self.__class__.__name__), UserWarning) ###Markdown We'll be using the CNN model from the previous notebook, however any of the models covered in these tutorials will work on this dataset. The only difference is now the `output_dim` will be $C$ instead of $1$. ###Code import torch.nn as nn import torch.nn.functional as F class CNN(nn.Module): def __init__(self, vocab_size, embedding_dim, n_filters, filter_sizes, output_dim, dropout, pad_idx): super().__init__() self.embedding = nn.Embedding(vocab_size, embedding_dim) self.convs = nn.ModuleList([ nn.Conv2d(in_channels = 1, out_channels = n_filters, kernel_size = (fs, embedding_dim)) for fs in filter_sizes ]) self.fc = nn.Linear(len(filter_sizes) * n_filters, output_dim) self.dropout = nn.Dropout(dropout) def forward(self, text): #text = [sent len, batch size] text = text.permute(1, 0) #text = [batch size, sent len] embedded = self.embedding(text) #embedded = [batch size, sent len, emb dim] embedded = embedded.unsqueeze(1) #embedded = [batch size, 1, sent len, emb dim] conved = [F.relu(conv(embedded)).squeeze(3) for conv in self.convs] #conv_n = [batch size, n_filters, sent len - filter_sizes[n]] pooled = [F.max_pool1d(conv, int(conv.shape[2])).squeeze(2) for conv in conved] #pooled_n = [batch size, n_filters] cat = self.dropout(torch.cat(pooled, dim = 1)) #cat = [batch size, n_filters * len(filter_sizes)] return self.fc(cat) ###Output _____no_output_____ ###Markdown We define our model, making sure to set `OUTPUT_DIM` to $C$. We can get $C$ easily by using the size of the `LABEL` vocab, much like we used the length of the `TEXT` vocab to get the size of the vocabulary of the input.The examples in this dataset are generally a lot smaller than those in the IMDb dataset, so we'll use smaller filter sizes. ###Code INPUT_DIM = len(TEXT.vocab) EMBEDDING_DIM = 100 N_FILTERS = 100 FILTER_SIZES = [2,3,4] OUTPUT_DIM = len(LABEL.vocab) DROPOUT = 0.5 PAD_IDX = TEXT.vocab.stoi[TEXT.pad_token] model = CNN(INPUT_DIM, EMBEDDING_DIM, N_FILTERS, FILTER_SIZES, OUTPUT_DIM, DROPOUT, PAD_IDX) ###Output _____no_output_____ ###Markdown Checking the number of parameters, we can see how the smaller filter sizes means we have about a third of the parameters than we did for the CNN model on the IMDb dataset. ###Code def count_parameters(model): return sum(p.numel() for p in model.parameters() if p.requires_grad) print(f'The model has {count_parameters(model):,} trainable parameters') ! pip install torchsummaryX from torchsummaryX import summary inputs = torch.zeros((100, 1), dtype=torch.long) summary(model.to(device), inputs.to(device)) ###Output ======================================================================== Kernel Shape Output Shape Params Mult-Adds Layer 0_embedding [100, 7503] [1, 100, 100] 750.3k 750.3k 1_convs.Conv2d_0 [1, 100, 2, 100] [1, 100, 99, 1] 20.1k 1.98M 2_convs.Conv2d_1 [1, 100, 3, 100] [1, 100, 98, 1] 30.1k 2.94M 3_convs.Conv2d_2 [1, 100, 4, 100] [1, 100, 97, 1] 40.1k 3.88M 4_dropout - [1, 300] - - 5_fc [300, 6] [1, 6] 1.806k 1.8k ------------------------------------------------------------------------ Totals Total params 842.406k Trainable params 842.406k Non-trainable params 0.0 Mult-Adds 9.5521M ======================================================================== ###Markdown Next, we'll load our pre-trained embeddings. ###Code pretrained_embeddings = TEXT.vocab.vectors model.embedding.weight.data.copy_(pretrained_embeddings) ###Output _____no_output_____ ###Markdown Then zero the initial weights of the unknown and padding tokens. ###Code UNK_IDX = TEXT.vocab.stoi[TEXT.unk_token] model.embedding.weight.data[UNK_IDX] = torch.zeros(EMBEDDING_DIM) model.embedding.weight.data[PAD_IDX] = torch.zeros(EMBEDDING_DIM) ###Output _____no_output_____ ###Markdown Another different to the previous notebooks is our loss function (aka criterion). Before we used `BCEWithLogitsLoss`, however now we use `CrossEntropyLoss`. Without going into too much detail, `CrossEntropyLoss` performs a *softmax* function over our model outputs and the loss is given by the *cross entropy* between that and the label.Generally:- `CrossEntropyLoss` is used when our examples exclusively belong to one of $C$ classes- `BCEWithLogitsLoss` is used when our examples exclusively belong to only 2 classes (0 and 1) and is also used in the case where our examples belong to between 0 and $C$ classes (aka multilabel classification). ###Code import torch.optim as optim optimizer = optim.Adam(model.parameters()) criterion = nn.CrossEntropyLoss() model = model.to(device) criterion = criterion.to(device) ###Output _____no_output_____ ###Markdown Before, we had a function that calculated accuracy in the binary label case, where we said if the value was over 0.5 then we would assume it is positive. In the case where we have more than 2 classes, our model outputs a $C$ dimensional vector, where the value of each element is the beleief that the example belongs to that class. For example, in our labels we have: 'HUM' = 0, 'ENTY' = 1, 'DESC' = 2, 'NUM' = 3, 'LOC' = 4 and 'ABBR' = 5. If the output of our model was something like: **[5.1, 0.3, 0.1, 2.1, 0.2, 0.6]** this means that the model strongly believes the example belongs to class 0, a question about a human, and slightly believes the example belongs to class 3, a numerical question.We calculate the accuracy by performing an `argmax` to get the index of the maximum value in the prediction for each element in the batch, and then counting how many times this equals the actual label. We then average this across the batch. ###Code def categorical_accuracy(preds, y): """ Returns accuracy per batch, i.e. if you get 8/10 right, this returns 0.8, NOT 8 """ max_preds = preds.argmax(dim = 1, keepdim = True) # get the index of the max probability correct = max_preds.squeeze(1).eq(y) return correct.sum() / torch.FloatTensor([y.shape[0]]).to(device) ###Output _____no_output_____ ###Markdown The training loop is similar to before, without the need to `squeeze` the model predictions as `CrossEntropyLoss` expects the input to be **[batch size, n classes]** and the label to be **[batch size]**.The label needs to be a `LongTensor`, which it is by default as we did not set the `dtype` to a `FloatTensor` as before. ###Code batch = next(iter(train_iterator)) batch.label, batch.text batch.text def train(model, iterator, optimizer, criterion): epoch_loss = 0 epoch_acc = 0 model.train() for batch in iterator: batch.text = batch.text.to(device) batch.label = batch.label.to(device) optimizer.zero_grad() predictions = model(batch.text) loss = criterion(predictions, batch.label) acc = categorical_accuracy(predictions, batch.label) loss.backward() optimizer.step() epoch_loss += loss.item() epoch_acc += acc.item() return epoch_loss / len(iterator), epoch_acc / len(iterator) ###Output _____no_output_____ ###Markdown The evaluation loop is, again, similar to before. ###Code def evaluate(model, iterator, criterion): epoch_loss = 0 epoch_acc = 0 model.eval() with torch.no_grad(): for batch in iterator: predictions = model(batch.text) loss = criterion(predictions, batch.label) acc = categorical_accuracy(predictions, batch.label) epoch_loss += loss.item() epoch_acc += acc.item() return epoch_loss / len(iterator), epoch_acc / len(iterator) import time def epoch_time(start_time, end_time): elapsed_time = end_time - start_time elapsed_mins = int(elapsed_time / 60) elapsed_secs = int(elapsed_time - (elapsed_mins * 60)) return elapsed_mins, elapsed_secs ###Output _____no_output_____ ###Markdown Next, we train our model. ###Code N_EPOCHS = 15 best_valid_loss = float('inf') model = model.to(device) for epoch in range(N_EPOCHS): start_time = time.time() train_loss, train_acc = train(model, train_iterator, optimizer, criterion) valid_loss, valid_acc = evaluate(model, valid_iterator, criterion) end_time = time.time() epoch_mins, epoch_secs = epoch_time(start_time, end_time) if valid_loss < best_valid_loss: best_valid_loss = valid_loss torch.save(model.state_dict(), 'tut5-model.pt') print(f'Epoch: {epoch+1:02} | Epoch Time: {epoch_mins}m {epoch_secs}s') print(f'\tTrain Loss: {train_loss:.3f} | Train Acc: {train_acc*100:.2f}%') print(f'\t Val. Loss: {valid_loss:.3f} | Val. Acc: {valid_acc*100:.2f}%') ###Output /usr/local/lib/python3.6/dist-packages/torchtext/data/batch.py:23: UserWarning: Batch class will be retired in the 0.8.0 release and moved to torchtext.legacy. Please see 0.7.0 release notes for further information. warnings.warn('{} class will be retired in the 0.8.0 release and moved to torchtext.legacy. Please see 0.7.0 release notes for further information.'.format(self.__class__.__name__), UserWarning) ###Markdown Finally, let's run our model on the test set! ###Code model.load_state_dict(torch.load('tut5-model.pt')) test_loss, test_acc = evaluate(model, test_iterator, criterion) print(f'Test Loss: {test_loss:.3f} | Test Acc: {test_acc*100:.2f}%') ###Output Test Loss: 0.275 | Test Acc: 89.05% ###Markdown Similar to how we made a function to predict sentiment for any given sentences, we can now make a function that will predict the class of question given.The only difference here is that instead of using a sigmoid function to squash the input between 0 and 1, we use the `argmax` to get the highest predicted class index. We then use this index with the label vocab to get the human readable label. ###Code import spacy nlp = spacy.load('en') def predict_class(model, sentence, min_len = 4): model.eval() tokenized = [tok.text for tok in nlp.tokenizer(sentence)] if len(tokenized) < min_len: tokenized += ['<pad>'] * (min_len - len(tokenized)) indexed = [TEXT.vocab.stoi[t] for t in tokenized] tensor = torch.LongTensor(indexed).to(device) tensor = tensor.unsqueeze(1) preds = model(tensor) max_preds = preds.argmax(dim = 1) return max_preds.item() type(nlp) sentence = 'how old are you?' tokenized = [tok.text for tok in nlp.tokenizer(sentence)] tokenized indexed = [TEXT.vocab.stoi[t] for t in tokenized] indexed tensor = torch.LongTensor(indexed).to(device) tensor predicted = model(tensor.unsqueeze(1).to('cpu')).squeeze(0) predicted = F.softmax(predicted) predicted sorted_values = predicted.argsort(descending=True).cpu().numpy() sorted_values list(map(lambda x: { "label_idx": x.item(), "label_name": LABEL.vocab.itos[x], 'confidence': predicted[x].item() } , sorted_values)) ###Output _____no_output_____ ###Markdown Now, let's try it out on a few different questions... ###Code pred_class = predict_class(model, "Who is Keyser Söze?") print(f'Predicted class is: {pred_class} = {LABEL.vocab.itos[pred_class]}') pred_class = predict_class(model, "How many minutes are in six hundred and eighteen hours?") print(f'Predicted class is: {pred_class} = {LABEL.vocab.itos[pred_class]}') pred_class = predict_class(model, "What continent is Bulgaria in?") print(f'Predicted class is: {pred_class} = {LABEL.vocab.itos[pred_class]}') pred_class = predict_class(model, "What does WYSIWYG stand for?") print(f'Predicted class is: {pred_class} = {LABEL.vocab.itos[pred_class]}') ###Output Predicted class is: 5 = ABBR ###Markdown Save the Model and the Vocab ###Code def save_vocab(vocab, path): import pickle output = open(path, 'wb') pickle.dump(vocab, output) output.close() torch.save(model, 'conv-sentimental-mclass.pt') save_vocab({ 'TEXT.vocab': TEXT.vocab, 'LABEL.vocab': LABEL.vocab }, 'conv-sentimental-vocab.pkl') ###Output _____no_output_____ ###Markdown We need to use scripted model since traced model will make the shapes constant and we wont be able to use variable length strings ###Code scripted_model = torch.jit.script(model.to('cpu')) scripted_model(torch.zeros((5, 1), dtype=torch.long)) scripted_model.save('conv-sentimental-mclass.scripted.pt') ###Output _____no_output_____
pynq_dpu/edge/notebooks/dpu_inception_v1.ipynb
###Markdown DPU example: Inception_v1This notebooks shows an example of DPU applications. The application,as well as the DPU IP, is pulled from the official [Vitis AI Github Repository](https://github.com/Xilinx/Vitis-AI).For more information, please refer to the [Xilinx Vitis AI page](https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html).In this notebook, we will show how to use **Python API** to run DPU tasks. 1. Prepare the overlayWe will download the overlay onto the board. ###Code from pynq_dpu import DpuOverlay overlay = DpuOverlay("dpu.bit") ###Output _____no_output_____ ###Markdown The VAI package has been installed onto your board. There are multiplebinaries installed; for example, you can check the current DPU status using`dexplorer`. You should be able to see reasonable values from the output. ###Code !dexplorer -w ###Output [DPU IP Spec] IP Timestamp : 2020-03-26 13:30:00 DPU Core Count : 2 [DPU Core Configuration List] DPU Core : #0 DPU Enabled : Yes DPU Arch : B4096 DPU Target Version : v1.4.1 DPU Freqency : 300 MHz Ram Usage : High DepthwiseConv : Enabled DepthwiseConv+Relu6 : Enabled Conv+Leakyrelu : Enabled Conv+Relu6 : Enabled Channel Augmentation : Enabled Average Pool : Enabled DPU Core : #1 DPU Enabled : Yes DPU Arch : B4096 DPU Target Version : v1.4.1 DPU Freqency : 300 MHz Ram Usage : High DepthwiseConv : Enabled DepthwiseConv+Relu6 : Enabled Conv+Leakyrelu : Enabled Conv+Relu6 : Enabled Channel Augmentation : Enabled Average Pool : Enabled ###Markdown The compiled quantized model may have different kernel names depending on the DPU architectures.This piece of information can usually be found when compiling the `*.elf` model file.The `load_model()` method can automatically parse the kernel name from the provided `*.elf` model file. ###Code overlay.load_model("dpu_inception_v1_0.elf") ###Output _____no_output_____ ###Markdown 2. Run Python programWe will use DNNDK's Python API to run DPU tasks.In this example, we will set the number of iterations to 500, meaning that a single picture will be taken and classified 500 times.Users can adjust this value if they want. ###Code from ctypes import * import cv2 import numpy as np from dnndk import n2cube import os import threading import time from pynq_dpu import dputils KERNEL_CONV = "inception_v1_0" KERNEL_CONV_INPUT = "conv1_7x7_s2" KERNEL_FC_OUTPUT = "loss3_classifier" num_iterations = 500 lock = threading.Lock() ###Output _____no_output_____ ###Markdown Let's first take a picture from the image folder and display it. ###Code from IPython.display import display from PIL import Image image_folder = "./img" listimage = [i for i in os.listdir(image_folder) if i.endswith("JPEG")] path = os.path.join(image_folder, listimage[0]) img = cv2.imread(path) display(Image.open(path)) ###Output _____no_output_____ ###Markdown We will also open and initialize the DPU device. We will create a DPU kernel and reuse it.Throughout the entire notebook, we don't have to redo this step.**Note**: if you open and close DPU multiple times, the Jupyter kernel might die;this is because the current DNNDK implementation requires bitstream to be downloaded by XRT,which is not supported by `pynq` package. Hence we encourage users to stay withone single DPU session, both for program robustness and higher performance. ###Code n2cube.dpuOpen() kernel = n2cube.dpuLoadKernel(KERNEL_CONV) ###Output _____no_output_____ ###Markdown Single executionWe define a function that will use the DPU to make a prediction on an input image and provide a softmax output. ###Code def predict_label(img): task = n2cube.dpuCreateTask(kernel, 0) dputils.dpuSetInputImage2(task, KERNEL_CONV_INPUT, img) n2cube.dpuGetInputTensor(task, KERNEL_CONV_INPUT) n2cube.dpuRunTask(task) size = n2cube.dpuGetOutputTensorSize(task, KERNEL_FC_OUTPUT) channel = n2cube.dpuGetOutputTensorChannel(task, KERNEL_FC_OUTPUT) conf = n2cube.dpuGetOutputTensorAddress(task, KERNEL_FC_OUTPUT) outputScale = n2cube.dpuGetOutputTensorScale(task, KERNEL_FC_OUTPUT) softmax = n2cube.dpuRunSoftmax(conf, channel, size//channel, outputScale) n2cube.dpuDestroyTask(task) with open("img/words.txt", "r") as f: lines = f.readlines() return lines[np.argmax(softmax)] label = predict_label(img) print('Class label: {}'.format(label)) ###Output Class label: tricycle, trike, velocipede ###Markdown Multiple executionsAfter we have verified the correctness of a single execution, we cantry multiple executions and measure the throughput in Frames Per Second (FPS).Let's define a function that processes a single image in multiple iterations. The parameters are:* `kernel`: DPU kernel.* `img`: image to be classified.* `count` : test rounds count.The number of iterations is defined as `num_iterations` in previous cells. ###Code def run_dpu_task(kernel, img, count): task = n2cube.dpuCreateTask(kernel, 0) count = 0 while count < num_iterations: dputils.dpuSetInputImage2(task, KERNEL_CONV_INPUT, img) n2cube.dpuGetInputTensor(task, KERNEL_CONV_INPUT) n2cube.dpuRunTask(task) size = n2cube.dpuGetOutputTensorSize(task, KERNEL_FC_OUTPUT) channel = n2cube.dpuGetOutputTensorChannel(task, KERNEL_FC_OUTPUT) conf = n2cube.dpuGetOutputTensorAddress(task, KERNEL_FC_OUTPUT) outputScale = n2cube.dpuGetOutputTensorScale(task, KERNEL_FC_OUTPUT) softmax = n2cube.dpuRunSoftmax( conf, channel, size//channel, outputScale) lock.acquire() count = count + threadnum lock.release() n2cube.dpuDestroyTask(task) ###Output _____no_output_____ ###Markdown Now we are able to run the batch processing and print out DPU throughput.Users can change the `image_folder` to point to other picture locations.We will use the previously defined and classified image `img` and process it for`num_interations` times.In this example, we will just use a single thread.The following cell may take a while to run. Please be patient. ###Code threadAll = [] threadnum = 1 start = time.time() for i in range(threadnum): t1 = threading.Thread(target=run_dpu_task, args=(kernel, img, i)) threadAll.append(t1) for x in threadAll: x.start() for x in threadAll: x.join() end = time.time() fps = float(num_iterations/(end-start)) print("%.2f FPS" % fps) ###Output 89.63 FPS ###Markdown Clean upFinally, when you are done with the DPU experiments, remember to destroy the kernel and close the DPU. ###Code n2cube.dpuDestroyKernel(kernel) ###Output _____no_output_____
code/.ipynb_checkpoints/Data prep - Bathymetry and Coord Grid Generator (Py3)-checkpoint.ipynb
###Markdown Plots to check channels etc- took from old checkbathy and plotgrids files ###Code import scipy.io as sio from IPython.core.display import display, HTML display(HTML("<style>.container { width:90% !important; }</style>")) from helpers import expandf, grid_angle # grid def load1(f): with nc.Dataset(f) as ncid: glamt = ncid.variables["glamt"][0, :, :].filled() gphit = ncid.variables["gphit"][0, :, :].filled() glamu = ncid.variables["glamu"][0, :, :].filled() gphiu = ncid.variables["gphiu"][0, :, :].filled() glamv = ncid.variables["glamv"][0, :, :].filled() gphiv = ncid.variables["gphiv"][0, :, :].filled() glamf = ncid.variables["glamf"][0, :, :].filled() gphif = ncid.variables["gphif"][0, :, :].filled() return glamt, glamu, glamv, glamf, gphit, gphiu, gphiv, gphif # def load2(f): with nc.Dataset(f) as ncid: e1t = ncid.variables["e1t"][0, :, :].filled() e1u = ncid.variables["e1u"][0, :, :].filled() e1v = ncid.variables["e1v"][0, :, :].filled() e1f = ncid.variables["e1f"][0, :, :].filled() e2t = ncid.variables["e2t"][0, :, :].filled() e2u = ncid.variables["e2u"][0, :, :].filled() e2v = ncid.variables["e2v"][0, :, :].filled() e2f = ncid.variables["e2f"][0, :, :].filled() return e1t,e1u,e1v,e1f,e2t,e2u,e2v,e2f def load3(f): with nc.Dataset(f) as ncid: depth = ncid.variables["Bathymetry"][:, :].filled() latt = ncid.variables["nav_lat"][:, :].filled() lont = ncid.variables["nav_lon"][:, :].filled() return depth, latt, lont # for rivers - GO def load4(f): with nc.Dataset(f) as ncid: rorunoff = ncid.variables["rorunoff"][6, :, :].filled() latt = ncid.variables["nav_lat"][:, :].filled() lont = ncid.variables["nav_lon"][:, :].filled() return rorunoff, latt, lont # grid def plotgrid1(f): glamt, glamu, glamv, glamf, gphit, gphiu, gphiv, gphif = load1(f) plt.figure(figsize=(7,5)); plt.clf() # Draw sides of every box glamfe, gphife = expandf(glamf, gphif) NY,NX = glamfe.shape print(glamt.shape) print(glamu.shape) print(glamf.shape) for j in range(NY): plt.plot(glamfe[j,:],gphife[j,:], 'k') for i in range(NX): plt.plot(glamfe[:,i],gphife[:,i], 'k') # Plot t, u, v, f points in red, green, blue, magenta plt.plot(glamt, gphit, 'r.') plt.plot(glamu, gphiu, 'g.') plt.plot(glamv, gphiv, 'b.') plt.plot(glamf, gphif, 'm.') plt.tight_layout() plt.xlim([-123.5,-123.3]) plt.ylim([46.84,46.95]) #plt.savefig(f.replace(".nc","_gridpts.png")) # grid def plotgrid2(f): glamt, glamu, glamv, glamf, gphit, gphiu, gphiv, gphif = load1(f) e1t,e1u,e1v,e1f,e2t,e2u,e2v,e2f = load2(f) glamfe, gphife = expandf(glamf, gphif) A = grid_angle(f) plt.figure(figsize=(12,4)) plt.subplot(1,3,1) plt.pcolormesh(glamfe,gphife,e1t); plt.colorbar(); plt.title("e1t (m)") plt.subplot(1,3,2) plt.pcolormesh(glamfe,gphife,e2t); plt.colorbar(); plt.title("e2t (m)") plt.subplot(1,3,3) plt.pcolormesh(glamf,gphif,A); plt.colorbar(); plt.title("angle (deg)") plt.tight_layout() plt.savefig(f.replace(".nc","_resolution_angle.png")) # bathy def plotgrid3(f): depth, latt, lont = load3(f) depth[depth==0]=np.nan depth[depth>0]=1 #print(depth.shape) # can do edits below # made permanent in the main create bathy above # north to south #depth[178,128] = 400 #northern fjord # depth[296,54] = 60 #northern fjord # depth[296,53] = 60 #northern fjord plt.figure(figsize=(8,8)) plt.subplot(1,1,1) plt.pcolormesh(depth, cmap=plt.plasma()); plt.colorbar(); plt.title("depth") #plt.pcolormesh(depth); plt.colorbar(); plt.title("depth") #plt.pcolormesh(ma_rorunoff, cmap=plt.pink()); plt.title("rodepth") plt.tight_layout() plt.savefig(f.replace(".nc","_bathycheck.png")) # runoff / rivers def plotgrid4(f): depth, latt, lont = load3(f) # added for river runoff overlay rorunoff, latt2, lontt2 = load4('c:/temp/runofftools/rivers_month_202101GO.nc') #rorunoff[rorunoff==0]=np.nan #print(rorunoff.shape) ma_rorunoff = np.ma.masked_array(rorunoff, rorunoff == 0) depth[depth==0]=np.nan depth[depth>0]=1 #print(depth.shape) plt.figure(figsize=(8,8)) plt.subplot(1,1,1) plt.pcolormesh(depth, cmap=plt.plasma()); plt.colorbar(); plt.title("depth") #plt.pcolormesh(depth); plt.colorbar(); plt.title("depth") #plt.pcolormesh(ma_rorunoff, cmap=plt.pink()); plt.title("rodepth") plt.tight_layout() plt.savefig("C:/temp/runofftools/runoffcheck2.png") # ################################################################# # #################### BASIC PLOT OF BATHY ######################## gridfilename = '..//data//grid//coordinates_salishsea_1500m.nc' #bathyfilename = 'bathy_salishsea_1500m_before_manual_edits.nc' #bathyfilename = '..//data//bathymetry//bathy_salishsea_1500m_Dec30.nc' with nc.Dataset(gridfilename) as ncid: glamt = ncid.variables["glamt"][0, :, :].filled() gphit = ncid.variables["gphit"][0, :, :].filled() glamf = ncid.variables["glamf"][0, :, :].filled() gphif = ncid.variables["gphif"][0, :, :].filled() glamfe,gphife=expandf(glamf,gphif) with nc.Dataset(bathyout_filename) as nc_b_file: bathy = nc_b_file.variables["Bathymetry"][:, :].filled() bb=np.copy(bathy); bb[bb==0]=np.nan plt.figure(figsize=(8,8)) plt.subplot(1,1,1) plt.pcolormesh(glamfe,gphife,bb); plt.colorbar() # Coastlines mfile = sio.loadmat('..//data//reference//PNW.mat') ncst = mfile['ncst'] plt.plot(ncst[:,0],ncst[:,1],'k') mfile2 = sio.loadmat('..//data//reference//PNWrivers.mat') ncst2 = mfile2['ncst'] plt.plot(ncst2[:,0],ncst2[:,1],'k') ########################################################## ############### PLOTS TO CHECK BATHY ETC ################# # plotgrid1('coordinates_seagrid_SalishSea2.nc') #plotgrid1('coordinates_salishsea_1km.nc') #plotgrid1('coordinates_salishsea_1500m.nc') #plotgrid1('coordinates_salishsea_2km.nc') #plotgrid2('coordinates_seagrid_SalishSea2.nc') # plotgrid2('coordinates_salishsea_1km.nc') #plotgrid2('coordinates_salishsea_2km.nc') #plotgrid2('coordinates_salishsea_1p5km.nc') #plotgrid3('bathy_salishsea_1500m_Dec21.nc') plotgrid3(bathyout_filename) #plotgrid3('bathy_salishsea_2km.nc') # junk code below a = range(24) b = a[::3] list(b) my_list[0] = [_ for _ in 'abcdefghi'] my_list[1] = [_ for _ in 'abcdefghi'] my_list[0:-1] glamu.shape a[296,10] ############################################################ ### EXPLORE TWO MESHES - NEMO ORAS5 and SS1500 ############# ### Apr 2021 import sys # load mask (tmask) def loadmask(f): with nc.Dataset(f) as ncid: tmaskutil = ncid.variables["tmaskutil"][0,:, :].filled() latt = ncid.variables["nav_lat"][:, :].filled() lont = ncid.variables["nav_lon"][:, :].filled() e1t = ncid.variables["e1t"][0,:, :].filled() e2t = ncid.variables["e2t"][0,:, :].filled() return tmaskutil, latt, lont, e1t, e2t def plot_two_grids(f,g): # load ss1500mask tmask, latt, lont, e1t, e2t = loadmask(f) # load ORAS5 tmask2, latt2, lont2, e1t2, e2t2 = loadmask(g) #print(tmask[:,]) #plt.subplot(1,1,1) #plt.figure(figsize=(7,5)); plt.clf() plt.scatter(lont, latt, tmask) plt.scatter(lont2, latt2, tmask2) # Draw sides of every box #glamfe, gphife = expandf(glamf, gphif) #NY,NX = glamfe.shape #for j in range(NY): # plt.plot(glamfe[j,:],gphife[j,:], 'k') #for i in range(NX): # plt.plot(glamfe[:,i],gphife[:,i], 'k') # Plot t, u, v, f points in red, green, blue, magenta #plt.plot(glamt, gphit, 'r.') #plt.plot(glamu, gphiu, 'g.') #plt.plot(glamv, gphiv, 'b.') #plt.plot(glamf, gphif, 'm.') #plt.plot(glamt_2, gphit_2, 'b.') #plt.plot(glamu, gphiu, 'g.') #plt.plot(glamv, gphiv, 'b.') #plt.plot(glamf, gphif, 'm.') plt.tight_layout() plt.xlim([-126.2,-122.1]) plt.ylim([46.84,52]) #plt.savefig(f.replace(".nc","_gridpts.png")) res = "1500m" ss1500grid = "..//data//grid//coordinates_salishsea_{}.nc".format(res) # in datetag = "20210406" oras5grid = "..//data//reference//ORAS5 Mask and Bathy//mesh_mask.nc" ss1500meshmask = "..//data//mesh mask//mesh_mask_20210406.nc" np.set_printoptions(threshold=sys.maxsize) plot_two_grids(ss1500meshmask, oras5grid) tmask, latt, lont, e1t, e2t = load2(f) plt.figure(figsize=(8,8)) plt.subplot(1,1,1) plt.pcolormesh(tmask[:,:], cmap=plt.pink()); plt.title("model_mask") plt.tight_layout() plt.figure(figsize=(7,5)); plt.clf() plt.plot(tmaskutil[0,:],tmaskutil[:,0], 'r.') with nc.Dataset(ss1500meshmask) as ncid: print(tmaskutil[:,0]) ###Output [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
onnx_conversion_scripts/onnx_to_tensorflow.ipynb
###Markdown Onnx to Tensorflow conversion explorationIn this notebook we test the [onnx-to-tensorflow](https://github.com/onnx/onnx-tensorflow/) convertor package, by running original models and converted models and comparing the outcomes. ###Code from pathlib import Path import onnx from onnx_tf.backend import prepare import numpy as np import dianna ###Output _____no_output_____ ###Markdown Create functions for running on onnx or converted to tf ###Code def run_onnx_through_tf(onnx_model_path, data): onnx_model = onnx.load(onnx_model_path) # load onnx model tf_output = prepare(onnx_model).run(data).output return tf_output def run_onnx_using_runner(onnx_model_path, data): runner = dianna.utils.onnx_runner.SimpleModelRunner(str(onnx_model_path)) onnx_runner_output = runner(data) return onnx_runner_output ###Output _____no_output_____ ###Markdown Case 1: Leafsnap ###Code folder = Path(r'C:\Users\ChristiaanMeijer\Documents\dianna\tutorials') leafsnap_model_path = folder/'leafsnap_model.onnx' np.random.seed = 1234 leafsnap_input = np.random.randn(64,3,128,128).astype(np.float32) abs_diff = np.abs(run_onnx_through_tf(leafsnap_model_path, leafsnap_input) - run_onnx_using_runner(leafsnap_model_path, leafsnap_input)) print('mean', np.mean(abs_diff), '\nstd', np.std(abs_diff), '\nmax', np.max(abs_diff)) ###Output WARNING:tensorflow:From C:\Users\ChristiaanMeijer\AppData\Roaming\Python\Python39\site-packages\tensorflow\python\ops\array_ops.py:5043: calling gather (from tensorflow.python.ops.array_ops) with validate_indices is deprecated and will be removed in a future version. Instructions for updating: The `validate_indices` argument has no effect. Indices are always validated on CPU and never validated on GPU. mean 2.69079e-05 std 2.9605108e-05 max 0.00030517578 ###Markdown Conclusion: outputs are equivalent. Case 2: Mnist ###Code mnist_model_path = folder/'mnist_model.onnx' mnist_input = np.random.randn(64,1,28,28).astype(np.float32) abs_diff = np.abs(run_onnx_through_tf(mnist_model_path, mnist_input) - run_onnx_using_runner(mnist_model_path, mnist_input)) print('mean', np.mean(abs_diff), '\nstd', np.std(abs_diff), '\nmax', np.max(abs_diff)) ###Output mean 7.450581e-09 std 1.9712383e-08 max 5.9604645e-08
whale_analysis-Copy1.ipynb
###Markdown A Whale off the Port(folio) --- In this assignment, you'll get to use what you've learned this week to evaluate the performance among various algorithmic, hedge, and mutual fund portfolios and compare them against the S&P 500 Index. ###Code # Initial imports import pandas as pd import numpy as np import datetime as dt from pathlib import Path %matplotlib inline ###Output _____no_output_____ ###Markdown Data CleaningIn this section, you will need to read the CSV files into DataFrames and perform any necessary data cleaning steps. After cleaning, combine all DataFrames into a single DataFrame.Files:* `whale_returns.csv`: Contains returns of some famous "whale" investors' portfolios.* `algo_returns.csv`: Contains returns from the in-house trading algorithms from Harold's company.* `sp500_history.csv`: Contains historical closing prices of the S&P 500 Index. Whale ReturnsRead the Whale Portfolio daily returns and clean the data ###Code # Reading whale returns # Set the file paths whale_returns_data = Path("./Resources/whale_returns.csv") algo_returns_data = Path("./Resources/algo_returns.csv") sp500_history_data = Path("./Resources/sp500_history.csv") aapl_historical_data = Path("./Resources/aapl_historical.csv") cost_historical_data = Path("./Resources/cost_historical.csv") goog_historical_data = Path("./Resources/goog_historical.csv") #whale_returns_data = Path("./Resources/whale_returns.csv") # Read the CSVs and set the `date` column as a datetime index to the DataFrame #whale_returns_df = pd.read_csv(whale_returns_data, index_col="date", infer_datetime_format=True, parse_dates=True) #algo_returns_data = pd.read_csv(algo_returns_data, index_col="date", infer_datetime_format=True, parse_dates=True) sp500_history_df = pd.read_csv(sp500_history_data) #index_col="Date", infer_datetime_format=True, parse_dates=True) aapl_historical_df = pd.read_csv(aapl_historical_data) #index_col="Trade DATE", infer_datetime_format=True, parse_dates=True) cost_historical_df = pd.read_csv(cost_historical_data) #index_col="Trade DATE", infer_datetime_format=True, parse_dates=True) goog_historical_df = pd.read_csv(goog_historical_data) #index_col="Trade DATE", infer_datetime_format=True, parse_dates=True) whale_returns_data = pd.read(whale_returns_data) algo_returns_data = pd.read(algo_returns_data) # sort each of the data frames with respect to the date # set the collumn names sp500_history_df.columns = ['date', 'close',] #drop $ symbols # Read dates to match accross all CSVs (format) sp500_history_df['date'] = pd.to_datetime(sp500_history_df['date'], format = '%d-%b-%y') pd.to_datetime(sp500_history_df['date'], format = '%d-%b-%y') # drop symbol aapl_historical_df = aapl_historical_df.drop(columns = ['Symbol']) cost_historical_df = cost_historical_df.drop(columns = ['Symbol']) goog_historical_df = goog_historical_df.drop(columns = ['Symbol']) aapl_historical_df.columns = ['date', 'close'] aapl_historical_df['date'] = pd.to_datetime(aapl_historical_df['date'], format='%m/%d/%Y') cost_historical_df.columns = ['date', 'close'] cost_historical_df['date'] = pd.to_datetime(cost_historical_df['date'], format='%m/%d/%Y') goog_historical_df.columns = ['date', 'close'] goog_historical_df['date'] = pd.to_datetime(goog_historical_df['date'], format='%m/%d/%Y') # Print rows print(sp500_history_df.head(10)) print(sp500_history_df.dtypes) print(aapl_historical_df.head(10)) print(aapl_historical_df.dtypes) print(cost_historical_df.head(10)) print(cost_historical_df.dtypes) print(goog_historical_df.head(10)) print(goog_historical_df.dtypes) #print(whale_returns_data_df.head(10)) #print(whale_returns_data.dtypes) #set index #sp500_history_df = sp500_history_df.set_index("Date") #aapl_historical_df = aapl_historical_df.set_index("Date") #cost_historical_df = cost_historical_df.set_index("Date") #goog_historical_df = goog_historical_df.set_index("Date") # Sort each of the data frames with respect to their corresponding dates #sp500_history_df.sort_index(inplace=True) #aapl_historical_df.sort_index(inplace=True) #cost_historical_df.sort_index(inplace=True) #goog_historical_df.sort_index(inplace=True) #(inplace=True, index_col="date", infer_datatime_format=True, parse_dates=True) # Display a few rows #whale_returns_df wrk_df.head() #SEARCH AND FIND TO IMPLEMENT: INFER_DATETIME_FORMAT = TRUE, PARSE_DATES-TRUE (DELETE) #concat #combined_df = pd.concat([sp500_history_df, aapl_historical_df, goog_historical_df, cost_historical_df], axis = "columns", join = "inner") # sort datetime index in ascending order #combined_df.sort_index(inplace=True) # set column names #combined_df.columns = ['SP500', 'AAPL', 'COST', 'GOOG'] #sp500_history_df.head() #combined_df.head() #set index sp500_history_df = sp500_history_df.set_index("date") aapl_historical_df = aapl_historical_df.set_index("date") cost_historical_df = cost_historical_df.set_index("date") goog_historical_df = goog_historical_df.set_index("date") # Sort each of the data frames with respect to their corresponding dates sp500_history_df.sort_index(inplace=True) aapl_historical_df.sort_index(inplace=True) cost_historical_df.sort_index(inplace=True) goog_historical_df.sort_index(inplace=True) combined_df = pd.concat([sp500_history_df, aapl_historical_df, goog_historical_df, cost_historical_df], axis = "columns", join = "inner") combined_df.columns = ['SP500', 'AAPL', 'COST', 'GOOG'] #sp500_history_df.head() combined_df.head() # Clean and assign date to drop any un-wanted dollar #drop the dollar signs def clean_dollarsign(value): if isinstance(value, str): return(value.replace('$', '')) return(value) #set column names sp500_history_df.columns = ["date", "close"] whale_returns_df.columns = ["date", "soros_fund", "paulson_fund", "tiger_global_fund", "berkshare_fund"] algo_returns_df.columns = ["date", "algo_1", "algo_2"] #set the date format from the csv file into the sp500 dataframe sp500_history_df['date'] = pd.to_datetime(sp500_history_fd['date'], format='%d-%b-%y') #remove the dollar sign and change thetypeto float sp500_history_df['close'] = sp500_history_df['close'].apply(clean_dollar_sign).astype('float') #set index sp500_history_df = sp500_history_df.set_index("date") whale_returns_df = whale_returns_df.set_index("date") algo_returns_df = algo_returns_df.set_index("date") # Sort each of the data frames with respect to their corresponding dates sp500_history_df.sort_index(inplace=True) whale_returns_df.sort_index(inplace=True) algo_returns_df.sort_index(inplace=True) #calculate returns for the sp500_history_df sp500_returns_df = sp500_csv.pct_change() #check for null values print(f" Null values in s&p500 :\n{sp500_history_df.isnull().sum()}\n") print(f" Null values in Whale :\n{whale_returns_df.isnull().sum()}\n") print(f" Null values in Algo :\n{sp500_history_df.isnull().sum()}\n") # Print out all CSVs to see the drop dollar sign changes print(sp500_history_df.head()) print(sp500_history_df.dtypes) print(aapl_historical_df.head()) print(aapl_historical_df.dtypes) print(cost_historical_df.head()) print(cost_historical_df.dtypes) print(goog_historical_df.head()) print(goog_historical_df.dtypes) # Count nulls sp500_history_df.isnull().sum() aapl_historical_df.isnull().sum() cost_historical_df.isnull().sum() goog_historical_df.isnull().sum() # Drop nulls sp500_history_df.dropna() aapl_historical_df.dropna() cost_historical_df.dropna() goog_historical_df.dropna() ###Output _____no_output_____ ###Markdown Algorithmic Daily ReturnsRead the algorithmic daily returns and clean the data ###Code # Reading algorithmic returns algo_returns_data = Path("./Resources/algo_returns.csv") algo_returns_df = pd.read_csv(algo_returns_data) #set columns algo_returns_df.columns = ['date', 'Algo1', 'Algo2',] print(algo_returns_df.head(10)) print(algo_returns_df.dtypes) # Count nulls also_returns_data.isnull().sum() # Drop nulls also_returns_data.dropna() ###Output _____no_output_____ ###Markdown S&P 500 ReturnsRead the S&P 500 historic closing prices and create a new daily returns DataFrame from the data. ###Code # Reading S&P 500 Closing Prices # Check Data Types # Fix Data Types # Calculate Daily Returns # Drop nulls # Rename `Close` Column to be specific to this portfolio. ###Output _____no_output_____ ###Markdown Combine Whale, Algorithmic, and S&P 500 Returns ###Code # Join Whale Returns, Algorithmic Returns, and the S&P 500 Returns into a single DataFrame with columns for each portfolio's returns. ###Output _____no_output_____ ###Markdown --- Conduct Quantitative AnalysisIn this section, you will calculate and visualize performance and risk metrics for the portfolios. Performance Anlysis Calculate and Plot the daily returns. ###Code # Plot daily returns of all portfolios ###Output _____no_output_____ ###Markdown Calculate and Plot cumulative returns. ###Code # Calculate cumulative returns of all portfolios # Plot cumulative returns ###Output _____no_output_____ ###Markdown --- Risk AnalysisDetermine the _risk_ of each portfolio:1. Create a box plot for each portfolio. 2. Calculate the standard deviation for all portfolios4. Determine which portfolios are riskier than the S&P 5005. Calculate the Annualized Standard Deviation Create a box plot for each portfolio ###Code # Box plot to visually show risk ###Output _____no_output_____ ###Markdown Calculate Standard Deviations ###Code # Calculate the daily standard deviations of all portfolios ###Output _____no_output_____ ###Markdown Determine which portfolios are riskier than the S&P 500 ###Code # Calculate the daily standard deviation of S&P 500 # Determine which portfolios are riskier than the S&P 500 ###Output _____no_output_____ ###Markdown Calculate the Annualized Standard Deviation ###Code # Calculate the annualized standard deviation (252 trading days) ###Output _____no_output_____ ###Markdown --- Rolling StatisticsRisk changes over time. Analyze the rolling statistics for Risk and Beta. 1. Calculate and plot the rolling standard deviation for the S&P 500 using a 21-day window2. Calculate the correlation between each stock to determine which portfolios may mimick the S&P 5003. Choose one portfolio, then calculate and plot the 60-day rolling beta between it and the S&P 500 Calculate and plot rolling `std` for all portfolios with 21-day window ###Code # Calculate the rolling standard deviation for all portfolios using a 21-day window # Plot the rolling standard deviation ###Output _____no_output_____ ###Markdown Calculate and plot the correlation ###Code # Calculate the correlation # Display de correlation matrix ###Output _____no_output_____ ###Markdown Calculate and Plot Beta for a chosen portfolio and the S&P 500 ###Code # Calculate covariance of a single portfolio # Calculate variance of S&P 500 # Computing beta # Plot beta trend ###Output _____no_output_____ ###Markdown Rolling Statistics Challenge: Exponentially Weighted Average An alternative way to calculate a rolling window is to take the exponentially weighted moving average. This is like a moving window average, but it assigns greater importance to more recent observations. Try calculating the [`ewm`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.ewm.html) with a 21-day half-life. ###Code # Use `ewm` to calculate the rolling window ###Output _____no_output_____ ###Markdown --- Sharpe RatiosIn reality, investment managers and thier institutional investors look at the ratio of return-to-risk, and not just returns alone. After all, if you could invest in one of two portfolios, and each offered the same 10% return, yet one offered lower risk, you'd take that one, right? Using the daily returns, calculate and visualize the Sharpe ratios using a bar plot ###Code # Annualized Sharpe Ratios # Visualize the sharpe ratios as a bar plot ###Output _____no_output_____ ###Markdown Determine whether the algorithmic strategies outperform both the market (S&P 500) and the whales portfolios.Write your answer here! --- Create Custom PortfolioIn this section, you will build your own portfolio of stocks, calculate the returns, and compare the results to the Whale Portfolios and the S&P 500. 1. Choose 3-5 custom stocks with at last 1 year's worth of historic prices and create a DataFrame of the closing prices and dates for each stock.2. Calculate the weighted returns for the portfolio assuming an equal number of shares for each stock3. Join your portfolio returns to the DataFrame that contains all of the portfolio returns4. Re-run the performance and risk analysis with your portfolio to see how it compares to the others5. Include correlation analysis to determine which stocks (if any) are correlated Choose 3-5 custom stocks with at last 1 year's worth of historic prices and create a DataFrame of the closing prices and dates for each stock.For this demo solution, we fetch data from three companies listes in the S&P 500 index.* `GOOG` - [Google, LLC](https://en.wikipedia.org/wiki/Google)* `AAPL` - [Apple Inc.](https://en.wikipedia.org/wiki/Apple_Inc.)* `COST` - [Costco Wholesale Corporation](https://en.wikipedia.org/wiki/Costco) ###Code # Reading data from 1st stock # Reading data from 2nd stock # Reading data from 3rd stock # Combine all stocks in a single DataFrame # Reset Date index # Reorganize portfolio data by having a column per symbol # Calculate daily returns # Drop NAs # Display sample data ###Output _____no_output_____ ###Markdown Calculate the weighted returns for the portfolio assuming an equal number of shares for each stock ###Code # Set weights weights = [1/3, 1/3, 1/3] # Calculate portfolio return # Display sample data ###Output _____no_output_____ ###Markdown Join your portfolio returns to the DataFrame that contains all of the portfolio returns ###Code # Join your returns DataFrame to the original returns DataFrame # Only compare dates where return data exists for all the stocks (drop NaNs) ###Output _____no_output_____ ###Markdown Re-run the risk analysis with your portfolio to see how it compares to the others Calculate the Annualized Standard Deviation ###Code # Calculate the annualized `std` ###Output _____no_output_____ ###Markdown Calculate and plot rolling `std` with 21-day window ###Code # Calculate rolling standard deviation # Plot rolling standard deviation ###Output _____no_output_____ ###Markdown Calculate and plot the correlation ###Code # Calculate and plot the correlation ###Output _____no_output_____ ###Markdown Calculate and Plot Rolling 60-day Beta for Your Portfolio compared to the S&P 500 ###Code # Calculate and plot Beta ###Output _____no_output_____ ###Markdown Using the daily returns, calculate and visualize the Sharpe ratios using a bar plot ###Code # Calculate Annualzied Sharpe Ratios # Visualize the sharpe ratios as a bar plot ###Output _____no_output_____
.ipynb_checkpoints/7_Logistic_Regression_And_PolynomialFeature(degree)_LogisticRegression(C=C, penalty = 'l1' or 'l2')-checkpoint.ipynb
###Markdown 1.Sigmoid function ###Code # import import numpy as np import matplotlib.pyplot as plt # 二分类问题的概率函数sigmoid def sigmoid(x): y = 1/(1 + np.exp(-x)) return y # plot the sigmoid funciton x = np.linspace(-20,20,100) y = sigmoid(x) plt.plot(x,y,'r') plt.show() ###Output _____no_output_____ ###Markdown 2. logistic Regression implement in sklearn ###Code # data set np.random.seed(666) X = np.random.normal(0, 1,size = (300,2)) # X.shape = (200,2) y = np.array(X[:,0] + X[:,1] <0.5 ,dtype = 'int') # y.shape = (200,) #y for _ in range(20): y[np.random.randint(200)] = 1 type(y) # show the data plt.scatter(X[y == 0,0], X[y == 0,1]) plt.scatter(X[y == 1,0], X[y == 1,1]) plt.show() ###Output _____no_output_____ ###Markdown 2.1 Split the data and building logistic modeling ###Code # try to split data from sklearn.model_selection import train_test_split X_train,X_test,y_train,y_test = train_test_split(X,y,random_state = 666) # modle from sklearn.linear_model import LogisticRegression logre_clf = LogisticRegression() logre_clf.fit(X_train,y_train) # test the score on training data set logre_clf.score(X_train,y_train) ###Output _____no_output_____ ###Markdown 2.2 Test the model on test data set ###Code # test on test data set logre_clf.score(X_test,y_test) ###Output _____no_output_____ ###Markdown 2.3 Plot the decision boundary ###Code def plot_decision_boundary(model, axis): x0, x1 = np.meshgrid( np.linspace(axis[0], axis[1], int((axis[1]-axis[0])*100)).reshape(-1, 1), np.linspace(axis[2], axis[3], int((axis[3]-axis[2])*100)).reshape(-1, 1), ) X_new = np.c_[x0.ravel(), x1.ravel()] y_predict = model.predict(X_new) zz = y_predict.reshape(x0.shape) from matplotlib.colors import ListedColormap custom_cmap = ListedColormap(['#EF9A9A','#FFF59D','#90CAF9']) plt.contourf(x0, x1, zz, cmap=custom_cmap) plot_decision_boundary(logre_clf,axis = [-4,4,-4,4]) plt.scatter(X[y ==0,1],X[y == 0,1]) plt.scatter(X[y ==1,0],X[y == 1,1]) plt.show() ###Output _____no_output_____ ###Markdown 3 Logistic Regression with PolynomialFeatures : degree = 20 ###Code from sklearn.preprocessing import PolynomialFeatures from sklearn.preprocessing import StandardScaler from sklearn.pipeline import Pipeline def LogisticregressionPolynomialFeatures(degree): return Pipeline([ ('poly',PolynomialFeatures(degree = degree)), ('standardscaler',StandardScaler()), ('logregression',LogisticRegression()) ]) log_polynomialfeatures_clf = LogisticregressionPolynomialFeatures(degree = 20) log_polynomialfeatures_clf.fit(X_train,y_train) # test the score log_polynomialfeatures_clf.score(X_train,y_train) log_polynomialfeatures_clf.score(X_test,y_test) # plot the decision boundary plot_decision_boundary(log_polynomialfeatures_clf,axis = [-4,4,-4,4]) plt.scatter(X[y ==0,1],X[y == 0,1]) plt.scatter(X[y ==1,0],X[y == 1,1]) plt.show() ###Output _____no_output_____ ###Markdown 4 Logistic Regression with PolynomialFeatures : degree = 20 and C = 0.1 ###Code def LogisticregressionPolynomialFeatures_C(degree,C ): return Pipeline([ ('poly',PolynomialFeatures(degree = degree)), ('standardscaler',StandardScaler()), ('logregression',LogisticRegression(C = C)) # C value for logistic Regression ]) logreg_C_clf =LogisticregressionPolynomialFeatures_C(degree = 20, C= 0.1) logreg_C_clf.fit(X_train,y_train) logreg_C_clf.score(X_train,y_train) logreg_C_clf.score(X_test,y_test) # plot the decision boundary plot_decision_boundary(logreg_C_clf,axis = [-4,4,-4,4]) plt.scatter(X[y ==0,1],X[y == 0,1]) plt.scatter(X[y ==1,0],X[y == 1,1]) plt.show() #### 5 Logistic Regression with PolynomialFeatures : degree = 20 and C = 0.1, def PolynomialLogisticRegression_penality(degree, C, penalty='l2'): #l2 正则化 return Pipeline([ ('poly', PolynomialFeatures(degree=degree)), ('std_scaler', StandardScaler()), ('log_reg', LogisticRegression(C=C, penalty=penalty)) ]) PolynomialLogistic_penality = PolynomialLogisticRegression_penality(degree = 12, C= 0.1,penalty = 'l1') poly_clf = PolynomialLogistic_penality.fit(X_train,y_train) # modeling poly_clf.score(X_train,y_train) poly_clf.score(X_test,y_test) ###Output _____no_output_____ ###Markdown 5.L1 正则化分类结果: ###Code # plot the decision boundary plot_decision_boundary(poly_clf, axis =[-4,4,-4,4]) plt.scatter(X[y == 0,0],X[y == 0,1]) plt.scatter(X[y == 1,0],X[y == 1,1]) plt.show() ###Output _____no_output_____ ###Markdown 5.2 L2 正则化结果 ###Code PolynomialLogistic_penality = PolynomialLogisticRegression_penality(degree = 12, C= 0.1,penalty = 'l2') poly_clf_l2 = PolynomialLogistic_penality.fit(X_train,y_train) poly_clf_l2.score(X_test,y_test) plot_decision_boundary(poly_clf_l2, axis =[-4,4,-4,4]) plt.scatter(X[y == 0,0],X[y == 0,1]) plt.scatter(X[y == 1,0],X[y == 1,1]) plt.show() ###Output _____no_output_____
jupyter/Experiment_unconstrained_problem_freelancer_pop08_rare01.ipynb
###Markdown Import packages ###Code %matplotlib inline import matplotlib import matplotlib.pyplot as plt import os import sys import dill import yaml import numpy as np import pandas as pd import ast import collections import seaborn as sns sns.set(style='ticks') ###Output _____no_output_____ ###Markdown Import submodular-optimization packages ###Code sys.path.insert(0, "/Users/smnikolakaki/GitHub/submodular-linear-cost-maximization/submodular_optimization/") ###Output _____no_output_____ ###Markdown Visualizations directory ###Code VIZ_DIR = os.path.abspath("/Users/smnikolakaki/GitHub/submodular-linear-cost-maximization/submodular_optimization/viz/") ###Output _____no_output_____ ###Markdown Legends and style dictionary ###Code legends = { "distorted_greedy":"DistortedGreedy", "cost_scaled_lazy_exact_greedy":"CSLG", "unconstrained_linear":"OnlineCSG", "unconstrained_distorted_greedy":"UnconstrainedDistortedGreedy", "stochastic_distorted_greedy_0.01":"StochasticDistortedGreedy", "baseline_topk": "Top-k-Experts", "greedy":"Greedy" } legends = collections.OrderedDict(sorted(legends.items())) line_styles = {'distorted_greedy':':', 'cost_scaled_lazy_exact_greedy':'-', 'unconstrained_linear':'-', 'unconstrained_distorted_greedy':'-', 'stochastic_distorted_greedy_0.01':'-.', 'baseline_topk':'--', "greedy":"--" } line_styles = collections.OrderedDict(sorted(line_styles.items())) marker_style = {'distorted_greedy':'s', 'cost_scaled_lazy_exact_greedy':'x', 'unconstrained_linear':'*', 'unconstrained_distorted_greedy':'+', 'stochastic_distorted_greedy_0.01':'o', 'baseline_topk':'d', "greedy":"h" } marker_style = collections.OrderedDict(sorted(marker_style.items())) marker_size = {'distorted_greedy':25, 'cost_scaled_lazy_exact_greedy':30, 'unconstrained_linear':25, 'unconstrained_distorted_greedy':25, 'stochastic_distorted_greedy_0.01':25, 'baseline_topk':22, "greedy":30 } marker_size = collections.OrderedDict(sorted(marker_size.items())) marker_edge_width = {'distorted_greedy':6, 'cost_scaled_lazy_exact_greedy':10, 'unconstrained_linear':10, 'unconstrained_distorted_greedy':6, 'stochastic_distorted_greedy_0.01':6, 'baseline_topk':6, "greedy":6 } marker_edge_width = collections.OrderedDict(sorted(marker_edge_width.items())) line_width = {'distorted_greedy':5, 'cost_scaled_lazy_exact_greedy':5, 'unconstrained_linear':5, 'unconstrained_distorted_greedy':5, 'stochastic_distorted_greedy_0.01':5, 'baseline_topk':5, "greedy":5 } line_width = collections.OrderedDict(sorted(line_width.items())) name_objective = "Combined objective (g)" fontsize = 53 legendsize = 42 labelsize = 53 x_size = 20 y_size = 16 ###Output _____no_output_____ ###Markdown Plotting utilities ###Code def set_style(): # This sets reasonable defaults for font size for a paper sns.set_context("paper") # Set the font to be serif sns.set(font='serif')#, rc={'text.usetex' : True}) # Make the background white, and specify the specific font family sns.set_style("white", { "font.family": "serif", "font.serif": ["Times", "Palatino", "serif"] }) # Set tick size for axes sns.set_style("ticks", {"xtick.major.size": 6, "ytick.major.size": 6}) def set_size(fig, width=13, height=12): fig.set_size_inches(width, height) plt.tight_layout() def save_fig(fig, filename): fig.savefig(os.path.join(VIZ_DIR, filename), dpi=600, format='pdf', bbox_inches='tight') ###Output _____no_output_____ ###Markdown Plots ###Code df1 = pd.read_csv("/Users/smnikolakaki/GitHub/submodular-linear-cost-maximization/jupyter/experiment_00_freelancer_pop08_rare01_final.csv", header=0, index_col=False) df1.columns = ['Algorithm', 'sol', 'val', 'submodular_val', 'cost', 'runtime', 'lazy_epsilon', 'sample_epsilon','user_sample_ratio','scaling_factor','num_rare_skills','num_common_skills', 'num_popular_skills','num_sampled_skills','seed','k'] df2 = pd.read_csv("/Users/smnikolakaki/GitHub/submodular-linear-cost-maximization/jupyter/experiment_00_freelancer_pop08_rare01_greedy.csv", header=0, index_col=False) df2.columns = ['Algorithm', 'sol', 'val', 'submodular_val', 'cost', 'runtime', 'lazy_epsilon', 'sample_epsilon','user_sample_ratio','scaling_factor','num_rare_skills','num_common_skills', 'num_popular_skills','num_sampled_skills','seed','k'] frames = [] frames.append(df1) frames.append(df2) df_final = pd.concat(frames) df_final.to_csv("/Users/smnikolakaki/GitHub/submodular-linear-cost-maximization/jupyter/experiment_00_freelancer_pop08_rare01.csv", index=False) ###Output _____no_output_____ ###Markdown DetailsOriginal marginal gain: $$g(e|S) = f(e|S) - w(e)$$Scaled marginal gain: $$\tilde{g}(e|S) = f(e|S) - 2w(e)$$Distorted marginal gain: $$\tilde{g}(e|S) = (1-\frac{\gamma}{n})^{n-(i+1)}f(e|S) - w(e)$$ Algorithms:1. Cost Scaled Greedy: The algorithm performs iterations i = 0,...,n-1. In each iteration the algorithm selects the element that maximizes the scaled marginal gain. It adds the element to the solution if the original marginal gain of the element is >= 0. The algorithm returns a solution S: f(S) - w(S) >= (1/2)f(OPT) - w(OPT). The running time is O($n^2$).2. Cost Scaled Exact Lazy Greedy: The algorithm first initializes a max heap with all the elements. The key of each element is its scaled marginal gain and the value is the element id. If the scaled marginal gain of an element is = the next elements's old gain we return the popped element, otherwise if its new scaled marginal gain is >= 0 we reinsert the element to the heap and repeat step iii, otherwise we discard it and repeat step iii, (iv) if the returned element's original marginal gain is >= 0 we add it to the solution. The algorithm returns a solution S: f(S) - w(S) >= (1/2)f(OPT) - w(OPT). The running time is O($n^2$).3. Unconstrained Linear: The algorithm performs i = 0,...,n-1 iterations (one for each arriving element). For each element it adds it to the solution if its scaled marginal gain is > 0. The algorithm returns a solution S: f(S) - w(S) >= (1/2)f(OPT) - w(OPT). The running time is O($n$).4. Distorted Greedy: The algorithm performs i = 0,...,n-1 iterations. In each iteration the algorithm selects the element that maximizes the distorted marginal gain. It adds the element to the solution if the distorted marginal gain of the element is > 0. The algorithm returns a solution S: f(S) - w(S) >= (1-1/e)f(OPT) - w(OPT). The running time is O($n^2$). The algorithmic implementation is based on Algorithm 1 found [here](https://arxiv.org/pdf/1904.09354.pdf) for k=n.5. Stochastic Distorted Greedy: The algorithm performs i = 0,...,n-1 iterations. In each iteration the algorithm chooses a sample of s=log(1/ε) elements uniformly and independently and from this sample it selects the element that maximizes the distorted marginal gain. It adds the element to the solution if the distorted marginal gain of the element is > 0. We set $ε=0.01$. The algorithm returns a solution S: E[f(S) - w(S)] >= (1-1/e-ε)f(OPT) - w(OPT). The running time is O($n\log{1/ε}$). The algorithmic implementation is based on Algorithm 2 found [here](https://arxiv.org/pdf/1904.09354.pdf) for k=n.6. Unconstrained Distorted Greedy: The algorithm performs i = 0,...,n-1 iterations. In each iteration the algorithm chooses a random single element uniformly. It adds the element to the solution if the distorted marginal gain of the element is > 0. The algorithm returns a solution S: E[f(S) - w(S)] >= (1-1/e)f(OPT) - w(OPT). The running time is O($n$). Performance comparison ###Code def plot_performance_comparison(df): palette = sns.color_palette(['#b30000','#dd8452', '#4c72b0','#ccb974', '#55a868', '#64b5cd', '#8172b3', '#937860', '#da8bc3', '#8c8c8c', '#ccb974', '#64b5cd'],7) ax = sns.lineplot(x='user_sample_ratio', y='val', data=df, style="Algorithm",hue='Algorithm', ci='sd', mfc='none',palette=palette, dashes=False) i = 0 for key, val in line_styles.items(): ax.lines[i].set_linestyle(val) # ax.lines[i].set_color(colors[key]) ax.lines[i].set_linewidth(line_width[key]) ax.lines[i].set_marker(marker_style[key]) ax.lines[i].set_markersize(marker_size[key]) ax.lines[i].set_markeredgewidth(marker_edge_width[key]) ax.lines[i].set_markeredgecolor(None) i += 1 plt.yticks(np.arange(0, 45000, 5000)) plt.xticks(np.arange(0, 1.1, 0.1)) plt.xlabel('Expert sample fraction', fontsize=fontsize) plt.ylabel(name_objective, fontsize=fontsize) # plt.title('Performance comparison') fig = plt.gcf() figlegend = plt.legend([val for key,val in legends.items()],loc=3, bbox_to_anchor=(0., 1.02, 1., .102), ncol=2, mode="expand", borderaxespad=0., frameon=False,prop={'size': legendsize}) ax = plt.gca() plt.gca().tick_params(axis='y', labelsize=labelsize) plt.gca().tick_params(axis='x', labelsize=labelsize) return fig, ax df = pd.read_csv("/Users/smnikolakaki/GitHub/submodular-linear-cost-maximization/jupyter/experiment_00_freelancer_pop08_rare01.csv", header=0, index_col=False) df.columns = ['Algorithm', 'sol', 'val', 'submodular_val', 'cost', 'runtime', 'lazy_epsilon', 'sample_epsilon','user_sample_ratio','scaling_factor','num_rare_skills','num_common_skills', 'num_popular_skills','num_sampled_skills','seed','k'] df = df[(df.Algorithm == 'distorted_greedy') # |(df.Algorithm == 'cost_scaled_greedy') |(df.Algorithm == 'cost_scaled_lazy_greedy') |(df.Algorithm == 'unconstrained_linear') |(df.Algorithm == 'unconstrained_distorted_greedy') |(df.Algorithm == 'stochastic_distorted_greedy_0.01') |(df.Algorithm == 'baseline_topk') |(df.Algorithm == 'greedy') ] df0 = df[(df['sample_epsilon'].isnull()) | (df['sample_epsilon'] == 0.01)] df0.sort_values(by ='Algorithm',inplace=True) set_style() fig, axes = plot_performance_comparison(df0) set_size(fig, x_size, y_size) save_fig(fig,'score_unconstrained_freelancer_pop08_rare01.pdf') ###Output _____no_output_____ ###Markdown Runtime comparison for different dataset sizes ###Code legends = { "distorted_greedy":"DistortedGreedy", "cost_scaled_greedy":"CSG", "cost_scaled_lazy_exact_greedy":"CSLG", "unconstrained_linear":"OnlineCSG", "unconstrained_distorted_greedy":"UnconstrainedDistortedGreedy", "stochastic_distorted_greedy_0.01":"StochasticDistortedGreedy", "baseline_topk": "Top-k-Experts", "greedy":"Greedy" } legends = collections.OrderedDict(sorted(legends.items())) line_styles = {'distorted_greedy':':', 'cost_scaled_greedy':'-', 'cost_scaled_lazy_exact_greedy':'-', 'unconstrained_linear':'-', 'unconstrained_distorted_greedy':'-', 'stochastic_distorted_greedy_0.01':'-.', 'baseline_topk':'--', "greedy":"--" } line_styles = collections.OrderedDict(sorted(line_styles.items())) marker_style = {'distorted_greedy':'s', 'cost_scaled_greedy':'x', 'cost_scaled_lazy_exact_greedy':'x', 'unconstrained_linear':'*', 'unconstrained_distorted_greedy':'+', 'stochastic_distorted_greedy_0.01':'o', 'baseline_topk':'d', "greedy":"h" } marker_style = collections.OrderedDict(sorted(marker_style.items())) marker_size = {'distorted_greedy':25, 'cost_scaled_greedy':30, 'cost_scaled_lazy_exact_greedy':30, 'unconstrained_linear':25, 'unconstrained_distorted_greedy':25, 'stochastic_distorted_greedy_0.01':25, 'baseline_topk':22, "greedy":30 } marker_size = collections.OrderedDict(sorted(marker_size.items())) marker_edge_width = {'distorted_greedy':6, 'cost_scaled_greedy':10, 'cost_scaled_lazy_exact_greedy':10, 'unconstrained_linear':6, 'unconstrained_distorted_greedy':6, 'stochastic_distorted_greedy_0.01':6, 'baseline_topk':6, "greedy":6 } marker_edge_width = collections.OrderedDict(sorted(marker_edge_width.items())) line_width = {'distorted_greedy':5, 'cost_scaled_greedy':5, 'cost_scaled_lazy_exact_greedy':5, 'unconstrained_linear':5, 'unconstrained_distorted_greedy':5, 'stochastic_distorted_greedy_0.01':5, 'baseline_topk':5, "greedy":5} line_width = collections.OrderedDict(sorted(line_width.items())) name_objective = "Combined objective (g)" fontsize = 53 legendsize = 42 labelsize = 53 x_size = 20 y_size = 16 def plot_performance_comparison(df): palette = sns.color_palette(['#b30000','#937860','#dd8452', '#4c72b0','#ccb974' ,'#55a868', '#64b5cd', '#8172b3', '#937860', '#da8bc3', '#8c8c8c', '#ccb974', '#64b5cd'],8) ax = sns.lineplot(x='user_sample_ratio', y='runtime', data=df, style="Algorithm",hue='Algorithm', ci='sd', mfc='none',palette=palette, dashes=False) i = 0 for key, val in line_styles.items(): ax.lines[i].set_linestyle(val) # ax.lines[i].set_color(colors[key]) ax.lines[i].set_linewidth(line_width[key]) ax.lines[i].set_marker(marker_style[key]) ax.lines[i].set_markersize(marker_size[key]) ax.lines[i].set_markeredgewidth(marker_edge_width[key]) ax.lines[i].set_markeredgecolor(None) i += 1 # plt.yticks(np.arange(0, 45000, 5000)) plt.xticks(np.arange(0, 1.1, 0.1)) plt.xlabel('Expert sample fraction', fontsize=fontsize) plt.ylabel('Time (sec)', fontsize=fontsize) # plt.title('Performance comparison') fig = plt.gcf() figlegend = plt.legend([val for key,val in legends.items()],loc=3, bbox_to_anchor=(0., 1.02, 1., .102), ncol=2, mode="expand", borderaxespad=0., frameon=False,prop={'size': legendsize}) ax = plt.gca() plt.gca().tick_params(axis='y', labelsize=labelsize) plt.gca().tick_params(axis='x', labelsize=labelsize) a = plt.axes([.17, .43, .35, .3]) ax2 = sns.lineplot(x='user_sample_ratio', y='runtime', data=df, hue='Algorithm', legend=False, mfc='none',palette=palette,label=False) i = 0 for key, val in line_styles.items(): ax2.lines[i].set_linestyle(val) # ax.lines[i].set_color(colors[key]) ax2.lines[i].set_linewidth(2) ax2.lines[i].set_marker(marker_style[key]) ax2.lines[i].set_markersize(12) ax2.lines[i].set_markeredgewidth(3) ax2.lines[i].set_markeredgecolor(None) i += 1 ax2.set(ylim=(0, 2)) ax2.set(xlim=(0, 1)) ax2.set_ylabel('') ax2.set_xlabel('') # plt.gca().xaxis.set_major_formatter(mtick.FormatStrFormatter('%.1e')) # plt.gca().yaxis.set_major_formatter(mtick.FormatStrFormatter('%.1e')) plt.gca().tick_params(axis='x', labelsize=22) plt.gca().tick_params(axis='y', labelsize=22) return fig, ax df = pd.read_csv("/Users/smnikolakaki/GitHub/submodular-linear-cost-maximization/jupyter/experiment_00_freelancer_pop08_rare01.csv", header=0, index_col=False) df.columns = ['Algorithm', 'sol', 'val', 'submodular_val', 'cost', 'runtime', 'lazy_epsilon', 'sample_epsilon','user_sample_ratio','scaling_factor','num_rare_skills','num_common_skills', 'num_popular_skills','num_sampled_skills','seed','k'] df = df[(df.Algorithm == 'distorted_greedy') |(df.Algorithm == 'cost_scaled_greedy') |(df.Algorithm == 'cost_scaled_lazy_greedy') |(df.Algorithm == 'unconstrained_linear') |(df.Algorithm == 'unconstrained_distorted_greedy') |(df.Algorithm == 'stochastic_distorted_greedy_0.01') |(df.Algorithm == 'baseline_topk') |(df.Algorithm == 'greedy' ) ] df0 = df[(df['sample_epsilon'].isnull()) | (df['sample_epsilon'] == 0.01)] df0.sort_values(by ='Algorithm',inplace=True) set_style() fig, axes = plot_performance_comparison(df0) set_size(fig, x_size, y_size) save_fig(fig,'time_unconstrained_freelancer_pop08_rare01.pdf') ###Output /opt/anaconda3/envs/python3.6/lib/python3.6/site-packages/ipykernel_launcher.py:3: UserWarning: This figure includes Axes that are not compatible with tight_layout, so results might be incorrect. This is separate from the ipykernel package so we can avoid doing imports until
MLOps-Specialization/course-1-introduction-to-machine-learning-in-production/week-1-overview-of-ml-lifecycle-and-deployment/part_1_deploying_machine_learning_model.ipynb
###Markdown Part 1 - Deploying a Machine Learning Model Welcome to this ungraded lab! If you are reading this it means you did the setup properly, nice work!This lab is all about deploying a real machine learning model, and checking what doing so feels like. More concretely, you will deploy a computer vision model trained to detect common objects in pictures. Deploying a model is one of the last steps in a prototypical machine learning lifecycle. However, we thought it would be exciting to get you to deploy a model right away. This lab uses a pretrained model called [`YOLOV3`](https://pjreddie.com/darknet/yolo/). This model is very convenient for two reasons: it runs really fast, and for object detection it yields accurate results.The sequence of steps/tasks to complete in this lab are as follow:1. Inspect the image data set used for object detection2. Take a look at the model itself3. Deploy the model using [`fastAPI`](https://fastapi.tiangolo.com/) Setup ###Code !pip install cvlib uvicorn fastapi nest_asyncio python-multipart pyngrok from IPython.display import Image, display import os import cv2 import cvlib as cv from cvlib.object_detection import draw_bbox import io import uvicorn import numpy as np import nest_asyncio from pyngrok import ngrok from enum import Enum from fastapi import FastAPI, UploadFile, File, HTTPException from fastapi.responses import StreamingResponse %%shell wget -q https://raw.githubusercontent.com/rahiakela/MLOps-Specialization/main/course-1-introduction-to-machine-learning-in-production/week-1-overview-of-ml-lifecycle-and-deployment/images/images.zip unzip -q images.zip rm -rf images.zip # move all images to images folder mkdir images mv *.jpg images/ ###Output _____no_output_____ ###Markdown Object Detection with YOLOV3 Inspecting the images Let's take a look at the images that will be passed to the YOLOV3 model. This will bring insight on what type of common objects are present for detection. These images are part of the [`ImageNet`](http://www.image-net.org/index) dataset. ###Code # Some example images image_files = [ 'apple.jpg', 'clock.jpg', 'oranges.jpg', 'car.jpg' ] for image_file in image_files: print(f"\nDisplaying image: {image_file}") display(Image(filename=f"images/{image_file}")) ###Output Displaying image: apple.jpg ###Markdown Overview of the model Now that you have a sense of the image data and the objects present, let's try and see if the model is able to detect and classify them correctly.For this you will be using [`cvlib`](https://www.cvlib.net/), which is a very simple but powerful library for object detection that is fueled by [`OpenCV`](https://docs.opencv.org/4.5.1/) and [`Tensorflow`](https://www.tensorflow.org/).More concretely, you will use the [`detect_common_objects`](https://docs.cvlib.net/object_detection/) function, which takes an image formatted as a [`numpy array`](https://numpy.org/doc/stable/reference/generated/numpy.array.html) and returns:- `bbox`: list of list containing bounding box coordinates for detected objects. Example: ```python [[32, 76, 128, 192], [130, 83, 220, 185]] ``` - `label`: list of labels for detected objects. Example: ```python ['apple', 'apple'] ```- `conf`: list of confidence scores for detected objects. Example: ```python [0.6187325716018677, 0.42835739254951477] ``` In the next section you will visually see these elements in action. Creating the detect_and_draw_box function Before using the object detection model, create a directory where you can store the resulting images: ###Code dir_name = "images_with_boxes" if not os.path.exists(dir_name): os.mkdir(dir_name) ###Output _____no_output_____ ###Markdown Let's define the `detect_and_draw_box` function which takes as input arguments: the **filename** of a file on your system, a **model**, and a **confidence level**. With these inputs, it detects common objects in the image and saves a new image displaying the bounding boxes alongside the detected object.You might ask yourself why does this function receive the model as an input argument? What models are there to choose from? The answer is that `detect_common_objects` uses the `yolov3` model by default. However, there is another option available that is much tinier and requires less computational power. It is the `yolov3-tiny` version. As the model name indicates, this model is designed for constrained environments that cannot store big models. With this comes a natural tradeoff: the results are less accurate than the full model. However, it still works pretty well. Going forward, we recommend you stick to it since it is a lot smaller than the regular `yolov3` and downloading its pretrained weights takes less time.The model output is a vector of probabilities for the presence of different objects on the image. The last input argument, confidence level, determines the threshold that the probability needs to surpass to report that a given object is detected on the supplied image. By default, `detect_common_objects` uses a value of 0.5 for this. ###Code def detect_and_draw_box(filename, model="yolov3-tiny", confidence=0.5): """ Detects common objects on an image and creates a new image with bounding boxes. Args: filename (str): Filename of the image. model (str): Either "yolov3" or "yolov3-tiny". Defaults to "yolov3-tiny". confidence (float, optional): Desired confidence level. Defaults to 0.5. """ # Images are stored under the images/ directory img_filepath = f"images/{filename}" # Read the image into a numpy array img = cv2.imread(img_filepath) # Perform the object detection bbox, label, conf = cv.detect_common_objects(img, confidence=confidence, model=model) # Print current image's filename print(f"========================\nImage processed: {filename}\n") # Print detected objects with confidence level for l, c in zip(label, conf): print(f"Detected object: {l} with confidence level of {c}\n") # Create a new image that includes the bounding boxes output_image = draw_bbox(img, bbox, label, conf) # Save the image in the directory images_with_boxes cv2.imwrite(f"images_with_boxes/{filename}", output_image) # Display the image with bounding boxes display(Image(f"images_with_boxes/{filename}")) ###Output _____no_output_____ ###Markdown Let's try it out for the example images. ###Code for image_file in image_files: detect_and_draw_box(image_file) ###Output Downloading yolov3-tiny.cfg from https://github.com/pjreddie/darknet/raw/master/cfg/yolov3-tiny.cfg ###Markdown Changing the confidence level Looks like the object detection went fairly well. Let's try it out on a more difficult image containing several objects: ###Code detect_and_draw_box("fruits.jpg") ###Output ======================== Image processed: fruits.jpg Detected object: apple with confidence level of 0.5818482041358948 Detected object: orange with confidence level of 0.5346484184265137 Detected object: orange with confidence level of 0.5150989890098572 ###Markdown The **model failed to detect** several fruits and **misclassified** an orange as an apple. This might seem strange since it was able to detect one apple before, so one might think the model has a fair representation on how an apple looks like.One possibility is that the model **did** detect the other fruits but with a confidence level lower than 0.5. Let's test if this is a valid hypothesis: ###Code detect_and_draw_box("fruits.jpg", confidence=0.2) ###Output ======================== Image processed: fruits.jpg Detected object: apple with confidence level of 0.5818482041358948 Detected object: orange with confidence level of 0.5346484184265137 Detected object: orange with confidence level of 0.5150989890098572 Detected object: apple with confidence level of 0.3475987911224365 Detected object: orange with confidence level of 0.3287609815597534 Detected object: apple with confidence level of 0.31244683265686035 Detected object: orange with confidence level of 0.27986058592796326 Detected object: orange with confidence level of 0.27499768137931824 Detected object: apple with confidence level of 0.27445051074028015 Detected object: orange with confidence level of 0.21419072151184082 ###Markdown By lowering the confidence level the model successfully detects most of the fruits. However, in order to correctly detect the objects present, we had to set the confidence level really low. In general, you should be careful when decreasing or increasing these kinds of parameters, as changing them might yield undesired results.As for this concrete example when an orange was misclassified as an apple, it serves as a reminder that these models are not perfect and this should be considered when using them for tasks in production. Deploying the model using fastAPI Placing your object detection model in a server Now that you know how the model works it is time for you to deploy it! Aren't you excited? :)Before diving into deployment, let's quickly recap some important concepts and how they translate to `fastAPI`. Let's also create a directory to store the images that are uploaded to the server. ###Code dir_name = "images_uploaded" if not os.path.exists(dir_name): os.mkdir(dir_name) ###Output _____no_output_____ ###Markdown Some concept clarifications **Client-Server model**When talking about **deploying**, what is usually meant is to put all of the software required for predicting in a `server`. By doing this, a `client` can interact with the model by sending `requests` to the server. This client-server interaction is out of the scope of this notebook but there are a lot of resources on the internet that you can use to understand it better.The important thing you need to focus on, is that the Machine Learning model lives in a server waiting for clients to submit prediction requests. The client should provide the required information that the model needs in order to make a prediction. Keep in mind that it is common to batch many predictions in a single request. The server will use the information provided to return predictions to the client, who can then use them at their leisure.Let's get started by creating an instance of the `FastAPI` class:```pythonapp = FastAPI()```The next step is using this instance to create endpoints that will handle the logic for predicting (more on this next). Once all the code is in place to run the server you only need to use the command:```pythonuvicorn.run(app)```Your API is coded using fastAPI but the serving is done using [`uvicorn`](https://www.uvicorn.org/), which is a really fast Asynchronous Server Gateway Interface (ASGI) implementation. Both technologies are closely interconnected and you don't need to understand the implementation details. Knowing that uvicorn handles the serving is sufficient for the purpose of this lab.**Endpoints**You can host multiple Machine Learning models on the same server. For this to work, you can assign a different `endpoint` to each model so you always know what model is being used. An endpoint is represented by a pattern in the `URL`. For example, if you have a website called `myawesomemodel.com` you could have three different models in the following endpoints:- `myawesomemodel.com/count-cars/`- `myawesomemodel.com/count-apples/`- `myawesomemodel.com/count-plants/`Each model would do what the name pattern suggests.In fastAPI you define an endpoint by creating a function that will handle all of the logic for that endpoint and [decorating](https://www.python.org/dev/peps/pep-0318/) it with a function that contains information on the HTTP method allowed (more on this next) and the pattern in the URL that it will use.The following example shows how to allow a HTTP GET request for the endpoint "/my-endpoint":```[email protected]("/my-endpoint")def handle_endpoint(): ... ...```**HTTP Requests**The client and the server communicate with each other through a protocol called `HTTP`. The key concept here is that this communication between client and server uses some verbs to denote common actions. Two very common verbs are:- `GET` -> Retrieves information from the server.- `POST` -> Provides information to the server, which it uses to respond.If your client does a `GET request` to an endpoint of a server you will get some information from this endpoint without the need to provide additional information. In the case of a `POST request` you are explicitly telling the server that you will provide some information for it that must be processed in some way.Interactions with Machine Learning models living on endpoints are usually done via a `POST request` since you need to provide the information that is required to compute a prediction.Let's take a look at a POST request:```[email protected]("/my-other-endpoint")def handle_other_endpoint(param1: int, param2: str): ... ...```For POST requests, the handler function contains parameters. In contrast with GET, POST requests expect the client to provide some information to it. In this case we supplied two parameters: an integer and a string.**Why fastAPI?**With fastAPI you can create web servers to host your models very easily. Additionally, this platform is extremely fast and it **has a built-in client that can be used to interact with the server**. To use it you will need to visit the "/docs" endpoint, for this case this means to visit http://localhost:8000/docs. Isn't that convenient?Enough chatter, let's get going! ###Code import io import uvicorn import numpy as np import nest_asyncio from enum import Enum from fastapi import FastAPI, UploadFile, File, HTTPException from fastapi.responses import StreamingResponse # Assign an instance of the FastAPI class to the variable "app". # You will interact with your api using this instance. app = FastAPI(title="Deploying a ML Model with FastAPI") # List available models using Enum for convenience. This is useful when the options are pre-defined. class Model(str, Enum): yolov3tiny = "yolov3-tiny" yolov3 = "yolov3" # By using @app.get("/") you are allowing the GET method to work for the / endpoint. @app.get("/") def home(): return "Congratulations! Your API is working as expected. Now head over to http://localhost:8000/docs." # This endpoint handles all the logic necessary for the object detection to work. # It requires the desired model and the image in which to perform object detection. @app.post("/predict") def prediction(model: Model, file: UploadFile = File(...)): # 1. VALIDATE INPUT FILE filename = file.filename fileExtension = filename.split(".")[-1] in ("jpg", "jpeg", "png") if not fileExtension: raise HTTPException(status_code=415, detail="Unsupported file provided.") # 2. TRANSFORM RAW IMAGE INTO CV2 image # Read image as a stream of bytes image_stream = io.BytesIO(file.file.read()) # Start the stream from the beginning (position zero) image_stream.seek(0) # Write the stream of bytes into a numpy array file_bytes = np.asarray(bytearray(image_stream.read()), dtype=np.uint8) # Decode the numpy array as an image image = cv2.imdecode(file_bytes, cv2.IMREAD_COLOR) # 3. RUN OBJECT DETECTION MODEL # Run object detection bbox, label, conf = cv.detect_common_objects(image, model=model) # Create image that includes bounding boxes and labels output_image = draw_bbox(image, bbox, label, conf) # Save it in a folder within the server cv2.imwrite(f"images_uploaded/{filename}", output_image) # 4. STREAM THE RESPONSE BACK TO THE CLIENT # Open the saved image for reading in binary mode file_image = open(f"images_uploaded/{filename}", mode="rb") # Return the image as a stream specifying media type return StreamingResponse(file_image, media_type="image/jpeg") ###Output _____no_output_____ ###Markdown By running the following cell you will spin up the server!This causes the notebook to block (no cells/code can run) until you manually interrupt the kernel. You can do this by clicking on the `Kernel` tab and then on `Interrupt`. You can also enter Jupyter's command mode by pressing the `ESC` key and tapping the `I` key twice.```bash for local machine Allows the server to be run in this interactive environmentnest_asyncio.apply() Host depends on the setup you selected (docker or virtual env)host = "0.0.0.0" if os.getenv("DOCKER-SETUP") else "127.0.0.1" Spin up the server! uvicorn.run(app, host=host, port=8000)``` ###Code ngrok_tunnel = ngrok.connect(8000) print('Public URL:', ngrok_tunnel.public_url) nest_asyncio.apply() uvicorn.run(app, port=8000) ###Output Public URL: http://05808ad9a081.ngrok.io
Tutorials/2.Content/2.2-Pricing/TUT_2.2.04-Pricing-Chain.ipynb
###Markdown ---- Data Library for Python---- Content - Pricing - Chain constituentsThis notebook demonstrates how to use the Pricing interface to retrieve the consituents of a Chain instrument :- either as a static snapshot of the current Constituent RICs- or streaming updates for any changes to Constituent RICs Set the location of the configuration fileFor ease of use, you can set various initialization parameters of the RD Library in the **_refinitiv-data.config.json_** configuration file - as described in the Quick Start -> Sessions example. One config file for the tutorialsAs these tutorial Notebooks are categorised into sub-folders and to avoid the need for multiple config files, we will use the _RD_LIB_CONFIG_PATH_ environment variable to point to a single instance of the config file in the top-level ***Configuration*** folder.Before proceeding, please **ensure you have entered your credentials** into the config file in the ***Configuration*** folder. ###Code import os os.environ["RD_LIB_CONFIG_PATH"] = "../../../Configuration" from refinitiv.data.content import pricing import refinitiv.data as rd from pandas import DataFrame from IPython.display import display, clear_output ###Output _____no_output_____ ###Markdown Open the default sessionTo open the default session ensure you have a '*refinitiv-data.config.json*' in the ***Configuration*** directory, populated with your credentials and specified a 'default' session in the config file ###Code rd.open_session() ###Output _____no_output_____ ###Markdown Define and open ChainDefine a streaming price object for the FTSE index. ###Code # define a chain to fetch FTSE constituent RICs ftse = pricing.chain.Definition(name="0#.FTSE").get_stream() ###Output _____no_output_____ ###Markdown Then open method tells the Chain object to subscribe to a stream of the constituent RICs. ###Code ftse.open() ###Output _____no_output_____ ###Markdown Get a list of the current Constituent RICs Once the open method returns, the Chain object is ready to be used. Its internal cache will be updated as and when the list of Consituent changes - which for many Chains is not that often - e.g. the FTSE constituents don't change that often.However, for some chains, the constituents can change more often. ###Code constituent_list = ftse.constituents display(constituent_list) ###Output _____no_output_____ ###Markdown Other means of accessing the list of constituents Check if the Stream really is for a chain instrument? ###Code # check is this a chain or not? print(f"{ftse} is_chain :", ftse.is_chain ) ###Output <refinitiv.data.content.pricing.chain.Stream object at 0x28b50586f40 {name='0#.FTSE'}> is_chain : True ###Markdown Get constituent in the chain record ###Code # at this point we do snapshot for 1st RIC - as its a streaming request, it may different to the above first_constituent = ftse.constituents[0] print(f"{ftse} constituent at index 0 :", first_constituent ) # loop over all constituents in the chain record for index, constituent in enumerate( ftse.constituents ): print(f"{index} = {constituent}") ###Output 0 = AAL.L 1 = ABDN.L 2 = ABF.L 3 = ADML.L 4 = AHT.L 5 = ANTO.L 6 = AUTOA.L 7 = AV.L 8 = AVST.L 9 = AVV.L 10 = AZN.L 11 = BAES.L 12 = BARC.L 13 = BATS.L 14 = BDEV.L 15 = BHPB.L 16 = BKGH.L 17 = BLND.L 18 = BMEB.L 19 = BNZL.L 20 = BP.L 21 = BRBY.L 22 = BT.L 23 = CCH.L 24 = CPG.L 25 = CRDA.L 26 = CRH.L 27 = DCC.L 28 = DGE.L 29 = DPH.L 30 = ECM.L 31 = ENT.L 32 = EVRE.L 33 = EXPN.L 34 = FERG.L 35 = FLTRF.L 36 = FRES.L 37 = GLEN.L 38 = GSK.L 39 = HIK.L 40 = HLMA.L 41 = HRGV.L 42 = HSBA.L 43 = ICAG.L 44 = ICP.L 45 = IHG.L 46 = III.L 47 = IMB.L 48 = INF.L 49 = ITRK.L 50 = ITV.L 51 = JD.L 52 = KGF.L 53 = LAND.L 54 = LGEN.L 55 = LLOY.L 56 = LSEG.L 57 = MGGT.L 58 = MNDI.L 59 = MNG.L 60 = MRON.L 61 = NG.L 62 = NWG.L 63 = NXT.L 64 = OCDO.L 65 = PHNX.L 66 = POLYP.L 67 = PRU.L 68 = PSHP.L 69 = PSN.L 70 = PSON.L 71 = RDSa.L 72 = RDSb.L 73 = REL.L 74 = RIO.L 75 = RKT.L 76 = RMG.L 77 = RMV.L 78 = RR.L 79 = RTO.L 80 = SBRY.L 81 = SDR.L 82 = SGE.L 83 = SGRO.L 84 = SJP.L 85 = SKG.L 86 = SMDS.L 87 = SMIN.L 88 = SMT.L 89 = SN.L 90 = SPX.L 91 = SSE.L 92 = STAN.L 93 = SVT.L 94 = TSCO.L 95 = TW.L 96 = ULVR.L 97 = UU.L 98 = VOD.L 99 = WPP.L 100 = WTB.L ###Markdown Get the summary links of the chain record ###Code # Chains often have Summary RICs for the chain summary_links = ftse.summary_links print(f"summary links of the chain are : {summary_links}") ###Output summary links of the chain are : ['.FTSE', '.AD.FTSE'] ###Markdown Close the Streaming Chain instrument ###Code ftse.close() ###Output _____no_output_____ ###Markdown Once close() is called the Chain stops updating its internal cache of Constituents. The get_constituents function can still be called but it will always return the state of the chaing before the close was called. Additional ParametersYou can control whether to skip summary Links and/or empty constituents - with the optional parameters which default to True. ###Code ftse = rd.content.pricing.chain.Definition(name="0#.FTSE", skip_summary_links=True, skip_empty=True ).get_stream() ###Output _____no_output_____ ###Markdown Snap the Chain constituentsIf you are not planning to use the Chain over an extended period of time and/or just want to snap the current Constituents, you can open it without updates. ###Code ftse.open(with_updates=False) ###Output _____no_output_____ ###Markdown The Library will request the Chain and then close the stream once it has received a response from the server. You can then use the get_constituents function to access the consituent list as they were at the time of open() call. Close the session ###Code rd.close_session() ###Output _____no_output_____
exploring.ipynb
###Markdown TAMU Datathon: Taco/Burrito Challenge Team Name: Taco 'Bout It! Team Members: Alex Riley, Jacqueline Antwi-Danso We decided to participate in the Goldman Sachs data challenge, which centers on a dataset logging taco and burrito menu items in the United States ([Kaggle link](https://www.kaggle.com/datafiniti/restaurants-burritos-and-tacos/)). The tasks of the challenge are:```The final product of your efforts should include a visualization of your output, with supporting documentation detailing the modeling and analysis performed.```We'll start with the usual Python imports, plus some that will be useful for data cleaning (dealing with zip codes). ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt from uszipcode import SearchEngine import plotly.graph_objects as go %matplotlib inline # so plotly map can render import plotly plotly.offline.init_notebook_mode(connected=True) # contains mappings between state name and abbreviation import utils ###Output _____no_output_____ ###Markdown Take a look at data ###Code file = 'data/just-tacos-and-burritos.csv' data = pd.read_csv(file) data.head(5) ###Output _____no_output_____ ###Markdown There's a lot of unnamed columns that are filled with `NaN`. Let's get rid of those. ###Code empty = data.isna().sum() == len(data) assert np.array(["Unnamed" in col for col in data.columns[empty]]).all() data.drop(columns=data.columns[empty], inplace=True) ###Output _____no_output_____ ###Markdown List of columns* `id`: unique ID for restaurant* `address`: restaurant address (number and street name)* `categories`: categories for restaurant (e.g. "Restaurant" or "Restaurant Delivery")* `city`: city name* `country`: country (note: all are in the US)* `cuisines`: type of restaurant, e.g. "Coffee" or "Mexican". Not unique (one example is "Buffets, Pizza")* `dateAdded`: date that entry was added to dataset* `dateUpdated`: date that entry was last updated (can be equal to `dateAdded`)* `keys`: ???* `latitude`: latitude of the restaurant* `longitude`: longitude of the restaurant* `menuPageURL`: URL to menu* `menus.amountMax`: max amount on menu? (sparsely filled; 37,000 NaN)* `menus.amountMin`: min amount on menu? (sparsely filled; 37,000 NaN)* `menus.category`: category that item falls under in menu (e.g. "Main Course", "Tacos"). Sparsely filled, 73,531 NaN* `menus.currency`: currency used on item. usually USD, 16 entries are EUR* `menus.dateseen`: date that menu was observed* `menus.description`: description of item in menu* `name`: name of restaurant* `postalCode`: ZIP code of restaurant* `priceRangeCurrency`: currency used for `menus.priceRangeMin/Max` usually USD, one entry in AUD* `priceRangeMin`: minimum price of items on menu* `priceRangeMax`: maximum price of items on menu* `province`: typically state but not always. needs cleaning* `websites`: website for the restaurant Potential data cleaning issues* `name` can have multiple values, like `McDonald's` and `Mc Donalds`* many columns are incomplete, including `postalCode` and `latitude/longitude` which might make analysis/visualizing the spatial distribution of restaurants difficult Cleaning the dataConsistent identification of city + state (`province` is not clean version of this). We'll start off by creating a new column named `state`.**Note: this section can be skipped if it's already been run once** ###Code data['state'] = data['province'] # three entries had no province info, all were in San Francisco data.loc[data['state'].isna(), 'state'] = 'CA' ###Output _____no_output_____ ###Markdown Now we have a few freebies. These were common (top 25-ish) values for `province` that are easily mapped to states, as well as `province` values that were 2 characters that did not match state abbreviation codes. ###Code data.loc[data['state'] == 'California', 'state'] = 'CA' data.loc[data['state'] == 'Manhattan', 'state'] = 'NY' data.loc[data['state'] == 'New York City', 'state'] = 'NY' data.loc[data['state'] == 'Ny', 'state'] = 'NY' data.loc[data['state'] == 'Ls', 'state'] = 'MO' ###Output _____no_output_____ ###Markdown The pops that remain would be a pain to continue for. For these ~8000 pops, we will use the `uszipcode` package to map provided zip codes to the state. ###Code badmask = data['state'].apply(len) != 2 search = SearchEngine() data.loc[badmask, 'state'] = data[badmask].apply(lambda x: search.by_zipcode(x['postalCode']).state if x['postalCode'] else x['state'], axis=1) ###Output _____no_output_____ ###Markdown And we're done! We can check that all of the `state` items are valid state codes by cross-referencing against the list located in `utils.py`. ###Code data['state'].apply(lambda x: True if x in utils.abbrev_us_state else False).all() data['citystate'] = data.apply(lambda x: x['city']+', '+x['state'], axis=1) ###Output _____no_output_____ ###Markdown Question: Where are the authentic Mexican restaurants? Marking out "authentic"We want to exclude stores that can be reliably marked as "inauthentic," like Subway or McDonald's. For this, we'll exclude any restaurants from this list of the [32 biggest fast food chains in America](https://www.qsrmagazine.com/content/32-biggest-fast-food-chains-america). We also opt to include Chili's in the list of excluded chains.Notice, some names have permutations that match names occurring in top 100 (e.g. McDonald's). ###Code def chains_mask(data): exclude_list = ["Subway", "Starbucks", "McDonald's", "Mcdonald's", "Mc Donald's", "Mcdonalds", "McDonalds", "Dunkin", "Pizza Hut", "Burger King", "Wendy's", "Taco Bell", "Domino's", "Dairy Queen", "Little Caesars", "KFC", "Sonic Drive In", "SONIC Drive In", "Sonic Drive-in", "Sonic Drive-In", "Papa John's", "Arby's", "Jimmy John's", "Baskin-Robbins", "Chipotle Mexican Grill", "Chick-Fil-A", "Popeye's", "Jack in the Box", "Jack In The Box", "Panda Express", "Panera", "Carl's Jr.", "Jersey Mike's", "Papa Murphy's", "Five Guys", "Auntie Anne's", "Wingstop", "Firehouse Subs"] # also exclude Chili's exclude_list.append("Chili's Grill & Bar") exclude_list.append("Chili's Grill Bar") exclude_list.append("Chili's") exclude_list.append("Chili's Too") chain = [False] * len(data) for name in exclude_list: chain |= data['name'] == name return ~chain authentic = data[chains_mask(data)] ###Output _____no_output_____ ###Markdown Now we are interested in the question where are authentic **restaurants** concentrated in the U.S.? For this, we need to only have a list of authentic restaurants, not a list of authentic burritos/tacos. Luckily, we can just mask duplicated `id`s. ###Code unique_restaurant_mask = ~authentic['id'].duplicated() restaurants = authentic[unique_restaurant_mask] ###Output _____no_output_____ ###Markdown Now we can get a very simple answer for which cities host the most authentic Mexican restaurants in the U.S.: ###Code citycounts = restaurants['citystate'].value_counts() citycounts.head(7) ###Output _____no_output_____ ###Markdown However, this just looks like a list of big cities with a lot of people (who would therefore have a lot of authentic Mexican restaurants). To fix this, we can instead try to get the number of restaurants _per capita_. For population data, we'll use [population estimates from the U.S. Census Bureau](https://www.census.gov/data/tables/time-series/demo/popest/2010s-total-cities-and-towns.htmlds) for 2018. ###Code popfile = 'data/sub-est2018_all.csv' popdata = pd.read_csv(popfile, encoding="ISO-8859-1") popdata.head() ###Output _____no_output_____ ###Markdown So we simply need to find a city by matching the city name and state in the `popdata` table. We also need to convert the state code (e.g. "AL") to a state name ("Alabama"). ###Code population = [] for name, pop in citycounts.iteritems(): match = popdata['NAME'] == name[:-4] + ' city' match |= popdata['NAME'] == name[:-4] + ' town' match |= popdata['NAME'] == name[:-4] + ' village' match &= popdata['STNAME'] == utils.abbrev_us_state[name[-2:]] pop = np.max(popdata[match]['POPESTIMATE2018']) population.append(pop) population = np.array(population) citycounts_percapita = (citycounts/population) * 1000 citycounts_percapita.sort_values(ascending=False).head(7) ###Output _____no_output_____ ###Markdown So these are the places that have a lot of authentic Mexican restaurants relative to how big their population is. However, all of these places are very small and isolated. Let's place a cut on the data requiring a population of over 50,000 (the high end of what is considered the threshold for a "city") ###Code threshold = 50000 citycounts_percapita[population > threshold].sort_values(ascending=False).head(7) ###Output _____no_output_____ ###Markdown As can be (somewhat) expected, the list is now dominated by cities in California (with one entry from New Mexico). Visualization: where are the tacos? ###Code cities = data['city'].unique().tolist() def food_nums(loc_arr): df = data tacos = []; burritos = [] for name in loc_arr: menu_options = df[df['city'] == name]['menus.name'] # for each restaurant in each city, calculate the number of burritos and tacos num_tacos = [] num_burritos = [] for option in menu_options: if "Taco" in option: num_tacos.append(1) if "Burrito" in option: num_burritos.append(1) if len(num_tacos) != 0: total_tacos = np.sum(num_tacos) else: total_tacos = 0 if len(num_burritos) != 0: total_burritos = np.sum(num_burritos) else: total_burritos = 0 tacos.append(total_tacos) burritos.append(total_burritos) return tacos, burritos num_tacos, num_burritos = food_nums(cities) # turn zeros into very big/small numbers to avoid to avoid division by 0 num_tacos = np.array(num_tacos) num_burritos = np.array(num_burritos) tmp_num_tacos = np.copy(num_tacos) tmp_num_burritos = np.copy(num_burritos) tmp_num_tacos[tmp_num_tacos == 0] = -1 tmp_num_burritos[tmp_num_burritos == 0] = -1 city_ratio = tmp_num_burritos/tmp_num_tacos city_ratio[city_ratio < 0] = np.inf # find unique lon and lat for each city lon = []; lat = [] for city in cities: lon.append(np.unique(data[data['city'] == city]['longitude'])[0]) lat.append(np.unique(data[data['city'] == city]['latitude'])[0]) # renaming because plotly has similar keyword lon_arr = np.copy(lon); lat_arr = np.copy(lat) tmp_cities = np.array(cities)[~np.isinf(city_ratio)] text_arr = [city + '\n B/T:' + str(np.round_(num, decimals = 2)) for city, num in zip(cities, city_ratio)] fig = go.Figure() limits = [(0,3),(4,7),(8,11),(12,15),(16,20)] colors = ["brown","magenta","cyan","orange","green"] for i in range(len(limits)): lim = limits[i] fig.add_trace(go.Scattergeo( locationmode = 'USA-states', lon = lon_arr, lat = lat_arr, text = text_arr, marker = dict( size = city_ratio*5, color = colors[i], sizemode = 'area', ), name = '{0} - {1}'.format(lim[0],lim[1]))) fig.update_layout( #title_text = 'Menu options by city <br>(Click legend to populate map)', title_text = 'Menu options by city <br>(Hover on point to see burrito/taco ratio)', showlegend = False, geo = dict( scope = 'usa', landcolor = 'rgb(217, 217, 217)',)) ###Output _____no_output_____ ###Markdown Exploring the links datasetIn this notebook, we visualize some of the features from the links dataset generated from the RICO dataset. ###Code import numpy as np with open('training.npy', 'rb') as f: X = np.load(f) Y = np.load(f) links = [ { 'source.hue': X[index][0], 'source.saturation': X[index][1], 'source.lightness': X[index][2], 'semantic_similarity': X[index][3], 'is_link': Y[index], } for index in range(len(Y)) ] import pandas as pd links_df = pd.DataFrame(links) links_df.head() links_df.describe() links_df.groupby('is_link').describe() import seaborn as sns sns.scatterplot(data=links_df, x="source.saturation", y="source.lightness", hue="is_link") g = sns.FacetGrid(links_df, row="is_link") g.map(sns.distplot, "semantic_similarity") g = sns.FacetGrid(links_df, row="is_link") g.map(sns.distplot, "source.hue") g = sns.FacetGrid(links_df, row="is_link") g.map(sns.distplot, "source.saturation") g = sns.FacetGrid(links_df, row="is_link") g.map(sns.distplot, "source.lightness") sns.displot(data=links_df, x="semantic_similarity", hue="is_link", kind="kde") rough_total_sample_size = 10000 sample = links_df.groupby('is_link').apply(lambda link_class: link_class.sample(int(rough_total_sample_size/2))).reset_index(drop=True) proportional_sample = links_df.groupby('is_link').apply(lambda link_class: link_class.sample(int(len(link_class)/len(links_df)*rough_total_sample_size))).reset_index(drop=True) sample proportional_sample sns.displot(data=sample, x="source.hue", hue="is_link", kind="kde") sns.displot(data=sample, x="source.saturation", hue="is_link", kind="kde") sns.displot(data=sample, x="source.lightness", hue="is_link", kind="kde") sns.displot(data=sample, x="semantic_similarity", hue="is_link", kind="kde") sns.displot(data=sample, x="semantic_similarity", y="source.saturation", hue="is_link", kind="kde") sns.displot(data=sample, x="source.lightness", y="source.saturation", hue="is_link", kind="kde") sns.displot(data=sample, x="source.hue", y="source.saturation", hue="is_link", kind="kde") sns.displot(data=sample, x="source.lightness", y="semantic_similarity", hue="is_link", kind="kde") ###Output _____no_output_____ ###Markdown SetupLet's import some useful libs and configure the basics parameters.Then, we need to import the CSV files into datasets. ###Code import pandas as pd # to create the datasets import matplotlib.pyplot as plt # to plot graphics # Defining teh default options for our plots %matplotlib inline plt.rcParams['figure.figsize'] = (18,6) ###Output _____no_output_____ ###Markdown Importing the files into CSV files and checking the first lines: ###Code vmstat = pd.read_csv('./vmstat.csv') vmstat.head() pidstat = pd.read_csv('./pidstat.csv') pidstat.head() ###Output _____no_output_____ ###Markdown Exploring the datasetsWe have to take a look on both datasets and identify possible missing values, importing errors or other strange behaviors and understand each feature.The pidstat dataset has a Time column in Unix Epoch format. It is necessary to convert to standard time. ###Code print('Datasets Shapes\n' + '-' * 20) for ds in ['pidstat', 'vmstat']: print(ds, eval(ds).shape) vmstat['datetime'] = pd.to_datetime(vmstat['date'].astype(str) + ' ' + vmstat['time']) vmstat['datetime'] = vmstat['datetime'].dt.tz_localize('UTC').dt.tz_convert('America/Sao_Paulo') vmstat['datetime'] = vmstat['datetime'] + pd.Timedelta('03:00:00') print(vmstat['datetime'].dtypes) vmstat.head() pidstat['Time'] = pd.to_datetime(pidstat['Time'], unit='s', origin='unix') pidstat['Time'] = pidstat['Time'].dt.tz_localize('UTC').dt.tz_convert('America/Sao_Paulo') print(pidstat['Time'].dtypes) pidstat.head() ###Output _____no_output_____ ###Markdown Studying Pidstat ###Code pidstat.Command.describe() # Top 15 most frequent commands pidstat.Command.value_counts()[:15,] # What is the most intense process on kernel ring? # Let's calculate the average Kernel CPU usage for each command and # print a list with the TOP 5 g_pidstat = pidstat.groupby('Command') top5_kernel = g_pidstat['%system'].mean().sort_values(ascending=False)[:5,] print(top5_kernel) fig, ax = plt.subplots() x_pos = pd.np.arange(5) ax.bar(x_pos, top5_kernel.values) ax.set_xticks(x_pos) ax.set_xticklabels(list(top5_kernel.index)) plt.show() # And the Top 5 process consiming resources on User ring top5_user = g_pidstat['%usr'].mean().sort_values(ascending=False)[:5,] print(top5_user) fig, ax = plt.subplots() x_pos = pd.np.arange(5) ax.bar(x_pos, top5_user.values) ax.set_xticks(x_pos) ax.set_xticklabels(list(top5_user.index)) plt.show() ###Output _____no_output_____ ###Markdown Studying Vmstat ###Code # Let's preview it again to remember the features vmstat.head() # I would like to see more details about IO io_info = vmstat.loc[:, ['dsk_read', 'dsk_write', 'datetime']] n_rows = len(io_info) fig, ax = plt.subplots() ax.plot(io_info['dsk_write'], color='darkred') ax.plot(io_info['dsk_read'], color='blue', alpha=0.5) ax.legend() plt.show() ###Output _____no_output_____ ###Markdown Cross Data CheckingThe last graph is showing some peaks in read and write.It would be a good idea to verify the time they occured and lookup the process running.To acomplish this task we will need to compare data in two different datasets. ###Code # Finding the disk io peaks top_5_read = io_info.sort_values(by='dsk_read', ascending=False)[:5] top_5_write = io_info.sort_values(by='dsk_write', ascending=False)[:5] print(top_5_read, '\n\n', top_5_write) reads = pidstat.loc[pidstat['Time'].isin(top_5_read['datetime'])] writes = pidstat.loc[pidstat['Time'].isin(top_5_write['datetime'])] reads.sort_values(by=['%wait','%CPU'], ascending=False)[:5] writes.sort_values(by=['%wait','%CPU'], ascending=False)[:5] ###Output _____no_output_____ ###Markdown Park-Vorhersage Website to extract info from ###Code url = r'https://www.parken-osnabrueck.de/' ###Output _____no_output_____ ###Markdown SeleniumUse selenium to drive headless firefox (other browsers can be configured, too) ###Code from selenium import webdriver from selenium.webdriver.firefox.options import Options options = Options() options.headless = True driver = webdriver.Firefox(options=options) ###Output _____no_output_____ ###Markdown robots.txtCheck if crawling is generally not desired by website operator ###Code from urllib import robotparser parser = robotparser.RobotFileParser(url=url) parser.read() 'Website can be parsed: {}'.format(parser.can_fetch('*', url)) ###Output _____no_output_____ ###Markdown Read page source and extract information ###Code driver.get(url) ###Output _____no_output_____ ###Markdown Use BeautifulSoup to easily read page source ###Code from bs4 import BeautifulSoup soup = BeautifulSoup(driver.page_source) for item in soup.find_all('span', 'parking-ramp-utilization'): print(item.text) ###Output _____no_output_____
05. Python for Data Analysis - NumPy/5.18 np_array_introduction.ipynb
###Markdown **Linspace returns evenly spaced numbers over a specified region. Range returns integers out of [start,stop) in a given interval size while linspace takes third argument that you want and separetes start and stop appropriately.** ###Code np.linspace(0,5,10) # Between 0 to 5 it sends 10 evenly spaced points. np.linspace(0,10,100) ###Output _____no_output_____ ###Markdown ** of brackets tells the dimension of the array at the opening or the closing. At a 2D array you'd find [[ ]]at the beginning and end.**Range takes the third argument as the step size you want. Whereas linspace takes the third argument as the number of points you want. ###Code # Creating an IDENTITY Matrix - A 2D matrix with rows = columns and anything except primary diagonal = 0 np.eye(4) # 4 being the number of rows and columns in the identity matrix that we are making ###Output _____no_output_____ ###Markdown **To Create Arrays of Random Numbers** ###Code np.random.rand(5) # Creates an array of the given shape that we pass in. np.random.rand(5,5) ###Output _____no_output_____ ###Markdown ** Randn Returns numbers not from a uniform distribution but from zero to 1 but normal distribution centred around zero** ###Code np.random.randn(4,4) # No need to pass tuple, just the dimensions. np.random.randint(1,100) # Lowest inclusive and highest exclusive to be returned. [low,high,size] np.random.randint(1,100,4) # Here we have specified size as well. By default 3rd parameter size is 1. arr = np.arange(25) arr ranarr=np.random.randint(0,50,10) ranarr ###Output _____no_output_____ ###Markdown Reshape an Array **Returns array having same data but in a new shape** ###Code arr.reshape(5,5) # Passing reshape(number_of_rows,number_of_columns) # Also you need to fill out all the elements in the new array of exact same size, nothing less, nothing more. # Number of rows*Number of Columns in the reshaped array = Number of elements in the original array being reshaped. ranarr ranarr.max() ranarr.min() ranarr.argmax() # Gets the index location of the maximum value ranarr.argmin() # Geths the index location of the minimum value arr arr.shape # (25,) it means that arr was just a 1D vector arr = arr.reshape(5,5) arr arr.shape # No parantheses arr.dtype # Returns datatype in the array. #Shortcut for having randint or another method inside numpy that you know you will be using # regularly is to import it from numpy.random import randint as ri ri(1,20,10) # direct use of randint without np.random.randint() ###Output _____no_output_____ ###Markdown **Linspace returns evenly spaced numbers over a specified region. Range returns integers out of [start,stop) in a given interval size while linspace takes third argument that you want and separetes start and stop appropriately.** ###Code np.linspace(0,5,10) # Between 0 to 5 it sends 10 evenly spaced points. np.linspace(0,10,100) ###Output _____no_output_____ ###Markdown ** of brackets tells the dimension of the array at the opening or the closing. At a 2D array you'd find [[ ]]at the beginning and end.**Range takes the third argument as the step size you want. Whereas linspace takes the third argument as the number of points you want. ###Code # Creating an IDENTITY Matrix - A 2D matrix with rows = columns and anything except primary diagonal = 0 np.eye(4) # 4 being the number of rows and columns in the identity matrix that we are making ###Output _____no_output_____ ###Markdown **To Create Arrays of Random Numbers** ###Code np.random.rand(5) # Creates an array of the given shape that we pass in. np.random.rand(5,5) ###Output _____no_output_____ ###Markdown ** Randn Returns numbers not from a uniform distribution but from zero to 1 but normal distribution centred around zero** ###Code np.random.randn(4,4) # No need to pass tuple, just the dimensions. np.random.randint(1,100) # Lowest inclusive and highest exclusive to be returned. [low,high,size] np.random.randint(1,100,4) # Here we have specified size as well. By default 3rd parameter size is 1. arr = np.arange(25) arr ranarr=np.random.randint(0,50,10) ranarr ###Output _____no_output_____ ###Markdown Reshape an Array **Returns array having same data but in a new shape** ###Code arr.reshape(5,5) # Passing reshape(number_of_rows,number_of_columns) # Also you need to fill out all the elements in the new array of exact same size, nothing less, nothing more. # Number of rows*Number of Columns in the reshaped array = Number of elements in the original array being reshaped. ranarr ranarr.max() ranarr.min() ranarr.argmax() # Gets the index location of the maximum value ranarr.argmin() # Geths the index location of the minimum value arr arr.shape # (25,) it means that arr was just a 1D vector arr = arr.reshape(5,5) arr arr.shape # No parantheses arr.dtype # Returns datatype in the array. #Shortcut for having randint or another method inside numpy that you know you will be using # regularly is to import it from numpy.random import randint as ri ri(1,20,10) # direct use of randint without np.random.randint() ###Output _____no_output_____
M_accelerate_ALL.ipynb
###Markdown MobileNet - Pytorch Step 1: Prepare data ###Code # MobileNet-Pytorch import argparse import torch import numpy as np import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.optim.lr_scheduler import StepLR from torchvision import datasets, transforms from torch.autograd import Variable from torch.utils.data.sampler import SubsetRandomSampler from sklearn.metrics import accuracy_score #from mobilenets import mobilenet use_cuda = torch.cuda.is_available() use_cudause_cud = torch.cuda.is_available() dtype = torch.cuda.FloatTensor if use_cuda else torch.FloatTensor # Train, Validate, Test. Heavily inspired by Kevinzakka https://github.com/kevinzakka/DenseNet/blob/master/data_loader.py normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) valid_size=0.1 # define transforms valid_transform = transforms.Compose([ transforms.ToTensor(), normalize ]) train_transform = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize ]) # load the dataset train_dataset = datasets.CIFAR10(root="data", train=True, download=True, transform=train_transform) valid_dataset = datasets.CIFAR10(root="data", train=True, download=True, transform=valid_transform) num_train = len(train_dataset) indices = list(range(num_train)) split = int(np.floor(valid_size * num_train)) #5w张图片的10%用来当做验证集 np.random.seed(42)# 42 np.random.shuffle(indices) # 随机乱序[0,1,...,49999] train_idx, valid_idx = indices[split:], indices[:split] train_sampler = SubsetRandomSampler(train_idx) # 这个很有意思 valid_sampler = SubsetRandomSampler(valid_idx) ################################################################################### # ------------------------- 使用不同的批次大小 ------------------------------------ ################################################################################### show_step=2 # 批次大,show_step就小点 max_epoch=150 # 训练最大epoch数目 train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=256, sampler=train_sampler) valid_loader = torch.utils.data.DataLoader(valid_dataset, batch_size=256, sampler=valid_sampler) test_transform = transforms.Compose([ transforms.ToTensor(), normalize ]) test_dataset = datasets.CIFAR10(root="data", train=False, download=True,transform=test_transform) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=True) ###Output Files already downloaded and verified Files already downloaded and verified Files already downloaded and verified ###Markdown Step 2: Model Config 32 缩放5次到 1x1@1024 From https://github.com/kuangliu/pytorch-cifar import torchimport torch.nn as nnimport torch.nn.functional as Fclass Block(nn.Module): '''Depthwise conv + Pointwise conv''' def __init__(self, in_planes, out_planes, stride=1): super(Block, self).__init__() 分组卷积数=输入通道数 self.conv1 = nn.Conv2d(in_planes, in_planes, kernel_size=3, stride=stride, padding=1, groups=in_planes, bias=False) self.bn1 = nn.BatchNorm2d(in_planes) self.conv2 = nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=1, padding=0, bias=False) one_conv_kernel_size = 3 self.conv1D= nn.Conv1d(1, out_planes, one_conv_kernel_size, stride=1,padding=1,groups=1,dilation=1,bias=False) 在__init__初始化 self.bn2 = nn.BatchNorm2d(out_planes) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) -------------------------- Attention ----------------------- w = F.avg_pool2d(x,x.shape[-1]) 最好在初始化层定义好 print(w.shape) [bs,in_Channel,1,1] w = w.view(w.shape[0],1,w.shape[1]) [bs,1,in_Channel] one_conv_filter = nn.Conv1d(1, out_channel, one_conv_kernel_size, stride=1,padding=1,groups=1,dilation=1) 在__init__初始化 [bs,out_channel,in_Channel] w = self.conv1D(w) w = 0.5*F.tanh(w) [-0.5,+0.5] -------------- softmax --------------------------- print(w.shape) w = w.view(w.shape[0],w.shape[1],w.shape[2],1,1) print(w.shape) ------------------------- fusion -------------------------- out=out.view(out.shape[0],1,out.shape[1],out.shape[2],out.shape[3]) print("x size:",out.shape) out=out*w print("after fusion x size:",out.shape) out=out.sum(dim=2) out = F.relu(self.bn2(out)) return outclass MobileNet(nn.Module): (128,2) means conv planes=128, conv stride=2, by default conv stride=1 cfg = [64, (128,2), 128, (256,2), 256, (512,2), 512, 512, 512, 512, 512, (1024,2), 1024] def __init__(self, num_classes=10): super(MobileNet, self).__init__() self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(32) self.layers = self._make_layers(in_planes=32) 自动化构建层 self.linear = nn.Linear(1024, num_classes) def _make_layers(self, in_planes): layers = [] for x in self.cfg: out_planes = x if isinstance(x, int) else x[0] stride = 1 if isinstance(x, int) else x[1] layers.append(Block(in_planes, out_planes, stride)) in_planes = out_planes return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layers(out) out = F.avg_pool2d(out, 2) out = out.view(out.size(0), -1) out = self.linear(out) return out ###Code # 32 缩放5次到 1x1@1024 # From https://github.com/kuangliu/pytorch-cifar import torch import torch.nn as nn import torch.nn.functional as F class Block_Attention_HALF(nn.Module): '''Depthwise conv + Pointwise conv''' def __init__(self, in_planes, out_planes, stride=1): super(Block_Attention_HALF, self).__init__() # 分组卷积数=输入通道数 self.conv1 = nn.Conv2d(in_planes, in_planes, kernel_size=3, stride=stride, padding=1, groups=in_planes, bias=False) self.bn1 = nn.BatchNorm2d(in_planes) #------------------------ 一半 ------------------------------ self.conv2 = nn.Conv2d(in_planes, out_planes//2, kernel_size=1, stride=1, padding=0, bias=False) #------------------------ 另一半 ---------------------------- one_conv_kernel_size = 9 # [3,7,9] self.conv1D= nn.Conv1d(1, out_planes//2, one_conv_kernel_size, stride=1,padding=4,groups=1,dilation=1,bias=False) # 在__init__初始化 #------------------------------------------------------------ self.bn2 = nn.BatchNorm2d(out_planes) def forward(self, x): out = F.relu6(self.bn1(self.conv1(x))) #out = self.bn1(self.conv1(x)) # -------------------------- Attention ----------------------- w = F.avg_pool2d(x,x.shape[-1]) #最好在初始化层定义好 #print(w.shape) # [bs,in_Channel,1,1] in_channel=w.shape[1] #w = w.view(w.shape[0],1,w.shape[1]) # [bs,1,in_Channel] # 对这批数据取平均 且保留第0维 #w= w.mean(dim=0,keepdim=True) # MAX=w.shape[0] # NUM=torch.floor(MAX*torch.rand(1)).long() # if NUM>=0 and NUM<MAX: # w=w[NUM] # else: # w=w[0] w=w[0] w=w.view(1,1,in_channel) # [bs=1,1,in_Channel] # one_conv_filter = nn.Conv1d(1, out_channel, one_conv_kernel_size, stride=1,padding=1,groups=1,dilation=1) # 在__init__初始化 # [bs=1,out_channel//2,in_Channel] w = self.conv1D(w) # [bs=1,out_channel//2,in_Channel] #------------------------------------- w = F.tanh(w) # [-0.5,+0.5] #w=F.relu6(w) # 效果大大折扣 # [bs=1,out_channel//2,in_Channel] w=w.view(w.shape[1],w.shape[2],1,1) # [out_channel//2,in_Channel,1,1] # -------------- softmax --------------------------- #print(w.shape) # ------------------------- fusion -------------------------- # conv 1x1 out_1=self.conv2(out) out_2=F.conv2d(out,w,bias=None,stride=1,groups=1,dilation=1) out=torch.cat([out_1,out_2],1) # ----------------------- 试一试不要用relu ------------------------------- #out = self.bn2(out) out=F.relu6(self.bn2(out)) return out class Block_Attention(nn.Module): '''Depthwise conv + Pointwise conv''' def __init__(self, in_planes, out_planes, stride=1): super(Block_Attention, self).__init__() # 分组卷积数=输入通道数 self.conv1 = nn.Conv2d(in_planes, in_planes, kernel_size=3, stride=stride, padding=1, groups=in_planes, bias=False) self.bn1 = nn.BatchNorm2d(in_planes) #self.conv2 = nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=1, padding=0, bias=False) one_conv_kernel_size = 17 # [3,7,9] self.conv1D= nn.Conv1d(1, out_planes, one_conv_kernel_size, stride=1,padding=8,groups=1,dilation=1,bias=False) # 在__init__初始化 self.bn2 = nn.BatchNorm2d(out_planes) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) # -------------------------- Attention ----------------------- w = F.avg_pool2d(x,x.shape[-1]) #最好在初始化层定义好 #print(w.shape) # [bs,in_Channel,1,1] in_channel=w.shape[1] #w = w.view(w.shape[0],1,w.shape[1]) # [bs,1,in_Channel] # 对这批数据取平均 且保留第0维 #w= w.mean(dim=0,keepdim=True) # MAX=w.shape[0] # NUM=torch.floor(MAX*torch.rand(1)).long() # if NUM>=0 and NUM<MAX: # w=w[NUM] # else: # w=w[0] w=w[0] w=w.view(1,1,in_channel) # [bs=1,1,in_Channel] # one_conv_filter = nn.Conv1d(1, out_channel, one_conv_kernel_size, stride=1,padding=1,groups=1,dilation=1) # 在__init__初始化 # [bs=1,out_channel,in_Channel] w = self.conv1D(w) # [bs=1,out_channel,in_Channel] w = 0.5*F.tanh(w) # [-0.5,+0.5] # [bs=1,out_channel,in_Channel] w=w.view(w.shape[1],w.shape[2],1,1) # [out_channel,in_Channel,1,1] # -------------- softmax --------------------------- #print(w.shape) # ------------------------- fusion -------------------------- # conv 1x1 out=F.conv2d(out,w,bias=None,stride=1,groups=1,dilation=1) out = F.relu(self.bn2(out)) return out class Block(nn.Module): '''Depthwise conv + Pointwise conv''' def __init__(self, in_planes, out_planes, stride=1): super(Block, self).__init__() # 分组卷积数=输入通道数 self.conv1 = nn.Conv2d(in_planes, in_planes, kernel_size=3, stride=stride, padding=1, groups=in_planes, bias=False) self.bn1 = nn.BatchNorm2d(in_planes) self.conv2 = nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=1, padding=0, bias=False) self.bn2 = nn.BatchNorm2d(out_planes) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = F.relu(self.bn2(self.conv2(out))) return out class MobileNet(nn.Module): # (128,2) means conv planes=128, conv stride=2, by default conv stride=1 #cfg = [64, (128,2), 128, (256,2), 256, (512,2), 512, 512, 512, 512, 512, (1024,2), 1024] #cfg = [64, (128,2), 128, (256,2), 256, (512,2), 512, 512, 512, 512, 512, (1024,2), [1024,1]] cfg = [64, (128,2), 128, (256,2), (256,1), (512,2), [512,1], [512,1], [512,1],[512,1], [512,1], [1024,2], [1024,1]] def __init__(self, num_classes=10): super(MobileNet, self).__init__() self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(32) self.layers = self._make_layers(in_planes=32) # 自动化构建层 self.linear = nn.Linear(1024, num_classes) def _make_layers(self, in_planes): layers = [] for x in self.cfg: if isinstance(x, int): out_planes = x stride = 1 layers.append(Block(in_planes, out_planes, stride)) elif isinstance(x, tuple): out_planes = x[0] stride = x[1] layers.append(Block(in_planes, out_planes, stride)) # AC层通过list存放设置参数 elif isinstance(x, list): out_planes= x[0] stride = x[1] if len(x)==2 else 1 layers.append(Block_Attention_HALF(in_planes, out_planes, stride)) else: pass in_planes = out_planes return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layers(out) out = F.avg_pool2d(out, 2) out = out.view(out.size(0), -1) out = self.linear(out) return out # From https://github.com/Z0m6ie/CIFAR-10_PyTorch #model = mobilenet(num_classes=10, large_img=False) # From https://github.com/kuangliu/pytorch-cifar if torch.cuda.is_available(): model=MobileNet(10).cuda() else: model=MobileNet(10) optimizer = optim.Adam(model.parameters(), lr=0.01) scheduler = StepLR(optimizer, step_size=20, gamma=0.5) criterion = nn.CrossEntropyLoss() # Implement validation def train(epoch): model.train() #writer = SummaryWriter() for batch_idx, (data, target) in enumerate(train_loader): if use_cuda: data, target = data.cuda(), target.cuda() data, target = Variable(data), Variable(target) optimizer.zero_grad() output = model(data) correct = 0 pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability correct += pred.eq(target.data.view_as(pred)).sum() loss = criterion(output, target) loss.backward() accuracy = 100. * (correct.cpu().numpy()/ len(output)) optimizer.step() if batch_idx % 5*show_step == 0: # if batch_idx % 2*show_step == 0: # print(model.layers[1].conv1D.weight.shape) # print(model.layers[1].conv1D.weight[0:2][0:2]) print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}, Accuracy: {:.2f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item(), accuracy)) f1=open("Cifar10_INFO.txt","a+") f1.write("\n"+'Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}, Accuracy: {:.2f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item(), accuracy)) f1.close() #writer.add_scalar('Loss/Loss', loss.item(), epoch) #writer.add_scalar('Accuracy/Accuracy', accuracy, epoch) scheduler.step() def validate(epoch): model.eval() #writer = SummaryWriter() valid_loss = 0 correct = 0 for data, target in valid_loader: if use_cuda: data, target = data.cuda(), target.cuda() data, target = Variable(data), Variable(target) output = model(data) valid_loss += F.cross_entropy(output, target, size_average=False).item() # sum up batch loss pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability correct += pred.eq(target.data.view_as(pred)).sum() valid_loss /= len(valid_idx) accuracy = 100. * correct.cpu().numpy() / len(valid_idx) print('\nValidation set: Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.format( valid_loss, correct, len(valid_idx), 100. * correct / len(valid_idx))) f1=open("Cifar10_INFO.txt","a+") f1.write('\nValidation set: Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.format( valid_loss, correct, len(valid_idx), 100. * correct / len(valid_idx))) f1.close() #writer.add_scalar('Loss/Validation_Loss', valid_loss, epoch) #writer.add_scalar('Accuracy/Validation_Accuracy', accuracy, epoch) return valid_loss, accuracy # Fix best model def test(epoch): model.eval() test_loss = 0 correct = 0 for data, target in test_loader: if use_cuda: data, target = data.cuda(), target.cuda() data, target = Variable(data), Variable(target) output = model(data) test_loss += F.cross_entropy(output, target, size_average=False).item() # sum up batch loss pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability correct += pred.eq(target.data.view_as(pred)).cpu().sum() test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct.cpu().numpy() / len(test_loader.dataset))) f1=open("Cifar10_INFO.txt","a+") f1.write('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct.cpu().numpy() / len(test_loader.dataset))) f1.close() def save_best(loss, accuracy, best_loss, best_acc): if best_loss == None: best_loss = loss best_acc = accuracy file = 'saved_models/best_save_model.p' torch.save(model.state_dict(), file) elif loss < best_loss and accuracy > best_acc: best_loss = loss best_acc = accuracy file = 'saved_models/best_save_model.p' torch.save(model.state_dict(), file) return best_loss, best_acc # Fantastic logger for tensorboard and pytorch, # run tensorboard by opening a new terminal and run "tensorboard --logdir runs" # open tensorboard at http://localhost:6006/ from tensorboardX import SummaryWriter best_loss = None best_acc = None import time SINCE=time.time() for epoch in range(max_epoch): train(epoch) loss, accuracy = validate(epoch) best_loss, best_acc = save_best(loss, accuracy, best_loss, best_acc) NOW=time.time() DURINGS=NOW-SINCE SINCE=NOW print("the time of this epoch:[{} s]".format(DURINGS)) # writer = SummaryWriter() # writer.export_scalars_to_json("./all_scalars.json") # writer.close() #---------------------------- Test ------------------------------ test(epoch) ###Output Train Epoch: 0 [0/50000 (0%)] Loss: 2.317187, Accuracy: 10.16 Train Epoch: 0 [1280/50000 (3%)] Loss: 2.739555, Accuracy: 9.38 Train Epoch: 0 [2560/50000 (6%)] Loss: 2.468929, Accuracy: 9.77 Train Epoch: 0 [3840/50000 (9%)] Loss: 2.271804, Accuracy: 11.72 Train Epoch: 0 [5120/50000 (11%)] Loss: 2.214532, Accuracy: 16.80 Train Epoch: 0 [6400/50000 (14%)] Loss: 2.125456, Accuracy: 18.36 Train Epoch: 0 [7680/50000 (17%)] Loss: 2.063283, Accuracy: 18.75 Train Epoch: 0 [8960/50000 (20%)] Loss: 1.957888, Accuracy: 25.39 Train Epoch: 0 [10240/50000 (23%)] Loss: 2.006796, Accuracy: 23.05 Train Epoch: 0 [11520/50000 (26%)] Loss: 1.940412, Accuracy: 26.56 Train Epoch: 0 [12800/50000 (28%)] Loss: 1.925677, Accuracy: 23.83 Train Epoch: 0 [14080/50000 (31%)] Loss: 1.894595, Accuracy: 26.95 Train Epoch: 0 [15360/50000 (34%)] Loss: 1.874364, Accuracy: 28.12 Train Epoch: 0 [16640/50000 (37%)] Loss: 1.920679, Accuracy: 23.83 Train Epoch: 0 [17920/50000 (40%)] Loss: 1.921081, Accuracy: 26.95 Train Epoch: 0 [19200/50000 (43%)] Loss: 1.870906, Accuracy: 23.05 Train Epoch: 0 [20480/50000 (45%)] Loss: 1.905605, Accuracy: 28.52 Train Epoch: 0 [21760/50000 (48%)] Loss: 1.875262, Accuracy: 25.78 Train Epoch: 0 [23040/50000 (51%)] Loss: 1.760782, Accuracy: 31.25 Train Epoch: 0 [24320/50000 (54%)] Loss: 1.815875, Accuracy: 29.69 Train Epoch: 0 [25600/50000 (57%)] Loss: 1.789346, Accuracy: 28.12 Train Epoch: 0 [26880/50000 (60%)] Loss: 1.729920, Accuracy: 32.81 Train Epoch: 0 [28160/50000 (62%)] Loss: 1.692929, Accuracy: 39.06 Train Epoch: 0 [29440/50000 (65%)] Loss: 1.751308, Accuracy: 35.94 Train Epoch: 0 [30720/50000 (68%)] Loss: 1.733815, Accuracy: 29.30 Train Epoch: 0 [32000/50000 (71%)] Loss: 1.748714, Accuracy: 37.50 Train Epoch: 0 [33280/50000 (74%)] Loss: 1.753810, Accuracy: 28.52 Train Epoch: 0 [34560/50000 (77%)] Loss: 1.652142, Accuracy: 37.50 Train Epoch: 0 [35840/50000 (80%)] Loss: 1.726063, Accuracy: 28.91 Train Epoch: 0 [37120/50000 (82%)] Loss: 1.670838, Accuracy: 34.38 Train Epoch: 0 [38400/50000 (85%)] Loss: 1.573907, Accuracy: 43.36 Train Epoch: 0 [39680/50000 (88%)] Loss: 1.650179, Accuracy: 35.16 Train Epoch: 0 [40960/50000 (91%)] Loss: 1.646149, Accuracy: 37.89 Train Epoch: 0 [42240/50000 (94%)] Loss: 1.821646, Accuracy: 35.16 Train Epoch: 0 [43520/50000 (97%)] Loss: 1.581002, Accuracy: 39.06 Train Epoch: 0 [35000/50000 (99%)] Loss: 1.636860, Accuracy: 37.00 Validation set: Average loss: 4.5531, Accuracy: 1197/5000 (23.00%) the time of this epoch:[21.662639617919922 s] Train Epoch: 1 [0/50000 (0%)] Loss: 1.654787, Accuracy: 39.06 Train Epoch: 1 [1280/50000 (3%)] Loss: 1.533673, Accuracy: 39.45 Train Epoch: 1 [2560/50000 (6%)] Loss: 1.631841, Accuracy: 32.42 Train Epoch: 1 [3840/50000 (9%)] Loss: 1.631126, Accuracy: 38.67 Train Epoch: 1 [5120/50000 (11%)] Loss: 1.639353, Accuracy: 38.67 Train Epoch: 1 [6400/50000 (14%)] Loss: 1.574432, Accuracy: 44.53 Train Epoch: 1 [7680/50000 (17%)] Loss: 1.517393, Accuracy: 47.27 Train Epoch: 1 [8960/50000 (20%)] Loss: 1.620072, Accuracy: 39.84 Train Epoch: 1 [10240/50000 (23%)] Loss: 1.485670, Accuracy: 45.31 Train Epoch: 1 [11520/50000 (26%)] Loss: 1.407409, Accuracy: 48.44 Train Epoch: 1 [12800/50000 (28%)] Loss: 1.564423, Accuracy: 42.19 Train Epoch: 1 [14080/50000 (31%)] Loss: 1.428197, Accuracy: 44.14 Train Epoch: 1 [15360/50000 (34%)] Loss: 1.486374, Accuracy: 44.53 Train Epoch: 1 [16640/50000 (37%)] Loss: 1.496168, Accuracy: 46.09 Train Epoch: 1 [17920/50000 (40%)] Loss: 1.353985, Accuracy: 48.05 Train Epoch: 1 [19200/50000 (43%)] Loss: 1.440946, Accuracy: 49.61 Train Epoch: 1 [20480/50000 (45%)] Loss: 1.428810, Accuracy: 49.61 Train Epoch: 1 [21760/50000 (48%)] Loss: 1.366629, Accuracy: 51.56 Train Epoch: 1 [23040/50000 (51%)] Loss: 1.520613, Accuracy: 41.41 Train Epoch: 1 [24320/50000 (54%)] Loss: 1.424382, Accuracy: 45.70 Train Epoch: 1 [25600/50000 (57%)] Loss: 1.417356, Accuracy: 49.61 Train Epoch: 1 [26880/50000 (60%)] Loss: 1.472661, Accuracy: 45.31 Train Epoch: 1 [28160/50000 (62%)] Loss: 1.338052, Accuracy: 47.66 Train Epoch: 1 [29440/50000 (65%)] Loss: 1.241622, Accuracy: 57.42 Train Epoch: 1 [30720/50000 (68%)] Loss: 1.254776, Accuracy: 51.56 Train Epoch: 1 [32000/50000 (71%)] Loss: 1.353367, Accuracy: 50.00 Train Epoch: 1 [33280/50000 (74%)] Loss: 1.335058, Accuracy: 50.00 Train Epoch: 1 [34560/50000 (77%)] Loss: 1.464982, Accuracy: 48.83 Train Epoch: 1 [35840/50000 (80%)] Loss: 1.362602, Accuracy: 54.30 Train Epoch: 1 [37120/50000 (82%)] Loss: 1.333230, Accuracy: 52.73 Train Epoch: 1 [38400/50000 (85%)] Loss: 1.346182, Accuracy: 49.22 Train Epoch: 1 [39680/50000 (88%)] Loss: 1.174814, Accuracy: 58.98 Train Epoch: 1 [40960/50000 (91%)] Loss: 1.270859, Accuracy: 51.17 Train Epoch: 1 [42240/50000 (94%)] Loss: 1.222242, Accuracy: 59.38 Train Epoch: 1 [43520/50000 (97%)] Loss: 1.269724, Accuracy: 54.30 Train Epoch: 1 [35000/50000 (99%)] Loss: 1.163435, Accuracy: 57.00 Validation set: Average loss: 4.8672, Accuracy: 1912/5000 (38.00%) the time of this epoch:[21.558705806732178 s] Train Epoch: 2 [0/50000 (0%)] Loss: 1.170546, Accuracy: 58.20 Train Epoch: 2 [1280/50000 (3%)] Loss: 1.167825, Accuracy: 55.86 Train Epoch: 2 [2560/50000 (6%)] Loss: 1.267082, Accuracy: 57.03 Train Epoch: 2 [3840/50000 (9%)] Loss: 1.203408, Accuracy: 57.42 Train Epoch: 2 [5120/50000 (11%)] Loss: 1.226529, Accuracy: 49.22 Train Epoch: 2 [6400/50000 (14%)] Loss: 1.311463, Accuracy: 53.91 Train Epoch: 2 [7680/50000 (17%)] Loss: 1.213612, Accuracy: 59.38 Train Epoch: 2 [8960/50000 (20%)] Loss: 1.147260, Accuracy: 56.64 Train Epoch: 2 [10240/50000 (23%)] Loss: 1.254088, Accuracy: 55.08 Train Epoch: 2 [11520/50000 (26%)] Loss: 1.197541, Accuracy: 56.25 Train Epoch: 2 [12800/50000 (28%)] Loss: 1.137027, Accuracy: 55.86 Train Epoch: 2 [14080/50000 (31%)] Loss: 1.194584, Accuracy: 61.33 Train Epoch: 2 [15360/50000 (34%)] Loss: 1.204290, Accuracy: 60.16 Train Epoch: 2 [16640/50000 (37%)] Loss: 1.172325, Accuracy: 55.86 Train Epoch: 2 [17920/50000 (40%)] Loss: 1.149843, Accuracy: 59.38 Train Epoch: 2 [19200/50000 (43%)] Loss: 1.126659, Accuracy: 58.20 Train Epoch: 2 [20480/50000 (45%)] Loss: 1.092484, Accuracy: 58.98 Train Epoch: 2 [21760/50000 (48%)] Loss: 1.099942, Accuracy: 55.47 Train Epoch: 2 [23040/50000 (51%)] Loss: 1.186884, Accuracy: 60.94 Train Epoch: 2 [24320/50000 (54%)] Loss: 1.117447, Accuracy: 60.55 Train Epoch: 2 [25600/50000 (57%)] Loss: 1.173386, Accuracy: 55.08 Train Epoch: 2 [26880/50000 (60%)] Loss: 1.084559, Accuracy: 58.98 Train Epoch: 2 [28160/50000 (62%)] Loss: 1.171377, Accuracy: 59.77 Train Epoch: 2 [29440/50000 (65%)] Loss: 1.049761, Accuracy: 62.89 Train Epoch: 2 [30720/50000 (68%)] Loss: 1.029481, Accuracy: 63.28 Train Epoch: 2 [32000/50000 (71%)] Loss: 1.121746, Accuracy: 58.98 Train Epoch: 2 [33280/50000 (74%)] Loss: 1.131498, Accuracy: 58.98 Train Epoch: 2 [34560/50000 (77%)] Loss: 1.166869, Accuracy: 60.55 Train Epoch: 2 [35840/50000 (80%)] Loss: 1.035683, Accuracy: 60.55 Train Epoch: 2 [37120/50000 (82%)] Loss: 1.028708, Accuracy: 59.38 Train Epoch: 2 [38400/50000 (85%)] Loss: 1.008805, Accuracy: 62.11 Train Epoch: 2 [39680/50000 (88%)] Loss: 1.161276, Accuracy: 58.59 Train Epoch: 2 [40960/50000 (91%)] Loss: 1.036611, Accuracy: 63.28 Train Epoch: 2 [42240/50000 (94%)] Loss: 1.166182, Accuracy: 57.03 Train Epoch: 2 [43520/50000 (97%)] Loss: 1.036265, Accuracy: 62.89 Train Epoch: 2 [35000/50000 (99%)] Loss: 0.937140, Accuracy: 70.50 Validation set: Average loss: 2.1692, Accuracy: 2482/5000 (49.00%) the time of this epoch:[21.577322244644165 s] Train Epoch: 3 [0/50000 (0%)] Loss: 1.088407, Accuracy: 61.33 Train Epoch: 3 [1280/50000 (3%)] Loss: 1.053350, Accuracy: 62.89 Train Epoch: 3 [2560/50000 (6%)] Loss: 1.126616, Accuracy: 57.03 Train Epoch: 3 [3840/50000 (9%)] Loss: 0.988742, Accuracy: 65.23 Train Epoch: 3 [5120/50000 (11%)] Loss: 1.202767, Accuracy: 57.42 Train Epoch: 3 [6400/50000 (14%)] Loss: 1.000872, Accuracy: 63.67 Train Epoch: 3 [7680/50000 (17%)] Loss: 0.907074, Accuracy: 67.58 Train Epoch: 3 [8960/50000 (20%)] Loss: 1.005800, Accuracy: 62.11 Train Epoch: 3 [10240/50000 (23%)] Loss: 0.993526, Accuracy: 66.02 Train Epoch: 3 [11520/50000 (26%)] Loss: 0.856707, Accuracy: 71.48 Train Epoch: 3 [12800/50000 (28%)] Loss: 1.010143, Accuracy: 61.33 ###Markdown Step 3: Test ###Code test(epoch) ###Output Test set: Average loss: 0.6860, Accuracy: 8937/10000 (89.37%) ###Markdown 第一次 scale 位于[0,1] ![](http://op4a94iq8.bkt.clouddn.com/18-7-14/70206949.jpg) ###Code # 查看训练过程的信息 import matplotlib.pyplot as plt def parse(in_file,flag): num=-1 ys=list() xs=list() losses=list() with open(in_file,"r") as reader: for aLine in reader: #print(aLine) res=[e for e in aLine.strip('\n').split(" ")] if res[0]=="Train" and flag=="Train": num=num+1 ys.append(float(res[-1])) xs.append(int(num)) losses.append(float(res[-3].split(',')[0])) if res[0]=="Validation" and flag=="Validation": num=num+1 xs.append(int(num)) tmp=[float(e) for e in res[-2].split('/')] ys.append(100*float(tmp[0]/tmp[1])) losses.append(float(res[-4].split(',')[0])) plt.figure(1) plt.plot(xs,ys,'ro') plt.figure(2) plt.plot(xs, losses, 'ro') plt.show() def main(): in_file="D://INFO.txt" # 显示训练阶段的正确率和Loss信息 parse(in_file,"Train") # "Validation" # 显示验证阶段的正确率和Loss信息 #parse(in_file,"Validation") # "Validation" if __name__=="__main__": main() # 查看训练过程的信息 import matplotlib.pyplot as plt def parse(in_file,flag): num=-1 ys=list() xs=list() losses=list() with open(in_file,"r") as reader: for aLine in reader: #print(aLine) res=[e for e in aLine.strip('\n').split(" ")] if res[0]=="Train" and flag=="Train": num=num+1 ys.append(float(res[-1])) xs.append(int(num)) losses.append(float(res[-3].split(',')[0])) if res[0]=="Validation" and flag=="Validation": num=num+1 xs.append(int(num)) tmp=[float(e) for e in res[-2].split('/')] ys.append(100*float(tmp[0]/tmp[1])) losses.append(float(res[-4].split(',')[0])) plt.figure(1) plt.plot(xs,ys,'r-') plt.figure(2) plt.plot(xs, losses, 'r-') plt.show() def main(): in_file="D://INFO.txt" # 显示训练阶段的正确率和Loss信息 parse(in_file,"Train") # "Validation" # 显示验证阶段的正确率和Loss信息 parse(in_file,"Validation") # "Validation" if __name__=="__main__": main() ###Output _____no_output_____
visualization/.ipynb_checkpoints/pygrib_viz-checkpoint.ipynb
###Markdown Visualizion of a grib file using pygrib pygrib will need to be installed prior to using this notebook.In order to install pygrib, you can use conda: `conda install -c conda-forge pygrib` ###Code import pygrib # We'll be using widgets in the notebook import ipywidgets as widgets from IPython.display import display ###Output _____no_output_____ ###Markdown Now to select a grib fileThis can be any grib file, but you can use our example grib file in the `data/` directory of this repository. ###Code grib_file = '../data/gdas.t12z.pgrb2.1p00.f000' ###Output _____no_output_____ ###Markdown Opening a Grib file in pygrib is similar to any other file. Additionally, since it seeks to different byte offsets in the file, it only loads into memory what you ask. ###Code fh = pygrib.open(grib_file) num_messages = fh.messages print(num_messages) fh.message(1) ###Output _____no_output_____ ###Markdown Now we can select the variables ###Code grib_messages = [(fh.message(i), i) for i in range(1,num_messages)] w = widgets.Dropdown( options=grib_messages, value=1, description="Select which grib message you would like to visualize") display(w) w.value fh.seek(w.value) message = fh[w.value] data = message.values lats,lons = message.latlons() ###Output _____no_output_____ ###Markdown With your variable selected, we can now visualize the data. ###Code import matplotlib.pyplot as plt # used to plot the data. import cartopy.crs as ccrs # Used to georeference data. import cartopy.util as cutil data = data.data proj = ccrs.PlateCarree(central_longitude=-90) plt.gcf().set_size_inches(15,15) ax = plt.axes(projection=proj) plt.contourf(lons,lats,data, transform=proj) ax.coastlines() plt.show() data, lons_1d = cutil.add_cyclic_point(data, coord=lons[0]) ###Output _____no_output_____
source/07_Generative_Algorithms/Code.ipynb
###Markdown Today:* Generative models* Naive Bayes Resources:* Generative model: https://en.wikipedia.org/wiki/Generative_model* Naive Bayes: http://cs229.stanford.edu/notes/cs229-notes2.pdf* Naive Bayes: https://en.wikipedia.org/wiki/Naive_Bayes_classifier ###Code import numpy as np import tensorflow as tf import matplotlib.mlab as mlab import matplotlib.pyplot as plt from scipy.stats import norm from sklearn import datasets iris = datasets.load_iris() # Only take the first feature X = iris.data[:, :1] y = iris.target print('IRIS DATASET') print('Features', X[:3]) print('Class', y[:3]) # Separate training points by class (nb_classes * nb_samples * nb_features) unique_y = np.unique(y) print('Unique labels', unique_y) points_by_class = np.array([[x for x, t in zip(X, y) if t == c] for c in unique_y]) print('Separeted', points_by_class.shape) with tf.Session() as sess: # FIT # Estimate mean and variance for each class / feature # Shape: number_of_classes * number_of_features mean, var = tf.nn.moments(tf.constant(points_by_class), axes=[1]) print('Mean', mean.eval()) print('Var', var.eval()) # Create a 3x2 univariate normal distribution with the known mean and variance dist = tf.distributions.Normal(loc=mean, scale=tf.sqrt(var)) # PREDICT nb_classes, nb_features = map(int, dist.scale.shape) print(nb_classes, nb_features) X = X[45:55] print(X.shape) print(tf.reshape(tf.tile(X, [1, nb_classes]), [-1, nb_classes, nb_features]).shape) # Conditional probabilities log P(x|c) with shape (nb_samples, nb_classes) cond_probs = tf.reduce_sum( dist.log_prob(tf.reshape(tf.tile(X, [1, nb_classes]), [-1, nb_classes, nb_features])), axis=2 ) # uniform priors priors = np.log(np.array([1. / nb_classes] * nb_classes)) # posterior log probability, log P(c) + log P(x|c) joint_likelihood = tf.add(priors, cond_probs) # normalize to get (log)-probabilities norm_factor = tf.reduce_logsumexp(joint_likelihood, axis=1, keep_dims=True) log_prob = joint_likelihood - norm_factor # exp to get the actual probabilities Z = sess.run(tf.argmax(tf.exp(log_prob), axis=1)) print(y[45:55]) print(Z) fig, ax = plt.subplots() colors = ['r', 'g', 'b'] x = np.linspace(0, 10, 1000) for i in range(len(mu)): # Create a normal distribution dist = norm(mu[i], sigma[i]) # Plot plt.plot(x, dist.pdf(x), c=colors[i], label=r'$\mu=%.1f,\ \sigma=%.1f$' % (mu[i], sigma[i])) plt.xlim(4.0, 8.2) plt.ylim(0, 1.5) plt.title('Gaussian Distribution') plt.legend() plt.show() ###Output _____no_output_____
05_Data_Modelling_Unsupervised_Learning.ipynb
###Markdown Data Modelling ###Code from pyspark.sql.session import SparkSession from pyspark.ml.feature import VectorAssembler,VectorIndexer from pyspark.ml.evaluation import ClusteringEvaluator from pyspark.ml.clustering import KMeans from helpers.helper_functions import translate_to_file_string from pyspark.ml.tuning import CrossValidator, ParamGridBuilder from pyspark.ml.evaluation import RegressionEvaluator from pyspark.ml.feature import StringIndexer from pyspark.mllib.evaluation import BinaryClassificationMetrics from pyspark.ml import Pipeline from pyspark.mllib.evaluation import MulticlassMetrics inputFile = translate_to_file_string("./data/Data_Preparation_Result.csv") def prettyPrint(dm, collArray) : rows = dm.toArray().tolist() dfDM = spark.createDataFrame(rows,collArray) newDf = dfDM.toPandas() from IPython.display import display, HTML return HTML(newDf.to_html(index=False)) ###Output _____no_output_____ ###Markdown Create Spark Session ###Code #create a SparkSession spark = (SparkSession .builder .appName("DataModelling") .getOrCreate()) # create a DataFrame using an ifered Schema df = spark.read.option("header", "true") \ .option("inferSchema", "true") \ .option("delimiter", ";") \ .csv(inputFile) print(df.printSchema()) ###Output root |-- Bundesland: string (nullable = true) |-- BundeslandIndex: integer (nullable = true) |-- Landkreis: string (nullable = true) |-- LandkreisIndex: integer (nullable = true) |-- Altersgruppe: string (nullable = true) |-- AltersgruppeIndex: double (nullable = true) |-- Geschlecht: string (nullable = true) |-- GeschlechtIndex: double (nullable = true) |-- FallStatus: string (nullable = true) |-- FallStatusIndex: double (nullable = true) |-- Falldatum: string (nullable = true) None ###Markdown Vorbereitung der Daten Filtern der DatensätzeFür das Training dieses Modells ist es sinnvoll nur die Fälle zu betrachten, bei den der Ausgang der Corona-Erkrankung bereits bekannt ist ("GENESEN" oder "GESTORBEN"). Daher werden die Fälle mit noch erkrankten Personen herausgefiltert. Ebenfalls muss der FallStatusIndex neu vergeben werden, damit dieses Feature nur noch die Werte 0 oder 1 enthält. ###Code dfNeu = df.filter(df.FallStatus != "NICHTEINGETRETEN").drop("FallStatusIndex") ###Output _____no_output_____ ###Markdown FallStatusIndex ###Code indexer = StringIndexer(inputCol="FallStatus", outputCol="FallStatusIndex") dfReindexed = indexer.fit(dfNeu).transform(dfNeu) ###Output _____no_output_____ ###Markdown Ziehen eines SamplesDa der Datensatz sehr groß ist,kann es evt. notwendig sein, nur mit einem kleineren Umfang zu trainieren. Mit Fraction kann an dieser Stelle der Umfang der Stichprobe angepasst werden. ###Code dfsample = dfReindexed.sample(withReplacement=False, fraction=1.0, seed=12334556) ###Output _____no_output_____ ###Markdown UndersamplingÄhnlich dem Fraud-Detection-Beispiel von Tara Boyle (2019) ist die Klasse der an Corona-Verstorbenen im vorliegenden Datensatz unterrepresentiert, weshalb man an dieser Stelle von einer Data Imbalance spricht. Dies sieht man wenn man die Anzahl der Todesfälle mit den Anzahl der Genesenen vergleicht. ###Code # Vergleich der Fallzahlen dfsample.groupBy("FallStatus").count().show() ###Output +----------+-------+ |FallStatus| count| +----------+-------+ | GENESEN|3471830| | GESTORBEN| 88350| +----------+-------+ ###Markdown Die meisten Machine Learning Algorithmen arbeiten am Besten wenn die Nummer der Samples in allen Klassen ungefähr die selbe größe haben. Dies konnte auch im Zuge dieser Arbeit bei den unterschiedlichen Regressions-Modellen festgestellt werden. Da die einzelnen Modelle versuchen den Fehler zu reduzieren, haben alle Modelle am Ende für einen Datensatz nur die Klasse Genesen geliefert, da hier die Wahrscheinlichkeit am größten war korrekt zu liegen. Um diese Problem zu lösen gibt es zwei Möglichkeiten: Under- und Oversampling. Beides fällt unter den Begriff ResamplingBeim Undersampling werden aus der Klasse mit den meisten Instanzen, Datensätze gelöscht, wohingegen beim Oversampling, der Klasse mit den wenigsten Isntanzen, neue Werte hinzugefügt werden. (Will Badr 2019; Tara Boyle 2019)Da in diesem Fall ausreichend Datensätze vorhanden sind, bietet sich Ersteres an. ###Code # Ermittlung der Anzahl dr Verstorbenen dfGestorben = dfsample.filter(dfsample.FallStatus == "GESTORBEN") anzahlGestorben = dfGestorben.count() print("Anzahl Gestorben : %s" % anzahlGestorben) # Ermittlung des Verhätlnisses von Verstorben und Gensen dfGenesen = dfsample.filter(dfsample.FallStatus == "GENESEN") anzahlGenesen = dfGenesen.count() print("Anzahl Genesen : %s" % anzahlGenesen) ratio = anzahlGestorben / anzahlGenesen print("Verhältnis : %s" % ratio) # Ziehen eines Samples mit der näherungsweise selben Anzahl wie Verstorbene dfGenesenSample = dfGenesen.sample(fraction=ratio, seed=12345) dfGesamtSample = dfGestorben.union(dfGenesenSample) # Kontrolle dfGesamtSample.groupBy("FallStatus").count().show() ###Output +----------+-----+ |FallStatus|count| +----------+-----+ | GENESEN|88520| | GESTORBEN|88350| +----------+-----+ ###Markdown Splitten in Trainings und Testdaten ###Code splits = dfGesamtSample.randomSplit([0.8, 0.2], 345678) trainingData = splits[0] testData = splits[1] ###Output _____no_output_____ ###Markdown Aufbau des Feature-Vectors ###Code assembler = VectorAssembler(outputCol="features", inputCols=["GeschlechtIndex","FallStatusIndex","AltersgruppeIndex", "LandkreisIndex","BundeslandIndex"]) ###Output _____no_output_____ ###Markdown Aufbau eiens VectorIndexerEin VectorIndexer dient zur kategorisierung von Features in einem Vector-Datensatz. ###Code featureIndexer = VectorIndexer(inputCol="features",outputCol="indexedFeatures", maxCategories=10) # TODO Max Kategories testen ###Output _____no_output_____ ###Markdown Modellierung K-MeansK-Means ist eines der meist verwendent Clustering-Algortimen. (Apache Spark 2021) ###Code kmeans = KMeans(featuresCol="indexedFeatures", predictionCol="prediction", seed=122334455) #predictionCol="prediction", ###Output _____no_output_____ ###Markdown Pipeline ###Code pipeline = Pipeline(stages=[assembler,featureIndexer, kmeans]) ###Output _____no_output_____ ###Markdown EvaluatorDas Clustering wird mit einem spezielen ClusteringEvaluator evaluiert. ###Code # Definition des Evaluators evaluator = ClusteringEvaluator() ###Output _____no_output_____ ###Markdown ParametertuningEine wichtige Aufgabe beim Machine Learning ist die Auswahl des geeigneten Modells bzw. die passenden Paramter für ein Modell herauszufinden. Letzteres wird auch Parametertuning genannt. Die in Pyspark enthaltene MLLib bietet speziell hierfür ein entsprechende Tooling. Und zwar kann ein CrossValidator bzw. ein TrainValidationSplit verwendet werden. Voraussetzung sind ein Estimator (ein Modell oder eine Pipeline), ein Paramter-Grid und eine Evaluator. Dies ist auch im Zusammenhang mit dem Thema Cross-Validation zu sehen. (Apache Spark 2020a) ###Code paramGrid = ParamGridBuilder()\ .addGrid(kmeans.k, [3,4,6]) \ .addGrid(kmeans.maxIter, [10])\ .build() ###Output _____no_output_____ ###Markdown Cross-Validation ###Code # Definition des Cross-Validators # num-Folds gibt an in wie viele Datensatz-Paare die Datensätze aufgeteilt werden. crossval = CrossValidator(estimator=pipeline, estimatorParamMaps=paramGrid, evaluator=evaluator, numFolds=2, parallelism=2) ###Output _____no_output_____ ###Markdown Training ###Code # Anpassung des Modells und Auswahl der besten Parameter cvModel = crossval.fit(trainingData) ###Output _____no_output_____ ###Markdown Ermitteln der Paramter ###Code kmModel = cvModel.bestModel.stages[2] print(kmModel.explainParams()) centers = kmModel.clusterCenters() print("Cluster Centers: ") for center in centers: print(center) ###Output distanceMeasure: the distance measure. Supported options: 'euclidean' and 'cosine'. (default: euclidean) featuresCol: features column name. (default: features, current: indexedFeatures) initMode: The initialization algorithm. This can be either "random" to choose random points as initial cluster centers, or "k-means||" to use a parallel variant of k-means++ (default: k-means||) initSteps: The number of steps for k-means|| initialization mode. Must be > 0. (default: 2) k: The number of clusters to create. Must be > 1. (default: 2, current: 4) maxIter: max number of iterations (>= 0). (default: 20, current: 10) predictionCol: prediction column name. (default: prediction, current: prediction) seed: random seed. (default: -81890329110200490, current: 122334455) tol: the convergence tolerance for iterative algorithms (>= 0). (default: 0.0001) weightCol: weight column name. If this is not set or empty, we treat all instance weights as 1.0. (undefined) Cluster Centers: [4.97482656e-01 5.81090188e-01 2.02731417e+00 1.49107083e+04 1.45687215e+01] [5.06732740e-01 4.66102794e-01 1.82227642e+00 4.30144703e+03 4.00996290e+00] [5.02451641e-01 4.96901773e-01 1.88541947e+00 1.00675486e+04 9.78544103e+00] [5.07824630e-01 4.79187717e-01 1.85541070e+00 7.27558676e+03 6.86731400e+00] ###Markdown Testen des Modells ###Code predictions = cvModel.transform(testData) predictions.show() # Fläche unter der Soluette silhouette = evaluator.evaluate(predictions) print("Silhouette with squared euclidean distance = " , silhouette) predictions.groupBy( "prediction","FallStatus", "Altersgruppe", "Geschlecht").count().orderBy("prediction").show() ###Output +----------+----------+------------+----------+-----+ |prediction|FallStatus|Altersgruppe|Geschlecht|count| +----------+----------+------------+----------+-----+ | 0| GENESEN| A00-A04| W| 20| | 0| GESTORBEN| A80+| W| 1335| | 0| GENESEN| A15-A34| M| 256| | 0| GENESEN| A35-A59| W| 573| | 0| GENESEN| A80+| M| 67| | 0| GENESEN| A05-A14| W| 67| | 0| GENESEN| A80+| W| 166| | 0| GENESEN| A60-A79| W| 262| | 0| GESTORBEN| A80+| M| 1132| | 0| GESTORBEN| A15-A34| M| 5| | 0| GENESEN| A00-A04| M| 31| | 0| GENESEN| A15-A34| W| 310| | 0| GENESEN| A35-A59| M| 491| | 0| GESTORBEN| A60-A79| M| 669| | 0| GENESEN| A60-A79| M| 248| | 0| GESTORBEN| A15-A34| W| 5| | 0| GESTORBEN| A35-A59| W| 36| | 0| GESTORBEN| A60-A79| W| 367| | 0| GESTORBEN| A35-A59| M| 79| | 0| GENESEN| A05-A14| M| 68| +----------+----------+------------+----------+-----+ only showing top 20 rows
tutorials/001 - Introduction.ipynb
###Markdown [![AWS Data Wrangler](_static/logo.png "AWS Data Wrangler")](https://github.com/awslabs/aws-data-wrangler) 1 - Introduction What is AWS Data Wrangler?An [open-source](https://github.com/awslabs/aws-data-wrangler>) Python package that extends the power of [Pandas](https://github.com/pandas-dev/pandas>) library to AWS connecting **DataFrames** and AWS data related services (**Amazon Redshift**, **AWS Glue**, **Amazon Athena**, **Amazon Timestream**, **Amazon EMR**, etc).Built on top of other open-source projects like [Pandas](https://github.com/pandas-dev/pandas), [Apache Arrow](https://github.com/apache/arrow) and [Boto3](https://github.com/boto/boto3), it offers abstracted functions to execute usual ETL tasks like load/unload data from **Data Lakes**, **Data Warehouses** and **Databases**.Check our [list of functionalities](https://aws-data-wrangler.readthedocs.io/en/2.5.0/api.html). How to install?The Wrangler runs almost anywhere over Python 3.6, 3.7, 3.8 and 3.9, so there are several different ways to install it in the desired enviroment. - [PyPi (pip)](https://aws-data-wrangler.readthedocs.io/en/2.5.0/install.htmlpypi-pip) - [Conda](https://aws-data-wrangler.readthedocs.io/en/2.5.0/install.htmlconda) - [AWS Lambda Layer](https://aws-data-wrangler.readthedocs.io/en/2.5.0/install.htmlaws-lambda-layer) - [AWS Glue Python Shell Jobs](https://aws-data-wrangler.readthedocs.io/en/2.5.0/install.htmlaws-glue-python-shell-jobs) - [AWS Glue PySpark Jobs](https://aws-data-wrangler.readthedocs.io/en/2.5.0/install.htmlaws-glue-pyspark-jobs) - [Amazon SageMaker Notebook](https://aws-data-wrangler.readthedocs.io/en/2.5.0/install.htmlamazon-sagemaker-notebook) - [Amazon SageMaker Notebook Lifecycle](https://aws-data-wrangler.readthedocs.io/en/2.5.0/install.htmlamazon-sagemaker-notebook-lifecycle) - [EMR Cluster](https://aws-data-wrangler.readthedocs.io/en/2.5.0/install.htmlemr-cluster) - [From source](https://aws-data-wrangler.readthedocs.io/en/2.5.0/install.htmlfrom-source)Some good practices for most of the above methods are: - Use new and individual Virtual Environments for each project ([venv](https://docs.python.org/3/library/venv.html)) - On Notebooks, always restart your kernel after installations. Let's Install it! ###Code !pip install awswrangler ###Output _____no_output_____ ###Markdown > Restart your kernel after the installation! ###Code import awswrangler as wr wr.__version__ ###Output _____no_output_____ ###Markdown [![AWS Data Wrangler](_static/logo.png "AWS Data Wrangler")](https://github.com/awslabs/aws-data-wrangler) 1 - Introduction What is AWS Data Wrangler?An [open-source](https://github.com/awslabs/aws-data-wrangler>) Python package that extends the power of [Pandas](https://github.com/pandas-dev/pandas>) library to AWS connecting **DataFrames** and AWS data related services (**Amazon Redshift**, **AWS Glue**, **Amazon Athena**, **Amazon Timestream**, **Amazon EMR**, etc).Built on top of other open-source projects like [Pandas](https://github.com/pandas-dev/pandas), [Apache Arrow](https://github.com/apache/arrow) and [Boto3](https://github.com/boto/boto3), it offers abstracted functions to execute usual ETL tasks like load/unload data from **Data Lakes**, **Data Warehouses** and **Databases**.Check our [list of functionalities](https://aws-data-wrangler.readthedocs.io/en/2.7.0/api.html). How to install?The Wrangler runs almost anywhere over Python 3.6, 3.7, 3.8 and 3.9, so there are several different ways to install it in the desired enviroment. - [PyPi (pip)](https://aws-data-wrangler.readthedocs.io/en/2.7.0/install.htmlpypi-pip) - [Conda](https://aws-data-wrangler.readthedocs.io/en/2.7.0/install.htmlconda) - [AWS Lambda Layer](https://aws-data-wrangler.readthedocs.io/en/2.7.0/install.htmlaws-lambda-layer) - [AWS Glue Python Shell Jobs](https://aws-data-wrangler.readthedocs.io/en/2.7.0/install.htmlaws-glue-python-shell-jobs) - [AWS Glue PySpark Jobs](https://aws-data-wrangler.readthedocs.io/en/2.7.0/install.htmlaws-glue-pyspark-jobs) - [Amazon SageMaker Notebook](https://aws-data-wrangler.readthedocs.io/en/2.7.0/install.htmlamazon-sagemaker-notebook) - [Amazon SageMaker Notebook Lifecycle](https://aws-data-wrangler.readthedocs.io/en/2.7.0/install.htmlamazon-sagemaker-notebook-lifecycle) - [EMR Cluster](https://aws-data-wrangler.readthedocs.io/en/2.7.0/install.htmlemr-cluster) - [From source](https://aws-data-wrangler.readthedocs.io/en/2.7.0/install.htmlfrom-source)Some good practices for most of the above methods are: - Use new and individual Virtual Environments for each project ([venv](https://docs.python.org/3/library/venv.html)) - On Notebooks, always restart your kernel after installations. Let's Install it! ###Code !pip install awswrangler ###Output _____no_output_____ ###Markdown > Restart your kernel after the installation! ###Code import awswrangler as wr wr.__version__ ###Output _____no_output_____ ###Markdown [![AWS Data Wrangler](_static/logo.png "AWS Data Wrangler")](https://github.com/awslabs/aws-data-wrangler) 1 - Introduction What is AWS Data Wrangler?An [open-source](https://github.com/awslabs/aws-data-wrangler>) Python package that extends the power of [Pandas](https://github.com/pandas-dev/pandas>) library to AWS connecting **DataFrames** and AWS data related services (**Amazon Redshift**, **AWS Glue**, **Amazon Athena**, **Amazon Timestream**, **Amazon EMR**, etc).Built on top of other open-source projects like [Pandas](https://github.com/pandas-dev/pandas), [Apache Arrow](https://github.com/apache/arrow) and [Boto3](https://github.com/boto/boto3), it offers abstracted functions to execute usual ETL tasks like load/unload data from **Data Lakes**, **Data Warehouses** and **Databases**.Check our [list of functionalities](https://aws-data-wrangler.readthedocs.io/en/2.6.0/api.html). How to install?The Wrangler runs almost anywhere over Python 3.6, 3.7, 3.8 and 3.9, so there are several different ways to install it in the desired enviroment. - [PyPi (pip)](https://aws-data-wrangler.readthedocs.io/en/2.6.0/install.htmlpypi-pip) - [Conda](https://aws-data-wrangler.readthedocs.io/en/2.6.0/install.htmlconda) - [AWS Lambda Layer](https://aws-data-wrangler.readthedocs.io/en/2.6.0/install.htmlaws-lambda-layer) - [AWS Glue Python Shell Jobs](https://aws-data-wrangler.readthedocs.io/en/2.6.0/install.htmlaws-glue-python-shell-jobs) - [AWS Glue PySpark Jobs](https://aws-data-wrangler.readthedocs.io/en/2.6.0/install.htmlaws-glue-pyspark-jobs) - [Amazon SageMaker Notebook](https://aws-data-wrangler.readthedocs.io/en/2.6.0/install.htmlamazon-sagemaker-notebook) - [Amazon SageMaker Notebook Lifecycle](https://aws-data-wrangler.readthedocs.io/en/2.6.0/install.htmlamazon-sagemaker-notebook-lifecycle) - [EMR Cluster](https://aws-data-wrangler.readthedocs.io/en/2.6.0/install.htmlemr-cluster) - [From source](https://aws-data-wrangler.readthedocs.io/en/2.6.0/install.htmlfrom-source)Some good practices for most of the above methods are: - Use new and individual Virtual Environments for each project ([venv](https://docs.python.org/3/library/venv.html)) - On Notebooks, always restart your kernel after installations. Let's Install it! ###Code !pip install awswrangler ###Output _____no_output_____ ###Markdown > Restart your kernel after the installation! ###Code import awswrangler as wr wr.__version__ ###Output _____no_output_____ ###Markdown [![AWS Data Wrangler](_static/logo.png "AWS Data Wrangler")](https://github.com/awslabs/aws-data-wrangler) 1 - Introduction What is AWS Data Wrangler?An [open-source](https://github.com/awslabs/aws-data-wrangler>) Python package that extends the power of [Pandas](https://github.com/pandas-dev/pandas>) library to AWS connecting **DataFrames** and AWS data related services (**Amazon Redshift**, **AWS Glue**, **Amazon Athena**, **Amazon Timestream**, **Amazon EMR**, etc).Built on top of other open-source projects like [Pandas](https://github.com/pandas-dev/pandas), [Apache Arrow](https://github.com/apache/arrow) and [Boto3](https://github.com/boto/boto3), it offers abstracted functions to execute usual ETL tasks like load/unload data from **Data Lakes**, **Data Warehouses** and **Databases**.Check our [list of functionalities](https://aws-data-wrangler.readthedocs.io/en/2.11.0/api.html). How to install?The Wrangler runs almost anywhere over Python 3.6, 3.7, 3.8 and 3.9, so there are several different ways to install it in the desired enviroment. - [PyPi (pip)](https://aws-data-wrangler.readthedocs.io/en/2.11.0/install.htmlpypi-pip) - [Conda](https://aws-data-wrangler.readthedocs.io/en/2.11.0/install.htmlconda) - [AWS Lambda Layer](https://aws-data-wrangler.readthedocs.io/en/2.11.0/install.htmlaws-lambda-layer) - [AWS Glue Python Shell Jobs](https://aws-data-wrangler.readthedocs.io/en/2.11.0/install.htmlaws-glue-python-shell-jobs) - [AWS Glue PySpark Jobs](https://aws-data-wrangler.readthedocs.io/en/2.11.0/install.htmlaws-glue-pyspark-jobs) - [Amazon SageMaker Notebook](https://aws-data-wrangler.readthedocs.io/en/2.11.0/install.htmlamazon-sagemaker-notebook) - [Amazon SageMaker Notebook Lifecycle](https://aws-data-wrangler.readthedocs.io/en/2.11.0/install.htmlamazon-sagemaker-notebook-lifecycle) - [EMR Cluster](https://aws-data-wrangler.readthedocs.io/en/2.11.0/install.htmlemr-cluster) - [From source](https://aws-data-wrangler.readthedocs.io/en/2.11.0/install.htmlfrom-source)Some good practices for most of the above methods are: - Use new and individual Virtual Environments for each project ([venv](https://docs.python.org/3/library/venv.html)) - On Notebooks, always restart your kernel after installations. Let's Install it! ###Code !pip install awswrangler ###Output _____no_output_____ ###Markdown > Restart your kernel after the installation! ###Code import awswrangler as wr wr.__version__ ###Output _____no_output_____ ###Markdown [![AWS Data Wrangler](_static/logo.png "AWS Data Wrangler")](https://github.com/awslabs/aws-data-wrangler) 1 - Introduction What is AWS Data Wrangler?An [open-source](https://github.com/awslabs/aws-data-wrangler>) Python package that extends the power of [Pandas](https://github.com/pandas-dev/pandas>) library to AWS connecting **DataFrames** and AWS data related services (**Amazon Redshift**, **AWS Glue**, **Amazon Athena**, **Amazon Timestream**, **Amazon EMR**, etc).Built on top of other open-source projects like [Pandas](https://github.com/pandas-dev/pandas), [Apache Arrow](https://github.com/apache/arrow) and [Boto3](https://github.com/boto/boto3), it offers abstracted functions to execute usual ETL tasks like load/unload data from **Data Lakes**, **Data Warehouses** and **Databases**.Check our [list of functionalities](https://aws-data-wrangler.readthedocs.io/en/stable/api.html). How to install?The Wrangler runs almost anywhere over Python 3.6, 3.7 and 3.8, so there are several different ways to install it in the desired enviroment. - [PyPi (pip)](https://aws-data-wrangler.readthedocs.io/en/stable/install.htmlpypi-pip) - [Conda](https://aws-data-wrangler.readthedocs.io/en/stable/install.htmlconda) - [AWS Lambda Layer](https://aws-data-wrangler.readthedocs.io/en/stable/install.htmlaws-lambda-layer) - [AWS Glue Python Shell Jobs](https://aws-data-wrangler.readthedocs.io/en/stable/install.htmlaws-glue-python-shell-jobs) - [AWS Glue PySpark Jobs](https://aws-data-wrangler.readthedocs.io/en/stable/install.htmlaws-glue-pyspark-jobs) - [Amazon SageMaker Notebook](https://aws-data-wrangler.readthedocs.io/en/stable/install.htmlamazon-sagemaker-notebook) - [Amazon SageMaker Notebook Lifecycle](https://aws-data-wrangler.readthedocs.io/en/stable/install.htmlamazon-sagemaker-notebook-lifecycle) - [EMR Cluster](https://aws-data-wrangler.readthedocs.io/en/stable/install.htmlemr-cluster) - [From source](https://aws-data-wrangler.readthedocs.io/en/stable/install.htmlfrom-source)Some good practices for most of the above methods are: - Use new and individual Virtual Environments for each project ([venv](https://docs.python.org/3/library/venv.html)) - On Notebooks, always restart your kernel after installations. Let's Install it! ###Code !pip install awswrangler ###Output _____no_output_____ ###Markdown > Restart your kernel after the installation! ###Code import awswrangler as wr wr.__version__ ###Output _____no_output_____ ###Markdown [![AWS Data Wrangler](_static/logo.png "AWS Data Wrangler")](https://github.com/awslabs/aws-data-wrangler) 1 - Introduction What is AWS Data Wrangler?An [open-source](https://github.com/awslabs/aws-data-wrangler>) Python package that extends the power of [Pandas](https://github.com/pandas-dev/pandas>) library to AWS connecting **DataFrames** and AWS data related services (**Amazon Redshift**, **AWS Glue**, **Amazon Athena**, **Amazon EMR**, etc).Built on top of other open-source projects like [Pandas](https://github.com/pandas-dev/pandas), [Apache Arrow](https://github.com/apache/arrow), [Boto3](https://github.com/boto/boto3), [s3fs](https://github.com/dask/s3fs), [SQLAlchemy](https://github.com/sqlalchemy/sqlalchemy), [Psycopg2](https://github.com/psycopg/psycopg2) and [PyMySQL](https://github.com/PyMySQL/PyMySQL), it offers abstracted functions to execute usual ETL tasks like load/unload data from **Data Lakes**, **Data Warehouses** and **Databases**.Check our [list of functionalities](https://aws-data-wrangler.readthedocs.io/en/latest/api.html). How to install?The Wrangler runs almost anywhere over Python 3.6, 3.7 and 3.8, so there are several different ways to install it in the desired enviroment. - [PyPi (pip)](https://aws-data-wrangler.readthedocs.io/en/latest/install.htmlpypi-pip) - [Conda](https://aws-data-wrangler.readthedocs.io/en/latest/install.htmlconda) - [AWS Lambda Layer](https://aws-data-wrangler.readthedocs.io/en/latest/install.htmlaws-lambda-layer) - [AWS Glue Wheel](https://aws-data-wrangler.readthedocs.io/en/latest/install.htmlaws-glue-wheel) - [Amazon SageMaker Notebook](https://aws-data-wrangler.readthedocs.io/en/latest/install.htmlamazon-sagemaker-notebook) - [Amazon SageMaker Notebook Lifecycle](https://aws-data-wrangler.readthedocs.io/en/latest/install.htmlamazon-sagemaker-notebook-lifecycle) - [EMR Cluster](https://aws-data-wrangler.readthedocs.io/en/latest/install.htmlemr-cluster) - [From source](https://aws-data-wrangler.readthedocs.io/en/latest/install.htmlfrom-source)Some good practices for most of the above methods are: - Use new and individual Virtual Environments for each project ([venv](https://docs.python.org/3/library/venv.html)) - On Notebooks, always restart your kernel after installations. Let's Install it! ###Code !pip install awswrangler ###Output _____no_output_____ ###Markdown > Restart your kernel after the installation! ###Code import awswrangler as wr wr.__version__ ###Output _____no_output_____ ###Markdown [![AWS Data Wrangler](_static/logo.png "AWS Data Wrangler")](https://github.com/awslabs/aws-data-wrangler) 1 - Introduction What is AWS Data Wrangler?An [open-source](https://github.com/awslabs/aws-data-wrangler>) Python package that extends the power of [Pandas](https://github.com/pandas-dev/pandas>) library to AWS connecting **DataFrames** and AWS data related services (**Amazon Redshift**, **AWS Glue**, **Amazon Athena**, **Amazon EMR**, etc).Built on top of other open-source projects like [Pandas](https://github.com/pandas-dev/pandas), [Apache Arrow](https://github.com/apache/arrow), [Boto3](https://github.com/boto/boto3), [SQLAlchemy](https://github.com/sqlalchemy/sqlalchemy), [Psycopg2](https://github.com/psycopg/psycopg2) and [PyMySQL](https://github.com/PyMySQL/PyMySQL), it offers abstracted functions to execute usual ETL tasks like load/unload data from **Data Lakes**, **Data Warehouses** and **Databases**.Check our [list of functionalities](https://aws-data-wrangler.readthedocs.io/en/latest/api.html). How to install?The Wrangler runs almost anywhere over Python 3.6, 3.7 and 3.8, so there are several different ways to install it in the desired enviroment. - [PyPi (pip)](https://aws-data-wrangler.readthedocs.io/en/latest/install.htmlpypi-pip) - [Conda](https://aws-data-wrangler.readthedocs.io/en/latest/install.htmlconda) - [AWS Lambda Layer](https://aws-data-wrangler.readthedocs.io/en/latest/install.htmlaws-lambda-layer) - [AWS Glue Python Shell Jobs](https://aws-data-wrangler.readthedocs.io/en/latest/install.htmlaws-glue-python-shell-jobs) - [AWS Glue PySpark Jobs](https://aws-data-wrangler.readthedocs.io/en/latest/install.htmlaws-glue-pyspark-jobs) - [Amazon SageMaker Notebook](https://aws-data-wrangler.readthedocs.io/en/latest/install.htmlamazon-sagemaker-notebook) - [Amazon SageMaker Notebook Lifecycle](https://aws-data-wrangler.readthedocs.io/en/latest/install.htmlamazon-sagemaker-notebook-lifecycle) - [EMR Cluster](https://aws-data-wrangler.readthedocs.io/en/latest/install.htmlemr-cluster) - [From source](https://aws-data-wrangler.readthedocs.io/en/latest/install.htmlfrom-source)Some good practices for most of the above methods are: - Use new and individual Virtual Environments for each project ([venv](https://docs.python.org/3/library/venv.html)) - On Notebooks, always restart your kernel after installations. Let's Install it! ###Code !pip install awswrangler ###Output _____no_output_____ ###Markdown > Restart your kernel after the installation! ###Code import awswrangler as wr wr.__version__ ###Output _____no_output_____ ###Markdown [![AWS Data Wrangler](_static/logo.png "AWS Data Wrangler")](https://github.com/awslabs/aws-data-wrangler) 1 - Introduction What is AWS Data Wrangler?An [open-source](https://github.com/awslabs/aws-data-wrangler>) Python package that extends the power of [Pandas](https://github.com/pandas-dev/pandas>) library to AWS connecting **DataFrames** and AWS data related services (**Amazon Redshift**, **AWS Glue**, **Amazon Athena**, **Amazon Timestream**, **Amazon EMR**, etc).Built on top of other open-source projects like [Pandas](https://github.com/pandas-dev/pandas), [Apache Arrow](https://github.com/apache/arrow) and [Boto3](https://github.com/boto/boto3), it offers abstracted functions to execute usual ETL tasks like load/unload data from **Data Lakes**, **Data Warehouses** and **Databases**.Check our [list of functionalities](https://aws-data-wrangler.readthedocs.io/en/2.12.1/api.html). How to install?The Wrangler runs almost anywhere over Python 3.6, 3.7, 3.8 and 3.9, so there are several different ways to install it in the desired enviroment. - [PyPi (pip)](https://aws-data-wrangler.readthedocs.io/en/2.12.1/install.htmlpypi-pip) - [Conda](https://aws-data-wrangler.readthedocs.io/en/2.12.1/install.htmlconda) - [AWS Lambda Layer](https://aws-data-wrangler.readthedocs.io/en/2.12.1/install.htmlaws-lambda-layer) - [AWS Glue Python Shell Jobs](https://aws-data-wrangler.readthedocs.io/en/2.12.1/install.htmlaws-glue-python-shell-jobs) - [AWS Glue PySpark Jobs](https://aws-data-wrangler.readthedocs.io/en/2.12.1/install.htmlaws-glue-pyspark-jobs) - [Amazon SageMaker Notebook](https://aws-data-wrangler.readthedocs.io/en/2.12.1/install.htmlamazon-sagemaker-notebook) - [Amazon SageMaker Notebook Lifecycle](https://aws-data-wrangler.readthedocs.io/en/2.12.1/install.htmlamazon-sagemaker-notebook-lifecycle) - [EMR Cluster](https://aws-data-wrangler.readthedocs.io/en/2.12.1/install.htmlemr-cluster) - [From source](https://aws-data-wrangler.readthedocs.io/en/2.12.1/install.htmlfrom-source)Some good practices for most of the above methods are: - Use new and individual Virtual Environments for each project ([venv](https://docs.python.org/3/library/venv.html)) - On Notebooks, always restart your kernel after installations. Let's Install it! ###Code !pip install awswrangler ###Output _____no_output_____ ###Markdown > Restart your kernel after the installation! ###Code import awswrangler as wr wr.__version__ ###Output _____no_output_____ ###Markdown [![AWS Data Wrangler](_static/logo.png "AWS Data Wrangler")](https://github.com/awslabs/aws-data-wrangler) 1 - Introduction What is AWS Data Wrangler?An [open-source](https://github.com/awslabs/aws-data-wrangler>) Python package that extends the power of [Pandas](https://github.com/pandas-dev/pandas>) library to AWS connecting **DataFrames** and AWS data related services (**Amazon Redshift**, **AWS Glue**, **Amazon Athena**, **Amazon Timestream**, **Amazon EMR**, etc).Built on top of other open-source projects like [Pandas](https://github.com/pandas-dev/pandas), [Apache Arrow](https://github.com/apache/arrow) and [Boto3](https://github.com/boto/boto3), it offers abstracted functions to execute usual ETL tasks like load/unload data from **Data Lakes**, **Data Warehouses** and **Databases**.Check our [list of functionalities](https://aws-data-wrangler.readthedocs.io/en/2.12.0/api.html). How to install?The Wrangler runs almost anywhere over Python 3.6, 3.7, 3.8 and 3.9, so there are several different ways to install it in the desired enviroment. - [PyPi (pip)](https://aws-data-wrangler.readthedocs.io/en/2.12.0/install.htmlpypi-pip) - [Conda](https://aws-data-wrangler.readthedocs.io/en/2.12.0/install.htmlconda) - [AWS Lambda Layer](https://aws-data-wrangler.readthedocs.io/en/2.12.0/install.htmlaws-lambda-layer) - [AWS Glue Python Shell Jobs](https://aws-data-wrangler.readthedocs.io/en/2.12.0/install.htmlaws-glue-python-shell-jobs) - [AWS Glue PySpark Jobs](https://aws-data-wrangler.readthedocs.io/en/2.12.0/install.htmlaws-glue-pyspark-jobs) - [Amazon SageMaker Notebook](https://aws-data-wrangler.readthedocs.io/en/2.12.0/install.htmlamazon-sagemaker-notebook) - [Amazon SageMaker Notebook Lifecycle](https://aws-data-wrangler.readthedocs.io/en/2.12.0/install.htmlamazon-sagemaker-notebook-lifecycle) - [EMR Cluster](https://aws-data-wrangler.readthedocs.io/en/2.12.0/install.htmlemr-cluster) - [From source](https://aws-data-wrangler.readthedocs.io/en/2.12.0/install.htmlfrom-source)Some good practices for most of the above methods are: - Use new and individual Virtual Environments for each project ([venv](https://docs.python.org/3/library/venv.html)) - On Notebooks, always restart your kernel after installations. Let's Install it! ###Code !pip install awswrangler ###Output _____no_output_____ ###Markdown > Restart your kernel after the installation! ###Code import awswrangler as wr wr.__version__ ###Output _____no_output_____ ###Markdown [![AWS Data Wrangler](_static/logo.png "AWS Data Wrangler")](https://github.com/awslabs/aws-data-wrangler) 1 - Introduction What is AWS Data Wrangler?An [open-source](https://github.com/awslabs/aws-data-wrangler>) Python package that extends the power of [Pandas](https://github.com/pandas-dev/pandas>) library to AWS connecting **DataFrames** and AWS data related services (**Amazon Redshift**, **AWS Glue**, **Amazon Athena**, **Amazon Timestream**, **Amazon EMR**, etc).Built on top of other open-source projects like [Pandas](https://github.com/pandas-dev/pandas), [Apache Arrow](https://github.com/apache/arrow) and [Boto3](https://github.com/boto/boto3), it offers abstracted functions to execute usual ETL tasks like load/unload data from **Data Lakes**, **Data Warehouses** and **Databases**.Check our [list of functionalities](https://aws-data-wrangler.readthedocs.io/en/2.8.0/api.html). How to install?The Wrangler runs almost anywhere over Python 3.6, 3.7, 3.8 and 3.9, so there are several different ways to install it in the desired enviroment. - [PyPi (pip)](https://aws-data-wrangler.readthedocs.io/en/2.8.0/install.htmlpypi-pip) - [Conda](https://aws-data-wrangler.readthedocs.io/en/2.8.0/install.htmlconda) - [AWS Lambda Layer](https://aws-data-wrangler.readthedocs.io/en/2.8.0/install.htmlaws-lambda-layer) - [AWS Glue Python Shell Jobs](https://aws-data-wrangler.readthedocs.io/en/2.8.0/install.htmlaws-glue-python-shell-jobs) - [AWS Glue PySpark Jobs](https://aws-data-wrangler.readthedocs.io/en/2.8.0/install.htmlaws-glue-pyspark-jobs) - [Amazon SageMaker Notebook](https://aws-data-wrangler.readthedocs.io/en/2.8.0/install.htmlamazon-sagemaker-notebook) - [Amazon SageMaker Notebook Lifecycle](https://aws-data-wrangler.readthedocs.io/en/2.8.0/install.htmlamazon-sagemaker-notebook-lifecycle) - [EMR Cluster](https://aws-data-wrangler.readthedocs.io/en/2.8.0/install.htmlemr-cluster) - [From source](https://aws-data-wrangler.readthedocs.io/en/2.8.0/install.htmlfrom-source)Some good practices for most of the above methods are: - Use new and individual Virtual Environments for each project ([venv](https://docs.python.org/3/library/venv.html)) - On Notebooks, always restart your kernel after installations. Let's Install it! ###Code !pip install awswrangler ###Output _____no_output_____ ###Markdown > Restart your kernel after the installation! ###Code import awswrangler as wr wr.__version__ ###Output _____no_output_____ ###Markdown [![AWS Data Wrangler](_static/logo.png "AWS Data Wrangler")](https://github.com/awslabs/aws-data-wrangler) 1 - Introduction What is AWS Data Wrangler?An [open-source](https://github.com/awslabs/aws-data-wrangler>) Python package that extends the power of [Pandas](https://github.com/pandas-dev/pandas>) library to AWS connecting **DataFrames** and AWS data related services (**Amazon Redshift**, **AWS Glue**, **Amazon Athena**, **Amazon Timestream**, **Amazon EMR**, etc).Built on top of other open-source projects like [Pandas](https://github.com/pandas-dev/pandas), [Apache Arrow](https://github.com/apache/arrow) and [Boto3](https://github.com/boto/boto3), it offers abstracted functions to execute usual ETL tasks like load/unload data from **Data Lakes**, **Data Warehouses** and **Databases**.Check our [list of functionalities](https://aws-data-wrangler.readthedocs.io/en/2.9.0/api.html). How to install?The Wrangler runs almost anywhere over Python 3.6, 3.7, 3.8 and 3.9, so there are several different ways to install it in the desired enviroment. - [PyPi (pip)](https://aws-data-wrangler.readthedocs.io/en/2.9.0/install.htmlpypi-pip) - [Conda](https://aws-data-wrangler.readthedocs.io/en/2.9.0/install.htmlconda) - [AWS Lambda Layer](https://aws-data-wrangler.readthedocs.io/en/2.9.0/install.htmlaws-lambda-layer) - [AWS Glue Python Shell Jobs](https://aws-data-wrangler.readthedocs.io/en/2.9.0/install.htmlaws-glue-python-shell-jobs) - [AWS Glue PySpark Jobs](https://aws-data-wrangler.readthedocs.io/en/2.9.0/install.htmlaws-glue-pyspark-jobs) - [Amazon SageMaker Notebook](https://aws-data-wrangler.readthedocs.io/en/2.9.0/install.htmlamazon-sagemaker-notebook) - [Amazon SageMaker Notebook Lifecycle](https://aws-data-wrangler.readthedocs.io/en/2.9.0/install.htmlamazon-sagemaker-notebook-lifecycle) - [EMR Cluster](https://aws-data-wrangler.readthedocs.io/en/2.9.0/install.htmlemr-cluster) - [From source](https://aws-data-wrangler.readthedocs.io/en/2.9.0/install.htmlfrom-source)Some good practices for most of the above methods are: - Use new and individual Virtual Environments for each project ([venv](https://docs.python.org/3/library/venv.html)) - On Notebooks, always restart your kernel after installations. Let's Install it! ###Code !pip install awswrangler ###Output _____no_output_____ ###Markdown > Restart your kernel after the installation! ###Code import awswrangler as wr wr.__version__ ###Output _____no_output_____ ###Markdown [![AWS Data Wrangler](_static/logo.png "AWS Data Wrangler")](https://github.com/awslabs/aws-data-wrangler) 1 - Introduction What is AWS Data Wrangler?An [open-source](https://github.com/awslabs/aws-data-wrangler>) Python package that extends the power of [Pandas](https://github.com/pandas-dev/pandas>) library to AWS connecting **DataFrames** and AWS data related services (**Amazon Redshift**, **AWS Glue**, **Amazon Athena**, **Amazon Timestream**, **Amazon EMR**, etc).Built on top of other open-source projects like [Pandas](https://github.com/pandas-dev/pandas), [Apache Arrow](https://github.com/apache/arrow) and [Boto3](https://github.com/boto/boto3), it offers abstracted functions to execute usual ETL tasks like load/unload data from **Data Lakes**, **Data Warehouses** and **Databases**.Check our [list of functionalities](https://aws-data-wrangler.readthedocs.io/en/2.14.0/api.html). How to install?The Wrangler runs almost anywhere over Python 3.6, 3.7, 3.8 and 3.9, so there are several different ways to install it in the desired enviroment. - [PyPi (pip)](https://aws-data-wrangler.readthedocs.io/en/2.14.0/install.htmlpypi-pip) - [Conda](https://aws-data-wrangler.readthedocs.io/en/2.14.0/install.htmlconda) - [AWS Lambda Layer](https://aws-data-wrangler.readthedocs.io/en/2.14.0/install.htmlaws-lambda-layer) - [AWS Glue Python Shell Jobs](https://aws-data-wrangler.readthedocs.io/en/2.14.0/install.htmlaws-glue-python-shell-jobs) - [AWS Glue PySpark Jobs](https://aws-data-wrangler.readthedocs.io/en/2.14.0/install.htmlaws-glue-pyspark-jobs) - [Amazon SageMaker Notebook](https://aws-data-wrangler.readthedocs.io/en/2.14.0/install.htmlamazon-sagemaker-notebook) - [Amazon SageMaker Notebook Lifecycle](https://aws-data-wrangler.readthedocs.io/en/2.14.0/install.htmlamazon-sagemaker-notebook-lifecycle) - [EMR Cluster](https://aws-data-wrangler.readthedocs.io/en/2.14.0/install.htmlemr-cluster) - [From source](https://aws-data-wrangler.readthedocs.io/en/2.14.0/install.htmlfrom-source)Some good practices for most of the above methods are: - Use new and individual Virtual Environments for each project ([venv](https://docs.python.org/3/library/venv.html)) - On Notebooks, always restart your kernel after installations. Let's Install it! ###Code !pip install awswrangler ###Output _____no_output_____ ###Markdown > Restart your kernel after the installation! ###Code import awswrangler as wr wr.__version__ ###Output _____no_output_____ ###Markdown [![AWS Data Wrangler](_static/logo.png "AWS Data Wrangler")](https://github.com/awslabs/aws-data-wrangler) 1 - Introduction What is AWS Data Wrangler?An [open-source](https://github.com/awslabs/aws-data-wrangler>) Python package that extends the power of [Pandas](https://github.com/pandas-dev/pandas>) library to AWS connecting **DataFrames** and AWS data related services (**Amazon Redshift**, **AWS Glue**, **Amazon Athena**, **Amazon Timestream**, **Amazon EMR**, etc).Built on top of other open-source projects like [Pandas](https://github.com/pandas-dev/pandas), [Apache Arrow](https://github.com/apache/arrow) and [Boto3](https://github.com/boto/boto3), it offers abstracted functions to execute usual ETL tasks like load/unload data from **Data Lakes**, **Data Warehouses** and **Databases**.Check our [list of functionalities](https://aws-data-wrangler.readthedocs.io/en/2.4.0-docs/api.html). How to install?The Wrangler runs almost anywhere over Python 3.6, 3.7 and 3.8, so there are several different ways to install it in the desired enviroment. - [PyPi (pip)](https://aws-data-wrangler.readthedocs.io/en/2.4.0-docs/install.htmlpypi-pip) - [Conda](https://aws-data-wrangler.readthedocs.io/en/2.4.0-docs/install.htmlconda) - [AWS Lambda Layer](https://aws-data-wrangler.readthedocs.io/en/2.4.0-docs/install.htmlaws-lambda-layer) - [AWS Glue Python Shell Jobs](https://aws-data-wrangler.readthedocs.io/en/2.4.0-docs/install.htmlaws-glue-python-shell-jobs) - [AWS Glue PySpark Jobs](https://aws-data-wrangler.readthedocs.io/en/2.4.0-docs/install.htmlaws-glue-pyspark-jobs) - [Amazon SageMaker Notebook](https://aws-data-wrangler.readthedocs.io/en/2.4.0-docs/install.htmlamazon-sagemaker-notebook) - [Amazon SageMaker Notebook Lifecycle](https://aws-data-wrangler.readthedocs.io/en/2.4.0-docs/install.htmlamazon-sagemaker-notebook-lifecycle) - [EMR Cluster](https://aws-data-wrangler.readthedocs.io/en/2.4.0-docs/install.htmlemr-cluster) - [From source](https://aws-data-wrangler.readthedocs.io/en/2.4.0-docs/install.htmlfrom-source)Some good practices for most of the above methods are: - Use new and individual Virtual Environments for each project ([venv](https://docs.python.org/3/library/venv.html)) - On Notebooks, always restart your kernel after installations. Let's Install it! ###Code !pip install awswrangler ###Output _____no_output_____ ###Markdown > Restart your kernel after the installation! ###Code import awswrangler as wr wr.__version__ ###Output _____no_output_____ ###Markdown [![AWS Data Wrangler](_static/logo.png "AWS Data Wrangler")](https://github.com/awslabs/aws-data-wrangler) 1 - Introduction What is AWS Data Wrangler?An [open-source](https://github.com/awslabs/aws-data-wrangler>) Python package that extends the power of [Pandas](https://github.com/pandas-dev/pandas>) library to AWS connecting **DataFrames** and AWS data related services (**Amazon Redshift**, **AWS Glue**, **Amazon Athena**, **Amazon Timestream**, **Amazon EMR**, etc).Built on top of other open-source projects like [Pandas](https://github.com/pandas-dev/pandas), [Apache Arrow](https://github.com/apache/arrow) and [Boto3](https://github.com/boto/boto3), it offers abstracted functions to execute usual ETL tasks like load/unload data from **Data Lakes**, **Data Warehouses** and **Databases**.Check our [list of functionalities](https://aws-data-wrangler.readthedocs.io/en/2.15.1/api.html). How to install?Wrangler runs almost anywhere over Python 3.7, 3.8, 3.9 and 3.10, so there are several different ways to install it in the desired environment. - [PyPi (pip)](https://aws-data-wrangler.readthedocs.io/en/2.15.1/install.htmlpypi-pip) - [Conda](https://aws-data-wrangler.readthedocs.io/en/2.15.1/install.htmlconda) - [AWS Lambda Layer](https://aws-data-wrangler.readthedocs.io/en/2.15.1/install.htmlaws-lambda-layer) - [AWS Glue Python Shell Jobs](https://aws-data-wrangler.readthedocs.io/en/2.15.1/install.htmlaws-glue-python-shell-jobs) - [AWS Glue PySpark Jobs](https://aws-data-wrangler.readthedocs.io/en/2.15.1/install.htmlaws-glue-pyspark-jobs) - [Amazon SageMaker Notebook](https://aws-data-wrangler.readthedocs.io/en/2.15.1/install.htmlamazon-sagemaker-notebook) - [Amazon SageMaker Notebook Lifecycle](https://aws-data-wrangler.readthedocs.io/en/2.15.1/install.htmlamazon-sagemaker-notebook-lifecycle) - [EMR Cluster](https://aws-data-wrangler.readthedocs.io/en/2.15.1/install.htmlemr-cluster) - [From source](https://aws-data-wrangler.readthedocs.io/en/2.15.1/install.htmlfrom-source)Some good practices for most of the above methods are: - Use new and individual Virtual Environments for each project ([venv](https://docs.python.org/3/library/venv.html)) - On Notebooks, always restart your kernel after installations. Let's Install it! ###Code !pip install awswrangler ###Output _____no_output_____ ###Markdown > Restart your kernel after the installation! ###Code import awswrangler as wr wr.__version__ ###Output _____no_output_____ ###Markdown [![AWS Data Wrangler](_static/logo.png "AWS Data Wrangler")](https://github.com/awslabs/aws-data-wrangler) 1 - Introduction What is AWS Data Wrangler?An [open-source](https://github.com/awslabs/aws-data-wrangler>) Python package that extends the power of [Pandas](https://github.com/pandas-dev/pandas>) library to AWS connecting **DataFrames** and AWS data related services (**Amazon Redshift**, **AWS Glue**, **Amazon Athena**, **Amazon EMR**, etc).Built on top of other open-source projects like [Pandas](https://github.com/pandas-dev/pandas), [Apache Arrow](https://github.com/apache/arrow), [Boto3](https://github.com/boto/boto3), [SQLAlchemy](https://github.com/sqlalchemy/sqlalchemy), [Psycopg2](https://github.com/psycopg/psycopg2) and [PyMySQL](https://github.com/PyMySQL/PyMySQL), it offers abstracted functions to execute usual ETL tasks like load/unload data from **Data Lakes**, **Data Warehouses** and **Databases**.Check our [list of functionalities](https://aws-data-wrangler.readthedocs.io/en/latest/api.html). How to install?The Wrangler runs almost anywhere over Python 3.6, 3.7 and 3.8, so there are several different ways to install it in the desired enviroment. - [PyPi (pip)](https://aws-data-wrangler.readthedocs.io/en/latest/install.htmlpypi-pip) - [Conda](https://aws-data-wrangler.readthedocs.io/en/latest/install.htmlconda) - [AWS Lambda Layer](https://aws-data-wrangler.readthedocs.io/en/latest/install.htmlaws-lambda-layer) - [AWS Glue Python Shell Jobs](https://aws-data-wrangler.readthedocs.io/en/latest/install.htmlaws-glue-python-shell-jobs) - [AWS Glue PySpark Jobs](https://aws-data-wrangler.readthedocs.io/en/latest/install.htmlaws-glue-pyspark-jobs) - [Amazon SageMaker Notebook](https://aws-data-wrangler.readthedocs.io/en/latest/install.htmlamazon-sagemaker-notebook) - [Amazon SageMaker Notebook Lifecycle](https://aws-data-wrangler.readthedocs.io/en/latest/install.htmlamazon-sagemaker-notebook-lifecycle) - [EMR Cluster](https://aws-data-wrangler.readthedocs.io/en/latest/install.htmlemr-cluster) - [From source](https://aws-data-wrangler.readthedocs.io/en/latest/install.htmlfrom-source)Some good practices for most of the above methods are: - Use new and individual Virtual Environments for each project ([venv](https://docs.python.org/3/library/venv.html)) - On Notebooks, always restart your kernel after installations. Let's Install it! ###Code !pip install awswrangler ###Output _____no_output_____ ###Markdown > Restart your kernel after the installation! ###Code import awswrangler as wr wr.__version__ ###Output _____no_output_____ ###Markdown [![AWS Data Wrangler](_static/logo.png "AWS Data Wrangler")](https://github.com/awslabs/aws-data-wrangler) 1 - Introduction What is AWS Data Wrangler?An [open-source](https://github.com/awslabs/aws-data-wrangler>) Python package that extends the power of [Pandas](https://github.com/pandas-dev/pandas>) library to AWS connecting **DataFrames** and AWS data related services (**Amazon Redshift**, **AWS Glue**, **Amazon Athena**, **Amazon Timestream**, **Amazon EMR**, etc).Built on top of other open-source projects like [Pandas](https://github.com/pandas-dev/pandas), [Apache Arrow](https://github.com/apache/arrow) and [Boto3](https://github.com/boto/boto3), it offers abstracted functions to execute usual ETL tasks like load/unload data from **Data Lakes**, **Data Warehouses** and **Databases**.Check our [list of functionalities](https://aws-data-wrangler.readthedocs.io/en/2.10.0/api.html). How to install?The Wrangler runs almost anywhere over Python 3.6, 3.7, 3.8 and 3.9, so there are several different ways to install it in the desired enviroment. - [PyPi (pip)](https://aws-data-wrangler.readthedocs.io/en/2.10.0/install.htmlpypi-pip) - [Conda](https://aws-data-wrangler.readthedocs.io/en/2.10.0/install.htmlconda) - [AWS Lambda Layer](https://aws-data-wrangler.readthedocs.io/en/2.10.0/install.htmlaws-lambda-layer) - [AWS Glue Python Shell Jobs](https://aws-data-wrangler.readthedocs.io/en/2.10.0/install.htmlaws-glue-python-shell-jobs) - [AWS Glue PySpark Jobs](https://aws-data-wrangler.readthedocs.io/en/2.10.0/install.htmlaws-glue-pyspark-jobs) - [Amazon SageMaker Notebook](https://aws-data-wrangler.readthedocs.io/en/2.10.0/install.htmlamazon-sagemaker-notebook) - [Amazon SageMaker Notebook Lifecycle](https://aws-data-wrangler.readthedocs.io/en/2.10.0/install.htmlamazon-sagemaker-notebook-lifecycle) - [EMR Cluster](https://aws-data-wrangler.readthedocs.io/en/2.10.0/install.htmlemr-cluster) - [From source](https://aws-data-wrangler.readthedocs.io/en/2.10.0/install.htmlfrom-source)Some good practices for most of the above methods are: - Use new and individual Virtual Environments for each project ([venv](https://docs.python.org/3/library/venv.html)) - On Notebooks, always restart your kernel after installations. Let's Install it! ###Code !pip install awswrangler ###Output _____no_output_____ ###Markdown > Restart your kernel after the installation! ###Code import awswrangler as wr wr.__version__ ###Output _____no_output_____ ###Markdown [![AWS Data Wrangler](_static/logo.png "AWS Data Wrangler")](https://github.com/awslabs/aws-data-wrangler) 1 - Introduction What is AWS Data Wrangler?An [open-source](https://github.com/awslabs/aws-data-wrangler>) Python package that extends the power of [Pandas](https://github.com/pandas-dev/pandas>) library to AWS connecting **DataFrames** and AWS data related services (**Amazon Redshift**, **AWS Glue**, **Amazon Athena**, **Amazon Timestream**, **Amazon EMR**, etc).Built on top of other open-source projects like [Pandas](https://github.com/pandas-dev/pandas), [Apache Arrow](https://github.com/apache/arrow) and [Boto3](https://github.com/boto/boto3), it offers abstracted functions to execute usual ETL tasks like load/unload data from **Data Lakes**, **Data Warehouses** and **Databases**.Check our [list of functionalities](https://aws-data-wrangler.readthedocs.io/en/2.13.0/api.html). How to install?The Wrangler runs almost anywhere over Python 3.6, 3.7, 3.8 and 3.9, so there are several different ways to install it in the desired enviroment. - [PyPi (pip)](https://aws-data-wrangler.readthedocs.io/en/2.13.0/install.htmlpypi-pip) - [Conda](https://aws-data-wrangler.readthedocs.io/en/2.13.0/install.htmlconda) - [AWS Lambda Layer](https://aws-data-wrangler.readthedocs.io/en/2.13.0/install.htmlaws-lambda-layer) - [AWS Glue Python Shell Jobs](https://aws-data-wrangler.readthedocs.io/en/2.13.0/install.htmlaws-glue-python-shell-jobs) - [AWS Glue PySpark Jobs](https://aws-data-wrangler.readthedocs.io/en/2.13.0/install.htmlaws-glue-pyspark-jobs) - [Amazon SageMaker Notebook](https://aws-data-wrangler.readthedocs.io/en/2.13.0/install.htmlamazon-sagemaker-notebook) - [Amazon SageMaker Notebook Lifecycle](https://aws-data-wrangler.readthedocs.io/en/2.13.0/install.htmlamazon-sagemaker-notebook-lifecycle) - [EMR Cluster](https://aws-data-wrangler.readthedocs.io/en/2.13.0/install.htmlemr-cluster) - [From source](https://aws-data-wrangler.readthedocs.io/en/2.13.0/install.htmlfrom-source)Some good practices for most of the above methods are: - Use new and individual Virtual Environments for each project ([venv](https://docs.python.org/3/library/venv.html)) - On Notebooks, always restart your kernel after installations. Let's Install it! ###Code !pip install awswrangler ###Output _____no_output_____ ###Markdown > Restart your kernel after the installation! ###Code import awswrangler as wr wr.__version__ ###Output _____no_output_____ ###Markdown [![AWS Data Wrangler](_static/logo.png "AWS Data Wrangler")](https://github.com/awslabs/aws-data-wrangler) 1 - Introduction What is AWS Data Wrangler?An [open-source](https://github.com/awslabs/aws-data-wrangler>) Python package that extends the power of [Pandas](https://github.com/pandas-dev/pandas>) library to AWS connecting **DataFrames** and AWS data related services (**Amazon Redshift**, **AWS Glue**, **Amazon Athena**, **Amazon Timestream**, **Amazon EMR**, etc).Built on top of other open-source projects like [Pandas](https://github.com/pandas-dev/pandas), [Apache Arrow](https://github.com/apache/arrow) and [Boto3](https://github.com/boto/boto3), it offers abstracted functions to execute usual ETL tasks like load/unload data from **Data Lakes**, **Data Warehouses** and **Databases**.Check our [list of functionalities](https://aws-data-wrangler.readthedocs.io/en/2.15.0/api.html). How to install?Wrangler runs almost anywhere over Python 3.7, 3.8, 3.9 and 3.10, so there are several different ways to install it in the desired environment. - [PyPi (pip)](https://aws-data-wrangler.readthedocs.io/en/2.15.0/install.htmlpypi-pip) - [Conda](https://aws-data-wrangler.readthedocs.io/en/2.15.0/install.htmlconda) - [AWS Lambda Layer](https://aws-data-wrangler.readthedocs.io/en/2.15.0/install.htmlaws-lambda-layer) - [AWS Glue Python Shell Jobs](https://aws-data-wrangler.readthedocs.io/en/2.15.0/install.htmlaws-glue-python-shell-jobs) - [AWS Glue PySpark Jobs](https://aws-data-wrangler.readthedocs.io/en/2.15.0/install.htmlaws-glue-pyspark-jobs) - [Amazon SageMaker Notebook](https://aws-data-wrangler.readthedocs.io/en/2.15.0/install.htmlamazon-sagemaker-notebook) - [Amazon SageMaker Notebook Lifecycle](https://aws-data-wrangler.readthedocs.io/en/2.15.0/install.htmlamazon-sagemaker-notebook-lifecycle) - [EMR Cluster](https://aws-data-wrangler.readthedocs.io/en/2.15.0/install.htmlemr-cluster) - [From source](https://aws-data-wrangler.readthedocs.io/en/2.15.0/install.htmlfrom-source)Some good practices for most of the above methods are: - Use new and individual Virtual Environments for each project ([venv](https://docs.python.org/3/library/venv.html)) - On Notebooks, always restart your kernel after installations. Let's Install it! ###Code !pip install awswrangler ###Output _____no_output_____ ###Markdown > Restart your kernel after the installation! ###Code import awswrangler as wr wr.__version__ ###Output _____no_output_____ ###Markdown [![AWS Data Wrangler](_static/logo.png "AWS Data Wrangler")](https://github.com/awslabs/aws-data-wrangler) 1 - Introduction What is AWS Data Wrangler?An [open-source](https://github.com/awslabs/aws-data-wrangler>) Python package that extends the power of [Pandas](https://github.com/pandas-dev/pandas>) library to AWS connecting **DataFrames** and AWS data related services (**Amazon Redshift**, **AWS Glue**, **Amazon Athena**, **Amazon EMR**, etc).Built on top of other open-source projects like [Pandas](https://github.com/pandas-dev/pandas), [Apache Arrow](https://github.com/apache/arrow), [Boto3](https://github.com/boto/boto3), [SQLAlchemy](https://github.com/sqlalchemy/sqlalchemy), [Psycopg2](https://github.com/psycopg/psycopg2) and [PyMySQL](https://github.com/PyMySQL/PyMySQL), it offers abstracted functions to execute usual ETL tasks like load/unload data from **Data Lakes**, **Data Warehouses** and **Databases**.Check our [list of functionalities](https://aws-data-wrangler.readthedocs.io/en/stable/api.html). How to install?The Wrangler runs almost anywhere over Python 3.6, 3.7 and 3.8, so there are several different ways to install it in the desired enviroment. - [PyPi (pip)](https://aws-data-wrangler.readthedocs.io/en/stable/install.htmlpypi-pip) - [Conda](https://aws-data-wrangler.readthedocs.io/en/stable/install.htmlconda) - [AWS Lambda Layer](https://aws-data-wrangler.readthedocs.io/en/stable/install.htmlaws-lambda-layer) - [AWS Glue Python Shell Jobs](https://aws-data-wrangler.readthedocs.io/en/stable/install.htmlaws-glue-python-shell-jobs) - [AWS Glue PySpark Jobs](https://aws-data-wrangler.readthedocs.io/en/stable/install.htmlaws-glue-pyspark-jobs) - [Amazon SageMaker Notebook](https://aws-data-wrangler.readthedocs.io/en/stable/install.htmlamazon-sagemaker-notebook) - [Amazon SageMaker Notebook Lifecycle](https://aws-data-wrangler.readthedocs.io/en/stable/install.htmlamazon-sagemaker-notebook-lifecycle) - [EMR Cluster](https://aws-data-wrangler.readthedocs.io/en/stable/install.htmlemr-cluster) - [From source](https://aws-data-wrangler.readthedocs.io/en/stable/install.htmlfrom-source)Some good practices for most of the above methods are: - Use new and individual Virtual Environments for each project ([venv](https://docs.python.org/3/library/venv.html)) - On Notebooks, always restart your kernel after installations. Let's Install it! ###Code !pip install awswrangler ###Output _____no_output_____ ###Markdown > Restart your kernel after the installation! ###Code import awswrangler as wr wr.__version__ ###Output _____no_output_____
parseNameNode.ipynb
###Markdown 调用关系解析 全采样信息 - wordcount 调用树关系 ###Code try: w_tree = pd.read_pickle('pickle/wordcount_tiny_namenode.pkl') except: wordcount = Parse('wordcount.out') wordcount.build_tree() trees = [node for node in wordcount.trees] hashtree = hash_tree(trees) se_tree = pd.Series(hashtree) w_tree = se_tree.value_counts().to_frame() w_tree.to_pickle('pickle/wordcount_tiny_namenode.pkl') n = Parse('htrace.out') n.build_tree() trees = [node for node in n.trees] hashtree = hash_tree(trees) se_tree = pd.Series(hashtree) n_tree = se_tree.value_counts().to_frame() c = pd.concat([w_tree, n_tree], axis=1, sort=True) c.dropna(axis=0,how='any') ###Output _____no_output_____ ###Markdown 全采样信息 - terasort ###Code try: t_tree = pd.read_pickle('pickle/terasort_tiny_namenode.pkl') except: terasort = Parse('terasort.out') terasort.build_tree() trees = [node for node in terasort.trees] hashtree = hash_tree(trees) se_tree = pd.Series(hashtree) t_tree = se_tree.value_counts().to_frame() t_tree.to_pickle('pickle/terasort_tiny_namenode.pkl') t_tree ###Output _____no_output_____ ###Markdown 全采样信息 sort ###Code try: s_tree = pd.read_pickle('pickle/sort_tiny_namenode.pkl') except: sort = Parse('sort_tiny.out') sort.build_tree() trees = [node for node in sort.trees] hashtree = hash_tree(trees) se_tree = pd.Series(hashtree) s_tree = se_tree.value_counts().to_frame() s_tree.to_pickle('pickle/sort_tiny_namenode.pkl') s_tree ###Output _____no_output_____ ###Markdown Kmeans ###Code try: k_tree = pd.read_pickle('pickle/kmeans_tiny_namenode.pkl') except: kmeans = Parse('kmeans.out') kmeans.build_tree() trees = [node for node in kmeans.trees] hashtree = hash_tree(trees) se_tree = pd.Series(hashtree) k_tree = se_tree.value_counts().to_frame() k_tree.to_pickle('pickle/kmeans_tiny_namenode.pkl') k_tree ###Output _____no_output_____ ###Markdown Bayes ###Code b_tree = pd.read_pickle('pickle/bayes_tiny_namenode.pkl') b_tree ###Output _____no_output_____ ###Markdown PageRank ###Code try: p_tree = pd.read_pickle('pickle/pagerank_tiny_namenode.pkl') except: pagerank = Parse('pagerank.out') pagerank.build_tree() trees = [node for node in pagerank.trees] hashtree = hash_tree(trees) se_tree = pd.Series(hashtree) p_tree = se_tree.value_counts().to_frame() p_tree.to_pickle('pickle/pagerank_tiny_namenode.pkl') p_tree ###Output _____no_output_____ ###Markdown 统计整理 ###Code c = pd.concat([w_tree, s_tree, t_tree, k_tree, b_tree, p_tree], axis=1, sort=True) c.columns = ['wordcount','sort', 'terasort', 'kmeans', 'bayes', 'pagerank'] c.dropna(axis=0,how='any') c = pd.concat([w_tree, s_tree, p_tree], axis=1, sort=True) c.columns = ['wordcount','sort', 'pagerank'] c.dropna(axis=0,how='any') ###Output _____no_output_____
codebase/notebooks/03_link_occupational_data/Link_occupations_to_UK_employment.ipynb
###Markdown Linking ESCO occupations to UK employment statisticsHere, we use employment estimates from the EU LFS to derive rough estimates of workers employed in each 'top level' ESCO occupation. From the EU LFS data we have derived employment estimates at the level of three-digit ISCO occupational groups. We then uniformly redistribute the number of employed workers across all 'top level' ESCO occupations belonging to the respective ISCO three-digit group (top level refers to level 5 in the ESCO hierarchy which follows immediately after ISCO four-digit unit groups). 0. Import dependencies and inputs ###Code %run ../notebook_preamble.ipy # Import all ESCO occupations occ = pd.read_csv(data_folder + 'processed/ESCO_occupational_hierarchy/ESCO_occupational_hierarchy.csv') # Import EU LFS estimates of UK employment file_path = useful_paths.project_dir + '/supplementary_online_data/demographic_analysis/national_count_isco/uk_breakdown_by_isco_w_risk.csv' lfs_estimates = pd.read_csv(file_path) # Which year to use year = '2018' # Total number of workers in employment n_total = lfs_estimates[year].sum() print(f'Total number of employed workers in {year}: {n_total/1e+3} million') lfs_estimates.head(3) ###Output Total number of employed workers in 2018: 32.151679 million ###Markdown  1. Redistribute workers from 3-digit ISCO to ESCO occupations ###Code # Distribute equally the number of workers across all lower level occupations occupations_employment = occ.copy() # Note: We only do this for the occupations_employment = occupations_employment[occupations_employment.is_top_level==True] occupations_employment['employment_share'] = np.nan occupations_employment['employment_count'] = np.nan for j, row in lfs_estimates.iterrows(): occ_rows = occupations_employment[occupations_employment.isco_level_3==row.isco_code].id.to_list() occupations_employment.loc[occ_rows, 'employment_share'] = (row[year]/n_total) / len(occ_rows) occupations_employment.loc[occ_rows, 'employment_count'] = row[year] / len(occ_rows) occupations_employment['employment_count'] = np.round(occupations_employment['employment_count'] * 1000) # Check that we're still in the right range of total employment print(occupations_employment.employment_count.sum()) # Sanity check print(occupations_employment.employment_share.sum()) ###Output 0.9999999999999999 ###Markdown One can compare this estimate to the Office for National Statistics data (e.g. see [here](https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/employmentandemployeetypes/timeseries/mgrz/lms)). ###Code # Largest ESCO occupations occupations_employment.sort_values('employment_count', ascending=False).head(10) ###Output _____no_output_____ ###Markdown 1.1 Check null valuesNote that some ISCO three-digit codes have been omitted from the EU LFS results. Hence, some 'top level' ESCO occupations will not have an employment estimate. ###Code occupations_employment.info() ###Output <class 'pandas.core.frame.DataFrame'> Int64Index: 1701 entries, 1 to 2941 Data columns (total 16 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 id 1701 non-null int64 1 concept_type 1701 non-null object 2 concept_uri 1701 non-null object 3 preferred_label 1701 non-null object 4 isco_level_1 1701 non-null int64 5 isco_level_2 1701 non-null int64 6 isco_level_3 1701 non-null int64 7 isco_level_4 1701 non-null int64 8 is_top_level 1701 non-null bool 9 is_second_level 1701 non-null bool 10 is_third_level 1701 non-null bool 11 is_fourth_level 1701 non-null bool 12 parent_occupation_id 0 non-null float64 13 top_level_parent_id 1701 non-null int64 14 employment_share 1627 non-null float64 15 employment_count 1627 non-null float64 dtypes: bool(4), float64(3), int64(6), object(3) memory usage: 259.4+ KB ###Markdown 2. Export ###Code occupations_employment[[ 'id', 'concept_uri', 'preferred_label', 'isco_level_3', 'isco_level_4', 'is_top_level', 'employment_share', 'employment_count']].to_csv( data_folder + 'processed/linked_data/ESCO_top_occupations_UK_employment.csv', index=False) ###Output _____no_output_____
ml-model.ipynb
###Markdown Elimizde 2 tane veri var. - Beşiktaş'a özel bir veriseti: besiktasHız.csv - Tüm ilçelerin karışık olduğu bir veriseti: fuseedİlce.csv ###Code BESIKTAS_DATA = "./data/BesiktasHiz.csv" FUSEED_DATA = "./data/Fuseed_Data_İlçe.csv" besiktas_df = pd.read_csv(BESIKTAS_DATA, sep=";") besiktas_df.head() fuseed_df = pd.read_csv(FUSEED_DATA) fuseed_df.head() ###Output _____no_output_____ ###Markdown Tüm ilçelerden sadece beşiktaş verilerini filtreleyelim. ###Code fuseed_besiktas_df = fuseed_df[fuseed_df.vSegID.isin(besiktas_df.vSegID)] fuseed_besiktas_df.head() ###Output _____no_output_____ ###Markdown Verileri birleştirerek ana dataframe'i oluşturalım. ###Code df = besiktas_df.append(fuseed_besiktas_df) df.head() ###Output _____no_output_____ ###Markdown Toplam Satır Sayıları ###Code print(f'Besiktas: {len(besiktas_df.index)} satır') print(f'Tüm ilçelerde Beşiktaş: {len(fuseed_besiktas_df.index)} satır') print(f'Toplam Besiktas: {len(df.index)} satır') ###Output Besiktas: 938941 satır Tüm ilçelerde Beşiktaş: 921576 satır Toplam Besiktas: 1860517 satır ###Markdown Segment ID'lere karşılık gelen enlem boylam verileri ###Code segment_list = pd.read_excel("./data/bjk-segment.xlsx") segment_list.head() ###Output _____no_output_____ ###Markdown Seçilen yol --> BEŞİKTAŞ BARBAROS BULVARI SEGMENTID = 65 Seçilen SegmentID'ye Göre Filtrele- Bu yol için hem gidiş hem dönüş verisi var. Şimdilik gidiş yönünü ele alalım. vSegDir = 0 ###Code df = df.loc[df['vSegID'] == 65] df = df.loc[df['vSegDir'] == 0] df.head() ###Output _____no_output_____ ###Markdown Yol Bakım2 adet bakım calısması veriseti var.- İki verisetini birleştir.- Beşiktaş Barbaros Bulvarına göre filtrele. ###Code yol_bakim1 = pd.read_csv("./data/bakim-veri/yol_bakım.csv") yol_bakim2 = pd.read_csv("./data/bakim-veri/yol_bakim_2.csv") result = pd.concat([yol_bakim1, yol_bakim2]) result = result.loc[result["ilce"] == "BEŞİKTAŞ"].reset_index(drop=True) result.loc[result['yol_adi'].str.contains("BARBAROS")].reset_index(drop=True) ###Output _____no_output_____ ###Markdown TKM Duyurular ###Code tkm_duyuru = pd.read_csv("../Trafik Analizi Verileri/Microsoft_azure_calisma/TKM_Duyurular.csv") tkm_duyuru.loc[tkm_duyuru['DUYURUBASLIK'].str.contains("Beşiktaş")] ###Output _____no_output_____ ###Markdown Yol bakım verileri saat bazlı değil. Ana veriye eklenmeyecek. Sütun İsimleri Düzenleme ###Code df.rename(columns={'vSegID': 'SegmentID', 'vSegDir': 'SegmentDirection', 'fusedYear': 'Year', 'fusedMonth': 'Month', 'fusedday' : 'Day', 'fusedHour' : 'Hour' , 'avgspeed': 'AverageSpeed', 'GRP' : 'Minute' }, inplace=True) ###Output _____no_output_____ ###Markdown Yıl, Ay, Gün, Saat ile DateTime Bilgisi Oluşturma- Bu sütun hem sıralama hem gruplamada gerekli olacak. ###Code df['DateTime'] = pd.to_datetime(df[['Year','Month','Day','Hour']]) df.head() df.loc[df['DateTime'] == pd.datetime(2019,3,11, 2)] df.loc[df['DateTime'] == pd.datetime(2019,4,23, 11)] ###Output /Users/md/venv/jupyter-venv/lib/python3.6/site-packages/ipykernel_launcher.py:1: FutureWarning: The pandas.datetime class is deprecated and will be removed from pandas in a future version. Import from datetime instead. """Entry point for launching an IPython kernel. ###Markdown Aynı saatte ölçülmüş 15. ve 45. dakikalardaki veriyi gruplayarak saat bazlı ortalamayla ilerlenecek. ###Code df = df.groupby(["DateTime"]).mean().reset_index() df.head() ###Output _____no_output_____ ###Markdown Yıllık Tatil Günleri Sütunu ###Code holidays = pd.read_excel("data/resmi_tatiller.xlsx") holiday_dates = list(holidays['tarih']) holiday_dates df['isNationalHoliday'] = df['DateTime'].apply(lambda x : 1 if str(x.date()) in holiday_dates else 0) ###Output _____no_output_____ ###Markdown Datetime Kullanarak Haftasonu Sütunu Ekleme ###Code df['DayName'] = df.apply(lambda tr: tr['DateTime'].day_name(), axis=1) df['isWeekend'] = df.apply(lambda tr: 1 if tr['DayName'] in ["Saturday", "Sunday"] else 0, axis=1) df.head() ###Output _____no_output_____ ###Markdown Okul Tatil Günleri ###Code school_hols = pd.read_csv("./data/Okul-Tatilleri.csv") school_holiday_dates = list(school_hols['Okul Tatilleri']) school_holiday_dates df['isSchoolHoliday'] = df['DateTime'].apply(lambda x : 1 if str(x.date()) in school_holiday_dates else 0) df.head(10) ###Output _____no_output_____ ###Markdown Trafik Oranlarını Sınıflandırma- ML modeli 0-90 arası bir hız tahmini yapmak yerine, düşük,ortalama,yüksek hız şeklinde sınıflandırma yapmalı. K-means ile Kümeleme ###Code from sklearn.cluster import KMeans km = KMeans(n_clusters=3) df['label'] = km.fit_predict(df[['AverageSpeed']]) df[['label', 'AverageSpeed']] CLASS0 = df.loc[df['label'] == 0]['AverageSpeed'].min(), df.loc[df['label'] == 0]['AverageSpeed'].max() CLASS0 CLASS1 = df.loc[df['label'] == 1]['AverageSpeed'].min(), df.loc[df['label'] == 1]['AverageSpeed'].max() CLASS1 CLASS2 = df.loc[df['label'] == 2]['AverageSpeed'].min(), df.loc[df['label'] == 2]['AverageSpeed'].max() CLASS2 ###Output _____no_output_____ ###Markdown Yağmur Verisi ###Code rain_df = pd.read_csv("./ETL/saatlik_ortalamalar.csv", sep=";") # 0'dan büyük örnek yağmur değerleri rain_df.loc[rain_df.ort_yagis > 15].reset_index(drop=True) # tarih sütunu isminde görünmeyen karakterler var. Onu düzenleyelim. print(rain_df.columns[0]) rain_df.rename(columns={'\ufefftarih': 'tarih'}, inplace=True, errors="raise") print(rain_df.columns[0]) ###Output tarih tarih ###Markdown Yağmur Verisini Kümeleyelim ###Code rain_df['isRainy'] = rain_df['ort_yagis'].apply(lambda x : 1 if x > 10 else 0) rain_df.loc[rain_df['ort_yagis'] > 10] ###Output _____no_output_____ ###Markdown Yağmur ortalaması 10'dan büyükse 1 değilse 0 atadık Yağmur verisini Ekleyelim**DF** tarafında pd.datetime tipinde tutuyoruz. **Yağmur** üzerinde zaman string halde. Verileri birleştirirken sabit bir sütun kullanacağız. Bunun için de- dateTime sütununun date'ini ve saat sütununun değerini kullanacağız. ###Code df["period"] = df['DateTime'].apply(lambda x : x.date()) df["period"] = df['period'].astype(str) + " " + df['Hour'].astype(str) df.head() ###Output _____no_output_____ ###Markdown Aynı işlemi bu sefer yağmur verisine uyguluyoruz. ###Code rain_df["period"] = rain_df['tarih'] + " " + rain_df['saat'].astype(str) # yaptığımız işlemin doğruluğunu test edelim. IDX = 177 print(rain_df['period'][IDX]) print(df['period'][IDX]) print(df['period'][IDX] == rain_df['period'][IDX]) ###Output 2019-01-08 9 2019-01-08 9 True ###Markdown Evet yukarıdaki teknik ile artık iki veri arasında ortak aynı veri tipinde bir sütun elde ettik. --> **PERIOD** Şimdi birleştirelim. ###Code # period sütununu index olarak işaretle ve birleştir. df = df.join(rain_df.set_index('period'), on='period') df.loc[df['period'] == '2019-05-05 1'] rain_df.loc[rain_df['period'] == '2019-05-05 1'] DATE = '2019-01-05 4' print(df.loc[df['period'] == DATE]['isRainy']) print(rain_df.loc[df['period'] == DATE]['isRainy']) df.dropna(inplace=True) df['isRainy'] = df.isRainy.astype(int) #df.dropna(inplace=True) ###Output _____no_output_____ ###Markdown Önemli Örnek- ortalama yağış yüksek olsa da hız çok düşmemiş. ###Code #df.loc[df['ort_yagis'] > 30][['period', 'ort_yagis', 'AverageSpeed']].reset_index(drop=True) ###Output _____no_output_____ ###Markdown İstenmeyen Sütunların Silinmesi ###Code # prediction tarafında Average Speed'e ihtiyacım var. Ama burada silmem gerekiyor, bir kopya oluştur. copy_df = df.copy() df = df[['Month', 'Day', 'Hour', 'isNationalHoliday', 'isWeekend', 'isSchoolHoliday', 'isRainy', 'label']] df.head() ###Output _____no_output_____ ###Markdown Lets Create ML Model ###Code from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeRegressor from sklearn.linear_model import Perceptron, LinearRegression from sklearn.naive_bayes import MultinomialNB from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC df.dropna(inplace=True) # Feature ve class ayrımı. y = df['label'].values X = df.drop(['label'], axis=1) ###Output _____no_output_____ ###Markdown Prediction ###Code def create_prediction_example(m, d, h, isN, isW, isS, r): data = pd.DataFrame(0, index=[0], columns= list(X_train.columns)) data['Month'] = m data['Day'] = d data['Hour'] = h data['isNationalHoliday'] = isN data['isWeekend'] = isW data['isSchoolHoliday'] = isS data['isRainy'] = r return data ###Output _____no_output_____ ###Markdown Cross Validation ###Code from sklearn.model_selection import KFold def cross_validation(df): piece = KFold(shuffle=True) # shuffle true olursa ayrılan veriler de karışık gelir. inputs = df.iloc[:,:-1].values outputs = df.iloc[:,-1].values models = {'Perceptron': Perceptron(), 'NaiveBayes': MultinomialNB(), 'KNearest': KNeighborsClassifier(n_neighbors=3), 'DecisionTree': DecisionTreeRegressor(max_depth= 110, min_samples_leaf = 25), 'SupportVector': SVC(kernel="linear")} # girdiyi train ve test olarak ayırıyor. for (name, model) in models.items(): total_score = 0 for idx, (train_idx, test_idx) in enumerate(piece.split(inputs)): # artık verisetim bölünmüş bir halde. # eğitim kısmını eğitime, test kısmını teste atayalım. train_input = inputs[train_idx, :] test_input = inputs[test_idx, :] train_output = outputs[train_idx] # output kısmıdan zaten 1 adet sütun var. test_output = outputs[test_idx] model.fit(train_input, train_output) score = round(model.score(test_input, test_output) * 100, 2) print(f'{str(name):17}{idx+1}x: %{score}') total_score += score print(f'Average %{round((total_score / 5),2)}') print("-" * 52) cross_validation(df) ###Output Perceptron 1x: %55.56 Perceptron 2x: %51.55 Perceptron 3x: %61.31 Perceptron 4x: %47.59 Perceptron 5x: %35.23 Average %50.25 ---------------------------------------------------- NaiveBayes 1x: %50.49 NaiveBayes 2x: %51.3 NaiveBayes 3x: %51.55 NaiveBayes 4x: %51.67 NaiveBayes 5x: %54.14 Average %51.83 ---------------------------------------------------- KNearest 1x: %73.58 KNearest 2x: %75.77 KNearest 3x: %77.75 KNearest 4x: %73.05 KNearest 5x: %76.39 Average %75.31 ---------------------------------------------------- DecisionTree 1x: %61.5 DecisionTree 2x: %59.84 DecisionTree 3x: %59.04 DecisionTree 4x: %61.13 DecisionTree 5x: %62.44 Average %60.79 ---------------------------------------------------- SupportVector 1x: %62.59 SupportVector 2x: %62.92 SupportVector 3x: %63.54 SupportVector 4x: %66.01 SupportVector 5x: %63.29 Average %63.67 ---------------------------------------------------- ###Markdown Saving Model ###Code model = KNeighborsClassifier(n_neighbors=3) piece = KFold(shuffle=True) # shuffle true olursa ayrılan veriler de karışık gelir. inputs = df.iloc[:,:-1].values outputs = df.iloc[:,-1].values for idx, (train_idx, test_idx) in enumerate(piece.split(inputs)): # artık verisetim bölünmüş bir halde. # eğitim kısmını eğitime, test kısmını teste atayalım. train_input = inputs[train_idx, :] test_input = inputs[test_idx, :] train_output = outputs[train_idx] # output kısmıdan zaten 1 adet sütun var. test_output = outputs[test_idx] model.fit(train_input, train_output) from joblib import dump dump(model, 'model.joblib') CLASS0, CLASS1, CLASS2 ###Output _____no_output_____
site/en/r1/tutorials/eager/automatic_differentiation.ipynb
###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Automatic differentiation and gradient tape Run in Google Colab View source on GitHub > Note: This is an archived TF1 notebook. These are configuredto run in TF2's [compatbility mode](https://www.tensorflow.org/guide/migrate)but will run in TF1 as well. To use TF1 in Colab, use the[%tensorflow_version 1.x](https://colab.research.google.com/notebooks/tensorflow_version.ipynb)magic. In the previous tutorial we introduced `Tensor`s and operations on them. In this tutorial we will cover [automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation), a key technique for optimizing machine learning models. Setup ###Code import tensorflow.compat.v1 as tf ###Output _____no_output_____ ###Markdown Gradient tapesTensorFlow provides the [tf.GradientTape](https://www.tensorflow.org/api_docs/python/tf/GradientTape) API for automatic differentiation - computing the gradient of a computation with respect to its input variables. Tensorflow "records" all operations executed inside the context of a `tf.GradientTape` onto a "tape". Tensorflow then uses that tape and the gradients associated with each recorded operation to compute the gradients of a "recorded" computation using [reverse mode differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation).For example: ###Code x = tf.ones((2, 2)) with tf.GradientTape() as t: t.watch(x) y = tf.reduce_sum(x) z = tf.multiply(y, y) # Derivative of z with respect to the original input tensor x dz_dx = t.gradient(z, x) for i in [0, 1]: for j in [0, 1]: assert dz_dx[i][j].numpy() == 8.0 ###Output _____no_output_____ ###Markdown You can also request gradients of the output with respect to intermediate values computed during a "recorded" `tf.GradientTape` context. ###Code x = tf.ones((2, 2)) with tf.GradientTape() as t: t.watch(x) y = tf.reduce_sum(x) z = tf.multiply(y, y) # Use the tape to compute the derivative of z with respect to the # intermediate value y. dz_dy = t.gradient(z, y) assert dz_dy.numpy() == 8.0 ###Output _____no_output_____ ###Markdown By default, the resources held by a GradientTape are released as soon as GradientTape.gradient() method is called. To compute multiple gradients over the same computation, create a `persistent` gradient tape. This allows multiple calls to the `gradient()` method as resources are released when the tape object is garbage collected. For example: ###Code x = tf.constant(3.0) with tf.GradientTape(persistent=True) as t: t.watch(x) y = x * x z = y * y dz_dx = t.gradient(z, x) # 108.0 (4*x^3 at x = 3) dy_dx = t.gradient(y, x) # 6.0 del t # Drop the reference to the tape ###Output _____no_output_____ ###Markdown Recording control flowBecause tapes record operations as they are executed, Python control flow (using `if`s and `while`s for example) is naturally handled: ###Code def f(x, y): output = 1.0 for i in range(y): if i > 1 and i < 5: output = tf.multiply(output, x) return output def grad(x, y): with tf.GradientTape() as t: t.watch(x) out = f(x, y) return t.gradient(out, x) x = tf.convert_to_tensor(2.0) assert grad(x, 6).numpy() == 12.0 assert grad(x, 5).numpy() == 12.0 assert grad(x, 4).numpy() == 4.0 ###Output _____no_output_____ ###Markdown Higher-order gradientsOperations inside of the `GradientTape` context manager are recorded for automatic differentiation. If gradients are computed in that context, then the gradient computation is recorded as well. As a result, the exact same API works for higher-order gradients as well. For example: ###Code x = tf.Variable(1.0) # Create a Tensorflow variable initialized to 1.0 with tf.GradientTape() as t: with tf.GradientTape() as t2: y = x * x * x # Compute the gradient inside the 't' context manager # which means the gradient computation is differentiable as well. dy_dx = t2.gradient(y, x) d2y_dx2 = t.gradient(dy_dx, x) assert dy_dx.numpy() == 3.0 assert d2y_dx2.numpy() == 6.0 ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Automatic differentiation and gradient tape Run in Google Colab View source on GitHub In the previous tutorial we introduced `Tensor`s and operations on them. In this tutorial we will cover [automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation), a key technique for optimizing machine learning models. Setup ###Code from __future__ import absolute_import, division, print_function, unicode_literals try: # %tensorflow_version only exists in Colab. %tensorflow_version 2.x except Exception: pass import tensorflow.compat.v1 as tf ###Output _____no_output_____ ###Markdown Gradient tapesTensorFlow provides the [tf.GradientTape](https://www.tensorflow.org/api_docs/python/tf/GradientTape) API for automatic differentiation - computing the gradient of a computation with respect to its input variables. Tensorflow "records" all operations executed inside the context of a `tf.GradientTape` onto a "tape". Tensorflow then uses that tape and the gradients associated with each recorded operation to compute the gradients of a "recorded" computation using [reverse mode differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation).For example: ###Code x = tf.ones((2, 2)) with tf.GradientTape() as t: t.watch(x) y = tf.reduce_sum(x) z = tf.multiply(y, y) # Derivative of z with respect to the original input tensor x dz_dx = t.gradient(z, x) for i in [0, 1]: for j in [0, 1]: assert dz_dx[i][j].numpy() == 8.0 ###Output _____no_output_____ ###Markdown You can also request gradients of the output with respect to intermediate values computed during a "recorded" `tf.GradientTape` context. ###Code x = tf.ones((2, 2)) with tf.GradientTape() as t: t.watch(x) y = tf.reduce_sum(x) z = tf.multiply(y, y) # Use the tape to compute the derivative of z with respect to the # intermediate value y. dz_dy = t.gradient(z, y) assert dz_dy.numpy() == 8.0 ###Output _____no_output_____ ###Markdown By default, the resources held by a GradientTape are released as soon as GradientTape.gradient() method is called. To compute multiple gradients over the same computation, create a `persistent` gradient tape. This allows multiple calls to the `gradient()` method as resources are released when the tape object is garbage collected. For example: ###Code x = tf.constant(3.0) with tf.GradientTape(persistent=True) as t: t.watch(x) y = x * x z = y * y dz_dx = t.gradient(z, x) # 108.0 (4*x^3 at x = 3) dy_dx = t.gradient(y, x) # 6.0 del t # Drop the reference to the tape ###Output _____no_output_____ ###Markdown Recording control flowBecause tapes record operations as they are executed, Python control flow (using `if`s and `while`s for example) is naturally handled: ###Code def f(x, y): output = 1.0 for i in range(y): if i > 1 and i < 5: output = tf.multiply(output, x) return output def grad(x, y): with tf.GradientTape() as t: t.watch(x) out = f(x, y) return t.gradient(out, x) x = tf.convert_to_tensor(2.0) assert grad(x, 6).numpy() == 12.0 assert grad(x, 5).numpy() == 12.0 assert grad(x, 4).numpy() == 4.0 ###Output _____no_output_____ ###Markdown Higher-order gradientsOperations inside of the `GradientTape` context manager are recorded for automatic differentiation. If gradients are computed in that context, then the gradient computation is recorded as well. As a result, the exact same API works for higher-order gradients as well. For example: ###Code x = tf.Variable(1.0) # Create a Tensorflow variable initialized to 1.0 with tf.GradientTape() as t: with tf.GradientTape() as t2: y = x * x * x # Compute the gradient inside the 't' context manager # which means the gradient computation is differentiable as well. dy_dx = t2.gradient(y, x) d2y_dx2 = t.gradient(dy_dx, x) assert dy_dx.numpy() == 3.0 assert d2y_dx2.numpy() == 6.0 ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Automatic differentiation and gradient tape Run in Google Colab View source on GitHub > Note: This is an archived TF1 notebook. These are configuredto run in TF2's [compatbility mode](https://www.tensorflow.org/guide/migrate)but will run in TF1 as well. To use TF1 in Colab, use the[%tensorflow_version 1.x](https://colab.research.google.com/notebooks/tensorflow_version.ipynb)magic. In the previous tutorial we introduced `Tensor`s and operations on them. In this tutorial we will cover [automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation), a key technique for optimizing machine learning models. Setup ###Code import tensorflow.compat.v1 as tf ###Output _____no_output_____ ###Markdown Gradient tapesTensorFlow provides the [tf.GradientTape](https://www.tensorflow.org/api_docs/python/tf/GradientTape) API for automatic differentiation - computing the gradient of a computation with respect to its input variables. Tensorflow "records" all operations executed inside the context of a `tf.GradientTape` onto a "tape". Tensorflow then uses that tape and the gradients associated with each recorded operation to compute the gradients of a "recorded" computation using [reverse mode differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation).For example: ###Code x = tf.ones((2, 2)) with tf.GradientTape() as t: t.watch(x) y = tf.reduce_sum(x) z = tf.multiply(y, y) # Derivative of z with respect to the original input tensor x dz_dx = t.gradient(z, x) for i in [0, 1]: for j in [0, 1]: assert dz_dx[i][j].numpy() == 8.0 ###Output _____no_output_____ ###Markdown You can also request gradients of the output with respect to intermediate values computed during a "recorded" `tf.GradientTape` context. ###Code x = tf.ones((2, 2)) with tf.GradientTape() as t: t.watch(x) y = tf.reduce_sum(x) z = tf.multiply(y, y) # Use the tape to compute the derivative of z with respect to the # intermediate value y. dz_dy = t.gradient(z, y) assert dz_dy.numpy() == 8.0 ###Output _____no_output_____ ###Markdown By default, the resources held by a GradientTape are released as soon as GradientTape.gradient() method is called. To compute multiple gradients over the same computation, create a `persistent` gradient tape. This allows multiple calls to the `gradient()` method as resources are released when the tape object is garbage collected. For example: ###Code x = tf.constant(3.0) with tf.GradientTape(persistent=True) as t: t.watch(x) y = x * x z = y * y dz_dx = t.gradient(z, x) # 108.0 (4*x^3 at x = 3) dy_dx = t.gradient(y, x) # 6.0 del t # Drop the reference to the tape ###Output _____no_output_____ ###Markdown Recording control flowBecause tapes record operations as they are executed, Python control flow (using `if`s and `while`s for example) is naturally handled: ###Code def f(x, y): output = 1.0 for i in range(y): if i > 1 and i < 5: output = tf.multiply(output, x) return output def grad(x, y): with tf.GradientTape() as t: t.watch(x) out = f(x, y) return t.gradient(out, x) x = tf.convert_to_tensor(2.0) assert grad(x, 6).numpy() == 12.0 assert grad(x, 5).numpy() == 12.0 assert grad(x, 4).numpy() == 4.0 ###Output _____no_output_____ ###Markdown Higher-order gradientsOperations inside of the `GradientTape` context manager are recorded for automatic differentiation. If gradients are computed in that context, then the gradient computation is recorded as well. As a result, the exact same API works for higher-order gradients as well. For example: ###Code x = tf.Variable(1.0) # Create a Tensorflow variable initialized to 1.0 with tf.GradientTape() as t: with tf.GradientTape() as t2: y = x * x * x # Compute the gradient inside the 't' context manager # which means the gradient computation is differentiable as well. dy_dx = t2.gradient(y, x) d2y_dx2 = t.gradient(dy_dx, x) assert dy_dx.numpy() == 3.0 assert d2y_dx2.numpy() == 6.0 ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Automatic differentiation and gradient tape Run in Google Colab View source on GitHub In the previous tutorial we introduced `Tensor`s and operations on them. In this tutorial we will cover [automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation), a key technique for optimizing machine learning models. Setup ###Code import tensorflow.compat.v1 as tf ###Output _____no_output_____ ###Markdown Gradient tapesTensorFlow provides the [tf.GradientTape](https://www.tensorflow.org/api_docs/python/tf/GradientTape) API for automatic differentiation - computing the gradient of a computation with respect to its input variables. Tensorflow "records" all operations executed inside the context of a `tf.GradientTape` onto a "tape". Tensorflow then uses that tape and the gradients associated with each recorded operation to compute the gradients of a "recorded" computation using [reverse mode differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation).For example: ###Code x = tf.ones((2, 2)) with tf.GradientTape() as t: t.watch(x) y = tf.reduce_sum(x) z = tf.multiply(y, y) # Derivative of z with respect to the original input tensor x dz_dx = t.gradient(z, x) for i in [0, 1]: for j in [0, 1]: assert dz_dx[i][j].numpy() == 8.0 ###Output _____no_output_____ ###Markdown You can also request gradients of the output with respect to intermediate values computed during a "recorded" `tf.GradientTape` context. ###Code x = tf.ones((2, 2)) with tf.GradientTape() as t: t.watch(x) y = tf.reduce_sum(x) z = tf.multiply(y, y) # Use the tape to compute the derivative of z with respect to the # intermediate value y. dz_dy = t.gradient(z, y) assert dz_dy.numpy() == 8.0 ###Output _____no_output_____ ###Markdown By default, the resources held by a GradientTape are released as soon as GradientTape.gradient() method is called. To compute multiple gradients over the same computation, create a `persistent` gradient tape. This allows multiple calls to the `gradient()` method as resources are released when the tape object is garbage collected. For example: ###Code x = tf.constant(3.0) with tf.GradientTape(persistent=True) as t: t.watch(x) y = x * x z = y * y dz_dx = t.gradient(z, x) # 108.0 (4*x^3 at x = 3) dy_dx = t.gradient(y, x) # 6.0 del t # Drop the reference to the tape ###Output _____no_output_____ ###Markdown Recording control flowBecause tapes record operations as they are executed, Python control flow (using `if`s and `while`s for example) is naturally handled: ###Code def f(x, y): output = 1.0 for i in range(y): if i > 1 and i < 5: output = tf.multiply(output, x) return output def grad(x, y): with tf.GradientTape() as t: t.watch(x) out = f(x, y) return t.gradient(out, x) x = tf.convert_to_tensor(2.0) assert grad(x, 6).numpy() == 12.0 assert grad(x, 5).numpy() == 12.0 assert grad(x, 4).numpy() == 4.0 ###Output _____no_output_____ ###Markdown Higher-order gradientsOperations inside of the `GradientTape` context manager are recorded for automatic differentiation. If gradients are computed in that context, then the gradient computation is recorded as well. As a result, the exact same API works for higher-order gradients as well. For example: ###Code x = tf.Variable(1.0) # Create a Tensorflow variable initialized to 1.0 with tf.GradientTape() as t: with tf.GradientTape() as t2: y = x * x * x # Compute the gradient inside the 't' context manager # which means the gradient computation is differentiable as well. dy_dx = t2.gradient(y, x) d2y_dx2 = t.gradient(dy_dx, x) assert dy_dx.numpy() == 3.0 assert d2y_dx2.numpy() == 6.0 ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Automatic differentiation and gradient tape Run in Google Colab View source on GitHub In the previous tutorial we introduced `Tensor`s and operations on them. In this tutorial we will cover [automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation), a key technique for optimizing machine learning models. Setup ###Code from __future__ import absolute_import, division, print_function, unicode_literals try: # %tensorflow_version only exists in Colab. %tensorflow_version 2.x except Exception: pass import tensorflow.compat.v1 as tf ###Output _____no_output_____ ###Markdown Gradient tapesTensorFlow provides the [tf.GradientTape](https://www.tensorflow.org/api_docs/python/tf/GradientTape) API for automatic differentiation - computing the gradient of a computation with respect to its input variables. Tensorflow "records" all operations executed inside the context of a `tf.GradientTape` onto a "tape". Tensorflow then uses that tape and the gradients associated with each recorded operation to compute the gradients of a "recorded" computation using [reverse mode differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation).For example: ###Code x = tf.ones((2, 2)) with tf.GradientTape() as t: t.watch(x) y = tf.reduce_sum(x) z = tf.multiply(y, y) # Derivative of z with respect to the original input tensor x dz_dx = t.gradient(z, x) for i in [0, 1]: for j in [0, 1]: assert dz_dx[i][j].numpy() == 8.0 ###Output _____no_output_____ ###Markdown You can also request gradients of the output with respect to intermediate values computed during a "recorded" `tf.GradientTape` context. ###Code x = tf.ones((2, 2)) with tf.GradientTape() as t: t.watch(x) y = tf.reduce_sum(x) z = tf.multiply(y, y) # Use the tape to compute the derivative of z with respect to the # intermediate value y. dz_dy = t.gradient(z, y) assert dz_dy.numpy() == 8.0 ###Output _____no_output_____ ###Markdown By default, the resources held by a GradientTape are released as soon as GradientTape.gradient() method is called. To compute multiple gradients over the same computation, create a `persistent` gradient tape. This allows multiple calls to the `gradient()` method as resources are released when the tape object is garbage collected. For example: ###Code x = tf.constant(3.0) with tf.GradientTape(persistent=True) as t: t.watch(x) y = x * x z = y * y dz_dx = t.gradient(z, x) # 108.0 (4*x^3 at x = 3) dy_dx = t.gradient(y, x) # 6.0 del t # Drop the reference to the tape ###Output _____no_output_____ ###Markdown Recording control flowBecause tapes record operations as they are executed, Python control flow (using `if`s and `while`s for example) is naturally handled: ###Code def f(x, y): output = 1.0 for i in range(y): if i > 1 and i < 5: output = tf.multiply(output, x) return output def grad(x, y): with tf.GradientTape() as t: t.watch(x) out = f(x, y) return t.gradient(out, x) x = tf.convert_to_tensor(2.0) assert grad(x, 6).numpy() == 12.0 assert grad(x, 5).numpy() == 12.0 assert grad(x, 4).numpy() == 4.0 ###Output _____no_output_____ ###Markdown Higher-order gradientsOperations inside of the `GradientTape` context manager are recorded for automatic differentiation. If gradients are computed in that context, then the gradient computation is recorded as well. As a result, the exact same API works for higher-order gradients as well. For example: ###Code x = tf.Variable(1.0) # Create a Tensorflow variable initialized to 1.0 with tf.GradientTape() as t: with tf.GradientTape() as t2: y = x * x * x # Compute the gradient inside the 't' context manager # which means the gradient computation is differentiable as well. dy_dx = t2.gradient(y, x) d2y_dx2 = t.gradient(dy_dx, x) assert dy_dx.numpy() == 3.0 assert d2y_dx2.numpy() == 6.0 ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Automatic differentiation and gradient tape Run in Google Colab View source on GitHub > Note: This is an archived TF1 notebook. These are configuredto run in TF2's [compatbility mode](https://www.tensorflow.org/guide/migrate)but will run in TF1 as well. To use TF1 in Colab, use the[%tensorflow_version 1.x](https://colab.research.google.com/notebooks/tensorflow_version.ipynb)magic. In the previous tutorial we introduced `Tensor`s and operations on them. In this tutorial we will cover [automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation), a key technique for optimizing machine learning models. Setup ###Code import tensorflow.compat.v1 as tf ###Output _____no_output_____ ###Markdown Gradient tapesTensorFlow provides the [tf.GradientTape](https://www.tensorflow.org/api_docs/python/tf/GradientTape) API for automatic differentiation - computing the gradient of a computation with respect to its input variables. Tensorflow "records" all operations executed inside the context of a `tf.GradientTape` onto a "tape". Tensorflow then uses that tape and the gradients associated with each recorded operation to compute the gradients of a "recorded" computation using [reverse mode differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation).For example: ###Code x = tf.ones((2, 2)) with tf.GradientTape() as t: t.watch(x) y = tf.reduce_sum(x) z = tf.multiply(y, y) # Derivative of z with respect to the original input tensor x dz_dx = t.gradient(z, x) for i in [0, 1]: for j in [0, 1]: assert dz_dx[i][j].numpy() == 8.0 ###Output _____no_output_____ ###Markdown You can also request gradients of the output with respect to intermediate values computed during a "recorded" `tf.GradientTape` context. ###Code x = tf.ones((2, 2)) with tf.GradientTape() as t: t.watch(x) y = tf.reduce_sum(x) z = tf.multiply(y, y) # Use the tape to compute the derivative of z with respect to the # intermediate value y. dz_dy = t.gradient(z, y) assert dz_dy.numpy() == 8.0 ###Output _____no_output_____ ###Markdown By default, the resources held by a GradientTape are released as soon as GradientTape.gradient() method is called. To compute multiple gradients over the same computation, create a `persistent` gradient tape. This allows multiple calls to the `gradient()` method as resources are released when the tape object is garbage collected. For example: ###Code x = tf.constant(3.0) with tf.GradientTape(persistent=True) as t: t.watch(x) y = x * x z = y * y dz_dx = t.gradient(z, x) # 108.0 (4*x^3 at x = 3) dy_dx = t.gradient(y, x) # 6.0 del t # Drop the reference to the tape ###Output _____no_output_____ ###Markdown Recording control flowBecause tapes record operations as they are executed, Python control flow (using `if`s and `while`s for example) is naturally handled: ###Code def f(x, y): output = 1.0 for i in range(y): if i > 1 and i < 5: output = tf.multiply(output, x) return output def grad(x, y): with tf.GradientTape() as t: t.watch(x) out = f(x, y) return t.gradient(out, x) x = tf.convert_to_tensor(2.0) assert grad(x, 6).numpy() == 12.0 assert grad(x, 5).numpy() == 12.0 assert grad(x, 4).numpy() == 4.0 ###Output _____no_output_____ ###Markdown Higher-order gradientsOperations inside of the `GradientTape` context manager are recorded for automatic differentiation. If gradients are computed in that context, then the gradient computation is recorded as well. As a result, the exact same API works for higher-order gradients as well. For example: ###Code x = tf.Variable(1.0) # Create a Tensorflow variable initialized to 1.0 with tf.GradientTape() as t: with tf.GradientTape() as t2: y = x * x * x # Compute the gradient inside the 't' context manager # which means the gradient computation is differentiable as well. dy_dx = t2.gradient(y, x) d2y_dx2 = t.gradient(dy_dx, x) assert dy_dx.numpy() == 3.0 assert d2y_dx2.numpy() == 6.0 ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Automatic differentiation and gradient tape Run in Google Colab View source on GitHub > Note: This is an archived TF1 notebook. These are configuredto run in TF2's [compatibility mode](https://www.tensorflow.org/guide/migrate)but will run in TF1 as well. To use TF1 in Colab, use the[%tensorflow_version 1.x](https://colab.research.google.com/notebooks/tensorflow_version.ipynb)magic. In the previous tutorial we introduced `Tensor`s and operations on them. In this tutorial we will cover [automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation), a key technique for optimizing machine learning models. Setup ###Code import tensorflow.compat.v1 as tf ###Output _____no_output_____ ###Markdown Gradient tapesTensorFlow provides the [tf.GradientTape](https://www.tensorflow.org/api_docs/python/tf/GradientTape) API for automatic differentiation - computing the gradient of a computation with respect to its input variables. Tensorflow "records" all operations executed inside the context of a `tf.GradientTape` onto a "tape". Tensorflow then uses that tape and the gradients associated with each recorded operation to compute the gradients of a "recorded" computation using [reverse mode differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation).For example: ###Code x = tf.ones((2, 2)) with tf.GradientTape() as t: t.watch(x) y = tf.reduce_sum(x) z = tf.multiply(y, y) # Derivative of z with respect to the original input tensor x dz_dx = t.gradient(z, x) for i in [0, 1]: for j in [0, 1]: assert dz_dx[i][j].numpy() == 8.0 ###Output _____no_output_____ ###Markdown You can also request gradients of the output with respect to intermediate values computed during a "recorded" `tf.GradientTape` context. ###Code x = tf.ones((2, 2)) with tf.GradientTape() as t: t.watch(x) y = tf.reduce_sum(x) z = tf.multiply(y, y) # Use the tape to compute the derivative of z with respect to the # intermediate value y. dz_dy = t.gradient(z, y) assert dz_dy.numpy() == 8.0 ###Output _____no_output_____ ###Markdown By default, the resources held by a GradientTape are released as soon as GradientTape.gradient() method is called. To compute multiple gradients over the same computation, create a `persistent` gradient tape. This allows multiple calls to the `gradient()` method as resources are released when the tape object is garbage collected. For example: ###Code x = tf.constant(3.0) with tf.GradientTape(persistent=True) as t: t.watch(x) y = x * x z = y * y dz_dx = t.gradient(z, x) # 108.0 (4*x^3 at x = 3) dy_dx = t.gradient(y, x) # 6.0 del t # Drop the reference to the tape ###Output _____no_output_____ ###Markdown Recording control flowBecause tapes record operations as they are executed, Python control flow (using `if`s and `while`s for example) is naturally handled: ###Code def f(x, y): output = 1.0 for i in range(y): if i > 1 and i < 5: output = tf.multiply(output, x) return output def grad(x, y): with tf.GradientTape() as t: t.watch(x) out = f(x, y) return t.gradient(out, x) x = tf.convert_to_tensor(2.0) assert grad(x, 6).numpy() == 12.0 assert grad(x, 5).numpy() == 12.0 assert grad(x, 4).numpy() == 4.0 ###Output _____no_output_____ ###Markdown Higher-order gradientsOperations inside of the `GradientTape` context manager are recorded for automatic differentiation. If gradients are computed in that context, then the gradient computation is recorded as well. As a result, the exact same API works for higher-order gradients as well. For example: ###Code x = tf.Variable(1.0) # Create a Tensorflow variable initialized to 1.0 with tf.GradientTape() as t: with tf.GradientTape() as t2: y = x * x * x # Compute the gradient inside the 't' context manager # which means the gradient computation is differentiable as well. dy_dx = t2.gradient(y, x) d2y_dx2 = t.gradient(dy_dx, x) assert dy_dx.numpy() == 3.0 assert d2y_dx2.numpy() == 6.0 ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Automatic differentiation and gradient tape Run in Google Colab View source on GitHub In the previous tutorial we introduced `Tensor`s and operations on them. In this tutorial we will cover [automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation), a key technique for optimizing machine learning models. Setup ###Code from __future__ import absolute_import, division, print_function, unicode_literals import tensorflow as tf tf.enable_eager_execution() ###Output _____no_output_____ ###Markdown Gradient tapesTensorFlow provides the [tf.GradientTape](https://www.tensorflow.org/api_docs/python/tf/GradientTape) API for automatic differentiation - computing the gradient of a computation with respect to its input variables. Tensorflow "records" all operations executed inside the context of a `tf.GradientTape` onto a "tape". Tensorflow then uses that tape and the gradients associated with each recorded operation to compute the gradients of a "recorded" computation using [reverse mode differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation).For example: ###Code x = tf.ones((2, 2)) with tf.GradientTape() as t: t.watch(x) y = tf.reduce_sum(x) z = tf.multiply(y, y) # Derivative of z with respect to the original input tensor x dz_dx = t.gradient(z, x) for i in [0, 1]: for j in [0, 1]: assert dz_dx[i][j].numpy() == 8.0 ###Output _____no_output_____ ###Markdown You can also request gradients of the output with respect to intermediate values computed during a "recorded" `tf.GradientTape` context. ###Code x = tf.ones((2, 2)) with tf.GradientTape() as t: t.watch(x) y = tf.reduce_sum(x) z = tf.multiply(y, y) # Use the tape to compute the derivative of z with respect to the # intermediate value y. dz_dy = t.gradient(z, y) assert dz_dy.numpy() == 8.0 ###Output _____no_output_____ ###Markdown By default, the resources held by a GradientTape are released as soon as GradientTape.gradient() method is called. To compute multiple gradients over the same computation, create a `persistent` gradient tape. This allows multiple calls to the `gradient()` method as resources are released when the tape object is garbage collected. For example: ###Code x = tf.constant(3.0) with tf.GradientTape(persistent=True) as t: t.watch(x) y = x * x z = y * y dz_dx = t.gradient(z, x) # 108.0 (4*x^3 at x = 3) dy_dx = t.gradient(y, x) # 6.0 del t # Drop the reference to the tape ###Output _____no_output_____ ###Markdown Recording control flowBecause tapes record operations as they are executed, Python control flow (using `if`s and `while`s for example) is naturally handled: ###Code def f(x, y): output = 1.0 for i in range(y): if i > 1 and i < 5: output = tf.multiply(output, x) return output def grad(x, y): with tf.GradientTape() as t: t.watch(x) out = f(x, y) return t.gradient(out, x) x = tf.convert_to_tensor(2.0) assert grad(x, 6).numpy() == 12.0 assert grad(x, 5).numpy() == 12.0 assert grad(x, 4).numpy() == 4.0 ###Output _____no_output_____ ###Markdown Higher-order gradientsOperations inside of the `GradientTape` context manager are recorded for automatic differentiation. If gradients are computed in that context, then the gradient computation is recorded as well. As a result, the exact same API works for higher-order gradients as well. For example: ###Code x = tf.Variable(1.0) # Create a Tensorflow variable initialized to 1.0 with tf.GradientTape() as t: with tf.GradientTape() as t2: y = x * x * x # Compute the gradient inside the 't' context manager # which means the gradient computation is differentiable as well. dy_dx = t2.gradient(y, x) d2y_dx2 = t.gradient(dy_dx, x) assert dy_dx.numpy() == 3.0 assert d2y_dx2.numpy() == 6.0 ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Automatic differentiation and gradient tape Run in Google Colab View source on GitHub In the previous tutorial we introduced `Tensor`s and operations on them. In this tutorial we will cover [automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation), a key technique for optimizing machine learning models. Setup ###Code from __future__ import absolute_import, division, print_function, unicode_literals try: # %tensorflow_version only exists in Colab. %tensorflow_version 2.x except Exception: pass import tensorflow.compat.v1 as tf ###Output _____no_output_____ ###Markdown Gradient tapesTensorFlow provides the [tf.GradientTape](https://www.tensorflow.org/api_docs/python/tf/GradientTape) API for automatic differentiation - computing the gradient of a computation with respect to its input variables. Tensorflow "records" all operations executed inside the context of a `tf.GradientTape` onto a "tape". Tensorflow then uses that tape and the gradients associated with each recorded operation to compute the gradients of a "recorded" computation using [reverse mode differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation).For example: ###Code x = tf.ones((2, 2)) with tf.GradientTape() as t: t.watch(x) y = tf.reduce_sum(x) z = tf.multiply(y, y) # Derivative of z with respect to the original input tensor x dz_dx = t.gradient(z, x) for i in [0, 1]: for j in [0, 1]: assert dz_dx[i][j].numpy() == 8.0 ###Output _____no_output_____ ###Markdown You can also request gradients of the output with respect to intermediate values computed during a "recorded" `tf.GradientTape` context. ###Code x = tf.ones((2, 2)) with tf.GradientTape() as t: t.watch(x) y = tf.reduce_sum(x) z = tf.multiply(y, y) # Use the tape to compute the derivative of z with respect to the # intermediate value y. dz_dy = t.gradient(z, y) assert dz_dy.numpy() == 8.0 ###Output _____no_output_____ ###Markdown By default, the resources held by a GradientTape are released as soon as GradientTape.gradient() method is called. To compute multiple gradients over the same computation, create a `persistent` gradient tape. This allows multiple calls to the `gradient()` method as resources are released when the tape object is garbage collected. For example: ###Code x = tf.constant(3.0) with tf.GradientTape(persistent=True) as t: t.watch(x) y = x * x z = y * y dz_dx = t.gradient(z, x) # 108.0 (4*x^3 at x = 3) dy_dx = t.gradient(y, x) # 6.0 del t # Drop the reference to the tape ###Output _____no_output_____ ###Markdown Recording control flowBecause tapes record operations as they are executed, Python control flow (using `if`s and `while`s for example) is naturally handled: ###Code def f(x, y): output = 1.0 for i in range(y): if i > 1 and i < 5: output = tf.multiply(output, x) return output def grad(x, y): with tf.GradientTape() as t: t.watch(x) out = f(x, y) return t.gradient(out, x) x = tf.convert_to_tensor(2.0) assert grad(x, 6).numpy() == 12.0 assert grad(x, 5).numpy() == 12.0 assert grad(x, 4).numpy() == 4.0 ###Output _____no_output_____ ###Markdown Higher-order gradientsOperations inside of the `GradientTape` context manager are recorded for automatic differentiation. If gradients are computed in that context, then the gradient computation is recorded as well. As a result, the exact same API works for higher-order gradients as well. For example: ###Code x = tf.Variable(1.0) # Create a Tensorflow variable initialized to 1.0 with tf.GradientTape() as t: with tf.GradientTape() as t2: y = x * x * x # Compute the gradient inside the 't' context manager # which means the gradient computation is differentiable as well. dy_dx = t2.gradient(y, x) d2y_dx2 = t.gradient(dy_dx, x) assert dy_dx.numpy() == 3.0 assert d2y_dx2.numpy() == 6.0 ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Automatic differentiation and gradient tape Run in Google Colab View source on GitHub > Note: This is an archived TF1 notebook. These are configuredto run in TF2's [compatbility mode](https://www.tensorflow.org/guide/migrate)but will run in TF1 as well. To use TF1 in Colab, use the[%tensorflow_version 1.x](https://colab.research.google.com/notebooks/tensorflow_version.ipynb)magic. In the previous tutorial we introduced `Tensor`s and operations on them. In this tutorial we will cover [automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation), a key technique for optimizing machine learning models. Setup ###Code import tensorflow.compat.v1 as tf ###Output _____no_output_____ ###Markdown Gradient tapesTensorFlow provides the [tf.GradientTape](https://www.tensorflow.org/api_docs/python/tf/GradientTape) API for automatic differentiation - computing the gradient of a computation with respect to its input variables. Tensorflow "records" all operations executed inside the context of a `tf.GradientTape` onto a "tape". Tensorflow then uses that tape and the gradients associated with each recorded operation to compute the gradients of a "recorded" computation using [reverse mode differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation).For example: ###Code x = tf.ones((2, 2)) with tf.GradientTape() as t: t.watch(x) y = tf.reduce_sum(x) z = tf.multiply(y, y) # Derivative of z with respect to the original input tensor x dz_dx = t.gradient(z, x) for i in [0, 1]: for j in [0, 1]: assert dz_dx[i][j].numpy() == 8.0 ###Output _____no_output_____ ###Markdown You can also request gradients of the output with respect to intermediate values computed during a "recorded" `tf.GradientTape` context. ###Code x = tf.ones((2, 2)) with tf.GradientTape() as t: t.watch(x) y = tf.reduce_sum(x) z = tf.multiply(y, y) # Use the tape to compute the derivative of z with respect to the # intermediate value y. dz_dy = t.gradient(z, y) assert dz_dy.numpy() == 8.0 ###Output _____no_output_____ ###Markdown By default, the resources held by a GradientTape are released as soon as GradientTape.gradient() method is called. To compute multiple gradients over the same computation, create a `persistent` gradient tape. This allows multiple calls to the `gradient()` method as resources are released when the tape object is garbage collected. For example: ###Code x = tf.constant(3.0) with tf.GradientTape(persistent=True) as t: t.watch(x) y = x * x z = y * y dz_dx = t.gradient(z, x) # 108.0 (4*x^3 at x = 3) dy_dx = t.gradient(y, x) # 6.0 del t # Drop the reference to the tape ###Output _____no_output_____ ###Markdown Recording control flowBecause tapes record operations as they are executed, Python control flow (using `if`s and `while`s for example) is naturally handled: ###Code def f(x, y): output = 1.0 for i in range(y): if i > 1 and i < 5: output = tf.multiply(output, x) return output def grad(x, y): with tf.GradientTape() as t: t.watch(x) out = f(x, y) return t.gradient(out, x) x = tf.convert_to_tensor(2.0) assert grad(x, 6).numpy() == 12.0 assert grad(x, 5).numpy() == 12.0 assert grad(x, 4).numpy() == 4.0 ###Output _____no_output_____ ###Markdown Higher-order gradientsOperations inside of the `GradientTape` context manager are recorded for automatic differentiation. If gradients are computed in that context, then the gradient computation is recorded as well. As a result, the exact same API works for higher-order gradients as well. For example: ###Code x = tf.Variable(1.0) # Create a Tensorflow variable initialized to 1.0 with tf.GradientTape() as t: with tf.GradientTape() as t2: y = x * x * x # Compute the gradient inside the 't' context manager # which means the gradient computation is differentiable as well. dy_dx = t2.gradient(y, x) d2y_dx2 = t.gradient(dy_dx, x) assert dy_dx.numpy() == 3.0 assert d2y_dx2.numpy() == 6.0 ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Automatic differentiation and gradient tape Run in Google Colab View source on GitHub > Note: This is an archived TF1 notebook. These are configuredto run in TF2's [compatbility mode](https://www.tensorflow.org/guide/migrate)but will run in TF1 as well. To use TF1 in Colab, use the[%tensorflow_version 1.x](https://colab.research.google.com/notebooks/tensorflow_version.ipynb)magic. In the previous tutorial we introduced `Tensor`s and operations on them. In this tutorial we will cover [automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation), a key technique for optimizing machine learning models. Setup ###Code import tensorflow.compat.v1 as tf ###Output _____no_output_____ ###Markdown Gradient tapesTensorFlow provides the [tf.GradientTape](https://www.tensorflow.org/api_docs/python/tf/GradientTape) API for automatic differentiation - computing the gradient of a computation with respect to its input variables. Tensorflow "records" all operations executed inside the context of a `tf.GradientTape` onto a "tape". Tensorflow then uses that tape and the gradients associated with each recorded operation to compute the gradients of a "recorded" computation using [reverse mode differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation).For example: ###Code x = tf.ones((2, 2)) with tf.GradientTape() as t: t.watch(x) y = tf.reduce_sum(x) z = tf.multiply(y, y) # Derivative of z with respect to the original input tensor x dz_dx = t.gradient(z, x) for i in [0, 1]: for j in [0, 1]: assert dz_dx[i][j].numpy() == 8.0 ###Output _____no_output_____ ###Markdown You can also request gradients of the output with respect to intermediate values computed during a "recorded" `tf.GradientTape` context. ###Code x = tf.ones((2, 2)) with tf.GradientTape() as t: t.watch(x) y = tf.reduce_sum(x) z = tf.multiply(y, y) # Use the tape to compute the derivative of z with respect to the # intermediate value y. dz_dy = t.gradient(z, y) assert dz_dy.numpy() == 8.0 ###Output _____no_output_____ ###Markdown By default, the resources held by a GradientTape are released as soon as GradientTape.gradient() method is called. To compute multiple gradients over the same computation, create a `persistent` gradient tape. This allows multiple calls to the `gradient()` method as resources are released when the tape object is garbage collected. For example: ###Code x = tf.constant(3.0) with tf.GradientTape(persistent=True) as t: t.watch(x) y = x * x z = y * y dz_dx = t.gradient(z, x) # 108.0 (4*x^3 at x = 3) dy_dx = t.gradient(y, x) # 6.0 del t # Drop the reference to the tape ###Output _____no_output_____ ###Markdown Recording control flowBecause tapes record operations as they are executed, Python control flow (using `if`s and `while`s for example) is naturally handled: ###Code def f(x, y): output = 1.0 for i in range(y): if i > 1 and i < 5: output = tf.multiply(output, x) return output def grad(x, y): with tf.GradientTape() as t: t.watch(x) out = f(x, y) return t.gradient(out, x) x = tf.convert_to_tensor(2.0) assert grad(x, 6).numpy() == 12.0 assert grad(x, 5).numpy() == 12.0 assert grad(x, 4).numpy() == 4.0 ###Output _____no_output_____ ###Markdown Higher-order gradientsOperations inside of the `GradientTape` context manager are recorded for automatic differentiation. If gradients are computed in that context, then the gradient computation is recorded as well. As a result, the exact same API works for higher-order gradients as well. For example: ###Code x = tf.Variable(1.0) # Create a Tensorflow variable initialized to 1.0 with tf.GradientTape() as t: with tf.GradientTape() as t2: y = x * x * x # Compute the gradient inside the 't' context manager # which means the gradient computation is differentiable as well. dy_dx = t2.gradient(y, x) d2y_dx2 = t.gradient(dy_dx, x) assert dy_dx.numpy() == 3.0 assert d2y_dx2.numpy() == 6.0 ###Output _____no_output_____
qoqo/examples/Teleportation_Example.ipynb
###Markdown Quantum Teleportation with qoqo & the use of conditional measurementsThis notebook is designed to demonstrate the use of conditional measurements, by following through an example of quantum state teleportation.In quantum teleportation there are two end users: The first user, Alice, wishes to send a particular quantum state to the second user, Bob. The protocol requires a total of three qubits, and the transmission of two classical bits. The sender Alice controls qubits 0 and 1, and the reciever Bob controls qubit 2. ###Code from qoqo_quest import Backend from qoqo import Circuit from qoqo import operations as ops from math import pi ###Output _____no_output_____ ###Markdown State preparationThe first step is to prepare the quantum state which Alice will send to Bob. As an example, the most general single qubit quantum state is given by:\begin{equation}|\psi \rangle = cos(\frac{\theta}{2}) |0 \rangle + e^{i \phi} sin(\frac{\theta}{2}) |1 \rangle.\end{equation}This state can be prepared by a sequence of two single qubit rotations. In the code block below we first define a function that takes the angles $\theta$ and $\phi$ as input and prepares qubit 0 of a quantum register in the state $| \psi \rangle$.Next we use an instance of the function with the angles $\theta=\frac{\pi}{2}$ and $\phi=0$ to create a circuit which prepares the state: \begin{equation}|\psi \rangle = \frac{1}{\sqrt{2}} \big ( |0 \rangle + |1 \rangle \big ) = | + \rangle.\end{equation} ###Code def prep_psi(Theta: float, Phi: float) -> Circuit: circuit = Circuit() circuit += ops.RotateY(qubit=0, theta=Theta) circuit += ops.RotateZ(qubit=0, theta=Phi) return circuit init_circuit = prep_psi(pi/2, 0.0) ###Output _____no_output_____ ###Markdown Preparing an entangled resource stateQuantum teleportation requires that the end users initially share an entangled resource state, \begin{equation}|\Phi_{+} \rangle = \frac{1}{\sqrt(2)} \big ( |00 \rangle + |11 \rangle \big ) .\end{equation}The following circuit prepares the state $|\Phi_{+} \rangle$ between qubit 1, held by Alice, and qubit 2, held by Bob. ###Code entangling_circ = Circuit() entangling_circ += ops.Hadamard(qubit=1) entangling_circ += ops.CNOT(control=1, target=2) ###Output _____no_output_____ ###Markdown Encoding the state to be sent in the entangled resource stateThe next step of the procedure is to encode the state of qubit 0, $\psi$, into the entangled resource state. This is accomplished by way of the circuit defined below, which is similar to that used to prepare the entangled resource. ###Code encoding_circ = Circuit() encoding_circ += ops.CNOT(control=0, target=1) encoding_circ += ops.Hadamard(qubit=0) ###Output _____no_output_____ ###Markdown State transfer part 1: MeasurementAt this stage in the process both of Alice's qubits, 0 and 1, are measured. The measurement consumes the entangled resource and leaves the state of qubit 2,Bob's qubit, in a state that depends on the two measurement outcomes. Let us call the classical bit which results from measuring qubit 0 'M1' and the bit resulting from measuring qubit 1 'M2'. The circuit below defines the classical register named 'M1M2', performs the measurement of qubits 0 and 1, and stores the results in the register 'M1M2'. ###Code meas_circ = Circuit() meas_circ += ops.DefinitionBit(name='M1M2', length=2, is_output=True) #for classical bits corresponding to measurement outcomes meas_circ += ops.MeasureQubit(qubit=0,readout='M1M2',readout_index=0) meas_circ += ops.MeasureQubit(qubit=1,readout='M1M2',readout_index=1) ###Output _____no_output_____ ###Markdown Defining the circuit for a conditional operationConditional operations in qoqo have three inputs: the name of a classical register containing boolean values, the index of the register containing the value to be used to condition the operation, and the operation or sequence of operations to be performed if the boolean condition value is True. To prepare the third input, it is necessary to create circuit snippets corresponding to the operations to be completed if the condition is True. In the case of quantum teleportation, we need two conditional operations. The first is a Pauli Z acting on Bob's qubit, conditioned on the measurement result M1. The second is a Pauli X acting on Bob's qubit, conditioned on the measurement result M2. Hence we prepare circuit snippets correspponding to a Pauli Z and a Pauli X operation. ###Code conditional_Z = Circuit() conditional_Z += ops.PauliZ(qubit=2) conditional_X = Circuit() conditional_X += ops.PauliX(qubit=2) ###Output _____no_output_____ ###Markdown State transfer part 2: conditional operationsThe final stage of the teleportation protocol is to perform corrections to the state of Bob's qubit 2, according to the measurement outcomes 'M1' and 'M2'.The below circuit makes use of the circuit snippets defined above to perform the conditional corrections to the state of qubit 2. 2. ###Code conditional_circ = Circuit() conditional_circ += ops.PragmaConditional(condition_register='M1M2',condition_index=1, circuit=conditional_X) conditional_circ += ops.PragmaConditional(condition_register='M1M2',condition_index=0, circuit=conditional_Z) ###Output _____no_output_____ ###Markdown Putting it all togetherCombining each of the circuits we have defined yeilds the full teleportation protocol. We can verify that the protocol is successful by reading out the final state vector and comparing it to the state which was to be sent, $|\psi \rangle$. ###Code verification = Circuit() # Create register for state vector readout verification += ops.DefinitionComplex(name='psi', length=8, is_output=True) verification += ops.PragmaGetStateVector(readout='psi', circuit=Circuit()) # Combine parts for full protocol teleportation_circuit = init_circuit + entangling_circ + encoding_circ + meas_circ + conditional_circ + verification # Run simulation and collect outputs backend = Backend(number_qubits=3) (result_bit_registers, result_float_registers, result_complex_registers)=backend.run_circuit(teleportation_circuit) # View measurement outcomes and post-protocol state of qubits print(result_bit_registers['M1M2']) print(result_complex_registers['psi']) ###Output [[True, False]] [[0j, (0.7071067811865476+0j), 0j, 0j, (-0+0j), (0.7071067811865475-0j), (-0+0j), (-0+0j)]] ###Markdown Quantum Teleportation with qoqo & the use of conditional measurementsThis notebook is designed to demonstrate the use of conditional measurements, by following through an example of quantum state teleportation.In quantum teleportation there are two end users: The first user, Alice, wishes to send a particular quantum state to the second user, Bob. The protocol requires a total of three qubits, and the transmission of two classical bits. The sender Alice controls qubits 0 and 1, and the reciever Bob controls qubit 2. ###Code from qoqo_pyquest import PyQuestBackend from qoqo import Circuit from qoqo import operations as ops import numpy as np from math import sqrt, pi ###Output _____no_output_____ ###Markdown State preparationThe first step is to prepare the quantum state which Alice will send to Bob. As an example, the most general single qubit quantum state is given by:\begin{equation}|\psi \rangle = cos(\frac{\theta}{2}) |0 \rangle + e^{i \phi} sin(\frac{\theta}{2}) |1 \rangle.\end{equation}This state can be prepared by a sequence of two single qubit rotations. In the code block below we first define a function that takes the angles $\theta$ and $\phi$ as input and prepares qubit 0 of a quantum register in the state $| \psi \rangle$.Next we use an instance of the function with the angles $\theta=\frac{\pi}{2}$ and $\phi=0$ to create a circuit which prepares the state: \begin{equation}|\psi \rangle = \frac{1}{\sqrt{2}} \big{(} |0 \rangle + |1 \rangle \big{)} = | + \rangle.\end{equation} ###Code def prep_psi(Theta: float, Phi: float) -> Circuit: circuit = Circuit() circuit += ops.RotateY(qubit=0, theta=Theta) circuit += ops.RotateZ(qubit=0, theta=Phi) return circuit init_circuit = prep_psi(pi/2, 0.0) ###Output _____no_output_____ ###Markdown Preparing an entangled resource stateQuantum teleportation requires that the end users initially share an entangled resource state, \begin{equation}|\Phi_{+} \rangle = \frac{1}{\sqrt(2)} \big{(} |00 \rangle + |11 \rangle \big{)} .\end{equation}The following circuit prepares the state $|\Phi_{+} \rangle$ between qubit 1, held by Alice, and qubit 2, held by Bob. ###Code entangling_circ = Circuit() entangling_circ += ops.Hadamard(qubit=1) entangling_circ += ops.CNOT(control=1, target=2) ###Output _____no_output_____ ###Markdown Encoding the state to be sent in the entangled resource stateThe next step of the procedure is to encode the state of qubit 0, $\psi$, into the entangled resource state. This is accomplished by way of the circuit defined below, which is similar to that used to prepare the entangled resource. ###Code encoding_circ = Circuit() encoding_circ += ops.CNOT(control=0, target=1) encoding_circ += ops.Hadamard(qubit=0) ###Output _____no_output_____ ###Markdown State transfer part 1: MeasurementAt this stage in the process both of Alice's qubits, 0 and 1, are measured. The measurement consumes the entangled resource and leaves the state of qubit 2,Bob's qubit, in a state that depends on the two measurement outcomes. Let us call the classical bit which results from measuring qubit 0 'M1' and the bit resulting from measuring qubit 1 'M2'. The circuit below defines the classical register named 'M1M2', performs the measurement of qubits 0 and 1, and stores the results in the register 'M1M2'. ###Code meas_circ = Circuit() meas_circ += ops.DefinitionBit(name='M1M2', length=2, is_output=True) #for classical bits corresponding to measurement outcomes meas_circ += ops.MeasureQubit(qubit=0,readout='M1M2',readout_index=0) meas_circ += ops.MeasureQubit(qubit=1,readout='M1M2',readout_index=1) ###Output _____no_output_____ ###Markdown Defining the circuit for a conditional operationConditional operations in qoqo have three inputs: the name of a classical register containing boolean values, the index of the register containing the value to be used to condition the operation, and the operation or sequence of operations to be performed if the boolean condition value is True. To prepare the third input, it is necessary to create circuit snippets corresponding to the operations to be completed if the condition is True. In the case of quantum teleportation, we need two conditional operations. The first is a Pauli Z acting on Bob's qubit, conditioned on the measurement result M1. The second is a Pauli X acting on Bob's qubit, conditioned on the measurement result M2. Hence we prepare circuit snippets correspponding to a Pauli Z and a Pauli X operation. ###Code conditional_Z = Circuit() conditional_Z += ops.PauliZ(qubit=2) conditional_X = Circuit() conditional_X += ops.PauliX(qubit=2) ###Output _____no_output_____ ###Markdown State transfer part 2: conditional operationsThe final stage of the teleportation protocol is to perform corrections to the state of Bob's qubit 2, according to the measurement outcomes 'M1' and 'M2'.The below circuit makes use of the circuit snippets defined above to perform the conditional corrections to the state of qubit 2. 2. ###Code conditional_circ = Circuit() conditional_circ += ops.PragmaConditional(condition_register='M1M2',condition_index=1, circuit=conditional_X) conditional_circ += ops.PragmaConditional(condition_register='M1M2',condition_index=0, circuit=conditional_Z) ###Output _____no_output_____ ###Markdown Putting it all togetherCombining each of the circuits we have defined yeilds the full teleportation protocol. We can verify that the protocol is successful by reading out the final state vector and comparing it to the state which was to be sent, $|\psi \rangle$. ###Code verification = Circuit() # Create register for state vector readout verification += ops.DefinitionComplex(name='psi', length=8, is_output=True) verification += ops.PragmaGetStateVector(readout='psi', circuit=Circuit()) # Combine parts for full protocol teleportation_circuit = init_circuit + entangling_circ + encoding_circ + meas_circ + conditional_circ + verification # Run simulation and collect outputs backend = PyQuestBackend(number_qubits=3) (result_bit_registers, result_float_registers, result_complex_registers)=backend.run_circuit(teleportation_circuit) # View measurement outcomes and post-protocol state of qubits print(result_bit_registers['M1M2']) print(result_complex_registers['psi']) ###Output [[True, False]] [array([0. +0.j, 0.70710678+0.j, 0. +0.j, 0. +0.j, 0. +0.j, 0.70710678+0.j, 0. +0.j, 0. +0.j])]
SILAM_NO2.ipynb
###Markdown Air Pollution over IndonesiaNitrogen Dioxide Data is obtained from Finnish Meteorological Institute (https://silam.fmi.fi/) overlaid with Coal Power Plants data from World Resource Institute (WRI). Units in ug/m^3 and values below 10 ug/m^3 are not shown on the map. This map is updated every hour. For more information, please visit https://josefmtd.com/. ###Code # Get the observed datetime now = datetime.datetime.utcnow() obs = datetime.datetime(now.year, now.month, now.day, now.hour) print('Datetime :', obs.strftime("%Y-%m-%d %H:%M UTC")) # Create a map service Map = geemap.Map(center=(0,120), zoom=5, min_zoom=5, max_zoom=12, basemap=basemaps.CartoDB.DarkMatter, add_google_map=False ) # Obtain NO2 data from SILAM TDS Catalog exported to Google Cloud Storage fname = f'NO2_{obs.strftime("%Y%m%dT%H")}.tif' var = ee.Image.loadGeoTIFF(f'gs://silam-neonet-rasters/{fname}') # Resample and only show values above 500 ug/m^3 data = var.resample().reproject(ee.Projection('EPSG:4326'), scale=1000) data = data.updateMask(data.gt(10)) # Add Coal Power Plant from WRI's Global Power Plant Database indo_power = ee.FeatureCollection('WRI/GPPD/power_plants') \ .filter(ee.Filter.eq('country', 'IDN')) \ .filter(ee.Filter.eq('fuel1', 'Coal')) # Limit the area around Indonesia bbox = ee.Geometry.BBox(80.0, -15.0, 160.0, 15.0) # Visualization Parameters vmin = 0.0 vmax = 250.0 palette = ['blue', 'yellow', 'red', 'purple'] vis_params = { 'min' : vmin, 'max' : vmax, 'palette' : palette, 'opacity' : 0.5, } # Add Coal Power Plant data and Nitrogen Dioxide data Map.addLayer(data.clip(bbox), vis_params, 'NO2') Map.addLayer(indo_power, {'color' : 'ff0000'}, 'Coal Power Plant') Map.add_colorbar_branca(colors=palette, vmin=vmin, vmax=vmax, layer_name='NO2') Map.addLayerControl() Map ###Output _____no_output_____
Inteligência Artificial/Ciência de Dados/2. Análise de Dados - Medidas.ipynb
###Markdown Análise de Dados - MedidasComo sugere o título, esse guia contextualizará a análise de dados através das **medidas** e como podemos fazer isso de um jeito simples.Hoje, a internet gera uma quantidade enorme de dados a cada instante. Saiba que são feitas aproximadamente dois milhões de buscas no Google por minuto, e ele é apenas mais um dos mecanismos. Para analisar esses dados, é possível utilizar diversas técnicas e ferramentas (todas baseadas em teorias), porém **a mais básica de todas é o entendimento das medidas simples**, que são medidas estatísticas. Sumário1. [Tipos de dados](git1)2. [Escala de dados](git2)3. [Vamos descrever os dados!](git3) 1. [Medida de frequência](git3.1) 2. [Medidas centrais](git3.2) 1. [Moda](git3.2.1) 2. [Média](git3.2.2) 3. [Mediana](git3.2.3) 4. [Quando utilizar a Média e a Mediana](git3.2.4) 5. [Quartil e percentil](git3.2.5) 6. [Boxplot](git3.2.6) 3. [Medidas de dispersão](git3.3) 1. [Variância](git3.3.1) 2. [Desvio padrão](git3.3.2) 3. [IQR](git3.3.3)4. [Mensagem de conforto + aplicação em um código pequeno](git4) 1. Tipos de dados [🠡](intro)Antes de entrarmos no mérito de analisar dados, precisamos entender o que são eles e quais os tipos de dados. Os números **não são** a maior parte deles, porém hoje em dia **os dados são transformados em números para que o computador possa interpretá-los**.Os **dados não estruturados** são aqueles que não possuem uma estrutura concreta, existindo uma enorme variabilidade:1. Textos - qualquer tipo de texto encontrado na internet;1. Áudios, Vídeos e Imagens;1. Grafos (são redes, nós, como a rede de amigos do Facebook, que te indica os amigos em comum, etc);1. Webpages (código fonte das páginas);1. Séries temporais (são dados do mesmo objeto que variam com o tempo);Se pegarmos o Facebook ou a Wikipedia, podemos encontrar todos os tipos de **dados não estruturados** acima. Consegue pensar em mais alguma plataforma que também contenha tudo isso?Como dito antes, esses dados são transformados para que o computador possa interpretá-los. Também são transformados para que **nós humanos** possamos analisá-los. Sendo assim, transformamos os **dados não estruturados** em **dados estruturados**, possuindo atributos/valores.Os dados são estruturados em matrizes, onde a coluna diz respeito aos objetos (uma imagem por exemplo) e a linha diz respeito aos atributos (o que aquela imagem representa). No exemplo abaixo, uma tabela analisa o objeto **tipos de carro** e possui atributos **motor**, **quantos kilomestros roda por litro** e **ano de fabricação**.Objeto | Motor | Gasto de combustível (Km/L) | Ano--------- | ------ | ---- | -------Carro 1 | x | 10,3 | 2007Carro 2 | y | 8,7 | 2012... | ... | ... | ...Carro n | z | 9,0 | 2020Os dados **não precisam ser numéricos**. Vamos ver alguns tipos de variáveis:1. Qualitativas: 1. Nominais (sem significado matemático, exemplo: **motor x, y, z**); 2. Ordinais (também não são números, porém representam uma ordem, exemplo: **pouco, médio, muito** ou **baixo, médio, alto**).2. Quantitativas: 1. Discretas (valores contáveis, exemplo: **ano = 2007**); 2. Contínuas (valores reais, exemplo: **gasto de combustível = 10,3**, **peso**, **distância**, etc). Na tabela fictícia abaixo em que podemos analisar as relações entre as diversas variáveis de uma pessoa para entender o porquê de uma _Nota final_. Código | Nome | Idade | Sexo | Região | Escolaridade | Nota final --- | --- | --- | --- | --- | --- | ---1 | Mário | 20 | Masculino | Sudeste | Ensino Médio | 702 | Julia | 19 | Feminino | Centro-oeste | Ensino Médio | 733 | Clebson | 32 | Masculino | Nordeste | Ensino Superior | 85... | ... | ... | ... | ... | ... | ...77 | Roberta | 26 | Feminino | Norte | Ensino Superior | 83 Apesar de as colunas **Nome** e **Código** representarem o **Objeto**, elas podem ser entendidas como dados do tipo **qualitativo nominal**. A coluna Código possui valores numéricos, mas o número é apenas um símbolo indicando uma pessoa. As colunas **Região** e **Sexo** também possuem dados qualitativos nominais.A coluna **Escolaridade** também possui dados qualitativos, porém diferentemente dos anteriores, eses são **qualitativos ordinais**, pois o nível de escolaridade pode ser interpretado como sendo **baixo**, **médio** e **alto**, e até mesmo transformado em numerais, como **1**, **2** e **3**.A coluna **Idade** diz respeito a um dado **quantitativo discreto**, pois é um número que podemos contar facilmente. Já a coluna **Nota final** possui dados **quantitativos contínuos**, pois apesar de ser numérico, é um número que possui suas próprias variáveis (por exemplo o peso de questões em uma prova, a média de todas elas, nota de uma redação, etc). 2. Escala de dados [🠡](intro)A **escala de dados** diz respeito a quais operações lógicas podem ser realizadas nos valores dos atributos. Vamos entender melhor descrevendo com os tipos de dados e as operações possíveis. 1. Qualitativas: 1. Nominais: **=** e **≠**. Exemplo: Sudeste **=** Sudeste; Norte ≠ Nordeste; 2. Ordinais: **=**, **≠**, ****, **≤**, **≥**. Essas outras operações são possíveis pois os dados qualitativos ordinais são **contáveis**. **Escolaridade baixa < alta**.2. Quantitativas: 1. Intervalares: **=, ≠, , ≤, ≥, +** e **-**: datas, temperatura, distância, etc. Esse tipo de valor não pode ser contabilizado como um numeral comum. 20 celsius não é o dobro de 10 celsius, pois é uma escala baseada em Kelvin. O ano 2000 também não pode ser o dobro do ano 1000, pois o calendário é baseado em datas abstratas. Alguns anos são maiores do que os outros, por exemplo. 2. Racionais: **=, ≠, , ≤, ≥, +, -, *** e **/** diferente dos intervalares, os valores numéricos racionais possuem um **significado absoluto**. Uma grande diferença entre números intervalares e números racionais é que o último pode conter o número zero absoluto. Exemplo: a própria escala Kelvin, que possui um zero absoluto, além de salário, número de objetos e pessoas, saldo em conta. Aqui podemos **multiplicar e dividir**. Metade de um valor é obtido através da divisão por dois. Consulte a tabela abaixo para ver o que cada símbolo significa e uma exemplificação mais gráfica!Símbolo | Operação | Qualitativo nominal | Qualitativo Ordinal | Quantitativo Intervalar | Quantitativo Racional--| --- | --- | --- | --| ---= | Igual | Sudeste = Sudeste | Baixo = Baixo | 32º F = 32º F | 9,807 m/s² = 9,807 m/s² (gravidade da terra)≠ | Diferente | Norte ≠ Nordeste | Muito ≠ Pouco | 32º F ≠ -32º F | 1.000 N ≠ 3.000 N (força do soco de um boxeador)< | Menor | | Baixo < Alto | 10ºC < 20ºC | 20 centavos < 21 centavos> | Maior | | Alto > Baixo | 10ºC > 20ºC | 20,10 reais > 20,01 reais≤ | Menor ou igual | | Alto ≤ Alto | ano 200 a.C. ≤ 400 d.C. | 200K ≤ 300K≥ | Maior ou igual | | Alto ≥ Alto | ano 200 a.C. ≥ 200 a.C. | 4 laranjas ≥ 4 laranjas+ | Positivo | | | 20ºC | + 200 reais de saldo- | Negativo | | | -20ºC | - 200 reais de saldo/ | Divisão | | | | 800K / 2 = 400K* | Multiplicação | | | | 400 reais * 2 = 800 reais 3. Vamos descrever os dados! [🠡](intro)Vimos até aqui:1. quais são os diferentes tipos de atributos2. como classificamos os valores3. quais operações podemos realizarAgora podemos **descrever os dados** através de métodos da **Estatística Descritiva**. As medidas que analisaremos são as seguintes:1. Medida de frequência;2. Medidas centrais;3. Medidas de dispersão.Vamos ampliar a tabela que utilizamos anteriormente para exemplificar cada uma das medidas! Consideraremos somente as 10 primeiras linhas da matriz. Código | Nome | Idade | Sexo | Região | Escolaridade | Nota final --- | --- | --- | --- | --- | --- | ---1 | Mário | 20 | Masculino | Sudeste | Ensino Médio | 702 | Julia | 19 | Feminino | Centro-oeste | Ensino Médio | 733 | Clebson | 32 | Masculino | Nordeste | Ensino Superior | 854 | Kelly| 43 |Feminino | Sudeste | Ensino Médio | 755 | Salviano | 77 | Masculino | Norte | Ensino Médio | 346 |Pietro | 17 | Masculino | Sul | Ensino Superior | 437 | Jade | 24 | Feminino | Sul | Ensino Superior | 628 |Gabrielly | 17 | Feminino | Nordeste | Ensino Médio | 169 | Joesley | 56 | Masculino | Centro-oeste | Ensino Médio | 6410 | Paulo | 24 | Masculino | Sudeste | Ensino Superior | 94... | ... | ... | ... | ... | ... | ... 3.1 Medida de frequência [🠡](intro)A **medida de frequência** é a mais conhecida! Ela diz respeito à frequência de aparição de um certo valor. Vamos pegar a variante **Sexo**. O valor **Masculino** aparece 6 vezes e o **Feminino** aparece 4 vezes. Intuitivamente, 60% são Masculinos e 40% são Femininos.Para o cálculo da frequência **x**, a _regrinha de três_ pode ser utilizada. Podemos definir a fórmula como **Número de linhas * x = Número de Elementos * 100**. O número de elementos diz respeito a quantas vezes apareceu o elemento nas linhas selecionadas.Para medir a frequência **x** de pessoas masculinas:10 * x = 6 * 10010x = 600x = 600/10x = 60% 3.2 Medidas centrais [🠡](intro) Moda [🠡](intro)As medidas centrais são também chamadas de **Moda**. Com elas, costumamos medir dados **nominais** (porém é possível medir qualquer tipo de dado estruturado) com o objetivo de **retornar o valor mais comum**.Vamos medir a **Moda da variente Região** nas 10 primeiras linhas da matriz. Para isso, contamos o número de ocorrências de cada valor e identificamos qual deles aparece mais:Região | Número de aparições --- | ---Sul | 2Sudeste | 3Centro-oeste | 2Norte | 1Nordeste | 2Podemos constatar nesse rápido exemplo que **a Moda da variante Região é Sudeste**.Caso queira representar a medida de Frequência e a medida de Moda em **gráfico**, opte por representá-la através do gráfico de pizza. A ordenação dos valores em um gráfico de barras poderá dar uma falsa sugestão de que algo está crescendo ou decrescendo, e isso deve ser evitado pois não diz respeito à análise que queremos representar. Média [🠡](intro)Para determinar a medida central de **variáveis quantitativas**, nós calculamos o valor da **Média**. Para isso, **somamos** os valores e **dividimos** pelo número total de observações (linhas calculadas).Para calcular a Média da variante **Idade**, somamos todos os valores da coluna e dividimos pelo número de linhas (ou número de elementos somados).![image.png](attachment:image.png) ###Code media_idade = (20 + 19 + 32 + 43 + 77 + 17 + 24 + 17 + 56 + 24) / 10 print("A Média da variável Idade é:", media_idade) ###Output A Média da variável Idade é: 32.9 ###Markdown Mediana [🠡](intro)**Não confunda Média com Mediana**. Essa última diz respeito ao **valor central**. Vamos exemplificar com o cálculo da Mediana da variável fictícia **peso**:Jorge | Matheus | Fernanda | Samanta | Carla-- | -- | -- | -- | --54.3 kg | 76.2 kg | 97.7 kg | 55.0 kg | 69.6 kgPara chegarmos ao valor central, precisamos:1. Ordenar os valores (pode ser crescente ou decrescente);Jorge | Samanta | Carla | Matheus | Fernanda-- | -- | -- | -- | --54.3 kg | 55.0 kg | 69.6 kg | 76.2 kg | 97.7 kg2. Saber se o número de elementos do conjunto de valores a ser calculado é um número **ímpar** ou **par**. 1. Ímpar: a **Mediana** é o valor do meio, ou seja, **69.6 kg**; 2. Par: a **Mediana** é a soma dos dois valores do meio / 2.Vamos adicionar mais um valor para calcular a Mediana de um conjunto par:Jorge | Samanta | Carla | Matheus | Fernanda | Roberto-- | -- | -- | -- | -- | --54.3 kg | 55.0 kg | 69.6 kg | 76.2 kg | 97.7 kg | 101.2 kgComo agora o número total de elementos do conjunto é de número **par**, a **Mediana** é a soma dos dois valores centrais dividido por dois. ###Code Carla = 69.6 Matheus = 76.2 mediana_par = (Carla + Matheus) / 2 print("A mediana do conjunto é:", mediana_par) ###Output A mediana do conjunto é: 72.9 ###Markdown Quando utilizar a Média e a Mediana? [🠡](intro)O cálculo da Média e da Mediana geralmente possui os mesmos objetivos, porém em alguns casos a **Mediana** é melhor e mais confiável. Isso acontece pois algumas distribuições de valores são muito desiguais! Imagine se quisermos calcular a Média de **Altura** de uma equipe de basquete. Camisa | Nome | Altura--- | --- | ---1 | Miguel | 204cm 2 | Joel | 192cm3 | Manoel | 198cm4 | Daniel | 202cm 5 | Natanael | 189cm 6 | Leonel | 195cm7 | Tafarel | 196cm8 | Josiel | 198cm9 | Rafael | 202cm10 | Gabriel | 199cm11 | Uliel | 192cm12 | Pedro | 1 cmSe calcularmos a **Média** da variável **Altura** de toda a equipe, obteremos: ###Code media_altura = (204 + 192 + 198 + 202 + 189 + 195 + 196 + 198 + 202 + 199 + 192 + 1) / 12 print("A Média da altura do time de basquete é:", media_altura, "centímetros") ###Output A Média da altura do time de basquete é: 180.66666666666666 centímetros ###Markdown Já se calcularmos a **Mediana**, obteremos: ###Code mediana_altura = (195 + 196) / 2 print("A Mediana da altura do time de basquete é:", mediana_altura, "centímetros") ###Output A Mediana da altura do time de basquete é: 195.5 centímetros ###Markdown Nesse caso, a **Média** não pode ser confiável, por conta de um **outlier**. Esse outlier é **Pedro**, uma formiga. Por ser muito pequeno, ele desestabilizou o cálculo da Média!A culpa não é do Pedro, ele faz parte do time de basquete e TEM QUE SER CONTADO no cálculo, é um direito dele!Para que a presença desse **outlier** não afete tanto nossa análise, **optaremos pela Mediana**. Quanto mais diferente do conjunto for o outlier, mais será a distância entre o resultado da Média e da Mediana.**Agora que você já sabe como fazer o cálculo, pode utilizar uma biblioteca pra tornar o processo mais rápido**! ###Code import numpy as np time_basquete = [204, 192, 198, 202, 189, 195, 196, 198, 202, 199, 192, 1] média_time_basquete = np.mean(time_basquete) print("Média:", média_time_basquete) mediana_time_basquete = np.median(time_basquete) print("Mediana:", mediana_time_basquete) ###Output Média: 180.66666666666666 Mediana: 197.0 ###Markdown Quartil e percentil [🠡](intro)Calculada a Mediana, podemos ainda realizar o cálculo do **Quartil** e do **Percentil**.No **Quartil**, dividimos o conjunto em quatro partes e a mediana é agora o 2º quartil, ou 50%. Ele é maior do que 50% das observações:1. O 1º quartil será o valor que tem **25%** dos demais valores abaixo dele;1. O 2º quartil será o valor que tem **50%** dos demais valores abaixo dele;1. O 3º quartil será o valor que tem **75%** dos demais valores abaixo dele.1 | 2 | 3 | 4 |5 | 6 | 7 -| -| - |- | - | - | - | 1º | | 2º | | 3º | Ao identificar o valor da **mediana de todos os três quartis**, **podemos realizar uma análise mais acurada de todo o conjunto de dados**. Principalmente em se tratando de um conjunto com a presença de outliers!A diferença do Quartil para o **Percentil** é que no último, ao invés de ser 25%, 50% e 75%, **podem ser utilizados quaisquer valores**. Boxplot [🠡](intro)O tipo de gráfico para representar o cálculo de quartis e percentis é o **Boxplot**. Observe a imagem abaixo onde:1. O quadrado vermelho é a **distância entre o primeiro e o terceiro quartil**;2. A linha amarela é o valor da mediana do conjunto;3. Os traços mais marginais são definidos arbitrariamente. Eles servem para excluir da representação quaisquer dados **outliers** que venham a prejudicar a análise gráfica. 3.3 Medidas de dispersão [🠡](intro)São o último tipo de medidas que estudaremos aqui nesse guia. As **medidas de dispersão** servem para casos em que os conjuntos de dados **diferentes** possuem **a mesma Média**, como no exemplo abaixo. ###Code X = [5, 6, 1, 4] Y = [2, 6, 0, 8] Z = [4, 4, 4, 4] média_X = np.mean(X) média_Y = np.mean(Y) média_Z = np.mean(Z) print("X:", média_X, "Y:", média_Y, "Z:", média_Z) ###Output X: 4.0 Y: 4.0 Z: 4.0 ###Markdown O objetivo das medidas de dispersão é medir a **dispersão**/espalhamento de um conjunto de valores. A pergunta a se fazer é **como os valores estão espalhados em relação à Média?**Para obter essa resposta, podemos utilizar várias medidas de dispersão diferentes, porém as três mais comuns são:1. Variância;2. Desvio padrão;3. IQR (Intervalo Interquartil ou _Interquartile range_). Variância [🠡](intro)Para obter a variância é necessário calcular a **Esperança de X menos a Esperança de X ao quadrado** E[(X - E(X))²]A variância é igual **a distância quadrática média em relação à média**. Desvio padrão [🠡](intro)O **desvio padrão** é uma mudança no cálculo da variância visto acima, utilizado quando em nossos dados possuímos apenas uma **amostragem**, ou seja, apenas parte de todos os dados possíveis. Exemplo: um curso possui 800 alunos matriculados, porém os dados de apenas 100 deles foram colhidos. **O desvio padrão amostral** será considerado. A diferença da fórmula da Variância para a fórmula com o Desvio Padrão é que o último subtrai 1 (um) de N (N - 1)."N" significa o número total da **população**/número de elementos de um conjunto. Nos últimos conjuntos vistos por nós (X, Y e Z), o **N** é igual a **4** e o cálculo considerando o desvio padrão amostral incluirá **N - 1 = 3**. IQR [🠡](intro)O **IQR** ou intervalo interquartil é outra medida de dispersão muito importante. Ao ler "interquartil", você deve ter se lembrado dos quartis e do gráfico Boxsplot. Eles são utilizados quando uma análise é sensível a **outliers** e o mesmo acontece aqui, com o **IQR**. **Se a média é afetada pelos outliers, a variância também será**.Calculamos a distância interquartil do **terceiro** quartil **menos** o **primeiro** quartil:IQR = Q3 - Q1 4. Mensagem de conforto + aplicação em um código pequeno [🠡](intro)Assim como eu, pode ser que você tenha ficado muito desconfortável com essas últimas medidas de dispersão, pois a complexidade é **sim** grande, por mais que tenha encontrado pessoas falando na maior naturalidade. **Fique tranquilo**, basta compreender **quando** você utilizará esses cálculos e **por que resultou daquilo** após calcular.Hoje em dia, existem várias linguagens de programações, que possuem boas bibliotecas especialmente construídas para realizar todos esses cálculos com uma simples linha de código! O Python é a linguagem mais utilizada hoje em dia para realizarmos Data Sciente e Machine Learning, e você está no caminho certo. Pra encerrar, vou rodar aqui embaixo o cálculo da variância considerando o **intervalo interquartil**. Para isso, utilizarei a biblioteca **numpy** para calcular a **Média** e a biblioteca **scipy**, para calcular o **IQR**. ###Code from scipy.stats import iqr def variancia(conjunto): # função para calcular variância do conjunto media = np.mean(conjunto) # vamos calcular a Média do conjunto N = len(conjunto) # como vimos, N é o número de amostragem/de elementos do conjunto variancia = 0 # vazia mas será preenchida abaixo for i in np.arange(0, len(conjunto)): # para cada elemento "i" no "arange" de 0 até o comprimento do conjunto variancia = variancia + (conjunto[i]-media)**2 # calcular "i" menos média ao quadrado variancia = variancia/(N-1) return variancia def print_variancia(conjunto): print("Média de", conjunto, " =", np.mean(conjunto)) print("Variância de", conjunto, " =", variancia(conjunto)) print("IQR de", conjunto, " =", iqr(conjunto)) print("Amplitude de", conjunto, " =", np.max(conjunto)-np.min(conjunto)) print("") X = [5, 6, 1, 4] Y = [2, 6, 0, 8] Z = [4, 4, 4, 4] QUALQUEROUTRA = [0, 0, 1, 1, 18] print_variancia(X) print_variancia(Y) print_variancia(Z) print_variancia(QUALQUEROUTRA) ###Output Média de [5, 6, 1, 4] = 4.0 Variância de [5, 6, 1, 4] = 4.666666666666667 IQR de [5, 6, 1, 4] = 2.0 Amplitude de [5, 6, 1, 4] = 5 Média de [2, 6, 0, 8] = 4.0 Variância de [2, 6, 0, 8] = 13.333333333333334 IQR de [2, 6, 0, 8] = 5.0 Amplitude de [2, 6, 0, 8] = 8 Média de [4, 4, 4, 4] = 4.0 Variância de [4, 4, 4, 4] = 0.0 IQR de [4, 4, 4, 4] = 0.0 Amplitude de [4, 4, 4, 4] = 0 Média de [0, 0, 1, 1, 18] = 4.0 Variância de [0, 0, 1, 1, 18] = 61.5 IQR de [0, 0, 1, 1, 18] = 1.0 Amplitude de [0, 0, 1, 1, 18] = 18
1_Neural Networks and Deep Learning/Week 3/Planar_data_classification_with_one_hidden_layer.ipynb
###Markdown Planar data classification with one hidden layerWelcome to your week 3 programming assignment. It's time to build your first neural network, which will have a hidden layer. You will see a big difference between this model and the one you implemented using logistic regression. **You will learn how to:**- Implement a 2-class classification neural network with a single hidden layer- Use units with a non-linear activation function, such as tanh - Compute the cross entropy loss - Implement forward and backward propagation 1 - Packages Let's first import all the packages that you will need during this assignment.- [numpy](www.numpy.org) is the fundamental package for scientific computing with Python.- [sklearn](http://scikit-learn.org/stable/) provides simple and efficient tools for data mining and data analysis. - [matplotlib](http://matplotlib.org) is a library for plotting graphs in Python.- testCases provides some test examples to assess the correctness of your functions- planar_utils provide various useful functions used in this assignment ###Code # Package imports import numpy as np import matplotlib.pyplot as plt from testCases import * import sklearn import sklearn.datasets import sklearn.linear_model from planar_utils import plot_decision_boundary, sigmoid, load_planar_dataset, load_extra_datasets %matplotlib inline np.random.seed(1) # set a seed so that the results are consistent ###Output _____no_output_____ ###Markdown 2 - Dataset First, let's get the dataset you will work on. The following code will load a "flower" 2-class dataset into variables `X` and `Y`. ###Code X, Y = load_planar_dataset() ###Output _____no_output_____ ###Markdown Visualize the dataset using matplotlib. The data looks like a "flower" with some red (label y=0) and some blue (y=1) points. Your goal is to build a model to fit this data. ###Code # Visualize the data: plt.scatter(X[0, :], X[1, :], c=Y[0,:], s=40, cmap=plt.cm.Spectral); ###Output _____no_output_____ ###Markdown You have: - a numpy-array (matrix) X that contains your features (x1, x2) - a numpy-array (vector) Y that contains your labels (red:0, blue:1).Lets first get a better sense of what our data is like. **Exercise**: How many training examples do you have? In addition, what is the `shape` of the variables `X` and `Y`? **Hint**: How do you get the shape of a numpy array? [(help)](https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.shape.html) ###Code ### START CODE HERE ### (≈ 3 lines of code) m=X.shape[1] shape_X=X.shape shape_Y=Y.shape ### END CODE HERE ### print ('The shape of X is: ' + str(shape_X)) print ('The shape of Y is: ' + str(shape_Y)) print ('I have m = %d training examples!' % (m)) ###Output The shape of X is: (2, 400) The shape of Y is: (1, 400) I have m = 400 training examples! ###Markdown **Expected Output**: **shape of X** (2, 400) **shape of Y** (1, 400) **m** 400 3 - Simple Logistic RegressionBefore building a full neural network, lets first see how logistic regression performs on this problem. You can use sklearn's built-in functions to do that. Run the code below to train a logistic regression classifier on the dataset. ###Code # Train the logistic regression classifier clf = sklearn.linear_model.LogisticRegressionCV(); clf.fit(X.T, (Y.T).ravel()); ###Output _____no_output_____ ###Markdown You can now plot the decision boundary of these models. Run the code below. ###Code # Plot the decision boundary for logistic regression Y1=Y.ravel() plot_decision_boundary(lambda x: clf.predict(x), X, Y1) plt.title("Logistic Regression") # Print accuracy LR_predictions = clf.predict(X.T) print ('Accuracy of logistic regression: %d ' % float((np.dot(Y1,LR_predictions) + np.dot(1-Y1,1-LR_predictions))/float(Y1.size)*100) + '% ' + "(percentage of correctly labelled datapoints)") ###Output Accuracy of logistic regression: 47 % (percentage of correctly labelled datapoints) ###Markdown **Expected Output**: **Accuracy** 47% **Interpretation**: The dataset is not linearly separable, so logistic regression doesn't perform well. Hopefully a neural network will do better. Let's try this now! 4 - Neural Network modelLogistic regression did not work well on the "flower dataset". You are going to train a Neural Network with a single hidden layer.**Here is our model**:**Mathematically**:For one example $x^{(i)}$:$$z^{[1] (i)} = W^{[1]} x^{(i)} + b^{[1] (i)}\tag{1}$$ $$a^{[1] (i)} = \tanh(z^{[1] (i)})\tag{2}$$$$z^{[2] (i)} = W^{[2]} a^{[1] (i)} + b^{[2] (i)}\tag{3}$$$$\hat{y}^{(i)} = a^{[2] (i)} = \sigma(z^{ [2] (i)})\tag{4}$$$$y^{(i)}_{prediction} = \begin{cases} 1 & \mbox{if } a^{[2](i)} > 0.5 \\ 0 & \mbox{otherwise } \end{cases}\tag{5}$$Given the predictions on all the examples, you can also compute the cost $J$ as follows: $$J = - \frac{1}{m} \sum\limits_{i = 0}^{m} \large\left(\small y^{(i)}\log\left(a^{[2] (i)}\right) + (1-y^{(i)})\log\left(1- a^{[2] (i)}\right) \large \right) \small \tag{6}$$**Reminder**: The general methodology to build a Neural Network is to: 1. Define the neural network structure ( of input units, of hidden units, etc). 2. Initialize the model's parameters 3. Loop: - Implement forward propagation - Compute loss - Implement backward propagation to get the gradients - Update parameters (gradient descent)You often build helper functions to compute steps 1-3 and then merge them into one function we call `nn_model()`. Once you've built `nn_model()` and learnt the right parameters, you can make predictions on new data. 4.1 - Defining the neural network structure **Exercise**: Define three variables: - n_x: the size of the input layer - n_h: the size of the hidden layer (set this to 4) - n_y: the size of the output layer**Hint**: Use shapes of X and Y to find n_x and n_y. Also, hard code the hidden layer size to be 4. ###Code # GRADED FUNCTION: layer_sizes def layer_sizes(X, Y): """ Arguments: X -- input dataset of shape (input size, number of examples) Y -- labels of shape (output size, number of examples) Returns: n_x -- the size of the input layer n_h -- the size of the hidden layer n_y -- the size of the output layer """ ### START CODE HERE ### (≈ 3 lines of code) n_x=X.shape[0] n_h=4 n_y=Y.shape[0] ### END CODE HERE ### return (n_x, n_h, n_y) X_assess, Y_assess = layer_sizes_test_case() (n_x, n_h, n_y) = layer_sizes(X_assess, Y_assess) print("The size of the input layer is: n_x = " + str(n_x)) print("The size of the hidden layer is: n_h = " + str(n_h)) print("The size of the output layer is: n_y = " + str(n_y)) ###Output The size of the input layer is: n_x = 5 The size of the hidden layer is: n_h = 4 The size of the output layer is: n_y = 2 ###Markdown **Expected Output** (these are not the sizes you will use for your network, they are just used to assess the function you've just coded). **n_x** 5 **n_h** 4 **n_y** 2 4.2 - Initialize the model's parameters **Exercise**: Implement the function `initialize_parameters()`.**Instructions**:- Make sure your parameters' sizes are right. Refer to the neural network figure above if needed.- You will initialize the weights matrices with random values. - Use: `np.random.randn(a,b) * 0.01` to randomly initialize a matrix of shape (a,b).- You will initialize the bias vectors as zeros. - Use: `np.zeros((a,b))` to initialize a matrix of shape (a,b) with zeros. ###Code # GRADED FUNCTION: initialize_parameters def initialize_parameters(n_x, n_h, n_y): """ Argument: n_x -- size of the input layer n_h -- size of the hidden layer n_y -- size of the output layer Returns: params -- python dictionary containing your parameters: W1 -- weight matrix of shape (n_h, n_x) b1 -- bias vector of shape (n_h, 1) W2 -- weight matrix of shape (n_y, n_h) b2 -- bias vector of shape (n_y, 1) """ np.random.seed(2) # we set up a seed so that your output matches ours although the initialization is random. ### START CODE HERE ### (≈ 4 lines of code) W1=np.random.randn(n_h,n_x)*0.01 b1=np.zeros((n_h,1)) W2=np.random.randn(n_y,n_h)*0.01 b2=np.zeros((n_y,1)) ### END CODE HERE ### assert (W1.shape == (n_h, n_x)) assert (b1.shape == (n_h, 1)) assert (W2.shape == (n_y, n_h)) assert (b2.shape == (n_y, 1)) parameters = {"W1": W1, "b1": b1, "W2": W2, "b2": b2} return parameters n_x, n_h, n_y = initialize_parameters_test_case() parameters = initialize_parameters(n_x, n_h, n_y) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ###Output W1 = [[-0.00416758 -0.00056267] [-0.02136196 0.01640271] [-0.01793436 -0.00841747] [ 0.00502881 -0.01245288]] b1 = [[0.] [0.] [0.] [0.]] W2 = [[-0.01057952 -0.00909008 0.00551454 0.02292208]] b2 = [[0.]] ###Markdown **Expected Output**: **W1** [[-0.00416758 -0.00056267] [-0.02136196 0.01640271] [-0.01793436 -0.00841747] [ 0.00502881 -0.01245288]] **b1** [[ 0.] [ 0.] [ 0.] [ 0.]] **W2** [[-0.01057952 -0.00909008 0.00551454 0.02292208]] **b2** [[ 0.]] 4.3 - The Loop **Question**: Implement `forward_propagation()`.**Instructions**:- Look above at the mathematical representation of your classifier.- You can use the function `sigmoid()`. It is built-in (imported) in the notebook.- You can use the function `np.tanh()`. It is part of the numpy library.- The steps you have to implement are: 1. Retrieve each parameter from the dictionary "parameters" (which is the output of `initialize_parameters()`) by using `parameters[".."]`. 2. Implement Forward Propagation. Compute $Z^{[1]}, A^{[1]}, Z^{[2]}$ and $A^{[2]}$ (the vector of all your predictions on all the examples in the training set).- Values needed in the backpropagation are stored in "`cache`". The `cache` will be given as an input to the backpropagation function. ###Code # GRADED FUNCTION: forward_propagation def forward_propagation(X, parameters): """ Argument: X -- input data of size (n_x, m) parameters -- python dictionary containing your parameters (output of initialization function) Returns: A2 -- The sigmoid output of the second activation cache -- a dictionary containing "Z1", "A1", "Z2" and "A2" """ # Retrieve each parameter from the dictionary "parameters" ### START CODE HERE ### (≈ 4 lines of code) W1=parameters["W1"] b1=parameters["b1"] W2=parameters["W2"] b2=parameters["b2"] ### END CODE HERE ### # Implement Forward Propagation to calculate A2 (probabilities) ### START CODE HERE ### (≈ 4 lines of code) Z1=W1@X+b1 A1=np.tanh(Z1) Z2=W2@A1+b2 A2=sigmoid(Z2) ### END CODE HERE ### assert(A2.shape == (1, X.shape[1])) cache = {"Z1": Z1, "A1": A1, "Z2": Z2, "A2": A2} return A2, cache X_assess, parameters = forward_propagation_test_case() A2, cache = forward_propagation(X_assess, parameters) # Note: we use the mean here just to make sure that your output matches ours. print(np.mean(cache['Z1']) ,np.mean(cache['A1']),np.mean(cache['Z2']),np.mean(cache['A2'])) ###Output 0.26281864019752443 0.09199904522700109 -1.3076660128732143 0.21287768171914198 ###Markdown **Expected Output**: 0.262818640198 0.091999045227 -1.30766601287 0.212877681719 Now that you have computed $A^{[2]}$ (in the Python variable "`A2`"), which contains $a^{[2](i)}$ for every example, you can compute the cost function as follows:$$J = - \frac{1}{m} \sum\limits_{i = 0}^{m} \large{(} \small y^{(i)}\log\left(a^{[2] (i)}\right) + (1-y^{(i)})\log\left(1- a^{[2] (i)}\right) \large{)} \small\tag{13}$$**Exercise**: Implement `compute_cost()` to compute the value of the cost $J$.**Instructions**:- There are many ways to implement the cross-entropy loss. To help you, we give you how we would have implemented$- \sum\limits_{i=0}^{m} y^{(i)}\log(a^{[2](i)})$:```pythonlogprobs = np.multiply(np.log(A2),Y)cost = - np.sum(logprobs) no need to use a for loop!```(you can use either `np.multiply()` and then `np.sum()` or directly `np.dot()`). ###Code # GRADED FUNCTION: compute_cost def compute_cost(A2, Y, parameters): """ Computes the cross-entropy cost given in equation (13) Arguments: A2 -- The sigmoid output of the second activation, of shape (1, number of examples) Y -- "true" labels vector of shape (1, number of examples) parameters -- python dictionary containing your parameters W1, b1, W2 and b2 Returns: cost -- cross-entropy cost given equation (13) """ m = Y.shape[1] # number of example # Compute the cross-entropy cost ### START CODE HERE ### (≈ 2 lines of code) cost=(-1/m)*np.sum((np.dot(Y,(np.log(A2)).T)+np.dot(1-Y,(np.log(1-A2)).T))) ### END CODE HERE ### cost = np.squeeze(cost) # makes sure cost is the dimension we expect. # E.g., turns [[17]] into 17 assert(isinstance(cost, float)) return cost A2, Y_assess, parameters = compute_cost_test_case() print("cost = " + str(compute_cost(A2, Y_assess, parameters))) ###Output cost = 0.6930587610394646 ###Markdown **Expected Output**: **cost** 0.6930587610394646 Using the cache computed during forward propagation, you can now implement backward propagation.**Question**: Implement the function `backward_propagation()`.**Instructions**:Backpropagation is usually the hardest (most mathematical) part in deep learning. To help you, here again is the slide from the lecture on backpropagation. You'll want to use the six equations on the right of this slide, since you are building a vectorized implementation. <!--$\frac{\partial \mathcal{J} }{ \partial z_{2}^{(i)} } = \frac{1}{m} (a^{[2](i)} - y^{(i)})$$\frac{\partial \mathcal{J} }{ \partial W_2 } = \frac{\partial \mathcal{J} }{ \partial z_{2}^{(i)} } a^{[1] (i) T} $$\frac{\partial \mathcal{J} }{ \partial b_2 } = \sum_i{\frac{\partial \mathcal{J} }{ \partial z_{2}^{(i)}}}$$\frac{\partial \mathcal{J} }{ \partial z_{1}^{(i)} } = W_2^T \frac{\partial \mathcal{J} }{ \partial z_{2}^{(i)} } * ( 1 - a^{[1] (i) 2}) $$\frac{\partial \mathcal{J} }{ \partial W_1 } = \frac{\partial \mathcal{J} }{ \partial z_{1}^{(i)} } X^T $$\frac{\partial \mathcal{J} _i }{ \partial b_1 } = \sum_i{\frac{\partial \mathcal{J} }{ \partial z_{1}^{(i)}}}$- Note that $*$ denotes elementwise multiplication.- The notation you will use is common in deep learning coding: - dW1 = $\frac{\partial \mathcal{J} }{ \partial W_1 }$ - db1 = $\frac{\partial \mathcal{J} }{ \partial b_1 }$ - dW2 = $\frac{\partial \mathcal{J} }{ \partial W_2 }$ - db2 = $\frac{\partial \mathcal{J} }{ \partial b_2 }$ !-->- Tips: - To compute dZ1 you'll need to compute $g^{[1]'}(Z^{[1]})$. Since $g^{[1]}(.)$ is the tanh activation function, if $a = g^{[1]}(z)$ then $g^{[1]'}(z) = 1-a^2$. So you can compute $g^{[1]'}(Z^{[1]})$ using `(1 - np.power(A1, 2))`. ###Code # GRADED FUNCTION: backward_propagation def backward_propagation(parameters, cache, X, Y): """ Implement the backward propagation using the instructions above. Arguments: parameters -- python dictionary containing our parameters cache -- a dictionary containing "Z1", "A1", "Z2" and "A2". X -- input data of shape (2, number of examples) Y -- "true" labels vector of shape (1, number of examples) Returns: grads -- python dictionary containing your gradients with respect to different parameters """ m = X.shape[1] # First, retrieve W1 and W2 from the dictionary "parameters". ### START CODE HERE ### (≈ 2 lines of code) W1=parameters["W1"] W2=parameters["W2"] ### END CODE HERE ### # Retrieve also A1 and A2 from dictionary "cache". ### START CODE HERE ### (≈ 2 lines of code) A1=cache["A1"] A2=cache["A2"] ### END CODE HERE ### # Backward propagation: calculate dW1, db1, dW2, db2. ### START CODE HERE ### (≈ 6 lines of code, corresponding to 6 equations on slide above) dZ2=A2-Y dW2=(1/m)*np.dot(dZ2,A1.T) db2=(1/m)*np.sum(dZ2,axis=1,keepdims=True) dZ1=np.dot(W2.T,dZ2)*(1-np.power(A1,2)) dW1=(1/m)*np.dot(dZ1,X.T) db1=(1/m)*np.sum(dZ1,axis=1,keepdims=True) ### END CODE HERE ### grads = {"dW1": dW1, "db1": db1, "dW2": dW2, "db2": db2} return grads parameters, cache, X_assess, Y_assess = backward_propagation_test_case() grads = backward_propagation(parameters, cache, X_assess, Y_assess) print ("dW1 = "+ str(grads["dW1"])) print ("db1 = "+ str(grads["db1"])) print ("dW2 = "+ str(grads["dW2"])) print ("db2 = "+ str(grads["db2"])) ###Output dW1 = [[ 0.00301023 -0.00747267] [ 0.00257968 -0.00641288] [-0.00156892 0.003893 ] [-0.00652037 0.01618243]] db1 = [[ 0.00176201] [ 0.00150995] [-0.00091736] [-0.00381422]] dW2 = [[ 0.00078841 0.01765429 -0.00084166 -0.01022527]] db2 = [[-0.16655712]] ###Markdown **Expected output**: **dW1** [[ 0.00301023 -0.00747267] [ 0.00257968 -0.00641288] [-0.00156892 0.003893 ] [-0.00652037 0.01618243]] **db1** [[ 0.00176201] [ 0.00150995] [-0.00091736] [-0.00381422]] **dW2** [[ 0.00078841 0.01765429 -0.00084166 -0.01022527]] **db2** [[-0.16655712]] **Question**: Implement the update rule. Use gradient descent. You have to use (dW1, db1, dW2, db2) in order to update (W1, b1, W2, b2).**General gradient descent rule**: $ \theta = \theta - \alpha \frac{\partial J }{ \partial \theta }$ where $\alpha$ is the learning rate and $\theta$ represents a parameter.**Illustration**: The gradient descent algorithm with a good learning rate (converging) and a bad learning rate (diverging). Images courtesy of Adam Harley. ###Code # GRADED FUNCTION: update_parameters def update_parameters(parameters, grads, learning_rate = 1.2): """ Updates parameters using the gradient descent update rule given above Arguments: parameters -- python dictionary containing your parameters grads -- python dictionary containing your gradients Returns: parameters -- python dictionary containing your updated parameters """ # Retrieve each parameter from the dictionary "parameters" ### START CODE HERE ### (≈ 4 lines of code) W1=parameters["W1"] b1=parameters["b1"] W2=parameters["W2"] b2=parameters["b2"] ### END CODE HERE ### # Retrieve each gradient from the dictionary "grads" ### START CODE HERE ### (≈ 4 lines of code) dW1=grads["dW1"] db1=grads["db1"] dW2=grads["dW2"] db2=grads["db2"] ## END CODE HERE ### # Update rule for each parameter ### START CODE HERE ### (≈ 4 lines of code) W1-=learning_rate*dW1 b1-=learning_rate*db1 W2-=learning_rate*dW2 b2-=learning_rate*db2 ### END CODE HERE ### parameters = {"W1": W1, "b1": b1, "W2": W2, "b2": b2} return parameters parameters, grads = update_parameters_test_case() parameters = update_parameters(parameters, grads) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ###Output W1 = [[-0.00643025 0.01936718] [-0.02410458 0.03978052] [-0.01653973 -0.02096177] [ 0.01046864 -0.05990141]] b1 = [[-1.02420756e-06] [ 1.27373948e-05] [ 8.32996807e-07] [-3.20136836e-06]] W2 = [[-0.01041081 -0.04463285 0.01758031 0.04747113]] b2 = [[0.00010457]] ###Markdown **Expected Output**: **W1** [[-0.00643025 0.01936718] [-0.02410458 0.03978052] [-0.01653973 -0.02096177] [ 0.01046864 -0.05990141]] **b1** [[ -1.02420756e-06] [ 1.27373948e-05] [ 8.32996807e-07] [ -3.20136836e-06]] **W2** [[-0.01041081 -0.04463285 0.01758031 0.04747113]] **b2** [[ 0.00010457]] 4.4 - Integrate parts 4.1, 4.2 and 4.3 in nn_model() **Question**: Build your neural network model in `nn_model()`.**Instructions**: The neural network model has to use the previous functions in the right order. ###Code # GRADED FUNCTION: nn_model def nn_model(X, Y, n_h, num_iterations = 10000, print_cost=False): """ Arguments: X -- dataset of shape (2, number of examples) Y -- labels of shape (1, number of examples) n_h -- size of the hidden layer num_iterations -- Number of iterations in gradient descent loop print_cost -- if True, print the cost every 1000 iterations Returns: parameters -- parameters learnt by the model. They can then be used to predict. """ np.random.seed(3) n_x = layer_sizes(X, Y)[0] n_y = layer_sizes(X, Y)[2] # Initialize parameters, then retrieve W1, b1, W2, b2. Inputs: "n_x, n_h, n_y". Outputs = "W1, b1, W2, b2, parameters". ### START CODE HERE ### (≈ 5 lines of code) parameters = initialize_parameters(n_x, n_h, n_y) ### END CODE HERE ### # Loop (gradient descent) for i in range(0, num_iterations): ### START CODE HERE ### (≈ 4 lines of code) # Forward propagation. Inputs: "X, parameters". Outputs: "A2, cache". A2, cache = forward_propagation(X, parameters) # Cost function. Inputs: "A2, Y, parameters". Outputs: "cost". cost=compute_cost(A2, Y, parameters) # Backpropagation. Inputs: "parameters, cache, X, Y". Outputs: "grads". grads = backward_propagation(parameters, cache, X, Y) # Gradient descent parameter update. Inputs: "parameters, grads". Outputs: "parameters". parameters = update_parameters(parameters, grads) ### END CODE HERE ### # Print the cost every 1000 iterations if print_cost and i % 1000 == 0: print ("Cost after iteration %i: %f" %(i, cost)) return parameters X_assess, Y_assess = nn_model_test_case() parameters = nn_model(X_assess, Y_assess, 4, num_iterations=10000, print_cost=True) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ###Output Cost after iteration 0: 0.692739 Cost after iteration 1000: 0.000218 Cost after iteration 2000: 0.000107 Cost after iteration 3000: 0.000071 Cost after iteration 4000: 0.000053 Cost after iteration 5000: 0.000042 Cost after iteration 6000: 0.000035 Cost after iteration 7000: 0.000030 Cost after iteration 8000: 0.000026 Cost after iteration 9000: 0.000023 W1 = [[-0.65848169 1.21866811] [-0.76204273 1.39377573] [ 0.5792005 -1.10397703] [ 0.76773391 -1.41477129]] b1 = [[ 0.287592 ] [ 0.3511264 ] [-0.2431246 ] [-0.35772805]] W2 = [[-2.45566237 -3.27042274 2.00784958 3.36773273]] b2 = [[0.20459656]] ###Markdown **Expected Output**: **cost after iteration 0** 0.692739 $\vdots$ $\vdots$ **W1** [[-0.65848169 1.21866811] [-0.76204273 1.39377573] [ 0.5792005 -1.10397703] [ 0.76773391 -1.41477129]] **b1** [[ 0.287592 ] [ 0.3511264 ] [-0.2431246 ] [-0.35772805]] **W2** [[-2.45566237 -3.27042274 2.00784958 3.36773273]] **b2** [[ 0.20459656]] 4.5 Predictions**Question**: Use your model to predict by building predict().Use forward propagation to predict results.**Reminder**: predictions = $y_{prediction} = \mathbb 1 \text{{activation > 0.5}} = \begin{cases} 1 & \text{if}\ activation > 0.5 \\ 0 & \text{otherwise} \end{cases}$ As an example, if you would like to set the entries of a matrix X to 0 and 1 based on a threshold you would do: ```X_new = (X > threshold)``` ###Code # GRADED FUNCTION: predict def predict(parameters, X): """ Using the learned parameters, predicts a class for each example in X Arguments: parameters -- python dictionary containing your parameters X -- input data of size (n_x, m) Returns predictions -- vector of predictions of our model (red: 0 / blue: 1) """ # Computes probabilities using forward propagation, and classifies to 0/1 using 0.5 as the threshold. ### START CODE HERE ### (≈ 2 lines of code) A2, _ = forward_propagation(X, parameters) predictions=(A2>0.5)*1 ### END CODE HERE ### return predictions parameters, X_assess = predict_test_case() predictions = predict(parameters, X_assess) print("predictions mean = " + str(np.mean(predictions))) ###Output predictions mean = 0.6666666666666666 ###Markdown **Expected Output**: **predictions mean** 0.666666666667 It is time to run the model and see how it performs on a planar dataset. Run the following code to test your model with a single hidden layer of $n_h$ hidden units. ###Code # Build a model with a n_h-dimensional hidden layer parameters = nn_model(X, Y, n_h = 4, num_iterations = 10000, print_cost=True) # Plot the decision boundary plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y.ravel()) plt.title("Decision Boundary for hidden layer size " + str(4)) ###Output Cost after iteration 0: 0.693048 Cost after iteration 1000: 0.288083 Cost after iteration 2000: 0.254385 Cost after iteration 3000: 0.233864 Cost after iteration 4000: 0.226792 Cost after iteration 5000: 0.222644 Cost after iteration 6000: 0.219731 Cost after iteration 7000: 0.217504 Cost after iteration 8000: 0.219469 Cost after iteration 9000: 0.218611 ###Markdown **Expected Output**: **Cost after iteration 9000** 0.218607 ###Code # Print accuracy predictions = predict(parameters, X) print ('Accuracy: %d' % float((np.dot(Y,predictions.T) + np.dot(1-Y,1-predictions.T))/float(Y.size)*100) + '%') ###Output Accuracy: 90% ###Markdown **Expected Output**: **Accuracy** 90% Accuracy is really high compared to Logistic Regression. The model has learnt the leaf patterns of the flower! Neural networks are able to learn even highly non-linear decision boundaries, unlike logistic regression. Now, let's try out several hidden layer sizes. 4.6 - Tuning hidden layer size (optional/ungraded exercise) Run the following code. It may take 1-2 minutes. You will observe different behaviors of the model for various hidden layer sizes. ###Code # This may take about 2 minutes to run plt.figure(figsize=(16, 32)) hidden_layer_sizes = [1, 2, 3, 4, 5, 20, 50] for i, n_h in enumerate(hidden_layer_sizes): plt.subplot(5, 2, i+1) plt.title('Hidden Layer of size %d' % n_h) parameters = nn_model(X, Y, n_h, num_iterations = 5000) plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y.ravel()) predictions = predict(parameters, X) accuracy = float((np.dot(Y,predictions.T) + np.dot(1-Y,1-predictions.T))/float(Y.size)*100) print ("Accuracy for {} hidden units: {} %".format(n_h, accuracy)) ###Output Accuracy for 1 hidden units: 67.5 % Accuracy for 2 hidden units: 67.25 % Accuracy for 3 hidden units: 90.75 % Accuracy for 4 hidden units: 90.5 % Accuracy for 5 hidden units: 91.25 % Accuracy for 20 hidden units: 90.0 % Accuracy for 50 hidden units: 90.25 % ###Markdown **Interpretation**:- The larger models (with more hidden units) are able to fit the training set better, until eventually the largest models overfit the data. - The best hidden layer size seems to be around n_h = 5. Indeed, a value around here seems to fits the data well without also incurring noticable overfitting.- You will also learn later about regularization, which lets you use very large models (such as n_h = 50) without much overfitting. **Optional questions**:**Note**: Remember to submit the assignment but clicking the blue "Submit Assignment" button at the upper-right. Some optional/ungraded questions that you can explore if you wish: - What happens when you change the tanh activation for a sigmoid activation or a ReLU activation?- Play with the learning_rate. What happens?- What if we change the dataset? (See part 5 below!) **You've learnt to:**- Build a complete neural network with a hidden layer- Make a good use of a non-linear unit- Implemented forward propagation and backpropagation, and trained a neural network- See the impact of varying the hidden layer size, including overfitting. Nice work! 5) Performance on other datasets If you want, you can rerun the whole notebook (minus the dataset part) for each of the following datasets. ###Code # Datasets noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure = load_extra_datasets() datasets = {"noisy_circles": noisy_circles, "noisy_moons": noisy_moons, "blobs": blobs, "gaussian_quantiles": gaussian_quantiles} ### START CODE HERE ### (choose your dataset) ### END CODE HERE ### X, Y = datasets[dataset] X, Y = X.T, Y.reshape(1, Y.shape[0]) # make blobs binary if dataset == "blobs": Y = Y%2 # Visualize the data plt.scatter(X[0, :], X[1, :], c=Y, s=40, cmap=plt.cm.Spectral); ###Output _____no_output_____
src/notebooks/mixs-to-rdf/mixs-to-rdf.ipynb
###Markdown MIxS to RDF This notebook demonstrates how to use the mixs_to_rdf library to convert MIxS spreadsheets to RDF. Load mixs-to-rdf library* In order to find the library, you need to add the path to the system. * rdflib is needed in order to work with output graphs ###Code import os, sys sys.path.append(os.path.abspath('../../code/mixs_to_rdf/')) # add rdf_etl module to sys path from mixs_file_to_rdf import mixs_package_file_to_rdf, mixs_package_directory_to_rdf from rdflib import Graph ###Output _____no_output_____ ###Markdown Review help information for mixs_package_file_to_rdf function. ###Code help(mixs_package_file_to_rdf) ###Output Help on function mixs_package_file_to_rdf in module mixs_file_to_rdf: mixs_package_file_to_rdf(file_name, mixs_version, package_name='', term_type='class', file_type='excel', sep='\t', base_iri='https://gensc.org/mixs#', ontology_iri='https://gensc.org/mixs.owl', output_file='', ontology_format='turtle', print_output=False) Builds an ontology (rdflib graph) from a MIxS package file. Args: file_name: The name of MIxS package file. mixs_version: The version of MIxS package. package_name: Overrides the package name provided in the package Excel spreadsheet. This argument if necessary when using a file is a csv or tsv. term_type: Specifies if the MIxS terms will be represented as classes or data properties. Accepted values: 'class', 'data property' Default: 'class' file_type: The type of file being processed. If file type is not 'excel', a field separator/delimitor must be provided. Default: 'excel' sep: Specifies the field separator/delimitor for non-Excel files. base_iri: The IRI used as prefix for MIxS terms. ontology_iri: The IRI used for the output ontology. output_file: The file used to save the output. If saving to different directory, include the path (e.g., '../output/mixs.ttl'). ontology_format: The rdf syntax of the output ontology. Accepted values: 'turtle', 'ttl', 'nt', 'ntriples', 'trix', 'json-ld', 'xml' Default: 'turtle' print_output: Specifies whether to print ontology on screen. Default: False Returns: rdflib Graph ###Markdown Test creating RDF versions of the MIxS-air, version 5, package. RDF files are output to the output directory.* test_classes.ttl will can MIxS terms converted to classes.* test_classes.ttl will can MIxS terms converted to data properties. ###Code test_file = "../../mixs_data/mixs_v5_packages/MIxSair_20180621.xlsx" graph_cls = mixs_package_file_to_rdf(test_file, 5, output_file='output/test_classes.ttl') graph_dp = mixs_package_file_to_rdf(test_file, 5, term_type='data property', output_file='output/test_dataproperties.ttl') ###Output _____no_output_____ ###Markdown Test creating RDF versions of all MIxS package version 4 & 5 from a specified directories. RDF files are output to the output directory.* test_classes.ttl will can MIxS terms converted to classes.* test_classes.ttl will can MIxS terms converted to data properties. Review help information for mixs_package_directory_to_rdf function. ###Code help(mixs_package_directory_to_rdf) version_4_dir = '../../mixs_data/mixs_v4_packages/' version_5_dir = '../../mixs_data/mixs_v5_packages/' ###Output _____no_output_____ ###Markdown First create version with terms as classes.**NB:** The base IRI is changes to `https://gensc.org/mixs/mixs-class` ###Code mixs_4_package_class_graph = mixs_package_directory_to_rdf(version_4_dir, 4, base_iri="https://gensc.org/mixs/mixs-class#") mixs_5_package_class_graph = mixs_package_directory_to_rdf(version_5_dir, 5, base_iri="https://gensc.org/mixs/mixs-class#") ###Output processing: MIxShumanskin_20180621.xlsx processing: MIxSwater_20180621.xlsx processing: MIxShydrocarbcores_20180621.xlsx processing: MIxShumangut_20180621.xlsx processing: MIxSair_20180621.xlsx processing: MIxShumanoral_20180621.xlsx processing: MIxShydrocarbfs_20180621.xlsx processing: MIxSbuiltenv_20180621.xlsx processing: MIxShumanassoc_20180621.xlsx processing: MIxSsoil_20180621.xlsx processing: MIxSsediment_20180621.xlsx processing: MIxShostassoc_20180621.xlsx processing: MIxSwastesludge_20180621.xlsx processing: MIxShumanvaginal_20180621.xlsx processing: MIxSplantassoc_20180621.xlsx processing: MIxSmatbiofilm_20180621.xlsx processing: MIxSmisc_20180621.xlsx ###Markdown Merge MIxS 4 & 5 class graphs and save output ###Code mixs_package_class_graph = Graph() mixs_package_class_graph = mixs_4_package_class_graph + mixs_5_package_class_graph ## save output mixs_package_class_graph.serialize(format='turtle', destination='output/mixs_package_class.ttl') ###Output _____no_output_____ ###Markdown Next create version with terms as data properties.**NB:** The base IRI is changes to `https://gensc.org/mixs/mixs-data-property` ###Code mixs_4_package_dp_graph = mixs_package_directory_to_rdf(version_4_dir, 4, term_type='data property', base_iri="https://gensc.org/mixs/mixs-data-property#") mixs_5_package_dp_graph = mixs_package_directory_to_rdf(version_5_dir, 5, term_type='data property', base_iri="https://gensc.org/mixs/mixs-data-property#") ###Output processing: MIxShumanskin_20180621.xlsx processing: MIxSwater_20180621.xlsx processing: MIxShydrocarbcores_20180621.xlsx processing: MIxShumangut_20180621.xlsx processing: MIxSair_20180621.xlsx processing: MIxShumanoral_20180621.xlsx processing: MIxShydrocarbfs_20180621.xlsx processing: MIxSbuiltenv_20180621.xlsx processing: MIxShumanassoc_20180621.xlsx processing: MIxSsoil_20180621.xlsx processing: MIxSsediment_20180621.xlsx processing: MIxShostassoc_20180621.xlsx processing: MIxSwastesludge_20180621.xlsx processing: MIxShumanvaginal_20180621.xlsx processing: MIxSplantassoc_20180621.xlsx processing: MIxSmatbiofilm_20180621.xlsx processing: MIxSmisc_20180621.xlsx ###Markdown Merge MIxS 4 & 5 data property graphs and save output ###Code mixs_package_dp_graph = Graph() mixs_package_dp_graph = mixs_4_package_dp_graph + mixs_5_package_dp_graph ## save output mixs_package_dp_graph.serialize(format='turtle', destination='output/mixs_package_dp.ttl') ###Output _____no_output_____ ###Markdown Test SPARQL queries on ontologies As an example, I'll use the class version of MIxS terms. Note: rdflib is not the best libary for doing queries. It is SLOW. demonstration purposes it is fine. Find the first terms and labels ###Code query = """ prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> prefix mixs: <https://gensc.org/mixs/mixs-class#> select ?iri ?label where { ?iri rdfs:subClassOf mixs:mixs_term ; rdfs:label ?label . } limit 5 """ results = mixs_package_class_graph.query(query) for r in results: print(f"""{r.iri:60} {r.label}""") ###Output https://gensc.org/mixs/mixs-class#annual_season_precpt mean annual and seasonal precipitation https://gensc.org/mixs/mixs-class#host_common_name host common name https://gensc.org/mixs/mixs-class#root_med_carbon rooting medium carbon https://gensc.org/mixs/mixs-class#urogenit_disord urogenital disorder https://gensc.org/mixs/mixs-class#assembly_software assembly software ###Markdown Find to number of terms in version 4 & 5 ###Code query = """ prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> prefix mixs: <https://gensc.org/mixs/mixs-class#> select (count (?iri_v4) as ?num_v4) (count (?iri_v5) as ?num_v5) where { { ?iri_v4 rdfs:subClassOf mixs:mixs_term ; mixs:mixs_version ?version . filter (?version = 4) } union { ?iri_v5 rdfs:subClassOf mixs:mixs_term ; mixs:mixs_version ?version . filter (?version = 5) } } """ results = mixs_package_class_graph.query(query) for r in results: print(f""" number of mixs 4 terms: {r.num_v4} number of mixs 5 terms: {r.num_v5} """) ###Output number of mixs 4 terms: 343 number of mixs 5 terms: 601 ###Markdown Find terms that are in both versions 4 & 5 ###Code query = """ prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> prefix mixs: <https://gensc.org/mixs/mixs-class#> select ?iri ?version_4 ?version_5 where { ?iri rdfs:subClassOf mixs:mixs_term ; mixs:mixs_version ?version_4, ?version_5 . values (?version_4 ?version_5) { (4 5) } } limit 5 """ results = mixs_package_class_graph.query(query) for r in results: print(f"""{r.iri:60} {r.version_4} {r.version_5}""") ###Output https://gensc.org/mixs/mixs-class#host_common_name 4 5 https://gensc.org/mixs/mixs-class#urogenit_disord 4 5 https://gensc.org/mixs/mixs-class#host_disease_stat 4 5 https://gensc.org/mixs/mixs-class#sewage_type 4 5 https://gensc.org/mixs/mixs-class#reactor_type 4 5 ###Markdown Find total number of terms that are in both versions 4 & 5 ###Code query = """ prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> prefix mixs: <https://gensc.org/mixs/mixs-class#> select (count (?iri) as ?num) where { ?iri rdfs:subClassOf mixs:mixs_term ; mixs:mixs_version ?version_4, ?version_5 . values (?version_4 ?version_5) { (4 5) } } """ results = mixs_package_class_graph.query(query) for r in results: print(f"""number of mixs terms in version 4 & 5: {r.num}""") ###Output number of mixs terms in version 4 & 5: 329
Reinforcement Learning for Ion Traps.ipynb
###Markdown Reinforcement Learning for Ion Trap Quantum Computers This exercise is a short extension of the **Ion Trap Reinforcement Learning Environment** where we are going to employ a Projective Simulation (PS) agent to use short laser pulse sequences mapping an initially unentangled state $|000\rangle$ onto a GHZ-like state:\begin{align}|\mathrm{GHZ}\rangle = \frac{1}{\sqrt{d}}\sum_{i=0}^{d-1}|iii\rangle.\nonumber\end{align}We will consider three qutrits, i.e., $d=3$ for simplicity but you may choose to extend this at your own leisure.More formally, we do not want to find GHZ states exactly but those states which are maximally entangled. We consider $n$ $d$-level states to be maximally entangled if they have a *Schmidt rank vector* (SRV) of $(d,...,d)$ where the $i$th entry is the rank of the reduced density matrix $\rho_i=\mathrm{tr}_{\bar{i}}(\rho)$ where $\bar{i}$ is the complement of $\{i\}$ in $\{1,...,n\}$.Luckily, you don't really have to take care of this since this is already the default settings of the environment which we are going to load now: ###Code from ion_trap import IonTrapEnv ###Output _____no_output_____ ###Markdown That was easy. According to the docs in the `init` method, the class allows the following kwargs:* `num_ions` (int): The number of ions. Defaults to 3.* `dim` (int): The local (odd) dimension of an ion. Defaults to 3.* `goal` (list): List of SRVs that are rewarded. Defaults to `[[3,3,3]]`.* `phases` (dict): The phases defining the laser gate set. Defaults to `{'pulse_angles': [np.pi/2], 'pulse_phases': [0, np.pi/2, np.pi/6], 'ms_phases': [-np.pi/2]}`* `max_steps` (int): The maximum number of allowed time steps. Defaults to 10.If you want to change anything you need to provide kwargs in form of a `dict` with the desired arguments as follows `IonTrapEnv(**{ 'max_steps': 20 })`. Indeed, let us submit a small change. Since this is just supposed to be a small scale test, let us reduce the number of allowed phases and therefore, the number of possible actions. ###Code import numpy as np KWARGS = {'phases': {'pulse_angles': [np.pi/2], 'pulse_phases': [np.pi/2], 'ms_phases': [-np.pi/2]}} env = IonTrapEnv(**KWARGS) ###Output _____no_output_____ ###Markdown Next, we need to get the reinforcement learning agent that is to learn some pulse sequences. We have a simple PS agent for you in store: ###Code from ps import PSAgent ###Output _____no_output_____ ###Markdown For the args of this class the docs say the following:* `num_actions` (int): The number of available actions.* `glow` (float, optional): The glow (or eta) parameter. Defaults to 0.1* `damp` (float, optional): The damping (or gamma) parameter. Defaults to 0.* `softmax` (float, optional): The softmax (or beta) parameter. Defaults to 0.1.We don't know the number of actions at this point, but possibly want to keep all the other default parameters. Let's ask the environment how many actions there are and initialize the agent accordingly. ###Code num_actions = env.num_actions agent = PSAgent(num_actions) ###Output _____no_output_____ ###Markdown Fantastic, we have everything ready for a first run. Let's do that. The interaction between an environment and an agent is standardized through the [*openAI* `gym`](https://github.com/openai/gym) environments. In terms of code, we can imagine the interaction to go as follows,Indeed, every reinforcement learning environment should provide at least two methods:* `reset()`: Resets the environment to its initial state. *Returns* the initial observation.* `step(action)`: Performs an action (given by an action index) on the environment. *Returns* the new observation, an associated reward and a bool value `done` which indicates whether a terminal state has been reached.The agent on the other hand, supports the following two main methods:* `predict(observation)`: Given an observation, the agent predicts an action. *Returns* an action index.* `learn(reward)`: Uses the current reward to update internal network.Knowing that the `IonTrapEnv` has been built according to this standard and the agent features the two methods above, we can start coding the interaction between agent and environment: ###Code # data set for performance evaluation DATA_STEPS = [] # maximum number of episodes NUM_EPISODES = 5000 for i in range(NUM_EPISODES): # initial observation from environment observation = env.reset() #bool: whether or not the environment has finished the episode done = False #int: the current time step in this episode num_steps = 0 action_seq = [] while not done: # increment counter num_steps += 1 # predict action action = agent.predict(observation) action_seq.append(action) # perform action on environment and receive observation and reward observation, reward, done = env.step(action) # learn from reward agent.train(reward) # gather statistics if done: DATA_STEPS.append(num_steps) print(action_seq) ###Output [0, 1, 5, 3, 0] ###Markdown And this is all the code that is needed to have an agent interact with our environment! In `DATA_STEPS` we have gathered the data that keeps track of the length of pulse sequences that generate GHZ-like states. We can use `matplotlib` to visualize the performance of the agent over time: ###Code import matplotlib.pyplot as plt import numpy as np x_axis = np.arange(len(DATA_STEPS)) plt.plot(x_axis, DATA_STEPS) plt.ylabel('Length of pulse sequence') plt.xlabel('Episode') ###Output _____no_output_____ ###Markdown Reinforcement Learning for Ion Trap Quantum Computers This exercise is a short extension of the **Ion Trap Reinforcement Learning Environment** where we are going to employ a Projective Simulation (PS) agent to use short laser pulse sequences mapping an initially unentangled state $|000\rangle$ onto a GHZ-like state:\begin{align}|\mathrm{GHZ}\rangle = \frac{1}{\sqrt{d}}\sum_{i=0}^{d-1}|iii\rangle.\nonumber\end{align}We will consider three qutrits, i.e., $d=3$ for simplicity but you may choose to extend this at your own leisure.More formally, we do not want to find GHZ states exactly but those states which are maximally entangled. We consider $n$ $d$-level states to be maximally entangled if they have a *Schmidt rank vector* (SRV) of $(d,...,d)$ where the $i$th entry is the rank of the reduced density matrix $\rho_i=\mathrm{tr}_{\bar{i}}(\rho)$ where $\bar{i}$ is the complement of $\{i\}$ in $\{1,...,n\}$.Luckily, you don't really have to take care of this since this is already the default settings of the environment which we are going to load now: ###Code from ion_trap import IonTrapEnv ###Output _____no_output_____ ###Markdown That was easy. According to the docs in the `init` method, the class allows the following kwargs:* `num_ions` (int): The number of ions. Defaults to 3.* `dim` (int): The local (odd) dimension of an ion. Defaults to 3.* `goal` (list): List of SRVs that are rewarded. Defaults to `[[3,3,3]]`.* `phases` (dict): The phases defining the laser gate set. Defaults to `{'pulse_angles': [np.pi/2], 'pulse_phases': [0, np.pi/2, np.pi/6], 'ms_phases': [-np.pi/2]}`* `max_steps` (int): The maximum number of allowed time steps. Defaults to 10.If you want to change anything you need to provide kwargs in form of a `dict` with the desired arguments as follows `IonTrapEnv(**{ 'max_steps': 20 })`. Indeed, let us submit a small change. Since this is just supposed to be a small scale test, let us reduce the number of allowed phases and therefore, the number of possible actions. ###Code import numpy as np KWARGS = {'phases': {'pulse_angles': [np.pi/2], 'pulse_phases': [np.pi/2], 'ms_phases': [-np.pi/2]}} env = IonTrapEnv(**KWARGS) ###Output _____no_output_____ ###Markdown Next, we need to get the reinforcement learning agent that is to learn some pulse sequences. We have a simple PS agent for you in store: ###Code from ps import PSAgent ###Output _____no_output_____ ###Markdown For the args of this class the docs say the following:* `num_actions` (int): The number of available actions.* `glow` (float, optional): The glow (or eta) parameter. Defaults to 0.1* `damp` (float, optional): The damping (or gamma) parameter. Defaults to 0.* `softmax` (float, optional): The softmax (or beta) parameter. Defaults to 0.1.We don't know the number of actions at this point, but possibly want to keep all the other default parameters. Let's ask the environment how many actions there are and initialize the agent accordingly. ###Code num_actions = env.num_actions agent = PSAgent(num_actions) ###Output _____no_output_____ ###Markdown Fantastic, we have everything ready for a first run. Let's do that. The interaction between an environment and an agent is standardized through the [*openAI* `gym`](https://github.com/openai/gym) environments. In terms of code, we can imagine the interaction to go as follows,Indeed, every reinforcement learning environment should provide at least two methods:* `reset()`: Resets the environment to its initial state. *Returns* the initial observation.* `step(action)`: Performs an action (given by an action index) on the environment. *Returns* the new observation, an associated reward and a bool value `done` which indicates whether a terminal state has been reached.The agent on the other hand, supports the following two main methods:* `predict(observation)`: Given an observation, the agent predicts an action. *Returns* an action index.* `learn(reward)`: Uses the current reward to update internal network.Knowing that the `IonTrapEnv` has been built according to this standard and the agent features the two methods above, we can start coding the interaction between agent and environment: ###Code # data set for performance evaluation DATA_STEPS = [] # maximum number of episodes NUM_EPISODES = 5000 for i in range(NUM_EPISODES): # initial observation from environment observation = env.reset() #bool: whether or not the environment has finished the episode done = False #int: the current time step in this episode num_steps = 0 action_seq = [] while not done: # increment counter num_steps += 1 # predict action action = agent.predict(observation) action_seq.append(action) # perform action on environment and receive observation and reward observation, reward, done = env.step(action) # learn from reward agent.train(reward) # gather statistics if done: DATA_STEPS.append(num_steps) print(action_seq) ###Output [0, 1, 5, 3, 0] ###Markdown And this is all the code that is needed to have an agent interact with our environment! In `DATA_STEPS` we have gathered the data that keeps track of the length of pulse sequences that generate GHZ-like states. We can use `matplotlib` to visualize the performance of the agent over time: ###Code import matplotlib.pyplot as plt import numpy as np x_axis = np.arange(len(DATA_STEPS)) plt.plot(x_axis, DATA_STEPS) plt.ylabel('Length of pulse sequence') plt.xlabel('Episode') ###Output _____no_output_____ ###Markdown Reinforcement Learning for Ion Trap Quantum Computers This exercise is a short extension of the two Tutorials: - **Ion Trap Reinforcement Learning Environment Tutorial** - **Projective Simulation Tutorial** Here we are going to employ the implemented Projective Simulation (PS) agent to use short laser pulse sequences mapping an initially unentangled state $|000\rangle$ onto a GHZ-like state:\begin{align}|\mathrm{GHZ}\rangle = \frac{1}{\sqrt{d}}\sum_{i=0}^{d-1}|iii\rangle.\nonumber\end{align}We will consider three qutrits, i.e., $d=3$ for simplicity but you may choose to extend this at your own leisure.More formally, we do not want to find GHZ states exactly but those states which are maximally entangled. We consider $n$ $d$-level states to be maximally entangled if they have a *Schmidt rank vector* (SRV) of $(d,...,d)$ where the $i$th entry is the rank of the reduced density matrix $\rho_i=\mathrm{tr}_{\bar{i}}(\rho)$ where $\bar{i}$ is the complement of $\{i\}$ in $\{1,...,n\}$.Luckily, you don't really have to take care of this since this is already the default settings of the environment which we are going to load now: ###Code from ENV.IonTrap_env import IonTrapEnv ###Output _____no_output_____ ###Markdown That was easy. According to the docs in the `init` method, the class allows the following kwargs:* `num_ions` (int): The number of ions. Defaults to 3.* `dim` (int): The local (odd) dimension of an ion. Defaults to 3.* `goal` (list): List of SRVs that are rewarded. Defaults to `[[3,3,3]]`.* `phases` (dict): The phases defining the laser gate set. Defaults to `{'pulse_angles': [np.pi/2], 'pulse_phases': [0, np.pi/2, np.pi/6], 'ms_phases': [-np.pi/2]}`* `max_steps` (int): The maximum number of allowed time steps. Defaults to 10.If you want to change anything you need to provide kwargs in form of a `dict` with the desired arguments as follows `IonTrapEnv(**{ 'max_steps': 20 })`. Indeed, let us submit a small change. Since this is just supposed to be a small scale test, let us reduce the number of allowed phases and therefore, the number of possible actions. ###Code import numpy as np KWARGS = {'phases': {'pulse_angles': [np.pi/2], 'pulse_phases': [np.pi/2], 'ms_phases': [-np.pi/2]}} env = IonTrapEnv(**KWARGS) ###Output _____no_output_____ ###Markdown Next, we need to get the PS agent and the ECM: ###Code from PS.agent.Universal_Agent import UniversalAgent from PS.ecm.Universal_ECM import UniversalECM ###Output _____no_output_____ ###Markdown For the initialisation we read through the docs: Agent: * `ECM` (object): Episodic compositional memory (ECM). The brain of the agent.* `actions` (np.ndarray): An array of possible actions. Specified by the environment.* `adj_matrix` (np.ndarray): Adjancency matrix representing the structure of the default decision tree.ECM: * `gamma_damping` (float): The damping (or gamma) parameter. Set to zero if the environment doesn't change in time. Defaults to 0.* `eta_glow_damping` (float): glow parameter. Defaults to 0.1.* `beta` (float): softmax parameter. Defaults to 1.We don't know the actions and the adjancency matrix at this point, but want to keep all the other default parameters. Let's at first initialize the adjancency matrix. For now a two layered clip network is enough, later you can try other structures. I have a little task here.__TASK:__ Initialize the adjancency matrix for the following decision tree. Use the PS Tutorial for help. Tipp: The size of the matrix is (number actions + 1, number actions + 1) ###Code ###Output _____no_output_____ ###Markdown __SOLUTION:__ ###Code num_actions = len(env.actions) adj_matrix = np.zeros((num_actions + 1, num_actions + 1)) adj_matrix[0][list(range(1, num_actions + 1))] = 1 ###Output _____no_output_____ ###Markdown Now we can ask the environment what the actions are and initialize the agent accordingly: ###Code actions = env.actions ecm = UniversalECM() agent = UniversalAgent(ECM=ecm, actions=actions, adj_matrix=adj_matrix) ###Output _____no_output_____ ###Markdown Fantastic, we have everything ready for a first run. Let's do that. The interaction between an environment and an agent is standardized through the [*openAI* `gym`](https://github.com/openai/gym) environments. In terms of code, we can imagine the interaction to go as follows,Indeed, every reinforcement learning environment should provide at least two methods:* `reset()`: Resets the environment to its initial state. *Returns* the initial observation.* `step(action)`: Performs an action (given by an action index) on the environment. *Returns* the new observation, an associated reward and a bool value `done` which indicates whether a terminal state has been reached.The agent on the other hand, supports the following two main methods:* `predict(observation)` (here: `step(observation)`): Given an observation, the agent predicts an action. *Returns* an action index.* `learn(reward)`: Uses the current reward to update internal network.Knowing that the `IonTrapEnv` has been built according to this standard and the agent features the two methods above, we can start coding the interaction between agent and environment: ###Code # data set for performance evaluation DATA_STEPS = [] # maximum number of episodes NUM_EPISODES = 500 for i in range(NUM_EPISODES): # initial observation from environment observation = env.reset() #bool: whether or not the environment has finished the episode done = False #int: the current time step in this episode num_steps = 0 action_seq = [] while not done: # increment counter num_steps += 1 # predict action action = agent.step(observation) action_seq.append(action) # perform action on environment and receive observation and reward observation, reward, done = env.step(action) # learn from reward agent.learn(reward) # gather statistics if done: DATA_STEPS.append(num_steps) print(action_seq) ###Output [0, 4, 1, 0, 3, 5, 0] ###Markdown And this is all the code that is needed to have an agent interact with our environment! In `DATA_STEPS` we have gathered the data that keeps track of the length of pulse sequences that generate GHZ-like states. We can use `matplotlib` to visualize the performance of the agent over time: ###Code import matplotlib.pyplot as plt import numpy as np x_axis = np.arange(len(DATA_STEPS)) plt.plot(x_axis, DATA_STEPS) plt.ylabel('Length of pulse sequence') plt.xlabel('Episode') ###Output _____no_output_____
Integrated-gradient-camptum-CIFARImage.ipynb
###Markdown **Computer Vision: Saliency Map for CIFAR Dataset** Interpret the deep learning model result by looking on its gradients. Method used in the code is Vanilla Gradient method. There are multiple saliency methods. ###Code import torch import torch.nn as nn import torchvision import matplotlib.pyplot as plt import numpy as np from torch.autograd import Variable from torchvision import datasets from torchvision import transforms # Functional module contains helper functions import torch.nn.functional as F from captum.attr import IntegratedGradients from captum.attr import Saliency from captum.attr import DeepLift from captum.attr import NoiseTunnel from captum.attr import visualization as viz ###Output _____no_output_____ ###Markdown **Set up the deep learning model** ###Code net = torch.hub.load('pytorch/vision:v0.6.0', 'alexnet', pretrained=True) #Updating the second classifier net.classifier[4] = nn.Linear(4096,1024) #Updating the third and the last classifier that is the output layer of the network. Make sure to have 10 output nodes if we are going to get 10 class labels through our model. net.classifier[6] = nn.Linear(1024,10) net.load_state_dict(torch.load("./2.model.path")) ###Output Using cache found in C:\Users\merna/.cache\torch\hub\pytorch_vision_v0.6.0 ###Markdown **Open the Image and preprocess** ###Code from PIL import Image import torch import torch.nn as nn import matplotlib.pyplot as plt from torch.autograd import Variable # Torchvision module contains various utilities, classes, models and datasets # used towards computer vision usecases from torchvision import datasets from torchvision import transforms # Functional module contains helper functions import torch.nn.functional as F transform = transforms.Compose([ transforms.Resize(224), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=False, num_workers=2) dataiter = iter(testloader) images, labels = dataiter.next() ind = 3 X = images[ind].unsqueeze(0) ###Output Files already downloaded and verified ###Markdown **Retrieve the gradient** ###Code net.eval() # Set the requires_grad_ to the image for retrieving gradients X.requires_grad = True #saliency = None # Retrieve output from the image output = net(X) # Catch the output output_idx = output.argmax() output_max = output[0, output_idx] # Do backpropagation to get the derivative # of the output based on the image output_max.backward() ###Output _____no_output_____ ###Markdown **Visualize the Result** ###Code def attribute_image_features(algorithm, input, **kwargs): net.zero_grad() tensor_attributions = algorithm.attribute(input, target=labels[ind], **kwargs ) return tensor_attributions import torch import torch.nn as nn # Retireve the saliency map and also pick the maximum value from channels on each pixel. # In this case, we look at dim=1. Recall the shape (batch_size, channel, width, height) saliency = Saliency(net) grads = saliency.attribute(X, target=labels[ind].item()) grads = np.transpose(grads.squeeze().cpu().detach().numpy(), (1, 2, 0)) ig = IntegratedGradients(net) attr_ig, delta = attribute_image_features(ig, X, baselines=X*0, return_convergence_delta=True) attr_ig = np.transpose(attr_ig.squeeze().cpu().detach().numpy(), (1, 2, 0)) original_image = np.transpose((images[ind].cpu().detach().numpy() / 2) + 0.5, (1, 2, 0)) _ = viz.visualize_image_attr(None, original_image, method="original_image", title="Original Image") _ = viz.visualize_image_attr(grads, original_image, method="blended_heat_map", sign="absolute_value", show_colorbar=True, title="Overlayed Gradient Magnitudes") _ = viz.visualize_image_attr(attr_ig, original_image, method="blended_heat_map",sign="all", show_colorbar=True, title="Overlayed Integrated Gradients") ###Output Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
examples/colab/Training/binary_text_classification/NLU_training_sarcasam_classifier_demo_news_headlines.ipynb
###Markdown ![JohnSnowLabs](https://nlp.johnsnowlabs.com/assets/images/logo.png)[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/JohnSnowLabs/nlu/blob/master/examples/colab/Training/binary_text_classification/NLU_training_sarcasam_classifier_demo_news_headlines.ipynb) Training a Sentiment Analysis Classifier with NLU 2 Class News Headlines Sarcasam TrainingWith the [SentimentDL model](https://nlp.johnsnowlabs.com/docs/en/annotatorssentimentdl-multi-class-sentiment-analysis-annotator) from Spark NLP you can achieve State Of the Art results on any multi class text classification problem This notebook showcases the following features : - How to train the deep learning classifier- How to store a pipeline to disk- How to load the pipeline from disk (Enables NLU offline mode)You can achieve these results or even better on this dataset with training data:![img.png]()You can achieve these results or even better on this dataset with test data:![Screenshot 2021-02-25 150812.png]() 1. Install Java 8 and NLU ###Code import os from sklearn.metrics import classification_report ! apt-get update -qq > /dev/null # Install java ! apt-get install -y openjdk-8-jdk-headless -qq > /dev/null os.environ["JAVA_HOME"] = "/usr/lib/jvm/java-8-openjdk-amd64" os.environ["PATH"] = os.environ["JAVA_HOME"] + "/bin:" + os.environ["PATH"] ! pip install nlu pyspark==2.4.7 > /dev/null import nlu ###Output _____no_output_____ ###Markdown 2. Download News Headlines Sarcsam dataset https://www.kaggle.com/rmisra/news-headlines-dataset-for-sarcasm-detectionContextPast studies in Sarcasm Detection mostly make use of Twitter datasets collected using hashtag based supervision but such datasets are noisy in terms of labels and language. Furthermore, many tweets are replies to other tweets and detecting sarcasm in these requires the availability of contextual tweets.To overcome the limitations related to noise in Twitter datasets, this News Headlines dataset for Sarcasm Detection is collected from two news website. TheOnion aims at producing sarcastic versions of current events and we collected all the headlines from News in Brief and News in Photos categories (which are sarcastic). We collect real (and non-sarcastic) news headlines from HuffPost.This new dataset has following advantages over the existing Twitter datasets:Since news headlines are written by professionals in a formal manner, there are no spelling mistakes and informal usage. This reduces the sparsity and also increases the chance of finding pre-trained embeddings.Furthermore, since the sole purpose of TheOnion is to publish sarcastic news, we get high-quality labels with much less noise as compared to Twitter datasets.Unlike tweets which are replies to other tweets, the news headlines we obtained are self-contained. This would help us in teasing apart the real sarcastic elements. ###Code ! wget http://ckl-it.de/wp-content/uploads/2021/02/Sarcasm_Headlines_Dataset_v2.csv import pandas as pd test_path = '/content/Sarcasm_Headlines_Dataset_v2.csv' train_df = pd.read_csv(test_path,sep=",") cols = ["y","text"] train_df = train_df[cols] from sklearn.model_selection import train_test_split train_df, test_df = train_test_split(train_df, test_size=0.2) train_df ###Output _____no_output_____ ###Markdown 3. Train Deep Learning Classifier using nlu.load('train.sentiment')You dataset label column should be named 'y' and the feature column with text data should be named 'text' ###Code import nlu # load a trainable pipeline by specifying the train. prefix and fit it on a datset with label and text columns # by default the Universal Sentence Encoder (USE) Sentence embeddings are used for generation trainable_pipe = nlu.load('train.sentiment') fitted_pipe = trainable_pipe.fit(train_df.iloc[:50]) # predict with the trainable pipeline on dataset and get predictions preds = fitted_pipe.predict(train_df.iloc[:50],output_level='document') #sentence detector that is part of the pipe generates sone NaNs. lets drop them first preds.dropna(inplace=True) print(classification_report(preds['y'], preds['sentiment'])) preds ###Output tfhub_use download started this may take some time. Approximate size to download 923.7 MB [OK!] precision recall f1-score support negative 1.00 0.54 0.70 26 neutral 0.00 0.00 0.00 0 positive 0.96 0.96 0.96 24 accuracy 0.74 50 macro avg 0.65 0.50 0.55 50 weighted avg 0.98 0.74 0.82 50 ###Markdown 4. Test the fitted pipe on new example ###Code fitted_pipe.predict('Aliens are immortal!') ###Output _____no_output_____ ###Markdown 5. Configure pipe training parameters ###Code trainable_pipe.print_info() ###Output The following parameters are configurable for this NLU pipeline (You can copy paste the examples) : >>> pipe['sentiment_dl'] has settable params: pipe['sentiment_dl'].setMaxEpochs(2) | Info: Maximum number of epochs to train | Currently set to : 2 pipe['sentiment_dl'].setLr(0.005) | Info: Learning Rate | Currently set to : 0.005 pipe['sentiment_dl'].setBatchSize(64) | Info: Batch size | Currently set to : 64 pipe['sentiment_dl'].setDropout(0.5) | Info: Dropout coefficient | Currently set to : 0.5 pipe['sentiment_dl'].setEnableOutputLogs(True) | Info: Whether to use stdout in addition to Spark logs. | Currently set to : True pipe['sentiment_dl'].setThreshold(0.6) | Info: The minimum threshold for the final result otheriwse it will be neutral | Currently set to : 0.6 pipe['sentiment_dl'].setThresholdLabel('neutral') | Info: In case the score is less than threshold, what should be the label. Default is neutral. | Currently set to : neutral >>> pipe['default_tokenizer'] has settable params: pipe['default_tokenizer'].setTargetPattern('\S+') | Info: pattern to grab from text as token candidates. Defaults \S+ | Currently set to : \S+ pipe['default_tokenizer'].setContextChars(['.', ',', ';', ':', '!', '?', '*', '-', '(', ')', '"', "'"]) | Info: character list used to separate from token boundaries | Currently set to : ['.', ',', ';', ':', '!', '?', '*', '-', '(', ')', '"', "'"] pipe['default_tokenizer'].setCaseSensitiveExceptions(True) | Info: Whether to care for case sensitiveness in exceptions | Currently set to : True pipe['default_tokenizer'].setMinLength(0) | Info: Set the minimum allowed legth for each token | Currently set to : 0 pipe['default_tokenizer'].setMaxLength(99999) | Info: Set the maximum allowed legth for each token | Currently set to : 99999 >>> pipe['default_name'] has settable params: pipe['default_name'].setDimension(512) | Info: Number of embedding dimensions | Currently set to : 512 pipe['default_name'].setLoadSP(False) | Info: Whether to load SentencePiece ops file which is required only by multi-lingual models. This is not changeable after it's set with a pretrained model nor it is compatible with Windows. | Currently set to : False pipe['default_name'].setStorageRef('tfhub_use') | Info: unique reference name for identification | Currently set to : tfhub_use >>> pipe['sentence_detector'] has settable params: pipe['sentence_detector'].setUseAbbreviations(True) | Info: whether to apply abbreviations at sentence detection | Currently set to : True pipe['sentence_detector'].setDetectLists(True) | Info: whether detect lists during sentence detection | Currently set to : True pipe['sentence_detector'].setUseCustomBoundsOnly(False) | Info: Only utilize custom bounds in sentence detection | Currently set to : False pipe['sentence_detector'].setCustomBounds([]) | Info: characters used to explicitly mark sentence bounds | Currently set to : [] pipe['sentence_detector'].setExplodeSentences(False) | Info: whether to explode each sentence into a different row, for better parallelization. Defaults to false. | Currently set to : False pipe['sentence_detector'].setMinLength(0) | Info: Set the minimum allowed length for each sentence. | Currently set to : 0 pipe['sentence_detector'].setMaxLength(99999) | Info: Set the maximum allowed length for each sentence | Currently set to : 99999 >>> pipe['document_assembler'] has settable params: pipe['document_assembler'].setCleanupMode('shrink') | Info: possible values: disabled, inplace, inplace_full, shrink, shrink_full, each, each_full, delete_full | Currently set to : shrink ###Markdown 6. Retrain with new parameters ###Code # Train longer! trainable_pipe['sentiment_dl'].setMaxEpochs(5) fitted_pipe = trainable_pipe.fit(train_df.iloc[:50]) # predict with the trainable pipeline on dataset and get predictions preds = fitted_pipe.predict(train_df.iloc[:50],output_level='document') #sentence detector that is part of the pipe generates sone NaNs. lets drop them first preds.dropna(inplace=True) print(classification_report(preds['y'], preds['sentiment'])) preds ###Output precision recall f1-score support negative 1.00 0.96 0.98 26 positive 0.96 1.00 0.98 24 accuracy 0.98 50 macro avg 0.98 0.98 0.98 50 weighted avg 0.98 0.98 0.98 50 ###Markdown 7. Try training with different Embeddings ###Code # We can use nlu.print_components(action='embed_sentence') to see every possibler sentence embedding we could use. Lets use bert! nlu.print_components(action='embed_sentence') trainable_pipe = nlu.load('en.embed_sentence.small_bert_L12_768 train.sentiment') # We need to train longer and user smaller LR for NON-USE based sentence embeddings usually # We could tune the hyperparameters further with hyperparameter tuning methods like gridsearch # Also longer training gives more accuracy trainable_pipe['sentiment_dl'].setMaxEpochs(120) trainable_pipe['sentiment_dl'].setLr(0.0005) fitted_pipe = trainable_pipe.fit(train_df) # predict with the trainable pipeline on dataset and get predictions preds = fitted_pipe.predict(train_df,output_level='document') #sentence detector that is part of the pipe generates sone NaNs. lets drop them first preds.dropna(inplace=True) print(classification_report(preds['y'], preds['sentiment'])) #preds ###Output sent_small_bert_L12_768 download started this may take some time. Approximate size to download 392.9 MB [OK!] precision recall f1-score support negative 0.91 0.87 0.89 3952 neutral 0.00 0.00 0.00 0 positive 0.90 0.89 0.89 4048 accuracy 0.88 8000 macro avg 0.60 0.59 0.59 8000 weighted avg 0.90 0.88 0.89 8000 ###Markdown 7.1 evaluate on Test Data ###Code preds = fitted_pipe.predict(test_df,output_level='document') #sentence detector that is part of the pipe generates sone NaNs. lets drop them first preds.dropna(inplace=True) print(classification_report(preds['y'], preds['sentiment'])) ###Output precision recall f1-score support negative 0.87 0.82 0.84 1048 neutral 0.00 0.00 0.00 0 positive 0.83 0.84 0.83 952 accuracy 0.83 2000 macro avg 0.57 0.55 0.56 2000 weighted avg 0.85 0.83 0.84 2000 ###Markdown 8. Lets save the model ###Code stored_model_path = './models/classifier_dl_trained' fitted_pipe.save(stored_model_path) ###Output Stored model in ./models/classifier_dl_trained ###Markdown 9. Lets load the model from HDD.This makes Offlien NLU usage possible! You need to call nlu.load(path=path_to_the_pipe) to load a model/pipeline from disk. ###Code hdd_pipe = nlu.load(path=stored_model_path) preds = hdd_pipe.predict('Aliens are immortal!') preds hdd_pipe.print_info() ###Output The following parameters are configurable for this NLU pipeline (You can copy paste the examples) : >>> pipe['document_assembler'] has settable params: pipe['document_assembler'].setCleanupMode('shrink') | Info: possible values: disabled, inplace, inplace_full, shrink, shrink_full, each, each_full, delete_full | Currently set to : shrink >>> pipe['sentence_detector'] has settable params: pipe['sentence_detector'].setCustomBounds([]) | Info: characters used to explicitly mark sentence bounds | Currently set to : [] pipe['sentence_detector'].setDetectLists(True) | Info: whether detect lists during sentence detection | Currently set to : True pipe['sentence_detector'].setExplodeSentences(False) | Info: whether to explode each sentence into a different row, for better parallelization. Defaults to false. | Currently set to : False pipe['sentence_detector'].setMaxLength(99999) | Info: Set the maximum allowed length for each sentence | Currently set to : 99999 pipe['sentence_detector'].setMinLength(0) | Info: Set the minimum allowed length for each sentence. | Currently set to : 0 pipe['sentence_detector'].setUseAbbreviations(True) | Info: whether to apply abbreviations at sentence detection | Currently set to : True pipe['sentence_detector'].setUseCustomBoundsOnly(False) | Info: Only utilize custom bounds in sentence detection | Currently set to : False >>> pipe['regex_tokenizer'] has settable params: pipe['regex_tokenizer'].setCaseSensitiveExceptions(True) | Info: Whether to care for case sensitiveness in exceptions | Currently set to : True pipe['regex_tokenizer'].setTargetPattern('\S+') | Info: pattern to grab from text as token candidates. Defaults \S+ | Currently set to : \S+ pipe['regex_tokenizer'].setMaxLength(99999) | Info: Set the maximum allowed length for each token | Currently set to : 99999 pipe['regex_tokenizer'].setMinLength(0) | Info: Set the minimum allowed length for each token | Currently set to : 0 >>> pipe['glove'] has settable params: pipe['glove'].setBatchSize(32) | Info: Batch size. Large values allows faster processing but requires more memory. | Currently set to : 32 pipe['glove'].setCaseSensitive(False) | Info: whether to ignore case in tokens for embeddings matching | Currently set to : False pipe['glove'].setDimension(768) | Info: Number of embedding dimensions | Currently set to : 768 pipe['glove'].setMaxSentenceLength(128) | Info: Max sentence length to process | Currently set to : 128 pipe['glove'].setIsLong(False) | Info: Use Long type instead of Int type for inputs buffer - Some Bert models require Long instead of Int. | Currently set to : False pipe['glove'].setStorageRef('sent_small_bert_L12_768') | Info: unique reference name for identification | Currently set to : sent_small_bert_L12_768 >>> pipe['sentiment_dl'] has settable params: pipe['sentiment_dl'].setThreshold(0.6) | Info: The minimum threshold for the final result otheriwse it will be neutral | Currently set to : 0.6 pipe['sentiment_dl'].setThresholdLabel('neutral') | Info: In case the score is less than threshold, what should be the label. Default is neutral. | Currently set to : neutral pipe['sentiment_dl'].setClasses(['positive', 'negative']) | Info: get the tags used to trained this SentimentDLModel | Currently set to : ['positive', 'negative'] pipe['sentiment_dl'].setStorageRef('sent_small_bert_L12_768') | Info: unique reference name for identification | Currently set to : sent_small_bert_L12_768
Labs/11-Kmeans/11-K-Means.ipynb
###Markdown Lab 11: Unsupervised Learning with $k$-meansIn this lab, we begin our survey of common unsupervised learning methods. Supervised vs. Unsupervised LearningAs we know, in the supervised setting, we are presented with a set of training pairs $(\mathbf{x}^{(i)},y^{(i)}), \mathbf{x}^{(i)} \in {\cal X}, y^{(i)} \in {\cal Y},i \in 1..m$,where typically ${\cal X} = \mathbb{R}^n$ and either ${\cal Y} = \mathbb{R}$ (regression) or ${\cal Y} = \{ 1, \ldots, k \}$ (classification). The goal is, given a new$\mathbf{x} \in {\cal X}$ to come up with the best possible prediction $\hat{y} \in {\cal Y}$ corresponding to $\mathbf{x}$ or a set of predicted probabilities$p(y=y_i \mid \mathbf{x}), i \in \{1, \ldots, k\}$.In the *unsupervised setting*, we are presented with a set of training items $\mathbf{x}^{(i)} \in {\cal X}$ without any labels or targets. The goal is generally tounderstand, given a new $\mathbf{x} \in {\cal X}$, the relationship of $\mathbf{x}$ with the training examples $\mathbf{x}^{(i)}$.The phrase *understand the relationship* can mean many different things depending on the problem setting. Among the most common specific goals is *clustering*, in whichwe map the training data to $K$ *clusters*, then, given $\mathbf{x}$, find the most similar cluster $c \in \{1,\ldots,K\}$. $k$-means ClusteringClustering is the most common unsupervised learning problem, and $k$-means is the most frequently used clustering algorithm. $k$-means is suitable when ${\cal X} = \mathbb{R}^n$ and Euclidean distance is a reasonable model of dissimilarity between items in ${\cal X}$.The algorithm is very simple:1. Randomly initialize $k$ cluster centroids $\mu_1, \ldots, \mu_k \in \mathbb{R}^n$.2. Repeat until convergence: 1. For $i \in 1..m, c^{(i)} \leftarrow \text{argmin}_j \| \mathbf{x}^{(i)} - \mu_j \|^2.$ 2. For $j \in 1..k,$ $$ \mu_j \leftarrow \frac{\sum_{i=1}^m \delta(c^{(i)} = j)\mathbf{x}^{(i)}}{\sum_{i=1}^m \delta(c^{(i)}=j)}$$ In-Lab ExerciseWrite Python code to generate 100 examples from each of three different well-separated 2D Gaussian distributions. Plot the data, initialize three arbitrary means,and animate the process of iterative cluster assignment and cluster mean assignment. *Hint: there's a naive implementation of the algorithm in this notebook below. You can use it or make your own implementation.* Example with Kaggle Customer Segmentation DataThis example is based on the [Kaggle Mall Customers Dataset](https://www.kaggle.com/vjchoudhary7/customer-segmentation-tutorial-in-python) and [Caner Dabakoglu's](https://www.kaggle.com/cdabakoglu) tutorial on the dataset. The goal is customer segmentation.The dataset has 5 columns, `CustomerID`, `Gender`, `Age`, `Annual Income`, and `Spending score`.We will use three of these variables, namely `Age`, `Annual Income`, and `Spending score` for segmenting customers.(Give some thought to why we don't use `CustomerID` or `Gender`.)First, let's import some libraries: ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import warnings warnings.filterwarnings("ignore") ###Output _____no_output_____ ###Markdown Next we read the data set and print out some information about it. ###Code df = pd.read_csv("Mall_Customers.csv") print('Dataset information:\n') df.info() print('\nDataset head (first five rows):\n') df.head() ###Output Dataset information: <class 'pandas.core.frame.DataFrame'> RangeIndex: 200 entries, 0 to 199 Data columns (total 5 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 CustomerID 200 non-null int64 1 Gender 200 non-null object 2 Age 200 non-null int64 3 Annual Income (k$) 200 non-null int64 4 Spending Score (1-100) 200 non-null int64 dtypes: int64(4), object(1) memory usage: 7.9+ KB Dataset head (first five rows): ###Markdown Let's drop the `CustomerID` column, as it's not useful. ###Code df.drop(["CustomerID"], axis = 1, inplace=True) ###Output _____no_output_____ ###Markdown Next, let's visualize the marginal distribution over each variable, to get an idea of how cohesive they are. We can see that the variables are notquite Gaussian and have some skew: ###Code sns.distplot(df.Age) _ = plt.title('Customer Age distribution') sns.distplot(df['Spending Score (1-100)']) _ = plt.title('Customer Spending Score distribution') sns.distplot(df['Annual Income (k$)']) _ = plt.title('Customer Income distribution') ###Output _____no_output_____ ###Markdown Next, let's make a 3D scatter plot of the relevant variables: ###Code sns.set_style("white") fig = plt.figure(figsize=(10,10)) ax = fig.add_subplot(111, projection='3d') ax.scatter(df.Age, df["Annual Income (k$)"], df["Spending Score (1-100)"], c='blue', s=60) ax.view_init(0, 45) plt.xlabel("Age") plt.ylabel("Annual Income (k$)") ax.set_zlabel('Spending Score (1-100)') plt.show() ###Output _____no_output_____ ###Markdown Next, let's implement $k$-means: ###Code # Initialize a k-means model given a dataset def init_kmeans(X, k): m = X.shape[0] n = X.shape[1] means = np.zeros((k,n)) order = np.random.permutation(m)[:k] for i in range(k): means[i,:] = X[order[i],:] return means # Run one iteration of k-means def iterate_kmeans(X, means): m = X.shape[0] n = X.shape[1] k = means.shape[0] distortion = np.zeros(m) c = np.zeros(m) for i in range(m): min_j = 0 min_dist = 0 for j in range(k): dist_j = np.linalg.norm(X[i,:] - means[j,:]) if dist_j < min_dist or j == 0: min_dist = dist_j min_j = j distortion[i] = min_dist c[i] = min_j for j in range(k): means[j,:] = np.zeros((1,n)) nj = 0 for i in range(m): if c[i] == j: nj = nj + 1 means[j,:] = means[j,:] + X[i,:] if nj > 0: means[j,:] = means[j,:] / nj return means, c, np.sum(distortion) ###Output _____no_output_____ ###Markdown Let's build models with $k \in 1..20$, plot the distortion for each $k$, and try to choose a good value for $k$ using the so-called "elbow method." ###Code # Convert dataframe to matrix X = np.array(df.iloc[:,1:]) # Intialize hyperparameters max_k = 20 epsilon = 0.001 # For each value of k, do one run and record the resulting cost (Euclidean distortion) distortions = np.zeros(max_k) for k in range(1, max_k + 1): best_distortion = 0 for l in range(5): means = init_kmeans(X, k) prev_distortion = 0 while True: means, c, distortion = iterate_kmeans(X, means) if prev_distortion > 0 and prev_distortion - distortion < epsilon: break prev_distortion = distortion if l == 0 or distortion < distortions[k-1]: distortions[k-1] = distortion # Plot distortion as function of k plt.figure(figsize=(16,8)) plt.plot(range(1,max_k+1), distortion_k, 'bx-') plt.xlabel('k') plt.ylabel('Distortion') plt.title('k-means distortion as a function of k') plt.show() ###Output _____no_output_____ ###Markdown Read about the so-called "elbow method" in [Wikipedia](https://en.wikipedia.org/wiki/Elbow_method_(clustering)). Note what it says,that "In practice there may not be a sharp elbow, and as a heuristic method, such an 'elbow' cannot always be unambiguously identified." Do you see a unique elbow in the distortion plot above?Note that the results are somewhat noisy, being dependent on initial conditions.Here's a visualization of the results for three clusters: ###Code # Re-run k-means with k=3 k = 3 means = init_kmeans(X, k) prev_distortion = 0 while True: means, c, distortion = iterate_kmeans(X, means) if prev_distortion > 0 and prev_distortion - distortion < epsilon: break prev_distortion = distortion # Set labels in dataset to cluster IDs according to k-means model. df["label"] = c # Plot the data fig = plt.figure(figsize=(10,10)) ax = fig.add_subplot(111, projection='3d') ax.scatter(df.Age[df.label == 0], df["Annual Income (k$)"][df.label == 0], df["Spending Score (1-100)"][df.label == 0], c='blue', s=60) ax.scatter(df.Age[df.label == 1], df["Annual Income (k$)"][df.label == 1], df["Spending Score (1-100)"][df.label == 1], c='red', s=60) ax.scatter(df.Age[df.label == 2], df["Annual Income (k$)"][df.label == 2], df["Spending Score (1-100)"][df.label == 2], c='green', s=60) # For 5 clusters, you can uncomment the following two lines. #ax.scatter(df.Age[df.label == 3], df["Annual Income (k$)"][df.label == 3], df["Spending Score (1-100)"][df.label == 3], c='orange', s=60) #ax.scatter(df.Age[df.label == 4], df["Annual Income (k$)"][df.label == 4], df["Spending Score (1-100)"][df.label == 4], c='purple', s=60) ax.view_init(0, 45) plt.xlabel("Age") plt.ylabel("Annual Income (k$)") ax.set_zlabel('Spending Score (1-100)') plt.title('Customer segments (k=3)') plt.show() ###Output _____no_output_____ ###Markdown In-Lab Exercise 21. Consider the three cluster centers above. Look at the three means closely and come up with English descriptions of each cluster from a business point of view. Label the clusters in the visualization accordingly.2. Note that the distortion plot is quite noisy due to random initial conditions. Modify the optimization to perfrom, for each $k$, several different runs, and take the minimum distortion over those runs. Re-plot the distortion plot and see if an "elbow" is more prominent. K-Means in PyTorchNow, to get more experience with PyTorch, let's do the same thing with the library. First, some imports. You may need to install some packages for this to work: pip install kmeans-pytorch pip install tqdm First, import the libraries: ###Code import torch from kmeans_pytorch import kmeans x = torch.from_numpy(X) device = 'cuda:0' device = 'cpu' c, means = kmeans(X=x, num_clusters=3, distance='euclidean', device=torch.device(device)) df["label"] = c fig = plt.figure(figsize=(10,10)) ax = fig.add_subplot(111, projection='3d') ax.scatter(df.Age[df.label == 0], df["Annual Income (k$)"][df.label == 0], df["Spending Score (1-100)"][df.label == 0], c='blue', s=60) ax.scatter(df.Age[df.label == 1], df["Annual Income (k$)"][df.label == 1], df["Spending Score (1-100)"][df.label == 1], c='red', s=60) ax.scatter(df.Age[df.label == 2], df["Annual Income (k$)"][df.label == 2], df["Spending Score (1-100)"][df.label == 2], c='green', s=60) #ax.scatter(df.Age[df.label == 3], df["Annual Income (k$)"][df.label == 3], df["Spending Score (1-100)"][df.label == 3], c='orange', s=60) #ax.scatter(df.Age[df.label == 4], df["Annual Income (k$)"][df.label == 4], df["Spending Score (1-100)"][df.label == 4], c='purple', s=60) ax.view_init(0, 45) plt.xlabel("Age") plt.ylabel("Annual Income (k$)") ax.set_zlabel('Spending Score (1-100)') plt.title('Customer Segments (PyTorch k=3)') plt.show() ###Output _____no_output_____
FailurePrediction/ConstantRotationalSpeed/EnvelopeSpectrum/Envelope_Inner_014.ipynb
###Markdown ENVELOPE SPECTRUM - INNER RACE (Fault Diameter 0.014") ###Code import scipy.io as sio import numpy as np import matplotlib.pyplot as plt import lee_dataset_CWRU from lee_dataset_CWRU import * import envelope_spectrum from envelope_spectrum import * faultRates = [3.585, 5.415, 1] #[outer, inner, shaft] Fs = 12000 DE_I1, FE_I1, t_DE_I1, t_FE_I1, RPM_I1, samples_s_DE_I1, samples_s_FE_I1 = lee_dataset('../DataCWRU/169.mat') DE_I2, FE_I2, t_DE_I2, t_FE_I2, RPM_I2, samples_s_DE_I2, samples_s_FE_I2 = lee_dataset('../DataCWRU/170.mat') DE_I3, FE_I3, t_DE_I3, t_FE_I3, RPM_I3, samples_s_DE_I3, samples_s_FE_I3 = lee_dataset('../DataCWRU/171.mat') DE_I4, FE_I4, t_DE_I4, t_FE_I4, RPM_I4, samples_s_DE_I4, samples_s_FE_I4 = lee_dataset('../DataCWRU/172.mat') fr_I1 = RPM_I1 / 60 BPFI_I1 = 5.4152 * fr_I1 BPFO_I1 = 3.5848 * fr_I1 fr_I2 = RPM_I2 / 60 BPFI_I2 = 5.4152 * fr_I2 BPFO_I2 = 3.5848 * fr_I2 fr_I3 = RPM_I3 / 60 BPFI_I3 = 5.4152 * fr_I3 BPFO_I3 = 3.5848 * fr_I3 fr_I4 = RPM_I4 / 60 BPFI_I4 = 5.4152 * fr_I4 BPFO_I4 = 3.5848 * fr_I4 fSpec_I1, xSpec_I1 = envelope_spectrum2(DE_I1, Fs) fSpec_I2, xSpec_I2 = envelope_spectrum2(DE_I2, Fs) fSpec_I3, xSpec_I3 = envelope_spectrum2(DE_I3, Fs) fSpec_I4, xSpec_I4 = envelope_spectrum2(DE_I4, Fs) fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2) fig.set_size_inches(14, 10) ax1.plot(fSpec_I1, xSpec_I1, label = 'Env. spectrum') ax1.axvline(x = fr_I1, color = 'k', linestyle = '--', lw = 1.5, label = 'fr', alpha = 0.6) ax1.axvline(x = BPFI_I1, color = 'r', linestyle = '--', lw = 1.5, label = 'BPFI', alpha = 0.6) ax1.axvline(x = BPFO_I1, color = 'g', linestyle = '--', lw = 1.5, label = 'BPFO', alpha = 0.6) ax1.set_xlim(0,200) ax1.set_xlabel('Frequency') ax1.set_ylabel('Env. spectrum') ax1.set_title('Inner race. Fault Diameter 0.014", 1797 RPM') ax1.legend(loc = 2) ax2.plot(fSpec_I2, xSpec_I2, label = 'Env. spectrum') ax2.axvline(x = fr_I2, color = 'k', linestyle = '--', lw = 1.5, label = 'fr', alpha = 0.6) ax2.axvline(x = BPFI_I2, color = 'r', linestyle = '--', lw = 1.5, label = 'BPFI', alpha = 0.6) ax2.axvline(x = BPFO_I2, color = 'g', linestyle = '--', lw = 1.5, label = 'BPFO', alpha = 0.6) ax2.set_xlim(0,200) ax2.legend(loc = 2) ax2.set_xlabel('Frequency') ax2.set_ylabel('Env. spectrum') ax2.set_title('Inner race. Fault Diameter 0.014", 1772 RPM') ax3.plot(fSpec_I3, xSpec_I3, label = 'Env. spectrum') ax3.axvline(x = fr_I3, color = 'k', linestyle = '--', lw = 1.5, label = 'fr', alpha = 0.6) ax3.axvline(x = BPFI_I3, color = 'r', linestyle = '--', lw = 1.5, label = 'BPFI', alpha = 0.6) ax3.axvline(x = BPFO_I3, color = 'g', linestyle = '--', lw = 1.5, label = 'BPFO', alpha = 0.6) ax3.set_xlim(0,200) ax3.legend(loc = 2) ax3.set_xlabel('Frequency') ax3.set_ylabel('Env. spectrum') ax3.set_title('Inner race. Fault Diameter 0.014", 1750 RPM') ax4.plot(fSpec_I4, xSpec_I4, label = 'Env. spectrum') ax4.axvline(x = fr_I4, color = 'k', linestyle = '--', lw = 1.5, label = 'fr', alpha = 0.6) ax4.axvline(x = BPFI_I4, color = 'r', linestyle = '--', lw = 1.5, label = 'BPFI', alpha = 0.6) ax4.axvline(x = BPFO_I4, color = 'g', linestyle = '--', lw = 1.5, label = 'BPFO', alpha = 0.6) ax4.set_xlim(0,200) ax4.legend(loc = 2) ax4.set_xlabel('Frequency') ax4.set_ylabel('Env. spectrum') ax4.set_title('Inner race. Fault Diameter 0.014", 1730 RPM') clasificacion_inner = pd.DataFrame({'Señal': ['105.mat', '106.mat', '107.mat', '108.mat'], 'Estado': ['Fallo Inner Race'] * 4, 'Predicción': [clasificacion_envelope(fSpec_I1, xSpec_I1, fr_I1, BPFO_I1, BPFI_I1), clasificacion_envelope(fSpec_I2, xSpec_I2, fr_I2, BPFO_I2, BPFI_I2), clasificacion_envelope(fSpec_I3, xSpec_I3, fr_I3, BPFO_I3, BPFI_I3), clasificacion_envelope(fSpec_I4, xSpec_I4, fr_I4, BPFO_I4, BPFI_I4)]}) clasificacion_inner ###Output _____no_output_____
Huawei-interview/Huawei Research London Coding Interview LSTM.ipynb
###Markdown Coding Test You will be assesed overall on;1) How far you get in the alloted time.2) Code optimisations.3) Code reusability.4) Code readability.Some hints; 1) Take regulaer berak (at least 5 minutes every hour) or changes in activity2) Avoiding awkward, static postures by regularly changing position3) Getting up and moving or doing stretching exercises4) Avoiding eye fatigue by changing focus or blinking from time to time ###Code import gym import torch import numpy import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.distributions import Categorical ###Output _____no_output_____ ###Markdown Part 1: PPO - Implement a vanilla PPO learning agent and train it on 'acrobot-v1'. ###Code learning_rate = 0.00005 gamma = 0.98 lmbda = 0.95 #extra-hyperparameter eps_clip = 0.1 K_epoch = 3 class PPO(nn.Module): def __init__(self): super(PPO, self).__init__() self.prep_data = [] self.function1 = nn.Linear(6,256) self.function_pi = nn.Linear(256,3) self.function_v = nn.Linear(256,1) self.optimizer = optim.Adam(self.parameters(), lr=learning_rate) def pi(self, x, softmax_dim = 0): x = F.relu(self.function1(x)) x = self.function_pi(x) prob = F.softmax(x, dim=softmax_dim) return prob def v(self, x): x = F.relu(self.function1(x)) v = self.function_v(x) return v def put_data(self, transition): self.data.append(transition) def make_batch(self): s_lst, a_lst, r_lst, s_prime_lst, prob_a_lst, done_lst = [], [], [], [], [], [] for transition in self.prep_data: s, a, r, s_prime, prob_a, done = transition s_lst.append(s) a_lst.append([a]) r_lst.append([r]) s_prime_lst.append(s_prime) prob_a_lst.append([prob_a]) done_mask = 0 if done else 1 done_lst.append([done_mask]) s,a,r,s_prime,done_mask, prob_a = torch.tensor(s_lst, dtype=torch.float), torch.tensor(a_lst), \ torch.tensor(r_lst), torch.tensor(s_prime_lst, dtype=torch.float), \ torch.tensor(done_lst, dtype=torch.float), torch.tensor(prob_a_lst) self.prep_data = [] return s, a, r, s_prime, done_mask, prob_a def train_net(self): s, a, r, s_prime, done_mask, prob_a = self.make_batch() for i in range(K_epoch): td_target = r + gamma * self.v(s_prime) * done_mask delta = td_target - self.v(s) delta = delta.detach().numpy() advantage_lst = [] advantage = 0.0 for delta_t in delta[::-1]: advantage = gamma * lmbda * advantage + delta_t[0] advantage_lst.append([advantage]) advantage_lst.reverse() advantage = torch.tensor(advantage_lst, dtype=torch.float) pi = self.pi(s, softmax_dim=1) pi_a = pi.gather(1,a) ratio = torch.exp(torch.log(pi_a) - torch.log(prob_a)) # a/b == exp(log(a)-log(b)) surr1 = ratio * advantage surr2 = torch.clamp(ratio, 1-eps_clip, 1+eps_clip) * advantage loss = -torch.min(surr1, surr2) + F.smooth_l1_loss(self.v(s) , td_target.detach()) self.optimizer.zero_grad() loss.mean().backward() self.optimizer.step() def main(): env = gym.make('Acrobot-v1') model = PPO() score = 0.0 print_interval = 200 for n_epi in range(10000): s = env.reset() done = False test_a = 0 mn_a = 1000 while not done: for t in range(20): prob = model.pi(torch.from_numpy(s).float()) m = Categorical(prob) a = m.sample().item() # env.render() s_prime, r, done, info = env.step(a) test_a = max(test_a, a) mn_a = min(mn_a, a) model.prep_data.append((s, a, r/100.0, s_prime, prob[a].item(), done)) s = s_prime score += r if done: break model.train_net() if n_epi%print_interval==0 and n_epi!=0: print("# of episode :{}, avg score : {:.1f}".format(n_epi, score/print_interval)) score = 0.0 env.close() if __name__ == '__main__': main() ###Output _____no_output_____
20201114_ResNet50V2_kfold.ipynb
###Markdown Model ###Code import tensorflow as tf from tensorflow.keras.preprocessing import image import cv2 import matplotlib.pyplot as plt from PIL import Image from sklearn.model_selection import train_test_split, KFold, RepeatedKFold, GroupKFold, RepeatedStratifiedKFold from sklearn.utils import shuffle import numpy as np import pandas as pd import os import os.path as pth import shutil import time from tqdm import tqdm import itertools from itertools import product, combinations import numpy as np from PIL import Image from IPython.display import clear_output from multiprocessing import Process, Queue import datetime import tensorflow.keras as keras from tensorflow.keras.utils import to_categorical, Sequence from tensorflow.keras.layers import Input, Dense, Activation, BatchNormalization, \ Flatten, Conv3D, AveragePooling3D, MaxPooling3D, Dropout, \ Concatenate, GlobalMaxPool3D, GlobalAvgPool3D from tensorflow.keras.models import Sequential, Model, load_model from tensorflow.keras.optimizers import SGD, Adam from tensorflow.keras.callbacks import ModelCheckpoint,LearningRateScheduler, \ EarlyStopping from tensorflow.keras.losses import mean_squared_error, mean_absolute_error from tensorflow.keras import backend as K from tensorflow.keras.constraints import max_norm def build_cnn(config): input_layer = Input(shape=config['input_shape'], name='input_layer') pret_model = my_model( input_tensor=input_layer, include_top=False, weights='imagenet', input_shape=config['input_shape'], pooling=config['between_type'], classes=config['output_size'] ) pret_model.trainable = False x = pret_model.output if config['between_type'] == None: x = Flatten(name='flatten_layer')(x) if config['is_dropout']: x = Dropout(config['dropout_rate'], name='output_dropout')(x) x = Dense(config['output_size'], activation=config['output_activation'], name='output_fc')(x) # x = Activation(activation=config['output_activation'], name='output_activation')(x) model = Model(inputs=input_layer, outputs=x, name='{}'.format(BASE_MODEL_NAME)) return model model = build_cnn(config) model.summary(line_length=150) del model model_base_path = data_base_path model_checkpoint_path = pth.join(model_base_path, 'checkpoint') def seed_everything(seed): random.seed(seed) np.random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) tf.random.set_seed(seed) AUTO = tf.data.experimental.AUTOTUNE FILENAMES = tf.io.gfile.glob(pth.join(data_base_path, 'train_tfrec', '*')) TEST_FILENAMES = tf.io.gfile.glob(pth.join(data_base_path, 'test_tfrec', '*')) # training tfrecords 로드 def read_tr_tfrecord(example): TFREC_FORMAT = { "image_raw": tf.io.FixedLenFeature([], tf.string), "landmark_id": tf.io.FixedLenFeature([], tf.int64), 'id': tf.io.FixedLenFeature([], tf.string), } example = tf.io.parse_single_example(example, TFREC_FORMAT) return example # image = example['image_raw'] # target = tf.cast(example['landmark_id'], tf.int64) # return image, target # validation tfrecords 로드 def read_val_tfrecord(example): TFREC_FORMAT = { "image_raw": tf.io.FixedLenFeature([], tf.string), "landmark_id": tf.io.FixedLenFeature([], tf.int64), 'id': tf.io.FixedLenFeature([], tf.string), } example = tf.io.parse_single_example(example, TFREC_FORMAT) return example # image = example['image_raw'] # target = tf.cast(example['landmark_id'], tf.int64) # return image, target # test tfrecords 로드 def read_test_tfrecord(example): TFREC_FORMAT = { "image_raw": tf.io.FixedLenFeature([], tf.string), 'id': tf.io.FixedLenFeature([], tf.string), } example = tf.io.parse_single_example(example, TFREC_FORMAT) return example # image = example['image_raw'] # id = example['id'] # return image, id def get_training_dataset(filenames, ordered = False): ignore_order = tf.data.Options() if not ordered: ignore_order.experimental_deterministic = False dataset = tf.data.TFRecordDataset(filenames, num_parallel_reads = AUTO) dataset = dataset.with_options(ignore_order) dataset = dataset.map(read_tr_tfrecord, num_parallel_calls = AUTO) #dataset = dataset.map(_parse_image_function, num_parallel_calls=tf.data.experimental.AUTOTUNE) # dataset = dataset.cache() dataset = dataset.map(map_func, num_parallel_calls=tf.data.experimental.AUTOTUNE) dataset = dataset.map(resize_and_crop_func, num_parallel_calls=tf.data.experimental.AUTOTUNE) dataset = dataset.map(image_aug_func, num_parallel_calls=tf.data.experimental.AUTOTUNE) dataset = dataset.repeat() dataset = dataset.shuffle(config['buffer_size']) dataset = dataset.batch(config['batch_size']) dataset = dataset.map(post_process_func, num_parallel_calls=tf.data.experimental.AUTOTUNE) dataset = dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE) return dataset def get_validation_dataset(filenames, ordered = True, prediction = False): ignore_order = tf.data.Options() if not ordered: ignore_order.experimental_deterministic = False dataset = tf.data.TFRecordDataset(filenames, num_parallel_reads = AUTO) dataset = dataset.with_options(ignore_order) dataset = dataset.map(read_val_tfrecord, num_parallel_calls = AUTO) dataset = dataset.map(map_func, num_parallel_calls=tf.data.experimental.AUTOTUNE) dataset = dataset.map(resize_and_crop_func, num_parallel_calls=tf.data.experimental.AUTOTUNE) #dataset = dataset.map(image_aug_func, num_parallel_calls=tf.data.experimental.AUTOTUNE) if prediction: dataset = dataset.batch(config['batch_size'] * 4) # why 4 times? else: dataset = dataset.batch(config['batch_size']) dataset = dataset.map(post_process_func, num_parallel_calls=tf.data.experimental.AUTOTUNE) dataset = dataset.prefetch(AUTO) return dataset image_feature_description_for_test = { 'image_raw': tf.io.FixedLenFeature([], tf.string), # 'randmark_id': tf.io.FixedLenFeature([], tf.int64), # 'id': tf.io.FixedLenFeature([], tf.string), } def _parse_image_function_for_test(example_proto): return tf.io.parse_single_example(example_proto, image_feature_description_for_test) def map_func_for_test(target_record): img = target_record['image_raw'] img = tf.image.decode_jpeg(img, channels=3) img = tf.dtypes.cast(img, tf.float32) return img def resize_and_crop_func_for_test(image): result_image = tf.image.resize(image, config['aug']['resize']) #result_image = tf.image.random_crop(image, size=config['input_shape'], seed=7777) # revive return result_image def image_aug_func_for_test(img): #pass img = tf.image.random_flip_left_right(img) #img = tf.image.random_hue(img, 0.01) img = tf.image.random_saturation(img, 0.7, 1.3) img = tf.image.random_contrast(img, 0.8, 1.2) img = tf.image.random_brightness(img, 0.1) return img def post_process_func_for_test(image): # result_image = result_image / 255 result_image = my_model_base.preprocess_input(image) return result_image # def test_just_image(image, id): # return image # def test_just_id(image, id): # return id def get_test_dataset(filenames, ordered=True, prediction=False, name=False): ignore_order = tf.data.Options() if not ordered: ignore_order.experimental_deterministic = False dataset = tf.data.TFRecordDataset(filenames, num_parallel_reads = AUTO) dataset = dataset.with_options(ignore_order) dataset = dataset.map(read_test_tfrecord, num_parallel_calls = AUTO) dataset = dataset.map(map_func_for_test, num_parallel_calls=tf.data.experimental.AUTOTUNE) dataset = dataset.map(resize_and_crop_func_for_test, num_parallel_calls=tf.data.experimental.AUTOTUNE) dataset = dataset.map(image_aug_func_for_test, num_parallel_calls=tf.data.experimental.AUTOTUNE) dataset = dataset.repeat() # if name: # dataset = dataset.map(test_just_id, num_parallel_calls = AUTO) # else: # dataset = dataset.map(test_just_image, num_parallel_calls = AUTO) dataset = dataset.batch(config['batch_size']) dataset = dataset.map(post_process_func_for_test, num_parallel_calls=tf.data.experimental.AUTOTUNE) dataset = dataset.prefetch(AUTO) return dataset # USE DIFFERENT SEED FOR DIFFERENT STRATIFIED KFOLD SEED = 42 # NUMBER OF FOLDS. USE 3, 5, OR 15 FOLDS = 5 #BATCH_SIZES = [32]*FOLDS EPOCHS = [8]*FOLDS PRE_TRAIN_EPOCH = 1 # WGTS - this should be 1/FOLDS for each fold. This is the weight when ensembling the folds to predict the test set. If you want a weird ensemble, you can use different weights. # WEIGHTS FOR FOLD MODELS WHEN PREDICTING TEST WGTS = [1/FOLDS]*FOLDS # TEST TIME AUGMENTATION STEPS TTA = 2 def get_lr_callback(): lr_start = 0.000001*10*0.5 lr_max = 0.0000005 * config['batch_size'] * 10*0.5 lr_min = 0.000001 * 10*0.5 #lr_ramp_ep = 3 #### TODO: NEED TO BE CONSIDERED WISELY. # 5 lr_ramp_ep = config['batch'] // 3 #### (small lr) going up -> ramp (large max lr) -> going down (small lr) lr_sus_ep = 0 lr_decay = 0.8 def lrfn(epoch): if epoch < lr_ramp_ep: lr = (lr_max - lr_start) / lr_ramp_ep * epoch + lr_start elif epoch < lr_ramp_ep + lr_sus_ep: lr = lr_max else: lr = (lr_max - lr_min) * lr_decay**(epoch - lr_ramp_ep - lr_sus_ep) + lr_min print('lr=',lr) return lr lr_callback = tf.keras.callbacks.LearningRateScheduler(lrfn, verbose = False) return lr_callback base = BASE_MODEL_NAME base += '_resize_{}'.format(config['aug']['resize'][0]) #base += '_input_{}'.format(config['input_shape'][0]) base += '_conv_{}'.format('-'.join(map(lambda x:str(x),config['conv']['conv_num']))) base += '_basech_{}'.format(config['conv']['base_channel']) base += '_act_{}'.format(config['activation']) base += '_pool_{}'.format(config['pool']['type']) base += '_betw_{}'.format(config['between_type']) base += '_fc_{}'.format(config['fc']['fc_num']) base += '_zscore_{}'.format(config['is_zscore']) base += '_batch_{}'.format(config['batch_size']) if config['is_dropout']: base += '_DO_'+str(config['dropout_rate']).replace('.', '') if config['is_batchnorm']: base += '_BN'+'_O' else: base += '_BN'+'_X' model_name = base import gc from sklearn.model_selection import KFold FILENAMES = np.array(FILENAMES) oof_pred = []; oof_tar = []; oof_val = []; oof_names = []; oof_folds = [] preds = np.zeros((len(TEST_FILENAMES),config['num_class'])) skf = KFold(n_splits = FOLDS, shuffle=True,random_state=SEED) for fold, (tr_index, val_index) in enumerate(skf.split(FILENAMES)): # if fold == 0: # continue print('#'*25); print('#### FOLD',fold+1) #gc.collect() #print('################', 'lr=', LEARNING_RATE) print(model_name) TRAINING_FILENAMES, VALIDATION_FILENAMES = FILENAMES[tr_index], FILENAMES[val_index] #NUM_TRAINING_IMAGES = count_data_items(TRAINING_FILENAMES) np.random.shuffle(TRAINING_FILENAMES); print('#'*25) #seed_everything(SEED) train_dataset = get_training_dataset(TRAINING_FILENAMES,ordered = False) val_dataset = get_validation_dataset(VALIDATION_FILENAMES,ordered = True, prediction = False) print('FILENAMES=', len(FILENAMES)) print('TRAINING_FILENAMES=', len(TRAINING_FILENAMES)) print('VALIDATION_FILENAMES=', len(VALIDATION_FILENAMES)) STEPS_PER_EPOCH = np.ceil(len(TRAINING_FILENAMES)/config['batch_size']) print('STEPS_PER_EPOCH=', STEPS_PER_EPOCH) model_path = pth.join( model_checkpoint_path, model_name, ) model = build_cnn(config) initial_epoch = 0 # if pth.isdir(model_path) and len([_ for _ in os.listdir(model_path) if _.endswith('hdf5')]) >= 1: # for layer in model.layers[:166]: # layer.trainable = False # for layer in model.layers[166:]: # layer.trainable = True # model.compile(loss=config['loss'], optimizer=Adam(lr=config['learning_rate']), # metrics=['acc', 'Precision', 'Recall', 'AUC']) # model_chk_name = sorted(os.listdir(model_path))[-1] # initial_epoch = int(model_chk_name.split('-')[0]) # model.load_weights(pth.join(model_path, model_chk_name)) # else: model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['acc', 'Precision', 'Recall', 'AUC']) model.fit( x=train_dataset, epochs=PRE_TRAIN_EPOCH, # train only top layers for just a few epochs. validation_data=val_dataset, shuffle=True, steps_per_epoch=STEPS_PER_EPOCH, #callbacks = [checkpointer, es], #batch_size=config['batch_size'] initial_epoch=initial_epoch, # steps_per_epoch=train_num_steps, validation_steps=val_num_steps, verbose=1) for i, layer in enumerate(model.layers): print(i, layer.name) for layer in model.layers[:166]: layer.trainable = False for layer in model.layers[166:]: layer.trainable = True model.compile(loss=config['loss'], optimizer=Adam(lr=config['learning_rate']), metrics=['acc', 'Precision', 'Recall', 'AUC']) initial_epoch=PRE_TRAIN_EPOCH # ### Freeze first layer # conv_list = [layer for layer in model.layers if isinstance(layer, keras.layers.Conv2D)] # conv_list[0].trainable = False # # conv_list[1].trainable = False os.makedirs(model_path, exist_ok=True) model_filename = pth.join(model_path, f'fold{fold:02d}-' +'{epoch:06d}-{val_loss:0.6f}-{loss:0.6f}.hdf5') checkpointer = ModelCheckpoint( filepath=model_filename, verbose=1, period=1, save_best_only=True, monitor='val_loss' ) es = EarlyStopping(monitor='val_loss', verbose=1, patience=10) hist = model.fit( x=train_dataset, #epochs=config['num_epoch'], #batch_size = BATCH_SIZES[fold], epochs=EPOCHS[fold], steps_per_epoch=STEPS_PER_EPOCH, validation_data=val_dataset, shuffle=True, callbacks = [get_lr_callback(), checkpointer], #, es], #batch_size=config['batch_size'] initial_epoch=0, #### JUST 0 TO FIXED EPOCH COUNT #initial_epoch, # steps_per_epoch=train_num_steps, validation_steps=val_num_steps, verbose=1 ) model_chk_name = sorted(glob(pth.join(model_path, f'fold{fold:02d}-*')))[-1] print('selected weight to load=', model_chk_name) model.load_weights(model_chk_name) ct_test = len(TEST_FILENAMES) STEPS = TTA * ct_test / config['batch_size'] pred = model.predict(test_dataset,steps=STEPS, verbose=1)[:ct_test * TTA,] preds += np.mean(pred.reshape((ct_test, TTA, config['num_class']), order='F'), axis=1) * WGTS[fold] K.clear_session() del(model) # chk_name_list = sorted([name for name in os.listdir(model_path) if name != '000000_last.hdf5']) # for chk_name in chk_name_list[:-20]: # os.remove(pth.join(model_path, chk_name)) # clear_output() ### Inference submission_base_path = pth.join(data_base_path, 'submission') os.makedirs(submission_base_path, exist_ok=True) pred_labels = np.argsort(-preds) submission_csv_path = pth.join(data_base_path, submission_csv_name) submission_df = pd.read_csv(submission_csv_path) today_str = datetime.date.today().strftime('%Y%m%d') result_filename = '{}.csv'.format(model_name) submission_csv_fileaname = pth.join(submission_base_path, '_'.join([today_str, result_filename])) submission_csv_fileaname_top1 = pth.join(submission_base_path, '_'.join([today_str, 'top1', result_filename])) merged_df = [] RANK_TO_SAVE = 5 for i in range(RANK_TO_SAVE): tmp_df = submission_df.copy() tmp_labels = pred_labels[:, i] tmp_df['landmark_id'] = tmp_labels tmp_df['conf'] = np.array([pred[indice] for pred, indice in zip(preds, tmp_labels)]) if i == 0: tmp_df.to_csv(submission_csv_fileaname_top1, index=False) merged_df.append(tmp_df) submission_df = pd.concat(merged_df) submission_df.to_csv(submission_csv_fileaname, index=False) model_path = pth.join( model_checkpoint_path, model_name, ) model = build_cnn(config) # model.summary() model.compile(loss=config['loss'], optimizer=Adam(lr=config['learning_rate']), metrics=['acc', 'Precision', 'Recall', 'AUC']) #model_chk_name = sorted(glob(pth.join(model_path, 'fold{fold:02d}-*')))[-1] model_chk_name = sorted(glob(pth.join(model_path, '*')))[-1] print('selected weight to load=', model_chk_name) model.load_weights(model_chk_name) test_dataset = get_test_dataset(TEST_FILENAMES) ###Output _____no_output_____ ###Markdown Define datasettest_dataset = tf.data.TFRecordDataset(test_tfrecord_path, compression_type='GZIP')test_dataset = test_dataset.map(_parse_image_function_for_test, num_parallel_calls=tf.data.experimental.AUTOTUNE)test_dataset = test_dataset.map(map_func_for_test, num_parallel_calls=tf.data.experimental.AUTOTUNE)test_dataset = test_dataset.map(resize_and_crop_func_for_test, num_parallel_calls=tf.data.experimental.AUTOTUNE)test_dataset = test_dataset.map(image_aug_func, num_parallel_calls=tf.data.experimental.AUTOTUNE)test_dataset = test_dataset.repeat()test_dataset = test_dataset.batch(config['batch_size'])test_dataset = test_dataset.map(post_process_func_for_test, num_parallel_calls=tf.data.experimental.AUTOTUNE)test_dataset = test_dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE) ###Code pred = model.predict(test_dataset,verbose=1) #[:TTA*ct_test,] np.shape(pred) preds = np.zeros((len(TEST_FILENAMES),config['num_class'])) ct_test = len(TEST_FILENAMES) TTA = 3 STEPS = TTA * ct_test / config['batch_size'] pred = model.predict(test_dataset,steps=STEPS, verbose=1)[:ct_test * TTA,] tmp = pred[:ct_test * TTA,] preds += np.mean(tmp.reshape((ct_test, TTA, config['num_class']), order='F'), axis=1) * WGTS[fold] np.shape(preds) np.shape(m) preds += m m[0] preds[0] m = np.mean(tmp,axis=1) np.shape(preds) np.shape(m) ds_test = get_dataset(files_test,labeled=False,return_image_names=False,augment=True, repeat=True,shuffle=False,dim=IMG_SIZES[fold],batch_size=BATCH_SIZES[fold]*4) ct_test = count_data_items(files_test); STEPS = TTA * ct_test/BATCH_SIZES[fold]/4/REPLICAS pred = model.predict(ds_test,steps=STEPS,verbose=VERBOSE)[:TTA*ct_test,] preds[:,0] += np.mean(pred.reshape((ct_test,TTA),order='F'),axis=1) * WGTS[fold] ###Output _____no_output_____ ###Markdown Inference ###Code image_feature_description_for_test = { 'image_raw': tf.io.FixedLenFeature([], tf.string), # 'randmark_id': tf.io.FixedLenFeature([], tf.int64), # 'id': tf.io.FixedLenFeature([], tf.string), } def _parse_image_function_for_test(example_proto): return tf.io.parse_single_example(example_proto, image_feature_description_for_test) def map_func_for_test(target_record): img = target_record['image_raw'] img = tf.image.decode_jpeg(img, channels=3) img = tf.dtypes.cast(img, tf.float32) return img def resize_and_crop_func_for_test(image): result_image = tf.image.resize(image, config['aug']['resize']) #result_image = tf.image.random_crop(image, size=config['input_shape'], seed=7777) # revive return result_image def post_process_func_for_test(image): # result_image = result_image / 255 result_image = my_model_base.preprocess_input(image) return result_image submission_base_path = pth.join(data_base_path, 'submission') os.makedirs(submission_base_path, exist_ok=True) preds = [] # for conv_comb, activation, base_channel, \ # between_type, fc_num, batch_size \ # in itertools.product(conv_comb_list, activation_list, # base_channel_list, between_type_list, fc_list, # batch_size_list): # config['conv']['conv_num'] = conv_comb # config['conv']['base_channel'] = base_channel # config['activation'] = activation # config['between_type'] = between_type # config['fc']['fc_num'] = fc_num # config['batch_size'] = batch_size for LEARNING_RATE in [1e-3]: #, 1e-4, 1e-5]: # just once base = BASE_MODEL_NAME base += '_resize_{}'.format(config['aug']['resize'][0]) #base += '_input_{}'.format(config['input_shape'][0]) base += '_conv_{}'.format('-'.join(map(lambda x:str(x),config['conv']['conv_num']))) base += '_basech_{}'.format(config['conv']['base_channel']) base += '_act_{}'.format(config['activation']) base += '_pool_{}'.format(config['pool']['type']) base += '_betw_{}'.format(config['between_type']) base += '_fc_{}'.format(config['fc']['fc_num']) base += '_zscore_{}'.format(config['is_zscore']) base += '_batch_{}'.format(config['batch_size']) if config['is_dropout']: base += '_DO_'+str(config['dropout_rate']).replace('.', '') if config['is_batchnorm']: base += '_BN'+'_O' else: base += '_BN'+'_X' model_name = base print(model_name) ### Define dataset test_dataset = tf.data.TFRecordDataset(test_tfrecord_path, compression_type='GZIP') test_dataset = test_dataset.map(_parse_image_function_for_test, num_parallel_calls=tf.data.experimental.AUTOTUNE) test_dataset = test_dataset.map(map_func_for_test, num_parallel_calls=tf.data.experimental.AUTOTUNE) test_dataset = test_dataset.map(resize_and_crop_func_for_test, num_parallel_calls=tf.data.experimental.AUTOTUNE) test_dataset = test_dataset.batch(config['batch_size']) test_dataset = test_dataset.map(post_process_func_for_test, num_parallel_calls=tf.data.experimental.AUTOTUNE) test_dataset = test_dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE) model_path = pth.join( model_checkpoint_path, model_name, ) model = build_cnn(config) # model.summary() model.compile(loss=config['loss'], optimizer=Adam(lr=config['learning_rate']), metrics=['acc', 'Precision', 'Recall', 'AUC']) initial_epoch = 0 model_chk_name = sorted(os.listdir(model_path))[-1] print('selected weight to load=', model_chk_name) initial_epoch = int(model_chk_name.split('-')[0]) model.load_weights(pth.join(model_path, model_chk_name)) preds = model.predict(test_dataset, verbose=1) #pred_labels = np.argmax(preds, axis=1) #pred_probs = np.array([pred[indice] for pred, indice in zip(preds, pred_labels)]) # argmax --> top3 pred_labels = np.argsort(-preds) submission_csv_path = pth.join(data_base_path, submission_csv_name) submission_df = pd.read_csv(submission_csv_path) merged_df = [] RANK_TO_SAVE = 5 for i in range(RANK_TO_SAVE): tmp_df = submission_df.copy() tmp_labels = pred_labels[:, i] tmp_df['landmark_id'] = tmp_labels tmp_df['conf'] = np.array([pred[indice] for pred, indice in zip(preds, tmp_labels)]) merged_df.append(tmp_df) submission_df = pd.concat(merged_df) #submission_df['landmark_id'] = pred_labels #submission_df['conf'] = pred_probs today_str = datetime.date.today().strftime('%Y%m%d') result_filename = '{}.csv'.format(model_name) submission_csv_fileaname = pth.join(submission_base_path, '_'.join([today_str, result_filename])) submission_df.to_csv(submission_csv_fileaname, index=False) submission_csv_path = pth.join(data_base_path, submission_csv_name) submission_df = pd.read_csv(submission_csv_path) merged_df = [] RANK_TO_SAVE = 1 for i in range(RANK_TO_SAVE): tmp_df = submission_df.copy() tmp_labels = pred_labels[:, i] tmp_df['landmark_id'] = tmp_labels tmp_df['conf'] = np.array([pred[indice] for pred, indice in zip(preds, tmp_labels)]) merged_df.append(tmp_df) submission_df = pd.concat(merged_df) #submission_df['landmark_id'] = pred_labels #submission_df['conf'] = pred_probs today_str = datetime.date.today().strftime('%Y%m%d') result_filename = '{}_top1.csv'.format(model_name) submission_csv_fileaname = pth.join(submission_base_path, '_'.join([today_str, result_filename])) submission_df.to_csv(submission_csv_fileaname, index=False) ###Output _____no_output_____
week_2/.ipynb_checkpoints/day_9_lab-checkpoint.ipynb
###Markdown Exercise 1Write a function that takes a string as input and it returns whether the string is a valid password (the return value is True) or not (the return value is False). A string is a valid password if - it contains least 1 number between 0 and 9,- if it contains at least 1 character from the list ['$','','@','.','!','?',''],- if it has a minimum length of at least 6 characters.Please check that the input to the function is indeed a string. If it is not, print a diagnostic message and raise a value error.Test your function with the strings below to make sure it works correctly. Note how the test strings try all possible ways the conditions can fail. You should aim to test your code with such thoroughness.'ilikeplums!' => False (fails on first condition)'plum2020' => False (fails on second condition)'a2b3?' => False (fails on third condition)'applesaretasty' => False (fails on the first and second conditionss)'plum!' => False (fails on first and third conditions)'plum5' => False (fails on second and third conditions)'apple' => False (fails all three conditions)'1234' => True'!p1umsareblue' => True ###Code # this is a list with all the test passwords # write a for loop to iterate through the elements, call your function on each element, # and check if your function gives the correct output passwords_lst = ['ilikeplums!','plum2020','a2b3?','applesaretasty','plum!','plum5','apple','<apple>1234','!p1umsareblue'] def check_pwd(pwd): # add your code here: return for password in passwords_lst: print(check_pwd(password)) ###Output _____no_output_____