file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
list
commit
stringclasses
4 values
url
stringclasses
4 values
start
list
Mathlib/SetTheory/ZFC/Basic.lean
Class.mem_asymm
[]
[ 1553, 8 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1552, 1 ]
Mathlib/Data/Complex/Exponential.lean
Complex.cos_add_cos
[ { "state_after": "x y : ℂ\nh2 : 2 ≠ 0\n⊢ cos x + cos y = 2 * cos ((x + y) / 2) * cos ((x - y) / 2)", "state_before": "x y : ℂ\n⊢ cos x + cos y = 2 * cos ((x + y) / 2) * cos ((x - y) / 2)", "tactic": "have h2 : (2 : ℂ) ≠ 0 := by norm_num" }, { "state_after": "case calc_1\nx y : ℂ\nh2 : 2 ≠ 0\n⊢ cos x + cos y = cos ((x + y) / 2 + (x - y) / 2) + cos ((x + y) / 2 - (x - y) / 2)\n\ncase calc_2\nx y : ℂ\nh2 : 2 ≠ 0\n⊢ cos ((x + y) / 2 + (x - y) / 2) + cos ((x + y) / 2 - (x - y) / 2) =\n cos ((x + y) / 2) * cos ((x - y) / 2) - sin ((x + y) / 2) * sin ((x - y) / 2) +\n (cos ((x + y) / 2) * cos ((x - y) / 2) + sin ((x + y) / 2) * sin ((x - y) / 2))\n\ncase calc_3\nx y : ℂ\nh2 : 2 ≠ 0\n⊢ cos ((x + y) / 2) * cos ((x - y) / 2) - sin ((x + y) / 2) * sin ((x - y) / 2) +\n (cos ((x + y) / 2) * cos ((x - y) / 2) + sin ((x + y) / 2) * sin ((x - y) / 2)) =\n 2 * cos ((x + y) / 2) * cos ((x - y) / 2)", "state_before": "x y : ℂ\nh2 : 2 ≠ 0\n⊢ cos x + cos y = 2 * cos ((x + y) / 2) * cos ((x - y) / 2)", "tactic": "calc\n cos x + cos y = cos ((x + y) / 2 + (x - y) / 2) + cos ((x + y) / 2 - (x - y) / 2) := ?_\n _ =\n cos ((x + y) / 2) * cos ((x - y) / 2) - sin ((x + y) / 2) * sin ((x - y) / 2) +\n (cos ((x + y) / 2) * cos ((x - y) / 2) + sin ((x + y) / 2) * sin ((x - y) / 2)) :=\n ?_\n _ = 2 * cos ((x + y) / 2) * cos ((x - y) / 2) := ?_" }, { "state_after": "no goals", "state_before": "case calc_3\nx y : ℂ\nh2 : 2 ≠ 0\n⊢ cos ((x + y) / 2) * cos ((x - y) / 2) - sin ((x + y) / 2) * sin ((x - y) / 2) +\n (cos ((x + y) / 2) * cos ((x - y) / 2) + sin ((x + y) / 2) * sin ((x - y) / 2)) =\n 2 * cos ((x + y) / 2) * cos ((x - y) / 2)", "tactic": "ring" }, { "state_after": "no goals", "state_before": "x y : ℂ\n⊢ 2 ≠ 0", "tactic": "norm_num" }, { "state_after": "no goals", "state_before": "case calc_1\nx y : ℂ\nh2 : 2 ≠ 0\n⊢ cos x + cos y = cos ((x + y) / 2 + (x - y) / 2) + cos ((x + y) / 2 - (x - y) / 2)", "tactic": "congr <;> field_simp [h2]" }, { "state_after": "no goals", "state_before": "case calc_2\nx y : ℂ\nh2 : 2 ≠ 0\n⊢ cos ((x + y) / 2 + (x - y) / 2) + cos ((x + y) / 2 - (x - y) / 2) =\n cos ((x + y) / 2) * cos ((x - y) / 2) - sin ((x + y) / 2) * sin ((x - y) / 2) +\n (cos ((x + y) / 2) * cos ((x - y) / 2) + sin ((x + y) / 2) * sin ((x - y) / 2))", "tactic": "rw [cos_add, cos_sub]" } ]
[ 924, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 912, 1 ]
Mathlib/Order/Filter/Basic.lean
Filter.Frequently.mono
[]
[ 1278, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1276, 1 ]
Mathlib/Topology/StoneCech.lean
continuous_stoneCechUnit
[ { "state_after": "α : Type u\ninst✝ : TopologicalSpace α\nx : α\ng : Ultrafilter α\ngx : ↑g ≤ 𝓝 x\nthis : ↑(Ultrafilter.map pure g) ≤ 𝓝 g\n⊢ Tendsto stoneCechUnit (↑g) (𝓝 (stoneCechUnit x))", "state_before": "α : Type u\ninst✝ : TopologicalSpace α\nx : α\ng : Ultrafilter α\ngx : ↑g ≤ 𝓝 x\n⊢ Tendsto stoneCechUnit (↑g) (𝓝 (stoneCechUnit x))", "tactic": "have : (g.map pure).toFilter ≤ 𝓝 g := by\n rw [ultrafilter_converges_iff]\n exact (bind_pure _).symm" }, { "state_after": "α : Type u\ninst✝ : TopologicalSpace α\nx : α\ng : Ultrafilter α\ngx : ↑g ≤ 𝓝 x\nthis✝ : ↑(Ultrafilter.map pure g) ≤ 𝓝 g\nthis : ↑(Ultrafilter.map stoneCechUnit g) ≤ 𝓝 (Quotient.mk (stoneCechSetoid α) g)\n⊢ Tendsto stoneCechUnit (↑g) (𝓝 (stoneCechUnit x))", "state_before": "α : Type u\ninst✝ : TopologicalSpace α\nx : α\ng : Ultrafilter α\ngx : ↑g ≤ 𝓝 x\nthis : ↑(Ultrafilter.map pure g) ≤ 𝓝 g\n⊢ Tendsto stoneCechUnit (↑g) (𝓝 (stoneCechUnit x))", "tactic": "have : (g.map stoneCechUnit : Filter (StoneCech α)) ≤ 𝓝 ⟦g⟧ :=\n continuousAt_iff_ultrafilter.mp (continuous_quotient_mk'.tendsto g) _ this" }, { "state_after": "no goals", "state_before": "α : Type u\ninst✝ : TopologicalSpace α\nx : α\ng : Ultrafilter α\ngx : ↑g ≤ 𝓝 x\nthis✝ : ↑(Ultrafilter.map pure g) ≤ 𝓝 g\nthis : ↑(Ultrafilter.map stoneCechUnit g) ≤ 𝓝 (Quotient.mk (stoneCechSetoid α) g)\n⊢ Tendsto stoneCechUnit (↑g) (𝓝 (stoneCechUnit x))", "tactic": "rwa [show ⟦g⟧ = ⟦pure x⟧ from Quotient.sound <| convergent_eqv_pure gx] at this" }, { "state_after": "α : Type u\ninst✝ : TopologicalSpace α\nx : α\ng : Ultrafilter α\ngx : ↑g ≤ 𝓝 x\n⊢ g = joinM (Ultrafilter.map pure g)", "state_before": "α : Type u\ninst✝ : TopologicalSpace α\nx : α\ng : Ultrafilter α\ngx : ↑g ≤ 𝓝 x\n⊢ ↑(Ultrafilter.map pure g) ≤ 𝓝 g", "tactic": "rw [ultrafilter_converges_iff]" }, { "state_after": "no goals", "state_before": "α : Type u\ninst✝ : TopologicalSpace α\nx : α\ng : Ultrafilter α\ngx : ↑g ≤ 𝓝 x\n⊢ g = joinM (Ultrafilter.map pure g)", "tactic": "exact (bind_pure _).symm" } ]
[ 312, 84 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 305, 1 ]
Mathlib/Data/Prod/Basic.lean
Function.Injective.Prod_map
[]
[ 315, 63 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 314, 1 ]
Mathlib/RingTheory/DedekindDomain/Dvr.lean
IsDedekindDomain.isDedekindDomainDvr
[]
[ 155, 79 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 152, 1 ]
Mathlib/Data/Finset/LocallyFinite.lean
Finset.Ico_self
[]
[ 283, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 282, 1 ]
Mathlib/Data/List/Range.lean
List.finRange_map_get
[ { "state_after": "no goals", "state_before": "α : Type u\nl : List α\n⊢ length (map (get l) (finRange (length l))) = length l", "tactic": "simp" }, { "state_after": "no goals", "state_before": "α : Type u\nl : List α\n⊢ ∀ (n : ℕ) (h₁ : n < length (map (get l) (finRange (length l)))) (h₂ : n < length l),\n get (map (get l) (finRange (length l))) { val := n, isLt := h₁ } = get l { val := n, isLt := h₂ }", "tactic": "simp" } ]
[ 215, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 214, 1 ]
Mathlib/Data/Polynomial/EraseLead.lean
Polynomial.eraseLead_add_monomial_natDegree_leadingCoeff
[]
[ 68, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 66, 1 ]
Mathlib/Topology/PathConnected.lean
locPathConnected_of_bases
[ { "state_after": "case path_connected_basis\nX : Type u_1\nY : Type ?u.702092\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx y z : X\nι : Type u_2\nF : Set X\np : ι → Prop\ns : X → ι → Set X\nh : ∀ (x : X), HasBasis (𝓝 x) p (s x)\nh' : ∀ (x : X) (i : ι), p i → IsPathConnected (s x i)\n⊢ ∀ (x : X), HasBasis (𝓝 x) (fun s => s ∈ 𝓝 x ∧ IsPathConnected s) id", "state_before": "X : Type u_1\nY : Type ?u.702092\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx y z : X\nι : Type u_2\nF : Set X\np : ι → Prop\ns : X → ι → Set X\nh : ∀ (x : X), HasBasis (𝓝 x) p (s x)\nh' : ∀ (x : X) (i : ι), p i → IsPathConnected (s x i)\n⊢ LocPathConnectedSpace X", "tactic": "constructor" }, { "state_after": "case path_connected_basis\nX : Type u_1\nY : Type ?u.702092\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx✝ y z : X\nι : Type u_2\nF : Set X\np : ι → Prop\ns : X → ι → Set X\nh : ∀ (x : X), HasBasis (𝓝 x) p (s x)\nh' : ∀ (x : X) (i : ι), p i → IsPathConnected (s x i)\nx : X\n⊢ HasBasis (𝓝 x) (fun s => s ∈ 𝓝 x ∧ IsPathConnected s) id", "state_before": "case path_connected_basis\nX : Type u_1\nY : Type ?u.702092\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx y z : X\nι : Type u_2\nF : Set X\np : ι → Prop\ns : X → ι → Set X\nh : ∀ (x : X), HasBasis (𝓝 x) p (s x)\nh' : ∀ (x : X) (i : ι), p i → IsPathConnected (s x i)\n⊢ ∀ (x : X), HasBasis (𝓝 x) (fun s => s ∈ 𝓝 x ∧ IsPathConnected s) id", "tactic": "intro x" }, { "state_after": "case path_connected_basis.h\nX : Type u_1\nY : Type ?u.702092\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx✝ y z : X\nι : Type u_2\nF : Set X\np : ι → Prop\ns : X → ι → Set X\nh : ∀ (x : X), HasBasis (𝓝 x) p (s x)\nh' : ∀ (x : X) (i : ι), p i → IsPathConnected (s x i)\nx : X\n⊢ ∀ (i : ι), p i → ∃ i', (i' ∈ 𝓝 x ∧ IsPathConnected i') ∧ id i' ⊆ s x i\n\ncase path_connected_basis.h'\nX : Type u_1\nY : Type ?u.702092\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx✝ y z : X\nι : Type u_2\nF : Set X\np : ι → Prop\ns : X → ι → Set X\nh : ∀ (x : X), HasBasis (𝓝 x) p (s x)\nh' : ∀ (x : X) (i : ι), p i → IsPathConnected (s x i)\nx : X\n⊢ ∀ (i' : Set X), i' ∈ 𝓝 x ∧ IsPathConnected i' → ∃ i, p i ∧ s x i ⊆ id i'", "state_before": "case path_connected_basis\nX : Type u_1\nY : Type ?u.702092\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx✝ y z : X\nι : Type u_2\nF : Set X\np : ι → Prop\ns : X → ι → Set X\nh : ∀ (x : X), HasBasis (𝓝 x) p (s x)\nh' : ∀ (x : X) (i : ι), p i → IsPathConnected (s x i)\nx : X\n⊢ HasBasis (𝓝 x) (fun s => s ∈ 𝓝 x ∧ IsPathConnected s) id", "tactic": "apply (h x).to_hasBasis" }, { "state_after": "case path_connected_basis.h\nX : Type u_1\nY : Type ?u.702092\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx✝ y z : X\nι : Type u_2\nF : Set X\np : ι → Prop\ns : X → ι → Set X\nh : ∀ (x : X), HasBasis (𝓝 x) p (s x)\nh' : ∀ (x : X) (i : ι), p i → IsPathConnected (s x i)\nx : X\ni : ι\npi : p i\n⊢ ∃ i', (i' ∈ 𝓝 x ∧ IsPathConnected i') ∧ id i' ⊆ s x i", "state_before": "case path_connected_basis.h\nX : Type u_1\nY : Type ?u.702092\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx✝ y z : X\nι : Type u_2\nF : Set X\np : ι → Prop\ns : X → ι → Set X\nh : ∀ (x : X), HasBasis (𝓝 x) p (s x)\nh' : ∀ (x : X) (i : ι), p i → IsPathConnected (s x i)\nx : X\n⊢ ∀ (i : ι), p i → ∃ i', (i' ∈ 𝓝 x ∧ IsPathConnected i') ∧ id i' ⊆ s x i", "tactic": "intro i pi" }, { "state_after": "no goals", "state_before": "case path_connected_basis.h\nX : Type u_1\nY : Type ?u.702092\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx✝ y z : X\nι : Type u_2\nF : Set X\np : ι → Prop\ns : X → ι → Set X\nh : ∀ (x : X), HasBasis (𝓝 x) p (s x)\nh' : ∀ (x : X) (i : ι), p i → IsPathConnected (s x i)\nx : X\ni : ι\npi : p i\n⊢ ∃ i', (i' ∈ 𝓝 x ∧ IsPathConnected i') ∧ id i' ⊆ s x i", "tactic": "exact ⟨s x i, ⟨(h x).mem_of_mem pi, h' x i pi⟩, by rfl⟩" }, { "state_after": "no goals", "state_before": "X : Type u_1\nY : Type ?u.702092\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx✝ y z : X\nι : Type u_2\nF : Set X\np : ι → Prop\ns : X → ι → Set X\nh : ∀ (x : X), HasBasis (𝓝 x) p (s x)\nh' : ∀ (x : X) (i : ι), p i → IsPathConnected (s x i)\nx : X\ni : ι\npi : p i\n⊢ id (s x i) ⊆ s x i", "tactic": "rfl" }, { "state_after": "case path_connected_basis.h'.intro\nX : Type u_1\nY : Type ?u.702092\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx✝ y z : X\nι : Type u_2\nF : Set X\np : ι → Prop\ns : X → ι → Set X\nh : ∀ (x : X), HasBasis (𝓝 x) p (s x)\nh' : ∀ (x : X) (i : ι), p i → IsPathConnected (s x i)\nx : X\nU : Set X\nU_in : U ∈ 𝓝 x\n_hU : IsPathConnected U\n⊢ ∃ i, p i ∧ s x i ⊆ id U", "state_before": "case path_connected_basis.h'\nX : Type u_1\nY : Type ?u.702092\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx✝ y z : X\nι : Type u_2\nF : Set X\np : ι → Prop\ns : X → ι → Set X\nh : ∀ (x : X), HasBasis (𝓝 x) p (s x)\nh' : ∀ (x : X) (i : ι), p i → IsPathConnected (s x i)\nx : X\n⊢ ∀ (i' : Set X), i' ∈ 𝓝 x ∧ IsPathConnected i' → ∃ i, p i ∧ s x i ⊆ id i'", "tactic": "rintro U ⟨U_in, _hU⟩" }, { "state_after": "case path_connected_basis.h'.intro.intro.intro\nX : Type u_1\nY : Type ?u.702092\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx✝ y z : X\nι : Type u_2\nF : Set X\np : ι → Prop\ns : X → ι → Set X\nh : ∀ (x : X), HasBasis (𝓝 x) p (s x)\nh' : ∀ (x : X) (i : ι), p i → IsPathConnected (s x i)\nx : X\nU : Set X\nU_in : U ∈ 𝓝 x\n_hU : IsPathConnected U\ni : ι\npi : p i\nhi : s x i ⊆ U\n⊢ ∃ i, p i ∧ s x i ⊆ id U", "state_before": "case path_connected_basis.h'.intro\nX : Type u_1\nY : Type ?u.702092\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx✝ y z : X\nι : Type u_2\nF : Set X\np : ι → Prop\ns : X → ι → Set X\nh : ∀ (x : X), HasBasis (𝓝 x) p (s x)\nh' : ∀ (x : X) (i : ι), p i → IsPathConnected (s x i)\nx : X\nU : Set X\nU_in : U ∈ 𝓝 x\n_hU : IsPathConnected U\n⊢ ∃ i, p i ∧ s x i ⊆ id U", "tactic": "rcases(h x).mem_iff.mp U_in with ⟨i, pi, hi⟩" }, { "state_after": "no goals", "state_before": "case path_connected_basis.h'.intro.intro.intro\nX : Type u_1\nY : Type ?u.702092\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx✝ y z : X\nι : Type u_2\nF : Set X\np : ι → Prop\ns : X → ι → Set X\nh : ∀ (x : X), HasBasis (𝓝 x) p (s x)\nh' : ∀ (x : X) (i : ι), p i → IsPathConnected (s x i)\nx : X\nU : Set X\nU_in : U ∈ 𝓝 x\n_hU : IsPathConnected U\ni : ι\npi : p i\nhi : s x i ⊆ U\n⊢ ∃ i, p i ∧ s x i ⊆ id U", "tactic": "tauto" } ]
[ 1210, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1200, 1 ]
Mathlib/Data/Int/GCD.lean
Nat.xgcd_val
[ { "state_after": "x y : ℕ\n⊢ xgcd x y = ((xgcd x y).fst, (xgcd x y).snd)", "state_before": "x y : ℕ\n⊢ xgcd x y = (gcdA x y, gcdB x y)", "tactic": "unfold gcdA gcdB" }, { "state_after": "case mk\nx y : ℕ\nfst✝ snd✝ : ℤ\n⊢ (fst✝, snd✝) = ((fst✝, snd✝).fst, (fst✝, snd✝).snd)", "state_before": "x y : ℕ\n⊢ xgcd x y = ((xgcd x y).fst, (xgcd x y).snd)", "tactic": "cases xgcd x y" }, { "state_after": "no goals", "state_before": "case mk\nx y : ℕ\nfst✝ snd✝ : ℤ\n⊢ (fst✝, snd✝) = ((fst✝, snd✝).fst, (fst✝, snd✝).snd)", "tactic": "rfl" } ]
[ 125, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 124, 1 ]
Mathlib/Topology/Constructions.lean
exists_nhds_square
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type ?u.50921\nδ : Type ?u.50924\nε : Type ?u.50927\nζ : Type ?u.50930\ninst✝⁵ : TopologicalSpace α\ninst✝⁴ : TopologicalSpace β\ninst✝³ : TopologicalSpace γ\ninst✝² : TopologicalSpace δ\ninst✝¹ : TopologicalSpace ε\ninst✝ : TopologicalSpace ζ\ns : Set (α × α)\nx : α\nhx : s ∈ 𝓝 (x, x)\n⊢ ∃ U, IsOpen U ∧ x ∈ U ∧ U ×ˢ U ⊆ s", "tactic": "simpa [nhds_prod_eq, (nhds_basis_opens x).prod_self.mem_iff, and_assoc, and_left_comm] using hx" } ]
[ 688, 98 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 686, 1 ]
Mathlib/CategoryTheory/Monoidal/Free/Basic.lean
CategoryTheory.FreeMonoidalCategory.mk_α_inv
[]
[ 211, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 210, 1 ]
Mathlib/Algebra/Group/Commute.lean
Commute.pow_self
[]
[ 202, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 201, 1 ]
Mathlib/Topology/UniformSpace/Cauchy.lean
Filter.HasBasis.cauchy_iff
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\ninst✝ : UniformSpace α\nι : Sort u_1\np : ι → Prop\ns : ι → Set (α × α)\nh : HasBasis (𝓤 α) p s\nf : Filter α\n⊢ (∀ (i' : ι), p i' → ∃ i, i ∈ f ∧ id i ×ˢ id i ⊆ s i') ↔\n ∀ (i : ι), p i → ∃ t, t ∈ f ∧ ∀ (x : α), x ∈ t → ∀ (y : α), y ∈ t → (x, y) ∈ s i", "tactic": "simp only [subset_def, Prod.forall, mem_prod_eq, and_imp, id, ball_mem_comm]" } ]
[ 47, 83 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 42, 1 ]
Std/Logic.lean
iff_congr
[]
[ 78, 79 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 77, 1 ]
Mathlib/Data/Set/Image.lean
Function.Surjective.preimage_subset_preimage_iff
[ { "state_after": "case hs\nι : Sort ?u.104761\nα : Type u_2\nβ : Type u_1\nf : α → β\ns t : Set β\nhf : Surjective f\n⊢ s ⊆ range f", "state_before": "ι : Sort ?u.104761\nα : Type u_2\nβ : Type u_1\nf : α → β\ns t : Set β\nhf : Surjective f\n⊢ f ⁻¹' s ⊆ f ⁻¹' t ↔ s ⊆ t", "tactic": "apply Set.preimage_subset_preimage_iff" }, { "state_after": "case hs\nι : Sort ?u.104761\nα : Type u_2\nβ : Type u_1\nf : α → β\ns t : Set β\nhf : Surjective f\n⊢ s ⊆ univ", "state_before": "case hs\nι : Sort ?u.104761\nα : Type u_2\nβ : Type u_1\nf : α → β\ns t : Set β\nhf : Surjective f\n⊢ s ⊆ range f", "tactic": "rw [Function.Surjective.range_eq hf]" }, { "state_after": "no goals", "state_before": "case hs\nι : Sort ?u.104761\nα : Type u_2\nβ : Type u_1\nf : α → β\ns t : Set β\nhf : Surjective f\n⊢ s ⊆ univ", "tactic": "apply subset_univ" } ]
[ 1324, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1320, 1 ]
Mathlib/Analysis/Convex/Gauge.lean
gauge_mono
[]
[ 90, 99 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 89, 1 ]
Mathlib/Analysis/LocallyConvex/Basic.lean
balanced_iff_neg_mem
[ { "state_after": "𝕜 : Type ?u.232896\n𝕝 : Type ?u.232899\nE : Type u_1\nι : Sort ?u.232905\nκ : ι → Sort ?u.232910\ninst✝¹ : AddCommGroup E\ninst✝ : Module ℝ E\ns : Set E\nhs : Convex ℝ s\nh : ∀ ⦃x : E⦄, x ∈ s → -x ∈ s\na : ℝ\nha : ‖a‖ ≤ 1\nx : E\nhx : x ∈ s\n⊢ a • x ∈ s", "state_before": "𝕜 : Type ?u.232896\n𝕝 : Type ?u.232899\nE : Type u_1\nι : Sort ?u.232905\nκ : ι → Sort ?u.232910\ninst✝¹ : AddCommGroup E\ninst✝ : Module ℝ E\ns : Set E\nhs : Convex ℝ s\n⊢ Balanced ℝ s ↔ ∀ ⦃x : E⦄, x ∈ s → -x ∈ s", "tactic": "refine' ⟨fun h x => h.neg_mem_iff.2, fun h a ha => smul_set_subset_iff.2 fun x hx => _⟩" }, { "state_after": "𝕜 : Type ?u.232896\n𝕝 : Type ?u.232899\nE : Type u_1\nι : Sort ?u.232905\nκ : ι → Sort ?u.232910\ninst✝¹ : AddCommGroup E\ninst✝ : Module ℝ E\ns : Set E\nhs : Convex ℝ s\nh : ∀ ⦃x : E⦄, x ∈ s → -x ∈ s\na : ℝ\nha : -1 ≤ a ∧ a ≤ 1\nx : E\nhx : x ∈ s\n⊢ a • x ∈ s", "state_before": "𝕜 : Type ?u.232896\n𝕝 : Type ?u.232899\nE : Type u_1\nι : Sort ?u.232905\nκ : ι → Sort ?u.232910\ninst✝¹ : AddCommGroup E\ninst✝ : Module ℝ E\ns : Set E\nhs : Convex ℝ s\nh : ∀ ⦃x : E⦄, x ∈ s → -x ∈ s\na : ℝ\nha : ‖a‖ ≤ 1\nx : E\nhx : x ∈ s\n⊢ a • x ∈ s", "tactic": "rw [Real.norm_eq_abs, abs_le] at ha" }, { "state_after": "𝕜 : Type ?u.232896\n𝕝 : Type ?u.232899\nE : Type u_1\nι : Sort ?u.232905\nκ : ι → Sort ?u.232910\ninst✝¹ : AddCommGroup E\ninst✝ : Module ℝ E\ns : Set E\nhs : Convex ℝ s\nh : ∀ ⦃x : E⦄, x ∈ s → -x ∈ s\na : ℝ\nha : -1 ≤ a ∧ a ≤ 1\nx : E\nhx : x ∈ s\n⊢ ((1 - a) / 2) • -x + ((a - -1) / 2) • x ∈ s", "state_before": "𝕜 : Type ?u.232896\n𝕝 : Type ?u.232899\nE : Type u_1\nι : Sort ?u.232905\nκ : ι → Sort ?u.232910\ninst✝¹ : AddCommGroup E\ninst✝ : Module ℝ E\ns : Set E\nhs : Convex ℝ s\nh : ∀ ⦃x : E⦄, x ∈ s → -x ∈ s\na : ℝ\nha : -1 ≤ a ∧ a ≤ 1\nx : E\nhx : x ∈ s\n⊢ a • x ∈ s", "tactic": "rw [show a = -((1 - a) / 2) + (a - -1) / 2 by ring, add_smul, neg_smul, ← smul_neg]" }, { "state_after": "no goals", "state_before": "𝕜 : Type ?u.232896\n𝕝 : Type ?u.232899\nE : Type u_1\nι : Sort ?u.232905\nκ : ι → Sort ?u.232910\ninst✝¹ : AddCommGroup E\ninst✝ : Module ℝ E\ns : Set E\nhs : Convex ℝ s\nh : ∀ ⦃x : E⦄, x ∈ s → -x ∈ s\na : ℝ\nha : -1 ≤ a ∧ a ≤ 1\nx : E\nhx : x ∈ s\n⊢ ((1 - a) / 2) • -x + ((a - -1) / 2) • x ∈ s", "tactic": "exact\n hs (h hx) hx (div_nonneg (sub_nonneg_of_le ha.2) zero_le_two)\n (div_nonneg (sub_nonneg_of_le ha.1) zero_le_two) (by ring)" }, { "state_after": "no goals", "state_before": "𝕜 : Type ?u.232896\n𝕝 : Type ?u.232899\nE : Type u_1\nι : Sort ?u.232905\nκ : ι → Sort ?u.232910\ninst✝¹ : AddCommGroup E\ninst✝ : Module ℝ E\ns : Set E\nhs : Convex ℝ s\nh : ∀ ⦃x : E⦄, x ∈ s → -x ∈ s\na : ℝ\nha : -1 ≤ a ∧ a ≤ 1\nx : E\nhx : x ∈ s\n⊢ a = -((1 - a) / 2) + (a - -1) / 2", "tactic": "ring" }, { "state_after": "no goals", "state_before": "𝕜 : Type ?u.232896\n𝕝 : Type ?u.232899\nE : Type u_1\nι : Sort ?u.232905\nκ : ι → Sort ?u.232910\ninst✝¹ : AddCommGroup E\ninst✝ : Module ℝ E\ns : Set E\nhs : Convex ℝ s\nh : ∀ ⦃x : E⦄, x ∈ s → -x ∈ s\na : ℝ\nha : -1 ≤ a ∧ a ≤ 1\nx : E\nhx : x ∈ s\n⊢ (1 - a) / 2 + (a - -1) / 2 = 1", "tactic": "ring" } ]
[ 429, 65 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 423, 1 ]
Mathlib/Analysis/InnerProductSpace/Basic.lean
InnerProductSpace.Core.inner_sub_right
[ { "state_after": "no goals", "state_before": "𝕜 : Type u_1\nE : Type ?u.603708\nF : Type u_2\ninst✝² : IsROrC 𝕜\ninst✝¹ : AddCommGroup F\ninst✝ : Module 𝕜 F\nc : Core 𝕜 F\nx y z : F\n⊢ inner x (y - z) = inner x y - inner x z", "tactic": "simp [sub_eq_add_neg, inner_add_right, inner_neg_right]" } ]
[ 297, 58 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 296, 1 ]
Mathlib/Data/Polynomial/Degree/Definitions.lean
Polynomial.natDegree_C_mul_X_pow_le
[]
[ 687, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 686, 1 ]
Std/Logic.lean
not_forall_of_exists_not
[]
[ 445, 27 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 444, 1 ]
Mathlib/Data/Polynomial/Eval.lean
Polynomial.eval_bit1
[]
[ 394, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 393, 1 ]
Mathlib/Data/Nat/Bits.lean
Nat.boddDiv2_eq
[ { "state_after": "n✝ n : ℕ\n⊢ boddDiv2 n = ((boddDiv2 n).fst, (boddDiv2 n).snd)", "state_before": "n✝ n : ℕ\n⊢ boddDiv2 n = (bodd n, div2 n)", "tactic": "unfold bodd div2" }, { "state_after": "case mk\nn✝ n : ℕ\nfst✝ : Bool\nsnd✝ : ℕ\n⊢ (fst✝, snd✝) = ((fst✝, snd✝).fst, (fst✝, snd✝).snd)", "state_before": "n✝ n : ℕ\n⊢ boddDiv2 n = ((boddDiv2 n).fst, (boddDiv2 n).snd)", "tactic": "cases boddDiv2 n" }, { "state_after": "no goals", "state_before": "case mk\nn✝ n : ℕ\nfst✝ : Bool\nsnd✝ : ℕ\n⊢ (fst✝, snd✝) = ((fst✝, snd✝).fst, (fst✝, snd✝).snd)", "tactic": "rfl" } ]
[ 42, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 41, 1 ]
Mathlib/Order/Filter/Ultrafilter.lean
Ultrafilter.map_id'
[]
[ 234, 11 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 233, 1 ]
Mathlib/MeasureTheory/MeasurableSpace.lean
Measurable.of_uncurry_right
[]
[ 701, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 699, 1 ]
Mathlib/SetTheory/Ordinal/Exponential.lean
Ordinal.opow_dvd_opow_iff
[]
[ 223, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 218, 1 ]
Mathlib/GroupTheory/MonoidLocalization.lean
Submonoid.LocalizationMap.eq_of_eq
[ { "state_after": "case intro\nM : Type u_1\ninst✝² : CommMonoid M\nS : Submonoid M\nN : Type u_3\ninst✝¹ : CommMonoid N\nP : Type u_2\ninst✝ : CommMonoid P\nf : LocalizationMap S N\ng : M →* P\nhg : ∀ (y : { x // x ∈ S }), IsUnit (↑g ↑y)\nx y : M\nh : ↑(toMap f) x = ↑(toMap f) y\nc : { x // x ∈ S }\nhc : ↑c * x = ↑c * y\n⊢ ↑g x = ↑g y", "state_before": "M : Type u_1\ninst✝² : CommMonoid M\nS : Submonoid M\nN : Type u_3\ninst✝¹ : CommMonoid N\nP : Type u_2\ninst✝ : CommMonoid P\nf : LocalizationMap S N\ng : M →* P\nhg : ∀ (y : { x // x ∈ S }), IsUnit (↑g ↑y)\nx y : M\nh : ↑(toMap f) x = ↑(toMap f) y\n⊢ ↑g x = ↑g y", "tactic": "obtain ⟨c, hc⟩ := f.eq_iff_exists.1 h" }, { "state_after": "case intro\nM : Type u_1\ninst✝² : CommMonoid M\nS : Submonoid M\nN : Type u_3\ninst✝¹ : CommMonoid N\nP : Type u_2\ninst✝ : CommMonoid P\nf : LocalizationMap S N\ng : M →* P\nhg : ∀ (y : { x // x ∈ S }), IsUnit (↑g ↑y)\nx y : M\nh : ↑(toMap f) x = ↑(toMap f) y\nc : { x // x ∈ S }\nhc : ↑c * x = ↑c * y\n⊢ ↑(↑(IsUnit.liftRight (MonoidHom.restrict g S) hg) c)⁻¹ * ↑(MonoidHom.restrict g S) c * ↑g x = ↑g y", "state_before": "case intro\nM : Type u_1\ninst✝² : CommMonoid M\nS : Submonoid M\nN : Type u_3\ninst✝¹ : CommMonoid N\nP : Type u_2\ninst✝ : CommMonoid P\nf : LocalizationMap S N\ng : M →* P\nhg : ∀ (y : { x // x ∈ S }), IsUnit (↑g ↑y)\nx y : M\nh : ↑(toMap f) x = ↑(toMap f) y\nc : { x // x ∈ S }\nhc : ↑c * x = ↑c * y\n⊢ ↑g x = ↑g y", "tactic": "rw [← one_mul (g x), ← IsUnit.liftRight_inv_mul (g.restrict S) hg c]" }, { "state_after": "case intro\nM : Type u_1\ninst✝² : CommMonoid M\nS : Submonoid M\nN : Type u_3\ninst✝¹ : CommMonoid N\nP : Type u_2\ninst✝ : CommMonoid P\nf : LocalizationMap S N\ng : M →* P\nhg : ∀ (y : { x // x ∈ S }), IsUnit (↑g ↑y)\nx y : M\nh : ↑(toMap f) x = ↑(toMap f) y\nc : { x // x ∈ S }\nhc : ↑c * x = ↑c * y\n⊢ ↑(↑(IsUnit.liftRight (MonoidHom.restrict g S) hg) c)⁻¹ * ↑g ↑c * ↑g x = ↑g y", "state_before": "case intro\nM : Type u_1\ninst✝² : CommMonoid M\nS : Submonoid M\nN : Type u_3\ninst✝¹ : CommMonoid N\nP : Type u_2\ninst✝ : CommMonoid P\nf : LocalizationMap S N\ng : M →* P\nhg : ∀ (y : { x // x ∈ S }), IsUnit (↑g ↑y)\nx y : M\nh : ↑(toMap f) x = ↑(toMap f) y\nc : { x // x ∈ S }\nhc : ↑c * x = ↑c * y\n⊢ ↑(↑(IsUnit.liftRight (MonoidHom.restrict g S) hg) c)⁻¹ * ↑(MonoidHom.restrict g S) c * ↑g x = ↑g y", "tactic": "show _ * g c * _ = _" }, { "state_after": "no goals", "state_before": "case intro\nM : Type u_1\ninst✝² : CommMonoid M\nS : Submonoid M\nN : Type u_3\ninst✝¹ : CommMonoid N\nP : Type u_2\ninst✝ : CommMonoid P\nf : LocalizationMap S N\ng : M →* P\nhg : ∀ (y : { x // x ∈ S }), IsUnit (↑g ↑y)\nx y : M\nh : ↑(toMap f) x = ↑(toMap f) y\nc : { x // x ∈ S }\nhc : ↑c * x = ↑c * y\n⊢ ↑(↑(IsUnit.liftRight (MonoidHom.restrict g S) hg) c)⁻¹ * ↑g ↑c * ↑g x = ↑g y", "tactic": "rw [mul_assoc, ← g.map_mul, hc, mul_comm, mul_inv_left hg, g.map_mul]" } ]
[ 898, 72 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 894, 1 ]
Std/Data/Int/Lemmas.lean
Int.negSucc_eq'
[ { "state_after": "m : Nat\n⊢ -↑m + -1 = -↑m - 1", "state_before": "m : Nat\n⊢ -[m+1] = -↑m - 1", "tactic": "simp only [negSucc_eq, Int.neg_add]" }, { "state_after": "no goals", "state_before": "m : Nat\n⊢ -↑m + -1 = -↑m - 1", "tactic": "rfl" } ]
[ 1354, 95 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 1354, 1 ]
Mathlib/RingTheory/Ideal/Operations.lean
Ideal.map_le_of_le_comap
[]
[ 1423, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1422, 1 ]
Mathlib/LinearAlgebra/Eigenspace/Basic.lean
Module.End.hasGeneralizedEigenvalue_of_hasGeneralizedEigenvalue_of_le
[ { "state_after": "K R : Type v\nV M : Type w\ninst✝⁵ : CommRing R\ninst✝⁴ : AddCommGroup M\ninst✝³ : Module R M\ninst✝² : Field K\ninst✝¹ : AddCommGroup V\ninst✝ : Module K V\nf : End R M\nμ : R\nk m : ℕ\nhm : k ≤ m\nhk : ↑(generalizedEigenspace f μ) k ≠ ⊥\n⊢ ↑(generalizedEigenspace f μ) m ≠ ⊥", "state_before": "K R : Type v\nV M : Type w\ninst✝⁵ : CommRing R\ninst✝⁴ : AddCommGroup M\ninst✝³ : Module R M\ninst✝² : Field K\ninst✝¹ : AddCommGroup V\ninst✝ : Module K V\nf : End R M\nμ : R\nk m : ℕ\nhm : k ≤ m\nhk : HasGeneralizedEigenvalue f μ k\n⊢ HasGeneralizedEigenvalue f μ m", "tactic": "unfold HasGeneralizedEigenvalue at *" }, { "state_after": "K R : Type v\nV M : Type w\ninst✝⁵ : CommRing R\ninst✝⁴ : AddCommGroup M\ninst✝³ : Module R M\ninst✝² : Field K\ninst✝¹ : AddCommGroup V\ninst✝ : Module K V\nf : End R M\nμ : R\nk m : ℕ\nhm : k ≤ m\nhk : ↑(generalizedEigenspace f μ) m = ⊥\n⊢ ↑(generalizedEigenspace f μ) k = ⊥", "state_before": "K R : Type v\nV M : Type w\ninst✝⁵ : CommRing R\ninst✝⁴ : AddCommGroup M\ninst✝³ : Module R M\ninst✝² : Field K\ninst✝¹ : AddCommGroup V\ninst✝ : Module K V\nf : End R M\nμ : R\nk m : ℕ\nhm : k ≤ m\nhk : ↑(generalizedEigenspace f μ) k ≠ ⊥\n⊢ ↑(generalizedEigenspace f μ) m ≠ ⊥", "tactic": "contrapose! hk" }, { "state_after": "K R : Type v\nV M : Type w\ninst✝⁵ : CommRing R\ninst✝⁴ : AddCommGroup M\ninst✝³ : Module R M\ninst✝² : Field K\ninst✝¹ : AddCommGroup V\ninst✝ : Module K V\nf : End R M\nμ : R\nk m : ℕ\nhm : k ≤ m\nhk : ↑(generalizedEigenspace f μ) m = ⊥\n⊢ ↑(generalizedEigenspace f μ) k ≤ ↑(generalizedEigenspace f μ) m", "state_before": "K R : Type v\nV M : Type w\ninst✝⁵ : CommRing R\ninst✝⁴ : AddCommGroup M\ninst✝³ : Module R M\ninst✝² : Field K\ninst✝¹ : AddCommGroup V\ninst✝ : Module K V\nf : End R M\nμ : R\nk m : ℕ\nhm : k ≤ m\nhk : ↑(generalizedEigenspace f μ) m = ⊥\n⊢ ↑(generalizedEigenspace f μ) k = ⊥", "tactic": "rw [← le_bot_iff, ← hk]" }, { "state_after": "no goals", "state_before": "K R : Type v\nV M : Type w\ninst✝⁵ : CommRing R\ninst✝⁴ : AddCommGroup M\ninst✝³ : Module R M\ninst✝² : Field K\ninst✝¹ : AddCommGroup V\ninst✝ : Module K V\nf : End R M\nμ : R\nk m : ℕ\nhm : k ≤ m\nhk : ↑(generalizedEigenspace f μ) m = ⊥\n⊢ ↑(generalizedEigenspace f μ) k ≤ ↑(generalizedEigenspace f μ) m", "tactic": "exact (f.generalizedEigenspace μ).monotone hm" } ]
[ 339, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 333, 1 ]
Mathlib/MeasureTheory/Group/Prod.lean
MeasureTheory.measure_mul_right_null
[ { "state_after": "no goals", "state_before": "G : Type u_1\ninst✝⁶ : MeasurableSpace G\ninst✝⁵ : Group G\ninst✝⁴ : MeasurableMul₂ G\nμ ν : Measure G\ninst✝³ : SigmaFinite ν\ninst✝² : SigmaFinite μ\ns : Set G\ninst✝¹ : MeasurableInv G\ninst✝ : IsMulLeftInvariant μ\ny : G\n⊢ ↑↑μ ((fun x => x * y) ⁻¹' s) = 0 ↔ ↑↑μ ((fun x => y⁻¹ * x) ⁻¹' s⁻¹)⁻¹ = 0", "tactic": "simp_rw [← inv_preimage, preimage_preimage, mul_inv_rev, inv_inv]" }, { "state_after": "no goals", "state_before": "G : Type u_1\ninst✝⁶ : MeasurableSpace G\ninst✝⁵ : Group G\ninst✝⁴ : MeasurableMul₂ G\nμ ν : Measure G\ninst✝³ : SigmaFinite ν\ninst✝² : SigmaFinite μ\ns : Set G\ninst✝¹ : MeasurableInv G\ninst✝ : IsMulLeftInvariant μ\ny : G\n⊢ ↑↑μ ((fun x => y⁻¹ * x) ⁻¹' s⁻¹)⁻¹ = 0 ↔ ↑↑μ s = 0", "tactic": "simp only [measure_inv_null μ, measure_preimage_mul]" } ]
[ 219, 75 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 215, 1 ]
Mathlib/Analysis/BoxIntegral/Partition/Filter.lean
BoxIntegral.IntegrationParams.hasBasis_toFilter
[ { "state_after": "no goals", "state_before": "ι : Type u_1\ninst✝ : Fintype ι\nI✝ J : Box ι\nc c₁ c₂ : ℝ≥0\nr r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)\nπ π₁ π₂ : TaggedPrepartition I✝\nl✝ l₁ l₂ l : IntegrationParams\nI : Box ι\n⊢ HasBasis (toFilter l I) (fun r => ∀ (c : ℝ≥0), RCond l (r c)) fun r => {π | ∃ c, MemBaseSet l I c (r c) π}", "tactic": "simpa only [setOf_exists] using hasBasis_iSup (l.hasBasis_toFilterDistortion I)" } ]
[ 503, 82 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 500, 1 ]
Mathlib/CategoryTheory/Types.lean
CategoryTheory.Iso.toEquiv_id
[]
[ 366, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 365, 1 ]
Mathlib/Topology/UniformSpace/UniformEmbedding.lean
UniformInducing.uniformContinuous
[]
[ 95, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 94, 1 ]
Mathlib/RingTheory/Multiplicity.lean
multiplicity.dvd_iff_multiplicity_pos
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝¹ : Monoid α\ninst✝ : DecidableRel fun x x_1 => x ∣ x_1\na b : α\nhdvd : a ∣ b\nheq : 0 = multiplicity a b\n⊢ multiplicity a b < 1", "tactic": "simpa only [heq, Nat.cast_zero] using PartENat.coe_lt_coe.mpr zero_lt_one" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝¹ : Monoid α\ninst✝ : DecidableRel fun x x_1 => x ∣ x_1\na b : α\nhdvd : a ∣ b\nheq : 0 = multiplicity a b\n⊢ a ^ 1 ∣ b", "tactic": "rwa [pow_one a]" } ]
[ 280, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 274, 1 ]
Mathlib/LinearAlgebra/SymplecticGroup.lean
SymplecticGroup.neg_mem
[ { "state_after": "l : Type u_1\nR : Type u_2\ninst✝² : DecidableEq l\ninst✝¹ : Fintype l\ninst✝ : CommRing R\nA : Matrix (l ⊕ l) (l ⊕ l) R\nh : A ⬝ J l R ⬝ Aᵀ = J l R\n⊢ (-A) ⬝ J l R ⬝ (-A)ᵀ = J l R", "state_before": "l : Type u_1\nR : Type u_2\ninst✝² : DecidableEq l\ninst✝¹ : Fintype l\ninst✝ : CommRing R\nA : Matrix (l ⊕ l) (l ⊕ l) R\nh : A ∈ symplecticGroup l R\n⊢ -A ∈ symplecticGroup l R", "tactic": "rw [mem_iff] at h⊢" }, { "state_after": "no goals", "state_before": "l : Type u_1\nR : Type u_2\ninst✝² : DecidableEq l\ninst✝¹ : Fintype l\ninst✝ : CommRing R\nA : Matrix (l ⊕ l) (l ⊕ l) R\nh : A ⬝ J l R ⬝ Aᵀ = J l R\n⊢ (-A) ⬝ J l R ⬝ (-A)ᵀ = J l R", "tactic": "simp [h]" } ]
[ 142, 11 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 140, 1 ]
Mathlib/MeasureTheory/Function/SimpleFuncDenseLp.lean
MeasureTheory.Lp.simpleFunc.coeFn_zero
[]
[ 836, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 835, 1 ]
Mathlib/Topology/Bases.lean
TopologicalSpace.IsTopologicalBasis.secondCountableTopology
[]
[ 604, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 602, 11 ]
Mathlib/Data/Sum/Basic.lean
Function.Injective.sum_map
[]
[ 569, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 566, 1 ]
Mathlib/Algebra/Category/ModuleCat/EpiMono.lean
ModuleCat.mono_iff_ker_eq_bot
[ { "state_after": "no goals", "state_before": "R : Type u\ninst✝² : Ring R\nX Y : ModuleCat R\nf : X ⟶ Y\nM : Type v\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nhf : LinearMap.ker f = ⊥\n⊢ Function.Injective ((forget (ModuleCat R)).map f)", "tactic": "convert LinearMap.ker_eq_bot.1 hf" } ]
[ 44, 82 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 42, 1 ]
Mathlib/GroupTheory/CommutingProbability.lean
inv_card_commutator_le_commProb
[]
[ 126, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 123, 1 ]
Mathlib/Topology/Separation.lean
Set.Subsingleton.closure
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\ninst✝¹ : TopologicalSpace α\ninst✝ : T1Space α\ns : Set α\nhs : Set.Subsingleton s\n⊢ Set.Subsingleton (_root_.closure s)", "tactic": "rcases hs.eq_empty_or_singleton with (rfl | ⟨x, rfl⟩) <;> simp" } ]
[ 633, 65 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 631, 1 ]
Mathlib/Analysis/Calculus/Deriv/Linear.lean
LinearMap.hasDerivAtFilter
[]
[ 87, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 86, 11 ]
Mathlib/Algebra/Associated.lean
Associates.exists_non_zero_rep
[]
[ 979, 79 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 978, 1 ]
Mathlib/CategoryTheory/StructuredArrow.lean
CategoryTheory.CostructuredArrow.comp_left
[]
[ 322, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 321, 1 ]
Mathlib/Algebra/Ring/BooleanRing.lean
toBoolAlg_add
[]
[ 353, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 352, 1 ]
Mathlib/Data/Set/Lattice.lean
Set.biUnion_self
[]
[ 926, 90 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 925, 1 ]
Mathlib/RingTheory/AdjoinRoot.lean
AdjoinRoot.nontrivial
[ { "state_after": "R : Type u\nS : Type v\nK : Type w\ninst✝¹ : CommRing R\nf : R[X]\ninst✝ : IsDomain R\nh : degree f ≠ 0\n⊢ ∀ (x : R), IsUnit x → ¬↑C x = f", "state_before": "R : Type u\nS : Type v\nK : Type w\ninst✝¹ : CommRing R\nf : R[X]\ninst✝ : IsDomain R\nh : degree f ≠ 0\n⊢ span {f} ≠ ⊤", "tactic": "simp_rw [Ne.def, span_singleton_eq_top, Polynomial.isUnit_iff, not_exists, not_and]" }, { "state_after": "R : Type u\nS : Type v\nK : Type w\ninst✝¹ : CommRing R\ninst✝ : IsDomain R\nx : R\nhx : IsUnit x\nh : degree (↑C x) ≠ 0\n⊢ False", "state_before": "R : Type u\nS : Type v\nK : Type w\ninst✝¹ : CommRing R\nf : R[X]\ninst✝ : IsDomain R\nh : degree f ≠ 0\n⊢ ∀ (x : R), IsUnit x → ¬↑C x = f", "tactic": "rintro x hx rfl" }, { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nK : Type w\ninst✝¹ : CommRing R\ninst✝ : IsDomain R\nx : R\nhx : IsUnit x\nh : degree (↑C x) ≠ 0\n⊢ False", "tactic": "exact h (degree_C hx.ne_zero)" } ]
[ 92, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 87, 11 ]
Mathlib/CategoryTheory/Limits/Shapes/Equalizers.lean
CategoryTheory.Limits.parallelPair_obj_zero
[]
[ 227, 85 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 227, 1 ]
Mathlib/ModelTheory/Definability.lean
Set.Definable.map_expansion
[ { "state_after": "case intro\nM : Type w\nA : Set M\nL : Language\ninst✝² : Structure L M\nα : Type u₁\nβ : Type ?u.417\nB : Set M\nL' : Language\ninst✝¹ : Structure L' M\nφ : L →ᴸ L'\ninst✝ : LHom.IsExpansionOn φ M\nψ : Formula (L[[↑A]]) α\n⊢ Definable A L' (setOf (Formula.Realize ψ))", "state_before": "M : Type w\nA : Set M\nL : Language\ninst✝² : Structure L M\nα : Type u₁\nβ : Type ?u.417\nB : Set M\ns : Set (α → M)\nL' : Language\ninst✝¹ : Structure L' M\nh : Definable A L s\nφ : L →ᴸ L'\ninst✝ : LHom.IsExpansionOn φ M\n⊢ Definable A L' s", "tactic": "obtain ⟨ψ, rfl⟩ := h" }, { "state_after": "case intro\nM : Type w\nA : Set M\nL : Language\ninst✝² : Structure L M\nα : Type u₁\nβ : Type ?u.417\nB : Set M\nL' : Language\ninst✝¹ : Structure L' M\nφ : L →ᴸ L'\ninst✝ : LHom.IsExpansionOn φ M\nψ : Formula (L[[↑A]]) α\n⊢ setOf (Formula.Realize ψ) = setOf (Formula.Realize (LHom.onFormula (LHom.addConstants (↑A) φ) ψ))", "state_before": "case intro\nM : Type w\nA : Set M\nL : Language\ninst✝² : Structure L M\nα : Type u₁\nβ : Type ?u.417\nB : Set M\nL' : Language\ninst✝¹ : Structure L' M\nφ : L →ᴸ L'\ninst✝ : LHom.IsExpansionOn φ M\nψ : Formula (L[[↑A]]) α\n⊢ Definable A L' (setOf (Formula.Realize ψ))", "tactic": "refine' ⟨(φ.addConstants A).onFormula ψ, _⟩" }, { "state_after": "case intro.h\nM : Type w\nA : Set M\nL : Language\ninst✝² : Structure L M\nα : Type u₁\nβ : Type ?u.417\nB : Set M\nL' : Language\ninst✝¹ : Structure L' M\nφ : L →ᴸ L'\ninst✝ : LHom.IsExpansionOn φ M\nψ : Formula (L[[↑A]]) α\nx : α → M\n⊢ x ∈ setOf (Formula.Realize ψ) ↔ x ∈ setOf (Formula.Realize (LHom.onFormula (LHom.addConstants (↑A) φ) ψ))", "state_before": "case intro\nM : Type w\nA : Set M\nL : Language\ninst✝² : Structure L M\nα : Type u₁\nβ : Type ?u.417\nB : Set M\nL' : Language\ninst✝¹ : Structure L' M\nφ : L →ᴸ L'\ninst✝ : LHom.IsExpansionOn φ M\nψ : Formula (L[[↑A]]) α\n⊢ setOf (Formula.Realize ψ) = setOf (Formula.Realize (LHom.onFormula (LHom.addConstants (↑A) φ) ψ))", "tactic": "ext x" }, { "state_after": "no goals", "state_before": "case intro.h\nM : Type w\nA : Set M\nL : Language\ninst✝² : Structure L M\nα : Type u₁\nβ : Type ?u.417\nB : Set M\nL' : Language\ninst✝¹ : Structure L' M\nφ : L →ᴸ L'\ninst✝ : LHom.IsExpansionOn φ M\nψ : Formula (L[[↑A]]) α\nx : α → M\n⊢ x ∈ setOf (Formula.Realize ψ) ↔ x ∈ setOf (Formula.Realize (LHom.onFormula (LHom.addConstants (↑A) φ) ψ))", "tactic": "simp only [mem_setOf_eq, LHom.realize_onFormula]" } ]
[ 59, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 54, 1 ]
src/lean/Init/SizeOf.lean
sizeOf_nat
[]
[ 52, 59 ]
d5348dfac847a56a4595fb6230fd0708dcb4e7e9
https://github.com/leanprover/lean4
[ 52, 9 ]
Mathlib/Data/Polynomial/EraseLead.lean
Polynomial.natDegree_not_mem_eraseLead_support
[]
[ 109, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 108, 1 ]
Mathlib/Geometry/Manifold/ChartedSpace.lean
coe_achart
[]
[ 568, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 567, 1 ]
Mathlib/Analysis/Normed/Group/InfiniteSum.lean
summable_of_summable_nnnorm
[]
[ 181, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 180, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/Types.lean
CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst
[]
[ 169, 75 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 167, 1 ]
Mathlib/Data/Multiset/FinsetOps.lean
Multiset.ndunion_eq_union
[]
[ 204, 94 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 203, 1 ]
Mathlib/RingTheory/WittVector/Basic.lean
WittVector.ghostFun_zsmul
[ { "state_after": "no goals", "state_before": "p : ℕ\nR : Type u_1\nS : Type ?u.801752\nT : Type ?u.801755\nhp : Fact (Nat.Prime p)\ninst✝² : CommRing R\ninst✝¹ : CommRing S\ninst✝ : CommRing T\nα : Type ?u.801770\nβ : Type ?u.801773\nx y : 𝕎 R\nm : ℤ\n⊢ WittVector.ghostFun (m • x) = m • WittVector.ghostFun x", "tactic": "ghost_fun_tac m • (X 0 : MvPolynomial _ ℤ), ![x.coeff]" } ]
[ 223, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 220, 9 ]
Mathlib/Data/List/Basic.lean
List.enum_map_snd
[]
[ 3843, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 3842, 1 ]
Mathlib/Data/Polynomial/Basic.lean
Polynomial.toFinsupp_neg
[ { "state_after": "case ofFinsupp\nR✝ : Type u\na b : R✝\nm n : ℕ\ninst✝¹ : Semiring R✝\np q : R✝[X]\nR : Type u\ninst✝ : Ring R\ntoFinsupp✝ : AddMonoidAlgebra R ℕ\n⊢ (-{ toFinsupp := toFinsupp✝ }).toFinsupp = -{ toFinsupp := toFinsupp✝ }.toFinsupp", "state_before": "R✝ : Type u\na✝ b : R✝\nm n : ℕ\ninst✝¹ : Semiring R✝\np q : R✝[X]\nR : Type u\ninst✝ : Ring R\na : R[X]\n⊢ (-a).toFinsupp = -a.toFinsupp", "tactic": "cases a" }, { "state_after": "no goals", "state_before": "case ofFinsupp\nR✝ : Type u\na b : R✝\nm n : ℕ\ninst✝¹ : Semiring R✝\np q : R✝[X]\nR : Type u\ninst✝ : Ring R\ntoFinsupp✝ : AddMonoidAlgebra R ℕ\n⊢ (-{ toFinsupp := toFinsupp✝ }).toFinsupp = -{ toFinsupp := toFinsupp✝ }.toFinsupp", "tactic": "rw [← ofFinsupp_neg]" } ]
[ 221, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 219, 1 ]
Mathlib/SetTheory/ZFC/Basic.lean
Class.coe_sUnion
[ { "state_after": "no goals", "state_before": "x y : ZFSet\n⊢ (∃ z, ↑x z ∧ y ∈ z) ↔ ∃ z, z ∈ x ∧ y ∈ z", "tactic": "rfl" } ]
[ 1688, 63 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1686, 1 ]
Mathlib/MeasureTheory/Function/L1Space.lean
MeasureTheory.L1.ofReal_norm_eq_lintegral
[ { "state_after": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.1305559\nδ : Type ?u.1305562\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝² : MeasurableSpace δ\ninst✝¹ : NormedAddCommGroup β\ninst✝ : NormedAddCommGroup γ\nf : { x // x ∈ Lp β 1 }\n⊢ (∫⁻ (a : α), ↑‖↑↑f a‖₊ ∂μ) ≠ ⊤", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.1305559\nδ : Type ?u.1305562\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝² : MeasurableSpace δ\ninst✝¹ : NormedAddCommGroup β\ninst✝ : NormedAddCommGroup γ\nf : { x // x ∈ Lp β 1 }\n⊢ ENNReal.ofReal ‖f‖ = ∫⁻ (x : α), ↑‖↑↑f x‖₊ ∂μ", "tactic": "rw [norm_def, ENNReal.ofReal_toReal]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.1305559\nδ : Type ?u.1305562\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝² : MeasurableSpace δ\ninst✝¹ : NormedAddCommGroup β\ninst✝ : NormedAddCommGroup γ\nf : { x // x ∈ Lp β 1 }\n⊢ (∫⁻ (a : α), ↑‖↑↑f a‖₊ ∂μ) ≠ ⊤", "tactic": "exact ne_of_lt (hasFiniteIntegral_coeFn f)" } ]
[ 1327, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1324, 1 ]
Mathlib/Topology/UniformSpace/UniformConvergence.lean
TendstoUniformlyOn.tendstoLocallyUniformlyOn
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝¹ : UniformSpace β\nF : ι → α → β\nf : α → β\ns s' : Set α\nx✝¹ : α\np : Filter ι\np' : Filter α\ng : ι → α\ninst✝ : TopologicalSpace α\nh : TendstoUniformlyOn F f p s\nu : Set (β × β)\nhu : u ∈ 𝓤 β\nx : α\nx✝ : x ∈ s\n⊢ ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ s → (f y, F n y) ∈ u", "tactic": "simpa using h u hu" } ]
[ 639, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 637, 11 ]
Mathlib/RingTheory/Ideal/Operations.lean
Submodule.top_smul
[]
[ 200, 82 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 199, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/BinaryProducts.lean
CategoryTheory.Limits.prod.symmetry'
[]
[ 1007, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1005, 1 ]
Mathlib/LinearAlgebra/Matrix/NonsingularInverse.lean
Matrix.inv_adjugate
[ { "state_after": "l : Type ?u.302074\nm : Type u\nn : Type u'\nα : Type v\ninst✝² : Fintype n\ninst✝¹ : DecidableEq n\ninst✝ : CommRing α\nA✝ B A : Matrix n n α\nh : IsUnit (det A)\n⊢ ((IsUnit.unit h)⁻¹ • A) ⬝ adjugate A = 1", "state_before": "l : Type ?u.302074\nm : Type u\nn : Type u'\nα : Type v\ninst✝² : Fintype n\ninst✝¹ : DecidableEq n\ninst✝ : CommRing α\nA✝ B A : Matrix n n α\nh : IsUnit (det A)\n⊢ (adjugate A)⁻¹ = (IsUnit.unit h)⁻¹ • A", "tactic": "refine' inv_eq_left_inv _" }, { "state_after": "no goals", "state_before": "l : Type ?u.302074\nm : Type u\nn : Type u'\nα : Type v\ninst✝² : Fintype n\ninst✝¹ : DecidableEq n\ninst✝ : CommRing α\nA✝ B A : Matrix n n α\nh : IsUnit (det A)\n⊢ ((IsUnit.unit h)⁻¹ • A) ⬝ adjugate A = 1", "tactic": "rw [smul_mul, mul_adjugate, Units.smul_def, smul_smul, h.val_inv_mul, one_smul]" } ]
[ 514, 82 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 512, 1 ]
Mathlib/Topology/Algebra/Order/LeftRightLim.lean
Antitone.leftLim_le_rightLim
[]
[ 332, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 331, 1 ]
Mathlib/GroupTheory/Perm/Basic.lean
Equiv.Perm.ofSubtype_apply_coe
[]
[ 455, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 454, 1 ]
Mathlib/Combinatorics/Additive/SalemSpencer.lean
AddSalemSpencer.le_rothNumberNat
[]
[ 486, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 484, 1 ]
Mathlib/Algebra/Order/Monoid/WithTop.lean
WithTop.add_lt_top
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\ninst✝¹ : Add α\na✝ b✝ c d : WithTop α\nx y : α\ninst✝ : LT α\na b : WithTop α\n⊢ a + b < ⊤ ↔ a < ⊤ ∧ b < ⊤", "tactic": "simp_rw [WithTop.lt_top_iff_ne_top, add_ne_top]" } ]
[ 163, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 162, 1 ]
Mathlib/RingTheory/PowerSeries/Basic.lean
Polynomial.coe_pow
[]
[ 2651, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2650, 1 ]
Mathlib/CategoryTheory/Equivalence.lean
CategoryTheory.Equivalence.unitInv_app_inverse
[ { "state_after": "C : Type u₁\ninst✝¹ : Category C\nD : Type u₂\ninst✝ : Category D\ne : C ≌ D\nY : D\n⊢ e.inverse.map ((counit e).app Y) = (unitInv e).app (e.inverse.obj Y)", "state_before": "C : Type u₁\ninst✝¹ : Category C\nD : Type u₂\ninst✝ : Category D\ne : C ≌ D\nY : D\n⊢ (unitInv e).app (e.inverse.obj Y) = e.inverse.map ((counit e).app Y)", "tactic": "symm" }, { "state_after": "C : Type u₁\ninst✝¹ : Category C\nD : Type u₂\ninst✝ : Category D\ne : C ≌ D\nY : D\n⊢ 𝟙 (e.inverse.obj Y) = 𝟙 ((𝟭 C).obj (e.inverse.obj Y))", "state_before": "C : Type u₁\ninst✝¹ : Category C\nD : Type u₂\ninst✝ : Category D\ne : C ≌ D\nY : D\n⊢ e.inverse.map ((counit e).app Y) = (unitInv e).app (e.inverse.obj Y)", "tactic": "erw [← Iso.hom_comp_eq_id (e.unitIso.app _), unit_inverse_comp]" }, { "state_after": "no goals", "state_before": "C : Type u₁\ninst✝¹ : Category C\nD : Type u₂\ninst✝ : Category D\ne : C ≌ D\nY : D\n⊢ 𝟙 (e.inverse.obj Y) = 𝟙 ((𝟭 C).obj (e.inverse.obj Y))", "tactic": "rfl" } ]
[ 225, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 221, 1 ]
Mathlib/Analysis/Asymptotics/Asymptotics.lean
Asymptotics.isBigO_const_mul_left_iff
[]
[ 1489, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1487, 1 ]
Mathlib/ModelTheory/Syntax.lean
FirstOrder.Language.BoundedFormula.IsPrenex.induction_on_all_not
[]
[ 772, 64 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 767, 1 ]
Mathlib/Algebra/Order/AbsoluteValue.lean
AbsoluteValue.map_neg
[ { "state_after": "case pos\nR : Type u_2\nS : Type u_1\ninst✝² : Ring R\ninst✝¹ : OrderedCommRing S\nabv : AbsoluteValue R S\ninst✝ : NoZeroDivisors S\na : R\nha : a = 0\n⊢ ↑abv (-a) = ↑abv a\n\ncase neg\nR : Type u_2\nS : Type u_1\ninst✝² : Ring R\ninst✝¹ : OrderedCommRing S\nabv : AbsoluteValue R S\ninst✝ : NoZeroDivisors S\na : R\nha : ¬a = 0\n⊢ ↑abv (-a) = ↑abv a", "state_before": "R : Type u_2\nS : Type u_1\ninst✝² : Ring R\ninst✝¹ : OrderedCommRing S\nabv : AbsoluteValue R S\ninst✝ : NoZeroDivisors S\na : R\n⊢ ↑abv (-a) = ↑abv a", "tactic": "by_cases ha : a = 0" }, { "state_after": "case neg\nR : Type u_2\nS : Type u_1\ninst✝² : Ring R\ninst✝¹ : OrderedCommRing S\nabv : AbsoluteValue R S\ninst✝ : NoZeroDivisors S\na : R\nha : ¬a = 0\n⊢ ¬↑abv (-a) = -↑abv a", "state_before": "case neg\nR : Type u_2\nS : Type u_1\ninst✝² : Ring R\ninst✝¹ : OrderedCommRing S\nabv : AbsoluteValue R S\ninst✝ : NoZeroDivisors S\na : R\nha : ¬a = 0\n⊢ ↑abv (-a) = ↑abv a", "tactic": "refine'\n (mul_self_eq_mul_self_iff.mp (by rw [← map_mul abv, neg_mul_neg, map_mul abv])).resolve_right _" }, { "state_after": "no goals", "state_before": "case neg\nR : Type u_2\nS : Type u_1\ninst✝² : Ring R\ninst✝¹ : OrderedCommRing S\nabv : AbsoluteValue R S\ninst✝ : NoZeroDivisors S\na : R\nha : ¬a = 0\n⊢ ¬↑abv (-a) = -↑abv a", "tactic": "exact ((neg_lt_zero.mpr (abv.pos ha)).trans (abv.pos (neg_ne_zero.mpr ha))).ne'" }, { "state_after": "no goals", "state_before": "case pos\nR : Type u_2\nS : Type u_1\ninst✝² : Ring R\ninst✝¹ : OrderedCommRing S\nabv : AbsoluteValue R S\ninst✝ : NoZeroDivisors S\na : R\nha : a = 0\n⊢ ↑abv (-a) = ↑abv a", "tactic": "simp [ha]" }, { "state_after": "no goals", "state_before": "R : Type u_2\nS : Type u_1\ninst✝² : Ring R\ninst✝¹ : OrderedCommRing S\nabv : AbsoluteValue R S\ninst✝ : NoZeroDivisors S\na : R\nha : ¬a = 0\n⊢ ↑abv (-a) * ↑abv (-a) = ↑abv a * ↑abv a", "tactic": "rw [← map_mul abv, neg_mul_neg, map_mul abv]" } ]
[ 241, 82 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 237, 11 ]
Mathlib/Data/Multiset/Fintype.lean
Multiset.forall_coe
[]
[ 98, 15 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 96, 11 ]
Mathlib/MeasureTheory/Measure/Regular.lean
MeasureTheory.Measure.WeaklyRegular.innerRegular_measurable
[]
[ 578, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 575, 1 ]
Mathlib/CategoryTheory/EssentialImage.lean
CategoryTheory.Functor.essImage.ofIso
[]
[ 61, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 60, 1 ]
Mathlib/Data/Dfinsupp/Lex.lean
Dfinsupp.lex_lt_of_lt
[ { "state_after": "ι : Type u_2\nα : ι → Type u_1\ninst✝² : (i : ι) → Zero (α i)\ninst✝¹ : (i : ι) → PartialOrder (α i)\nr : ι → ι → Prop\ninst✝ : IsStrictOrder ι r\nx y : Π₀ (i : ι), α i\nhlt : x < y\n⊢ ∃ i, (∀ (j : ι), r j i → ↑x j ≤ ↑y j ∧ ↑y j ≤ ↑x j) ∧ ↑x i < ↑y i", "state_before": "ι : Type u_2\nα : ι → Type u_1\ninst✝² : (i : ι) → Zero (α i)\ninst✝¹ : (i : ι) → PartialOrder (α i)\nr : ι → ι → Prop\ninst✝ : IsStrictOrder ι r\nx y : Π₀ (i : ι), α i\nhlt : x < y\n⊢ Pi.Lex r (fun {i} x x_1 => x < x_1) ↑x ↑y", "tactic": "simp_rw [Pi.Lex, le_antisymm_iff]" }, { "state_after": "no goals", "state_before": "ι : Type u_2\nα : ι → Type u_1\ninst✝² : (i : ι) → Zero (α i)\ninst✝¹ : (i : ι) → PartialOrder (α i)\nr : ι → ι → Prop\ninst✝ : IsStrictOrder ι r\nx y : Π₀ (i : ι), α i\nhlt : x < y\n⊢ ∃ i, (∀ (j : ι), r j i → ↑x j ≤ ↑y j ∧ ↑y j ≤ ↑x j) ∧ ↑x i < ↑y i", "tactic": "exact lex_lt_of_lt_of_preorder r hlt" } ]
[ 66, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 63, 1 ]
Mathlib/Algebra/Associated.lean
Associates.isUnit_mk
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.295731\nγ : Type ?u.295734\nδ : Type ?u.295737\ninst✝ : CommMonoid α\na : α\n⊢ IsUnit (Associates.mk a) ↔ a ~ᵤ 1", "tactic": "rw [isUnit_iff_eq_one, one_eq_mk_one, mk_eq_mk_iff_associated]" } ]
[ 897, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 893, 1 ]
Mathlib/Data/Set/Pointwise/Interval.lean
Set.image_const_sub_Iio
[ { "state_after": "α : Type u_1\ninst✝ : OrderedAddCommGroup α\na b c : α\nthis : ∀ (a_1 : Set α), ((fun x => a + x) ∘ fun x => -x) '' a_1 = (fun x => a + x) '' ((fun x => -x) '' a_1)\n⊢ (fun x => a - x) '' Iio b = Ioi (a - b)", "state_before": "α : Type u_1\ninst✝ : OrderedAddCommGroup α\na b c : α\n⊢ (fun x => a - x) '' Iio b = Ioi (a - b)", "tactic": "have := image_comp (fun x => a + x) fun x => -x" }, { "state_after": "α : Type u_1\ninst✝ : OrderedAddCommGroup α\na b c : α\nthis : ∀ (a_1 : Set α), (fun x => a + -x) '' a_1 = (fun x => a + x) '' ((fun x => -x) '' a_1)\n⊢ (fun x => a - x) '' Iio b = Ioi (a - b)", "state_before": "α : Type u_1\ninst✝ : OrderedAddCommGroup α\na b c : α\nthis : ∀ (a_1 : Set α), ((fun x => a + x) ∘ fun x => -x) '' a_1 = (fun x => a + x) '' ((fun x => -x) '' a_1)\n⊢ (fun x => a - x) '' Iio b = Ioi (a - b)", "tactic": "dsimp [Function.comp] at this" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : OrderedAddCommGroup α\na b c : α\nthis : ∀ (a_1 : Set α), (fun x => a + -x) '' a_1 = (fun x => a + x) '' ((fun x => -x) '' a_1)\n⊢ (fun x => a - x) '' Iio b = Ioi (a - b)", "tactic": "simp [sub_eq_add_neg, this, add_comm]" } ]
[ 341, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 339, 1 ]
Std/Data/List/Lemmas.lean
List.get_set_ne
[ { "state_after": "α : Type ?u.120711\nl : List α\ni j : Nat\nh : i ≠ j\na : α\nhj : j < length l\n⊢ j < length l", "state_before": "α : Type ?u.120711\nl : List α\ni j : Nat\nh : i ≠ j\na : α\nhj : j < length (set l i a)\n⊢ j < length l", "tactic": "simp at hj" }, { "state_after": "no goals", "state_before": "α : Type ?u.120711\nl : List α\ni j : Nat\nh : i ≠ j\na : α\nhj : j < length l\n⊢ j < length l", "tactic": "exact hj" }, { "state_after": "no goals", "state_before": "α : Type u_1\nl : List α\ni j : Nat\nh : i ≠ j\na : α\nhj : j < length (set l i a)\n⊢ get (set l i a) { val := j, isLt := hj } = get l { val := j, isLt := (_ : j < length l) }", "tactic": "rw [← Option.some_inj, ← get?_eq_get, get?_set_ne _ _ h, get?_eq_get]" } ]
[ 842, 72 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 839, 9 ]
Mathlib/Data/Num/Lemmas.lean
Num.toZNumNeg_succ
[]
[ 1245, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1243, 1 ]
Mathlib/Computability/Ackermann.lean
not_primrec₂_ack
[]
[ 395, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 394, 1 ]
Mathlib/Algebra/BigOperators/Multiset/Basic.lean
Multiset.all_one_of_le_one_le_of_prod_eq_one
[ { "state_after": "ι : Type ?u.125685\nα : Type u_1\nβ : Type ?u.125691\nγ : Type ?u.125694\ninst✝ : OrderedCommMonoid α\ns t : Multiset α\na : α\n⊢ ∀ (a : List α), (∀ (x : α), x ∈ a → 1 ≤ x) → List.prod a = 1 → ∀ (x : α), x ∈ a → x = 1", "state_before": "ι : Type ?u.125685\nα : Type u_1\nβ : Type ?u.125691\nγ : Type ?u.125694\ninst✝ : OrderedCommMonoid α\ns t : Multiset α\na : α\n⊢ ∀ (a : List α),\n (∀ (x : α), x ∈ Quotient.mk (List.isSetoid α) a → 1 ≤ x) →\n prod (Quotient.mk (List.isSetoid α) a) = 1 → ∀ (x : α), x ∈ Quotient.mk (List.isSetoid α) a → x = 1", "tactic": "simp only [quot_mk_to_coe, coe_prod, mem_coe]" }, { "state_after": "no goals", "state_before": "ι : Type ?u.125685\nα : Type u_1\nβ : Type ?u.125691\nγ : Type ?u.125694\ninst✝ : OrderedCommMonoid α\ns t : Multiset α\na : α\n⊢ ∀ (a : List α), (∀ (x : α), x ∈ a → 1 ≤ x) → List.prod a = 1 → ∀ (x : α), x ∈ a → x = 1", "tactic": "exact fun l => List.all_one_of_le_one_le_of_prod_eq_one" } ]
[ 391, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 387, 1 ]
Mathlib/GroupTheory/FreeAbelianGroupFinsupp.lean
FreeAbelianGroup.support_nsmul
[ { "state_after": "X : Type u_1\nk : ℕ\nh : k ≠ 0\na : FreeAbelianGroup X\n⊢ ↑k ≠ 0", "state_before": "X : Type u_1\nk : ℕ\nh : k ≠ 0\na : FreeAbelianGroup X\n⊢ support (k • a) = support a", "tactic": "apply support_zsmul k _ a" }, { "state_after": "no goals", "state_before": "X : Type u_1\nk : ℕ\nh : k ≠ 0\na : FreeAbelianGroup X\n⊢ ↑k ≠ 0", "tactic": "exact_mod_cast h" } ]
[ 193, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 190, 1 ]
Mathlib/FieldTheory/ChevalleyWarning.lean
MvPolynomial.sum_eval_eq_zero
[ { "state_after": "K : Type u_2\nσ : Type u_1\nι : Type ?u.9599\ninst✝³ : Fintype K\ninst✝² : Field K\ninst✝¹ : Fintype σ\ninst✝ : DecidableEq σ\nf : MvPolynomial σ K\nh : totalDegree f < (q - 1) * Fintype.card σ\nthis : DecidableEq K\n⊢ ∑ x : σ → K, ↑(eval x) f = 0", "state_before": "K : Type u_2\nσ : Type u_1\nι : Type ?u.9599\ninst✝³ : Fintype K\ninst✝² : Field K\ninst✝¹ : Fintype σ\ninst✝ : DecidableEq σ\nf : MvPolynomial σ K\nh : totalDegree f < (q - 1) * Fintype.card σ\n⊢ ∑ x : σ → K, ↑(eval x) f = 0", "tactic": "haveI : DecidableEq K := Classical.decEq K" }, { "state_after": "K : Type u_2\nσ : Type u_1\nι : Type ?u.9599\ninst✝³ : Fintype K\ninst✝² : Field K\ninst✝¹ : Fintype σ\ninst✝ : DecidableEq σ\nf : MvPolynomial σ K\nh : totalDegree f < (q - 1) * Fintype.card σ\nthis : DecidableEq K\n⊢ ∀ (x : σ →₀ ℕ), x ∈ support f → ∑ x_1 : σ → K, coeff x f * ∏ i : σ, x_1 i ^ ↑x i = 0", "state_before": "K : Type u_2\nσ : Type u_1\nι : Type ?u.9599\ninst✝³ : Fintype K\ninst✝² : Field K\ninst✝¹ : Fintype σ\ninst✝ : DecidableEq σ\nf : MvPolynomial σ K\nh : totalDegree f < (q - 1) * Fintype.card σ\nthis : DecidableEq K\n⊢ ∑ x : σ → K, ↑(eval x) f = 0", "tactic": "calc\n (∑ x, eval x f) = ∑ x : σ → K, ∑ d in f.support, f.coeff d * ∏ i, x i ^ d i := by\n simp only [eval_eq']\n _ = ∑ d in f.support, ∑ x : σ → K, f.coeff d * ∏ i, x i ^ d i := sum_comm\n _ = 0 := sum_eq_zero ?_" }, { "state_after": "K : Type u_2\nσ : Type u_1\nι : Type ?u.9599\ninst✝³ : Fintype K\ninst✝² : Field K\ninst✝¹ : Fintype σ\ninst✝ : DecidableEq σ\nf : MvPolynomial σ K\nh : totalDegree f < (q - 1) * Fintype.card σ\nthis : DecidableEq K\nd : σ →₀ ℕ\nhd : d ∈ support f\n⊢ ∑ x : σ → K, coeff d f * ∏ i : σ, x i ^ ↑d i = 0", "state_before": "K : Type u_2\nσ : Type u_1\nι : Type ?u.9599\ninst✝³ : Fintype K\ninst✝² : Field K\ninst✝¹ : Fintype σ\ninst✝ : DecidableEq σ\nf : MvPolynomial σ K\nh : totalDegree f < (q - 1) * Fintype.card σ\nthis : DecidableEq K\n⊢ ∀ (x : σ →₀ ℕ), x ∈ support f → ∑ x_1 : σ → K, coeff x f * ∏ i : σ, x_1 i ^ ↑x i = 0", "tactic": "intro d hd" }, { "state_after": "K : Type u_2\nσ : Type u_1\nι : Type ?u.9599\ninst✝³ : Fintype K\ninst✝² : Field K\ninst✝¹ : Fintype σ\ninst✝ : DecidableEq σ\nf : MvPolynomial σ K\nh : totalDegree f < (q - 1) * Fintype.card σ\nthis : DecidableEq K\nd : σ →₀ ℕ\nhd : d ∈ support f\n⊢ ∃ i, ↑d i < q - 1\n\ncase intro\nK : Type u_2\nσ : Type u_1\nι : Type ?u.9599\ninst✝³ : Fintype K\ninst✝² : Field K\ninst✝¹ : Fintype σ\ninst✝ : DecidableEq σ\nf : MvPolynomial σ K\nh : totalDegree f < (q - 1) * Fintype.card σ\nthis : DecidableEq K\nd : σ →₀ ℕ\nhd : d ∈ support f\ni : σ\nhi : ↑d i < q - 1\n⊢ ∑ x : σ → K, coeff d f * ∏ i : σ, x i ^ ↑d i = 0", "state_before": "K : Type u_2\nσ : Type u_1\nι : Type ?u.9599\ninst✝³ : Fintype K\ninst✝² : Field K\ninst✝¹ : Fintype σ\ninst✝ : DecidableEq σ\nf : MvPolynomial σ K\nh : totalDegree f < (q - 1) * Fintype.card σ\nthis : DecidableEq K\nd : σ →₀ ℕ\nhd : d ∈ support f\n⊢ ∑ x : σ → K, coeff d f * ∏ i : σ, x i ^ ↑d i = 0", "tactic": "obtain ⟨i, hi⟩ : ∃ i, d i < q - 1" }, { "state_after": "case intro\nK : Type u_2\nσ : Type u_1\nι : Type ?u.9599\ninst✝³ : Fintype K\ninst✝² : Field K\ninst✝¹ : Fintype σ\ninst✝ : DecidableEq σ\nf : MvPolynomial σ K\nh : totalDegree f < (q - 1) * Fintype.card σ\nthis : DecidableEq K\nd : σ →₀ ℕ\nhd : d ∈ support f\ni : σ\nhi : ↑d i < q - 1\n⊢ ∑ x : σ → K, coeff d f * ∏ i : σ, x i ^ ↑d i = 0", "state_before": "K : Type u_2\nσ : Type u_1\nι : Type ?u.9599\ninst✝³ : Fintype K\ninst✝² : Field K\ninst✝¹ : Fintype σ\ninst✝ : DecidableEq σ\nf : MvPolynomial σ K\nh : totalDegree f < (q - 1) * Fintype.card σ\nthis : DecidableEq K\nd : σ →₀ ℕ\nhd : d ∈ support f\n⊢ ∃ i, ↑d i < q - 1\n\ncase intro\nK : Type u_2\nσ : Type u_1\nι : Type ?u.9599\ninst✝³ : Fintype K\ninst✝² : Field K\ninst✝¹ : Fintype σ\ninst✝ : DecidableEq σ\nf : MvPolynomial σ K\nh : totalDegree f < (q - 1) * Fintype.card σ\nthis : DecidableEq K\nd : σ →₀ ℕ\nhd : d ∈ support f\ni : σ\nhi : ↑d i < q - 1\n⊢ ∑ x : σ → K, coeff d f * ∏ i : σ, x i ^ ↑d i = 0", "tactic": "exact f.exists_degree_lt (q - 1) h hd" }, { "state_after": "case intro\nK : Type u_2\nσ : Type u_1\nι : Type ?u.9599\ninst✝³ : Fintype K\ninst✝² : Field K\ninst✝¹ : Fintype σ\ninst✝ : DecidableEq σ\nf : MvPolynomial σ K\nh : totalDegree f < (q - 1) * Fintype.card σ\nthis : DecidableEq K\nd : σ →₀ ℕ\nhd : d ∈ support f\ni : σ\nhi : ↑d i < q - 1\n⊢ ∑ x : σ → K, ∏ i : σ, x i ^ ↑d i = 0", "state_before": "case intro\nK : Type u_2\nσ : Type u_1\nι : Type ?u.9599\ninst✝³ : Fintype K\ninst✝² : Field K\ninst✝¹ : Fintype σ\ninst✝ : DecidableEq σ\nf : MvPolynomial σ K\nh : totalDegree f < (q - 1) * Fintype.card σ\nthis : DecidableEq K\nd : σ →₀ ℕ\nhd : d ∈ support f\ni : σ\nhi : ↑d i < q - 1\n⊢ ∑ x : σ → K, coeff d f * ∏ i : σ, x i ^ ↑d i = 0", "tactic": "calc\n (∑ x : σ → K, f.coeff d * ∏ i, x i ^ d i) = f.coeff d * ∑ x : σ → K, ∏ i, x i ^ d i :=\n mul_sum.symm\n _ = 0 := (mul_eq_zero.mpr ∘ Or.inr) ?_" }, { "state_after": "case intro\nK : Type u_2\nσ : Type u_1\nι : Type ?u.9599\ninst✝³ : Fintype K\ninst✝² : Field K\ninst✝¹ : Fintype σ\ninst✝ : DecidableEq σ\nf : MvPolynomial σ K\nh : totalDegree f < (q - 1) * Fintype.card σ\nthis : DecidableEq K\nd : σ →₀ ℕ\nhd : d ∈ support f\ni : σ\nhi : ↑d i < q - 1\n⊢ ∀ (a : { j // j ≠ i } → K), ∑ x : { x // x ∘ Subtype.val = a }, ∏ j : σ, ↑x j ^ ↑d j = 0", "state_before": "case intro\nK : Type u_2\nσ : Type u_1\nι : Type ?u.9599\ninst✝³ : Fintype K\ninst✝² : Field K\ninst✝¹ : Fintype σ\ninst✝ : DecidableEq σ\nf : MvPolynomial σ K\nh : totalDegree f < (q - 1) * Fintype.card σ\nthis : DecidableEq K\nd : σ →₀ ℕ\nhd : d ∈ support f\ni : σ\nhi : ↑d i < q - 1\n⊢ ∑ x : σ → K, ∏ i : σ, x i ^ ↑d i = 0", "tactic": "calc\n (∑ x : σ → K, ∏ i, x i ^ d i) =\n ∑ x₀ : { j // j ≠ i } → K, ∑ x : { x : σ → K // x ∘ (↑) = x₀ }, ∏ j, (x : σ → K) j ^ d j :=\n (Fintype.sum_fiberwise _ _).symm\n _ = 0 := Fintype.sum_eq_zero _ ?_" }, { "state_after": "case intro\nK : Type u_2\nσ : Type u_1\nι : Type ?u.9599\ninst✝³ : Fintype K\ninst✝² : Field K\ninst✝¹ : Fintype σ\ninst✝ : DecidableEq σ\nf : MvPolynomial σ K\nh : totalDegree f < (q - 1) * Fintype.card σ\nthis : DecidableEq K\nd : σ →₀ ℕ\nhd : d ∈ support f\ni : σ\nhi : ↑d i < q - 1\nx₀ : { j // j ≠ i } → K\n⊢ ∑ x : { x // x ∘ Subtype.val = x₀ }, ∏ j : σ, ↑x j ^ ↑d j = 0", "state_before": "case intro\nK : Type u_2\nσ : Type u_1\nι : Type ?u.9599\ninst✝³ : Fintype K\ninst✝² : Field K\ninst✝¹ : Fintype σ\ninst✝ : DecidableEq σ\nf : MvPolynomial σ K\nh : totalDegree f < (q - 1) * Fintype.card σ\nthis : DecidableEq K\nd : σ →₀ ℕ\nhd : d ∈ support f\ni : σ\nhi : ↑d i < q - 1\n⊢ ∀ (a : { j // j ≠ i } → K), ∑ x : { x // x ∘ Subtype.val = a }, ∏ j : σ, ↑x j ^ ↑d j = 0", "tactic": "intro x₀" }, { "state_after": "case intro\nK : Type u_2\nσ : Type u_1\nι : Type ?u.9599\ninst✝³ : Fintype K\ninst✝² : Field K\ninst✝¹ : Fintype σ\ninst✝ : DecidableEq σ\nf : MvPolynomial σ K\nh : totalDegree f < (q - 1) * Fintype.card σ\nthis : DecidableEq K\nd : σ →₀ ℕ\nhd : d ∈ support f\ni : σ\nhi : ↑d i < q - 1\nx₀ : { j // j ≠ i } → K\ne : K ≃ { x // x ∘ Subtype.val = x₀ } := (Equiv.subtypeEquivCodomain x₀).symm\n⊢ ∑ x : { x // x ∘ Subtype.val = x₀ }, ∏ j : σ, ↑x j ^ ↑d j = 0", "state_before": "case intro\nK : Type u_2\nσ : Type u_1\nι : Type ?u.9599\ninst✝³ : Fintype K\ninst✝² : Field K\ninst✝¹ : Fintype σ\ninst✝ : DecidableEq σ\nf : MvPolynomial σ K\nh : totalDegree f < (q - 1) * Fintype.card σ\nthis : DecidableEq K\nd : σ →₀ ℕ\nhd : d ∈ support f\ni : σ\nhi : ↑d i < q - 1\nx₀ : { j // j ≠ i } → K\n⊢ ∑ x : { x // x ∘ Subtype.val = x₀ }, ∏ j : σ, ↑x j ^ ↑d j = 0", "tactic": "let e : K ≃ { x // x ∘ ((↑) : _ → σ) = x₀ } := (Equiv.subtypeEquivCodomain _).symm" }, { "state_after": "case intro\nK : Type u_2\nσ : Type u_1\nι : Type ?u.9599\ninst✝³ : Fintype K\ninst✝² : Field K\ninst✝¹ : Fintype σ\ninst✝ : DecidableEq σ\nf : MvPolynomial σ K\nh : totalDegree f < (q - 1) * Fintype.card σ\nthis : DecidableEq K\nd : σ →₀ ℕ\nhd : d ∈ support f\ni : σ\nhi : ↑d i < q - 1\nx₀ : { j // j ≠ i } → K\ne : K ≃ { x // x ∘ Subtype.val = x₀ } := (Equiv.subtypeEquivCodomain x₀).symm\n⊢ ∀ (a : K), ∏ j : σ, ↑(↑e a) j ^ ↑d j = (∏ j : { j // j ≠ i }, x₀ j ^ ↑d ↑j) * a ^ ↑d i", "state_before": "case intro\nK : Type u_2\nσ : Type u_1\nι : Type ?u.9599\ninst✝³ : Fintype K\ninst✝² : Field K\ninst✝¹ : Fintype σ\ninst✝ : DecidableEq σ\nf : MvPolynomial σ K\nh : totalDegree f < (q - 1) * Fintype.card σ\nthis : DecidableEq K\nd : σ →₀ ℕ\nhd : d ∈ support f\ni : σ\nhi : ↑d i < q - 1\nx₀ : { j // j ≠ i } → K\ne : K ≃ { x // x ∘ Subtype.val = x₀ } := (Equiv.subtypeEquivCodomain x₀).symm\n⊢ ∑ x : { x // x ∘ Subtype.val = x₀ }, ∏ j : σ, ↑x j ^ ↑d j = 0", "tactic": "calc\n (∑ x : { x : σ → K // x ∘ (↑) = x₀ }, ∏ j, (x : σ → K) j ^ d j) =\n ∑ a : K, ∏ j : σ, (e a : σ → K) j ^ d j := (e.sum_comp _).symm\n _ = ∑ a : K, (∏ j, x₀ j ^ d j) * a ^ d i := (Fintype.sum_congr _ _ ?_)\n _ = (∏ j, x₀ j ^ d j) * ∑ a : K, a ^ d i := by rw [mul_sum]\n _ = 0 := by rw [sum_pow_lt_card_sub_one K _ hi, MulZeroClass.mul_zero]" }, { "state_after": "case intro\nK : Type u_2\nσ : Type u_1\nι : Type ?u.9599\ninst✝³ : Fintype K\ninst✝² : Field K\ninst✝¹ : Fintype σ\ninst✝ : DecidableEq σ\nf : MvPolynomial σ K\nh : totalDegree f < (q - 1) * Fintype.card σ\nthis : DecidableEq K\nd : σ →₀ ℕ\nhd : d ∈ support f\ni : σ\nhi : ↑d i < q - 1\nx₀ : { j // j ≠ i } → K\ne : K ≃ { x // x ∘ Subtype.val = x₀ } := (Equiv.subtypeEquivCodomain x₀).symm\na : K\n⊢ ∏ j : σ, ↑(↑e a) j ^ ↑d j = (∏ j : { j // j ≠ i }, x₀ j ^ ↑d ↑j) * a ^ ↑d i", "state_before": "case intro\nK : Type u_2\nσ : Type u_1\nι : Type ?u.9599\ninst✝³ : Fintype K\ninst✝² : Field K\ninst✝¹ : Fintype σ\ninst✝ : DecidableEq σ\nf : MvPolynomial σ K\nh : totalDegree f < (q - 1) * Fintype.card σ\nthis : DecidableEq K\nd : σ →₀ ℕ\nhd : d ∈ support f\ni : σ\nhi : ↑d i < q - 1\nx₀ : { j // j ≠ i } → K\ne : K ≃ { x // x ∘ Subtype.val = x₀ } := (Equiv.subtypeEquivCodomain x₀).symm\n⊢ ∀ (a : K), ∏ j : σ, ↑(↑e a) j ^ ↑d j = (∏ j : { j // j ≠ i }, x₀ j ^ ↑d ↑j) * a ^ ↑d i", "tactic": "intro a" }, { "state_after": "case intro\nK : Type u_2\nσ : Type u_1\nι : Type ?u.9599\ninst✝³ : Fintype K\ninst✝² : Field K\ninst✝¹ : Fintype σ\ninst✝ : DecidableEq σ\nf : MvPolynomial σ K\nh : totalDegree f < (q - 1) * Fintype.card σ\nthis : DecidableEq K\nd : σ →₀ ℕ\nhd : d ∈ support f\ni : σ\nhi : ↑d i < q - 1\nx₀ : { j // j ≠ i } → K\ne : K ≃ { x // x ∘ Subtype.val = x₀ } := (Equiv.subtypeEquivCodomain x₀).symm\na : K\ne' : { j // j = i } ⊕ { j // j ≠ i } ≃ σ := Equiv.sumCompl fun j => j = i\n⊢ ∏ j : σ, ↑(↑e a) j ^ ↑d j = (∏ j : { j // j ≠ i }, x₀ j ^ ↑d ↑j) * a ^ ↑d i", "state_before": "case intro\nK : Type u_2\nσ : Type u_1\nι : Type ?u.9599\ninst✝³ : Fintype K\ninst✝² : Field K\ninst✝¹ : Fintype σ\ninst✝ : DecidableEq σ\nf : MvPolynomial σ K\nh : totalDegree f < (q - 1) * Fintype.card σ\nthis : DecidableEq K\nd : σ →₀ ℕ\nhd : d ∈ support f\ni : σ\nhi : ↑d i < q - 1\nx₀ : { j // j ≠ i } → K\ne : K ≃ { x // x ∘ Subtype.val = x₀ } := (Equiv.subtypeEquivCodomain x₀).symm\na : K\n⊢ ∏ j : σ, ↑(↑e a) j ^ ↑d j = (∏ j : { j // j ≠ i }, x₀ j ^ ↑d ↑j) * a ^ ↑d i", "tactic": "let e' : Sum { j // j = i } { j // j ≠ i } ≃ σ := Equiv.sumCompl _" }, { "state_after": "case intro\nK : Type u_2\nσ : Type u_1\nι : Type ?u.9599\ninst✝³ : Fintype K\ninst✝² : Field K\ninst✝¹ : Fintype σ\ninst✝ : DecidableEq σ\nf : MvPolynomial σ K\nh : totalDegree f < (q - 1) * Fintype.card σ\nthis✝ : DecidableEq K\nd : σ →₀ ℕ\nhd : d ∈ support f\ni : σ\nhi : ↑d i < q - 1\nx₀ : { j // j ≠ i } → K\ne : K ≃ { x // x ∘ Subtype.val = x₀ } := (Equiv.subtypeEquivCodomain x₀).symm\na : K\ne' : { j // j = i } ⊕ { j // j ≠ i } ≃ σ := Equiv.sumCompl fun j => j = i\nthis : Unique { j // j = i } :=\n { toInhabited := { default := { val := i, property := (_ : i = i) } },\n uniq := (_ : ∀ (x : { j // j = i }), x = default) }\n⊢ ∏ j : σ, ↑(↑e a) j ^ ↑d j = (∏ j : { j // j ≠ i }, x₀ j ^ ↑d ↑j) * a ^ ↑d i", "state_before": "case intro\nK : Type u_2\nσ : Type u_1\nι : Type ?u.9599\ninst✝³ : Fintype K\ninst✝² : Field K\ninst✝¹ : Fintype σ\ninst✝ : DecidableEq σ\nf : MvPolynomial σ K\nh : totalDegree f < (q - 1) * Fintype.card σ\nthis : DecidableEq K\nd : σ →₀ ℕ\nhd : d ∈ support f\ni : σ\nhi : ↑d i < q - 1\nx₀ : { j // j ≠ i } → K\ne : K ≃ { x // x ∘ Subtype.val = x₀ } := (Equiv.subtypeEquivCodomain x₀).symm\na : K\ne' : { j // j = i } ⊕ { j // j ≠ i } ≃ σ := Equiv.sumCompl fun j => j = i\n⊢ ∏ j : σ, ↑(↑e a) j ^ ↑d j = (∏ j : { j // j ≠ i }, x₀ j ^ ↑d ↑j) * a ^ ↑d i", "tactic": "letI : Unique { j // j = i } :=\n { default := ⟨i, rfl⟩\n uniq := fun ⟨j, h⟩ => Subtype.val_injective h }" }, { "state_after": "case intro\nK : Type u_2\nσ : Type u_1\nι : Type ?u.9599\ninst✝³ : Fintype K\ninst✝² : Field K\ninst✝¹ : Fintype σ\ninst✝ : DecidableEq σ\nf : MvPolynomial σ K\nh : totalDegree f < (q - 1) * Fintype.card σ\nthis✝ : DecidableEq K\nd : σ →₀ ℕ\nhd : d ∈ support f\ni : σ\nhi : ↑d i < q - 1\nx₀ : { j // j ≠ i } → K\ne : K ≃ { x // x ∘ Subtype.val = x₀ } := (Equiv.subtypeEquivCodomain x₀).symm\na : K\ne' : { j // j = i } ⊕ { j // j ≠ i } ≃ σ := Equiv.sumCompl fun j => j = i\nthis : Unique { j // j = i } :=\n { toInhabited := { default := { val := i, property := (_ : i = i) } },\n uniq := (_ : ∀ (x : { j // j = i }), x = default) }\n⊢ ∀ (a_1 : { j // j ≠ i }), ↑(↑e a) ↑a_1 ^ ↑d ↑a_1 = x₀ a_1 ^ ↑d ↑a_1", "state_before": "case intro\nK : Type u_2\nσ : Type u_1\nι : Type ?u.9599\ninst✝³ : Fintype K\ninst✝² : Field K\ninst✝¹ : Fintype σ\ninst✝ : DecidableEq σ\nf : MvPolynomial σ K\nh : totalDegree f < (q - 1) * Fintype.card σ\nthis✝ : DecidableEq K\nd : σ →₀ ℕ\nhd : d ∈ support f\ni : σ\nhi : ↑d i < q - 1\nx₀ : { j // j ≠ i } → K\ne : K ≃ { x // x ∘ Subtype.val = x₀ } := (Equiv.subtypeEquivCodomain x₀).symm\na : K\ne' : { j // j = i } ⊕ { j // j ≠ i } ≃ σ := Equiv.sumCompl fun j => j = i\nthis : Unique { j // j = i } :=\n { toInhabited := { default := { val := i, property := (_ : i = i) } },\n uniq := (_ : ∀ (x : { j // j = i }), x = default) }\n⊢ ∏ j : σ, ↑(↑e a) j ^ ↑d j = (∏ j : { j // j ≠ i }, x₀ j ^ ↑d ↑j) * a ^ ↑d i", "tactic": "calc\n (∏ j : σ, (e a : σ → K) j ^ d j) =\n (e a : σ → K) i ^ d i * ∏ j : { j // j ≠ i }, (e a : σ → K) j ^ d j :=\n by rw [← e'.prod_comp, Fintype.prod_sum_type, univ_unique, prod_singleton]; rfl\n _ = a ^ d i * ∏ j : { j // j ≠ i }, (e a : σ → K) j ^ d j := by\n rw [Equiv.subtypeEquivCodomain_symm_apply_eq]\n _ = a ^ d i * ∏ j, x₀ j ^ d j := (congr_arg _ (Fintype.prod_congr _ _ ?_))\n _ = (∏ j, x₀ j ^ d j) * a ^ d i := mul_comm _ _" }, { "state_after": "no goals", "state_before": "K : Type u_2\nσ : Type u_1\nι : Type ?u.9599\ninst✝³ : Fintype K\ninst✝² : Field K\ninst✝¹ : Fintype σ\ninst✝ : DecidableEq σ\nf : MvPolynomial σ K\nh : totalDegree f < (q - 1) * Fintype.card σ\nthis : DecidableEq K\n⊢ ∑ x : σ → K, ↑(eval x) f = ∑ x : σ → K, ∑ d in support f, coeff d f * ∏ i : σ, x i ^ ↑d i", "tactic": "simp only [eval_eq']" }, { "state_after": "no goals", "state_before": "K : Type u_2\nσ : Type u_1\nι : Type ?u.9599\ninst✝³ : Fintype K\ninst✝² : Field K\ninst✝¹ : Fintype σ\ninst✝ : DecidableEq σ\nf : MvPolynomial σ K\nh : totalDegree f < (q - 1) * Fintype.card σ\nthis : DecidableEq K\nd : σ →₀ ℕ\nhd : d ∈ support f\ni : σ\nhi : ↑d i < q - 1\nx₀ : { j // j ≠ i } → K\ne : K ≃ { x // x ∘ Subtype.val = x₀ } := (Equiv.subtypeEquivCodomain x₀).symm\n⊢ ∑ a : K, (∏ j : { j // j ≠ i }, x₀ j ^ ↑d ↑j) * a ^ ↑d i = (∏ j : { j // j ≠ i }, x₀ j ^ ↑d ↑j) * ∑ a : K, a ^ ↑d i", "tactic": "rw [mul_sum]" }, { "state_after": "no goals", "state_before": "K : Type u_2\nσ : Type u_1\nι : Type ?u.9599\ninst✝³ : Fintype K\ninst✝² : Field K\ninst✝¹ : Fintype σ\ninst✝ : DecidableEq σ\nf : MvPolynomial σ K\nh : totalDegree f < (q - 1) * Fintype.card σ\nthis : DecidableEq K\nd : σ →₀ ℕ\nhd : d ∈ support f\ni : σ\nhi : ↑d i < q - 1\nx₀ : { j // j ≠ i } → K\ne : K ≃ { x // x ∘ Subtype.val = x₀ } := (Equiv.subtypeEquivCodomain x₀).symm\n⊢ (∏ j : { j // j ≠ i }, x₀ j ^ ↑d ↑j) * ∑ a : K, a ^ ↑d i = 0", "tactic": "rw [sum_pow_lt_card_sub_one K _ hi, MulZeroClass.mul_zero]" }, { "state_after": "K : Type u_2\nσ : Type u_1\nι : Type ?u.9599\ninst✝³ : Fintype K\ninst✝² : Field K\ninst✝¹ : Fintype σ\ninst✝ : DecidableEq σ\nf : MvPolynomial σ K\nh : totalDegree f < (q - 1) * Fintype.card σ\nthis✝ : DecidableEq K\nd : σ →₀ ℕ\nhd : d ∈ support f\ni : σ\nhi : ↑d i < q - 1\nx₀ : { j // j ≠ i } → K\ne : K ≃ { x // x ∘ Subtype.val = x₀ } := (Equiv.subtypeEquivCodomain x₀).symm\na : K\ne' : { j // j = i } ⊕ { j // j ≠ i } ≃ σ := Equiv.sumCompl fun j => j = i\nthis : Unique { j // j = i } :=\n { toInhabited := { default := { val := i, property := (_ : i = i) } },\n uniq := (_ : ∀ (x : { j // j = i }), x = default) }\n⊢ ↑(↑e a) (↑e' (Sum.inl default)) ^ ↑d (↑e' (Sum.inl default)) *\n ∏ a₂ : { j // j ≠ i }, ↑(↑e a) (↑e' (Sum.inr a₂)) ^ ↑d (↑e' (Sum.inr a₂)) =\n ↑(↑e a) i ^ ↑d i * ∏ j : { j // j ≠ i }, ↑(↑e a) ↑j ^ ↑d ↑j", "state_before": "K : Type u_2\nσ : Type u_1\nι : Type ?u.9599\ninst✝³ : Fintype K\ninst✝² : Field K\ninst✝¹ : Fintype σ\ninst✝ : DecidableEq σ\nf : MvPolynomial σ K\nh : totalDegree f < (q - 1) * Fintype.card σ\nthis✝ : DecidableEq K\nd : σ →₀ ℕ\nhd : d ∈ support f\ni : σ\nhi : ↑d i < q - 1\nx₀ : { j // j ≠ i } → K\ne : K ≃ { x // x ∘ Subtype.val = x₀ } := (Equiv.subtypeEquivCodomain x₀).symm\na : K\ne' : { j // j = i } ⊕ { j // j ≠ i } ≃ σ := Equiv.sumCompl fun j => j = i\nthis : Unique { j // j = i } :=\n { toInhabited := { default := { val := i, property := (_ : i = i) } },\n uniq := (_ : ∀ (x : { j // j = i }), x = default) }\n⊢ ∏ j : σ, ↑(↑e a) j ^ ↑d j = ↑(↑e a) i ^ ↑d i * ∏ j : { j // j ≠ i }, ↑(↑e a) ↑j ^ ↑d ↑j", "tactic": "rw [← e'.prod_comp, Fintype.prod_sum_type, univ_unique, prod_singleton]" }, { "state_after": "no goals", "state_before": "K : Type u_2\nσ : Type u_1\nι : Type ?u.9599\ninst✝³ : Fintype K\ninst✝² : Field K\ninst✝¹ : Fintype σ\ninst✝ : DecidableEq σ\nf : MvPolynomial σ K\nh : totalDegree f < (q - 1) * Fintype.card σ\nthis✝ : DecidableEq K\nd : σ →₀ ℕ\nhd : d ∈ support f\ni : σ\nhi : ↑d i < q - 1\nx₀ : { j // j ≠ i } → K\ne : K ≃ { x // x ∘ Subtype.val = x₀ } := (Equiv.subtypeEquivCodomain x₀).symm\na : K\ne' : { j // j = i } ⊕ { j // j ≠ i } ≃ σ := Equiv.sumCompl fun j => j = i\nthis : Unique { j // j = i } :=\n { toInhabited := { default := { val := i, property := (_ : i = i) } },\n uniq := (_ : ∀ (x : { j // j = i }), x = default) }\n⊢ ↑(↑e a) (↑e' (Sum.inl default)) ^ ↑d (↑e' (Sum.inl default)) *\n ∏ a₂ : { j // j ≠ i }, ↑(↑e a) (↑e' (Sum.inr a₂)) ^ ↑d (↑e' (Sum.inr a₂)) =\n ↑(↑e a) i ^ ↑d i * ∏ j : { j // j ≠ i }, ↑(↑e a) ↑j ^ ↑d ↑j", "tactic": "rfl" }, { "state_after": "no goals", "state_before": "K : Type u_2\nσ : Type u_1\nι : Type ?u.9599\ninst✝³ : Fintype K\ninst✝² : Field K\ninst✝¹ : Fintype σ\ninst✝ : DecidableEq σ\nf : MvPolynomial σ K\nh : totalDegree f < (q - 1) * Fintype.card σ\nthis✝ : DecidableEq K\nd : σ →₀ ℕ\nhd : d ∈ support f\ni : σ\nhi : ↑d i < q - 1\nx₀ : { j // j ≠ i } → K\ne : K ≃ { x // x ∘ Subtype.val = x₀ } := (Equiv.subtypeEquivCodomain x₀).symm\na : K\ne' : { j // j = i } ⊕ { j // j ≠ i } ≃ σ := Equiv.sumCompl fun j => j = i\nthis : Unique { j // j = i } :=\n { toInhabited := { default := { val := i, property := (_ : i = i) } },\n uniq := (_ : ∀ (x : { j // j = i }), x = default) }\n⊢ ↑(↑e a) i ^ ↑d i * ∏ j : { j // j ≠ i }, ↑(↑e a) ↑j ^ ↑d ↑j = a ^ ↑d i * ∏ j : { j // j ≠ i }, ↑(↑e a) ↑j ^ ↑d ↑j", "tactic": "rw [Equiv.subtypeEquivCodomain_symm_apply_eq]" }, { "state_after": "case intro.mk\nK : Type u_2\nσ : Type u_1\nι : Type ?u.9599\ninst✝³ : Fintype K\ninst✝² : Field K\ninst✝¹ : Fintype σ\ninst✝ : DecidableEq σ\nf : MvPolynomial σ K\nh : totalDegree f < (q - 1) * Fintype.card σ\nthis✝ : DecidableEq K\nd : σ →₀ ℕ\nhd : d ∈ support f\ni : σ\nhi : ↑d i < q - 1\nx₀ : { j // j ≠ i } → K\ne : K ≃ { x // x ∘ Subtype.val = x₀ } := (Equiv.subtypeEquivCodomain x₀).symm\na : K\ne' : { j // j = i } ⊕ { j // j ≠ i } ≃ σ := Equiv.sumCompl fun j => j = i\nthis : Unique { j // j = i } :=\n { toInhabited := { default := { val := i, property := (_ : i = i) } },\n uniq := (_ : ∀ (x : { j // j = i }), x = default) }\nj : σ\nhj : j ≠ i\n⊢ ↑(↑e a) ↑{ val := j, property := hj } ^ ↑d ↑{ val := j, property := hj } =\n x₀ { val := j, property := hj } ^ ↑d ↑{ val := j, property := hj }", "state_before": "case intro\nK : Type u_2\nσ : Type u_1\nι : Type ?u.9599\ninst✝³ : Fintype K\ninst✝² : Field K\ninst✝¹ : Fintype σ\ninst✝ : DecidableEq σ\nf : MvPolynomial σ K\nh : totalDegree f < (q - 1) * Fintype.card σ\nthis✝ : DecidableEq K\nd : σ →₀ ℕ\nhd : d ∈ support f\ni : σ\nhi : ↑d i < q - 1\nx₀ : { j // j ≠ i } → K\ne : K ≃ { x // x ∘ Subtype.val = x₀ } := (Equiv.subtypeEquivCodomain x₀).symm\na : K\ne' : { j // j = i } ⊕ { j // j ≠ i } ≃ σ := Equiv.sumCompl fun j => j = i\nthis : Unique { j // j = i } :=\n { toInhabited := { default := { val := i, property := (_ : i = i) } },\n uniq := (_ : ∀ (x : { j // j = i }), x = default) }\n⊢ ∀ (a_1 : { j // j ≠ i }), ↑(↑e a) ↑a_1 ^ ↑d ↑a_1 = x₀ a_1 ^ ↑d ↑a_1", "tactic": "rintro ⟨j, hj⟩" }, { "state_after": "case intro.mk\nK : Type u_2\nσ : Type u_1\nι : Type ?u.9599\ninst✝³ : Fintype K\ninst✝² : Field K\ninst✝¹ : Fintype σ\ninst✝ : DecidableEq σ\nf : MvPolynomial σ K\nh : totalDegree f < (q - 1) * Fintype.card σ\nthis✝ : DecidableEq K\nd : σ →₀ ℕ\nhd : d ∈ support f\ni : σ\nhi : ↑d i < q - 1\nx₀ : { j // j ≠ i } → K\ne : K ≃ { x // x ∘ Subtype.val = x₀ } := (Equiv.subtypeEquivCodomain x₀).symm\na : K\ne' : { j // j = i } ⊕ { j // j ≠ i } ≃ σ := Equiv.sumCompl fun j => j = i\nthis : Unique { j // j = i } :=\n { toInhabited := { default := { val := i, property := (_ : i = i) } },\n uniq := (_ : ∀ (x : { j // j = i }), x = default) }\nj : σ\nhj : j ≠ i\n⊢ ↑(↑e a) j ^ ↑d j = x₀ { val := j, property := hj } ^ ↑d j", "state_before": "case intro.mk\nK : Type u_2\nσ : Type u_1\nι : Type ?u.9599\ninst✝³ : Fintype K\ninst✝² : Field K\ninst✝¹ : Fintype σ\ninst✝ : DecidableEq σ\nf : MvPolynomial σ K\nh : totalDegree f < (q - 1) * Fintype.card σ\nthis✝ : DecidableEq K\nd : σ →₀ ℕ\nhd : d ∈ support f\ni : σ\nhi : ↑d i < q - 1\nx₀ : { j // j ≠ i } → K\ne : K ≃ { x // x ∘ Subtype.val = x₀ } := (Equiv.subtypeEquivCodomain x₀).symm\na : K\ne' : { j // j = i } ⊕ { j // j ≠ i } ≃ σ := Equiv.sumCompl fun j => j = i\nthis : Unique { j // j = i } :=\n { toInhabited := { default := { val := i, property := (_ : i = i) } },\n uniq := (_ : ∀ (x : { j // j = i }), x = default) }\nj : σ\nhj : j ≠ i\n⊢ ↑(↑e a) ↑{ val := j, property := hj } ^ ↑d ↑{ val := j, property := hj } =\n x₀ { val := j, property := hj } ^ ↑d ↑{ val := j, property := hj }", "tactic": "show (e a : σ → K) j ^ d j = x₀ ⟨j, hj⟩ ^ d j" }, { "state_after": "no goals", "state_before": "case intro.mk\nK : Type u_2\nσ : Type u_1\nι : Type ?u.9599\ninst✝³ : Fintype K\ninst✝² : Field K\ninst✝¹ : Fintype σ\ninst✝ : DecidableEq σ\nf : MvPolynomial σ K\nh : totalDegree f < (q - 1) * Fintype.card σ\nthis✝ : DecidableEq K\nd : σ →₀ ℕ\nhd : d ∈ support f\ni : σ\nhi : ↑d i < q - 1\nx₀ : { j // j ≠ i } → K\ne : K ≃ { x // x ∘ Subtype.val = x₀ } := (Equiv.subtypeEquivCodomain x₀).symm\na : K\ne' : { j // j = i } ⊕ { j // j ≠ i } ≃ σ := Equiv.sumCompl fun j => j = i\nthis : Unique { j // j = i } :=\n { toInhabited := { default := { val := i, property := (_ : i = i) } },\n uniq := (_ : ∀ (x : { j // j = i }), x = default) }\nj : σ\nhj : j ≠ i\n⊢ ↑(↑e a) j ^ ↑d j = x₀ { val := j, property := hj } ^ ↑d j", "tactic": "rw [Equiv.subtypeEquivCodomain_symm_apply_ne]" } ]
[ 102, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 58, 1 ]
Mathlib/Data/MvPolynomial/Derivation.lean
MvPolynomial.derivation_C_mul
[ { "state_after": "no goals", "state_before": "σ : Type u_2\nR : Type u_1\nA : Type u_3\ninst✝³ : CommSemiring R\ninst✝² : AddCommMonoid A\ninst✝¹ : Module R A\ninst✝ : Module (MvPolynomial σ R) A\nD : Derivation R (MvPolynomial σ R) A\na : R\nf : MvPolynomial σ R\n⊢ ↑D (↑C a * f) = a • ↑D f", "tactic": "rw [C_mul', D.map_smul]" } ]
[ 71, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 70, 1 ]
Mathlib/RingTheory/Subring/Basic.lean
Subring.map_equiv_eq_comap_symm
[]
[ 1178, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1176, 1 ]
Mathlib/CategoryTheory/Monad/Basic.lean
CategoryTheory.Comonad.coassoc
[]
[ 163, 15 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 161, 1 ]
Mathlib/Topology/Sets/Closeds.lean
TopologicalSpace.Clopens.coe_inf
[]
[ 329, 80 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 329, 9 ]
Mathlib/Algebra/Order/Ring/Defs.lean
mul_lt_of_one_lt_right
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type ?u.89024\ninst✝ : StrictOrderedRing α\na b c : α\nha : a < 0\nh : 1 < b\n⊢ a * b < a", "tactic": "simpa only [mul_one] using mul_lt_mul_of_neg_left h ha" } ]
[ 719, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 718, 1 ]
Mathlib/RingTheory/AdjoinRoot.lean
AdjoinRoot.finitePresentation
[]
[ 168, 85 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 167, 1 ]
Mathlib/Computability/PartrecCode.lean
Nat.Partrec.Code.encode_lt_prec
[ { "state_after": "cf cg : Code\nthis : ?m.360436\n⊢ encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg)\n\ncase this\ncf cg : Code\n⊢ ?m.360436", "state_before": "cf cg : Code\n⊢ encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg)", "tactic": "suffices" }, { "state_after": "case this\ncf cg : Code\n⊢ encode (pair cf cg) < encode (prec cf cg)", "state_before": "cf cg : Code\nthis : ?m.360436\n⊢ encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg)\n\ncase this\ncf cg : Code\n⊢ ?m.360436", "tactic": "exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this" }, { "state_after": "case this\ncf cg : Code\n⊢ encode (pair cf cg) < encode (prec cf cg)", "state_before": "case this\ncf cg : Code\n⊢ encode (pair cf cg) < encode (prec cf cg)", "tactic": "change _" }, { "state_after": "no goals", "state_before": "case this\ncf cg : Code\n⊢ encode (pair cf cg) < encode (prec cf cg)", "tactic": "simp [encodeCode_eq, encodeCode]" } ]
[ 223, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 220, 1 ]
Mathlib/Topology/Instances/Int.lean
Int.uniformEmbedding_coe_real
[]
[ 47, 76 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 46, 1 ]
Mathlib/Order/UpperLower/Basic.lean
lowerClosure_univ
[]
[ 1419, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1418, 1 ]
Std/Data/Nat/Gcd.lean
Nat.coprime.gcd_mul_left_cancel_right
[ { "state_after": "no goals", "state_before": "k m n : Nat\nH : coprime k m\n⊢ gcd m (k * n) = gcd m n", "tactic": "rw [gcd_comm m n, gcd_comm m (k * n), H.gcd_mul_left_cancel n]" } ]
[ 267, 65 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 265, 1 ]
Mathlib/Data/Set/Prod.lean
Set.mk_mem_prod
[]
[ 69, 11 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 68, 1 ]
Mathlib/Algebra/Order/Floor.lean
Int.ceil_add_ceil_le
[ { "state_after": "F : Type ?u.218257\nα : Type u_1\nβ : Type ?u.218263\ninst✝¹ : LinearOrderedRing α\ninst✝ : FloorRing α\nz : ℤ\na✝ a b : α\n⊢ ↑⌈b⌉ ≤ ↑⌈a + b⌉ + 1 - a", "state_before": "F : Type ?u.218257\nα : Type u_1\nβ : Type ?u.218263\ninst✝¹ : LinearOrderedRing α\ninst✝ : FloorRing α\nz : ℤ\na✝ a b : α\n⊢ ⌈a⌉ + ⌈b⌉ ≤ ⌈a + b⌉ + 1", "tactic": "rw [← le_sub_iff_add_le, ceil_le, Int.cast_sub, Int.cast_add, Int.cast_one, le_sub_comm]" }, { "state_after": "F : Type ?u.218257\nα : Type u_1\nβ : Type ?u.218263\ninst✝¹ : LinearOrderedRing α\ninst✝ : FloorRing α\nz : ℤ\na✝ a b : α\n⊢ b + 1 ≤ ↑⌈a + b⌉ + 1 - a", "state_before": "F : Type ?u.218257\nα : Type u_1\nβ : Type ?u.218263\ninst✝¹ : LinearOrderedRing α\ninst✝ : FloorRing α\nz : ℤ\na✝ a b : α\n⊢ ↑⌈b⌉ ≤ ↑⌈a + b⌉ + 1 - a", "tactic": "refine' (ceil_lt_add_one _).le.trans _" }, { "state_after": "F : Type ?u.218257\nα : Type u_1\nβ : Type ?u.218263\ninst✝¹ : LinearOrderedRing α\ninst✝ : FloorRing α\nz : ℤ\na✝ a b : α\n⊢ a + b ≤ ↑⌈a + b⌉", "state_before": "F : Type ?u.218257\nα : Type u_1\nβ : Type ?u.218263\ninst✝¹ : LinearOrderedRing α\ninst✝ : FloorRing α\nz : ℤ\na✝ a b : α\n⊢ b + 1 ≤ ↑⌈a + b⌉ + 1 - a", "tactic": "rw [le_sub_iff_add_le', ← add_assoc, add_le_add_iff_right]" }, { "state_after": "no goals", "state_before": "F : Type ?u.218257\nα : Type u_1\nβ : Type ?u.218263\ninst✝¹ : LinearOrderedRing α\ninst✝ : FloorRing α\nz : ℤ\na✝ a b : α\n⊢ a + b ≤ ↑⌈a + b⌉", "tactic": "exact le_ceil _" } ]
[ 1188, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1184, 1 ]
Mathlib/MeasureTheory/Measure/Haar/InnerProductSpace.lean
Orientation.measure_eq_volume
[ { "state_after": "ι : Type ?u.6740\nF : Type u_1\ninst✝⁵ : Fintype ι\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : InnerProductSpace ℝ F\ninst✝² : FiniteDimensional ℝ F\ninst✝¹ : MeasurableSpace F\ninst✝ : BorelSpace F\nm n : ℕ\n_i : Fact (finrank ℝ F = n)\no : Orientation ℝ F (Fin n)\nA :\n ↑↑(AlternatingMap.measure (volumeForm o))\n ↑(Basis.parallelepiped (OrthonormalBasis.toBasis (stdOrthonormalBasis ℝ F))) =\n 1\n⊢ AlternatingMap.measure (volumeForm o) = volume", "state_before": "ι : Type ?u.6740\nF : Type u_1\ninst✝⁵ : Fintype ι\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : InnerProductSpace ℝ F\ninst✝² : FiniteDimensional ℝ F\ninst✝¹ : MeasurableSpace F\ninst✝ : BorelSpace F\nm n : ℕ\n_i : Fact (finrank ℝ F = n)\no : Orientation ℝ F (Fin n)\n⊢ AlternatingMap.measure (volumeForm o) = volume", "tactic": "have A : o.volumeForm.measure (stdOrthonormalBasis ℝ F).toBasis.parallelepiped = 1 :=\n Orientation.measure_orthonormalBasis o (stdOrthonormalBasis ℝ F)" }, { "state_after": "ι : Type ?u.6740\nF : Type u_1\ninst✝⁵ : Fintype ι\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : InnerProductSpace ℝ F\ninst✝² : FiniteDimensional ℝ F\ninst✝¹ : MeasurableSpace F\ninst✝ : BorelSpace F\nm n : ℕ\n_i : Fact (finrank ℝ F = n)\no : Orientation ℝ F (Fin n)\nA :\n ↑↑(AlternatingMap.measure (volumeForm o))\n ↑(Basis.parallelepiped (OrthonormalBasis.toBasis (stdOrthonormalBasis ℝ F))) =\n 1\n⊢ addHaarMeasure (Basis.parallelepiped (OrthonormalBasis.toBasis (stdOrthonormalBasis ℝ F))) = volume", "state_before": "ι : Type ?u.6740\nF : Type u_1\ninst✝⁵ : Fintype ι\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : InnerProductSpace ℝ F\ninst✝² : FiniteDimensional ℝ F\ninst✝¹ : MeasurableSpace F\ninst✝ : BorelSpace F\nm n : ℕ\n_i : Fact (finrank ℝ F = n)\no : Orientation ℝ F (Fin n)\nA :\n ↑↑(AlternatingMap.measure (volumeForm o))\n ↑(Basis.parallelepiped (OrthonormalBasis.toBasis (stdOrthonormalBasis ℝ F))) =\n 1\n⊢ AlternatingMap.measure (volumeForm o) = volume", "tactic": "rw [addHaarMeasure_unique o.volumeForm.measure\n (stdOrthonormalBasis ℝ F).toBasis.parallelepiped, A, one_smul]" }, { "state_after": "no goals", "state_before": "ι : Type ?u.6740\nF : Type u_1\ninst✝⁵ : Fintype ι\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : InnerProductSpace ℝ F\ninst✝² : FiniteDimensional ℝ F\ninst✝¹ : MeasurableSpace F\ninst✝ : BorelSpace F\nm n : ℕ\n_i : Fact (finrank ℝ F = n)\no : Orientation ℝ F (Fin n)\nA :\n ↑↑(AlternatingMap.measure (volumeForm o))\n ↑(Basis.parallelepiped (OrthonormalBasis.toBasis (stdOrthonormalBasis ℝ F))) =\n 1\n⊢ addHaarMeasure (Basis.parallelepiped (OrthonormalBasis.toBasis (stdOrthonormalBasis ℝ F))) = volume", "tactic": "simp only [volume, Basis.addHaar]" } ]
[ 59, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 53, 1 ]