file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
list
commit
stringclasses
4 values
url
stringclasses
4 values
start
list
Mathlib/Data/Nat/Choose/Basic.lean
Nat.choose_eq_descFactorial_div_factorial
[ { "state_after": "n k : ℕ\n⊢ k ! * choose n k = k ! * (descFactorial n k / k !)", "state_before": "n k : ℕ\n⊢ choose n k = descFactorial n k / k !", "tactic": "apply mul_left_cancel₀ (factorial_ne_zero k)" }, { "state_after": "n k : ℕ\n⊢ descFactorial n k = k ! * (descFactorial n k / k !)", "state_before": "n k : ℕ\n⊢ k ! * choose n k = k ! * (descFactorial n k / k !)", "tactic": "rw [← descFactorial_eq_factorial_mul_choose]" }, { "state_after": "no goals", "state_before": "n k : ℕ\n⊢ descFactorial n k = k ! * (descFactorial n k / k !)", "tactic": "exact (Nat.mul_div_cancel' <| factorial_dvd_descFactorial _ _).symm" } ]
[ 273, 70 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 270, 1 ]
Mathlib/MeasureTheory/Integral/FundThmCalculus.lean
intervalIntegral.integral_hasFDerivAt
[]
[ 723, 68 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 718, 1 ]
Mathlib/Topology/PathConnected.lean
JoinedIn.somePath_mem
[]
[ 841, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 840, 1 ]
Mathlib/Data/Nat/Interval.lean
Nat.Ico_succ_succ
[ { "state_after": "case a\na b c x : ℕ\n⊢ x ∈ Ico (succ a) (succ b) ↔ x ∈ Ioc a b", "state_before": "a b c : ℕ\n⊢ Ico (succ a) (succ b) = Ioc a b", "tactic": "ext x" }, { "state_after": "no goals", "state_before": "case a\na b c x : ℕ\n⊢ x ∈ Ico (succ a) (succ b) ↔ x ∈ Ioc a b", "tactic": "rw [mem_Ico, mem_Ioc, succ_le_iff, lt_succ_iff]" } ]
[ 182, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 180, 1 ]
Mathlib/Analysis/Calculus/FDeriv/Basic.lean
HasFDerivAt.hasFDerivWithinAt
[]
[ 373, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 372, 1 ]
Mathlib/Analysis/Calculus/ContDiff.lean
contDiff_add
[]
[ 1191, 63 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1190, 1 ]
Mathlib/LinearAlgebra/Basic.lean
LinearEquiv.symm_neg
[]
[ 2284, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2283, 1 ]
Mathlib/Combinatorics/Young/YoungDiagram.lean
YoungDiagram.rowLens_ofRowLens_eq_self
[]
[ 527, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 523, 1 ]
Mathlib/SetTheory/Cardinal/Basic.lean
Cardinal.toNat_eq_one_iff_unique
[]
[ 1773, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1772, 1 ]
Mathlib/RingTheory/WittVector/MulP.lean
WittVector.mulN_coeff
[ { "state_after": "case zero\np : ℕ\nR : Type u_1\nhp : Fact (Nat.Prime p)\ninst✝ : CommRing R\nx : 𝕎 R\nk✝ k : ℕ\n⊢ coeff (x * ↑Nat.zero) k = ↑(aeval x.coeff) (wittMulN p Nat.zero k)\n\ncase succ\np : ℕ\nR : Type u_1\nhp : Fact (Nat.Prime p)\ninst✝ : CommRing R\nx : 𝕎 R\nk✝ n : ℕ\nih : ∀ (k : ℕ), coeff (x * ↑n) k = ↑(aeval x.coeff) (wittMulN p n k)\nk : ℕ\n⊢ coeff (x * ↑(Nat.succ n)) k = ↑(aeval x.coeff) (wittMulN p (Nat.succ n) k)", "state_before": "p : ℕ\nR : Type u_1\nhp : Fact (Nat.Prime p)\ninst✝ : CommRing R\nn : ℕ\nx : 𝕎 R\nk : ℕ\n⊢ coeff (x * ↑n) k = ↑(aeval x.coeff) (wittMulN p n k)", "tactic": "induction' n with n ih generalizing k" }, { "state_after": "no goals", "state_before": "case zero\np : ℕ\nR : Type u_1\nhp : Fact (Nat.Prime p)\ninst✝ : CommRing R\nx : 𝕎 R\nk✝ k : ℕ\n⊢ coeff (x * ↑Nat.zero) k = ↑(aeval x.coeff) (wittMulN p Nat.zero k)", "tactic": "simp only [Nat.zero_eq, Nat.cast_zero, MulZeroClass.mul_zero, zero_coeff, wittMulN,\n AlgHom.map_zero, Pi.zero_apply]" }, { "state_after": "case succ\np : ℕ\nR : Type u_1\nhp : Fact (Nat.Prime p)\ninst✝ : CommRing R\nx : 𝕎 R\nk✝ n : ℕ\nih : ∀ (k : ℕ), coeff (x * ↑n) k = ↑(aeval x.coeff) (wittMulN p n k)\nk : ℕ\n⊢ peval (wittAdd p k) ![(x * ↑n).coeff, x.coeff] =\n ↑(aeval fun i => ↑(aeval x.coeff) (Function.uncurry ![wittMulN p n, X] i)) (wittAdd p k)", "state_before": "case succ\np : ℕ\nR : Type u_1\nhp : Fact (Nat.Prime p)\ninst✝ : CommRing R\nx : 𝕎 R\nk✝ n : ℕ\nih : ∀ (k : ℕ), coeff (x * ↑n) k = ↑(aeval x.coeff) (wittMulN p n k)\nk : ℕ\n⊢ coeff (x * ↑(Nat.succ n)) k = ↑(aeval x.coeff) (wittMulN p (Nat.succ n) k)", "tactic": "rw [wittMulN, Nat.succ_eq_add_one, Nat.cast_add, Nat.cast_one, mul_add, mul_one, aeval_bind₁,\n add_coeff]" }, { "state_after": "p : ℕ\nR : Type u_1\nhp : Fact (Nat.Prime p)\ninst✝ : CommRing R\nx : 𝕎 R\nk✝ n : ℕ\nih : ∀ (k : ℕ), coeff (x * ↑n) k = ↑(aeval x.coeff) (wittMulN p n k)\nk : ℕ\n⊢ Function.uncurry ![(x * ↑n).coeff, x.coeff] = fun i => ↑(aeval x.coeff) (Function.uncurry ![wittMulN p n, X] i)", "state_before": "case succ\np : ℕ\nR : Type u_1\nhp : Fact (Nat.Prime p)\ninst✝ : CommRing R\nx : 𝕎 R\nk✝ n : ℕ\nih : ∀ (k : ℕ), coeff (x * ↑n) k = ↑(aeval x.coeff) (wittMulN p n k)\nk : ℕ\n⊢ peval (wittAdd p k) ![(x * ↑n).coeff, x.coeff] =\n ↑(aeval fun i => ↑(aeval x.coeff) (Function.uncurry ![wittMulN p n, X] i)) (wittAdd p k)", "tactic": "apply eval₂Hom_congr (RingHom.ext_int _ _) _ rfl" }, { "state_after": "case h.mk\np : ℕ\nR : Type u_1\nhp : Fact (Nat.Prime p)\ninst✝ : CommRing R\nx : 𝕎 R\nk✝ n : ℕ\nih : ∀ (k : ℕ), coeff (x * ↑n) k = ↑(aeval x.coeff) (wittMulN p n k)\nk : ℕ\nb : Fin 2\ni : ℕ\n⊢ Function.uncurry ![(x * ↑n).coeff, x.coeff] (b, i) = ↑(aeval x.coeff) (Function.uncurry ![wittMulN p n, X] (b, i))", "state_before": "p : ℕ\nR : Type u_1\nhp : Fact (Nat.Prime p)\ninst✝ : CommRing R\nx : 𝕎 R\nk✝ n : ℕ\nih : ∀ (k : ℕ), coeff (x * ↑n) k = ↑(aeval x.coeff) (wittMulN p n k)\nk : ℕ\n⊢ Function.uncurry ![(x * ↑n).coeff, x.coeff] = fun i => ↑(aeval x.coeff) (Function.uncurry ![wittMulN p n, X] i)", "tactic": "ext1 ⟨b, i⟩" }, { "state_after": "case h.mk.head\np : ℕ\nR : Type u_1\nhp : Fact (Nat.Prime p)\ninst✝ : CommRing R\nx : 𝕎 R\nk✝ n : ℕ\nih : ∀ (k : ℕ), coeff (x * ↑n) k = ↑(aeval x.coeff) (wittMulN p n k)\nk i : ℕ\n⊢ Function.uncurry ![(x * ↑n).coeff, x.coeff] ({ val := 0, isLt := (_ : 0 < 2) }, i) =\n ↑(aeval x.coeff) (Function.uncurry ![wittMulN p n, X] ({ val := 0, isLt := (_ : 0 < 2) }, i))\n\ncase h.mk.tail.head\np : ℕ\nR : Type u_1\nhp : Fact (Nat.Prime p)\ninst✝ : CommRing R\nx : 𝕎 R\nk✝ n : ℕ\nih : ∀ (k : ℕ), coeff (x * ↑n) k = ↑(aeval x.coeff) (wittMulN p n k)\nk i : ℕ\n⊢ Function.uncurry ![(x * ↑n).coeff, x.coeff] ({ val := 1, isLt := (_ : (fun a => a < 2) 1) }, i) =\n ↑(aeval x.coeff) (Function.uncurry ![wittMulN p n, X] ({ val := 1, isLt := (_ : (fun a => a < 2) 1) }, i))", "state_before": "case h.mk\np : ℕ\nR : Type u_1\nhp : Fact (Nat.Prime p)\ninst✝ : CommRing R\nx : 𝕎 R\nk✝ n : ℕ\nih : ∀ (k : ℕ), coeff (x * ↑n) k = ↑(aeval x.coeff) (wittMulN p n k)\nk : ℕ\nb : Fin 2\ni : ℕ\n⊢ Function.uncurry ![(x * ↑n).coeff, x.coeff] (b, i) = ↑(aeval x.coeff) (Function.uncurry ![wittMulN p n, X] (b, i))", "tactic": "fin_cases b" }, { "state_after": "no goals", "state_before": "case h.mk.head\np : ℕ\nR : Type u_1\nhp : Fact (Nat.Prime p)\ninst✝ : CommRing R\nx : 𝕎 R\nk✝ n : ℕ\nih : ∀ (k : ℕ), coeff (x * ↑n) k = ↑(aeval x.coeff) (wittMulN p n k)\nk i : ℕ\n⊢ Function.uncurry ![(x * ↑n).coeff, x.coeff] ({ val := 0, isLt := (_ : 0 < 2) }, i) =\n ↑(aeval x.coeff) (Function.uncurry ![wittMulN p n, X] ({ val := 0, isLt := (_ : 0 < 2) }, i))", "tactic": "simp [Function.uncurry, Matrix.cons_val_zero, ih]" }, { "state_after": "no goals", "state_before": "case h.mk.tail.head\np : ℕ\nR : Type u_1\nhp : Fact (Nat.Prime p)\ninst✝ : CommRing R\nx : 𝕎 R\nk✝ n : ℕ\nih : ∀ (k : ℕ), coeff (x * ↑n) k = ↑(aeval x.coeff) (wittMulN p n k)\nk i : ℕ\n⊢ Function.uncurry ![(x * ↑n).coeff, x.coeff] ({ val := 1, isLt := (_ : (fun a => a < 2) 1) }, i) =\n ↑(aeval x.coeff) (Function.uncurry ![wittMulN p n, X] ({ val := 1, isLt := (_ : (fun a => a < 2) 1) }, i))", "tactic": "simp [Function.uncurry, Matrix.cons_val_one, Matrix.head_cons, aeval_X]" } ]
[ 64, 78 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 53, 1 ]
Mathlib/Topology/GDelta.lean
mem_residual_iff
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.16113\nγ : Type ?u.16116\nι : Type ?u.16119\ninst✝ : TopologicalSpace α\ns : Set α\n⊢ (∃ S, S ⊆ {t | IsOpen t ∧ Dense t} ∧ Set.Countable S ∧ ⋂₀ S ⊆ s) ↔\n ∃ S, (∀ (t : Set α), t ∈ S → IsOpen t) ∧ (∀ (t : Set α), t ∈ S → Dense t) ∧ Set.Countable S ∧ ⋂₀ S ⊆ s", "tactic": "simp_rw [subset_def, mem_setOf, forall_and, and_assoc]" } ]
[ 225, 95 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 222, 1 ]
Mathlib/GroupTheory/Subgroup/Pointwise.lean
Subgroup.sup_eq_closure
[ { "state_after": "no goals", "state_before": "α : Type ?u.19854\nG : Type u_1\nA : Type ?u.19860\nS : Type ?u.19863\ninst✝¹ : Group G\ninst✝ : AddGroup A\ns : Set G\nH K : Subgroup G\n⊢ closure ↑H ⊔ closure ↑K ≤ H ⊔ K", "tactic": "rw [closure_eq, closure_eq]" } ]
[ 155, 67 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 151, 1 ]
Mathlib/Algebra/Star/Order.lean
StarOrderedRing.nonneg_iff
[ { "state_after": "no goals", "state_before": "R : Type u\ninst✝² : NonUnitalSemiring R\ninst✝¹ : PartialOrder R\ninst✝ : StarOrderedRing R\nx : R\n⊢ 0 ≤ x ↔ x ∈ AddSubmonoid.closure (Set.range fun s => star s * s)", "tactic": "simp only [le_iff, zero_add, exists_eq_right']" } ]
[ 147, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 145, 1 ]
Mathlib/GroupTheory/FreeGroup.lean
FreeGroup.toWord_eq_nil_iff
[]
[ 1327, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1326, 1 ]
Mathlib/Logic/Equiv/Basic.lean
Equiv.swap_swap
[]
[ 1578, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1577, 1 ]
Mathlib/Topology/MetricSpace/ThickenedIndicator.lean
thickenedIndicatorAux_zero
[ { "state_after": "α : Type u_1\ninst✝ : PseudoEMetricSpace α\nδ : ℝ\nδ_pos : 0 < δ\nE : Set α\nx : α\nx_out : ENNReal.ofReal δ ≤ infEdist x E\n⊢ thickenedIndicatorAux δ E x = 0", "state_before": "α : Type u_1\ninst✝ : PseudoEMetricSpace α\nδ : ℝ\nδ_pos : 0 < δ\nE : Set α\nx : α\nx_out : ¬x ∈ thickening δ E\n⊢ thickenedIndicatorAux δ E x = 0", "tactic": "rw [thickening, mem_setOf_eq, not_lt] at x_out" }, { "state_after": "α : Type u_1\ninst✝ : PseudoEMetricSpace α\nδ : ℝ\nδ_pos : 0 < δ\nE : Set α\nx : α\nx_out : ENNReal.ofReal δ ≤ infEdist x E\n⊢ 1 - infEdist x E / ENNReal.ofReal δ = 0", "state_before": "α : Type u_1\ninst✝ : PseudoEMetricSpace α\nδ : ℝ\nδ_pos : 0 < δ\nE : Set α\nx : α\nx_out : ENNReal.ofReal δ ≤ infEdist x E\n⊢ thickenedIndicatorAux δ E x = 0", "tactic": "unfold thickenedIndicatorAux" }, { "state_after": "α : Type u_1\ninst✝ : PseudoEMetricSpace α\nδ : ℝ\nδ_pos : 0 < δ\nE : Set α\nx : α\nx_out : ENNReal.ofReal δ ≤ infEdist x E\n⊢ 1 - infEdist x E / ENNReal.ofReal δ ≤ ⊥", "state_before": "α : Type u_1\ninst✝ : PseudoEMetricSpace α\nδ : ℝ\nδ_pos : 0 < δ\nE : Set α\nx : α\nx_out : ENNReal.ofReal δ ≤ infEdist x E\n⊢ 1 - infEdist x E / ENNReal.ofReal δ = 0", "tactic": "apply le_antisymm _ bot_le" }, { "state_after": "α : Type u_1\ninst✝ : PseudoEMetricSpace α\nδ : ℝ\nδ_pos : 0 < δ\nE : Set α\nx : α\nx_out : ENNReal.ofReal δ ≤ infEdist x E\nkey : 1 - infEdist x E / ENNReal.ofReal δ ≤ 1 - ENNReal.ofReal δ / ENNReal.ofReal δ\n⊢ 1 - infEdist x E / ENNReal.ofReal δ ≤ ⊥", "state_before": "α : Type u_1\ninst✝ : PseudoEMetricSpace α\nδ : ℝ\nδ_pos : 0 < δ\nE : Set α\nx : α\nx_out : ENNReal.ofReal δ ≤ infEdist x E\n⊢ 1 - infEdist x E / ENNReal.ofReal δ ≤ ⊥", "tactic": "have key := tsub_le_tsub\n (@rfl _ (1 : ℝ≥0∞)).le (ENNReal.div_le_div x_out (@rfl _ (ENNReal.ofReal δ : ℝ≥0∞)).le)" }, { "state_after": "α : Type u_1\ninst✝ : PseudoEMetricSpace α\nδ : ℝ\nδ_pos : 0 < δ\nE : Set α\nx : α\nx_out : ENNReal.ofReal δ ≤ infEdist x E\nkey : 1 - infEdist x E / ENNReal.ofReal δ ≤ 1 - 1\n⊢ 1 - infEdist x E / ENNReal.ofReal δ ≤ ⊥", "state_before": "α : Type u_1\ninst✝ : PseudoEMetricSpace α\nδ : ℝ\nδ_pos : 0 < δ\nE : Set α\nx : α\nx_out : ENNReal.ofReal δ ≤ infEdist x E\nkey : 1 - infEdist x E / ENNReal.ofReal δ ≤ 1 - ENNReal.ofReal δ / ENNReal.ofReal δ\n⊢ 1 - infEdist x E / ENNReal.ofReal δ ≤ ⊥", "tactic": "rw [ENNReal.div_self (ne_of_gt (ENNReal.ofReal_pos.mpr δ_pos)) ofReal_ne_top] at key" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : PseudoEMetricSpace α\nδ : ℝ\nδ_pos : 0 < δ\nE : Set α\nx : α\nx_out : ENNReal.ofReal δ ≤ infEdist x E\nkey : 1 - infEdist x E / ENNReal.ofReal δ ≤ 1 - 1\n⊢ 1 - infEdist x E / ENNReal.ofReal δ ≤ ⊥", "tactic": "simpa using key" } ]
[ 105, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 97, 1 ]
Mathlib/Algebra/BigOperators/Finprod.lean
finprod_mem_eq_prod_filter
[ { "state_after": "case h\nα : Type u_1\nβ : Type ?u.196353\nι : Type ?u.196356\nG : Type ?u.196359\nM : Type u_2\nN : Type ?u.196365\ninst✝² : CommMonoid M\ninst✝¹ : CommMonoid N\nf : α → M\ns : Set α\ninst✝ : DecidablePred fun x => x ∈ s\nhf : Set.Finite (mulSupport f)\nx : α\n⊢ (x ∈ s ∩ mulSupport fun i => f i) ↔\n x ∈ ↑(Finset.filter (fun x => x ∈ s) (Finite.toFinset hf)) ∩ mulSupport fun i => f i", "state_before": "α : Type u_1\nβ : Type ?u.196353\nι : Type ?u.196356\nG : Type ?u.196359\nM : Type u_2\nN : Type ?u.196365\ninst✝² : CommMonoid M\ninst✝¹ : CommMonoid N\nf : α → M\ns : Set α\ninst✝ : DecidablePred fun x => x ∈ s\nhf : Set.Finite (mulSupport f)\n⊢ (s ∩ mulSupport fun i => f i) = ↑(Finset.filter (fun x => x ∈ s) (Finite.toFinset hf)) ∩ mulSupport fun i => f i", "tactic": "ext x" }, { "state_after": "no goals", "state_before": "case h\nα : Type u_1\nβ : Type ?u.196353\nι : Type ?u.196356\nG : Type ?u.196359\nM : Type u_2\nN : Type ?u.196365\ninst✝² : CommMonoid M\ninst✝¹ : CommMonoid N\nf : α → M\ns : Set α\ninst✝ : DecidablePred fun x => x ∈ s\nhf : Set.Finite (mulSupport f)\nx : α\n⊢ (x ∈ s ∩ mulSupport fun i => f i) ↔\n x ∈ ↑(Finset.filter (fun x => x ∈ s) (Finite.toFinset hf)) ∩ mulSupport fun i => f i", "tactic": "simp [and_comm]" } ]
[ 502, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 497, 1 ]
Mathlib/NumberTheory/Liouville/LiouvilleWith.lean
LiouvilleWith.sub_int_iff
[ { "state_after": "no goals", "state_before": "p q x y : ℝ\nr : ℚ\nm : ℤ\nn : ℕ\n⊢ LiouvilleWith p (x - ↑m) ↔ LiouvilleWith p x", "tactic": "rw [← Rat.cast_coe_int, sub_rat_iff]" } ]
[ 274, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 273, 1 ]
Mathlib/Topology/Constructions.lean
CofiniteTopology.mem_nhds_iff
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type ?u.18624\nδ : Type ?u.18627\nε : Type ?u.18630\nζ : Type ?u.18633\na : CofiniteTopology α\ns : Set (CofiniteTopology α)\n⊢ s ∈ 𝓝 a ↔ a ∈ s ∧ Set.Finite (sᶜ)", "tactic": "simp [nhds_eq]" } ]
[ 305, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 304, 1 ]
Mathlib/Topology/Algebra/Order/MonotoneConvergence.lean
tendsto_atBot_iInf
[]
[ 174, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 173, 1 ]
Mathlib/Algebra/Ring/Equiv.lean
RingEquiv.coe_ofBijective
[]
[ 447, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 445, 1 ]
Mathlib/Order/LocallyFinite.lean
Finset.coe_Icc
[]
[ 348, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 347, 1 ]
Mathlib/LinearAlgebra/Pi.lean
LinearMap.coe_single
[]
[ 136, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 135, 1 ]
Mathlib/Algebra/Associated.lean
Prime.dvd_of_pow_dvd_pow_mul_pow_of_square_not_dvd
[ { "state_after": "case inl\nα : Type u_1\nβ : Type ?u.44629\nγ : Type ?u.44632\nδ : Type ?u.44635\ninst✝ : CancelCommMonoidWithZero α\np a b : α\nn : ℕ\nhp : Prime p\nhpow : p ^ Nat.succ n ∣ a ^ Nat.succ n * b ^ n\nhb : ¬p ^ 2 ∣ b\nH : p ∣ a ^ Nat.succ n\n⊢ p ∣ a\n\ncase inr\nα : Type u_1\nβ : Type ?u.44629\nγ : Type ?u.44632\nδ : Type ?u.44635\ninst✝ : CancelCommMonoidWithZero α\np a b : α\nn : ℕ\nhp : Prime p\nhpow : p ^ Nat.succ n ∣ a ^ Nat.succ n * b ^ n\nhb : ¬p ^ 2 ∣ b\nhbdiv : p ∣ b ^ n\n⊢ p ∣ a", "state_before": "α : Type u_1\nβ : Type ?u.44629\nγ : Type ?u.44632\nδ : Type ?u.44635\ninst✝ : CancelCommMonoidWithZero α\np a b : α\nn : ℕ\nhp : Prime p\nhpow : p ^ Nat.succ n ∣ a ^ Nat.succ n * b ^ n\nhb : ¬p ^ 2 ∣ b\n⊢ p ∣ a", "tactic": "cases' hp.dvd_or_dvd ((dvd_pow_self p (Nat.succ_ne_zero n)).trans hpow) with H hbdiv" }, { "state_after": "case inr.intro\nα : Type u_1\nβ : Type ?u.44629\nγ : Type ?u.44632\nδ : Type ?u.44635\ninst✝ : CancelCommMonoidWithZero α\np a : α\nn : ℕ\nhp : Prime p\nx : α\nhpow : p ^ Nat.succ n ∣ a ^ Nat.succ n * (p * x) ^ n\nhb : ¬p ^ 2 ∣ p * x\nhbdiv : p ∣ (p * x) ^ n\n⊢ p ∣ a", "state_before": "case inr\nα : Type u_1\nβ : Type ?u.44629\nγ : Type ?u.44632\nδ : Type ?u.44635\ninst✝ : CancelCommMonoidWithZero α\np a b : α\nn : ℕ\nhp : Prime p\nhpow : p ^ Nat.succ n ∣ a ^ Nat.succ n * b ^ n\nhb : ¬p ^ 2 ∣ b\nhbdiv : p ∣ b ^ n\n⊢ p ∣ a", "tactic": "obtain ⟨x, rfl⟩ := hp.dvd_of_dvd_pow hbdiv" }, { "state_after": "case inr.intro.intro\nα : Type u_1\nβ : Type ?u.44629\nγ : Type ?u.44632\nδ : Type ?u.44635\ninst✝ : CancelCommMonoidWithZero α\np a : α\nn : ℕ\nhp : Prime p\nx : α\nhb : ¬p ^ 2 ∣ p * x\nhbdiv : p ∣ (p * x) ^ n\ny : α\nhy : a ^ Nat.succ n * (p * x) ^ n = p ^ Nat.succ n * y\n⊢ p ∣ a", "state_before": "case inr.intro\nα : Type u_1\nβ : Type ?u.44629\nγ : Type ?u.44632\nδ : Type ?u.44635\ninst✝ : CancelCommMonoidWithZero α\np a : α\nn : ℕ\nhp : Prime p\nx : α\nhpow : p ^ Nat.succ n ∣ a ^ Nat.succ n * (p * x) ^ n\nhb : ¬p ^ 2 ∣ p * x\nhbdiv : p ∣ (p * x) ^ n\n⊢ p ∣ a", "tactic": "obtain ⟨y, hy⟩ := hpow" }, { "state_after": "case inr.intro.intro\nα : Type u_1\nβ : Type ?u.44629\nγ : Type ?u.44632\nδ : Type ?u.44635\ninst✝ : CancelCommMonoidWithZero α\np a : α\nn : ℕ\nhp : Prime p\nx : α\nhb : ¬p ^ 2 ∣ p * x\nhbdiv : p ∣ (p * x) ^ n\ny : α\nhy : a ^ Nat.succ n * (p * x) ^ n = p ^ Nat.succ n * y\nthis : a ^ Nat.succ n * x ^ n = p * y\n⊢ p ∣ a", "state_before": "case inr.intro.intro\nα : Type u_1\nβ : Type ?u.44629\nγ : Type ?u.44632\nδ : Type ?u.44635\ninst✝ : CancelCommMonoidWithZero α\np a : α\nn : ℕ\nhp : Prime p\nx : α\nhb : ¬p ^ 2 ∣ p * x\nhbdiv : p ∣ (p * x) ^ n\ny : α\nhy : a ^ Nat.succ n * (p * x) ^ n = p ^ Nat.succ n * y\n⊢ p ∣ a", "tactic": "have : a ^ n.succ * x ^ n = p * y := by\n refine' mul_left_cancel₀ (pow_ne_zero n hp.ne_zero) _\n rw [← mul_assoc _ p, ← pow_succ', ← hy, mul_pow, ← mul_assoc (a ^ n.succ), mul_comm _ (p ^ n),\n mul_assoc]" }, { "state_after": "case inr.intro.intro\nα : Type u_1\nβ : Type ?u.44629\nγ : Type ?u.44632\nδ : Type ?u.44635\ninst✝ : CancelCommMonoidWithZero α\np a : α\nn : ℕ\nhp : Prime p\nx : α\nhb : ¬p ^ 2 ∣ p * x\nhbdiv : p ∣ (p * x) ^ n\ny : α\nhy : a ^ Nat.succ n * (p * x) ^ n = p ^ Nat.succ n * y\nthis : a ^ Nat.succ n * x ^ n = p * y\nhdvdx : p ∣ x ^ n\n⊢ p ^ 2 ∣ p * x", "state_before": "case inr.intro.intro\nα : Type u_1\nβ : Type ?u.44629\nγ : Type ?u.44632\nδ : Type ?u.44635\ninst✝ : CancelCommMonoidWithZero α\np a : α\nn : ℕ\nhp : Prime p\nx : α\nhb : ¬p ^ 2 ∣ p * x\nhbdiv : p ∣ (p * x) ^ n\ny : α\nhy : a ^ Nat.succ n * (p * x) ^ n = p ^ Nat.succ n * y\nthis : a ^ Nat.succ n * x ^ n = p * y\n⊢ p ∣ a", "tactic": "refine' hp.dvd_of_dvd_pow ((hp.dvd_or_dvd ⟨_, this⟩).resolve_right fun hdvdx => hb _)" }, { "state_after": "case inr.intro.intro.intro\nα : Type u_1\nβ : Type ?u.44629\nγ : Type ?u.44632\nδ : Type ?u.44635\ninst✝ : CancelCommMonoidWithZero α\np a : α\nn : ℕ\nhp : Prime p\ny z : α\nhb : ¬p ^ 2 ∣ p * (p * z)\nhbdiv : p ∣ (p * (p * z)) ^ n\nhy : a ^ Nat.succ n * (p * (p * z)) ^ n = p ^ Nat.succ n * y\nthis : a ^ Nat.succ n * (p * z) ^ n = p * y\nhdvdx : p ∣ (p * z) ^ n\n⊢ p ^ 2 ∣ p * (p * z)", "state_before": "case inr.intro.intro\nα : Type u_1\nβ : Type ?u.44629\nγ : Type ?u.44632\nδ : Type ?u.44635\ninst✝ : CancelCommMonoidWithZero α\np a : α\nn : ℕ\nhp : Prime p\nx : α\nhb : ¬p ^ 2 ∣ p * x\nhbdiv : p ∣ (p * x) ^ n\ny : α\nhy : a ^ Nat.succ n * (p * x) ^ n = p ^ Nat.succ n * y\nthis : a ^ Nat.succ n * x ^ n = p * y\nhdvdx : p ∣ x ^ n\n⊢ p ^ 2 ∣ p * x", "tactic": "obtain ⟨z, rfl⟩ := hp.dvd_of_dvd_pow hdvdx" }, { "state_after": "case inr.intro.intro.intro\nα : Type u_1\nβ : Type ?u.44629\nγ : Type ?u.44632\nδ : Type ?u.44635\ninst✝ : CancelCommMonoidWithZero α\np a : α\nn : ℕ\nhp : Prime p\ny z : α\nhb : ¬p ^ 2 ∣ p * (p * z)\nhbdiv : p ∣ (p * (p * z)) ^ n\nhy : a ^ Nat.succ n * (p * (p * z)) ^ n = p ^ Nat.succ n * y\nthis : a ^ Nat.succ n * (p * z) ^ n = p * y\nhdvdx : p ∣ (p * z) ^ n\n⊢ p * p ∣ p * p * z", "state_before": "case inr.intro.intro.intro\nα : Type u_1\nβ : Type ?u.44629\nγ : Type ?u.44632\nδ : Type ?u.44635\ninst✝ : CancelCommMonoidWithZero α\np a : α\nn : ℕ\nhp : Prime p\ny z : α\nhb : ¬p ^ 2 ∣ p * (p * z)\nhbdiv : p ∣ (p * (p * z)) ^ n\nhy : a ^ Nat.succ n * (p * (p * z)) ^ n = p ^ Nat.succ n * y\nthis : a ^ Nat.succ n * (p * z) ^ n = p * y\nhdvdx : p ∣ (p * z) ^ n\n⊢ p ^ 2 ∣ p * (p * z)", "tactic": "rw [pow_two, ← mul_assoc]" }, { "state_after": "no goals", "state_before": "case inr.intro.intro.intro\nα : Type u_1\nβ : Type ?u.44629\nγ : Type ?u.44632\nδ : Type ?u.44635\ninst✝ : CancelCommMonoidWithZero α\np a : α\nn : ℕ\nhp : Prime p\ny z : α\nhb : ¬p ^ 2 ∣ p * (p * z)\nhbdiv : p ∣ (p * (p * z)) ^ n\nhy : a ^ Nat.succ n * (p * (p * z)) ^ n = p ^ Nat.succ n * y\nthis : a ^ Nat.succ n * (p * z) ^ n = p * y\nhdvdx : p ∣ (p * z) ^ n\n⊢ p * p ∣ p * p * z", "tactic": "exact dvd_mul_right _ _" }, { "state_after": "no goals", "state_before": "case inl\nα : Type u_1\nβ : Type ?u.44629\nγ : Type ?u.44632\nδ : Type ?u.44635\ninst✝ : CancelCommMonoidWithZero α\np a b : α\nn : ℕ\nhp : Prime p\nhpow : p ^ Nat.succ n ∣ a ^ Nat.succ n * b ^ n\nhb : ¬p ^ 2 ∣ b\nH : p ∣ a ^ Nat.succ n\n⊢ p ∣ a", "tactic": "exact hp.dvd_of_dvd_pow H" }, { "state_after": "α : Type u_1\nβ : Type ?u.44629\nγ : Type ?u.44632\nδ : Type ?u.44635\ninst✝ : CancelCommMonoidWithZero α\np a : α\nn : ℕ\nhp : Prime p\nx : α\nhb : ¬p ^ 2 ∣ p * x\nhbdiv : p ∣ (p * x) ^ n\ny : α\nhy : a ^ Nat.succ n * (p * x) ^ n = p ^ Nat.succ n * y\n⊢ p ^ n * (a ^ Nat.succ n * x ^ n) = p ^ n * (p * y)", "state_before": "α : Type u_1\nβ : Type ?u.44629\nγ : Type ?u.44632\nδ : Type ?u.44635\ninst✝ : CancelCommMonoidWithZero α\np a : α\nn : ℕ\nhp : Prime p\nx : α\nhb : ¬p ^ 2 ∣ p * x\nhbdiv : p ∣ (p * x) ^ n\ny : α\nhy : a ^ Nat.succ n * (p * x) ^ n = p ^ Nat.succ n * y\n⊢ a ^ Nat.succ n * x ^ n = p * y", "tactic": "refine' mul_left_cancel₀ (pow_ne_zero n hp.ne_zero) _" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.44629\nγ : Type ?u.44632\nδ : Type ?u.44635\ninst✝ : CancelCommMonoidWithZero α\np a : α\nn : ℕ\nhp : Prime p\nx : α\nhb : ¬p ^ 2 ∣ p * x\nhbdiv : p ∣ (p * x) ^ n\ny : α\nhy : a ^ Nat.succ n * (p * x) ^ n = p ^ Nat.succ n * y\n⊢ p ^ n * (a ^ Nat.succ n * x ^ n) = p ^ n * (p * y)", "tactic": "rw [← mul_assoc _ p, ← pow_succ', ← hy, mul_pow, ← mul_assoc (a ^ n.succ), mul_comm _ (p ^ n),\n mul_assoc]" } ]
[ 143, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 127, 1 ]
Mathlib/Analysis/Asymptotics/Theta.lean
Asymptotics.isTheta_zero_right
[]
[ 278, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 277, 1 ]
Mathlib/Data/MvPolynomial/Supported.lean
MvPolynomial.mem_supported
[ { "state_after": "σ : Type u_1\nτ : Type ?u.120933\nR : Type u\nS : Type v\nr : R\ne : ℕ\nn m : σ\ninst✝ : CommSemiring R\np q : MvPolynomial σ R\ns t : Set σ\n⊢ (∃ x, ↑(rename Subtype.val) x = p) ↔ ↑(vars p) ⊆ s", "state_before": "σ : Type u_1\nτ : Type ?u.120933\nR : Type u\nS : Type v\nr : R\ne : ℕ\nn m : σ\ninst✝ : CommSemiring R\np q : MvPolynomial σ R\ns t : Set σ\n⊢ p ∈ supported R s ↔ ↑(vars p) ⊆ s", "tactic": "rw [supported_eq_range_rename, AlgHom.mem_range]" }, { "state_after": "case mp\nσ : Type u_1\nτ : Type ?u.120933\nR : Type u\nS : Type v\nr : R\ne : ℕ\nn m : σ\ninst✝ : CommSemiring R\np q : MvPolynomial σ R\ns t : Set σ\n⊢ (∃ x, ↑(rename Subtype.val) x = p) → ↑(vars p) ⊆ s\n\ncase mpr\nσ : Type u_1\nτ : Type ?u.120933\nR : Type u\nS : Type v\nr : R\ne : ℕ\nn m : σ\ninst✝ : CommSemiring R\np q : MvPolynomial σ R\ns t : Set σ\n⊢ ↑(vars p) ⊆ s → ∃ x, ↑(rename Subtype.val) x = p", "state_before": "σ : Type u_1\nτ : Type ?u.120933\nR : Type u\nS : Type v\nr : R\ne : ℕ\nn m : σ\ninst✝ : CommSemiring R\np q : MvPolynomial σ R\ns t : Set σ\n⊢ (∃ x, ↑(rename Subtype.val) x = p) ↔ ↑(vars p) ⊆ s", "tactic": "constructor" }, { "state_after": "case mp.intro\nσ : Type u_1\nτ : Type ?u.120933\nR : Type u\nS : Type v\nr : R\ne : ℕ\nn m : σ\ninst✝ : CommSemiring R\nq : MvPolynomial σ R\ns t : Set σ\np : MvPolynomial { x // x ∈ s } R\n⊢ ↑(vars (↑(rename Subtype.val) p)) ⊆ s", "state_before": "case mp\nσ : Type u_1\nτ : Type ?u.120933\nR : Type u\nS : Type v\nr : R\ne : ℕ\nn m : σ\ninst✝ : CommSemiring R\np q : MvPolynomial σ R\ns t : Set σ\n⊢ (∃ x, ↑(rename Subtype.val) x = p) → ↑(vars p) ⊆ s", "tactic": "rintro ⟨p, rfl⟩" }, { "state_after": "case mp.intro\nσ : Type u_1\nτ : Type ?u.120933\nR : Type u\nS : Type v\nr : R\ne : ℕ\nn m : σ\ninst✝ : CommSemiring R\nq : MvPolynomial σ R\ns t : Set σ\np : MvPolynomial { x // x ∈ s } R\n⊢ ↑(Finset.image Subtype.val (vars p)) ⊆ s", "state_before": "case mp.intro\nσ : Type u_1\nτ : Type ?u.120933\nR : Type u\nS : Type v\nr : R\ne : ℕ\nn m : σ\ninst✝ : CommSemiring R\nq : MvPolynomial σ R\ns t : Set σ\np : MvPolynomial { x // x ∈ s } R\n⊢ ↑(vars (↑(rename Subtype.val) p)) ⊆ s", "tactic": "refine' _root_.trans (Finset.coe_subset.2 (vars_rename _ _)) _" }, { "state_after": "no goals", "state_before": "case mp.intro\nσ : Type u_1\nτ : Type ?u.120933\nR : Type u\nS : Type v\nr : R\ne : ℕ\nn m : σ\ninst✝ : CommSemiring R\nq : MvPolynomial σ R\ns t : Set σ\np : MvPolynomial { x // x ∈ s } R\n⊢ ↑(Finset.image Subtype.val (vars p)) ⊆ s", "tactic": "simp" }, { "state_after": "case mpr\nσ : Type u_1\nτ : Type ?u.120933\nR : Type u\nS : Type v\nr : R\ne : ℕ\nn m : σ\ninst✝ : CommSemiring R\np q : MvPolynomial σ R\ns t : Set σ\nhs : ↑(vars p) ⊆ s\n⊢ ∃ x, ↑(rename Subtype.val) x = p", "state_before": "case mpr\nσ : Type u_1\nτ : Type ?u.120933\nR : Type u\nS : Type v\nr : R\ne : ℕ\nn m : σ\ninst✝ : CommSemiring R\np q : MvPolynomial σ R\ns t : Set σ\n⊢ ↑(vars p) ⊆ s → ∃ x, ↑(rename Subtype.val) x = p", "tactic": "intro hs" }, { "state_after": "no goals", "state_before": "case mpr\nσ : Type u_1\nτ : Type ?u.120933\nR : Type u\nS : Type v\nr : R\ne : ℕ\nn m : σ\ninst✝ : CommSemiring R\np q : MvPolynomial σ R\ns t : Set σ\nhs : ↑(vars p) ⊆ s\n⊢ ∃ x, ↑(rename Subtype.val) x = p", "tactic": "exact exists_rename_eq_of_vars_subset_range p ((↑) : s → σ) Subtype.val_injective (by simpa)" }, { "state_after": "no goals", "state_before": "σ : Type u_1\nτ : Type ?u.120933\nR : Type u\nS : Type v\nr : R\ne : ℕ\nn m : σ\ninst✝ : CommSemiring R\np q : MvPolynomial σ R\ns t : Set σ\nhs : ↑(vars p) ⊆ s\n⊢ ↑(vars p) ⊆ Set.range Subtype.val", "tactic": "simpa" } ]
[ 86, 97 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 78, 1 ]
Mathlib/Analysis/Convex/Star.lean
StarConvex.preimage_add_left
[ { "state_after": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.72281\ninst✝⁴ : OrderedSemiring 𝕜\ninst✝³ : AddCommMonoid E\ninst✝² : AddCommMonoid F\ninst✝¹ : Module 𝕜 E\ninst✝ : Module 𝕜 F\nx y z : E\ns : Set E\nhs : StarConvex 𝕜 (z + x) s\n⊢ StarConvex 𝕜 x ((fun x => x + z) ⁻¹' s)", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.72281\ninst✝⁴ : OrderedSemiring 𝕜\ninst✝³ : AddCommMonoid E\ninst✝² : AddCommMonoid F\ninst✝¹ : Module 𝕜 E\ninst✝ : Module 𝕜 F\nx y z : E\ns : Set E\nhs : StarConvex 𝕜 (x + z) s\n⊢ StarConvex 𝕜 x ((fun x => x + z) ⁻¹' s)", "tactic": "rw [add_comm] at hs" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.72281\ninst✝⁴ : OrderedSemiring 𝕜\ninst✝³ : AddCommMonoid E\ninst✝² : AddCommMonoid F\ninst✝¹ : Module 𝕜 E\ninst✝ : Module 𝕜 F\nx y z : E\ns : Set E\nhs : StarConvex 𝕜 (z + x) s\n⊢ StarConvex 𝕜 x ((fun x => x + z) ⁻¹' s)", "tactic": "simpa only [add_comm] using hs.preimage_add_right" } ]
[ 264, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 261, 1 ]
Mathlib/Analysis/SpecificLimits/Basic.lean
tsum_geometric_of_lt_1
[]
[ 197, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 196, 1 ]
Mathlib/Order/Filter/NAry.lean
Filter.map₂_eq_bot_iff
[ { "state_after": "α : Type u_2\nα' : Type ?u.22051\nβ : Type u_3\nβ' : Type ?u.22057\nγ : Type u_1\nγ' : Type ?u.22063\nδ : Type ?u.22066\nδ' : Type ?u.22069\nε : Type ?u.22072\nε' : Type ?u.22075\nm : α → β → γ\nf f₁ f₂ : Filter α\ng g₁ g₂ : Filter β\nh h₁ h₂ : Filter γ\ns s₁ s₂ : Set α\nt t₁ t₂ : Set β\nu : Set γ\nv : Set δ\na : α\nb : β\nc : γ\n⊢ (∃ s t, s ∈ f ∧ t ∈ g ∧ (s = ∅ ∨ t = ∅)) ↔ ∅ ∈ f ∨ ∅ ∈ g", "state_before": "α : Type u_2\nα' : Type ?u.22051\nβ : Type u_3\nβ' : Type ?u.22057\nγ : Type u_1\nγ' : Type ?u.22063\nδ : Type ?u.22066\nδ' : Type ?u.22069\nε : Type ?u.22072\nε' : Type ?u.22075\nm : α → β → γ\nf f₁ f₂ : Filter α\ng g₁ g₂ : Filter β\nh h₁ h₂ : Filter γ\ns s₁ s₂ : Set α\nt t₁ t₂ : Set β\nu : Set γ\nv : Set δ\na : α\nb : β\nc : γ\n⊢ map₂ m f g = ⊥ ↔ f = ⊥ ∨ g = ⊥", "tactic": "simp only [← empty_mem_iff_bot, mem_map₂_iff, subset_empty_iff, image2_eq_empty_iff]" }, { "state_after": "case mp\nα : Type u_2\nα' : Type ?u.22051\nβ : Type u_3\nβ' : Type ?u.22057\nγ : Type u_1\nγ' : Type ?u.22063\nδ : Type ?u.22066\nδ' : Type ?u.22069\nε : Type ?u.22072\nε' : Type ?u.22075\nm : α → β → γ\nf f₁ f₂ : Filter α\ng g₁ g₂ : Filter β\nh h₁ h₂ : Filter γ\ns s₁ s₂ : Set α\nt t₁ t₂ : Set β\nu : Set γ\nv : Set δ\na : α\nb : β\nc : γ\n⊢ (∃ s t, s ∈ f ∧ t ∈ g ∧ (s = ∅ ∨ t = ∅)) → ∅ ∈ f ∨ ∅ ∈ g\n\ncase mpr\nα : Type u_2\nα' : Type ?u.22051\nβ : Type u_3\nβ' : Type ?u.22057\nγ : Type u_1\nγ' : Type ?u.22063\nδ : Type ?u.22066\nδ' : Type ?u.22069\nε : Type ?u.22072\nε' : Type ?u.22075\nm : α → β → γ\nf f₁ f₂ : Filter α\ng g₁ g₂ : Filter β\nh h₁ h₂ : Filter γ\ns s₁ s₂ : Set α\nt t₁ t₂ : Set β\nu : Set γ\nv : Set δ\na : α\nb : β\nc : γ\n⊢ ∅ ∈ f ∨ ∅ ∈ g → ∃ s t, s ∈ f ∧ t ∈ g ∧ (s = ∅ ∨ t = ∅)", "state_before": "α : Type u_2\nα' : Type ?u.22051\nβ : Type u_3\nβ' : Type ?u.22057\nγ : Type u_1\nγ' : Type ?u.22063\nδ : Type ?u.22066\nδ' : Type ?u.22069\nε : Type ?u.22072\nε' : Type ?u.22075\nm : α → β → γ\nf f₁ f₂ : Filter α\ng g₁ g₂ : Filter β\nh h₁ h₂ : Filter γ\ns s₁ s₂ : Set α\nt t₁ t₂ : Set β\nu : Set γ\nv : Set δ\na : α\nb : β\nc : γ\n⊢ (∃ s t, s ∈ f ∧ t ∈ g ∧ (s = ∅ ∨ t = ∅)) ↔ ∅ ∈ f ∨ ∅ ∈ g", "tactic": "constructor" }, { "state_after": "case mp.intro.intro.intro.intro.inl\nα : Type u_2\nα' : Type ?u.22051\nβ : Type u_3\nβ' : Type ?u.22057\nγ : Type u_1\nγ' : Type ?u.22063\nδ : Type ?u.22066\nδ' : Type ?u.22069\nε : Type ?u.22072\nε' : Type ?u.22075\nm : α → β → γ\nf f₁ f₂ : Filter α\ng g₁ g₂ : Filter β\nh h₁ h₂ : Filter γ\ns s₁ s₂ : Set α\nt✝ t₁ t₂ : Set β\nu : Set γ\nv : Set δ\na : α\nb : β\nc : γ\nt : Set β\nht : t ∈ g\nhs : ∅ ∈ f\n⊢ ∅ ∈ f ∨ ∅ ∈ g\n\ncase mp.intro.intro.intro.intro.inr\nα : Type u_2\nα' : Type ?u.22051\nβ : Type u_3\nβ' : Type ?u.22057\nγ : Type u_1\nγ' : Type ?u.22063\nδ : Type ?u.22066\nδ' : Type ?u.22069\nε : Type ?u.22072\nε' : Type ?u.22075\nm : α → β → γ\nf f₁ f₂ : Filter α\ng g₁ g₂ : Filter β\nh h₁ h₂ : Filter γ\ns✝ s₁ s₂ : Set α\nt t₁ t₂ : Set β\nu : Set γ\nv : Set δ\na : α\nb : β\nc : γ\ns : Set α\nhs : s ∈ f\nht : ∅ ∈ g\n⊢ ∅ ∈ f ∨ ∅ ∈ g", "state_before": "case mp\nα : Type u_2\nα' : Type ?u.22051\nβ : Type u_3\nβ' : Type ?u.22057\nγ : Type u_1\nγ' : Type ?u.22063\nδ : Type ?u.22066\nδ' : Type ?u.22069\nε : Type ?u.22072\nε' : Type ?u.22075\nm : α → β → γ\nf f₁ f₂ : Filter α\ng g₁ g₂ : Filter β\nh h₁ h₂ : Filter γ\ns s₁ s₂ : Set α\nt t₁ t₂ : Set β\nu : Set γ\nv : Set δ\na : α\nb : β\nc : γ\n⊢ (∃ s t, s ∈ f ∧ t ∈ g ∧ (s = ∅ ∨ t = ∅)) → ∅ ∈ f ∨ ∅ ∈ g", "tactic": "rintro ⟨s, t, hs, ht, rfl | rfl⟩" }, { "state_after": "no goals", "state_before": "case mp.intro.intro.intro.intro.inl\nα : Type u_2\nα' : Type ?u.22051\nβ : Type u_3\nβ' : Type ?u.22057\nγ : Type u_1\nγ' : Type ?u.22063\nδ : Type ?u.22066\nδ' : Type ?u.22069\nε : Type ?u.22072\nε' : Type ?u.22075\nm : α → β → γ\nf f₁ f₂ : Filter α\ng g₁ g₂ : Filter β\nh h₁ h₂ : Filter γ\ns s₁ s₂ : Set α\nt✝ t₁ t₂ : Set β\nu : Set γ\nv : Set δ\na : α\nb : β\nc : γ\nt : Set β\nht : t ∈ g\nhs : ∅ ∈ f\n⊢ ∅ ∈ f ∨ ∅ ∈ g", "tactic": "exact Or.inl hs" }, { "state_after": "no goals", "state_before": "case mp.intro.intro.intro.intro.inr\nα : Type u_2\nα' : Type ?u.22051\nβ : Type u_3\nβ' : Type ?u.22057\nγ : Type u_1\nγ' : Type ?u.22063\nδ : Type ?u.22066\nδ' : Type ?u.22069\nε : Type ?u.22072\nε' : Type ?u.22075\nm : α → β → γ\nf f₁ f₂ : Filter α\ng g₁ g₂ : Filter β\nh h₁ h₂ : Filter γ\ns✝ s₁ s₂ : Set α\nt t₁ t₂ : Set β\nu : Set γ\nv : Set δ\na : α\nb : β\nc : γ\ns : Set α\nhs : s ∈ f\nht : ∅ ∈ g\n⊢ ∅ ∈ f ∨ ∅ ∈ g", "tactic": "exact Or.inr ht" }, { "state_after": "case mpr.inl\nα : Type u_2\nα' : Type ?u.22051\nβ : Type u_3\nβ' : Type ?u.22057\nγ : Type u_1\nγ' : Type ?u.22063\nδ : Type ?u.22066\nδ' : Type ?u.22069\nε : Type ?u.22072\nε' : Type ?u.22075\nm : α → β → γ\nf f₁ f₂ : Filter α\ng g₁ g₂ : Filter β\nh✝ h₁ h₂ : Filter γ\ns s₁ s₂ : Set α\nt t₁ t₂ : Set β\nu : Set γ\nv : Set δ\na : α\nb : β\nc : γ\nh : ∅ ∈ f\n⊢ ∃ s t, s ∈ f ∧ t ∈ g ∧ (s = ∅ ∨ t = ∅)\n\ncase mpr.inr\nα : Type u_2\nα' : Type ?u.22051\nβ : Type u_3\nβ' : Type ?u.22057\nγ : Type u_1\nγ' : Type ?u.22063\nδ : Type ?u.22066\nδ' : Type ?u.22069\nε : Type ?u.22072\nε' : Type ?u.22075\nm : α → β → γ\nf f₁ f₂ : Filter α\ng g₁ g₂ : Filter β\nh✝ h₁ h₂ : Filter γ\ns s₁ s₂ : Set α\nt t₁ t₂ : Set β\nu : Set γ\nv : Set δ\na : α\nb : β\nc : γ\nh : ∅ ∈ g\n⊢ ∃ s t, s ∈ f ∧ t ∈ g ∧ (s = ∅ ∨ t = ∅)", "state_before": "case mpr\nα : Type u_2\nα' : Type ?u.22051\nβ : Type u_3\nβ' : Type ?u.22057\nγ : Type u_1\nγ' : Type ?u.22063\nδ : Type ?u.22066\nδ' : Type ?u.22069\nε : Type ?u.22072\nε' : Type ?u.22075\nm : α → β → γ\nf f₁ f₂ : Filter α\ng g₁ g₂ : Filter β\nh h₁ h₂ : Filter γ\ns s₁ s₂ : Set α\nt t₁ t₂ : Set β\nu : Set γ\nv : Set δ\na : α\nb : β\nc : γ\n⊢ ∅ ∈ f ∨ ∅ ∈ g → ∃ s t, s ∈ f ∧ t ∈ g ∧ (s = ∅ ∨ t = ∅)", "tactic": "rintro (h | h)" }, { "state_after": "no goals", "state_before": "case mpr.inl\nα : Type u_2\nα' : Type ?u.22051\nβ : Type u_3\nβ' : Type ?u.22057\nγ : Type u_1\nγ' : Type ?u.22063\nδ : Type ?u.22066\nδ' : Type ?u.22069\nε : Type ?u.22072\nε' : Type ?u.22075\nm : α → β → γ\nf f₁ f₂ : Filter α\ng g₁ g₂ : Filter β\nh✝ h₁ h₂ : Filter γ\ns s₁ s₂ : Set α\nt t₁ t₂ : Set β\nu : Set γ\nv : Set δ\na : α\nb : β\nc : γ\nh : ∅ ∈ f\n⊢ ∃ s t, s ∈ f ∧ t ∈ g ∧ (s = ∅ ∨ t = ∅)", "tactic": "exact ⟨_, _, h, univ_mem, Or.inl rfl⟩" }, { "state_after": "no goals", "state_before": "case mpr.inr\nα : Type u_2\nα' : Type ?u.22051\nβ : Type u_3\nβ' : Type ?u.22057\nγ : Type u_1\nγ' : Type ?u.22063\nδ : Type ?u.22066\nδ' : Type ?u.22069\nε : Type ?u.22072\nε' : Type ?u.22075\nm : α → β → γ\nf f₁ f₂ : Filter α\ng g₁ g₂ : Filter β\nh✝ h₁ h₂ : Filter γ\ns s₁ s₂ : Set α\nt t₁ t₂ : Set β\nu : Set γ\nv : Set δ\na : α\nb : β\nc : γ\nh : ∅ ∈ g\n⊢ ∃ s t, s ∈ f ∧ t ∈ g ∧ (s = ∅ ∨ t = ∅)", "tactic": "exact ⟨_, _, univ_mem, h, Or.inr rfl⟩" } ]
[ 124, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 116, 1 ]
Std/Data/String/Lemmas.lean
Substring.ValidFor.foldl
[ { "state_after": "no goals", "state_before": "α : Type u_1\nl m r : List Char\nf : α → Char → α\ninit : α\n⊢ Substring.foldl f init\n { str := { data := l ++ m ++ r }, startPos := { byteIdx := utf8Len l },\n stopPos := { byteIdx := utf8Len l + utf8Len m } } =\n List.foldl f init m", "tactic": "simp [-List.append_assoc, Substring.foldl, foldlAux_of_valid]" } ]
[ 923, 78 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 922, 1 ]
Mathlib/GroupTheory/Submonoid/Operations.lean
Submonoid.coe_mul
[]
[ 679, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 678, 1 ]
Mathlib/Algebra/GroupPower/Identities.lean
sum_four_sq_mul_sum_four_sq
[ { "state_after": "no goals", "state_before": "R : Type u_1\ninst✝ : CommRing R\na b x₁ x₂ x₃ x₄ x₅ x₆ x₇ x₈ y₁ y₂ y₃ y₄ y₅ y₆ y₇ y₈ n : R\n⊢ (x₁ ^ 2 + x₂ ^ 2 + x₃ ^ 2 + x₄ ^ 2) * (y₁ ^ 2 + y₂ ^ 2 + y₃ ^ 2 + y₄ ^ 2) =\n (x₁ * y₁ - x₂ * y₂ - x₃ * y₃ - x₄ * y₄) ^ 2 + (x₁ * y₂ + x₂ * y₁ + x₃ * y₄ - x₄ * y₃) ^ 2 +\n (x₁ * y₃ - x₂ * y₄ + x₃ * y₁ + x₄ * y₂) ^ 2 +\n (x₁ * y₄ + x₂ * y₃ - x₃ * y₂ + x₄ * y₁) ^ 2", "tactic": "ring" } ]
[ 63, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 58, 1 ]
Mathlib/Algebra/Ring/Basic.lean
AddMonoidHom.mulRight_apply
[]
[ 90, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 88, 1 ]
Mathlib/Data/Fin/Basic.lean
Fin.cast_trans
[ { "state_after": "case h\nn m k : ℕ\nh : n = m\nh' : m = k\ni : Fin n\n⊢ ↑(↑(cast h') (↑(cast h) i)) = ↑(↑(cast (_ : n = k)) i)", "state_before": "n m k : ℕ\nh : n = m\nh' : m = k\ni : Fin n\n⊢ ↑(cast h') (↑(cast h) i) = ↑(cast (_ : n = k)) i", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case h\nn m k : ℕ\nh : n = m\nh' : m = k\ni : Fin n\n⊢ ↑(↑(cast h') (↑(cast h) i)) = ↑(↑(cast (_ : n = k)) i)", "tactic": "simp" } ]
[ 1095, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1092, 1 ]
Mathlib/Analysis/Normed/MulAction.lean
nnnorm_smul
[]
[ 103, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 102, 1 ]
Mathlib/Data/PFunctor/Univariate/M.lean
PFunctor.Approx.agree_trival
[ { "state_after": "no goals", "state_before": "F : PFunctor\nx : CofixA F 0\ny : CofixA F 1\n⊢ Agree x y", "tactic": "constructor" } ]
[ 89, 85 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 89, 1 ]
Mathlib/LinearAlgebra/Matrix/ToLin.lean
LinearMap.toMatrix_reindexRange
[ { "state_after": "no goals", "state_before": "R : Type u_3\ninst✝⁹ : CommSemiring R\nl : Type ?u.1797707\nm : Type u_4\nn : Type u_5\ninst✝⁸ : Fintype n\ninst✝⁷ : Fintype m\ninst✝⁶ : DecidableEq n\nM₁ : Type u_1\nM₂ : Type u_2\ninst✝⁵ : AddCommMonoid M₁\ninst✝⁴ : AddCommMonoid M₂\ninst✝³ : Module R M₁\ninst✝² : Module R M₂\nv₁ : Basis n R M₁\nv₂ : Basis m R M₂\ninst✝¹ : DecidableEq M₁\ninst✝ : DecidableEq M₂\nf : M₁ →ₗ[R] M₂\nk : m\ni : n\n⊢ ↑(toMatrix (Basis.reindexRange v₁) (Basis.reindexRange v₂)) f\n { val := ↑v₂ k, property := (_ : ↑v₂ k ∈ Set.range ↑v₂) }\n { val := ↑v₁ i, property := (_ : ↑v₁ i ∈ Set.range ↑v₁) } =\n ↑(toMatrix v₁ v₂) f k i", "tactic": "simp_rw [LinearMap.toMatrix_apply, Basis.reindexRange_self, Basis.reindexRange_repr]" } ]
[ 641, 90 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 636, 1 ]
Mathlib/Topology/SubsetProperties.lean
IsIrreducible.isPreirreducible
[]
[ 1699, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1698, 1 ]
Mathlib/Data/Polynomial/Derivative.lean
Polynomial.iterate_derivative_nat_cast_mul
[ { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nT : Type w\nι : Type y\nA : Type z\na b : R\nn✝ : ℕ\ninst✝ : Semiring R\nn k : ℕ\nf : R[X]\n⊢ (↑derivative^[k]) (↑n * f) = ↑n * (↑derivative^[k]) f", "tactic": "induction' k with k ih generalizing f <;> simp [*]" } ]
[ 363, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 361, 1 ]
Mathlib/CategoryTheory/Sites/Grothendieck.lean
CategoryTheory.GrothendieckTopology.arrow_max
[ { "state_after": "C : Type u\ninst✝ : Category C\nX Y : C\nS✝ R : Sieve X\nJ : GrothendieckTopology C\nf : Y ⟶ X\nS : Sieve X\nhf : S.arrows f\n⊢ ⊤ ∈ sieves J Y", "state_before": "C : Type u\ninst✝ : Category C\nX Y : C\nS✝ R : Sieve X\nJ : GrothendieckTopology C\nf : Y ⟶ X\nS : Sieve X\nhf : S.arrows f\n⊢ Covers J S f", "tactic": "rw [Covers, (Sieve.pullback_eq_top_iff_mem f).1 hf]" }, { "state_after": "no goals", "state_before": "C : Type u\ninst✝ : Category C\nX Y : C\nS✝ R : Sieve X\nJ : GrothendieckTopology C\nf : Y ⟶ X\nS : Sieve X\nhf : S.arrows f\n⊢ ⊤ ∈ sieves J Y", "tactic": "apply J.top_mem" } ]
[ 195, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 193, 1 ]
Mathlib/LinearAlgebra/Lagrange.lean
Lagrange.interpolate_one
[ { "state_after": "F : Type u_2\ninst✝¹ : Field F\nι : Type u_1\ninst✝ : DecidableEq ι\ns t : Finset ι\ni j : ι\nv r r' : ι → F\nhvs : Set.InjOn v ↑s\nhs : Finset.Nonempty s\n⊢ ∑ x in s, Lagrange.basis s v x = 1", "state_before": "F : Type u_2\ninst✝¹ : Field F\nι : Type u_1\ninst✝ : DecidableEq ι\ns t : Finset ι\ni j : ι\nv r r' : ι → F\nhvs : Set.InjOn v ↑s\nhs : Finset.Nonempty s\n⊢ ↑(interpolate s v) 1 = 1", "tactic": "simp_rw [interpolate_apply, Pi.one_apply, map_one, one_mul]" }, { "state_after": "no goals", "state_before": "F : Type u_2\ninst✝¹ : Field F\nι : Type u_1\ninst✝ : DecidableEq ι\ns t : Finset ι\ni j : ι\nv r r' : ι → F\nhvs : Set.InjOn v ↑s\nhs : Finset.Nonempty s\n⊢ ∑ x in s, Lagrange.basis s v x = 1", "tactic": "exact sum_basis hvs hs" } ]
[ 320, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 318, 1 ]
Mathlib/Logic/Encodable/Basic.lean
Encodable.decode_sum_val
[]
[ 300, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 299, 1 ]
Mathlib/Order/UpperLower/Basic.lean
Set.monotone_mem
[]
[ 267, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 266, 1 ]
Mathlib/FieldTheory/Minpoly/Basic.lean
minpoly.aeval
[ { "state_after": "A : Type u_2\nB : Type u_1\nB' : Type ?u.17400\ninst✝⁴ : CommRing A\ninst✝³ : Ring B\ninst✝² : Ring B'\ninst✝¹ : Algebra A B\ninst✝ : Algebra A B'\nx : B\n⊢ ↑(Polynomial.aeval x)\n (if hx : IsIntegral A x then\n WellFounded.min (_ : WellFounded fun p q => degree p < degree q)\n (fun x_1 => Monic x_1 ∧ eval₂ (algebraMap A B) x x_1 = 0) hx\n else 0) =\n 0", "state_before": "A : Type u_2\nB : Type u_1\nB' : Type ?u.17400\ninst✝⁴ : CommRing A\ninst✝³ : Ring B\ninst✝² : Ring B'\ninst✝¹ : Algebra A B\ninst✝ : Algebra A B'\nx : B\n⊢ ↑(Polynomial.aeval x) (minpoly A x) = 0", "tactic": "delta minpoly" }, { "state_after": "case inl\nA : Type u_2\nB : Type u_1\nB' : Type ?u.17400\ninst✝⁴ : CommRing A\ninst✝³ : Ring B\ninst✝² : Ring B'\ninst✝¹ : Algebra A B\ninst✝ : Algebra A B'\nx : B\nhx : IsIntegral A x\n⊢ ↑(Polynomial.aeval x)\n (if hx : IsIntegral A x then\n WellFounded.min (_ : WellFounded fun p q => degree p < degree q)\n (fun x_1 => Monic x_1 ∧ eval₂ (algebraMap A B) x x_1 = 0) hx\n else 0) =\n 0\n\ncase inr\nA : Type u_2\nB : Type u_1\nB' : Type ?u.17400\ninst✝⁴ : CommRing A\ninst✝³ : Ring B\ninst✝² : Ring B'\ninst✝¹ : Algebra A B\ninst✝ : Algebra A B'\nx : B\nhx : ¬IsIntegral A x\n⊢ ↑(Polynomial.aeval x)\n (if hx : IsIntegral A x then\n WellFounded.min (_ : WellFounded fun p q => degree p < degree q)\n (fun x_1 => Monic x_1 ∧ eval₂ (algebraMap A B) x x_1 = 0) hx\n else 0) =\n 0", "state_before": "A : Type u_2\nB : Type u_1\nB' : Type ?u.17400\ninst✝⁴ : CommRing A\ninst✝³ : Ring B\ninst✝² : Ring B'\ninst✝¹ : Algebra A B\ninst✝ : Algebra A B'\nx : B\n⊢ ↑(Polynomial.aeval x)\n (if hx : IsIntegral A x then\n WellFounded.min (_ : WellFounded fun p q => degree p < degree q)\n (fun x_1 => Monic x_1 ∧ eval₂ (algebraMap A B) x x_1 = 0) hx\n else 0) =\n 0", "tactic": "split_ifs with hx" }, { "state_after": "case inl\nA : Type u_2\nB : Type u_1\nB' : Type ?u.17400\ninst✝⁴ : CommRing A\ninst✝³ : Ring B\ninst✝² : Ring B'\ninst✝¹ : Algebra A B\ninst✝ : Algebra A B'\nx : B\nhx : IsIntegral A x\n⊢ ↑(Polynomial.aeval x)\n (WellFounded.min (_ : WellFounded fun p q => degree p < degree q)\n (fun x_1 => Monic x_1 ∧ eval₂ (algebraMap A B) x x_1 = 0) hx) =\n 0", "state_before": "case inl\nA : Type u_2\nB : Type u_1\nB' : Type ?u.17400\ninst✝⁴ : CommRing A\ninst✝³ : Ring B\ninst✝² : Ring B'\ninst✝¹ : Algebra A B\ninst✝ : Algebra A B'\nx : B\nhx : IsIntegral A x\n⊢ ↑(Polynomial.aeval x)\n (if hx : IsIntegral A x then\n WellFounded.min (_ : WellFounded fun p q => degree p < degree q)\n (fun x_1 => Monic x_1 ∧ eval₂ (algebraMap A B) x x_1 = 0) hx\n else 0) =\n 0", "tactic": "rw [dif_pos hx]" }, { "state_after": "no goals", "state_before": "case inl\nA : Type u_2\nB : Type u_1\nB' : Type ?u.17400\ninst✝⁴ : CommRing A\ninst✝³ : Ring B\ninst✝² : Ring B'\ninst✝¹ : Algebra A B\ninst✝ : Algebra A B'\nx : B\nhx : IsIntegral A x\n⊢ ↑(Polynomial.aeval x)\n (WellFounded.min (_ : WellFounded fun p q => degree p < degree q)\n (fun x_1 => Monic x_1 ∧ eval₂ (algebraMap A B) x x_1 = 0) hx) =\n 0", "tactic": "exact (degree_lt_wf.min_mem _ hx).2" }, { "state_after": "case inr\nA : Type u_2\nB : Type u_1\nB' : Type ?u.17400\ninst✝⁴ : CommRing A\ninst✝³ : Ring B\ninst✝² : Ring B'\ninst✝¹ : Algebra A B\ninst✝ : Algebra A B'\nx : B\nhx : ¬IsIntegral A x\n⊢ ↑(Polynomial.aeval x) 0 = 0", "state_before": "case inr\nA : Type u_2\nB : Type u_1\nB' : Type ?u.17400\ninst✝⁴ : CommRing A\ninst✝³ : Ring B\ninst✝² : Ring B'\ninst✝¹ : Algebra A B\ninst✝ : Algebra A B'\nx : B\nhx : ¬IsIntegral A x\n⊢ ↑(Polynomial.aeval x)\n (if hx : IsIntegral A x then\n WellFounded.min (_ : WellFounded fun p q => degree p < degree q)\n (fun x_1 => Monic x_1 ∧ eval₂ (algebraMap A B) x x_1 = 0) hx\n else 0) =\n 0", "tactic": "rw [dif_neg hx]" }, { "state_after": "no goals", "state_before": "case inr\nA : Type u_2\nB : Type u_1\nB' : Type ?u.17400\ninst✝⁴ : CommRing A\ninst✝³ : Ring B\ninst✝² : Ring B'\ninst✝¹ : Algebra A B\ninst✝ : Algebra A B'\nx : B\nhx : ¬IsIntegral A x\n⊢ ↑(Polynomial.aeval x) 0 = 0", "tactic": "exact aeval_zero _" } ]
[ 91, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 85, 1 ]
Mathlib/Analysis/Normed/Order/Lattice.lean
norm_abs_sub_abs
[]
[ 187, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 186, 1 ]
Mathlib/Topology/UniformSpace/Completion.lean
UniformSpace.Completion.uniformContinuous_extension₂
[]
[ 698, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 697, 1 ]
Mathlib/Data/Matrix/Basic.lean
Matrix.map_id
[ { "state_after": "case a.h\nl : Type ?u.6402\nm : Type u_1\nn : Type u_2\no : Type ?u.6411\nm' : o → Type ?u.6416\nn' : o → Type ?u.6421\nR : Type ?u.6424\nS : Type ?u.6427\nα : Type v\nβ : Type w\nγ : Type ?u.6434\nM : Matrix m n α\ni✝ : m\nx✝ : n\n⊢ map M id i✝ x✝ = M i✝ x✝", "state_before": "l : Type ?u.6402\nm : Type u_1\nn : Type u_2\no : Type ?u.6411\nm' : o → Type ?u.6416\nn' : o → Type ?u.6421\nR : Type ?u.6424\nS : Type ?u.6427\nα : Type v\nβ : Type w\nγ : Type ?u.6434\nM : Matrix m n α\n⊢ map M id = M", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case a.h\nl : Type ?u.6402\nm : Type u_1\nn : Type u_2\no : Type ?u.6411\nm' : o → Type ?u.6416\nn' : o → Type ?u.6421\nR : Type ?u.6424\nS : Type ?u.6427\nα : Type v\nβ : Type w\nγ : Type ?u.6434\nM : Matrix m n α\ni✝ : m\nx✝ : n\n⊢ map M id i✝ x✝ = M i✝ x✝", "tactic": "rfl" } ]
[ 157, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 155, 1 ]
Mathlib/Algebra/GroupPower/Order.lean
abs_le_of_sq_le_sq
[ { "state_after": "no goals", "state_before": "β : Type ?u.265331\nA : Type ?u.265334\nG : Type ?u.265337\nM : Type ?u.265340\nR : Type u_1\ninst✝ : LinearOrderedRing R\nx y : R\nh : x ^ 2 ≤ y ^ 2\nhy : 0 ≤ y\n⊢ abs x ≤ y", "tactic": "rwa [← abs_of_nonneg hy, ← sq_le_sq]" } ]
[ 718, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 717, 1 ]
Mathlib/Data/Matrix/Basic.lean
Matrix.diagonal_pow
[]
[ 1222, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1220, 1 ]
Mathlib/RingTheory/AlgebraicIndependent.lean
AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_X_some
[ { "state_after": "no goals", "state_before": "ι : Type u_1\nι' : Type ?u.1169857\nR : Type u_2\nK : Type ?u.1169863\nA : Type u_3\nA' : Type ?u.1169869\nA'' : Type ?u.1169872\nV : Type u\nV' : Type ?u.1169877\nx : ι → A\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : CommRing A'\ninst✝³ : CommRing A''\ninst✝² : Algebra R A\ninst✝¹ : Algebra R A'\ninst✝ : Algebra R A''\na b : R\nhx : AlgebraicIndependent R x\ni : ι\n⊢ ↑(mvPolynomialOptionEquivPolynomialAdjoin hx) (X (some i)) = ↑Polynomial.C (↑(aevalEquiv hx) (X i))", "tactic": "rw [AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_apply, aeval_X, Option.elim,\n Polynomial.map_C, RingHom.coe_coe]" } ]
[ 464, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 459, 1 ]
Mathlib/Algebra/Order/Kleene.lean
kstar_zero
[]
[ 257, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 256, 1 ]
Mathlib/Data/Set/Pointwise/SMul.lean
Set.smul_set_range
[]
[ 460, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 458, 1 ]
Mathlib/Data/Fin/VecNotation.lean
Matrix.neg_cons
[ { "state_after": "case h\nα : Type u\nm n o : ℕ\nm' : Type ?u.86190\nn' : Type ?u.86193\no' : Type ?u.86196\ninst✝ : Neg α\nx : α\nv : Fin n → α\ni : Fin (Nat.succ n)\n⊢ (-vecCons x v) i = vecCons (-x) (-v) i", "state_before": "α : Type u\nm n o : ℕ\nm' : Type ?u.86190\nn' : Type ?u.86193\no' : Type ?u.86196\ninst✝ : Neg α\nx : α\nv : Fin n → α\n⊢ -vecCons x v = vecCons (-x) (-v)", "tactic": "ext i" }, { "state_after": "no goals", "state_before": "case h\nα : Type u\nm n o : ℕ\nm' : Type ?u.86190\nn' : Type ?u.86193\no' : Type ?u.86196\ninst✝ : Neg α\nx : α\nv : Fin n → α\ni : Fin (Nat.succ n)\n⊢ (-vecCons x v) i = vecCons (-x) (-v) i", "tactic": "refine' Fin.cases _ _ i <;> simp" } ]
[ 583, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 581, 1 ]
Mathlib/Order/Filter/Bases.lean
Filter.HasBasis.coprod
[]
[ 956, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 952, 1 ]
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
Ordinal.CNF_foldr
[ { "state_after": "b o : Ordinal\n⊢ foldr (fun p r => b ^ p.fst * p.snd + r) 0 [] = 0", "state_before": "b o : Ordinal\n⊢ foldr (fun p r => b ^ p.fst * p.snd + r) 0 (CNF b 0) = 0", "tactic": "rw [CNF_zero]" }, { "state_after": "no goals", "state_before": "b o : Ordinal\n⊢ foldr (fun p r => b ^ p.fst * p.snd + r) 0 [] = 0", "tactic": "rfl" }, { "state_after": "no goals", "state_before": "b o✝ o : Ordinal\nho : o ≠ 0\nIH : foldr (fun p r => b ^ p.fst * p.snd + r) 0 (CNF b (o % b ^ log b o)) = o % b ^ log b o\n⊢ foldr (fun p r => b ^ p.fst * p.snd + r) 0 (CNF b o) = o", "tactic": "rw [CNF_ne_zero ho, foldr_cons, IH, div_add_mod]" } ]
[ 119, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 117, 1 ]
Mathlib/Analysis/Convex/Function.lean
ConcaveOn.comp
[]
[ 141, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 135, 1 ]
Mathlib/RingTheory/Ideal/LocalRing.lean
LocalRing.of_isUnit_or_isUnit_of_isUnit_add
[]
[ 59, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 57, 1 ]
Mathlib/CategoryTheory/Generator.lean
CategoryTheory.StructuredArrow.isCoseparating_proj_preimage
[ { "state_after": "C : Type u₁\ninst✝¹ : Category C\nD : Type u₂\ninst✝ : Category D\nS : D\nT : C ⥤ D\n𝒢 : Set C\nh𝒢 : IsCoseparating 𝒢\nX Y : StructuredArrow S T\nf g : X ⟶ Y\nhfg : ∀ (G : StructuredArrow S T), G ∈ (proj S T).toPrefunctor.obj ⁻¹' 𝒢 → ∀ (h : Y ⟶ G), f ≫ h = g ≫ h\nG : C\nhG : G ∈ 𝒢\nh : Y.right ⟶ G\n⊢ f.right ≫ h = g.right ≫ h", "state_before": "C : Type u₁\ninst✝¹ : Category C\nD : Type u₂\ninst✝ : Category D\nS : D\nT : C ⥤ D\n𝒢 : Set C\nh𝒢 : IsCoseparating 𝒢\n⊢ IsCoseparating ((proj S T).toPrefunctor.obj ⁻¹' 𝒢)", "tactic": "refine' fun X Y f g hfg => ext _ _ (h𝒢 _ _ fun G hG h => _)" }, { "state_after": "no goals", "state_before": "C : Type u₁\ninst✝¹ : Category C\nD : Type u₂\ninst✝ : Category D\nS : D\nT : C ⥤ D\n𝒢 : Set C\nh𝒢 : IsCoseparating 𝒢\nX Y : StructuredArrow S T\nf g : X ⟶ Y\nhfg : ∀ (G : StructuredArrow S T), G ∈ (proj S T).toPrefunctor.obj ⁻¹' 𝒢 → ∀ (h : Y ⟶ G), f ≫ h = g ≫ h\nG : C\nhG : G ∈ 𝒢\nh : Y.right ⟶ G\n⊢ f.right ≫ h = g.right ≫ h", "tactic": "exact congr_arg CommaMorphism.right (hfg (mk (Y.hom ≫ T.map h)) hG (homMk h rfl))" } ]
[ 367, 84 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 364, 1 ]
Std/Data/Array/Lemmas.lean
Array.set_set
[ { "state_after": "no goals", "state_before": "α : Type ?u.19284\na : Array α\ni : Fin (size a)\nv v' : α\n⊢ i.val < size (set a i v)", "tactic": "simp [i.2]" }, { "state_after": "no goals", "state_before": "α : Type u_1\na : Array α\ni : Fin (size a)\nv v' : α\n⊢ set (set a i v) { val := i.val, isLt := (_ : i.val < size (set a i v)) } v' = set a i v'", "tactic": "simp [set, List.set_set]" } ]
[ 111, 86 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 110, 1 ]
Mathlib/MeasureTheory/Function/L1Space.lean
MeasureTheory.Integrable.edist_toL1_toL1
[ { "state_after": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.1322600\nδ : Type ?u.1322603\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝² : MeasurableSpace δ\ninst✝¹ : NormedAddCommGroup β\ninst✝ : NormedAddCommGroup γ\nf g : α → β\nhf : Integrable f\nhg : Integrable g\n⊢ (∫⁻ (a : α), ↑‖f a - g a‖₊ ∂μ) = ∫⁻ (a : α), edist (f a) (g a) ∂μ", "state_before": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.1322600\nδ : Type ?u.1322603\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝² : MeasurableSpace δ\ninst✝¹ : NormedAddCommGroup β\ninst✝ : NormedAddCommGroup γ\nf g : α → β\nhf : Integrable f\nhg : Integrable g\n⊢ edist (toL1 f hf) (toL1 g hg) = ∫⁻ (a : α), edist (f a) (g a) ∂μ", "tactic": "simp [Integrable.toL1, snorm, snorm']" }, { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.1322600\nδ : Type ?u.1322603\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝² : MeasurableSpace δ\ninst✝¹ : NormedAddCommGroup β\ninst✝ : NormedAddCommGroup γ\nf g : α → β\nhf : Integrable f\nhg : Integrable g\n⊢ (∫⁻ (a : α), ↑‖f a - g a‖₊ ∂μ) = ∫⁻ (a : α), edist (f a) (g a) ∂μ", "tactic": "simp [edist_eq_coe_nnnorm_sub]" } ]
[ 1408, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1405, 1 ]
Mathlib/Topology/Constructions.lean
isOpen_range_inl
[]
[ 926, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 925, 1 ]
Mathlib/NumberTheory/LucasLehmer.lean
LucasLehmer.mersenne_int_pos
[ { "state_after": "no goals", "state_before": "p : ℕ\nhp : 0 < p\n⊢ 1 < 2 ^ p", "tactic": "exact_mod_cast Nat.one_lt_two_pow p hp" } ]
[ 101, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 100, 1 ]
Mathlib/Data/Set/Intervals/Infinite.lean
Set.Ico_infinite
[]
[ 52, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 51, 1 ]
Mathlib/Data/Set/Basic.lean
Set.inter_compl_nonempty_iff
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nι : Sort x\na b : α\ns✝ s₁ s₂ t✝ t₁ t₂ u s t : Set α\nx : α\n⊢ x ∈ s ∧ ¬x ∈ t ↔ x ∈ s ∩ tᶜ", "tactic": "simp [mem_compl]" } ]
[ 1784, 71 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1783, 1 ]
Mathlib/RingTheory/Ideal/Basic.lean
Ring.ne_bot_of_isMaximal_of_not_isField
[ { "state_after": "α : Type u\nβ : Type v\nR : Type u_1\ninst✝¹ : CommSemiring R\ninst✝ : Nontrivial R\nM : Ideal R\nmax : Ideal.IsMaximal M\nnot_field : ¬IsField R\nh : M = ⊥\n⊢ False", "state_before": "α : Type u\nβ : Type v\nR : Type u_1\ninst✝¹ : CommSemiring R\ninst✝ : Nontrivial R\nM : Ideal R\nmax : Ideal.IsMaximal M\nnot_field : ¬IsField R\n⊢ M ≠ ⊥", "tactic": "rintro h" }, { "state_after": "α : Type u\nβ : Type v\nR : Type u_1\ninst✝¹ : CommSemiring R\ninst✝ : Nontrivial R\nM : Ideal R\nmax : Ideal.IsMaximal ⊥\nnot_field : ¬IsField R\nh : M = ⊥\n⊢ False", "state_before": "α : Type u\nβ : Type v\nR : Type u_1\ninst✝¹ : CommSemiring R\ninst✝ : Nontrivial R\nM : Ideal R\nmax : Ideal.IsMaximal M\nnot_field : ¬IsField R\nh : M = ⊥\n⊢ False", "tactic": "rw [h] at max" }, { "state_after": "case mk.intro\nα : Type u\nβ : Type v\nR : Type u_1\ninst✝¹ : CommSemiring R\ninst✝ : Nontrivial R\nM : Ideal R\nnot_field : ¬IsField R\nh : M = ⊥\n_h1 : ⊥ ≠ ⊤\nh2 : ∀ (b : Ideal R), ⊥ < b → b = ⊤\n⊢ False", "state_before": "α : Type u\nβ : Type v\nR : Type u_1\ninst✝¹ : CommSemiring R\ninst✝ : Nontrivial R\nM : Ideal R\nmax : Ideal.IsMaximal ⊥\nnot_field : ¬IsField R\nh : M = ⊥\n⊢ False", "tactic": "rcases max with ⟨⟨_h1, h2⟩⟩" }, { "state_after": "case mk.intro.intro.intro\nα : Type u\nβ : Type v\nR : Type u_1\ninst✝¹ : CommSemiring R\ninst✝ : Nontrivial R\nM : Ideal R\nnot_field : ¬IsField R\nh : M = ⊥\n_h1 : ⊥ ≠ ⊤\nh2 : ∀ (b : Ideal R), ⊥ < b → b = ⊤\nI : Ideal R\nhIbot : ⊥ < I\nhItop : I < ⊤\n⊢ False", "state_before": "case mk.intro\nα : Type u\nβ : Type v\nR : Type u_1\ninst✝¹ : CommSemiring R\ninst✝ : Nontrivial R\nM : Ideal R\nnot_field : ¬IsField R\nh : M = ⊥\n_h1 : ⊥ ≠ ⊤\nh2 : ∀ (b : Ideal R), ⊥ < b → b = ⊤\n⊢ False", "tactic": "obtain ⟨I, hIbot, hItop⟩ := not_isField_iff_exists_ideal_bot_lt_and_lt_top.mp not_field" }, { "state_after": "no goals", "state_before": "case mk.intro.intro.intro\nα : Type u\nβ : Type v\nR : Type u_1\ninst✝¹ : CommSemiring R\ninst✝ : Nontrivial R\nM : Ideal R\nnot_field : ¬IsField R\nh : M = ⊥\n_h1 : ⊥ ≠ ⊤\nh2 : ∀ (b : Ideal R), ⊥ < b → b = ⊤\nI : Ideal R\nhIbot : ⊥ < I\nhItop : I < ⊤\n⊢ False", "tactic": "exact ne_of_lt hItop (h2 I hIbot)" } ]
[ 800, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 794, 1 ]
Mathlib/Analysis/Calculus/Deriv/Add.lean
hasDerivAt_neg
[]
[ 251, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 250, 1 ]
Mathlib/Data/Seq/WSeq.lean
Stream'.WSeq.tail_congr
[ { "state_after": "case a\nα : Type u\nβ : Type v\nγ : Type w\ns t : WSeq α\nh : s ~ʷ t\n⊢ Computation.LiftRel Equiv ((fun o => Option.recOn o nil Prod.snd) <$> destruct s)\n ((fun o => Option.recOn o nil Prod.snd) <$> destruct t)", "state_before": "α : Type u\nβ : Type v\nγ : Type w\ns t : WSeq α\nh : s ~ʷ t\n⊢ tail s ~ʷ tail t", "tactic": "apply flatten_congr" }, { "state_after": "case a\nα : Type u\nβ : Type v\nγ : Type w\ns t : WSeq α\nh : s ~ʷ t\n⊢ Computation.LiftRel Equiv (Computation.bind (destruct s) (Computation.pure ∘ fun o => Option.rec nil Prod.snd o))\n (Computation.bind (destruct t) (Computation.pure ∘ fun o => Option.rec nil Prod.snd o))", "state_before": "case a\nα : Type u\nβ : Type v\nγ : Type w\ns t : WSeq α\nh : s ~ʷ t\n⊢ Computation.LiftRel Equiv (Computation.map (fun o => Option.rec nil Prod.snd o) (destruct s))\n (Computation.map (fun o => Option.rec nil Prod.snd o) (destruct t))", "tactic": "rw [← Computation.bind_pure, ← Computation.bind_pure]" }, { "state_after": "case a\nα : Type u\nβ : Type v\nγ : Type w\ns t : WSeq α\nh : s ~ʷ t\n⊢ ∀ {a b : Option (α × WSeq α)},\n BisimO (fun x x_1 => x ~ʷ x_1) a b →\n Computation.LiftRel Equiv ((Computation.pure ∘ fun o => Option.rec nil Prod.snd o) a)\n ((Computation.pure ∘ fun o => Option.rec nil Prod.snd o) b)", "state_before": "case a\nα : Type u\nβ : Type v\nγ : Type w\ns t : WSeq α\nh : s ~ʷ t\n⊢ Computation.LiftRel Equiv (Computation.bind (destruct s) (Computation.pure ∘ fun o => Option.rec nil Prod.snd o))\n (Computation.bind (destruct t) (Computation.pure ∘ fun o => Option.rec nil Prod.snd o))", "tactic": "apply liftRel_bind _ _ (destruct_congr h)" }, { "state_after": "case a\nα : Type u\nβ : Type v\nγ : Type w\ns t : WSeq α\nh✝ : s ~ʷ t\na b : Option (α × WSeq α)\nh : BisimO (fun x x_1 => x ~ʷ x_1) a b\n⊢ Computation.LiftRel Equiv ((Computation.pure ∘ fun o => Option.rec nil Prod.snd o) a)\n ((Computation.pure ∘ fun o => Option.rec nil Prod.snd o) b)", "state_before": "case a\nα : Type u\nβ : Type v\nγ : Type w\ns t : WSeq α\nh : s ~ʷ t\n⊢ ∀ {a b : Option (α × WSeq α)},\n BisimO (fun x x_1 => x ~ʷ x_1) a b →\n Computation.LiftRel Equiv ((Computation.pure ∘ fun o => Option.rec nil Prod.snd o) a)\n ((Computation.pure ∘ fun o => Option.rec nil Prod.snd o) b)", "tactic": "intro a b h" }, { "state_after": "case a\nα : Type u\nβ : Type v\nγ : Type w\ns t : WSeq α\nh✝ : s ~ʷ t\na b : Option (α × WSeq α)\nh : BisimO (fun x x_1 => x ~ʷ x_1) a b\n⊢ Option.rec nil Prod.snd a ~ʷ Option.rec nil Prod.snd b", "state_before": "case a\nα : Type u\nβ : Type v\nγ : Type w\ns t : WSeq α\nh✝ : s ~ʷ t\na b : Option (α × WSeq α)\nh : BisimO (fun x x_1 => x ~ʷ x_1) a b\n⊢ Computation.LiftRel Equiv ((Computation.pure ∘ fun o => Option.rec nil Prod.snd o) a)\n ((Computation.pure ∘ fun o => Option.rec nil Prod.snd o) b)", "tactic": "simp [-liftRel_pure_left, -liftRel_pure_right]" }, { "state_after": "case a.none.none\nα : Type u\nβ : Type v\nγ : Type w\ns t : WSeq α\nh✝ : s ~ʷ t\nh : BisimO (fun x x_1 => x ~ʷ x_1) none none\n⊢ Option.rec nil Prod.snd none ~ʷ Option.rec nil Prod.snd none\n\ncase a.none.some\nα : Type u\nβ : Type v\nγ : Type w\ns t : WSeq α\nh✝ : s ~ʷ t\nb : α × WSeq α\nh : BisimO (fun x x_1 => x ~ʷ x_1) none (some b)\n⊢ Option.rec nil Prod.snd none ~ʷ Option.rec nil Prod.snd (some b)\n\ncase a.some.none\nα : Type u\nβ : Type v\nγ : Type w\ns t : WSeq α\nh✝ : s ~ʷ t\na : α × WSeq α\nh : BisimO (fun x x_1 => x ~ʷ x_1) (some a) none\n⊢ Option.rec nil Prod.snd (some a) ~ʷ Option.rec nil Prod.snd none\n\ncase a.some.some\nα : Type u\nβ : Type v\nγ : Type w\ns t : WSeq α\nh✝ : s ~ʷ t\na b : α × WSeq α\nh : BisimO (fun x x_1 => x ~ʷ x_1) (some a) (some b)\n⊢ Option.rec nil Prod.snd (some a) ~ʷ Option.rec nil Prod.snd (some b)", "state_before": "case a\nα : Type u\nβ : Type v\nγ : Type w\ns t : WSeq α\nh✝ : s ~ʷ t\na b : Option (α × WSeq α)\nh : BisimO (fun x x_1 => x ~ʷ x_1) a b\n⊢ Option.rec nil Prod.snd a ~ʷ Option.rec nil Prod.snd b", "tactic": "cases' a with a <;> cases' b with b" }, { "state_after": "no goals", "state_before": "case a.none.none\nα : Type u\nβ : Type v\nγ : Type w\ns t : WSeq α\nh✝ : s ~ʷ t\nh : BisimO (fun x x_1 => x ~ʷ x_1) none none\n⊢ Option.rec nil Prod.snd none ~ʷ Option.rec nil Prod.snd none", "tactic": "trivial" }, { "state_after": "no goals", "state_before": "case a.none.some\nα : Type u\nβ : Type v\nγ : Type w\ns t : WSeq α\nh✝ : s ~ʷ t\nb : α × WSeq α\nh : BisimO (fun x x_1 => x ~ʷ x_1) none (some b)\n⊢ Option.rec nil Prod.snd none ~ʷ Option.rec nil Prod.snd (some b)", "tactic": "cases h" }, { "state_after": "case a.some.none.mk\nα : Type u\nβ : Type v\nγ : Type w\ns t : WSeq α\nh✝ : s ~ʷ t\nfst✝ : α\nsnd✝ : WSeq α\nh : BisimO (fun x x_1 => x ~ʷ x_1) (some (fst✝, snd✝)) none\n⊢ Option.rec nil Prod.snd (some (fst✝, snd✝)) ~ʷ Option.rec nil Prod.snd none", "state_before": "case a.some.none\nα : Type u\nβ : Type v\nγ : Type w\ns t : WSeq α\nh✝ : s ~ʷ t\na : α × WSeq α\nh : BisimO (fun x x_1 => x ~ʷ x_1) (some a) none\n⊢ Option.rec nil Prod.snd (some a) ~ʷ Option.rec nil Prod.snd none", "tactic": "cases a" }, { "state_after": "no goals", "state_before": "case a.some.none.mk\nα : Type u\nβ : Type v\nγ : Type w\ns t : WSeq α\nh✝ : s ~ʷ t\nfst✝ : α\nsnd✝ : WSeq α\nh : BisimO (fun x x_1 => x ~ʷ x_1) (some (fst✝, snd✝)) none\n⊢ Option.rec nil Prod.snd (some (fst✝, snd✝)) ~ʷ Option.rec nil Prod.snd none", "tactic": "cases h" }, { "state_after": "case a.some.some.mk\nα : Type u\nβ : Type v\nγ : Type w\ns t : WSeq α\nh✝ : s ~ʷ t\nb : α × WSeq α\na : α\ns' : WSeq α\nh : BisimO (fun x x_1 => x ~ʷ x_1) (some (a, s')) (some b)\n⊢ Option.rec nil Prod.snd (some (a, s')) ~ʷ Option.rec nil Prod.snd (some b)", "state_before": "case a.some.some\nα : Type u\nβ : Type v\nγ : Type w\ns t : WSeq α\nh✝ : s ~ʷ t\na b : α × WSeq α\nh : BisimO (fun x x_1 => x ~ʷ x_1) (some a) (some b)\n⊢ Option.rec nil Prod.snd (some a) ~ʷ Option.rec nil Prod.snd (some b)", "tactic": "cases' a with a s'" }, { "state_after": "case a.some.some.mk.mk\nα : Type u\nβ : Type v\nγ : Type w\ns t : WSeq α\nh✝ : s ~ʷ t\na : α\ns' : WSeq α\nb : α\nt' : WSeq α\nh : BisimO (fun x x_1 => x ~ʷ x_1) (some (a, s')) (some (b, t'))\n⊢ Option.rec nil Prod.snd (some (a, s')) ~ʷ Option.rec nil Prod.snd (some (b, t'))", "state_before": "case a.some.some.mk\nα : Type u\nβ : Type v\nγ : Type w\ns t : WSeq α\nh✝ : s ~ʷ t\nb : α × WSeq α\na : α\ns' : WSeq α\nh : BisimO (fun x x_1 => x ~ʷ x_1) (some (a, s')) (some b)\n⊢ Option.rec nil Prod.snd (some (a, s')) ~ʷ Option.rec nil Prod.snd (some b)", "tactic": "cases' b with b t'" }, { "state_after": "no goals", "state_before": "case a.some.some.mk.mk\nα : Type u\nβ : Type v\nγ : Type w\ns t : WSeq α\nh✝ : s ~ʷ t\na : α\ns' : WSeq α\nb : α\nt' : WSeq α\nh : BisimO (fun x x_1 => x ~ʷ x_1) (some (a, s')) (some (b, t'))\n⊢ Option.rec nil Prod.snd (some (a, s')) ~ʷ Option.rec nil Prod.snd (some (b, t'))", "tactic": "exact h.right" } ]
[ 1189, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1176, 1 ]
Mathlib/Data/Int/Cast/Field.lean
Int.cast_neg_natCast
[ { "state_after": "no goals", "state_before": "α : Type ?u.5\nR : Type u_1\ninst✝ : DivisionRing R\nn : ℕ\n⊢ ↑(-↑n) = -↑n", "tactic": "simp" } ]
[ 38, 87 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 38, 1 ]
Mathlib/Algebra/MonoidAlgebra/Basic.lean
MonoidAlgebra.mul_single_apply_aux
[ { "state_after": "no goals", "state_before": "k : Type u₁\nG : Type u₂\nR : Type ?u.494305\ninst✝¹ : Semiring k\ninst✝ : Mul G\nf : MonoidAlgebra k G\nr : k\nx y z : G\nH : ∀ (a : G), a * x = z ↔ a = y\n⊢ ↑(f * single x r) z = ↑f y * r", "tactic": "classical exact\n have A :\n ∀ a₁ b₁,\n ((single x r).sum fun a₂ b₂ => ite (a₁ * a₂ = z) (b₁ * b₂) 0) =\n ite (a₁ * x = z) (b₁ * r) 0 :=\n fun a₁ b₁ => sum_single_index <| by simp\n calc\n (HMul.hMul (β := MonoidAlgebra k G) f (single x r)) z =\n sum f fun a b => if a = y then b * r else 0 := by simp only [mul_apply, A, H]\n _ = if y ∈ f.support then f y * r else 0 := (f.support.sum_ite_eq' _ _)\n _ = f y * r := by split_ifs with h <;> simp at h <;> simp [h]" }, { "state_after": "no goals", "state_before": "k : Type u₁\nG : Type u₂\nR : Type ?u.494305\ninst✝¹ : Semiring k\ninst✝ : Mul G\nf : MonoidAlgebra k G\nr : k\nx y z : G\nH : ∀ (a : G), a * x = z ↔ a = y\n⊢ ↑(f * single x r) z = ↑f y * r", "tactic": "exact\nhave A :\n∀ a₁ b₁,\n((single x r).sum fun a₂ b₂ => ite (a₁ * a₂ = z) (b₁ * b₂) 0) =\nite (a₁ * x = z) (b₁ * r) 0 :=\nfun a₁ b₁ => sum_single_index <| by simp\ncalc\n(HMul.hMul (β := MonoidAlgebra k G) f (single x r)) z =\nsum f fun a b => if a = y then b * r else 0 := by simp only [mul_apply, A, H]\n_ = if y ∈ f.support then f y * r else 0 := (f.support.sum_ite_eq' _ _)\n_ = f y * r := by split_ifs with h <;> simp at h <;> simp [h]" }, { "state_after": "no goals", "state_before": "k : Type u₁\nG : Type u₂\nR : Type ?u.494305\ninst✝¹ : Semiring k\ninst✝ : Mul G\nf : MonoidAlgebra k G\nr : k\nx y z : G\nH : ∀ (a : G), a * x = z ↔ a = y\na₁ : G\nb₁ : k\n⊢ (if a₁ * x = z then b₁ * 0 else 0) = 0", "tactic": "simp" }, { "state_after": "no goals", "state_before": "k : Type u₁\nG : Type u₂\nR : Type ?u.494305\ninst✝¹ : Semiring k\ninst✝ : Mul G\nf : MonoidAlgebra k G\nr : k\nx y z : G\nH : ∀ (a : G), a * x = z ↔ a = y\nA :\n ∀ (a₁ : G) (b₁ : k),\n (sum (single x r) fun a₂ b₂ => if a₁ * a₂ = z then b₁ * b₂ else 0) = if a₁ * x = z then b₁ * r else 0\n⊢ ↑(f * single x r) z = sum f fun a b => if a = y then b * r else 0", "tactic": "simp only [mul_apply, A, H]" }, { "state_after": "no goals", "state_before": "k : Type u₁\nG : Type u₂\nR : Type ?u.494305\ninst✝¹ : Semiring k\ninst✝ : Mul G\nf : MonoidAlgebra k G\nr : k\nx y z : G\nH : ∀ (a : G), a * x = z ↔ a = y\nA :\n ∀ (a₁ : G) (b₁ : k),\n (sum (single x r) fun a₂ b₂ => if a₁ * a₂ = z then b₁ * b₂ else 0) = if a₁ * x = z then b₁ * r else 0\n⊢ (if y ∈ f.support then ↑f y * r else 0) = ↑f y * r", "tactic": "split_ifs with h <;> simp at h <;> simp [h]" } ]
[ 553, 70 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 541, 1 ]
Mathlib/Analysis/SpecificLimits/Normed.lean
tendsto_pow_atTop_nhds_0_of_norm_lt_1
[ { "state_after": "α : Type ?u.130810\nβ : Type ?u.130813\nι : Type ?u.130816\nR : Type u_1\ninst✝ : NormedRing R\nx : R\nh : ‖x‖ < 1\n⊢ Tendsto (fun n => ‖x‖ ^ n) atTop (𝓝 0)", "state_before": "α : Type ?u.130810\nβ : Type ?u.130813\nι : Type ?u.130816\nR : Type u_1\ninst✝ : NormedRing R\nx : R\nh : ‖x‖ < 1\n⊢ Tendsto (fun n => x ^ n) atTop (𝓝 0)", "tactic": "apply squeeze_zero_norm' (eventually_norm_pow_le x)" }, { "state_after": "no goals", "state_before": "α : Type ?u.130810\nβ : Type ?u.130813\nι : Type ?u.130816\nR : Type u_1\ninst✝ : NormedRing R\nx : R\nh : ‖x‖ < 1\n⊢ Tendsto (fun n => ‖x‖ ^ n) atTop (𝓝 0)", "tactic": "exact tendsto_pow_atTop_nhds_0_of_lt_1 (norm_nonneg _) h" } ]
[ 271, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 268, 1 ]
Mathlib/Data/Finset/Sups.lean
Finset.sups_assoc
[]
[ 200, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 199, 1 ]
Mathlib/SetTheory/ZFC/Basic.lean
Class.coe_insert
[]
[ 1649, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1648, 1 ]
Mathlib/CategoryTheory/Equivalence.lean
CategoryTheory.Equivalence.funInvIdAssoc_inv_app
[ { "state_after": "C : Type u₁\ninst✝² : Category C\nD : Type u₂\ninst✝¹ : Category D\nE : Type u₃\ninst✝ : Category E\ne : C ≌ D\nF : C ⥤ E\nX : C\n⊢ (𝟙 (F.obj X) ≫ F.map (e.unitIso.hom.app X)) ≫ 𝟙 (F.obj (e.inverse.obj (e.functor.obj X))) = F.map ((unit e).app X)", "state_before": "C : Type u₁\ninst✝² : Category C\nD : Type u₂\ninst✝¹ : Category D\nE : Type u₃\ninst✝ : Category E\ne : C ≌ D\nF : C ⥤ E\nX : C\n⊢ (funInvIdAssoc e F).inv.app X = F.map ((unit e).app X)", "tactic": "dsimp [funInvIdAssoc]" }, { "state_after": "no goals", "state_before": "C : Type u₁\ninst✝² : Category C\nD : Type u₂\ninst✝¹ : Category D\nE : Type u₃\ninst✝ : Category E\ne : C ≌ D\nF : C ⥤ E\nX : C\n⊢ (𝟙 (F.obj X) ≫ F.map (e.unitIso.hom.app X)) ≫ 𝟙 (F.obj (e.inverse.obj (e.functor.obj X))) = F.map ((unit e).app X)", "tactic": "aesop_cat" } ]
[ 335, 12 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 332, 1 ]
Mathlib/LinearAlgebra/Matrix/Basis.lean
mul_basis_toMatrix
[ { "state_after": "ι : Type u_1\nι' : Type u_2\nκ : Type u_5\nκ' : Type ?u.502195\nR : Type u_3\nM : Type u_4\ninst✝¹³ : CommSemiring R\ninst✝¹² : AddCommMonoid M\ninst✝¹¹ : Module R M\nR₂ : Type ?u.502388\nM₂ : Type ?u.502391\ninst✝¹⁰ : CommRing R₂\ninst✝⁹ : AddCommGroup M₂\ninst✝⁸ : Module R₂ M₂\ne : Basis ι R M\nv : ι' → M\ni : ι\nj : ι'\nN : Type u_6\ninst✝⁷ : AddCommMonoid N\ninst✝⁶ : Module R N\nb : Basis ι R M\nb' : Basis ι' R M\nc : Basis κ R N\nc' : Basis κ' R N\nf : M →ₗ[R] N\ninst✝⁵ : Fintype ι'\ninst✝⁴ : Fintype κ\ninst✝³ : Fintype κ'\ninst✝² : Fintype ι\ninst✝¹ : DecidableEq ι\ninst✝ : DecidableEq ι'\nb₁ : Basis ι R M\nb₂ : Basis ι' R M\nb₃ : Basis κ R N\nA : Matrix κ ι R\nthis : ↑(toMatrix b₁ b₃) (↑(toLin b₁ b₃) A) ⬝ Basis.toMatrix b₁ ↑b₂ = ↑(toMatrix b₂ b₃) (↑(toLin b₁ b₃) A)\n⊢ A ⬝ Basis.toMatrix b₁ ↑b₂ = ↑(toMatrix b₂ b₃) (↑(toLin b₁ b₃) A)", "state_before": "ι : Type u_1\nι' : Type u_2\nκ : Type u_5\nκ' : Type ?u.502195\nR : Type u_3\nM : Type u_4\ninst✝¹³ : CommSemiring R\ninst✝¹² : AddCommMonoid M\ninst✝¹¹ : Module R M\nR₂ : Type ?u.502388\nM₂ : Type ?u.502391\ninst✝¹⁰ : CommRing R₂\ninst✝⁹ : AddCommGroup M₂\ninst✝⁸ : Module R₂ M₂\ne : Basis ι R M\nv : ι' → M\ni : ι\nj : ι'\nN : Type u_6\ninst✝⁷ : AddCommMonoid N\ninst✝⁶ : Module R N\nb : Basis ι R M\nb' : Basis ι' R M\nc : Basis κ R N\nc' : Basis κ' R N\nf : M →ₗ[R] N\ninst✝⁵ : Fintype ι'\ninst✝⁴ : Fintype κ\ninst✝³ : Fintype κ'\ninst✝² : Fintype ι\ninst✝¹ : DecidableEq ι\ninst✝ : DecidableEq ι'\nb₁ : Basis ι R M\nb₂ : Basis ι' R M\nb₃ : Basis κ R N\nA : Matrix κ ι R\n⊢ A ⬝ Basis.toMatrix b₁ ↑b₂ = ↑(toMatrix b₂ b₃) (↑(toLin b₁ b₃) A)", "tactic": "have := linearMap_toMatrix_mul_basis_toMatrix b₂ b₁ b₃ (Matrix.toLin b₁ b₃ A)" }, { "state_after": "no goals", "state_before": "ι : Type u_1\nι' : Type u_2\nκ : Type u_5\nκ' : Type ?u.502195\nR : Type u_3\nM : Type u_4\ninst✝¹³ : CommSemiring R\ninst✝¹² : AddCommMonoid M\ninst✝¹¹ : Module R M\nR₂ : Type ?u.502388\nM₂ : Type ?u.502391\ninst✝¹⁰ : CommRing R₂\ninst✝⁹ : AddCommGroup M₂\ninst✝⁸ : Module R₂ M₂\ne : Basis ι R M\nv : ι' → M\ni : ι\nj : ι'\nN : Type u_6\ninst✝⁷ : AddCommMonoid N\ninst✝⁶ : Module R N\nb : Basis ι R M\nb' : Basis ι' R M\nc : Basis κ R N\nc' : Basis κ' R N\nf : M →ₗ[R] N\ninst✝⁵ : Fintype ι'\ninst✝⁴ : Fintype κ\ninst✝³ : Fintype κ'\ninst✝² : Fintype ι\ninst✝¹ : DecidableEq ι\ninst✝ : DecidableEq ι'\nb₁ : Basis ι R M\nb₂ : Basis ι' R M\nb₃ : Basis κ R N\nA : Matrix κ ι R\nthis : ↑(toMatrix b₁ b₃) (↑(toLin b₁ b₃) A) ⬝ Basis.toMatrix b₁ ↑b₂ = ↑(toMatrix b₂ b₃) (↑(toLin b₁ b₃) A)\n⊢ A ⬝ Basis.toMatrix b₁ ↑b₂ = ↑(toMatrix b₂ b₃) (↑(toLin b₁ b₃) A)", "tactic": "rwa [LinearMap.toMatrix_toLin] at this" } ]
[ 213, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 209, 1 ]
Mathlib/GroupTheory/Perm/Basic.lean
Equiv.Perm.ofSubtype_apply_of_mem
[]
[ 450, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 449, 1 ]
Mathlib/Algebra/BigOperators/Basic.lean
Finset.prod_inter_mul_prod_diff
[ { "state_after": "case h.e'_3.a.h.e\nι : Type ?u.772557\nβ : Type u\nα : Type v\nγ : Type w\ns✝ s₁ s₂ : Finset α\na : α\nf✝ g : α → β\ninst✝¹ : CommMonoid β\ninst✝ : DecidableEq α\ns t : Finset α\nf : α → β\nx✝ : α\na✝ : x✝ ∈ s\n⊢ f = piecewise t f f", "state_before": "ι : Type ?u.772557\nβ : Type u\nα : Type v\nγ : Type w\ns✝ s₁ s₂ : Finset α\na : α\nf✝ g : α → β\ninst✝¹ : CommMonoid β\ninst✝ : DecidableEq α\ns t : Finset α\nf : α → β\n⊢ (∏ x in s ∩ t, f x) * ∏ x in s \\ t, f x = ∏ x in s, f x", "tactic": "convert (s.prod_piecewise t f f).symm" }, { "state_after": "no goals", "state_before": "case h.e'_3.a.h.e\nι : Type ?u.772557\nβ : Type u\nα : Type v\nγ : Type w\ns✝ s₁ s₂ : Finset α\na : α\nf✝ g : α → β\ninst✝¹ : CommMonoid β\ninst✝ : DecidableEq α\ns t : Finset α\nf : α → β\nx✝ : α\na✝ : x✝ ∈ s\n⊢ f = piecewise t f f", "tactic": "simp [Finset.piecewise]" } ]
[ 1547, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1544, 1 ]
Mathlib/Order/LiminfLimsup.lean
Filter.limsup_nat_add
[]
[ 814, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 813, 1 ]
Mathlib/Computability/Primrec.lean
Nat.Primrec.casesOn'
[ { "state_after": "no goals", "state_before": "f g : ℕ → ℕ\nhf : Nat.Primrec f\nhg : Nat.Primrec g\nn : ℕ\n⊢ unpaired\n (fun z n =>\n Nat.rec (f z)\n (fun y IH =>\n g\n (Nat.pair (unpair (Nat.pair z (Nat.pair y IH))).fst\n (unpair (unpair (Nat.pair z (Nat.pair y IH))).snd).fst))\n n)\n n =\n unpaired (fun z n => Nat.casesOn n (f z) fun y => g (Nat.pair z y)) n", "tactic": "simp" } ]
[ 118, 78 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 116, 1 ]
Mathlib/Analysis/SpecialFunctions/Pow/Real.lean
Real.rpow_left_injOn
[ { "state_after": "x✝ y✝ z✝ x : ℝ\nhx : x ≠ 0\ny : ℝ\nhy : y ∈ {y | 0 ≤ y}\nz : ℝ\nhz : z ∈ {y | 0 ≤ y}\nhyz : y ^ x = z ^ x\n⊢ y = z", "state_before": "x✝ y z x : ℝ\nhx : x ≠ 0\n⊢ InjOn (fun y => y ^ x) {y | 0 ≤ y}", "tactic": "rintro y hy z hz (hyz : y ^ x = z ^ x)" }, { "state_after": "no goals", "state_before": "x✝ y✝ z✝ x : ℝ\nhx : x ≠ 0\ny : ℝ\nhy : y ∈ {y | 0 ≤ y}\nz : ℝ\nhz : z ∈ {y | 0 ≤ y}\nhyz : y ^ x = z ^ x\n⊢ y = z", "tactic": "rw [← rpow_one y, ← rpow_one z, ← _root_.mul_inv_cancel hx, rpow_mul hy, rpow_mul hz, hyz]" } ]
[ 588, 93 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 586, 1 ]
Mathlib/Data/Finset/Prod.lean
Finset.product_eq_biUnion
[ { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.18842\ns✝ s' : Finset α\nt✝ t' : Finset β\na : α\nb : β\ninst✝ : DecidableEq (α × β)\ns : Finset α\nt : Finset β\nx✝ : α × β\nx : α\ny : β\n⊢ (x, y) ∈ s ×ˢ t ↔ (x, y) ∈ Finset.biUnion s fun a => image (fun b => (a, b)) t", "tactic": "simp only [mem_product, mem_biUnion, mem_image, exists_prop, Prod.mk.inj_iff, and_left_comm,\n exists_and_left, exists_eq_right, exists_eq_left]" } ]
[ 124, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 120, 1 ]
Mathlib/RingTheory/DiscreteValuationRing/Basic.lean
DiscreteValuationRing.addVal_def'
[]
[ 417, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 415, 1 ]
Mathlib/Data/Real/ENNReal.lean
ENNReal.le_of_forall_pos_le_add
[ { "state_after": "α : Type ?u.129734\nβ : Type ?u.129737\na b c d : ℝ≥0∞\nr p q : ℝ≥0\nh : b < a\n⊢ ∃ ε, 0 < ε ∧ b < ⊤ ∧ b + ↑ε < a", "state_before": "α : Type ?u.129734\nβ : Type ?u.129737\na b c d : ℝ≥0∞\nr p q : ℝ≥0\nh : ∀ (ε : ℝ≥0), 0 < ε → b < ⊤ → a ≤ b + ↑ε\n⊢ a ≤ b", "tactic": "contrapose! h" }, { "state_after": "case intro.intro\nα : Type ?u.129734\nβ : Type ?u.129737\na b c d : ℝ≥0∞\nr✝ p q : ℝ≥0\nh : b < a\nr : ℝ≥0\nhr0 : 0 < r\nhr : b + ↑r < a\n⊢ ∃ ε, 0 < ε ∧ b < ⊤ ∧ b + ↑ε < a", "state_before": "α : Type ?u.129734\nβ : Type ?u.129737\na b c d : ℝ≥0∞\nr p q : ℝ≥0\nh : b < a\n⊢ ∃ ε, 0 < ε ∧ b < ⊤ ∧ b + ↑ε < a", "tactic": "rcases lt_iff_exists_add_pos_lt.1 h with ⟨r, hr0, hr⟩" }, { "state_after": "no goals", "state_before": "case intro.intro\nα : Type ?u.129734\nβ : Type ?u.129737\na b c d : ℝ≥0∞\nr✝ p q : ℝ≥0\nh : b < a\nr : ℝ≥0\nhr0 : 0 < r\nhr : b + ↑r < a\n⊢ ∃ ε, 0 < ε ∧ b < ⊤ ∧ b + ↑ε < a", "tactic": "exact ⟨r, hr0, h.trans_le le_top, hr⟩" } ]
[ 842, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 839, 1 ]
Mathlib/Topology/SubsetProperties.lean
isClopen_biInter
[]
[ 1607, 86 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1605, 1 ]
Mathlib/Data/List/Basic.lean
List.insert_neg
[]
[ 255, 11 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 254, 1 ]
Mathlib/Data/Set/Intervals/Basic.lean
Set.Ioi_subset_Ioo_union_Ici
[]
[ 1258, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1257, 1 ]
Mathlib/Data/Polynomial/FieldDivision.lean
Polynomial.modByMonic_eq_mod
[ { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nk : Type y\nA : Type z\na b : R\nn : ℕ\ninst✝ : Field R\np✝ q p : R[X]\nhq : Monic q\n⊢ p %ₘ q = p %ₘ (q * ↑C (leadingCoeff q)⁻¹)", "tactic": "simp only [Monic.def.1 hq, inv_one, mul_one, C_1]" } ]
[ 202, 101 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 201, 1 ]
Mathlib/Probability/ProbabilityMassFunction/Monad.lean
Pmf.toOuterMeasure_bind_apply
[ { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.66368\np : Pmf α\nf : α → Pmf β\ng : β → Pmf γ\ns : Set β\n⊢ ↑(toOuterMeasure (bind p f)) s = ∑' (b : β), if b ∈ s then ∑' (a : α), ↑p a * ↑(f a) b else 0", "tactic": "simp [toOuterMeasure_apply, Set.indicator_apply]" }, { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.66368\np : Pmf α\nf : α → Pmf β\ng : β → Pmf γ\ns : Set β\nb : β\n⊢ (if b ∈ s then ∑' (a : α), ↑p a * ↑(f a) b else 0) = ∑' (a : α), ↑p a * if b ∈ s then ↑(f a) b else 0", "tactic": "split_ifs <;> simp" }, { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.66368\np : Pmf α\nf : α → Pmf β\ng : β → Pmf γ\ns : Set β\na : α\nb : β\n⊢ (if b ∈ s then ↑(f a) b else 0) = if b ∈ s then ↑(f a) b else 0", "tactic": "split_ifs <;> rfl" }, { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.66368\np : Pmf α\nf : α → Pmf β\ng : β → Pmf γ\ns : Set β\na : α\n⊢ (↑p a * ∑' (b : β), if b ∈ s then ↑(f a) b else 0) = ↑p a * ↑(toOuterMeasure (f a)) s", "tactic": "simp only [toOuterMeasure_apply, Set.indicator_apply]" } ]
[ 184, 83 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 172, 1 ]
Mathlib/MeasureTheory/Constructions/Pi.lean
MeasureTheory.Measure.pi_Ioo_ae_eq_pi_Icc
[]
[ 511, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 509, 1 ]
Mathlib/Analysis/SpecialFunctions/Complex/Circle.lean
Real.Angle.expMapCircle_neg
[ { "state_after": "case h\nx✝ : ℝ\n⊢ expMapCircle (-↑x✝) = (expMapCircle ↑x✝)⁻¹", "state_before": "θ : Angle\n⊢ expMapCircle (-θ) = (expMapCircle θ)⁻¹", "tactic": "induction θ using Real.Angle.induction_on" }, { "state_after": "no goals", "state_before": "case h\nx✝ : ℝ\n⊢ expMapCircle (-↑x✝) = (expMapCircle ↑x✝)⁻¹", "tactic": "simp_rw [← Real.Angle.coe_neg, Real.Angle.expMapCircle_coe, _root_.expMapCircle_neg]" } ]
[ 138, 87 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 135, 1 ]
Mathlib/Order/Filter/ZeroAndBoundedAtFilter.lean
Filter.ZeroAtFilter.smul
[ { "state_after": "no goals", "state_before": "α : Type u_3\nβ : Type u_2\n𝕜 : Type u_1\ninst✝⁵ : TopologicalSpace 𝕜\ninst✝⁴ : TopologicalSpace β\ninst✝³ : Zero 𝕜\ninst✝² : Zero β\ninst✝¹ : SMulWithZero 𝕜 β\ninst✝ : ContinuousSMul 𝕜 β\nl : Filter α\nf : α → β\nc : 𝕜\nhf : ZeroAtFilter l f\n⊢ ZeroAtFilter l (c • f)", "tactic": "simpa using hf.const_smul c" } ]
[ 55, 87 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 53, 1 ]
Mathlib/Data/List/MinMax.lean
List.argmin_nil
[]
[ 117, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 116, 1 ]
Mathlib/GroupTheory/SpecificGroups/Cyclic.lean
IsCyclic.exponent_eq_zero_of_infinite
[]
[ 594, 86 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 591, 1 ]
Mathlib/Topology/Sets/Closeds.lean
TopologicalSpace.Clopens.coe_sdiff
[]
[ 338, 82 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 338, 9 ]
Mathlib/LinearAlgebra/Finsupp.lean
mem_span_set
[ { "state_after": "R : Type u_2\nM : Type u_1\nN : Type ?u.764012\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\ninst✝¹ : AddCommMonoid N\ninst✝ : Module R N\nm : M\ns : Set M\n⊢ m ∈ span R (_root_.id '' s) ↔ ∃ c, ↑c.support ⊆ s ∧ (Finsupp.sum c fun mi r => r • mi) = m", "state_before": "R : Type u_2\nM : Type u_1\nN : Type ?u.764012\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\ninst✝¹ : AddCommMonoid N\ninst✝ : Module R N\nm : M\ns : Set M\n⊢ m ∈ span R s ↔ ∃ c, ↑c.support ⊆ s ∧ (Finsupp.sum c fun mi r => r • mi) = m", "tactic": "conv_lhs => rw [← Set.image_id s]" }, { "state_after": "no goals", "state_before": "R : Type u_2\nM : Type u_1\nN : Type ?u.764012\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\ninst✝¹ : AddCommMonoid N\ninst✝ : Module R N\nm : M\ns : Set M\n⊢ m ∈ span R (_root_.id '' s) ↔ ∃ c, ↑c.support ⊆ s ∧ (Finsupp.sum c fun mi r => r • mi) = m", "tactic": "exact Finsupp.mem_span_image_iff_total R (v := _root_.id (α := M))" } ]
[ 1192, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1186, 1 ]
Mathlib/FieldTheory/Adjoin.lean
IntermediateField.AlgHom.fieldRange_eq_top
[]
[ 286, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 284, 1 ]
Mathlib/MeasureTheory/Measure/MeasureSpace.lean
MeasureTheory.Measure.QuasiMeasurePreserving.smul_ae_eq_of_ae_eq
[ { "state_after": "no goals", "state_before": "α✝ : Type ?u.524934\nβ : Type ?u.524937\nγ : Type ?u.524940\nδ : Type ?u.524943\nι : Type ?u.524946\nR : Type ?u.524949\nR' : Type ?u.524952\nm0 : MeasurableSpace α✝\ninst✝⁴ : MeasurableSpace β\ninst✝³ : MeasurableSpace γ\nμ✝ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α✝\ns✝ s' t✝ : Set α✝\nμa μa' : Measure α✝\nμb μb' : Measure β\nμc : Measure γ\nf : α✝ → β\nG : Type u_1\nα : Type u_2\ninst✝² : Group G\ninst✝¹ : MulAction G α\ninst✝ : MeasurableSpace α\ns t : Set α\nμ : Measure α\ng : G\nh_qmp : QuasiMeasurePreserving ((fun x x_1 => x • x_1) g⁻¹)\nh_ae_eq : s =ᵐ[μ] t\n⊢ g • s =ᵐ[μ] g • t", "tactic": "simpa only [← preimage_smul_inv] using h_qmp.ae_eq h_ae_eq" } ]
[ 2591, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2587, 1 ]
Mathlib/RingTheory/GradedAlgebra/HomogeneousLocalization.lean
HomogeneousLocalization.ext_iff_val
[ { "state_after": "case h\nι : Type u_1\nR : Type u_2\nA : Type u_3\ninst✝⁵ : AddCommMonoid ι\ninst✝⁴ : DecidableEq ι\ninst✝³ : CommRing R\ninst✝² : CommRing A\ninst✝¹ : Algebra R A\n𝒜 : ι → Submodule R A\ninst✝ : GradedAlgebra 𝒜\nx : Submonoid A\ng : HomogeneousLocalization 𝒜 x\na✝ : NumDenSameDeg 𝒜 x\nh : val (Quotient.mk'' a✝) = val g\n⊢ Quotient.mk'' a✝ = g", "state_before": "ι : Type u_1\nR : Type u_2\nA : Type u_3\ninst✝⁵ : AddCommMonoid ι\ninst✝⁴ : DecidableEq ι\ninst✝³ : CommRing R\ninst✝² : CommRing A\ninst✝¹ : Algebra R A\n𝒜 : ι → Submodule R A\ninst✝ : GradedAlgebra 𝒜\nx : Submonoid A\nf g : HomogeneousLocalization 𝒜 x\nh : val f = val g\n⊢ f = g", "tactic": "induction f using Quotient.inductionOn'" }, { "state_after": "case h.h\nι : Type u_1\nR : Type u_2\nA : Type u_3\ninst✝⁵ : AddCommMonoid ι\ninst✝⁴ : DecidableEq ι\ninst✝³ : CommRing R\ninst✝² : CommRing A\ninst✝¹ : Algebra R A\n𝒜 : ι → Submodule R A\ninst✝ : GradedAlgebra 𝒜\nx : Submonoid A\na✝¹ a✝ : NumDenSameDeg 𝒜 x\nh : val (Quotient.mk'' a✝¹) = val (Quotient.mk'' a✝)\n⊢ Quotient.mk'' a✝¹ = Quotient.mk'' a✝", "state_before": "case h\nι : Type u_1\nR : Type u_2\nA : Type u_3\ninst✝⁵ : AddCommMonoid ι\ninst✝⁴ : DecidableEq ι\ninst✝³ : CommRing R\ninst✝² : CommRing A\ninst✝¹ : Algebra R A\n𝒜 : ι → Submodule R A\ninst✝ : GradedAlgebra 𝒜\nx : Submonoid A\ng : HomogeneousLocalization 𝒜 x\na✝ : NumDenSameDeg 𝒜 x\nh : val (Quotient.mk'' a✝) = val g\n⊢ Quotient.mk'' a✝ = g", "tactic": "induction g using Quotient.inductionOn'" }, { "state_after": "case h.h\nι : Type u_1\nR : Type u_2\nA : Type u_3\ninst✝⁵ : AddCommMonoid ι\ninst✝⁴ : DecidableEq ι\ninst✝³ : CommRing R\ninst✝² : CommRing A\ninst✝¹ : Algebra R A\n𝒜 : ι → Submodule R A\ninst✝ : GradedAlgebra 𝒜\nx : Submonoid A\na✝¹ a✝ : NumDenSameDeg 𝒜 x\nh : val (Quotient.mk'' a✝¹) = val (Quotient.mk'' a✝)\n⊢ Setoid.r a✝¹ a✝", "state_before": "case h.h\nι : Type u_1\nR : Type u_2\nA : Type u_3\ninst✝⁵ : AddCommMonoid ι\ninst✝⁴ : DecidableEq ι\ninst✝³ : CommRing R\ninst✝² : CommRing A\ninst✝¹ : Algebra R A\n𝒜 : ι → Submodule R A\ninst✝ : GradedAlgebra 𝒜\nx : Submonoid A\na✝¹ a✝ : NumDenSameDeg 𝒜 x\nh : val (Quotient.mk'' a✝¹) = val (Quotient.mk'' a✝)\n⊢ Quotient.mk'' a✝¹ = Quotient.mk'' a✝", "tactic": "rw [Quotient.eq'']" }, { "state_after": "no goals", "state_before": "case h.h\nι : Type u_1\nR : Type u_2\nA : Type u_3\ninst✝⁵ : AddCommMonoid ι\ninst✝⁴ : DecidableEq ι\ninst✝³ : CommRing R\ninst✝² : CommRing A\ninst✝¹ : Algebra R A\n𝒜 : ι → Submodule R A\ninst✝ : GradedAlgebra 𝒜\nx : Submonoid A\na✝¹ a✝ : NumDenSameDeg 𝒜 x\nh : val (Quotient.mk'' a✝¹) = val (Quotient.mk'' a✝)\n⊢ Setoid.r a✝¹ a✝", "tactic": "simpa only [Quotient.liftOn'_mk] using h" } ]
[ 541, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 535, 1 ]
Mathlib/Data/Multiset/Bind.lean
Multiset.bind_congr
[ { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.25404\nδ : Type ?u.25407\na : α\ns t : Multiset α\nf✝ g✝ f g : α → Multiset β\nm : Multiset α\n⊢ (∀ (a : α), a ∈ m → f a = g a) → bind m f = bind m g", "tactic": "simp (config := { contextual := true }) [bind]" } ]
[ 152, 100 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 151, 1 ]
Mathlib/Order/GaloisConnection.lean
GaloisCoinsertion.strictMono_l
[]
[ 840, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 839, 1 ]
Mathlib/FieldTheory/PerfectClosure.lean
injective_pow_p
[]
[ 126, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 125, 1 ]