Search is not available for this dataset
name
stringlengths 2
112
| description
stringlengths 29
13k
| source
int64 1
7
| difficulty
int64 0
25
| solution
stringlengths 7
983k
| language
stringclasses 4
values |
---|---|---|---|---|---|
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
long long jc[14];
long long ans[14];
int n, k;
int vis[14];
void f(long long k, int dep) {
if (dep == 0) {
return;
}
if (jc[dep - 1] > k) {
for (int i = 1; i <= n; i++) {
if (!vis[i]) {
ans[min(n, 13) - dep] = i;
vis[i] = 1;
f(k, dep - 1);
return;
}
}
} else {
int d = 1;
while (dep != 1 && jc[dep - 1] * (d) <= k) {
d++;
}
int ff = 0;
int i;
for (i = 1; i <= n; i++) {
if (!vis[i]) {
ff++;
}
if (ff == d) {
vis[i] = 1;
break;
}
}
ans[min(n, 13) - dep] = i;
f(k - jc[dep - 1] * (d - 1), dep - 1);
}
}
bool is(int p) {
if (p == 0) return false;
while (p) {
if (p % 10 != 4 && p % 10 != 7) return false;
p /= 10;
}
return true;
}
int main(int argc, char** argv) {
scanf("%d%d", &n, &k);
jc[0] = 0;
jc[1] = 1;
int p = n, st = 1;
for (int i = 2; i <= 13; i++) {
jc[i] = jc[i - 1] * i;
}
k--;
if (n <= 13 && jc[n] <= k) {
cout << -1;
return 0;
}
if (n > 13) {
p = 13;
st = n - 13 + 1;
}
f(k, min(13, n));
int anss = 0;
int qq = n - p, fl = 1;
if (qq)
for (int k = 1; k <= 9; k++) {
for (int i = 0; i < (1 << k); i++) {
long long g = 0;
long long q = 1;
for (int j = 0; j < k; j++) {
if ((1 << j) & i) {
g += 7 * q;
} else {
g += 4 * q;
}
q *= 10;
}
if (g > qq) {
fl = 0;
break;
}
if (g <= qq) anss++;
}
if (!fl) break;
}
for (int i = 0; i < p; i++) {
if (is(ans[i] - 1 + st) && is(i + st)) {
anss++;
}
}
cout << anss;
return 0;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
int findFirstNumIndex(int& k, int n) {
if (n == 1) return 0;
n--;
int first_num_index;
int n_partial_fact = n;
while (k >= n_partial_fact && n > 1) {
n_partial_fact = n_partial_fact * (n - 1);
n--;
}
first_num_index = k / n_partial_fact;
k = k % n_partial_fact;
return first_num_index;
}
vector<int> findKthPermutation(int n, int k) {
vector<int> ans;
set<int> s;
for (int i = 1; i <= n; i++) s.insert(i);
set<int>::iterator itr;
itr = s.begin();
k = k - 1;
for (int i = 0; i < n; i++) {
int index = findFirstNumIndex(k, n - i);
advance(itr, index);
ans.push_back((*itr));
s.erase(itr);
itr = s.begin();
}
return ans;
}
bool islucky(int n) {
while (n > 0) {
if ((n % 10 != 4) && (n % 10 != 7)) return false;
n /= 10;
}
return true;
}
int getans(long long x, int n) {
if (x > n) return 0;
return getans(x * 10LL + 4LL, n) + getans(x * 10LL + 7LL, n) + (x != 0);
}
int main() {
int n, k;
cin >> n >> k;
vector<long long> fact(14);
fact[0] = 1;
for (long long i = 1; i < 14; i++) {
fact[i] = fact[i - 1] * i;
}
if (n < 14 && fact[n] < k) {
cout << -1 << endl;
return 0;
}
int y = min(13, n);
vector<int> ans = findKthPermutation(y, k);
long long cnt = 0;
map<int, int> mm;
for (int i = n, j = y; i > n - y; --i, --j) {
mm[j] = i;
}
for (int i = 0; i < ans.size(); i++) {
ans[i] = mm[ans[i]];
}
cnt += (getans(0, n - y));
for (int x = n - y + 1, i = 0; x <= n; ++x, ++i) {
cnt += (islucky(x) && islucky(ans[i]));
}
cout << cnt << endl;
return 0;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
map<long long, int> ha;
long long n, m, mm;
int ans;
int a[20], s, vis[20];
long long p[10000];
long long ch[20];
void dfs(int k, long long t) {
long long tt;
if (k == 10) return;
tt = t * 10 + 4;
p[++s] = tt;
ha[tt] = 1;
dfs(k + 1, tt);
tt = t * 10 + 7;
p[++s] = tt;
ha[tt] = 1;
dfs(k + 1, tt);
}
void work() {
int i, j, len, k;
memset(vis, 0, sizeof(vis));
ch[0] = 1;
for (i = 1; i <= 13; i++) ch[i] = ch[i - 1] * i;
m--;
for (i = 1; i <= 13; i++) {
k = 13 - i;
for (j = 1; j <= 13; j++) {
if (vis[j]) continue;
if (m >= ch[k])
m -= ch[k];
else {
a[i] = j;
vis[j] = 1;
break;
}
}
}
}
void solve() {
int i, j, k;
ans = 0;
if (n > 13) {
for (i = 1; i <= s; i++)
if (p[i] <= n - 13)
ans++;
else
break;
for (i = 1; i <= 13; i++)
if (ha[a[i] + n - 13] > 0 && ha[n - 13 + i] > 0) ans++;
} else {
if (ch[n] < mm) {
printf("-1\n");
return;
}
k = 13 - n;
for (i = 1; i <= n; i++)
if (ha[a[i + k] - k] && ha[i]) ans++;
}
printf("%d\n", ans);
}
int main() {
int i, j, k;
s = 0;
ha.clear();
dfs(0, 0);
sort(p + 1, p + s + 1);
scanf("%I64d%I64d", &n, &m);
mm = m;
work();
solve();
return 0;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
std::vector<long long> generateLuckyNumbers(long long limit) {
std::vector<long long> result;
std::queue<long long> Q;
Q.push(4);
Q.push(7);
while (!Q.empty()) {
long long x = Q.front();
Q.pop();
if (x <= limit) {
result.push_back(x);
Q.push(x * 10 + 4);
Q.push(x * 10 + 7);
}
}
sort(result.begin(), result.end());
return result;
}
inline bool is_lucky(long long n) {
std::stringstream ss;
ss << n;
std::string s;
ss >> s;
for (int i = 0; i < (s.size()); ++i)
if (s[i] != '4' && s[i] != '7') {
return false;
}
return true;
}
long long silnie[16];
bool used[16];
int main() {
silnie[0] = 1;
for (int i = (1); i <= (14); ++i) silnie[i] = silnie[i - 1] * i;
long long n, k;
std::cin >> n >> k;
long long limit = 1, silnia = 1;
while (silnia < k) {
++limit;
silnia *= limit;
}
if (limit > n) {
std::cout << -1 << std::endl;
return 0;
}
std::vector<int> permutacja;
for (int i = 0; i < (limit); ++i) {
used[i] = false;
}
for (int i = 0; i < (limit); ++i) {
int wskaznik = 0;
while (used[wskaznik]) {
++wskaznik;
}
while (k > silnie[limit - i - 1]) {
k -= silnie[limit - i - 1];
do {
++wskaznik;
} while (used[wskaznik]);
}
permutacja.push_back(wskaznik);
used[wskaznik] = true;
}
std::vector<long long> luckyNums = generateLuckyNumbers(n);
std::vector<int> wartosci;
for (int i = (n - limit + 1); i <= (n); ++i) {
if (std::find(luckyNums.begin(), luckyNums.end(), i) != luckyNums.end()) {
wartosci.push_back(1);
} else {
wartosci.push_back(0);
}
}
int dodatek = 0;
for (int i = 0; i < (limit); ++i)
if (wartosci[i] && is_lucky(permutacja[i] + n - limit + 1)) {
++dodatek;
}
int ilu_najpierw =
std::upper_bound(luckyNums.begin(), luckyNums.end(), n - limit) -
luckyNums.begin();
std::cout << ilu_najpierw + dodatek << std::endl;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
long long fac[14];
vector<long long> lucky;
bool isLucky(long long n) {
int x;
while (n) {
x = n % 10;
n /= 10;
if (x == 4 || x == 7) continue;
return 0;
}
return 1;
}
void gen(long long n) {
long long x = n * 10;
if (x > 1000000000ll) return;
x += 4;
lucky.push_back(x);
gen(x);
x += 3;
lucky.push_back(x);
gen(x);
}
int main() {
int i, j, r, ans;
long long n, k, m;
cin >> n >> k;
fac[0] = 1;
for (i = 1; i < 14; i++) fac[i] = i * fac[i - 1];
if (n < 14 && fac[n] < k) {
cout << -1;
return 0;
}
gen(0);
lucky.push_back(4444444444ll);
sort(lucky.begin(), lucky.end());
m = max(n - 13, 0ll);
ans = upper_bound(lucky.begin(), lucky.end(), m) - lucky.begin();
vector<bool> used(n - m + 1, false);
for (i = n - m; i >= 1; i--) {
r = (k + fac[i - 1] - 1) / fac[i - 1];
k -= (r - 1) * fac[i - 1];
for (j = 1;; j++)
if (!used[j]) {
r--;
if (!r) break;
}
used[j] = 1;
if (isLucky(n - i + 1) && isLucky(m + j)) ans++;
}
cout << ans;
return 0;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
const double eps = 1e-9;
const int int_inf = 1 << 31 - 1;
const long long i64_inf = 1ll << 63 - 1;
const double pi = acos(-1.0);
using namespace std;
int n;
long long k;
int res = 0;
int a[20];
int b[20];
long long fac[20];
vector<int> L;
void gen(int a = 0, int len = 0) {
L.push_back(a);
if (len == 9) return;
gen(a * 10 + 4, len + 1);
gen(a * 10 + 7, len + 1);
}
int lucky(int a) {
if (a < 4) return 0;
int l = 0;
int r = L.size();
while (l != r - 1) {
int m = (l + r) >> 1;
if (L[m] <= a)
l = m;
else
r = m;
}
return l;
}
bool isluck(int a) { return *lower_bound(L.begin(), L.end(), a) == a; }
int main() {
fac[1] = 1ll;
for (int i = 2; i < 15; i++) fac[i] = fac[i - 1] * 1ll * (long long)i;
gen();
sort(L.begin(), L.end());
cin >> n >> k;
if (n <= 13 && fac[n] < k) {
puts("-1");
return 0;
}
int sz = min(n, 13);
for (int i = sz - 1; i >= 0; i--) a[i] = n - (sz - i - 1);
for (int i = 0; i < sz; i++) {
sort(a + i, a + sz);
for (int j = i; j < sz; j++) {
long long m = j - i;
if (k <= fac[sz - i - 1] * (m + 1)) {
swap(a[i], a[j]);
k -= fac[sz - i - 1] * m;
break;
}
}
}
for (int i = sz - 1; i >= 0; i--) b[i] = n - (sz - i - 1);
res = lucky(n - 13);
for (int i = 0; i < sz; i++) res += isluck(a[i]) && isluck(b[i]);
cout << res << "\n";
return 0;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
bool ok(long long n, long long k) {
if (n >= 13) return true;
long long r = 1;
for (int i = 0; i < n; i++) r *= (i + 1);
if (r > k) return true;
return false;
}
long long fact(int n) {
if (n >= 13) return 10000000007ll;
long long ret = 1ll;
for (int i = 0; i < n; i++) ret *= 1ll * (i + 1ll);
return ret;
}
bool islucky(long long a) {
while (a) {
if (a % 10 != 4 && a % 10 != 7) return false;
a /= 10ll;
}
return true;
}
long long n, k;
void oku() {
cin >> n >> k;
k--;
int cnt = 0;
if (!ok(n, k)) {
cout << -1;
return;
}
set<int> s;
for (int len = 1; len < 10; len++)
for (int mask = 0; mask < 1 << len; mask++) {
long long sum = 0;
for (int j = 0; j < len; j++)
if ((mask & (1 << j)) > 0)
sum = sum * 10 + 4ll;
else
sum = sum * 10 + 7ll;
if (sum < n - 50 && islucky(sum)) cnt++;
}
int index = 0;
for (int i = max(n - 50, 0ll); i < n; i++) s.insert(i + 1);
for (int i = max(n - 50ll, 0ll); i < n; i++) {
long long left = n - i - 1;
long long fct = fact(left);
if (fct > k) {
if (islucky(i + 1) && islucky(*s.begin())) cnt++;
s.erase(s.begin());
continue;
}
long long a1 = k / fct;
k -= fct * a1;
int take;
for (typeof((s).begin()) it = (s).begin(); it != (s).end(); it++) {
if (a1 == 0) {
take = *it;
if (islucky(i + 1) && islucky(take)) cnt++;
s.erase(it);
break;
}
a1--;
}
}
cout << cnt;
}
int main() {
oku();
return 0;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.HashSet;
import java.util.LinkedList;
import java.util.List;
import java.util.PriorityQueue;
import java.util.Random;
import java.util.Scanner;
import java.util.Stack;
import java.util.StringTokenizer;
import java.util.TreeMap;
import java.util.TreeSet;
import java.lang.Long;
import java.math.BigDecimal;
import java.math.BigInteger;
/**
* Problem statement: http://codeforces.com/problemset/problem/431/D
*
* @author thepham
*
*/
public class C_Round_91_Div1 {
static long Mod = 1000000007;
public static void main(String[] args) throws FileNotFoundException {
// PrintWriter out = new PrintWriter(new FileOutputStream(new File(
// "output.txt")));
PrintWriter out = new PrintWriter(System.out);
Scanner in = new Scanner();
int n = in.nextInt();
int k = in.nextInt();
boolean ok = true;
if (n <= 14) {
long max = 1;
for (int i = 1; i <= n; i++) {
max *= i;
}
if (max < k) {
ok = false;
out.println(-1);
}
}
if (ok) {
PriorityQueue<Long> q = new PriorityQueue();
TreeSet<Integer> set = new TreeSet();
q.add(4L);
q.add(7L);
while (!q.isEmpty()) {
long v = q.poll();
if (v > n) {
break;
}
set.add((int)v);
q.add(v * 10 + 4);
q.add(v * 10 + 7);
}
//out.println(set);
int left = 0;
long cur = 1;
for(int i = 1; i <= 14 ; i++){
cur *= i;
if(cur >= k){
left = i ;
break;
}
}
int other = n - left;
int result = set.headSet(other, true).size();
int start = other + 1;
ArrayList<Integer> list = new ArrayList();
for(int i = 0; i < left; i++){
list.add(start + i);
}
for(int i = 0; i < left; i++){
int min = 0;
int max = list.size() - 1;
long re= -1;
int id = -1;
while(min <= max){
int mid = (min + max)/2;
long large = mid;
for(int j = 1; j < left - i; j++ ){
large *= j;
}
if(large < k){
if(large > re){
re = large;
id = mid;
}
min = mid + 1;
}else{
max = mid - 1;
}
}
k -= re;
int v = list.remove((int)id);
//System.out.println(v + " " + id + " " + start + " " + re);
if(set.contains(v) && set.contains(start)){
result++;
}
start++;
}
out.println(result);
}
out.close();
}
static class Segment implements Comparable<Segment> {
int x, y;
public Segment(int x, int y) {
super();
this.x = x;
this.y = y;
}
public String toString() {
return x + " " + y;
}
@Override
public int compareTo(Segment o) {
if (x != o.x) {
return x - o.x;
}
return o.y - y;
}
}
public static int[] buildKMP(String val) {
int[] data = new int[val.length() + 1];
int i = 0;
int j = -1;
data[0] = -1;
while (i < val.length()) {
while (j >= 0 && val.charAt(i) != val.charAt(j)) {
j = data[j];
}
i++;
j++;
data[i] = j;
// System.out.println(val + " " + i + " " + data[i]);
}
return data;
}
static int find(int index, int[] u) {
if (u[index] != index) {
return u[index] = find(u[index], u);
}
return index;
}
static int crossProduct(Point a, Point b) {
return a.x * b.y + a.y * b.x;
}
static long squareDist(Point a) {
long x = a.x;
long y = a.y;
return x * x + y * y;
}
static Point minus(Point a, Point b) {
return new Point(a.x - b.x, a.y - b.y);
}
public static boolean nextPer(int[] data) {
int i = data.length - 1;
while (i > 0 && data[i] < data[i - 1]) {
i--;
}
if (i == 0) {
return false;
}
int j = data.length - 1;
while (data[j] < data[i - 1]) {
j--;
}
int temp = data[i - 1];
data[i - 1] = data[j];
data[j] = temp;
Arrays.sort(data, i, data.length);
return true;
}
static class Point {
int x, y;
public Point(int x, int y) {
super();
this.x = x;
this.y = y;
}
public String toString() {
return "{" + x + " " + y + "}";
}
}
static long gcd(long a, long b) {
if (b == 0) {
return a;
}
return gcd(b, a % b);
}
public static class FT {
int[] data;
FT(int n) {
data = new int[n];
}
public void update(int index, int value) {
while (index < data.length) {
data[index] += value;
index += (index & (-index));
}
}
public int get(int index) {
int result = 0;
while (index > 0) {
result += data[index];
index -= (index & (-index));
}
return result;
}
}
static class Scanner {
BufferedReader br;
StringTokenizer st;
public Scanner() throws FileNotFoundException {
// System.setOut(new PrintStream(new
// BufferedOutputStream(System.out), true));
br = new BufferedReader(new InputStreamReader(System.in));
// br = new BufferedReader(new InputStreamReader(new
// FileInputStream(
// new File("input.txt"))));
}
public String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception e) {
throw new RuntimeException();
}
}
return st.nextToken();
}
public long nextLong() {
return Long.parseLong(next());
}
public int nextInt() {
return Integer.parseInt(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String nextLine() {
st = null;
try {
return br.readLine();
} catch (Exception e) {
throw new RuntimeException();
}
}
public boolean endLine() {
try {
String next = br.readLine();
while (next != null && next.trim().isEmpty()) {
next = br.readLine();
}
if (next == null) {
return true;
}
st = new StringTokenizer(next);
return st.hasMoreTokens();
} catch (Exception e) {
throw new RuntimeException();
}
}
}
}
| JAVA |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
const int N = 1e5 + 5;
long long f[15], all[15];
long long n, k;
int solve(int rem) {
if (!rem) return 1;
return solve(rem - 1) * 2;
}
long long solve(int i, string& str) {
if (i == str.size()) return 1;
long long ret = solve(i + 1, str);
if (str[i] == '1') ret += all[str.size() - i - 1];
return ret;
}
bool lucky(long long x) {
while (x) {
if (x % 10 != 4 && x % 10 != 7) return 0;
x /= 10;
}
return 1;
}
int main() {
all[0] = f[0] = 1;
for (int i = 1; i < 15; ++i) {
f[i] = f[i - 1] * i;
all[i] = 2ll * all[i - 1];
}
cin >> n >> k;
if (n < 15 && f[n] < k) return cout << -1, 0;
long long nn = n;
int rem = 0;
for (int i = 0; i < 14; ++i)
if (f[i] < k) rem = i;
long long ans = 0;
set<long long> rem_num;
if (n > rem + 1) {
long long m = n - rem - 1;
string cur = "", s = "";
stringstream mycin;
mycin << m;
mycin >> cur;
bool ok = 0, is = 0;
int lstseven = -1;
for (int i = 0; i < cur.size(); ++i) {
int ch = cur[i] - '0';
if (ok) break;
if (ch < 4) {
is = 1;
break;
} else if (ch > 7)
ok = 1, lstseven = 1e9 + 5;
else if (ch == 7)
lstseven = max(lstseven, i);
else if (ch > 4)
ok = 1;
}
if (is && lstseven == -1) {
int sz = cur.size();
--sz;
while (sz--) s += '1';
} else {
ok = 0;
for (int i = 0; i < cur.size(); ++i) {
int ch = cur[i] - '0';
if (ok)
s += '1';
else if (is && lstseven == i)
s += '0', ok = 1;
else if (ch > 7)
ok = 1, s += '1';
else if (ch == 7)
s += '1';
else if (ch > 4)
s += '0', ok = 1;
else
s += '0';
}
}
if (s.size()) {
ans += solve(0, s);
for (int i = 1; i < s.size(); ++i) ans += all[i];
}
for (int i = n; rem_num.size() <= rem; --i) rem_num.insert(i);
n = rem + 1;
} else
for (int i = 1; i <= n; ++i) rem_num.insert(i);
for (int i = nn - n + 1; i <= nn; ++i) {
vector<int> v;
while (f[nn - i] < k) {
k -= f[nn - i];
v.push_back(*rem_num.begin());
rem_num.erase(rem_num.begin());
}
int x = *rem_num.begin();
rem_num.erase(rem_num.begin());
for (int j : v) rem_num.insert(j);
ans += lucky(i) && lucky(x);
}
cout << ans;
return 0;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
const int N = 1 << 20;
long long fac[20];
vector<long long> lst;
vector<long long> lucky;
void prepare(int cnt, int all, long long now) {
if (cnt == all) {
lucky.push_back(now);
return;
}
prepare(cnt + 1, all, now * 10 + 4);
prepare(cnt + 1, all, now * 10 + 7);
}
inline bool chk(long long x) {
while (x) {
if (x % 10 != 4 && x % 10 != 7) return false;
x /= 10;
}
return true;
}
int main() {
ios::sync_with_stdio(false);
for (int i = 0; i <= 10; i++) prepare(0, i, 0);
fac[0] = 1;
for (int i = 1; i < 20; i++) fac[i] = fac[i - 1] * i;
long long n, k;
cin >> n >> k;
long long p = 1;
while (fac[p] < k) p++;
if (p > n) return cout << -1 << '\n', 0;
k--;
for (long long i = n - p + 1; i <= n; i++) lst.push_back(i);
while (k) {
int i;
for (i = p; ~i; i--)
if (fac[i] <= k) break;
int w = k / fac[i];
k -= fac[i] * w;
for (int s = 0; s < w; s++) swap(lst[p - 1 - i], lst[p - i + s]);
}
long long res =
upper_bound(lucky.begin(), lucky.end(), n - p) - lucky.begin() - 1;
for (int i = 0; i < lst.size(); i++)
if (chk(n - p + i + 1) && chk(lst[i])) res++;
cout << res << '\n';
return 0;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | /**
* Created by IntelliJ IDEA.
* User: Taras_Brzezinsky
* Date: 10/27/11
* Time: 5:55 PM
* To change this template use File | Settings | File Templates.
*/
import sun.misc.Sort;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.FileReader;
import java.io.IOException;
import java.util.*;
public class TaskC extends Thread {
public TaskC(int type) {
try {
if (type == 0) {
this.input = new BufferedReader(new InputStreamReader(System.in));
this.output = new PrintWriter(System.out);
} else {
this.input = new BufferedReader(new FileReader(INPUT_FILE));
this.output = new PrintWriter(OUTPUT_FILE);
}
this.setPriority(Thread.MAX_PRIORITY);
} catch (Throwable e) {
e.printStackTrace();
System.exit(666);
}
}
static boolean isLucky(int value) {
char []now = Integer.toString(value).toCharArray();
for (char c : now) {
if (c != '4' && c != '7') {
return false;
}
}
return true;
}
static void generate(long now, long length) {
if (length == 10) {
return;
}
luckies.add(now * 10 + 4);
luckies.add(now * 10 + 7);
generate(now * 10 + 4, length + 1);
generate(now * 10 + 7, length + 1);
}
//12 ! - max
private void solve() throws Throwable {
long facts[] = new long[14];
facts[0] = 1;
for (int i = 1; i < facts.length; ++i) {
facts[i] = facts[i - 1] * i;
}
int n = nextInt();
long k = nextLong();
if (n <= 12) {
if (facts[n] < k) {
output.println(-1);
return;
}
}
int result = 0;
int N = 1;
while (facts[N] < k) {
++N;
}
long MAX = (long) n - N;
int index = 0;
while (index < values.size() && values.get(index) <= MAX) {
++result;
++index;
}
int values[] = new int[N];
boolean used[] = new boolean[N];
Arrays.fill(values, -1);
for (int i = 0; i < N; ++i) {
for (int wanted = 0; wanted < N; ++wanted) {
if (used[wanted]) {
continue;
}
long remaining = facts[N - 1 - i];
if (remaining < k) {
k -= remaining;
} else {
values[i] = wanted + 1;
used[wanted] = true;
break;
}
}
}
for (int i = 0; i < N; ++i) {
int pos = (int)MAX + i + 1;
if (isLucky(pos) && isLucky((int) MAX + values[i])) {
++result;
}
}
output.println(result);
}
public void run() {
try {
solve();
} catch (Throwable e) {
System.err.println(e.getMessage());
e.printStackTrace();
System.exit(666);
} finally {
output.flush();
output.close();
}
}
public static void main(String[] args) {
new TaskC(0).start();
}
private int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
private long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
private double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
private String nextToken() throws IOException {
while (tokens == null || !tokens.hasMoreTokens()) {
tokens = new StringTokenizer(input.readLine());
}
return tokens.nextToken();
}
static ArrayList<Long> values = new ArrayList<Long>();
static HashSet<Long> luckies = new HashSet<Long>();
static {
generate(0, 1);
values.addAll(luckies);
Collections.sort(values);
}
private static final String INPUT_FILE = null;
private static final String OUTPUT_FILE = null;
private BufferedReader input;
private PrintWriter output;
private StringTokenizer tokens = null;
} | JAVA |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
const double EPS = 1e-9;
const double PI = acos(-1.);
template <class T>
inline T sq(T x) {
return x * x;
}
template <class T>
inline void upd_min(T &lhs, T rhs) {
if (lhs > rhs) lhs = rhs;
}
template <class T>
inline void upd_max(T &lhs, T rhs) {
if (lhs < rhs) lhs = rhs;
}
long long fact[16] = {1};
void gen() {
for (int i = (1); i < (16); ++i) fact[i] = i * fact[i - 1];
}
long long lucky(int n, int k) {
return k ? (n & 1 ? 7 : 4) + lucky(n >> 1, k - 1) * 10 : 0;
}
bool isLucky(long long n) {
return n ? (n % 10 == 4 || n % 10 == 7) && isLucky(n / 10) : true;
}
void solve() {
gen();
int n, k;
cin >> n >> k;
if (n < 14 && fact[n] < k) {
cout << -1 << endl;
return;
}
vector<int> perm1;
int _k = k - 1;
for (int i = 13; i >= 0; --i) {
perm1.push_back(_k / fact[i]);
_k -= _k / fact[i] * fact[i];
}
vector<int> perm2;
for (int i = (0); i < (14); ++i) perm2.push_back(i + 1);
vector<int> perm;
for (int i = (0); i < (14); ++i) {
perm.push_back(perm2[perm1[i]]);
perm2.erase(perm2.begin() + perm1[i]);
}
vector<long long> luckys;
for (int i = (1); i < (11); ++i) {
for (int j = (0); j < (1 << i); ++j) {
luckys.push_back(lucky(j, i));
}
}
sort((luckys).begin(), (luckys).end());
int ans = 0;
for (int i = 0; luckys[i] <= n - 14; ++i) {
++ans;
}
if (n < 14) {
for (int i = 0; i < n; ++i) {
if ((i + 1 == 4 || i + 1 == 7) && isLucky(perm[14 - n + i] - (14 - n))) {
++ans;
}
}
} else {
for (int i = 0; i < 14; ++i) {
if (isLucky(n - 14 + i + 1) && isLucky(n - 14 + perm[i])) {
++ans;
}
}
}
cout << ans << endl;
}
int main() {
solve();
return 0;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
set<long long> S;
void go(const long long &x, const int &M, const long long &U) {
if (x > U) return;
if (x > M) S.insert(x);
go(10 * x + 4, M, U), go(10 * x + 7, M, U);
}
bool ok(long long x) {
for (; x; x /= 10) {
int a = x % 10;
if (a != 4 && a != 7) return false;
}
return true;
}
int main() {
long long N, K;
cin >> N >> K;
int M = 1;
for (long long f = 1; f * M < K; f *= M, M++)
;
if (M > (int)N) {
cout << -1 << endl;
return 0;
}
M = min((int)N, 20);
go(0, 0, N - M);
vector<long long> a(M);
for (int _n(M), i(0); i < _n; i++) a[i] = N - M + i + 1;
for (long long k = K - 1; k > 0;) {
long long f = 1;
int i = 1;
while (f * (i + 1) <= k) f *= ++i;
int j = k / f;
swap(a[M - i - 1], a[M - i + j - 1]);
sort(&a[0] + M - i, &a[0] + M);
k -= f * j;
}
int ans = 0;
for (int _n(M), i(0); i < _n; i++)
if (ok(N - M + i + 1) && ok(a[i])) ans++;
ans += S.size();
cout << ans << endl;
return 0;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | import java.util.ArrayList;
import java.util.Arrays;
import java.util.Scanner;
public class Main {
public static void main(String[] args) throws Exception {
new Main().start();
}
private long fact(long m) {
long ret = 1;
for (long i = 1; i <= m; i++) {
ret *= i;
}
return ret;
}
int[] data = new int[1022];
long N, K;
int[] ten = new int[10];
private void start() {
Scanner in = new Scanner(System.in);
N = in.nextLong();
K = in.nextLong();
if (N < 13 && fact(N) < K) {
System.out.println(-1);
return;
}
ten[0] = 1;
for (int i = 1; i < 10; i++) {
ten[i] = ten[i - 1] * 10;
}
int c = 0;
for (int i = 1; i < 10; i++) {
int n = 1 << i;
for (int j = 0; j < n; j++) {
int tmp = 0;
for (int k = 0; k < i; k++) {
long q;
if (0 != (j & (1 << k))) {
q = 7;
} else {
q = 4;
}
tmp += q * ten[k];
}
data[c++] = tmp;
}
}
Arrays.sort(data);
long s[];
if (N >= 13) {
s = kth(13, K);
for (int i = 0; i < s.length; i++) {
s[i] += N - 13;
}
int ans = 0;
for (int i = 0; i < c && data[i] <= N; i++) {
if (data[i] <= N - 13) {
ans++;
} else {
if (is(s[(int) (data[i] - (N - 13))])) {
ans++;
}
}
}
System.out.println(ans);
} else {
s = kth((int)N, K);
int ans = 0;
for (int i = 0; i < c && data[i] <= N; i++) {
if (is(s[data[i]])) {
ans++;
}
}
System.out.println(ans);
}
}
private boolean is(long v) {
String s = Long.toString(v);
for (int i = 0; i < s.length(); i++) {
if (s.charAt(i) != '4' && s.charAt(i) != '7') {
return false;
}
}
return true;
}
private long[] kth(int n, long k) {
ArrayList<Integer> c = new ArrayList<Integer>();
for (int i = 1; i <= n; i++) {
c.add(i);
}
long[] ret = new long[n + 1];
for (int i = 1; i <= n; i++) {
long t = fact(n - i);
int ct = 1;
while (k > t) {
k -= t;
ct++;
}
ret[i] = c.get(ct - 1);
c.remove(ct - 1);
}
return ret;
}
} | JAVA |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Scanner;
public class Main {
static ArrayList<Long> aa;
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt(),k = in.nextInt();
aa = new ArrayList<Long>(2500);
dfs(7);dfs(4);
int nn = n,l = Math.min(13, n);
n = l;
if (n < 13 && k > fact(n)) {
System.out.println(-1);
System.exit(0);
}
int[] a = new int[l];
boolean[] v = new boolean[l];
for (int i = 0; i < a.length; i++)
a[i] = nn - i;
Arrays.sort(a);
int[] ans = new int[a.length];
long g, kk = k, f;
boolean d;
for (int i = 0; i < a.length; i++) {
g = kk / (f = fact(n - 1)) + 1;
if (kk % f == 0)
g--;
int cnt = 0, j;
for (j = 0; j < a.length; j++) {
if (!v[j])
cnt++;
if (cnt == g)
break;
}
v[j] = true;
ans[i] = a[j];
d = false;
if (kk >= f)
d = true;
kk %= f;
if (d && kk == 0)
kk += f;
n--;
}
Collections.sort(aa);
int ret = 0;
for (int i = 0; i < aa.size(); i++)
if (aa.get(i) > nn - 13 + 1) {
ret = i;
break;
}
for (int i = 0; i < ans.length; i++)
if (aa.contains((long) ans[i])
&& aa.contains((long) (i + nn - l + 1)))
ret++;
System.out.println(ret);
}
public static long fact(long n) {
if (n == 1 || n == 0)
return 1;
return n * fact(n - 1);
}
public static void dfs(long n) {
aa.add(n);
if (n > 1000000000)
return;
dfs(n * 10 + 4);
dfs(n * 10 + 7);
}
} | JAVA |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 |
import static java.lang.Math.*;
import static java.util.Arrays.*;
import java.util.*;
public class Main {
public static void main(String[]args){
new Main().run();
}
private void debug(Object...os){
System.err.println(deepToString(os));
}
private void run() {
Scanner sc = new Scanner(System.in);
int n=sc.nextInt(),K=sc.nextInt();
long[] fact = new long[19];
for (int i = 0; i < 19; i++)fact[i] = i==0 ? 1 : fact[i-1]*i;
int tail = min(n,18);
if(fact[tail] < K){
System.out.println(-1);return;
}
int off = n-tail+1;
int res = 0;
boolean[] used = new boolean[tail];
for (int i = 0; i < tail; i++){
for (int j = 0; j < tail; j++)if(!used[j]){
if(fact[tail-1-i] >= K){
used[j] = true;
if(lucky(off+j) && lucky(off+i))res++;
break;
}else{
K -= fact[tail-1-i];
}
}
}
for (int i = 1; i < 11; i++){
for (int j = 0; j < 1<<i; j++){
long val=0;
for (int k = 0; k < i; k++){
val*=10;
val+= ((j>>k&1)==1) ? 4:7;
}
if(val <= n-tail)res++;
}
}
System.out.println(res);
}
private boolean lucky(int i) {
if(i==0)return false;
while(i>0){
if(i%10!=7 && i%10!=4)return false;
i/=10;
}
return true;
}
}
| JAVA |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
long long a[100010], fac[20], vis[20], ans1[20], ans;
int n, k, tmp1, tmp2;
void dfs(long long now) {
if (now <= tmp2 && now) {
ans++;
}
if (now >= 1000000000) {
return;
}
dfs(now * 10 + 4);
dfs(now * 10 + 7);
}
void solve(int now) {
if (now > tmp1) {
return;
}
int l = 1;
while (vis[l]) l++;
while (k >= fac[tmp1 - now]) {
l++;
while (vis[l]) {
l++;
}
k -= fac[tmp1 - now];
}
while (vis[l]) l++;
ans1[now] = l + tmp2;
vis[l] = 1;
solve(now + 1);
}
int main() {
fac[0] = 1LL;
for (int i = 1; i <= 14; i++) {
fac[i] = 1LL * i * fac[i - 1];
}
scanf("%d%d", &n, &k);
if (n <= 14 && fac[n] < k) {
puts("-1");
return 0;
}
for (int i = 0; i <= 14; i++) {
if (fac[i] >= k) {
tmp1 = i;
break;
}
}
tmp2 = n - tmp1;
dfs(0);
k--;
solve(1);
for (int i = tmp2 + 1; i <= n; i++) {
int flag = 1;
int tmp3 = i;
while (tmp3) {
if (tmp3 % 10 == 4 || tmp3 % 10 == 7) {
} else {
flag = 0;
break;
}
tmp3 /= 10;
}
tmp3 = ans1[i - tmp2];
while (tmp3) {
if (tmp3 % 10 == 4 || tmp3 % 10 == 7) {
} else {
flag = 0;
break;
}
tmp3 /= 10;
}
if (flag) {
ans++;
}
}
printf("%lld\n", ans);
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
const int maxn = 200;
vector<long long> luck;
void dfs(long long a, long long len) {
if (len > 11) return;
if (a) luck.push_back(a);
dfs(a * 10 + 4, len + 1);
dfs(a * 10 + 7, len + 1);
}
long long fact[30];
long long arr[50];
void find(long long n, long long x) {
vector<long long> v;
for (int i = 0; i < n; i++) v.push_back(i + 1);
for (int i = 0; i < n; i++) {
long long y = x / (fact[n - i - 1]);
arr[i] = v[y];
v.erase(v.begin() + y);
x %= (fact[n - i - 1]);
}
}
bool isl(long long a) {
if (!a) return 0;
while (a) {
int g = a % 10;
if (g != 4 && g != 7) return 0;
a /= 10;
}
return true;
}
int main() {
dfs(0, 0);
sort(luck.begin(), luck.end());
long long n, k;
cin >> n >> k;
fact[0] = 1;
for (int i = 1; i < 30; i++) fact[i] = fact[i - 1] * i;
if (n <= 20 && k > fact[n]) {
cout << -1 << endl;
return 0;
}
long long len = min(20ll, n);
find(len, k - 1);
long long p = n - len;
long long ind = upper_bound(luck.begin(), luck.end(), p) - luck.begin();
long long ans = ind;
for (int i = 0; i < len; i++) {
arr[i] += p;
if (isl(arr[i]) && isl(i + p + 1)) ans++;
}
cout << ans << endl;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
template <typename T>
vector<T> readvector(size_t size) {
vector<T> res(size);
for (size_t i = 0; i < size; ++i) {
cin >> res[i];
}
return res;
}
template <typename T>
void printvector(vector<T>& arr, string sep = " ", string ends = "\n") {
for (size_t i = 0; i < arr.size(); ++i) {
cout << arr.at(i) << sep;
}
cout << ends;
}
const long long MAXN = 1e5;
bool is_lucky(long long n) {
while (n) {
if (n % 10 != 4 && n % 10 != 7) return 0;
n /= 10;
}
return 1;
}
vector<long long> lucky = {
4, 7, 44, 47, 74, 77, 444,
447, 474, 477, 744, 747, 774, 777,
4444, 4447, 4474, 4477, 4744, 4747, 4774,
4777, 7444, 7447, 7474, 7477, 7744, 7747,
7774, 7777, 44444, 44447, 44474, 44477, 44744,
44747, 44774, 44777, 47444, 47447, 47474, 47477,
47744, 47747, 47774, 47777, 74444, 74447, 74474,
74477, 74744, 74747, 74774, 74777, 77444, 77447,
77474, 77477, 77744, 77747, 77774, 77777, 444444,
444447, 444474, 444477, 444744, 444747, 444774, 444777,
447444, 447447, 447474, 447477, 447744, 447747, 447774,
447777, 474444, 474447, 474474, 474477, 474744, 474747,
474774, 474777, 477444, 477447, 477474, 477477, 477744,
477747, 477774, 477777, 744444, 744447, 744474, 744477,
744744, 744747, 744774, 744777, 747444, 747447, 747474,
747477, 747744, 747747, 747774, 747777, 774444, 774447,
774474, 774477, 774744, 774747, 774774, 774777, 777444,
777447, 777474, 777477, 777744, 777747, 777774, 777777,
4444444, 4444447, 4444474, 4444477, 4444744, 4444747, 4444774,
4444777, 4447444, 4447447, 4447474, 4447477, 4447744, 4447747,
4447774, 4447777, 4474444, 4474447, 4474474, 4474477, 4474744,
4474747, 4474774, 4474777, 4477444, 4477447, 4477474, 4477477,
4477744, 4477747, 4477774, 4477777, 4744444, 4744447, 4744474,
4744477, 4744744, 4744747, 4744774, 4744777, 4747444, 4747447,
4747474, 4747477, 4747744, 4747747, 4747774, 4747777, 4774444,
4774447, 4774474, 4774477, 4774744, 4774747, 4774774, 4774777,
4777444, 4777447, 4777474, 4777477, 4777744, 4777747, 4777774,
4777777, 7444444, 7444447, 7444474, 7444477, 7444744, 7444747,
7444774, 7444777, 7447444, 7447447, 7447474, 7447477, 7447744,
7447747, 7447774, 7447777, 7474444, 7474447, 7474474, 7474477,
7474744, 7474747, 7474774, 7474777, 7477444, 7477447, 7477474,
7477477, 7477744, 7477747, 7477774, 7477777, 7744444, 7744447,
7744474, 7744477, 7744744, 7744747, 7744774, 7744777, 7747444,
7747447, 7747474, 7747477, 7747744, 7747747, 7747774, 7747777,
7774444, 7774447, 7774474, 7774477, 7774744, 7774747, 7774774,
7774777, 7777444, 7777447, 7777474, 7777477, 7777744, 7777747,
7777774, 7777777, 44444444, 44444447, 44444474, 44444477, 44444744,
44444747, 44444774, 44444777, 44447444, 44447447, 44447474, 44447477,
44447744, 44447747, 44447774, 44447777, 44474444, 44474447, 44474474,
44474477, 44474744, 44474747, 44474774, 44474777, 44477444, 44477447,
44477474, 44477477, 44477744, 44477747, 44477774, 44477777, 44744444,
44744447, 44744474, 44744477, 44744744, 44744747, 44744774, 44744777,
44747444, 44747447, 44747474, 44747477, 44747744, 44747747, 44747774,
44747777, 44774444, 44774447, 44774474, 44774477, 44774744, 44774747,
44774774, 44774777, 44777444, 44777447, 44777474, 44777477, 44777744,
44777747, 44777774, 44777777, 47444444, 47444447, 47444474, 47444477,
47444744, 47444747, 47444774, 47444777, 47447444, 47447447, 47447474,
47447477, 47447744, 47447747, 47447774, 47447777, 47474444, 47474447,
47474474, 47474477, 47474744, 47474747, 47474774, 47474777, 47477444,
47477447, 47477474, 47477477, 47477744, 47477747, 47477774, 47477777,
47744444, 47744447, 47744474, 47744477, 47744744, 47744747, 47744774,
47744777, 47747444, 47747447, 47747474, 47747477, 47747744, 47747747,
47747774, 47747777, 47774444, 47774447, 47774474, 47774477, 47774744,
47774747, 47774774, 47774777, 47777444, 47777447, 47777474, 47777477,
47777744, 47777747, 47777774, 47777777, 74444444, 74444447, 74444474,
74444477, 74444744, 74444747, 74444774, 74444777, 74447444, 74447447,
74447474, 74447477, 74447744, 74447747, 74447774, 74447777, 74474444,
74474447, 74474474, 74474477, 74474744, 74474747, 74474774, 74474777,
74477444, 74477447, 74477474, 74477477, 74477744, 74477747, 74477774,
74477777, 74744444, 74744447, 74744474, 74744477, 74744744, 74744747,
74744774, 74744777, 74747444, 74747447, 74747474, 74747477, 74747744,
74747747, 74747774, 74747777, 74774444, 74774447, 74774474, 74774477,
74774744, 74774747, 74774774, 74774777, 74777444, 74777447, 74777474,
74777477, 74777744, 74777747, 74777774, 74777777, 77444444, 77444447,
77444474, 77444477, 77444744, 77444747, 77444774, 77444777, 77447444,
77447447, 77447474, 77447477, 77447744, 77447747, 77447774, 77447777,
77474444, 77474447, 77474474, 77474477, 77474744, 77474747, 77474774,
77474777, 77477444, 77477447, 77477474, 77477477, 77477744, 77477747,
77477774, 77477777, 77744444, 77744447, 77744474, 77744477, 77744744,
77744747, 77744774, 77744777, 77747444, 77747447, 77747474, 77747477,
77747744, 77747747, 77747774, 77747777, 77774444, 77774447, 77774474,
77774477, 77774744, 77774747, 77774774, 77774777, 77777444, 77777447,
77777474, 77777477, 77777744, 77777747, 77777774, 77777777, 444444444,
444444447, 444444474, 444444477, 444444744, 444444747, 444444774, 444444777,
444447444, 444447447, 444447474, 444447477, 444447744, 444447747, 444447774,
444447777, 444474444, 444474447, 444474474, 444474477, 444474744, 444474747,
444474774, 444474777, 444477444, 444477447, 444477474, 444477477, 444477744,
444477747, 444477774, 444477777, 444744444, 444744447, 444744474, 444744477,
444744744, 444744747, 444744774, 444744777, 444747444, 444747447, 444747474,
444747477, 444747744, 444747747, 444747774, 444747777, 444774444, 444774447,
444774474, 444774477, 444774744, 444774747, 444774774, 444774777, 444777444,
444777447, 444777474, 444777477, 444777744, 444777747, 444777774, 444777777,
447444444, 447444447, 447444474, 447444477, 447444744, 447444747, 447444774,
447444777, 447447444, 447447447, 447447474, 447447477, 447447744, 447447747,
447447774, 447447777, 447474444, 447474447, 447474474, 447474477, 447474744,
447474747, 447474774, 447474777, 447477444, 447477447, 447477474, 447477477,
447477744, 447477747, 447477774, 447477777, 447744444, 447744447, 447744474,
447744477, 447744744, 447744747, 447744774, 447744777, 447747444, 447747447,
447747474, 447747477, 447747744, 447747747, 447747774, 447747777, 447774444,
447774447, 447774474, 447774477, 447774744, 447774747, 447774774, 447774777,
447777444, 447777447, 447777474, 447777477, 447777744, 447777747, 447777774,
447777777, 474444444, 474444447, 474444474, 474444477, 474444744, 474444747,
474444774, 474444777, 474447444, 474447447, 474447474, 474447477, 474447744,
474447747, 474447774, 474447777, 474474444, 474474447, 474474474, 474474477,
474474744, 474474747, 474474774, 474474777, 474477444, 474477447, 474477474,
474477477, 474477744, 474477747, 474477774, 474477777, 474744444, 474744447,
474744474, 474744477, 474744744, 474744747, 474744774, 474744777, 474747444,
474747447, 474747474, 474747477, 474747744, 474747747, 474747774, 474747777,
474774444, 474774447, 474774474, 474774477, 474774744, 474774747, 474774774,
474774777, 474777444, 474777447, 474777474, 474777477, 474777744, 474777747,
474777774, 474777777, 477444444, 477444447, 477444474, 477444477, 477444744,
477444747, 477444774, 477444777, 477447444, 477447447, 477447474, 477447477,
477447744, 477447747, 477447774, 477447777, 477474444, 477474447, 477474474,
477474477, 477474744, 477474747, 477474774, 477474777, 477477444, 477477447,
477477474, 477477477, 477477744, 477477747, 477477774, 477477777, 477744444,
477744447, 477744474, 477744477, 477744744, 477744747, 477744774, 477744777,
477747444, 477747447, 477747474, 477747477, 477747744, 477747747, 477747774,
477747777, 477774444, 477774447, 477774474, 477774477, 477774744, 477774747,
477774774, 477774777, 477777444, 477777447, 477777474, 477777477, 477777744,
477777747, 477777774, 477777777, 744444444, 744444447, 744444474, 744444477,
744444744, 744444747, 744444774, 744444777, 744447444, 744447447, 744447474,
744447477, 744447744, 744447747, 744447774, 744447777, 744474444, 744474447,
744474474, 744474477, 744474744, 744474747, 744474774, 744474777, 744477444,
744477447, 744477474, 744477477, 744477744, 744477747, 744477774, 744477777,
744744444, 744744447, 744744474, 744744477, 744744744, 744744747, 744744774,
744744777, 744747444, 744747447, 744747474, 744747477, 744747744, 744747747,
744747774, 744747777, 744774444, 744774447, 744774474, 744774477, 744774744,
744774747, 744774774, 744774777, 744777444, 744777447, 744777474, 744777477,
744777744, 744777747, 744777774, 744777777, 747444444, 747444447, 747444474,
747444477, 747444744, 747444747, 747444774, 747444777, 747447444, 747447447,
747447474, 747447477, 747447744, 747447747, 747447774, 747447777, 747474444,
747474447, 747474474, 747474477, 747474744, 747474747, 747474774, 747474777,
747477444, 747477447, 747477474, 747477477, 747477744, 747477747, 747477774,
747477777, 747744444, 747744447, 747744474, 747744477, 747744744, 747744747,
747744774, 747744777, 747747444, 747747447, 747747474, 747747477, 747747744,
747747747, 747747774, 747747777, 747774444, 747774447, 747774474, 747774477,
747774744, 747774747, 747774774, 747774777, 747777444, 747777447, 747777474,
747777477, 747777744, 747777747, 747777774, 747777777, 774444444, 774444447,
774444474, 774444477, 774444744, 774444747, 774444774, 774444777, 774447444,
774447447, 774447474, 774447477, 774447744, 774447747, 774447774, 774447777,
774474444, 774474447, 774474474, 774474477, 774474744, 774474747, 774474774,
774474777, 774477444, 774477447, 774477474, 774477477, 774477744, 774477747,
774477774, 774477777, 774744444, 774744447, 774744474, 774744477, 774744744,
774744747, 774744774, 774744777, 774747444, 774747447, 774747474, 774747477,
774747744, 774747747, 774747774, 774747777, 774774444, 774774447, 774774474,
774774477, 774774744, 774774747, 774774774, 774774777, 774777444, 774777447,
774777474, 774777477, 774777744, 774777747, 774777774, 774777777, 777444444,
777444447, 777444474, 777444477, 777444744, 777444747, 777444774, 777444777,
777447444, 777447447, 777447474, 777447477, 777447744, 777447747, 777447774,
777447777, 777474444, 777474447, 777474474, 777474477, 777474744, 777474747,
777474774, 777474777, 777477444, 777477447, 777477474, 777477477, 777477744,
777477747, 777477774, 777477777, 777744444, 777744447, 777744474, 777744477,
777744744, 777744747, 777744774, 777744777, 777747444, 777747447, 777747474,
777747477, 777747744, 777747747, 777747774, 777747777, 777774444, 777774447,
777774474, 777774477, 777774744, 777774747, 777774774, 777774777, 777777444,
777777447, 777777474, 777777477, 777777744, 777777747, 777777774, 777777777,
4444444444};
long long safe_fact(long long n) {
if (n >= 20) return 1e18;
long long ans = 1;
while (n) {
ans *= (n--);
}
return ans;
}
vector<long long> generate(vector<long long> left, long long k) {
if (left.empty()) return std::vector<long long>(0);
long long step = safe_fact(left.size() - 1);
long long ind = k / step;
long long elem = left[ind];
left.erase(left.begin() + ind);
auto e = generate(left, k % step);
e.insert(e.begin(), elem);
return e;
}
signed main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
long long n, k;
cin >> n >> k;
if (safe_fact(n) < k) {
cout << -1 << endl;
return 0;
}
long long m = min(19ll, n);
vector<long long> generated;
for (long long i = n - m + 1; i <= n; i++) {
generated.push_back(i);
}
generated = generate(generated, k - 1);
long long ans = 0;
for (auto e : lucky) {
if (e < n - m + 1) {
ans++;
}
}
for (long long i = 0; i < m; i++) {
long long pos = n - m + 1 + i;
long long elem = generated[i];
if (is_lucky(pos) && is_lucky(elem)) ans++;
}
cout << ans << endl;
return 0;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
long long n, k, f[25];
vector<long long> v, sol;
set<long long> s;
void dfs(long long now) {
if (now > 1000000000) return;
v.push_back(now);
s.insert(now);
dfs(now * 10 + 4);
dfs(now * 10 + 7);
}
void build() {
dfs(4);
dfs(7);
sort(v.begin(), v.end());
f[0] = 1;
for (int i = 1; i < 20; i++) f[i] = i * f[i - 1];
}
bool che(long long now) { return s.count(now); }
long long getnum(int now) {
long long cnt = 0, num = 0;
for (int i = 0; i < sol.size(); i++) {
if (sol[i] != -1000000000) cnt++;
if (cnt == now) {
num = sol[i];
sol[i] = -1000000000;
break;
}
}
return num;
}
int main() {
build();
cin >> n >> k;
if (n <= 15 && k > f[n]) {
cout << -1 << '\n';
return 0;
}
long long pos = n - 14, ans = 0;
for (auto i : v) {
if (i < pos) ans++;
}
for (int i = 14; i >= 0; i--) sol.push_back(n - i);
for (int i = 15; i >= 1; i--) {
int cnt = 1;
while (k > f[i - 1]) {
k -= f[i - 1];
cnt++;
}
long long now = getnum(cnt);
if (che(pos) && che(now)) ans++;
pos++;
}
cout << ans << '\n';
return 0;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #!/usr/bin/python
import sys
a = []
def gen (n, d):
global a
if n > 0:
a += [n]
if d > 0:
gen (n * 10 + 4, d - 1)
gen (n * 10 + 7, d - 1)
def go (l, r, pos, c):
l = max (l, pos)
r = min (r, c)
# print l, r, c
return max (r - l + 1, 0) * c
def fact (n):
if n > 12:
return 10 ** 9 + 1
if n == 0:
return 1
return n * fact (n - 1)
gen (0, 9)
a.sort ()
while True:
s = sys.stdin.readline ().strip ()
if s == '':
s = sys.stdin.readline ().strip ()
if s == '':
break
n, k = [int (x) for x in s.split ()]
if n <= 12:
if k > fact (n):
print -1
continue
m = max (n - 13, 0)
d = n - m
res = 0
for c in a:
if c <= m:
res = res + 1
b = range (n - d + 1, n + 1)
p = range (n - d + 1, n + 1)
q = []
k -= 1
for i in range (d)[::-1]:
j = k / fact (i)
# print k, fact (i), j
k %= fact (i)
q += [b[j]]
b = b[:j] + b[j + 1:]
# print p, q, b
for i in range (d):
if p[i] in a and q[i] in a:
res += 1
print res
| PYTHON |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.List;
import java.util.StringTokenizer;
/**
* Author -
* User: kansal
* Date: 10/27/11
* Time: 8:49 PM
*/
public class CF91E {
public static void main(String[] args) {
reader = new BufferedReader(new InputStreamReader(System.in));
List<Integer> luckyNums = genAll();
long[] f = new long[14];
f[0] = 1;
for(int i = 1; i < 14; ++i) {
f[i] = i * f[i-1];
}
int n = nextInt(), k = nextInt();
if (n <= 13 && k > f[n]) {
System.out.println(-1);
return;
}
int x = 1;
for(; f[x] < k; ++x);
int res = 0;
for(int lucky: luckyNums) {
if (lucky < n-x+1) ++res;
}
int[] p = getKthPerm(k-1, n-x+1, n, x, f);
for(int i = 0; i < x; ++i) {
if (isLucky(p[i]) && isLucky(n-x+1+i)) {
++res;
}
}
System.out.println(res);
}
private static int[] getKthPerm(int k, int a, int b, int n, long[] fac) {
int[] res = new int[n];
for(int i = a; i <= b; ++i) {
res[i-a] = i;
}
for(int i = 0; i < n; ++i) {
int x = (int)(k / fac[n-i-1]);
int y = res[x+i];
for(int j = x + i - 1; j >= i; --j) {
res[j+1] = res[j];
}
res[i] = y;
k = (int)(k % fac[n-i-1]);
}
return res;
}
private static boolean isLucky(int x) {
if (x == 0) return false;
while (x > 0) {
if (x % 10 != 4 && x % 10 != 7) return false;
x /= 10;
}
return true;
}
private static List<Integer> genAll() {
List<Integer> ret = new ArrayList<Integer>();
for(int i = 1; i < 10; ++i) {
for(int set = 0; set < (1 << i); ++set) {
int x = 0;
for(int j = i-1; j >= 0; --j) {
if (((set >> j) & 1) == 1) {
x = x * 10 + 7;
}
else {
x = x * 10 + 4;
}
}
ret.add(x);
}
}
return ret;
}
public static BufferedReader reader;
public static StringTokenizer tokenizer = null;
static String nextToken() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
static public int nextInt() {
return Integer.parseInt(nextToken());
}
static public long nextLong() {
return Long.parseLong(nextToken());
}
static public String next() {
return nextToken();
}
static public String nextLine() {
try {
return reader.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return null;
}
}
| JAVA |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
long long permu[14];
bool is_used[14];
int permu_pos[14];
long long lucks[2000];
int luck_cnt;
int main() {
long long i, j, k;
int N, K, p1, p2, t1, t2, t3, m = 1e9;
permu[0] = 1;
for (i = 1; i < 14; i++) {
permu[i] = 1;
for (j = 1, k = 1; j <= i; j++) permu[i] *= j;
}
luck_cnt = 0;
lucks[luck_cnt++] = 4;
lucks[luck_cnt++] = 7;
for (i = 0; true; i++) {
lucks[luck_cnt++] = lucks[i] * 10 + 4;
if (lucks[luck_cnt - 1] >= m) break;
lucks[luck_cnt++] = lucks[i] * 10 + 7;
if (lucks[luck_cnt - 1] >= m) break;
}
scanf("%d %d", &N, &K);
p1 = N > 13 ? N - 13 : 0;
p2 = N > 13 ? p1 + 1 : 1;
j = N - p1;
if ((long long)K > permu[j]) {
printf("-1\n");
return 0;
}
for (i = j - 1; i >= 0; i--) {
t1 = (((long long)K + permu[i] - 1) / permu[i]);
for (k = 1, t2 = 0; t2 < t1; k++)
if (!is_used[k]) t2++;
permu_pos[j - i] = k - 1;
is_used[k - 1] = true;
K -= (t1 - 1) * permu[i];
}
for (i = 0; lucks[i] <= p1; i++)
;
t3 = i;
for (i = 1; i <= N - p1; i++) {
t1 = permu_pos[i] + p1;
t2 = i + p1;
for (j = 0, k = 0; j < luck_cnt && k < 2; j++) {
if (t1 == lucks[j]) k++;
if (t2 == lucks[j]) k++;
}
if (k == 2) t3++;
}
printf("%d\n", t3);
return 0;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
long long n, k, i, j, Length, result, a[30];
queue<long long> q, q2;
bool check[30];
bool Lucky(long long x) {
while (x > 0) {
if (x % 10 != 4 && x % 10 != 7) return false;
x /= 10;
}
return true;
}
void process() {
long long t, t2;
q2.push(4);
q2.push(7);
while (!q2.empty()) {
t = q2.front();
q2.pop();
q.push(t);
if (t * 10 + 4 <= n) q2.push(t * 10 + 4);
if (t * 10 + 7 <= n) q2.push(t * 10 + 7);
}
t = 1;
memset(check, true, sizeof(check));
for (Length = 1; Length < 15; ++Length) {
t *= Length;
if (t >= k) break;
a[i] = Length;
}
if (Length > n) {
cout << "-1";
return;
}
if (k > 0) {
for (i = 1; i <= Length; ++i) {
t /= (Length - i + 1);
t2 = (k - 1) / t;
for (j = 1; j <= Length; ++j)
if (check[j] && t2 == 0) {
a[i] = j;
check[j] = false;
break;
} else if (check[j])
--t2;
t2 = a[i] - 1;
for (j = 1; j <= Length; ++j)
if (j == a[i])
break;
else if (!check[j])
--t2;
k -= (t2 * t);
if (k == 0) {
for (j = 1; j <= Length; ++j)
if (check[j]) a[i++] = j;
break;
}
}
}
result = 0;
for (i = 1; i <= Length; ++i) a[i] += (n - Length);
while (!q.empty()) {
t = q.front();
q.pop();
if (t <= n - Length)
++result;
else if (t > n)
break;
else {
t -= (n - Length);
if (Lucky(a[t])) ++result;
}
}
cout << result;
}
int main() {
scanf("%d %d", &n, &k);
process();
return 0;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
long long fact[20];
int offset[20];
int vals[20];
vector<int> lidx;
bool islucky(int x) {
while (x > 0) {
if (x % 10 != 4 && x % 10 != 7) return false;
x /= 10;
}
return true;
}
int main() {
fact[0] = fact[1] = 1;
for (int i = 2; i < 20; i++) fact[i] = (fact[i - 1] * i);
int N, K;
cin >> N >> K;
K -= 1;
for (int i = min(13, N - 1); i >= 0; i--) {
offset[i] = K / fact[i];
if (offset[i] > i) {
cout << -1 << endl;
return 0;
}
K -= fact[i] * offset[i];
}
set<int> rem;
for (int i = max(1, N - 13); i <= N; i++) rem.insert(i);
for (int i = min(13, N - 1); i >= 0; i--) {
auto it = rem.begin();
for (int j = 0; j < offset[i]; j++, it++)
;
vals[i] = (*it);
rem.erase(it);
}
queue<long long> q;
q.push(4);
q.push(7);
while (!q.empty()) {
long long x = q.front();
q.pop();
if (x > N)
continue;
else
lidx.push_back(x);
q.push(x * 10 + 4);
q.push(x * 10 + 7);
}
sort(lidx.begin(), lidx.end());
int total = 0;
for (auto x : lidx)
if (N - x > 13) total += 1;
for (int i = min(13, N - 1), j = max(N - 13, 1); i >= 0; i--, j++)
if (islucky(j) && islucky(vals[i])) total += 1;
cout << total << endl;
return 0;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
signed main() {
cin.tie(0);
cout.tie(0);
ios_base::sync_with_stdio(false);
long long n, k;
cin >> n >> k;
auto lucky_check = [&](long long x) {
while (x) {
if (x % 10 != 4 and x % 10 != 7) return false;
x /= 10;
}
return true;
};
vector<long long> lucky_nos;
for (long long mask = 1; mask < (1 << 10); mask++) {
long long num1 = 0, num2 = 0;
bool ok = 0;
for (long long i = 0; i < 10; i++) {
num1 *= 10;
num2 *= 10;
if (mask >> i & 1) ok = 1;
if (ok)
num1 += ((mask >> i) & 1) ? 7 : 4, num2 += ((mask >> i) & 1) ? 4 : 7;
}
lucky_nos.push_back(num1);
lucky_nos.push_back(num2);
}
sort(begin(lucky_nos), end(lucky_nos));
map<long long, long long> m;
long long fac[14] = {1};
for (long long i = 1; i <= 13; i++) fac[i] = (fac[i - 1] * i);
k--;
for (long long i = n - 13; i <= n; i++) {
long long temp = (k / fac[n - i]);
k -= temp * fac[n - i];
for (long long j = 13; j >= 0; j--) {
if (temp == 0 and !m.count(n - j)) {
m[n - j] = i;
break;
}
if (!m.count(n - j)) temp--;
}
}
for (auto x : m) {
if (x.first <= 0 and x.second != x.first) return cout << "-1\n", 0;
}
long long ans = 0;
for (auto x : lucky_nos) {
if (x > n) break;
if (n - x <= 13) {
long long pos = m[x];
ans += lucky_check(pos);
} else
ans++;
}
cout << ans << '\n';
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | import java.util.*;
import java.io.*;
public class Main {
public static void main ( String args[] ) throws Exception {
(new Task23()).solve();
}
}
class Task23
{
Scanner in;
int[] getPermutation ( int[] a, long k )
{
boolean seen[] = new boolean[a.length];
int r[] = new int[a.length];
Arrays.fill ( r, -1 );
for ( int i = 0; i < a.length; ++i )
{
long fact = 1;
for ( int j = 1; j < a.length-i; ++j )
fact *= j;
long id = (k-1) / fact;
k -= id*fact;
for ( int j = 0; j < a.length; ++j )
if ( !seen[j] )
{
if ( id == 0 ) {
r[i] = a[j];
seen[j] = true;
break;
}
id--;
}
}
return r;
}
boolean isLucky ( int n ) {
for ( ; n > 0; n /= 10 )
if ( n%10 != 4 && n%10 != 7 )
return false;
return true;
}
int countLucky ( long num, long limit ) {
if ( num > limit )
return 0;
int ans = 1;
ans += countLucky ( num*10 + 4, limit );
ans += countLucky ( num*10 + 7, limit );
return ans;
}
public void solve ( ) throws Exception
{
in = new Scanner ( System.in );
int n = in.nextInt();
long k = in.nextLong();
if ( n <= 15 )
{
long fact = 1;
for ( int i = 1; i <= n; ++i )
fact *= i;
if ( k > fact )
{
println ( "-1\n" );
return;
}
}
int last[] = new int[Math.min(15,n)];
for ( int i = 0; i < last.length; ++i )
last[i] = n-last.length+i+1;
int ans = 0;
last = getPermutation ( last, k );
for ( int i = 0; i < last.length; ++i )
if ( isLucky(last[i]) && isLucky(n-last.length+i+1) )
ans++;
ans += countLucky ( 0, n-last.length )-1;
println ( ans );
}
public static void println ( Object o ) { System.out.println ( o ); }
public static void print ( Object o ) { System.out.print ( o ); }
public static void println ( ) { System.out.println ( ); }
}
| JAVA |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
vector<unsigned long long> luck;
unsigned long long f[15];
vector<unsigned long long> v;
int L;
set<unsigned long long> S;
void build() {
int cnt = 2;
luck.push_back(4);
luck.push_back(7);
for (int i = 2; i <= 9; ++i) {
int p = ((int)luck.size());
for (int w = 0; w < cnt; w++) {
p--;
luck.push_back(luck[p] * 10 + 4);
luck.push_back(luck[p] * 10 + 7);
}
cnt *= 2;
}
for (int i = 0; i < ((int)luck.size()); ++i) S.insert(luck[i]);
}
unsigned long long go(unsigned long long p, unsigned long long n) {
unsigned long long ans = 0;
for (int i = 0; i < ((int)luck.size()); ++i) {
if (p <= luck[i] && luck[i] <= n) ans++;
}
return ans;
}
int get(unsigned long long n) {
int ans = 0;
while (f[ans] < n) {
ans++;
}
return ans - 1;
}
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
;
build();
unsigned long long n, k;
cin >> n >> k;
f[0] = 1;
for (int i = 1; i < 15; ++i) {
f[i] = i * f[i - 1];
}
unsigned long long m;
for (int i = 2; i < 15; ++i) {
if (f[i - 1] < k && k <= f[i]) {
break;
m = i - 1;
}
}
if (n < 13 && f[n] < k) {
cout << "-1" << endl;
return 0;
}
if (k == 1)
cout << go(1, n);
else {
int w = get(k);
L = w;
unsigned long long ans = go(1, n - w - 1);
for (int i = n - w; i <= n; ++i) v.push_back(i);
while (k != 1) {
sort(v.begin() + L - w, v.end());
w = get(k);
int t = (k - 1) / f[w];
k -= t * f[w];
unsigned long long aux = v[L - w];
v[L - w] = v[L - w + t];
v[L - w + t] = aux;
w--;
}
for (int i = 0; i < L + 1; ++i) {
if (S.find(n - L + i) != S.end() && S.find(v[i]) != S.end()) ans++;
}
cout << ans << endl;
}
return 0;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Scanner;
public class Main {
static ArrayList<Long> aa;
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int k = in.nextInt();
aa = new ArrayList<Long>(2500);
dfs(7);
dfs(4);
int nn = n;
int l = Math.min(13, n);
n = l;
if (n < 13 && k > fact(n)) {
System.out.println(-1);
System.exit(0);
}
int[] a = new int[l];
boolean[] v = new boolean[l];
for (int i = 0; i < a.length; i++)
a[i] = nn - i;
Arrays.sort(a);
int[] ans = new int[a.length];
long g;
long kk = k;
long f;
boolean d;
for (int i = 0; i < a.length; i++) {
g = kk / (f = fact(n - 1)) + 1;
if (kk % f == 0)
g--;
int cnt = 0, j;
for (j = 0; j < a.length; j++) {
if (!v[j])
cnt++;
if (cnt == g)
break;
}
v[j] = true;
ans[i] = a[j];
d = false;
if (kk >= f)
d = true;
kk %= f;
if (d && kk == 0)
kk += f;
n--;
}
Collections.sort(aa);
int ret = 0;
for (int i = 0; i < aa.size(); i++)
if (aa.get(i) > nn - 13 + 1) {
ret = i;
break;
}
for (int i = 0; i < ans.length; i++)
if (aa.contains((long) ans[i])
&& aa.contains((long) (i + nn - l + 1)))
ret++;
System.out.println(ret);
}
public static long fact(long n) {
if (n == 1 || n == 0)
return 1;
return n * fact(n - 1);
}
public static void dfs(long n) {
aa.add(n);
if (n > 1000000000)
return;
dfs(n * 10 + 4);
dfs(n * 10 + 7);
}
} | JAVA |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | import java.util.ArrayList;
import java.util.Scanner;
public class E {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int k = sc.nextInt();
if (n < 13) {
if (k > fac(n)) {
System.out.println(-1);
return;
}
}
int[]a = new int[14];
int m, ans = 0, add;
if (n <= 13) {
m = n;
for (int i = 1; i <= m; i++) {
a[i] = i;
}
add = 0;
}
else {
m = 13;
for (int i = 1; i <= 13; i++) {
a[i] = n-13+i;
}
add = n-13;
ans = num_lucly(n-13);
}
long[]fac = new long[m+1];
fac[0] = 1;
ArrayList<Integer> remain = new ArrayList<Integer>();
for (int i = 1; i <= m; i++) {
fac[i] = fac[i-1] * i;
remain.add(i);
}
for (int i = 1; i <= m; i++) {
int t = (int) (k / fac[m-i]);
if (k % fac[m-i] != 0)
t++;
int ind = (t-1) % (m-i+1);
int temp = remain.get(ind);
remain.remove(ind);
if (luckly(a[temp]) && luckly(i+add))
ans++;
}
System.out.println(ans);
}
private static boolean luckly(int k) {
String s = k+"";
for (int i = 0; i < s.length(); i++) {
if (s.charAt(i) != '4' && s.charAt(i) != '7')
return false;
}
return true;
}
private static int num_lucly(int k) {
int res = 0, L;
String s;
int lucly;
for (int i = 1; i <= 9; i++) {
if (i <= (k+"").length()) {
for (int j = 0; j < (1 << i); j++) {
s = Integer.toBinaryString(j);
L = s.length();
for (int j2 = 1; j2 <= i-L; j2++) {
s = "0"+s;
}
lucly = 0;
for (int j2 = 0; j2 < i; j2++) {
lucly *= 10;
if (s.charAt(j2)=='0')
lucly += 4;
else
lucly += 7;
}
if (lucly <= k)
res++;
}
}
}
return res;
}
private static long fac(int n) {
if (n < 2)
return 1;
return n * fac(n-1);
}
} | JAVA |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
const long long maxn = 1e5 + 10, maxe = 15;
long long n, k, x, ans = -1;
long long fact[maxe], A[maxe], use[maxe];
void lucky_generator(long long a) {
if (a > x) return;
ans++;
lucky_generator(a * 10 + 4);
lucky_generator(a * 10 + 7);
}
bool is_lucky(long long a) {
if (a < 3) return 0;
a++;
while (a) {
if (a % 10 != 4 && a % 10 != 7) return 0;
a /= 10;
}
return 1;
}
void solve(long long index, long long size) {
if (index == size) return;
int a = k / fact[size - index - 1] + 1, i = 0;
k -= (a - 1) * fact[size - index - 1];
for (;; i++) {
if (!use[i]) {
a--;
if (!a) break;
}
}
A[index] = i;
use[i] = 1;
if (is_lucky(index + x) && is_lucky(i + x)) {
ans++;
}
solve(index + 1, size);
}
int main() {
fact[0] = 1;
for (int i = 1; i < maxe + 1; i++) fact[i] = i * fact[i - 1];
cin >> n >> k;
k--;
if (n < maxe && k >= fact[n]) {
cout << "-1\n";
return 0;
}
x = max(0ll, n - maxe);
lucky_generator(0);
solve(0ll, n - x);
cout << ans << endl;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
int N, num = 0, co = 0, tempo[16], tag[17];
long long temp[10001], K, dp[16], ans[16];
void DFS(long long now) {
if (now > N) {
temp[num++] = now;
return;
}
temp[num++] = now;
DFS(now * 10 + 4);
DFS(now * 10 + 7);
}
int Check(long long key) {
for (int i = 1; i < num; i++)
if (temp[i] == key) return true;
return false;
}
int main() {
scanf("%d%I64d", &N, &K);
K--;
DFS(0);
sort(temp, temp + num);
dp[0] = 1;
for (long long i = 1; dp[i - 1] * i <= K; i++) dp[i] = dp[i - 1] * i, co++;
for (int i = co; i >= 0; i--) {
long long x = (K / dp[i]);
int gg = 0;
for (int j = 0; j <= x; j++)
if (tag[j] == 1) gg++;
while (gg > 0) {
x++;
if (tag[x] == 1) gg++;
gg--;
}
tag[x] = 1;
ans[i] = x;
K -= (K / dp[i]) * dp[i];
}
if (co >= N)
printf("-1\n");
else {
int show = 0, run = 1;
for (; run < num && temp[run] <= N - co - 1; run++) show++;
run--;
for (int i = co; i >= 0; i--) {
if (Check(N - i) && Check(ans[i] + 1 + (N - co - 1))) show++;
}
printf("%d\n", show);
}
return 0;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
long long P[2000], sz, Ans, N, K;
long long Q[10000];
int size;
void Dfs(int k, long long s) {
Q[++size] = s;
if (k == 11) {
return;
}
Dfs(k + 1, s * 10 + 4);
Dfs(k + 1, s * 10 + 7);
}
void Init() {
Dfs(1, 0);
sort(Q + 1, Q + size + 1);
}
long long Fac(long long s) {
if (s == 1) return 1;
return s * Fac(s - 1);
}
bool Check(long long n) {
stringstream ss;
string s;
ss << n;
ss >> s;
bool f = 1;
for (int i = 0; i < s.size(); i++)
if (s[i] != '4' && s[i] != '7') {
f = 0;
break;
}
return f;
}
int main() {
scanf("%I64d%I64d", &N, &K);
K--;
long long last = 1;
Init();
for (int i = 1; i <= size; i++)
if (Q[i] < max(1ll, N - 13) && Check(Q[i])) Ans++;
for (int i = max(1ll, N - 13); i < N; i++) {
long long tmp = Fac(N - i);
long long l = 0, r = N - i, mid, ans = 0;
while (l <= r) {
mid = (l + r) >> 1;
if (mid * tmp > K)
r = mid - 1;
else
ans = mid, l = mid + 1;
}
K -= ans * tmp;
last += ans;
ans++;
for (int j = 1; j <= sz; j++)
if (P[j] <= ans) ans++;
P[++sz] = ans;
sort(P + 1, P + sz + 1);
if (Check(i) && Check(max(0ll, N - 14) + ans)) Ans++;
}
long long ans = 1;
for (int j = 1; j <= sz; j++)
if (P[j] <= ans) ans++;
if (Check(N) && Check(max(0ll, N - 14) + ans)) Ans++;
if (K > 0)
puts("-1");
else
printf("%I64d\n", Ans);
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
const int INF = 1e9 + 10;
const long long int INFLL = 1e18 + 10;
const long double EPS = 1e-8;
const long double EPSLD = 1e-14;
const long long int MOD = 1e9 + 7;
template <class T>
T &chmin(T &a, const T &b) {
return a = min(a, b);
}
template <class T>
T &chmax(T &a, const T &b) {
return a = max(a, b);
}
long long int mask_to_luckynumber(int mask) {
long long int base = 1;
long long int res = 0;
bool end = false;
for (int i = (0); i < (int)(10); i++) {
if (mask % 3 == 0)
end = true;
else if (end)
return INFLL;
if (mask % 3 == 1) res += base * 4;
if (mask % 3 == 2) res += base * 7;
base *= 10;
mask /= 3;
}
return res;
}
long long int fact[72];
int n;
long long int k;
bool used[72];
int res[72];
int main() {
fact[0] = 1;
for (int i = (1); i < (int)(16); i++) fact[i] = fact[i - 1] * i;
cin >> n >> k;
if (n < 16 && fact[n] < k) return puts("-1");
if (n < 4) return puts("0");
if (n < 7) {
vector<int> v(0);
for (int i = (0); i < (int)(n); i++) v.emplace_back(i);
do {
k--;
if (k == 0) break;
} while (next_permutation((v).begin(), (v).end()));
if (v[3] == 3) return puts("1");
return puts("0");
}
for (int i = (0); i < (int)(min(n, 15)); i++) {
int p = 0;
while (used[p]) p++;
while (k > fact[min(n, 15) - 1 - i]) {
k -= fact[min(n, 15) - 1 - i];
p++;
while (used[p]) p++;
}
res[i] = p;
used[p] = true;
}
int ans = 0;
long long int e = 1;
for (int i = (0); i < (int)(10); i++) e *= 3;
vector<int> v;
for (int mask = (1); mask < (int)(e); mask++) {
long long int lucky = mask_to_luckynumber(mask);
if (lucky == INFLL) continue;
if (lucky < n - 14)
ans++;
else if (lucky <= n)
v.emplace_back(lucky);
}
for (auto &w : v)
for (auto &ww : v)
if (res[min(n, 15) - 1 - (n - w)] == min(n, 15) - 1 - (n - ww)) ans++;
cout << ans << endl;
return 0;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
void ga(int N, int *A) {
for (int i(0); i < N; i++) scanf("%d", A + i);
}
long long f[(20) + 1] = {1};
int C[26], X;
char s[666], r[666];
void nth(long long K, char *o, char *s) {
if (!X++)
for (int k(1); k < (20) + 1; k++) f[k] = f[k - 1] * k;
long long L(strlen(s)), X(f[L]), T, l(0);
(memset(C, o[L] = 0, sizeof(C)));
for (int i(0); i < L; i++) ++C[s[i] - 97];
for (int i(0); i < 26; i++) X /= f[C[i]];
if (K > X) {
*o = 0;
return;
};
for (int i(0); i < L; i++)
for (int j(0); j < 26; j++)
if (C[j]) {
--C[j];
T = f[L - i - 1];
for (int i(0); i < 26; i++) T /= f[C[i]];
if (K <= T) {
o[l++] = 'a' + j;
break;
}
++C[j], K -= T;
}
}
long long fc(int a) { return a ? fc(a - 1) * a : 1; }
int N, K, T;
void rc(int r, long long S) {
if (S > N - (20)) return;
if (!r) {
++T;
return;
}
rc(r - 1, S * 10 + 4), rc(r - 1, S * 10 + 7);
}
bool LC(int N) {
while (N) {
if (N % 10 != 7 && N % 10 != 4) return 0;
N /= 10;
}
return 1;
}
int main(void) {
scanf("%d%d", &N, &K);
if (N <= (20) && fc(N) < K) return puts("-1");
if (N < (20)) {
for (int i(0); i < N; i++) s[i] = r[i] = 97 + i;
nth(K, s, r);
for (int i(0); i < N; i++) T += LC(s[i] - 96) && LC(i + 1);
printf("%d\n", T);
return 0;
}
for (int i(0); i < 10; i++) rc(i + 1, 0);
for (int i(0); i < (20); i++) s[i] = r[i] = 97 + i;
nth(K, s, r);
for (int i(0); i < (20); i++)
T += LC(s[i] - 96 + N - (20)) && LC(N - (20) + i + 1);
printf("%d\n", T);
return 0;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
#pragma comment(linker, "/STACK:256777216")
using namespace std;
long long num[10000];
int nn = 0;
long long fact[] = {1, 1, 2, 6, 24,
120, 720, 5040, 40320, 362880,
3628800, 39916800, 479001600, 6227020800, 87178291200};
void gen(long long x) {
if (x > 4444444447) {
return;
}
num[nn] = x * 10 + 4;
nn++;
num[nn] = x * 10 + 7;
nn++;
gen(x * 10 + 4);
gen(x * 10 + 7);
}
int notUsed(vector<bool> &used, int blockNum) {
int j, pos = 0;
for (j = 1; j < used.size(); j++) {
if (!used[j]) pos++;
if (blockNum == pos) break;
}
return j;
}
vector<int> permutation_by_num(int n, int num) {
vector<int> res(n);
vector<bool> used(n + 1, false);
for (int i = 0; i < n; i++) {
long long blockNum = (num - 1) / fact[n - i - 1] + 1;
long long j = notUsed(used, blockNum);
res[i] = j;
used[j] = true;
num = (num - 1) % fact[n - i - 1] + 1;
}
return res;
}
bool f(long long a) {
if (a == 0) return false;
while (a != 0) {
if (a % 10 != 7 && a % 10 != 4) return false;
a /= 10;
}
return true;
}
bool prov(long long a, long long b) { return f(a) && f(b); }
int main() {
gen(0);
sort(num, num + nn);
long long n, k;
cin >> n >> k;
int t = 14;
if (n < 14) {
t = n;
}
if (k > fact[t]) {
cout << -1;
return 0;
}
vector<int> ansMs = permutation_by_num(t, k);
int ans = 0;
if (t == 14) {
for (int i = 0; i < nn; i++) {
if (num[i] > n - 14) {
ans = i;
break;
}
}
for (int i = 0; i < t; i++) {
if (prov(n - 14 + i + 1, ansMs[i] + n - 14)) ans++;
}
} else {
for (int i = 0; i < t; i++) {
if (prov(1 + i, ansMs[i])) ans++;
}
}
cout << endl;
cout << ans;
return 0;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | import java.util.List;
import java.io.IOException;
import java.util.Arrays;
import java.util.InputMismatchException;
import java.util.ArrayList;
import java.util.Comparator;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.Collection;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author Egor Kulikov ([email protected])
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
}
class TaskC {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int count = in.readInt();
int index = in.readInt() - 1;
int tail = -1;
for (int i = 0; i <= count; i++) {
if (IntegerUtils.factorial(i) > index) {
tail = i;
break;
}
}
if (tail == -1) {
out.println(-1);
return;
}
long[] happy = generateHappy();
int answer = Arrays.binarySearch(happy, count - tail);
if (answer < 0)
answer = -answer - 1;
else
answer++;
boolean[] taken = new boolean[tail];
int start = count - tail + 1;
for (int i = 0; i < tail; i++) {
long factorial = IntegerUtils.factorial(tail - i - 1);
for (int j = 0; j < tail; j++) {
if (!taken[j]) {
if (factorial > index) {
taken[j] = true;
if (Arrays.binarySearch(happy, start + i) >= 0 && Arrays.binarySearch(happy, start + j) >= 0)
answer++;
break;
} else
index -= factorial;
}
}
}
out.println(answer);
}
private long[] generateHappy() {
long[] happy = new long[(1 << 10) - 2];
happy[0] = 4;
happy[1] = 7;
int first = 0;
int last = 2;
for (int i = 2; i <= 9; i++) {
for (int j = 0; j < last - first; j++) {
happy[last + 2 * j] = 10 * happy[first + j] + 4;
happy[last + 2 * j + 1] = 10 * happy[first + j] + 7;
}
int next = last + 2 * (last - first);
first = last;
last = next;
}
return happy;
}
}
class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
class IntegerUtils {
public static long factorial(int n) {
long result = 1;
for (int i = 2; i <= n; i++)
result *= i;
return result;
}
}
| JAVA |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
map<long long int, bool> mp;
int N, sayi = 1, dizi[20], ekle, mark[20], T, end = 0, Q, bsmk, sayac;
long long int K, carp = 1, carp2 = 1;
int bul(int X) {
int T = 0;
for (int i = 1; i <= Q; i++) {
if (!mark[i]) T++;
if (T == X) return i;
}
}
void Kth(int N) {
carp = 1;
for (int i = 2; i <= N - 1; i++) carp *= i;
T = N - 1;
while (sayi != N) {
if (K % carp == 0 && K != 0)
ekle = K / carp;
else
ekle = K / carp + 1;
K -= (ekle - 1) * carp;
ekle = bul(ekle);
mark[ekle] = 1;
dizi[sayi] = ekle;
sayi++;
carp /= T--;
}
dizi[N] = bul(1);
}
int bol(int K) {
while (K > 0) {
K /= 10;
bsmk++;
}
return bsmk;
}
void rec(int H, long long int K) {
if (H <= bsmk) {
if (K >= 1 && K <= N - Q) sayac++;
if (H == bsmk) return;
}
rec(H + 1, K * 10 + 4);
rec(H + 1, K * 10 + 7);
}
bool isluck(long long int P) {
int tzv;
while (P > 0) {
tzv = P % 10;
P /= 10;
if (tzv != 4 && tzv != 7) return 0;
}
return 1;
}
int main() {
scanf("%d %lli", &N, &K);
for (int i = 2; i < 16; i++) carp *= i;
Q = 15;
while (carp >= K && Q != 0) carp /= Q--;
Q++;
if (Q > N) {
printf("-1\n");
return 0;
}
T = Q - 1;
bsmk = bol(N - Q);
rec(0, 0);
Kth(Q);
for (int i = 1; i <= Q; i++) {
if (isluck(dizi[i] + N - Q) && isluck(i + N - Q)) sayac++;
}
printf("%d\n", sayac);
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | import java.io.BufferedInputStream;
import java.io.BufferedOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintStream;
import java.util.HashSet;
import java.util.Set;
import java.util.TreeSet;
/**
* @author Ivan Pryvalov ([email protected])
*/
public class Codeforces_Round_91_Div1_C implements Runnable{
long[] cnt = new long[20];
private void solve() throws IOException {
int n = scanner.nextInt();
int k = scanner.nextInt();//10^9
long curCnt = 1;
int maxCnt = 1;
for (; maxCnt<=n; maxCnt++){
curCnt *= maxCnt;
if (curCnt >= k){
// cnt[maxCnt] = res;
// maxCnt++;
break;
}
cnt[maxCnt] = curCnt;
}
if (curCnt < k){
out.println(-1);
return;
}
int firstIdx = n - maxCnt + 1;
int[] perm = new int[maxCnt];
Set<Integer> avail = new TreeSet<Integer>();
for (int i = 0; i < perm.length; i++) {
avail.add(i);
}
int left = k;
int j = maxCnt-1;
for (int i=0; i<maxCnt-1; i++, j--){
long full = 0;
if (left>0){
full = (left-1) / cnt[j];
}
Integer num = (Integer)avail.toArray()[(int)(full)];
perm[i] = num;
avail.remove(num);
left -= full * cnt[j];
}
Integer lastNum = (Integer)avail.toArray()[0];
perm[maxCnt-1] = lastNum;
int res = 0;
for(int i=0; i<perm.length; i++){
if (isLucky(perm[i]+firstIdx) && isLucky(i+firstIdx)){
res++;
}
}
cntFirst = 0;
R = firstIdx-1;
go(0);
out.println(cntFirst+res);
}
private static boolean isLucky(int i) {
while(i>0){
int d = i%10;
if (d!=7 && d!=4)
return false;
i/=10;
}
return true;
}
int cntFirst;
int R;
private void go(long i) {
if (i>R){
return;
}
if (i!=0){
cntFirst++;
}
go (i*10+4);
go (i*10+7);
}
/////////////////////////////////////////////////
final int BUF_SIZE = 1024 * 1024 * 8;//important to read long-string tokens properly
final int INPUT_BUFFER_SIZE = 1024 * 1024 * 8 ;
final int BUF_SIZE_INPUT = 1024;
final int BUF_SIZE_OUT = 1024;
boolean inputFromFile = false;
String filenamePrefix = "A-small-attempt0";
String inSuffix = ".in";
String outSuffix = ".out";
//InputStream bis;
//OutputStream bos;
PrintStream out;
ByteScanner scanner;
ByteWriter writer;
@Override
public void run() {
try{
InputStream bis = null;
OutputStream bos = null;
//PrintStream out = null;
if (inputFromFile){
File baseFile = new File(getClass().getResource("/").getFile());
bis = new BufferedInputStream(
new FileInputStream(new File(
baseFile, filenamePrefix+inSuffix)),
INPUT_BUFFER_SIZE);
bos = new BufferedOutputStream(
new FileOutputStream(
new File(baseFile, filenamePrefix+outSuffix)));
out = new PrintStream(bos);
}else{
bis = new BufferedInputStream(System.in, INPUT_BUFFER_SIZE);
bos = new BufferedOutputStream(System.out);
out = new PrintStream(bos);
}
scanner = new ByteScanner(bis, BUF_SIZE_INPUT, BUF_SIZE);
writer = new ByteWriter(bos, BUF_SIZE_OUT);
solve();
out.flush();
}catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
public interface Constants{
final static byte ZERO = '0';//48 or 0x30
final static byte NINE = '9';
final static byte SPACEBAR = ' '; //32 or 0x20
final static byte MINUS = '-'; //45 or 0x2d
final static char FLOAT_POINT = '.';
}
public static class EofException extends IOException{
}
public static class ByteWriter implements Constants {
int bufSize = 1024;
byte[] byteBuf = new byte[bufSize];
OutputStream os;
public ByteWriter(OutputStream os, int bufSize){
this.os = os;
this.bufSize = bufSize;
}
public void writeInt(int num) throws IOException{
int byteWriteOffset = byteBuf.length;
if (num==0){
byteBuf[--byteWriteOffset] = ZERO;
}else{
int numAbs = Math.abs(num);
while (numAbs>0){
byteBuf[--byteWriteOffset] = (byte)((numAbs % 10) + ZERO);
numAbs /= 10;
}
if (num<0)
byteBuf[--byteWriteOffset] = MINUS;
}
os.write(byteBuf, byteWriteOffset, byteBuf.length - byteWriteOffset);
}
/**
* Please ensure ar.length <= byteBuf.length!
*
* @param ar
* @throws IOException
*/
public void writeByteAr(byte[] ar) throws IOException{
for (int i = 0; i < ar.length; i++) {
byteBuf[i] = ar[i];
}
os.write(byteBuf,0,ar.length);
}
public void writeSpaceBar() throws IOException{
byteBuf[0] = SPACEBAR;
os.write(byteBuf,0,1);
}
}
public static class ByteScanner implements Constants{
InputStream is;
public ByteScanner(InputStream is, int bufSizeInput, int bufSize){
this.is = is;
this.bufSizeInput = bufSizeInput;
this.bufSize = bufSize;
byteBufInput = new byte[this.bufSizeInput];
byteBuf = new byte[this.bufSize];
}
public ByteScanner(byte[] data){
byteBufInput = data;
bufSizeInput = data.length;
bufSize = data.length;
byteBuf = new byte[bufSize];
byteRead = data.length;
bytePos = 0;
}
private int bufSizeInput;
private int bufSize;
byte[] byteBufInput;
byte by=-1;
int byteRead=-1;
int bytePos=-1;
byte[] byteBuf;
int totalBytes;
boolean eofMet = false;
private byte nextByte() throws IOException{
if (bytePos<0 || bytePos>=byteRead){
byteRead = is==null? -1: is.read(byteBufInput);
bytePos=0;
if (byteRead<0){
byteBufInput[bytePos]=-1;//!!!
if (eofMet)
throw new EofException();
eofMet = true;
}
}
return byteBufInput[bytePos++];
}
/**
* Returns next meaningful character as a byte.<br>
*
* @return
* @throws IOException
*/
public byte nextChar() throws IOException{
while ((by=nextByte())<=0x20);
return by;
}
/**
* Returns next meaningful character OR space as a byte.<br>
*
* @return
* @throws IOException
*/
public byte nextCharOrSpacebar() throws IOException{
while ((by=nextByte())<0x20);
return by;
}
/**
* Reads line.
*
* @return
* @throws IOException
*/
public String nextLine() throws IOException {
readToken((byte)0x20);
return new String(byteBuf,0,totalBytes);
}
public byte[] nextLineAsArray() throws IOException {
readToken((byte)0x20);
byte[] out = new byte[totalBytes];
System.arraycopy(byteBuf, 0, out, 0, totalBytes);
return out;
}
/**
* Reads token. Spacebar is separator char.
*
* @return
* @throws IOException
*/
public String nextToken() throws IOException {
readToken((byte)0x21);
return new String(byteBuf,0,totalBytes);
}
/**
* Spacebar is included as separator char
*
* @throws IOException
*/
private void readToken() throws IOException {
readToken((byte)0x21);
}
private void readToken(byte acceptFrom) throws IOException {
totalBytes = 0;
while ((by=nextByte())<acceptFrom);
byteBuf[totalBytes++] = by;
while ((by=nextByte())>=acceptFrom){
byteBuf[totalBytes++] = by;
}
}
public int nextInt() throws IOException{
readToken();
int num=0, i=0;
boolean sign=false;
if (byteBuf[i]==MINUS){
sign = true;
i++;
}
for (; i<totalBytes; i++){
num*=10;
num+=byteBuf[i]-ZERO;
}
return sign?-num:num;
}
public long nextLong() throws IOException{
readToken();
long num=0;
int i=0;
boolean sign=false;
if (byteBuf[i]==MINUS){
sign = true;
i++;
}
for (; i<totalBytes; i++){
num*=10;
num+=byteBuf[i]-ZERO;
}
return sign?-num:num;
}
/*
//TODO test Unix/Windows formats
public void toNextLine() throws IOException{
while ((ch=nextChar())!='\n');
}
*/
public double nextDouble() throws IOException{
readToken();
char[] token = new char[totalBytes];
for (int i = 0; i < totalBytes; i++) {
token[i] = (char)byteBuf[i];
}
return Double.parseDouble(new String(token));
}
}
public static void main(String[] args) {
new Codeforces_Round_91_Div1_C().run();
}
}
| JAVA |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
set<long long> lucky;
void gen(long long g, long long lim) {
if (g + 4 > lim)
return;
else
lucky.insert(g + 4);
gen(10 * (g + 4), lim);
if (g + 7 > lim)
return;
else
gen(10 * (g + 7), lim);
lucky.insert(g + 7);
}
bool check(long long num) {
for (long long x = num; x > 0; x /= 10) {
if (x % 10 != 4 && x % 10 != 7) {
return false;
}
}
return true;
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
long long n, k;
cin >> n >> k;
if (n < 13) {
long long fat = 1;
for (int i = 2; i <= n; ++i) fat *= i;
if (fat < k) {
cout << -1 << '\n';
return 0;
}
}
--k;
stack<int> f;
for (int i = 1; k > 0; ++i) {
f.push(k % i);
k /= i;
}
gen(0, n - f.size());
int len = f.size();
vector<long long> nums(len), perm(len, 0);
iota(nums.begin(), nums.end(), n - len + 1);
for (long long i = 0; i < len; ++i) {
perm[i] = nums[f.top()];
nums.erase(nums.begin() + f.top());
f.pop();
}
long long ans = lucky.size();
for (long long j = n - len, i = 0; i < len; ++i, ++j) {
if (check(j + 1) && check(perm[i])) {
++ans;
}
}
cout << ans << '\n';
return 0;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | import java.util.*;
public class LuckyPermutation {
public static void main (String [] arg) {
Scanner sc = new Scanner(System.in);
long N = sc.nextInt();
long K = sc.nextInt()-1;
boolean overflow = (N > 15);
int [] P = (overflow) ? permutation(15, K) : permutation((int)N,K);
if (P == null) { System.out.println("-1"); return;}
if (overflow)
for (int i = 0; i<P.length; ++i) P[i] += (N-15);
//System.err.println(Arrays.toString(P));
long count = 0;
for (int i = 0; i<P.length; ++i) {
long index = (overflow) ? (N-15)+i+1 : i+1;
//System.err.println("Trying " + index + " and " + P[i]);
if (isLucky(index) && isLucky(P[i])) count++;
}
ArrayList<Long> Lucky = new ArrayList<Long>(1<<12);
Lucky.add(4L);
Lucky.add(7L);
for (int LEN = 2; LEN <= 10; ++LEN) {
for (int i = 0; i<(1<<LEN); ++i) {
long NUM = 0;
for (int j = 0; j<LEN; ++j) {
NUM += ((i & (1L<<j)) != 0) ? 4 : 7;
NUM *= 10L;
}
Lucky.add(NUM/10);
}
}
Collections.sort(Lucky);
int start = 0;
long L = N-15;
for (int i = 0; i<Lucky.size(); ++i) if (L < Lucky.get(i)) {start=i; break;}
count += (start);
System.out.println(count);
}
public static boolean isLucky(long i) {
//System.err.println(i + " : " + Long.toString(i).replaceAll("[47]",""));
return (Long.toString(i).replaceAll("[47]","").length() == 0);
}
public static int [] permutation (int N, long kk) {
long tA = kk;
long tF = fact(N);
if (kk >= tF) return null;
boolean [] used = new boolean [N];
int [] B = new int [N];
for (int i = B.length-1; i>0; --i) {
tF /= (i+1);
long k = tA / tF;
int j = 0;
for (;j<B.length; ++j) {
if (used[j]) continue;
if (--k < 0) break;
}
used[j] = true;
B[B.length-1-i] = j+1;
tA %= tF;
}
for (int j = 0; j<B.length; ++j) if (!used[j]) {B[B.length-1]=j+1;break;}
return B;
}
public static long fact (long N) {
long F = 1;
for (long i = 2; i<=N; ++i) F*=i;
return F;
}
} | JAVA |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | import java.io.*;
import java.math.*;
import java.util.*;
import java.util.Random;
import static java.lang.Math.*;
public class Solution implements Runnable {
public static void main(String[] args) throws Exception {
new Thread(null, new Solution(), "", 1 << 25).start();
}
BufferedReader in;
PrintWriter out;
StringTokenizer st;
final String fname = "";
private String next() throws Exception {
if (st == null || !st.hasMoreElements())
st = new StringTokenizer(in.readLine());
return st.nextToken();
}
private int nextInt() throws Exception {
return Integer.parseInt(next());
}
private long nextLong() throws Exception {
return Long.parseLong(next());
}
private double nextDouble() throws Exception {
return Double.parseDouble(next());
}
public void run() {
try {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(new OutputStreamWriter(System.out));
solve();
} catch (Exception ex) {
throw new RuntimeException(ex);
} finally {
out.close();
}
}
void rec(long num) {
if (num>1000000000) {
return;
}
if (num!=0) {
lucky.add(num);
}
rec(num*10+4);
rec(num*10+7);
}
ArrayList<Long> lucky = new ArrayList<Long>();
long fact(long num) {
if (num==0) return 1;
long ret=1;
for (long i=1;i<=num;i++)
ret*=i;
return ret;
}
boolean isLucky(long num) {
while (num>0) {
if (num%10!=4 && num%10!=7) return false;
num/=10;
}
return true;
}
public void solve() throws Exception {
long n=nextLong();
long k=nextLong();
long fact=1;
long j=-1;
for (long i=1;i<=n;i++) {
fact=fact*i;
if (fact>=k) {
j=i;
break;
}
}
if (fact<k) {
out.println(-1);
return;
}
rec(0);
Collections.sort(lucky);
long ans=0;
long bound = n-j;
int l=-1;
int r=lucky.size();
while (r-l>1) {
int mid=(r+l)/2;
if (lucky.get(mid)<=bound) l=mid; else r=mid;
}
ans+=(l+1);
ArrayList<Long> numbers = new ArrayList<Long>();
for (long pos=n-j+1;pos<=n;pos++)
numbers.add(pos);
long cur=0;
for (long pos=n-j+1;pos<=n;pos++) {
for (int i=0;i<numbers.size();i++) {
cur+=fact(n-pos);
if (cur>=k) {
cur-=fact(n-pos);
if (isLucky(pos) && isLucky(numbers.get(i))) ans++;
numbers.remove(i);
break;
}
}
}
out.println(ans);
}
}
| JAVA |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
vector<long long> lucky, f;
vector<int> u;
long long n, k;
void dfs(long long v) {
if (v > 7777777777LL) return;
if (v) lucky.push_back(v);
dfs(v * 10 + 4);
dfs(v * 10 + 7);
}
int main() {
dfs(0);
sort(lucky.begin(), lucky.end());
f.push_back(1);
cin >> n >> k;
for (int i = 2; i <= n; i++) {
if (f.back() >= k) break;
f.push_back(f.back() * i);
}
if (f.size() == n && k > f.back()) {
puts("-1");
return 0;
}
int cnt = 0;
for (int i = 0; i < (int)lucky.size(); i++)
if (lucky[i] > n - (int)f.size())
break;
else
cnt++;
u.resize(f.size());
reverse(f.begin(), f.end());
f.push_back(2000);
k--;
for (int i = 0; i < (int)u.size(); i++) {
int c = 0, a;
while (k >= f[i + 1]) {
k -= f[i + 1];
c++;
}
for (int j = 0; j < (int)u.size(); j++)
if (!u[j])
if (c)
c--;
else {
a = j;
u[j] = 1;
break;
}
a += n - (int)u.size() + 1;
int j = i + n - (int)u.size() + 1;
if (binary_search(lucky.begin(), lucky.end(), a) &&
binary_search(lucky.begin(), lucky.end(), j))
cnt++;
}
cout << cnt << endl;
return 0;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
inline void read(register int *n) {
register char c;
*n = 0;
do {
c = getchar();
} while (c < '0' || c > '9');
do {
*n = c - '0' + *n * 10;
c = getchar();
} while (c >= '0' && c <= '9');
}
vector<int> kperm(vector<int> V, long long k) {
k--;
vector<int> res;
long long fac[20] = {1};
for (register int i = (1); i < (20); ++i) fac[i] = i * fac[i - 1];
if (k >= fac[((int)(V).size())]) {
cout << -1 << "\n";
exit(0);
}
while (!V.empty()) {
long long f = fac[((int)(V).size()) - 1];
res.push_back(V[k / f]);
V.erase(V.begin() + k / f);
k %= f;
}
return res;
}
vector<long long> V;
void gen(long long x) {
if (x > 0) V.push_back(x);
if (x > 1000LL * 1000 * 1000 * 100) return;
gen(x * 10 + 7);
gen(x * 10 + 4);
}
bool islucky(int x) {
while (x % 10 == 7 || x % 10 == 4) x /= 10;
return x == 0;
}
int main(int argv, char **argc) {
gen(0);
long long n, k, m;
cin >> n >> k;
m = min(16LL, n);
vector<int> tmp;
for (register int i = (0); i < (m); ++i) tmp.push_back(n - i);
sort((tmp).begin(), (tmp).end());
int cnt = 0;
for (register int i = (0); i < (((int)(V).size())); ++i)
if (V[i] <= n - 16) cnt++;
tmp = kperm(tmp, k);
for (register int i = (0); i < (m); ++i)
if (islucky(tmp[((int)(tmp).size()) - 1 - i]) && islucky(n - i)) cnt++;
cout << cnt << "\n";
return 0;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using std::cin;
using std::cout;
using std::endl;
using std::min;
using std::string;
using std::vector;
long long next(long long x) {
if (x == 0) return 0;
if (x % 10 <= 4) {
long long a = next(x / 10);
return a * 10 + 4;
}
if (x % 10 <= 7) {
long long a = next(x / 10);
if (a > x / 10)
return a * 10 + 4;
else
return a * 10 + 7;
}
return next((x + 10 - (x % 10)) / 10) * 10 + 4;
}
struct pair {
int x, y;
};
int main() {
int n, k;
cin >> n >> k;
long long x = 1;
int i = 1;
vector<int> fac;
fac.push_back(1);
while (x < k) {
++i;
x *= i;
fac.push_back(x);
}
if (i > n) {
cout << -1 << endl;
return 0;
}
int out = 0;
long long l = 4;
while (l <= n - i) {
++out;
l = next(l + 1);
}
vector<pair> data(i);
for (int j = 0; j < i; ++j) {
data[j].x = j + n - i + 1;
if (i == j + 1)
data[j].y = 1 + data[j].x;
else {
int q = k / fac[i - j - 2];
++q;
if (k % fac[i - j - 2] == 0) --q;
k = k - (q - 1) * fac[i - j - 2];
data[j].y = q + data[j].x;
}
}
vector<bool> use(i, false);
for (int j = 0; j < i; ++j) {
int num = data[j].y - data[j].x;
int qq = 0;
while ((num > 1) || (use[qq])) {
if (!use[qq]) --num;
++qq;
}
data[j].y = data[0].x + qq;
use[qq] = true;
if ((data[j].x == next(data[j].x)) && (data[j].y == next(data[j].y))) ++out;
}
cout << out << endl;
return 0;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | import sys
from math import factorial
def kth_perm(seq, index):
result = []
fact = factorial(len(seq))
index %= fact
while seq:
fact = fact / len(seq)
choice, index = index // fact, index % fact
result.append(seq.pop(choice))
return result
def inc_lucky(s, index):
if index == -1:
s = ['4'] + s
return s
if s[index] == '4':
s[index] = '7'
return s
s[index] = '4'
return inc_lucky(s, index - 1)
def is_lucky(s):
for e in s:
if e != '4' and e != '7':
return False
return True
n, k = map(int, raw_input().split())
seq = range(max(n - 12, 1), n + 1)
if k > factorial(len(seq)):
print -1
sys.exit(0)
seq = kth_perm(seq, k - 1)
r = 0
num = ['4']
while int(''.join(num)) < n - 12:
r += 1
num = inc_lucky(num, len(num) - 1)
for i, num in enumerate(seq):
index = i + n - len(seq) + 1
if is_lucky(str(index)) and is_lucky(str(num)):
r += 1
print r
| PYTHON |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | L = [4,7,44,47,74,77,444,447,474,477,744,747,774,777,4444,4447,4474,4477,4744,4747,4774,4777,7444,7447,7474,7477,7744,7747,7774,7777,44444,44447,44474,44477,44744,44747,44774,44777,47444,47447,47474,47477,47744,47747,47774,47777,74444,74447,74474,74477,74744,74747,74774,74777,77444,77447,77474,77477,77744,77747,77774,77777,444444,444447,444474,444477,444744,444747,444774,444777,447444,447447,447474,447477,447744,447747,447774,447777,474444,474447,474474,474477,474744,474747,474774,474777,477444,477447,477474,477477,477744,477747,477774,477777,744444,744447,744474,744477,744744,744747,744774,744777,747444,747447,747474,747477,747744,747747,747774,747777,774444,774447,774474,774477,774744,774747,774774,774777,777444,777447,777474,777477,777744,777747,777774,777777,4444444,4444447,4444474,4444477,4444744,4444747,4444774,4444777,4447444,4447447,4447474,4447477,4447744,4447747,4447774,4447777,4474444,4474447,4474474,4474477,4474744,4474747,4474774,4474777,4477444,4477447,4477474,4477477,4477744,4477747,4477774,4477777,4744444,4744447,4744474,4744477,4744744,4744747,4744774,4744777,4747444,4747447,4747474,4747477,4747744,4747747,4747774,4747777,4774444,4774447,4774474,4774477,4774744,4774747,4774774,4774777,4777444,4777447,4777474,4777477,4777744,4777747,4777774,4777777,7444444,7444447,7444474,7444477,7444744,7444747,7444774,7444777,7447444,7447447,7447474,7447477,7447744,7447747,7447774,7447777,7474444,7474447,7474474,7474477,7474744,7474747,7474774,7474777,7477444,7477447,7477474,7477477,7477744,7477747,7477774,7477777,7744444,7744447,7744474,7744477,7744744,7744747,7744774,7744777,7747444,7747447,7747474,7747477,7747744,7747747,7747774,7747777,7774444,7774447,7774474,7774477,7774744,7774747,7774774,7774777,7777444,7777447,7777474,7777477,7777744,7777747,7777774,7777777,44444444,44444447,44444474,44444477,44444744,44444747,44444774,44444777,44447444,44447447,44447474,44447477,44447744,44447747,44447774,44447777,44474444,44474447,44474474,44474477,44474744,44474747,44474774,44474777,44477444,44477447,44477474,44477477,44477744,44477747,44477774,44477777,44744444,44744447,44744474,44744477,44744744,44744747,44744774,44744777,44747444,44747447,44747474,44747477,44747744,44747747,44747774,44747777,44774444,44774447,44774474,44774477,44774744,44774747,44774774,44774777,44777444,44777447,44777474,44777477,44777744,44777747,44777774,44777777,47444444,47444447,47444474,47444477,47444744,47444747,47444774,47444777,47447444,47447447,47447474,47447477,47447744,47447747,47447774,47447777,47474444,47474447,47474474,47474477,47474744,47474747,47474774,47474777,47477444,47477447,47477474,47477477,47477744,47477747,47477774,47477777,47744444,47744447,47744474,47744477,47744744,47744747,47744774,47744777,47747444,47747447,47747474,47747477,47747744,47747747,47747774,47747777,47774444,47774447,47774474,47774477,47774744,47774747,47774774,47774777,47777444,47777447,47777474,47777477,47777744,47777747,47777774,47777777,74444444,74444447,74444474,74444477,74444744,74444747,74444774,74444777,74447444,74447447,74447474,74447477,74447744,74447747,74447774,74447777,74474444,74474447,74474474,74474477,74474744,74474747,74474774,74474777,74477444,74477447,74477474,74477477,74477744,74477747,74477774,74477777,74744444,74744447,74744474,74744477,74744744,74744747,74744774,74744777,74747444,74747447,74747474,74747477,74747744,74747747,74747774,74747777,74774444,74774447,74774474,74774477,74774744,74774747,74774774,74774777,74777444,74777447,74777474,74777477,74777744,74777747,74777774,74777777,77444444,77444447,77444474,77444477,77444744,77444747,77444774,77444777,77447444,77447447,77447474,77447477,77447744,77447747,77447774,77447777,77474444,77474447,77474474,77474477,77474744,77474747,77474774,77474777,77477444,77477447,77477474,77477477,77477744,77477747,77477774,77477777,77744444,77744447,77744474,77744477,77744744,77744747,77744774,77744777,77747444,77747447,77747474,77747477,77747744,77747747,77747774,77747777,77774444,77774447,77774474,77774477,77774744,77774747,77774774,77774777,77777444,77777447,77777474,77777477,77777744,77777747,77777774,77777777,444444444,444444447,444444474,444444477,444444744,444444747,444444774,444444777,444447444,444447447,444447474,444447477,444447744,444447747,444447774,444447777,444474444,444474447,444474474,444474477,444474744,444474747,444474774,444474777,444477444,444477447,444477474,444477477,444477744,444477747,444477774,444477777,444744444,444744447,444744474,444744477,444744744,444744747,444744774,444744777,444747444,444747447,444747474,444747477,444747744,444747747,444747774,444747777,444774444,444774447,444774474,444774477,444774744,444774747,444774774,444774777,444777444,444777447,444777474,444777477,444777744,444777747,444777774,444777777,447444444,447444447,447444474,447444477,447444744,447444747,447444774,447444777,447447444,447447447,447447474,447447477,447447744,447447747,447447774,447447777,447474444,447474447,447474474,447474477,447474744,447474747,447474774,447474777,447477444,447477447,447477474,447477477,447477744,447477747,447477774,447477777,447744444,447744447,447744474,447744477,447744744,447744747,447744774,447744777,447747444,447747447,447747474,447747477,447747744,447747747,447747774,447747777,447774444,447774447,447774474,447774477,447774744,447774747,447774774,447774777,447777444,447777447,447777474,447777477,447777744,447777747,447777774,447777777,474444444,474444447,474444474,474444477,474444744,474444747,474444774,474444777,474447444,474447447,474447474,474447477,474447744,474447747,474447774,474447777,474474444,474474447,474474474,474474477,474474744,474474747,474474774,474474777,474477444,474477447,474477474,474477477,474477744,474477747,474477774,474477777,474744444,474744447,474744474,474744477,474744744,474744747,474744774,474744777,474747444,474747447,474747474,474747477,474747744,474747747,474747774,474747777,474774444,474774447,474774474,474774477,474774744,474774747,474774774,474774777,474777444,474777447,474777474,474777477,474777744,474777747,474777774,474777777,477444444,477444447,477444474,477444477,477444744,477444747,477444774,477444777,477447444,477447447,477447474,477447477,477447744,477447747,477447774,477447777,477474444,477474447,477474474,477474477,477474744,477474747,477474774,477474777,477477444,477477447,477477474,477477477,477477744,477477747,477477774,477477777,477744444,477744447,477744474,477744477,477744744,477744747,477744774,477744777,477747444,477747447,477747474,477747477,477747744,477747747,477747774,477747777,477774444,477774447,477774474,477774477,477774744,477774747,477774774,477774777,477777444,477777447,477777474,477777477,477777744,477777747,477777774,477777777,744444444,744444447,744444474,744444477,744444744,744444747,744444774,744444777,744447444,744447447,744447474,744447477,744447744,744447747,744447774,744447777,744474444,744474447,744474474,744474477,744474744,744474747,744474774,744474777,744477444,744477447,744477474,744477477,744477744,744477747,744477774,744477777,744744444,744744447,744744474,744744477,744744744,744744747,744744774,744744777,744747444,744747447,744747474,744747477,744747744,744747747,744747774,744747777,744774444,744774447,744774474,744774477,744774744,744774747,744774774,744774777,744777444,744777447,744777474,744777477,744777744,744777747,744777774,744777777,747444444,747444447,747444474,747444477,747444744,747444747,747444774,747444777,747447444,747447447,747447474,747447477,747447744,747447747,747447774,747447777,747474444,747474447,747474474,747474477,747474744,747474747,747474774,747474777,747477444,747477447,747477474,747477477,747477744,747477747,747477774,747477777,747744444,747744447,747744474,747744477,747744744,747744747,747744774,747744777,747747444,747747447,747747474,747747477,747747744,747747747,747747774,747747777,747774444,747774447,747774474,747774477,747774744,747774747,747774774,747774777,747777444,747777447,747777474,747777477,747777744,747777747,747777774,747777777,774444444,774444447,774444474,774444477,774444744,774444747,774444774,774444777,774447444,774447447,774447474,774447477,774447744,774447747,774447774,774447777,774474444,774474447,774474474,774474477,774474744,774474747,774474774,774474777,774477444,774477447,774477474,774477477,774477744,774477747,774477774,774477777,774744444,774744447,774744474,774744477,774744744,774744747,774744774,774744777,774747444,774747447,774747474,774747477,774747744,774747747,774747774,774747777,774774444,774774447,774774474,774774477,774774744,774774747,774774774,774774777,774777444,774777447,774777474,774777477,774777744,774777747,774777774,774777777,777444444,777444447,777444474,777444477,777444744,777444747,777444774,777444777,777447444,777447447,777447474,777447477,777447744,777447747,777447774,777447777,777474444,777474447,777474474,777474477,777474744,777474747,777474774,777474777,777477444,777477447,777477474,777477477,777477744,777477747,777477774,777477777,777744444,777744447,777744474,777744477,777744744,777744747,777744774,777744777,777747444,777747447,777747474,777747477,777747744,777747747,777747774,777747777,777774444,777774447,777774474,777774477,777774744,777774747,777774774,777774777,777777444,777777447,777777474,777777477,777777744,777777747,777777774,777777777,4444444444]
F = [1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 6227020800L]
L = [x - 1 for x in L]
N, K = map(int, raw_input().strip().split())
if N < len(F) and K > F[N]:
print -1
exit()
for i in xrange(len(F)):
if F[i] >= K:
st = N - i
break
con = 0
for x in L:
if x < st:
con += 1
else:
break
L = set(L)
used = [False] * 100
for i in xrange(st, N):
n = N - i - 1
x = (K - 1) / F[n]
K -= x * F[n]
cur = 0
cnt = 0
while cnt <= x:
if not used[cur]:
cnt += 1
cur += 1
used[cur - 1] = True
if i in L and st + cur - 1 in L:
con += 1
print con
| PYTHON |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | import static java.lang.Math.*;
import java.util.*;
import java.io.*;
public class E {
public void solve() throws Exception {
int n = nextInt(), k = nextInt()-1;
if (n<=12 && k>=facArr[n]) halt(-1);
HashSet<Integer> hs = new HashSet<Integer>();
dfs(4,hs); dfs(7,hs);
int len = 0;
for (int i=facArr.length-1; i>=0; --i) if (k<facArr[i] && k>=facArr[i-1]) {
len = i; break;
}
debug(len);
int[] p = new int[len];
for (int i=0; i<p.length; ++i) p[i] = n-p.length+1+i;
debug(p);
gen(k,p,0);
debug(p);
int res = 0;
for (Integer i: hs) if (i<=n-len) res++;
for (int i=n-len+1; i<=n; ++i) if (hs.contains(i) && hs.contains(p[i-(n-len+1)])) res++;
println(res);
}
void gen (int k, int[] p, int pos) {
if (k<1) return;
int i = p.length-pos-1;
int offset = k/facArr[p.length-pos-1];
if (offset!=0) {
p[offset+pos]^=p[pos]; p[pos]^=p[offset+pos]; p[offset+pos]^=p[pos];
debug(k,offset,p);
Arrays.sort(p,pos+1,p.length);
}
gen(k-facArr[i]*offset,p,pos+1);
return;
}
int[] facArr = {0,1,2,6,24,120,720,5040,40320,362880,3628800,39916800,479001600,Integer.MAX_VALUE};
void dfs (long x, HashSet<Integer> hs) {
if (x>1000000000) return;
hs.add((int)x);
dfs(10*x+4, hs);
dfs(10*x+7, hs);
}
////////////////////////////////////////////////////////////////////////////
boolean showDebug = true;
double EPS = 1e-7;
int INF = Integer.MAX_VALUE;
long INFL = Long.MAX_VALUE;
double INFD = Double.MAX_VALUE;
int absPos(int num) {
return num<0 ? 0:num;
}
long absPos(long num) {
return num<0 ? 0:num;
}
double absPos(double num) {
return num<0 ? 0:num;
}
int min(int... nums) {
int r = INF;
for (int i: nums)
if (i<r) r=i;
return r;
}
int max(int... nums) {
int r = -INF;
for (int i: nums)
if (i>r) r=i;
return r;
}
long minL(long... nums) {
long r = INFL;
for (long i: nums)
if (i<r) r=i;
return r;
}
long maxL(long... nums) {
long r = -INFL;
for (long i: nums)
if (i>r) r=i;
return r;
}
double minD(double... nums) {
double r = INFD;
for (double i: nums)
if (i<r) r=i;
return r;
}
double maxD(double... nums) {
double r = -INFD;
for (double i: nums)
if (i>r) r=i;
return r;
}
long sumArr(int[] arr) {
long res = 0;
for (int i: arr)
res+=i;
return res;
}
long sumArr(long[] arr) {
long res = 0;
for (long i: arr)
res+=i;
return res;
}
double sumArr(double[] arr) {
double res = 0;
for (double i: arr)
res+=i;
return res;
}
long partsFitCnt(long partSize, long wholeSize) {
return (partSize+wholeSize-1)/partSize;
}
boolean odd(long num) {
return (num&1)==1;
}
boolean hasBit(int num, int pos) {
return (num&(1<<pos))>0;
}
long binpow(int a, int n) {
long r = 1;
while (n>0) {
if ((n&1)!=0) r*=a;
a*=a;
n>>=1;
}
return r;
}
boolean isLetter(char c) {
return (c>='a' && c<='z') || (c>='A' && c<='Z');
}
boolean isLowercase(char c) {
return (c>='a' && c<='z');
}
boolean isUppercase(char c) {
return (c>='A' && c<='Z');
}
boolean isDigit(char c) {
return (c>='0' && c<='9');
}
String stringn(String s, int n) {
if (n<1) return "";
StringBuilder sb = new StringBuilder(s.length()*n);
for (int i=0; i<n; ++i) sb.append(s);
return sb.toString();
}
String str(Object o) {
return o.toString();
}
long timer = System.currentTimeMillis();
void startTimer() {
timer = System.currentTimeMillis();
}
void stopTimer() {
System.err.println("time: "+(System.currentTimeMillis()-timer)/1000.0);
}
class InputReader {
private byte[] buf;
private int bufPos = 0, bufLim = -1;
public InputReader(int size) {
buf = new byte[size];
}
private void fillBuf() throws IOException {
bufLim = System.in.read(buf);
bufPos = 0;
}
char read() throws IOException {
if (bufPos>=bufLim) fillBuf();
return (char)buf[bufPos++];
}
boolean hasInput() throws IOException {
if (bufPos>=bufLim) fillBuf();
return bufPos<bufLim;
}
}
InputReader inputReader = new InputReader(1<<16);
static BufferedWriter outputWriter = new BufferedWriter(new OutputStreamWriter(System.out), 1<<16);
char nextChar() throws IOException {
return inputReader.read();
}
char nextNonWhitespaceChar() throws IOException {
char c = inputReader.read();
while (c<=' ') c=inputReader.read();
return c;
}
String nextWord() throws IOException {
StringBuilder sb = new StringBuilder();
char c = inputReader.read();
while (c<=' ') c=inputReader.read();
while (c>' ') {
sb.append(c);
c = inputReader.read();
}
return new String(sb);
}
String nextLine() throws IOException {
StringBuilder sb = new StringBuilder();
char c = inputReader.read();
while (c<=' ') c=inputReader.read();
while (c!='\n' && c!='\r') {
sb.append(c);
c = inputReader.read();
}
return new String(sb);
}
int nextInt() throws IOException {
int r = 0;
char c = nextNonWhitespaceChar();
boolean neg = false;
if (c=='-') neg=true;
else r=c-48;
c = nextChar();
while (c>='0' && c<='9') {
r*=10;
r+=c-48;
c=nextChar();
}
return neg ? -r:r;
}
long nextLong() throws IOException {
long r = 0;
char c = nextNonWhitespaceChar();
boolean neg = false;
if (c=='-') neg=true;
else r = c-48;
c = nextChar();
while (c>='0' && c<='9') {
r*=10L;
r+=c-48L;
c=nextChar();
}
return neg ? -r:r;
}
double nextDouble() throws NumberFormatException, IOException {
return Double.parseDouble(nextWord());
}
int[] nextArr(int size) throws NumberFormatException, IOException {
int[] arr = new int[size];
for (int i=0; i<size; ++i)
arr[i] = nextInt();
return arr;
}
long[] nextArrL(int size) throws NumberFormatException, IOException {
long[] arr = new long[size];
for (int i=0; i<size; ++i)
arr[i] = nextLong();
return arr;
}
double[] nextArrD(int size) throws NumberFormatException, IOException {
double[] arr = new double[size];
for (int i=0; i<size; ++i)
arr[i] = nextDouble();
return arr;
}
String[] nextArrS(int size) throws NumberFormatException, IOException {
String[] arr = new String[size];
for (int i=0; i<size; ++i)
arr[i] = nextWord();
return arr;
}
char[] nextArrCh(int size) throws IOException {
char[] arr = new char[size];
for (int i=0; i<size; ++i)
arr[i] = nextNonWhitespaceChar();
return arr;
}
char[][] nextArrCh(int rows, int columns) throws IOException {
char[][] arr = new char[rows][columns];
for (int i=0; i<rows; ++i)
for (int j=0; j<columns; ++j)
arr[i][j] = nextNonWhitespaceChar();
return arr;
}
char[][] nextArrChBorders(int rows, int columns, char border) throws IOException {
char[][] arr = new char[rows+2][columns+2];
for (int i=1; i<=rows; ++i)
for (int j=1; j<=columns; ++j)
arr[i][j] = nextNonWhitespaceChar();
for (int i=0; i<columns+2; ++i) {
arr[0][i] = border;
arr[rows+1][i] = border;
}
for (int i=0; i<rows+2; ++i) {
arr[i][0] = border;
arr[i][columns+1] = border;
}
return arr;
}
void printf(String format, Object... args) throws IOException {
outputWriter.write(String.format(format, args));
}
void print(Object o) throws IOException {
outputWriter.write(o.toString());
}
void println(Object o) throws IOException {
outputWriter.write(o.toString());
outputWriter.newLine();
}
void print(Object... o) throws IOException {
for (int i=0; i<o.length; ++i) {
if (i!=0) outputWriter.write(' ');
outputWriter.write(o[i].toString());
}
}
void println(Object... o) throws IOException {
print(o);
outputWriter.newLine();
}
void printn(Object o, int n) throws IOException {
String s = o.toString();
for (int i=0; i<n; ++i) {
outputWriter.write(s);
if (i!=n-1) outputWriter.write(' ');
}
}
void printnln(Object o, int n) throws IOException {
printn(o, n);
outputWriter.newLine();
}
void printArr(int[] arr) throws IOException {
for (int i=0; i<arr.length; ++i) {
if (i!=0) outputWriter.write(' ');
outputWriter.write(Integer.toString(arr[i]));
}
}
void printArr(long[] arr) throws IOException {
for (int i=0; i<arr.length; ++i) {
if (i!=0) outputWriter.write(' ');
outputWriter.write(Long.toString(arr[i]));
}
}
void printArr(double[] arr) throws IOException {
for (int i=0; i<arr.length; ++i) {
if (i!=0) outputWriter.write(' ');
outputWriter.write(Double.toString(arr[i]));
}
}
void printArr(String[] arr) throws IOException {
for (int i=0; i<arr.length; ++i) {
if (i!=0) outputWriter.write(' ');
outputWriter.write(arr[i]);
}
}
void printArr(char[] arr) throws IOException {
for (char c: arr) outputWriter.write(c);
}
void printlnArr(int[] arr) throws IOException {
printArr(arr);
outputWriter.newLine();
}
void printlnArr(long[] arr) throws IOException {
printArr(arr);
outputWriter.newLine();
}
void printlnArr(double[] arr) throws IOException {
printArr(arr);
outputWriter.newLine();
}
void printlnArr(String[] arr) throws IOException {
printArr(arr);
outputWriter.newLine();
}
void printlnArr(char[] arr) throws IOException {
printArr(arr);
outputWriter.newLine();
}
void halt(Object... o) throws IOException {
if (o.length!=0) println(o);
outputWriter.flush(); outputWriter.close();
System.exit(0);
}
void debug(Object... o) {
if (showDebug) System.err.println(Arrays.deepToString(o));
}
public static void main(String[] args) throws Exception {
Locale.setDefault(Locale.US);
new E().solve();
outputWriter.flush(); outputWriter.close();
}
}
| JAVA |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
int n, k;
long long fact[14] = {1};
bool cmp(int p) {
if (p > 13 || fact[p] >= k) return true;
k -= fact[p];
return false;
}
bool check(int x) {
while (x) {
if (x % 10 != 4 && x % 10 != 7) return false;
x /= 10;
}
return true;
}
bool used[16];
int s;
int calc(int i) {
if (i > n) return 0;
for (int j = s; j <= n; ++j)
if (!used[j - s] && cmp(n - i)) {
used[j - s] = true;
return (check(i) && check(j)) + calc(i + 1);
}
return -1;
}
long long all[2046] = {4, 7};
int allC = 2;
int main() {
for (int i = 1; i < 14; ++i) fact[i] = fact[i - 1] * i;
scanf("%d%d", &n, &k);
if (n < 14 && k > fact[n]) {
printf("-1");
return 0;
}
s = 1;
if (n < 14)
printf("%d", calc(1));
else {
for (int i = 0; all[allC - 1] < 7777777777LL; ++i) {
all[allC++] = all[i] * 10 + 4;
all[allC++] = all[i] * 10 + 7;
}
s = n - 13;
printf("%d", lower_bound(all, all + allC, s) - all + calc(s));
}
return 0;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
const int maxn = 1e6 + 7;
const long long mod = 998244353;
const long long INF = 5e18 + 7;
const int inf = 1e9 + 7;
const long long maxx = 1e6 + 700;
long long n, k;
long long fac[maxn];
vector<int> v;
int ans = 0;
int find(int x) {
sort(v.begin(), v.end());
int t = v[x];
v.erase(v.begin() + x);
return t;
}
bool check(int x) {
while (x) {
if ((x % 10) != 4 && (x % 10) != 7) return 0;
x /= 10;
}
return 1;
}
void dfs(long long x, long long y) {
if (x > y) return;
if (x != 0) ans++;
dfs(x * 10 + 4, y);
dfs(x * 10 + 7, y);
}
int main() {
scanf("%lld%lld", &n, &k);
k = k - 1;
long long T = -1;
fac[0] = 1;
for (int i = 1; i <= n; i++) {
fac[i] = i * fac[i - 1];
v.push_back(n - i + 1);
if (fac[i] > k) {
T = i;
break;
}
}
if (T == -1) {
puts("-1");
return 0;
}
dfs(0, n - T);
for (int i = T; i >= 1; i--) {
int t = find(k / fac[i - 1]), pos = n - i + 1;
if (check(pos) && check(t)) ans++;
k = k % fac[i - 1];
}
printf("%d\n", ans);
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
map<int, bool> mp;
map<int, bool>::iterator it;
long long p[1 << 11] = {0}, psum = 1;
long long q[20];
bool flag[20];
void Init() {
mp.clear();
memset(flag, 0x00, sizeof(flag));
for (int i = 0; i < psum; i++) {
if (p[i] < 1e9) {
p[psum++] = p[i] * 10 + 4;
p[psum++] = p[i] * 10 + 7;
}
if (i) mp[p[i]] = true;
}
q[0] = 1LL;
for (int i = 1; i < 14; i++) {
q[i] = q[i - 1] * i;
}
}
int n, k;
int getNum(int x);
int main() {
Init();
scanf("%d%d", &n, &k);
if (n < 13 && k > q[n]) {
printf("-1\n");
return 0;
}
k--;
int x = n > 13 ? n - 13 : 0;
int y = n > 13 ? 13 : n;
int ans = 0;
for (int i = 1; i < psum; i++, ans++)
if (p[i] > x) break;
for (int i = y; i; i--) {
int num = getNum(k / q[i - 1] + 1);
k %= q[i - 1];
it = mp.find(x + num);
if (it == mp.end()) continue;
it = mp.find(x + y - i + 1);
if (it == mp.end()) continue;
ans++;
}
printf("%d\n", ans);
return 0;
}
int getNum(int x) {
int cnt = 0;
for (int i = 1; true; i++) {
if (!flag[i]) cnt++;
if (cnt == x) {
flag[i] = true;
return i;
}
}
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
const long long MAXN = 1e6 + 1, mod = 1e9 + 7, INF = 1e9 + 10;
const double eps = 1e-9;
template <typename A, typename B>
inline bool chmin(A &a, B b) {
if (a > b) {
a = b;
return 1;
}
return 0;
}
template <typename A, typename B>
inline bool chmax(A &a, B b) {
if (a < b) {
a = b;
return 1;
}
return 0;
}
template <typename A, typename B>
inline long long add(A x, B y) {
if (x + y < 0) return x + y + mod;
return x + y >= mod ? x + y - mod : x + y;
}
template <typename A, typename B>
inline void add2(A &x, B y) {
if (x + y < 0)
x = x + y + mod;
else
x = (x + y >= mod ? x + y - mod : x + y);
}
template <typename A, typename B>
inline long long mul(A x, B y) {
return 1ll * x * y % mod;
}
template <typename A, typename B>
inline void mul2(A &x, B y) {
x = (1ll * x * y % mod + mod) % mod;
}
template <typename A>
inline void debug(A a) {
cout << a << '\n';
}
template <typename A>
inline long long sqr(A x) {
return 1ll * x * x;
}
inline long long read() {
char c = getchar();
long long x = 0, f = 1;
while (c < '0' || c > '9') {
if (c == '-') f = -1;
c = getchar();
}
while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
long long N, K, fac[MAXN];
vector<long long> res;
long long find(long long x) {
sort(res.begin(), res.end());
long long t = res[x];
res.erase(res.begin() + x);
return t;
}
bool check(long long x) {
while (x) {
if ((x % 10) != 4 && (x % 10) != 7) return 0;
x /= 10;
}
return 1;
}
long long ans;
void dfs(long long x, long long Lim) {
if (x > Lim) return;
if (x != 0) ans++;
dfs(x * 10 + 4, Lim);
dfs(x * 10 + 7, Lim);
}
signed main() {
N = read();
K = read() - 1;
long long T = -1;
fac[0] = 1;
for (long long i = 1; i <= N; i++) {
fac[i] = i * fac[i - 1];
res.push_back(N - i + 1);
if (fac[i] > K) {
T = i;
break;
}
}
if (T == -1) {
puts("-1");
return 0;
}
dfs(0, N - T);
for (long long i = T; i >= 1; i--) {
long long t = find(K / fac[i - 1]), pos = N - i + 1;
if (check(pos) && check(t)) ans++;
K = K % fac[i - 1];
}
cout << ans;
return 0;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
long long rev(long long t) {
long long res = 0;
while (t) {
if (t % 2)
res *= 10, res += 7;
else
res *= 10, res += 4;
t /= 10;
}
return res;
}
long long conv(long long t, int len) {
long long res = 0, ans = 0, k = 0;
while (t) {
k++;
if (t % 2)
res *= 10, res += 7;
else
res *= 10, res += 4;
t /= 2;
}
res = rev(res);
for (int i = 0; i < len - k; i++) ans *= 10, ans += 4;
for (int i = 0; i < k; i++) ans *= 10;
ans += res;
return ans;
}
const int MAXN = 15;
vector<int> num;
int n, k, ls, ans;
bool se[MAXN + 10];
long long f[MAXN];
bool isluck(int a) {
while (a) {
if (a % 10 != 4 && a % 10 != 7) return false;
a /= 10;
}
return true;
}
int main() {
cin >> n >> k;
f[0] = 1;
for (int i = 1; i < MAXN; i++) f[i] = f[i - 1] * i;
if (n < 15 && k > f[n]) return cout << -1, 0;
for (int i = 1; i <= min(n, MAXN); i++) num.push_back(i);
ls = n - num.size();
for (int i = 0; i < num.size(); i++) {
int j = 1;
while (se[j]) j++;
while (k > f[num.size() - i - 1]) {
k -= f[num.size() - i - 1];
j++;
while (se[j]) j++;
}
num[i] = j;
se[j] = 1;
}
bool R = 0;
for (int i = 1; i < 30; i++) {
if (R) break;
for (int j = 0; j < (1 << i); j++) {
long long t = conv(j, i);
if (t > ls) {
R = 1;
break;
}
ans++;
}
}
for (int i = 0; i < num.size(); i++)
if (isluck(i + ls + 1) && isluck(ls + num[i])) ans++;
cout << ans;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
long long a[10000], jc[20];
int t, o[20], p[20];
int cal(long long x) {
if (x <= 0) return 0;
int ans = 0;
for (int i = (1); i <= (t); i++)
if (a[i] <= x)
ans++;
else {
break;
};
return ans;
}
void init() {
t = 0;
for (int i = (1); i <= (10); i++)
for (int j = (0); j <= ((1 << i) - 1); j++) {
long long s = 0;
for (int k = (i - 1); k >= (0); k--)
if ((j >> k) & 1)
s = s * 10 + 7;
else
s = s * 10 + 4;
a[++t] = s;
};
}
bool luck(long long x) {
while (x > 0) {
if (x % 10 != 4 && x % 10 != 7) return 0;
x /= 10;
};
return 1;
}
int main() {
int n, k;
scanf("%d%d", &n, &k);
jc[0] = 1;
for (int i = (1); i <= (13); i++) jc[i] = jc[i - 1] * i;
if (n < 13) {
long long ss = 1;
for (int i = (1); i <= (n); i++) ss *= i;
if (ss < k) {
puts("-1");
return 0;
};
};
int ans = 0;
k--;
for (int i = (12); i >= (0); i--) {
long long nh = k / jc[i];
k = k % jc[i];
for (int j = (0); j <= (12); j++)
if (!o[j]) {
if (!nh) {
p[i] = j;
o[j] = 1;
break;
};
nh--;
};
if (i < n) {
cerr << n - 12 + p[i] << endl;
if (luck(n - i) && luck(n - 12 + p[i])) ans++;
};
};
init();
printf("%d", cal(n - 13) + ans);
return 0;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | import java.util.*;
import java.io.*;
import java.math.BigInteger;
import static java.lang.Math.*;
public class Main implements Runnable {
private void solution() throws IOException {
int n = in.nextInt();
int k = in.nextInt();
if (fact(n) < k) {
out.println(-1);
} else {
long res = 0;
if (n <= 15) {
int[] a = new int[(int) n];
for (int i = 0; i < n; ++i) {
a[i] = i;
}
res = count(a, k, 1);
} else {
int[] a = new int[15];
for (int i = 0; i < 15; ++i) {
a[i] = i;
}
res = count(a, k, (n - 15) + 1);
res += countLucky(n - 15);
}
out.println(res);
}
}
private long count(int[] a, int k, int start) {
setKth(a, k - 1);
long res = 0;
for (int i = 0; i < a.length; ++i) {
if (isLucky(i + start) && isLucky(a[i] + start)) {
++res;
}
}
return res;
}
private void setKth(int[] a, int k) {
long[] fact = new long[a.length + 1];
fact[0] = 1;
for (int i = 1; i < fact.length; ++i) {
fact[i] = fact[i - 1] * i;
}
List<Integer> cur = new ArrayList<Integer>();
for (int x : a) {
cur.add(x);
}
for (int i = 0; i < a.length; ++i) {
int id = (int) (k / fact[a.length - i - 1]);
a[i] = cur.get(id);
cur.remove(id);
k %= fact[a.length - i - 1];
}
}
private boolean isLucky(int n) {
while (n > 0) {
if (n % 10 != 4 && n % 10 != 7) {
return false;
}
n /= 10;
}
return true;
}
private long countLucky(int n) {
return countLucky(4, n) + countLucky(7, n);
}
private long countLucky(long cur, int n) {
if (cur > n) {
return 0;
}
return 1 + countLucky(cur * 10 + 4, n) + countLucky(cur * 10 + 7, n);
}
private long fact(int n) {
long res = 1;
for (int i = 1; i <= n; ++i) {
res *= i;
if (res > Integer.MAX_VALUE) {
break;
}
}
return res;
}
public void run() {
try {
solution();
in.reader.close();
out.close();
} catch (Throwable e) {
e.printStackTrace();
System.exit(1);
}
}
private void debug(Object... objects) {
System.out.println(Arrays.toString(objects));
}
private static class Scanner {
private BufferedReader reader;
private StringTokenizer tokenizer;
public Scanner(Reader reader) {
this.reader = new BufferedReader(reader);
this.tokenizer = new StringTokenizer("");
}
public boolean hasNext() throws IOException {
while (!tokenizer.hasMoreTokens()) {
String line = reader.readLine();
if (line == null) {
return false;
}
tokenizer = new StringTokenizer(line);
}
return true;
}
public String next() throws IOException {
hasNext();
return tokenizer.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
tokenizer = new StringTokenizer("");
return reader.readLine();
}
public int[] nextInts(int n) throws IOException {
int[] res = new int[n];
for (int i = 0; i < n; ++i) {
res[i] = nextInt();
}
return res;
}
public long[] nextLongs(int n) throws IOException {
long[] res = new long[n];
for (int i = 0; i < n; ++i) {
res[i] = nextLong();
}
return res;
}
public double[] nextDoubles(int n) throws IOException {
double[] res = new double[n];
for (int i = 0; i < n; ++i) {
res[i] = nextDouble();
}
return res;
}
public String[] nextStrings(int n) throws IOException {
String[] res = new String[n];
for (int i = 0; i < n; ++i) {
res[i] = next();
}
return res;
}
}
public static void main(String[] args) throws Exception {
new Thread(null, new Main(), "Main", 1 << 28).start();
}
private Scanner in = new Scanner(new InputStreamReader(System.in));
private PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
}
| JAVA |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
vector<long long> lucky;
long long l, r;
void gen(long long x) {
if (x >= 4444444444ll) return;
lucky.push_back(x);
gen(x * 10 + 4);
gen(x * 10 + 7);
}
bool islucky(int x) {
if (!x) return (false);
while (x) {
if (x % 10 != 4 && x % 10 != 7) return (false);
x /= 10;
}
return (true);
}
int main() {
int n, k, r;
long long x = 1;
scanf("%d %d", &n, &k);
bool ok = false;
for (int i = 1; i <= n; i++) {
x *= i;
if (x >= k) {
ok = true;
r = i;
break;
}
}
if (!ok) return (!printf("-1\n"));
gen(0);
sort(lucky.begin(), lucky.end());
int res = 0;
for (int i = 0; i < lucky.size(); i++) {
if (lucky[i] && lucky[i] <= n - r) res++;
}
bool used[128];
int num[128];
memset(used, false, sizeof(used));
for (int i = 1; i <= r; i++) {
int t = 1;
x = 1;
for (int m = 1; m <= r - i; m++) x *= m;
while (t * x < k) t++;
int cnt = 0;
for (int j = 1; j <= r; j++) {
if (!used[j]) cnt++;
if (cnt == t && !used[j]) {
num[i] = j;
used[j] = 1;
break;
}
}
k -= (t - 1) * x;
if (k <= 0) k = 1;
}
for (int i = 1; i <= r; i++) {
if (islucky(num[i] + n - r) && islucky(i + n - r)) res++;
}
printf("%d\n", res);
return (0);
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
void file_open() {
freopen("test.txt", "rt", stdin);
freopen("test.out", "wt", stdout);
}
bool check(unsigned long long x) {
while (x) {
if (x % 10 != 7 && x % 10 != 4) return false;
x /= 10;
}
return true;
}
void swap(int &a, int &b) {
int tmp = a;
a = b;
b = tmp;
}
int main() {
unsigned long long gt[20] = {}, a[20];
queue<int> qu;
qu.push(4);
qu.push(7);
unsigned long long n, k, t, dem, tmp, tmp2;
cin >> n >> k;
t = 1;
gt[t] = 1;
gt[0] = 1;
while (gt[t] < k) {
++t;
gt[t] = gt[t - 1] * t;
}
if (t > n) {
printf("-1");
return 0;
}
for (int i = t; i >= 1; --i) a[i] = n - t + i;
dem = 0;
tmp = 4;
tmp2 = 1;
while (tmp <= n) {
if (qu.empty()) break;
tmp = qu.front();
if (tmp > n) break;
qu.pop();
if (tmp * 10 + 4 <= n) qu.push(tmp * 10 + 4);
if (tmp * 10 + 7 <= n) qu.push(tmp * 10 + 7);
if (n - tmp >= t)
++dem;
else {
while (n - tmp < t) {
--t;
int i = tmp2;
while (k > gt[t]) {
k -= gt[t];
++i;
swap(a[i], a[tmp2]);
}
tmp2++;
}
if (check(a[tmp2 - 1])) ++dem;
}
}
cout << dem;
return 0;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | import java.awt.Point;
import java.io.*;
import java.math.BigInteger;
import java.util.*;
import static java.lang.Math.*;
public class Solution121C {
final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE")!=null;
BufferedReader in;
PrintWriter out;
StringTokenizer tok = new StringTokenizer("");
void init() throws FileNotFoundException{
if (ONLINE_JUDGE){
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
}else{
in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter("output.txt");
}
}
String readString() throws IOException{
while(!tok.hasMoreTokens()){
tok = new StringTokenizer(in.readLine());
}
return tok.nextToken();
}
int readInt() throws IOException{
return Integer.parseInt(readString());
}
long readLong() throws IOException{
return Long.parseLong(readString());
}
double readDouble() throws IOException{
return Double.parseDouble(readString());
}
public static void main(String[] args){
new Solution121C().run();
}
public void run(){
try{
long t1 = System.currentTimeMillis();
init();
solve();
out.close();
long t2 = System.currentTimeMillis();
System.err.println("Time = "+(t2-t1));
}catch (Exception e){
e.printStackTrace(System.err);
System.exit(-1);
}
}
ArrayList<Integer> happiens;
int[] cur = {4,0,0,0,0,0,0,0,0};
boolean Generate(){
int c = 0;
do{
if(cur[c] == 4){
cur[c] = 7;
String s = "";
for(int i = 8; i >= 0; i--){
s += Integer.toString(cur[i]);
}
happiens.add(Integer.parseInt(s));
return true;
}
if(cur[c] == 0){
cur[c] = 4;
String s = "";
for(int i = 8; i >= 0; i--){
s += Integer.toString(cur[i]);
}
happiens.add(Integer.parseInt(s));
return true;
}
cur[c] = 4;
c++;
if(c >= 9){
return false;
}
}while(true);
}
ArrayList<Long> perest;
long[] p;
void Generate(long k, long x, long fact, int i){
if(x == 0) return;
p[i] = perest.get((int)(k * x / fact));
perest.remove(p[i]);
long t = k % (fact / x);
Generate(t, x-1, fact/x, i+1);
}
void solve() throws IOException{
happiens = new ArrayList<Integer>();
happiens.add(4);
boolean c = true;
do{
c = Generate();
}while(c);
int n = readInt();
int k = readInt();
int x = 1;
long fact = 1;
while(fact < k){
x++;
fact *= x;
}
int count = 0;
int curHap = -1;
for(int i = 0; i < happiens.size(); i++){
if(happiens.get(i) < n-x+1){
count++;
curHap = i;
}
else break;
}
curHap++;
if(x > n){
out.println(-1);
return;
}
boolean checkHap = false;
perest = new ArrayList<Long>();
for(long i = n-x+1; i <= n; i++){
if(curHap < happiens.size())
if(i == happiens.get(curHap))
checkHap = true;
perest.add(i);
}
if(!checkHap){
out.println(count);
return;
}
p = new long[x];
Generate(k - 1, x, fact, 0);
for(int i = 0; i < p.length; i++){
checkHap = false;
boolean check2 = false;
for(long u: happiens){
if(p[i] == u) checkHap = true;
if(n-x+1+i == u) check2 = true;
}
if(checkHap && check2){
count++;
}
}
out.println(count);
}
int ModExp(int a, int n, int mod){
int res = 1;
while (n!=0)
if ((n & 1) != 0) {
res = (res*a)%mod;
--n;
}
else {
a = (a*a)%mod;
n >>= 1;
}
return res;
}
static class Utils {
private Utils() {}
public static void mergeSort(int[] a) {
mergeSort(a, 0, a.length - 1);
}
private static void mergeSort(int[] a, int leftIndex, int rightIndex) {
final int MAGIC_VALUE = 50;
if (leftIndex < rightIndex) {
if (rightIndex - leftIndex <= MAGIC_VALUE) {
insertionSort(a, leftIndex, rightIndex);
} else {
int middleIndex = (leftIndex + rightIndex) / 2;
mergeSort(a, leftIndex, middleIndex);
mergeSort(a, middleIndex + 1, rightIndex);
merge(a, leftIndex, middleIndex, rightIndex);
}
}
}
private static void merge(int[] a, int leftIndex, int middleIndex, int rightIndex) {
int length1 = middleIndex - leftIndex + 1;
int length2 = rightIndex - middleIndex;
int[] leftArray = new int[length1];
int[] rightArray = new int[length2];
System.arraycopy(a, leftIndex, leftArray, 0, length1);
System.arraycopy(a, middleIndex + 1, rightArray, 0, length2);
for (int k = leftIndex, i = 0, j = 0; k <= rightIndex; k++) {
if (i == length1) {
a[k] = rightArray[j++];
} else if (j == length2) {
a[k] = leftArray[i++];
} else {
a[k] = leftArray[i] <= rightArray[j] ? leftArray[i++] : rightArray[j++];
}
}
}
private static void insertionSort(int[] a, int leftIndex, int rightIndex) {
for (int i = leftIndex + 1; i <= rightIndex; i++) {
int current = a[i];
int j = i - 1;
while (j >= leftIndex && a[j] > current) {
a[j + 1] = a[j];
j--;
}
a[j + 1] = current;
}
}
}
boolean isPrime(int a){
for(int i = 2; i <= sqrt(a); i++)
if(a % i == 0) return false;
return true;
}
static double distance(long x1, long y1, long x2, long y2){
return Math.sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
}
static long gcd(long a, long b){
if(min(a,b) == 0) return max(a,b);
return gcd(max(a, b) % min(a,b), min(a,b));
}
static long lcm(long a, long b){
return a * b /gcd(a, b);
}
} | JAVA |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
template <typename X>
ostream& operator<<(ostream& x, const vector<X>& v) {
for (long long i = 0; i < v.size(); ++i) x << v[i] << " ";
return x;
}
template <typename X>
ostream& operator<<(ostream& x, const set<X>& v) {
for (auto it : v) x << it << " ";
return x;
}
template <typename X, typename Y>
ostream& operator<<(ostream& x, const pair<X, Y>& v) {
x << v.ff << " " << v.ss;
return x;
}
template <typename T, typename S>
ostream& operator<<(ostream& os, const map<T, S>& v) {
for (auto it : v) os << it.first << "=>" << it.second << endl;
return os;
}
struct pair_hash {
inline std::size_t operator()(
const std::pair<long long, long long>& v) const {
return v.first * 31 + v.second;
}
};
#pragma comment(linker, "/stack:200000000")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
long long fct[33];
bool chk(int n) {
for (int i = n; i > 0; i /= 10) {
if (i % 10 != 4 && i % 10 != 7) {
return false;
}
}
return true;
}
vector<long long> arr;
int xp;
void f(vector<long long> rr, int k, int i) {
if (arr.size() == xp) {
return;
}
int xx = (k + fct[i - 1] - 1) / fct[i - 1];
xx--;
vector<long long> pp;
arr.push_back(rr[xx]);
for (long long j = 0; j < rr.size(); j++) {
if (arr[arr.size() - 1] != rr[j]) {
pp.push_back(rr[j]);
}
}
sort(pp.begin(), pp.end());
f(pp, k - (xx * (fct[i - 1])), i - 1);
}
int main() {
fct[0] = 1;
long long i = 0;
while (fct[i] < 1e13) {
fct[i + 1] = (i + 1) * fct[i];
i++;
}
long long n, k;
cin >> n >> k;
if (n < i) {
if (k > fct[n]) {
cout << -1 << endl;
return 0;
}
}
i = 0;
while (fct[i] <= k) {
i++;
}
i--;
if (k != fct[i]) {
i++;
}
xp = i;
vector<long long> rr;
for (long long j = 0; j < i; j++) {
rr.push_back(n - i + 1 + j);
}
f(rr, k, i);
int ans = 0;
for (long long j = 0; j < i; j++) {
int xx = arr[j];
int poss = n - i + 1 + j;
if (chk(poss) && chk(xx)) {
ans++;
}
}
vector<long long> xx;
for (long long k = 1; k < 11; k++) {
for (long long j = 0; j < (1 << k); j++) {
string s;
for (long long l = 0; l < k; l++) {
if (j & (1 << l)) {
s += '4';
} else {
s += '7';
}
}
xx.push_back(stoll(s));
}
}
sort(xx.begin(), xx.end());
for (long long j = 0; j < xx.size(); j++) {
if (chk(xx[j])) {
if (xx[j] <= n - i) {
ans++;
}
}
}
cout << ans << endl;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | import java.io.*;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Scanner;
/**
* Created by IntelliJ IDEA.
* User: serparamon
* Date: 27.10.11
* Time: 18:39
* To change this template use File | Settings | File Templates.
*/
public class Contest20111027_C {
private static Scanner input = new Scanner(new BufferedReader(new InputStreamReader(System.in)));
private static PrintWriter output = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
private static int max = 19;
private static boolean good (int x) {
while (x>0) {
if (x%10 != 4 && x%10 != 7)
return false;
x /= 10;
}
return true;
}
public static void main(String[] args) {
int n = input.nextInt();
int k = input.nextInt();
long[] f = new long[max];
f[0] = 1;
for (int i=1; i<max; i++) {
f[i] = i*f[i-1];
}
ArrayList<Long> s = new ArrayList<Long>();
for (int i=1; i<11; i++) {
for (int j=0; j<(1<<i); j++) {
long x = 0;
for (int q=0; q<i; q++) {
if ((j & (1<<q)) == 0) {
x = 10*x + 4;
}
else {
x = 10*x + 7;
}
}
s.add(x);
}
}
Collections.sort(s);
if (n<max && k>f[n]) {
output.println(-1);
output.flush();
return;
}
int p = 0;
while (k>f[p]) p++;
int ans = 0;
k--;
boolean[] b = new boolean[p+1];
Arrays.fill(b, false);
for (int i=1; i<=p; i++) {
int q = (int)(k/f[p-i])+1;
int x=0;
for (int j=1; j<=p; j++) {
if (!b[j])
q--;
if (q==0) {
b[j] = true;
x = j+n-p;
break;
}
}
int pos = n-p+i;
if (good(x) && good(pos)) {
ans++;
}
k %= f[p-i];
}
for (long x : s) {
if (x <= n-p)
ans++;
}
output.println(ans);
output.flush();
}
}
| JAVA |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
const double eps = 1e-9;
long long perm[18];
set<long long> lu;
void gen_luck(long long x) {
if (x > 100000000000LL) return;
lu.insert(x);
gen_luck(x * 10LL + 4LL);
gen_luck(x * 10LL + 7LL);
}
int sz;
bool ud[21];
vector<int> res, val;
void get_res(int x, int k) {
if (x <= 0) return;
for (int y = 0; y < sz; ++y)
if (!ud[y]) {
if (k > perm[x - 1])
k -= perm[x - 1];
else {
res.push_back(y);
ud[y] = true;
get_res(x - 1, k);
break;
}
}
}
bool luck(int x) {
while (x > 0) {
if ((x % 10 != 7) && (x % 10 != 4)) return false;
x /= 10;
}
return true;
}
int main() {
gen_luck(4LL);
gen_luck(7LL);
perm[0] = 1LL;
for (int x = 1; x < 15; ++x) perm[x] = perm[x - 1] * x;
int n, ans = 0;
long long k;
scanf("%d%I64d", &n, &k);
if ((n < 14) && (perm[n] < k)) {
printf("-1\n");
return 0;
}
sz = min(n, 13);
get_res(sz, k);
for (int x = n - sz; x < n; ++x) val.push_back(x + 1);
for (int x = 0; x < sz; ++x) res[x] = val[res[x]];
k = n - sz;
for (__typeof((res).begin()) it = (res).begin(); it != (res).end(); ++it) {
if ((lu.count(*it)) && luck(k + 1)) ++ans;
++k;
}
k = *lu.lower_bound(n - sz + 1);
for (__typeof((lu).begin()) it = (lu).begin(); it != (lu).end(); ++it) {
if (*it == k)
break;
else
++ans;
}
printf("%d\n", ans);
return 0;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
vector<int> lucky;
void init() {
lucky.push_back(0);
for (size_t i = 0; i < lucky.size(); i++) {
if (lucky[i] >= 100000000) break;
lucky.push_back(lucky[i] * 10 + 4);
lucky.push_back(lucky[i] * 10 + 7);
}
lucky.erase(lucky.begin());
}
bool islucky(int x) {
do
if (x % 10 != 7 && x % 10 != 4) return false;
while (x /= 10);
return true;
}
int main() {
init();
int n, m, len = 0, ans = 0;
long long s = 1;
scanf("%d%d", &n, &m);
while (s < m) s *= ++len;
if (n < len) return puts("-1") & 0;
vector<int> u;
for (int i = 1; i <= len; i++) u.push_back(n - len + i);
for (int i = 1; i <= len; i++) {
s /= len + 1 - i;
int x = (m - 1) / s;
if (islucky(n - len + i) && islucky(u[x])) ans++;
u.erase(u.begin() + x);
m -= x * s;
}
ans += upper_bound(lucky.begin(), lucky.end(), n - len) - lucky.begin();
printf("%d\n", ans);
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
long long lucky[1024 * 4];
long long fact[14];
int cnt;
void func(long long cur, int pos, int maxpos) {
if (pos == maxpos) {
lucky[++cnt] = cur * 10 + 4;
lucky[++cnt] = cur * 10 + 7;
return;
}
func(cur * 10 + 4, pos + 1, maxpos);
func(cur * 10 + 7, pos + 1, maxpos);
}
void pre() {
cnt = 0;
for (int d = 1; d <= 10; d++) {
func(0, 1, d);
}
sort(lucky, lucky + cnt);
fact[0] = 1;
for (int i = 1; i < 14; i++) fact[i] = i * fact[i - 1];
}
long long n, k;
void in() { cin >> n >> k; }
int arr[14] = {0};
int brr[14] = {0};
void rec(int p, long long k, int coun) {
if (coun == p) return;
int b = (k + fact[p - 1 - coun] - 1) / fact[p - 1 - coun];
int c = 0;
for (int i = 0; i < 14; i++) {
if (brr[i] == 0) c++;
if (b == c) {
brr[i] = 1;
arr[coun] = i;
rec(p, k - fact[p - 1 - coun] * (b - 1), coun + 1);
break;
}
}
return;
}
bool luck(long long q) {
for (int i = 0; i < cnt; i++) {
if (lucky[i] == q) return true;
if (lucky[i] > q) return false;
}
return false;
}
void solve() {
int p = 0;
while (fact[p] < k) p++;
if (n < 14 && k > fact[n]) {
cout << -1 << endl;
return;
}
rec(p, k, 0);
for (int i = 0; i < p; i++) {
arr[i] += n - p + 1;
}
int ans = 1;
while (lucky[ans] <= n - p) {
ans++;
}
ans--;
for (long long i = n - p + 1; i <= n; i++) {
if (luck(i) && luck(arr[i - n - 1 + p])) ans++;
}
cout << ans << endl;
}
int main() {
pre();
in();
solve();
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
long long n, k;
long long F[15];
vector<long long> p;
void dfs(long long c, long long mx) {
if (c > mx) return;
if (c) p.push_back(c);
dfs(10 * c + 4, mx);
dfs(10 * c + 7, mx);
}
int main() {
F[0] = 1;
for (int i = 1; i < 15; i++) F[i] = F[i - 1] * i;
cin >> n >> k;
if (n < 15 && F[n] < k)
cout << -1 << endl;
else {
int m = min(n, 15LL);
vector<long long> d;
for (long long i = n - m + 1; i <= n; i++) d.push_back(i);
vector<long long> pp;
int K = --k;
for (int i = 0; i < m; i++) {
int t = 0;
while (K >= F[m - i - 1]) {
K -= F[m - i - 1];
t++;
}
pp.push_back(d[t]);
d.erase(d.begin() + t);
}
long long r = 0;
dfs(0, n);
sort(p.begin(), p.end());
for (int i = 0; i < p.size(); i++)
if (p[i] <= n - m) r++;
for (int i = 1; i <= m; i++) {
if (binary_search(p.begin(), p.end(), n - m + i) &&
binary_search(p.begin(), p.end(), pp[i - 1]))
r++;
}
cout << r << endl;
}
return 0;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | import java.util.*;
public class Main {
public static void main(String args[]) {
(new Main()).solve();
}
int solve(int n, int k) {
int last = 1;
long perm = 1;
while( k > perm ) {
++last;
perm *= last;
}
if( last > n ) { return - 1; }
int ret = count(n - last);
int ans[] = createKth(last, k - 1);
for(int i=0; i<last; ++i) {
int pos = i + n - last + 1;
int val = ans[i] + n - last + 1;
if( ok(pos) && ok(val) ) { ++ret; }
}
return ret;
}
int[] createKth(int digs, int k) {
int ret[] = new int[digs];
for(int i=0; i<digs; ++i) { ret[i] = i; }
int count = 0;
long use = 1;
while( count < digs - 1 ) {
++count;
use *= count;
}
for(int i=0; i<digs-1; ++i) {
int find = (int)(k / use);
int set = ret[i + find];
for(int j=find; j>0; --j) {
ret[i + j] = ret[i + j - 1];
}
ret[i] = set;
k = (int)(k % use);
use /= count;
--count;
}
return ret;
}
boolean ok(int n) {
while( n > 0 ) {
int k = n % 10;
if( !(k == 4 || k == 7) ) { return false; }
n /= 10;
}
return true;
}
int count(int n) {
int ret = 0;
for(int i=1; i<12; ++i) {
int m = 1 << i;
for(int j=0; j<m; ++j) {
long cur = 0;
long base = 1;
for(int k=0; k<i; ++k) {
if( (j & (1 << k)) == 0 ) { cur += base * 4; }
else { cur += base * 7; }
base *= 10;
}
if( cur <= n ) { ++ret; }
}
}
return ret;
}
void solve() {
Scanner cin = new Scanner(System.in);
while( cin.hasNextInt() ) {
int n = cin.nextInt();
int k = cin.nextInt();
System.out.println(solve(n, k));
}
}
}
| JAVA |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
long long k;
int n;
vector<long long> v;
long long fact[15];
bool esta[20];
map<long long, bool> es;
void go(long long num, int pos) {
if (pos > 11) return;
v.push_back(num);
go(num * 10 + 4, pos + 1);
go(num * 10 + 7, pos + 1);
}
vector<int> get_permutation(int n, long long k) {
memset(esta, false, sizeof esta);
vector<int> r;
long long acu = 0;
int cant = n - 1;
for (int i = 0; i < n; i++) {
acu = 0;
for (int j = 0; j < n; j++) {
if (esta[j]) continue;
if (acu + fact[cant] >= k) {
k -= acu;
esta[j] = true;
r.push_back(j);
cant--;
break;
}
acu += fact[cant];
}
}
return r;
}
int main() {
go(4, 1);
go(7, 1);
sort((v).begin(), (v).end());
for (int i = 0; i < v.size(); i++) es[v[i]] = true;
fact[0] = 1;
fact[1] = 1;
for (int i = 2; i < 15; i++) fact[i] = fact[i - 1] * i;
cin >> n >> k;
vector<int> vv;
if (n > 13) {
vv = get_permutation(13, k);
int n2 = n - 13;
int res = 0;
for (int i = 0; i < v.size(); i++)
if (v[i] > n2)
break;
else
res++;
int pos = n2 + 1;
for (int i = 0; i < 13; i++)
if (es[pos++] && es[vv[i] + n2 + 1]) res++;
cout << res << endl;
} else {
if (fact[n] < k) {
printf("-1\n");
return 0;
}
for (int i = 0; i < n; i++) vv.push_back(i);
vv = get_permutation(n, k);
for (int i = 0; i < n; i++) vv[i]++;
int res = 0;
for (int i = 0; i < n; i++)
if (es[i + 1] && es[vv[i]]) res++;
cout << res << endl;
}
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
int countbit(int n) { return (n == 0) ? 0 : (1 + countbit(n & (n - 1))); }
int lowbit(int n) { return (n ^ (n - 1)) & n; }
const double pi = acos(-1.0);
const double eps = 1e-11;
long long p[20];
int N, K;
vector<int> path;
vector<long long> lucky;
int exist;
void proc(vector<int> seq, int size, int kth) {
if (size == 0 || exist == 0) return;
vector<int> next;
int r = kth / p[size - 1];
int m = kth % p[size - 1];
if (r >= size) {
exist = 0;
return;
}
path.push_back(seq[r]);
for (int i = 0; i < size; ++i)
if (i != r) next.push_back(seq[i]);
proc(next, size - 1, m);
}
void get(long long n) {
if (n) lucky.push_back(n);
if (n < 1000000000) {
get(n * 10 + 4);
get(n * 10 + 7);
}
}
bool isLucky(int n) {
while (n) {
if (n % 10 != 4 && n % 10 != 7) return false;
n /= 10;
}
return true;
}
int main() {
p[0] = 1;
for (int i = 1; i <= 15; ++i) p[i] = i * p[i - 1];
cin >> N >> K;
vector<int> seq;
int size;
if (N < 15)
size = N;
else
size = 15;
for (int i = 0; i < size; ++i) seq.push_back(N - i);
sort(seq.begin(), seq.end());
K--;
exist = 1;
proc(seq, size, K);
get(0);
sort(lucky.begin(), lucky.end());
int ans = 0;
if (N < 15) {
for (int i = 0; i < path.size(); ++i)
if (isLucky(i + 1) && isLucky(path[i])) ans++;
} else {
int index;
for (int i = 0; i < lucky.size(); ++i) {
if (lucky[i] > N - 15) {
ans += i;
break;
}
}
for (int i = 0; i < path.size(); ++i)
if (isLucky(i + N - 14) && isLucky(path[i])) ans++;
}
printf("%d\n", exist ? ans : -1);
return 0;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
int bound[15];
int n, k, ans;
long long lucky[3000];
int num;
void dfs(long long x, int pos) {
long long c1 = x * 10ll + 4ll, c2 = x * 10ll + 7ll;
if (pos <= 10) {
lucky[num++] = c1;
lucky[num++] = c2;
dfs(c1, pos + 1);
dfs(c2, pos + 1);
}
}
int main() {
lucky[num++] = 0;
dfs(0, 1);
sort(lucky, lucky + num);
bound[0] = 0;
bound[1] = 1;
for (int i = 2; i <= 12; ++i) bound[i] = bound[i - 1] * i;
ans = 0;
scanf("%d%d", &n, &k);
if (n <= 12 && k > bound[n])
puts("-1");
else {
int st = (((1) > (n - 12)) ? (1) : (n - 12));
bool used[20];
memset(used, 0, sizeof(used));
ans = lower_bound(lucky, lucky + num, st) - lucky - 1;
int c = 0;
for (int i = (((12) < (n - 1)) ? (12) : (n - 1)); i >= 1; --i) {
while (k > bound[i]) {
++c;
k -= bound[i];
}
int count = -1;
for (int j = 0; j <= (((12) < (n)) ? (12) : (n)); ++j) {
if (!used[j]) ++count;
if (count == c) {
used[j] = 1;
int tmp = lower_bound(lucky, lucky + num, st + j) - lucky;
int tmp2 = lower_bound(lucky, lucky + num, n - i) - lucky;
if (lucky[tmp] == st + j && lucky[tmp2] == n - i) ++ans;
break;
}
}
c = 0;
}
for (int i = 0; i <= (((12) < (n)) ? (12) : (n)); ++i) {
if (!used[i]) {
int tmp = lower_bound(lucky, lucky + num, st + i) - lucky;
int tmp2 = lower_bound(lucky, lucky + num, n) - lucky;
if (lucky[tmp] == st + i && lucky[tmp2] == n) ++ans;
break;
}
}
printf("%d\n", ans);
}
return 0;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
const int MAX_N = 15 + 5;
long long fact[MAX_N] = {1};
bool mark[MAX_N];
int a[MAX_N];
void Permutation(int k, int id) {
if (id == 15) return;
int x = (k - 1) / fact[14 - id];
k -= x * fact[14 - id];
for (int i = 0; i < 15; i++) {
if (!mark[i] && x)
x--;
else if (!mark[i]) {
a[id] = i, mark[i] = true;
return Permutation(k, id + 1);
}
}
}
bool isLucky(int n) {
return n ? (n % 10 == 4 || n % 10 == 7) && isLucky(n / 10) : true;
}
int countLucky(int n, long long num = 0) {
return num <= n ? (num > 0) + countLucky(n, num * 10 + 4) +
countLucky(n, num * 10 + 7)
: 0;
}
int main() {
ios_base ::sync_with_stdio(false), cin.tie(NULL), cout.tie(NULL);
int n, k;
cin >> n >> k;
for (int i = 1; i < MAX_N; i++) fact[i] = fact[i - 1] * i;
if (n < MAX_N && k > fact[n]) return cout << "-1\n", 0;
Permutation(k, 0);
int tmp = n, ans = 0;
for (int i = 0; i < 15; i++)
if (a[i] != i) {
tmp -= 15 - i;
for (int j = i; j < 15; j++)
ans += (isLucky(tmp + j - i + 1) && isLucky(tmp + a[j] - i + 1));
break;
}
cout << ans + countLucky(tmp) << endl;
return 0;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
std::vector<long long> v;
long long c(long long i) {
while (i) {
if (i % 10 == 4 || i % 10 == 7) {
} else
return 0;
i /= 10;
}
return 1;
}
long long MAXN = 1e10;
int32_t main() {
ios::sync_with_stdio(false);
cin.tie(NULL);
cout.precision(10);
std::vector<long long> fact = {
1ll, 1ll, 2ll, 6ll, 24ll,
120ll, 720ll, 5040ll, 40320ll, 362880ll,
3628800ll, 39916800ll, 479001600ll, 6227020800ll, 87178291200ll};
priority_queue<long long, std::vector<long long>, greater<long long> > pq;
pq.push(4);
pq.push(7);
while (!pq.empty()) {
long long o = pq.top();
pq.pop();
v.emplace_back(o);
if (o * 10ll + 7ll <= MAXN) {
pq.push(o * 10ll + 7ll);
pq.push(o * 10ll + 4ll);
} else if (o * 10ll + 4ll <= MAXN) {
pq.push(o * 10ll + 4ll);
}
}
long long n;
cin >> n;
long long k;
cin >> k;
if (n <= 13 && fact[n] < k) {
cout << -1;
exit(0);
}
long long rem = min(n, 13ll);
std::vector<long long> vv;
for (long long i = rem - 1; i >= 0; --i) {
vv.emplace_back(n - i);
}
long long r = 0;
for (long long vvv : v)
if (vvv <= (n - rem)) r++;
std::vector<long long> v1;
while (rem) {
long long y = 0;
rem--;
while (fact[rem] < k) {
k -= fact[rem];
y++;
}
v1.emplace_back(vv[y]);
vv.erase(vv.begin() + y);
}
rem = min(n, 13ll);
for (long long i = 0; i < rem; ++i) {
if (c(n - i) && c(v1[rem - i - 1])) {
r++;
}
}
cout << r;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | import java.util.ArrayList;
import java.util.Arrays;
import java.util.LinkedList;
import java.util.List;
import java.util.Scanner;
public class luckPerm {
public static void debug(Object... obs) {
System.out.println(Arrays.deepToString(obs));
}
public static void main(String[] args) throws Exception {
Scanner sc = new Scanner(System.in);
long n=sc.nextLong();
long k=sc.nextLong();
List<Long>q=new ArrayList<Long>();
int idx=0;
long l=0;
while(l <= n)
{
long l1=l*10 + 4;
long l2=l*10 + 7;
if(l1 > n) break;
q.add(l1);
if(l2 > n) break;
q.add(l2);
l = q.get(idx);
idx++;
}
int cnt=0;
//debug(q);
if(n <= 13 && fac(n) < k)
{
System.out.println(-1);
return;
}
//int[]mapit=new int[(int)n];
//for(int v=1;v<=n;v++)
for(long v : q)
{
//debug(v,n,k);
long id=pos(v,n,k);
//debug(v,n,k,id);
//mapit[(int)id-1]=v;
if(isLucky(id))
cnt++;
}
//debug(mapit);
System.out.println(cnt);
}
private static boolean isLucky(long id) {
if(id == 0) return false;
while(id > 0)
{
if(id%10!=4 && id%10!=7)
{
return false;
}
id/=10;
}
return true;
}
private static long pos(long v, long n, long k) {
long res=0;
//debug(v,n,k);
if(n > 14)
{
long dif=Math.min(n-14, v-1);
res+=dif;
n-=dif;
v-=dif;
}
if(n==1)
{
res+=1;
return res;
}
if(v==1 && n > 14)
{
return res+=1;
}
// if(n==2 && v==2)
// {
// if(k%2==0) res+=2;
// else res+=1;
// return res;
// }
// if(n==2 && v==1)
// {
// if(k%2==0) res+=1;
// else res+=2;
// return res;
// }
//debug(v,n,k);
long fc=fac(n-1);
long nk = (k%fc==0)?fc:k%fc;
if( k <= (v-1)*fc)
{
res+= 1 + pos(v-1,n-1,nk);
}
else if( k <= v*fc)
{
res+=1;
}
else if(k <= n*fc)
{
res+= 1 + pos(v,n-1,nk);
}
else
{
return -1;
}
return res;
}
static long fac(long a)
{
long res=1;
for(long i=1;i<=a;i++)
{
res*=i;
}
return res;
}
}
| JAVA |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | import java.util.ArrayList;
import java.util.Scanner;
public class C121 {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int k = sc.nextInt();
if (n < 13) {
if (k > fac(n)) {
System.out.println(-1);
return;
}
}
int[]a = new int[14];
int m, ans = 0, add;
if (n <= 13) {
m = n;
for (int i = 1; i <= m; i++) {
a[i] = i;
}
add = 0;
}
else {
m = 13;
for (int i = 1; i <= 13; i++) {
a[i] = n-13+i;
}
add = n-13;
ans = num_lucly(n-13);
}
long[]fac = new long[m+1];
fac[0] = 1;
ArrayList<Integer> remain = new ArrayList<Integer>();
for (int i = 1; i <= m; i++) {
fac[i] = fac[i-1] * i;
remain.add(i);
}
for (int i = 1; i <= m; i++) {
int t = (int) (k / fac[m-i]);
if (k % fac[m-i] != 0)
t++;
int ind = (t-1) % (m-i+1);
int temp = remain.get(ind);
remain.remove(ind);
if (luckly(a[temp]) && luckly(i+add))
ans++;
}
System.out.println(ans);
}
private static boolean luckly(int k) {
String s = k+"";
for (int i = 0; i < s.length(); i++) {
if (s.charAt(i) != '4' && s.charAt(i) != '7')
return false;
}
return true;
}
private static int num_lucly(int k) {
int res = 0, L;
String s;
int lucly;
for (int i = 1; i <= 9; i++) {
if (i <= (k+"").length()) {
for (int j = 0; j < (1 << i); j++) {
s = Integer.toBinaryString(j);
L = s.length();
for (int j2 = 1; j2 <= i-L; j2++) {
s = "0"+s;
}
lucly = 0;
for (int j2 = 0; j2 < i; j2++) {
lucly *= 10;
if (s.charAt(j2)=='0')
lucly += 4;
else
lucly += 7;
}
if (lucly <= k)
res++;
}
}
}
return res;
}
private static long fac(int n) {
if (n < 2)
return 1;
return n * fac(n-1);
}
}
| JAVA |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | import java.lang.*;
import java.awt.geom.Line2D;
import java.io.*;
import java.util.*;
import java.math.*;
public class C implements Runnable{
ArrayList<Integer> ns;
HashSet<Integer> h;
private void rec(long cur, int max) {
if (cur >= max) {
return;
}
if (cur > 0) {
ns.add((int)cur);
h.add((int)cur);
}
rec(cur*10+4, max);
rec(cur*10+7, max);
}
public void run() {
int n = nextInt();
int k = nextInt();
ns = new ArrayList<Integer>();
h = new HashSet<Integer>();
rec(0, n+1);
long fc = 1;
int fck = 1;
while (fc < k) {
++fck;
fc *= fck;
}
if (fck > n) {
out.println(-1);
}
else {
int[] perm = new int[fck];
ArrayList<Integer> nums = new ArrayList<Integer>();
for (int i = 1; i <= fck; ++i) {
nums.add(i);
}
int kk = k-1;
fc /= fck;
for (int i = 0; i < fck; ++i) {
int idx = (int)(kk/fc);
perm[i] = nums.get(idx);
nums.remove(idx);
kk %= fc;
if (fck-i-1 != 0) {
fc /= (fck-i-1);
}
}
for (int i = 0; i < fck; ++i) {
perm[i] += (n-fck);
}
int ans = 0;
for (int i = 0; i < ns.size(); ++i) {
if (ns.get(i) < n-fck+1) {
++ans;
}
}
for (int i = 0; i < fck; ++i) {
// System.err.println((i+n-fck+1) + " " + perm[i]);
if (h.contains(i+n-fck+1) && h.contains(perm[i])) {
++ans;
}
}
out.println(ans);
}
out.flush();
}
private static BufferedReader br = null;
private static PrintWriter out = null;
private static StringTokenizer stk = null;
public static void main(String[] args) {
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
(new Thread(new C())).start();
}
private void loadLine() {
try {
stk = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
private String nextLine() {
try {
return br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return null;
}
private Integer nextInt() {
while (stk==null||!stk.hasMoreTokens()) loadLine();
return Integer.parseInt(stk.nextToken());
}
private Long nextLong() {
while (stk==null||!stk.hasMoreTokens()) loadLine();
return Long.parseLong(stk.nextToken());
}
private String nextWord() {
while (stk==null||!stk.hasMoreTokens()) loadLine();
return (stk.nextToken());
}
private Double nextDouble() {
while (stk==null||!stk.hasMoreTokens()) loadLine();
return Double.parseDouble(stk.nextToken());
}
}
| JAVA |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
const int N = 1e6 + 11;
const long long MOD = 1e18;
long long n, k;
int ans = 0;
vector<long long> vv;
bool good(long long c) {
while (c > 0) {
if (c % 10 == 4 || c % 10 == 7) {
} else
return false;
c /= 10;
}
return true;
}
void dfs(long long l) {
if (l > n) return;
if (l >= 1) {
if (l < n - 15ll) {
ans++;
} else {
long long pos = l - max(1ll, (n - 15));
if (good(vv[pos])) ans++;
}
}
dfs(l * 10ll + 4ll);
dfs(l * 10ll + 7ll);
}
long long kol_perm(long long x) {
long long k = 1;
for (long long i = 1; i <= x; i++) k *= i;
return k;
}
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cin >> n >> k;
if (n <= 15 && kol_perm(n) < k) {
cout << "-1" << endl;
return 0;
}
vector<long long> v, dd;
for (int i = max(1ll, n - 15ll); i <= n; i++) v.push_back(i);
int t = min(16ll, n);
for (int i = 1; i <= t; i++) {
int c = 0;
for (long long j = 0; j < v.size(); j++)
if (kol_perm(t - i) * (j + 1) >= k) {
vv.push_back(v[j]);
c = j;
k -= kol_perm(t - i) * j;
break;
}
dd.clear();
for (int j = 0; j < c; j++) dd.push_back(v[j]);
for (int j = c + 1; j < v.size(); j++) dd.push_back(v[j]);
v = dd;
}
dfs(0);
cout << ans << endl;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | import java.io.*;
import java.util.*;
import java.math.*;
//created at 7:48 PM 10/27/11 by Abrackadabra
public class C {
int IOMode = 0; //0 - consoleIO, 1 - <taskName>.in/out, 2 - input.txt/output.txt, 3 - test case generator
String taskName = "";
int l, n;
int[] a;
long[] f;
void solve() throws IOException {
n = nextInt();
int k = nextInt() - 1;
l = 100;
a = new int[l + 1];
f = new long[l + 1];
for (int i = l; i >= 0; i--) {
a[i] = n - l + i;
}
long fac = 1;
int s = -1;
for (int i = l; i >= 0; i--) {
fac *= (long)l - i + 1;
f[i] = fac;
if (fac > k) {
s = i;
if (a[s] <= 0) {
out.println(-1);
return;
}
break;
}
}
rotate(s, k);
TreeSet<Long> g = new TreeSet<Long>();
g.add((long)4);
g.add((long)7);
for (int i = 2; i < 12; i++) {
TreeSet<Long> g1 = new TreeSet<Long>();
for (Long t : g) {
g1.add(t);
g1.add(t * 10 + 4);
g1.add(t * 10 + 7);
}
g = g1;
}
int r = 0;
for (Long t : g) {
if (t > n) break;
long p = l - n + t;
if (p < 0 || a[(int)p] <= 0) {
r++;
} else {
if (g.contains((long)a[(int)p]))
r++;
}
}
out.println(r);
}
void rotate(int s, int k) {
if (s > l || k <= 0) return;
int p = 0;
while (k >= f[s + 1]) {
k -= f[s + 1];
p++;
}
for (int i = s + 1; i < l + 1; i++)
if (i - s == p) {
int t = a[s];
a[s] = a[i];
a[i] = t;
break;
}
Arrays.sort(a, s + 1, l + 1);
rotate(s + 1, k);
}
public static void main(String[] args) throws IOException {
if (args.length > 0 && args[0].equals("Abra")) debugMode = true;
new C().run();
}
long startTime = System.nanoTime(), tempTime = startTime, finishTime = startTime;
long startMem = Runtime.getRuntime().totalMemory(), finishMem = startMem;
void run() throws IOException {
init();
if (debugMode) {
con.println("Start");
con.println("Console output:");
}
solve();
finishTime = System.nanoTime();
finishMem = Runtime.getRuntime().totalMemory();
out.flush();
if (debugMode) {
int maxSymbols = 1000, c = 0;
BufferedReader tbr = new BufferedReader(new FileReader("input.txt"));
char[] a = new char[maxSymbols];
tbr.read(a);
if (a[0] != 0) {
con.println();
con.println("File input:");
con.print(a);
}
boolean left = true;
for (int i = 0; i < maxSymbols; i++) left = left && a[i] != 0;
if (left) con.println("...");
else con.println();
tbr = new BufferedReader(new FileReader("output.txt"));
a = new char[maxSymbols];
tbr.read(a);
if (a[0] != 0) {
con.println();
con.println("File output:");
con.print(a);
}
left = true;
for (int i = 0; i < maxSymbols; i++) left = left && a[i] != 0;
if (left) con.println("...");
else con.println();
con.println("Time passed: " + (finishTime - startTime) / 1000000000.0 + " sec");
con.println("Memory used: " + (finishMem - startMem) + " bytes");
con.println("Total memory: " + Runtime.getRuntime().totalMemory() + " bytes");
}
}
boolean tick(double x) {
if (System.nanoTime() - tempTime > x) {
tempTime = System.nanoTime();
con.println("Tick at " + (tempTime - startTime) / 1000000000 + " sec");
con.print(" ");
return true;
}
return false;
}
void printTime() {
con.println((System.nanoTime() - tempTime) + " nanos passed");
tempTime = System.nanoTime();
}
static boolean debugMode = false;
PrintStream con = System.out;
void init() throws IOException {
if (debugMode) {
br = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter(new FileWriter("output.txt"));
} else
switch (IOMode) {
case 0:
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
break;
case 1:
br = new BufferedReader(new FileReader(taskName + ".in"));
out = new PrintWriter(new FileWriter(taskName + ".out"));
break;
case 2:
br = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter(new FileWriter("output.txt"));
break;
case 3:
out = new PrintWriter(new FileWriter("input.txt"));
break;
}
}
BufferedReader br;
PrintWriter out;
StringTokenizer in;
boolean hasMoreTokens() throws IOException {
while (in == null || !in.hasMoreTokens()) {
String line = br.readLine();
if (line == null) return false;
in = new StringTokenizer(line);
}
return true;
}
String nextString() throws IOException {
return hasMoreTokens() ? in.nextToken() : null;
}
int nextInt() throws IOException {
return Integer.parseInt(nextString());
}
long nextLong() throws IOException {
return Long.parseLong(nextString());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextString());
}
}
| JAVA |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
long long Fact[20];
vector<int> v;
vector<int> nthPerm(vector<int>& identity, int nth) {
vector<int> perm(identity.size());
int len = identity.size();
for (int i = identity.size() - 1; i >= 0; i--) {
int p = nth / Fact[i];
perm[len - 1 - i] = identity[p];
identity.erase(identity.begin() + p);
nth %= Fact[i];
}
return perm;
}
set<long long> lucky;
void f(long long x) {
if (x > 1e9) return;
if (x) lucky.insert(x);
f(x * 10 + 4);
f(x * 10 + 7);
}
int main() {
Fact[0] = Fact[1] = 1;
for (int i = 2; i < 20; i++) Fact[i] = Fact[i - 1] * i;
int n, k;
cin >> n >> k;
if (n <= 13 && Fact[n] < k) {
cout << -1 << endl;
return 0;
}
int r = n, l = max(1, n - 13);
for (int i = l; i <= r; i++) v.push_back(i);
k--;
vector<int> perm = nthPerm(v, k);
f(0);
int ans = 0;
for (int i = 0; i < perm.size(); i++) {
int idx = i + l;
if (lucky.find(idx) != lucky.end() && lucky.find(perm[i]) != lucky.end())
ans++;
}
for (auto it = lucky.begin(); *it < l; it++) {
ans++;
}
cout << ans << endl;
return 0;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
bool DEBUG = false;
using namespace std;
int val[5000];
int l, cur, n, k, result;
int sel[15], sl, perm[15];
bool used[15];
int fact[13], os;
int main() {
l = 0;
val[l++] = 4;
val[l++] = 7;
cur = 0;
while (l < 1000) {
int tmp = l;
for (int i = (cur); i < (tmp); ++i) {
val[l++] = val[i] * 10 + 4;
val[l++] = val[i] * 10 + 7;
}
cur = tmp;
}
scanf("%d%d", &n, &k);
result = 0;
for (int i = 0; i < (l); ++i)
if (val[i] < n - 12) result++;
fact[0] = 1;
for (int i = (1); i < (13); ++i) fact[i] = i * fact[i - 1];
if (n > 13)
os = n - 12;
else
os = 1;
sl = 0;
for (int i = (os); i <= (n); ++i) sel[sl++] = i;
if (DEBUG) {
cout << "sel"
<< ": ";
for (int innercounter = 0; innercounter < (sl); ++innercounter)
cout << sel[innercounter] << " ";
cout << endl;
};
if (sl < 13 && k > fact[sl]) {
puts("-1");
return 0;
}
memset(used, 0, sizeof(used));
for (int i = 0; i < (sl); ++i) {
int shft = (k - 1) / fact[sl - i - 1];
if (DEBUG) {
cout << "shft"
<< ": " << (shft) << endl;
};
cur = 0;
for (int j = 0; j < (sl); ++j)
if (!used[j]) {
if (DEBUG) {
cout << "sel[j]"
<< ": " << (sel[j]) << endl;
};
if (cur < shft)
cur++;
else {
perm[i] = sel[j];
used[j] = true;
break;
}
}
k -= shft * fact[sl - i - 1];
}
if (DEBUG) {
cout << "perm"
<< ": ";
for (int innercounter = 0; innercounter < (sl); ++innercounter)
cout << perm[innercounter] << " ";
cout << endl;
};
set<int> vals;
for (int i = 0; i < (l); ++i) vals.insert(val[i]);
if (DEBUG) {
cout << "os"
<< ": " << (os) << endl;
};
if (DEBUG) {
cout << "n"
<< ": " << (n) << endl;
};
if (DEBUG) {
cout << "l"
<< ": " << (l) << endl;
};
for (int i = 0; i < (l); ++i) {
if (val[i] >= os && val[i] <= n) {
if (DEBUG) {
cout << "val[i]"
<< ": " << (val[i]) << endl;
};
if (vals.find(perm[val[i] - os]) != vals.end()) result++;
}
}
cout << result;
return 0;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
const double pi = acos(-1.0);
const double eps = 1e-11;
const int inf = 0x7FFFFFFF;
template <class T>
inline void checkmin(T &a, T b) {
if (b < a) a = b;
}
template <class T>
inline void checkmax(T &a, T b) {
if (b > a) a = b;
}
template <class T>
inline T sqr(T x) {
return x * x;
}
template <class T>
void show(T a, int n) {
for (int i = 0; i < n; ++i) cout << a[i] << ' ';
cout << endl;
}
template <class T>
void show(T a, int r, int l) {
for (int i = 0; i < r; ++i) show(a[i], l);
cout << endl;
}
long long lk[100007], cnt, M = 1e11, ten[15], ni[15];
void init(long long i) {
if (i && i <= M) lk[cnt++] = i;
if (i <= M) {
init(i * 10 + 4);
init(i * 10 + 7);
}
}
bool lucky(long long a) {
if (a == 0) return false;
while (a) {
if (!(a % 10 == 4 || a % 10 == 7)) return false;
a /= 10;
}
return true;
}
void ntoP(long long n, long long t) {
for (int i = n - 1; i >= 0; i--) ni[i] = t % (n - i), t /= (n - i);
for (int i = n - 1; i != 0; i--)
for (int j = i - 1; j >= 0; j--)
if (ni[j] <= ni[i]) ni[i]++;
}
int main() {
init(0);
sort(lk, lk + cnt);
ten[0] = 1;
for (int i = 1; i < 15; i++) ten[i] = ten[i - 1] * i;
long long n, k;
while (cin >> n >> k) {
int mx = 1;
while (ten[mx] < k) mx++;
if (mx > n) {
cout << -1 << endl;
continue;
}
long long bas = n - mx, sum = 0;
ntoP(mx, k - 1);
for (int j = 1; j <= mx; j++) {
if (lucky(bas + j) && lucky(ni[j - 1] + bas + 1)) sum++;
}
for (int i = 0; i < cnt; i++)
if (lk[i] <= bas)
sum++;
else
break;
cout << sum << endl;
}
return 0;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
template <class T>
T _abs(T n) {
return (n < 0 ? -n : n);
}
template <class T>
T _max(T a, T b) {
return (!(a < b) ? a : b);
}
template <class T>
T _min(T a, T b) {
return (a < b ? a : b);
}
template <class T>
T sq(T x) {
return x * x;
}
const double EPS = 1e-9;
const int INF = 0x7f7f7f7f;
bool isL(int d) {
while (d) {
if (d % 10 != 4 && d % 10 != 7) return false;
d /= 10;
}
return true;
}
long long fc[16];
int pr[100100];
void kFact(int k, int p, set<int> &d) {
if (p < 0) return;
for (auto a : d) {
if (fc[p] <= k)
k -= fc[p];
else {
pr[p] = a;
d.erase(a);
return kFact(k, p - 1, d);
}
}
}
int main() {
set<int> d;
int i, j, n, k;
cin >> n >> k;
fc[0] = 1;
for (i = 1; i <= 13; i++) fc[i] = i * fc[i - 1];
if (n <= 13 && k > fc[n]) {
puts("-1");
return 0;
}
for (i = n, j = 13; i && j; i--, j--) {
d.insert(i);
}
int st = i, l = d.size();
;
kFact(k - 1, l - 1, d);
int r = 0;
for (i = 1; i <= l; i++)
if (isL(st + i) && isL(pr[l - i])) r++;
vector<int> v;
if (st >= 4) v.push_back(4);
if (st >= 7) v.push_back(7);
long long t;
for (i = 0; i < v.size(); i++) {
t = v[i];
t *= 10;
if (t + 4 <= st) v.push_back(t + 4);
if (t + 7 <= st) v.push_back(t + 7);
}
r += v.size();
cout << r << '\n';
return 0;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
const int maxn = 20 + 5, mod = 1e9 + 7, inf = 0x3f3f3f3f;
double eps = 1e-8;
template <class T>
T QuickMod(T a, T b, T c) {
T ans = 1;
while (b) {
if (b & 1) ans = ans * a % c;
b >>= 1;
a = (a * a) % c;
}
return ans;
}
template <class T>
T Gcd(T a, T b) {
return b != 0 ? Gcd(b, a % b) : a;
}
template <class T>
T Lcm(T a, T b) {
return a / Gcd(a, b) * b;
}
template <class T>
void outln(T x) {
cout << x << endl;
}
long long fact[maxn] = {1};
int ans, n, k, p[maxn];
long long a[100000], c;
void CantorR(int index, int n) {
bool vis[maxn];
memset(vis, false, sizeof vis);
index--;
for (int i = 0; i < n; i++) {
int t = index / fact[n - i - 1];
for (int j = 0; j <= t; j++)
if (vis[j]) t++;
p[i] = t + 1;
vis[t] = true;
index %= fact[n - i - 1];
}
}
void dfs(long long num) {
if (num > 1e10) return;
a[c++] = num;
dfs(num * 10 + 4);
dfs(num * 10 + 7);
}
int main() {
for (int i = 1; fact[i - 1] <= mod; i++) fact[i] = fact[i - 1] * i;
scanf("%d%d", &n, &k);
if (n <= 12 && k > fact[n])
puts("-1");
else {
int pos = 13;
for (int i = 1; i <= 12; i++) {
if (k < fact[i]) {
pos = i;
break;
}
}
CantorR(k, pos);
int rest = n - pos;
dfs(0);
sort(a, a + c);
for (int i = 1; i < c && a[i] <= n; i++) {
if (a[i] <= rest)
ans++;
else {
int num = p[a[i] - rest - 1] + rest;
for (int j = 1; j < c && a[j] <= n; j++) {
if (a[j] == num) {
ans++;
break;
}
}
}
}
printf("%d\n", ans);
}
return 0;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
inline void OPEN(const string &file_name) {
freopen((file_name + ".in").c_str(), "r", stdin);
freopen((file_name + ".out").c_str(), "w", stdout);
}
long long fact[50];
inline void initfact() {
fact[0] = 1;
for (int i = (1), _b = (49); i <= _b; i++) fact[i] = fact[i - 1] * i;
}
vector<long long> lucky;
inline void generate() {
for (int i = (1), _b = (10); i <= _b; i++) {
for (int b = 0, _n = (1 << i); b < _n; b++) {
long long tmp = 0;
for (int j = 0, _n = (i); j < _n; j++) {
tmp *= 10;
if (b & (1 << j))
tmp += 4;
else
tmp += 7;
}
lucky.push_back(tmp);
}
}
sort((lucky).begin(), (lucky).end());
}
int ret = 0;
vector<int> v, permut;
char s[100];
int n, k;
inline bool islucky(int x) {
sprintf(s, "%d", x);
for (int i = 0; s[i]; i++) {
if (s[i] != '4' && s[i] != '7') return false;
}
return true;
}
inline void get_kth(int x) {
for (int i = (n - x + 1), _b = (n); i <= _b; i++) {
v.push_back(i);
}
for (int i = (1), _b = (x); i <= _b; i++) {
long long cnt = 0;
for (int j = 0, _n = (x - i + 1); j < _n; j++) {
cnt += fact[x - i];
if (cnt >= k) {
permut.push_back(v[j]);
v.erase(v.begin() + j);
cnt -= fact[x - i];
k -= cnt;
break;
}
}
}
int j = 0;
for (int i = (n - x + 1), _b = (n); i <= _b; i++) {
if (islucky(i) && islucky(permut[j])) {
ret++;
}
j++;
}
}
int main() {
initfact();
cin >> n >> k;
generate();
int x = 0;
for (; fact[x] < k; x++)
;
if (x > n) {
puts("-1");
return 0;
}
ret = 0;
for (int i = 0, _n = ((lucky).size()); i < _n; i++) {
if (lucky[i] <= n - x) ret++;
}
get_kth(x);
cout << ret << endl;
return 0;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
int N;
long long K;
long long F[12];
vector<long long> S;
void DFS(int a) {
if (a > 10) {
long long res = 0, flag = 0;
for (int i = 1; i <= 10; i++) {
if (F[i] == 0) {
if (flag) return;
} else if (F[i] == 1) {
res = res * 10 + 4;
flag = 1;
} else
res = res * 10 + 7, flag = 1;
}
S.push_back(res);
return;
}
F[a] = 0;
DFS(a + 1);
F[a] = 1;
DFS(a + 1);
F[a] = 2;
DFS(a + 1);
}
int C[200], A[200];
long long P[200];
int check(int a) {
while (a > 0) {
if (a % 10 != 7 && a % 10 != 4) return 0;
a /= 10;
}
return 1;
}
int main() {
DFS(1);
scanf("%d%lld", &N, &K);
long long pow = 1;
bool flag = 0;
for (int i = 1; i <= N; i++)
if (pow * i >= K) {
flag = 1;
break;
} else
pow *= i;
if (!flag) {
puts("-1");
return 0;
}
P[1] = P[0] = 1;
for (int i = 2; P[i - 1] < 10000000000LL; i++) P[i] = P[i - 1] * (long long)i;
pow = 1;
int start;
for (int i = 1; i <= N; i++) {
if (pow * (long long)i >= K) {
start = N - i + 1;
break;
}
pow *= (long long)i;
}
int nn = N - start + 1;
for (int i = 1; i <= nn; i++) {
for (int j = nn; j >= 1; j--)
if (!C[j]) {
int x = 0;
for (int k = 1; k < j; k++)
if (!C[k]) x++;
if (x * P[nn - i] < K) {
C[j] = 1;
A[i] = j;
K -= (long long)x * P[nn - i];
break;
}
}
}
for (int i = 1; i <= nn; i++)
if (!C[i]) A[nn] = i;
for (int i = 1; i <= nn; i++) A[i] += start - 1;
sort(S.begin(), S.end());
int cnt = 0;
for (int i = 1; i < S.size(); i++) {
if (start <= S[i]) break;
cnt++;
}
for (int i = 1; i <= nn; i++) {
if (check(A[i]) && check(start + i - 1)) cnt++;
}
printf("%d\n", cnt);
return 0;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.StringTokenizer;
public class HappyPermutation implements Runnable {
private void solve() throws IOException {
List<Long> happy = new ArrayList<Long>();
for (int len = 1; len <= 10; ++len) {
for (int mask = 0; mask < (1 << len); ++mask) {
long num = 0;
for (int i = 0; i < len; ++i)
if ((mask & (1 << i)) != 0) num = num * 10 + 4; else num = num * 10 + 7;
happy.add(num);
}
}
Collections.sort(happy);
long[] fact = new long[20];
fact[0] = 1;
for (int i = 1; i < 20; ++i) {
fact[i] = i * fact[i - 1];
}
long n = nextLong();
long k = nextLong() - 1;
if (n < 20 && (k >= fact[(int) n])) {
writer.println(-1);
return;
}
long start = 1;
long res = 0;
List<Long> remaining = new ArrayList<Long>();
if (n > 20) {
start = n - 19;
res += lowerBound(happy, start);
}
for (long pos = start; pos <= n; ++pos) {
remaining.add(pos);
}
for (long pos = start; pos <= n; ++pos) {
long remFact = fact[(int) (n - pos)];
int index = (int) (k / remFact);
k -= index * remFact;
long what = remaining.get(index);
if (isHappy(happy, pos) && isHappy(happy, what)) {
++res;
}
remaining.remove(index);
}
writer.println(res);
}
private boolean isHappy(List<Long> happy, long what) {
return happy.get(lowerBound(happy, what)) == what;
}
int lowerBound(List<Long> happy, long what) {
int left = -1;
int right = happy.size();
while (right - left > 1) {
int middle = (left + right)/ 2;
if (happy.get(middle) < what)
left = middle;
else
right = middle;
}
return right;
}
public static void main(String[] args) {
new HappyPermutation().run();
}
BufferedReader reader;
StringTokenizer tokenizer;
PrintWriter writer;
public void run() {
try {
reader = new BufferedReader(new InputStreamReader(System.in));
tokenizer = null;
writer = new PrintWriter(System.out);
solve();
reader.close();
writer.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
String nextToken() throws IOException {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(reader.readLine());
}
return tokenizer.nextToken();
}
}
| JAVA |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | import math
def good(x):
while x > 0:
if x % 10 != 4 and x % 10 != 7:
return False
x //=10
return True
n, k = map(int, input().split())
l = 1
r = n
if n >= 15:
l = n-14
if n <= 15 and math.factorial(n) < k:
print(-1)
else:
L = r - l + 1
a = []
for i in range(L):
a.append(i)
b = []
k -= 1
for i in range(L):
x = k//math.factorial(L-i-1)
y = a[x]
b.append(y+l)
a.remove(y)
k -= x * math.factorial(L-i-1)
c = []
if 4 < l:
c.append(4)
if 7 < l:
c.append(7)
ans = 0
while len(c) > 0:
ans += len(c)
cc = []
for x in c:
if x * 10 + 4 < l:
cc.append(x * 10 + 4)
if x * 10 + 7 < l:
cc.append(x * 10 + 7)
c = cc
for i in range(L):
if good(i+l) and good(b[i]):
ans += 1
print(ans)
| PYTHON3 |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
int p[11];
bool used[15];
long long f[15];
vector<int> g;
bool is_good(long long x) {
if (x < 4) return false;
while (x > 0) {
if (x % 10 != 4 && x % 10 != 7) return false;
x /= 10;
}
return true;
}
int main() {
int n, ans = 0;
long long k;
cin >> n >> k;
f[1] = f[0] = 1;
for (long long i = 2; i < 15; ++i) f[i] = i * f[i - 1];
if (n < 14 && k > f[n]) {
cout << -1;
return 0;
}
while (true) {
int j = 0;
p[j]++;
while (p[j] > 2) {
p[j] = 0;
p[++j]++;
}
if (p[9] != 0) break;
bool good = true;
int cur = 0, mul = 1, cnt = 0;
for (int i = 0; i < 9; ++i) {
if (p[i] != 0) {
cur += mul * (p[i] == 1 ? 4 : 7);
if (!good) cnt++;
} else
good = false;
mul *= 10;
}
if (cnt == 0 && cur > 0 && cur <= n - 14) ans++;
}
int len = (n >= 14 ? 14 : n);
vector<int> perm(len);
for (int i = 0; i < len; ++i) {
int dig = -1;
for (int j = 0; j < len && dig == -1; ++j)
if (!used[j]) {
if (k > f[len - i - 1])
k -= f[len - i - 1];
else {
dig = j;
used[j] = true;
}
}
perm[i] = max(dig, 0) + (n - len) + 1;
}
for (int i = 0; i < perm.size(); ++i)
if (is_good(perm[i]) && is_good(i + (n - len) + 1)) ans++;
cout << ans;
return 0;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | import java.util.*;
import java.io.*;
import static java.lang.Math.*;
public class Main {
BufferedReader in;
StringTokenizer st;
PrintWriter out;
static ArrayList<Long> list = new ArrayList<Long>();
static void gen(long a, int len) {
// if (a != 0)
list.add(a);
if (len >= 10)
return;
gen(a * 10 + 4, len + 1);
gen(a * 10 + 7, len + 1);
}
static {
gen(0, 0);
Collections.sort(list);
}
long sol(long a, long b) {
long ret = 0;
for (int i = 0; i < list.size(); ++i) {
long q = list.get(i);
if (a <= q && q <= b)
++ret;
}
return ret;
}
int n, k;
int calc() {
long a = 1L;
if ((long) k <= a)
return 1;
for (long i = 2;; ++i) {
a *= i;
if ((long) k <= a)
return (int) i;
}
}
boolean check(int n) {
if (n == 0)
return false;
while (n > 0) {
int a = n % 10;
if (a == 4 || a == 7)
;
else
return false;
n /= 10;
}
return true;
}
long fact(int n) {
long ret = 1;
for (int i = 2; i <= n; ++i)
ret *= (long) i;
return ret;
}
int[] v;
boolean[] was;
int get(int idx) {
int cnt = 0;
for (int i = 0; i < v.length; ++i) {
if (was[i] == false) {
++cnt;
if (cnt == idx) {
return i;
}
}
}
return -1;
}
void solve() throws IOException {
n = ni();
k = ni();
int a = calc();
if (a > n) {
out.println(-1);
return;
}
long ret = sol(1, n - a);
v = new int[a];
was = new boolean[a];
for (int i = n, j = 0; j < a; ++j, --i)
v[j] = i;
Arrays.sort(v);
for (int i = 1, pp = n - a + 1; i <= a; ++i, ++pp) {
long f = fact(a - i);
int position = 1;
long qwe = f;
while (qwe < k) {
++position;
qwe += f;
}
k -= (qwe - f);
int pos = get(position);
was[pos] = true;
// System.err.println(v[pos]);
if (check(pp) && check(v[pos]))
++ret;
}
out.println(ret);
}
public Main() throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
in.close();
out.close();
}
String ns() throws IOException {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
int ni() throws IOException {
return Integer.valueOf(ns());
}
long nl() throws IOException {
return Long.valueOf(ns());
}
double nd() throws IOException {
return Double.valueOf(ns());
}
public static void main(String[] args) throws IOException {
new Main();
}
}
| JAVA |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
const int N = 14;
vector<int64_t> fact(N, 1);
vector<int64_t> happies;
vector<int> k_perm(int64_t n, int64_t k) {
--k;
vector<int> a(n);
vector<bool> used(n + 1);
for (int i = 0; i < n; ++i) {
int64_t alreadyWas = k / fact[n - i - 1];
k %= fact[n - i - 1];
int64_t curFree = 0;
for (int j = 1; j <= n; ++j) {
if (!used[j]) {
++curFree;
if (curFree == alreadyWas + 1) {
a[i] = j;
used[j] = true;
break;
}
}
}
}
return a;
}
bool is_happy(int64_t x) {
while (x > 0) {
int64_t c = x % 10;
if (c != 4 && c != 7) return false;
x /= 10;
}
return true;
}
int first_i(int64_t k) {
for (int i = 0; i < N; ++i) {
if (k <= fact[i]) {
return i;
}
}
return 0;
}
int main() {
ios_base::sync_with_stdio(false);
int64_t n, k;
cin >> n >> k;
for (int i = 2; i < N; ++i) {
fact[i] = i * fact[i - 1];
}
if (n < N && k > fact[n]) {
cout << -1;
return 0;
}
for (int i = 1; i <= 9; ++i) {
int64_t jn = 1 << i;
for (int j = 0; j < jn; ++j) {
int64_t j2 = j, x = 0;
j2 = j;
while (j2 > 0) {
if (j2 & 1)
x = x * 10 + 7;
else
x = x * 10 + 4;
j2 >>= 1;
}
j2 = jn;
while (j2 > j) {
x = x * 10 + 4;
j2 >>= 1;
}
x /= 10;
int64_t x1 = 0;
while (x > 0) {
x1 = x1 * 10 + x % 10;
x /= 10;
}
happies.push_back(x1);
}
}
int64_t hc = happies.size();
int64_t n1 = n - first_i(k);
int64_t ans = 0;
for (int i = 0; i < hc; ++i) {
if (happies[i] > n1) {
ans = i;
break;
}
}
if (n1 >= happies.back()) {
ans = hc;
}
vector<int> a = k_perm(n - n1, k % fact[n - n1]);
int64_t n2 = a.size();
for (int i = 0; i < n2; ++i) {
int64_t ai = a[i] + n1, i1 = i + n1 + 1;
if (is_happy(ai) && is_happy(i1)) {
++ans;
}
}
cout << ans;
return 0;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | import java.util.*;
public class EPerm {
static int[] factorial = {-1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600};
static long[] luckyNums = new long[1024];
static HashSet<Long> theNums = new HashSet<Long>(5000);
static int[] luckyList = {4, 7};
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int k = in.nextInt();
int fact = getFact(k);
int[] lastPart = new int[fact];
for(int i = 0; i < lastPart.length; ++i) {
lastPart[i] = n - fact + i + 1;
}
makeLucky();
--k;
if(fact > n)
System.out.println("-1");
else {
int index = 0;
while(k > 0 && fact > 1) {
--fact;
int multiple = k/(factorial[fact]);
if(multiple == fact + 1)
--multiple;
k -= multiple*factorial[fact];
int temp = lastPart[multiple+index];
lastPart[multiple+index] = lastPart[index];
lastPart[index] = temp;
++index;
Arrays.sort(lastPart, index, lastPart.length);
}
int total = 0;
int save = n - lastPart.length;
total += getCount(save); //inclusive
//System.out.println("Total is now " + total);
//then iterate through the array lastPart to check if anything is a lucky num match
for(int i = 0; i < lastPart.length; ++i) {
//check if both i + (n - lastPart.length) and lastPart[i + ..] are luckyNums
//System.out.printf("Checking %d and %d\n", i + save+1, lastPart[i]);
if( theNums.contains((long)(i + save+1)) && theNums.contains((long)lastPart[i]) )
++total;
}
System.out.println(total);
}
}
public static int getCount(int n) {
int ret = Arrays.binarySearch(luckyNums, n);
if(ret < 0)
ret = -ret - 2;
return ret;
}
public static int getFact(int k) {
int ret = Arrays.binarySearch(factorial, k);
if(ret < 0)
ret = -ret-1;
return ret;
}
public static void makeLucky() {
int prevStart = 0, prevEnd = 0;
int curIndex = 1;
for(int len = 1; len <= 9; ++len) {
for(int i = prevStart; i <= prevEnd; ++i) {
for(int poss: luckyList) {
luckyNums[curIndex] = luckyNums[i]*10 + poss;
theNums.add(luckyNums[curIndex]);
++curIndex;
}
}
prevStart = prevEnd + 1;
prevEnd = curIndex - 1;
}
luckyNums[1023] = 4444444444L;
theNums.add(luckyNums[1023]);
}
}
| JAVA |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
long long n, k;
vector<long long> perm;
bool used[20];
string hf = "4";
int ans;
bool ish(long long q) {
while (q > 0) {
if (q % 10 != 4 && q % 10 != 7) return false;
q /= 10;
}
return true;
}
long long ltoa() {
long long ten = 1;
long long ta = 0;
for (int i = hf.length() - 1; i >= 0; i--) {
ta += ten * (hf[i] - '0');
ten *= 10;
}
return ta;
}
void np() {
bool ch = false;
for (int i = hf.length() - 1; i >= 0; i--) {
if (hf[i] == '4') {
hf[i] = '7';
ch = true;
break;
} else {
hf[i] = '4';
}
}
if (!ch) hf.insert(0, 1, '4');
}
int main() {
long long real = 1, qup = 1;
cin >> n >> k;
k--;
for (; qup <= k; real++) qup *= real;
real--;
if (real > n) {
cout << -1;
return 0;
}
if (k > 0) qup /= real;
int mod = n - real;
while (ltoa() <= mod) {
ans++;
np();
}
for (long long i = real - 1; i >= 1; i--) {
int u = k / qup;
for (int i = 0; i < 20; i++) {
if (!used[i]) {
u--;
if (u < 0) {
used[i] = true;
perm.push_back(i + mod);
break;
}
}
}
k %= qup;
qup /= i;
}
for (int i = 0; i < 20; i++)
if (!used[i]) {
perm.push_back(i + mod);
break;
}
for (int i = 0; i < perm.size(); i++) {
if (ish(i + mod + 1) && ish(perm[i] + 1)) ans++;
}
cout << ans;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
map<long long, int> lucky;
void func(long long num) {
if (num > 1000000007) return;
if (num > 0) {
lucky[num] = 1;
}
func(num * 10 + 4);
func(num * 10 + 7);
}
int main() {
func(0);
vector<long long> fact(21);
fact[0] = 1;
for (int i = 1; i < 21; i++) {
fact[i] = fact[i - 1] * i;
}
int n;
long long k;
cin >> n >> k;
if (n <= 20 && fact[n] < k) {
cout << -1;
return 0;
}
int ans = 0;
for (auto g : lucky) {
if (g.first < n - 20) ans++;
}
map<int, bool> vis;
for (int i = max(n - 20, 1); i <= n; i++) {
if (fact[n - i] < k) {
long long val = 0;
for (int j = max(n - 20, 1); j <= n; j++) {
if (!vis[j]) {
val += fact[n - i];
if (val >= k) {
ans += (lucky[i] == true && lucky[j] == true);
vis[j] = true;
k -= (val - fact[n - i]);
break;
}
}
}
} else {
for (int j = max(n - 20, 1); j <= n; j++) {
if (!vis[j]) {
ans += (lucky[i] == true && lucky[j] == true);
vis[j] = true;
break;
}
}
}
}
cout << ans;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
long long fac[1000000];
long long recursive(long long zxcv, long long hi) {
if (zxcv >= hi) return 0;
return 1 + recursive(zxcv * 10 + 4, hi) + recursive(zxcv * 10 + 7, hi);
}
int main() {
long long n, k;
cin >> n >> k;
long long d = 1;
fac[0] = 1;
for (long long i = 1; i <= n; i++) {
d *= i;
if (d >= k) break;
}
if (d < k) {
cout << -1;
return 0;
}
d = 1;
for (long long i = 1; i <= 20; i++) {
d *= i;
fac[i] = d;
}
vector<long long> vi;
long long on = 1;
for (long long i = max(n - 15, on); i <= n; i++) {
vi.push_back(i);
}
k--;
while (k) {
for (long long i = n; i >= 1; i--) {
long long hi = n - i + 1;
if (fac[hi] > k) {
long long l = k / fac[hi - 1];
int qwer = n - i;
qwer = vi.size() - qwer;
swap(vi[qwer - 1], vi[qwer - 1 + l]);
sort(vi.begin() + qwer, vi.end());
k -= l * fac[hi - 1];
break;
}
}
}
long long u = max(n - 15, on), tot = 0;
for (long long i = 0; i < vi.size(); i++) {
string asdf = to_string(vi[i]), uio = to_string(u);
bool is = true;
for (long long j = 0; j < asdf.size(); j++) {
if (asdf[j] != '7' && asdf[j] != '4') is = false;
if (uio[j] != '7' && uio[j] != '4') is = false;
}
if (is) tot++;
u++;
}
if (n > 15) {
n -= 15;
tot += recursive(4, n) + recursive(7, n);
}
cout << tot;
return 0;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
const signed long long Infinity = 1000000001;
const long double Pi = 2.0L * asinl(1.0L);
const long double Epsilon = 0.000000001;
template <class T, class U>
ostream& operator<<(ostream& os, const pair<T, U>& p) {
return os << "(" << p.first << "," << p.second << ")";
}
template <class T>
ostream& operator<<(ostream& os, const vector<T>& V) {
for (typeof(V.begin()) i = V.begin(); i != V.end(); ++i) os << *i << " ";
return os;
}
template <class T>
ostream& operator<<(ostream& os, const set<T>& S) {
for (typeof(S.begin()) i = S.begin(); i != S.end(); ++i) os << *i << " ";
return os;
}
template <class T, class U>
ostream& operator<<(ostream& os, const map<T, U>& M) {
for (typeof(M.begin()) i = M.begin(); i != M.end(); ++i) os << *i << " ";
return os;
}
vector<signed long long> S;
void findLuckies() {
for (int(k) = (1); (k) < (12); (k)++)
for (int(i) = (0); (i) < (1 << k); (i)++) {
signed long long t = i;
signed long long r = 0;
for (int(j) = (1); (j) <= (k); (j)++) {
if (t % 2 == 1) {
r *= 10;
r += 7;
} else {
r *= 10;
r += 4;
}
t /= 2;
}
S.push_back(r);
}
sort(S.begin(), S.end());
}
signed long long factorial(signed long long n) {
if (n > 20) return Infinity * Infinity;
signed long long result = 1;
for (int(i) = (1); (i) <= (n); (i)++) result *= i;
return result;
}
vector<signed long long> kThPermutation(vector<signed long long> A, int k) {
k--;
vector<signed long long> R;
int n = A.size();
for (int(i) = (n); (i) >= (2); (i)--) {
int t = i;
signed long long q = factorial(i - 1);
t = k / q;
k -= q * t;
R.push_back(A[t]);
A.erase(A.begin() + t);
}
R.push_back(A.front());
return R;
}
const int Q = 20;
bool isLucky(signed long long q) {
return binary_search(S.begin(), S.end(), q);
}
int result() {
signed long long n, k;
cin >> n >> k;
if (k > factorial(n))
return -1;
else {
vector<signed long long> T;
signed long long result = 0;
int i = 0;
while (S[i] < n - Q) {
result++;
i++;
}
int w;
if (i > 0)
w = S[i - 1] + 1;
else
w = 0;
int b = max(n - Q, (signed long long)w);
for (int(j) = (b); (j) <= (n); (j)++) {
T.push_back(j);
}
T = kThPermutation(T, k);
for (int(j) = (0); (j) < (T.size()); (j)++)
if (isLucky(j + b) and isLucky(T[j])) result++;
return result;
}
}
int main() {
findLuckies();
cout << result();
return 0;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
long long fac[20], n, k;
long long answer;
void rec(long long x, long long lim) {
if (x > lim) return;
answer++;
rec(10 * x + 4, lim);
rec(10 * x + 7, lim);
}
long long calc(long long lim) {
rec(4, lim);
rec(7, lim);
}
long long ohMyLuck(long long x) {
while (x > 0) {
if (x % 10 == 7 or x % 10 == 4) {
x /= 10;
} else {
return 0;
}
}
return 1;
}
int main() {
cin >> n >> k;
fac[0] = 1;
for (int i = 1; i <= 15; i++) fac[i] = (fac[i - 1] * i);
if (n <= 13 and fac[n] < k) {
cout << -1 << endl;
return 0;
}
k--;
int mis = -1;
for (int i = 1; i <= 15; i++)
if (k >= fac[i]) mis = i;
calc(n - (mis + 1));
vector<int> vec, my;
for (int i = n - mis; i <= n; i++) vec.push_back(i);
for (int i = vec.size() - 1; i >= 0; i--) {
int d = k / fac[i];
k = k % fac[i];
my.push_back(vec[d]);
vec.erase(vec.begin() + d);
}
for (int i = 0; i < my.size(); i++) {
if (ohMyLuck(my[i]) and ohMyLuck(n - mis + i)) {
answer++;
}
}
cout << answer << endl;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
const long long Fac[14] = {1, 1, 2, 6, 24,
120, 720, 5040, 40320, 362880,
3628800, 39916800, 479001600, 6227020800LL};
int Total, Data[5000];
bool Lucky(int T) {
while (T) {
if (T % 10 != 4 && T % 10 != 7) return false;
T /= 10;
}
return true;
}
void Init() {
Total = 0;
for (int i = 1; i <= 9; i++)
for (int j = 0; j < (1 << i); j++) {
int S = 0;
for (int k = 0; k < i; k++) S = S * 10 + ((j & (1 << k)) ? 4 : 7);
Data[Total++] = S;
}
sort(Data, Data + Total);
}
int Count(int N) {
if (Data[Total - 1] <= N) return Total;
int P = 0;
while (Data[P] <= N) P++;
return P;
}
int Count1(int N, int K) {
if (K >= Fac[N]) return -1;
int Ans = 0, Kth[20], A[20];
for (int i = 1; i <= N; i++) Kth[i] = i;
for (int i = 1; i <= N; i++) {
A[i] = Kth[K / Fac[N - i] + 1];
K %= Fac[N - i];
if (Lucky(i) && Lucky(A[i])) Ans++;
int P = 1;
while (Kth[P] != A[i]) P++;
for (int j = P; j <= N - i; j++) Kth[j] = Kth[j + 1];
}
return Ans;
}
int Count2(int N, int K) {
int Ans = Count(N), Kth[20], A[20];
for (int i = 1; i <= 13; i++) Kth[i] = N + i;
for (int i = 1; i <= 13; i++) {
A[i] = Kth[K / Fac[13 - i] + 1];
K %= Fac[13 - i];
if (Lucky(N + i) && Lucky(A[i])) Ans++;
int P = 1;
while (Kth[P] != A[i]) P++;
for (int j = P; j <= 13 - i; j++) Kth[j] = Kth[j + 1];
}
return Ans;
}
int main() {
Init();
int N, K;
cin >> N >> K;
K--;
cout << ((N <= 13) ? Count1(N, K) : Count2(N - 13, K)) << endl;
return 0;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
int ans, n, k, m, x;
long long fac[15];
int num[15];
bool mark[15];
void dfs(int i = 0, long long num = 0) {
if (num && num <= m) ans++;
if (i == 9) return;
dfs(i + 1, num * 10 + 4);
dfs(i + 1, num * 10 + 7);
}
void make(int i = 1) {
if (i > x) return;
int j = 1, t;
while (mark[j]) j++;
while (k >= fac[x - i]) {
j++;
while (mark[j]) j++;
k -= fac[x - i];
}
while (mark[j]) j++;
num[i] = j + m;
mark[j] = 1;
make(i + 1);
}
int main() {
fac[0] = 1LL;
for (long long i = 1; i < 15; i++) fac[i] = fac[i - 1] * i;
while (~scanf("%d%d", &n, &k)) {
ans = 0;
memset(mark, 0, sizeof(mark));
if (n < 15 && fac[n] < k) {
puts("-1");
continue;
}
for (int i = 0; i < 15; i++)
if (fac[i] >= k) {
x = i;
break;
}
m = n - x;
dfs();
k--;
make();
for (int i = m + 1; i <= n; i++) {
bool flag = true;
int temp = i;
while (temp) {
if (temp % 10 != 4 && temp % 10 != 7) flag = false;
temp /= 10;
}
temp = num[i - m];
while (temp) {
if (temp % 10 != 4 && temp % 10 != 7) flag = false;
temp /= 10;
}
if (flag) ans++;
}
printf("%d\n", ans);
}
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
int n, k;
long long fact[14] = {1};
bool cmp(int p) {
if (p > 13 || fact[p] >= k) return true;
k -= fact[p];
return false;
}
bool check(int x) {
while (x) {
if (x % 10 != 4 && x % 10 != 7) return false;
x /= 10;
}
return true;
}
bool used[16];
int s;
int calc(int i) {
if (i > n) return 0;
for (int j = s; j <= n; ++j)
if (!used[j - s] && cmp(n - i)) {
used[j - s] = true;
return (check(i) && check(j)) + calc(i + 1);
}
return -1;
}
long long all[2046] = {4, 7};
int allC = 2;
int main() {
for (int i = 1; i < 14; ++i) fact[i] = fact[i - 1] * i;
scanf("%d%d", &n, &k);
if (n < 14 && k > fact[n]) {
printf("-1");
return 0;
}
s = 1;
if (n <= 13)
printf("%d", calc(1));
else {
for (int i = 0; all[allC - 1] < 7777777777LL; ++i) {
all[allC++] = all[i] * 10 + 4;
all[allC++] = all[i] * 10 + 7;
}
s = n - 12;
printf("%d", lower_bound(all, all + allC, s) - all + calc(s));
}
return 0;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
string lower(string s) {
for (int i = 0; i < s.size(); i++) s[i] = tolower(s[i]);
return s;
}
vector<string> sep(string s, char c) {
string temp;
vector<string> res;
for (int i = 0; i < s.size(); i++) {
if (s[i] == c) {
if (temp != "") res.push_back(temp);
temp = "";
continue;
}
temp = temp + s[i];
}
if (temp != "") res.push_back(temp);
return res;
}
template <class T>
T toint(string s) {
stringstream ss(s);
T ret;
ss >> ret;
return ret;
}
template <class T>
string tostr(T inp) {
string ret;
stringstream ss;
ss << inp;
ss >> ret;
return ret;
}
template <class T>
void D(T A[], int n) {
for (int i = 0; i < n; i++) cout << A[i] << " ";
cout << endl;
}
template <class T>
void D(vector<T> A, int n = -1) {
if (n == -1) n = A.size();
for (int i = 0; i < n; i++) cout << A[i] << " ";
cout << endl;
}
long long fact[21];
set<long long> lnum;
int main() {
for (int(i) = (1); (i) <= (10); (i)++) {
int mask = (1 << i);
for (int(j) = (0); (j) < (mask); (j)++) {
long long tnum = 0;
for (int(k) = (0); (k) < (i); (k)++) {
tnum *= 10LL;
if ((j & (1 << k)))
tnum += 4LL;
else
tnum += 7LL;
}
lnum.insert(tnum);
}
}
fact[0] = fact[1] = 1;
for (int(i) = (2); (i) < (21); (i)++) fact[i] = (long long)i * fact[i - 1];
int n, k;
cin >> n >> k;
int ans = 0;
for (typeof(lnum.begin()) it = lnum.begin(); it != lnum.end(); it++) {
if (*it > n) break;
if (n - *it + 1 <= 15) break;
ans++;
}
int sn = max(1, n - 15 + 1);
if (fact[n - sn + 1] >= k) {
int totaliter = n - sn + 1;
set<int> poss;
for (int(i) = (sn); (i) <= (n); (i)++) poss.insert(i);
for (int(i) = (0); (i) < (totaliter); (i)++) {
set<int>::iterator it = poss.begin();
while (k > fact[totaliter - i - 1]) {
it++;
k -= fact[totaliter - i - 1];
}
if (lnum.find(*it) != lnum.end() && lnum.find(sn + i) != lnum.end())
ans++;
poss.erase(it);
}
cout << ans << endl;
} else {
cout << -1 << endl;
}
return 0;
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | #include <bits/stdc++.h>
using namespace std;
const int c[] = {1, 1, 2, 6, 24, 120, 720,
5040, 40320, 362880, 3628800, 39916800, 479001600};
int a[10010];
vector<int> b;
void dfs(long long x) {
if (x >= 1000000000) return;
a[++a[0]] = int(x);
dfs(x * 10 + 4);
dfs(x * 10 + 7);
}
bool check(int x) {
while (x) {
int p = x % 10;
x /= 10;
if (p != 4 && p != 7) return (false);
}
return (true);
}
int main() {
int n, K;
scanf("%d%d", &n, &K);
long long now = 1;
int t = -1;
for (int i = 1; i <= n; i++) {
now *= i;
if (now >= K) {
t = i;
break;
}
}
if (t == -1)
printf("-1\n");
else {
dfs(4);
dfs(7);
sort(a + 1, a + a[0] + 1);
for (int i = 1; i <= t; i++) b.push_back(n - i + 1);
reverse(b.begin(), b.end());
int ans = 0;
for (int i = 1; i <= a[0]; i++) ans += a[i] <= n - t;
int now = n - t;
K--;
for (int i = t; i; i--) {
now++;
int p = 0;
while (K >= c[i - 1]) {
p++;
K -= c[i - 1];
}
ans += check(now) && check(b[p]);
b.erase(b.begin() + p);
}
printf("%d\n", ans);
}
return (0);
}
| CPP |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | import static java.util.Arrays.*;
import static java.lang.Math.*;
import static java.math.BigInteger.*;
import java.util.*;
import java.math.*;
import java.io.*;
public class C implements Runnable
{
String file = "input";
boolean TEST = false;
void solve() throws IOException
{
int m = nextInt(), k = nextInt();
list = new ArrayList<Long>();
gen(0);
long[] a = new long[13];
int n = min(13, m);
boolean[] done = new boolean[n + 1];
for(int i = 0; i < n; i++)
{
long cnt = 0;
for(int j = 1; j <= n; j++)
if(!done[j])
{
cnt += fact(n - i - 1);
if(cnt >= k)
{
a[i] = j;
k -= (cnt - fact(n - i - 1));
done[j] = true;
break;
}
}
}
if(k != 1)
{
out.println(-1);
return;
}
int res = 0;
if(m <= 13)
{
for(int i = 0; i < m; i++)
if(isLucky(i + 1) && isLucky(a[i])) res++;
out.println(res);
}
else
{
int left = m - 13;
for(long x : list)
if(x <= left) res++;
for(int i = 0; i < n; i++)
if(isLucky(i + left + 1) && isLucky(a[i] + left)) res++;
out.println(res);
}
}
List<Long> list;
boolean isLucky(long n)
{
while(n > 0)
{
long q = n % 10;
if(q != 4 && q != 7) return false;
n /= 10;
}
return true;
}
void gen(long x)
{
if(x > 10000000000L) return;
if(x > 0) list.add(x);
gen(x * 10 + 4);
gen(x * 10 + 7);
}
long fact(int n)
{
long res = 1;
for(int i = 2; i <= n; i++) res *= i;
return res;
}
String next() throws IOException
{
while(st == null || !st.hasMoreTokens()) st = new StringTokenizer(input.readLine());
return st.nextToken();
}
int nextInt() throws IOException
{
return Integer.parseInt(next());
}
long nextLong() throws IOException
{
return Long.parseLong(next());
}
double nextDouble() throws IOException
{
return Double.parseDouble(next());
}
void print(Object... o)
{
System.out.println(deepToString(o));
}
void gcj(Object o)
{
String s = String.valueOf(o);
out.println("Case #" + test + ": " + s);
System.out.println("Case #" + test + ": " + s);
}
BufferedReader input;
PrintWriter out;
StringTokenizer st;
int test;
void init() throws IOException
{
if(TEST) input = new BufferedReader(new FileReader(file + ".in"));
else input = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(new BufferedOutputStream(System.out));
}
public static void main(String[] args) throws IOException
{
new Thread(null, new C(), "", 1 << 20).start();
}
public void run()
{
try
{
init();
if(TEST)
{
int runs = nextInt();
for(int i = 0; i < runs; i++) solve();
}
else solve();
out.close();
}
catch(Exception e)
{
e.printStackTrace();
System.exit(1);
}
}
} | JAVA |
122_E. Lucky Permutation | Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
Input
The first line contains two integers n and k (1 β€ n, k β€ 109) β the number of elements in the permutation and the lexicographical number of the permutation.
Output
If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.
Examples
Input
7 4
Output
1
Input
4 7
Output
1
Note
A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 β€ i β€ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 β€ i β€ n), that ai < bi, and for any j (1 β€ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.
In the first sample the permutation looks like that:
1 2 3 4 6 7 5
The only suitable position is 4.
In the second sample the permutation looks like that:
2 1 3 4
The only suitable position is 4. | 2 | 11 | from math import factorial
import sys
def lucky(x):
return str(x).count('4')+str(x).count('7')==len(str(x))
def fun(x):
xs, result = str(x), 0
for i in range(len(xs)):
rest = 1<<(len(xs)-i-1)
if int(xs[i]) == 4:
continue
elif int(xs[i]) == 7:
result += rest
continue
elif int(xs[i]) < 4:
return result
elif 4 < int(xs[i]) < 7:
return result + rest
else:
return result + rest * 2
return result + 1
def solve(x):
now, result = 9, 0
while now < x:
result += fun(now)
now = now*10+9
return result + fun(x)
n, k = [int(t) for t in raw_input().split()]
m = 1
while factorial(m) < k:
m += 1
if m > n:
print -1
sys.exit(0)
lst = range(n-m+1,n+1)
for i in range(m):
s = sorted(lst[i:])
j = 0
while factorial(m-i-1) < k:
j += 1
k -= factorial(m-i-1)
s[0], s[j] = s[j], s[0]
lst = lst[:i] + s
#print range(1,n-m+1) + lst
print solve(n-m) + len([1 for a, b in zip(lst, range(n-m+1,n+1)) if lucky(a) and lucky(b)])
| PYTHON |
Subsets and Splits