Search is not available for this dataset
name
stringlengths
2
112
description
stringlengths
29
13k
source
int64
1
7
difficulty
int64
0
25
solution
stringlengths
7
983k
language
stringclasses
4 values
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; bool lucky(long long int a) { while (a) { if (a % 10 != 4 && a % 10 != 7) return false; a /= 10; } return true; } vector<long long int> gen() { vector<long long int> res; for (int k = 1; k < 11; k++) { for (int i = 0; i < (1 << k); i++) { long long int a = 0; for (int j = 0; j < k; j++) { a *= 10; if (i & (1 << j)) a += 4; else a += 7; } res.push_back(a); } } sort(res.begin(), res.end()); return res; } vector<int> gen(long long int n, long long int k) { long long int c = 1; k--; for (int i = 0; i < n; i++) c *= (i + 1); vector<int> res; if (c <= k) return res; res.resize(n); c /= n; for (int i = 0; i < n - 1; i++) { res[i] = k / c; k %= c; c /= (n - i - 1); } res[n - 1] = 0; vector<bool> d(n, false); for (int i = 0; i < n; i++) { int c = 0; while (1) { if (!d[c]) { if (res[i] == 0) { d[c] = true; res[i] = c; break; } else res[i]--; } c++; } } for (int i = 0; i < n; i++) res[i]++; return res; } int main() { long long int n, k; cin >> n >> k; vector<int> v = gen(min((int)n, 13), k); if (v.empty()) { cout << -1; return 0; } int res = 0; for (int i = 0; i < v.size(); i++) { v[i] += (n - v.size()); if (lucky(i + n - v.size() + 1) && lucky(v[i])) res++; } if (n > 13) { vector<long long int> v2(gen()); res -= v2.begin() - lower_bound(v2.begin(), v2.end(), n - 13 + 1); } cout << res; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
// practice with rainboy import java.io.*; import java.util.*; public class CF121C extends PrintWriter { CF121C() { super(System.out, true); } Scanner sc = new Scanner(System.in); public static void main(String[] $) { CF121C o = new CF121C(); o.main(); o.flush(); } long lucky(int b) { return b == 1 ? 0 : lucky(b / 2) * 10 + (b % 2 == 0 ? 4 : 7); } boolean is_lucky(int y) { return y == 0 ? true : is_lucky(y / 10) && (y % 10 == 4 || y % 10 == 7); } static final int N = 13; boolean[] used = new boolean[N]; int[] ff = new int[N]; void init() { int f = 1; for (int i = 0; i < N; i++) { ff[i] = f; f *= i + 1; } } int get(int n, int k, int i) { Arrays.fill(used, false); for (int h = 0; h < n; h++) { int f = ff[n - 1 - h]; int s = k / f; for (int j = 0; j < n; j++) if (!used[j] && s-- == 0) { if (h == i) return j; used[j] = true; break; } k %= f; } return -1; } void main() { init(); int n = sc.nextInt(); int k = sc.nextInt(); long f = 1; int n_ = 1; while (f < k) f *= ++n_; if (n_ > n) { println(-1); return; } int ans = 0; for (int b = 2; ; b++) { long x = lucky(b); if (x > n) break; if (x <= n - n_) { ans++; continue; } int y = n - n_ + get(n_, k - 1, (int) (x - (n - n_) - 1)) + 1; if (is_lucky(y)) ans++; } println(ans); } }
JAVA
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
import java.io.*; import java.util.*; import java.lang.reflect.Array; import java.math.*; public class lucksum { public static long go(long m) { long res=0; Queue<Long> l=new LinkedList<Long>(); l.add(new Long(0)); do{ Long t=l.remove(); if(t.compareTo(new Long(m))<=0) { res++; l.add(t*10+4); l.add(t*10+7); } else break; }while(true); return res-1; } public static boolean isluck(long m) { boolean res=true; while(m!=0) { long t=m%10; if((t!=4)&&(t!=7)) return false; m/=10; } return res; } public static void main(String[] args) { //try{ Scanner s=new Scanner(System.in); long n=s.nextLong(); long k=s.nextLong(); long []p=new long[21]; Arrays.fill(p,Long.MAX_VALUE); long start=1; long mul=2; p[0]=1; while(start<=k) { p[(int)mul-1]=start; start*=mul; mul++; } if((n<20)&&(p[(int)n]<k)) { System.out.println(-1); return; } int index=0; for(;p[index]<k;index++); // index++; long res=go(n-index); List<Long> left=new LinkedList<Long>(); for(int i=index-1;i>=0;i--) left.add(n-i); while(index>0) { Long[] mm=(Long[])left.toArray(new Long[left.size()]); long t=(k-1)/p[index-1]; long h=mm[(int)t]; if(isluck(h)&&isluck(n-index+1)) res++; left.remove((int)t); k-=t*p[index-1]; index--; } System.out.println(res); // }catch (Exception e1){ //} } }
JAVA
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; vector<long long> V; vector<long long> F; vector<long long> out; bool used[30]; long long per[20]; void dfs(int depth, string S) { if (depth > 11) return; if (S.length() != 0) { long long fuck; istringstream st(S); st >> fuck; V.push_back(fuck); } dfs(depth + 1, S + '4'); dfs(depth + 1, S + '7'); } void go(long long cur, int depth) { if (depth == 0) return; long long permu = per[depth - 1]; long long i, j, k; if (cur == 0) { for (i = 0; i < F.size(); i++) { if (used[i] == 0) { out.push_back(F[i]); return; } } } for (i = 1;; i++) { if (permu * i >= cur) { int count = i; for (j = 0; j < F.size(); j++) { if (used[j] == 0) { count--; if (count == 0) { used[j] = 1; out.push_back(F[j]); go(cur - permu * (i - 1), depth - 1); break; } } } break; } } } bool CANT(long long N, long long K) { if (N < 15 && per[N] < K) return 1; return 0; } bool ok(long long t) { while (t > 0) { if (!(t % 10 == 4 || t % 10 == 7)) return 0; t /= 10; } return 1; } int main() { int i, j, k; int M; long long N, K; long long ans = 0; per[1] = per[0] = 1; for (long long i = 2; i <= 18; i++) per[i] = per[i - 1] * i; dfs(0, string()); sort(V.begin(), V.end()); cin >> N >> K; if (CANT(N, K)) { cout << -1 << endl; return 0; } string S; long long p; for (p = 1;; p++) { if (per[p] >= K) { break; } } for (i = 0; i < V.size(); i++) { if (V[i] > N - p) break; ans++; } for (long long temp = N - p + 1; temp <= N; temp++) F.push_back(temp); go(K, p); for (long long i = 0; i < out.size(); i++) { if (ok(i + (N - p + 1)) && ok(out[i])) ans++; } cout << ans << endl; return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.FileReader; import java.io.IOException; import java.io.InputStreamReader; import java.security.KeyStore.Builder; import java.util.ArrayList; import java.util.Arrays; import java.util.StringTokenizer; public class LuckyPermutation { static StringTokenizer st = null; static BufferedReader reader = null; static int perm[] = null; static boolean used[] = null; static long fact[] = null; static void build(int pos, long k) throws Exception { if (pos == perm.length) return; for (int i = 0; i < perm.length; ++i) { if (!used[i]) { if (k >= fact[perm.length - 1- pos]) { k -= fact[perm.length - 1- pos]; } else { perm[pos] = i; used[i] = true; build(pos + 1, k); return; } } } throw new Exception(); } public static void main(String[] args) throws Exception { reader = new BufferedReader(new InputStreamReader(System.in)); //reader = new BufferedReader(new FileReader("input.txt")); int n = NextInt(); long k = (long)NextInt(); int length = Math.min(13, n); fact = new long [20]; fact[0] = 1; for (int i = 1; i < 20; ++i) fact[i] = (long)(i) * fact[i - 1]; k -= 1; if (k >= fact[length]) { System.out.println("-1"); return; } perm = new int[length]; used = new boolean[length]; System.err.println(Arrays.toString(fact)); build(0, k); System.err.println(Arrays.toString(perm)); long a[] = new long [3000]; int p = 0; for (int len = 1; len <= 10; ++len) { for (int mask = 0; mask < (1 << len); ++mask) { long num = 0; for (int i = 0; i < len; ++i) num = num * 10 + 4 + 3 * ((mask & (1 << i)) == 0 ? 1 : 0); a[p++] = num; } } a = Arrays.copyOf(a, p); Arrays.sort(a); int res = 0; boolean good[] = new boolean[length]; for (int i = 0; i < p; ++i) { if (a[i] <= n - length) res += 1; else break; } for (int i = 0; i < p; ++i) { if (a[i] >= n - length + 1 && a[i] <= n) { good[(int) (a[i] - n + length - 1)] = true; } } for (int i = 0; i < length; ++i) { if (good[i] && good[perm[i]]) ++res; } System.out.println(res); } static String NextToken() throws IOException { while(st == null || !st.hasMoreTokens()) st = new StringTokenizer(reader.readLine()); return st.nextToken(); } static int NextInt() throws NumberFormatException, IOException { return Integer.parseInt(NextToken()); } }
JAVA
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; const long long dx[] = {4LL, 7LL}; vector<int> lucky; vector<long long> P; int main() { P.push_back(1); for (long long i = 1; P.back() <= 1000000000; i++) P.push_back(P[i - 1] * i); int n, k; cin >> n >> k; if (n < 13 && P[n] < k) { cout << -1; return (0); } int tmp; list<int> L; for (int i = 1, x = n; i < P.size(); i++, x--) { L.push_front(x); if (P[i] >= k) { tmp = x; break; } } vector<int> perm; for (int i = L.size() - 1; i >= 0; i--) { list<int>::iterator it = L.begin(); while (k > P[i]) { k -= P[i]; it++; } perm.push_back(*it); L.erase(it); } { queue<int> Q; Q.push(0); while (!Q.empty()) { int x = Q.front(); for (int i = 0; i < 2; i++) { long long x1 = x * 10LL + dx[i]; if (x1 <= 1000000000) { lucky.push_back(x1); Q.push(x1); } } Q.pop(); } } int res = 0; for (int i = 0; i < lucky.size() && lucky[i] < tmp; i++) res++; for (int i = 0, p = tmp; i < perm.size(); i++, p++) { bool f1 = false; bool f2 = false; for (int j = 0; j < lucky.size(); j++) { if (perm[i] == lucky[j]) f1 = true; if (p == lucky[j]) f2 = true; } if (f1 && f2) res++; } cout << res; exit: return (0); }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
import java.io.FileInputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.nio.charset.Charset; import java.util.Arrays; import java.util.Comparator; public class CF121C { public static void main(String[] args) throws Exception { boolean local = System.getProperty("ONLINE_JUDGE") == null; boolean async = false; Charset charset = Charset.forName("ascii"); FastIO io = local ? new FastIO(new FileInputStream("D:\\DATABASE\\TESTCASE\\Code.in"), System.out, charset) : new FastIO(System.in, System.out, charset); Task task = new Task(io, new Debug(local)); if (async) { Thread t = new Thread(null, task, "dalt", 1 << 27); t.setPriority(Thread.MAX_PRIORITY); t.start(); t.join(); } else { task.run(); } if (local) { io.cache.append("\n\n--memory -- \n" + ((Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory()) >> 20) + "M"); } io.flush(); } public static class Task implements Runnable { final FastIO io; final Debug debug; int inf = (int) 1e8; int mod = (int) 1e9 + 7; public int mod(int val) { val %= mod; if (val < 0) { val += mod; } return val; } public int mod(long val) { val %= mod; if (val < 0) { val += mod; } return (int) val; } int bitAt(int x, int i) { return (x >> i) & 1; } int bitAt(long x, int i) { return (int) ((x >> i) & 1); } public Task(FastIO io, Debug debug) { this.io = io; this.debug = debug; } @Override public void run() { solve(); } Permutation p; int n; int total = 0; public void solve() { n = io.readInt(); int k = io.readInt(); p = Permutation.newPermutation(n, k); if (p == null) { io.cache.append(-1); return; } for (int i = 1; i <= 9; i++) { count(i, 0); } io.cache.append(total); } public void count(int step, int val) { if (step == 0) { if (val > n) { return; } int e = p.elementAt(val); if (isValid(e)) { total++; } return; } count(step - 1, val * 10 + 4); count(step - 1, val * 10 + 7); } public boolean isValid(int val) { if (val % 10 != 4 && val % 10 != 7) { return false; } val /= 10; while (val > 0) { if (val % 10 != 4 && val % 10 != 7) { return false; } val /= 10; } return true; } } public static class Permutation { int n; int[] tailPerm; public static Permutation newPermutation(int n, int k) { long p = 1; int t = 0; for (int i = 1; i <= n && p < k; i++) { p = p * i; t = i; } if (p < k) { return null; } int[] tailPerm = new int[t]; for (int i = 0; i < t; i++) { tailPerm[i] = n - i; } perm(tailPerm, 0, k, p); Permutation permutation = new Permutation(); permutation.n = n; permutation.tailPerm = tailPerm; return permutation; } public int elementAt(int i) { if (i > n - tailPerm.length) { return tailPerm[i - (n - tailPerm.length) - 1]; } return i; } public static void perm(int[] tailPerm, int offset, int k, long p) { if (offset == tailPerm.length) { return; } Arrays.sort(tailPerm, offset, tailPerm.length); int remain = tailPerm.length - offset; p /= remain; for (int i = offset + 1; p < k; i++) { Memory.swap(tailPerm, offset, i); k -= p; } perm(tailPerm, offset + 1, k, p); } } public static class Memory { public static <T> void swap(T[] data, int i, int j) { T tmp = data[i]; data[i] = data[j]; data[j] = tmp; } public static void swap(char[] data, int i, int j) { char tmp = data[i]; data[i] = data[j]; data[j] = tmp; } public static void swap(int[] data, int i, int j) { int tmp = data[i]; data[i] = data[j]; data[j] = tmp; } public static void swap(long[] data, int i, int j) { long tmp = data[i]; data[i] = data[j]; data[j] = tmp; } public static <T> int min(T[] data, int from, int to, Comparator<T> cmp) { int m = from; for (int i = from + 1; i < to; i++) { if (cmp.compare(data[m], data[i]) > 0) { m = i; } } return m; } public static <T> void move(T[] data, int from, int to, int step) { int len = to - from; step = len - (step % len + len) % len; Object[] buf = new Object[len]; for (int i = 0; i < len; i++) { buf[i] = data[(i + step) % len + from]; } System.arraycopy(buf, 0, data, from, len); } public static <T> void reverse(T[] data, int f, int t) { int l = f, r = t - 1; while (l < r) { swap(data, l, r); l++; r--; } } public static void reverse(int[] data, int f, int t) { int l = f, r = t - 1; while (l < r) { swap(data, l, r); l++; r--; } } public static void copy(Object[] src, Object[] dst, int srcf, int dstf, int len) { if (len < 8) { for (int i = 0; i < len; i++) { dst[dstf + i] = src[srcf + i]; } } else { System.arraycopy(src, srcf, dst, dstf, len); } } public static void fill(int[][] x, int val) { for (int[] v : x) { Arrays.fill(v, val); } } public static void fill(int[][][] x, int val) { for (int[][] v : x) { fill(v, val); } } } public static class FastIO { public final StringBuilder cache = new StringBuilder(); private final InputStream is; private final OutputStream os; private final Charset charset; private StringBuilder defaultStringBuf = new StringBuilder(1 << 8); private byte[] buf = new byte[1 << 13]; private int bufLen; private int bufOffset; private int next; public FastIO(InputStream is, OutputStream os, Charset charset) { this.is = is; this.os = os; this.charset = charset; } public FastIO(InputStream is, OutputStream os) { this(is, os, Charset.forName("ascii")); } private int read() { while (bufLen == bufOffset) { bufOffset = 0; try { bufLen = is.read(buf); } catch (IOException e) { throw new RuntimeException(e); } if (bufLen == -1) { return -1; } } return buf[bufOffset++]; } public void skipBlank() { while (next >= 0 && next <= 32) { next = read(); } } public int readInt() { int sign = 1; skipBlank(); if (next == '+' || next == '-') { sign = next == '+' ? 1 : -1; next = read(); } int val = 0; if (sign == 1) { while (next >= '0' && next <= '9') { val = val * 10 + next - '0'; next = read(); } } else { while (next >= '0' && next <= '9') { val = val * 10 - next + '0'; next = read(); } } return val; } public long readLong() { int sign = 1; skipBlank(); if (next == '+' || next == '-') { sign = next == '+' ? 1 : -1; next = read(); } long val = 0; if (sign == 1) { while (next >= '0' && next <= '9') { val = val * 10 + next - '0'; next = read(); } } else { while (next >= '0' && next <= '9') { val = val * 10 - next + '0'; next = read(); } } return val; } public double readDouble() { boolean sign = true; skipBlank(); if (next == '+' || next == '-') { sign = next == '+'; next = read(); } long val = 0; while (next >= '0' && next <= '9') { val = val * 10 + next - '0'; next = read(); } if (next != '.') { return sign ? val : -val; } next = read(); long radix = 1; long point = 0; while (next >= '0' && next <= '9') { point = point * 10 + next - '0'; radix = radix * 10; next = read(); } double result = val + (double) point / radix; return sign ? result : -result; } public String readString(StringBuilder builder) { skipBlank(); while (next > 32) { builder.append((char) next); next = read(); } return builder.toString(); } public String readString() { defaultStringBuf.setLength(0); return readString(defaultStringBuf); } public int readLine(char[] data, int offset) { int originalOffset = offset; while (next != -1 && next != '\n') { data[offset++] = (char) next; next = read(); } return offset - originalOffset; } public int readString(char[] data, int offset) { skipBlank(); int originalOffset = offset; while (next > 32) { data[offset++] = (char) next; next = read(); } return offset - originalOffset; } public int readString(byte[] data, int offset) { skipBlank(); int originalOffset = offset; while (next > 32) { data[offset++] = (byte) next; next = read(); } return offset - originalOffset; } public char readChar() { skipBlank(); char c = (char) next; next = read(); return c; } public void flush() { try { os.write(cache.toString().getBytes(charset)); os.flush(); cache.setLength(0); } catch (IOException e) { throw new RuntimeException(e); } } public boolean hasMore() { skipBlank(); return next != -1; } } public static class Debug { private boolean allowDebug; public Debug(boolean allowDebug) { this.allowDebug = allowDebug; } public void assertTrue(boolean flag) { if (!allowDebug) { return; } if (!flag) { fail(); } } public void fail() { throw new RuntimeException(); } public void assertFalse(boolean flag) { if (!allowDebug) { return; } if (flag) { fail(); } } private void outputName(String name) { System.out.print(name + " = "); } public void debug(String name, int x) { if (!allowDebug) { return; } outputName(name); System.out.println("" + x); } public void debug(String name, long x) { if (!allowDebug) { return; } outputName(name); System.out.println("" + x); } public void debug(String name, double x) { if (!allowDebug) { return; } outputName(name); System.out.println("" + x); } public void debug(String name, int[] x) { if (!allowDebug) { return; } outputName(name); System.out.println(Arrays.toString(x)); } public void debug(String name, long[] x) { if (!allowDebug) { return; } outputName(name); System.out.println(Arrays.toString(x)); } public void debug(String name, double[] x) { if (!allowDebug) { return; } outputName(name); System.out.println(Arrays.toString(x)); } public void debug(String name, Object x) { if (!allowDebug) { return; } outputName(name); System.out.println("" + x); } public void debug(String name, Object... x) { if (!allowDebug) { return; } outputName(name); System.out.println(Arrays.deepToString(x)); } } }
JAVA
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; int n, k, l, a[2000], mk[15], s[15]; long long f[15]; map<int, bool> lc; void F(long long x) { if (x > 1e9) return; if (x > 0) { a[++l] = x; lc[x] = 1; } F(x * 10LL + 4LL); F(x * 10LL + 7LL); } int main() { f[0] = 1LL; for (int i = 1; i <= 13; i++) f[i] = f[i - 1] * 1LL * i; scanf("%d%d", &n, &k); if (n <= 12 && k > f[n]) { printf("-1\n"); return 0; } int t = 1; while (f[t] < k) t++; F(0); sort(a + 1, a + l + 1); int sol = 0; for (int i = 1; i <= l; i++) { if (a[i] > n - t) break; sol++; } for (int i = 1; i <= t; i++) { for (int j = 1; j <= t; j++) { if (mk[j]) continue; if (k > f[t - i]) { k -= f[t - i]; continue; } s[i] = j + n - t; mk[j] = 1; break; } } for (int i = 1; i <= t; i++) if (lc.count(i + n - t) && lc.count(s[i])) sol++; printf("%d\n", sol); return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
import java.util.*; import java.io.*; import static java.lang.Math.*; public class C{ public static void main(String[] args) throws Exception{ new C().run(); } static final long M = 4444444444L; ArrayList<Long> ls = new ArrayList<Long>(); void dfs(long cur){ if(cur > M)return; if(cur!=0)ls.add(cur); dfs(cur*10+4); dfs(cur*10+7); } long[] fact = new long[14]; void run() throws Exception{ Scanner sc = new Scanner(System.in); //BufferedReader sc = new BufferedReader(new InputStreamReader(System.in)); // only sc.readLine() is available dfs(0); Collections.sort(ls); //System.out.printf("ls size = %d\n", ls.size()); fact[0] = fact[1] = 1; for(int i = 2; i < fact.length; i++)fact[i] = fact[i-1]*i; int n = sc.nextInt(); long k = sc.nextInt()-1; if(n <= 13){ if(k >= fact[n]){ System.out.println(-1); return ; } } int ans = 0; int tail = min(n, 13); for(Long v : ls)if(v <= n-tail)ans++; ArrayList<Long> rest = new ArrayList<Long>(); for(int i = tail-1; i >= 0; i--) rest.add((long)(n-i)); int index = n - tail + 1; for(int i = 0; i < tail; i++){ long val = 0; if(k >= fact[tail-i-1]){ int w = (int)(k / fact[tail-i-1]); k %= fact[tail-i-1]; val = rest.get(w); rest.remove((Long)val); if(Collections.binarySearch(ls, val) >= 0 && Collections.binarySearch(ls, 1L*index) >= 0)ans++; }else{ val = rest.get(0); rest.remove((Long)val); if(Collections.binarySearch(ls, val) >= 0 && Collections.binarySearch(ls, 1L*index) >= 0)ans++; } //System.out.printf("%d is %d\n", index, val); index++; } System.out.println(ans); } }
JAVA
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; const int M = 10 + 10; long long int lucky[10000]; long long int fac(long long int n) { long long int ans = 1; for (long long int i = 1; i <= n; i++) { ans = ans * i; } return ans; } bool islucky(long long int x) { bool ok = true; while (x) { if (x % 10 != 4 && x % 10 != 7) { ok = false; break; } x /= 10; } return ok; } int main() { long long int n, k; cin >> n >> k; long long int num = 1; long long int id = 1; while (n - id + 1 >= 1) { num = num * id; if (num >= k) { break; } id++; } if (num < k) { cout << "-1" << endl; } else { long long int idl = n - id + 1; long long int idr = n; int len = idr - idl + 1; int a[M]; set<int> ilist; for (int i = 0; i < len; i++) { a[i] = idl + i; ilist.insert(i); } int idx[M]; int res = len - 1; long long int kk = k - 1; for (int i = 0; i < len; i++) { long long int f = fac(res); set<int>::iterator it = ilist.begin(); for (long long int j = 1; j <= kk / f; j++) { it++; } idx[i] = (*it); ilist.erase(idx[i]); kk = kk - kk / f * f; res--; } int ans = 0; for (int i = 0; i < len; i++) { if (islucky(idx[i] + idl) && islucky(a[i])) { ans++; } } int num = 0; for (int d = 1; d <= 9; d++) { for (int i = 0; i < (1 << d); i++) { int val = 0; for (int k = 0; k < d; k++) { if ((i >> k) & 1) { val = val * 10 + 4; } else { val = val * 10 + 7; } } lucky[num++] = val; } } for (int i = 0; i < num; i++) { if (lucky[i] < idl) { ans++; } } cout << ans << endl; } return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.Scanner; public class Main { static long[] fact; public static void main(String[] args) { // ArrayList<String> all = new ArrayList<String>(); // char[] a = "1234567".toCharArray(); // // go(0, a, new char[7], all, new boolean[7]); // // Collections.sort(all); // // for(String s : all) // System.out.println(s); ArrayList<Long> all = new ArrayList<Long>(); go("0", all); Collections.sort(all); fact = new long[16]; fact[0] = 1; for(int i = 1; i < 16; i++) fact[i] = i * fact[i-1]; Scanner r = new Scanner(System.in); int n = r.nextInt(); int k = r.nextInt(); if(n < 15 && k > fact[n]){ System.out.println(-1); return; } k--; int start = Math.max(0, n-15); int sum = 0; int length = n - start; ArrayList<Integer> a = new ArrayList<Integer>(); for(int i = 0; i < length; i++) a.add(i + start + 1); boolean[] v = new boolean[length]; int[] p = new int[length]; generate(0, length, a, p, v, k); // System.out.println(Arrays.toString(p)); for(int i = 0; i < length; i++){ long index = i + start + 1; long val = p[i]; if(all.contains(index) && all.contains(val))sum++; } for(long i: all){ long index = i-1; if(index >= start)break; sum++; } System.out.println(sum); } private static int[] generate(int i, int length, ArrayList<Integer> a, int[] p, boolean[] v, long k) { if(length == 0){ return p; }else{ int index = (int) (k / fact[length - 1]); p[i] = a.get(index); a.remove(index); return generate(i+1, length-1, a, p, v, k % fact[length-1]); } } private static void go(int i, char[] a, char[] p, ArrayList<String> all, boolean[] v) { if(i == 7){ all.add(new String(p)); }else{ for(int j = 0; j < 7; j++)if(!v[j]){ v[j] = true; p[i] = a[j]; go(i+1, a, p, all, v); v[j] = false; } } } private static void go(String s, ArrayList<Long> all) { if(s.length() <= 10){ if(!s.equals("0")) all.add(Long.parseLong(s)); if(s.length() == 10)return; } go(s+"4", all); go(s+"7", all); } }
JAVA
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; long long numlucky(long long i, long long bound) { if (i > bound) return 0; else return 1 + numlucky(i * 10 + 4, bound) + numlucky(i * 10 + 7, bound); } bool check(long long i) { if (i <= 0) return false; while (i > 0) { int a = i % 10; if (a != 4 && a != 7) return false; i = i / 10; } return true; } int main() { std::ios_base::sync_with_stdio(false); long long n, k; cin >> n >> k; long long fact[14]; fact[1] = 1; for (long long i = 2; i <= 13; i++) fact[i] = i * fact[i - 1]; if (n < 14 && fact[n] < k) { cout << -1 << endl; return 0; } long long num = numlucky(0, max((long long)0, n - 13)) - 1; int t = 1; k -= 1; vector<int> perm; for (int i = n - 12; i <= n; i++) perm.push_back(i); for (int i = 13; i >= 2; i--) { int index = k / fact[i - 1]; if (check(perm[index]) && check(n - i + 1)) num++; perm.erase(perm.begin() + index); k = k % fact[i - 1]; } if (check(perm[0]) && check(n)) num++; cout << num << endl; return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
import java.io.*; import java.math.*; import java.util.*; /*public class TaskC { } */ public class TaskC implements Runnable { // based on Petr's template private void solve() throws IOException { ArrayList< Integer > luckies = new ArrayList< Integer >(); for ( int i = 1; i <= 9; i ++ ) for ( int mask = 0; mask < ( 1 << i ); mask ++ ){ int num = 0; for ( int j = 0; j < i; j ++ ){ num = num * 10; if ( ( mask & ( 1 << j ) ) != 0 ) num += 7; else num += 4; } luckies.add( num ); } long[] all = new long[ luckies.size() ]; for ( int i = 0; i < luckies.size(); i ++ ) all[i] = luckies.get( i ); Arrays.sort( all ); int res = 0; int[] fac = new int[13]; fac[0] = 1; for ( int i = 1; i < 13; i ++ ) fac[i] = fac[ i - 1 ] * i; int n = this.nextInt(); int start = Math.max( n - 12, 1 ); int K = this.nextInt() - 1; for ( int i = 0; i < all.length; i ++ ) if ( all[i] < start ) res ++; if ( n < 13 && K >= fac[n] ){ System.out.println( -1 ); return; } if ( n < 4 ){ System.out.println( 0 ); return; } int F = Math.min( n - 1, 12 ); int[] vst = new int[13]; for ( int i = start; i <= n; i ++ ){ int next = 0; for ( int j = 0; j < 13; j ++ ) if ( vst[j] == 0 ) if ( K >= fac[F] ) K -= fac[F]; else{ next = start + j; break; } // System.out.println( F + " " + i + " " + next ); vst[ next - start ] = 1; if ( lucky( next ) && lucky( i ) ) res ++; F --; } System.out.println( res ); } private boolean lucky(int v) { // TODO Auto-generated method stub while( v > 0 ){ if ( v % 10 == 4 || v % 10 == 7 ) v /= 10; else return false; } return true; } public static void main(String[] args) { new TaskC().run(); } BufferedReader reader; StringTokenizer tokenizer; PrintWriter writer; public void run() { try { reader = new BufferedReader(new InputStreamReader(System.in)); writer = new PrintWriter(new OutputStreamWriter(System.out)); tokenizer = null; solve(); reader.close(); writer.close(); } catch (Exception e) { e.printStackTrace(); System.exit(1); } } boolean hasNext() throws IOException { while (tokenizer == null || !tokenizer.hasMoreTokens()) { String nextLine = reader.readLine(); if (nextLine == null) return false; tokenizer = new StringTokenizer(nextLine); } return true; } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } String nextLine() throws IOException { return reader.readLine(); } String nextToken() throws IOException { while (tokenizer == null || !tokenizer.hasMoreTokens()) { tokenizer = new StringTokenizer(reader.readLine()); } return tokenizer.nextToken(); } BigInteger nextBigInteger() throws IOException { while (tokenizer == null || !tokenizer.hasMoreTokens()) { tokenizer = new StringTokenizer(reader.readLine()); } return new BigInteger(tokenizer.nextToken()); } }
JAVA
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; vector<long long> luckies; long long x; void gen_luck(int k, int pos, long long cur) { if (k == pos) { x = cur; if (cur <= 1e10) luckies.push_back(cur); } else { gen_luck(k, pos + 1, cur * 10 + 4); gen_luck(k, pos + 1, cur * 10 + 7); } } void Init() { for (int i = 1;; ++i) { gen_luck(i, 0, 0); if (x > 1e10) break; } } vector<int> perm; vector<bool> u; long long fact(long long n) { long long res = 1; for (long long i = 2; i <= n; ++i) res *= i; return res; } void gen(long long l, long long pos, long long num) { if (pos == l) return; long long sz = l - pos; int cur = 1; while ((cur - 1) * fact(sz - 1) < num) ++cur; --cur; int cnt = 0, j = 0; while (cnt < cur) { if (!u[j]) ++cnt; ++j; } --j; u[j] = true; perm[pos] = j; gen(l, pos + 1, num - (cur - 1) * fact(sz - 1)); } bool lucky(long long n) { while (n) { if (n % 10 != 4 && n % 10 != 7) return false; n /= 10; } return true; } int low(long long n) { int l = 0, r = luckies.size(); while (l < r - 1) { int m = (l + r) / 2; if (luckies[m] < n) l = m; else r = m; } if (n < 4) return 0; else return (luckies[r] <= n ? r + 1 : l + 1); } int main() { Init(); long long n, k; cin >> n >> k; if (n <= 13 && fact(n) < k) { cout << -1; return 0; } int len = 1; while (fact(len) < k && len < 13) ++len; u.assign(len, false); perm.resize(len); gen(len, 0, k); vector<long long> res(len); long long start = n - len + 1; long long ans = low(n - len); for (int i = 0; i < len; ++i) res[i] = perm[i] + start; for (int i = 0; i < len; ++i) { if (lucky(n - len + i + 1) && lucky(res[i])) ++ans; } cout << ans << endl; cin >> n; return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; int table[20]; long long tot = 0; int nns[20]; bool isluck(int k) { while (k) { if (k % 10 != 4 && k % 10 != 7) return false; k /= 10; } return true; } int luckns[2000]; int tol = 0; void maketable(int i, int np) { if (i == 9) return; int np1 = np * 10 + 4, np2 = np * 10 + 7; luckns[tol++] = np1; luckns[tol++] = np2; maketable(i + 1, np1); maketable(i + 1, np2); } int main() { maketable(0, 0); table[1] = 1; for (tot = 2; table[tot - 1] * tot < 1000000000; ++tot) table[tot] = table[tot - 1] * tot; tot--; int n, k; scanf("%d%d", &n, &k); if (n <= tot && table[n] < k) puts("-1"); else { int pi; for (pi = tot; table[pi] >= k; --pi) ; int summ = 0; for (int i = 0; i < tol; ++i) if (luckns[i] >= 1 && luckns[i] < n - pi) summ++; for (int i = n - pi; i <= n; ++i) nns[i - n + pi + 1] = i; int top = pi; int tns = n - pi; k--; while (top) { int p1 = k / table[top] + 1; for (int i = 1; i <= pi + 1; ++i) if (nns[i] != -1) { p1--; if (p1 == 0) { if (isluck(nns[i]) && isluck(tns)) summ++; nns[i] = -1; break; } } k %= table[top]; tns++; top--; } for (int i = 1; i <= pi + 1; ++i) if (nns[i] != -1) { if (isluck(nns[i]) && isluck(n)) summ++; break; } printf("%d\n", summ); } return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; long long jc[15]; int da[15]; void sjr(int a, long long b, long long c) { sort(da + a, da + a + c); if (c == 1) return; if (b <= jc[c - 1]) sjr(a + 1, b, c - 1); for (long long i = 1; i <= c; i++) { if (b <= i * jc[c - 1]) { swap(da[a], da[a + i - 1]); b -= (i - 1) * jc[c - 1]; sjr(a + 1, b, c - 1); break; } } } bool ju(int a) { char cc[100]; sprintf(cc, "%d", a); for (int i = 0; i < strlen(cc); i++) if (cc[i] != '4' && cc[i] != '7') return false; return true; } int main() { vector<unsigned long long> vd; for (int i = 1; i <= 10; i++) { for (int j = 0; j < (1 << i); j++) { unsigned long long ta = 0; for (int k = 0; k < i; k++) { if (j & (1 << k)) ta += pow(10LL, k * 1LL) * 7LL; else ta += pow(10LL, k * 1LL) * 4LL; } vd.push_back(ta); } } jc[0] = 1; jc[1] = 1; for (long long i = 2; i <= 14; i++) jc[i] = jc[i - 1] * i; long long n, k; cin >> n >> k; if (n <= 14 && k > jc[n]) { printf("-1\n"); return 0; } int j = 13; int bh = n; int fz = 0; for (int i = 0; i < 13 && n - i > 0; i++) { da[--j] = n - i; fz++; bh--; } sjr(j, k, fz); int jx = 0; for (int i = 0; i < vd.size(); i++) { if (vd[i] <= bh) jx++; } for (bh++; bh <= n; bh++) { if (ju(da[j]) && ju(bh)) jx++; j++; } cout << jx << endl; return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; int luck[5000], top; int a[20], fa[20] = {1}; bool used[20]; void make(long long x) { if (x > 1e9) return; luck[top++] = x; make(x * 10 + 4); make(x * 10 + 7); } bool is(int x) { return x == 0 || (x % 10 == 4 || x % 10 == 7) && is(x / 10); } void inttoarray(int k, int n) { int i, j, tmp; for (i = 1; i <= n; i++) { tmp = k / fa[n - i]; for (j = 1; j <= n; j++) if (!used[j]) { if (tmp == 0) break; tmp--; } a[i] = j; used[j] = 1; k %= fa[n - i]; } } int main() { int n, k, i, j, as = 0; for (i = 1; i < 20; i++) fa[i] = fa[i - 1] * i; scanf("%d%d", &n, &k); k--; if (n <= 13) { if (k >= fa[n]) return puts("-1"); inttoarray(k, n); if (a[4] == 4 || a[4] == 7) as++; if (a[7] == 4 || a[7] == 7) as++; printf("%d\n", as); return 0; } make(0); sort(luck + 1, luck + top); inttoarray(k, 13); for (i = 1; i <= 13; i++) if (is(i + n - 13) && is(a[i] + n - 13)) as++; for (i = 1; i < top; i++) if (luck[i] > n - 13) break; as += i - 1; printf("%d\n", as); return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> long long b[32] = {0}; bool f(int x) { if (x <= 0) { return false; } while (x) { if (x % 10 != 4 && x % 10 != 7) { return false; } x /= 10; } return true; } int get(int x) { int w = 0, s = 0, t = 0, i = 0, xx = 0, ans = 0; long long now = 0; xx = x; while (xx) { t++; xx /= 10; } for (w = 1; w <= t; w++) { for (s = 0; s < (1 << w); s++) { now = 0; for (i = 0; i < w; i++) { if (s & (1 << i)) { now = now * 10 + 4; } else { now = now * 10 + 7; } } if (now <= x) { ans++; } } } return ans; } void tt(int m, int k, int a[]) { int i = 0, j = 0; bool u[32] = {0}; for (i = 0; i < m; i++) { for (j = 0; j < m; j++) { if (!u[j]) { if (k > b[m - i - 1]) { k -= b[m - i - 1]; } else { a[i] = j; u[j] = true; break; } } } } } void init() { b[0] = 1; int i = 0; for (i = 1; i <= 20; i++) { b[i] = b[i - 1] * i; } } int main() { int n = 0, k = 0, m = 0, i = 0, ans = 0, a[32]; init(); while (scanf("%d%d", &n, &k) == 2) { for (m = 1;; m++) { if (b[m] >= k) { break; } } if (n < m) { printf("-1\n"); continue; } ans = get(n - m); tt(m, k, a); for (i = 0; i < m; i++) { if (f(a[i] + n - m + 1) && f(i + n - m + 1)) { ans++; } } printf("%d\n", ans); } return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
import java.util.ArrayList; import java.util.Scanner; public class e { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(), k = in.nextInt(); if(k > count(n)) { System.out.println(-1); return; } int ans = 0; int mi = Math.max(1, n-13); find(""); for(long l : list) { if(l < mi) ans++; } ArrayList<Integer> unused = new ArrayList<>(); for(int i=mi;i<=n;i++) { unused.add(i); } ans += solve(mi, unused, k); System.out.println(ans); } static int count(int n) { if(n == 0) return 1; if(n > 12) return 2000000000; return count(n-1) * n; } static boolean isLucky(int v) { String s = v + ""; boolean ans = true; for(int i=0;i<s.length();i++) { ans &= s.charAt(i) == '4' || s.charAt(i) == '7'; } return ans; } static int solve(int idx, ArrayList<Integer> unused, int k) { if(unused.size() == 0) return 0; int ncnt = count(unused.size()-1); for(int i=0;i<unused.size();i++) { if(k <= ncnt) { // System.out.print(unused.get(i) + "[" + idx + "]" + " "); boolean lucky = isLucky(idx) && isLucky(unused.get(i)); unused.remove(i); return solve(idx+1, unused, k) + (lucky ? 1 : 0); } k -= ncnt; } return 0; } static ArrayList<Long> list = new ArrayList<>(); static void find(String s) { if(s.length() >= 11) return; if(s.length() > 0) { long v = Long.parseLong(s); list.add(v); } find(s + "4"); find(s + "7"); } }
JAVA
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
import java.util.*; import java.io.*; public class C121 { public static long[] fact = new long[15]; public static void main(String[] args) throws IOException { List<Long> list = new ArrayList<Long>(); for (int len = 1; len <= 10; len++) { for (int which = 0; which < (1<<len); which++) { String str = ""; long lucky = 0; long mult = 1; for (int bit = 0; bit < len; bit++) { if ((which&(1<<bit))!=0) lucky += mult * 7; else lucky += mult * 4; mult *= 10; } list.add(lucky); if (len==10) break; } } fact[0] = 1; for (int i = 1; i < fact.length; i++) { fact[i] = ((long)i)*fact[i-1]; } Scanner s = new Scanner(System.in); PrintStream out = System.out; long n = s.nextInt(), k = s.nextInt(); if (n < fact.length && k > fact[(int)n]) { System.out.println("-1"); return; } int digits = (int)Math.min(14, n); long[] lastDigits = new long[digits]; long realIndex = n - digits + 1; for (int i = 0; i < digits; i++) { lastDigits[i] = realIndex + i; } lastDigits = applyPerm(lastDigits, (int)digits, (int)(k-1)); long ct = 0; for (int i = 0; i < list.size(); i++) { if (list.get(i) <= n-digits) ct++; else break; } // ct += number of lucky in [1,n-digits] for (int i = 0; i < digits; i++) { if (lucky(realIndex+i) && lucky(lastDigits[i])) { ct++; } } //System.out.println(Arrays.toString(lastDigits)); System.out.println(ct); } public static boolean lucky(long n) { String s = ""+n; for (int i = 0; i < s.length(); i++) { if (s.charAt(i)!='4' && s.charAt(i)!='7') return false; } return true; } public static long[] applyPerm(long[] array, int n, int k) { List<Integer> remain = new ArrayList<Integer>(); int[] perm = new int[n]; for (int i = 0; i < n; i++) remain.add(i); for (int at = 0; at < n; at++) { int i = n - 1 - at; int index = (int)(k/fact[i]); perm[at] = remain.get(index); k %= fact[i]; remain.remove(index); } long[] newArray = new long[n]; for (int i = 0; i < n; i++) { newArray[i] = array[perm[i]]; } return newArray; } }
JAVA
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; long long fac[51]; map<long long, bool> lc; int32_t main() { vector<long long> all; for (long long i = 1; i <= 10; ++i) { for (long long j = 0; j <= i; ++j) { vector<long long> v; for (long long k = 0; k < j; ++k) v.push_back(4); for (long long k = 0; k < i - j; ++k) v.push_back(7); do { long long t = 0, c = 1; for (long long k : v) t += c * k, c *= 10; all.push_back(t); } while (next_permutation(v.begin(), v.end())); } } sort(all.begin(), all.end()); fac[0] = 1; for (long long i = 1; i <= 50; ++i) fac[i] = fac[i - 1] * i; vector<long long> v; long long n, k; cin >> n >> k; if (n <= 20 && fac[n] < k) return cout << "-1" << endl, 0; --k; for (long long i : all) if (i <= n) v.push_back(i); long long z = -1; for (long long i = n; i >= 1; --i) { long long c = n - i; if (c * fac[c] >= k) { z = i; break; } } if (z == -1) z = 1; long long ans = 0; for (long long i : v) if (i < z) ++ans; for (long long i : v) lc[i] = true; long long cur = 0; vector<long long> ch; for (long long i = z; i <= n; ++i) ch.push_back(i); for (long long i = z; i <= n; ++i) { long long d = 31, p = 0; while (d--) { if (p + (1 << d) < ch.size()) { long long u = ch[p + (1 << d)]; long long c = p + (1 << d); if (cur + c * fac[n - i] <= k) p += (1 << d); } } cur += p * fac[n - i]; if (lc[i] && lc[ch[p]]) ++ans; vector<long long> nch; for (long long j : ch) if (j != ch[p]) nch.push_back(j); ch = nch; } cout << ans << endl; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
import java.awt.*; import java.io.*; import java.math.*; import java.util.*; import static java.lang.Math.*; public class BetaRound91_Div1_C implements Runnable { BufferedReader in; PrintWriter out; StringTokenizer tok; public static void main(String[] args) { new Thread(null, new BetaRound91_Div1_C(), "", 256 * (1L << 20)).start(); } @Override public void run() { try { long startTime = System.currentTimeMillis(); if (System.getProperty("ONLINE_JUDGE") != null) { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); } else { in = new BufferedReader(new FileReader("input.txt")); out = new PrintWriter("output.txt"); } Locale.setDefault(Locale.US); tok = new StringTokenizer(""); solve(); in.close(); out.close(); long endTime = System.currentTimeMillis(); System.err.println("Time = " + (endTime - startTime)); long freeMemory = Runtime.getRuntime().freeMemory(); long totalMemory = Runtime.getRuntime().totalMemory(); System.err.println("Memory = " + ((totalMemory - freeMemory) >> 10)); } catch (Throwable t) { t.printStackTrace(System.err); System.exit(-1); } } String readString() throws IOException { while (!tok.hasMoreTokens()) { tok = new StringTokenizer(in.readLine()); } return tok.nextToken(); } int readInt() throws IOException { return Integer.parseInt(readString()); } long readLong() throws IOException { return Long.parseLong(readString()); } double readDouble() throws IOException { return Double.parseDouble(readString()); } /** http://pastebin.com/j0xdUjDn */ static class Utils { private Utils() {} public static void mergeSort(int[] a) { mergeSort(a, 0, a.length - 1); } private static final int MAGIC_VALUE = 50; private static void mergeSort(int[] a, int leftIndex, int rightIndex) { if (leftIndex < rightIndex) { if (rightIndex - leftIndex <= MAGIC_VALUE) { insertionSort(a, leftIndex, rightIndex); } else { int middleIndex = (leftIndex + rightIndex) / 2; mergeSort(a, leftIndex, middleIndex); mergeSort(a, middleIndex + 1, rightIndex); merge(a, leftIndex, middleIndex, rightIndex); } } } private static void merge(int[] a, int leftIndex, int middleIndex, int rightIndex) { int length1 = middleIndex - leftIndex + 1; int length2 = rightIndex - middleIndex; int[] leftArray = new int[length1]; int[] rightArray = new int[length2]; System.arraycopy(a, leftIndex, leftArray, 0, length1); System.arraycopy(a, middleIndex + 1, rightArray, 0, length2); for (int k = leftIndex, i = 0, j = 0; k <= rightIndex; k++) { if (i == length1) { a[k] = rightArray[j++]; } else if (j == length2) { a[k] = leftArray[i++]; } else { a[k] = leftArray[i] <= rightArray[j] ? leftArray[i++] : rightArray[j++]; } } } private static void insertionSort(int[] a, int leftIndex, int rightIndex) { for (int i = leftIndex + 1; i <= rightIndex; i++) { int current = a[i]; int j = i - 1; while (j >= leftIndex && a[j] > current) { a[j + 1] = a[j]; j--; } a[j + 1] = current; } } } // solution long[] fact = new long[21]; ArrayList<Long> list = new ArrayList<Long>(); void gen() { for (int len = 1; len <= 10; len++) { for (int mask = 0; mask < (1 << len); mask++) { long res = 0; for (int i = 0; i < len; i++) { if (((1 << i) & mask) != 0) { res = 10*res + 7; } else { res = 10*res + 4; } } list.add(res); } } Collections.sort(list); fact[0] = 1; for (int i = 1; i <= 20; i++) { fact[i] = fact[i - 1] * i; } } void solve() throws IOException { gen(); long n = readLong(); long k = readLong(); if (n <= 3) { if (k <= fact[(int)n]) { out.println(0); } else { out.println(-1); } return; } if (k == 1) { long ans = Collections.binarySearch(list, n); if (ans < 0) { ans = -ans - 1; } else { ans++; } out.println(ans); return; } int ki = Arrays.binarySearch(fact, k); if (ki < 0) { ki = -ki - 1; } long stay = n - ki; if (stay < 0) { out.println(-1); return; } long ans = Collections.binarySearch(list, stay); if (ans < 0) { ans = -ans - 1; } else { ans++; } p = new long[ki]; generatePermutation(ki, k); for (int i = 0; i < ki; i++) { if (isLucky(stay + i + 1) && isLucky(stay + p[i])) { ans++; } } out.println(ans); } boolean isLucky(long x) { if (x == 0) return false; while (x > 0) { if (x % 10 != 4 && x % 10 != 7) { return false; } x /= 10; } return true; } long[] p; void generatePermutation(int n, long k) { boolean[] used = new boolean[n+1]; k--; int nn = n; for (int pos = 0; pos < nn; pos++) { long d = k / fact[n-1]; int i = 0; int count = 0; while (i < nn) { i++; if (used[i]) continue; if (count == d) { used[i] = true; p[pos] = i; break; } count++; } k -= d * fact[n-1]; n--; } } }
JAVA
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
digits = [4, 7] nums = [4, 7] LIM = 10**10 while nums[-1] < LIM: nums = list(set(nums + [num*10 + digit for digit in digits for num in nums])) lucky_nums = list(sorted(nums)) def e(n, k): fact = [1, 1] x = 2 while True: new = fact[x-1] * x if new > LIM: break fact.append(new) x += 1 if n < len(fact) and fact[n] < k: return -1 i = 1 while k > fact[i]: i += 1 ii = i nums = [] k -= 1 start = n - i + 1 used = [False] * 30 while ii > 0: f = fact[ii-1] digit = k / f digit_2 = digit for j in range(len(used)): if not used[j]: if digit_2 == 0: used[j] = True nums.append(j + start) digit_2 -= 1 k %= f ii -= 1 answer_count = 0 for num in lucky_nums: if num <= n: if num < start: answer_count += 1 elif nums[num - start] in lucky_nums: answer_count += 1 return answer_count ''' print e(2, 5) print '--' print e(7, 3) print '--' print e(7, 4) print '--' print e(4, 1) print '--' print e(4, 6) print '--' print e(4, 7) print '--' ''' n, k = [int(_) for _ in raw_input().split(" ")] print e(n, k)
PYTHON
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
import java.io.*; import java.util.*; import java.math.*; public class Main implements Runnable { BufferedReader reader; StringTokenizer strtok; HashSet<Long> happyNums = new HashSet<Long>(); int[] digits = new int[20]; void fillList(int count, int position) { digits[position] = 4; if (position == count - 1) { long result = 0; long curpow = 1; for (int i = position; i >= 0; i--) { result += digits[i] * curpow; curpow *= 10; } happyNums.add(result); } else { fillList(count, position + 1); } digits[position] = 7; if (position == count - 1) { long result = 0; long curpow = 1; for (int i = position; i >= 0; i--) { result += digits[i] * curpow; curpow *= 10; } happyNums.add(result); } else { fillList(count, position + 1); } } void solve() throws Exception { int n = nextInt(), k = nextInt(); for (int i = 1; i <= 10; i++) { fillList(i, 0); } long fact = 1; for (int i = 1; i <= n; i++) { fact *= i; if (fact >= k) { break; } } if (fact < k) { System.out.println(-1); return; } int[] arr = new int[Math.min(n, 13)]; for (int i = 0; i < arr.length; i++) { arr[i] = n - arr.length + i + 1; } for (int i = 0; i < arr.length; i++) { long fact2 = 1; for (int j = 1; j < arr.length - i; j++) { fact2 *= j; } long position = (k - 1) / fact2; int el = arr[(int)position + i]; for (int j = (int)position; j > 0; j--) { arr[j + i] = arr[j + i - 1]; } arr[i] = el; k -= position * fact2; if (k <= 1) break; } int answer = 0; for (long hn : happyNums) { if (hn < n - arr.length + 1) { answer++; } } for (int i = 0; i < arr.length; i++) { long x = n - arr.length + i + 1; if (happyNums.contains((long)(n - arr.length + i + 1)) && happyNums.contains((long)arr[i])) { answer++; } } System.out.println(answer); /* while (k > 1) { long fact2 = 1; int last = 1; while (fact2 * (last + 1) < k) { fact2 *= last + 1; last++; } int lastnum = arr[arr.length - 1]; for (int i = 0; i < last; i++) { arr[arr.length - i - 1] = arr[arr.length - i - 2]; } arr[arr.length - last - 1] = lastnum; k -= fact2; }*/ } public static void main(String[] args) { new Thread(null, new Main(), "Solution", 16 * 1024 * 1024).start(); } @Override public void run() { try { if (System.getProperty("ONLINE_JUDGE") == null) { System.setIn(new FileInputStream("input.txt")); System.setOut(new PrintStream("output.txt")); } reader = new BufferedReader(new InputStreamReader(System.in)); solve(); } catch (Exception e) { e.printStackTrace(); } } String nextToken() throws IOException { if (strtok == null || !strtok.hasMoreTokens()) { strtok = new StringTokenizer(reader.readLine()); } return strtok.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } }
JAVA
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
import java.util.ArrayList; import java.util.HashSet; import java.util.Scanner; public class E { static int[] Fac; static int[] P; static int n; static HashSet<Integer> H = new HashSet<Integer>(); static int count = 0; static int start; static ArrayList<Long> Q = new ArrayList<Long>(); static int inf = (int) 1e9; public static boolean isLucky(int x) { while (x > 0) { if (x % 10 != 4 && x % 10 != 7) return false; x /= 10; } return true; } public static void generate(int pos, int k) { if (pos > n) return; for (int i = start; i <= n; i++) { if (H.contains(i)) continue; int left = n - start - H.size(); if (Fac[left] < k) { k -= Fac[left]; } else { H.add(i); if (isLucky(pos) && isLucky(i)) count++; generate(pos + 1, k); } } } public static void generate(long x) { Q.add(10 * x + 4); Q.add(10 * x + 7); if (x < inf) { generate(10 * x + 4); generate(10 * x + 7); } } public static void main(String[] args) { Scanner in = new Scanner(System.in); n = in.nextInt(); int k = in.nextInt(); Fac = new int[13]; Fac[0] = 1; for (int i = 1; i < 13; i++) Fac[i] = Fac[i - 1] * i; if (n < 13 && k > Fac[n]) { System.out.println(-1); return; } start = 12; while (start >= 0 && Fac[start] >= k) start--; int pos = start = n - start; generate(pos, k); generate(0); for (long x : Q) if (x < start) count++; System.out.println(count); } }
JAVA
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; vector<long long> v, ext; long long f[20]; bool vis[20]; bool chck(long long j) { while (j) { if (j % 10 != 4 && j % 10 != 7) break; j /= 10; } return j == 0; } int main() { long long i, n, k, st, sum, j, pre, sz, ans; f[0] = 1; for (i = 1; i <= 13; i++) f[i] = f[i - 1] * i; cin >> n >> k; if (n <= 13 && k > f[n]) { cout << -1 << endl; return 0; } for (i = 1; f[i] < k; i++) ; st = n - i + 1; sum = k; for (j = 1; j <= i; j++) { for (k = st; k <= n; k++) { if (!vis[k - st]) { if (sum - f[i - j] > 0) { sum -= f[i - j]; } else { ext.push_back(k); vis[k - st] = 1; break; } } } } queue<long long> q; q.push(4); q.push(7); v.push_back(4); v.push_back(7); while (!q.empty()) { pre = q.front(); q.pop(); if (pre * 10 + 4 <= 5000000000LL) { q.push(pre * 10 + 4); q.push(pre * 10 + 7); v.push_back(pre * 10 + 4); v.push_back(pre * 10 + 7); } } sz = v.size(); ans = 0; for (i = 0; i < sz && v[i] < st; i++) ans++; for (i = st; i <= n; i++) { if (chck(i)) { if (chck(ext[i - st])) ans++; } } cout << ans << endl; return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; long long l[5010]; int tot; long long ans, n, k; void prepare() { tot = 2; l[0] = 4, l[1] = 7; for (int i = 0; i < tot; i++) if (l[i] > 2e9) break; else l[tot++] = l[i] * 10 + 4, l[tot++] = l[i] * 10 + 7; } bool inside(long long t) { for (int i = 0; i < tot; i++) if (l[i] == t) return 1; return 0; } long long deal(int b, int n) { long long ret = 0, temp = 1; for (int i = 1; i <= n; i++) temp *= i; bool v[20]; memset(v, 0, sizeof v); if (temp < k) return -0x7ffffff; k--; for (int i = n; i >= 1; i--) { temp /= i; int t = k / temp + 1, j; k -= (t - 1) * temp; for (j = 1; j <= n; j++) { if (!v[j]) t--; if (!t) break; } v[j] = 1; if (inside(b + j) && inside(b + n - i + 1)) ret++; } return ret; } int main() { prepare(); cin >> n >> k; if (n <= 15) ans = deal(0, n); else { for (int i = 0; l[i] <= n - 15; i++) ans++; ans += deal(n - 15, 15); } if (ans < 0) puts("-1"); else cout << ans << endl; return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; void run(); int main() { ios::sync_with_stdio(0); run(); } long long fac[20] = {1}; bool lucky(long long i) { return i == 0 or ((i % 10 == 4) or (i % 10 == 7)) and lucky(i / 10); } void run() { long long n, m; cin >> n >> m; --m; for (long long i = 1; i < 20; i++) fac[i] = fac[i - 1] * i; if (n <= 16 and fac[n] <= m) { cout << "-1" << endl; return; } long long red = max(0ll, n - 14ll); long long offset = red + 1; long long res = 0; vector<long long> luck[20]; luck[0].push_back(0); --res; for (long long len = 1, p = 1; not luck[len - 1].empty(); ++len, p *= 10ll) { for (auto j : luck[len - 1]) { if (j + 4 * p <= red) luck[len].push_back(j + 4 * p); if (j + 7 * p <= red) luck[len].push_back(j + 7 * p); ++res; } } vector<long long> consider; for (long long i = offset; i <= n; i++) consider.push_back(i); while (not consider.empty()) { long long f = fac[consider.size() - 1]; long long i = m / f; m -= i * f; if (lucky(n - consider.size() + 1) and lucky(consider[i])) ++res; consider.erase(consider.begin() + i); } cout << res << endl; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; long long int fact[14]; int n, k; int cs, s; vector<int> v; vector<long long int> lnum; void Set() { fact[0] = 1; for (long long int i = 1; i < 14; i++) fact[i] = i * fact[i - 1]; } void create_lucky(int i) { for (int i = cs; i < s; i++) lnum.push_back(lnum[i] * 10 + 4), lnum.push_back(lnum[i] * 10 + 7); } bool lucky(int num) { while (num) { if (num % 10 != 4 && num % 10 != 7) return false; num /= 10; } return true; } int main() { lnum.push_back(4); lnum.push_back(7); cs = 0; s = 2; for (int i = 2; i <= 9; i++) { create_lucky(i); cs = s; s = lnum.size(); } lnum.push_back(4444444444); Set(); cin >> n >> k; if (n <= 13 && fact[n] < k) { cout << -1 << endl; return 0; } int dig = 1; for (int i = 1; fact[i] < k; i++) dig++; for (int i = n - dig + 1; i <= n; i++) { v.push_back(i); } int cp = n - dig, cs = v.size(), pi = 1, cnt = 0; while (1) { int cn = 0; while (k > cn * fact[cs - 1]) cn++; k = k - (cn - 1) * fact[cs - 1]; int cnum = v[cn - 1]; int pos = cp + pi; pi++; v.erase(v.begin() + cn - 1); if (lucky(pos) && lucky(cnum)) cnt++; if (k == 1) { for (int i = 0; i < cs; i++) if (lucky(pos + i + 1) && lucky(v[i])) cnt++; break; } cs--; } for (int i = 0; lnum[i] <= cp; i++) cnt++; cout << cnt << endl; return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
import java.io.*; import java.util.*; import static java.lang.Math.*; import static java.util.Arrays.fill; import static java.util.Arrays.binarySearch; import static java.util.Arrays.sort; public class Main { public static void main(String[] args) throws IOException { new Thread(null, new Runnable() { public void run() { try { try { if (new File("input.txt").exists()) System.setIn(new FileInputStream("input.txt")); } catch (SecurityException e) {} long prevTime = System.currentTimeMillis(); new Main().run(); System.err.println("Total time: " + (System.currentTimeMillis() - prevTime) + " ms"); System.err.println("Memory status: " + memoryStatus()); } catch (IOException e) { e.printStackTrace(); } } }, "1", 1L << 24).start(); } void run() throws IOException { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); out.close(); in.close(); } /*************************************************************** * Solution **************************************************************/ final long INF = Long.MAX_VALUE / 7L; int MAXL = 10000; long[] ln = new long [MAXL]; int lsz = 0; Set<Long> lucky = new HashSet<Long>(); int MAXN = 50; int n; int k; int[] perm; void solve() throws IOException { gen(0, 0L); ln = Arrays.copyOf(ln, lsz); sort(ln); for (long x : ln) lucky.add(x); int N = nextInt(); n = min(MAXN, N); k = nextInt(); long[] fac = new long [n + 1]; fac[0] = 1L; for (int i = 1; i <= n; i++) { if (fac[i - 1] == INF) { fac[i] = INF; } else { fac[i] = fac[i - 1] * i; if (fac[i] > k) fac[i] = INF; } } if (fac[n] < k) { out.println(-1); return; } int R = N - n; int ans = solveSimple(R); TreeSet<Integer> set = new TreeSet<Integer>(); int add = N - n; for (int i = 1; i <= n; i++) set.add(add + i); k--; perm = new int [n]; for (int i = 0; i < n; i++) { long f = fac[n - i - 1]; int cx = set.first(); int g = 0; if (f != INF) { for (int x : set) { if (f * g > k) break; g++; cx = x; } g--; } k -= g * f; set.remove(cx); perm[i] = cx; } for (int i = 0; i < n; i++) { int index = N - n + i + 1; int number = perm[i]; if (lucky(index) && lucky(number)) ans++; } out.println(ans); } void gen(int dn, long sum) { if (dn == 10) return; if (sum != 0L) ln[lsz++] = sum; gen(dn + 1, sum * 10L + 4L); gen(dn + 1, sum * 10L + 7L); } boolean lucky(long x) { return lucky.contains(x); } int solveSimple(long max) { int ret = 0; for (long x : ln) if (x <= max) ret++; return ret; } /*************************************************************** * Input **************************************************************/ BufferedReader in; PrintWriter out; StringTokenizer st = new StringTokenizer(""); String nextToken() throws IOException { while (!st.hasMoreTokens()) st = new StringTokenizer(in.readLine()); return st.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } int[] nextIntArray(int size) throws IOException { int[] ret = new int [size]; for (int i = 0; i < size; i++) ret[i] = nextInt(); return ret; } long[] nextLongArray(int size) throws IOException { long[] ret = new long [size]; for (int i = 0; i < size; i++) ret[i] = nextLong(); return ret; } double[] nextDoubleArray(int size) throws IOException { double[] ret = new double [size]; for (int i = 0; i < size; i++) ret[i] = nextDouble(); return ret; } String nextLine() throws IOException { st = new StringTokenizer(""); return in.readLine(); } boolean EOF() throws IOException { while (!st.hasMoreTokens()) { String s = in.readLine(); if (s == null) return true; st = new StringTokenizer(s); } return false; } /*************************************************************** * Output **************************************************************/ void printRepeat(String s, int count) { for (int i = 0; i < count; i++) out.print(s); } void printArray(int[] array) { for (int i = 0; i < array.length; i++) { if (i > 0) out.print(' '); out.print(array[i]); } out.println(); } void printArray(long[] array) { for (int i = 0; i < array.length; i++) { if (i > 0) out.print(' '); out.print(array[i]); } out.println(); } void printArray(double[] array) { for (int i = 0; i < array.length; i++) { if (i > 0) out.print(' '); out.print(array[i]); } out.println(); } void printArray(double[] array, String spec) { for (int i = 0; i < array.length; i++) { if (i > 0) out.print(' '); out.printf(Locale.US, spec, array[i]); } out.println(); } void printArray(Object[] array) { boolean blank = false; for (Object x : array) { if (blank) out.print(' '); else blank = true; out.print(x); } out.println(); } @SuppressWarnings("rawtypes") void printCollection(Collection collection) { boolean blank = false; for (Object x : collection) { if (blank) out.print(' '); else blank = true; out.print(x); } out.println(); } /*************************************************************** * Utility **************************************************************/ static String memoryStatus() { return (Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory() >> 20) + "/" + (Runtime.getRuntime().totalMemory() >> 20) + " MB"; } static void checkMemory() { System.err.println(memoryStatus()); } static long prevTimeStamp = Long.MIN_VALUE; static void updateTimer() { prevTimeStamp = System.currentTimeMillis(); } static long elapsedTime() { return (System.currentTimeMillis() - prevTimeStamp); } static void checkTimer() { System.err.println(elapsedTime() + " ms"); } }
JAVA
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; const long long Fac[14] = {1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 6227020800LL}; int Total, Data[5000]; bool Lucky(int T) { while (T) { if (T % 10 != 4 && T % 10 != 7) return false; T /= 10; } return true; } void Init() { Total = 0; for (int i = 1; i <= 9; i++) for (int j = 0; j < (1 << i); j++) { int S = 0; for (int k = 0; k < i; k++) S = S * 10 + ((j & (1 << k)) ? 4 : 7); Data[Total++] = S; } sort(Data, Data + Total); } int Count(int N) { if (Data[Total - 1] <= N) return Total; int P = 0; while (Data[P] <= N) P++; return P; } int Count1(int N, int K) { if (K >= Fac[N]) return -1; int Ans = 0, Kth[20], A[20]; for (int i = 1; i <= N; i++) Kth[i] = i; for (int i = 1; i <= N; i++) { A[i] = Kth[K / Fac[N - i] + 1]; K %= Fac[N - i]; if (Lucky(i) && Lucky(A[i])) Ans++; int P = 1; while (Kth[P] != A[i]) P++; for (int j = P; j <= N - i; j++) Kth[j] = Kth[j + 1]; } return Ans; } int Count2(int N, int K) { int Ans = Count(N), Kth[20], A[20]; for (int i = 1; i <= 13; i++) Kth[i] = N + i; for (int i = 1; i <= 13; i++) { A[i] = Kth[K / Fac[13 - i] + 1]; K %= Fac[13 - i]; if (Lucky(N + i) && Lucky(A[i])) Ans++; int P = 1; while (Kth[P] != A[i]) P++; for (int j = P; j <= 13 - i; j++) Kth[j] = Kth[j + 1]; } return Ans; } int main() { Init(); int N, K; cin >> N >> K; K--; cout << ((N <= 13) ? Count1(N, K) : Count2(N - 13, K)) << endl; return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; int n, k, len; long long base[20]; int num[20]; bool mark[20]; int solve(int x) { int ret = 0; for (int L = 1; L <= 9; L++) for (int i = 0; i < (1 << L); i++) { int k = 0; for (int j = 0; j < L; j++) k = k * 10 + ((i & (1 << j)) ? 4 : 7); if (k <= x) ret++; } return ret; } bool lucky(int x) { while (x) { if (x % 10 != 4 && x % 10 != 7) return false; x /= 10; } return true; } int main() { scanf("%d%d", &n, &k); int ans; if (k == 1) ans = solve(n); else { k--; len = 2; base[1] = base[2] = 1; while (base[len] <= k) base[++len] = base[len - 1] * (len - 1); len--; if (n < len) { printf("-1\n"); return 0; } ans = solve(n - len); for (int i = 0; i < len; i++) { int t = (k / base[len - i]) + 1; k %= base[len - i]; int j = 0; while (t--) { while (mark[j]) j++; if (t) j++; } mark[j] = true; num[i] = j; if (lucky(i + n - len + 1) && lucky(num[i] + n - len + 1)) ans++; } } printf("%d\n", ans); return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; int getall(long long x, int n) { if (x > n) return 0; return 1 + getall(x * 10 + 4, n) + getall(x * 10 + 7, n); } bool is_good(int x) { if (!x) return 0; while (x) { if (x % 10 != 4 && x % 10 != 7) return 0; x /= 10; } return 1; } vector<int> kth(int n, int k) { vector<long long> f(n); f[0] = 1; for (auto i = 1; i < n; i++) f[i] = i * f[i - 1]; vector<int> perm(n), u(n, 0); for (auto i = 0; i < n; i++) { for (auto j = 0; j < n; j++) { if (u[j]) continue; long long add = f[n - 1 - i]; if (add < k) { k -= add; continue; } perm[i] = j; break; } u[perm[i]] = 1; } return perm; } signed main() { ios_base::sync_with_stdio(0); cin.tie(0); int n, k; cin >> n >> k; long long fac = 1; int cnt; for (auto i = 1; i < n + 1; i++) { fac *= i; cnt = i; if (fac >= k) break; } if (fac < k) { cout << -1; return 0; } int tot = getall(0, n) - 1; vector<int> perm = kth(cnt, k); for (auto i = 0; i < cnt; i++) { int pos = n - cnt + 1 + i, val = perm[i] + n - cnt + 1; if (is_good(val) && !is_good(pos)) --tot; } cout << tot; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; int Lucky[1024], size; void dfs(int r, int val) { if (val) Lucky[size++] = val; if (r == 9) { return; } dfs(r + 1, val * 10 + 4); dfs(r + 1, val * 10 + 7); } bool isLucky(int x) { while (x) { if (x % 10 != 4 && x % 10 != 7) return false; x /= 10; } return true; } int sum[13]; int res(int x, int p) { if (x == 0) return p + 1; int t = x / sum[p]; if (t * sum[p] == x) return t; return t + 1; } void init() { size = 0; dfs(0, 0); sort(Lucky, Lucky + size); sum[0] = 1; sum[1] = 1; for (int i = 2; i <= 12; i++) sum[i] = sum[i - 1] * i; } vector<int>::iterator it; int main() { init(); int n, k, len, po, ans; while (scanf("%d%d", &n, &k) != EOF) { ans = 0; bool flag = true; for (len = 1; len <= 12; len++) { if (sum[len] >= k) break; } po = n - len; if (po < 0) { flag = false; printf("-1\n"); continue; } ans = upper_bound(Lucky, Lucky + size, po) - Lucky; vector<int> ind; for (int i = po + 1; i <= n; i++) { ind.push_back(i); } len--; for (int i = po + 1; i <= n; i++, len--) { int tmp = k / sum[len]; it = ind.begin() + res(k, len) - 1; k -= tmp * sum[len]; tmp = *it; if (isLucky(tmp) && isLucky(i)) ans++; ind.erase(it); } printf("%d\n", ans); } return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; const int INF = 1000000007; const int N = 100100; int a[N], cnt, n, k; long long F[111], sum; const int IDX[] = {4, 7}; void DP(int id) { if (sum > n) return; if (sum) a[++cnt] = sum; for (int i = 0; i < 2; i++) { sum = sum * 10 + IDX[i]; DP(i + 1); sum /= 10; } } int MAX, ans; bool OK[N]; int main() { cin >> n >> k; DP(1); sort(a + 1, a + cnt + 1); F[0] = 1; for (int i = 1; i <= 20; i++) F[i] = F[i - 1] * i; if (n <= 20 && k > F[n]) { cout << "-1"; return 0; } for (int i = 1; i <= 20; i++) if (F[i] >= k) { MAX = i; break; } memset(OK, true, sizeof(OK)); for (int i = 1; i <= MAX; i++) { int j = 1; for (j = 1; j <= MAX; j++) if (OK[j]) if (k > F[MAX - i]) k -= F[MAX - i]; else break; OK[j] = false; if (binary_search(a + 1, a + cnt + 1, n - MAX + i) && binary_search(a + 1, a + cnt + 1, n - MAX + j)) ans++; } for (int i = 1; i <= cnt; i++) if (a[i] <= n - MAX) ans++; else break; cout << ans; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; long long int mul[1000]; int i, j, n, m, t, tt, k; void prepare() { mul[0] = 1; i = 0; while (mul[i] < 2000000000) { mul[i + 1] = (i + 1) * mul[i]; i++; } tt = i; } void kper(int p[1000], int n, long long int k) { bool checked[1000]; memset(checked, 0, sizeof(checked)); int i, j; for (i = 1; i <= n; i++) { j = 1; while (1) { while (checked[j]) j++; if (mul[n - i] >= k) { break; } k -= mul[n - i]; j++; } checked[j] = 1; p[i] = j; } } long long int p[20000]; void prepare2() { p[1] = 4; p[2] = 7; ; t = 2; j = 1; int r; for (i = 1; i <= 10; i++) { r = t; while (j <= r) { p[++t] = p[j] * 10 + 4; p[++t] = p[j] * 10 + 7; j++; } } sort(&p[1], &p[1 + t]); } bool lucky(long long int a) { while (a) { if (a % 10 != 4 && a % 10 != 7) return 0; a /= 10; } return 1; } int q[1000], qq[1000], qqq[1000]; int main() { prepare(); prepare2(); scanf("%d %d", &n, &k); if (n <= tt && mul[n] < k) { printf("-1\n"); return 0; } i = 1; while (mul[i] < k) i++; j = n - i; if (j < 1) j = 1; int a, b, c, ans = 0; a = 1; while (p[a] <= j) { ans++; a++; } kper(q, i, k); for (j = n; j > n - i; j--) { qq[j - (n - i)] = j; } for (j = 1; j <= i; j++) { qqq[j] = qq[q[j]]; } for (j = 1; j <= i; j++) { if (lucky(qqq[j]) && lucky(j + (n - i))) { ans++; } } printf("%d\n", ans); return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; const long long nmax = 100; vector<long long> lucky; long long s_3(long long i) { string s = ""; long long x = i; while (x) { s += char(x % 3); x /= 3; } x = 0; long long k = 1; for (int j = 0; j < s.size(); j++) x += k * (long long)s[j], k *= 10; return x; } void zap(int n) { for (int i = 0; i <= n; i++) lucky.push_back(s_3(i)); } bool islucky(long long x) { for (; x; x /= 10) if (x % 10 != 4 && x % 10 != 7) return false; return true; } void prepare() { for (int i = 1; i <= 9; ++i) { for (int j = 0; j < (1 << i); ++j) { int x = 0; for (int t = i - 1; t >= 0; --t) { x = x * 10 + ((j >> t) & 1 ? 7 : 4); } lucky.push_back(x); } } } int main() { prepare(); long long n, m; cin >> n >> m; long long l = 0, s = 1; while (s < m) s *= ++l; if (n < l) { cout << -1 << '\n'; return 0; } vector<long long> a; long long ans = upper_bound(lucky.begin(), lucky.end(), n - l) - lucky.begin(); for (int i = 1; i <= l; i++) a.push_back(n - l + i); for (int i = 1; i <= l; i++) { s /= l + 1 - i; long long x = (m - 1) / s; if (islucky(n - l + i) && islucky(a[x])) ans++; a.erase(a.begin() + x); m -= x * s; } cout << ans << endl; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; int per[20]; int fac[] = {1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600}; bool used[20]; int KT(int *s, int n) { int sum = 0; for (int i = 0; i < n; ++i) { int cnt = 0; for (int j = i + 1; j < n; ++j) if (s[j] < s[i]) ++cnt; sum += cnt * fac[n - i - 1]; } return sum; } void invKT(int *s, int k, int n) { k--; for (int i = 0; i < n; ++i) { int cnt = k / fac[n - i - 1]; for (int j = 0; j <= cnt; ++j) { if (used[j]) ++cnt; } per[i] = cnt + 1; used[cnt] = true; k %= fac[n - i - 1]; } } vector<long long> lucky; void dfs(string u) { if (u.size() > 9) return; if (u.size()) lucky.push_back(atoi(u.c_str())); dfs(u + "4"); dfs(u + "7"); } void init() { dfs(""); lucky.push_back(4444444444LL); sort(lucky.begin(), lucky.end()); } int n, k; int main() { init(); while (cin >> n >> k) { if (n < 13 && k > fac[n]) { cout << "-1\n"; continue; } int change = 13; for (int i = 1; i < 13; ++i) if (k < fac[i]) { change = i; break; } invKT(per, k, change); int lef = n - change; int ans = 0; for (int i = 0; i < lucky.size(); ++i) { if (lucky[i] > n) { break; } if (lucky[i] <= lef) ans++; else { int num = per[lucky[i] - lef - 1] + lef; for (int j = 0; j < lucky.size() && lucky[j] <= n; j++) { if (num == lucky[j]) ans++; } } } cout << ans << '\n'; } return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; const int N = 20; const int K = 16; long long f[N]; vector<long long> get_per(long long n, long long k) { f[0] = 1; for (int i = 1; N > i; i++) { f[i] = f[i - 1] * i; } vector<long long> ret; ret.resize(n); set<int> st; for (int i = 1; n >= i; i++) { st.insert(i); } for (int i = 0; n > i; i++) { int times = 0; auto now = st.begin(); while (f[n - i - 1] < k) { k -= f[n - i - 1]; now++; } ret[i] = (*now); st.erase(now); } return ret; } int main() { vector<long long> v; for (int sz = 1; 9 >= sz; sz++) { for (int i = 0; (1 << sz) > i; i++) { long long now = 0; for (int j = 0; sz > j; j++) { if (((1 << j) & i) != 0) { now *= 10; now += 4; } else { now *= 10; now += 7; } } v.push_back(now); } } v.push_back(4444444444LL); sort(v.begin(), v.end()); int n, k; cin >> n >> k; f[0] = 1; for (int i = 1; N > i; i++) f[i] = f[i - 1] * i; if (n <= K && f[n] < k) { puts("-1"); return 0; } if (n <= K) { vector<long long> ret = get_per(n, k); long long ans = 0; for (int i = 0; n > i; i++) { if (i + 1 == 4 || i + 1 == 7) { if (ret[i] == 4 || ret[i] == 7) { ans++; } } } cout << ans << endl; return 0; } long long tmp = n - K; long long now = n - K; auto iter = lower_bound(v.begin(), v.end(), tmp); if ((*iter) != now) --iter; long long ans = iter - v.begin() + 1; set<long long> lucky; for (long long i : v) lucky.insert(i); vector<long long> ret = get_per(K, k); for (int i = 0; K > i; i++) { int pos = i + now + 1; if (lucky.find(pos) != lucky.end()) { long long val = ret[i] + now; if (lucky.find(val) != lucky.end()) ans++; } } cout << ans << endl; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; long long f[20]; vector<long long> lu; void go(int x, int y, long long p) { if (x == y) return; lu.push_back(p * 10 + 4); lu.push_back(p * 10 + 7); go(x, y + 1, p * 10 + 4); go(x, y + 1, p * 10 + 7); } bool ok(long long x) { if (!x) return 0; while (x) { if (!(x % 10 == 4 || x % 10 == 7)) return 0; x /= 10; } return 1; } void radix(long long k, vector<long long> &num) { k--; int len = num.size(); int aw, get; for (get = 1, aw = len - 1; get < len; get++, aw--) if (f[get] > k) break; get--; while (k) { long long a = k / f[get]; k = k % f[get]; swap(num[aw], num[aw + a]); sort(num.begin() + aw + 1, num.end()); aw++; get--; } } int main() { go(13, 0, 0); sort(lu.begin(), lu.end()); int p = lu.size(); f[0] = 1; for (long long i = 1; i < 15; i++) f[i] = f[i - 1] * i; long long n, k; vector<long long> num; while (cin >> n >> k) { long long ans = 0; if (n > 13) { for (long long i = 12; i >= 0; i--) num.push_back(n - i); for (int i = 0; i < p; i++) { if (lu[i] <= n - 13) ans++; } radix(k, num); for (long long i = 12, j = 0; i >= 0; i--, j++) { if (ok(num[j]) && ok(n - i)) ans++; } } else if (f[n] >= k) { for (int i = 0; i < n; i++) num.push_back(i + 1); radix(k, num); for (int i = 0; i < n; i++) { if (ok(num[i]) && (ok(i + 1))) ans++; } } if (n <= 13) if (f[n] < k) ans = -1; cout << ans << endl; } return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; int permutation[100]; long long fact[100]; void writeFact(int n) { fact[0] = 1; for (int i = 1; i <= n; i++) fact[i] = fact[i - 1] * i; } void kthPermutation(int n, int i) { i--; int j, k = 0; for (k = 0; k < n; ++k) { permutation[k] = i / fact[n - 1 - k]; i = i % fact[n - 1 - k]; } for (k = n - 1; k > 0; k--) for (j = k - 1; j >= 0; j--) if (permutation[j] <= permutation[k]) permutation[k]++; for (i = 0; i < n; i++) permutation[i]++; } long long lucky[100000]; void findLucky(int n) { lucky[0] = 4; lucky[1] = 7; int i = 0, now = 2; while (lucky[i] < n) { lucky[now] = lucky[i] * 10 + 4; now++; lucky[now] = lucky[i] * 10 + 7; now++; i++; } } int aksFact(int k) { int i = 0; while (k > fact[i]) i++; return i; } int sumLucky(int n) { int i = 0; while (lucky[i] <= n) i++; return i; } bool isLucky(int n, int m) { while (n > 0) { if (n % 10 != 4 && n % 10 != 7) return false; n /= 10; } while (m > 0) { if (m % 10 != 4 && m % 10 != 7) return false; m /= 10; } return true; } int main() { writeFact(15); int n, k; cin >> n >> k; if (n < 14 && k > fact[n]) { cout << -1 << endl; return 0; } findLucky(n + 100); int a = aksFact(k); int ans = sumLucky(n - a); kthPermutation(a, k); for (int i = 0; i < a; i++) { permutation[i] += n - a; ans += isLucky(permutation[i], n - a + i + 1); } cout << ans << endl; return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> const int N = 100010; const int inf = 0x3f3f3f3f; using namespace std; long long dp[N]; int used[21]; bool vis[21]; void dfs(int n, long long k, int cnt) { if (n == 0) return; int id = 1; for (int i = 1; i < n; i++) if (k > dp[n - 1]) k -= dp[n - 1], id = i + 1; else break; for (int i = 1, j = 0; i < 20; i++) { if (vis[i]) continue; j++; if (j == id) vis[i] = 1, used[cnt] = i; if (j == id) break; } dfs(n - 1, k, cnt + 1); } int main() { long long n, k; cin >> n >> k; vector<long long> vt; set<long long> st; for (int k = 1; k < 11; k++) { for (long long i = 0; i < 1ll << k; i++) { long long cnt = 0; for (int j = 0; j < k; j++) if (i & (1ll << j)) cnt = cnt * 10 + 7; else cnt = cnt * 10 + 4; vt.push_back(cnt); st.insert(cnt); } } sort(vt.begin(), vt.end()); dp[0] = 1; for (int i = 1; i < 20; i++) dp[i] = i * dp[i - 1]; if (n <= 19 && dp[n] < k) { puts("-1"); return 0; } dfs(min(n, 19ll), k, 1); long long ret = 0; if (n <= 19) { ret = 0; if (used[4] == 4 || used[4] == 7) ret++; if (used[7] == 7 || used[7] == 4) ret++; } else { ret = vt.size() - (vt.end() - upper_bound(vt.begin(), vt.end(), n - 19)); for (int i = 1; i <= 19; i++) if (st.count(used[i] + n - 19) && st.count(n - 19 + i)) ret++; } cout << ret << endl; return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; int islucky(long long int a) { long long int temp = a; if (temp == 0) return 0; while (temp != 0) { if (temp % 10 != 4 && temp % 10 != 7) return 0; temp /= 10; } return 1; } int main() { long long int v[10010]; memset(v, 0, sizeof(v)); v[0] = 4; v[1] = 7; for (int end = 2, cnt = 0; end <= 1500; cnt++) { v[end++] = v[cnt] * 10 + 4; v[end++] = v[cnt] * 10 + 7; } long long int facto[15]; long long int n, k; facto[0] = 1; for (int i = 1; i < 15; i++) facto[i] = facto[i - 1] * i; cin >> n >> k; k -= 1; long long int to_be_changed = 0; if (n <= 15) if (k >= facto[n]) { cout << -1 << endl; return 0; } for (to_be_changed = 1; to_be_changed <= 15; to_be_changed++) if (facto[to_be_changed] > k) break; long long int a[100]; for (int l = 0; l < to_be_changed; l++) { a[l] = n - to_be_changed + l + 1; } long long int sum = 0; for (int i = 0; i <= 1500; i++) { if (v[i] >= (n - to_be_changed + 1)) break; sum += 1; } long long int size = to_be_changed; long long int perm_no = k; long long int r = perm_no; long long int m = 0; long long int position = 0; sort(a, a + size); while (position <= size - 1) { m = r / facto[size - 1 - position]; r = r % facto[size - 1 - position]; long long int t = *(a + position + m); *(a + position + m) = *(a + position); *(a + position) = t; sort(a + position + 1, a + size); position++; if (r == 0) break; } for (int i = 0; i < to_be_changed; i++) { sum += (islucky(a[i]) && islucky(n - size + i + 1)); } cout << sum << endl; return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; static const int INF = 500000000; template <class T> void debug(T a, T b) { for (; a != b; ++a) cerr << *a << ' '; cerr << endl; } long long int luck[100005]; int cnt = 0; long long int n, k; long long int fact[20]; int used[20]; bool isLucky(long long int a) { int res = 1; while (a > 0) { if (a % 10 != 4 && a % 10 != 7) res = 0; a /= 10; } return res; } int main() { fact[0] = 1; for (int i = 0; i < 19; ++i) fact[i + 1] = fact[i] * (i + 1); for (int i = 1; i <= 10; ++i) { for (int j = 0; j < 1 << i; ++j) { long long int num = 0; for (int k = 0; k < i; ++k) num = num * 10 + (j >> k & 1 ? 7 : 4); --num; luck[cnt++] = num; } } sort(luck, luck + cnt); cin >> n >> k; --k; int res = 0; int end = n - 1 - 13; vector<int> srch; for (int i = 0; i < cnt; ++i) { if (luck[i] <= end) { ++res; } else if (luck[i] >= n) break; else { srch.push_back(luck[i]); } } vector<long long int> perm; int size = min(13ll, n); for (int i = 0; i < size; ++i) { int seek = 0; while (seek < size && used[seek]) ++seek; while (k >= fact[size - 1 - i]) { k -= fact[size - 1 - i]; ++seek; while (seek < size && used[seek]) ++seek; if (seek == size) { puts("-1"); return 0; } } used[seek] = 1; perm.push_back(seek); } if (end < 0) { for (int i = 0; i < srch.size(); ++i) if (isLucky(perm[srch[i]] + 1)) ++res; } else { for (int i = 0; i < srch.size(); ++i) { if (isLucky(perm[srch[i] - end - 1] + 1 + end + 1)) ++res; } } cout << res << endl; return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
from itertools import * n, k = map(int, raw_input().split()) MAXK = 1000000000 LNUMS = [] lc = [ [0], [] ] for i in range(10): idx = i%2 lc[1-idx] = [] for v in lc[idx]: lc[1-idx] += [v*10+4, v*10+7] LNUMS += lc[1-idx] FAC = [1] j = 1 d = 1 while d <= MAXK: j += 1 d *= j FAC.append(d) visit = [0]*20 c = n def lucky(i): while i: if i % 10 not in [4, 7]: return False i //= 10 return True nn = max(0, n-len(FAC)) def nextn(i): d = nn while i: d += 1 if visit[d-nn] == 0: i -= 1 visit[d-nn] = 1 return d if n < len(FAC) and FAC[n-1] < k: ans = -1 else: k -= 1 ans = len(list(takewhile(lambda x: x <= nn, LNUMS))) for i in range(nn+1, n+1): ii = n-i if ii >= len(FAC): nv = i else: di = FAC[ii-1] # (ii-1) could be -1 nv = nextn(k//di+1) k %= di if lucky(i) and lucky(nv): ans += 1 print ans
PYTHON
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; vector<int> v; int main() { for (int i = 0; i < (1 << 9); i++) { int k = i, n = 0, j = 0; while (k > 0) { if (k % 2 == 1) n = (n * 10) + 7; else n = (n * 10) + 4; k /= 2; j++; } if (n != 0) v.push_back(n); for (; j < 9; j++) { n = (n * 10) + 4; v.push_back(n); } } sort(v.begin(), v.end()); long long p = 1LL; int n, i, j; long long k; scanf("%d %lld", &n, &k); for (i = 1; i <= n; i++) { p = p * (long long)i; if (p >= k) break; } if (i == n + 1) { cout << "-1"; return 0; } p = p / i; vector<int> second; j = i; for (i = n - i + 1; i <= n; i++) second.push_back(i); int ans = 0; int y = j; for (i = n - j + 1; i <= n; i++) { int m = k / p; if (k % p != 0) m++; m--; int first = 0, t; for (t = 0; t < v.size(); t++) if (v[t] == i) first++; for (t = 0; t < v.size(); t++) if (v[t] == second[m]) first++; if (first == 2) ans++; second.erase(second.begin() + m); if (k % p == 0) k = p; else k = k % p; j--; if (i != n) p = p / j; } ans = ans + upper_bound(v.begin(), v.end(), n - y) - v.begin(); cout << ans; return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; vector<int> a; int aa[20]; void search(int x) { if (x != 0) a.push_back(x); if (x > 100000000) return; search(x * 10 + 4); search(x * 10 + 7); } int islucky(int x) { char tmp[20]; int i, l; sprintf(tmp, "%d", x); l = strlen(tmp); for (i = 0; i < l; i++) if ((tmp[i] != '4') && (tmp[i] != '7')) return 0; return 1; } int main() { int st, cnt, n, k, i, j, ans; int used[20]; long long tmp; a.clear(); search(0); sort(a.begin(), a.end()); scanf("%d%d", &n, &k); tmp = 1; for (i = 1;; i++) { tmp *= i; if (tmp >= k) break; } if (n < i) { printf("-1\n"); return 0; } ans = 0; st = n - i; cnt = i; for (i = 0; i < a.size(); i++) if (a[i] <= st) ans++; st++; memset(used, 0, sizeof(used)); for (i = 0; i < cnt; i++) { tmp /= (cnt - i); for (j = 0; j < cnt; j++) if (used[j] == 0) { if (k <= tmp) { used[j] = 1; break; } k -= tmp; } if ((islucky(st + i) == 1) && (islucky(j + st) == 1)) { ans++; } } printf("%d\n", ans); return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; bool lucky(int x) { while (x) { if (x % 10 != 4 && x % 10 != 7) break; x /= 10; } if (x == 0) return true; else return false; } int fact(int n) { int x = 1, i; for (i = 1; i <= n; i++) x *= i; return x; } int a[10000], b[100]; int main() { int n, k, p = 0, q = 2, r = 2, sum = 0, i, j; long long x = 1; scanf("%d %d", &n, &k); a[0] = 4; a[1] = 7; for (i = 0; i < 8; i++) { for (j = p; j < q; j++) { a[r++] = a[j] * 10 + 4; a[r++] = a[j] * 10 + 7; } p = q; q = r; } for (i = 1; i <= n; i++) { x *= i; if (x >= k) break; } if (i > n) { puts("-1"); return 0; } for (j = 0; j < r; j++) { if (a[j] > n - i) break; sum++; } q = 0; for (j = n - i + 1; j <= n; j++) b[q++] = j; for (j = n - i + 1; j < n; j++) { p = k / fact(n - j); if (k % fact(n - j) == 0) p--; if (lucky(j) == 1 && lucky(b[p]) == 1) sum++; for (i = p; i < q; i++) b[i] = b[i + 1]; k -= p * fact(n - j); } if (lucky(n) == 1 && lucky(b[0]) == 1) sum++; printf("%d\n", sum); return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; template <class T> inline T pow2(T a) { return a * a; } template <class T> inline bool mineq(T& a, T b) { if (a < b) { a = b; return true; } return false; } vector<long long> luck; long long fact[20]; bool islucky(long long n) { while (n) { if (n % 10 != 4 && n % 10 != 7) return false; n /= 10; } return true; } long long asf(long long n, long long k, long long pref) { bool used[20] = {}; long long ans = 0; if (fact[n] < k) return -1; for (int i = 0; i < n; i++) { for (int j = 1; j < n + 1; j++) if (!used[j]) { if (fact[n - i - 1] < k) { k -= fact[n - i - 1]; } else { used[j] = true; if (islucky(pref + i + 1) && islucky(pref + j)) ans++; break; } } } return ans; } int main() { ios_base::sync_with_stdio(0); cin.tie(0); luck.push_back(4); luck.push_back(7); int m = 0; for (int i = 0; i < 10; i++) { int n = luck.size(); for (int j = m; j < n; j++) { luck.push_back(luck[j] * 10 + 4); luck.push_back(luck[j] * 10 + 7); } m = n; } sort(luck.begin(), luck.end()); fact[0] = 1; for (int i = 1; i < 16; i++) fact[i] = i * fact[i - 1]; long long n, k; cin >> n >> k; if (n <= 15) { cout << asf(n, k, 0); } else { long long t = asf(15, k, n - 15); if (t != -1) { int k = upper_bound(luck.begin(), luck.end(), (n - 15)) - luck.begin(); cout << t + k; } else cout << t; } }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; const double pi = acos(-1.0); const double eps = 1E-7; long long lt[10000], tot, fa[15]; long long n, m; int b[20]; void work(int x, long long w, int dp) { if (x == dp) { lt[tot++] = w; return; } work(x + 1, w * 10 + 4, dp); work(x + 1, w * 10 + 7, dp); } bool lucky(long long u) { if (u == 0) return false; while (u > 0) { if (u % 10 != 4 && u % 10 != 7) return false; u /= 10; } return true; } int main() { tot = 0; for (int i = 1; i < 11; ++i) work(0, 0, i); fa[0] = 1; for (int i = 1; i < 15; ++i) fa[i] = fa[i - 1] * i; cin >> n >> m; long long ans = 0; if (n < 14 && m > fa[n]) { cout << -1 << endl; return 0; } int l; --m; for (l = 14; fa[l] > m; --l) ; for (int i = 0; lt[i] < n - l; ++i, ++ans) ; for (int k = l + 1; k > 0; --k) { int t = m / fa[k - 1]; int cur = 0; while (b[cur]) ++cur; for (int i = 0; i < t; ++i) do { ++cur; } while (b[cur]); b[cur] = 1; if (lucky(n - k + 1) && lucky(cur + n - l)) ++ans; m %= fa[k - 1]; } cout << ans << endl; return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; vector<long long> tail; vector<long long> used; long long n, k; bool isGood(long long x) { while (x > 0) { if (x % 10 != 7 && x % 10 != 4) return false; x /= 10; } return true; } vector<long long> v; int main() { long long i, j; long long x; long long to = 4444444444LL; v.push_back(to); long long bits; long long tmp; for ((bits) = (1); (bits) < (10); ++(bits)) for ((i) = (0); (i) < (1 << bits); ++(i)) { j = i; x = 0; for ((tmp) = (0); (tmp) < (bits); ++(tmp)) { if (j & 1) x = x * 10 + 7; else x = x * 10 + 4; j >>= 1; } v.push_back((long long)x); } sort(v.begin(), v.end()); cin >> n; cin >> k; x = 1; long long fact = 1; while (fact < k) { ++x; fact *= x; } if (x > n) { puts("-1"); return 0; } --k; fact /= x; --x; tail.push_back(k / fact); used.push_back(k / fact); k %= fact; long long top; while (x > 0) { fact /= x; --x; top = k / fact; for (i = 0; i < used.size(); ++i) if (used[i] <= top) { ++top; } else break; tail.push_back(top); used.push_back(top); sort(used.begin(), used.end()); k %= fact; } long long ts = tail.size(); for (i = 0; i < tail.size(); ++i) tail[i] = n + tail[i] - tail.size() + 1; long long ans = 0; for ((i) = (0); (i) < (v.size()); ++(i)) if (n - ts < v[i]) break; ans = i; long long fr = n - ts + 1; for (i = 0; i < ts; ++i) if (isGood(i + fr) && isGood(tail[i])) ++ans; cout << ans << endl; return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; const int Len = 2333333; char buf[Len], *p1 = buf, *p2 = buf, duf[Len], *q1 = duf; inline char gc(); inline int rd(); inline void pc(char c); inline void rt(int x); inline void flush(); int n, k, t, K, ans, f[15], p[15]; vector<int> V; inline int check(int x) { while (x) if (x % 10 != 4 && x % 10 != 7) return 0; else x /= 10; return 1; } inline void Dfs(int x, int d) { if (x > 9 || d > n) return; if (x) if (d < n - t) ++ans; else if (check(p[n - d])) ++ans; Dfs(x + 1, d * 10 + 4), Dfs(x + 1, d * 10 + 7); } int main() { n = rd(), K = k = rd(), f[0] = 1; for (register int i = 1; i <= 12; ++i) f[i] = f[i - 1] * i; if (n < 13 && k > f[n]) return printf("-1"), 0; while (k >= f[t] && t < 13) ++t; --t, --k; for (register int i = n - t; i <= n; ++i) V.push_back(i); for (register int i = t; i >= 0; --i) { int a = k / f[i], b = k % f[i]; k = b, p[i] = V[a], V.erase(V.begin() + a); } Dfs(0, 0), rt(ans); return flush(), 0; } inline char gc() { return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, Len, stdin), p1 == p2) ? -1 : *p1++; } inline int rd() { char c; int f = 1; while (!isdigit(c = gc()) && c != '-') ; c == '-' ? f = -1, c = gc() : 0; int x = c ^ 48; while (isdigit(c = gc())) x = ((x + (x << 2)) << 1) + (c ^ 48); return x * f; } inline void pc(char c) { q1 == duf + Len &&fwrite(q1 = duf, 1, Len, stdout), *q1++ = c; } inline void rt(int x) { x < 0 ? pc('-'), x = -x : 0, pc((x >= 10 ? rt(x / 10), x % 10 : x) + 48); } inline void flush() { fwrite(duf, 1, q1 - duf, stdout); }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.List; public class ProblemC { public static void main(String[] args) throws IOException { BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(System.out); String[] nk = in.readLine().split(" "); long n = Long.valueOf(nk[0]); long k = Long.valueOf(nk[1]); long perm = 1; int l = 0; while (perm < k) { l++; perm *= l; } if (l > n) { out.println(-1); out.flush(); return; } out.println(solveA(n - l) + solveB(n - l + 1, n, k-1)); out.flush(); } private static long solveB(long f, long t, long k) { if (f > t) { return 0; } long luckluck = 0; long d = (t - f) + 1; List<Long> remain = new ArrayList<Long>(); for (long x = f ; x <= t ; x++) { remain.add(x); } long index = f; while (index <= t) { long perm = 1; for (long p = 1 ; p < d ; p++) { perm *= p; } int canHave = (int)(k / perm); k -= canHave * perm; long selected = remain.remove(canHave); if (islucky(index) && islucky(selected)) { luckluck++; } index++; d--; } return luckluck; } static boolean islucky(long num) { return String.valueOf(num).replaceAll("4", "").replaceAll("7", "").length() == 0; } static List<Long> lucky; public static int dfs(long max, long x) { if (x > max) { return 0; } return 1 + dfs(max, x*10+4) + dfs(max, x*10+7); } private static int solveA(long l) { return dfs(l, 4) + dfs(l, 7); } public static void debug(Object... o) { System.err.println(Arrays.deepToString(o)); } }
JAVA
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; void JIZZ() { cout << ""; exit(0); } const long double PI = 3.14159265358979323846264338327950288; const long double eps = 1e-13; const long long mod = 1e9 + 7; vector<long long> luc; void init() { for (int dg = 1; dg <= 10; ++dg) { for (int i = 0; i < (1 << dg); ++i) { long long x = 0; for (int j = dg - 1; j >= 0; --j) { if (i & (1 << j)) { x = x * 10 + 7; } else x = x * 10 + 4; } luc.push_back(x); } } } long long fac[15], a[15], ori[15]; int main() { init(); ios_base::sync_with_stdio(0); cin.tie(0); fac[0] = 1; for (int i = 1; i <= 13; ++i) { fac[i] = fac[i - 1] * i; } int n, k; cin >> n >> k; if (n <= 13 && k > fac[n]) return cout << "-1" << endl, 0; if (k == 1) { auto it = upper_bound(luc.begin(), luc.end(), n); cout << it - luc.begin() << endl; exit(0); } int move = 1; while (fac[move] < k) ++move; ; ; int fix = n - move; int ans = upper_bound(luc.begin(), luc.end(), fix) - luc.begin(); ; ; vector<long long> candi; for (int i = fix + 1, ptr = 0; i <= n; ++i, ++ptr) ori[ptr] = i, candi.push_back(i); ; ; --k; for (int i = move, ptr = 0; i > 0; --i, ++ptr) { int it = k / fac[i - 1]; ; ; a[ptr] = candi[it]; candi.erase(candi.begin() + it); ; ; k %= fac[i - 1]; } for (int i = 0; i < move; ++i) if (*lower_bound(luc.begin(), luc.end(), a[i]) == a[i] && *lower_bound(luc.begin(), luc.end(), fix + i + 1) == fix + i + 1) ++ans; cout << ans << endl; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; const long long MOD = 1E9 + 7, INF = 2E18 + 5; const double PI = 2 * acos(0.0); const long double EPS = 1.0E-14; long long arrFact[15]; vector<long long> vecInit, vec; long long n, k, ans; void make_Permutation() { vec.push_back(0); long long ind, per, sz, len; len = vecInit.size(); for (int i = 0; i < len; i++) { ind = 0, per = vecInit.size() - 1, sz = vecInit.size(); while (k > arrFact[per]) { k -= arrFact[per]; ind++; ind %= sz; } vec.push_back(vecInit[ind]); vecInit.erase(vecInit.begin() + ind); } return; } bool isLucky(long long num) { long long val; while (num > 0) { val = num % 10; num /= 10; if (val != 4 and val != 7) { return 0; } } return 1; } void luckyNumber(long long lim, long long num) { if (num > lim) return; ans++; luckyNumber(lim, num * 10 + 4); luckyNumber(lim, num * 10 + 7); return; } int main() { arrFact[0] = arrFact[1] = 1; for (int i = 2; i <= 14; i++) { arrFact[i] = i * arrFact[i - 1]; } ans = 0; long long ind; cin >> n >> k; if (n >= 13) { luckyNumber(n - 13, 0); ans--; for (int i = n - 13 + 1; i <= n; i++) { vecInit.push_back(i); } make_Permutation(); ind = n - 13; for (int i = 1; i < vec.size(); i++) { if (isLucky(i + ind) and isLucky(vec[i])) { ans++; } } cout << ans; } else { if (arrFact[n] < k) cout << "-1\n"; else { for (int i = 1; i <= n; i++) { vecInit.push_back(i); } make_Permutation(); for (int i = 1; i < vec.size(); i++) { if (isLucky(i) and isLucky(vec[i])) { ans++; } } cout << ans; } } return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; inline bool isgood(int a) { while (a) if ((a % 10 != 4) && (a % 10 != 7)) return false; else a /= 10; return true; } inline int countgood(int r) { int ans = 0, b[10]; long long a = 0; for (int i = 0; i < 10; i++) b[i] = 0; for (;;) { int i = 0; while (b[i] == 7) { b[i] = 4; i++; } b[i] = (b[i] == 0) ? 4 : 7; for (i = 9, a = 0; i >= 0; i--) a = a * 10 + b[i]; if (a > r) break; ans++; } return ans; } int f[14], v[14], t[14]; int main() { f[0] = 1; for (int i = 1; i <= 13; i++) f[i] = f[i - 1] * i; int n, k; cin >> n >> k; k--; if (n <= 13) { if (f[n] <= k) { cout << -1; return 0; } for (int i = 0; i < n; i++) v[i] = i + 1; for (int i = n; i; i--) { int j = k / f[i - 1]; k %= f[i - 1]; t[n - i + 1] = v[j]; for (; j < i - 1; j++) v[j] = v[j + 1]; } int ans = 0; for (int i = 1; i <= n; i++) if (isgood(i) && isgood(t[i])) ans++; cout << ans; return 0; } for (int i = 0; i < 13; i++) v[i] = n - 12 + i; for (int i = 13; i; i--) { int j = k / f[i - 1]; k %= f[i - 1]; t[14 - i] = v[j]; for (; j < i - 1; j++) v[j] = v[j + 1]; } int ans = 0; for (int i = 1; i <= 13; i++) if (isgood(n - 13 + i) && isgood(t[i])) ans++; ans += countgood(n - 13); cout << ans; return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; set<long long> Luckys, adads; long long n, k, fact = 1, f = 1, facts[100], ans; bool mark[100]; vector<int> Permutation; bool isLucky(long long n) { while (n) { if (n % 10 != 4 && n % 10 != 7) return 0; n /= 10; } return 1; } void Lucky_Make(long long n, long long MAX) { if (n > MAX) return; Luckys.insert(n); Lucky_Make(n * 10 + 4, MAX); Lucky_Make(n * 10 + 7, MAX); } void Calc_Permutation(int n, int k) { int ans = 0; for (int i = 1; i <= n; i++) adads.insert(i); for (int i = 1; i <= n; i++) { int now = k / facts[n - i], j; k %= facts[n - i]; set<long long>::iterator it = adads.begin(); for (j = 0; j < now; j++) it++; Permutation.push_back(*it); adads.erase(it); } } int Count(int f) { int ans = 0; for (int i = 0; i < Permutation.size(); i++) if (isLucky(Permutation[i] + n - f) && isLucky(i + 1 + n - f)) ans++; return ans; } int main() { cin >> n >> k; facts[0] = 1; for (; fact < k; f++) { fact *= f; facts[f] = fact; } f--; if (f > n) { cout << -1 << endl; return 0; } Lucky_Make(4, n - f); Lucky_Make(7, n - f); ans = Luckys.size(); Calc_Permutation(f, k - 1); ans += Count(f); cout << ans << endl; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; const double EPS = 1e-6; const double PI = acos(-1.0); const int oo = 0x3f3f3f3f; long long read() { long long d, f = 1; char c; while (!isdigit(c = getchar())) if (c == '-') f = -1; d = c ^ '0'; while (isdigit(c = getchar())) d = (d * 10) + (c ^ '0'); return d * f; } vector<long long> happy, fac; void dfs(long long num) { if (num > int(1e9)) return; happy.push_back(num); dfs(num * 10 + 4); dfs(num * 10 + 7); } void init() { fac.push_back(1); int i = 1; while (fac[i - 1] * i <= int(1e9)) fac.push_back(fac[i - 1] * i), ++i; dfs(4); dfs(7); sort(happy.begin(), happy.end()); } int main() { init(); int n, k; while (cin >> n >> k) { if (n < fac.size() && k > fac[n]) puts("-1"); else { --k; int len = upper_bound(fac.begin(), fac.end(), k) - fac.begin(); vector<int> prem(len + 1); bool flag[20] = {0}; for (int i = 1; i <= len; ++i) { int rank = -1; for (int j = 1; j <= len; ++j) if (!flag[j]) { ++rank; if (rank == k / fac[len - i]) { prem[i] = j + n - len; flag[j] = 1; k %= fac[len - i]; break; } } } int cnt1 = 0; for (int i = 1; i <= len; ++i) if (binary_search(happy.begin(), happy.end(), n - len + i) && !binary_search(happy.begin(), happy.end(), prem[i])) ++cnt1; int cnt2 = upper_bound(happy.begin(), happy.end(), n) - happy.begin(); cout << cnt2 - cnt1 << endl; } } return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
import java.io.PrintStream; import java.util.Arrays; import java.util.Scanner; import javax.naming.BinaryRefAddr; public class Main { static class KPermutation { //elementos del arreglo del cual buscaremos cual es la k-esima permutacion long[] elem; int n;//cantidad de elemntos del arreglo long[] fact; public KPermutation(long[] elem) { this.elem=elem; n=elem.length; fact=new long[n+1]; fact[0]=1; for(int i=1;i<n+1;i++) fact[i]=i*fact[i-1]; } /* * Devuelve la k-esima permutacion de elem * ordenada lexicograficamente * * Nota:Las permutaciones se enumeran a partir del cero * */ public long[] GetKPermutation(long k) { long[] ans=new long[n]; //marcar posiciones ocupadas y elementos ya posicionados boolean[] mark=new boolean[n]; //locallizando la base actorial de k for(int i=n;i>=1;i--) { if(k>=fact[i-1]) { int coc=(int)(k/fact[i-1]); int count=0; for(int j=0;j<n;j++) { if(!mark[j]) { if(count==coc) { ans[n-i]=elem[j]; mark[j]=true; break; } else count++; } } //finding the coc no marked element //mark[n-i+coc]=true; k-=fact[i-1]*coc; } else //finding the minimun no marked element { for(int j=0;j<n;j++) { if(!mark[j]) { ans[n-i]=elem[j]; mark[j]=true; break; } } } } return ans; } } //testing static long[] lucky=new long[1022]; static int tot=0; public static void Dfs(long x,int th) { if(x>0){lucky[tot]=x; tot++; } if(th>0) { Dfs(10*x+4,th-1); Dfs(10*x+7,th-1); } } static boolean IsLucky(long x) { while(x>0) { long y = x%10; if (y!=4 && y!=7) return false; x /= 10; } return true; } public static void main(String[] args) { Scanner in=new Scanner(System.in); PrintStream out=System.out; //ver en que orden se hace esto int n=in.nextInt(); int k=in.nextInt(); k--;//NOsotros cotamos las permutaciones a partir del 0 y ellos del 1 Dfs(0,9);//calculando los numeros lucky Arrays.sort(lucky,0,tot); long[] elem; if(n<=14) { elem=new long[n]; for(int i=1;i<n+1;i++) elem[i-1]=i; } else { elem=new long[14]; for(int i=1;i<=14;i++) elem[14-i]=n-i+1; } KPermutation perm=new KPermutation(elem); if(n<=14 && k>= perm.fact[(int)n]) { out.println(-1); return; } long[] ans=perm.GetKPermutation(k); int start=n-elem.length;//elemento a partir del cual empiezo a contar int count=0; for(int i=0;i<ans.length;i++) { if(IsLucky(start+i+1)&&IsLucky(ans[i])) count++; } //determinando luckys numbers entre 1 y start int lucky_index=Arrays.binarySearch(lucky, start); if(lucky_index<0)lucky_index=~lucky_index; count+=lucky_index; out.println(count); } }
JAVA
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> #pragma comment(linker, "/STACK:102400000,102400000") using namespace std; const int dx4[5] = {0, -1, 0, 1, 0}; const int dy4[5] = {0, 0, 1, 0, -1}; const int dx8[9] = {0, -1, 0, 1, 0, 1, 1, -1, -1}; const int dy8[9] = {0, 0, 1, 0, -1, 1, -1, 1, -1}; const int maxn = 4e5 + 3; const double PI = acos(-1.0); const long long mod = 1e9 + 7; long long po(long long a, long long b, long long mod) { long long res = 1; a %= mod; for (; b; b >>= 1) { if (b & 1) res = res * a % mod; a = a * a % mod; } return res; } long long gcd(long long a, long long b) { if (a == 0) { return b; } else { return gcd(b % a, a); } } void YES() { puts("YES"); exit(0); } void Yes() { puts("Yes"); exit(0); } void NO() { puts("NO"); exit(0); } void No() { puts("No"); exit(0); } void one() { puts("-1"); exit(0); } long long n, k; long long fac[20]; bool isluck(long long x) { while (x) { int k = x % 10; if (!(k == 4 || k == 7)) { return false; } x /= 10; } return true; } int used[20]; vector<int> prem(long long n, long long k) { vector<int> ans; k--; for (int i = 1; i <= n; i++) { for (int j = 1; j <= n; j++) { if (used[j]) continue; if (k < fac[n - i]) { ans.push_back(j); used[j] = 1; break; } else { k -= fac[n - i]; } } } return ans; } vector<long long> g; void is_ll(long long x) { if (x <= n) { g.push_back(x); is_ll(x * 10 + 4); is_ll(x * 10 + 7); } } void solve() { fac[0] = 1; for (int i = 1; i <= 15; i++) { fac[i] = fac[i - 1] * i; } scanf("%lld", &(n)); scanf("%lld", &(k)); if (n < 13 && k > fac[n]) { puts("-1"); return; } long long N = min(n, 13LL); vector<int> val = prem(N, k); is_ll(4); is_ll(7); int ans = 0; int sur = n - N + 1; for (int i = 0; i < N; i++) { if (isluck(i + sur) && isluck(val[i] + sur - 1)) ans++; } for (int i = 0; i < g.size(); i++) { if (g[i] < sur) ans++; } cout << ans << endl; } int main() { solve(); return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
def lucky(x): s=str(x) return s.count('4')+s.count('7')==len(s) def Gen_lucky(n): if(len(n)==1): if(n<"4"): return 0 if(n<"7"): return 1 return 2 s=str(n) if(s[0]<'4'): return 0 if(s[0]=='4'): return Gen_lucky(s[1:]) if(s[0]<'7'): return 2**(len(s)-1) if(s[0]=='7'): return 2**(len(s)-1)+Gen_lucky(s[1:]) else: return 2**len(s) def Form(X,k): if(k==0): return X for i in range(len(X)): if(k>=F[len(X)-i-1]): h=k//F[len(X)-i-1] r=k%F[len(X)-i-1] G=list(X[i+1:]) G.remove(X[i+h]) G=[X[i]]+G return Form(X[:i]+[X[i+h]]+G,r) p=1 F=[1] i=1 while(p<=10**15): p*=i F.append(p) i+=1 n,k=map(int,input().split()) if(n<=14): if(k>F[n]): print(-1) else: L=Form(list(range(1,n+1)),k-1) x=0 for i in range(n): if(lucky(i+1) and lucky(L[i])): x+=1 print(x) else: L=Form(list(range(n-14,n+1)),k-1) ss=str(n-15) x=0 for i in range(1,len(ss)): x+=2**i x+=Gen_lucky(ss) for i in range(n-14,n+1): if(lucky(L[i-n+14]) and lucky(i)): x+=1 print(x)
PYTHON3
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; const long long MAX = 1000000000ll; const long double EPS = 1E-9; const int INF = (int)1E9; const long long INF64 = (long long)1E18; const long double PI = 2 * acos(.0); long long fact[15]; void factorial(int x) { fact[0] = 1; fact[1] = 1; for (int i = 2; i < (int)(x + 1); i++) fact[i] = i * fact[i - 1]; return; } vector<long long> kthPerm(int x, int k) { bool used[15]; for (int i = 0; i < (int)(x + 1); i++) used[i] = 0; long long base = 0; vector<long long> resp; for (int i = 0; i < (int)(x); i++) { long long rad = fact[x - i - 1]; for (int j = 1; j < (int)(x + 1); j++) { if (used[j]) continue; if (base + rad >= k) { resp.push_back(j); used[j] = 1; break; } else { base += rad; } } } return resp; } vector<long long> luck; void genLucky(long long i) { if (i >= 1000000000ll) return; long long k = i * 10ll + 7ll; long long l = i * 10ll + 4ll; luck.push_back(k); luck.push_back(l); genLucky(k); genLucky(l); } bool isL(int x) { while (x > 0) { int y = x % 10; if (!(y == 4 || y == 7)) return 0; x /= 10; } return 1; } int main() { int n, k; cin >> n >> k; factorial(13); int cont = 0; if (n < 13) { if (k > fact[n]) cout << "-1" << endl; else { vector<long long> pp = kthPerm(n, k); for (int i = 0; i < (int)((pp).size()); i++) { if (isL(pp[i]) && isL(i + 1)) cont++; } cout << cont << endl; } } else { vector<long long> pp = kthPerm(13, k); genLucky(0ll); int left = n - 13; for (int i = 0; i < (int)((luck).size()); i++) { if (luck[i] <= (left)) { cont++; } } for (int i = 0; i < (int)((pp).size()); i++) { pp[i] += left; } for (int i = 0; i < (int)(13); i++) { if (isL(pp[i]) && isL(left + i + 1)) cont++; } cout << cont << endl; } return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; int n, k; int s[20], d[20], t[20], r[20]; int a[2000]; void dfs(long long x) { if (x > 1000000000) return; a[++a[0]] = x; dfs(x * 10 + 4); dfs(x * 10 + 7); } int main() { cin >> n; cin >> k; k--; a[0] = 0; dfs(4); dfs(7); a[0] = 2000000000; int x = 1; s[1] = 1; for (int i = 1; i < 12; i++) { x++; s[i + 1] = (s[i] * x); } if (n <= 12 && s[n] <= k) { cout << -1 << endl; return 0; } for (int i = min(12, n - 1); i >= 1; i--) { d[min(12, n - 1) - i] = k / s[i]; k = (k % s[i]); if (i == 1) d[min(12, n - 1)] = k; } for (int i = 0; i < min(13, n); i++) t[i] = i; for (int i = 0; i < min(13, n); i++) { r[i] = t[d[i]] + (n - min(n, 13) + 1); swap(t[d[i]], t[min(12, n - 1) - i]); sort(t, t + (min(12, n - 1) - i)); } sort(a, a + 1023); a[1021] = 777777777; a[1021] = 777777774; a[1022] = 777777777; int ans = upper_bound(a, a + 1022, n - 13) - a; for (int i = 0; i < min(n, 13); i++) { if (binary_search(a, a + 1023, i + (n - min(12, n - 1)))) { if (binary_search(a, a + 1023, r[i])) ans++; } } cout << ans << endl; return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; int n, k, f[13], p[13]; vector<int> lk; map<int, bool> bea; void gen(int x) { if (x) lk.push_back(x), bea[x] = true; if (x > int(1e8)) return; gen(x * 10 + 4); gen(x * 10 + 7); } int main() { scanf("%d%d", &n, &k); f[0] = 1; for (int i = 1; i <= 12; ++i) f[i] = f[i - 1] * i; if (n <= 12 && k > f[n]) { printf("-1"); return 0; } gen(0); lk.push_back(int(1e9) + 1); sort(lk.begin(), lk.end()); int d; for (int i = 1; i <= n; ++i) if (f[i] >= k) { d = i; break; } int ans = 0; for (int i = 0; i < lk.size(); ++i) if (lk[i] > n - d) { ans = i; break; } for (int i = 1; i <= d; ++i) { for (int j = 1; j <= d; ++j) if (!p[j]) { if (k > f[d - i]) k -= f[d - i]; else { p[j] = 1; if (bea[n - d + i] && bea[n - d + j]) ++ans; break; } } } printf("%d", ans); return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; const double eps = 1e-6; const int N = 2000010; const int INF = 0x3f3f3f3f; const int mod = 1000000007; const int dir[8][2] = {0, 1, 0, -1, 1, 0, -1, 0, -1, -1, -1, 1, 1, -1, 1, 1}; long long gcd(long long a, long long b) { return b == 0 ? a : gcd(b, a % b); } long long powmod(long long a, long long b) { long long res = 1; a %= mod; assert(b >= 0); for (; b; b >>= 1) { if (b & 1) res = res * a % mod; a = a * a % mod; } return res; } template <class T> bool ckmin(T& a, const T& b) { return b < a ? a = b, 1 : 0; } template <class T> bool ckmax(T& a, const T& b) { return a < b ? a = b, 1 : 0; } template <class T> void read(T& x) { char c; bool op = 0; while (c = getchar(), c < '0' || c > '9') if (c == '-') op = 1; x = c - '0'; while (c = getchar(), c >= '0' && c <= '9') x = x * 10 + c - '0'; if (op) x = -x; } template <class T> void write(T x) { if (x < 0) { putchar('-'); x = -x; } if (x > 9) write(x / 10); putchar(x % 10 + 48); } long long n, k; long long ans; long long fac[N] = {1}; long long res[N]; long long tot = 0; long long find(long long x) { sort(res + 1, res + 1 + tot); long long ret = res[x]; for (int i = x + 1; i <= tot; i++) { res[i - 1] = res[i]; } --tot; return ret; } void dfs(long long x, long long lim) { if (x > lim) return; if (x != 0) ++ans; dfs(x * 10 + 4, lim); dfs(x * 10 + 7, lim); } bool ck(long long x) { while (x) { if (x % 10 != 4 && x % 10 != 7) return false; x /= 10; } return true; } void solve() { read(n), read(k); long long p = -1; for (int i = 1; i <= n; i++) { fac[i] = fac[i - 1] * i; res[++tot] = n - i + 1; if (fac[i] >= k) { p = i; break; } } k--; if (p == -1) { puts("-1"); return; } dfs(0, n - p); for (long long i = p, val, pos; i >= 1; i--) { val = find(k / fac[i - 1] + 1); pos = n - i + 1; if (ck(val) && ck(pos)) { ++ans; } k = k % fac[i - 1]; } write(ans); putchar('\n'); } int main() { solve(); return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.List; /** * Created by IntelliJ IDEA. * User: piyushd * Date: 3/26/11 * Time: 10:53 PM * To change this template use File | Settings | File Templates. */ public class TaskC { long[] fact; void precal() { this.fact = new long[15]; fact[0] = 1; for(int i = 1; i < 15; i++) fact[i] = i * fact[i - 1]; } boolean isLucky(int x) { while(x > 0) { int n = x % 10; if(n != 4 && n != 7) return false; x /= 10; } return true; } final long LIM = 123456789123L; ArrayList<Long> lucky; void generate(long x) { if(x < LIM) lucky.add(x); else return; generate(x * 10 + 4); generate(x * 10 + 7); } int totalLucky(int x) { if(x < 4) return 0; this.lucky = new ArrayList<Long>(); generate(4); generate(7); Collections.sort(lucky); int low = 0, high = lucky.size(); while (high - low > 1) { int mid = low + (high - low) / 2; if(lucky.get(mid) <= x) low = mid; else high = mid; } return low + 1; } void run() { int n = nextInt(), k = nextInt(); precal(); if(n < 15) { if(k > fact[n]) { System.out.println(-1); return; } } int[] a = new int[15]; Arrays.fill(a, -1); boolean[] used = new boolean[15]; int ix = 0, total = 0; while (ix < 15) { int cnt = 0, cur = -1; for(int i = 0; i < 15; i++) if(!used[i]) { if(fact[15 - ix - 1] + total < k) { total += fact[15 - ix - 1]; continue; } else { cur = i; break; } } a[ix] = cur; ix++; used[cur] = true; } int ans = 0, correct = 0; for(int i = 0; i < 15; i++) { if(a[i] == i) correct++; else break; } for(int i = correct; i < 15; i++) { int num = a[i] - correct + 1 + n - (15 - correct); int index = i - correct + 1 + n - (15 - correct); if(isLucky(num) && isLucky(index)) ans++; } ans += totalLucky(n - 15 + correct); System.out.println(ans); } int nextInt() { try { int c = System.in.read(); if (c == -1) return c; while (c != '-' && (c < '0' || '9' < c)) { c = System.in.read(); if (c == -1) return c; } if (c == '-') return -nextInt(); int res = 0; do { res *= 10; res += c - '0'; c = System.in.read(); } while ('0' <= c && c <= '9'); return res; } catch (Exception e) { return -1; } } long nextLong() { try { int c = System.in.read(); if (c == -1) return -1; while (c != '-' && (c < '0' || '9' < c)) { c = System.in.read(); if (c == -1) return -1; } if (c == '-') return -nextLong(); long res = 0; do { res *= 10; res += c - '0'; c = System.in.read(); } while ('0' <= c && c <= '9'); return res; } catch (Exception e) { return -1; } } double nextDouble() { return Double.parseDouble(next()); } String next() { try { StringBuilder res = new StringBuilder(""); int c = System.in.read(); while (Character.isWhitespace(c)) c = System.in.read(); do { res.append((char) c); } while (!Character.isWhitespace(c = System.in.read())); return res.toString(); } catch (Exception e) { return null; } } String nextLine() { try { StringBuilder res = new StringBuilder(""); int c = System.in.read(); while (c == '\r' || c == '\n') c = System.in.read(); do { res.append((char) c); c = System.in.read(); } while (c != '\r' && c != '\n'); return res.toString(); } catch (Exception e) { return null; } } public static void main(String[] args) { new TaskC().run(); } }
JAVA
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.List; import java.util.StringTokenizer; /** * Author - * User: kansal * Date: 10/27/11 * Time: 8:49 PM */ public class CF91E { public static void main(String[] args) { reader = new BufferedReader(new InputStreamReader(System.in)); List<Integer> luckyNums = genAll(); long[] f = new long[14]; f[0] = 1; for(int i = 1; i < 14; ++i) { f[i] = i * f[i-1]; } int n = nextInt(), k = nextInt(); if (n <= 13 && k > f[n]) { System.out.println(-1); return; } int x = 1; for(; f[x] < k; ++x); int res = 0; for(int lucky: luckyNums) { if (lucky < n-x+1) ++res; } int[] p = getKthPerm(k-1, n-x+1, n, x, f); for(int i = 0; i < x; ++i) { if (isLucky(p[i]) && isLucky(n-x+1+i)) { ++res; } } System.out.println(res); } private static int[] getKthPerm(int k, int a, int b, int n, long[] fac) { int[] res = new int[n]; for(int i = a; i <= b; ++i) { res[i-a] = i; } for(int i = 0; i < n; ++i) { int x = (int)(k / fac[n-i-1]); int y = res[x+i]; for(int j = x + i - 1; j >= i; --j) { res[j+1] = res[j]; } res[i] = y; k = (int)(k % fac[n-i-1]); } return res; } private static boolean isLucky(int x) { if (x == 0) return false; while (x > 0) { if (x % 10 != 4 && x % 10 != 7) return false; x /= 10; } return true; } private static List<Integer> genAll() { List<Integer> ret = new ArrayList<Integer>(); for(int i = 1; i < 10; ++i) { for(int set = 0; set < (1 << i); ++set) { int x = 0; for(int j = 0; j < i; ++j) { if (((set >> j) & 1) == 1) { x = x * 10 + 7; } else { x = x * 10 + 4; } } ret.add(x); } } return ret; } public static BufferedReader reader; public static StringTokenizer tokenizer = null; static String nextToken() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } static public int nextInt() { return Integer.parseInt(nextToken()); } static public long nextLong() { return Long.parseLong(nextToken()); } static public String next() { return nextToken(); } static public String nextLine() { try { return reader.readLine(); } catch (IOException e) { e.printStackTrace(); } return null; } }
JAVA
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; int c(long long a, long long b) { if (a > b) return 0; return 1 + c(a * 10 + 4, b) + c(a * 10 + 7, b); } int is(long long a) { return a == 0 || (a % 10 == 4 || a % 10 == 7) && is(a / 10); } long long f[20]; bool u[20]; int main() { int n, k; cin >> n >> k; k--; f[0] = 1; for (int i = 1; i <= 13; i++) f[i] = f[i - 1] * i; if (n <= 13 && f[n] <= k) { cout << -1; return 0; } int ans = c(0, n) - 1; for (int i = 13; i >= 0; i--) { int shift = k / f[i], c = -1; while (shift >= 0) { shift -= !u[++c]; } u[c] = 1; int t = c - 13 + n; if (t > 0) { if (is(n - i)) ans += is(t) - 1; } k %= f[i]; } cout << ans; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; long long a[10005]; int f[20], nums[20], c[20]; int num; int g(int x) { int ret = 0; for (int i = 1; i <= num; i++) if (a[i] <= x) ret++; return ret; } bool lucky(int x) { while (x) { int c = x % 10; if (c != 4 && c != 7) return false; x /= 10; } return true; } int main() { int n, k; scanf("%d%d", &n, &k); f[0] = 1; for (int i = 1; i <= 12; i++) f[i] = i * f[i - 1]; f[13] = 2123456789; if (n <= 12) if (f[n] < k) { printf("-1\n"); return 0; } k--; for (int i = 1; i <= 13; i++) nums[i] = n - 13 + i; for (int i = 13; i >= 1; i--) { int tmp = k / f[i - 1] + 1; c[13 - i + 1] = nums[tmp]; for (int j = tmp; j <= 13; j++) nums[j] = nums[j + 1]; k %= f[i - 1]; } num = 0; for (int br = 1; br <= 10; br++) for (int i = 1; i <= (1 << br); i++) { int tmp = i; num++; for (int j = 1; j <= br; j++) { if (tmp % 2) a[num] = a[num] * 10LL + 4LL; else a[num] = a[num] * 10LL + 7LL; tmp /= 2; } } sort(a + 1, a + num + 1); int sol = 0; for (int i = max(n - 12, 1); i <= n; i++) { if (lucky(c[13 - (n - i)]) && lucky(i)) sol++; } printf("%d\n", g(n - 13) + sol); return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> #pragma comment(linker, "/STACK:1024000000,1024000000") template <class T> bool scanff(T &ret) { char c; int sgn; T bit = 0.1; if (c = getchar(), c == EOF) return 0; while (c != '-' && c != '.' && (c < '0' || c > '9')) c = getchar(); sgn = (c == '-') ? -1 : 1; ret = (c == '-') ? 0 : (c - '0'); while (c = getchar(), c >= '0' && c <= '9') ret = ret * 10 + (c - '0'); if (c == ' ' || c == '\n') { ret *= sgn; return 1; } while (c = getchar(), c >= '0' && c <= '9') ret += (c - '0') * bit, bit /= 10; ret *= sgn; return 1; } using namespace std; long long f[22]; int n; long long k; int a[22]; set<int> st; set<int>::iterator it; void geta(int n, long long k) { k--; int idx = n - 1; for (int i = int(1); i <= int(n); i++) st.insert(i); for (int i = int(1); i <= int(n); i++) { int cot = 1; if (idx >= 0) while (k >= f[idx]) cot++, k -= f[idx]; it = st.begin(); for (int j = int(1); j <= int(cot - 1); j++) it++; a[i] = *it; st.erase(*it); idx--; } } long long b[4444], bn; int main() { f[0] = 1; for (int i = int(1); i <= int(13); i++) f[i] = f[i - 1] * i; scanff(n); scanff(k); for (int j = int(1); j <= int(10); j++) for (int i = int(0); i <= int(1 << j); i++) { int x = i; long long t = 0; for (int k = int(1); k <= int(j); k++) { t = t * 10; if (x & 1) t += 4; else t += 7; x = x / 2; } b[++bn] = t; } sort(b + 1, b + 1 + bn); bn = unique(b + 1, b + 1 + bn) - b - 1; if (n <= 13) { if (f[n] < k) { printf("-1\n"); return 0; } geta(n, k); int ans = 0; if (a[4] == 4 || a[4] == 7) ans++; if (a[7] == 7 || a[7] == 4) ans++; printf("%d\n", ans); } else { n = n - 13; int idx = lower_bound(b + 1, b + 1 + bn, n) - b; int ans = idx - 1; if (b[idx] <= n) ans++; geta(13, k); for (int i = int(1); i <= int(13); i++) { int idx = i + n; int val = a[i] + n; if (b[lower_bound(b + 1, b + 1 + bn, idx) - b] == idx && b[lower_bound(b + 1, b + 1 + bn, val) - b] == val) ans++; } printf("%d\n", ans); } return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; long long p[20]; int n, k, ans; void pcheck(int num) { char s[20]; int i; sprintf(s, "%d", num); for (i = 0; s[i]; i++) if (s[i] != '4' && s[i] != '7') return; ans++; } void check(long long num) { if (num > n) return; if (n - num > 15) pcheck(num); else { int kk, pp[20], sk = k - 1, i, j; kk = min(n, 17); for (i = 1; i <= kk; i++) pp[i] = n - kk + i; for (i = 1; i <= kk; i++) if (sk >= p[kk - i]) { int d = sk / p[kk - i]; int save = pp[i + d]; for (j = i + d; j > i; j--) pp[j] = pp[j - 1]; pp[j] = save; sk -= d * p[kk - i]; } pcheck(pp[kk - (n - num)]); } } void solve(long long num, int d) { if (d > 9) return; if (num) check(num); solve(num * 10 + 4, d + 1); solve(num * 10 + 7, d + 1); } int main() { int i; cin >> n >> k; p[1] = p[0] = 1; for (i = 2; i < 18; i++) p[i] = i * p[i - 1]; if (n < 18 && p[n] < k) cout << "-1"; else { ans = 0; solve(0, 0); cout << ans; } return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; const long long N = 14; long long n, k, ans, fac[N]; long long get(string &s) { long long res = 0; for (char c : s) res = 10 * res + (long long)(c - '0'); return res; } string get_s(long long x) { string res; while (x) { res += (char)((x % 10) + '0'); x /= 10; } reverse(res.begin(), res.end()); return res; } string nxt(string s) { long long indx = 0; while (indx < s.size() && (s[indx] == '4' || s[indx] == '7')) indx++; if (indx == (long long)s.size()) return s; if (s[indx] < '4') { for (long long i = indx; i < s.size(); i++) s[i] = '4'; return s; } if (s[indx] < '7') { s[indx] = '7'; for (long long i = indx + 1; i < s.size(); i++) s[i] = '4'; return s; } for (long long i = indx - 1; ~i; i--) { if (s[i] == '4') { s[i] = '7'; for (long long j = i + 1; j < s.size(); j++) s[j] = '4'; return s; } } string res; for (long long i = 0; i <= (long long)s.size(); i++) res += '4'; return res; } bool luk(long long x) { while (x) { if (x % 10 != 4 && x % 10 != 7) return 0; x /= 10; } return 1; } int32_t main() { ios::sync_with_stdio(0); cin.tie(0); fac[0] = 1; for (long long i = 1; i < N; i++) fac[i] = fac[i - 1] * i; cin >> n >> k; if (n < N && fac[n] < k) return cout << -1, 0; string now = "1"; while (get(now) <= n) { now = nxt(now); long long x = get(now); if (n - x > 12) ans++; now = get_s(get(now) + 1); } vector<long long> v; for (long long i = max(1LL, n - 12); i <= n; i++) v.push_back(i); long long rem = max(1LL, n - 12); while (v.size() && k) { for (long long j = 0; j <= v.size(); j++) if (k > j * fac[(long long)v.size() - 1] && k <= (j + 1) * fac[(long long)v.size() - 1]) { k -= j * fac[(long long)v.size() - 1]; swap(v[0], v[j]); sort(v.begin() + 1, v.end()); if (luk(rem) && luk(v[0])) ans++; v.erase(v.begin(), v.begin() + 1); rem++; break; } } for (long long i = 0; i < v.size(); i++) if (luk(rem + i) && luk(v[i])) ans++; cout << ans; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; long long fact[20], n, k, anss; vector<int> vec, vec2; long long num(int a) { int j = 0; for (int i = 31; i >= 0; i--) if ((a >> i) & 1) { j = i; break; } long long ans = 0; for (int i = j - 1; i >= 0; i--) { ans *= 10; if ((a >> i) & 1) ans += 7; else ans += 4; } return ans; } bool lucky(int a) { while (a > 0) { if (a % 10 != 4 && a % 10 != 7) return false; a /= 10; } return true; } int main() { fact[0] = 1; for (long long i = 1; i < 14; i++) fact[i] = fact[i - 1] * i; cin >> n >> k; if (n < 14 && k > fact[n]) { cout << -1 << endl; return 0; } k--; int j = 1; while (fact[j] <= k) j++; j = n - j + 1; for (int i = j; i <= n; i++) vec.push_back(i); int Max = n + 1; for (int i = j; i <= n; i++) if (lucky(i)) { Max = i; break; } for (int i = j; i <= n; i++) { int num = k / fact[n - i]; if (lucky(vec[num]) && lucky(i)) anss++; k -= num * fact[n - i]; vec2.clear(); for (int i = 0; i < num; i++) vec2.push_back(vec[i]); for (int i = num + 1; i < (int)vec.size(); i++) vec2.push_back(vec[i]); vec.clear(); for (int i = 0; i < (int)vec2.size(); i++) vec.push_back(vec2[i]); } int a = 2; while (num(a) < Max) { anss++; a++; } cout << anss << endl; return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; int n, k; int s[20], d[20], t[20], r[20]; int a[2000]; void dfs(long long x) { if (x > 1000000000) return; a[a[2000]++] = x; dfs(x * 10 + 4); dfs(x * 10 + 7); } int main() { cin >> n; cin >> k; k--; a[2000] = 0; dfs(4); dfs(7); int x = 1; s[1] = 1; for (int i = 1; i < 12; i++) { x++; s[i + 1] = (s[i] * x); } if (n <= 12 && s[n] <= k) { cout << -1 << endl; return 0; } for (int i = min(12, n - 1); i >= 1; i--) { d[min(12, n - 1) - i] = k / s[i]; k = (k % s[i]); if (i == 1) d[min(12, n - 1)] = k; } for (int i = 0; i < min(13, n); i++) t[i] = i; for (int i = 0; i < min(13, n); i++) { r[i] = t[d[i]] + (n - min(n, 13) + 1); swap(t[d[i]], t[min(12, n - 1) - i]); sort(t, t + (min(12, n - 1) - i)); } sort(a, a + 1022); int ans = upper_bound(a, a + 1022, n - 13) - a; for (int i = 0; i < min(n, 13); i++) { if (binary_search(a, a + 1023, i + (n - min(12, n - 1)))) { if (binary_search(a, a + 1023, r[i])) ans++; } } cout << ans << endl; return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.List; import java.util.StringTokenizer; import java.io.IOException; import java.io.BufferedReader; import java.util.Collections; import java.io.InputStreamReader; import java.util.ArrayList; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author AlexFetisov */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskC_cf91 solver = new TaskC_cf91(); solver.solve(1, in, out); out.close(); } static class TaskC_cf91 { public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); int k = in.nextInt(); int res = 0; List<Integer> perm = new ArrayList<Integer>(); int begin = 1, end = n; if (n > 13) { for (int i = n, j = 0; j < 13; --i, ++j) { perm.add(i); } Collections.sort(perm); res += getLuckyUpTo(n - 13); begin = n - 12; end = n; } else { for (int i = 1; i <= n; ++i) { perm.add(i); } } if (k > f(perm.size())) { out.println("-1"); return; } perm = getK(k, perm); for (int i = begin; i <= end; ++i) { if (isLucky(perm.get(i - begin)) && isLucky(i)) { ++res; } } out.println(res); } private List<Integer> getK(int k, List<Integer> ip) { List<Integer> p = new ArrayList<Integer>(); int n = ip.size(); boolean[] have = new boolean[n]; for (int i = 0; i < n; ++i) { for (int d = 0; d < n; ++d) { if (!have[d]) { long rest = f(n - i - 1); if (rest >= k) { p.add(d); have[d] = true; break; } else { k -= rest; } } } } int[] shuffled = new int[n]; for (int i = 0; i < n; ++i) { shuffled[i] = ip.get(p.get(i)); } for (int i = 0; i < n; ++i) { p.set(i, shuffled[i]); } return p; } private int getLuckyUpTo(int upTo) { int res = 0; for (int len = 1; len <= 10; ++len) { for (int mask = 0; mask < (1 << len); ++mask) { long number = 0; for (int i = 0; i < len; ++i) { if (BitUtils.checkBit(mask, i)) { number = number * 10L + 7; } else { number = number * 10L + 4; } } if (number <= upTo) { ++res; } } } return res; } boolean isLucky(int x) { if (x == 0) return false; while (x != 0) { int c = x % 10; x /= 10; if (c != 4 && c != 7) return false; } return true; } long f(int upTo) { long res = 1L; for (long i = 2; i <= upTo; ++i) { res *= i; } return res; } } static class BitUtils { public static boolean checkBit(int mask, int bit) { return (mask & (1 << bit)) > 0; } } static class InputReader { private BufferedReader reader; private StringTokenizer stt; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream)); } public String nextLine() { try { return reader.readLine(); } catch (IOException e) { return null; } } public String nextString() { while (stt == null || !stt.hasMoreTokens()) { stt = new StringTokenizer(nextLine()); } return stt.nextToken(); } public int nextInt() { return Integer.parseInt(nextString()); } } }
JAVA
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; const int N = 210; const int M = 200000; const int K = 510; const long long LIT = 1000000000LL; const int INF = 1 << 30; long long n, k; vector<long long> num; void dfs(long long u) { if (u) num.push_back(u); if (u > LIT) return; dfs(u * 10 + 4); dfs(u * 10 + 7); } void init() { dfs(0); sort(num.begin(), num.end()); } bool init2() { long long tmp = 1; for (long long i = 1; i <= n; i++) { tmp *= i; if (tmp >= k) return 1; } cout << -1 << endl; return 0; } bool valid(int x) { for (int i = 0; i < num.size(); i++) if (num[i] == x) return 1; return 0; } vector<long long> cal(vector<long long> v, long long m) { int len = v.size(); vector<long long> ret = vector<long long>(len); for (int i = len - 1; i >= 0; i--) { ret[i] = m % (len - i); m /= len - i; } for (int i = len - 1; i >= 0; i--) { for (int j = i - 1; j >= 0; j--) { if (ret[j] > ret[i]) continue; ret[i]++; } } for (int i = 0; i < len; i++) ret[i] = v[ret[i]]; return ret; } void solve() { vector<long long> v; long long bnd = max(n - 15, 1LL); for (long long i = bnd; i <= n; i++) v.push_back(i); v = cal(v, --k); int ret = 0; for (int i = 0; i < num.size(); i++) { if (num[i] > bnd) break; ret++; } for (int i = 0; i < v.size(); i++) { long long p = bnd + i; long long m = v[i]; if (valid(p) && valid(m)) ret++; } cout << ret << endl; } int main() { init(); while (cin >> n >> k) { if (!init2()) continue; solve(); } }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; const int mod = 1e9 + 7; const long long inf = 5e18; vector<string> num_string({"4", "7"}); map<long long, int> mp; vector<long long> fact; bool check(long long mid, long long n, long long k) { if (n - mid >= fact.size()) { return false; } else { return fact[n - mid] <= k; } } int main() { fact.push_back(1); while (fact.back() < 6e12) { fact.push_back(fact.back() * (fact.size())); } long long fs = fact.size(); long long n, k; cin >> n >> k; if (n < fact.size() and fact[n] < k) { cout << -1 << endl; return 0; } k--; while (num_string.back().size() < 10) { vector<string> next_num = num_string; for (string s : num_string) { if (s.size() == num_string.back().size()) { s.push_back('4'); next_num.push_back(s); s.back() = '7'; next_num.push_back(s); } } num_string = next_num; } for (string s : num_string) { mp[(stoll(s))] = 1; } long long ans = 0; for (auto& x : mp) { if (x.first <= n) { ans++; } } int i = max(1ll, n - fs + 1); vector<long long> remainingElements; for (int j = i; j <= n; j++) { remainingElements.push_back(j); } while (i <= n) { long long rem = n - i; if (fact[rem] <= k) { long long div = k / fact[rem]; k -= div * fact[rem]; if (mp[i] and !mp[remainingElements[div]]) { ans--; } remainingElements.erase(remainingElements.begin() + div); } else { if (mp[i] and !mp[remainingElements[0]]) { ans--; } remainingElements.erase(remainingElements.begin()); } i++; } cout << ans << endl; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; long long int fact(long long int n) { if (n == 0) return 1; return n * fact(n - 1); } vector<int> permutacion(int n, int k) { if (n == 1) return vector<int>(1, 1); for (int val = 1; val <= n; val++) { if (val * fact(n - 1) >= k) { vector<int> v = permutacion(n - 1, k - (val - 1) * fact(n - 1)); for (int i = 0; i < int(v.size()); i++) if (v[i] >= val) v[i]++; vector<int> nextv(1, val); for (int i = 0; i < int(v.size()); i++) nextv.push_back(v[i]); return nextv; } } return vector<int>(1, 1); } void escriu(vector<int> v) { for (int i = 0; i < int(v.size()); i++) cout << v[i] << ","; cout << endl; } int main() { vector<long long int> number; for (int numdig = 1; numdig <= 10; numdig++) { for (long long int c = 0; c < (1LL << numdig); c++) { long long int num = 0; long long int val = c; for (int i = 0; i < numdig; i++) { int dig = 4; if (val % 2 == 1) dig = 7; val /= 2; num = 10 * num + dig; } number.push_back(num); } } sort(number.begin(), number.end()); set<long long int> s; for (int i = 0; i < int(number.size()); i++) s.insert(number[i]); long long int n, k; cin >> n >> k; vector<int> p = permutacion(15, k); if (n < 15 and fact(n) < k) { cout << -1 << endl; } else { long long int sol = 0; for (int i = 0; i < int(number.size()); i++) { long long int index = number[i]; if (index < n - 15 + 1) { sol++; } else if (index <= n) { long long int desp = n - 15; if (s.find(p[index - (n - 15 + 1)] + desp) != s.end()) { sol++; } } } cout << sol << endl; } }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; const int maxn = 10000 + 1000; const int inf = 1e9; int per[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}; bool is_lucky(int x) { while (x) { if (x % 10 != 4 && x % 10 != 7) return 0; x /= 10; } return 1; } long long makelucky(long long x, int l) { long long lucky = 0; while (l--) { if (x & 1) lucky = lucky * 10 + 7; else lucky = lucky * 10 + 4; x /= 2; } return lucky; } long long solve(int n) { set<long long> st; for (long long l = 1; l <= 10; l++) for (long long i = 0; i < ((long long)1 << l); i++) st.insert(makelucky(i, l)); long long res = 0; while (!st.empty()) { long long lucky = *st.begin(); st.erase(*st.begin()); res += (lucky <= n - 13); } return res; } long long fact(long long x) { long long res = 1; for (int i = 1; i <= x; i++) res *= i; return res; } void kthper(int k, int l, int r) { if (r - l == 0) return; long long f = fact(r - l), t = 0; while ((t + 1) * f <= k) t++; if (t) { int b = per[l]; per[l] = per[l + t]; for (int i = l + t; i >= l + 2; i--) per[i] = per[i - 1]; per[l + 1] = b; } kthper(k - t * f, l + 1, r); } int main() { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); long long n, k; cin >> n >> k; if (n <= 14) { long long res = 1; for (int i = 1; i <= n; i++) res *= i; if (k > res) return cout << -1 << endl, 0; } int r = min(n, (long long)13); long long ans = solve(n); kthper(k - 1, 1, r); for (int i = 1; i <= r; i++) ans += (is_lucky(n - r + i) && is_lucky(per[i] + n - r)); cout << ans << endl; return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; const int c = 15; int n, k; int r; long long f[c]; vector<int> v; int ans; void go(long long i) { if (i > (long long)n) return; if (i) { if (i <= n - r) ans++; else v.push_back(i); } go(i * 10 + 4); go(i * 10 + 7); } bool b[c]; bool q[c]; int main() { int i; f[0] = 1; for (i = 1; i < c; ++i) f[i] = f[i - 1] * i; scanf("%d%d", &n, &k); if (n < c && f[n] < k) { printf("-1\n"); return 0; } i = 1; while (f[i] < k) ++i; r = i; go(0); sort(v.begin(), v.end()); for (i = 0; i < v.size(); ++i) b[v[i] - (n - r)] = 1; k--; i = 1; int j; while (i <= r) { int d = (k / f[r - i]) + 1; k %= f[r - i]; j = 1; while (d) { if (!q[j]) --d; if (d) ++j; } q[j] = 1; if (b[i] && b[j]) ++ans; ++i; } printf("%d\n", ans); return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; bool islucky(long long n) { while (n) { if (n % 10 == 4 || n % 10 == 7) { } else return 0; n = n / 10; } return 1; } long long fact(long long k) { long long n = 1; while (k > 1) { n = n * k; k--; } return n; } vector<long long> factoradic_number(long long k) { vector<long long> fac; for (int i = 0; i <= 13; i++) { fac.push_back((fact(i))); } long long kk = k, coef = 0; ; vector<long long> factoradic; int rp = 1; while (kk >= fac[rp]) rp++; while (kk) { rp--; coef = kk / fac[rp]; factoradic.push_back((coef)); kk = kk - fac[rp] * coef; if (kk == 0) { while (rp != 1) { factoradic.push_back((0)); rp--; } } } return factoradic; } vector<long long> kthpermutation(vector<long long> v, long long k) { vector<long long> factoradic; vector<long long> permutation; factoradic = factoradic_number(k); while (factoradic.size() < v.size() - 1) factoradic.insert(factoradic.begin(), 0); int sz = v.size(); while (permutation.size() != sz - 1) { permutation.push_back((v[factoradic[0]])); v.erase(v.begin() + factoradic[0], v.begin() + factoradic[0] + 1); factoradic.erase(factoradic.begin(), factoradic.begin() + 1); } permutation.push_back((v[0])); return permutation; } int main() { long long n, k; cin >> n >> k; vector<long long> fac; for (int i = 0; i <= 13; i++) { fac.push_back((fact(i))); } if (n <= 13) { if (fac[n] < k) { cout << "-1"; return 0; } } k--; vector<long long> num; int sz = 2; long long r, l; num.push_back((4)); num.push_back((7)); int noe = 0; while (num[num.size() - 1] != 777777777) { sz = num.size(); for (int i = (sz - 1) / 2; i < sz; i++) { long long p = num[i]; long long q = p * 10 + 4; num.push_back((q)); q = p * 10 + 7; num.push_back((q)); } sz = num.size(); } bool flag = 0; long long nn = n; if (n > 13) { flag = 1; n = n - 13; } int i = 0; vector<long long> pq; long long lll = 1; if (flag) { while (n >= num[i] && flag && i < num.size()) { noe++; i++; } lll = n + 1; while (n++ < nn) { pq.push_back((n)); } n = nn; } else { nn = 1; lll = 1; while (n >= nn) { pq.push_back((nn)); nn++; } } vector<long long> pq1 = kthpermutation(pq, k); int ii = 0; for (; lll <= n; lll++) { if (islucky(lll) && islucky(pq1[ii])) noe++; ii++; } cout << noe; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> #pragma comment(linker, "/STACK:640000000") using namespace std; bool lucky(int x) { for (; x; x /= 10) if (x % 10 != 4 && x % 10 != 7) return false; return true; } unsigned long long luck[] = { 4, 7, 44, 47, 74, 77, 444, 447, 474, 477, 744, 747, 774, 777, 4444, 4447, 4474, 4477, 4744, 4747, 4774, 4777, 7444, 7447, 7474, 7477, 7744, 7747, 7774, 7777, 44444, 44447, 44474, 44477, 44744, 44747, 44774, 44777, 47444, 47447, 47474, 47477, 47744, 47747, 47774, 47777, 74444, 74447, 74474, 74477, 74744, 74747, 74774, 74777, 77444, 77447, 77474, 77477, 77744, 77747, 77774, 77777, 444444, 444447, 444474, 444477, 444744, 444747, 444774, 444777, 447444, 447447, 447474, 447477, 447744, 447747, 447774, 447777, 474444, 474447, 474474, 474477, 474744, 474747, 474774, 474777, 477444, 477447, 477474, 477477, 477744, 477747, 477774, 477777, 744444, 744447, 744474, 744477, 744744, 744747, 744774, 744777, 747444, 747447, 747474, 747477, 747744, 747747, 747774, 747777, 774444, 774447, 774474, 774477, 774744, 774747, 774774, 774777, 777444, 777447, 777474, 777477, 777744, 777747, 777774, 777777, 4444444, 4444447, 4444474, 4444477, 4444744, 4444747, 4444774, 4444777, 4447444, 4447447, 4447474, 4447477, 4447744, 4447747, 4447774, 4447777, 4474444, 4474447, 4474474, 4474477, 4474744, 4474747, 4474774, 4474777, 4477444, 4477447, 4477474, 4477477, 4477744, 4477747, 4477774, 4477777, 4744444, 4744447, 4744474, 4744477, 4744744, 4744747, 4744774, 4744777, 4747444, 4747447, 4747474, 4747477, 4747744, 4747747, 4747774, 4747777, 4774444, 4774447, 4774474, 4774477, 4774744, 4774747, 4774774, 4774777, 4777444, 4777447, 4777474, 4777477, 4777744, 4777747, 4777774, 4777777, 7444444, 7444447, 7444474, 7444477, 7444744, 7444747, 7444774, 7444777, 7447444, 7447447, 7447474, 7447477, 7447744, 7447747, 7447774, 7447777, 7474444, 7474447, 7474474, 7474477, 7474744, 7474747, 7474774, 7474777, 7477444, 7477447, 7477474, 7477477, 7477744, 7477747, 7477774, 7477777, 7744444, 7744447, 7744474, 7744477, 7744744, 7744747, 7744774, 7744777, 7747444, 7747447, 7747474, 7747477, 7747744, 7747747, 7747774, 7747777, 7774444, 7774447, 7774474, 7774477, 7774744, 7774747, 7774774, 7774777, 7777444, 7777447, 7777474, 7777477, 7777744, 7777747, 7777774, 7777777, 44444444, 44444447, 44444474, 44444477, 44444744, 44444747, 44444774, 44444777, 44447444, 44447447, 44447474, 44447477, 44447744, 44447747, 44447774, 44447777, 44474444, 44474447, 44474474, 44474477, 44474744, 44474747, 44474774, 44474777, 44477444, 44477447, 44477474, 44477477, 44477744, 44477747, 44477774, 44477777, 44744444, 44744447, 44744474, 44744477, 44744744, 44744747, 44744774, 44744777, 44747444, 44747447, 44747474, 44747477, 44747744, 44747747, 44747774, 44747777, 44774444, 44774447, 44774474, 44774477, 44774744, 44774747, 44774774, 44774777, 44777444, 44777447, 44777474, 44777477, 44777744, 44777747, 44777774, 44777777, 47444444, 47444447, 47444474, 47444477, 47444744, 47444747, 47444774, 47444777, 47447444, 47447447, 47447474, 47447477, 47447744, 47447747, 47447774, 47447777, 47474444, 47474447, 47474474, 47474477, 47474744, 47474747, 47474774, 47474777, 47477444, 47477447, 47477474, 47477477, 47477744, 47477747, 47477774, 47477777, 47744444, 47744447, 47744474, 47744477, 47744744, 47744747, 47744774, 47744777, 47747444, 47747447, 47747474, 47747477, 47747744, 47747747, 47747774, 47747777, 47774444, 47774447, 47774474, 47774477, 47774744, 47774747, 47774774, 47774777, 47777444, 47777447, 47777474, 47777477, 47777744, 47777747, 47777774, 47777777, 74444444, 74444447, 74444474, 74444477, 74444744, 74444747, 74444774, 74444777, 74447444, 74447447, 74447474, 74447477, 74447744, 74447747, 74447774, 74447777, 74474444, 74474447, 74474474, 74474477, 74474744, 74474747, 74474774, 74474777, 74477444, 74477447, 74477474, 74477477, 74477744, 74477747, 74477774, 74477777, 74744444, 74744447, 74744474, 74744477, 74744744, 74744747, 74744774, 74744777, 74747444, 74747447, 74747474, 74747477, 74747744, 74747747, 74747774, 74747777, 74774444, 74774447, 74774474, 74774477, 74774744, 74774747, 74774774, 74774777, 74777444, 74777447, 74777474, 74777477, 74777744, 74777747, 74777774, 74777777, 77444444, 77444447, 77444474, 77444477, 77444744, 77444747, 77444774, 77444777, 77447444, 77447447, 77447474, 77447477, 77447744, 77447747, 77447774, 77447777, 77474444, 77474447, 77474474, 77474477, 77474744, 77474747, 77474774, 77474777, 77477444, 77477447, 77477474, 77477477, 77477744, 77477747, 77477774, 77477777, 77744444, 77744447, 77744474, 77744477, 77744744, 77744747, 77744774, 77744777, 77747444, 77747447, 77747474, 77747477, 77747744, 77747747, 77747774, 77747777, 77774444, 77774447, 77774474, 77774477, 77774744, 77774747, 77774774, 77774777, 77777444, 77777447, 77777474, 77777477, 77777744, 77777747, 77777774, 77777777, 444444444, 444444447, 444444474, 444444477, 444444744, 444444747, 444444774, 444444777, 444447444, 444447447, 444447474, 444447477, 444447744, 444447747, 444447774, 444447777, 444474444, 444474447, 444474474, 444474477, 444474744, 444474747, 444474774, 444474777, 444477444, 444477447, 444477474, 444477477, 444477744, 444477747, 444477774, 444477777, 444744444, 444744447, 444744474, 444744477, 444744744, 444744747, 444744774, 444744777, 444747444, 444747447, 444747474, 444747477, 444747744, 444747747, 444747774, 444747777, 444774444, 444774447, 444774474, 444774477, 444774744, 444774747, 444774774, 444774777, 444777444, 444777447, 444777474, 444777477, 444777744, 444777747, 444777774, 444777777, 447444444, 447444447, 447444474, 447444477, 447444744, 447444747, 447444774, 447444777, 447447444, 447447447, 447447474, 447447477, 447447744, 447447747, 447447774, 447447777, 447474444, 447474447, 447474474, 447474477, 447474744, 447474747, 447474774, 447474777, 447477444, 447477447, 447477474, 447477477, 447477744, 447477747, 447477774, 447477777, 447744444, 447744447, 447744474, 447744477, 447744744, 447744747, 447744774, 447744777, 447747444, 447747447, 447747474, 447747477, 447747744, 447747747, 447747774, 447747777, 447774444, 447774447, 447774474, 447774477, 447774744, 447774747, 447774774, 447774777, 447777444, 447777447, 447777474, 447777477, 447777744, 447777747, 447777774, 447777777, 474444444, 474444447, 474444474, 474444477, 474444744, 474444747, 474444774, 474444777, 474447444, 474447447, 474447474, 474447477, 474447744, 474447747, 474447774, 474447777, 474474444, 474474447, 474474474, 474474477, 474474744, 474474747, 474474774, 474474777, 474477444, 474477447, 474477474, 474477477, 474477744, 474477747, 474477774, 474477777, 474744444, 474744447, 474744474, 474744477, 474744744, 474744747, 474744774, 474744777, 474747444, 474747447, 474747474, 474747477, 474747744, 474747747, 474747774, 474747777, 474774444, 474774447, 474774474, 474774477, 474774744, 474774747, 474774774, 474774777, 474777444, 474777447, 474777474, 474777477, 474777744, 474777747, 474777774, 474777777, 477444444, 477444447, 477444474, 477444477, 477444744, 477444747, 477444774, 477444777, 477447444, 477447447, 477447474, 477447477, 477447744, 477447747, 477447774, 477447777, 477474444, 477474447, 477474474, 477474477, 477474744, 477474747, 477474774, 477474777, 477477444, 477477447, 477477474, 477477477, 477477744, 477477747, 477477774, 477477777, 477744444, 477744447, 477744474, 477744477, 477744744, 477744747, 477744774, 477744777, 477747444, 477747447, 477747474, 477747477, 477747744, 477747747, 477747774, 477747777, 477774444, 477774447, 477774474, 477774477, 477774744, 477774747, 477774774, 477774777, 477777444, 477777447, 477777474, 477777477, 477777744, 477777747, 477777774, 477777777, 744444444, 744444447, 744444474, 744444477, 744444744, 744444747, 744444774, 744444777, 744447444, 744447447, 744447474, 744447477, 744447744, 744447747, 744447774, 744447777, 744474444, 744474447, 744474474, 744474477, 744474744, 744474747, 744474774, 744474777, 744477444, 744477447, 744477474, 744477477, 744477744, 744477747, 744477774, 744477777, 744744444, 744744447, 744744474, 744744477, 744744744, 744744747, 744744774, 744744777, 744747444, 744747447, 744747474, 744747477, 744747744, 744747747, 744747774, 744747777, 744774444, 744774447, 744774474, 744774477, 744774744, 744774747, 744774774, 744774777, 744777444, 744777447, 744777474, 744777477, 744777744, 744777747, 744777774, 744777777, 747444444, 747444447, 747444474, 747444477, 747444744, 747444747, 747444774, 747444777, 747447444, 747447447, 747447474, 747447477, 747447744, 747447747, 747447774, 747447777, 747474444, 747474447, 747474474, 747474477, 747474744, 747474747, 747474774, 747474777, 747477444, 747477447, 747477474, 747477477, 747477744, 747477747, 747477774, 747477777, 747744444, 747744447, 747744474, 747744477, 747744744, 747744747, 747744774, 747744777, 747747444, 747747447, 747747474, 747747477, 747747744, 747747747, 747747774, 747747777, 747774444, 747774447, 747774474, 747774477, 747774744, 747774747, 747774774, 747774777, 747777444, 747777447, 747777474, 747777477, 747777744, 747777747, 747777774, 747777777, 774444444, 774444447, 774444474, 774444477, 774444744, 774444747, 774444774, 774444777, 774447444, 774447447, 774447474, 774447477, 774447744, 774447747, 774447774, 774447777, 774474444, 774474447, 774474474, 774474477, 774474744, 774474747, 774474774, 774474777, 774477444, 774477447, 774477474, 774477477, 774477744, 774477747, 774477774, 774477777, 774744444, 774744447, 774744474, 774744477, 774744744, 774744747, 774744774, 774744777, 774747444, 774747447, 774747474, 774747477, 774747744, 774747747, 774747774, 774747777, 774774444, 774774447, 774774474, 774774477, 774774744, 774774747, 774774774, 774774777, 774777444, 774777447, 774777474, 774777477, 774777744, 774777747, 774777774, 774777777, 777444444, 777444447, 777444474, 777444477, 777444744, 777444747, 777444774, 777444777, 777447444, 777447447, 777447474, 777447477, 777447744, 777447747, 777447774, 777447777, 777474444, 777474447, 777474474, 777474477, 777474744, 777474747, 777474774, 777474777, 777477444, 777477447, 777477474, 777477477, 777477744, 777477747, 777477774, 777477777, 777744444, 777744447, 777744474, 777744477, 777744744, 777744747, 777744774, 777744777, 777747444, 777747447, 777747474, 777747477, 777747744, 777747747, 777747774, 777747777, 777774444, 777774447, 777774474, 777774477, 777774744, 777774747, 777774774, 777774777, 777777444, 777777447, 777777474, 777777477, 777777744, 777777747, 777777774, 777777777, 4444444444}; long long fact[] = {1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 6227020800, 87178291200, 1307674368000}; void input(vector<int> &M, int n) { M.resize(n + 1); for (int i = 1; i <= n; i++) scanf("%d", &M[i]); } long long n, k; int main() { cin >> n >> k; if (n <= 15 && k > fact[n]) printf("-1\n"); else { long long st = n - 15; if (st <= 0) st = 1; vector<int> perm; set<long long> was; for (long long i = st; i <= n; i++) was.insert(i); int j = n - st + 1; for (long long i = st; i <= n; i++, j--) { set<long long>::iterator it = was.begin(); while (k > fact[j - 1]) it++, k -= fact[j - 1]; perm.push_back(*it); was.erase(it); } int ans = 0; for (int i = 0; i < perm.size(); i++) if (lucky(st + i) && lucky(perm[i])) ans++; int q = 0; while (luck[q] < st) q++, ans++; printf("%d\n", ans); } return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; int n, k; int n1; vector<long long> v; int c[20]; int a[20]; bool viz[20]; int f[20]; inline void get(int i) { int cif = 0; long long zece = 1; long long r = 0; for (zece = 1; i > 0; i >>= 1, zece *= 10LL) { ++cif; if ((i & 1) != 0) r += 7LL * zece; else r += 4LL * zece; } if (r != 0LL) v.push_back(r); for (++cif; cif < 11; ++cif, zece *= 10LL) { r += 4LL * zece; v.push_back(r); } } void back(int k1) { if (k1 == n1 + 1) return; for (int i = 1; i <= n1; ++i) { if (viz[i]) continue; if (k > f[n1 - k1]) k -= f[n1 - k1]; else { viz[i] = true; a[k1] = i; back(k1 + 1); return; } } printf("-1\n"); exit(0); } int main() { scanf("%d%d", &n, &k); for (int i = 0; i < 1024; ++i) { get(i); } sort(v.begin(), v.end()); int start = max(1, n - 12); f[0] = f[1] = 1; for (int i = 2; i < 13; ++i) f[i] = f[i - 1] * i; n1 = n - start + 1; back(1); int rez = 0; long long start1 = (long long)start; for (size_t i = 0, lim = v.size(); i < lim && v[i] < start1; ++i) { ++rez; } int x = start; for (int i = 1; i <= n1; ++i, ++x) { c[i] = x; } for (int i = 1; i <= n1; ++i) { if (find(v.begin(), v.end(), (long long)(i - 1) + start1) != v.end() && find(v.begin(), v.end(), (long long)c[a[i]]) != v.end()) ++rez; } printf("%d\n", rez); return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; long long n, k; long long fact[20]; inline long long XF(int x) { return x > 13 ? 10000000000LL : fact[x]; } int L, R; map<int, int> pv; vector<int> avb; int lucky(int w) { while (w) { int T = w % 10; if (T != 4 && T != 7) return 0; w /= 10; } return 1; } int main() { cin >> n >> k; fact[0] = 1; for (int i = 1; i <= 13; ++i) fact[i] = i * fact[i - 1]; if (XF(n) < k) { cout << "-1\n"; return 0; } R = n; L = R - min(n, 13LL) + 1; for (int i = L; i <= R; ++i) avb.push_back(i); for (int i = L; i <= R; ++i) { int j = 0; for (j = 0;; ++j) if (XF(R - i) < k) k -= XF(R - i); else break; pv[i] = avb[j]; avb.erase(avb.begin() + j); } int ans = 0; for (int len = 1; len <= 9; ++len) for (int msk = 0; msk < (1 << len); ++msk) { long long T = 0; for (int i = 0; i < len; ++i) T = T * 10 + ((msk & (1 << i)) ? 4 : 7); if (T <= n) { if (!pv.count(T)) ans += lucky(T); else ans += lucky(pv[T]); } } cout << ans << '\n'; return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
import java.util.*; public class Main { public static long factorial(int n) { long res = 1; for (int i = n; i > 1; i--) res *= i; return res; } private static ArrayList<Integer> res(ArrayList<Integer> v, int k) { ArrayList<Integer> res = new ArrayList<Integer>(); long fact; int indx, limit = v.size(); for (int i = 0; i < limit; i++) { fact = factorial(v.size() - 1); indx = (int) (k / fact); if (k % fact == 0) indx--; k -= fact * indx; int temp = v.get(indx); res.add(temp); v.remove(indx); } return res; } static int lucky[] = new int[1022]; static int size = 0; private static void generate(int i, String s) { if (i == 10) return; if (s.length() > 0) lucky[size++] = new Integer(s); generate(i + 1, s + 4); generate(i + 1, s + 7); } public static void main(String[] args) { generate(0, ""); Arrays.sort(lucky); Scanner myScanner = new Scanner(System.in); int k, n, startIndx = 0; n = myScanner.nextInt(); k = myScanner.nextInt(); for (int i = 0; i < 14; i++) if (factorial(i + 1) >= k) { startIndx = n - i; break; } if (startIndx <= 0) { System.out.println("-1"); System.exit(0); } ArrayList<Integer> init = new ArrayList<Integer>(); for (int i = startIndx; i <= n; i++) init.add(i); ArrayList<Integer> perm = res(init, k); int res = 0; for (int i = 0; i < perm.size(); i++) if (Arrays.binarySearch(lucky, i + startIndx) >= 0 && Arrays.binarySearch(lucky, perm.get(i)) >= 0) res++; for (int i = 0; i < lucky.length; i++) if (lucky[i] < startIndx) res++; System.out.println(res); } }
JAVA
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; long long n, k, m; long long ed; long long f[20], cur[20], a[20], vis[20]; long long ans = 0; void solve(long long now) { if (now > m) return; ans++; solve(now * 10 + 4); solve(now * 10 + 7); } bool legal(long long x) { while (x > 0) { long long tmp = x % 10; if (tmp != 4 && tmp != 7) return false; x /= 10; } return true; } int main() { cin >> n >> k; ed = 1; f[ed] = 1; f[0] = 1; while (f[ed] < k) { f[ed + 1] = f[ed] * (ed + 1); ++ed; } m = n - ed; if (m < 0) { cout << -1 << endl; return 0; } memset(vis, false, sizeof(vis)); for (int i = 1; i <= ed; i++) { cur[i] = (k + f[ed - i] - 1) / f[ed - i]; int cnt = 0; for (int j = 1;; j++) { if (!vis[j]) cnt++; if (cnt == cur[i]) { a[i] = j; vis[j] = true; break; } } k -= f[ed - i] * (cur[i] - 1); } solve(4); solve(7); for (int i = 1; i <= ed; i++) { long long num = a[i] + m; long long pos = i + m; if (legal(num) && legal(pos)) ans++; } cout << ans << endl; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
//package round91; import java.io.ByteArrayInputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.BitSet; public class C { InputStream is; PrintWriter out; String INPUT = ""; long[] lucky; void solve() { int n = ni(), k = ni(); lucky = new long[2000]; int pos = rec(lucky, 0, 0); lucky = Arrays.copyOf(lucky, pos); Arrays.sort(lucky); long[] fact = new long[14]; fact[0] = 1; for(int i = 1;i < 14;i++)fact[i] = fact[i-1]*i; if(n <= 13){ if(k > fact[n]){ out.println(-1); }else{ long p = k - 1; int ct = 0; BitSet used = new BitSet(); for(int i = n-1;i >= 0;i--){ long q = p / fact[i]; p = p % fact[i]; int tar = used.nextClearBit(0); for(int j = 0;j < q;j++){ tar = used.nextClearBit(tar+1); } used.set(tar); if(isLucky(n-i) && isLucky(tar+1)){ ct++; } } out.println(ct); } }else{ int ct = 0; for(int i = 0;i < lucky.length;i++){ if(lucky[i] <= n-13){ ct++; } } long p = k - 1; BitSet used = new BitSet(); for(int i = 12;i >= 0;i--){ long q = p / fact[i]; p = p % fact[i]; int tar = used.nextClearBit(0); for(int j = 0;j < q;j++){ tar = used.nextClearBit(tar+1); } used.set(tar); if(isLucky(n-i) && isLucky(tar+n-13+1)){ ct++; } } out.println(ct); } } boolean isLucky(long n) { if(n == 0)return false; if(n==4 || n==7)return true; return (n%10==4||n%10==7) && isLucky(n/10); } int rec(long[] lucky, int pos, long n) { if(n > 1000000000)return pos; if(n != 0)lucky[pos++] = n; pos = rec(lucky, pos, n*10+4); pos = rec(lucky, pos, n*10+7); return pos; } void run() throws Exception { is = oj ? System.in : new ByteArrayInputStream(INPUT.getBytes()); out = new PrintWriter(System.out); long s = System.currentTimeMillis(); solve(); out.flush(); tr(System.currentTimeMillis()-s+"ms"); } public static void main(String[] args) throws Exception { new C().run(); } public int ni() { try { int num = 0; boolean minus = false; while((num = is.read()) != -1 && !((num >= '0' && num <= '9') || num == '-')); if(num == '-'){ num = 0; minus = true; }else{ num -= '0'; } while(true){ int b = is.read(); if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } } } catch (IOException e) { } return -1; } public long nl() { try { long num = 0; boolean minus = false; while((num = is.read()) != -1 && !((num >= '0' && num <= '9') || num == '-')); if(num == '-'){ num = 0; minus = true; }else{ num -= '0'; } while(true){ int b = is.read(); if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } } } catch (IOException e) { } return -1; } public String ns() { try{ int b = 0; StringBuilder sb = new StringBuilder(); while((b = is.read()) != -1 && (b == '\r' || b == '\n' || b == ' ')); if(b == -1)return ""; sb.append((char)b); while(true){ b = is.read(); if(b == -1)return sb.toString(); if(b == '\r' || b == '\n' || b == ' ')return sb.toString(); sb.append((char)b); } } catch (IOException e) { } return ""; } public char[] ns(int n) { char[] buf = new char[n]; try{ int b = 0, p = 0; while((b = is.read()) != -1 && (b == ' ' || b == '\r' || b == '\n')); if(b == -1)return null; buf[p++] = (char)b; while(p < n){ b = is.read(); if(b == -1 || b == ' ' || b == '\r' || b == '\n')break; buf[p++] = (char)b; } return Arrays.copyOf(buf, p); } catch (IOException e) { } return null; } double nd() { return Double.parseDouble(ns()); } boolean oj = System.getProperty("ONLINE_JUDGE") != null; void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); } }
JAVA
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; const long long LINF = ~(((long long)0x1) << 63) / 2; const int INF = 0X3F3F3F3F; const double eps = 1e-7; const long long limit = 1000000000LL; vector<long long> c; void dfs(long long now) { if (now > limit) return; if (now != 0) c.push_back(now); dfs(now * 10 + 4); dfs(now * 10 + 7); } int loc[15], lim; void solve(int pos, int k) { int now = 1, i, j, ans = 0, cnt = 0; if (pos == lim + 1) return; for (i = 1; i <= pos - 1; i++) now *= i; for (i = 1; i <= lim; i++) if (!loc[i]) { ans += now; cnt++; if (ans >= k) { loc[i] = lim - pos + 1; solve(pos - 1, k - now * (cnt - 1)); break; } } } bool isOk(int d) { bool flag = true; while (d) { int c = d % 10; if (c != 4 && c != 7) flag = false; d /= 10; } return flag; } int main() { int n, k, i, j; cin >> n >> k; long long ans = 1; bool ok = false; dfs(0); sort(c.begin(), c.end()); for (i = 1; i <= n; i++) { ans *= i; if (ans >= k) { ok = true; lim = i; break; } } if (!ok) { cout << "-1" << endl; } else { solve(lim, k); int ans = 0; for (i = 0; i < c.size() && c[i] <= n; i++) if (c[i] < n - lim) ans++; else { if (isOk(loc[(int)(c[i] - (n - lim))] + n - lim)) ans++; } cout << ans << endl; } return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; void RunProgram(); int main() { RunProgram(); } long long fact[14], k; int n, m, d[20]; bool avail[20]; void MakeD(int n) { memset(avail, true, sizeof(avail)); for (int i = 1; i <= n; i++) { int j; for (j = 1; j <= n; j++) if (avail[j]) if (k > fact[n - i]) k -= fact[n - i]; else break; j = min(j, n); d[i] = j; avail[j] = false; } } bool isLucky(long long x) { do { int t = x % 10; x /= 10; if (t != 4 && t != 7) return false; } while (x > 0); return true; } int SolveSmall(int n) { if (fact[n] < k) return -1; MakeD(n); int res = 0; if (4 <= n) res += isLucky(d[4]); if (7 <= n) res += isLucky(d[7]); return res; } int Count(long long LIM) { vector<long long> a; a.push_back(0); for (int i = 0; i < (int)a.size(); i++) { long long v = a[i] * 10 + 4; if (v <= LIM) a.push_back(v); v = a[i] * 10 + 7; if (v <= LIM) a.push_back(v); } return (int)a.size() - 1; } int SolveBig(int n) { MakeD(14); int res = Count(n - 14), delta = n - 14; for (int i = 1; i <= 14; i++) res += isLucky(d[i] + delta) && isLucky(i + delta); return res; } void RunProgram() { fact[0] = 1; for (int i = 1; i < 14; i++) fact[i] = fact[i - 1] * i; cin >> n >> k; if (n < 14) cout << SolveSmall(n); else cout << SolveBig(n); }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
import java.util.ArrayList; import java.util.LinkedList; import java.util.List; import java.util.Scanner; public class C { static List<Integer> luckyNumbers = new ArrayList<Integer>(); static long factorials[] = new long[13]; static void calculateLuckyNumbers(int n , int i){ if(i >= 10) return; int nn = n*10 + 4; luckyNumbers.add(nn); calculateLuckyNumbers(nn, i+1); nn = n*10 + 7; luckyNumbers.add(nn); calculateLuckyNumbers(nn, i+1); } static boolean isLucky(long x){ while(x>0){ int d =(int)( x%10); if(d != 4 && d!= 7 ){ return false; } x/=10; } return true; } public static void main(String[] args) { calculateLuckyNumbers(0 , 1); factorials[1] = 1; for(int i = 2 ; i<=12 ; i++ ){ factorials[i] = factorials[i-1]*(i); } Scanner in = new Scanner(System.in); long n = in.nextInt(); long k = in.nextInt(); in.close(); if( n<13 && k>factorials[(int)n] ){ System.out.println(-1); }else{ long index = Math.max(0, n-13); int count = 0; for(Integer i : luckyNumbers){ if(i<=index) count++; } List<Long> l = new LinkedList<Long>(); List<Long> ll = new LinkedList<Long>(); for( long i = index+1 ; i<=n ; i++){ l.add(i); } k--; while(k>0){ long r = k/factorials[l.size()-1]; k = k%factorials[l.size()-1]; long num = l.remove((int)r); ll.add(num); } ll.addAll(l); for(int i = 0 ; i<ll.size() ; i++){ if(isLucky(i+index+1) && isLucky(ll.get(i))){ count++; } } System.out.println(count); } } }
JAVA
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; const double pi = acos(-1.0); const int intmax = 0x3f3f3f3f; const long long lldmax = 0x3f3f3f3f3f3f3f3fll; double eps = 1e-8; template <class T> inline void checkmin(T &a, T b) { if (b < a) a = b; } template <class T> inline void checkmax(T &a, T b) { if (b > a) a = b; } template <class T> inline T sqr(T x) { return x * x; } template <class T> inline T lowbit(T n) { return (n ^ (n - 1)) & n; } template <class T> inline int countbit(T n) { return (n == 0) ? 0 : (1 + countbit(n & (n - 1))); } template <class T> inline T checkmod(T n, T m) { return (n % m + m) % m; } inline int rand(int a, int b) { if (a >= b) return a; return rand() % (b - a) + a; } template <class T> inline T lcm(T a, T b) { if (a < 0) return lcm(-a, b); if (b < 0) return lcm(a, -b); return a * (b / gcd(a, b)); } template <class T> inline T gcd(T a, T b) { if (a < 0) return gcd(-a, b); if (b < 0) return gcd(a, -b); return (b == 0) ? a : gcd(b, a % b); } template <class T> inline T euclid(T a, T b, T &x, T &y) { if (a < 0) { T d = euclid(-a, b, x, y); x = -x; return d; } if (b < 0) { T d = euclid(a, -b, x, y); y = -y; return d; } if (b == 0) { x = 1; y = 0; return a; } else { T d = euclid(b, a % b, x, y); T t = x; x = y; y = t - (a / b) * y; return d; } } template <class T> inline vector<pair<T, int> > factorize(T n) { vector<pair<T, int> > R; for (T i = 2; n > 1;) { if (n % i == 0) { int C = 0; for (; n % i == 0; C++, n /= i) ; R.push_back(make_pair(i, C)); } i++; if (i > n / i) i = n; } if (n > 1) R.push_back(make_pair(n, 1)); return R; } template <class T> inline bool isPrimeNumber(T n) { if (n <= 1) return false; for (T i = 2; i * i <= n; i++) if (n % i == 0) return false; return true; } template <class T> inline T eularFunction(T n) { vector<pair<T, int> > R = factorize(n); T r = n; for (int i = 0; i < R.size(); i++) r = r / R[i].first * (R[i].first - 1); return r; } template <class T> inline int dblcmp(T a, const T b) { a -= b; return a > eps ? 1 : (a < -eps ? -1 : 0); } template <class T> inline int sgn(T a) { return a > eps ? 1 : (a < -eps ? -1 : 0); } const int N = 13; long long tmp[N]; set<int> st; int n, k; void dfs(long long a) { if (a > n) return; st.insert(a); dfs(a * 10 + 4); dfs(a * 10 + 7); } bool judge() { long long ans = 1; for (int i = 1; i <= n; ++i) { if (ans > k) break; ans *= i; } return ans >= k; } void gao(int a[], int n, int k) { if (n == 1) return; int p = k / tmp[n - 1]; int t = a[p]; for (int i = p; i > 0; --i) a[i] = a[i - 1]; a[0] = t; gao(a + 1, n - 1, k % tmp[n - 1]); } int main() { tmp[0] = 1; for (int i = 1; i < N; ++i) tmp[i] = tmp[i - 1] * i; cin >> n >> k; dfs(4); dfs(7); if (!judge()) { puts("-1"); } else { int ans = 0; int m = max(0, n - N); for (set<int>::iterator it = st.begin(); it != st.end(); ++it) { if (*it <= m) { ans++; } } int a[20]; for (int i = 0; i < n - m; ++i) a[i] = i + m + 1; gao(a, n - m, k - 1); for (int i = 0; i < n - m; ++i) { if (st.find(m + 1 + i) != st.end() && st.find(a[i]) != st.end()) ans++; } cout << ans << endl; } return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; long long fac[20], n, k; long long answer; void rec(long long x, long long lim) { if (x > lim) return; answer++; rec(10 * x + 4, lim); rec(10 * x + 7, lim); } long long calc(long long lim) { rec(4, lim); rec(7, lim); } long long ohMyLuck(long long x) { while (x > 0) { if (x % 10 == 7 or x % 10 == 4) { x /= 10; } else { return 0; } } return 1; } int main() { ios_base::sync_with_stdio(0); cin.tie(nullptr); cin >> n >> k; fac[0] = 1; for (int i = 1; i <= 15; i++) fac[i] = (fac[i - 1] * i); if (n <= 13 and fac[n] < k) { cout << -1 << endl; return 0; } k--; int mis = -1; for (int i = 1; i <= 15; i++) if (k >= fac[i]) mis = i; calc(n - (mis + 1)); vector<int> vec, my; for (int i = n - mis; i <= n; i++) vec.push_back(i); for (int i = vec.size() - 1; i >= 0; i--) { int d = k / fac[i]; k = k % fac[i]; my.push_back(vec[d]); vec.erase(vec.begin() + d); } for (int i = 0; i < my.size(); i++) { if (ohMyLuck(my[i]) and ohMyLuck(n - mis + i)) { answer++; } } cout << answer << endl; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; const int MAX = 1e5 + 10; const int MAXN = 1e4 + 10; const int MOD = 1e9 + 7; const int inf = 1e9; const double pi = acos(-1.0); const double eps = 1e-6; int dx[] = {0, -1, 0, 1}; int dy[] = {1, 0, -1, 0}; long long F[40]; int calc(int l, long long n) { if (n >= l) return 0; int res = 0; res += calc(l, n * 10 + 4); res += calc(l, n * 10 + 7); return res + 1; } bool check(int x) { bool ok = true; while (x) { int t = x % 10; if (t != 4 && t != 7) ok = false; x /= 10; } return ok; } int n, k; int main() { ios::sync_with_stdio(false); cin.tie(0); cin >> n >> k; F[0] = 1LL; int pos = -1; for (int i = 1; i <= n; i++) { F[i] = F[i - 1] * (long long)i; if (F[i] >= (long long)k) { pos = i; break; } } if (pos == -1) { cout << -1; return 0; } int s = n - pos + 1; int res = calc(s, 4) + calc(s, 7); vector<int> V; for (int i = s; i <= n; i++) V.push_back(i); for (int i = s; i <= n; i++) { int j = n - i; int z, t; if (F[j] <= k) { z = (k - 1) / F[j]; t = V[z]; k = (k - 1) % F[j] + 1; } else { z = 0; t = V[0]; } V.erase(V.begin() + z); if (check(t) && check(i)) res++; } cout << res; return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; set<long long> S; void go(const long long &x, const int &M, const long long &U) { if (x > U) return; if (x > M) S.insert(x); go(10 * x + 4, M, U), go(10 * x + 7, M, U); } bool ok(long long x) { for (; x; x /= 10) { int a = x % 10; if (a != 4 && a != 7) return false; } return true; } int main() { long long N, K; cin >> N >> K; long long F = -1; if (N < 14) { F = 1; for (long long i = 1; i <= N; ++i) F *= i; } int M = 1; for (long long f = 1; f * M < K; f *= M, M++) ; if (M > (int)N) { cout << -1 << endl; return 0; } M = min((int)N, 20); go(0, 0, N - M); vector<long long> a(M); for (int _n(M), i(0); i < _n; i++) a[i] = N - M + i + 1; if (K < F || F == -1) { for (long long k = K - 1; k > 0;) { long long f = 1; int i = 1; while (f * (i + 1) <= k) f *= ++i; int j = k / f; swap(a[M - i - 1], a[M - i + j - 1]); sort(&a[0] + M - i, &a[0] + M); k -= f * j; } } else if (K == F) { reverse((a).begin(), (a).end()); } int ans = 0; for (int _n(M), i(0); i < _n; i++) if (ok(N - M + i + 1) && ok(a[i])) ans++; ans += S.size(); cout << ans << endl; return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; const int MAXN = 100099; int n, k; vector<long long> lucky; void gen(long long num) { lucky.push_back(num); if (num > n) return; gen(num * 10 + 4); gen(num * 10 + 7); } vector<int> d; long long precalc[20]; bool used[20]; void findk(int n, int k, int len) { if (len < 0) return; long long sum = 0; for (int dig = 1; dig <= n; dig++) { if (!used[dig]) { if (sum + precalc[len] >= k) { used[dig] = 1; d.push_back(dig); break; } else sum += precalc[len]; } } findk(n, k - sum, len - 1); } bool check(int n, int k, int pos) { for (int i = 0, _n = (20); i < _n; i++) used[i] = 0; d.clear(); findk(n, k, n - 1); if (d[pos - 1] == pos) return 1; return 0; } bool good(long long t) { while (t) { if (t % 10 != 7 && t % 10 != 4) return 0; t /= 10; } return 1; } int main() { scanf("%d%d", &n, &k); gen(4); gen(7); long long fact = 1; precalc[0] = 1; precalc[1] = 1; for (int i = 2; i < 20; i++) precalc[i] = precalc[i - 1] * i; int p = 0; for (int i = 1; i <= n + 1; i++) { fact *= i; p++; if (fact >= k) break; } if (p > n) { printf("-1\n"); return 0; } int last = n - p; int ans = 0; sort(lucky.begin(), lucky.end()); for (int i = 0; i < lucky.size(); i++) { if (lucky[i] <= last) ans++; if (lucky[i] > n) break; if (lucky[i] > last) { for (int i = 0, _n = (20); i < _n; i++) used[i] = 0; d.clear(); findk(p, k, p - 1); for (int i = (n - p + 1), _b = (n); i <= _b; i++) if (good(i) && good(d[i - last - 1] + last)) ans++; break; } } printf("%d\n", ans); return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; long long i, j, k, n, m, t, f, x, y, cnt; long long nl, tmp, gcnt, ans; long long luckyNum[20007], fct[16], v[16], ad[16]; queue<long long> qa, qb; set<long long> st; long long findFct(long long n) { i = 0; for (i = 1; i < 16; i++) { if (fct[i] > n) { return i; } } } void setV(long long n) { long long i; n++; for (i = 1; i < 16; i++) { if (!v[i]) { n--; } if (n == 0) { v[i] = true; gcnt++; ad[gcnt] = i + nl; break; } } } int main() { memset(luckyNum, 0, sizeof(luckyNum)); cnt = 0; qa.push(4); luckyNum[cnt++] = 4; st.insert(4); qa.push(7); luckyNum[cnt++] = 7; st.insert(7); for (i = 1; i < 10; i++) { while (!qa.empty()) { x = qa.front(); qa.pop(); qb.push(x * 10 + 4); luckyNum[cnt++] = x * 10 + 4; st.insert(x * 10 + 4); qb.push(x * 10 + 7); luckyNum[cnt++] = x * 10 + 7; st.insert(x * 10 + 7); } while (!qb.empty()) { qa.push(qb.front()); qb.pop(); } } fct[0] = 1; for (i = 1; i < 16; i++) { fct[i] = fct[i - 1] * i; } while (cin >> n >> k) { memset(v, 0, sizeof(v)); memset(ad, 0, sizeof(ad)); gcnt = 0; ans = 0; k--; m = findFct(k); nl = n - m; if (nl < 0) { cout << "-1" << endl; continue; } i = 0; while (luckyNum[i] <= nl) { ans++; i++; } tmp = m; m--; while (k > 0) { t = k / fct[m]; k %= fct[m]; m--; setV(t); } for (i = 1; i <= tmp; i++) { if (!v[i]) { gcnt++; ad[gcnt] = i + nl; } } for (i = 1; i <= gcnt; i++) { if (st.find(ad[i]) != st.end() && st.find(i + nl) != st.end()) { ans++; } } cout << ans << endl; } return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
import java.io.BufferedReader; import java.io.FileReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.math.BigInteger; import java.util.ArrayList; import java.util.Arrays; import java.util.Comparator; import java.util.LinkedList; import java.util.Locale; import java.util.Queue; import java.util.StringTokenizer; import java.util.TreeMap; import java.util.TreeSet; import java.util.Map.Entry; public class Solution implements Runnable { public static void main(String[] args) { (new Thread(new Solution())).start(); } BufferedReader in; PrintWriter out; StringTokenizer st; String nextToken() throws IOException { while (st == null || !st.hasMoreTokens()) { String r = in.readLine(); if (r == null) return null; st = new StringTokenizer(r); } return st.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } long[] fact = new long[20]; int[] per(int q) { int[] res = new int[13]; int[] was = new int[13]; for (int i = 0; i < 13; i++) { int qq = (int)((long)q / fact[12 - i]); q = (int)((long)q % fact[12 - i]); int j = 0; while (qq > 0 || was[j] == 1) { if (was[j] == 0) qq--; j++; } res[i] = j + 1; was[j] = 1; } return res; } boolean lucky(long q) { if (q == 0) return false; while (q > 0) { if (q % 10 != 4 && q % 10 != 7) return false; q /= 10; } return true; } long[] lucky = new long[2000]; int ln = 0; void solve() throws Exception { for (int i = 1; i <= 9; i++) { for (int j = 0; j < (1 << i); j++) { long q = 0; int jj = j; for (int k = 0; k < i; k++) { q *= 10; if (jj % 2 == 0) q += 4; else q += 7; jj /= 2; } lucky[ln++] = q; } } Arrays.sort(lucky, 0, ln); fact[0] = fact[1] = 1; for (int i = 2; i < 20; i++) fact[i] = i * fact[i - 1]; int n = nextInt(); int k = nextInt(); if (n <= 13 && fact[n] < k) { out.println(-1); return; } int[] per = per(k - 1); int ans = 0; if (n <= 13) { for (int i = 1; i <= n; i++) { if (lucky(i) && lucky(per[i + 12 - n] - 13 + n)) ans++; } } else { int qq = Arrays.binarySearch(lucky, 0, ln, n - 13); if (qq >= 0) qq++; else qq = -(qq + 1); ans += qq; for (int i = 0; i < 13; i++) { if (lucky(n - 13 + 1 + i) && lucky(per[i] + n - 13)) ans++; } } out.println(ans); } public void run() { Locale.setDefault(Locale.UK); try { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); // in = new BufferedReader(new FileReader("input.txt")); // out = new PrintWriter("output.txt"); solve(); } catch (Exception e) { e.printStackTrace(); System.exit(1); } finally { out.flush(); } } }
JAVA
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; const double pi = acos(-1.0); void gen(vector<int> &nums, long long int x) { if (x > 1000000000) return; if (x > 0) nums.push_back(x); gen(nums, 10 * x + 4); gen(nums, 10 * x + 7); } bool isLucky(int x) { while (x > 0) { if (x % 10 != 4 && x % 10 != 7) return false; x /= 10; } return true; } int main() { int n, k; long long int fac[16]; bool used[16]; int perm[16]; cin >> n >> k; memset(perm, 0, sizeof(perm)); memset(used, 0, sizeof(used)); fac[0] = 1; for (int i = 1; i < 16; i++) fac[i] = i * fac[i - 1]; int m = min(15, n); if (fac[m] < k) { cout << -1 << endl; return 0; } for (int i = 0; i < m; i++) { int p = 1; while (k > fac[m - 1 - i]) { k -= fac[m - 1 - i]; ++p; } for (int j = 0; j < m; j++) { if (!used[j]) --p; if (!p) { perm[i] = n - m + j + 1; used[j] = true; break; } } } vector<int> lucky; gen(lucky, 0); int ret = 0; for (int i = 0; i < (int)lucky.size(); i++) { int num = lucky[i]; if (num > n) continue; if (n > 15) { if (num <= n - 15) ++ret; else { int x = 14 - (n - num); if (isLucky(perm[x])) ++ret; } } else { if (isLucky(perm[num - 1])) ++ret; } } cout << ret << endl; return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; const int MAXN = -1; long long n, K, pot[20], fact[20], ans; set<long long> luckySet; bool used[20]; long long arr[20]; void kth(int pos, int size, long long k) { if (pos == size + 1) { return; } long long p = 1; while (true) { assert(p <= 20); if (used[p]) { p++; continue; } if (k > fact[size - pos]) { k -= fact[size - pos]; p++; continue; } break; } arr[pos - 1] = p; used[p] = true; kth(pos + 1, size, k); } bool isLucky(long long v, const vector<long long> &lucky) { for (int i = (0); i < (int)(lucky.size()); i++) { if (lucky[i] == v) return true; } return false; } int main() { scanf("%lld %lld", &n, &K); pot[0] = 1; for (int i = (1); i < (int)(18); i++) { pot[i] = pot[i - 1] * 10LL; } fact[0] = 1; for (int i = (1); i < (int)(20); i++) { fact[i] = fact[i - 1] * i; } if (n <= 15 && fact[n] < K) { printf("-1\n"); return 0; } for (int bm = (0); bm < (int)(1024); bm++) { for (int j = (1); j < (int)(11); j++) { long long l = 0; for (int k = (0); k < (int)(j); k++) { l += (bm & (1 << k)) ? 7 * pot[k] : 4 * pot[k]; } luckySet.insert(l); } } vector<long long> lucky(luckySet.begin(), luckySet.end()); for (int i = (0); i < (int)(lucky.size()); i++) { if (lucky[i] <= n - 15) { ans++; } } int sz = min(n, 15LL); kth(1, sz, K); for (int i = (0); i < (int)(sz); i++) { arr[i] += n - sz; if (isLucky(n - sz + 1 + i, lucky) && isLucky(arr[i], lucky)) { ans++; } } printf("%lld\n", ans); return 0; }
CPP
122_E. Lucky Permutation
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers. Input The first line contains two integers n and k (1 ≀ n, k ≀ 109) β€” the number of elements in the permutation and the lexicographical number of the permutation. Output If the k-th permutation of numbers from 1 to n does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers. Examples Input 7 4 Output 1 Input 4 7 Output 1 Note A permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1 ≀ i ≀ n). Permutation a is lexicographically smaller that permutation b if there is such a i (1 ≀ i ≀ n), that ai < bi, and for any j (1 ≀ j < i) aj = bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
2
11
#include <bits/stdc++.h> using namespace std; long long gao(int x, int c) { long long ret = 0, g = 1; for (; c--; g *= 10, x >>= 1) { ret += g * ((x & 1) ? 7 : 4); } return ret; } vector<long long> v; long long fct[16]; int c[16]; bool p[16]; bool lk(int x) { while (x) { if (x % 10 != 4 && x % 10 != 7) return false; x /= 10; } return true; } int main() { int i, j; fct[0] = 1; for (i = 1; i <= (15); ++i) fct[i] = fct[i - 1] * i; for (i = 1; i < 12; ++i) for (j = 0; j < 1 << i; ++j) v.push_back(gao(j, i)); sort(v.begin(), v.end()); long long n, k; cin >> n >> k; if (n <= 15 && k > fct[n]) { puts("-1"); return 0; } int u; long long h; for (u = 0, h = 1; h < k; h *= (++u)) ; int ans = (n - u >= 4) ? (upper_bound(v.begin(), v.end(), n - u + 1) - v.begin()) : 0; k--; for (i = 0; i < u; ++i) { for (j = 0, h = k / fct[u - i - 1] + 1;; ++j) { if (!p[j]) --h; if (h == 0) { k %= fct[u - i - 1]; p[j] = true; break; } } c[i] = j; } for (int i = 0; i < u; ++i) { if (lk(n - u + c[i] + 1) && lk(n - u + i + 1)) ++ans; } printf("%d\n", ans); return 0; }
CPP