desc
stringlengths
3
26.7k
decl
stringlengths
11
7.89k
bodies
stringlengths
8
553k
'Evaluate decision function output for X relative to y_true. Parameters clf : object Trained classifier to use for scoring. Must have either a decision_function method or a predict_proba method; the output of that is used to compute the score. X : array-like or sparse matrix Test data that will be fed to clf.decision_function or clf.predict_proba. y : array-like Gold standard target values for X. These must be class labels, not decision function values. sample_weight : array-like, optional (default=None) Sample weights. Returns score : float Score function applied to prediction of estimator on X.'
def __call__(self, clf, X, y, sample_weight=None):
super(_ThresholdScorer, self).__call__(clf, X, y, sample_weight=sample_weight) y_type = type_of_target(y) if (y_type not in ('binary', 'multilabel-indicator')): raise ValueError('{0} format is not supported'.format(y_type)) if is_regressor(clf): y_pred = clf.predict(X) else: try: y_pred = clf.decision_function(X) if isinstance(y_pred, list): y_pred = np.vstack((p for p in y_pred)).T except (NotImplementedError, AttributeError): y_pred = clf.predict_proba(X) if (y_type == 'binary'): y_pred = y_pred[:, 1] elif isinstance(y_pred, list): y_pred = np.vstack([p[:, (-1)] for p in y_pred]).T if (sample_weight is not None): return (self._sign * self._score_func(y, y_pred, sample_weight=sample_weight, **self._kwargs)) else: return (self._sign * self._score_func(y, y_pred, **self._kwargs))
'Fit model to data. Parameters X : array-like, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of predictors. Y : array-like, shape = [n_samples, n_targets] Target vectors, where n_samples is the number of samples and n_targets is the number of response variables.'
def fit(self, X, Y):
check_consistent_length(X, Y) X = check_array(X, dtype=np.float64, copy=self.copy) Y = check_array(Y, dtype=np.float64, copy=self.copy, ensure_2d=False) if (Y.ndim == 1): Y = Y.reshape((-1), 1) n = X.shape[0] p = X.shape[1] q = Y.shape[1] if ((self.n_components < 1) or (self.n_components > p)): raise ValueError(('Invalid number of components: %d' % self.n_components)) if (self.algorithm not in ('svd', 'nipals')): raise ValueError(("Got algorithm %s when only 'svd' and 'nipals' are known" % self.algorithm)) if ((self.algorithm == 'svd') and (self.mode == 'B')): raise ValueError('Incompatible configuration: mode B is not implemented with svd algorithm') if (self.deflation_mode not in ['canonical', 'regression']): raise ValueError('The deflation mode is unknown') (X, Y, self.x_mean_, self.y_mean_, self.x_std_, self.y_std_) = _center_scale_xy(X, Y, self.scale) Xk = X Yk = Y self.x_scores_ = np.zeros((n, self.n_components)) self.y_scores_ = np.zeros((n, self.n_components)) self.x_weights_ = np.zeros((p, self.n_components)) self.y_weights_ = np.zeros((q, self.n_components)) self.x_loadings_ = np.zeros((p, self.n_components)) self.y_loadings_ = np.zeros((q, self.n_components)) self.n_iter_ = [] for k in range(self.n_components): if np.all((np.dot(Yk.T, Yk) < np.finfo(np.double).eps)): warnings.warn(('Y residual constant at iteration %s' % k)) break if (self.algorithm == 'nipals'): (x_weights, y_weights, n_iter_) = _nipals_twoblocks_inner_loop(X=Xk, Y=Yk, mode=self.mode, max_iter=self.max_iter, tol=self.tol, norm_y_weights=self.norm_y_weights) self.n_iter_.append(n_iter_) elif (self.algorithm == 'svd'): (x_weights, y_weights) = _svd_cross_product(X=Xk, Y=Yk) (x_weights, y_weights) = svd_flip(x_weights, y_weights.T) y_weights = y_weights.T x_scores = np.dot(Xk, x_weights) if self.norm_y_weights: y_ss = 1 else: y_ss = np.dot(y_weights.T, y_weights) y_scores = (np.dot(Yk, y_weights) / y_ss) if (np.dot(x_scores.T, x_scores) < np.finfo(np.double).eps): warnings.warn(('X scores are null at iteration %s' % k)) break x_loadings = (np.dot(Xk.T, x_scores) / np.dot(x_scores.T, x_scores)) Xk -= np.dot(x_scores, x_loadings.T) if (self.deflation_mode == 'canonical'): y_loadings = (np.dot(Yk.T, y_scores) / np.dot(y_scores.T, y_scores)) Yk -= np.dot(y_scores, y_loadings.T) if (self.deflation_mode == 'regression'): y_loadings = (np.dot(Yk.T, x_scores) / np.dot(x_scores.T, x_scores)) Yk -= np.dot(x_scores, y_loadings.T) self.x_scores_[:, k] = x_scores.ravel() self.y_scores_[:, k] = y_scores.ravel() self.x_weights_[:, k] = x_weights.ravel() self.y_weights_[:, k] = y_weights.ravel() self.x_loadings_[:, k] = x_loadings.ravel() self.y_loadings_[:, k] = y_loadings.ravel() self.x_rotations_ = np.dot(self.x_weights_, pinv2(np.dot(self.x_loadings_.T, self.x_weights_), check_finite=False)) if (Y.shape[1] > 1): self.y_rotations_ = np.dot(self.y_weights_, pinv2(np.dot(self.y_loadings_.T, self.y_weights_), check_finite=False)) else: self.y_rotations_ = np.ones(1) if (True or (self.deflation_mode == 'regression')): self.coef_ = np.dot(self.x_rotations_, self.y_loadings_.T) self.coef_ = (self.coef_ * self.y_std_) return self
'Apply the dimension reduction learned on the train data. Parameters X : array-like, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of predictors. Y : array-like, shape = [n_samples, n_targets] Target vectors, where n_samples is the number of samples and n_targets is the number of response variables. copy : boolean, default True Whether to copy X and Y, or perform in-place normalization. Returns x_scores if Y is not given, (x_scores, y_scores) otherwise.'
def transform(self, X, Y=None, copy=True):
check_is_fitted(self, 'x_mean_') X = check_array(X, copy=copy, dtype=FLOAT_DTYPES) X -= self.x_mean_ X /= self.x_std_ x_scores = np.dot(X, self.x_rotations_) if (Y is not None): Y = check_array(Y, ensure_2d=False, copy=copy, dtype=FLOAT_DTYPES) if (Y.ndim == 1): Y = Y.reshape((-1), 1) Y -= self.y_mean_ Y /= self.y_std_ y_scores = np.dot(Y, self.y_rotations_) return (x_scores, y_scores) return x_scores
'Apply the dimension reduction learned on the train data. Parameters X : array-like, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of predictors. copy : boolean, default True Whether to copy X and Y, or perform in-place normalization. Notes This call requires the estimation of a p x q matrix, which may be an issue in high dimensional space.'
def predict(self, X, copy=True):
check_is_fitted(self, 'x_mean_') X = check_array(X, copy=copy, dtype=FLOAT_DTYPES) X -= self.x_mean_ X /= self.x_std_ Ypred = np.dot(X, self.coef_) return (Ypred + self.y_mean_)
'Learn and apply the dimension reduction on the train data. Parameters X : array-like, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of predictors. y : array-like, shape = [n_samples, n_targets] Target vectors, where n_samples is the number of samples and n_targets is the number of response variables. Returns x_scores if Y is not given, (x_scores, y_scores) otherwise.'
def fit_transform(self, X, y=None):
return self.fit(X, y).transform(X, y)
'Fit model to data. Parameters X : array-like, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of predictors. Y : array-like, shape = [n_samples, n_targets] Target vectors, where n_samples is the number of samples and n_targets is the number of response variables.'
def fit(self, X, Y):
check_consistent_length(X, Y) X = check_array(X, dtype=np.float64, copy=self.copy) Y = check_array(Y, dtype=np.float64, copy=self.copy, ensure_2d=False) if (Y.ndim == 1): Y = Y.reshape((-1), 1) if (self.n_components > max(Y.shape[1], X.shape[1])): raise ValueError(('Invalid number of components n_components=%d with X of shape %s and Y of shape %s.' % (self.n_components, str(X.shape), str(Y.shape)))) (X, Y, self.x_mean_, self.y_mean_, self.x_std_, self.y_std_) = _center_scale_xy(X, Y, self.scale) C = np.dot(X.T, Y) if (self.n_components >= np.min(C.shape)): (U, s, V) = svd(C, full_matrices=False) else: (U, s, V) = svds(C, k=self.n_components) (U, V) = svd_flip(U, V) V = V.T self.x_scores_ = np.dot(X, U) self.y_scores_ = np.dot(Y, V) self.x_weights_ = U self.y_weights_ = V return self
'Apply the dimension reduction learned on the train data. Parameters X : array-like, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of predictors. Y : array-like, shape = [n_samples, n_targets] Target vectors, where n_samples is the number of samples and n_targets is the number of response variables.'
def transform(self, X, Y=None):
check_is_fitted(self, 'x_mean_') X = check_array(X, dtype=np.float64) Xr = ((X - self.x_mean_) / self.x_std_) x_scores = np.dot(Xr, self.x_weights_) if (Y is not None): if (Y.ndim == 1): Y = Y.reshape((-1), 1) Yr = ((Y - self.y_mean_) / self.y_std_) y_scores = np.dot(Yr, self.y_weights_) return (x_scores, y_scores) return x_scores
'Learn and apply the dimension reduction on the train data. Parameters X : array-like, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of predictors. y : array-like, shape = [n_samples, n_targets] Target vectors, where n_samples is the number of samples and n_targets is the number of response variables. Returns x_scores if Y is not given, (x_scores, y_scores) otherwise.'
def fit_transform(self, X, y=None):
return self.fit(X, y).transform(X, y)
'Fit the imputer on X. Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features) Input data, where ``n_samples`` is the number of samples and ``n_features`` is the number of features. Returns self : object Returns self.'
def fit(self, X, y=None):
allowed_strategies = ['mean', 'median', 'most_frequent'] if (self.strategy not in allowed_strategies): raise ValueError('Can only use these strategies: {0} got strategy={1}'.format(allowed_strategies, self.strategy)) if (self.axis not in [0, 1]): raise ValueError('Can only impute missing values on axis 0 and 1, got axis={0}'.format(self.axis)) if (self.axis == 0): X = check_array(X, accept_sparse='csc', dtype=np.float64, force_all_finite=False) if sparse.issparse(X): self.statistics_ = self._sparse_fit(X, self.strategy, self.missing_values, self.axis) else: self.statistics_ = self._dense_fit(X, self.strategy, self.missing_values, self.axis) return self
'Fit the transformer on sparse data.'
def _sparse_fit(self, X, strategy, missing_values, axis):
if (axis == 1): X = X.tocsr() else: X = X.tocsc() if (missing_values == 0): n_zeros_axis = np.zeros(X.shape[(not axis)], dtype=int) else: n_zeros_axis = (X.shape[axis] - np.diff(X.indptr)) if (strategy == 'mean'): if (missing_values != 0): n_non_missing = n_zeros_axis mask_missing_values = _get_mask(X.data, missing_values) mask_valids = np.logical_not(mask_missing_values) new_data = X.data.copy() new_data[mask_missing_values] = 0 X = sparse.csc_matrix((new_data, X.indices, X.indptr), copy=False) sums = X.sum(axis=0) mask_non_zeros = sparse.csc_matrix((mask_valids.astype(np.float64), X.indices, X.indptr), copy=False) s = mask_non_zeros.sum(axis=0) n_non_missing = np.add(n_non_missing, s) else: sums = X.sum(axis=axis) n_non_missing = np.diff(X.indptr) with np.errstate(all='ignore'): return (np.ravel(sums) / np.ravel(n_non_missing)) else: columns_all = np.hsplit(X.data, X.indptr[1:(-1)]) mask_missing_values = _get_mask(X.data, missing_values) mask_valids = np.hsplit(np.logical_not(mask_missing_values), X.indptr[1:(-1)]) columns = [col[mask.astype(bool, copy=False)] for (col, mask) in zip(columns_all, mask_valids)] if (strategy == 'median'): median = np.empty(len(columns)) for (i, column) in enumerate(columns): median[i] = _get_median(column, n_zeros_axis[i]) return median elif (strategy == 'most_frequent'): most_frequent = np.empty(len(columns)) for (i, column) in enumerate(columns): most_frequent[i] = _most_frequent(column, 0, n_zeros_axis[i]) return most_frequent
'Fit the transformer on dense data.'
def _dense_fit(self, X, strategy, missing_values, axis):
X = check_array(X, force_all_finite=False) mask = _get_mask(X, missing_values) masked_X = ma.masked_array(X, mask=mask) if (strategy == 'mean'): mean_masked = np.ma.mean(masked_X, axis=axis) mean = np.ma.getdata(mean_masked) mean[np.ma.getmask(mean_masked)] = np.nan return mean elif (strategy == 'median'): if (tuple((int(v) for v in np.__version__.split('.')[:2])) < (1, 5)): masked_X.mask = np.logical_or(masked_X.mask, np.isnan(X)) median_masked = np.ma.median(masked_X, axis=axis) median = np.ma.getdata(median_masked) median[np.ma.getmaskarray(median_masked)] = np.nan return median elif (strategy == 'most_frequent'): if (axis == 0): X = X.transpose() mask = mask.transpose() most_frequent = np.empty(X.shape[0]) for (i, (row, row_mask)) in enumerate(zip(X[:], mask[:])): row_mask = np.logical_not(row_mask).astype(np.bool) row = row[row_mask] most_frequent[i] = _most_frequent(row, np.nan, 0) return most_frequent
'Impute all missing values in X. Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features] The input data to complete.'
def transform(self, X):
if (self.axis == 0): check_is_fitted(self, 'statistics_') X = check_array(X, accept_sparse='csc', dtype=FLOAT_DTYPES, force_all_finite=False, copy=self.copy) statistics = self.statistics_ if (X.shape[1] != statistics.shape[0]): raise ValueError(('X has %d features per sample, expected %d' % (X.shape[1], self.statistics_.shape[0]))) else: X = check_array(X, accept_sparse='csr', dtype=FLOAT_DTYPES, force_all_finite=False, copy=self.copy) if sparse.issparse(X): statistics = self._sparse_fit(X, self.strategy, self.missing_values, self.axis) else: statistics = self._dense_fit(X, self.strategy, self.missing_values, self.axis) invalid_mask = np.isnan(statistics) valid_mask = np.logical_not(invalid_mask) valid_statistics = statistics[valid_mask] valid_statistics_indexes = np.where(valid_mask)[0] missing = np.arange(X.shape[(not self.axis)])[invalid_mask] if ((self.axis == 0) and invalid_mask.any()): if self.verbose: warnings.warn(('Deleting features without observed values: %s' % missing)) X = X[:, valid_statistics_indexes] elif ((self.axis == 1) and invalid_mask.any()): raise ValueError(('Some rows only contain missing values: %s' % missing)) if (sparse.issparse(X) and (self.missing_values != 0)): mask = _get_mask(X.data, self.missing_values) indexes = np.repeat(np.arange((len(X.indptr) - 1), dtype=np.int), np.diff(X.indptr))[mask] X.data[mask] = valid_statistics[indexes].astype(X.dtype, copy=False) else: if sparse.issparse(X): X = X.toarray() mask = _get_mask(X, self.missing_values) n_missing = np.sum(mask, axis=self.axis) values = np.repeat(valid_statistics, n_missing) if (self.axis == 0): coordinates = np.where(mask.transpose())[::(-1)] else: coordinates = mask X[coordinates] = values return X
'Fit transformer by checking X. If ``validate`` is ``True``, ``X`` will be checked. Parameters X : array-like, shape (n_samples, n_features) Input array. Returns self'
def fit(self, X, y=None):
if self.validate: check_array(X, self.accept_sparse) return self
'Transform X using the forward function. Parameters X : array-like, shape (n_samples, n_features) Input array. y : (ignored) .. deprecated::0.19 Returns X_out : array-like, shape (n_samples, n_features) Transformed input.'
def transform(self, X, y='deprecated'):
if ((not isinstance(y, string_types)) or (y != 'deprecated')): warnings.warn('The parameter y on transform() is deprecated since 0.19 and will be removed in 0.21', DeprecationWarning) return self._transform(X, y=y, func=self.func, kw_args=self.kw_args)
'Transform X using the inverse function. Parameters X : array-like, shape (n_samples, n_features) Input array. y : (ignored) .. deprecated::0.19 Returns X_out : array-like, shape (n_samples, n_features) Transformed input.'
def inverse_transform(self, X, y='deprecated'):
if ((not isinstance(y, string_types)) or (y != 'deprecated')): warnings.warn('The parameter y on inverse_transform() is deprecated since 0.19 and will be removed in 0.21', DeprecationWarning) return self._transform(X, y=y, func=self.inverse_func, kw_args=self.inv_kw_args)
'Reset internal data-dependent state of the scaler, if necessary. __init__ parameters are not touched.'
def _reset(self):
if hasattr(self, 'scale_'): del self.scale_ del self.min_ del self.n_samples_seen_ del self.data_min_ del self.data_max_ del self.data_range_
'Compute the minimum and maximum to be used for later scaling. Parameters X : array-like, shape [n_samples, n_features] The data used to compute the per-feature minimum and maximum used for later scaling along the features axis.'
def fit(self, X, y=None):
self._reset() return self.partial_fit(X, y)
'Online computation of min and max on X for later scaling. All of X is processed as a single batch. This is intended for cases when `fit` is not feasible due to very large number of `n_samples` or because X is read from a continuous stream. Parameters X : array-like, shape [n_samples, n_features] The data used to compute the mean and standard deviation used for later scaling along the features axis. y : Passthrough for ``Pipeline`` compatibility.'
def partial_fit(self, X, y=None):
feature_range = self.feature_range if (feature_range[0] >= feature_range[1]): raise ValueError(('Minimum of desired feature range must be smaller than maximum. Got %s.' % str(feature_range))) if sparse.issparse(X): raise TypeError('MinMaxScaler does no support sparse input. You may consider to use MaxAbsScaler instead.') X = check_array(X, copy=self.copy, warn_on_dtype=True, estimator=self, dtype=FLOAT_DTYPES) data_min = np.min(X, axis=0) data_max = np.max(X, axis=0) if (not hasattr(self, 'n_samples_seen_')): self.n_samples_seen_ = X.shape[0] else: data_min = np.minimum(self.data_min_, data_min) data_max = np.maximum(self.data_max_, data_max) self.n_samples_seen_ += X.shape[0] data_range = (data_max - data_min) self.scale_ = ((feature_range[1] - feature_range[0]) / _handle_zeros_in_scale(data_range)) self.min_ = (feature_range[0] - (data_min * self.scale_)) self.data_min_ = data_min self.data_max_ = data_max self.data_range_ = data_range return self
'Scaling features of X according to feature_range. Parameters X : array-like, shape [n_samples, n_features] Input data that will be transformed.'
def transform(self, X):
check_is_fitted(self, 'scale_') X = check_array(X, copy=self.copy, dtype=FLOAT_DTYPES) X *= self.scale_ X += self.min_ return X
'Undo the scaling of X according to feature_range. Parameters X : array-like, shape [n_samples, n_features] Input data that will be transformed. It cannot be sparse.'
def inverse_transform(self, X):
check_is_fitted(self, 'scale_') X = check_array(X, copy=self.copy, dtype=FLOAT_DTYPES) X -= self.min_ X /= self.scale_ return X
'Reset internal data-dependent state of the scaler, if necessary. __init__ parameters are not touched.'
def _reset(self):
if hasattr(self, 'scale_'): del self.scale_ del self.n_samples_seen_ del self.mean_ del self.var_
'Compute the mean and std to be used for later scaling. Parameters X : {array-like, sparse matrix}, shape [n_samples, n_features] The data used to compute the mean and standard deviation used for later scaling along the features axis. y : Passthrough for ``Pipeline`` compatibility.'
def fit(self, X, y=None):
self._reset() return self.partial_fit(X, y)
'Online computation of mean and std on X for later scaling. All of X is processed as a single batch. This is intended for cases when `fit` is not feasible due to very large number of `n_samples` or because X is read from a continuous stream. The algorithm for incremental mean and std is given in Equation 1.5a,b in Chan, Tony F., Gene H. Golub, and Randall J. LeVeque. "Algorithms for computing the sample variance: Analysis and recommendations." The American Statistician 37.3 (1983): 242-247: Parameters X : {array-like, sparse matrix}, shape [n_samples, n_features] The data used to compute the mean and standard deviation used for later scaling along the features axis. y : Passthrough for ``Pipeline`` compatibility.'
def partial_fit(self, X, y=None):
X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, warn_on_dtype=True, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): if self.with_mean: raise ValueError('Cannot center sparse matrices: pass `with_mean=False` instead. See docstring for motivation and alternatives.') if self.with_std: if (not hasattr(self, 'n_samples_seen_')): (self.mean_, self.var_) = mean_variance_axis(X, axis=0) self.n_samples_seen_ = X.shape[0] else: (self.mean_, self.var_, self.n_samples_seen_) = incr_mean_variance_axis(X, axis=0, last_mean=self.mean_, last_var=self.var_, last_n=self.n_samples_seen_) else: self.mean_ = None self.var_ = None else: if (not hasattr(self, 'n_samples_seen_')): self.mean_ = 0.0 self.n_samples_seen_ = 0 if self.with_std: self.var_ = 0.0 else: self.var_ = None (self.mean_, self.var_, self.n_samples_seen_) = _incremental_mean_and_var(X, self.mean_, self.var_, self.n_samples_seen_) if self.with_std: self.scale_ = _handle_zeros_in_scale(np.sqrt(self.var_)) else: self.scale_ = None return self
'Perform standardization by centering and scaling Parameters X : array-like, shape [n_samples, n_features] The data used to scale along the features axis. y : (ignored) .. deprecated:: 0.19 This parameter will be removed in 0.21. copy : bool, optional (default: None) Copy the input X or not.'
def transform(self, X, y='deprecated', copy=None):
if ((not isinstance(y, string_types)) or (y != 'deprecated')): warnings.warn('The parameter y on transform() is deprecated since 0.19 and will be removed in 0.21', DeprecationWarning) check_is_fitted(self, 'scale_') copy = (copy if (copy is not None) else self.copy) X = check_array(X, accept_sparse='csr', copy=copy, warn_on_dtype=True, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): if self.with_mean: raise ValueError('Cannot center sparse matrices: pass `with_mean=False` instead. See docstring for motivation and alternatives.') if (self.scale_ is not None): inplace_column_scale(X, (1 / self.scale_)) else: if self.with_mean: X -= self.mean_ if self.with_std: X /= self.scale_ return X
'Scale back the data to the original representation Parameters X : array-like, shape [n_samples, n_features] The data used to scale along the features axis. copy : bool, optional (default: None) Copy the input X or not. Returns X_tr : array-like, shape [n_samples, n_features] Transformed array.'
def inverse_transform(self, X, copy=None):
check_is_fitted(self, 'scale_') copy = (copy if (copy is not None) else self.copy) if sparse.issparse(X): if self.with_mean: raise ValueError('Cannot uncenter sparse matrices: pass `with_mean=False` instead See docstring for motivation and alternatives.') if (not sparse.isspmatrix_csr(X)): X = X.tocsr() copy = False if copy: X = X.copy() if (self.scale_ is not None): inplace_column_scale(X, self.scale_) else: X = np.asarray(X) if copy: X = X.copy() if self.with_std: X *= self.scale_ if self.with_mean: X += self.mean_ return X
'Reset internal data-dependent state of the scaler, if necessary. __init__ parameters are not touched.'
def _reset(self):
if hasattr(self, 'scale_'): del self.scale_ del self.n_samples_seen_ del self.max_abs_
'Compute the maximum absolute value to be used for later scaling. Parameters X : {array-like, sparse matrix}, shape [n_samples, n_features] The data used to compute the per-feature minimum and maximum used for later scaling along the features axis.'
def fit(self, X, y=None):
self._reset() return self.partial_fit(X, y)
'Online computation of max absolute value of X for later scaling. All of X is processed as a single batch. This is intended for cases when `fit` is not feasible due to very large number of `n_samples` or because X is read from a continuous stream. Parameters X : {array-like, sparse matrix}, shape [n_samples, n_features] The data used to compute the mean and standard deviation used for later scaling along the features axis. y : Passthrough for ``Pipeline`` compatibility.'
def partial_fit(self, X, y=None):
X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): (mins, maxs) = min_max_axis(X, axis=0) max_abs = np.maximum(np.abs(mins), np.abs(maxs)) else: max_abs = np.abs(X).max(axis=0) if (not hasattr(self, 'n_samples_seen_')): self.n_samples_seen_ = X.shape[0] else: max_abs = np.maximum(self.max_abs_, max_abs) self.n_samples_seen_ += X.shape[0] self.max_abs_ = max_abs self.scale_ = _handle_zeros_in_scale(max_abs) return self
'Scale the data Parameters X : {array-like, sparse matrix} The data that should be scaled.'
def transform(self, X):
check_is_fitted(self, 'scale_') X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): inplace_column_scale(X, (1.0 / self.scale_)) else: X /= self.scale_ return X
'Scale back the data to the original representation Parameters X : {array-like, sparse matrix} The data that should be transformed back.'
def inverse_transform(self, X):
check_is_fitted(self, 'scale_') X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): inplace_column_scale(X, self.scale_) else: X *= self.scale_ return X
'Makes sure centering is not enabled for sparse matrices.'
def _check_array(self, X, copy):
X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): if self.with_centering: raise ValueError('Cannot center sparse matrices: use `with_centering=False` instead. See docstring for motivation and alternatives.') return X
'Compute the median and quantiles to be used for scaling. Parameters X : array-like, shape [n_samples, n_features] The data used to compute the median and quantiles used for later scaling along the features axis.'
def fit(self, X, y=None):
if sparse.issparse(X): raise TypeError('RobustScaler cannot be fitted on sparse inputs') X = self._check_array(X, self.copy) if self.with_centering: self.center_ = np.median(X, axis=0) if self.with_scaling: (q_min, q_max) = self.quantile_range if (not (0 <= q_min <= q_max <= 100)): raise ValueError(('Invalid quantile range: %s' % str(self.quantile_range))) q = np.percentile(X, self.quantile_range, axis=0) self.scale_ = (q[1] - q[0]) self.scale_ = _handle_zeros_in_scale(self.scale_, copy=False) return self
'Center and scale the data. Can be called on sparse input, provided that ``RobustScaler`` has been fitted to dense input and ``with_centering=False``. Parameters X : {array-like, sparse matrix} The data used to scale along the specified axis.'
def transform(self, X):
if self.with_centering: check_is_fitted(self, 'center_') if self.with_scaling: check_is_fitted(self, 'scale_') X = self._check_array(X, self.copy) if sparse.issparse(X): if self.with_scaling: inplace_column_scale(X, (1.0 / self.scale_)) else: if self.with_centering: X -= self.center_ if self.with_scaling: X /= self.scale_ return X
'Scale back the data to the original representation Parameters X : array-like The data used to scale along the specified axis.'
def inverse_transform(self, X):
if self.with_centering: check_is_fitted(self, 'center_') if self.with_scaling: check_is_fitted(self, 'scale_') X = self._check_array(X, self.copy) if sparse.issparse(X): if self.with_scaling: inplace_column_scale(X, self.scale_) else: if self.with_scaling: X *= self.scale_ if self.with_centering: X += self.center_ return X
'Return feature names for output features Parameters input_features : list of string, length n_features, optional String names for input features if available. By default, "x0", "x1", ... "xn_features" is used. Returns output_feature_names : list of string, length n_output_features'
def get_feature_names(self, input_features=None):
powers = self.powers_ if (input_features is None): input_features = [('x%d' % i) for i in range(powers.shape[1])] feature_names = [] for row in powers: inds = np.where(row)[0] if len(inds): name = ' '.join(((('%s^%d' % (input_features[ind], exp)) if (exp != 1) else input_features[ind]) for (ind, exp) in zip(inds, row[inds]))) else: name = '1' feature_names.append(name) return feature_names
'Compute number of output features. Parameters X : array-like, shape (n_samples, n_features) The data. Returns self : instance'
def fit(self, X, y=None):
(n_samples, n_features) = check_array(X).shape combinations = self._combinations(n_features, self.degree, self.interaction_only, self.include_bias) self.n_input_features_ = n_features self.n_output_features_ = sum((1 for _ in combinations)) return self
'Transform data to polynomial features Parameters X : array-like, shape [n_samples, n_features] The data to transform, row by row. Returns XP : np.ndarray shape [n_samples, NP] The matrix of features, where NP is the number of polynomial features generated from the combination of inputs.'
def transform(self, X):
check_is_fitted(self, ['n_input_features_', 'n_output_features_']) X = check_array(X, dtype=FLOAT_DTYPES) (n_samples, n_features) = X.shape if (n_features != self.n_input_features_): raise ValueError('X shape does not match training shape') XP = np.empty((n_samples, self.n_output_features_), dtype=X.dtype) combinations = self._combinations(n_features, self.degree, self.interaction_only, self.include_bias) for (i, c) in enumerate(combinations): XP[:, i] = X[:, c].prod(1) return XP
'Do nothing and return the estimator unchanged This method is just there to implement the usual API and hence work in pipelines. Parameters X : array-like'
def fit(self, X, y=None):
X = check_array(X, accept_sparse='csr') return self
'Scale each non zero row of X to unit norm Parameters X : {array-like, sparse matrix}, shape [n_samples, n_features] The data to normalize, row by row. scipy.sparse matrices should be in CSR format to avoid an un-necessary copy. y : (ignored) .. deprecated:: 0.19 This parameter will be removed in 0.21. copy : bool, optional (default: None) Copy the input X or not.'
def transform(self, X, y='deprecated', copy=None):
if ((not isinstance(y, string_types)) or (y != 'deprecated')): warnings.warn('The parameter y on transform() is deprecated since 0.19 and will be removed in 0.21', DeprecationWarning) copy = (copy if (copy is not None) else self.copy) X = check_array(X, accept_sparse='csr') return normalize(X, norm=self.norm, axis=1, copy=copy)
'Do nothing and return the estimator unchanged This method is just there to implement the usual API and hence work in pipelines. Parameters X : array-like'
def fit(self, X, y=None):
check_array(X, accept_sparse='csr') return self
'Binarize each element of X Parameters X : {array-like, sparse matrix}, shape [n_samples, n_features] The data to binarize, element by element. scipy.sparse matrices should be in CSR format to avoid an un-necessary copy. y : (ignored) .. deprecated:: 0.19 This parameter will be removed in 0.21. copy : bool Copy the input X or not.'
def transform(self, X, y='deprecated', copy=None):
if ((not isinstance(y, string_types)) or (y != 'deprecated')): warnings.warn('The parameter y on transform() is deprecated since 0.19 and will be removed in 0.21', DeprecationWarning) copy = (copy if (copy is not None) else self.copy) return binarize(X, threshold=self.threshold, copy=copy)
'Fit KernelCenterer Parameters K : numpy array of shape [n_samples, n_samples] Kernel matrix. Returns self : returns an instance of self.'
def fit(self, K, y=None):
K = check_array(K, dtype=FLOAT_DTYPES) n_samples = K.shape[0] self.K_fit_rows_ = (np.sum(K, axis=0) / n_samples) self.K_fit_all_ = (self.K_fit_rows_.sum() / n_samples) return self
'Center kernel matrix. Parameters K : numpy array of shape [n_samples1, n_samples2] Kernel matrix. y : (ignored) .. deprecated:: 0.19 This parameter will be removed in 0.21. copy : boolean, optional, default True Set to False to perform inplace computation. Returns K_new : numpy array of shape [n_samples1, n_samples2]'
def transform(self, K, y='deprecated', copy=True):
if ((not isinstance(y, string_types)) or (y != 'deprecated')): warnings.warn('The parameter y on transform() is deprecated since 0.19 and will be removed in 0.21', DeprecationWarning) check_is_fitted(self, 'K_fit_all_') K = check_array(K, copy=copy, dtype=FLOAT_DTYPES) K_pred_cols = (np.sum(K, axis=1) / self.K_fit_rows_.shape[0])[:, np.newaxis] K -= self.K_fit_rows_ K -= K_pred_cols K += self.K_fit_all_ return K
'Fit OneHotEncoder to X. Parameters X : array-like, shape [n_samples, n_feature] Input array of type int. Returns self'
def fit(self, X, y=None):
self.fit_transform(X) return self
'Assumes X contains only categorical features.'
def _fit_transform(self, X):
X = check_array(X, dtype=np.int) if np.any((X < 0)): raise ValueError('X needs to contain only non-negative integers.') (n_samples, n_features) = X.shape if (isinstance(self.n_values, six.string_types) and (self.n_values == 'auto')): n_values = (np.max(X, axis=0) + 1) elif isinstance(self.n_values, numbers.Integral): if (np.max(X, axis=0) >= self.n_values).any(): raise ValueError(('Feature out of bounds for n_values=%d' % self.n_values)) n_values = np.empty(n_features, dtype=np.int) n_values.fill(self.n_values) else: try: n_values = np.asarray(self.n_values, dtype=int) except (ValueError, TypeError): raise TypeError(("Wrong type for parameter `n_values`. Expected 'auto', int or array of ints, got %r" % type(X))) if ((n_values.ndim < 1) or (n_values.shape[0] != X.shape[1])): raise ValueError('Shape mismatch: if n_values is an array, it has to be of shape (n_features,).') self.n_values_ = n_values n_values = np.hstack([[0], n_values]) indices = np.cumsum(n_values) self.feature_indices_ = indices column_indices = (X + indices[:(-1)]).ravel() row_indices = np.repeat(np.arange(n_samples, dtype=np.int32), n_features) data = np.ones((n_samples * n_features)) out = sparse.coo_matrix((data, (row_indices, column_indices)), shape=(n_samples, indices[(-1)]), dtype=self.dtype).tocsr() if (isinstance(self.n_values, six.string_types) and (self.n_values == 'auto')): mask = (np.array(out.sum(axis=0)).ravel() != 0) active_features = np.where(mask)[0] out = out[:, active_features] self.active_features_ = active_features return (out if self.sparse else out.toarray())
'Fit OneHotEncoder to X, then transform X. Equivalent to self.fit(X).transform(X), but more convenient and more efficient. See fit for the parameters, transform for the return value. Parameters X : array-like, shape [n_samples, n_feature] Input array of type int.'
def fit_transform(self, X, y=None):
return _transform_selected(X, self._fit_transform, self.categorical_features, copy=True)
'Assumes X contains only categorical features.'
def _transform(self, X):
X = check_array(X, dtype=np.int) if np.any((X < 0)): raise ValueError('X needs to contain only non-negative integers.') (n_samples, n_features) = X.shape indices = self.feature_indices_ if (n_features != (indices.shape[0] - 1)): raise ValueError(('X has different shape than during fitting. Expected %d, got %d.' % ((indices.shape[0] - 1), n_features))) mask = (X < self.n_values_).ravel() if np.any((~ mask)): if (self.handle_unknown not in ['error', 'ignore']): raise ValueError(('handle_unknown should be either error or unknown got %s' % self.handle_unknown)) if (self.handle_unknown == 'error'): raise ValueError(('unknown categorical feature present %s during transform.' % X.ravel()[(~ mask)])) column_indices = (X + indices[:(-1)]).ravel()[mask] row_indices = np.repeat(np.arange(n_samples, dtype=np.int32), n_features)[mask] data = np.ones(np.sum(mask)) out = sparse.coo_matrix((data, (row_indices, column_indices)), shape=(n_samples, indices[(-1)]), dtype=self.dtype).tocsr() if (isinstance(self.n_values, six.string_types) and (self.n_values == 'auto')): out = out[:, self.active_features_] return (out if self.sparse else out.toarray())
'Transform X using one-hot encoding. Parameters X : array-like, shape [n_samples, n_features] Input array of type int. Returns X_out : sparse matrix if sparse=True else a 2-d array, dtype=int Transformed input.'
def transform(self, X):
return _transform_selected(X, self._transform, self.categorical_features, copy=True)
'Compute percentiles for dense matrices. Parameters X : ndarray, shape (n_samples, n_features) The data used to scale along the features axis.'
def _dense_fit(self, X, random_state):
if self.ignore_implicit_zeros: warnings.warn("'ignore_implicit_zeros' takes effect only with sparse matrix. This parameter has no effect.") (n_samples, n_features) = X.shape references = (self.references_ * 100).tolist() self.quantiles_ = [] for col in X.T: if (self.subsample < n_samples): subsample_idx = random_state.choice(n_samples, size=self.subsample, replace=False) col = col.take(subsample_idx, mode='clip') self.quantiles_.append(np.percentile(col, references)) self.quantiles_ = np.transpose(self.quantiles_)
'Compute percentiles for sparse matrices. Parameters X : sparse matrix CSC, shape (n_samples, n_features) The data used to scale along the features axis. The sparse matrix needs to be nonnegative.'
def _sparse_fit(self, X, random_state):
(n_samples, n_features) = X.shape references = list(map((lambda x: (x * 100)), self.references_)) self.quantiles_ = [] for feature_idx in range(n_features): column_nnz_data = X.data[X.indptr[feature_idx]:X.indptr[(feature_idx + 1)]] if (len(column_nnz_data) > self.subsample): column_subsample = ((self.subsample * len(column_nnz_data)) // n_samples) if self.ignore_implicit_zeros: column_data = np.zeros(shape=column_subsample, dtype=X.dtype) else: column_data = np.zeros(shape=self.subsample, dtype=X.dtype) column_data[:column_subsample] = random_state.choice(column_nnz_data, size=column_subsample, replace=False) else: if self.ignore_implicit_zeros: column_data = np.zeros(shape=len(column_nnz_data), dtype=X.dtype) else: column_data = np.zeros(shape=n_samples, dtype=X.dtype) column_data[:len(column_nnz_data)] = column_nnz_data if (not column_data.size): self.quantiles_.append(([0] * len(references))) else: self.quantiles_.append(np.percentile(column_data, references)) self.quantiles_ = np.transpose(self.quantiles_)
'Compute the quantiles used for transforming. Parameters X : ndarray or sparse matrix, shape (n_samples, n_features) The data used to scale along the features axis. If a sparse matrix is provided, it will be converted into a sparse ``csc_matrix``. Additionally, the sparse matrix needs to be nonnegative if `ignore_implicit_zeros` is False. Returns self : object Returns self'
def fit(self, X, y=None):
if (self.n_quantiles <= 0): raise ValueError(("Invalid value for 'n_quantiles': %d. The number of quantiles must be at least one." % self.n_quantiles)) if (self.subsample <= 0): raise ValueError(("Invalid value for 'subsample': %d. The number of subsamples must be at least one." % self.subsample)) if (self.n_quantiles > self.subsample): raise ValueError('The number of quantiles cannot be greater than the number of samples used. Got {} quantiles and {} samples.'.format(self.n_quantiles, self.subsample)) X = self._check_inputs(X) rng = check_random_state(self.random_state) self.references_ = np.linspace(0, 1, self.n_quantiles, endpoint=True) if sparse.issparse(X): self._sparse_fit(X, rng) else: self._dense_fit(X, rng) return self
'Private function to transform a single feature'
def _transform_col(self, X_col, quantiles, inverse):
if (self.output_distribution == 'normal'): output_distribution = 'norm' else: output_distribution = self.output_distribution output_distribution = getattr(stats, output_distribution) if (not inverse): lower_bound_x = quantiles[0] upper_bound_x = quantiles[(-1)] lower_bound_y = 0 upper_bound_y = 1 else: lower_bound_x = 0 upper_bound_x = 1 lower_bound_y = quantiles[0] upper_bound_y = quantiles[(-1)] X_col = output_distribution.cdf(X_col) lower_bounds_idx = ((X_col - BOUNDS_THRESHOLD) < lower_bound_x) upper_bounds_idx = ((X_col + BOUNDS_THRESHOLD) > upper_bound_x) if (not inverse): X_col = (0.5 * (np.interp(X_col, quantiles, self.references_) - np.interp((- X_col), (- quantiles[::(-1)]), (- self.references_[::(-1)])))) else: X_col = np.interp(X_col, self.references_, quantiles) X_col[upper_bounds_idx] = upper_bound_y X_col[lower_bounds_idx] = lower_bound_y if (not inverse): X_col = output_distribution.ppf(X_col) clip_min = output_distribution.ppf((BOUNDS_THRESHOLD - np.spacing(1))) clip_max = output_distribution.ppf((1 - (BOUNDS_THRESHOLD - np.spacing(1)))) X_col = np.clip(X_col, clip_min, clip_max) return X_col
'Check inputs before fit and transform'
def _check_inputs(self, X, accept_sparse_negative=False):
X = check_array(X, accept_sparse='csc', copy=self.copy, dtype=[np.float64, np.float32]) if ((not accept_sparse_negative) and (not self.ignore_implicit_zeros) and (sparse.issparse(X) and np.any((X.data < 0)))): raise ValueError('QuantileTransformer only accepts non-negative sparse matrices.') if (self.output_distribution not in ('normal', 'uniform')): raise ValueError("'output_distribution' has to be either 'normal' or 'uniform'. Got '{}' instead.".format(self.output_distribution)) return X
'Check the inputs before transforming'
def _check_is_fitted(self, X):
check_is_fitted(self, 'quantiles_') if (X.shape[1] != self.quantiles_.shape[1]): raise ValueError('X does not have the same number of features as the previously fitted data. Got {} instead of {}.'.format(X.shape[1], self.quantiles_.shape[1]))
'Forward and inverse transform. Parameters X : ndarray, shape (n_samples, n_features) The data used to scale along the features axis. inverse : bool, optional (default=False) If False, apply forward transform. If True, apply inverse transform. Returns X : ndarray, shape (n_samples, n_features) Projected data'
def _transform(self, X, inverse=False):
if sparse.issparse(X): for feature_idx in range(X.shape[1]): column_slice = slice(X.indptr[feature_idx], X.indptr[(feature_idx + 1)]) X.data[column_slice] = self._transform_col(X.data[column_slice], self.quantiles_[:, feature_idx], inverse) else: for feature_idx in range(X.shape[1]): X[:, feature_idx] = self._transform_col(X[:, feature_idx], self.quantiles_[:, feature_idx], inverse) return X
'Feature-wise transformation of the data. Parameters X : ndarray or sparse matrix, shape (n_samples, n_features) The data used to scale along the features axis. If a sparse matrix is provided, it will be converted into a sparse ``csc_matrix``. Additionally, the sparse matrix needs to be nonnegative if `ignore_implicit_zeros` is False. Returns Xt : ndarray or sparse matrix, shape (n_samples, n_features) The projected data.'
def transform(self, X):
X = self._check_inputs(X) self._check_is_fitted(X) return self._transform(X, inverse=False)
'Back-projection to the original space. Parameters X : ndarray or sparse matrix, shape (n_samples, n_features) The data used to scale along the features axis. If a sparse matrix is provided, it will be converted into a sparse ``csc_matrix``. Additionally, the sparse matrix needs to be nonnegative if `ignore_implicit_zeros` is False. Returns Xt : ndarray or sparse matrix, shape (n_samples, n_features) The projected data.'
def inverse_transform(self, X):
X = self._check_inputs(X, accept_sparse_negative=True) self._check_is_fitted(X) return self._transform(X, inverse=True)
'Fit label encoder Parameters y : array-like of shape (n_samples,) Target values. Returns self : returns an instance of self.'
def fit(self, y):
y = column_or_1d(y, warn=True) self.classes_ = np.unique(y) return self
'Fit label encoder and return encoded labels Parameters y : array-like of shape [n_samples] Target values. Returns y : array-like of shape [n_samples]'
def fit_transform(self, y):
y = column_or_1d(y, warn=True) (self.classes_, y) = np.unique(y, return_inverse=True) return y
'Transform labels to normalized encoding. Parameters y : array-like of shape [n_samples] Target values. Returns y : array-like of shape [n_samples]'
def transform(self, y):
check_is_fitted(self, 'classes_') y = column_or_1d(y, warn=True) classes = np.unique(y) if (len(np.intersect1d(classes, self.classes_)) < len(classes)): diff = np.setdiff1d(classes, self.classes_) raise ValueError(('y contains new labels: %s' % str(diff))) return np.searchsorted(self.classes_, y)
'Transform labels back to original encoding. Parameters y : numpy array of shape [n_samples] Target values. Returns y : numpy array of shape [n_samples]'
def inverse_transform(self, y):
check_is_fitted(self, 'classes_') diff = np.setdiff1d(y, np.arange(len(self.classes_))) if diff: raise ValueError(('y contains new labels: %s' % str(diff))) y = np.asarray(y) return self.classes_[y]
'Fit label binarizer Parameters y : array of shape [n_samples,] or [n_samples, n_classes] Target values. The 2-d matrix should only contain 0 and 1, represents multilabel classification. Returns self : returns an instance of self.'
def fit(self, y):
self.y_type_ = type_of_target(y) if ('multioutput' in self.y_type_): raise ValueError('Multioutput target data is not supported with label binarization') if (_num_samples(y) == 0): raise ValueError(('y has 0 samples: %r' % y)) self.sparse_input_ = sp.issparse(y) self.classes_ = unique_labels(y) return self
'Fit label binarizer and transform multi-class labels to binary labels. The output of transform is sometimes referred to as the 1-of-K coding scheme. Parameters y : array or sparse matrix of shape [n_samples,] or [n_samples, n_classes] Target values. The 2-d matrix should only contain 0 and 1, represents multilabel classification. Sparse matrix can be CSR, CSC, COO, DOK, or LIL. Returns Y : array or CSR matrix of shape [n_samples, n_classes] Shape will be [n_samples, 1] for binary problems.'
def fit_transform(self, y):
return self.fit(y).transform(y)
'Transform multi-class labels to binary labels The output of transform is sometimes referred to by some authors as the 1-of-K coding scheme. Parameters y : array or sparse matrix of shape [n_samples,] or [n_samples, n_classes] Target values. The 2-d matrix should only contain 0 and 1, represents multilabel classification. Sparse matrix can be CSR, CSC, COO, DOK, or LIL. Returns Y : numpy array or CSR matrix of shape [n_samples, n_classes] Shape will be [n_samples, 1] for binary problems.'
def transform(self, y):
check_is_fitted(self, 'classes_') y_is_multilabel = type_of_target(y).startswith('multilabel') if (y_is_multilabel and (not self.y_type_.startswith('multilabel'))): raise ValueError('The object was not fitted with multilabel input.') return label_binarize(y, self.classes_, pos_label=self.pos_label, neg_label=self.neg_label, sparse_output=self.sparse_output)
'Transform binary labels back to multi-class labels Parameters Y : numpy array or sparse matrix with shape [n_samples, n_classes] Target values. All sparse matrices are converted to CSR before inverse transformation. threshold : float or None Threshold used in the binary and multi-label cases. Use 0 when ``Y`` contains the output of decision_function (classifier). Use 0.5 when ``Y`` contains the output of predict_proba. If None, the threshold is assumed to be half way between neg_label and pos_label. Returns y : numpy array or CSR matrix of shape [n_samples] Target values. Notes In the case when the binary labels are fractional (probabilistic), inverse_transform chooses the class with the greatest value. Typically, this allows to use the output of a linear model\'s decision_function method directly as the input of inverse_transform.'
def inverse_transform(self, Y, threshold=None):
check_is_fitted(self, 'classes_') if (threshold is None): threshold = ((self.pos_label + self.neg_label) / 2.0) if (self.y_type_ == 'multiclass'): y_inv = _inverse_binarize_multiclass(Y, self.classes_) else: y_inv = _inverse_binarize_thresholding(Y, self.y_type_, self.classes_, threshold) if self.sparse_input_: y_inv = sp.csr_matrix(y_inv) elif sp.issparse(y_inv): y_inv = y_inv.toarray() return y_inv
'Fit the label sets binarizer, storing `classes_` Parameters y : iterable of iterables A set of labels (any orderable and hashable object) for each sample. If the `classes` parameter is set, `y` will not be iterated. Returns self : returns this MultiLabelBinarizer instance'
def fit(self, y):
if (self.classes is None): classes = sorted(set(itertools.chain.from_iterable(y))) else: classes = self.classes dtype = (np.int if all((isinstance(c, int) for c in classes)) else object) self.classes_ = np.empty(len(classes), dtype=dtype) self.classes_[:] = classes return self
'Fit the label sets binarizer and transform the given label sets Parameters y : iterable of iterables A set of labels (any orderable and hashable object) for each sample. If the `classes` parameter is set, `y` will not be iterated. Returns y_indicator : array or CSR matrix, shape (n_samples, n_classes) A matrix such that `y_indicator[i, j] = 1` iff `classes_[j]` is in `y[i]`, and 0 otherwise.'
def fit_transform(self, y):
if (self.classes is not None): return self.fit(y).transform(y) class_mapping = defaultdict(int) class_mapping.default_factory = class_mapping.__len__ yt = self._transform(y, class_mapping) tmp = sorted(class_mapping, key=class_mapping.get) dtype = (np.int if all((isinstance(c, int) for c in tmp)) else object) class_mapping = np.empty(len(tmp), dtype=dtype) class_mapping[:] = tmp (self.classes_, inverse) = np.unique(class_mapping, return_inverse=True) yt.indices = np.array(inverse[yt.indices], dtype=yt.indices.dtype, copy=False) if (not self.sparse_output): yt = yt.toarray() return yt
'Transform the given label sets Parameters y : iterable of iterables A set of labels (any orderable and hashable object) for each sample. If the `classes` parameter is set, `y` will not be iterated. Returns y_indicator : array or CSR matrix, shape (n_samples, n_classes) A matrix such that `y_indicator[i, j] = 1` iff `classes_[j]` is in `y[i]`, and 0 otherwise.'
def transform(self, y):
check_is_fitted(self, 'classes_') class_to_index = dict(zip(self.classes_, range(len(self.classes_)))) yt = self._transform(y, class_to_index) if (not self.sparse_output): yt = yt.toarray() return yt
'Transforms the label sets with a given mapping Parameters y : iterable of iterables class_mapping : Mapping Maps from label to column index in label indicator matrix Returns y_indicator : sparse CSR matrix, shape (n_samples, n_classes) Label indicator matrix'
def _transform(self, y, class_mapping):
indices = array.array('i') indptr = array.array('i', [0]) for labels in y: indices.extend(set((class_mapping[label] for label in labels))) indptr.append(len(indices)) data = np.ones(len(indices), dtype=int) return sp.csr_matrix((data, indices, indptr), shape=((len(indptr) - 1), len(class_mapping)))
'Transform the given indicator matrix into label sets Parameters yt : array or sparse matrix of shape (n_samples, n_classes) A matrix containing only 1s ands 0s. Returns y : list of tuples The set of labels for each sample such that `y[i]` consists of `classes_[j]` for each `yt[i, j] == 1`.'
def inverse_transform(self, yt):
check_is_fitted(self, 'classes_') if (yt.shape[1] != len(self.classes_)): raise ValueError('Expected indicator for {0} classes, but got {1}'.format(len(self.classes_), yt.shape[1])) if sp.issparse(yt): yt = yt.tocsr() if ((len(yt.data) != 0) and (len(np.setdiff1d(yt.data, [0, 1])) > 0)): raise ValueError('Expected only 0s and 1s in label indicator.') return [tuple(self.classes_.take(yt.indices[start:end])) for (start, end) in zip(yt.indptr[:(-1)], yt.indptr[1:])] else: unexpected = np.setdiff1d(yt, [0, 1]) if (len(unexpected) > 0): raise ValueError('Expected only 0s and 1s in label indicator. Also got {0}'.format(unexpected)) return [tuple(self.classes_.compress(indicators)) for indicators in yt]
'Check the estimator and the n_estimator attribute, set the `base_estimator_` attribute.'
def _validate_estimator(self, default=None):
if (not isinstance(self.n_estimators, (numbers.Integral, np.integer))): raise ValueError('n_estimators must be an integer, got {0}.'.format(type(self.n_estimators))) if (self.n_estimators <= 0): raise ValueError('n_estimators must be greater than zero, got {0}.'.format(self.n_estimators)) if (self.base_estimator is not None): self.base_estimator_ = self.base_estimator else: self.base_estimator_ = default if (self.base_estimator_ is None): raise ValueError('base_estimator cannot be None')
'Make and configure a copy of the `base_estimator_` attribute. Warning: This method should be used to properly instantiate new sub-estimators.'
def _make_estimator(self, append=True, random_state=None):
estimator = clone(self.base_estimator_) estimator.set_params(**dict(((p, getattr(self, p)) for p in self.estimator_params))) if (random_state is not None): _set_random_states(estimator, random_state) if append: self.estimators_.append(estimator) return estimator
'Returns the number of estimators in the ensemble.'
def __len__(self):
return len(self.estimators_)
'Returns the index\'th estimator in the ensemble.'
def __getitem__(self, index):
return self.estimators_[index]
'Returns iterator over estimators in the ensemble.'
def __iter__(self):
return iter(self.estimators_)
'Default ``init`` estimator for loss function.'
def init_estimator(self):
raise NotImplementedError()
'Update the terminal regions (=leaves) of the given tree and updates the current predictions of the model. Traverses tree and invokes template method `_update_terminal_region`. Parameters tree : tree.Tree The tree object. X : ndarray, shape=(n, m) The data array. y : ndarray, shape=(n,) The target labels. residual : ndarray, shape=(n,) The residuals (usually the negative gradient). y_pred : ndarray, shape=(n,) The predictions. sample_weight : ndarray, shape=(n,) The weight of each sample. sample_mask : ndarray, shape=(n,) The sample mask to be used. learning_rate : float, default=0.1 learning rate shrinks the contribution of each tree by ``learning_rate``. k : int, default 0 The index of the estimator being updated.'
def update_terminal_regions(self, tree, X, y, residual, y_pred, sample_weight, sample_mask, learning_rate=1.0, k=0):
terminal_regions = tree.apply(X) masked_terminal_regions = terminal_regions.copy() masked_terminal_regions[(~ sample_mask)] = (-1) for leaf in np.where((tree.children_left == TREE_LEAF))[0]: self._update_terminal_region(tree, masked_terminal_regions, leaf, X, y, residual, y_pred[:, k], sample_weight) y_pred[:, k] += (learning_rate * tree.value[:, 0, 0].take(terminal_regions, axis=0))
'Least squares does not need to update terminal regions. But it has to update the predictions.'
def update_terminal_regions(self, tree, X, y, residual, y_pred, sample_weight, sample_mask, learning_rate=1.0, k=0):
y_pred[:, k] += (learning_rate * tree.predict(X).ravel())
'1.0 if y - pred > 0.0 else -1.0'
def negative_gradient(self, y, pred, **kargs):
pred = pred.ravel() return ((2.0 * ((y - pred) > 0.0)) - 1.0)
'LAD updates terminal regions to median estimates.'
def _update_terminal_region(self, tree, terminal_regions, leaf, X, y, residual, pred, sample_weight):
terminal_region = np.where((terminal_regions == leaf))[0] sample_weight = sample_weight.take(terminal_region, axis=0) diff = (y.take(terminal_region, axis=0) - pred.take(terminal_region, axis=0)) tree.value[(leaf, 0, 0)] = _weighted_percentile(diff, sample_weight, percentile=50)
'Template method to convert scores to probabilities. the does not support probabilities raises AttributeError.'
def _score_to_proba(self, score):
raise TypeError(('%s does not support predict_proba' % type(self).__name__))
'Compute the deviance (= 2 * negative log-likelihood).'
def __call__(self, y, pred, sample_weight=None):
pred = pred.ravel() if (sample_weight is None): return ((-2.0) * np.mean(((y * pred) - np.logaddexp(0.0, pred)))) else: return (((-2.0) / sample_weight.sum()) * np.sum((sample_weight * ((y * pred) - np.logaddexp(0.0, pred)))))
'Compute the residual (= negative gradient).'
def negative_gradient(self, y, pred, **kargs):
return (y - expit(pred.ravel()))
'Make a single Newton-Raphson step. our node estimate is given by: sum(w * (y - prob)) / sum(w * prob * (1 - prob)) we take advantage that: y - prob = residual'
def _update_terminal_region(self, tree, terminal_regions, leaf, X, y, residual, pred, sample_weight):
terminal_region = np.where((terminal_regions == leaf))[0] residual = residual.take(terminal_region, axis=0) y = y.take(terminal_region, axis=0) sample_weight = sample_weight.take(terminal_region, axis=0) numerator = np.sum((sample_weight * residual)) denominator = np.sum(((sample_weight * (y - residual)) * ((1 - y) + residual))) if (abs(denominator) < 1e-150): tree.value[(leaf, 0, 0)] = 0.0 else: tree.value[(leaf, 0, 0)] = (numerator / denominator)
'Compute negative gradient for the ``k``-th class.'
def negative_gradient(self, y, pred, k=0, **kwargs):
return (y - np.nan_to_num(np.exp((pred[:, k] - logsumexp(pred, axis=1)))))
'Make a single Newton-Raphson step.'
def _update_terminal_region(self, tree, terminal_regions, leaf, X, y, residual, pred, sample_weight):
terminal_region = np.where((terminal_regions == leaf))[0] residual = residual.take(terminal_region, axis=0) y = y.take(terminal_region, axis=0) sample_weight = sample_weight.take(terminal_region, axis=0) numerator = np.sum((sample_weight * residual)) numerator *= ((self.K - 1) / self.K) denominator = np.sum(((sample_weight * (y - residual)) * ((1.0 - y) + residual))) if (abs(denominator) < 1e-150): tree.value[(leaf, 0, 0)] = 0.0 else: tree.value[(leaf, 0, 0)] = (numerator / denominator)
'Update reporter with new iteration.'
def update(self, j, est):
do_oob = (est.subsample < 1) i = (j - self.begin_at_stage) if (((i + 1) % self.verbose_mod) == 0): oob_impr = (est.oob_improvement_[j] if do_oob else 0) remaining_time = (((est.n_estimators - (j + 1)) * (time() - self.start_time)) / float((i + 1))) if (remaining_time > 60): remaining_time = '{0:.2f}m'.format((remaining_time / 60.0)) else: remaining_time = '{0:.2f}s'.format(remaining_time) print(self.verbose_fmt.format(iter=(j + 1), train_score=est.train_score_[j], oob_impr=oob_impr, remaining_time=remaining_time)) if ((self.verbose == 1) and (((i + 1) // (self.verbose_mod * 10)) > 0)): self.verbose_mod *= 10
'Fit another stage of ``n_classes_`` trees to the boosting model.'
def _fit_stage(self, i, X, y, y_pred, sample_weight, sample_mask, random_state, X_idx_sorted, X_csc=None, X_csr=None):
assert (sample_mask.dtype == np.bool) loss = self.loss_ original_y = y for k in range(loss.K): if loss.is_multi_class: y = np.array((original_y == k), dtype=np.float64) residual = loss.negative_gradient(y, y_pred, k=k, sample_weight=sample_weight) tree = DecisionTreeRegressor(criterion=self.criterion, splitter='best', max_depth=self.max_depth, min_samples_split=self.min_samples_split, min_samples_leaf=self.min_samples_leaf, min_weight_fraction_leaf=self.min_weight_fraction_leaf, min_impurity_decrease=self.min_impurity_decrease, min_impurity_split=self.min_impurity_split, max_features=self.max_features, max_leaf_nodes=self.max_leaf_nodes, random_state=random_state, presort=self.presort) if (self.subsample < 1.0): sample_weight = (sample_weight * sample_mask.astype(np.float64)) if (X_csc is not None): tree.fit(X_csc, residual, sample_weight=sample_weight, check_input=False, X_idx_sorted=X_idx_sorted) else: tree.fit(X, residual, sample_weight=sample_weight, check_input=False, X_idx_sorted=X_idx_sorted) if (X_csr is not None): loss.update_terminal_regions(tree.tree_, X_csr, y, residual, y_pred, sample_weight, sample_mask, self.learning_rate, k=k) else: loss.update_terminal_regions(tree.tree_, X, y, residual, y_pred, sample_weight, sample_mask, self.learning_rate, k=k) self.estimators_[(i, k)] = tree return y_pred
'Check validity of parameters and raise ValueError if not valid.'
def _check_params(self):
if (self.n_estimators <= 0): raise ValueError(('n_estimators must be greater than 0 but was %r' % self.n_estimators)) if (self.learning_rate <= 0.0): raise ValueError(('learning_rate must be greater than 0 but was %r' % self.learning_rate)) if ((self.loss not in self._SUPPORTED_LOSS) or (self.loss not in LOSS_FUNCTIONS)): raise ValueError("Loss '{0:s}' not supported. ".format(self.loss)) if (self.loss == 'deviance'): loss_class = (MultinomialDeviance if (len(self.classes_) > 2) else BinomialDeviance) else: loss_class = LOSS_FUNCTIONS[self.loss] if (self.loss in ('huber', 'quantile')): self.loss_ = loss_class(self.n_classes_, self.alpha) else: self.loss_ = loss_class(self.n_classes_) if (not (0.0 < self.subsample <= 1.0)): raise ValueError(('subsample must be in (0,1] but was %r' % self.subsample)) if (self.init is not None): if isinstance(self.init, six.string_types): if (self.init not in INIT_ESTIMATORS): raise ValueError(('init="%s" is not supported' % self.init)) elif ((not hasattr(self.init, 'fit')) or (not hasattr(self.init, 'predict'))): raise ValueError(('init=%r must be valid BaseEstimator and support both fit and predict' % self.init)) if (not (0.0 < self.alpha < 1.0)): raise ValueError(('alpha must be in (0.0, 1.0) but was %r' % self.alpha)) if isinstance(self.max_features, six.string_types): if (self.max_features == 'auto'): if (self.n_classes_ > 1): max_features = max(1, int(np.sqrt(self.n_features_))) else: max_features = self.n_features_ elif (self.max_features == 'sqrt'): max_features = max(1, int(np.sqrt(self.n_features_))) elif (self.max_features == 'log2'): max_features = max(1, int(np.log2(self.n_features_))) else: raise ValueError(("Invalid value for max_features: %r. Allowed string values are 'auto', 'sqrt' or 'log2'." % self.max_features)) elif (self.max_features is None): max_features = self.n_features_ elif isinstance(self.max_features, (numbers.Integral, np.integer)): max_features = self.max_features elif (0.0 < self.max_features <= 1.0): max_features = max(int((self.max_features * self.n_features_)), 1) else: raise ValueError('max_features must be in (0, n_features]') self.max_features_ = max_features if (not isinstance(self.n_iter_no_change, (numbers.Integral, np.integer, type(None)))): raise ValueError(('n_iter_no_change should either be None or an integer. %r was passed' % self.n_iter_no_change))
'Initialize model state and allocate model state data structures.'
def _init_state(self):
if (self.init is None): self.init_ = self.loss_.init_estimator() elif isinstance(self.init, six.string_types): self.init_ = INIT_ESTIMATORS[self.init]() else: self.init_ = self.init self.estimators_ = np.empty((self.n_estimators, self.loss_.K), dtype=np.object) self.train_score_ = np.zeros((self.n_estimators,), dtype=np.float64) if (self.subsample < 1.0): self.oob_improvement_ = np.zeros(self.n_estimators, dtype=np.float64)
'Clear the state of the gradient boosting model.'
def _clear_state(self):
if hasattr(self, 'estimators_'): self.estimators_ = np.empty((0, 0), dtype=np.object) if hasattr(self, 'train_score_'): del self.train_score_ if hasattr(self, 'oob_improvement_'): del self.oob_improvement_ if hasattr(self, 'init_'): del self.init_ if hasattr(self, '_rng'): del self._rng
'Add additional ``n_estimators`` entries to all attributes.'
def _resize_state(self):
total_n_estimators = self.n_estimators if (total_n_estimators < self.estimators_.shape[0]): raise ValueError(('resize with smaller n_estimators %d < %d' % (total_n_estimators, self.estimators_[0]))) self.estimators_.resize((total_n_estimators, self.loss_.K)) self.train_score_.resize(total_n_estimators) if ((self.subsample < 1) or hasattr(self, 'oob_improvement_')): if hasattr(self, 'oob_improvement_'): self.oob_improvement_.resize(total_n_estimators) else: self.oob_improvement_ = np.zeros((total_n_estimators,), dtype=np.float64)
'Check that the estimator is initialized, raising an error if not.'
def _check_initialized(self):
check_is_fitted(self, 'estimators_')
'Fit the gradient boosting model. Parameters X : array-like, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target values (integers in classification, real numbers in regression) For classification, labels must correspond to classes. sample_weight : array-like, shape = [n_samples] or None Sample weights. If None, then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node. In the case of classification, splits are also ignored if they would result in any single class carrying a negative weight in either child node. monitor : callable, optional The monitor is called after each iteration with the current iteration, a reference to the estimator and the local variables of ``_fit_stages`` as keyword arguments ``callable(i, self, locals())``. If the callable returns ``True`` the fitting procedure is stopped. The monitor can be used for various things such as computing held-out estimates, early stopping, model introspect, and snapshoting. Returns self : object Returns self.'
def fit(self, X, y, sample_weight=None, monitor=None):
if (not self.warm_start): self._clear_state() (X, y) = check_X_y(X, y, accept_sparse=['csr', 'csc', 'coo'], dtype=DTYPE) (n_samples, self.n_features_) = X.shape if (sample_weight is None): sample_weight = np.ones(n_samples, dtype=np.float32) else: sample_weight = column_or_1d(sample_weight, warn=True) check_consistent_length(X, y, sample_weight) y = self._validate_y(y) if (self.n_iter_no_change is not None): (X, X_val, y, y_val, sample_weight, sample_weight_val) = train_test_split(X, y, sample_weight, random_state=self.random_state, test_size=self.validation_fraction) else: X_val = y_val = sample_weight_val = None self._check_params() if (not self._is_initialized()): self._init_state() self.init_.fit(X, y, sample_weight) y_pred = self.init_.predict(X) begin_at_stage = 0 self._rng = check_random_state(self.random_state) else: if (self.n_estimators < self.estimators_.shape[0]): raise ValueError(('n_estimators=%d must be larger or equal to estimators_.shape[0]=%d when warm_start==True' % (self.n_estimators, self.estimators_.shape[0]))) begin_at_stage = self.estimators_.shape[0] y_pred = self._decision_function(X) self._resize_state() X_idx_sorted = None presort = self.presort if ((presort == 'auto') and issparse(X)): presort = False elif (presort == 'auto'): presort = True if (presort == True): if issparse(X): raise ValueError('Presorting is not supported for sparse matrices.') else: X_idx_sorted = np.asfortranarray(np.argsort(X, axis=0), dtype=np.int32) n_stages = self._fit_stages(X, y, y_pred, sample_weight, self._rng, X_val, y_val, sample_weight_val, begin_at_stage, monitor, X_idx_sorted) if (n_stages != self.estimators_.shape[0]): self.estimators_ = self.estimators_[:n_stages] self.train_score_ = self.train_score_[:n_stages] if hasattr(self, 'oob_improvement_'): self.oob_improvement_ = self.oob_improvement_[:n_stages] self.n_estimators_ = n_stages return self
'Iteratively fits the stages. For each stage it computes the progress (OOB, train score) and delegates to ``_fit_stage``. Returns the number of stages fit; might differ from ``n_estimators`` due to early stopping.'
def _fit_stages(self, X, y, y_pred, sample_weight, random_state, X_val, y_val, sample_weight_val, begin_at_stage=0, monitor=None, X_idx_sorted=None):
n_samples = X.shape[0] do_oob = (self.subsample < 1.0) sample_mask = np.ones((n_samples,), dtype=np.bool) n_inbag = max(1, int((self.subsample * n_samples))) loss_ = self.loss_ if ((self.min_weight_fraction_leaf != 0.0) and (sample_weight is not None)): min_weight_leaf = (self.min_weight_fraction_leaf * np.sum(sample_weight)) else: min_weight_leaf = 0.0 if self.verbose: verbose_reporter = VerboseReporter(self.verbose) verbose_reporter.init(self, begin_at_stage) X_csc = (csc_matrix(X) if issparse(X) else None) X_csr = (csr_matrix(X) if issparse(X) else None) if (self.n_iter_no_change is not None): loss_history = (np.ones(self.n_iter_no_change) * np.inf) y_val_pred_iter = self._staged_decision_function(X_val) i = begin_at_stage for i in range(begin_at_stage, self.n_estimators): if do_oob: sample_mask = _random_sample_mask(n_samples, n_inbag, random_state) old_oob_score = loss_(y[(~ sample_mask)], y_pred[(~ sample_mask)], sample_weight[(~ sample_mask)]) y_pred = self._fit_stage(i, X, y, y_pred, sample_weight, sample_mask, random_state, X_idx_sorted, X_csc, X_csr) if do_oob: self.train_score_[i] = loss_(y[sample_mask], y_pred[sample_mask], sample_weight[sample_mask]) self.oob_improvement_[i] = (old_oob_score - loss_(y[(~ sample_mask)], y_pred[(~ sample_mask)], sample_weight[(~ sample_mask)])) else: self.train_score_[i] = loss_(y, y_pred, sample_weight) if (self.verbose > 0): verbose_reporter.update(i, self) if (monitor is not None): early_stopping = monitor(i, self, locals()) if early_stopping: break if (self.n_iter_no_change is not None): validation_loss = loss_(y_val, next(y_val_pred_iter), sample_weight_val) if np.any(((validation_loss + self.tol) < loss_history)): loss_history[(i % len(loss_history))] = validation_loss else: break return (i + 1)
'Check input and compute prediction of ``init``.'
def _init_decision_function(self, X):
self._check_initialized() X = self.estimators_[(0, 0)]._validate_X_predict(X, check_input=True) if (X.shape[1] != self.n_features_): raise ValueError('X.shape[1] should be {0:d}, not {1:d}.'.format(self.n_features_, X.shape[1])) score = self.init_.predict(X).astype(np.float64) return score
'Compute decision function of ``X`` for each iteration. This method allows monitoring (i.e. determine error on testing set) after each stage. Parameters X : array-like or sparse matrix, shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. Returns score : generator of array, shape = [n_samples, k] The decision function of the input samples. The order of the classes corresponds to that in the attribute `classes_`. Regression and binary classification are special cases with ``k == 1``, otherwise ``k==n_classes``.'
def _staged_decision_function(self, X):
X = check_array(X, dtype=DTYPE, order='C', accept_sparse='csr') score = self._init_decision_function(X) for i in range(self.estimators_.shape[0]): predict_stage(self.estimators_, i, X, self.learning_rate, score) (yield score.copy())
'Return the feature importances (the higher, the more important the feature). Returns feature_importances_ : array, shape = [n_features]'
@property def feature_importances_(self):
self._check_initialized() total_sum = np.zeros((self.n_features_,), dtype=np.float64) for stage in self.estimators_: stage_sum = (sum((tree.feature_importances_ for tree in stage)) / len(stage)) total_sum += stage_sum importances = (total_sum / len(self.estimators_)) return importances
'Apply trees in the ensemble to X, return leaf indices. .. versionadded:: 0.17 Parameters X : array-like or sparse matrix, shape = [n_samples, n_features] The input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted to a sparse ``csr_matrix``. Returns X_leaves : array_like, shape = [n_samples, n_estimators, n_classes] For each datapoint x in X and for each tree in the ensemble, return the index of the leaf x ends up in each estimator. In the case of binary classification n_classes is 1.'
def apply(self, X):
self._check_initialized() X = self.estimators_[(0, 0)]._validate_X_predict(X, check_input=True) (n_estimators, n_classes) = self.estimators_.shape leaves = np.zeros((X.shape[0], n_estimators, n_classes)) for i in range(n_estimators): for j in range(n_classes): estimator = self.estimators_[(i, j)] leaves[:, i, j] = estimator.apply(X, check_input=False) return leaves
'Compute the decision function of ``X``. Parameters X : array-like or sparse matrix, shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. Returns score : array, shape = [n_samples, n_classes] or [n_samples] The decision function of the input samples. The order of the classes corresponds to that in the attribute `classes_`. Regression and binary classification produce an array of shape [n_samples].'
def decision_function(self, X):
X = check_array(X, dtype=DTYPE, order='C', accept_sparse='csr') score = self._decision_function(X) if (score.shape[1] == 1): return score.ravel() return score