desc
stringlengths
3
26.7k
decl
stringlengths
11
7.89k
bodies
stringlengths
8
553k
'Outlyingness of observations in X according to the fitted model. Parameters X : array-like, shape = (n_samples, n_features) Returns is_outliers : array, shape = (n_samples, ), dtype = bool For each observation, tells whether or not it should be considered as an outlier according to the fitted model. threshold : float, The values of the less outlying point\'s decision function.'
def predict(self, X):
check_is_fitted(self, 'threshold_') X = check_array(X) is_inlier = (- np.ones(X.shape[0], dtype=int)) if (self.contamination is not None): values = self.decision_function(X, raw_values=True) is_inlier[(values <= self.threshold_)] = 1 else: raise NotImplementedError('You must provide a contamination rate.') return is_inlier
'Returns the mean accuracy on the given test data and labels. In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted. Parameters X : array-like, shape = (n_samples, n_features) Test samples. y : array-like, shape = (n_samples,) or (n_samples, n_outputs) True labels for X. sample_weight : array-like, shape = (n_samples,), optional Sample weights. Returns score : float Mean accuracy of self.predict(X) wrt. y.'
def score(self, X, y, sample_weight=None):
return accuracy_score(y, self.predict(X), sample_weight=sample_weight)
'Fits the GraphLasso model to X. Parameters X : ndarray, shape (n_samples, n_features) Data from which to compute the covariance estimate y : (ignored)'
def fit(self, X, y=None):
X = check_array(X, ensure_min_features=2, ensure_min_samples=2, estimator=self) if self.assume_centered: self.location_ = np.zeros(X.shape[1]) else: self.location_ = X.mean(0) emp_cov = empirical_covariance(X, assume_centered=self.assume_centered) (self.covariance_, self.precision_, self.n_iter_) = graph_lasso(emp_cov, alpha=self.alpha, mode=self.mode, tol=self.tol, enet_tol=self.enet_tol, max_iter=self.max_iter, verbose=self.verbose, return_n_iter=True) return self
'Fits the GraphLasso covariance model to X. Parameters X : ndarray, shape (n_samples, n_features) Data from which to compute the covariance estimate y : (ignored)'
def fit(self, X, y=None):
X = check_array(X, ensure_min_features=2, estimator=self) if self.assume_centered: self.location_ = np.zeros(X.shape[1]) else: self.location_ = X.mean(0) emp_cov = empirical_covariance(X, assume_centered=self.assume_centered) cv = check_cv(self.cv, y, classifier=False) path = list() n_alphas = self.alphas inner_verbose = max(0, (self.verbose - 1)) if isinstance(n_alphas, collections.Sequence): alphas = self.alphas n_refinements = 1 else: n_refinements = self.n_refinements alpha_1 = alpha_max(emp_cov) alpha_0 = (0.01 * alpha_1) alphas = np.logspace(np.log10(alpha_0), np.log10(alpha_1), n_alphas)[::(-1)] t0 = time.time() for i in range(n_refinements): with warnings.catch_warnings(): warnings.simplefilter('ignore', ConvergenceWarning) this_path = Parallel(n_jobs=self.n_jobs, verbose=self.verbose)((delayed(graph_lasso_path)(X[train], alphas=alphas, X_test=X[test], mode=self.mode, tol=self.tol, enet_tol=self.enet_tol, max_iter=int((0.1 * self.max_iter)), verbose=inner_verbose) for (train, test) in cv.split(X, y))) (covs, _, scores) = zip(*this_path) covs = zip(*covs) scores = zip(*scores) path.extend(zip(alphas, scores, covs)) path = sorted(path, key=operator.itemgetter(0), reverse=True) best_score = (- np.inf) last_finite_idx = 0 for (index, (alpha, scores, _)) in enumerate(path): this_score = np.mean(scores) if (this_score >= (0.1 / np.finfo(np.float64).eps)): this_score = np.nan if np.isfinite(this_score): last_finite_idx = index if (this_score >= best_score): best_score = this_score best_index = index if (best_index == 0): alpha_1 = path[0][0] alpha_0 = path[1][0] elif ((best_index == last_finite_idx) and (not (best_index == (len(path) - 1)))): alpha_1 = path[best_index][0] alpha_0 = path[(best_index + 1)][0] elif (best_index == (len(path) - 1)): alpha_1 = path[best_index][0] alpha_0 = (0.01 * path[best_index][0]) else: alpha_1 = path[(best_index - 1)][0] alpha_0 = path[(best_index + 1)][0] if (not isinstance(n_alphas, collections.Sequence)): alphas = np.logspace(np.log10(alpha_1), np.log10(alpha_0), (n_alphas + 2)) alphas = alphas[1:(-1)] if (self.verbose and (n_refinements > 1)): print ('[GraphLassoCV] Done refinement % 2i out of %i: % 3is' % ((i + 1), n_refinements, (time.time() - t0))) path = list(zip(*path)) grid_scores = list(path[1]) alphas = list(path[0]) alphas.append(0) grid_scores.append(cross_val_score(EmpiricalCovariance(), X, cv=cv, n_jobs=self.n_jobs, verbose=inner_verbose)) self.grid_scores_ = np.array(grid_scores) best_alpha = alphas[best_index] self.alpha_ = best_alpha self.cv_alphas_ = alphas (self.covariance_, self.precision_, self.n_iter_) = graph_lasso(emp_cov, alpha=best_alpha, mode=self.mode, tol=self.tol, enet_tol=self.enet_tol, max_iter=self.max_iter, verbose=inner_verbose, return_n_iter=True) return self
'Saves the covariance and precision estimates Storage is done accordingly to `self.store_precision`. Precision stored only if invertible. Parameters covariance : 2D ndarray, shape (n_features, n_features) Estimated covariance matrix to be stored, and from which precision is computed.'
def _set_covariance(self, covariance):
covariance = check_array(covariance) self.covariance_ = covariance if self.store_precision: self.precision_ = linalg.pinvh(covariance) else: self.precision_ = None
'Getter for the precision matrix. Returns precision_ : array-like, The precision matrix associated to the current covariance object.'
def get_precision(self):
if self.store_precision: precision = self.precision_ else: precision = linalg.pinvh(self.covariance_) return precision
'Fits the Maximum Likelihood Estimator covariance model according to the given training data and parameters. Parameters X : array-like, shape = [n_samples, n_features] Training data, where n_samples is the number of samples and n_features is the number of features. y : not used, present for API consistence purpose. Returns self : object Returns self.'
def fit(self, X, y=None):
X = check_array(X) if self.assume_centered: self.location_ = np.zeros(X.shape[1]) else: self.location_ = X.mean(0) covariance = empirical_covariance(X, assume_centered=self.assume_centered) self._set_covariance(covariance) return self
'Computes the log-likelihood of a Gaussian data set with `self.covariance_` as an estimator of its covariance matrix. Parameters X_test : array-like, shape = [n_samples, n_features] Test data of which we compute the likelihood, where n_samples is the number of samples and n_features is the number of features. X_test is assumed to be drawn from the same distribution than the data used in fit (including centering). y : not used, present for API consistence purpose. Returns res : float The likelihood of the data set with `self.covariance_` as an estimator of its covariance matrix.'
def score(self, X_test, y=None):
test_cov = empirical_covariance((X_test - self.location_), assume_centered=True) res = log_likelihood(test_cov, self.get_precision()) return res
'Computes the Mean Squared Error between two covariance estimators. (In the sense of the Frobenius norm). Parameters comp_cov : array-like, shape = [n_features, n_features] The covariance to compare with. norm : str The type of norm used to compute the error. Available error types: - \'frobenius\' (default): sqrt(tr(A^t.A)) - \'spectral\': sqrt(max(eigenvalues(A^t.A)) where A is the error ``(comp_cov - self.covariance_)``. scaling : bool If True (default), the squared error norm is divided by n_features. If False, the squared error norm is not rescaled. squared : bool Whether to compute the squared error norm or the error norm. If True (default), the squared error norm is returned. If False, the error norm is returned. Returns The Mean Squared Error (in the sense of the Frobenius norm) between `self` and `comp_cov` covariance estimators.'
def error_norm(self, comp_cov, norm='frobenius', scaling=True, squared=True):
error = (comp_cov - self.covariance_) if (norm == 'frobenius'): squared_norm = np.sum((error ** 2)) elif (norm == 'spectral'): squared_norm = np.amax(linalg.svdvals(np.dot(error.T, error))) else: raise NotImplementedError('Only spectral and frobenius norms are implemented') if scaling: squared_norm = (squared_norm / error.shape[0]) if squared: result = squared_norm else: result = np.sqrt(squared_norm) return result
'Computes the squared Mahalanobis distances of given observations. Parameters observations : array-like, shape = [n_observations, n_features] The observations, the Mahalanobis distances of the which we compute. Observations are assumed to be drawn from the same distribution than the data used in fit. Returns mahalanobis_distance : array, shape = [n_observations,] Squared Mahalanobis distances of the observations.'
def mahalanobis(self, observations):
precision = self.get_precision() centered_obs = (observations - self.location_) mahalanobis_dist = np.sum((np.dot(centered_obs, precision) * centered_obs), 1) return mahalanobis_dist
'Fits the shrunk covariance model according to the given training data and parameters. Parameters X : array-like, shape = [n_samples, n_features] Training data, where n_samples is the number of samples and n_features is the number of features. y : not used, present for API consistence purpose. Returns self : object Returns self.'
def fit(self, X, y=None):
X = check_array(X) if self.assume_centered: self.location_ = np.zeros(X.shape[1]) else: self.location_ = X.mean(0) covariance = empirical_covariance(X, assume_centered=self.assume_centered) covariance = shrunk_covariance(covariance, self.shrinkage) self._set_covariance(covariance) return self
'Fits the Ledoit-Wolf shrunk covariance model according to the given training data and parameters. Parameters X : array-like, shape = [n_samples, n_features] Training data, where n_samples is the number of samples and n_features is the number of features. y : not used, present for API consistence purpose. Returns self : object Returns self.'
def fit(self, X, y=None):
X = check_array(X) if self.assume_centered: self.location_ = np.zeros(X.shape[1]) else: self.location_ = X.mean(0) (covariance, shrinkage) = ledoit_wolf((X - self.location_), assume_centered=True, block_size=self.block_size) self.shrinkage_ = shrinkage self._set_covariance(covariance) return self
'Fits the Oracle Approximating Shrinkage covariance model according to the given training data and parameters. Parameters X : array-like, shape = [n_samples, n_features] Training data, where n_samples is the number of samples and n_features is the number of features. y : not used, present for API consistence purpose. Returns self : object Returns self.'
def fit(self, X, y=None):
X = check_array(X) if self.assume_centered: self.location_ = np.zeros(X.shape[1]) else: self.location_ = X.mean(0) (covariance, shrinkage) = oas((X - self.location_), assume_centered=True) self.shrinkage_ = shrinkage self._set_covariance(covariance) return self
'Compute data covariance with the generative model. ``cov = components_.T * S**2 * components_ + sigma2 * eye(n_features)`` where S**2 contains the explained variances, and sigma2 contains the noise variances. Returns cov : array, shape=(n_features, n_features) Estimated covariance of data.'
def get_covariance(self):
components_ = self.components_ exp_var = self.explained_variance_ if self.whiten: components_ = (components_ * np.sqrt(exp_var[:, np.newaxis])) exp_var_diff = np.maximum((exp_var - self.noise_variance_), 0.0) cov = np.dot((components_.T * exp_var_diff), components_) cov.flat[::(len(cov) + 1)] += self.noise_variance_ return cov
'Compute data precision matrix with the generative model. Equals the inverse of the covariance but computed with the matrix inversion lemma for efficiency. Returns precision : array, shape=(n_features, n_features) Estimated precision of data.'
def get_precision(self):
n_features = self.components_.shape[1] if (self.n_components_ == 0): return (np.eye(n_features) / self.noise_variance_) if (self.n_components_ == n_features): return linalg.inv(self.get_covariance()) components_ = self.components_ exp_var = self.explained_variance_ if self.whiten: components_ = (components_ * np.sqrt(exp_var[:, np.newaxis])) exp_var_diff = np.maximum((exp_var - self.noise_variance_), 0.0) precision = (np.dot(components_, components_.T) / self.noise_variance_) precision.flat[::(len(precision) + 1)] += (1.0 / exp_var_diff) precision = np.dot(components_.T, np.dot(linalg.inv(precision), components_)) precision /= (- (self.noise_variance_ ** 2)) precision.flat[::(len(precision) + 1)] += (1.0 / self.noise_variance_) return precision
'Apply dimensionality reduction to X. X is projected on the first principal components previously extracted from a training set. Parameters X : array-like, shape (n_samples, n_features) New data, where n_samples is the number of samples and n_features is the number of features. Returns X_new : array-like, shape (n_samples, n_components) Examples >>> import numpy as np >>> from sklearn.decomposition import IncrementalPCA >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> ipca = IncrementalPCA(n_components=2, batch_size=3) >>> ipca.fit(X) IncrementalPCA(batch_size=3, copy=True, n_components=2, whiten=False) >>> ipca.transform(X) # doctest: +SKIP'
def transform(self, X):
check_is_fitted(self, ['mean_', 'components_'], all_or_any=all) X = check_array(X) if (self.mean_ is not None): X = (X - self.mean_) X_transformed = np.dot(X, self.components_.T) if self.whiten: X_transformed /= np.sqrt(self.explained_variance_) return X_transformed
'Transform data back to its original space. In other words, return an input X_original whose transform would be X. Parameters X : array-like, shape (n_samples, n_components) New data, where n_samples is the number of samples and n_components is the number of components. Returns X_original array-like, shape (n_samples, n_features) Notes If whitening is enabled, inverse_transform will compute the exact inverse operation, which includes reversing whitening.'
def inverse_transform(self, X):
if self.whiten: return (np.dot(X, (np.sqrt(self.explained_variance_[:, np.newaxis]) * self.components_)) + self.mean_) else: return (np.dot(X, self.components_) + self.mean_)
'Fit the model Parameters X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. compute_sources : bool If False, sources are not computes but only the rotation matrix. This can save memory when working with big data. Defaults to False. Returns X_new : array-like, shape (n_samples, n_components)'
def _fit(self, X, compute_sources=False):
fun_args = ({} if (self.fun_args is None) else self.fun_args) (whitening, unmixing, sources, X_mean, self.n_iter_) = fastica(X=X, n_components=self.n_components, algorithm=self.algorithm, whiten=self.whiten, fun=self.fun, fun_args=fun_args, max_iter=self.max_iter, tol=self.tol, w_init=self.w_init, random_state=self.random_state, return_X_mean=True, compute_sources=compute_sources, return_n_iter=True) if self.whiten: self.components_ = np.dot(unmixing, whitening) self.mean_ = X_mean self.whitening_ = whitening else: self.components_ = unmixing self.mixing_ = linalg.pinv(self.components_) if compute_sources: self.__sources = sources return sources
'Fit the model and recover the sources from X. Parameters X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. Returns X_new : array-like, shape (n_samples, n_components)'
def fit_transform(self, X, y=None):
return self._fit(X, compute_sources=True)
'Fit the model to X. Parameters X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. Returns self'
def fit(self, X, y=None):
self._fit(X, compute_sources=False) return self
'Recover the sources from X (apply the unmixing matrix). Parameters X : array-like, shape (n_samples, n_features) Data to transform, where n_samples is the number of samples and n_features is the number of features. y : (ignored) .. deprecated:: 0.19 This parameter will be removed in 0.21. copy : bool (optional) If False, data passed to fit are overwritten. Defaults to True. Returns X_new : array-like, shape (n_samples, n_components)'
def transform(self, X, y='deprecated', copy=True):
if ((not isinstance(y, string_types)) or (y != 'deprecated')): warnings.warn('The parameter y on transform() is deprecated since 0.19 and will be removed in 0.21', DeprecationWarning) check_is_fitted(self, 'mixing_') X = check_array(X, copy=copy, dtype=FLOAT_DTYPES) if self.whiten: X -= self.mean_ return np.dot(X, self.components_.T)
'Transform the sources back to the mixed data (apply mixing matrix). Parameters X : array-like, shape (n_samples, n_components) Sources, where n_samples is the number of samples and n_components is the number of components. copy : bool (optional) If False, data passed to fit are overwritten. Defaults to True. Returns X_new : array-like, shape (n_samples, n_features)'
def inverse_transform(self, X, copy=True):
check_is_fitted(self, 'mixing_') X = check_array(X, copy=(copy and self.whiten), dtype=FLOAT_DTYPES) X = np.dot(X, self.mixing_.T) if self.whiten: X += self.mean_ return X
'Fit LSI model on training data X. Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Returns self : object Returns the transformer object.'
def fit(self, X, y=None):
self.fit_transform(X) return self
'Fit LSI model to X and perform dimensionality reduction on X. Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Returns X_new : array, shape (n_samples, n_components) Reduced version of X. This will always be a dense array.'
def fit_transform(self, X, y=None):
X = check_array(X, accept_sparse=['csr', 'csc']) random_state = check_random_state(self.random_state) if (self.algorithm == 'arpack'): (U, Sigma, VT) = svds(X, k=self.n_components, tol=self.tol) Sigma = Sigma[::(-1)] (U, VT) = svd_flip(U[:, ::(-1)], VT[::(-1)]) elif (self.algorithm == 'randomized'): k = self.n_components n_features = X.shape[1] if (k >= n_features): raise ValueError(('n_components must be < n_features; got %d >= %d' % (k, n_features))) (U, Sigma, VT) = randomized_svd(X, self.n_components, n_iter=self.n_iter, random_state=random_state) else: raise ValueError(('unknown algorithm %r' % self.algorithm)) self.components_ = VT X_transformed = (U * Sigma) self.explained_variance_ = exp_var = np.var(X_transformed, axis=0) if sp.issparse(X): (_, full_var) = mean_variance_axis(X, axis=0) full_var = full_var.sum() else: full_var = np.var(X, axis=0).sum() self.explained_variance_ratio_ = (exp_var / full_var) self.singular_values_ = Sigma return X_transformed
'Perform dimensionality reduction on X. Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features) New data. Returns X_new : array, shape (n_samples, n_components) Reduced version of X. This will always be a dense array.'
def transform(self, X):
X = check_array(X, accept_sparse='csr') return safe_sparse_dot(X, self.components_.T)
'Transform X back to its original space. Returns an array X_original whose transform would be X. Parameters X : array-like, shape (n_samples, n_components) New data. Returns X_original : array, shape (n_samples, n_features) Note that this is always a dense array.'
def inverse_transform(self, X):
X = check_array(X) return np.dot(X, self.components_)
'Encode the data as a sparse combination of the dictionary atoms. Coding method is determined by the object parameter `transform_algorithm`. Parameters X : array of shape (n_samples, n_features) Test data to be transformed, must have the same number of features as the data used to train the model. Returns X_new : array, shape (n_samples, n_components) Transformed data'
def transform(self, X):
check_is_fitted(self, 'components_') X = check_array(X) (n_samples, n_features) = X.shape code = sparse_encode(X, self.components_, algorithm=self.transform_algorithm, n_nonzero_coefs=self.transform_n_nonzero_coefs, alpha=self.transform_alpha, n_jobs=self.n_jobs) if self.split_sign: (n_samples, n_features) = code.shape split_code = np.empty((n_samples, (2 * n_features))) split_code[:, :n_features] = np.maximum(code, 0) split_code[:, n_features:] = (- np.minimum(code, 0)) code = split_code return code
'Do nothing and return the estimator unchanged This method is just there to implement the usual API and hence work in pipelines. Parameters X : array-like, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. Returns self : object Returns the object itself'
def fit(self, X, y=None):
return self
'Fit the model from data in X. Parameters X : array-like, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. Returns self : object Returns the object itself'
def fit(self, X, y=None):
random_state = check_random_state(self.random_state) X = check_array(X) if (self.n_components is None): n_components = X.shape[1] else: n_components = self.n_components (V, U, E, self.n_iter_) = dict_learning(X, n_components, self.alpha, tol=self.tol, max_iter=self.max_iter, method=self.fit_algorithm, n_jobs=self.n_jobs, code_init=self.code_init, dict_init=self.dict_init, verbose=self.verbose, random_state=random_state, return_n_iter=True) self.components_ = U self.error_ = E return self
'Fit the model from data in X. Parameters X : array-like, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. Returns self : object Returns the instance itself.'
def fit(self, X, y=None):
random_state = check_random_state(self.random_state) X = check_array(X) (U, (A, B), self.n_iter_) = dict_learning_online(X, self.n_components, self.alpha, n_iter=self.n_iter, return_code=False, method=self.fit_algorithm, n_jobs=self.n_jobs, dict_init=self.dict_init, batch_size=self.batch_size, shuffle=self.shuffle, verbose=self.verbose, random_state=random_state, return_inner_stats=True, return_n_iter=True) self.components_ = U self.inner_stats_ = (A, B) self.iter_offset_ = self.n_iter return self
'Updates the model using the data in X as a mini-batch. Parameters X : array-like, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. iter_offset : integer, optional The number of iteration on data batches that has been performed before this call to partial_fit. This is optional: if no number is passed, the memory of the object is used. Returns self : object Returns the instance itself.'
def partial_fit(self, X, y=None, iter_offset=None):
if (not hasattr(self, 'random_state_')): self.random_state_ = check_random_state(self.random_state) X = check_array(X) if hasattr(self, 'components_'): dict_init = self.components_ else: dict_init = self.dict_init inner_stats = getattr(self, 'inner_stats_', None) if (iter_offset is None): iter_offset = getattr(self, 'iter_offset_', 0) (U, (A, B)) = dict_learning_online(X, self.n_components, self.alpha, n_iter=self.n_iter, method=self.fit_algorithm, n_jobs=self.n_jobs, dict_init=dict_init, batch_size=len(X), shuffle=False, verbose=self.verbose, return_code=False, iter_offset=iter_offset, random_state=self.random_state_, return_inner_stats=True, inner_stats=inner_stats) self.components_ = U self.inner_stats_ = (A, B) self.iter_offset_ = (iter_offset + self.n_iter) return self
'Fit the FactorAnalysis model to X using EM Parameters X : array-like, shape (n_samples, n_features) Training data. Returns self'
def fit(self, X, y=None):
X = check_array(X, copy=self.copy, dtype=np.float64) (n_samples, n_features) = X.shape n_components = self.n_components if (n_components is None): n_components = n_features self.mean_ = np.mean(X, axis=0) X -= self.mean_ nsqrt = sqrt(n_samples) llconst = ((n_features * log((2.0 * np.pi))) + n_components) var = np.var(X, axis=0) if (self.noise_variance_init is None): psi = np.ones(n_features, dtype=X.dtype) else: if (len(self.noise_variance_init) != n_features): raise ValueError(('noise_variance_init dimension does not with number of features : %d != %d' % (len(self.noise_variance_init), n_features))) psi = np.array(self.noise_variance_init) loglike = [] old_ll = (- np.inf) SMALL = 1e-12 if (self.svd_method == 'lapack'): def my_svd(X): (_, s, V) = linalg.svd(X, full_matrices=False) return (s[:n_components], V[:n_components], squared_norm(s[n_components:])) elif (self.svd_method == 'randomized'): random_state = check_random_state(self.random_state) def my_svd(X): (_, s, V) = randomized_svd(X, n_components, random_state=random_state, n_iter=self.iterated_power) return (s, V, (squared_norm(X) - squared_norm(s))) else: raise ValueError(('SVD method %s is not supported. Please consider the documentation' % self.svd_method)) for i in xrange(self.max_iter): sqrt_psi = (np.sqrt(psi) + SMALL) (s, V, unexp_var) = my_svd((X / (sqrt_psi * nsqrt))) s **= 2 W = (np.sqrt(np.maximum((s - 1.0), 0.0))[:, np.newaxis] * V) del V W *= sqrt_psi ll = (llconst + np.sum(np.log(s))) ll += (unexp_var + np.sum(np.log(psi))) ll *= ((- n_samples) / 2.0) loglike.append(ll) if ((ll - old_ll) < self.tol): break old_ll = ll psi = np.maximum((var - np.sum((W ** 2), axis=0)), SMALL) else: warnings.warn((('FactorAnalysis did not converge.' + ' You might want') + ' to increase the number of iterations.'), ConvergenceWarning) self.components_ = W self.noise_variance_ = psi self.loglike_ = loglike self.n_iter_ = (i + 1) return self
'Apply dimensionality reduction to X using the model. Compute the expected mean of the latent variables. See Barber, 21.2.33 (or Bishop, 12.66). Parameters X : array-like, shape (n_samples, n_features) Training data. Returns X_new : array-like, shape (n_samples, n_components) The latent variables of X.'
def transform(self, X):
check_is_fitted(self, 'components_') X = check_array(X) Ih = np.eye(len(self.components_)) X_transformed = (X - self.mean_) Wpsi = (self.components_ / self.noise_variance_) cov_z = linalg.inv((Ih + np.dot(Wpsi, self.components_.T))) tmp = np.dot(X_transformed, Wpsi.T) X_transformed = np.dot(tmp, cov_z) return X_transformed
'Compute data covariance with the FactorAnalysis model. ``cov = components_.T * components_ + diag(noise_variance)`` Returns cov : array, shape (n_features, n_features) Estimated covariance of data.'
def get_covariance(self):
check_is_fitted(self, 'components_') cov = np.dot(self.components_.T, self.components_) cov.flat[::(len(cov) + 1)] += self.noise_variance_ return cov
'Compute data precision matrix with the FactorAnalysis model. Returns precision : array, shape (n_features, n_features) Estimated precision of data.'
def get_precision(self):
check_is_fitted(self, 'components_') n_features = self.components_.shape[1] if (self.n_components == 0): return np.diag((1.0 / self.noise_variance_)) if (self.n_components == n_features): return linalg.inv(self.get_covariance()) components_ = self.components_ precision = np.dot((components_ / self.noise_variance_), components_.T) precision.flat[::(len(precision) + 1)] += 1.0 precision = np.dot(components_.T, np.dot(linalg.inv(precision), components_)) precision /= self.noise_variance_[:, np.newaxis] precision /= (- self.noise_variance_[np.newaxis, :]) precision.flat[::(len(precision) + 1)] += (1.0 / self.noise_variance_) return precision
'Compute the log-likelihood of each sample Parameters X : array, shape (n_samples, n_features) The data Returns ll : array, shape (n_samples,) Log-likelihood of each sample under the current model'
def score_samples(self, X):
check_is_fitted(self, 'components_') Xr = (X - self.mean_) precision = self.get_precision() n_features = X.shape[1] log_like = np.zeros(X.shape[0]) log_like = ((-0.5) * (Xr * np.dot(Xr, precision)).sum(axis=1)) log_like -= (0.5 * ((n_features * log((2.0 * np.pi))) - fast_logdet(precision))) return log_like
'Compute the average log-likelihood of the samples Parameters X : array, shape (n_samples, n_features) The data Returns ll : float Average log-likelihood of the samples under the current model'
def score(self, X, y=None):
return np.mean(self.score_samples(X))
'Fit\'s using kernel K'
def _fit_transform(self, K):
K = self._centerer.fit_transform(K) if (self.n_components is None): n_components = K.shape[0] else: n_components = min(K.shape[0], self.n_components) if (self.eigen_solver == 'auto'): if ((K.shape[0] > 200) and (n_components < 10)): eigen_solver = 'arpack' else: eigen_solver = 'dense' else: eigen_solver = self.eigen_solver if (eigen_solver == 'dense'): (self.lambdas_, self.alphas_) = linalg.eigh(K, eigvals=((K.shape[0] - n_components), (K.shape[0] - 1))) elif (eigen_solver == 'arpack'): random_state = check_random_state(self.random_state) v0 = random_state.uniform((-1), 1, K.shape[0]) (self.lambdas_, self.alphas_) = eigsh(K, n_components, which='LA', tol=self.tol, maxiter=self.max_iter, v0=v0) indices = self.lambdas_.argsort()[::(-1)] self.lambdas_ = self.lambdas_[indices] self.alphas_ = self.alphas_[:, indices] if (self.remove_zero_eig or (self.n_components is None)): self.alphas_ = self.alphas_[:, (self.lambdas_ > 0)] self.lambdas_ = self.lambdas_[(self.lambdas_ > 0)] return K
'Fit the model from data in X. Parameters X : array-like, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. Returns self : object Returns the instance itself.'
def fit(self, X, y=None):
X = check_array(X, accept_sparse='csr', copy=self.copy_X) K = self._get_kernel(X) self._fit_transform(K) if self.fit_inverse_transform: sqrt_lambdas = np.diag(np.sqrt(self.lambdas_)) X_transformed = np.dot(self.alphas_, sqrt_lambdas) self._fit_inverse_transform(X_transformed, X) self.X_fit_ = X return self
'Fit the model from data in X and transform X. Parameters X : array-like, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. Returns X_new : array-like, shape (n_samples, n_components)'
def fit_transform(self, X, y=None, **params):
self.fit(X, **params) X_transformed = (self.alphas_ * np.sqrt(self.lambdas_)) if self.fit_inverse_transform: self._fit_inverse_transform(X_transformed, X) return X_transformed
'Transform X. Parameters X : array-like, shape (n_samples, n_features) Returns X_new : array-like, shape (n_samples, n_components)'
def transform(self, X):
check_is_fitted(self, 'X_fit_') K = self._centerer.transform(self._get_kernel(X, self.X_fit_)) return np.dot(K, (self.alphas_ / np.sqrt(self.lambdas_)))
'Transform X back to original space. Parameters X : array-like, shape (n_samples, n_components) Returns X_new : array-like, shape (n_samples, n_features) References "Learning to Find Pre-Images", G BakIr et al, 2004.'
def inverse_transform(self, X):
if (not self.fit_inverse_transform): raise NotFittedError('The fit_inverse_transform parameter was not set to True when instantiating and hence the inverse transform is not available.') K = self._get_kernel(X, self.X_transformed_fit_) return np.dot(K, self.dual_coef_)
'Fit the model from data in X. Parameters X : array-like, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. Returns self : object Returns the instance itself.'
def fit(self, X, y=None):
random_state = check_random_state(self.random_state) X = check_array(X) if (self.n_components is None): n_components = X.shape[1] else: n_components = self.n_components code_init = (self.V_init.T if (self.V_init is not None) else None) dict_init = (self.U_init.T if (self.U_init is not None) else None) (Vt, _, E, self.n_iter_) = dict_learning(X.T, n_components, self.alpha, tol=self.tol, max_iter=self.max_iter, method=self.method, n_jobs=self.n_jobs, verbose=self.verbose, random_state=random_state, code_init=code_init, dict_init=dict_init, return_n_iter=True) self.components_ = Vt.T self.error_ = E return self
'Least Squares projection of the data onto the sparse components. To avoid instability issues in case the system is under-determined, regularization can be applied (Ridge regression) via the `ridge_alpha` parameter. Note that Sparse PCA components orthogonality is not enforced as in PCA hence one cannot use a simple linear projection. Parameters X : array of shape (n_samples, n_features) Test data to be transformed, must have the same number of features as the data used to train the model. ridge_alpha : float, default: 0.01 Amount of ridge shrinkage to apply in order to improve conditioning. .. deprecated:: 0.19 This parameter will be removed in 0.21. Specify ``ridge_alpha`` in the ``SparsePCA`` constructor. Returns X_new array, shape (n_samples, n_components) Transformed data.'
def transform(self, X, ridge_alpha='deprecated'):
check_is_fitted(self, 'components_') X = check_array(X) if (ridge_alpha != 'deprecated'): warnings.warn('The ridge_alpha parameter on transform() is deprecated since 0.19 and will be removed in 0.21. Specify ridge_alpha in the SparsePCA constructor.', DeprecationWarning) if (ridge_alpha is None): ridge_alpha = self.ridge_alpha else: ridge_alpha = self.ridge_alpha U = ridge_regression(self.components_.T, X.T, ridge_alpha, solver='cholesky') s = np.sqrt((U ** 2).sum(axis=0)) s[(s == 0)] = 1 U /= s return U
'Fit the model from data in X. Parameters X : array-like, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. Returns self : object Returns the instance itself.'
def fit(self, X, y=None):
random_state = check_random_state(self.random_state) X = check_array(X) if (self.n_components is None): n_components = X.shape[1] else: n_components = self.n_components (Vt, _, self.n_iter_) = dict_learning_online(X.T, n_components, alpha=self.alpha, n_iter=self.n_iter, return_code=True, dict_init=None, verbose=self.verbose, callback=self.callback, batch_size=self.batch_size, shuffle=self.shuffle, n_jobs=self.n_jobs, method=self.method, random_state=random_state, return_n_iter=True) self.components_ = Vt.T return self
'Fit the model with X, using minibatches of size batch_size. Parameters X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. y : Passthrough for ``Pipeline`` compatibility. Returns self : object Returns the instance itself.'
def fit(self, X, y=None):
self.components_ = None self.n_samples_seen_ = 0 self.mean_ = 0.0 self.var_ = 0.0 self.singular_values_ = None self.explained_variance_ = None self.explained_variance_ratio_ = None self.singular_values_ = None self.noise_variance_ = None X = check_array(X, copy=self.copy, dtype=[np.float64, np.float32]) (n_samples, n_features) = X.shape if (self.batch_size is None): self.batch_size_ = (5 * n_features) else: self.batch_size_ = self.batch_size for batch in gen_batches(n_samples, self.batch_size_): self.partial_fit(X[batch], check_input=False) return self
'Incremental fit with X. All of X is processed as a single batch. Parameters X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. check_input : bool Run check_array on X. Returns self : object Returns the instance itself.'
def partial_fit(self, X, y=None, check_input=True):
if check_input: X = check_array(X, copy=self.copy, dtype=[np.float64, np.float32]) (n_samples, n_features) = X.shape if (not hasattr(self, 'components_')): self.components_ = None if (self.n_components is None): self.n_components_ = n_features elif (not (1 <= self.n_components <= n_features)): raise ValueError(('n_components=%r invalid for n_features=%d, need more rows than columns for IncrementalPCA processing' % (self.n_components, n_features))) else: self.n_components_ = self.n_components if ((self.components_ is not None) and (self.components_.shape[0] != self.n_components_)): raise ValueError(('Number of input features has changed from %i to %i between calls to partial_fit! Try setting n_components to a fixed value.' % (self.components_.shape[0], self.n_components_))) if (not hasattr(self, 'n_samples_seen_')): self.n_samples_seen_ = 0 self.mean_ = 0.0 self.var_ = 0.0 (col_mean, col_var, n_total_samples) = _incremental_mean_and_var(X, last_mean=self.mean_, last_variance=self.var_, last_sample_count=self.n_samples_seen_) if (self.n_samples_seen_ == 0): X -= col_mean else: col_batch_mean = np.mean(X, axis=0) X -= col_batch_mean mean_correction = (np.sqrt(((self.n_samples_seen_ * n_samples) / n_total_samples)) * (self.mean_ - col_batch_mean)) X = np.vstack(((self.singular_values_.reshape(((-1), 1)) * self.components_), X, mean_correction)) (U, S, V) = linalg.svd(X, full_matrices=False) (U, V) = svd_flip(U, V, u_based_decision=False) explained_variance = ((S ** 2) / (n_total_samples - 1)) explained_variance_ratio = ((S ** 2) / np.sum((col_var * n_total_samples))) self.n_samples_seen_ = n_total_samples self.components_ = V[:self.n_components_] self.singular_values_ = S[:self.n_components_] self.mean_ = col_mean self.var_ = col_var self.explained_variance_ = explained_variance[:self.n_components_] self.explained_variance_ratio_ = explained_variance_ratio[:self.n_components_] if (self.n_components_ < n_features): self.noise_variance_ = explained_variance[self.n_components_:].mean() else: self.noise_variance_ = 0.0 return self
'Fit the model with X. Parameters X : array-like, shape (n_samples, n_features) Training data, where n_samples in the number of samples and n_features is the number of features. Returns self : object Returns the instance itself.'
def fit(self, X, y=None):
self._fit(X) return self
'Fit the model with X and apply the dimensionality reduction on X. Parameters X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. Returns X_new : array-like, shape (n_samples, n_components)'
def fit_transform(self, X, y=None):
(U, S, V) = self._fit(X) U = U[:, :self.n_components_] if self.whiten: U *= sqrt((X.shape[0] - 1)) else: U *= S[:self.n_components_] return U
'Dispatch to the right submethod depending on the chosen solver.'
def _fit(self, X):
if issparse(X): raise TypeError('PCA does not support sparse input. See TruncatedSVD for a possible alternative.') X = check_array(X, dtype=[np.float64, np.float32], ensure_2d=True, copy=self.copy) if (self.n_components is None): n_components = X.shape[1] else: n_components = self.n_components svd_solver = self.svd_solver if (svd_solver == 'auto'): if (max(X.shape) <= 500): svd_solver = 'full' elif ((n_components >= 1) and (n_components < (0.8 * min(X.shape)))): svd_solver = 'randomized' else: svd_solver = 'full' if (svd_solver == 'full'): return self._fit_full(X, n_components) elif (svd_solver in ['arpack', 'randomized']): return self._fit_truncated(X, n_components, svd_solver) else: raise ValueError("Unrecognized svd_solver='{0}'".format(svd_solver))
'Fit the model by computing full SVD on X'
def _fit_full(self, X, n_components):
(n_samples, n_features) = X.shape if (n_components == 'mle'): if (n_samples < n_features): raise ValueError("n_components='mle' is only supported if n_samples >= n_features") elif (not (0 <= n_components <= n_features)): raise ValueError(("n_components=%r must be between 0 and n_features=%r with svd_solver='full'" % (n_components, n_features))) self.mean_ = np.mean(X, axis=0) X -= self.mean_ (U, S, V) = linalg.svd(X, full_matrices=False) (U, V) = svd_flip(U, V) components_ = V explained_variance_ = ((S ** 2) / (n_samples - 1)) total_var = explained_variance_.sum() explained_variance_ratio_ = (explained_variance_ / total_var) singular_values_ = S.copy() if (n_components == 'mle'): n_components = _infer_dimension_(explained_variance_, n_samples, n_features) elif (0 < n_components < 1.0): ratio_cumsum = stable_cumsum(explained_variance_ratio_) n_components = (np.searchsorted(ratio_cumsum, n_components) + 1) if (n_components < min(n_features, n_samples)): self.noise_variance_ = explained_variance_[n_components:].mean() else: self.noise_variance_ = 0.0 (self.n_samples_, self.n_features_) = (n_samples, n_features) self.components_ = components_[:n_components] self.n_components_ = n_components self.explained_variance_ = explained_variance_[:n_components] self.explained_variance_ratio_ = explained_variance_ratio_[:n_components] self.singular_values_ = singular_values_[:n_components] return (U, S, V)
'Fit the model by computing truncated SVD (by ARPACK or randomized) on X'
def _fit_truncated(self, X, n_components, svd_solver):
(n_samples, n_features) = X.shape if isinstance(n_components, six.string_types): raise ValueError(("n_components=%r cannot be a string with svd_solver='%s'" % (n_components, svd_solver))) elif (not (1 <= n_components <= n_features)): raise ValueError(("n_components=%r must be between 1 and n_features=%r with svd_solver='%s'" % (n_components, n_features, svd_solver))) elif ((svd_solver == 'arpack') and (n_components == n_features)): raise ValueError(("n_components=%r must be stricly less than n_features=%r with svd_solver='%s'" % (n_components, n_features, svd_solver))) random_state = check_random_state(self.random_state) self.mean_ = np.mean(X, axis=0) X -= self.mean_ if (svd_solver == 'arpack'): v0 = random_state.uniform((-1), 1, size=min(X.shape)) (U, S, V) = svds(X, k=n_components, tol=self.tol, v0=v0) S = S[::(-1)] (U, V) = svd_flip(U[:, ::(-1)], V[::(-1)]) elif (svd_solver == 'randomized'): (U, S, V) = randomized_svd(X, n_components=n_components, n_iter=self.iterated_power, flip_sign=True, random_state=random_state) (self.n_samples_, self.n_features_) = (n_samples, n_features) self.components_ = V self.n_components_ = n_components self.explained_variance_ = ((S ** 2) / (n_samples - 1)) total_var = np.var(X, ddof=1, axis=0) self.explained_variance_ratio_ = (self.explained_variance_ / total_var.sum()) self.singular_values_ = S.copy() if (self.n_components_ < min(n_features, n_samples)): self.noise_variance_ = (total_var.sum() - self.explained_variance_.sum()) self.noise_variance_ /= (min(n_features, n_samples) - n_components) else: self.noise_variance_ = 0.0 return (U, S, V)
'Return the log-likelihood of each sample. See. "Pattern Recognition and Machine Learning" by C. Bishop, 12.2.1 p. 574 or http://www.miketipping.com/papers/met-mppca.pdf Parameters X : array, shape(n_samples, n_features) The data. Returns ll : array, shape (n_samples,) Log-likelihood of each sample under the current model'
def score_samples(self, X):
check_is_fitted(self, 'mean_') X = check_array(X) Xr = (X - self.mean_) n_features = X.shape[1] log_like = np.zeros(X.shape[0]) precision = self.get_precision() log_like = ((-0.5) * (Xr * np.dot(Xr, precision)).sum(axis=1)) log_like -= (0.5 * ((n_features * log((2.0 * np.pi))) - fast_logdet(precision))) return log_like
'Return the average log-likelihood of all samples. See. "Pattern Recognition and Machine Learning" by C. Bishop, 12.2.1 p. 574 or http://www.miketipping.com/papers/met-mppca.pdf Parameters X : array, shape(n_samples, n_features) The data. Returns ll : float Average log-likelihood of the samples under the current model'
def score(self, X, y=None):
return np.mean(self.score_samples(X))
'Fit the model with X by extracting the first principal components. Parameters X : array-like, shape (n_samples, n_features) Training data, where n_samples in the number of samples and n_features is the number of features. Returns self : object Returns the instance itself.'
def fit(self, X, y=None):
self._fit(check_array(X)) return self
'Fit the model to the data X. Parameters X : array-like, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. Returns X : ndarray, shape (n_samples, n_features) The input data, copied, centered and whitened when requested.'
def _fit(self, X):
random_state = check_random_state(self.random_state) X = np.atleast_2d(as_float_array(X, copy=self.copy)) n_samples = X.shape[0] self.mean_ = np.mean(X, axis=0) X -= self.mean_ if (self.n_components is None): n_components = X.shape[1] else: n_components = self.n_components (U, S, V) = randomized_svd(X, n_components, n_iter=self.iterated_power, random_state=random_state) self.explained_variance_ = exp_var = ((S ** 2) / (n_samples - 1)) full_var = np.var(X, ddof=1, axis=0).sum() self.explained_variance_ratio_ = (exp_var / full_var) self.singular_values_ = S if self.whiten: self.components_ = ((V / S[:, np.newaxis]) * sqrt(n_samples)) else: self.components_ = V return X
'Apply dimensionality reduction on X. X is projected on the first principal components previous extracted from a training set. Parameters X : array-like, shape (n_samples, n_features) New data, where n_samples in the number of samples and n_features is the number of features. Returns X_new : array-like, shape (n_samples, n_components)'
def transform(self, X):
check_is_fitted(self, 'mean_') X = check_array(X) if (self.mean_ is not None): X = (X - self.mean_) X = np.dot(X, self.components_.T) return X
'Fit the model with X and apply the dimensionality reduction on X. Parameters X : array-like, shape (n_samples, n_features) New data, where n_samples in the number of samples and n_features is the number of features. Returns X_new : array-like, shape (n_samples, n_components)'
def fit_transform(self, X, y=None):
X = check_array(X) X = self._fit(X) return np.dot(X, self.components_.T)
'Transform data back to its original space. Returns an array X_original whose transform would be X. Parameters X : array-like, shape (n_samples, n_components) New data, where n_samples in the number of samples and n_components is the number of components. Returns X_original array-like, shape (n_samples, n_features) Notes If whitening is enabled, inverse_transform does not compute the exact inverse operation of transform.'
def inverse_transform(self, X):
check_is_fitted(self, 'mean_') X_original = np.dot(X, self.components_) if (self.mean_ is not None): X_original = (X_original + self.mean_) return X_original
'Check model parameters.'
def _check_params(self):
if (self.n_topics is not None): self._n_components = self.n_topics warnings.warn('n_topics has been renamed to n_components in version 0.19 and will be removed in 0.21', DeprecationWarning) else: self._n_components = self.n_components if (self._n_components <= 0): raise ValueError(("Invalid 'n_components' parameter: %r" % self._n_components)) if (self.total_samples <= 0): raise ValueError(("Invalid 'total_samples' parameter: %r" % self.total_samples)) if (self.learning_offset < 0): raise ValueError(("Invalid 'learning_offset' parameter: %r" % self.learning_offset)) if (self.learning_method not in ('batch', 'online', None)): raise ValueError(("Invalid 'learning_method' parameter: %r" % self.learning_method))
'Initialize latent variables.'
def _init_latent_vars(self, n_features):
self.random_state_ = check_random_state(self.random_state) self.n_batch_iter_ = 1 self.n_iter_ = 0 if (self.doc_topic_prior is None): self.doc_topic_prior_ = (1.0 / self._n_components) else: self.doc_topic_prior_ = self.doc_topic_prior if (self.topic_word_prior is None): self.topic_word_prior_ = (1.0 / self._n_components) else: self.topic_word_prior_ = self.topic_word_prior init_gamma = 100.0 init_var = (1.0 / init_gamma) self.components_ = self.random_state_.gamma(init_gamma, init_var, (self._n_components, n_features)) self.exp_dirichlet_component_ = np.exp(_dirichlet_expectation_2d(self.components_))
'E-step in EM update. Parameters X : array-like or sparse matrix, shape=(n_samples, n_features) Document word matrix. cal_sstats : boolean Parameter that indicate whether to calculate sufficient statistics or not. Set ``cal_sstats`` to True when we need to run M-step. random_init : boolean Parameter that indicate whether to initialize document topic distribution randomly in the E-step. Set it to True in training steps. parallel : joblib.Parallel (optional) Pre-initialized instance of joblib.Parallel. Returns (doc_topic_distr, suff_stats) : `doc_topic_distr` is unnormalized topic distribution for each document. In the literature, this is called `gamma`. `suff_stats` is expected sufficient statistics for the M-step. When `cal_sstats == False`, it will be None.'
def _e_step(self, X, cal_sstats, random_init, parallel=None):
random_state = (self.random_state_ if random_init else None) n_jobs = _get_n_jobs(self.n_jobs) if (parallel is None): parallel = Parallel(n_jobs=n_jobs, verbose=max(0, (self.verbose - 1))) results = parallel((delayed(_update_doc_distribution)(X[idx_slice, :], self.exp_dirichlet_component_, self.doc_topic_prior_, self.max_doc_update_iter, self.mean_change_tol, cal_sstats, random_state) for idx_slice in gen_even_slices(X.shape[0], n_jobs))) (doc_topics, sstats_list) = zip(*results) doc_topic_distr = np.vstack(doc_topics) if cal_sstats: suff_stats = np.zeros(self.components_.shape) for sstats in sstats_list: suff_stats += sstats suff_stats *= self.exp_dirichlet_component_ else: suff_stats = None return (doc_topic_distr, suff_stats)
'EM update for 1 iteration. update `_component` by batch VB or online VB. Parameters X : array-like or sparse matrix, shape=(n_samples, n_features) Document word matrix. total_samples : integer Total number of documents. It is only used when batch_update is `False`. batch_update : boolean Parameter that controls updating method. `True` for batch learning, `False` for online learning. parallel : joblib.Parallel Pre-initialized instance of joblib.Parallel Returns doc_topic_distr : array, shape=(n_samples, n_components) Unnormalized document topic distribution.'
def _em_step(self, X, total_samples, batch_update, parallel=None):
(_, suff_stats) = self._e_step(X, cal_sstats=True, random_init=True, parallel=parallel) if batch_update: self.components_ = (self.topic_word_prior_ + suff_stats) else: weight = np.power((self.learning_offset + self.n_batch_iter_), (- self.learning_decay)) doc_ratio = (float(total_samples) / X.shape[0]) self.components_ *= (1 - weight) self.components_ += (weight * (self.topic_word_prior_ + (doc_ratio * suff_stats))) self.exp_dirichlet_component_ = np.exp(_dirichlet_expectation_2d(self.components_)) self.n_batch_iter_ += 1 return
'check X format check X format and make sure no negative value in X. Parameters X : array-like or sparse matrix'
def _check_non_neg_array(self, X, whom):
X = check_array(X, accept_sparse='csr') check_non_negative(X, whom) return X
'Online VB with Mini-Batch update. Parameters X : array-like or sparse matrix, shape=(n_samples, n_features) Document word matrix. Returns self'
def partial_fit(self, X, y=None):
self._check_params() X = self._check_non_neg_array(X, 'LatentDirichletAllocation.partial_fit') (n_samples, n_features) = X.shape batch_size = self.batch_size if (not hasattr(self, 'components_')): self._init_latent_vars(n_features) if (n_features != self.components_.shape[1]): raise ValueError(('The provided data has %d dimensions while the model was trained with feature size %d.' % (n_features, self.components_.shape[1]))) n_jobs = _get_n_jobs(self.n_jobs) with Parallel(n_jobs=n_jobs, verbose=max(0, (self.verbose - 1))) as parallel: for idx_slice in gen_batches(n_samples, batch_size): self._em_step(X[idx_slice, :], total_samples=self.total_samples, batch_update=False, parallel=parallel) return self
'Learn model for the data X with variational Bayes method. When `learning_method` is \'online\', use mini-batch update. Otherwise, use batch update. Parameters X : array-like or sparse matrix, shape=(n_samples, n_features) Document word matrix. Returns self'
def fit(self, X, y=None):
self._check_params() X = self._check_non_neg_array(X, 'LatentDirichletAllocation.fit') (n_samples, n_features) = X.shape max_iter = self.max_iter evaluate_every = self.evaluate_every learning_method = self.learning_method if (learning_method is None): warnings.warn("The default value for 'learning_method' will be changed from 'online' to 'batch' in the release 0.20. This warning was introduced in 0.18.", DeprecationWarning) learning_method = 'online' batch_size = self.batch_size self._init_latent_vars(n_features) last_bound = None n_jobs = _get_n_jobs(self.n_jobs) with Parallel(n_jobs=n_jobs, verbose=max(0, (self.verbose - 1))) as parallel: for i in xrange(max_iter): if (learning_method == 'online'): for idx_slice in gen_batches(n_samples, batch_size): self._em_step(X[idx_slice, :], total_samples=n_samples, batch_update=False, parallel=parallel) else: self._em_step(X, total_samples=n_samples, batch_update=True, parallel=parallel) if ((evaluate_every > 0) and (((i + 1) % evaluate_every) == 0)): (doc_topics_distr, _) = self._e_step(X, cal_sstats=False, random_init=False, parallel=parallel) bound = self._perplexity_precomp_distr(X, doc_topics_distr, sub_sampling=False) if self.verbose: print ('iteration: %d of max_iter: %d, perplexity: %.4f' % ((i + 1), max_iter, bound)) if (last_bound and (abs((last_bound - bound)) < self.perp_tol)): break last_bound = bound elif self.verbose: print ('iteration: %d of max_iter: %d' % ((i + 1), max_iter)) self.n_iter_ += 1 (doc_topics_distr, _) = self._e_step(X, cal_sstats=False, random_init=False, parallel=parallel) self.bound_ = self._perplexity_precomp_distr(X, doc_topics_distr, sub_sampling=False) return self
'Transform data X according to fitted model. Parameters X : array-like or sparse matrix, shape=(n_samples, n_features) Document word matrix. Returns doc_topic_distr : shape=(n_samples, n_components) Document topic distribution for X.'
def _unnormalized_transform(self, X):
if (not hasattr(self, 'components_')): raise NotFittedError("no 'components_' attribute in model. Please fit model first.") X = self._check_non_neg_array(X, 'LatentDirichletAllocation.transform') (n_samples, n_features) = X.shape if (n_features != self.components_.shape[1]): raise ValueError(('The provided data has %d dimensions while the model was trained with feature size %d.' % (n_features, self.components_.shape[1]))) (doc_topic_distr, _) = self._e_step(X, cal_sstats=False, random_init=False) return doc_topic_distr
'Transform data X according to the fitted model. .. versionchanged:: 0.18 *doc_topic_distr* is now normalized Parameters X : array-like or sparse matrix, shape=(n_samples, n_features) Document word matrix. Returns doc_topic_distr : shape=(n_samples, n_components) Document topic distribution for X.'
def transform(self, X):
doc_topic_distr = self._unnormalized_transform(X) doc_topic_distr /= doc_topic_distr.sum(axis=1)[:, np.newaxis] return doc_topic_distr
'Estimate the variational bound. Estimate the variational bound over "all documents" using only the documents passed in as X. Since log-likelihood of each word cannot be computed directly, we use this bound to estimate it. Parameters X : array-like or sparse matrix, shape=(n_samples, n_features) Document word matrix. doc_topic_distr : array, shape=(n_samples, n_components) Document topic distribution. In the literature, this is called gamma. sub_sampling : boolean, optional, (default=False) Compensate for subsampling of documents. It is used in calculate bound in online learning. Returns score : float'
def _approx_bound(self, X, doc_topic_distr, sub_sampling):
def _loglikelihood(prior, distr, dirichlet_distr, size): score = np.sum(((prior - distr) * dirichlet_distr)) score += np.sum((gammaln(distr) - gammaln(prior))) score += np.sum((gammaln((prior * size)) - gammaln(np.sum(distr, 1)))) return score is_sparse_x = sp.issparse(X) (n_samples, n_components) = doc_topic_distr.shape n_features = self.components_.shape[1] score = 0 dirichlet_doc_topic = _dirichlet_expectation_2d(doc_topic_distr) dirichlet_component_ = _dirichlet_expectation_2d(self.components_) doc_topic_prior = self.doc_topic_prior_ topic_word_prior = self.topic_word_prior_ if is_sparse_x: X_data = X.data X_indices = X.indices X_indptr = X.indptr for idx_d in xrange(0, n_samples): if is_sparse_x: ids = X_indices[X_indptr[idx_d]:X_indptr[(idx_d + 1)]] cnts = X_data[X_indptr[idx_d]:X_indptr[(idx_d + 1)]] else: ids = np.nonzero(X[idx_d, :])[0] cnts = X[(idx_d, ids)] temp = (dirichlet_doc_topic[idx_d, :, np.newaxis] + dirichlet_component_[:, ids]) norm_phi = logsumexp(temp, axis=0) score += np.dot(cnts, norm_phi) score += _loglikelihood(doc_topic_prior, doc_topic_distr, dirichlet_doc_topic, self._n_components) if sub_sampling: doc_ratio = (float(self.total_samples) / n_samples) score *= doc_ratio score += _loglikelihood(topic_word_prior, self.components_, dirichlet_component_, n_features) return score
'Calculate approximate log-likelihood as score. Parameters X : array-like or sparse matrix, shape=(n_samples, n_features) Document word matrix. Returns score : float Use approximate bound as score.'
def score(self, X, y=None):
X = self._check_non_neg_array(X, 'LatentDirichletAllocation.score') doc_topic_distr = self._unnormalized_transform(X) score = self._approx_bound(X, doc_topic_distr, sub_sampling=False) return score
'Calculate approximate perplexity for data X with ability to accept precomputed doc_topic_distr Perplexity is defined as exp(-1. * log-likelihood per word) Parameters X : array-like or sparse matrix, [n_samples, n_features] Document word matrix. doc_topic_distr : None or array, shape=(n_samples, n_components) Document topic distribution. If it is None, it will be generated by applying transform on X. Returns score : float Perplexity score.'
def _perplexity_precomp_distr(self, X, doc_topic_distr=None, sub_sampling=False):
if (not hasattr(self, 'components_')): raise NotFittedError("no 'components_' attribute in model. Please fit model first.") X = self._check_non_neg_array(X, 'LatentDirichletAllocation.perplexity') if (doc_topic_distr is None): doc_topic_distr = self._unnormalized_transform(X) else: (n_samples, n_components) = doc_topic_distr.shape if (n_samples != X.shape[0]): raise ValueError('Number of samples in X and doc_topic_distr do not match.') if (n_components != self._n_components): raise ValueError('Number of topics does not match.') current_samples = X.shape[0] bound = self._approx_bound(X, doc_topic_distr, sub_sampling) if sub_sampling: word_cnt = (X.sum() * (float(self.total_samples) / current_samples)) else: word_cnt = X.sum() perword_bound = (bound / word_cnt) return np.exp(((-1.0) * perword_bound))
'Calculate approximate perplexity for data X. Perplexity is defined as exp(-1. * log-likelihood per word) .. versionchanged:: 0.19 *doc_topic_distr* argument has been deprecated and is ignored because user no longer has access to unnormalized distribution Parameters X : array-like or sparse matrix, [n_samples, n_features] Document word matrix. doc_topic_distr : None or array, shape=(n_samples, n_components) Document topic distribution. This argument is deprecated and is currently being ignored. .. deprecated:: 0.19 sub_sampling : bool Do sub-sampling or not. Returns score : float Perplexity score.'
def perplexity(self, X, doc_topic_distr='deprecated', sub_sampling=False):
if (doc_topic_distr != 'deprecated'): warnings.warn("Argument 'doc_topic_distr' is deprecated and is being ignored as of 0.19. Support for this argument will be removed in 0.21.", DeprecationWarning) return self._perplexity_precomp_distr(X, sub_sampling=sub_sampling)
'Learn a NMF model for the data X and returns the transformed data. This is more efficient than calling fit followed by transform. Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features) Data matrix to be decomposed W : array-like, shape (n_samples, n_components) If init=\'custom\', it is used as initial guess for the solution. H : array-like, shape (n_components, n_features) If init=\'custom\', it is used as initial guess for the solution. Returns W : array, shape (n_samples, n_components) Transformed data.'
def fit_transform(self, X, y=None, W=None, H=None):
X = check_array(X, accept_sparse=('csr', 'csc'), dtype=float) (W, H, n_iter_) = non_negative_factorization(X=X, W=W, H=H, n_components=self.n_components, init=self.init, update_H=True, solver=self.solver, beta_loss=self.beta_loss, tol=self.tol, max_iter=self.max_iter, alpha=self.alpha, l1_ratio=self.l1_ratio, regularization='both', random_state=self.random_state, verbose=self.verbose, shuffle=self.shuffle) self.reconstruction_err_ = _beta_divergence(X, W, H, self.beta_loss, square_root=True) self.n_components_ = H.shape[0] self.components_ = H self.n_iter_ = n_iter_ return W
'Learn a NMF model for the data X. Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features) Data matrix to be decomposed Returns self'
def fit(self, X, y=None, **params):
self.fit_transform(X, **params) return self
'Transform the data X according to the fitted NMF model Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features) Data matrix to be transformed by the model Returns W : array, shape (n_samples, n_components) Transformed data'
def transform(self, X):
check_is_fitted(self, 'n_components_') (W, _, n_iter_) = non_negative_factorization(X=X, W=None, H=self.components_, n_components=self.n_components_, init=self.init, update_H=False, solver=self.solver, beta_loss=self.beta_loss, tol=self.tol, max_iter=self.max_iter, alpha=self.alpha, l1_ratio=self.l1_ratio, regularization='both', random_state=self.random_state, verbose=self.verbose, shuffle=self.shuffle) return W
'Transform data back to its original space. Parameters W : {array-like, sparse matrix}, shape (n_samples, n_components) Transformed data matrix Returns X : {array-like, sparse matrix}, shape (n_samples, n_features) Data matrix of original shape .. versionadded:: 0.18'
def inverse_transform(self, W):
check_is_fitted(self, 'n_components_') return np.dot(W, self.components_)
'Fit Kernel Ridge regression model Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values sample_weight : float or array-like of shape [n_samples] Individual weights for each sample, ignored if None is passed. Returns self : returns an instance of self.'
def fit(self, X, y=None, sample_weight=None):
(X, y) = check_X_y(X, y, accept_sparse=('csr', 'csc'), multi_output=True, y_numeric=True) if ((sample_weight is not None) and (not isinstance(sample_weight, float))): sample_weight = check_array(sample_weight, ensure_2d=False) K = self._get_kernel(X) alpha = np.atleast_1d(self.alpha) ravel = False if (len(y.shape) == 1): y = y.reshape((-1), 1) ravel = True copy = (self.kernel == 'precomputed') self.dual_coef_ = _solve_cholesky_kernel(K, y, alpha, sample_weight, copy) if ravel: self.dual_coef_ = self.dual_coef_.ravel() self.X_fit_ = X return self
'Predict using the kernel ridge model Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features] Samples. Returns C : array, shape = [n_samples] or [n_samples, n_targets] Returns predicted values.'
def predict(self, X):
check_is_fitted(self, ['X_fit_', 'dual_coef_']) K = self._get_kernel(X, self.X_fit_) return np.dot(K, self.dual_coef_)
'Perform DBSCAN clustering from features or distance matrix. Parameters X : array or sparse (CSR) matrix of shape (n_samples, n_features), or array of shape (n_samples, n_samples) A feature array, or array of distances between samples if ``metric=\'precomputed\'``. sample_weight : array, shape (n_samples,), optional Weight of each sample, such that a sample with a weight of at least ``min_samples`` is by itself a core sample; a sample with negative weight may inhibit its eps-neighbor from being core. Note that weights are absolute, and default to 1.'
def fit(self, X, y=None, sample_weight=None):
X = check_array(X, accept_sparse='csr') clust = dbscan(X, sample_weight=sample_weight, **self.get_params()) (self.core_sample_indices_, self.labels_) = clust if len(self.core_sample_indices_): self.components_ = X[self.core_sample_indices_].copy() else: self.components_ = np.empty((0, X.shape[1])) return self
'Performs clustering on X and returns cluster labels. Parameters X : array or sparse (CSR) matrix of shape (n_samples, n_features), or array of shape (n_samples, n_samples) A feature array, or array of distances between samples if ``metric=\'precomputed\'``. sample_weight : array, shape (n_samples,), optional Weight of each sample, such that a sample with a weight of at least ``min_samples`` is by itself a core sample; a sample with negative weight may inhibit its eps-neighbor from being core. Note that weights are absolute, and default to 1. Returns y : ndarray, shape (n_samples,) cluster labels'
def fit_predict(self, X, y=None, sample_weight=None):
self.fit(X, sample_weight=sample_weight) return self.labels_
'Perform clustering. Parameters X : array-like, shape=[n_samples, n_features] Samples to cluster.'
def fit(self, X, y=None):
X = check_array(X) (self.cluster_centers_, self.labels_) = mean_shift(X, bandwidth=self.bandwidth, seeds=self.seeds, min_bin_freq=self.min_bin_freq, bin_seeding=self.bin_seeding, cluster_all=self.cluster_all, n_jobs=self.n_jobs) return self
'Predict the closest cluster each sample in X belongs to. Parameters X : {array-like, sparse matrix}, shape=[n_samples, n_features] New data to predict. Returns labels : array, shape [n_samples,] Index of the cluster each sample belongs to.'
def predict(self, X):
check_is_fitted(self, 'cluster_centers_') return pairwise_distances_argmin(X, self.cluster_centers_)
'Verify that the number of samples given is larger than k'
def _check_fit_data(self, X):
X = check_array(X, accept_sparse='csr', dtype=[np.float64, np.float32]) if (X.shape[0] < self.n_clusters): raise ValueError(('n_samples=%d should be >= n_clusters=%d' % (X.shape[0], self.n_clusters))) return X
'Compute k-means clustering. Parameters X : array-like or sparse matrix, shape=(n_samples, n_features) Training instances to cluster.'
def fit(self, X, y=None):
random_state = check_random_state(self.random_state) X = self._check_fit_data(X) (self.cluster_centers_, self.labels_, self.inertia_, self.n_iter_) = k_means(X, n_clusters=self.n_clusters, init=self.init, n_init=self.n_init, max_iter=self.max_iter, verbose=self.verbose, precompute_distances=self.precompute_distances, tol=self.tol, random_state=random_state, copy_x=self.copy_x, n_jobs=self.n_jobs, algorithm=self.algorithm, return_n_iter=True) return self
'Compute cluster centers and predict cluster index for each sample. Convenience method; equivalent to calling fit(X) followed by predict(X). Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features] New data to transform. Returns labels : array, shape [n_samples,] Index of the cluster each sample belongs to.'
def fit_predict(self, X, y=None):
return self.fit(X).labels_
'Compute clustering and transform X to cluster-distance space. Equivalent to fit(X).transform(X), but more efficiently implemented. Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features] New data to transform. Returns X_new : array, shape [n_samples, k] X transformed in the new space.'
def fit_transform(self, X, y=None):
X = self._check_fit_data(X) return self.fit(X)._transform(X)
'Transform X to a cluster-distance space. In the new space, each dimension is the distance to the cluster centers. Note that even if X is sparse, the array returned by `transform` will typically be dense. Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features] New data to transform. Returns X_new : array, shape [n_samples, k] X transformed in the new space.'
def transform(self, X):
check_is_fitted(self, 'cluster_centers_') X = self._check_test_data(X) return self._transform(X)
'guts of transform method; no input validation'
def _transform(self, X):
return euclidean_distances(X, self.cluster_centers_)
'Predict the closest cluster each sample in X belongs to. In the vector quantization literature, `cluster_centers_` is called the code book and each value returned by `predict` is the index of the closest code in the code book. Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features] New data to predict. Returns labels : array, shape [n_samples,] Index of the cluster each sample belongs to.'
def predict(self, X):
check_is_fitted(self, 'cluster_centers_') X = self._check_test_data(X) x_squared_norms = row_norms(X, squared=True) return _labels_inertia(X, x_squared_norms, self.cluster_centers_)[0]
'Opposite of the value of X on the K-means objective. Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features] New data. Returns score : float Opposite of the value of X on the K-means objective.'
def score(self, X, y=None):
check_is_fitted(self, 'cluster_centers_') X = self._check_test_data(X) x_squared_norms = row_norms(X, squared=True) return (- _labels_inertia(X, x_squared_norms, self.cluster_centers_)[1])
'Compute the centroids on X by chunking it into mini-batches. Parameters X : array-like or sparse matrix, shape=(n_samples, n_features) Training instances to cluster.'
def fit(self, X, y=None):
random_state = check_random_state(self.random_state) X = check_array(X, accept_sparse='csr', order='C', dtype=[np.float64, np.float32]) (n_samples, n_features) = X.shape if (n_samples < self.n_clusters): raise ValueError('Number of samples smaller than number of clusters.') n_init = self.n_init if hasattr(self.init, '__array__'): self.init = np.ascontiguousarray(self.init, dtype=X.dtype) if (n_init != 1): warnings.warn(('Explicit initial center position passed: performing only one init in MiniBatchKMeans instead of n_init=%d' % self.n_init), RuntimeWarning, stacklevel=2) n_init = 1 x_squared_norms = row_norms(X, squared=True) if (self.tol > 0.0): tol = _tolerance(X, self.tol) old_center_buffer = np.zeros(n_features, dtype=X.dtype) else: tol = 0.0 old_center_buffer = np.zeros(0, dtype=X.dtype) distances = np.zeros(self.batch_size, dtype=X.dtype) n_batches = int(np.ceil((float(n_samples) / self.batch_size))) n_iter = int((self.max_iter * n_batches)) init_size = self.init_size if (init_size is None): init_size = (3 * self.batch_size) if (init_size > n_samples): init_size = n_samples self.init_size_ = init_size validation_indices = random_state.randint(0, n_samples, init_size) X_valid = X[validation_indices] x_squared_norms_valid = x_squared_norms[validation_indices] best_inertia = None for init_idx in range(n_init): if self.verbose: print ('Init %d/%d with method: %s' % ((init_idx + 1), n_init, self.init)) counts = np.zeros(self.n_clusters, dtype=np.int32) cluster_centers = _init_centroids(X, self.n_clusters, self.init, random_state=random_state, x_squared_norms=x_squared_norms, init_size=init_size) (batch_inertia, centers_squared_diff) = _mini_batch_step(X_valid, x_squared_norms[validation_indices], cluster_centers, counts, old_center_buffer, False, distances=None, verbose=self.verbose) (_, inertia) = _labels_inertia(X_valid, x_squared_norms_valid, cluster_centers) if self.verbose: print ('Inertia for init %d/%d: %f' % ((init_idx + 1), n_init, inertia)) if ((best_inertia is None) or (inertia < best_inertia)): self.cluster_centers_ = cluster_centers self.counts_ = counts best_inertia = inertia convergence_context = {} for iteration_idx in range(n_iter): minibatch_indices = random_state.randint(0, n_samples, self.batch_size) (batch_inertia, centers_squared_diff) = _mini_batch_step(X[minibatch_indices], x_squared_norms[minibatch_indices], self.cluster_centers_, self.counts_, old_center_buffer, (tol > 0.0), distances=distances, random_reassign=(((iteration_idx + 1) % (10 + self.counts_.min())) == 0), random_state=random_state, reassignment_ratio=self.reassignment_ratio, verbose=self.verbose) if _mini_batch_convergence(self, iteration_idx, n_iter, tol, n_samples, centers_squared_diff, batch_inertia, convergence_context, verbose=self.verbose): break self.n_iter_ = (iteration_idx + 1) if self.compute_labels: (self.labels_, self.inertia_) = self._labels_inertia_minibatch(X) return self
'Compute labels and inertia using mini batches. This is slightly slower than doing everything at once but preventes memory errors / segfaults. Parameters X : array-like, shape (n_samples, n_features) Input data. Returns labels : array, shap (n_samples,) Cluster labels for each point. inertia : float Sum of squared distances of points to nearest cluster.'
def _labels_inertia_minibatch(self, X):
if self.verbose: print 'Computing label assignment and total inertia' x_squared_norms = row_norms(X, squared=True) slices = gen_batches(X.shape[0], self.batch_size) results = [_labels_inertia(X[s], x_squared_norms[s], self.cluster_centers_) for s in slices] (labels, inertia) = zip(*results) return (np.hstack(labels), np.sum(inertia))
'Update k means estimate on a single mini-batch X. Parameters X : array-like, shape = [n_samples, n_features] Coordinates of the data points to cluster.'
def partial_fit(self, X, y=None):
X = check_array(X, accept_sparse='csr') (n_samples, n_features) = X.shape if hasattr(self.init, '__array__'): self.init = np.ascontiguousarray(self.init, dtype=X.dtype) if (n_samples == 0): return self x_squared_norms = row_norms(X, squared=True) self.random_state_ = getattr(self, 'random_state_', check_random_state(self.random_state)) if ((not hasattr(self, 'counts_')) or (not hasattr(self, 'cluster_centers_'))): self.cluster_centers_ = _init_centroids(X, self.n_clusters, self.init, random_state=self.random_state_, x_squared_norms=x_squared_norms, init_size=self.init_size) self.counts_ = np.zeros(self.n_clusters, dtype=np.int32) random_reassign = False distances = None else: random_reassign = (self.random_state_.randint((10 * (1 + self.counts_.min()))) == 0) distances = np.zeros(X.shape[0], dtype=X.dtype) _mini_batch_step(X, x_squared_norms, self.cluster_centers_, self.counts_, np.zeros(0, dtype=X.dtype), 0, random_reassign=random_reassign, distances=distances, random_state=self.random_state_, reassignment_ratio=self.reassignment_ratio, verbose=self.verbose) if self.compute_labels: (self.labels_, self.inertia_) = _labels_inertia(X, x_squared_norms, self.cluster_centers_) return self
'Predict the closest cluster each sample in X belongs to. In the vector quantization literature, `cluster_centers_` is called the code book and each value returned by `predict` is the index of the closest code in the code book. Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features] New data to predict. Returns labels : array, shape [n_samples,] Index of the cluster each sample belongs to.'
def predict(self, X):
check_is_fitted(self, 'cluster_centers_') X = self._check_test_data(X) return self._labels_inertia_minibatch(X)[0]
'Fit the hierarchical clustering on the data Parameters X : array-like, shape = [n_samples, n_features] The samples a.k.a. observations. Returns self'
def fit(self, X, y=None):
X = check_array(X, ensure_min_samples=2, estimator=self) memory = self.memory if (memory is None): memory = Memory(cachedir=None, verbose=0) elif isinstance(memory, six.string_types): memory = Memory(cachedir=memory, verbose=0) elif (not isinstance(memory, Memory)): raise ValueError("'memory' should either be a string or a sklearn.externals.joblib.Memory instance, got 'memory={!r}' instead.".format(type(memory))) if (self.n_clusters <= 0): raise ValueError(('n_clusters should be an integer greater than 0. %s was provided.' % str(self.n_clusters))) if ((self.linkage == 'ward') and (self.affinity != 'euclidean')): raise ValueError(('%s was provided as affinity. Ward can only work with euclidean distances.' % (self.affinity,))) if (self.linkage not in _TREE_BUILDERS): raise ValueError(('Unknown linkage type %s.Valid options are %s' % (self.linkage, _TREE_BUILDERS.keys()))) tree_builder = _TREE_BUILDERS[self.linkage] connectivity = self.connectivity if (self.connectivity is not None): if callable(self.connectivity): connectivity = self.connectivity(X) connectivity = check_array(connectivity, accept_sparse=['csr', 'coo', 'lil']) n_samples = len(X) compute_full_tree = self.compute_full_tree if (self.connectivity is None): compute_full_tree = True if (compute_full_tree == 'auto'): compute_full_tree = (self.n_clusters < max(100, (0.02 * n_samples))) n_clusters = self.n_clusters if compute_full_tree: n_clusters = None kwargs = {} if (self.linkage != 'ward'): kwargs['linkage'] = self.linkage kwargs['affinity'] = self.affinity (self.children_, self.n_components_, self.n_leaves_, parents) = memory.cache(tree_builder)(X, connectivity, n_clusters=n_clusters, **kwargs) if compute_full_tree: self.labels_ = _hc_cut(self.n_clusters, self.children_, self.n_leaves_) else: labels = _hierarchical.hc_get_heads(parents, copy=False) labels = np.copy(labels[:n_samples]) self.labels_ = np.searchsorted(np.unique(labels), labels) return self
'Fit the hierarchical clustering on the data Parameters X : array-like, shape = [n_samples, n_features] The data Returns self'
def fit(self, X, y=None, **params):
X = check_array(X, accept_sparse=['csr', 'csc', 'coo'], ensure_min_features=2, estimator=self) return AgglomerativeClustering.fit(self, X.T, **params)
'Transform a new matrix using the built clustering Parameters X : array-like, shape = [n_samples, n_features] or [n_features] A M by N array of M observations in N dimensions or a length M array of M one-dimensional observations. Returns Y : array, shape = [n_samples, n_clusters] or [n_clusters] The pooled values for each feature cluster.'
def transform(self, X):
check_is_fitted(self, 'labels_') pooling_func = self.pooling_func X = check_array(X) nX = [] if (len(self.labels_) != X.shape[1]): raise ValueError('X has a different number of features than during fitting.') for l in np.unique(self.labels_): nX.append(pooling_func(X[:, (self.labels_ == l)], axis=1)) return np.array(nX).T
'Inverse the transformation. Return a vector of size nb_features with the values of Xred assigned to each group of features Parameters Xred : array-like, shape=[n_samples, n_clusters] or [n_clusters,] The values to be assigned to each cluster of samples Returns X : array, shape=[n_samples, n_features] or [n_features] A vector of size n_samples with the values of Xred assigned to each of the cluster of samples.'
def inverse_transform(self, Xred):
check_is_fitted(self, 'labels_') (unil, inverse) = np.unique(self.labels_, return_inverse=True) return Xred[..., inverse]
'Remove a subcluster from a node and update it with the split subclusters.'
def update_split_subclusters(self, subcluster, new_subcluster1, new_subcluster2):
ind = self.subclusters_.index(subcluster) self.subclusters_[ind] = new_subcluster1 self.init_centroids_[ind] = new_subcluster1.centroid_ self.init_sq_norm_[ind] = new_subcluster1.sq_norm_ self.append_subcluster(new_subcluster2)
'Insert a new subcluster into the node.'
def insert_cf_subcluster(self, subcluster):
if (not self.subclusters_): self.append_subcluster(subcluster) return False threshold = self.threshold branching_factor = self.branching_factor dist_matrix = np.dot(self.centroids_, subcluster.centroid_) dist_matrix *= (-2.0) dist_matrix += self.squared_norm_ closest_index = np.argmin(dist_matrix) closest_subcluster = self.subclusters_[closest_index] if (closest_subcluster.child_ is not None): split_child = closest_subcluster.child_.insert_cf_subcluster(subcluster) if (not split_child): closest_subcluster.update(subcluster) self.init_centroids_[closest_index] = self.subclusters_[closest_index].centroid_ self.init_sq_norm_[closest_index] = self.subclusters_[closest_index].sq_norm_ return False else: (new_subcluster1, new_subcluster2) = _split_node(closest_subcluster.child_, threshold, branching_factor) self.update_split_subclusters(closest_subcluster, new_subcluster1, new_subcluster2) if (len(self.subclusters_) > self.branching_factor): return True return False else: merged = closest_subcluster.merge_subcluster(subcluster, self.threshold) if merged: self.init_centroids_[closest_index] = closest_subcluster.centroid_ self.init_sq_norm_[closest_index] = closest_subcluster.sq_norm_ return False elif (len(self.subclusters_) < self.branching_factor): self.append_subcluster(subcluster) return False else: self.append_subcluster(subcluster) return True