desc
stringlengths 3
26.7k
| decl
stringlengths 11
7.89k
| bodies
stringlengths 8
553k
|
---|---|---|
'Reconstruction of input x.
Parameters
inputs : tuple
Tuple (lenght 2) of theano symbolic representing the input
minibatch(es) to be encoded. Assumed to be 2-tensors, with the
first dimension indexing training examples and the second
indexing the two data dimensions (X, Y).'
| def reconstructX(self, inputs):
| if (self.act_dec is None):
act_dec = (lambda x: x)
else:
act_dec = self.act_dec
return act_dec(self.decodeX(inputs))
|
'Reconstruction of input y.
Parameters
inputs : tuple
Tuple (lenght 2) of theano symbolic representing the input
minibatch(es) to be encoded. Assumed to be 2-tensors, with the
first dimension indexing training examples and the second
indexing the two data dimensions (X, Y).'
| def reconstructY(self, inputs):
| if (self.act_dec is None):
act_dec = (lambda x: x)
else:
act_dec = self.act_dec
return act_dec(self.decodeY(inputs))
|
'Reconstruction of both datasets.
Parameters
inputs : tuple
Tuple (lenght 2) of theano symbolic representing the input
minibatch(es) to be encoded. Assumed to be 2-tensors, with the
first dimension indexing training examples and the second
indexing the two data dimensions (X, Y).
Returns
Reconstruction: tuple
Tuple (lenght 2) of the tensor_like reconstruction of the
datasets.'
| def reconstructXY(self, inputs):
| return (self.reconstructX(inputs), self.reconstructY(inputs))
|
'This just aliases the `_hidden_activation()` function for syntactic
sugar/convenience.'
| def __call__(self, inputs):
| return self._hidden_activation(inputs)
|
'The filters have to be normalized in each update to
increase their stability.'
| @wraps(GatedAutoencoder._modify_updates)
def _modify_updates(self, updates):
| wxf = self.wxf
wyf = self.wyf
wxf_updated = updates[wxf]
wyf_updated = updates[wyf]
nwxf = (wxf_updated.std(0) + SMALL)[numpy.newaxis, :]
nwyf = (wyf_updated.std(0) + SMALL)[numpy.newaxis, :]
meannxf = nwxf.mean()
meannyf = nwyf.mean()
centered_wxf = (wxf_updated - wxf_updated.mean(0))
centered_wyf = (wyf_updated - wyf_updated.mean(0))
wxf_updated = (centered_wxf * (meannxf / nwxf))
wyf_updated = (centered_wyf * (meannyf / nwyf))
updates[wxf] = wxf_updated
updates[wyf] = wyf_updated
|
'Returns a topological view of the weights, the first half
corresponds to wxf and the second half to wyf.
Returns
weights : ndarray
Same as the return value of `get_weights` but formatted as a 4D
tensor with the axes being (hidden/factor units, rows, columns,
channels).The the number of channels is either 1 or 3
(because they will be visualized as grayscale or RGB color).
At the moment the function only supports factors whose sqrt
is exact.'
| def get_weights_topo(self):
| if ((not isinstance(self.input_space.components[0], Conv2DSpace)) or (not isinstance(self.input_space.components[1], Conv2DSpace))):
raise NotImplementedError()
wxf = self.wxf.get_value(borrow=False).T
wyf = self.wyf.get_value(borrow=False).T
convx = self.input_space.components[0]
convy = self.input_space.components[1]
vecx = VectorSpace(self.nvisx)
vecy = VectorSpace(self.nvisy)
wxf_view = vecx.np_format_as(wxf, Conv2DSpace(convx.shape, num_channels=convx.num_channels, axes=('b', 0, 1, 'c')))
wyf_view = vecy.np_format_as(wyf, Conv2DSpace(convy.shape, num_channels=convy.num_channels, axes=('b', 0, 1, 'c')))
h = int(numpy.ceil(numpy.sqrt(self.nfac)))
new_weights = numpy.zeros(((wxf_view.shape[0] * 2), wxf_view.shape[1], wxf_view.shape[2], wxf_view.shape[3]), dtype=wxf_view.dtype)
t = 0
while (t < (self.nfac // h)):
filter_pair = numpy.concatenate((wxf_view[(h * t):(h * (t + 1)), ...], wyf_view[(h * t):(h * (t + 1)), ...]), 0)
new_weights[((h * 2) * t):((h * 2) * (t + 1)), ...] = filter_pair
t += 1
return new_weights
|
'Reconstruction of both datasets.
Parameters
inputs : tuple
Tuple (lenght 2) of theano symbolic representing the input
minibatch(es) to be encoded. Assumed to be 2-tensors, with the
first dimension indexing training examples and the second
indexing the two data dimensions (X, Y).
Returns
Reconstruction: tuple
Tuple (lenght 2) of the tensor_like reconstruction of the
datasets.
Notes
Reconstructions from corrupted data.'
| def reconstructXY(self, inputs):
| corrupted = self.corruptor(inputs)
return (self.reconstructX(corrupted), self.reconstructY(corrupted))
|
'Method that returns the reconstruction without noise
Parameters
inputs : tuple
Tuple (lenght 2) of theano symbolic representing the input
minibatch(es) to be encoded. Assumed to be 2-tensors, with the
first dimension indexing training examples and the second
indexing the two data dimensions (X, Y).
Returns
Reconstruction: tuple
Tuple (lenght 2) of the tensor_like reconstruction of the
datasets.'
| def reconstructXY_NoiseFree(self, inputs):
| return (self.reconstructX(inputs), self.reconstructY(inputs))
|
'.. todo::
WRITEME'
| def redo_everything(self):
| self.beta = sharedX((np.ones((self.nvis,)) * self.init_beta), 'beta')
self.mu = sharedX((np.ones((self.nvis,)) * self.init_mu), 'mu')
self.redo_theano()
|
'.. todo::
WRITEME'
| def free_energy(self, X):
| diff = (X - self.mu)
sq = T.sqr(diff)
return (0.5 * T.dot(sq, self.beta))
|
'.. todo::
WRITEME'
| def log_prob(self, X):
| return ((- self.free_energy(X)) - self.log_partition_function())
|
'.. todo::
WRITEME'
| def log_partition_function(self):
| return (((float(self.nvis) / 2.0) * np.log((2 * np.pi))) - (0.5 * T.sum(T.log(self.beta))))
|
'.. todo::
WRITEME'
| def redo_theano(self):
| init_names = dir(self)
self.censored_updates = {}
for param in self.get_params():
self.censored_updates[param] = set([])
final_names = dir(self)
self.register_names_to_del([name for name in final_names if (name not in init_names)])
|
'.. todo::
WRITEME'
| def _modify_updates(self, updates):
| if ((self.beta in updates) and (updates[self.beta] not in self.censored_updates[self.beta])):
updates[self.beta] = T.clip(updates[self.beta], self.min_beta, self.max_beta)
params = self.get_params()
for param in updates:
if (param in params):
self.censored_updates[param] = self.censored_updates[param].union(set([updates[param]]))
|
'.. todo::
WRITEME'
| def get_params(self):
| return [self.mu, self.beta]
|
'Returns the log probability of a batch of examples.
Parameters
X : WRITEME
The examples whose log probability should be computed.
Returns
log_prob : WRITEME
The log probability of the examples.'
| def log_prob(self, X):
| return ((- self.ebm.free_energy(X)) - (self.logZ_driver * self.logZ_lr_scale))
|
'Returns the free energy of a batch of examples.
Parameters
X : WRITEME
The examples whose free energy should be computed.
Returns
free_energy : WRITEME
The free energy of the examples.'
| def free_energy(self, X):
| return self.ebm.free_energy(X)
|
'Returns a SufficientStatistics
.. todo::
WRITEME properly
Parameters
needed_stats : WRITEME
a set of string names of the statistics to include
V : WRITEME
a num_examples x nvis matrix of input examples
H_hat : WRITEME
a num_examples x nhid matrix of \hat{h} variational parameters
S_hat : WRITEME
variational parameters for expectation of s given h=1
var_s0_hat : WRITEME
variational parameters for variance of s given h=0
(only a vector of length nhid, since this is the same for
all inputs)
var_s1_hat : WRITEME
variational parameters for variance of s given h=1
(again, a vector of length nhid)'
| @classmethod
def from_observations(cls, needed_stats, V, H_hat, S_hat, var_s0_hat, var_s1_hat):
| m = T.cast(V.shape[0], config.floatX)
H_name = make_name(H_hat, 'anon_H_hat')
S_name = make_name(S_hat, 'anon_S_hat')
assert (H_hat.dtype == config.floatX)
mean_h = T.mean(H_hat, axis=0)
assert (H_hat.dtype == mean_h.dtype)
assert (mean_h.dtype == config.floatX)
mean_h.name = (('mean_h(' + H_name) + ')')
mean_v = T.mean(V, axis=0)
mean_sq_v = T.mean(T.sqr(V), axis=0)
mean_s1 = T.mean(S_hat, axis=0)
mean_sq_S = ((H_hat * (var_s1_hat + T.sqr(S_hat))) + ((1.0 - H_hat) * var_s0_hat))
mean_sq_s = T.mean(mean_sq_S, axis=0)
mean_HS = (H_hat * S_hat)
mean_hs = T.mean(mean_HS, axis=0)
mean_hs.name = ('mean_hs(%s,%s)' % (H_name, S_name))
mean_s = mean_hs
mean_D_sq_mean_Q_hs = T.mean(T.sqr(mean_HS), axis=0)
mean_sq_HS = (H_hat * (var_s1_hat + T.sqr(S_hat)))
mean_sq_hs = T.mean(mean_sq_HS, axis=0)
mean_sq_hs.name = ('mean_sq_hs(%s,%s)' % (H_name, S_name))
mean_sq_mean_hs = T.mean(T.sqr(mean_HS), axis=0)
mean_sq_mean_hs.name = ('mean_sq_mean_hs(%s,%s)' % (H_name, S_name))
sum_hsv = T.dot(mean_HS.T, V)
sum_hsv.name = 'sum_hsv<from_observations>'
mean_hsv = (sum_hsv / m)
d = {'mean_h': mean_h, 'mean_v': mean_v, 'mean_sq_v': mean_sq_v, 'mean_s': mean_s, 'mean_s1': mean_s1, 'mean_sq_s': mean_sq_s, 'mean_hs': mean_hs, 'mean_sq_hs': mean_sq_hs, 'mean_sq_mean_hs': mean_sq_mean_hs, 'mean_hsv': mean_hsv}
final_d = {}
for stat in needed_stats:
final_d[stat] = d[stat]
final_d[stat].name = ('observed_' + stat)
return SufficientStatistics(final_d)
|
'.. todo::
WRITEME'
| def reset_rng(self):
| self.rng = make_np_rng(self.seed, [1, 2, 3], which_method='uniform')
|
'.. todo::
WRITEME'
| def redo_everything(self):
| if (self.init_W is not None):
W = self.init_W.copy()
else:
W = self.rng.uniform((- self.irange), self.irange, (self.nvis, self.nhid))
if (self.constrain_W_norm or self.init_unit_W):
norms = numpy_norms(W)
W /= norms
self.W = sharedX(W, name='W')
self.bias_hid = sharedX((np.zeros(self.nhid) + self.init_bias_hid), name='bias_hid')
self.alpha = sharedX((np.zeros(self.nhid) + self.init_alpha), name='alpha')
self.mu = sharedX((np.zeros(self.nhid) + self.init_mu), name='mu')
if self.tied_B:
self.B_driver = sharedX((0.0 + self.init_B), name='B')
else:
self.B_driver = sharedX((np.zeros(self.nvis) + self.init_B), name='B')
if self.recycle_q:
self.prev_H = sharedX(np.zeros((self.recycle_q, self.nhid)), name='prev_H')
self.prev_S = sharedX(np.zeros((self.recycle_q, self.nhid)), name='prev_S')
if self.debug_m_step:
warnings.warn('M step debugging activated-- this is only valid for certain settings, and causes a performance slowdown.')
self.energy_functional_diff = sharedX(0.0)
if (self.momentum_saturation_example is not None):
self.params_to_incs = {}
for param in self.get_params():
self.params_to_incs[param] = sharedX(np.zeros(param.get_value().shape), name=(param.name + '_inc'))
self.momentum = sharedX(self.init_momentum, name='momentum')
if self.monitor_norms:
self.debug_norms = sharedX(np.zeros(self.nhid))
self.redo_theano()
|
'.. todo::
WRITEME'
| @classmethod
def energy_functional_needed_stats(cls):
| return S3C.expected_log_prob_vhs_needed_stats()
|
'.. todo::
WRITEME
Returns the energy_functional for a single batch of data stats is
assumed to be computed from and only from the same data points that
yielded H'
| def energy_functional(self, H_hat, S_hat, var_s0_hat, var_s1_hat, stats):
| entropy_term = self.entropy_hs(H_hat=H_hat, var_s0_hat=var_s0_hat, var_s1_hat=var_s1_hat).mean()
likelihood_term = self.expected_log_prob_vhs(stats, H_hat=H_hat, S_hat=S_hat)
energy_functional = (likelihood_term + entropy_term)
assert (len(energy_functional.type.broadcastable) == 0)
return energy_functional
|
'.. todo::
WRITEME
Returns the energy_functional for a single batch of data stats is
assumed to be computed from and only from the same data points that
yielded H'
| def energy_functional_batch(self, V, H_hat, S_hat, var_s0_hat, var_s1_hat):
| entropy_term = self.entropy_hs(H_hat=H_hat, var_s0_hat=var_s0_hat, var_s1_hat=var_s1_hat)
assert (len(entropy_term.type.broadcastable) == 1)
likelihood_term = self.expected_log_prob_vhs_batch(V=V, H_hat=H_hat, S_hat=S_hat, var_s0_hat=var_s0_hat, var_s1_hat=var_s1_hat)
assert (len(likelihood_term.type.broadcastable) == 1)
energy_functional = (likelihood_term + entropy_term)
assert (len(energy_functional.type.broadcastable) == 1)
return energy_functional
|
'.. todo::
WRITEME'
| def set_monitoring_channel_prefix(self, prefix):
| self.monitoring_channel_prefix = prefix
|
'.. todo::
WRITEME'
| def get_monitoring_channels(self, data):
| (space, source) = self.get_monitoring_data_specs()
space.validate(data)
V = data
try:
self.compile_mode()
if (self.m_step != None):
rval = self.m_step.get_monitoring_channels(V, self)
else:
rval = {}
if (self.momentum_saturation_example is not None):
rval['momentum'] = self.momentum
from_e_step = self.e_step.get_monitoring_channels(V)
rval.update(from_e_step)
if self.debug_m_step:
rval['m_step_diff'] = self.energy_functional_diff
monitor_stats = (len(self.monitor_stats) > 0)
if (monitor_stats or self.monitor_functional):
obs = self.infer(V)
needed_stats = set(self.monitor_stats)
if self.monitor_functional:
needed_stats = needed_stats.union(S3C.expected_log_prob_vhs_needed_stats())
stats = SufficientStatistics.from_observations(needed_stats=needed_stats, V=V, **obs)
H_hat = obs['H_hat']
S_hat = obs['S_hat']
var_s0_hat = obs['var_s0_hat']
var_s1_hat = obs['var_s1_hat']
if self.monitor_functional:
energy_functional = self.energy_functional(H_hat=H_hat, S_hat=S_hat, var_s0_hat=var_s0_hat, var_s1_hat=var_s1_hat, stats=stats)
rval['energy_functional'] = energy_functional
if monitor_stats:
for stat in self.monitor_stats:
stat_val = stats.d[stat]
rval[(stat + '_min')] = T.min(stat_val)
rval[(stat + '_mean')] = T.mean(stat_val)
rval[(stat + '_max')] = T.max(stat_val)
if (len(self.monitor_params) > 0):
for param in self.monitor_params:
param_val = getattr(self, param)
rval[(param + '_min')] = full_min(param_val)
rval[(param + '_mean')] = T.mean(param_val)
mx = full_max(param_val)
assert (len(mx.type.broadcastable) == 0)
rval[(param + '_max')] = mx
if (param == 'mu'):
abs_mu = abs(self.mu)
rval['mu_abs_min'] = full_min(abs_mu)
rval['mu_abs_mean'] = T.mean(abs_mu)
rval['mu_abs_max'] = full_max(abs_mu)
if (param == 'W'):
norms = theano_norms(self.W)
rval['W_norm_min'] = full_min(norms)
rval['W_norm_mean'] = T.mean(norms)
rval['W_norm_max'] = T.max(norms)
if self.monitor_norms:
rval['post_solve_norms_min'] = T.min(self.debug_norms)
rval['post_solve_norms_max'] = T.max(self.debug_norms)
rval['post_solve_norms_mean'] = T.mean(self.debug_norms)
new_rval = {}
for key in rval:
new_rval[(self.monitoring_channel_prefix + key)] = rval[key]
rval = new_rval
return rval
finally:
self.deploy_mode()
|
'Get the data_specs describing the data for get_monitoring_channel.
This implementation returns specification corresponding to unlabeled
inputs.
WRITEME: Returns section'
| def get_monitoring_data_specs(self):
| return (self.get_input_space(), self.get_input_source())
|
'.. todo::
WRITEME
This is the symbolic transformation for the Block class'
| def __call__(self, V):
| if (not hasattr(self, 'w')):
self.make_pseudoparams()
obs = self.infer(V)
return obs['H_hat']
|
'If any shared variables need to have batch-size dependent sizes, sets
them all to the sizes used for interactive debugging during graph
construction'
| def compile_mode(self):
| if self.recycle_q:
self.prev_H.set_value(np.cast[self.prev_H.dtype]((np.zeros((self._test_batch_size, self.nhid)) + (1.0 / (1.0 + np.exp((- self.bias_hid.get_value())))))))
self.prev_S.set_value(np.cast[self.prev_S.dtype]((np.zeros((self._test_batch_size, self.nhid)) + self.mu.get_value())))
|
'If any shared variables need to have batch-size dependent sizes, sets
them all to their runtime sizes'
| def deploy_mode(self):
| if self.recycle_q:
self.prev_H.set_value(np.cast[self.prev_H.dtype]((np.zeros((self.recycle_q, self.nhid)) + (1.0 / (1.0 + np.exp((- self.bias_hid.get_value())))))))
self.prev_S.set_value(np.cast[self.prev_S.dtype]((np.zeros((self.recycle_q, self.nhid)) + self.mu.get_value())))
|
'.. todo::
WRITEME'
| def get_params(self):
| return [self.W, self.bias_hid, self.alpha, self.mu, self.B_driver]
|
'.. todo::
WRITEME
H MUST be binary'
| def energy_vhs(self, V, H, S):
| h_term = (- T.dot(H, self.bias_hid))
assert (len(h_term.type.broadcastable) == 1)
s_term_1 = (T.dot(T.sqr(S), self.alpha) / 2.0)
s_term_2 = (- T.dot(((S * self.mu) * H), self.alpha))
s_term_3 = (T.dot((T.sqr(self.mu) * H), self.alpha) / 2.0)
s_term = ((s_term_1 + s_term_2) + s_term_3)
assert (len(s_term.type.broadcastable) == 1)
recons = T.dot((H * S), self.W.T)
v_term_1 = (T.dot(T.sqr(V), self.B) / 2.0)
v_term_2 = T.dot(((- V) * recons), self.B)
v_term_3 = (T.dot(T.sqr(recons), self.B) / 2.0)
v_term = ((v_term_1 + v_term_2) + v_term_3)
assert (len(v_term.type.broadcastable) == 1)
rval = ((h_term + s_term) + v_term)
assert (len(rval.type.broadcastable) == 1)
return rval
|
'.. todo::
WRITEME
This is not the same as negative expected log prob,
which includes the constant term for the log partition function'
| def expected_energy_vhs(self, V, H_hat, S_hat, var_s0_hat, var_s1_hat):
| var_HS = ((H_hat * var_s1_hat) + ((1.0 - H_hat) * var_s0_hat))
half = as_floatX(0.5)
HS = (H_hat * S_hat)
sq_HS = (H_hat * (var_s1_hat + T.sqr(S_hat)))
sq_S = (sq_HS + ((1.0 - H_hat) * var_s0_hat))
presign = T.dot(H_hat, self.bias_hid)
presign.name = 'presign'
h_term = (- presign)
assert (len(h_term.type.broadcastable) == 1)
precoeff = T.dot(sq_S, self.alpha)
precoeff.name = 'precoeff'
s_term_1 = (half * precoeff)
assert (len(s_term_1.type.broadcastable) == 1)
presign2 = T.dot(HS, (self.alpha * self.mu))
presign2.name = 'presign2'
s_term_2 = (- presign2)
assert (len(s_term_2.type.broadcastable) == 1)
s_term_3 = (half * T.dot(H_hat, (T.sqr(self.mu) * self.alpha)))
assert (len(s_term_3.type.broadcastable) == 1)
s_term = ((s_term_1 + s_term_2) + s_term_3)
v_term_1 = (half * T.dot(T.sqr(V), self.B))
assert (len(v_term_1.type.broadcastable) == 1)
term6_factor1 = (V * self.B)
term6_factor2 = T.dot(HS, self.W.T)
v_term_2 = (- (term6_factor1 * term6_factor2).sum(axis=1))
assert (len(v_term_2.type.broadcastable) == 1)
term7_subterm1 = T.dot(T.sqr(T.dot(HS, self.W.T)), self.B)
assert (len(term7_subterm1.type.broadcastable) == 1)
term7_subterm2 = (- T.dot(T.dot(T.sqr(HS), T.sqr(self.W.T)), self.B))
term7_subterm3 = T.dot(T.dot(sq_HS, T.sqr(self.W.T)), self.B)
v_term_3 = (half * ((term7_subterm1 + term7_subterm2) + term7_subterm3))
assert (len(v_term_3.type.broadcastable) == 1)
v_term = ((v_term_1 + v_term_2) + v_term_3)
rval = ((h_term + s_term) + v_term)
return rval
|
'.. todo::
WRITEME'
| def entropy_h(self, H_hat):
| for H_hat_v in get_debug_values(H_hat):
assert (H_hat_v.min() >= 0.0)
assert (H_hat_v.max() <= 1.0)
return entropy_binary_vector(H_hat)
|
'.. todo::
WRITEME'
| def entropy_hs(self, H_hat, var_s0_hat, var_s1_hat):
| half = as_floatX(0.5)
one = as_floatX(1.0)
two = as_floatX(2.0)
pi = as_floatX(np.pi)
for H_hat_v in get_debug_values(H_hat):
assert (H_hat_v.min() >= 0.0)
assert (H_hat_v.max() <= 1.0)
term1_plus_term2 = self.entropy_h(H_hat)
assert (len(term1_plus_term2.type.broadcastable) == 1)
term3 = T.sum((H_hat * (half * ((T.log(var_s1_hat) + T.log((two * pi))) + one))), axis=1)
assert (len(term3.type.broadcastable) == 1)
term4 = T.dot((1.0 - H_hat), (half * ((T.log(var_s0_hat) + T.log((two * pi))) + one)))
assert (len(term4.type.broadcastable) == 1)
for (t12, t3, t4) in get_debug_values(term1_plus_term2, term3, term4):
debug_assert((not contains_nan(t12)))
debug_assert((not contains_nan(t3)))
debug_assert((not contains_nan(t4)))
rval = ((term1_plus_term2 + term3) + term4)
assert (len(rval.type.broadcastable) == 1)
return rval
|
'.. todo::
WRITEME'
| def infer(self, V, return_history=False):
| return self.e_step.infer(V, return_history)
|
'WRITEME
Parameters
V : tensor_like
A symbolic design matrix
WRITEME: Returns section'
| def make_learn_func(self, V):
| hidden_obs = self.infer(V)
stats = SufficientStatistics.from_observations(needed_stats=self.m_step.needed_stats(), V=V, **hidden_obs)
H_hat = hidden_obs['H_hat']
S_hat = hidden_obs['S_hat']
learning_updates = self.m_step.get_updates(self, stats, H_hat, S_hat)
if self.recycle_q:
learning_updates[self.prev_H] = H_hat
learning_updates[self.prev_S] = S_hat
self.modify_updates(learning_updates)
if self.debug_m_step:
energy_functional_before = self.energy_functional(H=hidden_obs['H'], var_s0_hat=hidden_obs['var_s0_hat'], var_s1_hat=hidden_obs['var_s1_hat'], stats=stats)
tmp_bias_hid = self.bias_hid
tmp_mu = self.mu
tmp_alpha = self.alpha
tmp_W = self.W
tmp_B_driver = self.B_driver
self.bias_hid = learning_updates[self.bias_hid]
self.mu = learning_updates[self.mu]
self.alpha = learning_updates[self.alpha]
if (self.W in learning_updates):
self.W = learning_updates[self.W]
self.B_driver = learning_updates[self.B_driver]
self.make_pseudoparams()
try:
energy_functional_after = self.energy_functional(H_hat=hidden_obs['H_hat'], var_s0_hat=hidden_obs['var_s0_hat'], var_s1_hat=hidden_obs['var_s1_hat'], stats=stats)
finally:
self.bias_hid = tmp_bias_hid
self.mu = tmp_mu
self.alpha = tmp_alpha
self.W = tmp_W
self.B_driver = tmp_B_driver
self.make_pseudoparams()
energy_functional_diff = (energy_functional_after - energy_functional_before)
learning_updates[self.energy_functional_diff] = energy_functional_diff
logger.info('compiling s3c learning function...')
t1 = time.time()
rval = function([V], updates=learning_updates)
t2 = time.time()
logger.debug('... compilation took {0} seconds'.format((t2 - t1)))
logger.debug('graph size: {0}'.format(len(rval.maker.fgraph.toposort())))
return rval
|
'.. todo::
WRITEME'
| def _modify_updates(self, updates):
| assert (self.bias_hid in self.censored_updates)
def should_censor(param):
return ((param in updates) and (updates[param] not in self.censored_updates[param]))
if should_censor(self.W):
if self.disable_W_update:
del updates[self.W]
elif self.constrain_W_norm:
norms = theano_norms(updates[self.W])
updates[self.W] /= norms.dimshuffle('x', 0)
if should_censor(self.alpha):
updates[self.alpha] = T.clip(updates[self.alpha], self.min_alpha, self.max_alpha)
if should_censor(self.mu):
updates[self.mu] = T.clip(updates[self.mu], self.min_mu, self.max_mu)
if should_censor(self.B_driver):
updates[self.B_driver] = T.clip(updates[self.B_driver], self.min_B, self.max_B)
if should_censor(self.bias_hid):
updates[self.bias_hid] = T.clip(updates[self.bias_hid], self.min_bias_hid, self.max_bias_hid)
model_params = self.get_params()
for param in updates:
if (param in model_params):
self.censored_updates[param] = self.censored_updates[param].union(set([updates[param]]))
|
'.. todo::
WRITEME
Parameters
H_sample: a matrix of values of H, optional
if none is provided, samples one from the prior
(H_sample is used if you want to see what samples due
to specific hidden units look like, or when sampling
from a larger model that s3c is part of)'
| def random_design_matrix(self, batch_size, theano_rng=None, H_sample=None, S_sample=None, full_sample=True, return_all=False):
| if (theano_rng is None):
assert (H_sample is not None)
assert (S_sample is not None)
assert (full_sample == False)
if (not hasattr(self, 'p')):
self.make_pseudoparams()
hid_shape = (batch_size, self.nhid)
if (H_sample is None):
H_sample = theano_rng.binomial(size=hid_shape, n=1, p=self.p, dtype=self.W.dtype)
assert (H_sample.dtype == 'float32')
if hasattr(H_sample, '__array__'):
assert (len(H_sample.shape) == 2)
else:
assert (len(H_sample.type.broadcastable) == 2)
if (S_sample is None):
S_sample = theano_rng.normal(size=hid_shape, avg=self.mu, std=T.sqrt((1.0 / self.alpha)))
assert (S_sample.dtype == 'float32')
final_hs_sample = (H_sample * S_sample)
assert (len(final_hs_sample.type.broadcastable) == 2)
V_mean = T.dot(final_hs_sample, self.W.T)
if (not full_sample):
warnings.warn('showing conditional means (given sampled h and s) on visible units rather than true samples')
if return_all:
return (H_sample, S_sample, V_mean)
return V_mean
V_sample = theano_rng.normal(size=V_mean.shape, avg=V_mean, std=T.sqrt((1.0 / self.B)))
assert (V_sample.dtype == 'float32')
if return_all:
assert (H_sample is not None)
assert (S_sample is not None)
assert (V_sample is not None)
return (H_sample, S_sample, V_sample)
return V_sample
|
'.. todo::
WRITEME'
| @classmethod
def expected_log_prob_vhs_needed_stats(cls):
| h = S3C.expected_log_prob_h_needed_stats()
s = S3C.expected_log_prob_s_given_h_needed_stats()
v = S3C.expected_log_prob_v_given_hs_needed_stats()
union = h.union(s).union(v)
return union
|
'.. todo::
WRITEME'
| def expected_log_prob_vhs(self, stats, H_hat, S_hat):
| expected_log_prob_v_given_hs = self.expected_log_prob_v_given_hs(stats, H_hat=H_hat, S_hat=S_hat)
expected_log_prob_s_given_h = self.expected_log_prob_s_given_h(stats)
expected_log_prob_h = self.expected_log_prob_h(stats)
rval = ((expected_log_prob_v_given_hs + expected_log_prob_s_given_h) + expected_log_prob_h)
assert (len(rval.type.broadcastable) == 0)
return rval
|
'.. todo::
WRITEME'
| def log_partition_function(self):
| half = as_floatX(0.5)
two = as_floatX(2.0)
pi = as_floatX(np.pi)
N = as_floatX(self.nhid)
term1 = ((- half) * T.sum(T.log(self.B)))
term2 = ((half * N) * T.log((two * pi)))
term3 = ((- half) * T.log(self.alpha).sum())
term4 = ((half * N) * T.log((two * pi)))
term5 = T.nnet.softplus(self.bias_hid).sum()
return ((((term1 + term2) + term3) + term4) + term5)
|
'.. todo::
WRITEME'
| def expected_log_prob_vhs_batch(self, V, H_hat, S_hat, var_s0_hat, var_s1_hat):
| half = as_floatX(0.5)
two = as_floatX(2.0)
pi = as_floatX(np.pi)
N = as_floatX(self.nhid)
negative_log_partition_function = (- self.log_partition_function())
assert (len(negative_log_partition_function.type.broadcastable) == 0)
negative_energy = (- self.expected_energy_vhs(V=V, H_hat=H_hat, S_hat=S_hat, var_s0_hat=var_s0_hat, var_s1_hat=var_s1_hat))
assert (len(negative_energy.type.broadcastable) == 1)
rval = (negative_log_partition_function + negative_energy)
return rval
|
'V, H, S are SAMPLES (i.e., H must be LITERALLY BINARY)
Return value is a vector, of length batch size
Parameters
V : WRITEME
H : WRITEME
S : WRITEME
Returns
WRITEME'
| def log_prob_v_given_hs(self, V, H, S):
| half = as_floatX(0.5)
two = as_floatX(2.0)
pi = as_floatX(np.pi)
N = as_floatX(self.nhid)
term1 = (half * T.sum(T.log(self.B)))
term2 = (((- half) * N) * T.log((two * pi)))
mean_HS = (H * S)
recons = T.dot((H * S), self.W.T)
residuals = (V - recons)
term3 = ((- half) * T.dot(T.sqr(residuals), self.B))
rval = ((term1 + term2) + term3)
assert (len(rval.type.broadcastable) == 1)
return rval
|
'.. todo::
WRITEME'
| @classmethod
def expected_log_prob_v_given_hs_needed_stats(cls):
| return set(['mean_sq_v', 'mean_hsv', 'mean_sq_hs', 'mean_sq_mean_hs'])
|
'Return value is a SCALAR-- expectation taken across batch index too
Parameters
stats : WRITEME
H_hat : WRITEME
S_hat : WRITEME
Returns
WRITEME'
| def expected_log_prob_v_given_hs(self, stats, H_hat, S_hat):
| '\n E_v,h,s \\sim Q log P( v | h, s)\n = sum_k [ E_v,h,s \\sim Q log sqrt(B/2 pi) exp( - 0.5 B (v- W[v,:] (h*s) )^2) ]\n = sum_k [ E_v,h,s \\sim Q 0.5 log B_k - 0.5 log 2 pi - 0.5 B_k v_k^2 + v_k B_k W[k,:] (h*s) - 0.5 B_k sum_i sum_j W[k,i] W[k,j] h_i s_i h_j s_j ]\n = sum_k [ 0.5 log B_k - 0.5 log 2 pi - 0.5 B_k v_k^2 + v_k B_k W[k,:] (h*s) ] - 0.5 sum_k B_k sum_i,j W[k,i] W[k,j] < h_i s_i h_j s_j >\n = sum_k [ 0.5 log B_k - 0.5 log 2 pi - 0.5 B_k v_k^2 + v_k B_k W[k,:] (h*s) ] - (1/2T) sum_k B_k sum_i,j W[k,i] W[k,j] sum_t <h_it s_it h_jt s_t>\n = sum_k [ 0.5 log B_k - 0.5 log 2 pi - 0.5 B_k v_k^2 + v_k B_k W[k,:] (h*s) ] - (1/2T) sum_k B_k sum_t sum_i,j W[k,i] W[k,j] <h_it s_it h_jt s_t>\n = sum_k [ 0.5 log B_k - 0.5 log 2 pi - 0.5 B_k v_k^2 + v_k B_k W[k,:] (h*s) ]\n - (1/2T) sum_k B_k sum_t sum_i W[k,i] sum_{j\neq i} W[k,j] <h_it s_it> <h_jt s_t>\n - (1/2T) sum_k B_k sum_t sum_i W[k,i]^2 <h_it s_it^2>\n = sum_k [ 0.5 log B_k - 0.5 log 2 pi - 0.5 B_k v_k^2 + v_k B_k W[k,:] (h*s) ]\n - (1/2T) sum_k B_k sum_t sum_i W[k,i] <h_it s_it> sum_j W[k,j] <h_jt s_t>\n + (1/2T) sum_k B_k sum_t sum_i W[k,i]^2 <h_it s_it>^2\n - (1/2T) sum_k B_k sum_t sum_i W[k,i]^2 <h_it s_it^2>\n = sum_k [ 0.5 log B_k - 0.5 log 2 pi - 0.5 B_k v_k^2 + v_k B_k W[k,:] (h*s) ]\n - (1/2T) sum_k B_k sum_t sum_i W[k,i] <h_it s_it> sum_j W[k,j] <h_jt s_t>\n + (1/2T) sum_k B_k sum_t sum_i W[k,i]^2 (<h_it s_it>^2 - <h_it s_it^2>)\n = sum_k [ 0.5 log B_k - 0.5 log 2 pi - 0.5 B_k v_k^2 + v_k B_k W[k,:] (h*s) ]\n - (1/2T) sum_k B_k sum_t sum_i W_ki HS_it sum_j W_kj HS_tj\n + (1/2T) sum_k B_k sum_t sum_i sq(W)_ki ( sq(HS)-sq_HS)_it\n = sum_k [ 0.5 log B_k - 0.5 log 2 pi - 0.5 B_k v_k^2 + v_k B_k W[k,:] (h*s) ]\n - (1/2T) sum_k B_k sum_t sum_i W_ki HS_it sum_j W_kj HS_tj\n + (1/2T) sum_k B_k sum_t sum_i sq(W)_ki ( sq(HS)-sq_HS)_it\n = sum_k [ 0.5 log B_k - 0.5 log 2 pi - 0.5 B_k v_k^2 + v_k B_k W[k,:] (h*s) ]\n - (1/2T) sum_k B_k sum_t sum_i W_ki HS_it sum_j W_kj HS_tj\n + (1/2T) sum_k B_k sum_t sum_i sq(W)_ki ( sq(HS)-sq_HS)_it\n = sum_k [ 0.5 log B_k - 0.5 log 2 pi - 0.5 B_k v_k^2 + v_k B_k W[k,:] (h*s) ]\n - (1/2T) sum_k B_k sum_t (HS_t: W_k:^T) (HS_t: W_k:^T)\n + (1/2) sum_k B_k sum_i sq(W)_ki ( mean_sq_mean_hs-mean_sq_hs)_i\n = sum_k [ 0.5 log B_k - 0.5 log 2 pi - 0.5 B_k v_k^2 + v_k B_k W[k,:] (h*s) ]\n - (1/2T) sum_t sum_k B_k (HS_t: W_k:^T)^2\n + (1/2) sum_k B_k sum_i sq(W)_ki ( mean_sq_mean_hs-mean_sq_hs)_i\n = sum_k [ 0.5 log B_k - 0.5 log 2 pi - 0.5 B_k v_k^2 + v_k B_k W[k,:] (h*s) ]\n - (1/2) mean( (HS W^T)^2 B )\n + (1/2) sum_k B_k sum_i sq(W)_ki ( mean_sq_mean_hs-mean_sq_hs)_i\n '
half = as_floatX(0.5)
two = as_floatX(2.0)
pi = as_floatX(np.pi)
N = as_floatX(self.nhid)
mean_sq_v = stats.d['mean_sq_v']
mean_hsv = stats.d['mean_hsv']
mean_sq_mean_hs = stats.d['mean_sq_mean_hs']
mean_sq_hs = stats.d['mean_sq_hs']
term1 = (half * T.sum(T.log(self.B)))
term2 = (((- half) * N) * T.log((two * pi)))
term3 = ((- half) * T.dot(self.B, mean_sq_v))
term4 = T.dot(self.B, (self.W * mean_hsv.T).sum(axis=1))
HS = (H_hat * S_hat)
recons = T.dot(HS, self.W.T)
sq_recons = T.sqr(recons)
weighted = T.dot(sq_recons, self.B)
assert (len(weighted.type.broadcastable) == 1)
term5 = ((- half) * T.mean(weighted))
term6 = (half * T.dot(self.B, T.dot(T.sqr(self.W), (mean_sq_mean_hs - mean_sq_hs))))
rval = (((((term1 + term2) + term3) + term4) + term5) + term6)
assert (len(rval.type.broadcastable) == 0)
return rval
|
'.. todo::
WRITEME'
| @classmethod
def expected_log_prob_s_given_h_needed_stats(cls):
| return set(['mean_h', 'mean_hs', 'mean_sq_s'])
|
'.. todo::
WRITEME
E_h,s\sim Q log P(s|h)
= E_h,s\sim Q log sqrt( alpha / 2pi) exp(- 0.5 alpha (s-mu h)^2)
= E_h,s\sim Q log sqrt( alpha / 2pi) - 0.5 alpha (s-mu h)^2
= E_h,s\sim Q 0.5 log alpha - 0.5 log 2 pi - 0.5 alpha s^2 + alpha s mu h + 0.5 alpha mu^2 h^2
= E_h,s\sim Q 0.5 log alpha - 0.5 log 2 pi - 0.5 alpha s^2 + alpha mu h s + 0.5 alpha mu^2 h
= 0.5 log alpha - 0.5 log 2 pi - 0.5 alpha mean_sq_s + alpha mu mean_hs - 0.5 alpha mu^2 mean_h'
| def expected_log_prob_s_given_h(self, stats):
| mean_h = stats.d['mean_h']
mean_sq_s = stats.d['mean_sq_s']
mean_hs = stats.d['mean_hs']
half = as_floatX(0.5)
two = as_floatX(2.0)
N = as_floatX(self.nhid)
pi = as_floatX(np.pi)
term1 = (half * T.log(self.alpha).sum())
term2 = (((- half) * N) * T.log((two * pi)))
term3 = ((- half) * T.dot(self.alpha, mean_sq_s))
term4 = T.dot((self.mu * self.alpha), mean_hs)
term5 = ((- half) * T.dot(T.sqr(self.mu), (self.alpha * mean_h)))
rval = ((((term1 + term2) + term3) + term4) + term5)
assert (len(rval.type.broadcastable) == 0)
return rval
|
'.. todo::
WRITEME'
| @classmethod
def expected_log_prob_h_needed_stats(cls):
| return set(['mean_h'])
|
'Returns the expected log probability of the vector h
under the model when the data is drawn according to
stats:
E_h\sim Q log P(h)
= E_h\sim Q log exp( bh) / (1+exp(b))
= E_h\sim Q bh - softplus(b)
Parameters
stats : WRITEME
Returns
WRITEME'
| def expected_log_prob_h(self, stats):
| mean_h = stats.d['mean_h']
term1 = T.dot(self.bias_hid, mean_h)
term2 = (- T.nnet.softplus(self.bias_hid).sum())
rval = (term1 + term2)
assert (len(rval.type.broadcastable) == 0)
return rval
|
'.. todo::
WRITEME'
| def make_pseudoparams(self):
| if self.tied_B:
self.B = (self.B_driver + as_floatX(np.zeros(self.nvis)))
self.B.name = 'S3C.tied_B'
else:
self.B = self.B_driver
self.w = T.dot(self.B, T.sqr(self.W))
self.w.name = 'S3C.w'
self.p = T.nnet.sigmoid(self.bias_hid)
self.p.name = 'S3C.p'
|
'.. todo::
WRITEME'
| def reset_censorship_cache(self):
| self.censored_updates = {}
self.register_names_to_del(['censored_updates'])
for param in self.get_params():
self.censored_updates[param] = set([])
|
'.. todo::
WRITEME'
| def redo_theano(self):
| self.reset_censorship_cache()
if (not self.autonomous):
return
try:
self.compile_mode()
init_names = dir(self)
self.make_pseudoparams()
self.e_step.register_model(self)
self.get_B_value = function([], self.B)
X = T.matrix(name='V')
X.tag.test_value = np.cast[config.floatX](self.rng.randn(self._test_batch_size, self.nvis))
self.learn_func = self.make_learn_func(X)
final_names = dir(self)
self.register_names_to_del([name for name in final_names if (name not in init_names)])
finally:
self.deploy_mode()
|
'.. todo::
WRITEME'
| def train_batch(self, dataset, batch_size):
| if self.set_B_to_marginal_precision:
assert (not self.tied_B)
var = dataset.X.var(axis=0)
self.B_driver.set_value((1.0 / (var + 0.01)))
if (self.stop_after_hack is not None):
if (self.monitor.examples_seen > self.stop_after_hack):
logger.error('stopping due to too many examples seen')
quit((-1))
self.learn_mini_batch(dataset.get_batch_design(batch_size))
return True
|
'.. todo::
WRITEME'
| def print_status(self):
| b = self.bias_hid.get_value(borrow=True)
assert (not contains_nan(b))
p = (1.0 / (1.0 + np.exp((- b))))
logger.info('p: ({0}, {1}, {2})'.format(p.min(), p.mean(), p.max()))
B = self.B_driver.get_value(borrow=True)
assert (not contains_nan(B))
logger.info('B: ({0}, {1}, {2})'.format(B.min(), B.mean(), B.max()))
mu = self.mu.get_value(borrow=True)
assert (not contains_nan(mu))
logger.info('mu: ({0}, {1}, {2})'.format(mu.min(), mu.mean(), mu.max()))
alpha = self.alpha.get_value(borrow=True)
assert (not contains_nan(alpha))
logger.info('alpha: ({0}, {1}, {2})'.format(alpha.min(), alpha.mean(), alpha.max()))
W = self.W.get_value(borrow=True)
assert isfinite(W)
logger.info('W: ({0}, {1}, {2})'.format(W.min(), W.mean(), W.max()))
norms = numpy_norms(W)
logger.info('W norms: ({0}, {1}, {2})'.format(norms.min(), norms.mean(), norms.max()))
|
'.. todo::
WRITEME'
| def learn_mini_batch(self, X):
| self.learn_func(X)
if (self.momentum_saturation_example is not None):
alpha = (float(self.monitor.get_examples_seen()) / float(self.momentum_saturation_example))
alpha = min(alpha, 1.0)
self.momentum.set_value(np.cast[config.floatX]((((1.0 - alpha) * self.init_momentum) + (alpha * self.final_momentum))))
if ((self.monitor.get_examples_seen() % self.print_interval) == 0):
self.print_status()
if self.debug_m_step:
if (self.energy_functional_diff.get_value() < 0.0):
warnings.warn('m step decreased the em functional')
if (self.debug_m_step != 'warn'):
quit((-1))
|
'.. todo::
WRITEME'
| def get_weights_format(self):
| return ['v', 'h']
|
'.. todo::
WRITEME'
| def get_weights(self):
| W = self.W.get_value()
x = input('multiply weights by mu? (y/n) ')
if (x == 'y'):
return (W * self.mu.get_value())
elif (x == 'n'):
return W
assert False
|
'.. todo::
WRITEME'
| def get_monitoring_channels(self, V):
| rval = {}
if self.autonomous:
if (self.monitor_kl or self.monitor_energy_functional or self.monitor_s_mag or self.monitor_ranges):
obs_history = self.model.infer(V, return_history=True)
assert isinstance(obs_history, list)
final_vals = obs_history[(-1)]
S_hat = final_vals['S_hat']
H_hat = final_vals['H_hat']
HS = (H_hat * S_hat)
hs_max = T.max(HS, axis=0)
hs_min = T.min(HS, axis=0)
hs_range = (hs_max - hs_min)
rval['hs_range_min'] = T.min(hs_range)
rval['hs_range_mean'] = T.mean(hs_range)
rval['hs_range_max'] = T.max(hs_range)
h_max = T.max(H_hat, axis=0)
h_min = T.min(H_hat, axis=0)
h_range = (h_max - h_min)
rval['h_range_min'] = T.min(h_range)
rval['h_range_mean'] = T.mean(h_range)
rval['h_range_max'] = T.max(h_range)
for i in xrange(1, (2 + len(self.h_new_coeff_schedule))):
obs = obs_history[(i - 1)]
if self.monitor_kl:
if (i == 1):
rval[('trunc_KL_' + str(i))] = self.truncated_KL(V, obs=obs).mean()
else:
coeff = self.h_new_coeff_schedule[(i - 2)]
rval[(((('trunc_KL_' + str(i)) + '.2(h ') + str(coeff)) + ')')] = self.truncated_KL(V, obs=obs).mean()
obs = {}
for key in obs_history[(i - 1)]:
obs[key] = obs_history[(i - 1)][key]
obs['H_hat'] = obs_history[(i - 2)]['H_hat']
coeff = self.s_new_coeff_schedule[(i - 2)]
rval[(((('trunc_KL_' + str(i)) + '.1(s ') + str(coeff)) + ')')] = self.truncated_KL(V, obs=obs).mean()
obs = obs_history[(i - 1)]
if self.monitor_energy_functional:
rval[('energy_functional_' + str(i))] = self.energy_functional(V, self.model, obs).mean()
if self.monitor_s_mag:
rval[('s_mag_' + str(i))] = T.sqrt(T.sum(T.sqr(obs['S_hat'])))
return rval
|
'Return value is a scalar
Parameters
V : WRITEME
model : WRITEME
obs : WRITEME
Returns
WRITEME'
| def energy_functional(self, V, model, obs):
| needed_stats = S3C.expected_log_prob_vhs_needed_stats()
stats = SufficientStatistics.from_observations(needed_stats=needed_stats, V=V, **obs)
H_hat = obs['H_hat']
S_hat = obs['S_hat']
var_s0_hat = obs['var_s0_hat']
var_s1_hat = obs['var_s1_hat']
entropy_term = model.entropy_hs(H_hat=H_hat, var_s0_hat=var_s0_hat, var_s1_hat=var_s1_hat).mean()
likelihood_term = model.expected_log_prob_vhs(stats, H_hat=H_hat, S_hat=S_hat)
energy_functional = (entropy_term + likelihood_term)
return energy_functional
|
'.. todo::
WRITEME'
| def register_model(self, model):
| self.model = model
|
'KL divergence between variation and true posterior, dropping terms that
don\'t depend on the variational parameters
Parameters
V : WRITEME
Y : WRITEME
obs : WRITEME
Returns
WRITEME'
| def truncated_KL(self, V, Y=None, obs=None):
| assert (Y is None)
assert (obs is not None)
H_hat = obs['H_hat']
var_s0_hat = obs['var_s0_hat']
var_s1_hat = obs['var_s1_hat']
S_hat = obs['S_hat']
model = self.model
for H_hat_v in get_debug_values(H_hat):
assert (H_hat_v.min() >= 0.0)
assert (H_hat_v.max() <= 1.0)
entropy_term = (- model.entropy_hs(H_hat=H_hat, var_s0_hat=var_s0_hat, var_s1_hat=var_s1_hat))
energy_term = model.expected_energy_vhs(V, H_hat=H_hat, S_hat=S_hat, var_s0_hat=var_s0_hat, var_s1_hat=var_s1_hat)
for (entropy, energy) in get_debug_values(entropy_term, energy_term):
debug_assert((not contains_nan(entropy)))
debug_assert((not contains_nan(energy)))
KL = (entropy_term + energy_term)
return KL
|
'.. todo::
WRITEME'
| def init_H_hat(self, V):
| if self.model.recycle_q:
rval = self.model.prev_H
if (config.compute_test_value != 'off'):
if (rval.get_value().shape[0] != V.tag.test_value.shape[0]):
raise Exception('E step given wrong test batch size', rval.get_value().shape, V.tag.test_value.shape)
else:
value = T.nnet.sigmoid(self.model.bias_hid)
rval = T.alloc(value, V.shape[0], value.shape[0])
for (rval_value, V_value) in get_debug_values(rval, V):
if (rval_value.shape[0] != V_value.shape[0]):
debug_error_message("rval.shape = %s, V.shape = %s, element 0 should match but doesn't", str(rval_value.shape), str(V_value.shape))
return rval
|
'.. todo::
WRITEME'
| def init_S_hat(self, V):
| if self.model.recycle_q:
rval = self.model.prev_S_hat
else:
value = self.model.mu
assert (self.model.mu.get_value(borrow=True).shape[0] == self.model.nhid)
rval = T.alloc(value, V.shape[0], value.shape[0])
return rval
|
'.. todo::
WRITEME'
| def infer_S_hat(self, V, H_hat, S_hat):
| for (Vv, Hv) in get_debug_values(V, H_hat):
if (Vv.shape != (self.model._test_batch_size, self.model.nvis)):
raise Exception((((('Well this is awkward. We require visible input test tags to be of shape ' + str((self.model._test_batch_size, self.model.nvis))) + ' but the monitor gave us something of shape ') + str(Vv.shape)) + ". The batch index part is probably only important if recycle_q is enabled. It's also probably not all that realistic to plan on telling the monitor what size of batch we need for test tags. the best thing to do is probably change self.model._test_batch_size to match what the monitor does"))
assert (Vv.shape[0] == Hv.shape[0])
if (not (Hv.shape[1] == self.model.nhid)):
raise AssertionError(('Hv.shape[1] is %d, does not match self.model.nhid, %d' % (Hv.shape[1], self.model.nhid)))
mu = self.model.mu
alpha = self.model.alpha
W = self.model.W
B = self.model.B
w = self.model.w
BW = (B.dimshuffle(0, 'x') * W)
BW.name = 'infer_S_hat:BW'
HS = (H_hat * S_hat)
HS.name = 'infer_S_hat:HS'
mean_term = (mu * alpha)
mean_term.name = 'infer_S_hat:mean_term'
assert (V.dtype == config.floatX)
assert (BW.dtype == config.floatX), ('Expected %s, got %s' % (config.floatX, BW.dtype))
data_term = T.dot(V, BW)
data_term.name = 'infer_S_hat:data_term'
iterm_part_1 = (- T.dot(T.dot(HS, W.T), BW))
iterm_part_1.name = 'infer_S_hat:iterm_part_1'
assert (w.name is not None)
iterm_part_2 = (w * HS)
iterm_part_2.name = 'infer_S_hat:iterm_part_2'
interaction_term = (iterm_part_1 + iterm_part_2)
interaction_term.name = 'infer_S_hat:interaction_term'
for (i1v, Vv) in get_debug_values(iterm_part_1, V):
assert (i1v.shape[0] == Vv.shape[0])
assert (mean_term.dtype == config.floatX)
assert (data_term.dtype == config.floatX)
assert (interaction_term.dtype == config.floatX)
debug_interm = (mean_term + data_term)
debug_interm.name = 'infer_S_hat:debug_interm'
numer = (debug_interm + interaction_term)
numer.name = 'infer_S_hat:numer'
assert (numer.dtype == config.floatX)
alpha = self.model.alpha
w = self.model.w
denom = (alpha + w)
assert (denom.dtype == config.floatX)
denom.name = 'infer_S_hat:denom'
S_hat = (numer / denom)
return S_hat
|
'.. todo::
WRITEME'
| def infer_var_s0_hat(self):
| return (1.0 / self.model.alpha)
|
'Returns the variational parameter for the variance of s given h=1. This
is data-independent so its just a vector of size (nhid,) and doesn\'t
take any arguments
Returns
WRITEME'
| def infer_var_s1_hat(self):
| rval = (1.0 / (self.model.alpha + self.model.w))
rval.name = 'var_s1'
return rval
|
'Computes the value of H_hat prior to the application of the sigmoid
function. This is a useful quantity to compute for larger models that
influence h with top-down terms. Such models can apply the sigmoid
themselves after adding the top-down interactions
Parameters
V : WRITEME
H_hat : WRITEME
S_hat : WRITEME
Returns
WRITEME'
| def infer_H_hat_presigmoid(self, V, H_hat, S_hat):
| half = as_floatX(0.5)
alpha = self.model.alpha
w = self.model.w
mu = self.model.mu
W = self.model.W
B = self.model.B
BW = (B.dimshuffle(0, 'x') * W)
HS = (H_hat * S_hat)
t1f1t1 = V
t1f1t2 = (- T.dot(HS, W.T))
iterm_corrective = ((w * H_hat) * T.sqr(S_hat))
t1f1t3_effect = (((- half) * w) * T.sqr(S_hat))
term_1_factor_1 = (t1f1t1 + t1f1t2)
term_1 = (((T.dot(term_1_factor_1, BW) * S_hat) + iterm_corrective) + t1f1t3_effect)
term_2_subterm_1 = (((- half) * alpha) * T.sqr(S_hat))
term_2_subterm_2 = ((alpha * S_hat) * mu)
term_2_subterm_3 = (((- half) * alpha) * T.sqr(mu))
term_2 = ((term_2_subterm_1 + term_2_subterm_2) + term_2_subterm_3)
term_3 = self.model.bias_hid
term_4 = ((- half) * T.log((alpha + self.model.w)))
term_5 = (half * T.log(alpha))
arg_to_sigmoid = ((((term_1 + term_2) + term_3) + term_4) + term_5)
return arg_to_sigmoid
|
'.. todo::
WRITEME'
| def infer_H_hat(self, V, H_hat, S_hat, count=None):
| arg_to_sigmoid = self.infer_H_hat_presigmoid(V, H_hat, S_hat)
H = T.nnet.sigmoid(arg_to_sigmoid)
V_name = make_name(V, anon='anon_V')
if (count is not None):
H.name = ('H_hat(%s, %d)' % (V_name, count))
return H
|
'... todo::
WRITEME
Parameters
V : WRITEME
return_history : bool
If True, returns a list of dictionaries with showing the history
of the variational parameters throughout fixed point updates
If False, returns a dictionary containing the final variational
parameters
Returns
WRITEME'
| def infer(self, V, return_history=False):
| if (not self.autonomous):
raise ValueError('Non-autonomous model asked to perform inference on its own')
alpha = self.model.alpha
var_s0_hat = (1.0 / alpha)
var_s1_hat = self.infer_var_s1_hat()
H_hat = self.init_H_hat(V)
S_hat = self.init_S_hat(V)
def check_H(my_H, my_V):
if (my_H.dtype != config.floatX):
raise AssertionError(('my_H.dtype should be config.floatX, but they are %s and %s, respectively' % (my_H.dtype, config.floatX)))
allowed_v_types = ['float32']
if (config.floatX == 'float64'):
allowed_v_types.append('float64')
assert (my_V.dtype in allowed_v_types)
if (config.compute_test_value != 'off'):
from theano.gof.op import PureOp
Hv = PureOp._get_test_value(my_H)
Vv = my_V.tag.test_value
assert (Hv.shape[0] == Vv.shape[0])
check_H(H_hat, V)
def make_dict():
return {'H_hat': H_hat, 'S_hat': S_hat, 'var_s0_hat': var_s0_hat, 'var_s1_hat': var_s1_hat}
history = [make_dict()]
count = 2
h_new_coeff_schedule = self.h_new_coeff_schedule
s_new_coeff_schedule = self.s_new_coeff_schedule
assert isinstance(s_new_coeff_schedule, (list, tuple))
assert isinstance(h_new_coeff_schedule, (list, tuple))
for (new_H_coeff, new_S_coeff) in zip(h_new_coeff_schedule, s_new_coeff_schedule):
new_H_coeff = as_floatX(new_H_coeff)
new_S_coeff = as_floatX(new_S_coeff)
assert (V.dtype == config.floatX)
assert (H_hat.dtype == config.floatX)
assert (S_hat.dtype == config.floatX)
new_S_hat = self.infer_S_hat(V, H_hat, S_hat)
assert (new_S_hat.type.dtype == config.floatX)
if self.clip_reflections:
clipped_S_hat = reflection_clip(S_hat=S_hat, new_S_hat=new_S_hat, rho=self.rho)
else:
clipped_S_hat = new_S_hat
assert (clipped_S_hat.dtype == config.floatX)
assert (S_hat.type.dtype == config.floatX)
assert (new_S_coeff.dtype == config.floatX)
S_hat = damp(old=S_hat, new=clipped_S_hat, new_coeff=new_S_coeff)
S_hat.name = ('S_hat_' + str(count))
assert (S_hat.type.dtype == config.floatX)
new_H = self.infer_H_hat(V, H_hat, S_hat, count)
assert (new_H.type.dtype == config.floatX)
count += 1
H_hat = damp(old=H_hat, new=new_H, new_coeff=new_H_coeff)
check_H(H_hat, V)
history.append(make_dict())
if return_history:
return history
else:
return history[(-1)]
|
'.. todo::
WRITEME'
| def __setstate__(self, d):
| if ('autonomous' not in d):
d['autonomous'] = True
self.__dict__.update(d)
|
'.. todo::
WRITEME'
| def get_updates(self, model, stats, H_hat, S_hat):
| assert self.autonomous
params = model.get_params()
obj = (((model.expected_log_prob_vhs(stats, H_hat, S_hat) - (T.mean(model.p) * self.p_penalty)) - (T.mean(model.B) * self.B_penalty)) - (T.mean(model.alpha) * self.alpha_penalty))
constants = set(stats.d.values()).union([H_hat, S_hat])
grads = T.grad(obj, params, consider_constant=constants)
updates = OrderedDict()
for (param, grad) in zip(params, grads):
learning_rate = self.learning_rate
if (param is model.W):
learning_rate = (learning_rate * self.W_learning_rate_scale)
if (param is model.B_driver):
learning_rate = (learning_rate * self.B_learning_rate_scale)
if (param is model.alpha):
learning_rate = (learning_rate * self.alpha_learning_rate_scale)
if (model.momentum_saturation_example is None):
if ((param is model.W) and model.constrain_W_norm):
g_k = (learning_rate * grad)
h_k = (g_k - ((g_k * model.W).sum(axis=0) * model.W))
theta_k = T.sqrt((1e-08 + T.sqr(h_k).sum(axis=0)))
u_k = (h_k / theta_k)
updates[model.W] = ((T.cos(theta_k) * model.W) + (T.sin(theta_k) * u_k))
else:
pparam = param
inc = (learning_rate * grad)
updated_param = (pparam + inc)
updates[param] = updated_param
else:
inc = model.params_to_incs[param]
updates[inc] = ((model.momentum * inc) + (learning_rate * grad))
updates[param] = (param + inc)
return updates
|
'.. todo::
WRITEME'
| def needed_stats(self):
| return S3C.expected_log_prob_vhs_needed_stats()
|
'.. todo::
WRITEME'
| def get_monitoring_channels(self, V, model):
| hid_observations = model.infer(V)
stats = SufficientStatistics.from_observations(needed_stats=S3C.expected_log_prob_vhs_needed_stats(), V=V, **hid_observations)
H_hat = hid_observations['H_hat']
S_hat = hid_observations['S_hat']
obj = model.expected_log_prob_vhs(stats, H_hat, S_hat)
return {'expected_log_prob_vhs': obj}
|
'WRITEME
Parameters
V : WRITEME
return_history : bool
If True, returns a list of dictionaries with showing the history
of the variational parameters throughout fixed point updates
If False, returns a dictionary containing the final variational
parameters
Returns
WRITEME'
| def infer(self, V, return_history=False):
| if (not self.autonomous):
raise ValueError('Non-autonomous model asked to perform inference on its own')
alpha = self.model.alpha
var_s0_hat = (1.0 / alpha)
var_s1_hat = self.infer_var_s1_hat()
H_hat = self.init_H_hat(V)
S_hat = self.init_S_hat(V)
def inner_function(new_H_coeff, new_S_coeff, H_hat, S_hat):
orig_H_dtype = H_hat.dtype
orig_S_dtype = S_hat.dtype
new_S_hat = self.infer_S_hat(V, H_hat, S_hat)
if self.clip_reflections:
clipped_S_hat = reflection_clip(S_hat=S_hat, new_S_hat=new_S_hat, rho=self.rho)
else:
clipped_S_hat = new_S_hat
S_hat = damp(old=S_hat, new=clipped_S_hat, new_coeff=new_S_coeff)
new_H = self.infer_H_hat(V, H_hat, S_hat)
H_hat = damp(old=H_hat, new=new_H, new_coeff=new_H_coeff)
assert (H_hat.dtype == orig_H_dtype)
assert (S_hat.dtype == orig_S_dtype)
return (H_hat, S_hat)
((H_hats, S_hats), _) = scan(fn=inner_function, sequences=[self.h_new_coeff_schedule, self.s_new_coeff_schedule], outputs_info=[H_hat, S_hat])
if return_history:
hist = [{'H_hat': H_hats[i], 'S_hat': S_hats[i], 'var_s0_hat': var_s0_hat, 'var_s1_hat': var_s1_hat} for i in xrange(self.h_new_coeff_schedule.get_value().shape[0])]
hist.insert(0, {'H_hat': H_hat, 'S_hat': S_hat, 'var_s0_hat': var_s0_hat, 'var_s1_hat': var_s1_hat})
return hist
return {'H_hat': H_hats[(-1)], 'S_hat': S_hats[(-1)], 'var_s0_hat': var_s0_hat, 'var_s1_hat': var_s1_hat}
|
'Process kmeans algorithm on the input to localize clusters.
Parameters
dataset : WRITEME
mu : WRITEME
Returns
rval : bool
WRITEME'
| def train_all(self, dataset, mu=None):
| X = dataset.get_design_matrix()
(n, m) = X.shape
k = self.k
if (milk is not None):
(cluster_ids, mu) = milk.kmeans(X, k)
else:
if (mu is not None):
if (not (len(mu) == k)):
raise Exception(('You gave %i clusters, but k=%i were expected' % (len(mu), k)))
else:
indices = numpy.random.randint(X.shape[0], size=k)
mu = X[indices]
try:
dists = numpy.zeros((n, k))
except MemoryError as e:
improve_memory_error_message(e, 'dying trying to allocate dists matrix for {0} examples and {1} means'.format(n, k))
old_kills = {}
iter = 0
mmd = prev_mmd = float('inf')
while True:
if self.verbose:
logger.info('kmeans iter {0}'.format(iter))
if contains_nan(mu):
logger.info('nan found')
return X
for i in xrange(k):
dists[:, i] = numpy.square((X - mu[i, :])).sum(axis=1)
if (iter > 0):
prev_mmd = mmd
min_dists = dists.min(axis=1)
mmd = min_dists.mean()
logger.info('cost: {0}'.format(mmd))
if ((iter > 0) and ((iter >= self.max_iter) or (abs((mmd - prev_mmd)) < self.convergence_th))):
break
min_dist_inds = dists.argmin(axis=1)
i = 0
blacklist = []
new_kills = {}
while (i < k):
b = (min_dist_inds == i)
if (not numpy.any(b)):
killed_on_prev_iter = True
if (i in old_kills):
d = (old_kills[i] - 1)
if (d == 0):
d = 50
new_kills[i] = d
else:
d = 5
mu[i, :] = 0
for j in xrange(d):
idx = numpy.argmax(min_dists)
min_dists[idx] = 0
mu[i, :] += X[idx, :]
blacklist.append(idx)
mu[i, :] /= float(d)
dists[:, i] = numpy.square((X - mu[i, :])).sum(axis=1)
min_dists = dists.min(axis=1)
for idx in blacklist:
min_dists[idx] = 0
min_dist_inds = dists.argmin(axis=1)
i += 1
else:
mu[i, :] = numpy.mean(X[b, :], axis=0)
if contains_nan(mu):
logger.info('nan found at {0}'.format(i))
return X
i += 1
old_kills = new_kills
iter += 1
self.mu = sharedX(mu)
self._params = [self.mu]
|
'.. todo::
WRITEME'
| def get_params(self):
| if (not hasattr(self.mu, 'get_value')):
self.mu = sharedX(self.mu)
if (not hasattr(self, '_params')):
self._params = [self.mu]
return [param for param in self._params]
|
'Compute for each sample its probability to belong to a cluster.
Parameters
X : numpy.ndarray
Matrix of sampless of shape (n, d)
Returns
WRITEME'
| def __call__(self, X):
| (n, m) = X.shape
k = self.k
mu = self.mu
dists = numpy.zeros((n, k))
for i in xrange(k):
dists[:, i] = numpy.square((X - mu[i, :])).sum(axis=1)
return (dists / dists.sum(axis=1).reshape((-1), 1))
|
'.. todo::
WRITEME'
| def get_weights(self):
| return self.mu
|
'.. todo::
WRITEME'
| def get_weights_format(self):
| return ['h', 'v']
|
'Don\'t let subclasses use censor_updates.'
| def _disallow_censor_updates(self):
| if self._overrides_censor_updates():
raise TypeError((str(type(self)) + ' overrides Model.censor_updates, which is no longer in use. Change this to _modify_updates. This check may quit being performed after 2015-05-13.'))
|
'Makes sure the model has an "extensions" field.'
| def _ensure_extensions(self):
| if (not hasattr(self, 'extensions')):
raise TypeError((('The ' + str(type(self))) + ' Model subclass is required to call the Model superclass constructor but does not.'))
self.extensions = []
|
'An implementation of __setstate__ that patches old pickle files.'
| def __setstate__(self, d):
| self._disallow_censor_updates()
self.__dict__.update(d)
if ('extensions' not in d):
self.extensions = []
|
'Returns the default cost to use with this model.
Returns
default_cost : Cost
The default cost to use with this model.'
| def get_default_cost(self):
| raise NotImplementedError((str(type(self)) + ' does not implement get_default_cost.'))
|
'If implemented, performs one epoch of training.
Parameters
dataset : pylearn2.datasets.dataset.Dataset
Dataset object to draw training data from
Notes
This method is useful
for models with highly specialized training algorithms for which is
does not make much sense to factor the training code into a separate
class. It is also useful for implementors that want to make their model
trainable without enforcing compatibility with pylearn2
TrainingAlgorithms.'
| def train_all(self, dataset):
| raise NotImplementedError((str(type(self)) + ' does not implement train_all.'))
|
'If train_all is used to train the model, this method is used to
determine when the training process has converged. This method is
called after the monitor has been run on the latest parameters.
Returns
rval : bool
True if training should continue'
| def continue_learning(self):
| raise NotImplementedError((str(type(self)) + ' does not implement continue_learning.'))
|
'If implemented, performs an update on a single minibatch.
Parameters
dataset: pylearn2.datasets.dataset.Dataset
The object to draw training data from.
batch_size: int
Size of the minibatch to draw from dataset.
Returns
rval : bool
True if the method should be called again for another update.
False if convergence has been reached.'
| def train_batch(self, dataset, batch_size):
| raise NotImplementedError()
|
'Returns the shape `PatchViewer` should use to display the
weights.
Returns
shape : tuple
A tuple containing two ints. These are used as the
`grid_shape` argument to `PatchViewer` when
displaying the weights of this model.
Notes
This can be useful when there is some geometric
significance to the order of your weight
vectors. For example, the `Maxout` model makes sure that all of
the filters for the same hidden unit appear on the same row
of the display.'
| def get_weights_view_shape(self):
| raise NotImplementedError((str(type(self)) + ' does not implement get_weights_view_shape (perhaps by design)'))
|
'Get monitoring channels for this model.
Parameters
data : tensor_like, or (possibly nested) tuple of tensor_likes,
This is data on which the monitoring quantities will be
calculated (e.g., a validation set). See
`self.get_monitoring_data_specs()`.
Returns
channels : OrderedDict
A dictionary with strings as keys, mapping channel names to
symbolic values that depend on the variables in `data`.
Notes
You can make any channel names you want, just try to make sure they
won\'t collide with names made by the training Cost, etc. Anything you
think is worth monitoring during training can be added here. You
probably want to control which channels get added with some config
option for your model.'
| def get_monitoring_channels(self, data):
| (space, source) = self.get_monitoring_data_specs()
space.validate(data)
return OrderedDict()
|
'Get the data_specs describing the data for get_monitoring_channels.
This implementation returns an empty data_specs, appropriate for
when no monitoring channels are defined, or when none of the channels
actually need data (for instance, if they only monitor functions
of the model\'s parameters).
Returns
data_specs : TODO WRITEME
TODO WRITEME'
| def get_monitoring_data_specs(self):
| return (NullSpace(), '')
|
'Sets the batch size used by the model.
Parameters
batch_size : int
If None, allows the model to use any batch size.'
| def set_batch_size(self, batch_size):
| pass
|
'Returns the weights (of the first layer if more than one layer is
present).
Returns
weights : ndarray
Returns any matrix that is analogous to the weights of the first
layer of an MLP, such as the dictionary of a sparse coding model.
This implementation raises NotImplementedError. For models where
this method is not conceptually applicable, do not override it.
Format should be compatible with the return value of
self.get_weights_format.'
| def get_weights(self):
| raise NotImplementedError((str(type(self)) + ' does not implement get_weights (perhaps by design)'))
|
'Returns a description of how to interpret the return value of
`get_weights`.
Returns
format : tuple
Either (\'v\', \'h\') or (\'h\', \'v\'). (\'v\', \'h\') means self.get_weights
returns a matrix of shape (num visible units, num hidden units),
while (\'h\', \'v\') means it returns the transpose of this.'
| def get_weights_format(self):
| return ('v', 'h')
|
'Returns a topological view of the weights.
Returns
weights : ndarray
Same as the return value of `get_weights` but formatted as a 4D
tensor with the axes being (hidden units, rows, columns,
channels). Only applicable for models where the weights can be
viewed as 2D-multichannel, and the number of channels is either
1 or 3 (because they will be visualized as grayscale or RGB color).'
| def get_weights_topo(self):
| raise NotImplementedError((str(type(self)) + ' does not implement get_weights_topo (perhaps by design)'))
|
'Compute a "score function" for this model, if this model has
probabilistic semantics.
Parameters
V : tensor_like, 2-dimensional
A batch of i.i.d. examples with examples indexed along the
first axis and features along the second. This is data on which
the monitoring quantities will be calculated (e.g., a validation
set).
Returns
score : tensor_like
The gradient of the negative log probability of the model
on the given datal.
Notes
If the model implements a probability distribution on R^n,
this method should return the gradient of the log probability
of the batch with respect to V, or raise an exception explaining
why this is not possible.'
| def score(self, V):
| return T.grad((- self.free_energy(V).sum()), V)
|
'Specify how to rescale the learning rate on each parameter.
Returns
lr_scalers : OrderedDict
A dictionary mapping the parameters of the model to floats. The
learning rate will be multiplied by the float for each parameter.
If a parameter does not appear in the dictionary, it will use
the global learning rate with no scaling.'
| def get_lr_scalers(self):
| return OrderedDict()
|
'Returns true if the model overrides censor_updates.
(It shouldn\'t do so because it\'s deprecated, and we have
to take special action to handle this case)'
| def _overrides_censor_updates(self):
| return (type(self).censor_updates != Model.censor_updates)
|
'Deprecated method. Callers should call modify_updates instead.
Subclasses should override _modify_updates instead.
This method may be removed on or after 2015-05-25.
Parameters
updates : dict
A dictionary mapping shared variables to symbolic values they
will be updated to.'
| def censor_updates(self, updates):
| raise TypeError('Model.censor_updates has been replaced by Model.modify_updates.')
|
'Modifies the parameters before a learning update is applied. Behavior
is defined by subclass\'s implementation of _modify_updates and any
ModelExtension\'s implementation of post_modify_updates.
Parameters
updates : dict
A dictionary mapping shared variables to symbolic values they
will be updated to
Notes
For example, if a given parameter is not meant to be learned, a
subclass or extension
should remove it from the dictionary. If a parameter has a restricted
range, e.g.. if it is the precision of a normal distribution,
a subclass or extension should clip its update to that range. If a
parameter
has any other special properties, its updates should be modified
to respect that here, e.g. a matrix that must be orthogonal should
have its update value modified to be orthogonal here.
This is the main mechanism used to make sure that generic training
algorithms such as those found in pylearn2.training_algorithms
respect the specific properties of the models passed to them.'
| def modify_updates(self, updates):
| self._modify_updates(updates)
self._ensure_extensions()
for extension in self.extensions:
extension.post_modify_updates(updates, self)
|
'Subclasses may override this method to add functionality to
modify_updates.
Parameters
updates : dict
A dictionary mapping shared variables to symbolic values they
will be updated to.'
| def _modify_updates(self, updates):
| self._disallow_censor_updates()
|
'Returns an instance of pylearn2.space.Space describing the format of
the vector space that the model operates on (this is a generalization
of get_input_dim)'
| def get_input_space(self):
| return self.input_space
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.