desc
stringlengths 3
26.7k
| decl
stringlengths 11
7.89k
| bodies
stringlengths 8
553k
|
---|---|---|
'.. todo::
WRITEME'
| def get_weights_topo(self):
| if (not isinstance(self.input_space, Conv2DSpace)):
raise NotImplementedError()
(W,) = self.transformer.get_params()
W = W.T
W = W.reshape((self.detector_layer_dim, self.input_space.shape[0], self.input_space.shape[1], self.input_space.nchannels))
W = Conv2DSpace.convert(W, self.input_space.axes, ('b', 0, 1, 'c'))
return function([], W)()
|
'.. todo::
WRITEME'
| def upward_state(self, total_state):
| return total_state
|
'.. todo::
WRITEME'
| def downward_state(self, total_state):
| return total_state
|
'.. todo::
WRITEME'
| def get_monitoring_channels(self):
| (W,) = self.transformer.get_params()
assert (W.ndim == 2)
sq_W = T.sqr(W)
row_norms = T.sqrt(sq_W.sum(axis=1))
col_norms = T.sqrt(sq_W.sum(axis=0))
return OrderedDict([('row_norms_min', row_norms.min()), ('row_norms_mean', row_norms.mean()), ('row_norms_max', row_norms.max()), ('col_norms_min', col_norms.min()), ('col_norms_mean', col_norms.mean()), ('col_norms_max', col_norms.max())])
|
'.. todo::
WRITEME'
| def get_monitoring_channels_from_state(self, state):
| P = state
rval = OrderedDict()
vars_and_prefixes = [(P, '')]
for (var, prefix) in vars_and_prefixes:
v_max = var.max(axis=0)
v_min = var.min(axis=0)
v_mean = var.mean(axis=0)
v_range = (v_max - v_min)
for (key, val) in [('max_x.max_u', v_max.max()), ('max_x.mean_u', v_max.mean()), ('max_x.min_u', v_max.min()), ('min_x.max_u', v_min.max()), ('min_x.mean_u', v_min.mean()), ('min_x.min_u', v_min.min()), ('range_x.max_u', v_range.max()), ('range_x.mean_u', v_range.mean()), ('range_x.min_u', v_range.min()), ('mean_x.max_u', v_mean.max()), ('mean_x.mean_u', v_mean.mean()), ('mean_x.min_u', v_mean.min())]:
rval[(prefix + key)] = val
return rval
|
'.. todo::
WRITEME'
| def sample(self, state_below=None, state_above=None, layer_above=None, theano_rng=None):
| if (theano_rng is None):
raise ValueError((('theano_rng is required; it just defaults to ' + 'None so that it may appear after layer_above ') + '/ state_above in the list.'))
if (state_above is not None):
msg = layer_above.downward_message(state_above)
else:
msg = None
if self.requires_reformat:
state_below = self.input_space.format_as(state_below, self.desired_space)
z = (self.transformer.lmul(state_below) + self.b)
if (msg is not None):
z = (z + msg)
on_prob = T.nnet.sigmoid(((2.0 * self.beta) * z))
samples = ((theano_rng.binomial(p=on_prob, n=1, size=on_prob.shape, dtype=on_prob.dtype) * 2.0) - 1.0)
return samples
|
'.. todo::
WRITEME'
| def downward_message(self, downward_state):
| rval = self.transformer.lmul_T(downward_state)
if self.requires_reformat:
rval = self.desired_space.format_as(rval, self.input_space)
return rval
|
'.. todo::
WRITEME'
| def init_mf_state(self):
| z = (T.alloc(0.0, self.dbm.batch_size, self.dim).astype(self.b.dtype) + self.b.dimshuffle('x', 0))
rval = T.tanh((self.beta * z))
return rval
|
'.. todo::
WRITEME properly
Returns a shared variable containing an actual state
(not a mean field state) for this variable.'
| def make_state(self, num_examples, numpy_rng):
| driver = numpy_rng.uniform(0.0, 1.0, (num_examples, self.dim))
on_prob = sigmoid_numpy(((2.0 * self.beta.get_value()) * self.b.get_value()))
sample = ((2.0 * (driver < on_prob)) - 1.0)
rval = sharedX(sample, name='v_sample_shared')
return rval
|
'.. todo::
WRITEME'
| def make_symbolic_state(self, num_examples, theano_rng):
| mean = T.nnet.sigmoid(((2.0 * self.beta) * self.b))
rval = theano_rng.binomial(size=(num_examples, self.nvis), p=mean)
rval = ((2.0 * rval) - 1.0)
return rval
|
'.. todo::
WRITEME'
| def expected_energy_term(self, state, average, state_below, average_below):
| self.input_space.validate(state_below)
if self.requires_reformat:
if (not isinstance(state_below, tuple)):
for sb in get_debug_values(state_below):
if (sb.shape[0] != self.dbm.batch_size):
raise ValueError(('self.dbm.batch_size is %d but got ' + ('shape of %d' % (self.dbm.batch_size, sb.shape[0]))))
assert (reduce(operator.mul, sb.shape[1:]) == self.input_dim)
state_below = self.input_space.format_as(state_below, self.desired_space)
bias_term = T.dot(state, self.b)
weights_term = (self.transformer.lmul(state_below) * state).sum(axis=1)
rval = ((- bias_term) - weights_term)
rval *= self.beta
assert (rval.ndim == 1)
return rval
|
'.. todo::
WRITEME properly
Used to implement TorontoSparsity. Unclear exactly what properties of
it are important or how to implement it for other layers.
Properties it must have:
output is same kind of data structure (ie, tuple of theano
2-tensors) as mf_update
Properties it probably should have for other layer types:
An infinitesimal change in state_below or the parameters should
cause the same sign of change in the output of
linear_feed_forward_approximation and in mf_update
Should not have any non-linearities that cause the gradient to
shrink
Should disregard top-down feedback'
| def linear_feed_forward_approximation(self, state_below):
| z = (self.beta * (self.transformer.lmul(state_below) + self.b))
if (self.pool_size != 1):
raise NotImplementedError()
return (z, z)
|
'.. todo::
WRITEME'
| def mf_update(self, state_below, state_above, layer_above=None, double_weights=False, iter_name=None):
| self.input_space.validate(state_below)
if self.requires_reformat:
if (not isinstance(state_below, tuple)):
for sb in get_debug_values(state_below):
if (sb.shape[0] != self.dbm.batch_size):
raise ValueError(('self.dbm.batch_size is %d but got ' + ('shape of %d' % (self.dbm.batch_size, sb.shape[0]))))
assert (reduce(operator.mul, sb.shape[1:]) == self.input_dim)
state_below = self.input_space.format_as(state_below, self.desired_space)
if (iter_name is None):
iter_name = 'anon'
if (state_above is not None):
assert (layer_above is not None)
msg = layer_above.downward_message(state_above)
msg.name = (((((('msg_from_' + layer_above.layer_name) + '_to_') + self.layer_name) + '[') + iter_name) + ']')
else:
msg = None
if double_weights:
state_below = (2.0 * state_below)
state_below.name = (((self.layer_name + '_') + iter_name) + '_2state')
z = (self.transformer.lmul(state_below) + self.b)
if ((self.layer_name is not None) and (iter_name is not None)):
z.name = (((self.layer_name + '_') + iter_name) + '_z')
if (msg is not None):
z = (z + msg)
h = T.tanh((self.beta * z))
return h
|
'.. todo::
WRITEME'
| def finalize_initialization(self):
| if (self.sampling_b_stdev is not None):
self.noisy_sampling_b = sharedX(np.zeros((self.layer_above.dbm.batch_size, self.nvis)))
updates = OrderedDict()
updates[self.boltzmann_bias] = self.boltzmann_bias
updates[self.layer_above.W] = self.layer_above.W
self.enforce_constraints()
|
'.. todo::
WRITEME'
| def _modify_updates(self, updates):
| beta = self.beta
if (beta in updates):
updated_beta = updates[beta]
updates[beta] = T.clip(updated_beta, 1.0, 1000.0)
if any(((constraint is not None) for constraint in [self.min_ising_b, self.max_ising_b])):
bmn = self.min_ising_b
if (bmn is None):
bmn = (-1000000.0)
bmx = self.max_ising_b
if (bmx is None):
bmx = 1000000.0
wmn_above = self.layer_above.min_ising_W
if (wmn_above is None):
wmn_above = (-1000000.0)
wmx_above = self.layer_above.max_ising_W
if (wmx_above is None):
wmx_above = 1000000.0
b = updates[self.boltzmann_bias]
W_above = updates[self.layer_above.W]
ising_b = ((0.5 * b) + (0.25 * W_above.sum(axis=1)))
ising_b = T.clip(ising_b, bmn, bmx)
ising_W_above = (0.25 * W_above)
ising_W_above = T.clip(ising_W_above, wmn_above, wmx_above)
bhn = (2.0 * (ising_b - ising_W_above.sum(axis=1)))
updates[self.boltzmann_bias] = bhn
if (self.noisy_sampling_b is not None):
theano_rng = make_theano_rng(None, self.dbm.rng.randint((2 ** 16)), which_method='normal')
b = updates[self.boltzmann_bias]
W_above = updates[self.layer_above.W]
ising_b = ((0.5 * b) + (0.25 * W_above.sum(axis=1)))
noisy_sampling_b = theano_rng.normal(avg=ising_b.dimshuffle('x', 0), std=self.sampling_b_stdev, size=self.noisy_sampling_b.shape, dtype=ising_b.dtype)
updates[self.noisy_sampling_b] = noisy_sampling_b
|
'.. todo::
WRITEME'
| def resample_bias_noise(self, batch_size_changed=False):
| if batch_size_changed:
self.resample_fn = None
if (self.resample_fn is None):
updates = OrderedDict()
if (self.sampling_b_stdev is not None):
self.noisy_sampling_b = sharedX(np.zeros((self.dbm.batch_size, self.nvis)))
if (self.noisy_sampling_b is not None):
theano_rng = make_theano_rng(None, self.dbm.rng.randint((2 ** 16)), which_method='normal')
b = self.boltzmann_bias
W_above = self.layer_above.W
ising_b = ((0.5 * b) + (0.25 * W_above.sum(axis=1)))
noisy_sampling_b = theano_rng.normal(avg=ising_b.dimshuffle('x', 0), std=self.sampling_b_stdev, size=self.noisy_sampling_b.shape, dtype=ising_b.dtype)
updates[self.noisy_sampling_b] = noisy_sampling_b
self.resample_fn = function([], updates=updates)
self.resample_fn()
|
'.. todo::
WRITEME'
| def get_biases(self):
| warnings.warn(('BoltzmannIsingVisible.get_biases returns the ' + 'BOLTZMANN biases, is that what we want?'))
return self.boltzmann_bias.get_value()
|
'.. todo::
WRITEME'
| def set_biases(self, biases, recenter=False):
| assert False
|
'.. todo::
WRITEME'
| def ising_bias(self, for_sampling=False):
| if (for_sampling and (self.layer_above.sampling_b_stdev is not None)):
return self.noisy_sampling_b
return ((0.5 * self.boltzmann_bias) + (0.25 * self.layer_above.W.sum(axis=1)))
|
'.. todo::
WRITEME'
| def ising_bias_numpy(self):
| return ((0.5 * self.boltzmann_bias.get_value()) + (0.25 * self.layer_above.W.get_value().sum(axis=1)))
|
'.. todo::
WRITEME'
| def upward_state(self, total_state):
| return total_state
|
'.. todo::
WRITEME'
| def get_params(self):
| rval = [self.boltzmann_bias]
if self.learn_beta:
rval.append(self.beta)
return rval
|
'.. todo::
WRITEME'
| def sample(self, state_below=None, state_above=None, layer_above=None, theano_rng=None):
| assert (state_below is None)
msg = layer_above.downward_message(state_above, for_sampling=True)
bias = self.ising_bias(for_sampling=True)
z = (msg + bias)
phi = T.nnet.sigmoid(((2.0 * self.beta) * z))
rval = theano_rng.binomial(size=phi.shape, p=phi, dtype=phi.dtype, n=1)
return ((rval * 2.0) - 1.0)
|
'.. todo::
WRITEME'
| def make_state(self, num_examples, numpy_rng):
| driver = numpy_rng.uniform(0.0, 1.0, (num_examples, self.nvis))
on_prob = sigmoid_numpy(((2.0 * self.beta.get_value()) * self.ising_bias_numpy()))
sample = ((2.0 * (driver < on_prob)) - 1.0)
rval = sharedX(sample, name='v_sample_shared')
return rval
|
'.. todo::
WRITEME'
| def make_symbolic_state(self, num_examples, theano_rng):
| mean = T.nnet.sigmoid(((2.0 * self.beta) * self.ising_bias()))
rval = theano_rng.binomial(size=(num_examples, self.nvis), p=mean)
rval = ((2.0 * rval) - 1.0)
return rval
|
'.. todo::
WRITEME'
| def mf_update(self, state_above, layer_above):
| msg = layer_above.downward_message(state_above, for_sampling=True)
bias = self.ising_bias(for_sampling=True)
z = (msg + bias)
rval = T.tanh((self.beta * z))
return rval
|
'.. todo::
WRITEME'
| def expected_energy_term(self, state, average, state_below=None, average_below=None):
| assert (state_below is None)
assert (average_below is None)
assert (average in [True, False])
self.space.validate(state)
rval = (- (self.beta * T.dot(state, self.ising_bias())))
assert (rval.ndim == 1)
return rval
|
'.. todo::
WRITEME'
| def get_monitoring_channels(self):
| rval = OrderedDict()
ising_b = self.ising_bias()
rval['ising_b_min'] = ising_b.min()
rval['ising_b_max'] = ising_b.max()
rval['beta'] = self.beta
if hasattr(self, 'noisy_sampling_b'):
rval['noisy_sampling_b_min'] = self.noisy_sampling_b.min()
rval['noisy_sampling_b_max'] = self.noisy_sampling_b.max()
return rval
|
'.. todo::
WRITEME'
| def get_lr_scalers(self):
| if (not hasattr(self, 'W_lr_scale')):
self.W_lr_scale = None
if (not hasattr(self, 'b_lr_scale')):
self.b_lr_scale = None
if (not hasattr(self, 'beta_lr_scale')):
self.beta_lr_scale = None
rval = OrderedDict()
if (self.W_lr_scale is not None):
W = self.W
rval[W] = self.W_lr_scale
if (self.b_lr_scale is not None):
rval[self.boltzmann_b] = self.b_lr_scale
if (self.beta_lr_scale is not None):
rval[self.beta] = self.beta_lr_scale
return rval
|
'.. todo::
WRITEME properly
Note: this resets parameters!'
| def set_input_space(self, space):
| self.input_space = space
if isinstance(space, VectorSpace):
self.requires_reformat = False
self.input_dim = space.dim
else:
self.requires_reformat = True
self.input_dim = space.get_total_dimension()
self.desired_space = VectorSpace(self.input_dim)
self.output_space = VectorSpace(self.dim)
rng = self.dbm.rng
if (self.irange is not None):
assert (self.sparse_init is None)
W = (rng.uniform((- self.irange), self.irange, (self.input_dim, self.dim)) * (rng.uniform(0.0, 1.0, (self.input_dim, self.dim)) < self.include_prob))
else:
assert (self.sparse_init is not None)
W = np.zeros((self.input_dim, self.dim))
W *= self.sparse_stdev
W = sharedX(W)
W.name = (self.layer_name + '_W')
self.W = W
self.boltzmann_b = sharedX((np.zeros((self.dim,)) + self.init_bias), name=(self.layer_name + '_b'))
|
'.. todo::
WRITEME'
| def finalize_initialization(self):
| if (self.sampling_b_stdev is not None):
self.noisy_sampling_b = sharedX(np.zeros((self.dbm.batch_size, self.dim)))
if (self.sampling_W_stdev is not None):
self.noisy_sampling_W = sharedX(np.zeros((self.input_dim, self.dim)), 'noisy_sampling_W')
updates = OrderedDict()
updates[self.boltzmann_b] = self.boltzmann_b
updates[self.W] = self.W
if (self.layer_above is not None):
updates[self.layer_above.W] = self.layer_above.W
self.enforce_constraints()
|
'.. todo::
WRITEME'
| def _modify_updates(self, updates):
| beta = self.beta
if (beta in updates):
updated_beta = updates[beta]
updates[beta] = T.clip(updated_beta, 1.0, 1000.0)
if any(((constraint is not None) for constraint in [self.min_ising_b, self.max_ising_b, self.min_ising_W, self.max_ising_W])):
bmn = self.min_ising_b
if (bmn is None):
bmn = (-1000000.0)
bmx = self.max_ising_b
if (bmx is None):
bmx = 1000000.0
wmn = self.min_ising_W
if (wmn is None):
wmn = (-1000000.0)
wmx = self.max_ising_W
if (wmx is None):
wmx = 1000000.0
if (self.layer_above is not None):
wmn_above = self.layer_above.min_ising_W
if (wmn_above is None):
wmn_above = (-1000000.0)
wmx_above = self.layer_above.max_ising_W
if (wmx_above is None):
wmx_above = 1000000.0
W = updates[self.W]
ising_W = (0.25 * W)
ising_W = T.clip(ising_W, wmn, wmx)
b = updates[self.boltzmann_b]
if (self.layer_above is not None):
W_above = updates[self.layer_above.W]
ising_b = (((0.5 * b) + (0.25 * W.sum(axis=0))) + (0.25 * W_above.sum(axis=1)))
else:
ising_b = ((0.5 * b) + (0.25 * W.sum(axis=0)))
ising_b = T.clip(ising_b, bmn, bmx)
if (self.layer_above is not None):
ising_W_above = (0.25 * W_above)
ising_W_above = T.clip(ising_W_above, wmn_above, wmx_above)
bhn = (2.0 * ((ising_b - ising_W.sum(axis=0)) - ising_W_above.sum(axis=1)))
else:
bhn = (2.0 * (ising_b - ising_W.sum(axis=0)))
Wn = (4.0 * ising_W)
updates[self.W] = Wn
updates[self.boltzmann_b] = bhn
if (self.noisy_sampling_W is not None):
theano_rng = make_theano_rng(None, self.dbm.rng.randint((2 ** 16)), which_method='normal')
W = updates[self.W]
ising_W = (0.25 * W)
noisy_sampling_W = theano_rng.normal(avg=ising_W, std=self.sampling_W_stdev, size=ising_W.shape, dtype=ising_W.dtype)
updates[self.noisy_sampling_W] = noisy_sampling_W
b = updates[self.boltzmann_b]
if (self.layer_above is not None):
W_above = updates[self.layer_above.W]
ising_b = (((0.5 * b) + (0.25 * W.sum(axis=0))) + (0.25 * W_above.sum(axis=1)))
else:
ising_b = ((0.5 * b) + (0.25 * W.sum(axis=0)))
noisy_sampling_b = theano_rng.normal(avg=ising_b.dimshuffle('x', 0), std=self.sampling_b_stdev, size=self.noisy_sampling_b.shape, dtype=ising_b.dtype)
updates[self.noisy_sampling_b] = noisy_sampling_b
|
'.. todo::
WRITEME'
| def resample_bias_noise(self, batch_size_changed=False):
| if batch_size_changed:
self.resample_fn = None
if (self.resample_fn is None):
updates = OrderedDict()
if (self.sampling_b_stdev is not None):
self.noisy_sampling_b = sharedX(np.zeros((self.dbm.batch_size, self.dim)))
if (self.noisy_sampling_b is not None):
theano_rng = make_theano_rng(None, self.dbm.rng.randint((2 ** 16)), which_method='normal')
b = self.boltzmann_b
if (self.layer_above is not None):
W_above = self.layer_above.W
ising_b = (((0.5 * b) + (0.25 * self.W.sum(axis=0))) + (0.25 * W_above.sum(axis=1)))
else:
ising_b = ((0.5 * b) + (0.25 * self.W.sum(axis=0)))
noisy_sampling_b = theano_rng.normal(avg=ising_b.dimshuffle('x', 0), std=self.sampling_b_stdev, size=self.noisy_sampling_b.shape, dtype=ising_b.dtype)
updates[self.noisy_sampling_b] = noisy_sampling_b
self.resample_fn = function([], updates=updates)
self.resample_fn()
|
'.. todo::
WRITEME'
| def get_total_state_space(self):
| return VectorSpace(self.dim)
|
'.. todo::
WRITEME'
| def get_params(self):
| assert (self.boltzmann_b.name is not None)
W = self.W
assert (W.name is not None)
rval = [W]
assert (not isinstance(rval, set))
rval = list(rval)
assert (self.boltzmann_b not in rval)
rval.append(self.boltzmann_b)
if self.learn_beta:
rval.append(self.beta)
return rval
|
'.. todo::
WRITEME'
| def ising_weights(self, for_sampling=False):
| if (not hasattr(self, 'sampling_W_stdev')):
self.sampling_W_stdev = None
if (for_sampling and (self.sampling_W_stdev is not None)):
return self.noisy_sampling_W
return (0.25 * self.W)
|
'.. todo::
WRITEME'
| def ising_b(self, for_sampling=False):
| if (not hasattr(self, 'sampling_b_stdev')):
self.sampling_b_stdev = None
if (for_sampling and (self.sampling_b_stdev is not None)):
return self.noisy_sampling_b
elif (self.layer_above is not None):
return (((0.5 * self.boltzmann_b) + (0.25 * self.W.sum(axis=0))) + (0.25 * self.layer_above.W.sum(axis=1)))
else:
return ((0.5 * self.boltzmann_b) + (0.25 * self.W.sum(axis=0)))
|
'.. todo::
WRITEME'
| def ising_b_numpy(self):
| if (self.layer_above is not None):
return (((0.5 * self.boltzmann_b.get_value()) + (0.25 * self.W.get_value().sum(axis=0))) + (0.25 * self.layer_above.W.get_value().sum(axis=1)))
else:
return ((0.5 * self.boltzmann_b.get_value()) + (0.25 * self.W.get_value().sum(axis=0)))
|
'.. todo::
WRITEME'
| def get_weight_decay(self, coeff):
| if isinstance(coeff, str):
coeff = float(coeff)
assert (isinstance(coeff, float) or hasattr(coeff, 'dtype'))
W = self.W
return (coeff * T.sqr(W).sum())
|
'.. todo::
WRITEME'
| def get_weights(self):
| warnings.warn(('BoltzmannIsingHidden.get_weights returns the ' + 'BOLTZMANN weights, is that what we want?'))
W = self.W
return W.get_value()
|
'.. todo::
WRITEME'
| def set_weights(self, weights):
| warnings.warn(('BoltzmannIsingHidden.set_weights sets the BOLTZMANN ' + 'weights, is that what we want?'))
W = self.W
W.set_value(weights)
|
'.. todo::
WRITEME'
| def set_biases(self, biases, recenter=False):
| self.boltzmann_b.set_value(biases)
assert (not recenter)
|
'.. todo::
WRITEME'
| def get_biases(self):
| warnings.warn(('BoltzmannIsingHidden.get_biases returns the ' + 'BOLTZMANN biases, is that what we want?'))
return self.boltzmann_b.get_value()
|
'.. todo::
WRITEME'
| def get_weights_format(self):
| return ('v', 'h')
|
'.. todo::
WRITEME'
| def get_weights_topo(self):
| warnings.warn(('BoltzmannIsingHidden.get_weights_topo returns the ' + 'BOLTZMANN weights, is that what we want?'))
if (not isinstance(self.input_space, Conv2DSpace)):
raise NotImplementedError()
W = self.W
W = W.T
W = W.reshape((self.detector_layer_dim, self.input_space.shape[0], self.input_space.shape[1], self.input_space.nchannels))
W = Conv2DSpace.convert(W, self.input_space.axes, ('b', 0, 1, 'c'))
return function([], W)()
|
'.. todo::
WRITEME'
| def upward_state(self, total_state):
| return total_state
|
'.. todo::
WRITEME'
| def downward_state(self, total_state):
| return total_state
|
'.. todo::
WRITEME'
| def get_monitoring_channels(self):
| W = self.W
assert (W.ndim == 2)
sq_W = T.sqr(W)
row_norms = T.sqrt(sq_W.sum(axis=1))
col_norms = T.sqrt(sq_W.sum(axis=0))
rval = OrderedDict([('boltzmann_row_norms_min', row_norms.min()), ('boltzmann_row_norms_mean', row_norms.mean()), ('boltzmann_row_norms_max', row_norms.max()), ('boltzmann_col_norms_min', col_norms.min()), ('boltzmann_col_norms_mean', col_norms.mean()), ('boltzmann_col_norms_max', col_norms.max())])
ising_W = self.ising_weights()
rval['ising_W_min'] = ising_W.min()
rval['ising_W_max'] = ising_W.max()
ising_b = self.ising_b()
rval['ising_b_min'] = ising_b.min()
rval['ising_b_max'] = ising_b.max()
if hasattr(self, 'noisy_sampling_W'):
rval['noisy_sampling_W_min'] = self.noisy_sampling_W.min()
rval['noisy_sampling_W_max'] = self.noisy_sampling_W.max()
rval['noisy_sampling_b_min'] = self.noisy_sampling_b.min()
rval['noisy_sampling_b_max'] = self.noisy_sampling_b.max()
return rval
|
'.. todo::
WRITEME'
| def get_monitoring_channels_from_state(self, state):
| P = state
rval = OrderedDict()
vars_and_prefixes = [(P, '')]
for (var, prefix) in vars_and_prefixes:
v_max = var.max(axis=0)
v_min = var.min(axis=0)
v_mean = var.mean(axis=0)
v_range = (v_max - v_min)
for (key, val) in [('max_x.max_u', v_max.max()), ('max_x.mean_u', v_max.mean()), ('max_x.min_u', v_max.min()), ('min_x.max_u', v_min.max()), ('min_x.mean_u', v_min.mean()), ('min_x.min_u', v_min.min()), ('range_x.max_u', v_range.max()), ('range_x.mean_u', v_range.mean()), ('range_x.min_u', v_range.min()), ('mean_x.max_u', v_mean.max()), ('mean_x.mean_u', v_mean.mean()), ('mean_x.min_u', v_mean.min())]:
rval[(prefix + key)] = val
return rval
|
'.. todo::
WRITEME'
| def sample(self, state_below=None, state_above=None, layer_above=None, theano_rng=None):
| if (theano_rng is None):
raise ValueError((('theano_rng is required; it just defaults to ' + 'None so that it may appear after layer_above ') + '/ state_above in the list.'))
if (state_above is not None):
msg = layer_above.downward_message(state_above, for_sampling=True)
else:
msg = None
if self.requires_reformat:
state_below = self.input_space.format_as(state_below, self.desired_space)
z = (T.dot(state_below, self.ising_weights(for_sampling=True)) + self.ising_b(for_sampling=True))
if (msg is not None):
z = (z + msg)
on_prob = T.nnet.sigmoid(((2.0 * self.beta) * z))
samples = ((theano_rng.binomial(p=on_prob, n=1, size=on_prob.shape, dtype=on_prob.dtype) * 2.0) - 1.0)
return samples
|
'.. todo::
WRITEME'
| def downward_message(self, downward_state, for_sampling=False):
| rval = T.dot(downward_state, self.ising_weights(for_sampling=for_sampling).T)
if self.requires_reformat:
rval = self.desired_space.format_as(rval, self.input_space)
return rval
|
'.. todo::
WRITEME'
| def init_mf_state(self):
| z = (T.alloc(0.0, self.dbm.batch_size, self.dim).astype(self.boltzmann_b.dtype) + self.ising_b().dimshuffle('x', 0))
rval = T.tanh((self.beta * z))
return rval
|
'.. todo::
WRITEME properly
Returns a shared variable containing an actual state
(not a mean field state) for this variable.'
| def make_state(self, num_examples, numpy_rng):
| driver = numpy_rng.uniform(0.0, 1.0, (num_examples, self.dim))
on_prob = sigmoid_numpy(((2.0 * self.beta.get_value()) * self.ising_b_numpy()))
sample = ((2.0 * (driver < on_prob)) - 1.0)
rval = sharedX(sample, name='v_sample_shared')
return rval
|
'.. todo::
WRITEME'
| def make_symbolic_state(self, num_examples, theano_rng):
| mean = T.nnet.sigmoid(((2.0 * self.beta) * self.ising_b()))
rval = theano_rng.binomial(size=(num_examples, self.dim), p=mean)
rval = ((2.0 * rval) - 1.0)
return rval
|
'.. todo::
WRITEME'
| def expected_energy_term(self, state, average, state_below, average_below):
| self.input_space.validate(state_below)
if self.requires_reformat:
if (not isinstance(state_below, tuple)):
for sb in get_debug_values(state_below):
if (sb.shape[0] != self.dbm.batch_size):
raise ValueError(('self.dbm.batch_size is %d but got ' + ('shape of %d' % (self.dbm.batch_size, sb.shape[0]))))
assert (reduce(operator.mul, sb.shape[1:]) == self.input_dim)
state_below = self.input_space.format_as(state_below, self.desired_space)
bias_term = T.dot(state, self.ising_b())
weights_term = (T.dot(state_below, self.ising_weights()) * state).sum(axis=1)
rval = ((- bias_term) - weights_term)
rval *= self.beta
assert (rval.ndim == 1)
return rval
|
'.. todo::
WRITEME properly
Used to implement TorontoSparsity. Unclear exactly what properties of
it are important or how to implement it for other layers.
Properties it must have:
output is same kind of data structure (ie, tuple of theano
2-tensors) as mf_update
Properties it probably should have for other layer types:
An infinitesimal change in state_below or the parameters should
cause the same sign of change in the output of
linear_feed_forward_approximation and in mf_update
Should not have any non-linearities that cause the gradient to
shrink
Should disregard top-down feedback'
| def linear_feed_forward_approximation(self, state_below):
| z = (self.beta * (T.dot(state_below, self.ising_weights()) + self.ising_b()))
return z
|
'.. todo::
WRITEME'
| def mf_update(self, state_below, state_above, layer_above=None, double_weights=False, iter_name=None):
| self.input_space.validate(state_below)
if self.requires_reformat:
if (not isinstance(state_below, tuple)):
for sb in get_debug_values(state_below):
if (sb.shape[0] != self.dbm.batch_size):
raise ValueError(('self.dbm.batch_size is %d but got ' + ('shape of %d' % (self.dbm.batch_size, sb.shape[0]))))
assert (reduce(operator.mul, sb.shape[1:]) == self.input_dim)
state_below = self.input_space.format_as(state_below, self.desired_space)
if (iter_name is None):
iter_name = 'anon'
if (state_above is not None):
assert (layer_above is not None)
msg = layer_above.downward_message(state_above)
msg.name = (((((('msg_from_' + layer_above.layer_name) + '_to_') + self.layer_name) + '[') + iter_name) + ']')
else:
msg = None
if double_weights:
state_below = (2.0 * state_below)
state_below.name = (((self.layer_name + '_') + iter_name) + '_2state')
z = (T.dot(state_below, self.ising_weights()) + self.ising_b())
if ((self.layer_name is not None) and (iter_name is not None)):
z.name = (((self.layer_name + '_') + iter_name) + '_z')
if (msg is not None):
z = (z + msg)
h = T.tanh((self.beta * z))
return h
|
'.. todo::
WRITEME'
| def get_l2_act_cost(self, state, target, coeff):
| avg = state.mean(axis=0)
diff = (avg - target)
return (coeff * T.sqr(diff).mean())
|
'Returns the DBM that this layer belongs to, or None
if it has not been assigned to a DBM yet.'
| def get_dbm(self):
| if hasattr(self, 'dbm'):
return self.dbm
return None
|
'Assigns this layer to a DBM.
Parameters
dbm : WRITEME'
| def set_dbm(self, dbm):
| assert (self.get_dbm() is None)
self.dbm = dbm
|
'Returns the Space that the layer\'s total state lives in.'
| def get_total_state_space(self):
| raise NotImplementedError(((str(type(self)) + ' does not implement ') + 'get_total_state_space()'))
|
'.. todo::
WRITEME'
| def get_monitoring_channels(self):
| return OrderedDict()
|
'.. todo::
WRITEME'
| def get_monitoring_channels_from_state(self, state):
| return OrderedDict()
|
'Takes total_state and turns it into the state that layer_above should
see when computing P( layer_above | this_layer).
So far this has two uses:
* If this layer consists of a detector sub-layer h that is pooled
into a pooling layer p, then total_state = (p,h) but layer_above
should only see p.
* If the conditional P( layer_above | this_layer) depends on
parameters of this_layer, sometimes you can play games with
the state to avoid needing the layers to communicate. So far
the only instance of this usage is when the visible layer
is N( Wh, beta). This makes the hidden layer be
sigmoid( v beta W + b). Rather than having the hidden layer
explicitly know about beta, we can just pass v beta as
the upward state.
Parameters
total_state : WRITEME
Notes
This method should work both for computing sampling updates
and for computing mean field updates. So far I haven\'t encountered
a case where it needs to do different things for those two
contexts.'
| def upward_state(self, total_state):
| return total_state
|
'Returns a shared variable containing an actual state (not a mean field
state) for this variable.
Parameters
num_examples : WRITEME
numpy_rng : WRITEME
Returns
WRITEME'
| def make_state(self, num_examples, numpy_rng):
| raise NotImplementedError(("%s doesn't implement make_state" % type(self)))
|
'Returns a theano symbolic variable containing an actual state (not a
mean field state) for this variable.
Parameters
num_examples : WRITEME
numpy_rng : WRITEME
Returns
WRITEME'
| def make_symbolic_state(self, num_examples, theano_rng):
| raise NotImplementedError(("%s doesn't implement make_symbolic_state" % type(self)))
|
'Returns an expression for samples of this layer\'s state, conditioned on
the layers above and below Should be valid as an update to the shared
variable returned by self.make_state
Parameters
state_below : WRITEME
Corresponds to layer_below.upward_state(full_state_below),
where full_state_below is the same kind of object as you get
out of layer_below.make_state
state_above : WRITEME
Corresponds to layer_above.downward_state(full_state_above)
theano_rng : WRITEME
An MRG_RandomStreams instance
Returns
WRITEME
Notes
This can return multiple expressions if this layer\'s total state
consists of more than one shared variable.'
| def sample(self, state_below=None, state_above=None, layer_above=None, theano_rng=None):
| if hasattr(self, 'get_sampling_updates'):
raise AssertionError((('Looks like ' + str(type(self))) + ' needs to rename get_sampling_updates to sample.'))
raise NotImplementedError(("%s doesn't implement sample" % type(self)))
|
'Returns a term of the expected energy of the entire model.
This term should correspond to the expected value of terms
of the energy function that:
- involve this layer only
- if there is a layer below, include terms that involve both this layer
and the layer below
Do not include terms that involve the layer below only.
Do not include any terms that involve the layer above, if it
exists, in any way (the interface doesn\'t let you see the layer
above anyway).
Parameters
state_below : WRITEME
Upward state of the layer below.
state : WRITEME
Total state of this layer
average_below : bool
If True, the layer below is one of the variables to integrate
over in the expectation, and state_below gives its variational
parameters. If False, that layer is to be held constant and
state_below gives a set of assignments to it average: like
average_below, but for \'state\' rather than \'state_below\'
Returns
rval : tensor_like
A 1D theano tensor giving the expected energy term for each example'
| def expected_energy_term(self, state, average, state_below, average_below):
| raise NotImplementedError((str(type(self)) + ' does not implement expected_energy_term.'))
|
'Some layers\' initialization depends on layer above being initialized,
which is why this method is called after `set_input_space` has been
called.'
| def finalize_initialization(self):
| pass
|
'Returns the total state of the layer.
Returns
total_state : member of the input space
The total state of the layer.'
| def get_total_state_space(self):
| return self.get_input_space()
|
'.. todo::
WRITEME'
| def downward_state(self, total_state):
| return total_state
|
'.. todo::
WRITEME'
| def get_stdev_rewards(self, state, coeffs):
| raise NotImplementedError((str(type(self)) + ' does not implement get_stdev_rewards'))
|
'.. todo::
WRITEME'
| def get_range_rewards(self, state, coeffs):
| raise NotImplementedError((str(type(self)) + ' does not implement get_range_rewards'))
|
'.. todo::
WRITEME'
| def get_l1_act_cost(self, state, target, coeff, eps):
| raise NotImplementedError((str(type(self)) + ' does not implement get_l1_act_cost'))
|
'.. todo::
WRITEME'
| def get_l2_act_cost(self, state, target, coeff):
| raise NotImplementedError((str(type(self)) + ' does not implement get_l2_act_cost'))
|
'Returns
biases : ndarray
The numpy value of the biases'
| def get_biases(self):
| return self.bias.get_value()
|
'.. todo::
WRITEME'
| def set_biases(self, biases, recenter=False):
| self.bias.set_value(biases)
if recenter:
assert self.center
self.offset.set_value(sigmoid_numpy(self.bias.get_value()))
|
'.. todo::
WRITEME'
| def upward_state(self, total_state):
| if (not hasattr(self, 'center')):
self.center = False
if self.center:
rval = (total_state - self.offset)
else:
rval = total_state
if (not hasattr(self, 'copies')):
self.copies = 1
return (rval * self.copies)
|
'.. todo::
WRITEME'
| def get_params(self):
| return [self.bias]
|
'.. todo::
WRITEME'
| def sample(self, state_below=None, state_above=None, layer_above=None, theano_rng=None):
| assert (state_below is None)
if (self.copies != 1):
raise NotImplementedError()
msg = layer_above.downward_message(state_above)
bias = self.bias
z = (msg + bias)
phi = T.nnet.sigmoid(z)
rval = theano_rng.binomial(size=phi.shape, p=phi, dtype=phi.dtype, n=1)
return rval
|
'.. todo::
WRITEME'
| def mf_update(self, state_above, layer_above):
| msg = layer_above.downward_message(state_above)
mu = self.bias
z = (msg + mu)
rval = T.nnet.sigmoid(z)
return rval
|
'.. todo::
WRITEME'
| def make_state(self, num_examples, numpy_rng):
| if (not hasattr(self, 'copies')):
self.copies = 1
if (self.copies != 1):
raise NotImplementedError()
driver = numpy_rng.uniform(0.0, 1.0, (num_examples, self.nvis))
mean = sigmoid_numpy(self.bias.get_value())
sample = (driver < mean)
rval = sharedX(sample, name='v_sample_shared')
return rval
|
'.. todo::
WRITEME'
| def make_symbolic_state(self, num_examples, theano_rng):
| if (not hasattr(self, 'copies')):
self.copies = 1
if (self.copies != 1):
raise NotImplementedError()
mean = T.nnet.sigmoid(self.bias)
rval = theano_rng.binomial(size=(num_examples, self.nvis), p=mean, dtype=theano.config.floatX)
return rval
|
'.. todo::
WRITEME'
| def expected_energy_term(self, state, average, state_below=None, average_below=None):
| if self.center:
state = (state - self.offset)
assert (state_below is None)
assert (average_below is None)
assert (average in [True, False])
self.space.validate(state)
rval = (- T.dot(state, self.bias))
assert (rval.ndim == 1)
return (rval * self.copies)
|
'.. todo::
WRITEME'
| def init_inpainting_state(self, V, drop_mask, noise=False, return_unmasked=False):
| assert ((drop_mask is None) or (drop_mask.ndim > 1))
unmasked = T.nnet.sigmoid(self.bias.dimshuffle('x', 0))
assert (unmasked.ndim == 2)
assert hasattr(unmasked.owner.op, 'scalar_op')
if (drop_mask is not None):
masked_mean = (unmasked * drop_mask)
else:
masked_mean = unmasked
if (not hasattr(self, 'learn_init_inpainting_state')):
self.learn_init_inpainting_state = 0
if (not self.learn_init_inpainting_state):
masked_mean = block_gradient(masked_mean)
masked_mean.name = 'masked_mean'
if noise:
theano_rng = theano.sandbox.rng_mrg.MRG_RandomStreams(42)
unmasked = T.nnet.sigmoid(theano_rng.normal(avg=0.0, std=1.0, size=masked_mean.shape, dtype=masked_mean.dtype))
masked_mean = (unmasked * drop_mask)
masked_mean.name = 'masked_noise'
if (drop_mask is None):
rval = masked_mean
else:
masked_V = (V * (1 - drop_mask))
rval = (masked_mean + masked_V)
rval.name = 'init_inpainting_state'
if return_unmasked:
assert (unmasked.ndim > 1)
return (rval, unmasked)
return rval
|
'.. todo::
WRITEME'
| def inpaint_update(self, state_above, layer_above, drop_mask=None, V=None, return_unmasked=False):
| msg = layer_above.downward_message(state_above)
mu = self.bias
z = (msg + mu)
z.name = 'inpainting_z_[unknown_iter]'
unmasked = T.nnet.sigmoid(z)
if (drop_mask is not None):
rval = ((drop_mask * unmasked) + ((1 - drop_mask) * V))
else:
rval = unmasked
rval.name = 'inpainted_V[unknown_iter]'
if return_unmasked:
owner = unmasked.owner
assert (owner is not None)
op = owner.op
assert hasattr(op, 'scalar_op')
assert isinstance(op.scalar_op, T.nnet.sigm.ScalarSigmoid)
return (rval, unmasked)
return rval
|
'.. todo::
WRITEME'
| def recons_cost(self, V, V_hat_unmasked, drop_mask=None, use_sum=False):
| if use_sum:
raise NotImplementedError()
V_hat = V_hat_unmasked
assert hasattr(V_hat, 'owner')
owner = V_hat.owner
assert (owner is not None)
op = owner.op
block_grad = False
if is_block_gradient(op):
assert isinstance(op.scalar_op, theano.scalar.Identity)
block_grad = True
(real,) = owner.inputs
owner = real.owner
op = owner.op
if (not hasattr(op, 'scalar_op')):
raise ValueError(((('Expected V_hat_unmasked to be generated by an Elemwise op, got ' + str(op)) + ' of type ') + str(type(op))))
assert isinstance(op.scalar_op, T.nnet.sigm.ScalarSigmoid)
(z,) = owner.inputs
if block_grad:
z = block_gradient(z)
if (V.ndim != V_hat.ndim):
raise ValueError(('V and V_hat_unmasked should have same ndim, but are %d and %d.' % (V.ndim, V_hat.ndim)))
unmasked_cost = ((V * T.nnet.softplus((- z))) + ((1 - V) * T.nnet.softplus(z)))
assert (unmasked_cost.ndim == V_hat.ndim)
if (drop_mask is None):
masked_cost = unmasked_cost
else:
masked_cost = (drop_mask * unmasked_cost)
return masked_cost.mean()
|
'.. todo::
WRITEME'
| def get_lr_scalers(self):
| if (not hasattr(self, 'W_lr_scale')):
self.W_lr_scale = None
if (not hasattr(self, 'b_lr_scale')):
self.b_lr_scale = None
rval = OrderedDict()
if (self.W_lr_scale is not None):
(W,) = self.transformer.get_params()
rval[W] = self.W_lr_scale
if (self.b_lr_scale is not None):
rval[self.b] = self.b_lr_scale
return rval
|
'.. todo::
WRITEME
Notes
This resets parameters!'
| def set_input_space(self, space):
| self.input_space = space
if isinstance(space, VectorSpace):
self.requires_reformat = False
self.input_dim = space.dim
else:
self.requires_reformat = True
self.input_dim = space.get_total_dimension()
self.desired_space = VectorSpace(self.input_dim)
if (not ((self.detector_layer_dim % self.pool_size) == 0)):
raise ValueError(('detector_layer_dim = %d, pool_size = %d. Should be divisible but remainder is %d' % (self.detector_layer_dim, self.pool_size, (self.detector_layer_dim % self.pool_size))))
self.h_space = VectorSpace(self.detector_layer_dim)
self.pool_layer_dim = (self.detector_layer_dim / self.pool_size)
self.output_space = VectorSpace(self.pool_layer_dim)
rng = self.dbm.rng
if (self.irange is not None):
assert (self.sparse_init is None)
W = (rng.uniform((- self.irange), self.irange, (self.input_dim, self.detector_layer_dim)) * (rng.uniform(0.0, 1.0, (self.input_dim, self.detector_layer_dim)) < self.include_prob))
else:
assert (self.sparse_init is not None)
W = np.zeros((self.input_dim, self.detector_layer_dim))
def mask_rejects(idx, i):
if (self.mask_weights is None):
return False
return (self.mask_weights[(idx, i)] == 0.0)
for i in xrange(self.detector_layer_dim):
assert (self.sparse_init <= self.input_dim)
for j in xrange(self.sparse_init):
idx = rng.randint(0, self.input_dim)
while ((W[(idx, i)] != 0) or mask_rejects(idx, i)):
idx = rng.randint(0, self.input_dim)
W[(idx, i)] = rng.randn()
W *= self.sparse_stdev
W = sharedX(W)
W.name = (self.layer_name + '_W')
self.transformer = MatrixMul(W)
(W,) = self.transformer.get_params()
assert (W.name is not None)
if (self.mask_weights is not None):
expected_shape = (self.input_dim, self.detector_layer_dim)
if (expected_shape != self.mask_weights.shape):
raise ValueError(((('Expected mask with shape ' + str(expected_shape)) + ' but got ') + str(self.mask_weights.shape)))
self.mask = sharedX(self.mask_weights)
|
'.. todo::
WRITEME'
| def get_total_state_space(self):
| return CompositeSpace((self.output_space, self.h_space))
|
'.. todo::
WRITEME'
| def get_params(self):
| assert (self.b.name is not None)
(W,) = self.transformer.get_params()
assert (W.name is not None)
rval = self.transformer.get_params()
assert (not isinstance(rval, set))
rval = list(rval)
assert (self.b not in rval)
rval.append(self.b)
return rval
|
'.. todo::
WRITEME'
| def get_weight_decay(self, coeff):
| if isinstance(coeff, str):
coeff = float(coeff)
assert (isinstance(coeff, float) or hasattr(coeff, 'dtype'))
(W,) = self.transformer.get_params()
return (coeff * T.sqr(W).sum())
|
'.. todo::
WRITEME'
| def get_weights(self):
| if self.requires_reformat:
raise NotImplementedError()
(W,) = self.transformer.get_params()
return W.get_value()
|
'.. todo::
WRITEME'
| def set_weights(self, weights):
| (W,) = self.transformer.get_params()
W.set_value(weights)
|
'.. todo::
WRITEME'
| def set_biases(self, biases, recenter=False):
| self.b.set_value(biases)
if recenter:
assert self.center
if (self.pool_size != 1):
raise NotImplementedError()
self.offset.set_value(sigmoid_numpy(self.b.get_value()))
|
'.. todo::
WRITEME'
| def get_biases(self):
| return self.b.get_value()
|
'.. todo::
WRITEME'
| def get_weights_format(self):
| return ('v', 'h')
|
'.. todo::
WRITEME'
| def get_weights_view_shape(self):
| total = self.detector_layer_dim
cols = self.pool_size
if (cols == 1):
raise NotImplementedError()
rows = (total / cols)
return (rows, cols)
|
'.. todo::
WRITEME'
| def get_weights_topo(self):
| if (not isinstance(self.input_space, Conv2DSpace)):
raise NotImplementedError()
(W,) = self.transformer.get_params()
W = W.T
W = W.reshape((self.detector_layer_dim, self.input_space.shape[0], self.input_space.shape[1], self.input_space.num_channels))
W = Conv2DSpace.convert(W, self.input_space.axes, ('b', 0, 1, 'c'))
return function([], W)()
|
'.. todo::
WRITEME'
| def upward_state(self, total_state):
| (p, h) = total_state
self.h_space.validate(h)
self.output_space.validate(p)
if (not hasattr(self, 'center')):
self.center = False
if self.center:
return (p - self.offset)
if (not hasattr(self, 'copies')):
self.copies = 1
return (p * self.copies)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.