desc
stringlengths 3
26.7k
| decl
stringlengths 11
7.89k
| bodies
stringlengths 8
553k
|
---|---|---|
'Cache a file from the salt master'
| def cache_file(self, template):
| saltpath = salt.utils.url.create(template)
self.file_client().get_file(saltpath, '', True, self.saltenv)
|
'Cache a file only once'
| def check_cache(self, template):
| if (template not in self.cached):
self.cache_file(template)
self.cached.append(template)
|
'Ensure that printed mappings are YAML friendly.'
| def finalizer(self, data):
| def explore(data):
if isinstance(data, (dict, OrderedDict)):
return PrintableDict([(key, explore(value)) for (key, value) in six.iteritems(data)])
elif isinstance(data, (list, tuple, set)):
return data.__class__([explore(value) for value in data])
return data
return explore(data)
|
'Render a formatted multi-line XML string from a complex Python
data structure. Supports tag attributes and nested dicts/lists.
:param value: Complex data structure representing XML contents
:returns: Formatted XML string rendered with newlines and indentation
:rtype: str'
| def format_xml(self, value):
| def normalize_iter(value):
if isinstance(value, (list, tuple)):
if isinstance(value[0], str):
xmlval = value
else:
xmlval = []
elif isinstance(value, dict):
xmlval = list(value.items())
else:
raise TemplateRuntimeError('Value is not a dict or list. Cannot render as XML')
return xmlval
def recurse_tree(xmliter, element=None):
sub = None
for (tag, attrs) in xmliter:
if isinstance(attrs, list):
for attr in attrs:
recurse_tree(((tag, attr),), element)
elif (element is not None):
sub = SubElement(element, tag)
else:
sub = Element(tag)
if isinstance(attrs, (str, int, bool, float)):
sub.text = str(attrs)
continue
if isinstance(attrs, dict):
sub.attrib = {attr: str(val) for (attr, val) in attrs.items() if (not isinstance(val, (dict, list)))}
for (tag, val) in [item for item in normalize_iter(attrs) if isinstance(item[1], (dict, list))]:
recurse_tree(((tag, val),), sub)
return sub
return Markup(minidom.parseString(tostring(recurse_tree(normalize_iter(value)))).toprettyxml(indent=' '))
|
'Determine if this ContextDict is currently overridden
Since the ContextDict can be overridden in each thread, we check whether
the _state.data is set or not.'
| @property
def active(self):
| try:
return (self._state.data is not None)
except AttributeError:
return False
|
'Clone this context, and return the ChildContextDict'
| def clone(self, **kwargs):
| child = ChildContextDict(parent=self, threadsafe=self._threadsafe, overrides=kwargs)
return child
|
'Return the next iteration by popping `chunk_size` from the left and
appending `chunk_size` to the right if there\'s info on the file left
to be read.'
| def next(self):
| if (self.__buffered is None):
multiplier = (self.__max_in_mem // self.__chunk_size)
self.__buffered = ''
else:
multiplier = 1
self.__buffered = self.__buffered[self.__chunk_size:]
if six.PY3:
data = self.__file.read((self.__chunk_size * multiplier)).decode(__salt_system_encoding__)
else:
data = self.__file.read((self.__chunk_size * multiplier))
if (not data):
self.__file.close()
raise StopIteration
self.__buffered += data
return self.__buffered
|
'Establishes a connection to the remote server.
The format for parameters is:
username (string): The username to use for this
ssh connection. Defaults to root.
password (string): The password to use for this
ssh connection. Defaults to password.
host (string): The host to connect to.
Defaults to localhost.
key_accept (boolean): Should we accept this host\'s key
and add it to the known_hosts file? Defaults to False.
prompt (string): The shell prompt (regex) on the server.
Prompt is compiled into a regular expression.
Defaults to (Cmd)
passwd_retries (int): How many times should I try to send the password?
Defaults to 3.
linesep (string): The line separator to use when sending
commands to the server. Defaults to os.linesep.
ssh_args (string): Extra ssh args to use with ssh.
Example: \'-o PubkeyAuthentication=no\''
| def __init__(self, username='salt', password='password', host='localhost', key_accept=False, prompt='(Cmd)', passwd_retries=3, linesep=os.linesep, ssh_args=''):
| self.conn = Terminal('ssh {0} -l {1} {2}'.format(ssh_args, username, host), shell=True, log_stdout=True, log_stdout_level='trace', log_stderr=True, log_stderr_level='trace', stream_stdout=False, stream_stderr=False)
sent_passwd = 0
self.prompt_re = re.compile(prompt)
self.linesep = linesep
while self.conn.has_unread_data:
(stdout, stderr) = self.conn.recv()
if (stdout and SSH_PASSWORD_PROMPT_RE.search(stdout)):
if (not password):
log.error('Failure while authentication.')
raise TerminalException('Permission denied, no authentication information')
if (sent_passwd < passwd_retries):
self.conn.sendline(password, self.linesep)
sent_passwd += 1
continue
else:
raise TerminalException('Password authentication failed')
elif (stdout and KEY_VALID_RE.search(stdout)):
if key_accept:
log.info('Adding {0} to known_hosts'.format(host))
self.conn.sendline('yes')
continue
else:
self.conn.sendline('no')
elif (stdout and self.prompt_re.search(stdout)):
break
|
'Send this command to the server and
return a tuple of the output and the stderr.
The format for parameters is:
cmd (string): The command to send to the sever.'
| def sendline(self, cmd):
| self.conn.sendline(cmd, self.linesep)
ret_stdout = []
ret_stderr = []
while self.conn.has_unread_data:
(stdout, stderr) = self.conn.recv()
if stdout:
ret_stdout.append(stdout)
if stderr:
log.debug('Error while executing command.')
ret_stderr.append(stderr)
if (stdout and self.prompt_re.search(stdout)):
break
return (''.join(ret_stdout), ''.join(ret_stderr))
|
'Close the server connection'
| def close_connection(self):
| self.conn.close(terminate=True, kill=True)
|
'Init'
| def __init__(self, content):
| self.content = content
self.finished = False
|
'Looks like a file handle'
| def string(self, writesize=None):
| if (not self.finished):
self.finished = True
return self.content
return ''
|
'Build the mapping for YAML'
| def construct_mapping(self, node, deep=False):
| if (not isinstance(node, MappingNode)):
raise ConstructorError(None, None, 'expected a mapping node, but found {0}'.format(node.id), node.start_mark)
self.flatten_mapping(node)
mapping = self.dictclass()
for (key_node, value_node) in node.value:
key = self.construct_object(key_node, deep=deep)
try:
hash(key)
except TypeError:
err = 'While constructing a mapping {0} found unacceptable key {1}'.format(node.start_mark, key_node.start_mark)
raise ConstructorError(err)
value = self.construct_object(value_node, deep=deep)
if (key in mapping):
raise ConstructorError("Conflicting ID '{0}'".format(key))
mapping[key] = value
return mapping
|
'Verify integers and pass them in correctly is they are declared
as octal'
| def construct_scalar(self, node):
| if (node.tag == 'tag:yaml.org,2002:int'):
if (node.value == '0'):
pass
elif (node.value.startswith('0') and (not node.value.startswith(('0b', '0x')))):
node.value = node.value.lstrip('0')
if (node.value == ''):
node.value = '0'
elif (node.tag == 'tag:yaml.org,2002:str'):
if re.match('^u([\\\'"]).+\\1$', node.value, flags=re.IGNORECASE):
node.value = eval(node.value, {}, {})
return super(SaltYamlSafeLoader, self).construct_scalar(node)
|
'Only create one instance of Schedule'
| def __new__(cls, opts, functions, returners=None, intervals=None, cleanup=None, proxy=None):
| if (cls.instance is None):
log.debug('Initializing new Schedule')
cls.instance = object.__new__(cls)
cls.instance.__singleton_init__(opts, functions, returners, intervals, cleanup, proxy)
else:
log.debug('Re-using Schedule')
return cls.instance
|
'Return options merged from config and pillar'
| def option(self, opt):
| if ('config.merge' in self.functions):
return self.functions['config.merge'](opt, {}, omit_master=True)
return self.opts.get(opt, {})
|
'Return the schedule data structure'
| def _get_schedule(self, include_opts=True, include_pillar=True):
| schedule = {}
if include_pillar:
pillar_schedule = self.opts.get('pillar', {}).get('schedule', {})
if (not isinstance(pillar_schedule, dict)):
raise ValueError('Schedule must be of type dict.')
schedule.update(pillar_schedule)
if include_opts:
opts_schedule = self.opts.get('schedule', {})
if (not isinstance(opts_schedule, dict)):
raise ValueError('Schedule must be of type dict.')
schedule.update(opts_schedule)
return schedule
|
'Persist the modified schedule into <<configdir>>/<<default_include>>/_schedule.conf'
| def persist(self):
| config_dir = self.opts.get('conf_dir', None)
if ((config_dir is None) and ('conf_file' in self.opts)):
config_dir = os.path.dirname(self.opts['conf_file'])
if (config_dir is None):
config_dir = salt.syspaths.CONFIG_DIR
minion_d_dir = os.path.join(config_dir, os.path.dirname(self.opts.get('default_include', salt.config.DEFAULT_MINION_OPTS['default_include'])))
if (not os.path.isdir(minion_d_dir)):
os.makedirs(minion_d_dir)
schedule_conf = os.path.join(minion_d_dir, '_schedule.conf')
log.debug('Persisting schedule')
try:
with salt.utils.files.fopen(schedule_conf, 'wb+') as fp_:
fp_.write(salt.utils.stringutils.to_bytes(yaml.dump({'schedule': self._get_schedule(include_pillar=False)}, Dumper=SafeOrderedDumper)))
except (IOError, OSError):
log.error('Failed to persist the updated schedule', exc_info_on_loglevel=logging.DEBUG)
|
'Deletes a job from the scheduler. Ignore jobs from pillar'
| def delete_job(self, name, persist=True):
| if (name in self.opts['schedule']):
del self.opts['schedule'][name]
elif (name in self._get_schedule(include_opts=False)):
log.warning('Cannot delete job {0}, it`s in the pillar!'.format(name))
evt = salt.utils.event.get_event('minion', opts=self.opts, listen=False)
evt.fire_event({'complete': True, 'schedule': self._get_schedule()}, tag='/salt/minion/minion_schedule_delete_complete')
if (name in self.intervals):
del self.intervals[name]
if persist:
self.persist()
|
'Deletes a job from the scheduler. Ignores jobs from pillar'
| def delete_job_prefix(self, name, persist=True):
| for job in list(self.opts['schedule'].keys()):
if job.startswith(name):
del self.opts['schedule'][job]
for job in self._get_schedule(include_opts=False):
if job.startswith(name):
log.warning('Cannot delete job {0}, it`s in the pillar!'.format(job))
evt = salt.utils.event.get_event('minion', opts=self.opts, listen=False)
evt.fire_event({'complete': True, 'schedule': self._get_schedule()}, tag='/salt/minion/minion_schedule_delete_complete')
for job in list(self.intervals.keys()):
if job.startswith(name):
del self.intervals[job]
if persist:
self.persist()
|
'Adds a new job to the scheduler. The format is the same as required in
the configuration file. See the docs on how YAML is interpreted into
python data-structures to make sure, you pass correct dictionaries.'
| def add_job(self, data, persist=True):
| if (not isinstance(data, dict)):
raise ValueError('Scheduled jobs have to be of type dict.')
if (not (len(data) == 1)):
raise ValueError('You can only schedule one new job at a time.')
for job in data:
if ('enabled' not in data[job]):
data[job]['enabled'] = True
new_job = next(six.iterkeys(data))
if (new_job in self._get_schedule(include_opts=False)):
log.warning('Cannot update job {0}, it`s in the pillar!'.format(new_job))
elif (new_job in self.opts['schedule']):
log.info('Updating job settings for scheduled job: {0}'.format(new_job))
self.opts['schedule'].update(data)
else:
log.info('Added new job {0} to scheduler'.format(new_job))
self.opts['schedule'].update(data)
evt = salt.utils.event.get_event('minion', opts=self.opts, listen=False)
evt.fire_event({'complete': True, 'schedule': self._get_schedule()}, tag='/salt/minion/minion_schedule_add_complete')
if persist:
self.persist()
|
'Enable a job in the scheduler. Ignores jobs from pillar'
| def enable_job(self, name, persist=True):
| if (name in self.opts['schedule']):
self.opts['schedule'][name]['enabled'] = True
log.info('Enabling job {0} in scheduler'.format(name))
elif (name in self._get_schedule(include_opts=False)):
log.warning('Cannot modify job {0}, it`s in the pillar!'.format(name))
evt = salt.utils.event.get_event('minion', opts=self.opts, listen=False)
evt.fire_event({'complete': True, 'schedule': self._get_schedule()}, tag='/salt/minion/minion_schedule_enabled_job_complete')
if persist:
self.persist()
|
'Disable a job in the scheduler. Ignores jobs from pillar'
| def disable_job(self, name, persist=True):
| if (name in self.opts['schedule']):
self.opts['schedule'][name]['enabled'] = False
log.info('Disabling job {0} in scheduler'.format(name))
elif (name in self._get_schedule(include_opts=False)):
log.warning('Cannot modify job {0}, it`s in the pillar!'.format(name))
evt = salt.utils.event.get_event('minion', opts=self.opts, listen=False)
evt.fire_event({'complete': True, 'schedule': self._get_schedule()}, tag='/salt/minion/minion_schedule_disabled_job_complete')
if persist:
self.persist()
|
'Modify a job in the scheduler. Ignores jobs from pillar'
| def modify_job(self, name, schedule, persist=True):
| if (name in self.opts['schedule']):
self.delete_job(name, persist)
elif (name in self._get_schedule(include_opts=False)):
log.warning('Cannot modify job {0}, it`s in the pillar!'.format(name))
return
self.opts['schedule'][name] = schedule
if persist:
self.persist()
|
'Run a schedule job now'
| def run_job(self, name):
| data = self._get_schedule().get(name, {})
if ('function' in data):
func = data['function']
elif ('func' in data):
func = data['func']
elif ('fun' in data):
func = data['fun']
else:
func = None
if (func not in self.functions):
log.info('Invalid function: {0} in scheduled job {1}.'.format(func, name))
if ('name' not in data):
data['name'] = name
log.info('Running Job: {0}.'.format(name))
multiprocessing_enabled = self.opts.get('multiprocessing', True)
if multiprocessing_enabled:
thread_cls = salt.utils.process.SignalHandlingMultiprocessingProcess
else:
thread_cls = threading.Thread
if multiprocessing_enabled:
with salt.utils.process.default_signals(signal.SIGINT, signal.SIGTERM):
proc = thread_cls(target=self.handle_func, args=(multiprocessing_enabled, func, data))
proc.start()
proc.join()
else:
proc = thread_cls(target=self.handle_func, args=(multiprocessing_enabled, func, data))
proc.start()
|
'Enable the scheduler.'
| def enable_schedule(self):
| self.opts['schedule']['enabled'] = True
evt = salt.utils.event.get_event('minion', opts=self.opts, listen=False)
evt.fire_event({'complete': True, 'schedule': self._get_schedule()}, tag='/salt/minion/minion_schedule_enabled_complete')
|
'Disable the scheduler.'
| def disable_schedule(self):
| self.opts['schedule']['enabled'] = False
evt = salt.utils.event.get_event('minion', opts=self.opts, listen=False)
evt.fire_event({'complete': True, 'schedule': self._get_schedule()}, tag='/salt/minion/minion_schedule_disabled_complete')
|
'Reload the schedule from saved schedule file.'
| def reload(self, schedule):
| self.intervals = {}
if ('schedule' in schedule):
schedule = schedule['schedule']
self.opts.setdefault('schedule', {}).update(schedule)
|
'List the current schedule items'
| def list(self, where):
| if (where == 'pillar'):
schedule = self._get_schedule(include_opts=False)
elif (where == 'opts'):
schedule = self._get_schedule(include_pillar=False)
else:
schedule = self._get_schedule()
evt = salt.utils.event.get_event('minion', opts=self.opts, listen=False)
evt.fire_event({'complete': True, 'schedule': schedule}, tag='/salt/minion/minion_schedule_list_complete')
|
'Save the current schedule'
| def save_schedule(self):
| self.persist()
evt = salt.utils.event.get_event('minion', opts=self.opts, listen=False)
evt.fire_event({'complete': True}, tag='/salt/minion/minion_schedule_saved')
|
'Execute this method in a multiprocess or thread'
| def handle_func(self, multiprocessing_enabled, func, data):
| if (salt.utils.platform.is_windows() or (self.opts.get('transport') == 'zeromq')):
if (self.opts['__role'] == 'master'):
self.functions = salt.loader.runner(self.opts)
else:
self.functions = salt.loader.minion_mods(self.opts, proxy=self.proxy)
self.returners = salt.loader.returners(self.opts, self.functions, proxy=self.proxy)
ret = {'id': self.opts.get('id', 'master'), 'fun': func, 'fun_args': [], 'schedule': data['name'], 'jid': salt.utils.jid.gen_jid()}
if ('metadata' in data):
if isinstance(data['metadata'], dict):
ret['metadata'] = data['metadata']
ret['metadata']['_TOS'] = self.time_offset
ret['metadata']['_TS'] = time.ctime()
ret['metadata']['_TT'] = time.strftime('%Y %B %d %a %H %m', time.gmtime())
else:
log.warning('schedule: The metadata parameter must be specified as a dictionary. Ignoring.')
salt.utils.appendproctitle('{0} {1}'.format(self.__class__.__name__, ret['jid']))
proc_fn = os.path.join(salt.minion.get_proc_dir(self.opts['cachedir']), ret['jid'])
if (('jid_include' not in data) or data['jid_include']):
jobcount = 0
for job in salt.utils.minion.running(self.opts):
if ('schedule' in job):
log.debug('schedule.handle_func: Checking job against fun {0}: {1}'.format(ret['fun'], job))
if ((ret['schedule'] == job['schedule']) and salt.utils.process.os_is_running(job['pid'])):
jobcount += 1
log.debug('schedule.handle_func: Incrementing jobcount, now {0}, maxrunning is {1}'.format(jobcount, data['maxrunning']))
if (jobcount >= data['maxrunning']):
log.debug('schedule.handle_func: The scheduled job {0} was not started, {1} already running'.format(ret['schedule'], data['maxrunning']))
return False
if (multiprocessing_enabled and (not salt.utils.platform.is_windows())):
log_setup.setup_multiprocessing_logging()
salt.utils.daemonize_if(self.opts)
try:
ret['pid'] = os.getpid()
if (('jid_include' not in data) or data['jid_include']):
log.debug('schedule.handle_func: adding this job to the jobcache with data {0}'.format(ret))
with salt.utils.files.fopen(proc_fn, 'w+b') as fp_:
fp_.write(salt.payload.Serial(self.opts).dumps(ret))
args = tuple()
if ('args' in data):
args = data['args']
ret['fun_args'].extend(data['args'])
kwargs = {}
if ('kwargs' in data):
kwargs = data['kwargs']
ret['fun_args'].append(copy.deepcopy(kwargs))
if (func not in self.functions):
ret['return'] = self.functions.missing_fun_string(func)
salt.utils.error.raise_error(message=self.functions.missing_fun_string(func))
argspec = salt.utils.args.get_function_argspec(self.functions[func])
if argspec.keywords:
for (key, val) in six.iteritems(ret):
kwargs['__pub_{0}'.format(key)] = copy.deepcopy(val)
ret['return'] = self.functions[func](*args, **kwargs)
data_returner = data.get('returner', None)
if (data_returner or self.schedule_returner):
if ('return_config' in data):
ret['ret_config'] = data['return_config']
if ('return_kwargs' in data):
ret['ret_kwargs'] = data['return_kwargs']
rets = []
for returner in [data_returner, self.schedule_returner]:
if isinstance(returner, six.string_types):
rets.append(returner)
elif isinstance(returner, list):
rets.extend(returner)
for returner in OrderedDict.fromkeys(rets):
ret_str = '{0}.returner'.format(returner)
if (ret_str in self.returners):
ret['success'] = True
self.returners[ret_str](ret)
else:
log.info('Job {0} using invalid returner: {1}. Ignoring.'.format(func, returner))
if ('retcode' in self.functions.pack['__context__']):
ret['retcode'] = self.functions.pack['__context__']['retcode']
ret['success'] = True
except Exception:
log.exception('Unhandled exception running {0}'.format(ret['fun']))
if ('return' not in ret):
ret['return'] = 'Unhandled exception running {0}'.format(ret['fun'])
ret['success'] = False
ret['retcode'] = 254
finally:
if (('__role' in self.opts) and (self.opts['__role'] in ('master', 'minion'))):
if (('return_job' in data) and (not data['return_job'])):
pass
else:
mret = ret.copy()
mret['jid'] = 'req'
if (data.get('return_job') == 'nocache'):
mret['jid'] = 'nocache'
load = {'cmd': '_return', 'id': self.opts['id']}
for (key, value) in six.iteritems(mret):
load[key] = value
if (('__role' in self.opts) and (self.opts['__role'] == 'minion')):
event = salt.utils.event.get_event('minion', opts=self.opts, listen=False)
elif (('__role' in self.opts) and (self.opts['__role'] == 'master')):
event = salt.utils.event.get_master_event(self.opts, self.opts['sock_dir'])
try:
event.fire_event(load, '__schedule_return')
except Exception as exc:
log.exception('Unhandled exception firing event: {0}'.format(exc))
log.debug('schedule.handle_func: Removing {0}'.format(proc_fn))
try:
os.unlink(proc_fn)
except OSError as exc:
if ((exc.errno == errno.EEXIST) or (exc.errno == errno.ENOENT)):
pass
else:
log.error("Failed to delete '{0}': {1}".format(proc_fn, exc.errno))
raise
finally:
if multiprocessing_enabled:
sys.exit(salt.defaults.exitcodes.EX_GENERIC)
|
'Evaluate and execute the schedule'
| def eval(self):
| def _splay(splaytime):
'\n Calculate splaytime\n '
splay_ = None
if isinstance(splaytime, dict):
if (splaytime['end'] >= splaytime['start']):
splay_ = random.randint(splaytime['start'], splaytime['end'])
else:
log.error('schedule.handle_func: Invalid Splay, end must be larger than start. Ignoring splay.')
else:
splay_ = random.randint(1, splaytime)
return splay_
schedule = self._get_schedule()
if (not isinstance(schedule, dict)):
raise ValueError('Schedule must be of type dict.')
if (('enabled' in schedule) and (not schedule['enabled'])):
return
for (job, data) in six.iteritems(schedule):
if ((job == 'enabled') or (not data)):
continue
if (not isinstance(data, dict)):
log.error('Scheduled job "{0}" should have a dict value, not {1}'.format(job, type(data)))
continue
if (('enabled' in data) and (not data['enabled'])):
continue
if ('function' in data):
func = data['function']
elif ('func' in data):
func = data['func']
elif ('fun' in data):
func = data['fun']
else:
func = None
if (func not in self.functions):
log.info('Invalid function: {0} in scheduled job {1}.'.format(func, job))
if ('name' not in data):
data['name'] = job
if ('_next_fire_time' not in data):
data['_next_fire_time'] = None
if ('_splay' not in data):
data['_splay'] = None
if (('run_on_start' in data) and data['run_on_start'] and ('_run_on_start' not in data)):
data['_run_on_start'] = True
now = int(time.time())
if ('until' in data):
if (not _WHEN_SUPPORTED):
log.error('Missing python-dateutil. Ignoring until.')
else:
until__ = dateutil_parser.parse(data['until'])
until = int(time.mktime(until__.timetuple()))
if (until <= now):
log.debug('Until time has passed skipping job: {0}.'.format(data['name']))
continue
if ('after' in data):
if (not _WHEN_SUPPORTED):
log.error('Missing python-dateutil. Ignoring after.')
else:
after__ = dateutil_parser.parse(data['after'])
after = int(time.mktime(after__.timetuple()))
if (after >= now):
log.debug('After time has not passed skipping job: {0}.'.format(data['name']))
continue
schedule_keys = set(data.keys())
time_elements = ('seconds', 'minutes', 'hours', 'days')
scheduling_elements = ('when', 'cron', 'once')
invalid_sched_combos = [set(i) for i in itertools.combinations(scheduling_elements, 2)]
if any(((i <= schedule_keys) for i in invalid_sched_combos)):
log.error('Unable to use "{0}" options together. Ignoring.'.format('", "'.join(scheduling_elements)))
continue
invalid_time_combos = []
for item in scheduling_elements:
all_items = itertools.chain([item], time_elements)
invalid_time_combos.append(set(itertools.combinations(all_items, 2)))
if any(((set(x) <= schedule_keys) for x in invalid_time_combos)):
log.error('Unable to use "{0}" with "{1}" options. Ignoring'.format('", "'.join(time_elements), '", "'.join(scheduling_elements)))
continue
if (True in [True for item in time_elements if (item in data)]):
if ('_seconds' not in data):
interval = int(data.get('seconds', 0))
interval += (int(data.get('minutes', 0)) * 60)
interval += (int(data.get('hours', 0)) * 3600)
interval += (int(data.get('days', 0)) * 86400)
data['_seconds'] = interval
if (not data['_next_fire_time']):
data['_next_fire_time'] = (now + data['_seconds'])
if (interval < self.loop_interval):
self.loop_interval = interval
elif ('once' in data):
if (data['_next_fire_time'] and (data['_next_fire_time'] != now) and (not data['_splay'])):
continue
if ((not data['_next_fire_time']) and (not data['_splay'])):
once_fmt = data.get('once_fmt', '%Y-%m-%dT%H:%M:%S')
try:
once = datetime.datetime.strptime(data['once'], once_fmt)
data['_next_fire_time'] = int(time.mktime(once.timetuple()))
except (TypeError, ValueError):
log.error('Date string could not be parsed: %s, %s', data['once'], once_fmt)
continue
if (data['_next_fire_time'] != now):
continue
elif ('when' in data):
if (not _WHEN_SUPPORTED):
log.error('Missing python-dateutil. Ignoring job {0}.'.format(job))
continue
if isinstance(data['when'], list):
_when = []
for i in data['when']:
if (('pillar' in self.opts) and ('whens' in self.opts['pillar']) and (i in self.opts['pillar']['whens'])):
if (not isinstance(self.opts['pillar']['whens'], dict)):
log.error('Pillar item "whens" must be dict. Ignoring')
continue
__when = self.opts['pillar']['whens'][i]
try:
when__ = dateutil_parser.parse(__when)
except ValueError:
log.error('Invalid date string. Ignoring')
continue
elif (('whens' in self.opts['grains']) and (i in self.opts['grains']['whens'])):
if (not isinstance(self.opts['grains']['whens'], dict)):
log.error('Grain "whens" must be dict.Ignoring')
continue
__when = self.opts['grains']['whens'][i]
try:
when__ = dateutil_parser.parse(__when)
except ValueError:
log.error('Invalid date string. Ignoring')
continue
else:
try:
when__ = dateutil_parser.parse(i)
except ValueError:
log.error('Invalid date string {0}. Ignoring job {1}.'.format(i, job))
continue
_when.append(int(time.mktime(when__.timetuple())))
if data['_splay']:
_when.append(data['_splay'])
_when.sort()
for i in _when:
if ((i < now) and (len(_when) > 1)):
_when.remove(i)
if _when:
when = _when[0]
if ('_run' not in data):
data['_run'] = bool((when >= now))
if (not data['_next_fire_time']):
data['_next_fire_time'] = when
if ((data['_next_fire_time'] < when) and (not data['_run'])):
data['_next_fire_time'] = when
data['_run'] = True
elif (not data.get('_run', False)):
data['_next_fire_time'] = None
continue
else:
if (('pillar' in self.opts) and ('whens' in self.opts['pillar']) and (data['when'] in self.opts['pillar']['whens'])):
if (not isinstance(self.opts['pillar']['whens'], dict)):
log.error('Pillar item "whens" must be dict.Ignoring')
continue
_when = self.opts['pillar']['whens'][data['when']]
try:
when__ = dateutil_parser.parse(_when)
except ValueError:
log.error('Invalid date string. Ignoring')
continue
elif (('whens' in self.opts['grains']) and (data['when'] in self.opts['grains']['whens'])):
if (not isinstance(self.opts['grains']['whens'], dict)):
log.error('Grain "whens" must be dict. Ignoring')
continue
_when = self.opts['grains']['whens'][data['when']]
try:
when__ = dateutil_parser.parse(_when)
except ValueError:
log.error('Invalid date string. Ignoring')
continue
else:
try:
when__ = dateutil_parser.parse(data['when'])
except ValueError:
log.error('Invalid date string. Ignoring')
continue
when = int(time.mktime(when__.timetuple()))
if ((when < now) and (not data.get('_run', False)) and (not data['_splay'])):
data['_next_fire_time'] = None
continue
if ('_run' not in data):
data['_run'] = True
if (not data['_next_fire_time']):
data['_next_fire_time'] = when
if ((data['_next_fire_time'] < when) and (not data['_run'])):
data['_next_fire_time'] = when
data['_run'] = True
elif ('cron' in data):
if (not _CRON_SUPPORTED):
log.error('Missing python-croniter. Ignoring job {0}'.format(job))
continue
if (data['_next_fire_time'] is None):
try:
data['_next_fire_time'] = int(croniter.croniter(data['cron'], now).get_next())
except (ValueError, KeyError):
log.error('Invalid cron string. Ignoring')
continue
interval = (now - data['_next_fire_time'])
if ((interval >= 60) and (interval < self.loop_interval)):
self.loop_interval = interval
else:
continue
run = False
seconds = (data['_next_fire_time'] - now)
if data['_splay']:
seconds = (data['_splay'] - now)
if (seconds <= 0):
if ('_seconds' in data):
run = True
elif (('when' in data) and data['_run']):
data['_run'] = False
run = True
elif ('cron' in data):
data['_next_fire_time'] = None
run = True
elif (seconds == 0):
run = True
if (('_run_on_start' in data) and data['_run_on_start']):
run = True
data['_run_on_start'] = False
elif run:
if (('splay' in data) and (not data['_splay'])):
splay = _splay(data['splay'])
if (now < (data['_next_fire_time'] + splay)):
log.debug('schedule.handle_func: Adding splay of {0} seconds to next run.'.format(splay))
run = False
data['_splay'] = (data['_next_fire_time'] + splay)
if ('when' in data):
data['_run'] = True
if ('range' in data):
if (not _RANGE_SUPPORTED):
log.error('Missing python-dateutil. Ignoring job {0}'.format(job))
continue
elif isinstance(data['range'], dict):
try:
start = int(time.mktime(dateutil_parser.parse(data['range']['start']).timetuple()))
except ValueError:
log.error('Invalid date string for start. Ignoring job {0}.'.format(job))
continue
try:
end = int(time.mktime(dateutil_parser.parse(data['range']['end']).timetuple()))
except ValueError:
log.error('Invalid date string for end. Ignoring job {0}.'.format(job))
continue
if (end > start):
if (('invert' in data['range']) and data['range']['invert']):
if ((now <= start) or (now >= end)):
run = True
else:
run = False
elif (start <= now <= end):
run = True
else:
run = False
else:
log.error('schedule.handle_func: Invalid range, end must be larger than start. Ignoring job {0}.'.format(job))
continue
else:
log.error('schedule.handle_func: Invalid, range must be specified as a dictionary. Ignoring job {0}.'.format(job))
continue
if (not run):
continue
miss_msg = ''
if (seconds < 0):
miss_msg = ' (runtime missed by {0} seconds)'.format(abs(seconds))
log.info('Running scheduled job: {0}{1}'.format(job, miss_msg))
if (('jid_include' not in data) or data['jid_include']):
data['jid_include'] = True
log.debug('schedule: This job was scheduled with jid_include, adding to cache (jid_include defaults to True)')
if ('maxrunning' in data):
log.debug('schedule: This job was scheduled with a max number of {0}'.format(data['maxrunning']))
else:
log.info('schedule: maxrunning parameter was not specified for job {0}, defaulting to 1.'.format(job))
data['maxrunning'] = 1
multiprocessing_enabled = self.opts.get('multiprocessing', True)
if salt.utils.platform.is_windows():
functions = self.functions
self.functions = {}
returners = self.returners
self.returners = {}
try:
if multiprocessing_enabled:
thread_cls = salt.utils.process.SignalHandlingMultiprocessingProcess
else:
thread_cls = threading.Thread
proc = thread_cls(target=self.handle_func, args=(multiprocessing_enabled, func, data))
if multiprocessing_enabled:
with salt.utils.process.default_signals(signal.SIGINT, signal.SIGTERM):
proc.start()
else:
proc.start()
if multiprocessing_enabled:
proc.join()
finally:
if ('_seconds' in data):
data['_next_fire_time'] = (now + data['_seconds'])
data['_splay'] = None
if salt.utils.platform.is_windows():
self.functions = functions
self.returners = returners
|
'Clear the dict'
| def clear(self):
| self._dict = getattr(self, 'mod_dict_class', dict)()
self.loaded = False
|
'Load a single item if you have it'
| def _load(self, key):
| raise NotImplementedError()
|
'Load all of them'
| def _load_all(self):
| raise NotImplementedError()
|
'Whether or not the key is missing (meaning we know it\'s not there)'
| def _missing(self, key):
| return False
|
'Return the error string for a missing function.
Override this to return a more meaningfull error message if possible'
| def missing_fun_string(self, function_name):
| return "'{0}' is not available.".format(function_name)
|
'Check if the key is ttld out, then do the get'
| def __getitem__(self, key):
| if self._missing(key):
raise KeyError(key)
if ((key not in self._dict) and (not self.loaded)):
if self._load(key):
log.debug('LazyLoaded %s', key)
return self._dict[key]
else:
log.debug('Could not LazyLoad %s: %s', key, self.missing_fun_string(key))
raise KeyError(key)
else:
return self._dict[key]
|
'Execute the render system against a single reaction file and return
the data structure'
| def render_reaction(self, glob_ref, tag, data):
| react = {}
if glob_ref.startswith('salt://'):
glob_ref = (self.minion.functions['cp.cache_file'](glob_ref) or '')
globbed_ref = glob.glob(glob_ref)
if (not globbed_ref):
log.error('Can not render SLS {0} for tag {1}. File missing or not found.'.format(glob_ref, tag))
for fn_ in globbed_ref:
try:
res = self.render_template(fn_, tag=tag, data=data)
for name in res:
res[name]['__sls__'] = fn_
react.update(res)
except Exception:
log.error('Failed to render "{0}": '.format(fn_), exc_info=True)
return react
|
'Take in the tag from an event and return a list of the reactors to
process'
| def list_reactors(self, tag):
| log.debug('Gathering reactors for tag {0}'.format(tag))
reactors = []
if isinstance(self.opts['reactor'], six.string_types):
try:
with salt.utils.files.fopen(self.opts['reactor']) as fp_:
react_map = yaml.safe_load(fp_.read())
except (OSError, IOError):
log.error('Failed to read reactor map: "{0}"'.format(self.opts['reactor']))
except Exception:
log.error('Failed to parse YAML in reactor map: "{0}"'.format(self.opts['reactor']))
else:
react_map = self.opts['reactor']
for ropt in react_map:
if (not isinstance(ropt, dict)):
continue
if (len(ropt) != 1):
continue
key = next(six.iterkeys(ropt))
val = ropt[key]
if fnmatch.fnmatch(tag, key):
if isinstance(val, six.string_types):
reactors.append(val)
elif isinstance(val, list):
reactors.extend(val)
return reactors
|
'Return a list of the reactors'
| def list_all(self):
| if isinstance(self.minion.opts['reactor'], six.string_types):
log.debug('Reading reactors from yaml {0}'.format(self.opts['reactor']))
try:
with salt.utils.files.fopen(self.opts['reactor']) as fp_:
react_map = yaml.safe_load(fp_.read())
except (OSError, IOError):
log.error('Failed to read reactor map: "{0}"'.format(self.opts['reactor']))
except Exception:
log.error('Failed to parse YAML in reactor map: "{0}"'.format(self.opts['reactor']))
else:
log.debug('Not reading reactors from yaml')
react_map = self.minion.opts['reactor']
return react_map
|
'Add a reactor'
| def add_reactor(self, tag, reaction):
| reactors = self.list_all()
for reactor in reactors:
_tag = next(six.iterkeys(reactor))
if (_tag == tag):
return {'status': False, 'comment': 'Reactor already exists.'}
self.minion.opts['reactor'].append({tag: reaction})
return {'status': True, 'comment': 'Reactor added.'}
|
'Delete a reactor'
| def delete_reactor(self, tag):
| reactors = self.list_all()
for reactor in reactors:
_tag = next(six.iterkeys(reactor))
if (_tag == tag):
self.minion.opts['reactor'].remove(reactor)
return {'status': True, 'comment': 'Reactor deleted.'}
return {'status': False, 'comment': 'Reactor does not exists.'}
|
'Render a list of reactor files and returns a reaction struct'
| def reactions(self, tag, data, reactors):
| log.debug('Compiling reactions for tag {0}'.format(tag))
high = {}
chunks = []
try:
for fn_ in reactors:
high.update(self.render_reaction(fn_, tag, data))
if high:
errors = self.verify_high(high)
if errors:
log.error('Unable to render reactions for event {0} due to errors ({1}) in one or more of the sls files ({2})'.format(tag, errors, reactors))
return []
chunks = self.order_chunks(self.compile_high_data(high))
except Exception as exc:
log.error('Exception trying to compile reactions: {0}'.format(exc), exc_info=True)
return chunks
|
'Execute the reaction state'
| def call_reactions(self, chunks):
| for chunk in chunks:
self.wrap.run(chunk)
|
'Enter into the server loop'
| def run(self):
| salt.utils.appendproctitle(self.__class__.__name__)
self.event = salt.utils.event.get_event(self.opts['__role'], self.opts['sock_dir'], self.opts['transport'], opts=self.opts, listen=True)
self.wrap = ReactWrap(self.opts)
for data in self.event.iter_events(full=True):
if (data['data'].get('user') == self.wrap.event_user):
continue
if data['tag'].endswith('salt/reactors/manage/add'):
_data = data['data']
res = self.add_reactor(_data['event'], _data['reactors'])
self.event.fire_event({'reactors': self.list_all(), 'result': res}, 'salt/reactors/manage/add-complete')
elif data['tag'].endswith('salt/reactors/manage/delete'):
_data = data['data']
res = self.delete_reactor(_data['event'])
self.event.fire_event({'reactors': self.list_all(), 'result': res}, 'salt/reactors/manage/delete-complete')
elif data['tag'].endswith('salt/reactors/manage/list'):
self.event.fire_event({'reactors': self.list_all()}, 'salt/reactors/manage/list-results')
else:
reactors = self.list_reactors(data['tag'])
if (not reactors):
continue
chunks = self.reactions(data['tag'], data['data'], reactors)
if chunks:
try:
self.call_reactions(chunks)
except SystemExit:
log.warning('Exit ignored by reactor')
|
'Execute the specified function in the specified state by passing the
low data'
| def run(self, low):
| l_fun = getattr(self, low['state'])
try:
f_call = salt.utils.format_call(l_fun, low)
kwargs = f_call.get('kwargs', {})
if ('kwarg' not in kwargs):
kwargs['kwarg'] = {}
if (low['state'] in ('runner', 'wheel')):
kwargs['__user__'] = self.event_user
l_fun(*f_call.get('args', ()), **kwargs)
except Exception:
log.error('Failed to execute {0}: {1}\n'.format(low['state'], l_fun), exc_info=True)
|
'Wrap LocalClient for running :ref:`execution modules <all-salt.modules>`'
| def local(self, *args, **kwargs):
| if ('local' not in self.client_cache):
self.client_cache['local'] = salt.client.LocalClient(self.opts['conf_file'])
try:
self.client_cache['local'].cmd_async(*args, **kwargs)
except SystemExit:
log.warning('Attempt to exit reactor. Ignored.')
except Exception as exc:
log.warning('Exception caught by reactor: {0}'.format(exc))
|
'Wrap RunnerClient for executing :ref:`runner modules <all-salt.runners>`'
| def runner(self, fun, **kwargs):
| if ('runner' not in self.client_cache):
self.client_cache['runner'] = salt.runner.RunnerClient(self.opts)
len(self.client_cache['runner'].functions)
try:
self.pool.fire_async(self.client_cache['runner'].low, args=(fun, kwargs))
except SystemExit:
log.warning('Attempt to exit in reactor by runner. Ignored')
except Exception as exc:
log.warning('Exception caught by reactor: {0}'.format(exc))
|
'Wrap Wheel to enable executing :ref:`wheel modules <all-salt.wheel>`'
| def wheel(self, fun, **kwargs):
| if ('wheel' not in self.client_cache):
self.client_cache['wheel'] = salt.wheel.Wheel(self.opts)
len(self.client_cache['wheel'].functions)
try:
self.pool.fire_async(self.client_cache['wheel'].low, args=(fun, kwargs))
except SystemExit:
log.warning('Attempt to in reactor by whell. Ignored.')
except Exception as exc:
log.warning('Exception caught by reactor: {0}'.format(exc))
|
'Wrap Caller to enable executing :ref:`caller modules <all-salt.caller>`'
| def caller(self, fun, *args, **kwargs):
| log.debug('in caller with fun {0} args {1} kwargs {2}'.format(fun, args, kwargs))
args = kwargs.get('args', [])
kwargs = kwargs.get('kwargs', {})
if ('caller' not in self.client_cache):
self.client_cache['caller'] = salt.client.Caller(self.opts['conf_file'])
try:
self.client_cache['caller'].cmd(fun, *args, **kwargs)
except SystemExit:
log.warning('Attempt to exit reactor. Ignored.')
except Exception as exc:
log.warning('Exception caught by reactor: {0}'.format(exc))
|
'Enforce the TTL to a specific key, delete if its past TTL'
| def _enforce_ttl_key(self, key):
| if (key not in self._key_cache_time):
return
if ((time.time() - self._key_cache_time[key]) > self._ttl):
del self._key_cache_time[key]
dict.__delitem__(self, key)
|
'Check if the key is ttld out, then do the get'
| def __getitem__(self, key):
| self._enforce_ttl_key(key)
return dict.__getitem__(self, key)
|
'Make sure to update the key cache time'
| def __setitem__(self, key, val):
| self._key_cache_time[key] = time.time()
dict.__setitem__(self, key, val)
|
'Enforce the TTL to a specific key, delete if its past TTL'
| def _enforce_ttl_key(self, key):
| if (key not in self._key_cache_time):
return
if ((time.time() - self._key_cache_time[key]) > self._ttl):
del self._key_cache_time[key]
self._dict.__delitem__(key)
|
'Check if the key is ttld out, then do the get'
| def __getitem__(self, key):
| self._enforce_ttl_key(key)
return self._dict.__getitem__(key)
|
'Make sure to update the key cache time'
| def __setitem__(self, key, val):
| self._key_cache_time[key] = time.time()
self._dict.__setitem__(key, val)
self._write()
|
'Make sure to remove the key cache time'
| def __delitem__(self, key):
| del self._key_cache_time[key]
self._dict.__delitem__(key)
self._write()
|
'Read in from disk'
| def _read(self):
| if ((not HAS_MSGPACK) or (not os.path.exists(self._path))):
return
with salt.utils.files.fopen(self._path, 'rb') as fp_:
cache = msgpack.load(fp_, encoding=__salt_system_encoding__)
if ('CacheDisk_cachetime' in cache):
self._dict = cache['CacheDisk_data']
self._key_cache_time = cache['CacheDisk_cachetime']
else:
self._dict = cache
timestamp = os.path.getmtime(self._path)
for key in self._dict:
self._key_cache_time[key] = timestamp
if log.isEnabledFor(logging.DEBUG):
log.debug('Disk cache retrieved: {0}'.format(cache))
|
'Write out to disk'
| def _write(self):
| if (not HAS_MSGPACK):
return
with salt.utils.files.fopen(self._path, 'wb+') as fp_:
cache = {'CacheDisk_data': self._dict, 'CacheDisk_cachetime': self._key_cache_time}
msgpack.dump(cache, fp_, use_bin_type=True)
|
'Sets up the zmq-connection to the ConCache'
| def __init__(self, opts):
| self.opts = opts
self.serial = salt.payload.Serial(self.opts.get('serial', ''))
self.cache_sock = os.path.join(self.opts['sock_dir'], 'con_cache.ipc')
self.cache_upd_sock = os.path.join(self.opts['sock_dir'], 'con_upd.ipc')
context = zmq.Context()
self.creq_out = context.socket(zmq.REQ)
self.creq_out.setsockopt(zmq.LINGER, 100)
self.creq_out.connect(('ipc://' + self.cache_sock))
self.cupd_out = context.socket(zmq.PUB)
self.cupd_out.setsockopt(zmq.LINGER, 1)
self.cupd_out.connect(('ipc://' + self.cache_upd_sock))
|
'published the given minions to the ConCache'
| def put_cache(self, minions):
| self.cupd_out.send(self.serial.dumps(minions))
|
'queries the ConCache for a list of currently connected minions'
| def get_cached(self):
| msg = self.serial.dumps('minions')
self.creq_out.send(msg)
min_list = self.serial.loads(self.creq_out.recv())
return min_list
|
'Clear the cache'
| def clear(self):
| self.cache.clear()
|
'Sweep the cache and remove the outdated or least frequently
used entries'
| def sweep(self):
| if (self.max_age < (time.time() - self.timestamp)):
self.clear()
self.timestamp = time.time()
else:
paterns = list(self.cache.values())
paterns.sort()
for idx in range(self.clear_size):
del self.cache[paterns[idx][2]]
|
'Get a compiled regular expression object based on pattern and
cache it when it is not in the cache already'
| def get(self, pattern):
| try:
self.cache[pattern][0] += 1
return self.cache[pattern][1]
except KeyError:
pass
if (len(self.cache) > self.size):
self.sweep()
regex = re.compile('{0}{1}{2}'.format(self.prepend, pattern, self.append))
self.cache[pattern] = [1, regex, pattern, time.time()]
return regex
|
'Create a context cache'
| def __init__(self, opts, name):
| self.opts = opts
self.cache_path = os.path.join(opts['cachedir'], 'context', '{0}.p'.format(name))
self.serial = salt.payload.Serial(self.opts)
|
'Cache the given context to disk'
| def cache_context(self, context):
| if (not os.path.isdir(os.path.dirname(self.cache_path))):
os.mkdir(os.path.dirname(self.cache_path))
with salt.utils.files.fopen(self.cache_path, 'w+b') as cache:
self.serial.dump(context, cache)
|
'Retrieve a context cache from disk'
| def get_cache_context(self):
| with salt.utils.files.fopen(self.cache_path, 'rb') as cache:
return self.serial.load(cache)
|
'Process a list of strings, each corresponding to the recorded changes.
Args:
text: A list of lines of text (assumed to contain newlines)
Returns:
A tuple of the modified text and a textual description of what is done.
Raises:
ValueError: if substitution source location does not have expected text.'
| def process(self, text):
| change_report = ''
for (line, edits) in self._line_to_edit.items():
offset = 0
edits.sort(key=(lambda x: x.start))
char_array = list(text[(line - 1)])
change_report += ('%r Line %d\n' % (self._filename, line))
change_report += (('-' * 80) + '\n\n')
for e in edits:
change_report += ('%s\n' % e.comment)
change_report += ('\n Old: %s' % text[(line - 1)])
change_list = ([' '] * len(text[(line - 1)]))
change_list_new = ([' '] * len(text[(line - 1)]))
for e in edits:
start_eff = (e.start + offset)
end_eff = (start_eff + len(e.old))
old_actual = ''.join(char_array[start_eff:end_eff])
if (old_actual != e.old):
raise ValueError(('Expected text %r but got %r' % (''.join(e.old), ''.join(old_actual))))
char_array[start_eff:end_eff] = list(e.new)
change_list[e.start:(e.start + len(e.old))] = ('~' * len(e.old))
change_list_new[start_eff:end_eff] = ('~' * len(e.new))
offset += (len(e.new) - len(e.old))
change_report += (' %s\n' % ''.join(change_list))
text[(line - 1)] = ''.join(char_array)
change_report += (' New: %s' % text[(line - 1)])
change_report += (' %s\n\n' % ''.join(change_list_new))
return (''.join(text), change_report, self._errors)
|
'Add a new change that is needed.
Args:
comment: A description of what was changed
line: Line number (1 indexed)
start: Column offset (0 indexed)
old: old text
new: new text
error: this "edit" is something that cannot be fixed automatically
Returns:
None'
| def add(self, comment, line, start, old, new, error=None):
| self._line_to_edit[line].append(FileEditTuple(comment, line, start, old, new))
if error:
self._errors.append(('%s:%d: %s' % (self._filename, line, error)))
|
'Traverse an attribute to generate a full name e.g. tf.foo.bar.
Args:
node: A Node of type Attribute.
Returns:
a \'.\'-delimited full-name or None if the tree was not a simple form.
i.e. `foo()+b).bar` returns None, while `a.b.c` would return "a.b.c".'
| def _get_attribute_full_path(self, node):
| curr = node
items = []
while (not isinstance(curr, ast.Name)):
if (not isinstance(curr, ast.Attribute)):
return None
items.append(curr.attr)
curr = curr.value
items.append(curr.id)
return '.'.join(reversed(items))
|
'Return correct line number and column offset for a given node.
This is necessary mainly because ListComp\'s location reporting reports
the next token after the list comprehension list opening.
Args:
node: Node for which we wish to know the lineno and col_offset'
| def _find_true_position(self, node):
| import re
find_open = re.compile('^\\s*(\\[).*$')
find_string_chars = re.compile('[\'"]')
if isinstance(node, ast.ListComp):
line = node.lineno
col = node.col_offset
while 1:
text = self._lines[(line - 1)]
reversed_preceding_text = text[:col][::(-1)]
m = find_open.match(reversed_preceding_text)
if m:
new_col_offset = ((col - m.start(1)) - 1)
return (line, new_col_offset)
elif ((reversed_preceding_text == '') or reversed_preceding_text.isspace()):
line = (line - 1)
prev_line = self._lines[(line - 1)]
comment_start = prev_line.find('#')
if (comment_start == (-1)):
col = (len(prev_line) - 1)
elif (find_string_chars.search(prev_line[comment_start:]) is None):
col = comment_start
else:
return (None, None)
else:
return (None, None)
return (node.lineno, node.col_offset)
|
'Handle visiting a call node in the AST.
Args:
node: Current Node'
| def visit_Call(self, node):
| full_name = self._get_attribute_full_path(node.func)
node.func.is_function_for_call = True
if (full_name and full_name.startswith('tf.')):
function_handles = self._api_change_spec.function_handle
if (full_name in function_handles):
function_handles[full_name](self._file_edit, node)
function_reorders = self._api_change_spec.function_reorders
function_keyword_renames = self._api_change_spec.function_keyword_renames
if (full_name in function_reorders):
reordered = function_reorders[full_name]
for (idx, arg) in enumerate(node.args):
(lineno, col_offset) = self._find_true_position(arg)
if ((lineno is None) or (col_offset is None)):
self._file_edit.add(('Failed to add keyword %r to reordered function %r' % (reordered[idx], full_name)), arg.lineno, arg.col_offset, '', '', error='A necessary keyword argument failed to be inserted.')
else:
keyword_arg = reordered[idx]
if ((full_name in function_keyword_renames) and (keyword_arg in function_keyword_renames[full_name])):
keyword_arg = function_keyword_renames[full_name][keyword_arg]
self._file_edit.add(('Added keyword %r to reordered function %r' % (reordered[idx], full_name)), lineno, col_offset, '', (keyword_arg + '='))
renamed_keywords = ({} if (full_name not in function_keyword_renames) else function_keyword_renames[full_name])
for keyword in node.keywords:
argkey = keyword.arg
argval = keyword.value
if (argkey in renamed_keywords):
(argval_lineno, argval_col_offset) = self._find_true_position(argval)
if ((argval_lineno is not None) and (argval_col_offset is not None)):
key_start = ((argval_col_offset - len(argkey)) - 1)
key_end = ((key_start + len(argkey)) + 1)
if (self._lines[(argval_lineno - 1)][key_start:key_end] == (argkey + '=')):
self._file_edit.add(('Renamed keyword argument from %r to %r' % (argkey, renamed_keywords[argkey])), argval_lineno, ((argval_col_offset - len(argkey)) - 1), (argkey + '='), (renamed_keywords[argkey] + '='))
continue
self._file_edit.add(('Failed to rename keyword argument from %r to %r' % (argkey, renamed_keywords[argkey])), argval.lineno, ((argval.col_offset - len(argkey)) - 1), '', '', error='Failed to find keyword lexographically. Fix manually.')
ast.NodeVisitor.generic_visit(self, node)
|
'Handle bare Attributes i.e. [tf.foo, tf.bar].
Args:
node: Node that is of type ast.Attribute'
| def visit_Attribute(self, node):
| full_name = self._get_attribute_full_path(node)
if (full_name and full_name.startswith('tf.')):
self._rename_functions(node, full_name)
if (full_name in self._api_change_spec.change_to_function):
if (not hasattr(node, 'is_function_for_call')):
new_text = (full_name + '()')
self._file_edit.add(('Changed %r to %r' % (full_name, new_text)), node.lineno, node.col_offset, full_name, new_text)
ast.NodeVisitor.generic_visit(self, node)
|
'Process the given python file for incompatible changes.
Args:
in_filename: filename to parse
out_filename: output file to write to
Returns:
A tuple representing number of files processed, log of actions, errors'
| def process_file(self, in_filename, out_filename):
| with open(in_filename, 'r') as in_file:
with tempfile.NamedTemporaryFile('w', delete=False) as temp_file:
ret = self.process_opened_file(in_filename, in_file, out_filename, temp_file)
shutil.move(temp_file.name, out_filename)
return ret
|
'Process the given python file for incompatible changes.
This function is split out to facilitate StringIO testing from
tf_upgrade_test.py.
Args:
in_filename: filename to parse
in_file: opened file (or StringIO)
out_filename: output file to write to
out_file: opened file (or StringIO)
Returns:
A tuple representing number of files processed, log of actions, errors'
| def process_opened_file(self, in_filename, in_file, out_filename, out_file):
| process_errors = []
text = (('-' * 80) + '\n')
text += ('Processing file %r\n outputting to %r\n' % (in_filename, out_filename))
text += (('-' * 80) + '\n\n')
parsed_ast = None
lines = in_file.readlines()
try:
parsed_ast = ast.parse(''.join(lines))
except Exception:
text += ('Failed to parse %r\n\n' % in_filename)
text += traceback.format_exc()
if parsed_ast:
visitor = TensorFlowCallVisitor(in_filename, lines)
visitor.visit(parsed_ast)
(out_text, new_text, process_errors) = visitor.process(lines)
text += new_text
if out_file:
out_file.write(out_text)
text += '\n'
return (1, text, process_errors)
|
'Processes upgrades on an entire tree of python files in place.
Note that only Python files. If you have custom code in other languages,
you will need to manually upgrade those.
Args:
root_directory: Directory to walk and process.
output_root_directory: Directory to use as base
Returns:
A tuple of files processed, the report string ofr all files, and errors'
| def process_tree(self, root_directory, output_root_directory):
| if (output_root_directory and os.path.exists(output_root_directory)):
print(('Output directory %r must not already exist.' % output_root_directory))
sys.exit(1)
norm_root = os.path.split(os.path.normpath(root_directory))
norm_output = os.path.split(os.path.normpath(output_root_directory))
if (norm_root == norm_output):
print(('Output directory %r same as input directory %r' % (root_directory, output_root_directory)))
sys.exit(1)
files_to_process = []
for (dir_name, _, file_list) in os.walk(root_directory):
py_files = [f for f in file_list if f.endswith('.py')]
for filename in py_files:
fullpath = os.path.join(dir_name, filename)
fullpath_output = os.path.join(output_root_directory, os.path.relpath(fullpath, root_directory))
files_to_process.append((fullpath, fullpath_output))
file_count = 0
tree_errors = []
report = ''
report += (('=' * 80) + '\n')
report += ('Input tree: %r\n' % root_directory)
report += (('=' * 80) + '\n')
for (input_path, output_path) in files_to_process:
output_directory = os.path.dirname(output_path)
if (not os.path.isdir(output_directory)):
os.makedirs(output_directory)
file_count += 1
(_, l_report, l_errors) = self.process_file(input_path, output_path)
tree_errors += l_errors
report += l_report
return (file_count, report, tree_errors)
|
'Create a DeploymentConfig.
The config describes how to deploy a model across multiple clones and
replicas. The model will be replicated `num_clones` times in each replica.
If `clone_on_cpu` is True, each clone will placed on CPU.
If `num_replicas` is 1, the model is deployed via a single process. In that
case `worker_device`, `num_ps_tasks`, and `ps_device` are ignored.
If `num_replicas` is greater than 1, then `worker_device` and `ps_device`
must specify TensorFlow devices for the `worker` and `ps` jobs and
`num_ps_tasks` must be positive.
Args:
num_clones: Number of model clones to deploy in each replica.
clone_on_cpu: If True clones would be placed on CPU.
replica_id: Integer. Index of the replica for which the model is
deployed. Usually 0 for the chief replica.
num_replicas: Number of replicas to use.
num_ps_tasks: Number of tasks for the `ps` job. 0 to not use replicas.
worker_job_name: A name for the worker job.
ps_job_name: A name for the parameter server job.
Raises:
ValueError: If the arguments are invalid.'
| def __init__(self, num_clones=1, clone_on_cpu=False, replica_id=0, num_replicas=1, num_ps_tasks=0, worker_job_name='worker', ps_job_name='ps'):
| if (num_replicas > 1):
if (num_ps_tasks < 1):
raise ValueError('When using replicas num_ps_tasks must be positive')
if ((num_replicas > 1) or (num_ps_tasks > 0)):
if (not worker_job_name):
raise ValueError('Must specify worker_job_name when using replicas')
if (not ps_job_name):
raise ValueError('Must specify ps_job_name when using parameter server')
if (replica_id >= num_replicas):
raise ValueError('replica_id must be less than num_replicas')
self._num_clones = num_clones
self._clone_on_cpu = clone_on_cpu
self._replica_id = replica_id
self._num_replicas = num_replicas
self._num_ps_tasks = num_ps_tasks
self._ps_device = (('/job:' + ps_job_name) if (num_ps_tasks > 0) else '')
self._worker_device = (('/job:' + worker_job_name) if (num_ps_tasks > 0) else '')
|
'Returns the device to use for caching variables.
Variables are cached on the worker CPU when using replicas.
Returns:
A device string or None if the variables do not need to be cached.'
| def caching_device(self):
| if (self._num_ps_tasks > 0):
return (lambda op: op.device)
else:
return None
|
'Device used to create the clone and all the ops inside the clone.
Args:
clone_index: Int, representing the clone_index.
Returns:
A value suitable for `tf.device()`.
Raises:
ValueError: if `clone_index` is greater or equal to the number of clones".'
| def clone_device(self, clone_index):
| if (clone_index >= self._num_clones):
raise ValueError('clone_index must be less than num_clones')
device = ''
if (self._num_ps_tasks > 0):
device += self._worker_device
if self._clone_on_cpu:
device += '/device:CPU:0'
elif (self._num_clones > 1):
device += ('/device:GPU:%d' % clone_index)
return device
|
'Name scope to create the clone.
Args:
clone_index: Int, representing the clone_index.
Returns:
A name_scope suitable for `tf.name_scope()`.
Raises:
ValueError: if `clone_index` is greater or equal to the number of clones".'
| def clone_scope(self, clone_index):
| if (clone_index >= self._num_clones):
raise ValueError('clone_index must be less than num_clones')
scope = ''
if (self._num_clones > 1):
scope = ('clone_%d' % clone_index)
return scope
|
'Device to use with the optimizer.
Returns:
A value suitable for `tf.device()`.'
| def optimizer_device(self):
| if ((self._num_ps_tasks > 0) or (self._num_clones > 0)):
return (self._worker_device + '/device:CPU:0')
else:
return ''
|
'Device to use to build the inputs.
Returns:
A value suitable for `tf.device()`.'
| def inputs_device(self):
| device = ''
if (self._num_ps_tasks > 0):
device += self._worker_device
device += '/device:CPU:0'
return device
|
'Returns the device to use for variables created inside the clone.
Returns:
A value suitable for `tf.device()`.'
| def variables_device(self):
| device = ''
if (self._num_ps_tasks > 0):
device += self._ps_device
device += '/device:CPU:0'
class _PSDeviceChooser(object, ):
'Slim device chooser for variables when using PS.'
def __init__(self, device, tasks):
self._device = device
self._tasks = tasks
self._task = 0
def choose(self, op):
if op.device:
return op.device
node_def = (op if isinstance(op, tf.NodeDef) else op.node_def)
if (node_def.op == 'Variable'):
t = self._task
self._task = ((self._task + 1) % self._tasks)
d = ('%s/task:%d' % (self._device, t))
return d
else:
return op.device
if (not self._num_ps_tasks):
return device
else:
chooser = _PSDeviceChooser(device, self._num_ps_tasks)
return chooser.choose
|
'A plain ResNet without extra layers before or after the ResNet blocks.'
| def _resnet_plain(self, inputs, blocks, output_stride=None, scope=None):
| with tf.variable_scope(scope, values=[inputs]):
with slim.arg_scope([slim.conv2d], outputs_collections='end_points'):
net = resnet_utils.stack_blocks_dense(inputs, blocks, output_stride)
end_points = dict(tf.get_collection('end_points'))
return (net, end_points)
|
'Test the end points of a tiny v1 bottleneck network.'
| def testEndPointsV1(self):
| bottleneck = resnet_v1.bottleneck
blocks = [resnet_utils.Block('block1', bottleneck, [(4, 1, 1), (4, 1, 2)]), resnet_utils.Block('block2', bottleneck, [(8, 2, 1), (8, 2, 1)])]
inputs = create_test_input(2, 32, 16, 3)
with slim.arg_scope(resnet_utils.resnet_arg_scope()):
(_, end_points) = self._resnet_plain(inputs, blocks, scope='tiny')
expected = ['tiny/block1/unit_1/bottleneck_v1/shortcut', 'tiny/block1/unit_1/bottleneck_v1/conv1', 'tiny/block1/unit_1/bottleneck_v1/conv2', 'tiny/block1/unit_1/bottleneck_v1/conv3', 'tiny/block1/unit_2/bottleneck_v1/conv1', 'tiny/block1/unit_2/bottleneck_v1/conv2', 'tiny/block1/unit_2/bottleneck_v1/conv3', 'tiny/block2/unit_1/bottleneck_v1/shortcut', 'tiny/block2/unit_1/bottleneck_v1/conv1', 'tiny/block2/unit_1/bottleneck_v1/conv2', 'tiny/block2/unit_1/bottleneck_v1/conv3', 'tiny/block2/unit_2/bottleneck_v1/conv1', 'tiny/block2/unit_2/bottleneck_v1/conv2', 'tiny/block2/unit_2/bottleneck_v1/conv3']
self.assertItemsEqual(expected, end_points)
|
'A simplified ResNet Block stacker without output stride control.'
| def _stack_blocks_nondense(self, net, blocks):
| for block in blocks:
with tf.variable_scope(block.scope, 'block', [net]):
for (i, unit) in enumerate(block.args):
(depth, depth_bottleneck, stride) = unit
with tf.variable_scope(('unit_%d' % (i + 1)), values=[net]):
net = block.unit_fn(net, depth=depth, depth_bottleneck=depth_bottleneck, stride=stride, rate=1)
return net
|
'Verify the values of dense feature extraction by atrous convolution.
Make sure that dense feature extraction by stack_blocks_dense() followed by
subsampling gives identical results to feature extraction at the nominal
network output stride using the simple self._stack_blocks_nondense() above.
Args:
bottleneck: The bottleneck function.'
| def _atrousValues(self, bottleneck):
| blocks = [resnet_utils.Block('block1', bottleneck, [(4, 1, 1), (4, 1, 2)]), resnet_utils.Block('block2', bottleneck, [(8, 2, 1), (8, 2, 2)]), resnet_utils.Block('block3', bottleneck, [(16, 4, 1), (16, 4, 2)]), resnet_utils.Block('block4', bottleneck, [(32, 8, 1), (32, 8, 1)])]
nominal_stride = 8
height = 30
width = 31
with slim.arg_scope(resnet_utils.resnet_arg_scope()):
with slim.arg_scope([slim.batch_norm], is_training=False):
for output_stride in [1, 2, 4, 8, None]:
with tf.Graph().as_default():
with self.test_session() as sess:
tf.set_random_seed(0)
inputs = create_test_input(1, height, width, 3)
output = resnet_utils.stack_blocks_dense(inputs, blocks, output_stride)
if (output_stride is None):
factor = 1
else:
factor = (nominal_stride // output_stride)
output = resnet_utils.subsample(output, factor)
tf.get_variable_scope().reuse_variables()
expected = self._stack_blocks_nondense(inputs, blocks)
sess.run(tf.global_variables_initializer())
(output, expected) = sess.run([output, expected])
self.assertAllClose(output, expected, atol=0.0001, rtol=0.0001)
|
'A shallow and thin ResNet v1 for faster tests.'
| def _resnet_small(self, inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, include_root_block=True, reuse=None, scope='resnet_v1_small'):
| bottleneck = resnet_v1.bottleneck
blocks = [resnet_utils.Block('block1', bottleneck, (([(4, 1, 1)] * 2) + [(4, 1, 2)])), resnet_utils.Block('block2', bottleneck, (([(8, 2, 1)] * 2) + [(8, 2, 2)])), resnet_utils.Block('block3', bottleneck, (([(16, 4, 1)] * 2) + [(16, 4, 2)])), resnet_utils.Block('block4', bottleneck, ([(32, 8, 1)] * 2))]
return resnet_v1.resnet_v1(inputs, blocks, num_classes, is_training=is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=include_root_block, reuse=reuse, scope=scope)
|
'Verify dense feature extraction with atrous convolution.'
| def testAtrousFullyConvolutionalValues(self):
| nominal_stride = 32
for output_stride in [4, 8, 16, 32, None]:
with slim.arg_scope(resnet_utils.resnet_arg_scope()):
with tf.Graph().as_default():
with self.test_session() as sess:
tf.set_random_seed(0)
inputs = create_test_input(2, 81, 81, 3)
(output, _) = self._resnet_small(inputs, None, is_training=False, global_pool=False, output_stride=output_stride)
if (output_stride is None):
factor = 1
else:
factor = (nominal_stride // output_stride)
output = resnet_utils.subsample(output, factor)
tf.get_variable_scope().reuse_variables()
(expected, _) = self._resnet_small(inputs, None, is_training=False, global_pool=False)
sess.run(tf.global_variables_initializer())
self.assertAllClose(output.eval(), expected.eval(), atol=0.0001, rtol=0.0001)
|
'A plain ResNet without extra layers before or after the ResNet blocks.'
| def _resnet_plain(self, inputs, blocks, output_stride=None, scope=None):
| with tf.variable_scope(scope, values=[inputs]):
with slim.arg_scope([slim.conv2d], outputs_collections='end_points'):
net = resnet_utils.stack_blocks_dense(inputs, blocks, output_stride)
end_points = dict(tf.get_collection('end_points'))
return (net, end_points)
|
'Test the end points of a tiny v2 bottleneck network.'
| def testEndPointsV2(self):
| bottleneck = resnet_v2.bottleneck
blocks = [resnet_utils.Block('block1', bottleneck, [(4, 1, 1), (4, 1, 2)]), resnet_utils.Block('block2', bottleneck, [(8, 2, 1), (8, 2, 1)])]
inputs = create_test_input(2, 32, 16, 3)
with slim.arg_scope(resnet_utils.resnet_arg_scope()):
(_, end_points) = self._resnet_plain(inputs, blocks, scope='tiny')
expected = ['tiny/block1/unit_1/bottleneck_v2/shortcut', 'tiny/block1/unit_1/bottleneck_v2/conv1', 'tiny/block1/unit_1/bottleneck_v2/conv2', 'tiny/block1/unit_1/bottleneck_v2/conv3', 'tiny/block1/unit_2/bottleneck_v2/conv1', 'tiny/block1/unit_2/bottleneck_v2/conv2', 'tiny/block1/unit_2/bottleneck_v2/conv3', 'tiny/block2/unit_1/bottleneck_v2/shortcut', 'tiny/block2/unit_1/bottleneck_v2/conv1', 'tiny/block2/unit_1/bottleneck_v2/conv2', 'tiny/block2/unit_1/bottleneck_v2/conv3', 'tiny/block2/unit_2/bottleneck_v2/conv1', 'tiny/block2/unit_2/bottleneck_v2/conv2', 'tiny/block2/unit_2/bottleneck_v2/conv3']
self.assertItemsEqual(expected, end_points)
|
'A simplified ResNet Block stacker without output stride control.'
| def _stack_blocks_nondense(self, net, blocks):
| for block in blocks:
with tf.variable_scope(block.scope, 'block', [net]):
for (i, unit) in enumerate(block.args):
(depth, depth_bottleneck, stride) = unit
with tf.variable_scope(('unit_%d' % (i + 1)), values=[net]):
net = block.unit_fn(net, depth=depth, depth_bottleneck=depth_bottleneck, stride=stride, rate=1)
return net
|
'Verify the values of dense feature extraction by atrous convolution.
Make sure that dense feature extraction by stack_blocks_dense() followed by
subsampling gives identical results to feature extraction at the nominal
network output stride using the simple self._stack_blocks_nondense() above.
Args:
bottleneck: The bottleneck function.'
| def _atrousValues(self, bottleneck):
| blocks = [resnet_utils.Block('block1', bottleneck, [(4, 1, 1), (4, 1, 2)]), resnet_utils.Block('block2', bottleneck, [(8, 2, 1), (8, 2, 2)]), resnet_utils.Block('block3', bottleneck, [(16, 4, 1), (16, 4, 2)]), resnet_utils.Block('block4', bottleneck, [(32, 8, 1), (32, 8, 1)])]
nominal_stride = 8
height = 30
width = 31
with slim.arg_scope(resnet_utils.resnet_arg_scope()):
with slim.arg_scope([slim.batch_norm], is_training=False):
for output_stride in [1, 2, 4, 8, None]:
with tf.Graph().as_default():
with self.test_session() as sess:
tf.set_random_seed(0)
inputs = create_test_input(1, height, width, 3)
output = resnet_utils.stack_blocks_dense(inputs, blocks, output_stride)
if (output_stride is None):
factor = 1
else:
factor = (nominal_stride // output_stride)
output = resnet_utils.subsample(output, factor)
tf.get_variable_scope().reuse_variables()
expected = self._stack_blocks_nondense(inputs, blocks)
sess.run(tf.global_variables_initializer())
(output, expected) = sess.run([output, expected])
self.assertAllClose(output, expected, atol=0.0001, rtol=0.0001)
|
'A shallow and thin ResNet v2 for faster tests.'
| def _resnet_small(self, inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, include_root_block=True, reuse=None, scope='resnet_v2_small'):
| bottleneck = resnet_v2.bottleneck
blocks = [resnet_utils.Block('block1', bottleneck, (([(4, 1, 1)] * 2) + [(4, 1, 2)])), resnet_utils.Block('block2', bottleneck, (([(8, 2, 1)] * 2) + [(8, 2, 2)])), resnet_utils.Block('block3', bottleneck, (([(16, 4, 1)] * 2) + [(16, 4, 2)])), resnet_utils.Block('block4', bottleneck, ([(32, 8, 1)] * 2))]
return resnet_v2.resnet_v2(inputs, blocks, num_classes, is_training=is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=include_root_block, reuse=reuse, scope=scope)
|
'Verify dense feature extraction with atrous convolution.'
| def testAtrousFullyConvolutionalValues(self):
| nominal_stride = 32
for output_stride in [4, 8, 16, 32, None]:
with slim.arg_scope(resnet_utils.resnet_arg_scope()):
with tf.Graph().as_default():
with self.test_session() as sess:
tf.set_random_seed(0)
inputs = create_test_input(2, 81, 81, 3)
(output, _) = self._resnet_small(inputs, None, is_training=False, global_pool=False, output_stride=output_stride)
if (output_stride is None):
factor = 1
else:
factor = (nominal_stride // output_stride)
output = resnet_utils.subsample(output, factor)
tf.get_variable_scope().reuse_variables()
(expected, _) = self._resnet_small(inputs, None, is_training=False, global_pool=False)
sess.run(tf.global_variables_initializer())
self.assertAllClose(output.eval(), expected.eval(), atol=0.0001, rtol=0.0001)
|
'Return the next `batch_size` examples from this data set.'
| def next_batch(self, batch_size, fake_data=False):
| if fake_data:
fake_image = [1.0 for _ in xrange(784)]
fake_label = 0
return ([fake_image for _ in xrange(batch_size)], [fake_label for _ in xrange(batch_size)])
start = self._index_in_epoch
self._index_in_epoch += batch_size
if (self._index_in_epoch > self._num_examples):
self._epochs_completed += 1
perm = numpy.arange(self._num_examples)
numpy.random.shuffle(perm)
self._images = self._images[perm]
self._labels = self._labels[perm]
start = 0
self._index_in_epoch = batch_size
assert (batch_size <= self._num_examples)
end = self._index_in_epoch
return (self._images[start:end], self._labels[start:end])
|
'get all tokens of the corpus'
| def __get_all_tokens(self):
| fwrite = open(self.data_path.replace('all_title.csv', 'all_token.csv'), 'w')
with open(self.data_path, 'r') as fread:
i = 0
for line in fread.readlines():
try:
line_list = line.strip().split(' DCTB ')
label = line_list[0]
self.labels.append(label)
text = line_list[1]
text_tokens = self.cut_doc_obj.run(text)
self.corpus.append(text_tokens)
self.dictionary.add_documents([text_tokens])
fwrite.write((((label + ' DCTB ') + '\\'.join(text_tokens)) + '\n'))
i += 1
except BaseException as e:
msg = traceback.format_exc()
print msg
print '=====>Read Done<======'
break
self.token_len = self.dictionary.__len__()
print ('all token len ' + str(self.token_len))
self.num_data = i
fwrite.close()
|
'vec: get a vec representation of bow'
| def vec(self):
| self.__get_all_tokens()
print 'before filter, the tokens len: {0}'.format(self.dictionary.__len__())
self.__filter_tokens()
print 'After filter, the tokens len: {0}'.format(self.dictionary.__len__())
self.bow = []
for file_token in self.corpus:
file_bow = self.dictionary.doc2bow(file_token)
self.bow.append(file_bow)
bow_vec_file = open(self.data_path.replace('all_title.csv', 'bow_vec.pl'), 'wb')
pickle.dump(self.bow, bow_vec_file)
bow_vec_file.close()
bow_label_file = open(self.data_path.replace('all_title.csv', 'bow_label.pl'), 'wb')
pickle.dump(self.labels, bow_label_file)
bow_label_file.close()
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.