desc
stringlengths 3
26.7k
| decl
stringlengths 11
7.89k
| bodies
stringlengths 8
553k
|
---|---|---|
'load_word2vec: load the w2v model'
| def load_word2vec(self):
| print 'Start load word2vec model'
self.w2vec = {}
with open(self.w2v_file, 'r') as fread:
for line in fread.readlines():
line_list = line.strip().split(' ')
word = line_list[0]
word_vec = np.fromstring(' '.join(line_list[1:]), dtype=float, sep=' ')
self.w2vec[word] = word_vec
print 'Done load word2vec model'
|
'get all tokens from file'
| def __get_all_tokens_v2(self):
| print 'load the tokens from file '
with open(self.data_path.replace('all.csv', 'all_token.csv'), 'r') as fread:
for line in fread.readlines():
try:
line_list = line.strip().split(' DCTB ')
label = line_list[0]
text_token = line_list[1].split('\\')
self.dictionary.add_documents([text_token])
self.labels.append(label)
self.corpus.append(text_token)
except BaseException as e:
print e
continue
|
'get all tokens of the corpus'
| def __get_all_tokens(self):
| fwrite = open(self.data_path.replace('all.csv', 'all_token.csv'), 'w')
with open(self.data_path, 'r') as fread:
i = 0
for line in fread.readlines():
try:
line_list = line.strip().split(' DCTB ')
label = line_list[0]
self.labels.append(label)
text = line_list[1]
text_tokens = self.cut_doc_obj.run(text)
self.corpus.append(text_tokens)
self.dictionary.add_documents([text_tokens])
fwrite.write((((label + ' DCTB ') + '\\'.join(text_tokens)) + '\n'))
i += 1
except BaseException as e:
msg = traceback.format_exc()
print msg
print '=====>Read Done<======'
break
self.token_len = self.dictionary.__len__()
print ('all token len ' + str(self.token_len))
print 'save the dictionary'
self.dictionary.save(self.data_path.replace('all.csv', 'cnn.dict'))
self.num_data = i
fwrite.close()
|
'gen_embedding_matrix: generate the embedding matrix'
| def gen_embedding_matrix(self, load4file=True):
| if load4file:
self.__get_all_tokens_v2()
else:
self.__get_all_tokens()
print 'before filter, the tokens len: {0}'.format(self.dictionary.__len__())
self.__filter_tokens()
print 'after filter, the tokens len: {0}'.format(self.dictionary.__len__())
self.sequence = []
for file_token in self.corpus:
temp_sequence = [x for (x, y) in self.dictionary.doc2bow(file_token)]
self.sequence.append(temp_sequence)
self.corpus_size = len(self.dictionary.token2id)
self.embedding_matrix = np.zeros((self.corpus_size, EMBEDDING_DIM))
print 'corpus size: {0}'.format(len(self.dictionary.token2id))
for (key, v) in self.dictionary.token2id.items():
key_vec = self.w2vec.get(key)
if (key_vec is not None):
self.embedding_matrix[v] = key_vec
else:
self.embedding_matrix[v] = (np.random.rand(EMBEDDING_DIM) - 0.5)
|
'load_word2vec: load the w2v model'
| def load_word2vec(self):
| print 'Start load word2vec model'
self.w2vec = {}
with open(self.w2v_file, 'r') as fread:
for line in fread.readlines():
line_list = line.strip().split(' ')
word = line_list[0]
word_vec = np.fromstring(' '.join(line_list[1:]), dtype=float, sep=' ')
self.w2vec[word] = word_vec
print 'Done load word2vec model'
|
'get all tokens from file'
| def __get_all_tokens_v2(self):
| print 'load the tokens from file '
with open(self.data_path.replace('all.csv', 'all_token.csv'), 'r') as fread:
for line in fread.readlines():
try:
line_list = line.strip().split(' DCTB ')
label = line_list[0]
text_token = line_list[1].split('\\')
self.dictionary.add_documents([text_token])
self.labels.append(label)
self.corpus.append(text_token)
except BaseException as e:
print e
continue
|
'get all tokens of the corpus'
| def __get_all_tokens(self):
| fwrite = open(self.data_path.replace('all.csv', 'all_token.csv'), 'w')
with open(self.data_path, 'r') as fread:
i = 0
for line in fread.readlines():
try:
line_list = line.strip().split(' DCTB ')
label = line_list[0]
self.labels.append(label)
text = line_list[1]
text_tokens = self.cut_doc_obj.run(text)
self.corpus.append(text_tokens)
self.dictionary.add_documents([text_tokens])
fwrite.write((((label + ' DCTB ') + '\\'.join(text_tokens)) + '\n'))
i += 1
except BaseException as e:
msg = traceback.format_exc()
print msg
print '=====>Read Done<======'
break
self.token_len = self.dictionary.__len__()
print ('all token len ' + str(self.token_len))
print 'save the dictionary'
self.dictionary.save(self.data_path.replace('all.csv', 'cnn.dict'))
self.num_data = i
fwrite.close()
|
'gen_embedding_matrix: generate the embedding matrix'
| def gen_embedding_matrix(self, load4file=True):
| if load4file:
self.__get_all_tokens_v2()
else:
self.__get_all_tokens()
print 'before filter, the tokens len: {0}'.format(self.dictionary.__len__())
self.__filter_tokens()
print 'after filter, the tokens len: {0}'.format(self.dictionary.__len__())
self.sequence = []
for file_token in self.corpus:
temp_sequence = [x for (x, y) in self.dictionary.doc2bow(file_token)]
self.sequence.append(temp_sequence)
self.corpus_size = len(self.dictionary.token2id)
self.embedding_matrix = np.zeros((self.corpus_size, EMBEDDING_DIM))
print 'corpus size: {0}'.format(len(self.dictionary.token2id))
for (key, v) in self.dictionary.token2id.items():
key_vec = self.w2vec.get(key)
if (key_vec is not None):
self.embedding_matrix[v] = key_vec
else:
self.embedding_matrix[v] = (np.random.rand(EMBEDDING_DIM) - 0.5)
print 'enbedding_matrix len {0}'.format(len(self.embedding_matrix))
|
'load_word2vec: load the w2v model'
| def load_word2vec(self):
| print 'Start load word2vec model'
self.w2vec = {}
with open(self.w2v_file, 'r') as fread:
for line in fread.readlines():
line_list = line.strip().split(' ')
word = line_list[0]
word_vec = np.fromstring(' '.join(line_list[1:]), dtype=float, sep=' ')
self.w2vec[word] = word_vec
print 'Done load word2vec model'
|
'get all tokens from file'
| def __get_all_tokens_v2(self):
| print 'load the tokens from file '
with open(self.data_path.replace('all_title.csv', 'all_token.csv'), 'r') as fread:
for line in fread.readlines():
try:
line_list = line.strip().split(' DCTB ')
label = line_list[0]
text_token = line_list[1].split('\\')
self.dictionary.add_documents([text_token])
self.labels.append(label)
self.corpus.append(text_token)
except BaseException as e:
print e
continue
|
'get all tokens of the corpus'
| def __get_all_tokens(self):
| fwrite = open(self.data_path.replace('all_title.csv', 'all_token.csv'), 'w')
with open(self.data_path, 'r') as fread:
i = 0
for line in fread.readlines():
try:
line_list = line.strip().split(' DCTB ')
label = line_list[0]
self.labels.append(label)
text = line_list[1]
text_tokens = self.cut_doc_obj.run(text)
self.corpus.append(text_tokens)
self.dictionary.add_documents([text_tokens])
fwrite.write((((label + ' DCTB ') + '\\'.join(text_tokens)) + '\n'))
i += 1
except BaseException as e:
msg = traceback.format_exc()
print msg
print '=====>Read Done<======'
break
self.token_len = self.dictionary.__len__()
print ('all token len ' + str(self.token_len))
print 'save the dictionary'
self.dictionary.save(self.data_path.replace('all_title.csv', 'cnn.dict'))
self.num_data = i
fwrite.close()
|
'gen_embedding_matrix: generate the embedding matrix'
| def gen_embedding_matrix(self, load4file=True):
| if load4file:
self.__get_all_tokens_v2()
else:
self.__get_all_tokens()
print 'before filter, the tokens len: {0}'.format(self.dictionary.__len__())
self.__filter_tokens()
print 'after filter, the tokens len: {0}'.format(self.dictionary.__len__())
self.sequence = []
for file_token in self.corpus:
temp_sequence = [x for (x, y) in self.dictionary.doc2bow(file_token)]
self.sequence.append(temp_sequence)
self.corpus_size = len(self.dictionary.token2id)
self.embedding_matrix = np.zeros((self.corpus_size, EMBEDDING_DIM))
print 'corpus size: {0}'.format(len(self.dictionary.token2id))
for (key, v) in self.dictionary.token2id.items():
key_vec = self.w2vec.get(key)
if (key_vec is not None):
self.embedding_matrix[v] = key_vec
else:
self.embedding_matrix[v] = (np.random.rand(EMBEDDING_DIM) - 0.5)
|
'load_word2vec: load the w2v model'
| def load_word2vec(self):
| print 'Start load word2vec model'
self.w2vec = {}
with open(self.w2v_file, 'r') as fread:
for line in fread.readlines():
line_list = line.strip().split(' ')
word = line_list[0]
word_vec = np.fromstring(' '.join(line_list[1:]), dtype=float, sep=' ')
self.w2vec[word] = word_vec
print 'Done load word2vec model'
|
'get all tokens from file'
| def __get_all_tokens_v2(self):
| print 'load the tokens from file '
with open(self.data_path.replace('all.csv', 'all_token.csv'), 'r') as fread:
for line in fread.readlines():
try:
line_list = line.strip().split(' DCTB ')
label = line_list[0]
text_token = line_list[1].split('\\')
self.dictionary.add_documents([text_token])
self.labels.append(label)
self.corpus.append(text_token)
except BaseException as e:
print e
continue
|
'get all tokens of the corpus'
| def __get_all_tokens(self):
| fwrite = open(self.data_path.replace('all.csv', 'all_token.csv'), 'w')
with open(self.data_path, 'r') as fread:
i = 0
for line in fread.readlines():
try:
line_list = line.strip().split(' DCTB ')
label = line_list[0]
self.labels.append(label)
text = line_list[1]
text_tokens = self.cut_doc_obj.run(text)
self.corpus.append(text_tokens)
self.dictionary.add_documents([text_tokens])
fwrite.write((((label + ' DCTB ') + '\\'.join(text_tokens)) + '\n'))
i += 1
except BaseException as e:
msg = traceback.format_exc()
print msg
print '=====>Read Done<======'
break
self.token_len = self.dictionary.__len__()
print ('all token len ' + str(self.token_len))
print 'save the dictionary'
self.dictionary.save(self.data_path.replace('all.csv', 'cnn.dict'))
self.num_data = i
fwrite.close()
|
'gen_embedding_matrix: generate the embedding matrix'
| def gen_embedding_matrix(self, load4file=True):
| if load4file:
self.__get_all_tokens_v2()
else:
self.__get_all_tokens()
print 'before filter, the tokens len: {0}'.format(self.dictionary.__len__())
self.__filter_tokens()
print 'after filter, the tokens len: {0}'.format(self.dictionary.__len__())
self.sequence = []
for file_token in self.corpus:
temp_sequence = [x for (x, y) in self.dictionary.doc2bow(file_token)]
self.sequence.append(temp_sequence)
self.corpus_size = len(self.dictionary.token2id)
self.embedding_matrix = np.zeros((self.corpus_size, EMBEDDING_DIM))
print 'corpus size: {0}'.format(len(self.dictionary.token2id))
for (key, v) in self.dictionary.token2id.items():
key_vec = self.w2vec.get(key)
if (key_vec is not None):
self.embedding_matrix[v] = key_vec
else:
self.embedding_matrix[v] = (np.random.rand(EMBEDDING_DIM) - 0.5)
print 'enbedding_matrix len {0}'.format(len(self.embedding_matrix))
|
'delete the stopwords'
| def del_stopwords(self, do=True):
| if do:
for word in self.cut_text:
if (word not in self.stop_words):
self.tokens.append(word)
else:
for word in self.cut_text:
self.tokens.append(word)
|
'text : String
return: generator'
| def cut(self, origin_text):
| cut_text = jieba.cut(origin_text)
self.cut_text = cut_text
|
'origin_text: String
return: a list of tokens'
| def run(self, origin_text):
| self.tokens = []
self.cut(origin_text)
self.del_stopwords()
self.del_digit()
self.del_alpha()
return self.tokens
|
'load_word2vec: load the w2v model'
| def load_word2vec(self):
| print 'Start load word2vec model'
self.w2vec = {}
with open(self.w2v_file, 'r') as fread:
for line in fread.readlines():
line_list = line.strip().split(' ')
word = line_list[0]
word_vec = np.fromstring(' '.join(line_list[1:]), dtype=float, sep=' ')
self.w2vec[word] = word_vec
print 'Done load word2vec model'
|
'get all tokens from file'
| def __get_all_tokens_v2(self):
| print 'load the tokens from file '
with open(self.data_path.replace('all.csv', 'all_token.csv'), 'r') as fread:
for line in fread.readlines():
try:
line_list = line.strip().split(' DCTB ')
label = line_list[0]
text_token = line_list[1].split('\\')
self.dictionary.add_documents([text_token])
self.labels.append(label)
self.corpus.append(text_token)
except BaseException as e:
print e
continue
|
'get all tokens of the corpus'
| def __get_all_tokens(self):
| fwrite = open(self.data_path.replace('all.csv', 'all_token.csv'), 'w')
with open(self.data_path, 'r') as fread:
i = 0
for line in fread.readlines():
try:
line_list = line.strip().split(' DCTB ')
label = line_list[0]
self.labels.append(label)
text = line_list[1]
text_tokens = self.cut_doc_obj.run(text)
self.corpus.append(text_tokens)
self.dictionary.add_documents([text_tokens])
fwrite.write((((label + ' DCTB ') + '\\'.join(text_tokens)) + '\n'))
i += 1
except BaseException as e:
msg = traceback.format_exc()
print msg
print '=====>Read Done<======'
break
self.token_len = self.dictionary.__len__()
print ('all token len ' + str(self.token_len))
print 'save the dictionary'
self.dictionary.save(self.data_path.replace('all.csv', 'cnn.dict'))
self.num_data = i
fwrite.close()
|
'gen_embedding_matrix: generate the embedding matrix'
| def gen_embedding_matrix(self, load4file=True):
| if load4file:
self.__get_all_tokens_v2()
else:
self.__get_all_tokens()
print 'before filter, the tokens len: {0}'.format(self.dictionary.__len__())
self.__filter_tokens(threshold_num=5)
print 'after filter, the tokens len: {0}'.format(self.dictionary.__len__())
self.sequence = []
for file_token in self.corpus:
temp_sequence = [x for (x, y) in self.dictionary.doc2bow(file_token)]
self.sequence.append(temp_sequence)
self.corpus_size = len(self.dictionary.token2id)
self.embedding_matrix = np.zeros((self.corpus_size, EMBEDDING_DIM))
print 'corpus size: {0}'.format(len(self.dictionary.token2id))
for (key, v) in self.dictionary.token2id.items():
key_vec = self.w2vec.get(key)
if (key_vec is not None):
self.embedding_matrix[v] = key_vec
else:
self.embedding_matrix[v] = (np.random.rand(EMBEDDING_DIM) - 0.5)
print 'enbedding_matrix len {0}'.format(len(self.embedding_matrix))
|
'get all tokens of the corpus'
| def __get_all_tokens(self):
| fwrite = open(self.data_path.replace('all_title.csv', 'all_token.csv'), 'w')
with open(self.data_path, 'r') as fread:
i = 0
for line in fread.readlines():
try:
line_list = line.strip().split(' DCTB ')
label = line_list[0]
self.labels.append(label)
text = line_list[1]
text_tokens = self.cut_doc_obj.run(text)
self.corpus.append(' '.join(text_tokens))
self.dictionary.add_documents([text_tokens])
fwrite.write((((label + ' DCTB ') + '\\'.join(text_tokens)) + '\n'))
i += 1
except BaseException as e:
msg = traceback.format_exc()
print msg
print '=====>Read Done<======'
break
self.token_len = self.dictionary.__len__()
print ('all token len ' + str(self.token_len))
self.num_data = i
fwrite.close()
|
'vec: get a vec representation of bow'
| def vec(self):
| self.__get_all_tokens()
print 'before filter, the tokens len: {0}'.format(self.dictionary.__len__())
vectorizer = CountVectorizer(min_df=1e-05)
transformer = TfidfTransformer()
self.tfidf = transformer.fit_transform(vectorizer.fit_transform(self.corpus))
words = vectorizer.get_feature_names()
print 'word len: {0}'.format(len(words))
print 'tfidf shape ({0},{1})'.format(self.tfidf.shape[0], self.tfidf.shape[1])
tfidf_vec_file = open(self.data_path.replace('all_title.csv', 'tfidf_vec.pl'), 'wb')
pickle.dump(self.tfidf, tfidf_vec_file)
tfidf_vec_file.close()
tfidf_label_file = open(self.data_path.replace('all_title.csv', 'tfidf_label.pl'), 'wb')
pickle.dump(self.labels, tfidf_label_file)
tfidf_label_file.close()
|
'Load entries from a file.'
| def loadFile(self, filename):
| for line in codecs.open(filename, 'r', 'utf-8'):
fields = line.split()
label = fields[0]
idx = int(fields[1])
self.add(label, idx)
|
'Write entries to a file.'
| def writeFile(self, filename):
| with codecs.open(filename, 'w', 'utf-8') as file:
for i in range(self.size()):
label = self.idxToLabel[i]
file.write(('%s %d\n' % (label, i)))
file.close()
|
'Find the id of each label in other dict.'
| def align(self, other):
| alignment = ([Constants.PAD] * self.size())
for (idx, label) in self.idxToLabel.items():
if (label in other.labelToIdx):
alignment[idx] = other.labelToIdx[label]
return alignment
|
'Mark this `label` and `idx` as special (i.e. will not be pruned).'
| def addSpecial(self, label, idx=None):
| idx = self.add(label, idx)
self.special += [idx]
|
'Mark all labels in `labels` as specials (i.e. will not be pruned).'
| def addSpecials(self, labels):
| for label in labels:
self.addSpecial(label)
|
'Add `label` in the dictionary. Use `idx` as its index if given.'
| def add(self, label, idx=None):
| label = (label.lower() if self.lower else label)
if (idx is not None):
self.idxToLabel[idx] = label
self.labelToIdx[label] = idx
elif (label in self.labelToIdx):
idx = self.labelToIdx[label]
else:
idx = len(self.idxToLabel)
self.idxToLabel[idx] = label
self.labelToIdx[label] = idx
if (idx not in self.frequencies):
self.frequencies[idx] = 1
else:
self.frequencies[idx] += 1
return idx
|
'Return a new dictionary with the `size` most frequent entries.'
| def prune(self, size):
| if (size >= self.size()):
return self
freq = [self.frequencies[i] for i in range(len(self.frequencies))]
print freq[:100]
idx = sorted(range(len(freq)), key=(lambda k: freq[k]), reverse=True)
print idx[:100]
newDict = Dict()
newDict.lower = self.lower
for i in self.special:
newDict.addSpecial(self.idxToLabel[i])
for i in idx[:size]:
newDict.add(self.idxToLabel[i])
return newDict
|
'Convert `labels` to indices. Use `unkWord` if not found.
Optionally insert `bosWord` at the beginning and `eosWord` at the .'
| def convertToIdx(self, labels, unkWord, bosWord=None, eosWord=None):
| vec = []
if (bosWord is not None):
vec += [self.lookup(bosWord)]
unk = self.lookup(unkWord)
vec += [self.lookup(label, default=unk) for label in labels]
if (eosWord is not None):
vec += [self.lookup(eosWord)]
return vec
|
'Convert `idx` to labels.
If index `stop` is reached, convert it and return.'
| def convertToLabels(self, idx, stop):
| labels = []
for i in idx:
labels += [self.getLabel(i)]
if (i == stop):
break
return labels
|
'return a generator with the specified batch_size'
| def read_copus_generator(self, batch_size=64):
| logger.info('Beigin read copus {0}'.format(file_name))
data = []
index = 0
with open(file_name, 'r') as fread:
while True:
try:
line = fread.readline()
data.append(line)
index += 1
if ((index % 100000) == 0):
logger.info('The program has processed {0} lines '.format(index))
except:
logger.info('Read End')
break
tokenizer = Tokenizer(nb_words=30000)
tokenizer.fit_on_texts(data)
logger.info('word num: {0}'.format(len(tokenizer.word_counts)))
sorted_word_counts = sorted(tokenizer.word_counts.items(), key=operator.itemgetter(1), reverse=True)
with open(file_name.replace('train.', 'meta.'), 'w') as fwrite:
for word_cnt in sorted_word_counts:
key = word_cnt[0]
val = word_cnt[1]
line = (((key + ':') + str(val)) + '\n')
fwrite.write(line)
vectorize_data = tokenizer.texts_to_matrix(data)
return vectorize_data
|
'Reads through the analogy question file.
Returns:
questions: a [n, 4] numpy array containing the analogy question\'s
word ids.
questions_skipped: questions skipped due to unknown words.'
| def read_analogies(self):
| questions = []
questions_skipped = 0
with open(self._options.eval_data, 'rb') as analogy_f:
for line in analogy_f:
if line.startswith(':'):
continue
words = line.strip().lower().split(' ')
ids = [self._word2id.get(w.strip()) for w in words]
if ((None in ids) or (len(ids) != 4)):
questions_skipped += 1
else:
questions.append(np.array(ids))
print('Eval analogy file: ', self._options.eval_data)
print('Questions: ', len(questions))
print('Skipped: ', questions_skipped)
self._analogy_questions = np.array(questions, dtype=np.int32)
|
'Build the graph for the forward pass.'
| def forward(self, examples, labels):
| opts = self._options
init_width = (0.5 / opts.emb_dim)
emb = tf.Variable(tf.random_uniform([opts.vocab_size, opts.emb_dim], (- init_width), init_width), name='emb')
self._emb = emb
sm_w_t = tf.Variable(tf.zeros([opts.vocab_size, opts.emb_dim]), name='sm_w_t')
sm_b = tf.Variable(tf.zeros([opts.vocab_size]), name='sm_b')
self.global_step = tf.Variable(0, name='global_step')
labels_matrix = tf.reshape(tf.cast(labels, dtype=tf.int64), [opts.batch_size, 1])
(sampled_ids, _, _) = tf.nn.fixed_unigram_candidate_sampler(true_classes=labels_matrix, num_true=1, num_sampled=opts.num_samples, unique=True, range_max=opts.vocab_size, distortion=0.75, unigrams=opts.vocab_counts.tolist())
example_emb = tf.nn.embedding_lookup(emb, examples)
true_w = tf.nn.embedding_lookup(sm_w_t, labels)
true_b = tf.nn.embedding_lookup(sm_b, labels)
sampled_w = tf.nn.embedding_lookup(sm_w_t, sampled_ids)
sampled_b = tf.nn.embedding_lookup(sm_b, sampled_ids)
true_logits = (tf.reduce_sum(tf.multiply(example_emb, true_w), 1) + true_b)
sampled_b_vec = tf.reshape(sampled_b, [opts.num_samples])
sampled_logits = (tf.matmul(example_emb, sampled_w, transpose_b=True) + sampled_b_vec)
return (true_logits, sampled_logits)
|
'Build the graph for the NCE loss.'
| def nce_loss(self, true_logits, sampled_logits):
| opts = self._options
true_xent = tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(true_logits), logits=true_logits)
sampled_xent = tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.zeros_like(sampled_logits), logits=sampled_logits)
nce_loss_tensor = ((tf.reduce_sum(true_xent) + tf.reduce_sum(sampled_xent)) / opts.batch_size)
return nce_loss_tensor
|
'Build the graph to optimize the loss function.'
| def optimize(self, loss):
| opts = self._options
words_to_train = float((opts.words_per_epoch * opts.epochs_to_train))
lr = (opts.learning_rate * tf.maximum(0.0001, (1.0 - (tf.cast(self._words, tf.float32) / words_to_train))))
self._lr = lr
optimizer = tf.train.GradientDescentOptimizer(lr)
train = optimizer.minimize(loss, global_step=self.global_step, gate_gradients=optimizer.GATE_NONE)
self._train = train
|
'Build the eval graph.'
| def build_eval_graph(self):
| analogy_a = tf.placeholder(dtype=tf.int32)
analogy_b = tf.placeholder(dtype=tf.int32)
analogy_c = tf.placeholder(dtype=tf.int32)
nemb = tf.nn.l2_normalize(self._emb, 1)
a_emb = tf.gather(nemb, analogy_a)
b_emb = tf.gather(nemb, analogy_b)
c_emb = tf.gather(nemb, analogy_c)
target = (c_emb + (b_emb - a_emb))
dist = tf.matmul(target, nemb, transpose_b=True)
(_, pred_idx) = tf.nn.top_k(dist, 4)
nearby_word = tf.placeholder(dtype=tf.int32)
nearby_emb = tf.gather(nemb, nearby_word)
nearby_dist = tf.matmul(nearby_emb, nemb, transpose_b=True)
(nearby_val, nearby_idx) = tf.nn.top_k(nearby_dist, min(1000, self._options.vocab_size))
self._analogy_a = analogy_a
self._analogy_b = analogy_b
self._analogy_c = analogy_c
self._analogy_pred_idx = pred_idx
self._nearby_word = nearby_word
self._nearby_val = nearby_val
self._nearby_idx = nearby_idx
|
'Build the graph for the full model.'
| def build_graph(self):
| opts = self._options
(words, counts, words_per_epoch, self._epoch, self._words, examples, labels) = word2vec.skipgram_word2vec(filename=opts.train_data, batch_size=opts.batch_size, window_size=opts.window_size, min_count=opts.min_count, subsample=opts.subsample)
(opts.vocab_words, opts.vocab_counts, opts.words_per_epoch) = self._session.run([words, counts, words_per_epoch])
opts.vocab_size = len(opts.vocab_words)
print('Data file: ', opts.train_data)
print('Vocab size: ', (opts.vocab_size - 1), ' + UNK')
print('Words per epoch: ', opts.words_per_epoch)
self._examples = examples
self._labels = labels
self._id2word = opts.vocab_words
for (i, w) in enumerate(self._id2word):
self._word2id[w] = i
(true_logits, sampled_logits) = self.forward(examples, labels)
loss = self.nce_loss(true_logits, sampled_logits)
tf.summary.scalar('NCE loss', loss)
self._loss = loss
self.optimize(loss)
tf.global_variables_initializer().run()
self.saver = tf.train.Saver()
|
'Save the vocabulary to a file so the model can be reloaded.'
| def save_vocab(self):
| opts = self._options
with open(os.path.join(opts.save_path, 'vocab.txt'), 'w') as f:
for i in xrange(opts.vocab_size):
vocab_word = tf.compat.as_text(opts.vocab_words[i]).encode('utf-8')
f.write(('%s %d\n' % (vocab_word, opts.vocab_counts[i])))
|
'Train the model.'
| def train(self):
| opts = self._options
(initial_epoch, initial_words) = self._session.run([self._epoch, self._words])
summary_op = tf.summary.merge_all()
summary_writer = tf.summary.FileWriter(opts.save_path, self._session.graph)
workers = []
for _ in xrange(opts.concurrent_steps):
t = threading.Thread(target=self._train_thread_body)
t.start()
workers.append(t)
(last_words, last_time, last_summary_time) = (initial_words, time.time(), 0)
last_checkpoint_time = 0
while True:
time.sleep(opts.statistics_interval)
(epoch, step, loss, words, lr) = self._session.run([self._epoch, self.global_step, self._loss, self._words, self._lr])
now = time.time()
(last_words, last_time, rate) = (words, now, ((words - last_words) / (now - last_time)))
print(('Epoch %4d Step %8d: lr = %5.3f loss = %6.2f words/sec = %8.0f\r' % (epoch, step, lr, loss, rate)), end='')
sys.stdout.flush()
if ((now - last_summary_time) > opts.summary_interval):
summary_str = self._session.run(summary_op)
summary_writer.add_summary(summary_str, step)
last_summary_time = now
if ((now - last_checkpoint_time) > opts.checkpoint_interval):
self.saver.save(self._session, os.path.join(opts.save_path, 'model.ckpt'), global_step=step.astype(int))
last_checkpoint_time = now
if (epoch != initial_epoch):
break
for t in workers:
t.join()
return epoch
|
'Predict the top 4 answers for analogy questions.'
| def _predict(self, analogy):
| (idx,) = self._session.run([self._analogy_pred_idx], {self._analogy_a: analogy[:, 0], self._analogy_b: analogy[:, 1], self._analogy_c: analogy[:, 2]})
return idx
|
'Evaluate analogy questions and reports accuracy.'
| def eval(self):
| correct = 0
try:
total = self._analogy_questions.shape[0]
except AttributeError as e:
raise AttributeError('Need to read analogy questions.')
start = 0
while (start < total):
limit = (start + 2500)
sub = self._analogy_questions[start:limit, :]
idx = self._predict(sub)
start = limit
for question in xrange(sub.shape[0]):
for j in xrange(4):
if (idx[(question, j)] == sub[(question, 3)]):
correct += 1
break
elif (idx[(question, j)] in sub[question, :3]):
continue
else:
break
print()
print(('Eval %4d/%d accuracy = %4.1f%%' % (correct, total, ((correct * 100.0) / total))))
|
'Predict word w3 as in w0:w1 vs w2:w3.'
| def analogy(self, w0, w1, w2):
| wid = np.array([[self._word2id.get(w, 0) for w in [w0, w1, w2]]])
idx = self._predict(wid)
for c in [self._id2word[i] for i in idx[0, :]]:
if (c not in [w0, w1, w2]):
print(c)
break
print('unknown')
|
'Prints out nearby words given a list of words.'
| def nearby(self, words, num=20):
| ids = np.array([self._word2id.get(x, 0) for x in words])
(vals, idx) = self._session.run([self._nearby_val, self._nearby_idx], {self._nearby_word: ids})
for i in xrange(len(words)):
print(('\n%s\n=====================================' % words[i]))
for (neighbor, distance) in zip(idx[i, :num], vals[i, :num]):
print(('%-20s %6.4f' % (self._id2word[neighbor], distance)))
|
'Convert the str_label to 10 binary code, 385 to 0001010010'
| def get_label(self, str_label):
| result = ([0] * 10)
for i in str_label:
result[int(i)] = 1
return result
|
'Process a list of strings, each corresponding to the recorded changes.
Args:
text: A list of lines of text (assumed to contain newlines)
Returns:
A tuple of the modified text and a textual description of what is done.
Raises:
ValueError: if substitution source location does not have expected text.'
| def process(self, text):
| change_report = ''
for (line, edits) in self._line_to_edit.items():
offset = 0
edits.sort(key=(lambda x: x.start))
char_array = list(text[(line - 1)])
change_report += ('%r Line %d\n' % (self._filename, line))
change_report += (('-' * 80) + '\n\n')
for e in edits:
change_report += ('%s\n' % e.comment)
change_report += ('\n Old: %s' % text[(line - 1)])
change_list = ([' '] * len(text[(line - 1)]))
change_list_new = ([' '] * len(text[(line - 1)]))
for e in edits:
start_eff = (e.start + offset)
end_eff = (start_eff + len(e.old))
old_actual = ''.join(char_array[start_eff:end_eff])
if (old_actual != e.old):
raise ValueError(('Expected text %r but got %r' % (''.join(e.old), ''.join(old_actual))))
char_array[start_eff:end_eff] = list(e.new)
change_list[e.start:(e.start + len(e.old))] = ('~' * len(e.old))
change_list_new[start_eff:end_eff] = ('~' * len(e.new))
offset += (len(e.new) - len(e.old))
change_report += (' %s\n' % ''.join(change_list))
text[(line - 1)] = ''.join(char_array)
change_report += (' New: %s' % text[(line - 1)])
change_report += (' %s\n\n' % ''.join(change_list_new))
return (''.join(text), change_report, self._errors)
|
'Add a new change that is needed.
Args:
comment: A description of what was changed
line: Line number (1 indexed)
start: Column offset (0 indexed)
old: old text
new: new text
error: this "edit" is something that cannot be fixed automatically
Returns:
None'
| def add(self, comment, line, start, old, new, error=None):
| self._line_to_edit[line].append(FileEditTuple(comment, line, start, old, new))
if error:
self._errors.append(('%s:%d: %s' % (self._filename, line, error)))
|
'Traverse an attribute to generate a full name e.g. tf.foo.bar.
Args:
node: A Node of type Attribute.
Returns:
a \'.\'-delimited full-name or None if the tree was not a simple form.
i.e. `foo()+b).bar` returns None, while `a.b.c` would return "a.b.c".'
| def _get_attribute_full_path(self, node):
| curr = node
items = []
while (not isinstance(curr, ast.Name)):
if (not isinstance(curr, ast.Attribute)):
return None
items.append(curr.attr)
curr = curr.value
items.append(curr.id)
return '.'.join(reversed(items))
|
'Return correct line number and column offset for a given node.
This is necessary mainly because ListComp\'s location reporting reports
the next token after the list comprehension list opening.
Args:
node: Node for which we wish to know the lineno and col_offset'
| def _find_true_position(self, node):
| import re
find_open = re.compile('^\\s*(\\[).*$')
find_string_chars = re.compile('[\'"]')
if isinstance(node, ast.ListComp):
line = node.lineno
col = node.col_offset
while 1:
text = self._lines[(line - 1)]
reversed_preceding_text = text[:col][::(-1)]
m = find_open.match(reversed_preceding_text)
if m:
new_col_offset = ((col - m.start(1)) - 1)
return (line, new_col_offset)
elif ((reversed_preceding_text == '') or reversed_preceding_text.isspace()):
line = (line - 1)
prev_line = self._lines[(line - 1)]
comment_start = prev_line.find('#')
if (comment_start == (-1)):
col = (len(prev_line) - 1)
elif (find_string_chars.search(prev_line[comment_start:]) is None):
col = comment_start
else:
return (None, None)
else:
return (None, None)
return (node.lineno, node.col_offset)
|
'Handle visiting a call node in the AST.
Args:
node: Current Node'
| def visit_Call(self, node):
| full_name = self._get_attribute_full_path(node.func)
node.func.is_function_for_call = True
if (full_name and full_name.startswith('tf.')):
function_handles = self._api_change_spec.function_handle
if (full_name in function_handles):
function_handles[full_name](self._file_edit, node)
function_reorders = self._api_change_spec.function_reorders
function_keyword_renames = self._api_change_spec.function_keyword_renames
if (full_name in function_reorders):
reordered = function_reorders[full_name]
for (idx, arg) in enumerate(node.args):
(lineno, col_offset) = self._find_true_position(arg)
if ((lineno is None) or (col_offset is None)):
self._file_edit.add(('Failed to add keyword %r to reordered function %r' % (reordered[idx], full_name)), arg.lineno, arg.col_offset, '', '', error='A necessary keyword argument failed to be inserted.')
else:
keyword_arg = reordered[idx]
if ((full_name in function_keyword_renames) and (keyword_arg in function_keyword_renames[full_name])):
keyword_arg = function_keyword_renames[full_name][keyword_arg]
self._file_edit.add(('Added keyword %r to reordered function %r' % (reordered[idx], full_name)), lineno, col_offset, '', (keyword_arg + '='))
renamed_keywords = ({} if (full_name not in function_keyword_renames) else function_keyword_renames[full_name])
for keyword in node.keywords:
argkey = keyword.arg
argval = keyword.value
if (argkey in renamed_keywords):
(argval_lineno, argval_col_offset) = self._find_true_position(argval)
if ((argval_lineno is not None) and (argval_col_offset is not None)):
key_start = ((argval_col_offset - len(argkey)) - 1)
key_end = ((key_start + len(argkey)) + 1)
if (self._lines[(argval_lineno - 1)][key_start:key_end] == (argkey + '=')):
self._file_edit.add(('Renamed keyword argument from %r to %r' % (argkey, renamed_keywords[argkey])), argval_lineno, ((argval_col_offset - len(argkey)) - 1), (argkey + '='), (renamed_keywords[argkey] + '='))
continue
self._file_edit.add(('Failed to rename keyword argument from %r to %r' % (argkey, renamed_keywords[argkey])), argval.lineno, ((argval.col_offset - len(argkey)) - 1), '', '', error='Failed to find keyword lexographically. Fix manually.')
ast.NodeVisitor.generic_visit(self, node)
|
'Handle bare Attributes i.e. [tf.foo, tf.bar].
Args:
node: Node that is of type ast.Attribute'
| def visit_Attribute(self, node):
| full_name = self._get_attribute_full_path(node)
if (full_name and full_name.startswith('tf.')):
self._rename_functions(node, full_name)
if (full_name in self._api_change_spec.change_to_function):
if (not hasattr(node, 'is_function_for_call')):
new_text = (full_name + '()')
self._file_edit.add(('Changed %r to %r' % (full_name, new_text)), node.lineno, node.col_offset, full_name, new_text)
ast.NodeVisitor.generic_visit(self, node)
|
'Process the given python file for incompatible changes.
Args:
in_filename: filename to parse
out_filename: output file to write to
Returns:
A tuple representing number of files processed, log of actions, errors'
| def process_file(self, in_filename, out_filename):
| with open(in_filename, 'r') as in_file:
with tempfile.NamedTemporaryFile('w', delete=False) as temp_file:
ret = self.process_opened_file(in_filename, in_file, out_filename, temp_file)
shutil.move(temp_file.name, out_filename)
return ret
|
'Process the given python file for incompatible changes.
This function is split out to facilitate StringIO testing from
tf_upgrade_test.py.
Args:
in_filename: filename to parse
in_file: opened file (or StringIO)
out_filename: output file to write to
out_file: opened file (or StringIO)
Returns:
A tuple representing number of files processed, log of actions, errors'
| def process_opened_file(self, in_filename, in_file, out_filename, out_file):
| process_errors = []
text = (('-' * 80) + '\n')
text += ('Processing file %r\n outputting to %r\n' % (in_filename, out_filename))
text += (('-' * 80) + '\n\n')
parsed_ast = None
lines = in_file.readlines()
try:
parsed_ast = ast.parse(''.join(lines))
except Exception:
text += ('Failed to parse %r\n\n' % in_filename)
text += traceback.format_exc()
if parsed_ast:
visitor = TensorFlowCallVisitor(in_filename, lines)
visitor.visit(parsed_ast)
(out_text, new_text, process_errors) = visitor.process(lines)
text += new_text
if out_file:
out_file.write(out_text)
text += '\n'
return (1, text, process_errors)
|
'Processes upgrades on an entire tree of python files in place.
Note that only Python files. If you have custom code in other languages,
you will need to manually upgrade those.
Args:
root_directory: Directory to walk and process.
output_root_directory: Directory to use as base
Returns:
A tuple of files processed, the report string ofr all files, and errors'
| def process_tree(self, root_directory, output_root_directory):
| if (output_root_directory and os.path.exists(output_root_directory)):
print(('Output directory %r must not already exist.' % output_root_directory))
sys.exit(1)
norm_root = os.path.split(os.path.normpath(root_directory))
norm_output = os.path.split(os.path.normpath(output_root_directory))
if (norm_root == norm_output):
print(('Output directory %r same as input directory %r' % (root_directory, output_root_directory)))
sys.exit(1)
files_to_process = []
for (dir_name, _, file_list) in os.walk(root_directory):
py_files = [f for f in file_list if f.endswith('.py')]
for filename in py_files:
fullpath = os.path.join(dir_name, filename)
fullpath_output = os.path.join(output_root_directory, os.path.relpath(fullpath, root_directory))
files_to_process.append((fullpath, fullpath_output))
file_count = 0
tree_errors = []
report = ''
report += (('=' * 80) + '\n')
report += ('Input tree: %r\n' % root_directory)
report += (('=' * 80) + '\n')
for (input_path, output_path) in files_to_process:
output_directory = os.path.dirname(output_path)
if (not os.path.isdir(output_directory)):
os.makedirs(output_directory)
file_count += 1
(_, l_report, l_errors) = self.process_file(input_path, output_path)
tree_errors += l_errors
report += l_report
return (file_count, report, tree_errors)
|
'Run predict op for each request.
Args:
request: The TensorProto which contains the map of "inputs". The request.inputs looks like {\'features\': dtype: DT_FLOAT tensor_shape { dim { size: 2 } } tensor_content: " A ?" }.
context: The grpc.beta._server_adaptations._FaceServicerContext object.
Returns:
The TensorProto which contains the map of "outputs". The response.outputs looks like {\'softmax\': dtype: DT_FLOAT tensor_shape { dim { size: 2 } } tensor_content: "\Ö¢=4¥k?\Ö¢=4¥k?" }'
| def Predict(self, request, context):
| request_map = request.inputs
feed_dict = {}
for (k, v) in self.inputs.items():
feed_dict[v] = tensor_util.MakeNdarray(request_map[k])
predict_result = self.sess.run(self.outputs, feed_dict=feed_dict)
response = predict_pb2.PredictResponse()
for (k, v) in predict_result.items():
response.outputs[k].CopyFrom(tensor_util.make_tensor_proto(v))
return response
|
'Constructor.
Args:
channel: A grpc.Channel.'
| def __init__(self, channel):
| self.Predict = channel.unary_unary('/tensorflow.serving.PredictionService/Predict', request_serializer=PredictRequest.SerializeToString, response_deserializer=PredictResponse.FromString)
|
'Overloads `+` operator.
It does NOT overwrite the existing item.
For example,
```python
import sugartensor as tf
opt = tf.sg_opt(size=1)
opt += tf.sg_opt(size=2)
print(opt) # Should be {\'size\': 1}'
| def __add__(self, other):
| res = Opt(self.__dict__)
for (k, v) in six.iteritems(other):
if ((k not in res.__dict__) or (res.__dict__[k] is None)):
res.__dict__[k] = v
return res
|
'Overloads `*` operator.
It overwrites the existing item.
For example,
```python
import sugartensor as tf
opt = tf.sg_opt(size=1)
opt *= tf.sg_opt(size=2)
print(opt) # Should be {\'size\': 2}'
| def __mul__(self, other):
| res = Opt(self.__dict__)
for (k, v) in six.iteritems(other):
res.__dict__[k] = v
return res
|
'Overloads `+` operator.
It does NOT overwrite the existing item.
For example,
```python
import sugartensor as tf
opt = tf.sg_opt(size=1)
opt += tf.sg_opt(size=2)
print(opt) # Should be {\'size\': 1}'
| def __add__(self, other):
| res = Opt(self.__dict__)
for (k, v) in six.iteritems(other):
if ((k not in res.__dict__) or (res.__dict__[k] is None)):
res.__dict__[k] = v
return res
|
'Overloads `*` operator.
It overwrites the existing item.
For example,
```python
import sugartensor as tf
opt = tf.sg_opt(size=1)
opt *= tf.sg_opt(size=2)
print(opt) # Should be {\'size\': 2}'
| def __mul__(self, other):
| res = Opt(self.__dict__)
for (k, v) in six.iteritems(other):
res.__dict__[k] = v
return res
|
'all_boxes is a list of length number-of-classes.
Each list element is a list of length number-of-images.
Each of those list elements is either an empty list []
or a numpy array of detection.
all_boxes[class][image] = [] or np.array of shape #dets x 5'
| def evaluate_detections(self, all_boxes, output_dir=None):
| raise NotImplementedError
|
'Evaluate detection proposal recall metrics.
Returns:
results: dictionary of results with keys
\'ar\': average recall
\'recalls\': vector recalls at each IoU overlap threshold
\'thresholds\': vector of IoU overlap thresholds
\'gt_overlaps\': vector of all ground-truth overlaps'
| def evaluate_recall(self, candidate_boxes=None, thresholds=None, area='all', limit=None):
| areas = {'all': 0, 'small': 1, 'medium': 2, 'large': 3, '96-128': 4, '128-256': 5, '256-512': 6, '512-inf': 7}
area_ranges = [[(0 ** 2), (100000.0 ** 2)], [(0 ** 2), (32 ** 2)], [(32 ** 2), (96 ** 2)], [(96 ** 2), (100000.0 ** 2)], [(96 ** 2), (128 ** 2)], [(128 ** 2), (256 ** 2)], [(256 ** 2), (512 ** 2)], [(512 ** 2), (100000.0 ** 2)]]
assert (area in areas), 'unknown area range: {}'.format(area)
area_range = area_ranges[areas[area]]
gt_overlaps = np.zeros(0)
num_pos = 0
for i in range(self.num_images):
max_gt_overlaps = self.roidb[i]['gt_overlaps'].toarray().max(axis=1)
gt_inds = np.where(((self.roidb[i]['gt_classes'] > 0) & (max_gt_overlaps == 1)))[0]
gt_boxes = self.roidb[i]['boxes'][gt_inds, :]
gt_areas = self.roidb[i]['seg_areas'][gt_inds]
valid_gt_inds = np.where(((gt_areas >= area_range[0]) & (gt_areas <= area_range[1])))[0]
gt_boxes = gt_boxes[valid_gt_inds, :]
num_pos += len(valid_gt_inds)
if (candidate_boxes is None):
non_gt_inds = np.where((self.roidb[i]['gt_classes'] == 0))[0]
boxes = self.roidb[i]['boxes'][non_gt_inds, :]
else:
boxes = candidate_boxes[i]
if (boxes.shape[0] == 0):
continue
if ((limit is not None) and (boxes.shape[0] > limit)):
boxes = boxes[:limit, :]
overlaps = bbox_overlaps(boxes.astype(np.float), gt_boxes.astype(np.float))
_gt_overlaps = np.zeros(gt_boxes.shape[0])
for j in range(gt_boxes.shape[0]):
argmax_overlaps = overlaps.argmax(axis=0)
max_overlaps = overlaps.max(axis=0)
gt_ind = max_overlaps.argmax()
gt_ovr = max_overlaps.max()
assert (gt_ovr >= 0)
box_ind = argmax_overlaps[gt_ind]
_gt_overlaps[j] = overlaps[(box_ind, gt_ind)]
assert (_gt_overlaps[j] == gt_ovr)
overlaps[box_ind, :] = (-1)
overlaps[:, gt_ind] = (-1)
gt_overlaps = np.hstack((gt_overlaps, _gt_overlaps))
gt_overlaps = np.sort(gt_overlaps)
if (thresholds is None):
step = 0.05
thresholds = np.arange(0.5, (0.95 + 1e-05), step)
recalls = np.zeros_like(thresholds)
for (i, t) in enumerate(thresholds):
recalls[i] = ((gt_overlaps >= t).sum() / float(num_pos))
ar = recalls.mean()
return {'ar': ar, 'recalls': recalls, 'thresholds': thresholds, 'gt_overlaps': gt_overlaps}
|
'Turn competition mode on or off.'
| def competition_mode(self, on):
| pass
|
'Return the absolute path to image i in the image sequence.'
| def image_path_at(self, i):
| return self.image_path_from_index(self._image_index[i])
|
'Construct an image path from the image\'s "index" identifier.'
| def image_path_from_index(self, index):
| image_path = os.path.join(self._data_path, 'JPEGImages', (index + self._image_ext))
assert os.path.exists(image_path), 'Path does not exist: {}'.format(image_path)
return image_path
|
'Load the indexes listed in this dataset\'s image set file.'
| def _load_image_set_index(self):
| image_set_file = os.path.join(self._data_path, 'ImageSets', 'Main', (self._image_set + '.txt'))
assert os.path.exists(image_set_file), 'Path does not exist: {}'.format(image_set_file)
with open(image_set_file) as f:
image_index = [x.strip() for x in f.readlines()]
return image_index
|
'Return the default path where PASCAL VOC is expected to be installed.'
| def _get_default_path(self):
| return os.path.join(cfg.DATA_DIR, ('VOCdevkit' + self._year))
|
'Return the database of ground-truth regions of interest.
This function loads/saves from/to a cache file to speed up future calls.'
| def gt_roidb(self):
| cache_file = os.path.join(self.cache_path, (self.name + '_gt_roidb.pkl'))
if os.path.exists(cache_file):
with open(cache_file, 'rb') as fid:
try:
roidb = pickle.load(fid)
except:
roidb = pickle.load(fid, encoding='bytes')
print('{} gt roidb loaded from {}'.format(self.name, cache_file))
return roidb
gt_roidb = [self._load_pascal_annotation(index) for index in self.image_index]
with open(cache_file, 'wb') as fid:
pickle.dump(gt_roidb, fid, pickle.HIGHEST_PROTOCOL)
print('wrote gt roidb to {}'.format(cache_file))
return gt_roidb
|
'Load image and bounding boxes info from XML file in the PASCAL VOC
format.'
| def _load_pascal_annotation(self, index):
| filename = os.path.join(self._data_path, 'Annotations', (index + '.xml'))
tree = ET.parse(filename)
objs = tree.findall('object')
if (not self.config['use_diff']):
non_diff_objs = [obj for obj in objs if (int(obj.find('difficult').text) == 0)]
objs = non_diff_objs
num_objs = len(objs)
boxes = np.zeros((num_objs, 4), dtype=np.uint16)
gt_classes = np.zeros(num_objs, dtype=np.int32)
overlaps = np.zeros((num_objs, self.num_classes), dtype=np.float32)
seg_areas = np.zeros(num_objs, dtype=np.float32)
for (ix, obj) in enumerate(objs):
bbox = obj.find('bndbox')
x1 = (float(bbox.find('xmin').text) - 1)
y1 = (float(bbox.find('ymin').text) - 1)
x2 = (float(bbox.find('xmax').text) - 1)
y2 = (float(bbox.find('ymax').text) - 1)
cls = self._class_to_ind[obj.find('name').text.lower().strip()]
boxes[ix, :] = [x1, y1, x2, y2]
gt_classes[ix] = cls
overlaps[(ix, cls)] = 1.0
seg_areas[ix] = (((x2 - x1) + 1) * ((y2 - y1) + 1))
overlaps = scipy.sparse.csr_matrix(overlaps)
return {'boxes': boxes, 'gt_classes': gt_classes, 'gt_overlaps': overlaps, 'flipped': False, 'seg_areas': seg_areas}
|
'Load image ids.'
| def _load_image_set_index(self):
| image_ids = self._COCO.getImgIds()
return image_ids
|
'Return the absolute path to image i in the image sequence.'
| def image_path_at(self, i):
| return self.image_path_from_index(self._image_index[i])
|
'Construct an image path from the image\'s "index" identifier.'
| def image_path_from_index(self, index):
| file_name = (((('COCO_' + self._data_name) + '_') + str(index).zfill(12)) + '.jpg')
image_path = osp.join(self._data_path, 'images', self._data_name, file_name)
assert osp.exists(image_path), 'Path does not exist: {}'.format(image_path)
return image_path
|
'Return the database of ground-truth regions of interest.
This function loads/saves from/to a cache file to speed up future calls.'
| def gt_roidb(self):
| cache_file = osp.join(self.cache_path, (self.name + '_gt_roidb.pkl'))
if osp.exists(cache_file):
with open(cache_file, 'rb') as fid:
roidb = pickle.load(fid)
print('{} gt roidb loaded from {}'.format(self.name, cache_file))
return roidb
gt_roidb = [self._load_coco_annotation(index) for index in self._image_index]
with open(cache_file, 'wb') as fid:
pickle.dump(gt_roidb, fid, pickle.HIGHEST_PROTOCOL)
print('wrote gt roidb to {}'.format(cache_file))
return gt_roidb
|
'Loads COCO bounding-box instance annotations. Crowd instances are
handled by marking their overlaps (with all categories) to -1. This
overlap value means that crowd "instances" are excluded from training.'
| def _load_coco_annotation(self, index):
| im_ann = self._COCO.loadImgs(index)[0]
width = im_ann['width']
height = im_ann['height']
annIds = self._COCO.getAnnIds(imgIds=index, iscrowd=None)
objs = self._COCO.loadAnns(annIds)
valid_objs = []
for obj in objs:
x1 = np.max((0, obj['bbox'][0]))
y1 = np.max((0, obj['bbox'][1]))
x2 = np.min(((width - 1), (x1 + np.max((0, (obj['bbox'][2] - 1))))))
y2 = np.min(((height - 1), (y1 + np.max((0, (obj['bbox'][3] - 1))))))
if ((obj['area'] > 0) and (x2 >= x1) and (y2 >= y1)):
obj['clean_bbox'] = [x1, y1, x2, y2]
valid_objs.append(obj)
objs = valid_objs
num_objs = len(objs)
boxes = np.zeros((num_objs, 4), dtype=np.uint16)
gt_classes = np.zeros(num_objs, dtype=np.int32)
overlaps = np.zeros((num_objs, self.num_classes), dtype=np.float32)
seg_areas = np.zeros(num_objs, dtype=np.float32)
coco_cat_id_to_class_ind = dict([(self._class_to_coco_cat_id[cls], self._class_to_ind[cls]) for cls in self._classes[1:]])
for (ix, obj) in enumerate(objs):
cls = coco_cat_id_to_class_ind[obj['category_id']]
boxes[ix, :] = obj['clean_bbox']
gt_classes[ix] = cls
seg_areas[ix] = obj['area']
if obj['iscrowd']:
overlaps[ix, :] = (-1.0)
else:
overlaps[(ix, cls)] = 1.0
ds_utils.validate_boxes(boxes, width=width, height=height)
overlaps = scipy.sparse.csr_matrix(overlaps)
return {'width': width, 'height': height, 'boxes': boxes, 'gt_classes': gt_classes, 'gt_overlaps': overlaps, 'flipped': False, 'seg_areas': seg_areas}
|
'Set the roidb to be used by this layer during training.'
| def __init__(self, roidb, num_classes, random=False):
| self._roidb = roidb
self._num_classes = num_classes
self._random = random
self._shuffle_roidb_inds()
|
'Randomly permute the training roidb.'
| def _shuffle_roidb_inds(self):
| if self._random:
st0 = np.random.get_state()
millis = (int(round((time.time() * 1000))) % 4294967295)
np.random.seed(millis)
if cfg.TRAIN.ASPECT_GROUPING:
widths = np.array([r['width'] for r in self._roidb])
heights = np.array([r['height'] for r in self._roidb])
horz = (widths >= heights)
vert = np.logical_not(horz)
horz_inds = np.where(horz)[0]
vert_inds = np.where(vert)[0]
inds = np.hstack((np.random.permutation(horz_inds), np.random.permutation(vert_inds)))
inds = np.reshape(inds, ((-1), 2))
row_perm = np.random.permutation(np.arange(inds.shape[0]))
inds = np.reshape(inds[row_perm, :], ((-1),))
self._perm = inds
else:
self._perm = np.random.permutation(np.arange(len(self._roidb)))
if self._random:
np.random.set_state(st0)
self._cur = 0
|
'Return the roidb indices for the next minibatch.'
| def _get_next_minibatch_inds(self):
| if ((self._cur + cfg.TRAIN.IMS_PER_BATCH) >= len(self._roidb)):
self._shuffle_roidb_inds()
db_inds = self._perm[self._cur:(self._cur + cfg.TRAIN.IMS_PER_BATCH)]
self._cur += cfg.TRAIN.IMS_PER_BATCH
return db_inds
|
'Return the blobs to be used for the next minibatch.
If cfg.TRAIN.USE_PREFETCH is True, then blobs will be computed in a
separate process and made available through self._blob_queue.'
| def _get_next_minibatch(self):
| db_inds = self._get_next_minibatch_inds()
minibatch_db = [self._roidb[i] for i in db_inds]
return get_minibatch(minibatch_db, self._num_classes)
|
'Get blobs and copy them into this layer\'s top blob vector.'
| def forward(self):
| blobs = self._get_next_minibatch()
return blobs
|
'Retrieve unique object or create, if it doesn\'t exist. Returns a
tuple of ``(object, created)``, where ``object`` is the retrieved or
created object and ``created`` is a boolean specifying whether a new
object was created. Raises
:class:`~mongoengine.queryset.MultipleObjectsReturned` or
`DocumentName.MultipleObjectsReturned` if multiple results are found.
A new document will be created if the document doesn\'t exists; a
dictionary of default values for the new document may be provided as a
keyword argument called :attr:`defaults`.
.. note:: This requires two separate operations and therefore a
race condition exists. Because there are no transactions in
mongoDB other approaches should be investigated, to ensure you
don\'t accidently duplicate data when using this method. This is
now scheduled to be removed before 1.0
:param write_options: optional extra keyword arguments used if we
have to create a new document.
Passes any write_options onto :meth:`~mongoengine.Document.save`
:param auto_save: if the object is to be saved automatically if
not found.
add to your documents:
meta = {\'queryset_class\': ExtendedQuerySet}'
| def get_or_create(self, write_options=None, auto_save=True, *q_objs, **query):
| defaults = query.get('defaults', {})
if ('defaults' in query):
del query['defaults']
try:
doc = self.get(*q_objs, **query)
return (doc, False)
except self._document.DoesNotExist:
query.update(defaults)
doc = self._document(**query)
if auto_save:
doc.save(write_options=write_options)
return (doc, True)
|
'method returns the path (url) of the main image'
| def get_main_image_url(self, thumb=False, default=None, identifier='mainimage'):
| if (not isinstance(identifier, (list, tuple))):
identifier = [identifier]
for item in identifier:
try:
if (not thumb):
path = self.contents.get(identifier=item).content.path
else:
path = self.contents.get(identifier=item).content.thumb
return url_for('quokka.core.media', filename=path)
except Exception as e:
logger.warning(('get_main_image_url:' + str(e)))
return default
|
'method returns the path of the main image with http'
| def get_main_image_http(self, thumb=False, default=None, identifier='mainimage'):
| site_url = get_site_url()
image_url = self.get_main_image_url(thumb=thumb, default=default, identifier=identifier)
return u'{}{}'.format(site_url, image_url)
|
'Another implementation
data = {"name": name, "rawvalue": value, "formatter": formatter}
self.values.update(data, name=name) or self.values.create(**data)'
| def add_value(self, name, value, formatter='text'):
| custom_value = CustomValue(name=name, value=value, formatter=formatter)
self.values.append(custom_value)
|
'return how many ancestors this node has based on slugs'
| def get_ancestors_count(self):
| return len(self.get_ancestors_slugs())
|
'return ancestors slugs including self as 1st item
>>> channel = Channel(long_slug=\'articles/technology/programming\')
>>> channel.get_ancestors_slugs()
[\'articles/technology/programming\',
\'articles/technology\',
\'articles\']'
| def get_ancestors_slugs(self):
| channel_list = []
channel_slugs = self.long_slug.split('/')
while channel_slugs:
channel_list.append('/'.join(channel_slugs))
channel_slugs.pop()
return channel_list
|
'return all ancestors includind self as 1st item'
| def get_ancestors(self, **kwargs):
| channel_list = self.get_ancestors_slugs()
ancestors = self.__class__.objects(long_slug__in=channel_list, **kwargs).order_by('-long_slug')
return ancestors
|
'return direct children 1 level depth'
| def get_children(self, **kwargs):
| return self.__class__.objects(parent=self, **kwargs).order_by('long_slug')
|
'return all descendants including self as 1st item'
| def get_descendants(self, **kwargs):
| return self.__class__.objects(__raw__={'mpath': {'$regex': '^{0}'.format(self.mpath)}}).order_by('long_slug')
|
'This method should be reviewed
Canonical URL is the preferred URL for a content
when the content can be served by multiple URLS
In the case of channels it will never happen
until we implement the channel alias feature'
| def get_canonical_url(self, *args, **kwargs):
| if self.is_homepage:
return '/'
return self.get_absolute_url()
|
'populate inheritance from parent channels'
| def heritage(self):
| parent = self.parent
if ((not parent) or (not self.inherit_parent)):
return
self.content_filters = (self.content_filters or parent.content_filters)
self.include_in_rss = (self.include_in_rss or parent.include_in_rss)
self.show_in_menu = (self.show_in_menu or parent.show_in_menu)
self.indexable = (self.indexable or parent.indexable)
self.channel_type = (self.channel_type or parent.channel_type)
|
'As config reads data from database on every app.config.get(key)/[key]
This data is cached as a cached_property
The TTL is fixed in 5 minutes because we can\'t read it from
config itself.
Find a way to set the config parameter in a file
maybe in a config_setting.ini
It takes 5 minutes for new values to be available
and Make it possible to use REDIS as a cache'
| @cached_property_ttl(300)
def all_setings_from_db(self):
| try:
return {item.name: item.value for item in m.config.Config.objects.get(group='settings').values}
except Exception as e:
logger.warning(('Error reading all settings from db: %s' % e))
return {}
|
'This meethod is not used, but is here for compatibility'
| @staticmethod
def get_url(field):
| return field.data
|
'This method should be removed when Flask is >=0.11'
| def make_config(self, instance_relative=False):
| root_path = self.root_path
if instance_relative:
root_path = self.instance_path
return self.config_class(root_path, self.default_config)
|
'Fixme: Should include extra paths, fixed paths
config based paths, static paths'
| def get(self):
| return render_template('sitemap.xml', contents=self.get_contents(), channels=self.get_channels())
|
'Set up fixtures for the class.
This methods runs once for the entire class. This test case do not
insert or update any record on the database, so there is no problem
to be run only once for the class.
This way it save some time, instead of populate the test database
each time a test is executed.'
| @classmethod
def setUpClass(cls):
| admin = create_admin()
app = create_app(config='quokka.test_settings', DEBUG=False, test=True, admin_instance=admin)
with app.app_context():
db = list(app.extensions.get('mongoengine').keys())[0]
db.connection.drop_database('quokka_test')
from quokka.utils.populate import Populate
Populate(db)()
cls.app = app
cls.db = db
|
'Create app must be implemented.
It is mandatory for flask_testing test cases. Only returns
the app created in the setUpClass method.'
| def create_app(self):
| return self.app
|
'Set the cookie on the Flask test client.'
| def set_cookie(self, key, value='', *args, **kwargs):
| server_name = (flask.current_app.config['SERVER_NAME'] or 'localhost')
return self.client.set_cookie(server_name, key=key, value=value, *args, **kwargs)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.