text
stringlengths 0
828
|
---|
upper = np.nanpercentile(self.image[:, :, order[color]], self.multicolormax[color].get()) |
self.image[np.where(self.image[:, :, order[color]] < lower)] = lower |
self.image[np.where(self.image[:, :, order[color]] > upper)] = upper |
# image values must be between (0,1) so scale image |
for color, index in order.items(): |
self.image[:, :, index] /= np.nanmax(self.image[:, :, index])" |
124,"def configure_singlecolor_image(self, scale=False): |
"""""" |
configures the single color image according to the requested parameters |
:return: nothing, just updates self.image |
"""""" |
# determine which channel to use |
self.image = self.data[self.singlecolorvar.get()] |
# scale the image by requested power |
self.image = np.power(self.image, self.singlecolorpower.get()) |
# adjust the percentile thresholds |
lower = np.nanpercentile(self.image, self.singlecolormin.get()) |
upper = np.nanpercentile(self.image, self.singlecolormax.get()) |
self.image[self.image < lower] = lower |
self.image[self.image > upper] = upper |
# image values must be between (0,1) so scale image |
self.image /= np.nanmax(self.image)" |
125,"def updateArray(self, array, indices, value): |
"""""" |
updates array so that pixels at indices take on value |
:param array: (m,n) array to adjust |
:param indices: flattened image indices to change value |
:param value: new value to assign |
:return: the changed (m,n) array |
"""""" |
lin = np.arange(array.size) |
new_array = array.flatten() |
new_array[lin[indices]] = value |
return new_array.reshape(array.shape)" |
126,"def onlasso(self, verts): |
"""""" |
Main function to control the action of the lasso, allows user to draw on data image and adjust thematic map |
:param verts: the vertices selected by the lasso |
:return: nothin, but update the selection array so lassoed region now has the selected theme, redraws canvas |
"""""" |
p = path.Path(verts) |
ind = p.contains_points(self.pix, radius=1) |
self.history.append(self.selection_array.copy()) |
self.selection_array = self.updateArray(self.selection_array, |
ind, |
self.solar_class_var.get()) |
self.mask.set_data(self.selection_array) |
self.fig.canvas.draw_idle()" |
127,"def make_canvas_frame(self): |
"""""" Create the data and thematic map images for the first time """""" |
self.fig, (self.imageax, self.previewax) = plt.subplots(ncols=2, |
figsize=self.canvas_size, |
sharex=True, sharey=True, |
gridspec_kw=self.subplot_grid_spec) |
self.canvas = FigureCanvasTkAgg(self.fig, master=self.canvas_frame) |
self.canvas.mpl_connect('button_press_event', self.onclick) |
self.canvas.mpl_connect('key_press_event', self.onpress) |
# set up the channel data view |
self.configure_threecolor_image() |
self.imageplot = self.imageax.imshow(self.image) |
self.imageax.set_xlim([0, self.shape[0]]) |
self.imageax.set_ylim([0, self.shape[0]]) |
self.imageax.set_axis_off() |
self.history.append(self.selection_array) |
cmap = self.config.solar_cmap |
self.mask = self.previewax.imshow(self.selection_array, |
origin='lower', |
interpolation='nearest', |
cmap=cmap, |
vmin=-1, vmax=max([num for _, num in self.config.solar_classes])+1) |
self.previewax.set_xlim([0, self.shape[0]]) |
self.previewax.set_ylim([0, self.shape[0]]) |
self.previewax.set_aspect(""equal"") |
self.previewax.set_axis_off() |
# add selection layer for lasso |
self.pix = np.arange(self.shape[0]) # assumes square image |
xv, yv = np.meshgrid(self.pix, self.pix) |
self.pix = np.vstack((xv.flatten(), yv.flatten())).T |
lineprops = dict(color=self.config.default['lasso_color'], |
linewidth=self.config.default['lasso_width']) |
self.lasso = LassoSelector(self.imageax, self.onlasso, lineprops=lineprops) |
# display everything |
self.canvas.show() |
self.canvas.get_tk_widget().pack(side=tk.TOP, fill=tk.BOTH, expand=True) |
self.canvas._tkcanvas.pack(side=tk.TOP, fill=tk.BOTH, expand=True) |
# add the tool bar |
self.toolbarcenterframe = tk.LabelFrame(self.canvas_frame, |
borderwidth=0, |
text=""Draw: unlabeled"", |
relief=tk.FLAT, |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.