text
stringlengths 0
828
|
---|
labelanchor=tk.N, |
background='red') |
toolbarframe = tk.Frame(self.toolbarcenterframe) |
toolbar = CustomToolbar(self.canvas, toolbarframe, self.toolbarcenterframe, self) |
toolbar.update() |
self.fig.canvas.toolbar.set_message = lambda x: """" # remove state reporting |
toolbarframe.pack() |
self.toolbarcenterframe.pack(side=tk.BOTTOM, fill=tk.X)" |
128,"def onpress(self, event): |
"""""" |
Reacts to key commands |
:param event: a keyboard event |
:return: if 'c' is pressed, clear all region patches |
"""""" |
if event.key == 'c': # clears all the contours |
for patch in self.region_patches: |
patch.remove() |
self.region_patches = [] |
self.fig.canvas.draw_idle() |
elif event.key == ""u"": # undo a label |
self.undobutton_action()" |
129,"def onclick(self, event): |
"""""" |
Draw contours on the data for a click in the thematic map |
:param event: mouse click on thematic map preview |
"""""" |
if event.inaxes == self.previewax: |
y, x = int(event.xdata), int(event.ydata) |
label = self.selection_array[x, y] |
contiguous_regions = scipy.ndimage.label(self.selection_array == label)[0] |
this_region = contiguous_regions == (contiguous_regions[x, y]) |
# remove the boundaries so any region touching the edge isn't drawn odd |
this_region[0, :] = 0 |
this_region[:, 0] = 0 |
this_region[this_region.shape[0]-1, :] = 0 |
this_region[:, this_region.shape[1]-1] = 0 |
# convert the region mask into just a true/false array of its boundary pixels |
edges = binary_erosion(this_region) ^ this_region |
# convert the boundary pixels into a path, moving around instead of just where |
x, y = np.where(edges) |
coords = np.dstack([x, y])[0] |
path = [coords[0]] |
coords = coords[1:] |
while len(coords): |
dist = np.sum(np.abs(path[-1] - coords), axis=1) |
neighbor_index = np.argmin(dist) |
if dist[neighbor_index] < 5: |
path.append(coords[neighbor_index].copy()) |
coords[neighbor_index:-1] = coords[neighbor_index + 1:] |
coords = coords[:-1] |
else: |
break |
path = np.array(path) |
clips = [] |
while len(coords) > 5: |
dist = np.sum(np.abs(path[-1] - coords), axis=1) |
neighbor_index = np.argmin(dist) |
clip = [coords[neighbor_index].copy()] |
coords[neighbor_index:-1] = coords[neighbor_index + 1:] |
coords = coords[:-1] |
while len(coords): |
dist = np.sum(np.abs(clip[-1] - coords), axis=1) |
neighbor_index = np.argmin(dist) |
if dist[neighbor_index] < 5: |
clip.append(coords[neighbor_index].copy()) |
coords[neighbor_index:-1] = coords[neighbor_index + 1:] |
coords = coords[:-1] |
else: |
break |
clips.append(np.array(clip)) |
# draw the continguous on the selection area |
self.region_patches.append(PatchCollection( |
[Polygon(np.dstack([path[:, 1], path[:, 0]])[0], False, |
fill=False, facecolor=None, |
edgecolor=""black"", alpha=1, lw=2.5)] + |
[Polygon(np.dstack([clip[:, 1], clip[:, 0]])[0], False, |
fill=False, facecolor=None, |
edgecolor=""black"", alpha=1, lw=2.0) for clip in clips], |
match_original=True)) |
self.imageax.add_collection(self.region_patches[-1]) |
self.fig.canvas.draw_idle()" |
130,"def make_options_frame(self): |
"""""" make the frame that allows for configuration and classification"""""" |
self.tab_frame = ttk.Notebook(self.option_frame, width=800) |
self.tab_configure = tk.Frame(self.tab_frame) |
self.tab_classify = tk.Frame(self.tab_frame) |
self.make_configure_tab() |
self.make_classify_tab() |
self.tab_frame.add(self.tab_configure, text=""Configure"") |
self.tab_frame.add(self.tab_classify, text=""Classify"") |
self.tab_frame.pack(fill=tk.BOTH, expand=True)" |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.