Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
metadata
language:
- ace
- bg
- da
- fur
- ilo
- lij
- mzn
- qu
- su
- vi
- af
- bh
- de
- fy
- io
- lmo
- nap
- rm
- sv
- vls
- als
- bn
- diq
- ga
- is
- ln
- nds
- ro
- sw
- vo
- am
- bo
- dv
- gan
- it
- lt
- ne
- ru
- szl
- wa
- an
- br
- el
- gd
- ja
- lv
- nl
- rw
- ta
- war
- ang
- bs
- eml
- gl
- jbo
- nn
- sa
- te
- wuu
- ar
- ca
- en
- gn
- jv
- mg
- 'no'
- sah
- tg
- xmf
- arc
- eo
- gu
- ka
- mhr
- nov
- scn
- th
- yi
- arz
- cdo
- es
- hak
- kk
- mi
- oc
- sco
- tk
- yo
- as
- ce
- et
- he
- km
- min
- or
- sd
- tl
- zea
- ast
- ceb
- eu
- hi
- kn
- mk
- os
- sh
- tr
- ay
- ckb
- ext
- hr
- ko
- ml
- pa
- si
- tt
- az
- co
- fa
- hsb
- ksh
- mn
- pdc
- ug
- ba
- crh
- fi
- hu
- ku
- mr
- pl
- sk
- uk
- zh
- bar
- cs
- hy
- ky
- ms
- pms
- sl
- ur
- csb
- fo
- ia
- la
- mt
- pnb
- so
- uz
- cv
- fr
- id
- lb
- mwl
- ps
- sq
- vec
- be
- cy
- frr
- ig
- li
- my
- pt
- sr
multilinguality:
- multilingual
size_categories:
- 10K<100k
task_categories:
- token-classification
task_ids:
- named-entity-recognition
pretty_name: WikiAnn
Dataset Card for "tner/wikiann"
Dataset Description
- Repository: T-NER
- Paper: https://aclanthology.org/P17-1178/
- Dataset: WikiAnn
- Domain: Wikipedia
- Number of Entity: 3
Dataset Summary
WikiAnn NER dataset formatted in a part of TNER project.
- Entity Types:
LOC
,ORG
,PER
Dataset Structure
Data Instances
An example of train
looks as follows.
{
'tokens': ['I', 'hate', 'the', 'words', 'chunder', ',', 'vomit', 'and', 'puke', '.', 'BUUH', '.'],
'tags': [6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6]
}
Label ID
The label2id dictionary can be found at here.
{
"B-LOC": 0,
"B-ORG": 1,
"B-PER": 2,
"I-LOC": 3,
"I-ORG": 4,
"I-PER": 5,
"O": 6
}
Data Splits
name | train | validation | test |
---|---|---|---|
btc | 6338 | 1001 | 2000 |
Citation Information
@inproceedings{pan-etal-2017-cross,
title = "Cross-lingual Name Tagging and Linking for 282 Languages",
author = "Pan, Xiaoman and
Zhang, Boliang and
May, Jonathan and
Nothman, Joel and
Knight, Kevin and
Ji, Heng",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P17-1178",
doi = "10.18653/v1/P17-1178",
pages = "1946--1958",
abstract = "The ambitious goal of this work is to develop a cross-lingual name tagging and linking framework for 282 languages that exist in Wikipedia. Given a document in any of these languages, our framework is able to identify name mentions, assign a coarse-grained or fine-grained type to each mention, and link it to an English Knowledge Base (KB) if it is linkable. We achieve this goal by performing a series of new KB mining methods: generating {``}silver-standard{''} annotations by transferring annotations from English to other languages through cross-lingual links and KB properties, refining annotations through self-training and topic selection, deriving language-specific morphology features from anchor links, and mining word translation pairs from cross-lingual links. Both name tagging and linking results for 282 languages are promising on Wikipedia data and on-Wikipedia data.",
}